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Abstract: Due to the shortage of fuel resources and concerns of environmental pressure, vehicle
electrification is a promising trend. Hybrid vehicles are suitable alternatives to traditional
vehicles. Travelling information is essential for hybrid vehicles to design the optimal control
strategy for fuel consumption minimization and emissions reduction. In general, there are two
ways to provide the information for the energy management strategy (EMS) design. First is
extracting terrain information by utilizing global positioning system (GPS) and intelligent
transportation system (ITS). However, this method is difficult to be implemented currently due
to the computational complexity of extracting information. This leads to the second method
which is predicting future vehicle speed and torque demand in a certain time horizon based on
current and previous vehicle states. To support optimal EMS development, this paper presents
a comprehensive review of prediction methods based on different levels of trip information for
the EMS of hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV).
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1. INTRODUCTION

In the past several decades, due to the decline of global oil
reserves and environmental crisis, HEV has been consid-
ered as the ideal transitional phase between the traditional
pure fossil fuel vehicles and the all-electric vehicles in the
future Liu (2017). HEV has significant advantages over
pure fossil vehicles in improving fuel economy and exhaust
emissions while meeting drivability requirements. It is a
complex system with combination of an internal com-
bustion engine (ICE) and electric motors. To extend the
advantage of HEV in aspect of fuel consumption reduction,
the EMS plays a critical role.

In general, the most important task of the EMS is to find
the best power output proportion between ICE and electric
motor to meet the vehicle power demand. To achieve this,
several control strategies are proposed and they can be
classified into 4 categories: rule based; fuzzy logic; global
optimal control; and instantaneous optimal control. Future
trip information is essential to all control strategies for
real-time implementation. With rapid advances in the de-
velopment of intelligent vehicles, the available information
of driving condition is much easier to access with GPS
and ITS. By utilizing knowledge of future trip informa-
tion, more advanced EMSs are proposed using prediction
algorithms Zhang et al. (2009). This study is to investigate
the prediction methods using future trip information.
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The main contribution of this review study is to classify
future driving information into three levels: (1) no GPS
information is provided and trip destination cannot be
determined; (2) travelling route is predefined and partial
information is available through GPS; (3) future route
information and driving condition are provided through
GPS and ITS. According to different levels of driving
information, 3 prediction methods are introduced respec-
tively. The prediction strategies can be categorized in Fig.
1 accordingly.

Fig. 1. Prediction methods based on different levels of
information

This paper is organized as follows: In Section 2, the driving
pattern recognition based EMS is introduced when only
vehicle on-board data is available. In Section 3, the model
based predictive EMSs are classified into stochastic model

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288352764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


based approach and artificial intelligence based prediction
algorithm. In Section 4, GPS/ITS based predictive EMSs
are reviewed, focusing on integrating terrain information
and traffic information into driving profile. In Section 5,
conclusion is summarized.

2. DRIVING PATTERN RECOGNITION

The GPS/ITS signal is not always available in driving.
Trip destination cannot always be predetermined before
the travel either. To make utilization of vehicle driving
data collected by on- board sensors for better fuel economy,
driving pattern recognition method is a popular approach.
The main idea of this method is using multiple standard
driving cycles to represent all driving conditions. During
traveling, controller compares the on-board vehicle data to
the database and finds the most similar driving cycle to
the current state. Also, it is assumed that future driving
condition will not change significantly in a certain period.

Since neural network is an efficient tool to establish non-
linear relationship between inputs and outputs, it is first
proposed in Jeon et al. (2002) to recognize driving pattern.
In Jeon et al. (2002), 24 parameters are extracted from the
driving cycle with different weights and 6 driving cycles are
selected to represent the driving conditions. The Hamming
network is used to determine which driving pattern is the
closest one to the current driving state. Learning vector
quantization neural network is proposed to identify the
driving cycles in J. Wu, C. H. Zhang (2012) and He et al.
(2012). In J. Wu, C. H. Zhang (2012), 10 characteristic
parameters are chosen for the 6 representative driving
cycles and the length of data is 180 s. The structure of
driving pattern recognition based on neural network is
shown in Fig. 2. In He et al. (2012), 7 representative
features are selected. The main contribution of He et al.
(2012) is decreasing the length of sampling period from
normally 250 s 300 s to 120 s. Moreover, the accuracy is
maintained.

