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Abstract 

Many industrial wastewater streams contain heavy metals, posing serious and irreversible 

damage to humans and living organisms, even at low concentrations due to their high toxicity 

and persistence in the environment. In this study, high-performance monodispersed chitosan (CS) 

microspheres were prepared using a simple microfluidic method and evaluated for metal removal 

from contaminated water. Batch experiments were carried out to evaluate the adsorption 

characteristics for the removal of copper ions, one representative heavy metal, from aqueous 

solutions. The inherent advantages of microfluidics enabled a precise control of particle size 

(CV=2.3%), while exhibiting outstanding selectivity towards target ions (adsorption capacity 

75.52 mg g-1) and fair regeneration (re-adsorption efficiency 74% after 5 cycles). An integrated 

adsorption mechanism analytic system was developed based on different adsorption kinetics and 

isotherms models, providing an excellent adsorption prediction model with pseudo-second order 

kinetics (R2 = 0.999), while the isotherm was fitted best to the Langmuir model (R2 = 0.998). 

The multi-step adsorption process was revealed via quantitative measurements and schematically 

described. Selective adsorption performance of CS microspheres in the present of other 

competitive metal ions with different valence states has been demonstrated and studied by both 

experimental and density functional theory (DFT) analysis.  

Keywords: wastewater treatment; selective heavy metal ions removal; microfluidic technology; 

CS microspheres; integrated adsorption mechanism analytic system; DFT analysis. 
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1. Introduction 

Heavy metals represent a serious and exposure risk to the environment and actually are still 

prominent in industrial wastewaters [1, 2]. The highly toxic nature and long persistence of these 

metals, such as lead (Pb), cobalt (Co), copper (Cu) and manganese (Mn), can cause serious 

health effects to flora and fauna. Excessive intake or long term exposure (accumulation effect) to 

toxic heavy metals will contribute to unexpected and irreversible physical health issues to 

humans, such as nervous system disorders, acute poisoning, as well as multi-organ failure [3-6]. 

Today, the removal of metal ions from industrial wastewaters remains problematic. Various 

techniques can be applied for the removal of heavy metals, including spray-drying [7], 

precipitation polymerization [8], ion-exchange [9], electrochemical reaction [10], reverse 

osmosis and adsorption [11, 12]. Adsorption is considered as one of the most cost-effective 

methods, considering investment costs, energy consumption, throughput capacity, emission 

standards and toxic by-products generation [13]. Combining adsorption with other methods, 

toxic heavy metal ions can be efficiently eliminated and/or effectively recovered from 

wastewaters. 

Chitosan (CS) has great potential for heavy metal adsorption based on some distinct advantages, 

including non-toxicity, biocompatibility and biodegradability [14, 15]. CS is also a versatile 

material, due to the enrichment of hydroxyl and amino active functional groups, opening the 

possibility of various chemical modifications, such as acylation, chelation, graft 

copolymerization and crosslinking. Unfortunately, CS is known to be very sensitive to changes 

in pH resulting in dissolution or partial transformation to gel state [16]. Poor mechanical 
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properties of CS powder or flakes can cause difficulties in separation and make it unsuitable for 

actual industrial applications. 

Recently, microfluidic technology is increasingly applied and further developed, aiming to 

provide a precise control of the final particle morphology and monodispersity, with controllable 

sizes and various structures. CS particles synthesized by microfluidical technologies have shown 

tremendous potential in wastewater treatment [17-20]. Cu for example, as a representative and 

abundant metal, was used in various adsorptive removal studies. In order to evaluate the 

adsorption performance of microfluidically-generated adsorbents, pseudo-first order and -second 

order models for adsorption kinetics and Langmuir and Freundlich equations for adsorption 

isotherms are often utilized. Although several attempts were reported to date for the removal of 

Cu from contaminated water using microfluidically-generated CS microspheres, it still lacks an 

integrated adsorption system to quantitatively analyze the complex adsorption process. Xu et al. 

[18] prepared monodispersed CS microspheres using in-house built microfluidic chips, which 

showed an adsorption capacity of 52 mg g-1, according to the non-holonomic system used to 

study the Cu uptake process. Zhu et al. [21] introduced a multi-step microfluidic synthesis 

procedure using an imprinted method to obtain CS microspheres, exhibiting enhanced Cu 

adsorption capacity (81 mg g-1), improving the capacity found (42 mg g-1) in their previous 

works using conventionally prepared CS microspheres [22]. Again, the same non-holonomic 

system could not fully describe the adsorption process. Although the increased adsorption 

performance of CS microspheres have been achieved by combining the microfluidic technology 

and chemical modification, as shown in recent research works [18, 23-25]. Still, the analysis 

method used to describe the complex adsorption mechanism have room for improvement.  
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In order to address these findings, the present study reports novel CS microspheres prepared by a 

one-step microfluidic method, and aims to introduce an integrated adsorption analytic system to 

systematically study the Cu adsorption mechanism and evaluate the adsorbents' performances 

more thoroughly. The CS microspheres were characterized, including their size, dispersity, 

adsorption capacity, selectivity and re-usability. The multi-step adsorption process was analyzed 

in an unprecedented way by confirming the quantitative measurements and models. The 

mechanism of selective adsorption was well explained by incorporating ionic scale effect and 

density functional theory (DFT) analysis. This work aims to further optimize the preparation of 

CS-based microspheres for application in metal contaminated wastewater treatment and improve 

the evaluation method of pollutant adsorbents. 

2. Experimental 

2.1. Materials and characterizations 

All reagents were analytical grade and used as received. Characterizations of CS microspheres 

were systematical analyzed by furrier transmission infrared spectroscopy (FT-IR), scanning 

electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX). More details 

involved in this work can be found in Supporting Materials (SI).  

