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Abstract

In this paper, we propose a novel fully convolutional two-stream fusion network (FCTSFN) for interactive image seg-
mentation. The proposed network includes two sub-networks: a two-stream late fusion network (TSLFN) that predicts
the foreground at a reduced resolution, and a multi-scale refining network (MSRN) that refines the foreground at full
resolution. The TSLFN includes two distinct deep streams followed by a fusion network. The intuition is that, since user
interactions are more direct information on foreground/background than the image itself, the two-stream structure of
the TSLFN reduces the number of layers between the pure user interaction features and the network output, allowing the
user interactions to have a more direct impact on the segmentation result. The MSRN fuses the features from different
layers of TSLFN with different scales, in order to seek the local to global information on the foreground to refine the
segmentation result at full resolution. We conduct comprehensive experiments on four benchmark datasets. The results
show that the proposed network achieves competitive performance compared to current state-of-the-art interactive image
segmentation methods1.
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1. Introduction

Binary image segmentation aims to separate an image
into an object of interest (foreground) and the other part-
s (background). It has a wide range of applications, e.g.,
medical image analysis, image editing, object retrieval, etc.5

However, since the object of interest varies highly in dif-
ferent contexts, most fully automatic methods are tailored
and optimized to seek the particular object of interest in
a certain application. It is difficult to develop a fully au-
tomatic method which is guaranteed to work in general10

applications.
To improve the flexibility and generality of image seg-

mentation methods, many algorithms adopt interactive
frameworks. These algorithms allow users to interact with
a system to specify the object of interest by labeling some15

foreground/background pixels. Most traditional algorithm-
s of interactive image segmentation [1, 2, 3, 4, 5, 6, 7] rely
on low-level features to estimate the foreground/background
distributions from user-labeled pixels, to predict the cat-
egory of unlabeled pixels. A problem relating to these20

methods is that low level features may not be effective to
distinguish between foreground and background in many
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situations, e.g., the foreground and the background have
similar color and texture; or the foreground includes sev-
eral parts with very different appearance. Consequent-25

ly, low-level feature-based algorithms may require a large
number of user interactions to obtain reliable segmenta-
tion, increasing the burden on the end user.

Recently, deep features produced by deep neural net-
works (DNNs) have shown their power in many computer30

vision tasks including image classification [8, 9, 10] and
semantic segmentation [11, 12, 13, 14]. Thus, several re-
searchers [15, 16, 17, 18, 19, 20, 21] have used DNNs to
extract deep features with higher-level understanding for
image and user interactions to improve interactive image35

segmentation. Most of these DNN-based methods can be
viewed as an early fusion of features using DNN. They
concatenate features from image and user interaction as
the input to DNN; generally, a DNN is used to combine
the concatenated features to predict the foreground and40

background. However, such early-fusion schemes may not
fully exploit the information in user interactions to pre-
dict foreground/background. Specifically, considering that
state-of-the-art DNNs usually consist of a large number of
layers, an early-fusion of user interactions with image fea-45

tures may weaken the influence of user interactions on the
final prediction results.

In contrast to existing networks performing early fu-
sion, we argue that better performance can be achieved
with a late-fusion structure that uses two individual deep50

streams to learn and extract deep features from the image
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and the user interactions individually, then fusing the fea-
tures from the two streams. Our intuition is that such a
late fusion structure allows the user interactions to have
a more direct impact on the prediction result, as it has a55

smaller number of layers between pure user interaction fea-
tures and the prediction results. We expect this will lead
to improved performance, as user interactions are more di-
rect information on the location of foreground/background
than the image itself. At the same time, deep features are60

still produced from the two individual deep streams, so the
whole network still preserves the representative advantage
of deep features. This allows the network to accurately
understand image content and predict the object of inter-
est.65

In this paper, we propose a novel fully convolutional
two-stream fusion network (FCTSFN) for interactive im-
age segmentation. As shown in Fig. 1, the proposed net-
work starts with two-stream late fusion network (TSLFN).
The TSLFN extracts deep features from the image and the70

user interaction individually using two separate streams,
and it applies a fusion net to fuse the features from the
two streams to predict foreground and background. Since
this two-stream late fusion structure reduces the number of
layers between pure user interaction features and the net-75

work output, we expect it is able to improve the impact
of user interactions on the prediction results to achieve
better segmentation performance. Furthermore, to handle
the loss of resolution in the TSLFN, we use a multi-scale
refining network (MSRN) to refine the result of TSLFN80

at full resolution. The MSRN fuses the features from d-
ifferent layers of the TSLFN with different scales. It is
expected that the fusion result includes the local to glob-
al structural information on the object specified by user
interactions, and hence the MSRN can utilize the fusion85

result to refine the ouput of TSLFN at full resolution. The
contributions of this paper are as follows:

• We propose a novel fully convolutional two-stream
fusion network (FCTSFN) for interactive image seg-
mentation.90

• In FCTSFN, we propose a two-stream late fusion
network (TSLFN) that aims to improve the impact
of user interactions on the prediction results to achieve
better segmentation performance.

• In FCTSFN, we propose a multi-scale refining net-95

work (MSRN) that fuses the information at different
scales to refine the output of the TSLFN.