Fig. 2. Layout of neural network based on pattern recog-
nition

Since the neural network is hard to be implemented on-
line because of the high computational burden, some real-
time driving pattern recognition methods are reported in
Lin et al. (2004a); Zhang and Xiong (2015); Feng et al.
(2012). A novel method is introduced in Lin et al. (2004a).
Only 4 characteristic parameters are extracted for pattern
recognition: the average positive power demand, the stan-
dard deviation of positive power demand during driving,

the average negative power demand, and the ratio of stop
time against total driving time. The representative driving
patterns are constructed from mathematical calculation by
using average positive power demand and standard devi-
ation of positive power demand. Then the current driving
pattern can be determined by using simple optimization
algorithm with calculated parameters.

Fuzzy logical controller and k-nearest neighbor algorithm
are proposed to classify driving pattern respectively in
Zhang and Xiong (2015) and Feng et al. (2012). The main
contribution in Zhang and Xiong (2015) is determining
fuzzy sets of driving block pattern and then converting
the fuzzy set into a known driving pattern. Therefore,
the similar driving blocks between different representative
driving cycles can be reduced. Also, only average speed
and maximum speed are considered as classification pa-
rameters. The structure of this method is shown in Fig.
3. There are 15 characteristic parameters with different
weighting factors are defined to describe the driving cycle
in Feng et al. (2012). A feature vector of an original driving
cycle can be calculated based on data of a short period,
which is more appropriate for real-time application. Then
K-nearest neighbor method is applied to match the current
feature vector to the closest representative feature vector.

Fig. 3. Structure of the fuzzy pattern recognition

3. MODEL BASED PREDICTION

3.1 Stochastic based predictive EMS

The Markov chain is used to model and work out dynamic
decision-making problems during stochastic situation in
Yu et al. (2008). The Markov chain is a promising method
under stochastic circumstances. This method can be used
to predict the next state of the vehicle based on current
state. Many efforts have been carried out on utilizing
existing data to model driving condition over a previous
period to predict future vehicle velocity or power demand.
The main principle of using Markov chain to describe
the driving cycle is introduced in Moura et al. (2010).
The driving cycle trajectory is modeled by the first order
Markov chain through the following equation:

Pijm = Prob(Pdem(k + 1) = i;Pdem(k) = j, v(k) = m)
(1)

Where power demand Pdem and vehicle speed v are the
Markov state variable, k is the time step, and Pijm is
the probability of power demand in the next time step



based on Pdem(k) and v(k). The matrix consists of all
probabilities of upcoming state variable(s) according to
current state and is called transition matrix. An example
of transition matrix distribution is shown in Fig. 4.

Fig. 4. Example of probability distribution for upcoming
power demand

In the Markov Chain approach, the Monte-Carlo method
can be used to generate a future velocity sequence for a
shot period in Xie et al. (2017). Monte Carlo approach is
adopted in the sample space to achieve the possible state
in the next moment of the random process. It supports the
posterior distribution which means that the future velocity
sequence can be predicted by sampling in the stationary
distribution. Moreover, an approach called multi-scale-
single-step is adopted in Xie et al. (2017) in the velocity
prediction phase. Therefore, a group of state transfer
matrices will be generated for the 1st horizon so that the
accumulation of errors from the first state can be avoided.
In Li et al. (2017), a multi-step Markov prediction method
is proposed to predict future vehicle velocity, where multi-
step means the length of the prediction horizon. This
method indicates that with the increment of the length of
prediction horizon, the transition probability distributes
more dispersedly.

Other driving conditions are also considered to be pre-
dicted by the stochastic model. For parallel HEV, its
battery charging and discharging are affected by road
grade significantly. Therefore, in Zeng et al. (2015) road
grade information in hilly regions and driving profile are
described by the finite state Markov chains. The sequence
of future road grades can be achieved by dividing the
predefined road into finite segments and by discretizing
the road grade. The transition matrix can be obtained
by observing the road grade sequence at a high frequency.
Also, a Markov chain aggregation method is introduced for
the road grade model in Filev and Kolmanovsky (2010).
This method enables a Markov chain with considerable
number of states to a Markov chain with small number
of states by using Kullback-Leibler (K-L) divergence rate.
For a given long distance route, a finite state Markov
chain model may be defined by large amount of states
and small size periods. It is not acceptable for real-time
application. Using K-L divergence rate, the number of

small size horizon will decrease to an acceptable level by
considering longer period.

