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Abstract 

Building performance optimization is a valuable aid to 

design decision-making. Most existing research takes an 

‘a posteriori’ approach, where stakeholder preferences are 

considered after deriving optimised results. Whilst this 

approach yields technically optimal solutions, it 

overlooks sub-optimal solutions that still satisfy 

stakeholder preferences. This research develops a 

technique to incorporate preferences into optimization by 

applying a “desirability function” to each criterion for 

multiple stakeholders. The approach enables the trade-

offs between decision-makers to be visualised as a Pareto 

frontier and aids “democratic” decision-making. Hence, 

incorporating preferences in advance of optimization may 

increase the likelihood of finding a desirable solution. 

Introduction 

Building design is inherently complex, with multiple 

stakeholders involved; many decisions need to be made 

and there is a diverse range of potential solutions. In this 

situation, decision-makers experience “information 

overload” and adopt filtering techniques to reduce the 

problem to a manageable scale (Malhotra, 1982; Payne, 

1976). Building Performance Simulation (BPS) and 

computational optimization can be used to select a subset 

of candidate solutions with significantly reduced energy 

demand (Evins, 2013). Most existing studies consider ‘a 

posteriori’ decision-making, where stakeholder 

preferences are expressed after optimization, by selecting 

preferred solutions from the Pareto frontier (Evins, 2013; 

Nguyen et al, 2014). However, if the optimization process 

is conducted before considering decision-makers’ 

preferences, then some acceptable solutions may be ruled 

out because they are sub-optimal. Incorporating 

preferences into the optimization process may lead to the 

selection of different potential solutions.  

The role of BPS was succinctly summarised by the 

keynote speaker at the BSO 2018 conference: to provide 

better decision-making and to allow for “democratic” 

decision-making between stakeholders (Clarke, 2018). 

Harrington (1965) introduced the idea of a ‘desirability 

function’ as a method of incorporating preferences into 

decision-making. Research by Emmerich et al (2016), 

builds on that concept by applying a profile of acceptance 

probability to each decision-maker for each criterion and 

deriving an expected consensus score. The method shows 

great potential for democratic decision-making between 

stakeholders. The concept of desirability has, to the 

authors’ knowledge, not been applied to building 

performance and simulation. The novelty of this research 

is the application of desirability functions to both input 

parameters and the resulting performance criteria, in 

advance of any knowledge of the results. Optimization 

conventionally uses the Pareto frontier to illustrate trade-

offs between performance measures; similarly, the 

decision-making process between two stakeholders could 

be considered as a negotiation process, with trade-offs 

between what is acceptable to each participant. 

This technique is applied to early stage design because 

decisions made at this stage are often based on client 

preferences, without recourse to building performance 

simulation (BPS) (Negendahl, 2015). The selection of 

window-to-wall ratio is an early stage design decision, 

which has a significant impact on a building’s 

performance, which is particularly important when 

striving to achieve the stringent standards of the 

Passivhaus low-energy building standard (Hopfe and 

McLeod, 2015). Hence, considering the impact of 

decisions made in early stage design is crucial to gaining 

confidence that low-energy aspirations are realistic.  

The outcome of this research is to aid decision-making by 

giving feedback to stakeholders in a form that highlights 

the trade-offs between achieving a technically optimal 

solution and satisfying stakeholder preferences. 

Methods 

This research aims to explore the impact of decision-

makers’ preferences in low-energy building design. 

Stakeholders will make ‘a priori’ choices on annual 

specific heat demand, over-heating frequency and the 

window-to-wall ratio of each façade. The design decision 

variables of wall material, shading and window-to-wall 

ratio (WWR) are varied, as described in Table 2. For 

simplicity, and proof of concept, the paper will limit the 

number of decision makers to two, the low energy 

(Passivhaus) consultant and the project client. These 

stakeholders were chosen because they typify the conflict 

between performance targets and aesthetic preference, 

which is central to many design decisions in low-energy 

building. The focus here is on the methodology; a 

simplified example is selected deliberately to allow for 

concentration on the method.  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288352784?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Case Study 

The proposed community building in the Findhorn Eco-

Community, Scotland was used to illustrate the concept. 