The rest of the paper is organized as follows. In sec-
tion 2, we review related works. In section 3, we detail the
proposed FCTSFN for interactive image segmentation. In100

section 4, we report the experimental results of the analy-
sis and of the comparisons. Section 5 concludes the paper.
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Figure 1: Flowchart of the proposed network architecture. ⊗ is the
concatenation operator; n× ↓ means n-time downsampling

2. Related works

A large number of methods have been proposed for
interactive image segmentation. Boykov and Jolly [1] pro-105

pose a graph cut-based method. This method represents
the image as a graph where pixels are considered as graph
nodes and neighbouring nodes are connected by edges.
With this graph structure, interactive image segmentation
is formulated as an energy minimization problem which110

can be solved by graph cuts [22, 23]. Following [1], Rother et
al. [2] propose GrabCut which applies graph cuts itera-
tively. With an initial bounding box provided by the user,
GrabCut iterates between foreground/background distri-
bution estimation and graph cut segmentation to progres-115

sively refine foreground and background. With a simi-
lar graph representation to that in [1], Bai and Sapiro [3]
determine foreground and background using the geodesic
distance between unlabeled pixels and user-labelled fore-
ground/background pixels. To take the advantage of both120

graph cut and geodesic distance, Price et al. [4] propose
geodesic graph cut which incorporates geodesic distance
into a graph cut-based framework. Also, Gulshan et al. [5]
improve the graph cut method [1] by applying geodesic dis-
tance with star convexity as a shape constraint for the seg-125

mentation result. In other representative research, Vezh-
nevets and Konouchine [6] propose GrowCut which itera-
tively updates labels of pixels based on cellular automa-
ton [24]. Grady [7] proposes a random walk method. This
method calculates the probability that a random walk-130

er firstly reaches user-labelled pixels when starting from
each unlabeled pixel; the pixel labels are then assigned
based on the user-labeled pixel with the highest probabili-
ty. All the above methods utilize low level features (color,
texture, etc.) to model the foreground and background135

distributions. Therefore, their performance is restricted
by the suitability of low-level features to distinguish be-
tween the foreground and background. As a result, for
complex scenes where low-level features are less descrip-
tive of the foreground and background differences, these140
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methods may need users to label a large number of pixels
to achieve good segmentation result. This increases the
load of users.

Recently, deep neural networks (DNNs) have shown
superior performance in distinguishing different objects in145

images [11, 12, 13, 14]. Also, the deep features learned
from DNNs are proven to be highly transferable to other
problems [25, 26]. Hence, several researchers have focused
on applying DNN to gain features with higher-level un-
derstanding for image and user interactions to improve150

interactive image segmentation. Xu et al. [15] use two
Euclidean distance maps to represent positive and nega-
tive clicks of the user. They form image-user interaction
pairs by concatenating the two distance maps with RG-
B channels of the image. A fully convolutional network155

(FCN) is trained to predict the foreground/background
from image-user interaction pairs. With similar image-
user interaction pairs as input to the network, Boroujer-
di et al. [17] use a lyncean fully convolutional network
to predict foreground/background. This network replaces160

the last two convolutional layers in the FCN in [15] with
three convolutional layers with gradually decreased kernel
size to better capture the geometry of objects. Wang et
al. [16] transform user interactions into two geodesic dis-
tance maps. They construct image-user interaction pairs165

similarly to [15] but augment it with an initial segmenta-
tion proposal produced by an additional DNN. They pre-
dict foreground/background using a resolution-preserving
network. Xu et al. [18] propose Deep GrabCut. This
method can seek the object boundary from a bounding170

box provided by the user. It transfers the bounding box
into a distance map. An encoder-decoder network is used
to predict foreground/background from the concatenated
image and distance map. Maninis et al. [19] seek the fore-
ground from extreme points. They encode extreme points175

into 2D Gaussians which are concatenated with the input
image; a residue network [10] and a pyramid scene parsing
model [27] are used to predict the foreground. Li et al. [28]
use a segmentation network to generate various potential
segmentations from image and user interactions; then a180

selection network is applied to select the output from the
potential segmentations. Mahadevan et al. [21] propose
an iterative training algorithm. Instead of training with
fixed user clicks, this algorithm adds clicks progressively
based on the error of the network predictions. This al-185

gorithm leads to improved performance, since it is more
closely aligned with the patterns of real users. Essentially,
all these networks [15, 17, 16, 18, 19, 21, 28] adopt early
fusion structures. They combine the image and the user
interaction features from the first layer of DNN. Different-190

ly from them, the proposed FCTSFN extracts deep image
and user interactions features individually and then fuse
them.

The work most similar to the proposed network is that
of Liew et al. [20]. This is also a two-branch network: it195

includes a global branch producing coarse global predic-
tions and a local branch utilizing multi-scale spatial pyra-

mid features to make refined local predictions; the final
prediction is the combined results from the two branches.
However, the proposed network differs from the network200

in [20] in three important aspects. First, Liew et al. con-
catenate the image and interaction maps as the input of
the network; the proposed network uses two individual
streams to extract features from the image and interac-
tion maps, to allow user interactions to have a more direct205

impact on the segmentation results. Second, Liew et al.
produce multi-scale features using a spatial pyramid pool-
ing on the features at an end layer of the network; the
proposed network utilizes and fuses the features from dif-
ferent layers of the network, to incorporate both low-level210

information like color and edges and higher-level object in-
formation into the foreground prediction. Third, Liew et
al. use multi-scale features to refine local segmentations
which are then combined with global segmentation; the
proposed network uses the multi-scale features in a direct215

global prediction refinement structure to make the predic-
tion at full-resolution.