Besides future vehicle velocity sequence prediction, Markov
Chain can also be used to calculate future power demand.
Many efforts have been done to expand this area. In Lin
et al. (2004b) and Liu and Peng (2008), a stochastic
model of driver power demand is implemented. In Lin
et al. (2004b), an optimal control command of a parallel
HEV is generated by a two-dimensional Markov chain
based driver model. It enables future power demand to
be calculated based on multiple driving cycles. Nearest-
neighbor quantization method is used to map the sequence
of observed power demand and wheel speed of the given
cycles into a sequence of quantized states. Then the tran-
sition probability distribution can be estimated. In Liu
and Peng (2008), the stochastic driver model in Lin et al.
(2004b) is modified and implemented to a power-split HEV
by adding two more deterministic states which are battery
SoC and vehicle speed. Both the homogeneous Markov
chain model and the position dependent Markov chain
model are introduced to predict the future power demand
based on given routes in Johannesson et al. (2007). The
first model is a three-dimension Markov chain model con-
structed of the relationship between velocity, acceleration
and power demand. The transition probability of future
power demand is determined from simulated data. This
model is used to describe the stationary distribution of
velocity and power requirement along a given road which
excludes the influence of the specific position. Position de-
pendent Markov chain model considers the position along
the route when describes the velocity and power demand
distribution. For example, if a road segment in driving
profile is uphill, then the higher probability for high future
torque demand is preferred. To achieve this, the route is
divided into many discrete finite segments. In Ripaccioli
et al. (2010), it indicates that the power demand along
the route is a discrete time stochastic process and solved
by Markov chain model. The Markov chain is defined by a
transition probability matrix which is estimated by means
of frequency analysis based on multiple driving cycles.
There are 3 driving cycles generated to present urban,
suburban and highway driving.

An on-line updating method is adopted in Bichi et al.
(2010) to optimize Markov chain transition matrix. A
linear filtering algorithm is used to predict the transition
matrix. It will converge to the correct value if future
power demand is calculated by a Markov chain model. In
Cairano et al. (2014), an innovative approach is applied to
update the transition matrix along the changing of driver
behavior. The number of transitions from state i and the
total number of transitions from each state observed so far
is stored. Then transition matrix can be updated based
on previous information. Also, an estimator is applied to
overcome the error which is caused by large changes on
driver behavior.

In Payri et al. (2014), the driving conditions are provided
to estimate probability of future power demand based on
a stochastic Markov chain model. A specified parameter
is introduced to balance the expected battery energy con-
sumption over an infinite time horizon. Then the expecta-
tion of the battery energy requirement can be calculated
by a discrete method. After that a deterministic control



method is applied to regulate battery behavior. In Zeng
and Wang (2016), the battery SoC and fuel consumption
over each road segment of a fixed route are considered as
random variables instead of vehicle speed or vehicle accel-
eration. The battery SoC can be obtained as a function
of the initial SoC of the predefined route segment and the
strategy parameter. The transition matrix of battery SoC
and fuel consumption are estimated based on historical
data. The initial battery SoC and the specific parameter
are discretized during the calculation. A stochastic discrete
model can be achieved which based on fixed route segment.
The initial battery SoC at each segment performs as the
state.

3.2 Artificial intelligence based predictive EMS

Besides the stochastic based prediction method, artificial
intelligence approach has also introduced due to the advan-
tage in learning strong nonlinearity. In Sun et al. (2015a)
a study in hierarchical feed forward neural network struc-
ture is conducted. There are 3 types of neutral network
structures studied in Sun et al. (2015a), which are back
propagation (BP) neural network, layer recurrent (LR)
neural network and radial basis function (RBF) neural
network. The main idea of these approaches is assuming
that the previous driving condition is related to the future
driving cycle. Therefore, historical data or previous driving
condition information is used to train the network model
and to predict the temporary future driving condition. In
Sun et al. (2015a), it shows that a 3-layer back propagation
network can estimate any nonlinear relationship using a
Sigmoid function as the activation function. However, the
learning process takes a long time to converge and predict
precision cannot be promised. LR network uses a self-
connected hidden layer, which enables temporal dynamic
feature to be explored. The Gaussian function is chosen
as the active function for RBF network which leads to
better convergence speed and lower computational burden.
It is used widely for time series prediction. A short-term
vehicle velocity prediction method based on RBF neural
network is proposed in Xiang et al. (2017). A 3-layer RBF
neural network is used to predict future velocity in the
next 5 s. Pedal position and the historical velocity data are
input patterns and predictive velocity sequence is output
pattern. Then the future torque demand can be calculated
by a predetermined equation.