2.2. Preparation of monodisperse CS microspheres 

To prepare CS microspheres, the dispersed phase (an aqueous solution containing 4.0 wt% 

chitosan and 2.0 wt% acetic acid) and the continuous phase (n-octanol solution with 2.0 wt% 

Span80) were injected into the microfluidic chip by 2 syringe pumps (Longer LSP01-1B). In the 

flow-focusing channel of homemade microfluidic chip (Fig.1a-c and Fig.S1), the dispersed 

phase was continuously sheared by the continuous phase from side channels to generate a series 
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of chitosan emulsion templates. The as-prepared templates were collected and cross-linked in a 

solidification bath (n-octane solution with 0.5 wt% glutaraldehyde and 2.0 wt% Span80) with 

gentle magnetic stirring (ZNCL-S-10D), through Shiff-base reaction between glutaraldehyde and 

CS (Fig.1d). Eventually, CS microspheres were thoroughly washed sequentially with acetone, 

ethanol and copious amounts of deionized water to remove the remaining impurities on the 

microsphere surface before drying under vacuum (DHG-9023A, 40 °C, 3 h). An overview of the 

synthesis process is illustrated in Fig.1e. 

 

Fig.1. Schematic illustration of the microfluidic chip: (a) layer structure; (b) assembly; (c) flow-focusing 

junction; (d) Cross-linking process; (e) Overview of the synthesis process of CS microspheres. 

2.3. Performance experiments 

Cu ions as the adsorbed target was used in the batch adsorption experiments. The adsorption 

experiments were carried out in duplicate. Besides, the strong competition of adsorption sites 
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between Cu and other metal ions was also taken into consideration. For batch adsorption 

experiments, a Cu ion solution was first prepared by dissolving CuCl2·2H2O (Sinopharm 

Chemical Reagent Co., Ltd) in deionized water, which was further diluted to a target 

concentration. Subsequently, 0.05 g of CS microspheres was added to 40 mL of a Cu solution. 

The experiments were performed at 35 °C in an incubator (SPH-304) under constant shaking at 

160 rpm. In terms of cross-linking degree of as-prepared CS microspheres and solution original 

pH effect of final absorbance, subsequent adsorption experiments were conducted at pH = 5.5 by 

using the CS microspheres with 30 min. solidification time unless otherwise stated. A fixed 

volume of solution was taken out at fixed time intervals and analyzed by the inductively coupled 

plasma optical emission spectrometer with radial views (ICP-OES, Agilent ICP-725ES). The 

adopted instrument operational conditions are summarized in Table S1. 

The equilibrium adsorption capacity was calculated using the following equation: 

qe =
(C0−Ce)V0

m
                                                           (1) 

where C0 (ppm) and Ce (ppm) are the initial and equilibrium concentration of Cu ions in the 

solution, respectively. V0 is initial volume of the solution (L) and m is the adsorbent dosage (g). 

The adsorption kinetics and adsorption isotherms are evaluated in Section 3.2 and 3.3. The 

selectivity towards Cu ions was also systematically studied by introducing different valence 

states of metal ions, i.e., Na and Al ions, which are abundant in natural water sources (such as 

sea, river and mineral water). Besides, the selective adsorption performance of as-prepared CS 

microspheres towards Cu ions in the co-existence of other competitive metal ions with bivalence 

state, including Co and Mn ions, were also explored in detail. 
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Adsorption thermodynamics experiments were conducted by analyzing a certain volume of 

solution taken out after equilibrium adsorption with different initial concentrations varying from 

50 to 500 ppm. The adsorption equilibrium time was defined by adsorption kinetics experiment. 

Additionally, the experimental details to evaluate the regeneration performance of as-prepared 

CS microspheres are presented in SI.  

2.4. DFT calculation 

The quantum chemical simulation of the investigated molecular fragments (built in Materials 

Studio program) within the frames of density functional theory (DFT) was carried out using 

Gaussian 09 [26] program package with hybrid functional B3LYP/6-311+G(d,p) [27, 28] and  

LanL2DZ [29]. A simplified DFT calculation was introduced to investigate the interaction of 

different metal ions with as-prepared CS microspheres (For more details, see SI). All studied 

complexes and chitosan monomer were modeled and optimized to lower energy conformation at 

the hybrid function B3LYP and 6-311+G(d,p) basis sets. After optimization and characterization 

of adsorbents, investigated metal ions were placed over different spatial locations of chitosan to 

study the possible complexes formed. Metal ion-adsorbent complexation was performed and 

optimized at B3LYP/LanL2DZ level of theory [30]. The adsorption energy (∆E) of adsorbent-

metal ions can be calculated as follows [31]: 

∆E =  Ecomplex − [Eadsorbent + Emetal ion]                                     (2) 

where Ecomplex, Eadsorbent and Emetal ion are the calculated total energies (kJ mol-1) of metal complex, 

as-prepared CS microspheres and metal ions, respectively. 

3. Results and discussion 

3.1. Characterization of CS microspheres 
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A typical adsorption experimental procedure is illustrated in Fig.2a. The morphology change 

was studied by comparing as-prepared CS microspheres and the ones recovered after the 

adsorption process. Under an optical microscope, a remarkable size uniformity, high 

monodispersity and sphericity of CS templates were observed (Fig.2b), as a result of the 

microfluidic production process. This is supported by the corresponding SEM images of a certain 

amount of CS microspheres (Fig.2g). The average diameters of CS emulsion templates after 30 

min. cross-linking and as-prepared CS microspheres were 940.4 μm (CV = 0.27%) and 378.2 μm 

(CV = 2.3%), respectively. The specific surface area of the adsorbent tested by BET method was 

6.14 m2 g-1. Distinguished morphology properties are undoubtedly convenient for industrial 

separations, which require a high degree of control over microparticles at the process level. With 

an appropriate level of chitosan content and the flow ratio of 2 phases change, the precise control 

towards CS templates sizes could be easily achieved (for details, see SI Fig.S2). Additionally, 

the SEM images of the surface and inner structures of single CS microsphere demonstrated its 

solid spherical structure as presented in Fig.2e and f. When reaching the adsorption equilibrium, 

the color of the CS microspheres turned from reddish brown (Fig.2c) to dark green (Fig.2d). 