3. The proposed network

In this section, we present the proposed fully convolu-
tional two-stream fusion network (FCTSFN) for interac-220

tive image segmentation. Firstly, we describe the archi-
tecture of the two-stream late fusion network (TSLFN) in
the overall FCTSFN architecture. Then, we present the
structure of the multi-scale refining network (MSRN) in
the FCTSFN. Next, we demonstrate the network train-225

ing process. Finally, we describe the data processing for
the whole FCTSFN, including the method to generate us-
er interaction maps from user interactions as input to the
network and the method to produce the foreground mask
based on the output of the network.230

3.1. Two-stream late fusion network (TSLFN)

Fig. 2(a) presents the structure of the TSLFN in the
proposed FCTSFN. The input of TSLFN has two part-
s: one is an image and the other one is the concatenated
positive and negative interaction maps generated respec-235

tively from positive and negative user interactions (see sec-
tion 3.4). The network outputs a foreground probability
map at a reduced resolution indicating the likelihood that
a pixel is foreground. This network uses the VGG16 net-
work [9] as the base network. It includes three parts: an240

image stream, an interaction stream, and a fusion net. The
network in either image or interaction stream consists of
the first 10 convolutional layers of the VGG16 network
with rectified linear unit (ReLU) activation. After several
convolutional layers, a max-pooling layer is applied with a245

kernel size of 2×2 and a stride of 2. The intent of the two
streams is to learn deep features for images and interaction
maps individually.

At the end of the image and the interaction stream-
s, the feature maps from both streams are concatenated.250
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Figure 2: Architectures of the proposed fully convolutional two-stream fusion network (FCTSFN). It includes a two-stream late fusion network
(TSLFN) and a multi-scale refining network (MSRN). ⊕ is element-wise sum operation. The sizes of convolutional layers are in the format
of filter height × filter width × number of filters

The fusion net is then applied to learn to combine the con-
catenated feature maps to predict foreground/background.
The fusion net consists of 6 convolutional layers: the first 3
of them are from the last 3 convolutional layers of the VG-
G16 network (corresponding to conv5 1, conv5 2, conv5 3255

in the VGG16); the last 3 of them are transferred from
the fully connected layers in the VGG16 network using
the method in [11]. Since the output of the whole network
is downsampled by a factor of 32 with respect to the input
image, we use an upsampling layer to upscale the output260

to the original resolution. Similarly to [11], the upsam-
pling layer is a deconvolution layer with the filters set to

bilinear interpolation kernels.
Note that variations of this TSLFN structure can be

devised. One can make different assignments of the lay-265

ers of the VGG16 network between the image/interaction
stream and the fusion net to create variations of TSLFN
with different depth in the two streams and the fusion net.
This is essentially a trade-off between the impact of user
interactions and the prediction capacity of the network. If270

we use fewer layers in the fusion net, the location informa-
tion in user interactions may have higher impact on the
prediction results, since it reduces the number of layers
between pure user interaction features and the prediction
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result. However, this may harm the prediction capacity275

of the network, since the fusion net is too shallow and it
may not be able to learn an effective projection from im-
age/user interaction features to the foreground. On the
other hand, a deeper fusion net may have sufficient ca-
pacity to learn a projection from image/user interaction280

features to the foreground, but it may weaken the influ-
ence of the user interactions on the prediction result due
to the increasing number of layers between the pure user
interaction features and the prediction result. Experimen-
tally, we find that the structure shown in Fig. 2(a) provides285

top performance compared to its other variations (see sec-
tion 4.2). We assume that this is because it achieves the
best trade-off between the impact of user interactions and
the prediction capacity, given our base network.

Also, we note that another possible way to fuse the290

image and user interaction features is the layer-by-layer
fusion proposed by Hazirbas et al. [29]. This method uses
two individual streams and fuses the features from the two
streams multiple times at different layers. We have con-
ducted experiments with this fusion architecture in early295

stage of our experiments (i.e. we perform similar layer-
by-layer fusion between the image and user interaction
streams with our base network). We found that it led to
a performance drop for the task of interactive image seg-
mentation. Considering that this architecture is originally300

designed to handle RGB-depth (RGBD) data, we think it
is the differences in the characteristics of data that lead to
the performance drop. For the RGBD data, the depth da-
ta includes accurate object boundary information, hence
fusing it layer-by-layer with images data enhances the ob-305

ject boundary information, as discussed in [29]. However,
for our task of interactive segmentation, the interaction
maps do not include such accurate object boundary infor-
mation; as a result, it is possible that fusing the features
in the interaction stream into the image stream layer-by-310

layer brings difficulties for the network to learn information
about objects.

3.2. Multi-scale refining network (MSRN)

The MSRN in the proposed FCTSFN aims to fuse the
information at different scales in the TSLFN in order to315

gain a better understanding of the location of the fore-
ground and refine the predicted foreground at full reso-
lution. Fig. 2(b) presents the architecture of the MSRN.
The MSRN uses the features in six different scales from the
TSLFN: the concatenated feature maps before each pool-320

ing layer of the image and the interaction streams (see
conv1 2 s1, conv1 2 s2, conv2 2 s1, conv2 2 s2, conv3 3 s1,
conv3 3 s2, conv4 3 s1, conv4 3 s2 in Fig. 2); the feature
maps before the pooling layer in the fusion net (conv5 3 in
Fig. 2); the upscaled prediction scores (score in Fig. 2).325

The features at each scale, except the predictions scores,
are passed through a convolutional layer with a size of
1× 1× 60 (filter height × filter width × number of filter-
s), and the feature maps with downsampling are upscaled
to the original resolution (the second row in Fig. 2(b)).330

We call these layers “bottleneck fusion layers” due to their
two-fold effects. First, they fuse the feature maps from the
image and the interaction streams to seek the information
of the foreground on a specific scale. Second, they act as
bottleneck layers to reduce the dimension of feature maps335

to keep the computational cost feasible.
After the bottleneck fusion layers, the feature maps

from different scales are fused by an element-wise sum op-
eration. Then, the fused features are concatenated with
the prediction scores from the TSLFN. Finally, the con-340

catenated features are passed through the full-resolution
refining layers to predict the refined foreground (the last
row in Fig. 2(b)). The full-resolution refining layers con-
sist of a stack of six convolutional layers. The size of these
convolutional layers are 7× 7× 64, 5× 5× 64, 3× 3× 64,345

3× 3× 64, 3× 3× 64, 1× 1× 2. We use filters with large
to small size to capture information from coarse to fine
regions. The last convolutional layer works as a classifier.

