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Abstract. We consider a class of Lévy-type processes derived via a Doob-transform from
Lévy processes conditioned by a control function called potential. These ground state
transformed-processes (also called P (ϕ)1-processes) have position-dependent and generally
unbounded components, with stationary distributions given by the ground states of the Lévy
generators perturbed by the potential. We derive precise lower and upper envelopes for the
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terized through escape rates and integral tests. We also highlight the role of the parameters
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1. Introduction

Given a random process (Xt)t≥0, a fundamental question is what is its typical sample path

behaviour on the long run. This generally involves a statement of the form

(1.1) lim inf
t→∞

Xt

τ1(t)
= C1 and lim sup

t→∞

Xt

τ2(t)
= C2, P− a.s.,

where τ1, τ2 are positive functions on the positive semi-axis, C1, C2 are finite non-zero con-

stants, and P is the probability measure of the process. The functions τ1, τ2 provide lower

and upper almost sure envelopes, and thus give a characterization of the time-scale on which

the process typically evolves in the long time limit.

In the present paper our aim is to consider this problem for a large class of Lévy-type

jump processes obtained from Lévy processes conditioned by Kato-class potentials, assuming

that the so obtained processes have a stationary distribution. Such processes arise from the

Feynman-Kac representation of non-local Schrödinger operators of the form H = −L + V ,

where L is the L2-generator of a Lévy process (Xt)t≥0 on a suitable probability space, and V

is a multiplication operator called potential. This representation reads

(1.2)
(
e−tHf

)
(x) = Ex[e−

∫ t
0 V (Xs)dsf(Xt)], f ∈ L2(Rd), x ∈ Rd, t ≥ 0,

where the expectation is taken with respect to the probability measure of the process (Xt)t≥0.

Since the semigroup defined by the right hand side is not measure preserving, using the

ground state (i.e., eigenfunction at the bottom of the spectrum) φ0 of H one can change

the space L2(Rd) to the weighted Hilbert space L2(Rd, φ2
0dx) on which the correspondingly
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transformed semigroup becomes a Markov semigroup, and thus by a change of measure the

right hand side in (1.2) turns into an expectation with respect to a random process (X̃t)t≥0

derived from (Xt)t≥0 (for further details see Section 2 below). We call such processes ground

state-transformed (GST) processes (also known as P (ϕ)1-processes), which are thus a case of

Doob h-transformed processes, where the function h is φ0. The properties of such a process

will then be relevant in a probabilistic study of the semigroup {e−tH : t ≥ 0}.
The ground state-transformed processes (X̃t)t≥0 make a class of independent interest, even

when the above relevance is ignored. The generator of (X̃t)t≥0 is

(H̃f)(x) = −1

2
σ∇ · σ∇f(x)− σ∇ lnφ0(x) · σ∇f(x)

−
∫
0<|z|≤1

φ0(x+ z)− φ0(x)

φ0(x)
z · ∇f(x)ν(z)dz(1.3)

−
∫
Rd\{0}

(
f(x+ z)− f(x)− z · ∇f(x)1{|z|≤1}

)φ0(x+ z)

φ0(x)
ν(z)dz,

where ν is the Lévy intensity and A = σσT is the diffusion matrix of (Xt)t≥0, and where we

use the notation σ∇ · σ∇f(x) =
∑d

i,j=1(σσ
T )ij∂xi∂xjf(x). Under suitable conditions (see a

discussion in [29]), the GST process satisfies a stochastic differential equation with jumps of

the form

X̃t = X̃0 + σBt +

∫ t

0

σ∇ lnφ0(X̃s) ds+

∫ t

0

∫
|z|≤1

φ0(X̃s + z)− φ0(X̃s)

φ0(X̃s)
zν(z)dzds

+

∫ t

0

∫
|z|≤1

∫ ∞

0

z1{
v≤φ0(X̃s−+z)

φ0(X̃s−)

}Ñ(ds, dz, dv)(1.4)

+

∫ t

0

∫
|z|>1

∫ ∞

0

z1{
v≤φ0(X̃s−+z)

φ0(X̃s−)

}N(ds, dz, dv),

where (Bt)t≥0 is standard Brownian motion, N is a Poisson random measure on [0,∞) ×
Rd × [0,∞) with intensity dtν(z)dzdv, and Ñ is the related compensated Poisson measure.

From the above two observations it is seen that the potential V perturbing the Lévy

process enters the GST process via the ground state φ0 of the operator H, and in general

gives rise to a position-dependent drift and a position-dependent bias in the jump kernel,

i.e., a Lévy-type process. Such processes are currently much researched on various levels

of generality [39, 37, 26]. Our focus on GST processes has the advantage that they have a

definite structure while being a rich class, and the analysis depends on the properties of a

control function V through φ0. Also, from the expression in terms of the SDE above we note

that GST processes have unbounded coefficients, while most results on Lévy-type processes

have been established so far for bounded coefficients only (i.e., for cases when the symbol of

the generator is uniformly bounded with respect to the position x in space). Our goal in this

paper is to describe the profile function τ and the constant C in function of the properties

of L and V .

The long term behaviour for the free processes, i.e., when the potential V ≡ 0, is described

by classic results. When (Xt)t≥0 is an Rd-valued Brownian motion, Khinchin’s law of iterated
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logarithm (LIL) says [24] that the common envelope is described by

τ(t) =
√

2t log log t and C = 1.

There is an abundant literature on related results (e.g., the running maximum, characteri-

zation of limit points, local times, other functionals of Brownian motion and random walk,

large deviations, and similar problems on the typical short time behaviour, etc), for some

standard summaries see, e.g., [8, 35, 13].

This behaviour becomes very different in the case of heavy-tailed purely jump processes.

Khinchin has also shown [25] (see important improvements in [14, 6]) that for non-Gaussian

stable processes no similar LIL holds in a very severe sense. If (Xt)t≥0 is an isotropic α-

stable process with 0 < α < 2, then C is either zero or infinite for any positive increasing

function τ on the positive semi-axis, according to whether
∫∞
1
τ(t)−αdt is finite or infinite.

In contrast, for a real-valued Lévy process (Xt)t≥0 having a finite variance and zero mean

Gnedenko proved [17] that τ is the same as for Brownian motion and C =
√
varX1. For

processes which are spectrally one-sided or contain stable components etc, see [46, 6, 33],

and a standard modern summary is [38]. For more recent results using Dirichlet forms see

[42]. We note that there is a large literature on short time LIL-type behaviour of Lévy jump

processes, however, the t ↓ 0 limit is beyond the scope of our paper.

Loosely speaking, the above results indicate that for a symmetric process the structure

of the almost sure long time profile τ is determined by the standard deviation and a small

margin given by a slowly varying correction factor. This margin can be further refined by

integral tests. Recall that τ is said to be in the upper resp. lower class at infinity with respect

to (Xt)t≥0 whenever P(Xt < τ(t) : as t→ ∞) is 1 or 0. For Brownian motion, the so called

Kolmogorov-Petrovsky integral test says [32] that if g is a positive increasing function, then

P
(
|Bt| ≤

√
tg(t) : as t→ ∞

)
= 0 or 1

according to
∫∞
1

gd(t)
t
e−

g2(t)
2 dt being finite or infinite. Also, the Dvoretzky-Erdős integral test

says [12] that if h is a positive function, decreasing to zero, and d ≥ 3, then

P
(
|Bt| ≥

√
th(t) : as t→ ∞

)
= 0 or 1

as
∫∞
1

hd−2(t)
t

dt is finite or infinite. In particular, it follows that for some n ∈ N and d = 3,

τ(t) =

√
2t

(
log2 t+

3

2
log3 t+ log4 t+ ...+ logn−1 t+ (1 + ε) logn t

)
where logn means n-fold iterated logarithm, is in the upper or lower class at infinity, if ε

positive or negative, respectively. For further integral tests related to Brownian motion and

some jump processes we refer to [45, 44, 23].

The problem of long time behaviour has also been addressed for diffusions. In the works [1,

2] conditions have been obtained for diffusions defined by stochastic differential equations such

that the solutions continue to obey a LIL behaviour; see also the classic paper by Motoo [31],

and [30] and the references therein. For GST processes obtained by conditioning Brownian

motion, Rosen and Simon [36] considered polynomial potentials increasing to infinity at
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infinity and diffusions generated by the Schrödinger operator −1
2
∆ + V . They showed that

if the degree of this polynomial is 2m ≥ 2, and the coefficient of the leading term is a2m > 0,

then the a.s. long-time profile of the GST process (called by the authors P (ϕ)1-process) is

(1.5) τ(t) = (log t)
1

m+1 and C = 1/a
2(m+1)
2m .

In [5], more generally, Kato-class potentials V were considered to study the support of Gibbs

measures on Brownian paths, see also [28]. Here it is shown that whenever the Schrödinger

operator has a ground state φ0 ∈ L1(Rd) ∩ L2(Rd) and a spectral gap Λ, then the profile

function of the so obtained two-sided diffusion is determined by the condition

e−Λ|t|

φ0(Xt)
→ 0 as |t| → ∞,

from which explicit expressions can be derived for specific (classes of) examples. While this

result has the advantage to deal with a large class of potentials, it overestimates τ to large

or small degrees dependent on V .

Long time behaviour for ground state-transformed jump Lévy processes has been explored

only for isotropic stable processes so far, in the context of the fractional Laplacian (−∆)α/2,

0 < α < 2, see [18]. In this paper we go far beyond this class. Our main results are as follows.