Furthermore, by employing FT-IR analysis, a new characteristic band for C=N appeared ca. 1654 

cm-1 as the result of Shiff-base reaction. The continuous decreasing of the transmittance of the 

finger print band of C=N can well explain the influence of solidification time on the Cu removal 

performance of CS microspheres (for details, see SI Fig.S3 and S5b). 
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Fig.2. (a) Schematic illustration of batch adsorption experiments; Optical micrograph image of (b) CS 

emulsion templates with cross-linking time 30 min., (c) before and (d) after adsorption process; The SEM 

micrographs of (e) the surface and (f) inner structures of single CS microsphere, as well as (g) a certain 

amount of CS microspheres. 

3.2. Adsorption kinetics 

Kinetics models are generally introduced to describe the adsorption process and to predict the 

time needed for adsorption and the rate of target sorbate uptake. To better understand the 

adsorption behavior of heavy metal ions, herein taking Cu as model ion, the following kinetic 

models were considered: pseudo-first order model, pseudo-second order model, intraparticle 
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diffusion model, film diffusion and pore diffusion model. The corresponding kinetics parameters 

are summarized in Table 2. 

3.2.1. Pseudo-first order and -second order model 

Pseudo-first order kinetics model is described as: 

log(qe − qt) = logqe −
k1

2.303
t                                                   (3) 

where 𝑞𝑒  (mg g-1) and 𝑞𝑡  (mg g-1) are the corresponding amounts of adsorbed Cu ions at 

equilibrium and at time t (min), respectively; 𝑘1(g mg-1 min-1) is the rate constant. 

In Eq.(3), the adsorbance qt at each sample time t can be obtained with the following equation: 

q(ti) =
C0V0−∑ CiV−Ci[V0−(i−1)V]i−1

1

m
                                               (4) 

where 𝐶0 (ppm) and 𝐶𝑖 (ppm) are the initial Cu concentration and the concentration at time ti 

(min), respectively; 𝑉0  and 𝑉  represent the initial volume (L) and the sampling volume (L), 

respectively; m is the adsorbent dosage (g).  

The pseudo-second order kinetics model is generally expressed as: 

t

qt
=

1

k2qe
2 +

t

qe
                                                                 (5) 

where k2 (g mg-1 min-1) is the rate constant of pseudo-second order adsorption. 

Besides, in order to quantitatively compare the applicability of the above 2 kinetic models, the 

normalized standard deviation ∆qt was included by using the following equation: 
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△ qt(%) = 100 × √
∑[(qt,exp−qt,cal)/qt,exp]2

(n−1)
                                      (6) 

where qt,exp (mg g-1) and qt,cal (mg g-1) are the experimental and calculated adsorption values at 

different sample time t (min), respectively; n is the number of sampling points used in the 

adsorption kinetic curve. 

As shown in Fig.3a, it took about 100 h to reach adsorption equilibrium and the final adsorption 

capacity of CS microspheres was 75.52 mg g-1 (Table 1), which was significantly higher than 

that reported in literature [18, 22]. The early-time large transfer of Cu ions to the CS adsorbate 

microspheres observed from the slope of the adsorption kinetic curve can be attributed to a large 

specific surface area and abundant adsorption sites on their surface, where the adsorption process 

began. Table 1 indicates that the structure of CS microspheres has a direct impact on their 

adsorption kinetics [32]. For example, the CS microspheres with porous structures show faster 

adsorption rate and shorter time to reach adsorption equilibrium (see Table 1). However, the 

porous nature of the structure shows negative effect on final adsorption capacity of the material. 

It is found that, the greater the pores existence and distribution, the less adsorption capacity of 

the single CS microsphere was obtained due to the reduce chitosan content and the decreased 

adsorption sites on the surface. In this regard, the obvious improvement of the adsorbance of CS 

microspheres can be achieved by surficial chemical modification. As shown in Table 1, the 

modified CS microspheres with different functional groups exhibited better adsorption ability. 

However, the complex and multi-step modified process will bring some irreversible damages to 

CS microspheres, such as the increased compactness, significant nonuniformity and porous 

structure loss. As a result, the modified CS microspheres exhibit very fast adsorption rate on the 

surface at the early adsorption stage. Yet, when the surficial adsorption sites are saturated, the 
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increased structural compactness will create more difficulties for Cu ions diffusion and 

adsorption inside the modified CS microspheres. Such findings were also supported by the 

experimental results from our previous paper [25]. In real-life wastewater treatment processes, 

adsorption equilibrium is not necessarily to be reached. Therefore, the rate and capacity at the 

early adsorption stage will be of more practical importance. It indicated the potential advantage 

of our single step microfluidical fabrication strategy.  

Table 1. Performance comparison of chitosan-based adsorbents for Cu ions removal. 

Entry 1 CS microspheres based adsorbents 

Maximum 

adsorbance 

(qm, mg g-1) 

Equilibrium 

time 

(t, h) 

1 

Cross-linked 

CS 

This work 75.52 100 

2 CS microspheres [22] 42.08 > 256 

3 CS microspheres [21] ~ 30a > 100a 

4 CS microspheres [18] 31 100 

5 Porous 

structural CS 

Porous CS microspheres [18] 32.5 30 

6 Imprint CS microspheres [21] 81.45 64 

7 

Modified CS 

CS-poly(acrylic acid) microspheres [18] 61 100 

8 CS-tripolyphosphate gel beads [23] ~ 57 > 80 

9 
CS-heparin polyelectrolyte complex 

microspheres [24] 
~ 44a > 40a 

10 Polyethylenimine-CS biosorbents [25] 146 ~ 64 

a Read from the figures. 

As shown in Table 2, the adsorption curves were better fitted with the pseudo-second order 

model (see Fig.3c) with R2= 0.999, much higher than that of pseudo-first order model (R2= 0.859, 
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see Fig.3b). What's more, the result of △ 𝑞𝑡, only 4.2%, proved that the adsorbance values of 

experiment and calculation were very close. 