3.3. Network training

We train the FCTSFN in two stages. In the first stage,350

we remove the MSRN and fine-tune the TSLFN from the
pre-trained VGG16 base network. In the second stage,
we fix the parameters in the TSLFN and train the MSRN
from scratch.

Fine-tuning TSLFN. We fine-tune the TSLFN (Fig. 2(a))355

from the VGG16 network pre-trained on the ImageNet
dataset [9, 30]. We use pixel-wise softmax loss. We adopt
the “heavy” learning scheme in [11] using a batch size of
1 and a momentum of 0.99, due to the reported effective-
ness of this method in fine-tuning FCN for image segmen-360

tation tasks [11]. At this stage, due to the differences in
shapes, the pre-trained weights are not directly applicable
to the following layers: the first convolutional layer in the
interaction stream, the first convolutional layer in the fu-
sion net, and the last convolutional layer in the fusion net.365

For the first convolutional layer in the interaction stream
with a two-channel input, we use the mean of the filters
in the first convolutional layer of the pre-trained VGG16
network to initialize it. The first convolutional layer in the
fusion net has a doubled number of channels compared to370

the corresponding layer in VGG16 (conv5 1), due to the
concatenation of feature maps from the two streams. To
initialize this layer, we divide the channels of this layer in-
to two halves and copy the pre-trained weights in conv5 1

layer of VGG16 to each half. For the last convolutional375

layer in the fusion net, we initialize it with all zeros. Fur-
thermore, we employ similar methods in [11] to fine-tune
a stride-16 network and a stride-8 network for TSLFN to
incorporate the features with finer scales to predict the
foreground. We use the stride-8 network of TSLFN as the380

final form of TSLFN to make predictions with MSRN.
Training MSRN from scratch. With TSLFN pa-

rameters trained and fixed, we then train MSRN from
scratch. We find that, at this stage, class-imbalance has
a significant impact on the training performance. Specif-385

ically, the foreground usually occupies a relatively small-
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er region than the background in the task of interactive
image segmentation. This leads to far more background
pixels than the foreground pixels in our training data (see
section. 4.1). Consequently, the learned network is easi-390

ly biased to the background, resulting predictions with all
pixels being background without foreground. To account
for this problem, we crop the image centered at the fore-
ground, if the area of the bounding box of the foreground
occupies less than 35% of the image area. To avoid over-395

fitting, we use three further strategies in the training. (1)
Data augmentation: before a forward-backward pass, the
training images used in this pass have a 50% probability
to receive a random rotation, and a 50% probability to
receive a random translation. (2) Dropout: each convolu-400

tional layer belonging to the full-resolution refining layers
in the MSRN (see Fig. 2(b)) are followed by a dropout
layer with a dropout ratio of 0.5, except the last layer for
classification. (3) Early stopping: we record the validation
accuracy on the validation data every 1000 iterations, and405

we terminate the training when we observe no improve-
ment on accuracy in several consecutive validations. The
other settings for the training of MSRN are as follows. We
initialize all the convolutional layers randomly using the
method in [31]. We resize all the training images to a res-410

olution of 240× 320 (height×width), and we train with a
batch size of 3. We set the initial learning rate to 1e−8,
weight decay to 0.0005, and momentum to 0.99.

3.4. Data processing

The data processing in this paper includes two part-
s: the generation of user interaction maps and the post-
processing of the network output. We employ the method
in [15] to generate interaction maps from user clicks as in-
put to the network. Given an image and user clicks, the
sets of positive and negative clicks are transferred into a
positive and a negative interaction map, respectively. Ei-
ther interaction map has the same height and width as the
input image. Let S be a set of either positive or negative
clicks. Let sij ∈ S be a click in S at coordinate (i, j). Let
Ym,n be the element at location (m,n) in the matrix of the
interaction map corresponding to the image and the clicks
in S. Ym,n is calculated by:

Ym,n = min
si,j∈S

√
(m− i)2 + (n− j)2 (1)

In other words, the interaction maps are calculated using415

the minimum Euclidean distance between pixels and the
user clicks. The pixel values in positive and negative in-
teraction maps are truncated to 255. If no negative clicks
are received, all pixel values in the negative interaction
map are set to 255. Examples of positive and negative420

interaction maps are included in Fig. 2(a). For the post-
processing of the network output, we adopt a graph cut-
based method similar to the one in [15].

4. Experiments

In this section, we show the experimental analysis and425

comparisons for the proposed method. Firstly, we describe
the experimental settings. Then, we perform experimental
analysis for the proposed TSLFN and MSRN. Finally, we
make comparisons to state-of-the-art algorithms for inter-
active image segmentation.430

4.1. Experimental settings

Datasets. We conduct experiments on four datasets:
Pascal VOC 2012 [32], Microsoft Coco [33], Grabcut [2]
and Berkeley [34]. Pascal VOC 2012 and Microsoft Coco
are benchmark datasets for object segmentation. Grab-435

cut and Berkeley are benchmark datasets for interactive
image segmentation. For Pascal VOC 2012, we employ
its training set with 1464 images and validation set with
1449 images; for Microsoft Coco, we randomly select 20
images from each of its 80 categories, similarly to the set-440

ting in [15]; for Grabcut with 50 images and Berkeley with
100 images, we use all the images.