First we present an integral test for GST processes derived from a general underlying Lévy

process conditioned by a general Kato-class potential (Theorem 3.1 and Corollary 3.1 below).

This will be achieved in terms of a functional directly featuring the ground state (escape

rates), to which we will be able to use the detailed information on their decay/concentration

properties recently obtained in [19, 20]. Next we restrict to a subclass of jump processes for

which multiple large jumps are dominated by single large jumps (which we call jump-paring

Lévy processes), and split the discussion to confining potentials (V increasing to infinity at

infinity) and decaying potentials (V decreasing to zero at infinity), allowing us to get sharp

characterisations of the time evolution envelopes. For confining potentials we present an

integral test in Theorem 4.1 and its implication on the long time behaviour in Corollary 4.1,

and a similar pair of results for decaying potentials in Theorem 4.4 and Corollary 4.2. We

refine even further by assuming regular variation in Theorems 4.2-4.3 in the case of confining

potentials, and slow variation in Corollaries 4.3-4.4 in the case of decaying potentials. We also

prove the intuition that a faster decaying potential should imply tighter long time evolution

profiles (Theorem 3.2), and illustrate all these results by specific examples (Section 4.4)

highlighting the interplay of the Lévy intensity and the potential in determining the growth

of paths.

2. The underlying and the ground state-transformed processes

2.1. Symmetric jump-paring Lévy processes

Let (Xt)t≥0 be a symmetric, Rd-valued, d ≥ 1, Lévy process on a suitable probability

space. We use the notations Px and Ex for the probability measure and expected value
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of the process starting in x ∈ Rd, respectively. The process (Xt)t≥0 is determined by the

characteristic function

E0
[
eiξ·Xt

]
= e−tψ(ξ), ξ ∈ Rd, t > 0,

with exponent given by the Lévy-Khintchin formula

ψ(ξ) = Aξ · ξ +
∫
Rd

(1− cos(ξ · z))ν(dz).(2.1)

Here A is a symmetric non-negative definite d×d matrix, and ν is a symmetric Lévy measure

on Rd\ {0}, i.e.,
∫
Rd(1∧ |z|2)ν(dz) <∞ and ν(E) = ν(−E), for all measurable E ⊂ Rd\ {0},

thus the Lévy triplet of the process is (0, A, ν). We assume throughout that the Lévy measure

is an infinite measure and it is absolutely continuous with respect to Lebesgue measure with

density (Lévy intensity) ν(x) > 0, i.e.,

ν(Rd\ {0}) = ∞ and ν(dx) = ν(x)dx.(2.2)

When A ≡ 0 and ν ̸= 0, the Lévy process (Xt)t≥0 is a purely jump process, when ν ≡ 0

and and A ̸= 0, it is purely continuous. Recall that (Xt)t≥0 is a Markov process with

respect to its natural filtration, satisfying the strong Markov property and having càdlàg

paths. Moreover, under (2.2) the process has the strong Feller property, i.e., its transition

semigroup satisfies Pt(L
∞(Rd)) ⊂ Cb(Rd), for all t > 0. Equivalently, the one-dimensional

distributions of (Xt)t≥0 are absolutely continuous with respect to Lebesgue measure, i.e.,

there exist the transition probability densities p(t, x, y) = p(t, y − x, 0) =: p(t, y − x). Its

infinitesimal generator L is uniquely determined by its Fourier symbol

L̂f(ξ) = −ψ(ξ)f̂(ξ), ξ ∈ Rd, f ∈ DomL,(2.3)

with domain DomL =
{
f ∈ L2(Rd) : ψf̂ ∈ L2(Rd)

}
. It is a negative non-local self-adjoint

operator such that

Lf(x) =
d∑

i,j=1

aij
∂2f

∂xj∂xi
(x) +

∫ (
f(x+ z)− f(x)− 1B(0,1)(z)z · ∇f(x)

)
ν(z)dz, x ∈ Rd,

for f ∈ C∞
0 (Rd). For more details on Lévy processes we refer to [38, 4].

In what follows we will also consider a more restricted class of symmetric Lévy processes

defined by a condition on the large jumps. Recall the following standard notations. For given

functions f, g the notation f ≍ Cg means that C−1g ≤ f ≤ Cg with a constant C, and f ≍ g

means that there is a constant C such that this relation holds. Also, we write f ≈ g when

limr→∞ f(r)/g(r) = 1. The constants will be assumed to be dependent on the dimension d

by default, while dependence of C on the process (Xt)t≥0 will be indicated by C(X).

Assumption 2.1. The following conditions hold:

(1) There exist a non-increasing function f : (0,∞) → (0,∞) and constants C1, C2, C3 >

0 such that

C1f(|x|) ≤ ν(x) ≤ C2f(|x|), x ̸= 0,(2.4)
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and ∫
|y|>1/2, |x−y|>1/2

f(|x− y|)f(|y|)dy ≤ C3 f(|x|), |x| ≥ 1.(2.5)

(2) There exist tb > 0 and C4 = C4(X, tb) such that 0 < p(tb, x) ≤ C4, for all x ∈ Rd.

(3) For all 0 < p < q < R ≤ 1 we have supx∈B(0,p) supy∈Bq(0)c GBR(0)(x, y) < ∞, where

GBR(0)(x, y) =
∫∞
0
pBR(0)(t, x, y)dt denotes the Green function of the process (Xt)t≥0

in the ball BR(0).

We refer to the class of Lévy processes satisfying Assumption 2.1 as symmetric jump-paring

Lévy processes, and to condition (2.5) as the jump-paring property. It means that double (and

by iteration, all multiple) large jumps are stochastically dominated by single large jumps.

This condition has been introduced in [19], for its further uses see also [22, 20].

Example 2.1. The jump-paring class has a non-trivial overlap with subordinate Brownian

motions in the sense that neither contains the other class. Some landmark examples include:

(1) isotropic α-stable processes, generated by L = (−∆)α/2, 0 < α < 2

(2) isotropic relativistic α-stable processes, generated by L = (−∆+m2/α)α/2 −m, 0 <

α < 2, m > 0

(3) isotropic geometric α-stable processes, generated by L = log(1+(−∆)α/2), 0 < α < 2

(4) jump-diffusion processes obtained as the sum of a mutually independent Brownian

motion and an isotropic α-stable process, generated by L = −a∆ + b(−∆)α/2, 0 <

α < 2, a, b > 0.

In contrast, the variance gamma process corresponding to an α = 2 geometric stable process

does not belong to the jump-paring class. For a more detailed discussion of special cases and

examples we refer to [19].

The restricted class of processes given by Assumption 2.1 will be used only in Section 4

below. For the remainder of this section (Xt)t≥0 denotes a general symmetric Lévy process

corresponding to the Lévy-Khintchin exponent (2.1).

2.2. Ground state-transformed processes

2.2.1. Potentials and Feynman-Kac semigroup. Below we will consider Lévy processes

conditioned by appropriate potentials. Recall that a Borel measurable function V : Rd → R
is an X-Kato class potential whenever for its positive and negative parts

(2.6) V− ∈ KX and V+1C ∈ KX for every compact subset C ⊂ Rd,

holds, where h ∈ KX means that

lim
t↓0

sup
x∈Rd

Ex
[∫ t

0

|h(Xs)|ds
]
= 0.(2.7)
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By an extension of Khasminskii’s lemma [28, Lem. 3.37] to X-Kato potentials, it follows

that the random variables
∫ t
0
V (Xs)ds are exponentially integrable for all t ≥ 0, and thus we

can define the Feynman-Kac semigroup

(2.8) Ttf(x) = Ex
[
e−

∫ t
0 V (Xs)dsf(Xt)

]
, f ∈ L2(Rd), t ≥ 0, x ∈ Rd.

Using the Markov property and stochastic continuity of the process (Xt)t≥0 it can be shown

that {Tt : t ≥ 0} is a strongly continuous one-parameter semigroup of symmetric operators

on L2(Rd). Moreover, by the Hille-Yoshida theorem there exists a self-adjoint operator H

bounded from below such that e−tH = Tt. The generator can be identified as the non-local

Schrödinger operator H = −L + V defined as a form sum, where L is the infinitesimal

generator of the Lévy process (Xt)t≥0.

The following will be a basic standing assumption for the whole paper.

Assumption 2.2. The potential V is in X-Kato class, chosen such that λ0 := inf SpecH ∈ R
is an isolated eigenvalue of H.

We denote the corresponding eigenfunction (called ground state) by φ0, i.e.,

Hφ0 = λ0φ0, φ0 ̸≡ 0, φ0 ∈ DomH ⊂ L2(Rd)

holds. By standard arguments [34, Th.XIII.43], [28, Sect. 3.4.3] it follows that φ0 is unique

and has a strictly positive version, which we will use throughout below.

Both from the perspective of existence of a ground state and for the purposes of the

discussion below, it is useful to single out two large classes of potentials.

Example 2.2 (Confining potentials). A potential V is confining if V (x) → ∞ as |x| → ∞.

In this case SpecH is purely discrete, and a (unique) ground state φ0 exists. Some examples

include:

(1) Harmonic and anharmonic oscillators: Let V (x) = |x|2n, n ∈ N. The case n =

1 describes the potential of the harmonic oscillator, and n ≥ 2 give anharmonic

oscillators.

(2) Double and multiple well potentials: The potential V (x) = |x|4 − b|x|2, b > 0, is a

symmetric double well potential. Multiple well potentials can be obtained by higher

order polynomials.