3.2.2. Intraparticle diffusion model 

Apart from the above pseudo-first order and pseudo-second order models, more complex and 

quantitatively mathematical relationships can further better explain the whole adsorption process 

by incorporating an intraparticle diffusion model. In general, this relationship was presented as 

an uptake function with the half-power of time (t0.5), rather than t. The most commonly used 

intraparticle diffusion equation for biosorption processes was introduced by Weber and Morris 

[33]: 

qt = kit
0.5 + I                                                                 (7) 

where ki is the intraparticle diffusion rate constant (mg g-1 min-0.5) and the intercept I is obtained 

by linear fitting of the plot of qt versus t0.5 , which is in proportion with the boundary layer 

thickness. A nearly linear variation in the quantity biosorbed with t0.5 can be predicted for a large 

initial fraction of reactions controlled by intraparticle diffusion rates. However, a multi-linear 

intraparticle diffusion plot (Fig.3d) indicates that 3 relatively independent stages with different 

rate-limiting existed in the biosorption process. The first sharper stage can be attributed to the 

extraordinary affinity-induced diffusion of Cu ions through the solution to the external surface of 

CS microspheres or the boundary diffusion layer of the Cu ions. Compared with the first leap 

stage, in the second stage the increasing trend of the plot slows down showing that the rate of 

intraparticle diffusion was further limited. Evolving to the final stage, scarce growth of Cu ions 

uptake was observed as a result of adsorption equilibrium or extremely low Cu ions 
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concentration left in the solution. These 3 stages suggest that the biosorption process starts by 

directed surface adsorption and intraparticle diffusion according to the findings of Ofomaja [34].  

 

Fig.3. (a) Adsorption kinetics; the linear fitting curve of (b) pseudo-first order model and (c) pseudo-

second order model; (d) intraparticle diffusion model. 

Table 2. Parameters for adsorption kinetic models at 35 °C, 400 ppm initial Cu concentration (C0) and 

0.05 g CS microspheres load. 

Kinetic models Parameters Regression coefficient (R2) 

Pseudo-first order 

kinetics 

qe,cal (mg g-1) k1 (mg g-1 min-1) 
0.859 

33.029 2.096 × 10-4 

Pseudo-second order 

kinetics 

qe,cal (mg g-1) k2 (mg g-1 min-1) 
0.999 

77.280 4.943 × 10-5 

Intraparticle diffusion 
I (mg g-1) ki (mg g-1 min-0.5) 

0.998 
28.432 0.8402 

Film diffusion 
D1 (μm2 S-1) Intercept 

0.998 
0.3866 0.3765 

3.2.3. Film diffusion and pore diffusion model 
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In order to gain more information about the mechanism and rate-controlling steps affecting the 

adsorption kinetics, film diffusion and pore diffusion were proposed to study the adsorption 

process. The film diffusion equation can be expressed as 

qt

qe
= 6(

D1

πa2)0.5t0.5 + C                                                       (8) 

where a (μm) is the average radius of CS microspheres and D1 is the film diffusion coefficient 

(μm2 S-1). 

As shown in Fig.4a, the plots trend of qt/qe versus t0.5 for Cu uptake is in conformity with 

intraparticle diffusion, including 3 sections. The diffusion of Cu ions through the boundary layer 

from external surface of CS microspheres shows a dominant control.  

By comparatively applying the pore diffusion model, we can further describe the adsorption 

kinetics. Reichenberg expressed the pore diffusion equation [35] as: 

for 
qt

qe
> 0.85, Bt = −0.4977 − ln(1 −

qt

qe
)                                    (9a) 

and for 
qt

qe
< 0.85, Bt = (√π − √π − (

π2

3
×

qt

qe
))

2

                                (9b) 

B can be used to calculate the effective pore diffusion coefficient, D2 (μm2 S-1), from the 

following equation [36]:  

B = π2 D2

a2
                                                                 (10) 

At ideal conditions of linearity (Bt vs. t plot) when passing the fit through the origin, the rate of 

mass transfer is fully described by pore-diffusion control. If the plot is non-linear or only linear 
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with intercept varying from zero, it can be concluded that film-diffusion or chemical reaction 

also controls the adsorption rate. In this regard, as shown in Fig.4b, the plots of Bt vs. t for Cu 

ion adsorption did not pass through the origin and showed a non-linear segment at short 

adsorption times, which further corroborated the above arguments that film-diffusion or chemical 

reaction controls the rate of adsorption during this period [35]. The plots of pore diffusion and 

the SEM images of CS microspheres were the reciprocal verification that as-prepared CS 

microspheres presented a solid spherical structure. At most, some nanopores were distributed 

along the microspheres but show irrelevant (or uncorrelated) influence on adsorption kinetics. 

 

Fig.4. (a) Film diffusion and (b) Pore diffusion model. 

3.3. Adsorption isotherms 

3.3.1. Langmuir adsorption model 

In order to further study the mechanism of Cu ions uptake into the CS microspheres, first the 

Langmuir adsorption model was adopted to study chitosan-Cu ions interactions as: 

Ce

qe
=

1

qmkL
+

Ce

qm
                                                             (11) 
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where 𝑞𝑚 is the maximum adsorption capacity (mg g-1); kL is the Langmuir constant (L mg-1). 

The adsorption isotherm curve was fitted well with Langmuir's equation (Eq.(11)), as show in 

Fig.5a. The calculated maximum adsorption capacity of CS microspheres was 80.32 mg g-1, 

close to the experiment result. The good fit (R2= 0.998) in the Langmuir model indicated that the 

process of Cu ions adsorption can be well described by the assumptions of Langmuir's 

adsorption model, that is, the adsorbent has uniform and smooth surface, the Cu ions exist at the 

outer surface of the adsorbent in monolayer and no interaction takes place between the adsorbed 

Cu ions. Furthermore, the loaded Cu ions will not be replaced at the adsorption sites, which 

means that the adsorption capacity is determined by the number of adsorption sites [37]. 

The essential characteristic of the Langmuir isotherm can be further expressed by the separation 

factor, KR [38], which is a dimensionless constant and is calculated as the following: 

KR = (1 + kLC0)−1                                                       (12) 

where kL is the Langmuir constant (L mg-1).  

KR values indicate the type of isotherm to be irreversible (KR=0), favorable (0<KR <1), linear 

(KR=1), or unfavorable (KR >1). Corresponding to the adsorption of Cu ions onto as-prepared CS 

microspheres, the calculated KR values (Fig.5b) are in the range of 0.026 - 0.209, indicating that 

the adsorption is a favorable process.  