The design brief included a requirement to evaluate the 

potential to comply with the Passivhaus standard, subject 

to site constraints and construction costs, whilst making 

the most of attractive views, via large areas of glazing. 

Passivhaus is an international low-energy building 

standard with stringent targets. It can be achieved by 

limiting the annual heating demand to a maximum of 

15kWh/m2 per annum and limiting over-heating 

frequency to less than 10% of occupied hours (Passivhaus 

Trust, 2013). The U-values for the building surfaces are 

as per the design specification and were defined with a 

low-energy building in mind, as described in Table 1.  

Table 1: U-values for low-energy building 

Building Surface U-value (W/m2K) 

External Walls 0.15 

Roof 0.10 

Ground Floor 0.85 

Windows 0.78 

When considering the same case study building, Hopfe et 

al (2017) cite glazing ratio as the most influential global 

parameter, with significant impacts on both space heating 

demand and over-heating frequency. Clearly, decisions 

on the sizing and position of windows are made in the 

early stages of design and are difficult to modify once 

regulatory approval is granted. The same could be said for 

wall materials. In contrast, shading devices may be 

retrofitted, if over-heating becomes a problem when the 

finished building is in use. A simplified case study was 

considered here. However, the findings can be applied to 

aid decision-making between different building forms and 

to incorporate a wider range of criteria. 

Selection of Performance Measures 

The optimization process had two objectives: 

1. To maximise the probability of acceptance of a 

prospective solution by the Passivhaus consultant;  

2. To maximise the probability of acceptance by the 

client. 

For each stakeholder, the probability of acceptance is 

determined by the desirability function for the following 

criteria: 

• Annual specific heat demand (kWh/m2 per annum) 

• Over-heating frequency (% of occupied hours) 

• Window-to-Wall Ratio (%) 

The desirability profiles (shown in Table 3) were used to 

derive a numerical score for the overall probability 

acceptance for each. Assumptions were made on the 

decision-makers’ preferences for annual specific heat 

demand, over-heating frequency and WWR, based on the 

literature; the Passivhaus consultant’s preference is 

chosen to reflect best practice in Passivhaus design for a 

cold climate (Goia, 2016). The client’s preference is 

based on previous research for the same case study 

building (Hopfe et al, 2017). 

Design Decision Variables  

The design decision variables are described in Table 2. 

Window-to-Wall Ratio (WWR) was chosen because 

decisions on this criterion are made in the early stage of 

design and it has a strong influence on energy use and 

over-heating; furthermore, decision-makers may have 

aesthetic preferences on WWR (Scanferla and Motuziene, 

2017). Thermal mass (in the form of wall material) was 

considered because of its impact on moderating over-

heating in low-energy building (Ridley et al, 2014). 

Shading was selected because of its role in preventing 

over-heating (Goia, 2016). Also, it impacts the 

appearance of a building design; if blinds are chosen, then 

they block the view when in use, conflicting with a key 

aspect of the design brief: that the design should maximise 

views of the landscape. The numeric criteria of annual 

specific heating demand and over-heating hours were 

studied because they are a requirement of a Passivhaus 

certification pathway (Passivhaus Trust, 2013).  

Table 2: Design Variables 

Design 

Decision 

Variable 

Variable 

Type 

Options 

Wall 

material 

Attribute of 

candidate 

design 

(1) Structured Insulated 

Panels (SIPS): expanded 

polystyrene insulation 

between panels of 

oriented-strand board 

(2) Heavy Weight (HW): 

cast concrete with external 

expanded polystyrene 

insulation 

Shading Attribute of 

candidate 

design 

(1) Exterior blinds absent 

or present; 

(2) Activated when solar 

radiation > 120W/m2 

Window-to-

Wall Ratio 

Optimization 

parameter  

10 – 80%, discretised with 

a step size of 1% 

For clarity, WWR is both an input parameter and a 

criterion for stakeholder preferences. 