4. GPS/ITS BASED PREDICTION

Nowadays, real-time traffic data is more universal and
easier accessible for drivers by applying GPS/ITS technol-
ogy. The popularization of real-time traffic data enables
the predictive energy management framework can operate
based on instantaneous driving condition data. In Zhang
et al. (2009), it indicates that the fuel economy can be im-
proved up to 18 % if the route distance is predefined. Also,
if full terrain and driving cycle information is available
during driving. 5 % additional fuel consumption reduction
can be achieved.

In general, regarding the approach recently used, the
GPS/ITS based prediction EMS can be categorized into
three subclasses. The first one utilizes GPS/ITS to gener-
ate future driving profile. The second subclass methods are

developing adaptive control strategies with instantaneous
optimal control methods like equivalent fuel consumption
minimization strategy (ECMS). The last one is generating
reference SoC trajectory using information provided by
GPS/ITS, especially for PHEV.

4.1 Driving profile generation

In Van Keulen et al. (2010) and van Keulen et al. (2010),
the authors utilize information provided by a navigation
system to predict the vehicle velocity and power demand
trajectories of the upcoming road. The information of
road grades and velocity limitations are integrated with
vehicle road load parameters to estimates future upcoming
velocity and torque demand. The predicted future vehicle
velocity trajectory for each segment is described by 4 key
parameters, which are max acceleration, max deceleration,
constant velocity, and coast distance.

In Styler and Nourbakhsh (2015), the neural network is
used to predict the future vehicle torque demand with an
essential assumption. It assumes that if the state mea-
surement is independent of the upcoming load, then the
prediction will be useless. The present states provided
by GPS like speed, acceleration and power demand are
used to match to similar states in the dataset. The ob-
served power demands followed those similar states are
used as prediction. A similar method is also introduced
in Tianheng et al. (2015), where GPS and ITS provide
travel distance, maximum velocity, average velocity and
maximum acceleration. The future power demand can be
predicted through putting those parameters into the RBF
neural network. The advantage of the proposed approach
is that it can correlate the upcoming vehicle power demand
with the current traffic condition directly.

An optimal control strategy for PHEV considering real-
time traffic condition is proposed in Gong et al. (2007)
and Gong et al. (2008). The optimal control sequence is
obtained by applying backwards dynamic programming
method, while the traffic condition is considered by trip
modeling. The aim of trip modeling is generating driving
cycle for each trip and is achieved by using path-finding
algorithm in the geographic information system. When the
driving cycle for each segment is obtained, the optimal
charge depleting strategy for PHEV can be calculated. In
Gong et al. (2008), the influence of instantaneous traffic
flow is modeled as stochastic disturbance while Gong et al.
(2007) assumes there is no sudden traffic change. Only av-
erage speed and acceleration of the segment are utilized in
Gong et al. (2008) to estimate segment-wise power demand
and SoC change. Previous work has been continued in Bin
et al. (2009). More parameters are considered into the EMS
and trip model, especially road grade and load change. The
multi-information-based trip model is achieved which facil-
itates spatial domain dynamic programming by diving the
detailed trip model into different constant speed segment
lengths. Moreover, the length of segment can be adjusted
depending on the type of driving cycle detected.

Predictive EMS which utilizes the previewed traffic pat-
tern and terrain information are developed in He et al.
(2005). Mixed integer linear programming methodology,
with no assumptions on the control structure, is used
to find the predictive EMS. In Gong et al. (2011) and



Gong et al. (2010), a method which enables the Markov
chain model based on real- time driving data fleet is intro-
duced. The nearest neighbor quantization method is used
to map the sequence of observed driving cycle data and
acceleration data into a sequence of quantized states. For
each state, the distribution probabilities are determined by
counting the number of occurrence of each transition and
the corresponding state based on the real-world driving
data. A less stochastic method is selected in Kohut et al.
(2009) to predict the future speed around the vehicle. Two
data sources are used: California Freeway Performance
Measurement System data base are selected to generate
long distance traffic velocity and on-board GPS provides
short distance vehicle speed. Then controller combines the
information so the future velocity can be predicted based
on the vehicle travel distance instead of time series. The
control sequences are solved by model predictive control.