3.3.2. Freundlich adsorption model 
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The Freundlich isotherm is an empirical equation usually employed to describe heterogeneous 

systems. Therefore it is suitable for research in the multi-layer adsorption on the surface of 

microspheres [39]. The linear form of the Freundlich isotherm model can be represented as: 

lnqe = lnkF +
1

b
lnCe                                                         (13) 

where kF (g mg-1) and b are Freundlich adsorption isotherm constants, being indicative of the 

extent of the adsorption and the degree of non-linearity between solution concentration and 

adsorption, respectively. 

Although the Freundlich equation agrees well with the Langmuir one over moderate 

concentration ranges, it does not become the linear isotherm at low surface coverage. Although 

R2 of Freundlich adsorption model was still up to 0.916, as shown in Fig.5c, it was significantly 

lower than that of Langmuir one. Therefore, it is concluded that the distribution of the adsorbed 

Cu ions are in the form of a monolayer on the surface of as-prepared CS microspheres. 

3.3.3. Dubinin-Radushkevich (D-R) isotherm model 

The Dubinin-Radushkevich (D-R) isotherm model was also fitted to the equilibrium data in order 

to determine the physical or chemical nature of the adsorption process. This model can be 

expressed as: 

lnqe = −βε2 + lnqm                                                   (14a) 

ε = RTln(1 + 1 Ce⁄ )                                                   (14b) 
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where β is the activity coefficient related to adsorption mean free energy (mol2 J-2); ε is the 

Polanyi potential; R is the gas constant (8.314 J mol-1 K-1); T is the absolute temperature (K).  

The mean free energy of adsorption E (kJ mol-1) can be calculated to estimate the type of 

sorption process using the following equation [40]: 

E = 1 √2β⁄                                                            (15) 

If E exceeds 8 kJ mol-1, chemisorption becomes the dominant process. Beneath this value, only 

physisorption is dominant as a result of weak forces between the adsorbate and adsorbent such as 

Van der Waals forces, rather than chemisorption or ion exchange [41]. The D-R isotherm plot is 

shown in Fig.5d. The calculated value of E was 11.455 kJ mol-1 confirms that the Cu ions 

removal by CS microspheres was a chemisorption process. A general consensus has been made 

by comparing the results among Langmuir, Freundlich, D-R isotherm model and experimental 

data for the Cu ions adsorption of CS microspheres, as shown in Table 3.  

Table 3. Parameters for adsorption isotherm models. 

Adsorption isotherms Parameters Regression coefficient (R2) 

Langmuir 
qm (mg g-1) kL (L mg-1) 

0.998 
80.321 7.566×10-2 

Freundlich 
b kF (g mg-1) 

0.916 
2.555 11.20 

Dubinin-Radushkevich 
qm (mol g-1) β (mol2 kJ-2) 

0.960 
3.106×10-3 3.810×10-9 
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Fig.5. (a) Langmuir adsorption isotherm; (b) the separation factor for Cu ions adsorption; (c) Freundlich 

adsorption isotherm; and (d) D-R adsorption isotherm of CS microspheres. 

3.4. Adsorption mechanism 

Based on the SEM images (Fig.6a-c) of the CS microspheres, recovered from adsorption 

experiments with varying contact time (16, 32 and 100 h), an obvious morphological change was 

observed as a result of the Cu accumulated process. In detail, the amount of attachments 

observed on the surface of CS microspheres increases with longer contact time. The initial 

smooth surface became gradually more rough when reaching adsorption equilibrium. Besides, 

the attachments uniformly covered CS microspheres, which are in accordance with the results of 

Langmuir model and further demonstrate that the existing state of Cu ions on the surface of CS 

microspheres exist in monolayers without interaction. Moreover, the elements distribution of Cu 
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on the surface and interior (cross-section) of CS microspheres with different adsorption time 

were visualized using EDX analysis. Fig.6d-f show the sequential change of Cu distribution on 

the surface of the CS adsorbent, consistent with the SEM images (Fig.6a-c). Additionally, the 

changing trend of the Cu distribution inside (Fig.6g-i) showed a similarity with that on the 

surface, but displayed some delay in time with the surface, which can be attributed to internal 

diffusion resistance. It further supports the non-linear relationships obtained in intraparticle, film 

and pore diffusion, as presented in Fig.3d, 4a and 4b, respectively. At the same time, the initial 

Cu distribution change (from Fig.6d to Fig.6e) was more obvious than that when close to the 

adsorption equilibrium (from Fig.6e to Fig.6f). More importantly, the Cu distribution decreased 

progressively when moving from the surface to the interior of CS microspheres. There is almost 

no Cu element response in the center of the CS microsphere at the first adsorption stage (Fig.6g), 

as a result of the direct affinity of the active surface amino groups and the greater internal 

diffusion resistance. 
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Fig.6. (a-c) SEM images of the surface of CS microspheres with increasing Cu ion contact time; EDX 

images of the (d-f) surface and (g-i) interior of CS microspheres with increasing Cu ion contact time. 

Based on the theoretical modeling analysis and EDX observation, the adsorption process was 

described schematically (Fig.7). As shown in Fig.7a, the parent cross-linked CS microspheres 

provide a large amount of adsorption sites not only on the surface but also inside. The 

intraparticle diffusion (Fig.7b) controls the first contact process between as-prepared CS 

microspheres and the Cu ions solution. Subsequently, Cu ions penetrate the boundary layer and 

reach the surface of CS microspheres depending on the film diffusion resistance (Fig.7c). Active 

amino groups on the surface of CS microspheres with strong affinities towards Cu ions gave rise 

to fast Cu uptake (Fig.7d). At this stage, surface mediated chemisorption is predominant. 
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Simultaneously, a growing number of Cu ions migrate inside but show a substantial adsorption 

delay due to internal diffusion resistance limitations (Fig.7e). Although no clear porous structure 

was observed in the SEM images, the tiny pores still play an assistant role in the flux of Cu ions 

from the exterior to the interior of CS microspheres. In addition, once the adsorption sites were 

occupied, they could not be occupied again. When both the surface and internal adsorption sites 

were saturated, the apparent adsorption equilibrium was reached (Fig.7f). However, the whole 

adsorption process is limited and affected by several factors, such as cross-linking degree, 

aqueous solution pH, and so on. This trade-off between adsorption capacity and stability will be 

discussed in the SI Fig.S5. 