Desirability Optimization Process 

The aim of this process is to test whether including 

stakeholder preferences in the optimization process 

results in the selection of a different solution, when 

compared to preference-free optimization. Multi-

objective optimization was used to explore the trade-offs 

between the probability of acceptance by two key 

stakeholders and how these relate to the performance 

targets and design decision variables. 

The following steps are taken: 

a) Defining desirability functions for each decision-

maker and criterion, as described in Table 3; 

b) The objective function for the optimization is to 

maximize the probability of acceptance of a 

prospective solution for each of two decision-makers; 

c) The expected consensus is calculated to illustrate 

whether that provides a useful measure (see the 

section on ‘Acceptance Probability and Expected 



Consensus’, below, for further details);  

d) A single computational optimization run, including 

the desirability functions, is conducted across the 

entire range of design variables described in Table 2; 

e) A comparative optimization is conducted, without 

incorporating the desirability functions, which seeks 

to minimize the conventional Passivhaus targets of: 

• Annual specific heat demand; 

• Occupied over-heating hours. 

The results of these two optimization approaches are 

compared.  

Acceptance Probability and Expected Consensus 

The probability that a given alternative is acceptable to a 

decision-maker is calculated as a product of the 

acceptance probability of each criterion and summed to 

derive an expected consensus score for each prospective 

solution. In any multi-stakeholder, multi-criteria problem, 

decision-makers will need to show flexibility in some of 

their preferences, if consensus is to be achieved. This 

research will use an estimate of fuzzy preferences for each 

decision-maker’s desire for a range of annual specific heat 

demand, over-heating frequency and suitable window-to- 

wall ratio (WWR) values. Desirability functions are used 

to derive the probability of a given attribute value being 

acceptable to a given decision-maker. Piecewise linear 

desirability functions are used. As with Derringer Suich 

type of desirability functions, the value of zero means not 

acceptable, whereas the value of 1 means that a solution 

fully satisfies the demand of the decision maker with 

respect to the criterion. By using piecewise linear 

functions, we add flexibility to the approach by Derringer 

Suich, which allows only for a very limited range of 

function shapes. Based on the derivation by Emmerich et 

al (2016), the probability that a given decision-maker 

(DMj) will find a given alternative (xi) acceptable overall, 

across criteria (fk), is calculated by: 

 𝑃(𝐷𝑀𝑗  𝐴𝑐𝑐𝑒𝑝𝑡𝑠 𝑥𝑖) = ∏ 𝑃(𝐴𝑐𝑐𝑒𝑝𝑡 𝑓𝑘)3
𝑘=1  (1) 

and the expected consensus score, meaning the expected 

number of decision makers who will agree on an option, 

for a given alternative xi is then derived by: 

 𝐸(𝑥𝑖) = ∑ 𝑃𝑗(𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒)2
𝑗 = 1  (2) 

Simulation and Optimization Process 

A simple two-storey geometric form of the building was 

considered, as shown in Figure 1. The design reflects the 

client’s preference to make the most of attractive views 

and is divided into two zones, to fulfil the requirement of 

functional areas for retail space and a café. The WWR for 

the individual façades were varied, with a step size of 1%. 

A single window was constructed to extend to the full 

width of the building and was centred around the mid-

point of each façade. The population size for the 

Table 3: Desirability Functions 

 DM1 

Passivhaus Consultant 

Annual specific heat demand and over-

heating frequency broadly based on 

Passivhaus criteria, with some flexibility 

DM2 

Client 

Less rigid than Passivhaus consultant on 

annual specific heat demand, over-

heating frequency and WWR 

Annual specific heat demand 

(kWh/m2 per annum) 

  

Over-heating frequency  

(% occupied hours) 

  

Window-to-Wall Ratio 

(WWR %) 

  

 