4.2 Adaptive energy management strategy

A future state prediction method based on fuzzy logic con-
trol approach is proposed in Rajagopalan and Washington
(2002). Based on the information provided by GPS regard-
ing current vehicle state over a predefined route, simple
future driving condition can be determined, for example
slower or faster traffic ahead, going downhill or uphill.
Then rule based control strategy is applied to calculate
the control sequence. In Hajimiri and Salmasi (2006), a
novel method is proposed by integrating predicted future
vehicle state into fuzzy logic control algorithm to improve
fuel consumption and battery life. The core idea is similar
as the method introduced in Rajagopalan and Washington
(2002) which adopts fuzzy control method to decide how
the vehicle should react to the future driving condition
provided by GPS. In Musardo et al. (2005), a real-time
adaptive control framework is proposed utilizing driving
information provided by GPS, as shown in Fig. 5. The
main contribution of this instantaneous optimal control
method is that the equivalence factor of the ECMS can be
adjusted according to past and current vehicle speed and
GPS data.

Fig. 5. Control block layout of the A-ECMS

Based on previous real-time control framework, Zhang and
Vahid (2010) and Zhang and Vahidi (2012) extend this
research by combing long horizon route terrain informa-
tion and future vehicle velocity to develop their instan-
taneous ECMS control strategy. By using upcoming road
slope information and future velocity, the upcoming torque
demand can be calculated. Then dynamic programming
and backward ECMS approaches are proposed to estimate

the equivalence factor under the predicted future driving
condition. In Sciarretta et al. (2004), a simple method
is proposed to estimate equivalence factor by calculating
energy contribution as an average between the vehicle
speed at the beginning and the end of the velocity profile.
Then recuperated electrical energy can be used to calculate
equivalence factor. The level of trip information is divided
into three subclasses in Zhang and Vahidi (2012). Firstly,
future terrain information, trip length and predicted trip
velocity information is available. Secondly, only distance to
the next charging station and hilly road terrain informa-
tion is provided. Finally, no preview information is avail-
able. Global ECMS method is applied according to each
level of trip information to minimize the fuel consumption.

Other instantaneous optimal control methods also have
been reported. Dynamic programming method is intro-
duced to solve the optimal control problem in Ngo et al.
(2010). Using data collected by GPS, ITS and the ge-
ographic information system (GIS) to set boundary of
vehicle state and the optimal control sequence is calculated
through dynamic programming. In Chen et al. (2014),
longitude, latitude and altitude information which are
obtained from GIS are converted into a function between
the altitude and the length of the trip along the real route.
Model predictive control (MPC) is adopted to calculate
the control sequence based on converted data. Traffic sig-
nal information is integrated into the MPC method in
Yu et al. (2015). The cycle, the offset and the position
of the traffic light are utilized through ITS. Therefore,
the traffic light changing time when vehicle is going to
pass through the target traffic light can be calculated.
Then a MPC controller calculates the power distribution
control sequence to reduce unnecessary acceleration and
deceleration when the vehicle is approaching the traffic
light.

4.3 Reference SoC trajectory optimization

Fig. 6. Layout of the long term SoC trajectory planning

On a trip planning level, GPS and ITS are useful for
reference SoC generating for adaptive controller of PHEV.
A novel control framework with a higher supervisory level
controller for long horizon batter SoC planning is proposed
in Sun et al. (2015b) and Heppeler et al. (2017), using the
real-time traffic data. Based on the route information and
predicted future velocity, future power demand can be cal-
culated by a backward simplified powertrain model. Using
discrete dynamic programming method, the reference SoC
trajectory is calculated as shown in Fig. 6.

5. CONCLUSION

In this paper, future driving condition forecasting methods
are divided into three subclasses: driving pattern recogni-
tion, model based method and GPS/ITS based method.



When GPS data is not available or travel destination
cannot be determined during the trip, pattern recognition
is the most robustness method. Using neural network,
fuzzy logic control method, control solution of represen-
tative driving cycle can be chosen from the database. Two
important model based methods are introduced in model
based prediction approach: stochastic model prediction
and artificial intelligence prediction. Markov chain is the
common approach for stochastic process prediction. It
can be used to generate future vehicle velocity sequence
or future power demand based on current states. Neural
network is also introduced to predict upcoming driving
condition, combining with on-line training method. The
GPS/ITS based predictive EMS is classified into three
categories. Firstly, driving cycle of a giving route can be
generate, with terrain information and traffic condition.
Secondly adaptive instantaneous optimal control strategy
can be obtained. And finally, reference SoC trajectory of
PHEV can be planed based on information provided by
GPS/ITS.