Example 2.3 (Decaying potentials). A potential V is decaying if V (x) → 0 as |x| → ∞.

In this case SpecH contains the essential spectrum SpecessH = Specess L = [0,∞), and

whether it also contains a non-empty discrete component depends on further details of V .

Some decaying X-Kato class potentials of special interest in mathematical physics are:

(1) Potential wells: Let V (x) = −v(x) with a compactly supported, non-negative bounded

Borel function v ̸≡ 0. Specifically, we can choose V (x) = −a1B(0,1)(bx), for a, b > 0.

(2) Coulomb-type potentials: Let f in Assumption 2.1 be such that f(r) = r−d−α, r ∈
(0, 1], for some α ∈ (0, 2), and let V (x) = −(a1|x|−β1 ∧ a2|x|−β2), with β1 ∈ (0, α∧ d],
β2 ∈ [β1,∞) and a1, a2 > 0.
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(3) Yukawa-type potentials: Let f in Assumption 2.1 be as in (2) above and V (x) =

−(a1|x|−β1 ∧ a2|x|−β2e−b|x|), with β1 ∈ (0, α ∧ d], β2 ∈ [β1,∞) and a1, a2, b > 0.

(4) Pöschl-Teller potential: V (x) = −a/ cosh2(b|x|), with a, b > 0.

(5) Morse potential: V (x) = a((1− e−b(|x|−r0))2 − 1), with a, b, r0 > 0.

2.2.2. Ground state-transformed process. By using φ0, we define the ground state trans-

form as the unitary map

U : L2(Rd, φ2
0dx) → L2(Rd, dx), f 7→ φ0f.

Also, we define the intrinsic Feynman-Kac semigroup

(2.9) T̃tf(x) =
eλ0t

φ0(x)
Tt(φ0f)(x)

associated with {Tt : t ≥ 0}. Using the integral kernel u(t, x, y) of Tt we have then that

T̃tf(x) =
∫
Rd ũ(t, x, y)f(y)φ

2
0(y)dy with the integral kernel given by

(2.10) ũ(t, x, y) =
eλ0tu(t, x, y)

φ0(x)φ0(y)
,

and infinitesimal generator H̃ = U−1(H − λ0)U , with domain

Dom H̃ = {f ∈ L2(Rd, φ2
0dx) : Uf ∈ DomH}.

A calculation then shows that H̃ is given by the expression (1.4). Furthermore, the operators

T̃t are contractions and we have T̃t1Rd = 1Rd for all t ≥ 0, thus {T̃t : t ≥ 0} is a Markov

semigroup on L2(Rd, φ2
0dx).

The self-adjoint operator H̃ generates a stationary Markov process, which we call a ground

state-transformed (GST) process. (In the terminology of [36] it is called a P (ϕ)1-process

associated with potential V .) To define GST processes, we need two-sided underlying pro-

cesses. Denote by Ωr the space of right continuous functions from [0,∞) to Rd with left limits

(i.e., càdlàg functions), and by Ωl the space of left continuous functions from [0,∞) to Rd

with right limits (i.e., càglàd functions). Denote the corresponding Borel σ-fields by B(Ωr)

and B(Ωl), respectively. Let (Xr
t )t≥0 be a Lévy process on the space (Ωr,B(Ωr),Pxr ), where

Xr
t (ω) = ω(t) is the coordinate process on Ωr, and let (X l

t)t≥0 be a Lévy process on the space

(Ωl,B(Ωl),Pxl ), where X l
t(ϖ) = ϖ(t) is the coordinate process on Ωl. Consider the product

probability space (Ωr×Ωl,B(Ωr)×B(Ωl),Pxr ⊗Pxl ), and for every ω̂ = (ω,ϖ) ∈ Ωr×Ωl define

X̂t(ω̂) =

{
ω(t) if t ≥ 0,
ϖ(−t) if t < 0.

(2.11)

Then t 7→ X̂t(·) is a càdlàg function for all t ∈ R. Denote by Ω the space of càdlàg functions

R → Rd, with Borel σ-field by B(Ω). Consider the image measure Qx = (Pxr ⊗Pxl )◦X̂−1
· . Then

the coordinate process (Yt)t∈R on (Ω,B(Ω),Qx) is a Lévy process such that Qx(Y0 = x) = 1,

the increments (Yti − Yti−1
)1≤i≤n are independent and stationary for every 0 = t0 < ... < tn,

n ∈ N, the increments (Y−ti−1
− Y−ti)1≤i≤n are independent and stationary for every 0 =

−t0 > ... > −tn, n ∈ N, and the function R ∋ t 7→ Yt(·) ∈ Rd is Qx-a.s. càdlàg.
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Using two-sided càdlàg path space, we can now define GST processes. The following result

gives the existence and fundamental properties of GST processes for general underlying Lévy

processes and general Kato-class potentials. A first variant for jump processes has been

obtained in [18, Th. 5.1] for GST processes derived from isotropic stable processes, but the

argument is generic and it applies directly to the present settings, see for further details [29,

Th. 2.1]. For an initial variant of the concept defined for an underlying Brownian motion and

allowing simplifications due to path continuity we refer to [43, 5]. For infinite dimensional

GST processes we refer to [15, 16]; see also a detailed discussion in [28].

Theorem 2.1 (Ground state-transformed process). Let V be an X-Kato class potential

and {T̃t : t ≥ 0} be the corresponding intrinsic Feynman-Kac semigroup. For all x ∈ Rd

there exists a probability measure P̃x on (Ω,B(Ω)) and a random process (X̃t)t∈R satisfying

the following properties:

(1) Let −∞ < t0 ≤ t1 ≤ ... ≤ tn < ∞ be an arbitrary division of the real line, for any

n ∈ N. The initial distribution of the process is

P̃x(X̃0 = x) = 1,

and the finite dimensional distributions of P̃x with respect to the stationary distribution

φ2
0dx are given by∫

Rd

EP̃x

[ n∏
j=0

fj(X̃tj)
]
φ2
0(x)dx =

(
f0, T̃t1−t0 f1... T̃tn−tn−1 fn

)
L2(Rd,φ2

0dx)
(2.12)

for all f0, fn ∈ L2(Rd, φ2
0dx), fj ∈ L∞(Rd), j = 1, ..., n− 1.

(2) The finite dimensional distributions are time-shift invariant, i.e.,∫
Rd

EP̃x

[ n∏
j=0

fj(X̃tj)
]
φ2
0(x)dx =

∫
Rd

EP̃x

[ n∏
j=0

fj(X̃tj+s)
]
φ2
0(x)dx, s ∈ R, n ∈ N.

(3) (X̃t)t≥0 and (X̃t)t≤0 are independent, and X̃−t
d
= X̃t, for all t ∈ R.

(4) With the filtrations (F+
t )t≥0 = σ{X̃s : 0 ≤ s ≤ t} and (F−

t )t≤0 = σ{X̃s : t ≤ s ≤ 0},
the random process (X̃t)t≥0 is a Markov process with respect to

(
F+
t

)
t≥0

, and (X̃t)t≤0

is a Markov process with respect to
(
F−
t

)
t≤0

.

Furthermore, we have for all f, g ∈ L2(Rd, φ2
0dx) the change-of-measure formula

(2.13)

(f, T̃tg)L2(Rd,φ2
0dx)

= (fφ0, e
−t(H−λ0)gφ0)L2(Rd,dx) =

∫
Rd

EP̃x [f(X̃0)g(X̃t)]φ
2
0(x)dx, t ≥ 0.

In particular, we have the path measure

(2.14) P̃(A) =
∫
Rd

EP̃x [1A]φ
2
0(x)dx, A ∈ B(Ω).
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Remark 2.1.

(1) As shown in [29, Th. 3.1], under the condition that x 7→ ∇ logφ0(x) is locally bounded,

a GST process (X̃t)t≥0 satisfies the SDE given in (1.4). We will discuss some specific cases

below.

(2) The probability measure P̃ can be seen as a Gibbs measure on the space of two-sided

càdlàg paths. Consider a regular version of the conditional probability measure P̃x,sy,t ( · ) =

P̃( · |X̃s = x, X̃t = y), x, y ∈ Rd, s < t ∈ R, and the (not normalized) measure on

(Ω|[s,t],B(Ω|[s,t])) corresponding to the Lévy bridge process (Xr)s≤r≤t given by

bx,y[s,t]( · ) = p(t− s, y − x)Px,sy,t ( · ).

Then (2.14) can be equivalently written as

P̃(A) =
∫
Rd

dxφ0(x)

∫
Rd

dyφ0(y)

∫
Ω

e−
∫ t
s (V (Xr(ω))−λ0)dr1Adb

x,y
[s,t](ω)

for all A ∈ B(Ω|[s,t]) and all s < t ∈ R. It can be shown that the family of conditional

probabilities indexed by the family of intervals [s, t] and given by the last integral above

satisfies the Dobrushin-Lanford-Ruelle consistency relations, and thus P̃ is a Gibbs measure

on (Ω,B(Ω)) with respect to the potential V . The details are left to the interested reader;

for a discussion of Gibbs measures relative to stable processes see [18, Sect. 5.3], which can

be extended through similar steps. Our results below on the almost sure long time behaviour

of GST processes will then also characterize the supports of these Gibbs measures.

(3) When V is a confining potential, the process (X̃t, P̃x)t≥0, x∈Rd is typically φ2
0dx-recurrent.