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50 60 70 80 90 100

Pr
o

b
ab

ili
ty

(A
cc

ep
t)

Annual Specific Heat Demand (kWh/m2 per annum)

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50 60 70 80 90 100

Pr
o

b
ab

ili
ty

 (A
cc

ep
t)

Annual Specific Heat Demand (kWh/m2 per annum)

0.00

0.25

0.50

0.75

1.00

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Pr
o

b
ab

ili
ty

(A
cc

ep
t)

Over-Heating Frequency (% occupied hours)

0.00

0.25

0.50

0.75

1.00

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Pr
o

b
ab

ili
ty

 (A
cc

ep
t)

Over-Heating Frequency (% occupied hours)

0.00

0.25

0.50

0.75

1.00

0% 20% 40% 60% 80% 100%

P
ro

b
ab

ili
ty

 (
A

cc
ep

t)

WWR

South-facing Façade

Other Façades

0.00

0.25

0.50

0.75

1.00

0% 20% 40% 60% 80% 100%

P
ro

b
ab

ili
ty

 (
A

cc
ep

t)

WWR

All Façades



optimization is twenty and the search is randomly seeded 

with values of: 

• Wall construction material: Structured Insulated 

Panels (SIPS), expanded polystyrene insulation 

between panels of oriented-strand board (OSB), or 

Heavy Weight (HW), cast concrete with external 

expanded polystyrene insulation. 

• Shading: exterior blinds absent or present, activated 

when solar radiation exceeds 120W/m2 during 

occupied hours. 

• WWR between 10% and 80%; chosen because, at the 

lower end of the range, some glazing is always 

needed for visual comfort and, at the top of the range, 

some space is needed to accommodate frames. 

The EnergyPlus software package was used for the 

dynamic simulation of the building performance because: 

a) It is commonly used in research and has a proven 

reputation in energy performance simulation; 

b) It permits text file inputs, so it lends itself to 

automation and can be readily called from within 

existing programming languages; 

c) It allows the user to modify parameters (Ascione et 

al, 2015; Jankovic, 2012; Nguyen et al, 2014). 

 Figure 1: Case Study Building Form 

The proven technique of a genetic algorithm was used for 

the optimization process; the S-Metric Selection 

Evolutionary Multi-objective Optimization Algorithm 

(SMS-EMOA) (Beume et al 2007) was the chosen , as a 

robust and accurate state-of-the-art technique. 

The objective of the optimization process is to maximise 

the probability of acceptance for both decision-makers.  

Four preference-based optimization runs were conducted, 

as outlined in Table 4: 

A subsequent performance-based optimization (e), which 

sought to minimize annual specific heat demand and over-

heating frequency by varying wall material, shading and 

WWR without applying desirability, was conducted to 

illustrate how results differ when preferences are not 

considered.  In each case, a copy of the base case input 

data file was created and the window-to-wall ratio on each 

façade of the building, wall material and shading were 

automatically edited and EnergyPlus was called to 

simulate the building performance and evaluate the 

objectives. A total of 4000 evaluations were executed for 

each optimization. 

The following output variables were captured: 

a) Annual heating demand: sourced from the 

EnergyPlus output file 'eplustbl.csv'; taken from the 

'District Heating [kWh]' column and divided by the 

'Net Conditioned Building Area'. 

b) Over-heating hours: calculated as the occupied hours 

when the operative temperature exceeds 25°C. 

c) Probability of acceptance for each criterion for each 

decision-maker and the expected consensus score 

(derived as described in the section ‘Acceptance 

Probability and Expected Consensus’). 