 

Fig.7. Schematic illustration of the adsorption mechanism. 
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3.5. High selectivity toward targeted ions 

In real life contaminated waters, other components co-exist with the target adsorbate, sometimes 

in complex media, which lead to adsorbent poisoning. Therefore, it is necessary to investigate 

the selectivity of CS microspheres towards targeted ions for further practical applications.  

Next to Cu, Na and Al ions, which are widely abundant in many water sources, were added in 

the adsorption experiments to study the selective removal of Cu ions by CS microspheres. 

Different aqueous solutions were prepared (e.g. 400 ppm Cu2+ with 400 ppm Na+ and/or Al3+; 

and 100 ppm Cu2+ with 400 ppm Na+ and/or Al3+). The results are displayed in Fig.8a, showing 

that as-prepared CS microspheres were selective towards Cu ions in all cases. At identical metal 

concentrations (400 ppm), the selectivity towards Cu ions can reach up to 86.78%. The 

adsorption capacities of Na and Al ions were quite small, only 4.53% and 8.69%, respectively. 

At more realistic conditions (100 ppm Cu and 400 ppm Na and Al), CS microspheres still 

presented stronger adsorption ability towards Cu ions (83.1%) than the other two ions (5.82% for 

Na and 11.08% for Al ions, respectively). More details can be found in SI, Fig.S7a.  

Besides, the adsorbance and selectivity of as-prepared CS microspheres in another more complex 

aqueous solution containing several toxic metal ions, such as Co and Mn, with the same valence 

state as Cu, were also deeply studied. Similarly, several aqueous solutions were prepared as 

above (e.g. 400 ppm Cu2+ with 400 ppm Co2+ and/or Mn2+; and 100 ppm Cu2+ with 400 ppm 

Co2+ and/or Mn2+). The experimental results (Fig.8b) indicated that although Co and Mn ions 

have a greater influence on the selective adsorption of as-prepared CS microspheres towards 

targeted Cu ions, the maximum adsorbance of these two metal ions (15.81% for Co and 11.78% 

for Mn ions) could not surpass that of Cu ions (72.41%). The consistent conclusion of selective 
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adsorption for targeted Cu ions has been demonstrated under more extreme conditions (100 ppm 

Cu2+ with 400 ppm Co2+ and/or Mn2+) (See SI, Fig.S7b). 

 

Fig.8. The adsorption selectivity towards Cu ions (as histograms) and the adsorption rate of Cu ions (as 

charts) in contaminated water in the presence of other competitive metal ions: (a) Na and Al ions; (b) Co 

and Mn ions.  

3.6. Selective binding mechanism 

3.6.1. Ionic scale effect and electronegativity 

In order to investigate the selective adsorption mechanism of CS microspheres towards Cu ions, 

ionic scale effect was firstly introduced. Since the long straight chain of chitosan molecule 

turned into intricate spatial network structure during the Schiff-based reaction, therefore, the 

ionic size will show an undoubted impact on the adsorption properties of CS microspheres. The 

radii of investigated metal ions were listed and compared in Table 4.  

Table 4. The comparison of different metal ionic radii (Unit: nm). 

Na+ Co2+ Cu2+ Mn2+ Al3+ 

0.102 0.0745 0.073 0.067 0.0535 
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As shown in Table 4, the radii of investigated metal ions followed the order that Na+ > Co2+ ≈ 

Cu2+ > Mn2+ > Al3+. The experimental results demonstrated that as-prepared CS microspheres 

show better adsorption capacity towards bivalent metal ions than Na and Al ions. This 

phenomenon can be explained as suitable ion size is beneficial for adsorption, conversely, 

oversize or undersize ions will hinder the coordinate binding between metal ions and active 

adsorption sites of CS microspheres. As shown in Fig.8a, the adsorbed Na ions on CS 

microspheres may be the result of the inefficient physisorption process, such as intraparticle 

diffusion. By contrast, in consideration of the charge number of Al ions is greater than Cu ions, 

thus, in theory, more binding sites (either amino or hydroxyl groups) will be consumed by 

adsorbing Al ions than Cu ions under the same number of adsorption sites. Thus, the poor 

adsorption performance towards Al ions, which is attributed to the synergistic action of ionic 

scale and charge effect, can be predictable. 

Besides, electronegativity (χ), which is the inherent character of an element, represents the 

relative attraction of an atom for the valence electrons in a covalent bond. It is directly 

proportional to the effective nuclear charge but inversely proportional to the covalent radius, 

which can be expressed as follow: 

χ =
0.31(n+1±c)

r
+ 0.50                                                  (16) 

 where n is the number of valence electrons, c is any formal valence charge on the atom, and r is 

the covalent radius. 

The electronegativity values of the targeted metal elements in this study can be found in Lange's 

handbook [42], showing in Table 5. Because of the fact that higher electronegativity of a metal 
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ion represents higher attraction of metal ion for electrons [43], thus, Cu ions show an 

incomparable strong affinity to CS microspheres. 

Table 5. Electronegativity values of the targeted elements. 

Na Mn Co Cu Al 

0.93 1.55 1.88 1.90 1.61 

Electronegativity order:  Cu > Co > Al > Mn > Na 

3.6.2. Density functional analysis 

3.6.2.1 Adsorption energy (∆E) 

Density functional theory (DFT) has recently been widely recognized as an efficient quantum 

chemistry method for studying molecular properties and a powerful tool to predict the 

geometries and calculate the binding energies of metal-chitosan complexes [44-47]. Thus, for 

further explanation of selective adsorption mechanism, adsorption energy (∆E) has been 

quantitatively compared by using DFT analysis in the more favorable binding models (Fig.9), 

that is, pendant model, bridge model and central model, respectively [45]. For more details on 

DFT calculation simplification and structural optimization of metal complexes, see SI. 
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Fig.9. Structures of investigated metal-CS complexes. Water molecules are not shown for the simplicity 

reason. ([M]2+ was used to represent the divalent metal ions, including Cu2+, Co2+ and Mn2+.). 