In other words, for every x ∈ Rd and Borel set A ⊂ Rd such that
∫
A
φ2
0(y)dy > 0 (or,

equivalently, with positive Lebesgue measure) we have
∫∞
0

P̃x(X̃t ∈ A)dt = ∞. If there exists

g : [0,∞) → [0,∞), g(r) ↗ ∞ as r → ∞, g(r + 1) ≍ g(r), r ≥ 1, such that V (x) ≍ g(|x|),
then it follows from the estimates of the kernel u(t, x, y) [21, Cor. 4.7] that there exists t0 > 0

such that for every t ≥ t0, x ∈ Rd and A ⊂ Rd as above it holds that P̃x(X̃t ∈ A) ≥ c, with

a constant c = c(x,A) > 0.

For cases when φ0 is explicitly known, we can construct specific GST processes which give

further insight.

Example 2.4 (GST Brownian motion). First consider the underlying Lévy process

(Xt)t≥0 to be a standard Brownian motion. Though we discuss the one-dimensional cases

only, the first two examples below can be extended to arbitrary finite dimension.

(1) Ornstein-Uhlenbeck process: Let H = −1
2
d2

dx2
+ V , with confining potential V (x) =

γ2

2
x2 − γ

2
, γ > 0. A calculation gives

φ0(x) =
4

√
γ

π
e−

γx2

2 and H̃ = −1

2

d2

dx2
+ γx

d

dx
.

Hence we have the GST process satisfying the SDE

dXt = −γXtdt+ dBt, X0 = a,
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i.e., the Ornstein-Uhlenbeck process Xt = ae−γt +
∫ t
0
e−γ(t−s)dBs. The role of the

potential appears in a strong killing, which makes the process favour the region around

the origin, and spend proportionally less time further away.

(2) Brownian motion in a finite potential well: Let H = −1
2
d2

dx2
+ V , with compactly

supported potential V (x) = −v1{|x|≤a}, a, v > 0. We have

φ0(x) = A0e
−
√

2|λ0||x|1{|x|>a} +B0 cos(
√
2(v − |λ0|)x)1{|x|≤a},

where A0, B0 can be determined by the normalization condition ∥φ0∥2 = 1, and the

ground state eigenvalue is the smallest solution λ = λ0 of the transcendental equation

tan(a
√
2(v − |λ|)) =

√
λ
v−λ . Using that a

√
2(v − |λ0|) < π

2
, we obtain that the GST

process satisfies the equation dXt = b(Xt)dt+ dBt, with drift term

b(Xt) = −
√

2|λ0| sgn(Xt)1{|x|>a} −
√

2(v − |λ0|) tan
(√

2(v − |λ0|)Xt

)
1{|x|≤a}.

From the above it can be seen that as soon as a path exits the potential well, it

is pulled back by the drift at a constant speed
√
2|λ0|, which will act as a basic

mechanism preventing explosion.

(3) Diffusions with Pearson distributions: It is a yet little explored though notable fact

that the six classes of Pearson distribution correspond to classical Schrödinger opera-

tors with Pöschl-Teller, Morse etc potentials given in Example 2.3 above. For further

details see [3, Table 10].

Example 2.5 (GST Cauchy process). Let H = (−1
2
d2

dx2
)1/2+V . Using the results in [27],

in which explicit solutions have been obtained for the harmonic potential V (x) = x2, and

in [11] for the anharmonic potential V (x) = x4, one can construct related GST processes

for the one-dimensional 1-stable (i.e., Cauchy) process generated by the square root of the

one-dimensional negative Laplacian. In this case we have

H̃f(x) = −cd
∫
Rd\{0}

(
f(x+ z)− f(x)− z · ∇f(x)1{|z|≤1}

)φ0(x+ z)

φ0(x)
|z|−d−1dz

− cd

∫
0<|z|≤1

φ0(x+ z)− φ0(x)

φ0(x)
z · ∇f(x)|z|−d−1dz,

from which a specific case of (1.4) can be obtained.

3. Integral tests and long time behaviour for general jump GST-processes

3.1. Technical lemmas

In this section we consider general underlying Lévy processes defined by the exponent (2.1),

i.e., do not make the restriction to the jump-paring class given by Assumption 2.1.

We start by an extension of the Borel-Cantelli lemma, which also extends a result in [36].

The first statement is a direct consequence of the classical Borel-Cantelli lemma, while the

second uses the concept of h-mixing (see below).
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Lemma 3.1. Suppose a function τ : N → (0,∞) is given.

(1) If
∑∞

n=1 P̃
(
|X̃n| ≥ τ(n)

)
<∞, then |X̃n| < τ(n) for almost every n ∈ N, P̃-a.s.

(2) If
∑∞

n=1 P̃
(
|X̃n| > τ(n)

)
= ∞, then |X̃n| ≥ τ(n) for infinitely many n ∈ N, P̃-a.s.

Proof. Recall the following concept used in [36, Section 2]: Given a probability space (Ω,F , P )
and a function h : N ∪ {0} → R+, a sequence (Fn)n∈N of sub-σ-fields of F is called h-mixing

whenever for every Fm-measurable function f and Fn-measurable function g, m,n ∈ N, the
estimate on the covariance

∣∣EP [fg]− EP [f ]EP [g]
∣∣ ≤ h(|n−m|)∥f∥2∥g∥2 holds.

Coming to our context, notice that when
∑∞

n=1 P̃
(
|X̃n| > τ(n)

)
< ∞, the Borel-Cantelli

lemma gives |X̃n| ≤ τ(n) for almost all n ∈ N, P̃-a.s., and thus (1) holds. To obtain (2), let

Fn = σ{X̃t : n ≤ t ≤ n + 1}, for n ∈ N. By using that Λ := inf (Spec(H) \ {λ0}) − λ0 > 0

and the same argument as in [36, Th.3], we find that the family of σ-fields (Fn)n∈N is h-

mixing with the function h(n) := e−Λn, n ∈ N. Therefore, if
∑∞

n=1 P̃
(
|X̃n| > τ(n)

)
= ∞,

then by [36, Th.2(8b)] it follows that |X̃n| ≥ τ(n) for infinitely many n ∈ N, P̃-a.s., and (2)

holds. �

Next we establish an estimate needed to control the series appearing in the previous lemma,

which will play an essential role below.

Lemma 3.2. Let (Xt)t≥0 be a Lévy process determined by (2.1), V a potential satisfying

Assumption 2.2, and (X̃t)t≥0 the corresponding GST-process with probability measure P̃. Then
for every non-decreasing function τ : [0,∞) → (0,∞) we have

∞∑
n=1

P̃
(
|X̃n| ≥ τ(n)

)
<∞ ⇐⇒

∫ ∞

1

dr

∫
|x|≥τ(r)

φ2
0(x)dx <∞.

Proof. First notice that by monotonicity of τ we have∫ ∞

1

P̃
(
|X̃t| ≥ τ(r)

)
dr <∞ ⇐⇒

∞∑
n=1

P̃
(
|X̃t| ≥ τ(n)

)
<∞, t ≥ 0.

Let Ar =
{
y ∈ Rd : |y| ≥ τ(r)

}
. By (2.14), (2.12) and (2.9), we have

P̃
(
|X̃t| ≥ τ(r)

)
=

∫
Rd

T̃t(1Arφ0)(x)φ
2
0(x)dx =

∫
Rd

φ0(x)e
λ0tTt(1Arφ0)(x)dx

and by using the symmetry of the operator Tt and the eigenvalue equation Ttφ0 = e−λ0tφ0,

t ≥ 0, we get

P̃
(
|X̃t| ≥ τ(r)

)
=

∫
Ar

eλ0tTtφ0(x)φ0(x)dx =

∫
Ar

φ2
0(x)dx.

Thus ∫ ∞

1

P̃
(
|X̃t| ≥ τ(r)

)
dr =

∫ ∞

1

∫
|x|>τ(r)

φ2
0(x)dxdr,

which completes the proof. �
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3.2. General integral test and almost sure long-time behaviour

First we present an integral test to GST-processes obtained for general Lévy processes in the

above framework. For c > 0 and a non-decreasing function τ : [0,∞) → (0,∞) define

Iφ0(c, τ) :=

∫ ∞

1

dr

∫
|x|≥τ(r)

φ2
0(cx)dx =

∫ ∞

1

τ d(r)

∫
|x|≥1

φ2
0(cτ(r)x)dxdr

and

cφ0(τ) := inf {c > 0 : Iφ0(c, τ) <∞} .
Clearly, in general, cφ0(τ) ∈ [0,∞], and the integral Iφ0(c, τ) can be seen as an escape rate

for given τ .

The following 0-1 criterion holds.

Theorem 3.1 (Integral test: general underlying process). Let (Xt)t≥0 be a Lévy process

determined by (2.1), V a potential satisfying Assumption 2.2, and (X̃t)t≥0 the corresponding

GST-process with probability measure P̃. Then for every non-decreasing function τ : [0,∞) →
(0,∞) we have

P̃
(
|X̃n| ≥ τ(n) for infinitely many n ∈ N

)
=

{
0 if Iφ0(1, τ) <∞,
1 if Iφ0(1, τ) = ∞.

(3.1)

Proof. The equalities in (3.1) follow directly from Lemmas 3.2 and 3.1. �

Corollary 3.1 (Long-time behaviour: general underlying process). Under the con-

ditions of Theorem 3.1 we have that

lim sup
n→∞

|X̃n|
τ(n)

= cφ0(τ), P̃− a.s.(3.2)

Proof. For every c > 0 and for a non-decreasing function τ as in the statement of the theorem

the test (3.1) gives

P̃
(
|X̃n| ≥ cτ(n) for infinitely many n ∈ N

)
=

{
0 if Iφ0(c, τ) <∞,
1 if Iφ0(c, τ) = ∞.