Results 

(a) No restriction on shading or wall material 

The initial optimization run applied the desirability 

functions outlined in Table 3 to derive the probability of 

acceptance for each decision-maker, by varying shading, 

wall material and WWR. The entire solution set results in 

an acceptance score of ‘1’ for both decision-makers, 

meaning that all solutions satisfy all criteria, so the 

expected consensus is ‘2’. Hence, the optimization 

resulted in a single point, with no trade-offs between the 

decision-makers, so neither stakeholder needs to 

compromise. However, there are two performance results 

that achieve the optimum consensus, i.e. there are two 

distinct data points for annual specific heat demand and 

over-heating frequency closely clustered together, as 

illustrated in Figure 2. This can be attributed to the narrow 

acceptable range for DM1 (Passivhaus consultant). These 

two solutions do not conform to a conventional Pareto 

frontier for the numeric performance criteria. Hence, one 

solution dominates the other; this aspect may aid the 

selection of a single solution. Mapping these data points 

back to the input criteria shows that these results can be 

achieved for a range of combinations of WWR across the 

different façades. All prospective solutions have a WWR 

of 50% on the south façade, because this is the only value 

which is yields a probability of acceptance of 1 for both 

stakeholders. 

The entire solution had shading present and a wall 

material of heavy-weight, which prompts an exploration 

of how the method performs when further restrictions are 

included.  

(b) Additional restriction: No Shading 

The application of exterior blinds may be undesirable, 

given that the design brief specified visibility of attractive 

views; hence, considering how the method behaves if 

shading devices are ruled-out might prove instructive.  

A further optimization was conducted to analyse the 

impact; again, all prospective solutions yield a 

satisfaction score of ‘1’ for both stakeholders. The results 

illustrated in Figure 2 show that over-heating frequency is 

greater when a ‘No Shading’ restriction is applied. Hence, 

it   is   possible   to   achieve   performance   within   the 

Table 4: Optimization Summary 

Run Variables Restrictions 

(a) Wall material, 

Shading, WWR 

Desirability function  

(b) Wall material, WWR Desirability function; 

Shading absent 

(c) Shading, WWR Desirability function; 

Wall material SIPS 

(d) Wall material, 

Shading, WWR 

Desirability function: 

Shifted Profile for WWR 

 

 



stakeholder preferences, without the presence of shading, 

albeit with increased incidence of over-heating. As with 

the previous solution set, the results can be achieved by 

several combinations of the input criteria of WWR on 

each façade.  

All the data points in the ‘No Shading’ solution set require 

a wall material of ‘Heavy Weight’. 

(c) Additional restriction: Wall Material SIPS 

The client might wish to restrict the wall material to SIPS, 

given that there are advantages to be gained in terms of 

improved air-tightness, quicker construction time and 

reduced cost (Kermani and Harstans, 2006) or out of a 

preference for low embodied-energy materials. 

If the wall material is restricted to SIPS, then the 

optimization results again yield a set of prospective 

solutions, all of which give a satisfaction score of ‘1’ for 

both decision-makers. The results are illustrated in Figure 

2 and show that the annual specific heat demand is greater 

when the wall material is restricted to SIPS.  

The entire solution set required shading.  

(d) Shifting Desirability Profile 

If the desirable range of WWR for the Passivhaus 

consultant is shifted by plus 5%, then there is a greater 

overlap with the client, so one might expect there to be a 

wider range of potential solutions. However, the results 

show that there are no options that completely satisfy the 

preferences of both stakeholders simultaneously. 

The trade-offs between decision-makers can be illustrated 

on a Pareto frontier, as shown in Figure 3. The dashed 

diagonal line shows where a solution would lie if it gave 

equal priority to each stakeholder. The dotted rectangle 

marking the top right quadrant outlines the area where the 

probability of acceptance for both stakeholders is 0.5 or 

more. The size of the dots indicates the expected 

consensus score. The results show that the views of DM2 

(Client) have priority over the views of DM1 (Passivhaus 

consultant) on most occasions. Hence, it appears more 

challenging to satisfy the preferences of DM1. It seems 

intuitive that a more restrictive range of WWR makes 

achieving a stakeholder’s preferences more challenging. 