 

The energies of different components and the corresponding adsorption energies (∆E) of metal-

CS complexes in three optimized models were listed and compared in Table 6. Besides, the 

representative 3D structures of Cu-CS complexes with optimized geometries are shown in Fig.10. 

3D structures for all calculated metal complexes are shown in Fig.S8 and Fig.S9 (See SI).  

Table 6. The energies (E) and adsorption energy (∆E) of different metal complexes. 

Ions Models 
Energies (E) (kJ mol-1) Adsorption energy (∆E) 

(kJ mol-1) Ions CS microspheres Complexes 

Cu 

Pendant model 

-513,573 

-3,304,473 -3,818,670 -624 

Bridge model -3,505,237 -4,019,518 -708 

Central model -7,010,585 -7,524,908 -750 

Co 

Pendant model 

-379,804 

-3,304,473 -3,684,667 -390 

Bridge model -3,505,237 -3,885,517 -476 

Central model -7,010,585 -7,390,912 -523 

Mn 

Pendant model 

-271,723 

-3,304,473 -3,576,611 -415 

Bridge model -3,505,237 -3,777,428 -468 

Central model -7,010,585 -7,282,784 -476 

Selective adsorption order: Cu > Co > Mn  

 

The DFT calculation results (Table 6) are consistent with the experimental conclusions (Fig.8 

and Fig.S7) as well as the previous literature [48], which provide a reliable theoretical basis for 

selective adsorption of as-prepared CS microspheres for Cu ions. As shown in Table 6, the 

results of ∆E showed that the selective adsorption performance of as-prepared CS microspheres 

is in the order: Cu > Co > Mn. Although the ∆E values of the same metal complex varied 

significantly in different models, CS microspheres always showed the strongest binding energy 

towards Cu ions in all three models. Besides, it was also demonstrated that the most energetically 
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favorable structure of the investigated metal complexes was central model, since the obtained ∆E 

value was larger than those of the other two binding models. In other words, metal ions prefer to 

form metal chelates as central model through the coordinate binding with multiple amino groups, 

rather than with the amino and hydroxyl groups simultaneously. This conclusion is in accordance 

with previous article [46], that is, metal ions binding with the nitrogen atom of amino group is 

stronger than that with oxygen atom of hydroxyl group from either chitosan monomer or water 

molecule. Furthermore, it also verified that the adopted simplified DFT calculation, which 

excludes the effect of interaction between metal ions and water molecule, is feasible. 
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Fig.10. Representative 3D-models of geometrically optimized Cu-CS complexes for (a) pendant model, 

(b) bridge model and (c) central model. 

 

3.6.2.2 Frontier molecular orbitals 

In order to gain more insight into how the chitosan monomer interaction at the molecular with 

metal ions, frontier molecular orbitals and natural bond orbitals were subsequently analyzed. The 
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highest occupied molecular orbitals (HOMOs) and the lowest-lying unoccupied molecular 

orbitals (LUMOs) are known as frontier molecular orbitals (FMOs), which play a vital role in 

determining molecular properties and elucidating information regarding charge transfer within 

the molecule [49]. The HOMO represents the ability to donate an electron, while LUMO as an 

electron acceptor represents the ability to capture an electron. The difference between LUMO 

and HOMO (EL-EH), known as energy gap (∆E', kJ mol-1), is regarded as an important parameter 

to predict the reactivity, stability of complexes formed and also the conductance of molecules 

[46, 50].  

For the purpose of deeply revealing the binding mechanism of metal ions and chitosan 

monomers, the selective adsorption procedure can be further simplified as the coordinate binding 

process between a metal ion and a chitosan monomer. In this work, the frontier molecular 

orbitals and molecular electrostatic potential were computed using DFT(B3LYP) method with 6-

31+G(d,p) basis sets. The HOMO-LUMO energy differences of chitosan monomer and metal 

complexes are presented in Table 7. 

Table 7. Calculated energies of chitosan monomer and metal complexes. 

 EL EH ∆E' (kJ mol-1) ∆E' (eV) 

Chitosan monomer -0.00322 -0.25063 649.575 6.75558 

Cu complex -0.10828 -0.30527 517.1972 5.37885 

Co complex -0.18426 -0.29609 293.6097 3.05354 

Mn complex -0.11839 -0.29049 451.8486 4.69923 
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Fig.11. Molecular orbital surfaces and energy levels for HOMO and LUMO of chitosan monomer. 

 

As seen from Fig.11, the HOMO orbitals were mainly localized on the amino group, neighboring 

hydroxyl groups as well as the six-membered aromatic ring, while LUMOs are distributed on the 

far end of the chitosan monomer molecule and opposite to the amino position. After the 

formation of metal complex with the optimized configuration (see Table 7), the values show that 

the energy difference (∆E') of Cu complex is larger than the other two metal complexes, which indicates 

that Cu complex is most stable, following the principle that the stability of complexes increases with 

increase in energy gap [43]. Besides, the ∆E' value, which given in electron volt in Table 7, can also be 

used for the conductance studies. The conductance of metal complex follows the reverse order. It can be 

explained that the positive charge on metal ion is redistributed under complexation. Among the three 

metal ions, Cu ion carries lowest positive charge in the Cu complex, and thus its corresponding 
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conductance is lowest. Additionally, in the coordinational binding process between metal ion and chitosan 

monomer, the electrons in the outer orbital of Cu ion have been proved to present higher transition energy, 

which is beneficial for the electron transition in energy level orbits and the preferential combination 

between the free electron and electron hole.  

The molecular electrostatic potential (MEP) is related to the electronic density and is a very 

useful descriptor for predicting reactive sites for electrophilic and nucleophilic attack as well as 

hydrogen-bonding interactions [49, 51]. Herein, MEP was calculated at the B3LYP/6-31+G(d,p) 

method at the 0.02 isovalues and 0.0001 density values. The negative electrostatic potential 

portion of the investigated molecule is susceptible to electrophilic attack. In other words, the 

degree of electrophilic attack will increase with the increase of the negative electrostatic property. 