(3.3)

The result then follows directly from (3.3). �

Below we will rewrite the integral Iφ0 in a more suitable way to investigate the explicit

dependence of the result on the Lévy triplet of the underlying process and the potential.

Remark 3.1. In this paper we identify the upper envelope profiles for the traces of the

GST-processes on the positive integers, i.e., (X̃n)n≥1, rather than for the full paths (X̃t)t≥0.

An extension of our results to the full time-set would require some precise estimates for the

suprema of the process (|X̃|t)t≥0 on unit time intervals, which are currently not available.

However, similarly as in the classical case (see e.g. [36]), it is reasonable to expect that even

our results for integers give a full picture of how the asymptotic behaviour of paths of the

jump GST-processes depends on the input data like the Lévy intensity of the underlying

Lévy processes and the external potential.
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As a second type of result of general character we show a comparison principle. Intu-

itively, a more pinning potential gives rise to a ground state which decays faster, and so the

corresponding GST should fluctuate less. The following result proves this intuition.

Theorem 3.2. Let (X̃
(1)
t )t≥0 and (X̃

(2)
t )t≥0 be the two GST-processes corresponding to the

ground states φ
(1)
0 and φ

(2)
0 , respectively. Suppose that there exists c0 > 0 such that for every

c ≥ c0 we have

lim inf
|x|→∞

φ
(1)
0 (cx)

φ
(2)
0 (x)

> 0.(3.4)

Then the following hold.

(1) For every non-decreasing function τ (2) such that

(0,∞) ∋ c
φ
(2)
0

= lim sup
n→∞

|X̃(2)
n |

τ (2)(n)
, P̃− a.s.(3.5)

it follows that

lim sup
n→∞

|X̃(1)
n |

τ (2)(n)
= ∞, P̃− a.s.

(2) If τ (2) is a non-decreasing function satisfying (3.5) and τ (1) is a non-decreasing func-

tion such that

P̃

(
lim sup
n→∞

|X̃(1)
n |

τ (1)(n)
<∞

)
> 0,(3.6)

then also

lim sup
n→∞

τ (1)(n)

τ (2)(n)
= ∞.

Proof. Suppose that condition (3.4) holds. Also, let (3.5) be satisfied for a given non-

decreasing function τ (2) and denote c2 := c
φ
(2)
0
. By a change of variable in the inner integral,

for every c ≥ c0c2 and ε ∈ (0, c2) it follows that

I
φ
(1)
0
(c, τ (2)) =

∫ ∞

1

dr

∫
|x|≥τ (2)(r)

(
φ
(1)
0 (cx)

)2
dx

=

(
1

c2 − ε

)d ∫ ∞

1

dr

∫
|x|≥(c2−ε)τ (2)(r)

(
φ
(1)
0

(
cx

c2 − ε

))2

dx.

By (3.4) there exist C,R > 0 such that

φ
(1)
0

(
cx

c2 − ε

)
≥ Cφ

(2)
0 (x) , |x| ≥ R.

Thus the above estimate implies

I
φ
(1)
0
(c, τ (2)) ≥ C2

(
1

c2 − ε

)d ∫ ∞

r0

dr

∫
|x|≥(c2−ε)τ (2)(r)

(
φ
(2)
0 (x)

)2
dx,

for every r0 ≥ 1 such that (c2 − ε)τ (2)(r0) ≥ R. By (3.5) and the test (3.3), we have

I
φ
(2)
0
(c2 − ε, τ (2)) = ∞ and the latter integral cannot be convergent. This means that for
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every c ≥ c0c2 we also have I
φ
(1)
0
(c, τ (2)) = ∞. Thus the integral test (3.3) again yields that

for every K ∈ N such that K ≥ c0c2

P̃

(
lim sup
n→∞

|X̃(1)
n |

τ (2)(n)
≥ K

)
= 1.

This then gives

lim sup
n→∞

|X̃(1)
n |

τ (2)(n)
= ∞, P̃− a.s.,

which completes the proof of (1). The assertion (2) is a direct consequence of (1). �

Remark 3.2. We note the following in relation to the condition (3.4) above.

(1) The decay rates of the ground state eigenfunctions for confining and decaying poten-

tials are determined by (4.5) and (4.21)-(4.22), respectively. Thus condition (3.4) can

be efficiently checked for a large class of underlying Lévy processes and potentials.

(2) Condition (3.4) is immediately satisfied if the order of the decay rate of φ
(2)
0 (x) at

infinity is substantially greater than that of φ
(1)
0 (x), e.g., when φ

(2)
0 (x) ≤ c1e

−c2|x|β1

and φ
(1)
0 (x) ≥ c3e

−c4|x|β2 with 0 < β2 < β1, or φ
(1)
0 (x) ≥ c3|x|−γ with γ > d, for large

|x|. For examples we refer to Section 5.

4. Almost sure long time behaviour of GST-processes arising from jump-paring

Lévy processes

4.1. Sharp tail estimates for stationary distributions

First we prove a technical lemma which will be applied to derive sharp tail estimates for the

stationary distributions of the GST processes.

Lemma 4.1. Let r0 ≥ 1 and let h : [r0,∞) → (0,∞) be a given function such that

(i) h(r)rd → 0 as r → ∞,

(ii) h(r)rd−1 ∈ L1(r0,∞),

(iii) h ∈ C1(r0,∞).

Consider the following conditions:

(L) There exist a non-decreasing C1-class function κ : (r0,∞) → (0,∞) and constants

A1 ≥ 0 and B1 > 0 such that

−r d

dr

1

κ(r)
≤ A1 and − r

d

dr
log h(r)− d ≤ B1κ(r), r > r0.(4.1)

(U) There exist a non-decreasing C1-class function κ : (r0,∞) → (0,∞) and constants

A2 ≥ 0 and B2 > 0 such that

−r d

dr

1

κ(r)
≥ A2 and − r

d

dr
log h(r)− d ≥ B2κ(r), r > r0.(4.2)

The following hold.
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(1) Under assumptions (i)-(iii) and condition (L) we have∫
s>r

h(s)sd−1ds ≤ 1

A1 +B1

h(r)rd

κ(r)
, r > r0.

(2) Under assumptions (i)-(iii) and condition (U) we have∫
s>r

h(s)sd−1ds ≥ 1

A2 +B2

h(r)rd

κ(r)
, r > r0.

Proof. We only prove (1) as the proof of (2) goes in the same way. Since

d
dr

(
h(r) rd

κ(r)

)
d
dr

∫
s>r

h(s)sd−1ds
=
h

′
(r) rd

κ(r)
+ h(r)dr

d−1κ(r)−rdκ′ (r)
κ2(r)

−h(r)rd−1

=
−r d

dr
log h(r)− d

κ(r)
− r

d

dr

1

κ(r)
,

for almost every r > r0. By using (4.1) we see that

(A1 +B1)
d

dr

∫
s>r

h(s)sd−1ds ≤ d

dr

(
h(r)

rd

κ(r)

)
, r > r0.

Then by integrating on the two sides of the above inequality over the interval (r,∞), r > r0,

and using assumptions (i)-(ii), the result follows. �

4.2. The case of confining potentials

In this section we consider the class of symmetric jump-paring Lévy processes defined by

Assumption 2.1, and subject them to appropriate potentials.

Denote

VU(x) := sup
y∈B(x,1)

V (y) and VL(x) := inf
y∈B(x,1)

V (y), x ∈ Rd.(4.3)

When VU(x) ≍ VL(x) for |x| > R with some R > 0, then we say that the values of V are

almost constant on unit balls outside a bounded set or, in short, that V is almost constant

on unit balls.

We impose the following regularity condition on the potentials.

Assumption 4.1. Let V ∈ KX
± be a confining potential, i.e. V (x) → ∞ as |x| → ∞.

Moreover, we assume that there exist functions gU, gL : (1,∞) → (0,∞) such that

gU(r) ≍

(∫
Sd−1

(
1

(1 ∨ VU(rθ))

)2

dθ

)1/2

and gL(r) ≍

(∫
Sd−1

(
1

(1 ∨ VL(rθ))

)2

dθ

)1/2

(4.4)

for all r > 1.
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Under Assumption 4.1, the ground state 0 < φ0 ∈ Cb(Rd) and there exist constants C1, C2 >

0 such that (see [18, Th.2.4, Cor.2.2])

C1
1 ∧ ν(x)
1 ∨ VU(x)

≤ φ0(x) ≤ C2
1 ∧ ν(x)
1 ∨ VL(x)

, x ∈ Rd.(4.5)

To make some direct computations and find the direct profile functions for paths of the

processes for specific jump intensities and given potentials V it is useful to rewrite the integral

test in a more explicit way. Let κ : [1,∞) → (0,∞) be a given function. For c > 0 and a

non-decreasing function τ : [0,∞) → (0,∞), we denote

IUν,V,κ(c, τ) =

∫ ∞ (
gU(cτ(r))f(cτ(r))

)2 τ d(r)

κ(τ(r))
dr

and

ILν,V,κ(c, τ) =

∫ ∞ (
gL(cτ(r))f(cτ(r))

)2 τ d(r)

κ(τ(r))
dr.