One method of choosing the most suitable solution is to 

calculate the expected consensus and selecting the option 

with greatest score (Emmerich et al, 2016). In this 

example, the maximum expected consensus is achieved 

by solution [C], where DM1 (Passivhaus consultant) has 
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Figure 2: Comparison of preference-based optimization against conventional performance-based optimization, showing trade-offs 

between annual specific heat demand and over-heating frequency; the maximum values on the axes indicate Passivhaus standard limits 

 (a) – (c) All solutions satisfy the restrictions placed on the criteria, and have optimal solutions from each decision-maker’s perspective 

with a probability of acceptance of 1;  

(d) Selected solutions with probability of acceptance of 0.5 or more for both stakeholders; 

(e) Conventional performance-based optimization finds greatest number of optimized solutions, in terms of the objective of minimising 

annual specific heat demand and over-heating frequency. 

 

Figure 3: Trade-offs between decision-makers 



a probability of acceptance of 1 and DM2 (Client) has a 

probability of acceptance of 0.5; i.e. one decision-maker 

makes no concessions, while the other accepts all the 

compromises. Hence, higher expected consensus scores 

are achieved for those solutions that better satisfy the 

preferences of DM1 (Passivhaus consultant).  

An alternative method might be to select the prospective 

solution with the minimum distance from the ideal of both 

decision-makers achieving a score of ‘1’. In this example, 

solution [B] where DM1 and DM2 have probabilities of 

acceptance of 0.8 and 0.6, respectively, has the minimum 

distance to the ideal solution, as shown in Figure 3.  

Three of the points on the Pareto frontier in Figure 3 ([A], 

[B] and [C]) equate to solutions where all stakeholders 

have probability of acceptance of 0.5 or more. Figure 4 

illustrates how those prospective solutions map to four 

subtly difference performance results: [A] in Figure 3 

corresponds to solution [3], [B] corresponds to solution 

[2] and [C] to solutions [1] and [4]; i.e. solutions [1] and 

[4] both achieve the maximum expected consensus score 

of 1.5, with a probability of acceptance of 1 for DM1 

(Passivhaus consultant) and 0.5 for DM2 (Client).  

Figure 5, shows how solutions [1] to [4] map back to the 

input parameters of the WWR for each façade. Solution 

[1] from Figure 4 has the best performance in annual 

specific heat demand and over-heating frequency; Figure 

5 illustrates that solution [1] (the green dotted line) has 

lower levels of glazing on the north and east façades, but 

higher levels on the south and west, compared to solutions 

[2], [3] and [4].  

Drilling down into the details of how the different 

desirability functions determine the preference scores of 

each stakeholder reveals that the entire solution set 

satisfies the requirements for annual specific heat demand 

and over-heating frequency for both decision-makers. 

Therefore, in this instance, preference scores for WWR 

are driving the optimization process. Hence, consensus 

can only be increased by decision-makers exhibiting 

flexibility in their preferences for WWR.  

It should be noted that the entire solution selects a ‘Heavy 

Weight’ wall material and shading present. 

(e) Comparison to Conventional Optimization  

A conventional performance-based optimization, free of 

any preferences was conducted for comparison. As shown 

in Figure 2, the performance on both annual specific heat 

demand and over-heating frequency exceeds that for 

preference-based optimization. None of the performance-

based optimal solutions satisfy the WWR requirements of 

either decision-maker. Whereas the preference-based 

optimization solutions do not lie on the Pareto frontier of 

performance optimal solutions; however, they are within 

the Passivhaus criteria while satisfying stakeholder 

preferences. Compared to performance for restricted 

WWR, there is potential for 16% reduction in annual 

specific heat demand, with the same over-heating 

frequency, if the stakeholders are prepared to forego their 

restrictions on WWR, which translates to reduced 

operational energy costs and reduced CO2 emissions. 

Conversely, the preference-based optimization (a) 

performs well within the Passivhaus standard. This might 

be viewed as an opportunity to reduce insulation U-values 

to achieve a reduced cost. However, the entire solution set 

(a) resulted in the choice of a wall material of heavy-

weight; so, if a subsequent decision is made to select a 

wall material of SIPS, then that performance may be 

pushed beyond the limits of the Passivhaus standard. 