ACKNOWLEDGEMENT

The work was cofunded by the Digital Engineering and
Test Centre (DETC), under a grant for the virtually con-
nected hybrid vehicle. DETC is a unique joint industry-
academic centre, also as an Advanced Propulsion Centre
spoke. It develops and uses virtual engineering tools and
techniques to accelerate the development, test and manu-
facture of automotive propulsion systems.

This work was supported by the Engineering and Physical
Sciences Research Council of U.K. under the EPSRC-
UKRI Innovation Fellowship scheme (EP/S001956/1).

REFERENCES

Bichi, M., Ripaccioli, G., Di Cairano, S., Bernardini,
D., Bemporad, A., and Kolmanovsky, I.V. (2010).
Stochastic Model Predictive Control with Driver Be-
havior Learning for Improved Powertrain Control.
In IEEE Conf. Decis. Control, 6077–6082. doi:
10.1109/CDC.2010.5717791.

Bin, Y., Li, Y., Gong, Q., and Peng, Z.R. (2009).
Multi-information integrated trip specific optimal
power management for plug-in hybrid electric vehi-
cles. Proc. Am. Control Conf., 4607–4612. doi:
10.1109/ACC.2009.5160626.

Cairano, S.D., Bernardini, D., Bemporad, A., and
Kolmanovsky, I.V. (2014). Stochastic MPC with
learning for driver-predictive vehicle control and its
application to HEV energy management. IEEE
Trans. Control Syst. Technol., 22(3), 1018–1031. doi:
10.1109/TCST.2013.2272179.

Chen, Y., Li, X., Wiet, C., and Wang, J. (2014). Energy
management and driving strategy for in-wheel motor
electric ground vehicles with terrain profile preview.
IEEE Trans. Ind. Informatics, 10(3), 1938–1947. doi:
10.1109/TII.2013.2290067.

Feng, L., Liu, W., and Chen, B. (2012). Driving Pattern
Recognition for Adaptive Hybrid Vehicle Control. SAE
Int. J. Altern. Powertrains, 1(1), 2012–01–0742. doi:
10.4271/2012-01-0742.

Filev, D.P. and Kolmanovsky, I. (2010). A generalized
Markov Chain modeling approach for on board applica-
tions. Proc. Int. Jt. Conf. Neural Networks, 4139–4145.
doi:10.1109/IJCNN.2010.5596713.

Gong, Q., Tulpule, P., Marano, V., Midlam-Mohler, S.,
and Rizzoni, G. (2011). The role of ITS in PHEV perfor-
mance improvement. In Proc. 2011 Am. Control Conf.,
August, 2119–2124. doi:10.1109/ACC.2011.5990968.

Gong, Q., Li, Y., and Peng, Z.R. (2007). Opti-
mal power management of plug-in HEV with in-
telligent transportation system. IEEE/ASME Int.
Conf. Adv. Intell. Mechatronics, AIM, 1–6. doi:
10.1109/AIM.2007.4412579.

Gong, Q., Li, Y., and Peng, Z.R. (2008). Trip-Based
Optimal PowerManagement of Plug-in Hybrid Electric
Vehicles. IEEE Trans. Veh. Technol., 57(6), 3393–3401.

Gong, Q., Midlam-Mohler, S., Marano, V., Rizzoni, G.,
and Guezennec, Y. (2010). Statistical analysis of PHEV
fleet data. 2010 IEEE Veh. Power Propuls. Conf. VPPC
2010. doi:10.1109/VPPC.2010.5729224.

Hajimiri, M.H. and Salmasi, F.R. (2006). A fuzzy energy
management strategy for series hybrid electric vehicle
with predictive control and durability extension of the
battery. 2006 IEEE Conf. Electr. Hybrid Veh. ICEHV,
1–5. doi:10.1109/ICEHV.2006.352279.

He, H., Sun, C., and Zhang, X. (2012). A method
for identification of driving patterns in hybrid electric
vehicles based on a LVQ neural network. Energies, 5(9),
3363–3380. doi:10.3390/en5093363.

He, X., Parten, M., and Maxwell, T. (2005). En-
ergy Management Strategies for a Hybrid Electric Ve-
hicle. In IEEE Veh. Power Propuls. Conf. doi:
10.1109/VPPC.2005.1554610.