Also, define

cLν,V,κ(τ) := inf
{
c > 0 : ILν,V,κ(c, τ) <∞

}
and cUν,V,κ(τ) := sup

{
c > 0 : IUν,V,κ(c, τ) = ∞

}
.

Since IUν,V,κ(c, τ) ≤ ILν,V,κ(c, τ) for every c > 0 and τ , we always have cUν,V,κ(τ) ≤ cLν,V,κ(τ).

We are now ready to state the first main result in this section.

Theorem 4.1 (Integral test: jump-paring underlying process). Let Assumptions 2.1-

4.1 hold. Assume, in addition, that the profiles gU, gL appearing in Assumption 4.1 are

C1-class functions. Then we have the following.

(1) If condition (L) in Lemma 4.1 holds for the function h = (gLf)2 with r0 = 1 and

some κ, then for every non-decreasing function τ : [0,∞) → (0,∞) we have

P̃
(
|X̃n| ≥ τ(n) for infinitely many n ∈ N

)
= 0 whenever ILν,V,κ(1, τ) <∞.(4.6)

(2) If condition (U) in Lemma 4.1 holds for the function h = (gUf)2 with r0 = 1 and

some κ, then for every non-decreasing function τ : [0,∞) → (0,∞) we have

P̃
(
|X̃n| ≥ τ(n) for infinitely many n ∈ N

)
= 1 whenever IUν,V,κ(1, τ) = ∞.(4.7)

Proof. First we prove (1). Using the general Theorem 3.1, it suffices to show that Iφ0(1, τ) <

∞ whenever ILν,V,κ(1, τ) <∞. Note that when the latter integral is finite, necessarily τ(r) →
∞ as r → ∞. We have

Iφ0(1, τ) =

∫ ∞

1

dr

∫
|x|≥τ(r)

φ2
0(x)dx.

According to (4.5), by the fact that under our assumptions ν(x) → 0 and V (x) → ∞ as

|x| → ∞, there exists R ≥ 1 such that there is a constant C > 0 satisfying

φ0(x) ≤ C
ν(x)

V L(x)
, |x| ≥ R.
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Let now r0 > 1 be large enough such that τ(r) ≥ R for r ≥ r0. With this, by Assumptions

2.1 (i) and 4.1, we clearly have∫ ∞

r0

dr

∫
|x|≥τ(r)

φ2
0(x)dx ≤ C

∫ ∞

r0

dr

∫
|x|≥τ(r)

(
ν(x)

V L(x)

)2

dx

≤ C1

∫ ∞

r0

dr

∫
s≥τ(r)

(
f(s)gL(s)

)2
sd−1ds.(4.8)

To conclude, it suffices to apply Lemma 4.1 (1) to the inner integral in (4.8). We first

check the assumptions (i)-(iii) of this lemma for h(s) := (f(s)gL(s))2, s ≥ R. Since gL(s) is

bounded for large s and f is the profile for the Lévy measure far from the origin, the first

two conditions (i)-(ii) follow immediately. Moreover, gL is assumed to be a C1-class function

in (R,∞). If the same is true for f , then the condition (iii) holds as well and, by applying

Lemma 4.1 (1) to such h(s), we get∫ ∞

r0

dr

∫
|x|≥τ(r)

φ2
0(x)dx ≤ C2

∫ ∞

r0

(
f(τ(r))gL(τ(r))

)2 τ d(r)

κ(τ(r))
dr ≤ C3I

L
ν,V,κ(1, τ) <∞.

Since the integral
∫ r0
1
dr
∫
|x|≥τ(r) φ

2
0(x)dx is convergent, we conclude that Iφ0(1, τ) <∞.

On the other hand, if f is not a C1-class function, then due to the convolution condition

(2.5) we can show that there is a constant C > 0 such that f(s) ≤ Cf(s+1) for all s ≥ 1 [22,

Lem.1, Lem.3 ]. With this, we can construct a C1-class function f0 such that f0(r) ≍ f(r),

r ≥ 1 (this can be done by putting f0(r) := f(r), for r ∈ N, and by C1-interpolation). Then,

the function h(s) := (f(s)gL(s))2 under the integral in (4.8) above can be replaced with

h0(s) := (f0(s)g
L(s))2 to which Lemma 4.1 (1) applies directly as above.

To see (2), it suffices to check that Iφ0(1, τ) = ∞ whenever ILν,V,κ(1, τ) = ∞. The proof

of this again uses the general integral test in Theorem 3.1 and similar arguments as above

based on the converse inequalities. �

Corollary 4.1 (Long time behaviour: jump-paring underlying process). Under the

conditions of part (1) in Theorem 4.1 it follows that

lim sup
n→∞

|X̃n|
τ(n)

≤ cLν,V,κ(τ), P̃− a.s.,(4.9)

and under the conditions in part (2) it follows that

lim sup
n→∞

|X̃n|
τ(n)

≥ cUν,V,κ(τ), P̃− a.s.(4.10)

Proof. This is an immediate consequence of Theorem 4.1. �

Remark 4.1. If V is almost constant on unit balls, then for every c > 0 and τ we have

IUν,V,κ(c, τ) ≍ ILν,V,κ(c, τ) (i.e., both integrals are convergent or divergent at the same time)

and cLν,V,κ(τ) = cUν,V,κ(τ). In this case the integral tests (4.6)-(4.7) and the limsup resulting

constants in (4.9)-(4.10) are sharp. For more specific examples of potentials we will see that

this holds in an essentially greater generality. Moreover, if φ0 decays polynomially at infinity

(cf. Theorem 4.3), then the resulting constants cLν,V,κ(τ) and c
U
ν,V,κ(τ) are necessarily 0 or ∞.
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In Section 5 we illustrate our Theorem 4.1 and Corollary 4.1 by various choices of the

Lévy density ν and the confining potential V . Note that all these results apply to general

non-decreasing test functions τ . This is a consequence of the sharp estimates in Lemma 4.1,

which requires some initial smoothness of the profiles for V .

4.3. Almost sure behaviour profiles for confining potentials with regular variation

If one is interested in constructing explicit almost sure long time behaviour profiles corre-

sponding to specific types of Lévy measures and potentials, but not in the study of integral

tests for general non-decreasing functions τ as in Theorem 4.1, then one can use more direct

argument. Such profiles are typically strictly increasing functions and therefore one can use

the Fubini theorem instead of the tail estimates in Lemma 4.1.

In this section we construct directly the explicit almost sure long time behaviour profiles

for the paths of the GST process in the case when − log(f(s)gL(s)) and − log(f(s)gU(s)) are

asymptotically equivalent with strictly increasing regularly varying functions at infinity.

Recall that a function R : (r0,∞) → (0,∞) is said to be regularly varying at infinity with

index λ ∈ R if

lim
r→∞

R(sr)

R(r)
= sλ, s > 0,

and L : (r0,∞) → (0,∞) is called slowly varying at infinity if it is regularly varying with

index λ = 0. Every function R regularly varying at infinity with index λ ∈ R can be

represented in the form

R(r) = rλL(r),

where L is slowly varying at infinity. It is known that L can be assumed to be a continuous

function. For r > R(r0) define

R∗(r) := inf {s ∈ [r0,∞) : R(s) ≥ r} .

We have R∗(r) = r1/λL∗(r) and R∗ is the asymptotic inverse function of R in the sense of

the relation

R(R∗(r)) ≈ R∗(R(r)) ≈ r.(4.11)

The notation f(r) ≈ g(r) means that limr→∞ f(r)/g(r) = 1. In this case the functions f

and g are called asymptotically equivalent at infinity. The function L∗ is slowly varying at

infinity and is called the conjugate slowly varying function of L. It is known that if R∗ is

an asymptotic inverse function of R, then it is unique in the sense that if there is another

slowly varying function L′
satisfying R(r1/λL′

(r)) ≈ r, then L′ ≈ L∗. By (4.11) we also have

lim
r→∞

(L∗(r))λL(r1/λL∗(r)) = 1.(4.12)

Recall that the function R is called to be ultimately increasing if there exists r0 > 0 such

that R is increasing on (r0,∞). For further properties and details we refer to e.g. [40, Ch.1].
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Theorem 4.2 (Regularly varying Lévy intensities and potentials). Let Assumptions

2.1-4.1 hold and suppose that there exists A ∈ (0,∞) such that for g1 = gU and g2 = gL

log gi(r) + log f(r) = −AR(r) + o(R(r)) as r → ∞, i = 1, 2(4.13)

holds with R(r) = rλL(r), where λ > 0 and L : [r0,∞) → (0,∞) is a slowly varying function

at infinity. If R is ultimately increasing, then

lim sup
n→∞

|X̃n|
(log n)1/λL∗(log n)

=
1

(2A)1/λ
, P̃− a.s.,(4.14)

where L∗ is the conjugate slowly varying function of L.

Remark 4.2. With the settings of the above theorem, whenever

L(r) ≈ L
(

r

(L(r))1/λ

)
,(4.15)

we can take

L∗(r) =
(
L(r1/λ)

)−1/λ
.(4.16)

Indeed, under (4.15) we haveR
(
r1/λ

(
L
(
r1/λ

))−1/λ
)
≈ r, i.e., the function r1/λ

(
L
(
r1/λ

))−1/λ

is the asymptotic inverse of R and (4.16) holds by the asymptotic uniqueness of L∗.

Proof of Theorem 4.2. Let θ(r) := er
λL(r), r > 0. We may assume that r0 is large enough

such that R is increasing and continuous on [r0,∞). In particular, there exists an inverse

function θ−1 : [θ(r0),∞) → [r0,∞). For a shorthand notation write Fi(r) := (f(r)gi(r))
2rd−1.