Data partition. We partition the data in the above
datasets into training/validation/test data as follows. We
use the training set of Pascal VOC 2012 as training/validation445

data. From the 1464 images, we randomly select 200 im-
ages as our validation data, and the rest images are used
as our training data. We use the training data to train
neural networks. We use the validation data to monitor
and control the training process. Since it is practically450

too expensive to collect interaction data from real user-
s for network training, we employ the method in [15] to
generate synthetic user interactions for the objects in the
training/validation data. We use the data apart from the
training/validation data as the test data for performance455

evaluation (i.e. Pascal VOC 2012 validation set, Microsoft
Coco, Grabcut, Berkeley).

Performance evaluation. We use intersection of u-
nion (IoU) of foreground to measure segmentation accu-
racy. It calculates the ratio of intersection between seg-460

mentation result and ground truth mask to the union of
them. Based on IoU, we evaluate the performance of algo-
rithms using two measures: foreground IoU vs. number of
clicks, and number of clicks to achieve a certain foreground
IoU. The former measure demonstrates the segmentation465

accuracy with respect to the number of user clicks; the
latter measure shows the amount of user effort to achieve
a certain segmentation accuracy. Given an object in an
image, we automatically generate a sequence of clicks as
user interactions (see below). We track foreground IoU470

vs. number of clicks, and we record the number of click-
s to achieve a certain foreground IoU. For a dataset, we
calculate the mean of each measure over all objects in this
dataset. In this paper, we set 20 as the maximum num-
ber of clicks. For the second measure, if the certain IoU475

cannot be achieved in 20 clicks, we threshold the recorded
number of clicks by 20.
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Generating click sequences. We designed a method
to automatically generate a sequence of clicks for a given
object for performance evaluation. This method iterates480

between (1) adding a click into the click sequence based
on the current segmentation result and (2) renewing the
segmentation result using the updated click sequence. Giv-
en the current segmentation mask and the ground truth
mask, we add a click as follows. Firstly, we find the false485

positive and the false negative regions in the current seg-
mentation result. Then, we select the largest connected
component among the false positive and the false negative
regions. We place the click at the point which is within
the selected region and farthest from the boundary of this490

region. This click is set to a positive click if it is placed
at a false negative region, otherwise it is set to a negative
click. After the click is added, we use the algorithm in
evaluation to update the segmentation mask. The intu-
ition of this method is that the added click focuses on the495

largest error region and it is placed in the central part of
the region as much as possible.

4.2. Analysis of TSLFN

Recall that our intuition to use a late fusion structure
in TSLFN is to improve the impact of user interactions on
the prediction result, as user interactions are more accu-
rate information on the location of foreground/background.
Therefore, as the first experiment in this subsection, we
compare the impact of user clicks on the prediction re-
sult between two-stream and single-stream networks. The
idea to measure the impact of user clicks on the predic-
tion result is straightforward: a positive click has a higher
impact if its surrounding region has higher response in
the foreground probability map produced by the network;
a negative click has a higher impact if its surrounding re-
gion has lower response in the foreground probability map.
Therefore, if both positive and negative clicks achieve high
impact on the network output, the responses around the t-
wo type of clicks in the foreground probability map should
have well-separated distributions. Accordingly, the over-
all influence of positive and negative clicks can be mea-
sured by: (1) calculating the distributions of the responses
in the regions around positive and negative clicks in the
foreground probability map; (2) measuring how well the
distributions corresponding to positive and negative clicks
are separated. In this paper, we adopt decidability index
(DI) to measure the degree of separation between the two
distributions [35]:

DI =
|µp − µn|√

σp+σn

2

(2)

where µp and µn are the mean of the response distribution
around positive and negative clicks, respectively; σp and500

σn denote the variance of the two distributions.
To analyse the impact of user clicks between two-stream

and single-stream networks, we compare the DI between

TSLFN and its single-stream modification. To modify the
TSLFN to a single-stream network, we remove the interac-505

tion stream, and we concatenate the interaction maps with
the image at the beginning of the network. Note that the
TSLFN after this modification is equivalent to the single-
stream fully convolutional network (SSFCN) in [15]. Thus,
we refer to it as SSFCN. We measure the DI with 1, 5 and510

10 user clicks automatically generated using the method
in section 4.1 (we refer to this setting as free-choice). We
calculate the DI based on the responses within a radius of
10 to positive and negative clicks in the probability map.
If no negative clicks exist, we calculate the DI between515

the responses around the positive clicks and the responses
in all background regions. We calculate the DI using the
above methods for each object individually, and we report
the mean DI on each of our test datasets.

In addition to the free-choice setting that allows the520

free choices of user clicks and leads to a combination of
positive and negative clicks, we also study the impact of
the clicks when only positive or negative clicks exist. This
is to study the behaviour of the network for different types
of user clicks. To study the case that only positive clicks525

exist, we force all the clicks to be put on the foreground
(referred to as all-positive); we measure the DI between
the regions around the positive clicks and the whole back-
ground region. To investigate the case that only negative
clicks exist, we consider an approximate setting: we force530

the first click to be on the foreground and the rest clicks to
be on the background (referred to as single-positive); and
we measure the DI between the regions around the neg-
ative clicks and the whole foreground region. The reason
to use an approximate setting is that all of our training535

data have at least one positive click given the method to
generate them (see section 4.1), hence the network is not
well trained to handle the data without positive clicks.