Heppeler, G., Sonntag, M., Wohlhaupter, U., and
Sawodny, O. (2017). Predictive planning of optimal
velocity and state of charge trajectories for hybrid elec-
tric vehicles. Control Eng. Pract., 61, 229–243. doi:
10.1016/j.conengprac.2016.07.003.

J. Wu, C. H. Zhang, N.X.C. (2012). Fuzzy Energy
Management Strategy for a Hybrid Electric Vehicle
based on Driving Cycle Recognition. Int. J. Automot.
Technol., 13(1), 1159–1167. doi:10.1007/s12239.

Jeon, S.i., Jo, S.t., Park, Y.i., and Lee, J.m. (2002). Multi-
Mode Driving Control of a Parallel Hybrid Electric
Vehicle Using Driving Pattern Recognition. J. Dyn.
Syst. Meas. Control, 124(1), 141. doi:10.1115/1.1434264.

Johannesson, L., Åsbog̊ard, M., and Egardt, B. (2007).
Assessing the Potential of Predictive Control for Hy-
brid Vehicle Powertrains Using Stochastic Dynamic Pro-
gramming. IEEE Trans. Intell. Transp. Syst., 8(1), 71–
83. doi:10.1109/TITS.2006.884887.

Kohut, N.J., Hedrick, J.K., and Borrelli, F. (2009). In-
tegrating traffic data and model predictive control to
improve fuel economy. IFAC Proc. Vol., 42(15), 155–
160. doi:10.3182/20090902-3-US-2007.0032.

Li, G., Zhang, J., and He, H. (2017). Battery SOC con-
straint comparison for predictive energy management of
plug-in hybrid electric bus. Appl. Energy, 194, 578–587.
doi:10.1016/j.apenergy.2016.09.071.

Lin, C.C., Jeon, S., Peng, H., and Lee, J.M. (2004a).
Driving pattern recognition for control of hybrid elec-
tric trucks. Veh. Syst. Dyn., 42(1-2), 41–58. doi:
10.1080/00423110412331291553.



Lin, C.C., Peng, H., and Grizzle, J.W. (2004b). A
stochastic control strategy for hybrid electric vehi-
cles. Proc. Am. Control Conf., 5, 4710–4715. doi:
10.1109/ACC.2004.182696.

Liu, J. and Peng, H. (2008). Modeling and Control of a
Power-Split Hybrid Vehicle. IEEE Trans. Control Syst.
Technol., 16(6), 1242–1251.

Liu, W. (2017). Hybrid Electric Vehicle System Modelling
and Control. John Wiley & Sons Inc.

Moura, S.J., Callaway, D.S., Fathy, H.K., and Stein, J.L.
(2010). Tradeoffs between battery energy capacity and
stochastic optimal power management in plug-in hybrid
electric vehicles. J. Power Sources, 195(9), 2979–2988.
doi:10.1016/j.jpowsour.2009.11.026.

Musardo, C., Rizzoni, G., Guezennec, Y., and Staccia, B.
(2005). A-ECMS: An Adaptive Algorithm for Hybrid
Electric Vehicle Energy Management. Eur. J. Control,
11(4-5), 509–524. doi:10.3166/ejc.11.509-524.

Ngo, D.V., Hofman, T., Steinbuch, M., and Serrarens,
A.F.A. (2010). An Optimal Control-Based Algorithm
for Hybrid Electric Vehicle using Preview Route Infor-
mation. Am. Control Conf. ACC 2010, 5818–5823. doi:
10.1109/ACC.2010.5530491.

Payri, F., Guardiola, C., Pla, B., and Blanco-Rodriguez, D.
(2014). A stochastic method for the energy management
in hybrid electric vehicles. Control Eng. Pract., 29, 257–
265. doi:10.1016/j.conengprac.2014.01.004.

Rajagopalan, A. and Washington, G. (2002). Intelligent
Control of Hybrid Electric Vehicles Using GPS Infor-
mation. SAE Tech. Pap., 01(1936).

Ripaccioli, G., Bernardini, D., Di Cairano, S., Bemporad,
A., and Kolmanovsky, I.V. (2010). A stochastic model
predictive control approach for series hybrid electric
vehicle power management. Proc. 2010 Am. Control
Conf., 5844–5849. doi:10.1109/ACC.2010.5530504.

Sciarretta, A., Guzzella, L., and Back, M. (2004). A
Real-Time Optimal Control Strategy for Parallel Hy-
brid Vehicles with On-Board Estimation of the Control
Parameters. IFAC Proc. Vol., 37(22), 489–494. doi:
10.1016/S1474-6670(17)30391-9.