By similar argument as in (4.8) (using two sided estimates (4.5)), we have for c > 0

C1I
(1)
ν,V (c, θ

−1) ≤
∫ ∞

θ(r0/c)

dr

∫
|x|≥cθ−1(r)

φ2
0(x)dx ≤ C2I

(2)
ν,V (c, θ

−1),(4.17)

where

I
(i)
ν,V (c, θ

−1) =

∫ ∞

θ(r0/c)

dr

∫
s≥cθ−1(r)

Fi(s)ds, i = 1, 2,

and the constants C1, C2 do not depend on c and θ. Moreover, by Fubini’s theorem,

I
(i)
ν,V (c, θ

−1) =

∫ ∞

r0

θ(r/c)Fi(r)dr i = 1, 2.

It follows from (4.13) that for every ε ∈ (0, 1) there is rε > 0 such that for all r > rε

F1(r) ≥ e−2(1+ε)ArλL(r) and F2(r) ≤ e−2(1−ε)ArλL(r).(4.18)

With this we have for every c > 0

θ(r/c)F2(r) ≤ exp

((
1

cλ
L(r/c)
L(r)

− 2(1− ε)A

)
rλL(r)

)
, r > rε,

and

θ(r/c)F1(r) ≥ exp

((
1

cλ
L(r/c)
L(r)

− 2(1 + ε)A

)
rλL(r)

)
, r > rε.
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Therefore, by (4.18) and by slow variation of L, for every c > (2A)−1/λ there exist ε ∈ (0, 1)

and R > 0 such that
1

cλ
L(r/c)
L(r)

− 2(1 + ε)A < 0, r > R.

Hence I
(2)
ν,V (c, θ

−1) < ∞ whenever c > (2A)−1/λ. Due to (4.17) also Iφ0(c, θ
−1) < ∞ for this

range of c. By similar argument we can also show that I
(1)
ν,V (c, θ

−1) = ∞ (and, therefore,

Iφ0(c, θ
−1) = ∞), for every c < (2A)−1/λ. We then have cφ0(τ) = (2A)−1/λ and, by Corollary

3.1 with τ = θ−1, we finally get

lim sup
n→∞

|X̃n|
θ−1(n)

=
1

(2A)1/λ
, P̃− a.s.

To complete the proof it suffices to observe that by asymptotic uniqueness of R∗ it follows

that R∗(log r) ≈ θ−1(r). �

The next theorem involves the Lévy intensities and potentials of slow variation at infinity.

For convenience, denote k-fold iterated logarithm by logk.

Theorem 4.3 (Slowly varying Lévy intensities and potentials). Let Assumptions 2.1-

4.1 hold and suppose that there exist γ ∈ [d,∞), l ∈ N and β1, ..., βl ∈ R such that for g1 = gU

and g2 = gL we have

f(r)gi(r) ≍ r−γ(log r)β1(log2 r)
β2 · · · (logl r)βl as r → ∞, i = 1, 2.(4.19)

For natural numbers k ≥ l and any δ > 0 denote

τk(r) := r
1

2γ−d
(
(log r)2θ1+1(log2 r)

2θ2+1 · · · (logk r)2θk+δ
) 1

2γ−d ,

where θi = βi for 1 ≤ i ≤ l and θi = 0 for l < i ≤ k, whenever k > l. Then for every k ≥ l

we have P̃-almost surely

lim sup
n→∞

|X̃n|
τk(n)

=

{
0 if δ > 1,
∞ if δ ≤ 1.

(4.20)

Proof. Let γ ∈ [d,∞), l ∈ N and β1, ..., βl ∈ R be given and let Fi(r) := (f(r)gi(r))
2rd−1.

Fix k ≥ l and for δ > 0 consider the function

ϑ(r) := r2γ−d(log r)−2θ1−1(log2 r)
−2θ2−1 · · · (logk r)−2θk−δ, r > expk e,

where expk denotes the k-fold iterated exponential function, θi = βi for 1 ≤ i ≤ l, and θi = 0

for l < i ≤ k, whenever k > l. Clearly, ϑ is continuous on (expk e,∞). We can also check

that there exists R = R(k, γ, θ1, ..., θk, δ) ≥ expk e such that ϑ is an increasing function on

(R,∞). Similarly as in the previous proof, it is enough to consider the integrals

I
(i)
ν,V (c, ϑ

−1) =

∫ ∞

R

ϑ(r/c)Fi(r)dr, i = 1, 2, c > 0.

By (4.19), for every c > 0 there is Rc ≥ R such that for i = 1, 2 and every r > Rc we have

ϑ(r/c)Fi(r) ≍ r−1(log r)−1(log2 r)
−1 · · · (logk r)−δ.



22 KAMIL KALETA AND JÓZSEF LŐRINCZI

From this we see that I
(2)
ν,V (c, θ

−1) < ∞ for every c > 0, whenever δ > 1, and similarly,

I
(1)
ν,V (c, θ

−1) = ∞ for every c > 0, whenever δ ∈ (0, 1]. By Corollary 3.1 with τ = ϑ−1, we

finally get that P̃-almost surely

lim sup
n→∞

|X̃n|
ϑ−1(n)

=

{
0 if δ > 1,
∞ if δ ≤ 1.

Similarly as in the previous theorem, it suffices to check that ϑ−1(r) ≈ τk(r). Since ϑ(r) is reg-

ularly varying with index 2γ−d, its asymptotic inverse function is of the form r1/(2γ−d)L∗(r).

Hence by asymptotic uniqueness of L∗(r) and by Remark 4.2 we obtain ϑ−1(r) ≈ τk(r). �

4.4. The case of decaying potentials

Next we consider potentials satisfying the following condition.

Assumption 4.2. Let V ∈ KX
± be a decaying potential, i.e. V (x) → 0 as |x| → ∞, and let

λ0 < 0 be an isolated eigenvalue of H.

As shown in [20] (see also [7]), the fall-off of φ0 depends now on the rate of the decay of ν

at infinity and the distance of λ0 from the essential spectrum of H. Typically, the following

three different situations may occur:

(1) If the Lévy density ν decays strictly sub-exponentially at infinity (cf. [20, Th. 4.1

and 4.3]), then

C1 (1 ∧ ν(x)) ≤ φ0(x) ≤ C2 (1 ∧ ν(x)),(4.21)

with constants C1 = C1(X,λ0) and C2 = C2(X,λ0) (note that the estimates (4.21)

depend on λ0 < 0 only via the multiplicative constants C1 and C2).

(2) If the Lévy density ν decays exponentially at infinity and there exists η0 = η0(X) > 0,

independent of V , such that if λ0 ∈ (−∞,−η0) (i.e. λ0 is a sufficiently low-lying

eigenvalue), then the estimate (4.21) continues to hold (see [20, (3.3)] and [20, Th.

4.2]).

(3) If the Lévy density ν decays exponentially at infinity and λ0 ∈ [−η0, 0), then there is

a constant θ > 0 such that for every ε ∈ (0, 1) there exists a constant C such that

φ0(x) ≥ C
(
e−θ

√
|λ0|+ε |x| ∨ (1 ∧ ν(x))

)
.(4.22)

We refer the reader to [20, Sec. 4.3-4.4] for further discussion.

We now analyze the cases (1)-(2) and (3) separately, and illustrate them by specific exam-

ples. For simplicity, in our results below we refer directly to the estimates (4.21)-(4.22).

As in the previous subsection, let κ : [1,∞) → (0,∞) be a given function. For c > 0, a

non-decreasing function τ : [0,∞) → (0,∞) and ε ∈ (0, 1), we denote

Iν,κ(c, τ) =

∫ ∞
(f(cτ(r)))2

τ d(r)

κ(τ(r))
dr and Iελ0,κ(c, τ) =

∫ ∞
e−2cθ

√
|λ0|+ε τ(r)τ d−1(r)dr

Also, let

cν,κ(τ) := inf {c > 0 : Iν,κ(c, τ) <∞} and cελ0,κ(τ) := sup
{
c > 0 : Iελ0,κ(c, τ) = ∞

}
.
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We are now ready to state the version of Theorem 4.1 for decaying potentials in cases

(1)-(2) and (3) above.

Theorem 4.4 (Integral test: jump-paring underlying process). Let Assumptions 2.1

and 4.2 hold. Then we have the following.

(1) If (4.21) holds, and conditions (L) and (U) in Lemma 4.1 hold for the function h = f 2

with r0 = 1 and some κ, then for every non-decreasing function τ : [0,∞) → (0,∞)

we have

P̃
(
|X̃n| ≥ τ(n) for infinitely many n ∈ N

)
=

{
0 if Iν,κ(1, τ) <∞,
1 if Iν,κ(1, τ) = ∞.

(4.23)

(2) If (4.22) holds, then for every non-decreasing function τ : [0,∞) → (0,∞) we have

P̃
(
|X̃n| ≥ τ(n) for infinitely many n ∈ N

)
= 1,(4.24)

whenever Iελ0,κ(1, τ) = ∞, for some ε ∈ (0, 1).