Tab. 1 shows the DIs on the four datasets with the user
click settings of free-choice, all-positive and single-positive.540

We can see that TSLFN has a consistently higher DI com-
pared to SSFCN. This means that the distributions of the
responses around positive and negative clicks are more sep-
arated in the probability maps of TSLFN. In other words,
the user clicks have higher impact with the two-stream545

network structure. This is consistent with our intuition of
using a two-stream network. Also, we find that this trend
holds for all three settings of user clicks. This shows that
the improvement on the impact of user clicks achieved by
the two-stream network is consistent for different types of550

clicks.
Since the DIs calculated as above are based on the re-

gions around the positive and negative user clicks, they do
not represent the separability of the responses between the
whole foreground and background regions; hence, they do555

not represent how good the final segmentation results are.
To validate if the higher impact of user clicks benefits the
final segmentation performance, we also need to compare
the segmentation accuracy between TSLFN and SSFCN.
Note that, in the rest of the paper, we do not restrict the560
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Figure 3: Mean IoU vs. number of clicks for the analysis of the effect of deep features from the interaction stream of the TSLFN

Table 1: Decidability index (DI) between regions around positive and negative clicks in the probability map (best performance in bold for
each setting)

Dataset
Free-choice All-positive Single-positive

SSFCN TSLFN SSFCN TSLFN SSFCN TSLFN

Pascal VOC 2012 (1 click) 12.97 15.60 12.97 15.60 - -
Microsoft Coco (1 click) 16.79 20.37 16.79 20.37 - -

Grabcut (1 click) 19.38 21.38 19.38 21.38 - -
Berkeley (1 click) 71.42 90.91 71.42 90.91 - -

Pascal VOC 2012 (5 clicks) 2.57 6.40 2.79 4.03 2.16 2.92
Microsoft Coco (5 clicks) 2.72 9.61 2.40 3.58 1.29 2.10

Grabcut (5 clicks) 3.84 7.91 3.14 4.66 1.89 3.04
Berkeley (5 clicks) 2.85 5.22 3.05 4.33 1.33 2.23

Pascal VOC 2012 (10 clicks) 1.24 2.33 2.33 3.20 2.34 3.03
Microsoft Coco (10 clicks) 1.20 2.37 2.06 2.87 1.30 1.89

Grabcut (10 clicks) 1.53 3.16 2.15 3.09 1.94 3.06
Berkeley (10 clicks) 1.33 2.46 2.03 2.88 1.50 2.21

types of user clicks (i.e. we follow the free-choice setting
above). This is for two reasons. First, it is the most gener-
al case to allow users to freely place positive and negative
clicks. Second, the free-choice setting actually covers the
all-positive and single-positive settings; for example, when565

the foreground is very small, the free-choice setting is very
likely to produce a click sequence the same as the click se-
quence produced by the single-positive setting. As shown
in Fig. 4, Tab. 2 and Tab. 3, TSLFN has a better final
segmentation performance compared to SSFCN. This ob-570

servation suggests that an improved performance is indeed
achieved by improving the impact of user interactions on
the network output with a two-stream network architec-
ture.

Another interesting observation from Tab. 1 is that the575

DIs generally drop as the number of user clicks increases.
We think there are two possible reasons. First, with a s-
ingle user click, the network may be more focused around
this only click; this leads to very large difference between
the responses around the click and the responses in the580

background, so it leads to a large DI. In contrast, with
more user clicks, the network may try to achieve a trade-
off between the influence of all clicks; this may lead to
decreased responses around each click and hence a lower
DI. Second, we find that the main object can be gener-585

ally segmented with high accuracy with very few clicks
(see Tab. 2). As a result, with 5 or 10 user clicks, there
may be many clicks near to object boundary. The re-
sponses around these clicks may lower the overall DI, as
the responses in the foreground probability maps may be590

weaker around the object boundary and hence they are
less separating between positive and negative clicks.

Moreover, closely examining the results in Tab. 1, we
can find that the above observation on the decreasing DI
with respect to the increasing number of user clicks on-595

ly holds for the free-choice and all-positive settings. For
the single-positive setting, the DI is very similar between
5 and 10 clicks. This observation leads to a further in-
teresting possibility on the behaviour of the network: the
network treats the positive clicks competitively, while it600

treats the negative clicks equally. On the one hand, with
the all-positive setting, the DIs decrease when the num-
ber of clicks increases. This may mean that there exists
a competition between the impact of each individual posi-
tive click; it leads to a trade-off on the impact of each posi-605

tive click and this lowers the overall DI with more positive
clicks. On the other hand, with the single-positive setting,
the DIs are very similar between 5 and 10 clicks. This may
mean that adding negative clicks changes little on the im-
pact of each individual negative click. In other words, the610
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network treats each negative click equally.
The above experiments validate our idea that the two-

stream network allows the user clicks to have a higher im-
pact on the prediction result, and it leads to improved per-
formance compared to the single-stream network. Howev-615

er, this leads to another question: do we need deep fea-
tures of user interactions to apply this impact? In other
words, is the interaction stream necessary for the TSLFN?
To justify the effect of the interaction stream that pro-
duces deep features for user interactions, we compare the620

performance between two networks: (1) TSLFN; (2) T-
SLFN with the interactive stream removed (referred to as
TSLFN-). Specifically, in TSLFN-, the interaction maps
are resized and concatenated with the features at the end
of the image stream; the concatenated features are then625