Discussion 

The outcome of the decision-making process differs 

depending upon whether the stakeholder preferences are 

considered before or after optimization; the choice of 

approach determines the selected design alternative.  

Four scenarios were considered: 

(a) No restriction on shading or wall material; 

(b) Restricted to: No shading; 

(c) Restricted to: Wall material SIPS; 

(d) Shifted desirability profile. 

Optimization runs (a) to (c) all achieved an acceptance 

score of ‘1’ for both decision-makers. All prospective 

solutions were sub-optimal, compared to conventional 

performance-based optimization. However, these 

solutions are more likely to adopted because they satisfy 

stakeholder preferences. 

Optimization run (d) illustrated the trade-offs between the 

probability of acceptance for two decision-makers on a 

Pareto frontier. Selecting an individual solution can then 

be done by the expected consensus method. However, in 

this instance all of the concession is borne by DM1 

(Client), so it does not appear to be in the spirit of 

 

Figure 4: Preferred solutions: Shifted Profile 

 

 

Figure 5: Input Parameters: Shifted Profile 

 



compromise. Furthermore, when considering the key role 

of the client in the decision-making process, such a course 

of action seems unrealistic. It is suggested that the 

consensus model should be extended by a fairness 

measure. Shifting the profile changes the outcome, which 

illustrates the importance of the choice of desirability 

function. Also, selecting a different function for the 

profile may change the solution set and hence the trade-

offs between stakeholders. Future research needs to focus 

on ensuring realistic profiles are accurately-defined. In 

the example studied here, the preference for WWR 

determines which solutions are selected from the 

perspective of either decision-maker; however, other 

examples may see each stakeholder compromise on a 

different criterion.  

The decision-making problem does not end with the 

selection of a trade-off solution between the stakeholders; 

a single point may map to multiple performance solutions. 

For example, point [C] on Figure 3 corresponds to 

performance solutions [1] and [4] on Figure 4. Each 

performance solution may be achieved by multiple 

combinations of input parameters.  

Combining acceptance probabilities as a product assumes 

decisions on each criterion are independent of one 

another, which may not be the case. For instance, the 

Passivhaus consultant may favour their WWR 

preferences because of the impact it will have on annual 

specific heat demand and over-heating frequency.  

On a practical level, combining probability of acceptance 

for a single stakeholder as a product, means that all 

criteria must be satisfied for an alternative to be 

acceptable. In complex problems it may be infeasible to 

concurrently satisfy the multiple preferences of even a 

single stakeholder, so it is important that stakeholders 

understand the consequences of choosing a desirability 

function that reaches zero. 

If there is too little similarity between the desirability 

profiles of different stakeholders, or the participants lack 

flexibility, then it will be challenging to achieve an 

agreeable solution and it is feasible that no solutions will 

even partially fulfil the requirements of all stakeholders. 

Conversely, if there is too much similarity between the 

desirability profile for different stakeholders, then it is 

feasible for many solutions to achieve the same score for 

the probability of acceptance; hence, the optimization 

process may struggle to differentiate between competing 

solutions and viable choices may be lost from the results 

set. Applying Harrington desirability functions may 

resolve this issue, as the probability of acceptance 

changes gradually and never reaches either ‘0’ or ‘1’. 

Furthermore, not all stakeholders have an opinion on 

every criterion; for instance, the architect may have no 

opinion on the setpoint temperature in the finished 

building, however it will have an impact on the energy 

performance. In this case the probability of acceptance is 

‘1’, which expresses indifference. 

Choices made in the early stage of design may narrow the 

available options within the performance criteria at a 

subsequent stage, so it is advisable to conduct an 

uncertainty analysis prior to making a decision that might 

have a knock-on effect later in the design process. Hence, 

the sequencing of design decisions must be considered 

when incorporating desirability into the optimization 

process. Equally, introducing desirability into the 

optimization may risk jeopardising performance. 