Proof. We can use the same arguments as in the proof of Theorem 4.1. The difference is

that now the decay of the ground state φ0 at infinity is determined by (4.21) and (4.22),

respectively. Thus we take h(r) = f 2(r) and h(r) = e−2θ
√

|λ0|+ε r in parts (1) and (2)

above. �

Corollary 4.2 (Long time behaviour: jump-paring underlying process). Under the

assumptions of Theorem 4.4 we have

lim sup
n→∞

|X̃n|
τ(n)

= cν,κ(τ), P̃− a.s.,(4.25)

when (4.21) holds, and for every ε ∈ (0, 1),

lim sup
n→∞

|X̃n|
τ(n)

≥ cελ0,κ(τ), P̃− a.s.,(4.26)

when (4.22) holds.

Proof. This is an immediate consequence of Theorem 4.4. �

In the case of decaying potentials, we can also formulate versions of Theorems 4.2-4.3.

Since the proofs of these results are similar, we leave them to the reader.

Corollary 4.3 (Regularly varying Lévy intensities). Let Assumptions 2.1 and 4.2 hold.

(1) If (4.21) holds and there exists A ∈ (0,∞) such that

log f(r) = −AR(r) + o(R(r)) as r → ∞,(4.27)

with increasing R(r) = rλL(r), where λ ∈ (0, 1] and L : [r0,∞) → (0,∞) is a slowly

varying function at infinity, then

lim sup
n→∞

|X̃n|
(log n)1/λL∗(log n)

=
1

(2A)1/λ
, P̃− a.s.,(4.28)

where L∗ is the conjugate slowly varying function of L (cf. Remark 4.2).
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(2) If (4.22) holds, then

lim sup
n→∞

|X̃n|
log n

≥ 1

2θ
√

|λ0|
, P̃− a.s.(4.29)

Corollary 4.4 (Slowly varying Lévy intensities). Let Assumptions 2.1 and 4.2 hold and

suppose that there exist γ ∈ [d,∞), l ∈ N and β1, ..., βl ∈ R such that

f(r) ≍ r−γ(log r)β1(log2 r)
β2 · · · (logl r)βl as r → ∞.(4.30)

For natural numbers k ≥ l and any δ > 0 denote

τk(r) := r
1

2γ−d
(
(log r)2θ1+1(log2 r)

2θ2+1 · · · (logk r)2θk+δ
) 1

2γ−d ,

where θi = βi for 1 ≤ i ≤ l and θi = 0 for l < i ≤ k, whenever k > l. Then for every k ≥ l

we have P̃-almost surely

lim sup
n→∞

|X̃n|
τk(n)

=

{
0 if δ > 1,
∞ if δ ≤ 1.

(4.31)

5. Examples

Now we discuss the asymptotic behaviour of paths of ground state-transformed processes

with underlying Lévy processes having absolutely continuous Lévy measures with densities

ν(x) ≍ f(|x|) such that

f(r) = 1(0,1](r) r
−d−α + 1(1,∞)(r) e

−µrβr−γ, r > 0,(5.1)

where d ≥ 1, α ∈ (0, 2), µ ≥ 0, β ≥ 0 and γ ≥ 0. As proven in [22, Prop. 2], condition (2.5)

holds exactly in the following three cases:

(L1) µ = 0 and γ > d

(L2) µ > 0, β ∈ (0, 1) and γ ≥ 0

(L3) µ > 0, β = 1 and γ > (d+ 1)/2.

All the other assumptions are satisfied as well. Notice that this choice of the profile f leads

naturally to the following important classes of the underlying Lévy processes. In particular,

(L1) includes the isotropic α-stable processes (γ = d + α) and layered α-stable processes

(γ > d + α), and (L3) includes relativistic α-stable processes (µ = m1/α, γ = (d + 1 + α)/2,

for m > 0) and tempered stable processes (µ > 0, γ = d + α). The processes satisfying

(L2) make an intermediate class between the families of processes with polynomially and

exponentially large jumps, and are now increasingly studied in the literature; they include

the so-called Weibull-type Lévy processes or Lévy processes with Weibull-distributed large

jumps.

First we consider confining potentials V (x) ≍ g(|x|) with

g(r) = eηr
ϑ

rρ log(1 + r)σ, r ≥ 0,(5.2)
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where η, ϑ, ρ, σ ≥ 0 are chosen in a way that g(r) → ∞ as r → ∞. Observe that with this

choice of f and g the integral tests in Theorem 4.1 hold with IUν,V,κ(1, τ) = ILν,V,κ(1, τ) = I(1, τ),

where

I(1, τ) :=

∫ ∞ e−2µτ(r)β−2ητ(r)ϑτ(r)d−2(γ+ρ)

log(1 + τ(r))σκ(τ(r))
dr

and κ(r) = rβ∨ϑ if µ, β > 0, or η, ϑ > 0 and κ(r) ≡ const otherwise.

Moreover, the following illustrates the facts established in Corollary 4.1 and Theorems

4.2-4.3, highlighting the parameters of ν and V that determine the long time behaviour.

Example 5.1 (Envelopes for confining potentials). Suppose the profiles f and g for the

density of the Lévy measure ν and the potential V are given by (5.1) and (5.2), respectively.

Then we have the following.

(1) Stretched exponential and exponential jump intensity: Let (L2) or (L3) hold.

(1.1) If η > 0 and ϑ > β, then

lim sup
n→∞

|X̃n|
(log n)1/ϑ

=
1

(2η)1/ϑ
, P̃− a.s.

(1.2) If η > 0 and ϑ = β, then

lim sup
n→∞

|X̃n|
(log n)1/ϑ

=
1

(2(µ+ η))1/ϑ
, P̃− a.s.

(1.3) If η > 0 and β > ϑ or η = 0, then

lim sup
n→∞

|X̃n|
(log n)1/β

=
1

(2µ)1/β
, P̃− a.s.

(2) Polynomial jump intensity: Let (L1) hold.

(2.1) If η, ϑ > 0, then

lim sup
n→∞

|X̃n|
(log n)1/ϑ

=
1

(2η)1/ϑ
, P̃− a.s.

(2.2) If η = 0 and ρ ≥ 0, then

lim sup
n→∞

|X̃n|
(n(log n)2σ+δ)

1
2(γ+ρ)+d

=

{
0 if δ > 1,
∞ if δ ≤ 1,

P̃− a.s.

Note that Example 5.1 (2.2) applies directly to the fractional GST-processes related to H =

(−∆)α/2 + V , where α ∈ (0, 2) and V is a confining potential from Example 2.2. If V (x) =

|x|2n, n ∈ N (harmonic and anharmonic oscillators), then this result holds with γ = d + α,

ρ = 2n and σ = 0. If V is a double or multiple potential well, then a similar result holds

with a suitable ρ.

Next we illustrate our results obtained in Section 4.4 for decaying potentials. Corollaries

4.3-4.4 imply the following.

Example 5.2 (Envelopes for decaying potentials). Suppose the profile f for the density

of the Lévy measure ν is given by (5.1), and V is a decaying potential such that Assumption

4.2 holds. Then we have the following.
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(1) If (L1) holds, then

lim sup
n→∞

|X̃n|
(n(log n)δ)

1
2γ+d

=

{
0 if δ > 1,
∞ if δ ≤ 1,

P̃− a.s.

(2) If (L2) holds, then

lim sup
n→∞

|X̃n|
(log n)1/β

=
1

(2µ)1/β
, P̃− a.s.

(3) If (L3) holds and the ground state eigenvalue λ0 < 0 is sufficiently low-lying (so that

(4.21) holds), then

lim sup
n→∞

|X̃n|
log n

=
1

2µ
, P̃− a.s.

(4) If (L3) holds and the ground state eigenvalue λ0 < 0 is close to zero (so that (4.22)

holds), then

lim sup
n→∞

|X̃n|
log n

≥ 1

2θ
√
|λ0|

, P̃− a.s.

Recall that some classes of decaying potentials of special importance are listed in Example

2.3, to which these results can be applied.

Interestingly, our general results obtained in Section 3 apply directly to diffusive GST-

proceses as well. Indeed, in many cases the behaviour of the ground state φ0 at infinity is

known explicitly and we can analyze the test integrals Iφ0(1, τ) by similar methods as in Sec-

tions 4.2-4.3. For instance, this can be done for some of the GST-Brownian motions. Below

we give the limsup-almost sure behaviour profiles for the two important models discussed in

Example 2.4. The details are left to the reader.

Example 5.3 (Envelopes for GST Brownian motion).

(1) Ornstein-Uhlenbeck process: If (X̃t)t≥0 is a GST-process described in Example 2.4

(1), then

lim sup
n→∞

|X̃n|√
log n

=
1
√
γ
, P̃− a.s.

This result is well-known (see [36, Th. 4] and references therein), and reproduced by

our results above. Similarly, if H = −∆ + V , where V (x) = |x|2β, β > 1, then it is

well-known [9, Sect. 4] that

φ0(x) ≍ |x|−(β/2)+(d−1)/2e−|x|1+β/(1+β)

for large enough |x|, and our approach again directly applies giving

lim sup
n→∞

|X̃n|
(log n)

1
1+β

=

(
1 + β

2

) 1
1+β

, P̃− a.s.

This can be compared with (1.5) and [36, Th. 12].
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(2) Brownian motion in a finite potential well: If (X̃t)t≥0 is a GST-process described in

Example 2.4 (2), then

lim sup
n→∞

|X̃n|
log n

=
1

2
√

2|λ0|
, P̃− a.s.

Note that the almost sure asymptotics for this case is close to that obtained for the

jump type GST processes constructed for decaying potentials in the case when the

ground state eigenvalue λ0 is close to zero (cf. Example 5.2 (4)).

Acknowledgments: JL is pleased to thank Nikolai Leonenko for supplying reference [3].
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