used as the input of the fusion net to predict the fore-
ground (note that this is different from SSFCN where the
interaction maps are concatenated with the original input
image at the beginning of the whole network). Fig. 3 com-
pares the performance between TSLFN- and TSLFN (note630

that the results in this figure are based on the stride-32
networks; the performance on the final stride-8 networks
are likely to be similar, as the stride-8 networks are based
on the stride-32 networks). It can be seen that the perfor-
mance drops for TSLFN-. This result shows that the deep635

features of user interactions from the interaction stream
is also important for the TSLFN to achieve a good per-
formance. This may be because deep features provide a
richer and more meaningful representation of user clicks,
and it can more accurately guide the segmentation process640

when fused with image features.
Finally, we report some experimental results related

to the design of the proposed TSLFN. As discussed at
the end of section 3.1, we could use different depth in the
image/interaction streams and the fusion net to construc-645

t TSLFN, given the VGG16 base network. Specifically,
the VGG16 base network has 5 Conv-ReLU-Pool (CRP)
blocks. Our TSLFN structure in Fig. 2(a) uses the first
4 CRP blocks to form the image/interaction streams, and
it uses the rest part of VGG16 as the fusion net. One650

can create variations of this architecture by using a differ-
ent number of CRB blocks to form the image/interaction
streams. This leads to variations of the proposed TSLFN
with different depth in the image/interaction streams and
the fusion net. We use TSLFN i to denote the variation655

of the proposed TSLFN with the first i CRP blocks in
the base network used as the image/interaction streams.
The proposed TSLFN shown in Fig. 2(a) is essentially e-
quivalent to TSLFN 4. It has four variations: TSLFN 1,
TSLFN 2, TSLFN 3, TSLFN 5. Among these variation-660

s, TSLFN 1 has the shallowest image/interaction streams
and the deepest fusion net, while TSLFN 5 has the deepest
image/interaction streams and the shallowest fusion net.

Fig. 5, Tab. 4 and Tab. 5 show the performance of
all the above variations of the proposed TSLFN. It can665

be seen that the proposed TSLFN (TSLFN 4 in Fig. 5,
Tab. 4 and Tab. 5) generally has the highest performance

among its variations. A possible reason is as the one we
discussed at the end of section 3.1: there exists a trade-off
between the impact of user interactions and the predic-670

tion capacity with different depths in image/interaction
streams and fusion net; the proposed TSLFN structure
as shown in Fig. 2(a) achieves the best trade-off between
the two factors compared to its other variations, given our
base network.675

In this subsection we analysed the proposed TSLFN.
The results confirm that: (1) compared to the single-stream
network, the two-stream structure of the TSLFN allows
the information from user clicks to have a higher impact
on the network output, and it leads to better performance;680

(2) extracting deep features from user interactions is also
important for the TSLFN to achieve a better performance.
We also validated the design choice of the proposed T-
SLFN, showing that it generally achieves the best perfor-
mance among its variations with the given base network.685

4.3. Analysis of MSRN

To analyse the effect of the MSRN, we compare the
performance between two networks: TSLFN and FCTSFN
(i.e. TSLFN+MSRN). By comparing the performance re-
ported in Fig. 4, Tab. 2 and Tab. 3, we can see that690

FCTSFN has a consistently better performance than T-
SLFN. These observations validate the effectiveness of the
MSRN to utilize multi-scale features to refine the segmen-
tation result. In our opinion, two possible reasons lead to
the improved performance. First, MSRN makes predic-695

tion at full resolution, hence it is more accurate at object
boundaries. Second, MSRN utilizes features from the be-
ginning to the end of the network. Therefore, it fuses infor-
mation from low-level features such as colors/boundaries
to high-level features with object-level understanding; this700

allows the network to build a more comprehensive under-
standing on the foreground and background, and it leads
to more accurate segmentation results.

4.4. Comparison with existing algorithms

In this subsection, we compare the proposed network705

to state-of-the-art algorithms. We divide our comparisons
into two categories: restricted comparison and unrestrict-
ed comparison. In the restriction comparison, we conduc-
t experiments strictly under our experimental setting in
section 4.1; we either run the source codes of the com-710

parison methods or implement the comparison methods
by ourselves. In the unrestricted comparison, we directly
compared with the performance measure cited from pub-
lished papers. Note that, in the unrestricted comparison,
the results are not fully comparable due to the differences715

in the experimental setting in different papers. However,
it shows the performance of the proposed network among
state-of-the-art methods with open choices for experimen-
tal settings.

Restricted comparison. For the restricted compar-720

ison, we compare to the following methods: graph cut
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Figure 4: Mean IoU vs. number of clicks for the analysis of the TSLFN and MSRN

Table 2: Mean number of clicks to achieve a certain IoU for the analysis of the TSLFN and MSRN (best performance in bold)

Dataset SSFCN TSLFN FCTSFN

Pascal VOC 2012 (85% IoU) 5.81 4.95 4.58
Microsoft Coco (85% IoU) 11.42 9.97 9.62

Grabcut (90% IoU) 5.02 4.28 3.76
Berkeley (90% IoU) 8.48 7.89 6.49

Table 3: Mean IoU at certain number of clicks for the analysis of the TSLFN and MSRN (in percentage, best performance in bold)