The color scheme for the MEP surface (see Fig.12) is as follows: red for electron-rich region 

with strong negative charge; blue for electron-deficient region with strong positive charge; green 

for neutral; respectively. Consequently, electrostatic potential increases in the order: red < green 

< blue. The color code of this map, where the negative (red and yellow) regions are related to 

electrophilic reactivity while the positive (blue) ones to nucleophilic reactivity, is in the range 

between -2.299 eV (deepest red) to 2.299 eV (deepest blue) in the chitosan monomer molecule.  

As can be seen in Fig.12, the region defined by amino group and adjacent hydroxyl group in the 

chitosan monomer molecule exhibits the strongest electrophilic property. Besides, the N atom in 

amino group and O atom in neighboring hydroxyl group present the highest negative V(r) values, 

-0.049 a. u. and -0.031 a. u., respectively. All of these indicate that this region is the most 

possible and preferable site for metal ions binding. Oppositely, the maximum positive region 

(blue color) is mainly localized around the oxygen atom in the hydroxyl group on the other side 

of chitosan monomer molecule with a value of 0.034 a. u.  
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Fig.12. Molecular electrostatic potential map calculated at B3LYP/6-31+G(d,p) level. 

 

3.6.2.3 Natural bond orbitals 

The electron configurations of the metal ions as well as the natural charge of the metal atoms in 

complexes were calculated using the natural population analysis method (NPA) and the results 

are summarized in Table 8. The change of the natural charge of the targeted metals is closely 

related to the natural population of the metal ions on the 3d orbit [52]. Although the metal ion 3d 

population increases significantly from Mn(II) to Cu(II) (5.14-9.49), the 4s (0.06-0.13) and 4p 

(0.02) population remain basically unchanged in all complexes. This trend indicates that the 3d 

orbital participation in the coordination bond is the dominant factor of the charge variation on the 

metal ions. As the 3d population of the metal ions increased, the trend of charge transfer from 

amino and hydroxyl group to the metal ions increased, resulting in metal ions retaining less 

positive natural charge in the corresponding complexes [52-54]. As seen (Table 8), the total 
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amount of charge transfer from function group of chitosan monomer to the metal ion decreases 

as the following order: Cu > Co > Mn. In addition, as expected, the covalent bonding of metal 

ions with amino group in chitosan monomers has a higher priority. The calculated NPA results 

can well explain the selective adsorption performance of as-prepared CS micropheres that the 3d 

orbital population of metal ions plays a significant role in the valence shell of the complexes, 

resulting in preferential binding of Cu ions towards chitosan monomer. 

Table 8. Summary of the electronic configuration of the metal ions and charge distribution of the metal 

complexes calculated by natural population analysis (NPA). 

 Charge distribution 
Metal configuration 

N O Metal 

Cu -0.62 -0.559 0.96 4s0.13 3d9.49 4p0.02 

Co -0.577 -0.551 1.174 4s0.08 3d7.38 4p0.02 

Mn -0.771 -0.635 1.499 4s0.06 3d5.14 4p0.02 

Selective adsorption order: Cu > Co > Mn 

 

3.7. Desorption and regeneration 

The re-usability of adsorbents is critical for industrial applications. Especially, the fast desorption 

from the adsorbents with minimal damage is highly demanded. In our study, a 0.5 M NaOH 

solution containing 1.5 wt% EDTA was used as the desorption solution to test the re-usability of 

the recovered CS microspheres and achieve fast desorption process in terms of seconds. The 

desorption procedure without EDTA involvement was also studied for desorption efficiency 

comparison (See SI). The 𝑞𝑟,𝑚  and RE values in different adsorption-desorption cycles are 

displayed in Fig.13a and b, respectively. Although the re-adsorption capacity ( 𝑞𝑟,𝑚 ) and 

efficiency (RE) of CS microspheres decreased almost inevitably, they exhibited acceptable 
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regeneration as RE was still higher than 74% after 5 adsorption-desorption circles. Besides, after 

the desorption process, the colorless and transparent desorption solution turned light blue and CS 

microspheres turned back into reddish brown as shown in Fig.13c, which indicated that the 

loaded Cu ions were desorbed in substantial amounts. Furthermore, these microspheres turned 

into dark green again in the re-adsorption process and the final color of Cu ions solution turned 

almost colorless (Fig.13d). These evidences demonstrated illustrate the good re-utilization 

capacity of the as-prepared CS microspheres. However, there is still room for further 

improvement of their re-adsorption performance. 

 

Fig.13. (a) Maximum re-adsorption capacity ( 𝑞𝑟,𝑚 ) and (b) re-adsorption efficiency (RE) of CS 

microspheres during 5 adsorption-desorption cycles; Photographs of the color change of (c) desorption 

solution and (d) Cu ions solution before and after re-adsorption. 

4. Conclusion 
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A set of novel CS microspheres with outstanding characteristics, such as high monodispersity 

and controllable size, were successfully synthesized using a facile one-step microfluidic 

technology. More importantly, not only the enhanced adsorption capacity, distinguished 

selectivity and re-usability towards Cu ions of the as-prepared CS microspheres were confirmed 

and measured by batch adsorption experiments, but also the multi-step adsorption process was 

unprecedentedly revealed by our adsorption mechanism analytic system in the form of 

quantitative measurements and schematic description. The excellent adsorption performance 

together with the biodegradable feature and relatively low production cost make that 

microfluidically-synthesized CS microspheres area promising material for the removal of Cu 

ions and potentially of other toxic heavy metal ions from contaminated water in the industrial 

wastewater treatment applications. Especially, it is proven by DFT analysis that the superior 

selective removal characteristics of CS microspheres in the present of other competitive ions 

with different valence states can be attributed to both ionic scale effect, inherent high 

electronegativity and strong adsorption energies (∆E). Moreover, the integrated adsorption 

mechanism analytic system provides a practical guidance to evaluate the performance of novel 

adsorbent materials and to reveal the adsorption mechanism in depth, hereby improving the 

control of wastewater pollutants in the future.  
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