For wider application this method needs to be scalable. 

Adding criteria to the problem adds to the complexity of 

calculating the probability of acceptance; whereas, adding 

stakeholders increases the number of optimization 

objectives. An initial exploration of how the problem can 

be scaled-up to include more design parameters has been 

illustrated. Increasing the number of decision-makers may 

make it more challenging to achieve consensus and to 

illustrate the trade-offs between stakeholders. 

Furthermore, as the number of objectives increases, the 

processing time may increase exponentially, depending 

upon the optimization algorithm (Beume et al, 2007). 

Potential refinements to the method include adding an 

importance weighting for each criterion for each 

stakeholder. Applying Harrington’s desirability function 

for each criterion for a decision-maker may be more 

appropriate for the complex decision-making problem of 

building design. There is potential for metrics other than 

expected consensus to be explored, such as the distance 

from the ideal solution. Future work will address these 

issues. 

Conclusion 

A novel methodology was developed to include 

desirability into the optimization process and allow for 

democratic decision-making. To the authors’ knowledge, 

this is the first paper to apply desirability functions to 

building performance simulation and to focus on 

decision-makers’ preferences in the objective function. 

The technique has been illustrated using two decision-

makers and including both input (WWR) and output 

(annual specific heat demand, over-heating frequency) 

parameters. The profiles used were similar for each 

decision-maker; future work will include the contrasting 

viewpoint of an additional decision-maker. 

The approach has the potential to achieve ‘better’ results 

by fulfilling stakeholders’ preferences. However, because 

the product of probability of acceptance for each criterion 

is taken, a potential solution that was perfect in all other 

aspects would be rejected if it failed on a single criterion. 

Furthermore, taking a product of the probabilities requires 

that the decision for each criterion is statistically 

independent, i.e. the decision-maker’s preference on one 

criterion does not have a bearing on their preference for 

another. This aspect needs careful consideration; for 

instance, the Passivhaus consultant may choose their 

preferences for WWR according to what they know to be 

effective to improve building performance or they may be 

motivated by the lower build cost that can be achieved by 

reducing the area of high-specification Passivhaus 

windows (Ridley et al, 2014). 

Whether it is possible to seek a consensus solution 

depends upon the degree of flexibility each stakeholder 

offers; clearly, if stakeholders have distinctly different 



desirability profiles and are rigid in their preferences, then 

the optimization process cannot converge on a solution. 

However, too much similarity between stakeholders’ 

desirability profiles means that there is not sufficient 

variation between stakeholders’ preference scores and the 

optimization process will have difficulty selecting the 

optimal set. 

Whether the expected consensus method leads to the 

selection of the most appropriate compromise solution for 

multiple stakeholders depends upon the specifics of the 

data. In the example studied, the maximum expected 

consensus was achieved by a single decision-maker 

bearing all the compromise; this may not be agreeable in 

a real-life situation.  

This research used simplified desirability functions to 

model the preferences of multiple stakeholders. However, 

the desirability function can take the form of any 

mathematical function where a criterion value maps to a 

single probability of acceptance. Small changes in the 

desirability profile of a single stakeholder can lead to 

significantly different results, so it is important to focus 

on accurately defining the desirability function. 

Scaling up the problem to include more criteria is feasible. 

Adding criteria will have only a modest increase in 

processing time, due to a function call to determine the 

score for each criterion; obviously, that depends on the 

complexity of the function. However, increasing the 

number of decision-makers included in the problem will 

increase the number of criteria to be optimised, hence that 

will have a significant impact on processing times. 

To conclude, if stakeholder preferences are not 

incorporated prior to the search, then the process risks 

rejecting combinations that meet one or more preferences 

because they are sub-optimal; those discarded options 

may have other desirable features, such as fulfilling a 

preference for a specific design. Conversely, focusing on 

desirability may jeopardise achieving performance 

targets. 
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