Styler, A. and Nourbakhsh, I. (2015). Real-time predictive
optimization for energy management in a hybrid electric
vehicle. Proc. Twenty-Ninth AAAI Conf. Artif. Intell.,
737–743.

Sun, C., Hu, X., Moura, S.J., and Sun, F. (2015a). Velocity
Predictors for Predictive Energy Management in Hybrid
Electric Vehicles. IEEE Trans. Control Syst. Technol.,
23(3), 1197–1204. doi:10.1109/TCST.2014.2359176.

Sun, C., Moura, S.J., Hu, X., Hedrick, J.K., and Sun, F.
(2015b). Dynamic Traffic Feedback Data Enabled En-
ergy Management in Plug-in Hybrid Electric Vehicles.
IEEE Trans. Control Syst. Technol., 23(3), 1075–1086.
doi:10.1109/TCST.2014.2361294.

Tianheng, F., Lin, Y., Qing, G., Yanqing, H., Ting, Y.,
and Bin, Y. (2015). A supervisory control strategy for
plug-in hybrid electric vehicles based on energy demand
prediction and route preview. IEEE Trans. Veh. Tech-
nol., 64(5), 1691–1700. doi:10.1109/TVT.2014.2336378.

van Keulen, T., de Jager, B., Foster, D., and Steinbuch,
M. (2010). Velocity trajectory optimization in Hybrid
Electric trucks. Proc. 2010 Am. Control Conf., 5074–
5079. doi:10.1109/ACC.2010.5530695.

Van Keulen, T., De Jager, B., Kessels, J., and Steinbuch,
M. (2010). Energy management in hybrid electric
vehicles: Benefit of prediction. IFAC Proc. Vol., 43(7),
264–269. doi:10.3182/20100712-3-DE-2013.00027.

Xiang, C., Ding, F., Wang, W., and He, W. (2017). Energy
management of a dual-mode power-split hybrid electric
vehicle based on velocity prediction and nonlinear model
predictive control. Appl. Energy, 189, 640–653. doi:
10.1016/j.apenergy.2016.12.056.

Xie, S., He, H., and Peng, J. (2017). An energy man-
agement strategy based on stochastic model predictive
control for plug-in hybrid electric buses. Appl. Energy,
196, 279–288. doi:10.1016/j.apenergy.2016.12.112.

Yu, J.Y., Mannor, S., and Shimkin, N. (2008). Markov
Decision Processes with Arbitrary. Springer Science
Business Media. doi:10.1287/moor.1090.0397.

Yu, K., Yang, J., and Yamaguchi, D. (2015). Model
predictive control for hybrid vehicle ecological driving
using traffic signal and road slope information. Control
Theory Technol., 13(1), 17–28. doi:10.1007/s11768-015-
4058-x.

Zeng, X. and Wang, J. (2016). A two-level stochastic
approach to optimize the energy management strategy
for fixed-route hybrid electric vehicles. Mechatronics,
38, 93–102. doi:10.1016/j.mechatronics.2015.11.011.

Zeng, X., Wang, J., and Member, S. (2015). A Parallel
Hybrid Electric Vehicle Energy Management Strategy
Using Stochastic Model Predictive Control with Road
Grade Preview. IEEE Trans. Control Syst. Technol.,
23(6), 2416–2423. doi:10.1115/DSCC2014-5998.

Zhang, C. and Vahidi, A. (2012). Route preview in
energy management of plug-in hybrid vehicles. IEEE
Trans. Control Syst. Technol., 20(2), 546–553. doi:
10.1109/TCST.2011.2115242.

Zhang, C., Vahidi, A., Li, X., and Essenmacher, D. (2009).
Role of Trip Information Preview in Fuel Economy
of Plug-In Hybrid Vehicles. ASME 2009 Dyn. Syst.
Control Conf. Vol. 1, 253–258. doi:10.1115/DSCC2009-
2750.

Zhang, C.Z.C. and Vahid, A. (2010). Real-time op-
timal control of plug-in hybrid vehicles with trip
preview. Am. Control Conf., 6917–6922. doi:
10.1109/ACC.2010.5531308.

Zhang, S. and Xiong, R. (2015). Adaptive energy manage-
ment of a plug-in hybrid electric vehicle based on driving
pattern recognition and dynamic programming. Appl.
Energy, 155, 68–78. doi:10.1016/j.apenergy.2015.06.003.