Dataset SSFCN TSLFN FCTSFN

Pascal VOC 2012 (1 click) 57.0 60.0 62.3
Microsoft Coco (1 click) 38.6 42.3 42.5

Grabcut (1 click) 76.8 76.8 77.7
Berkeley (1 click) 68.8 70.3 74.5

Pascal VOC 2012 (3 clicks) 73.0 76.8 78.0
Microsoft Coco (3 clicks) 55.1 60.7 61.2

Grabcut (3 clicks) 83.2 86.3 87.9
Berkeley (3 clicks) 81.0 82.2 84.8

Pascal VOC 2012 (10 clicks) 88.2 91.7 92.6
Microsoft Coco (10 clicks) 72.8 80.0 81.5

Grabcut (10 clicks) 91.0 93.0 94.7
Berkeley (10 clicks) 89.4 90.0 92.6
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Figure 5: Mean IoU vs. number of clicks for the analysis of the design of the proposed TSLFN

(GC) [1], geodesic matting (GM) [3], random walk (R-
W) [7], Euclidean star convexity (ESC) [5], geodesic star
convexity (GSC) [5], single stream FCN (SSFCN) [15].

Fig. 6 shows the mean IoU vs. number of clicks for all725

comparison methods for all the four datasets on the test
data. Tab. 6 shows the mean IoU at some certain num-

ber of clicks (1, 3, 10). It can be seen that the proposed
FCTSFN achieves improved performance compared to the
other methods. Specifically, on the Pascal VOC 2012, Mi-730

crosoft Coco and Berkeley datasets, FCTSFN performs
better compared to the other methods. On the Grabcut
dataset, FCTSFN achieves better performance when the
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Table 4: Mean number of clicks to achieve a certain IoU for the analysis of the design of the proposed TSLFN (best performance in bold)

Dataset TSLFN 1 TSLFN 2 TSLFN 3 TSLFN 4 TSLFN 5

Pascal VOC 2012 (85% IoU) 5.63 5.43 4.95 4.95 5.73
Microsoft Coco (85% IoU) 11.06 10.83 10.18 9.97 10.99

Grabcut (90% IoU) 4.60 4.66 4.44 4.28 5.14
Berkeley (90% IoU) 8.21 8.57 8.15 7.89 9.27

Table 5: Mean IoU at certain number of clicks for the analysis of the design of the proposed TSLFN (in percentage, best performance in bold)

Dataset TSLFN 1 TSLFN 2 TSLFN 3 TSLFN 4 TSLFN 5

Pascal VOC 2012 (1 click) 59.3 58.9 60.1 60.0 57.9
Microsoft Coco (1 click) 39.7 40.0 41.2 42.3 39.5

Grabcut (1 click) 76.1 77.6 76.3 76.8 75.9
Berkeley (1 click) 69.3 69.0 69.6 70.3 66.8

Pascal VOC 2012 (3 clicks) 74.7 75.1 76.7 76.8 72.8
Microsoft Coco (3 clicks) 56.4 57.7 59.3 60.7 56.5

Grabcut (3 clicks) 83.4 86.4 85.4 86.3 83.6
Berkeley (3 clicks) 79.6 80.3 81.6 82.2 77.4

Pascal VOC 2012 (10 clicks) 89.0 89.8 91.5 91.7 89.4
Microsoft Coco (10 clicks) 74.9 76.1 79.2 80.0 76.6

Grabcut (10 clicks) 90.7 91.2 93.2 93.0 89.4
Berkeley (10 clicks) 89.1 89.4 90.6 90.0 86.2

number of clicks is lower than 10; when the number of
clicks is larger than 10, FCTSFN performs similarly to ES-735

C and GSC, and it has better performance compared to
the other methods. The proposed FCTSFN shows a larger
advantage on the Pascal VOC 2012, Microsoft Coco and
Berkeley datasets than on the Grabcut dataset. One pos-
sible reason is that the Grabcut dataset has a smaller num-740

ber of images with more distinct foreground/background.
Therefore, FCTSFN performs similarly to ESC and GSC
on the Grabcut dataset given sufficient number of click-
s. In summary, the proposed FCTSFN shows consistent-
ly improved performance on larger and more challenging745

datasets, while it still achieves stable and top performance
on smaller and less challenging datasets. Tab. 7 reports the
mean number of clicks to achieve a certain IoU. It can be
seen that the proposed FCTSFN needs the least number
of clicks on all the datasets. Note that the best possible750

number of clicks to achieve a certain IoU is 1. There-
fore, the proposed FCTSFN achieves an improvement of
(5.81− 4.58)/(5.81− 1) ≈ 25.6% towards the best possi-
ble performance with respect to SSFCN on the VOC 2012
dataset. This figure is 23.3%, 31.3% and 26.6% for the Mi-755

crosoft Coco, Grabcut and Berkeley datasets, respective-
ly. Fig. 7 shows some example results of different methods
given the same user clicks. Fig. 8 shows some example
results of the proposed method on different objects in the
test datasets, with automatically generated click sequences760

with up to 5 clicks.
Unrestricted comparison. For the unrestricted com-

parison, we compare with the following methods: RIS-
Net [20], DEXTR [19] and latent diversity network (LD-
N) [28]. We directly cite the number of clicks to achieve765

a certain IoU reported in these papers. Note that, as dis-
cussed above, these results are not directly comparable due
to the differences in the experiment settings. For example,
for the test data on Microsoft Coco dataset, different meth-
ods use different random sampling settings; these method-770

s also adopt different training data and various training
strategies; etc. However, this comparison shows the per-
formance of the proposed network among state-of-the-art
methods with open choices for experimental settings.

Tab. 8 reports the performance of all methods in un-775

restricted comparison. It can be seen that the proposed
FCTSFN achieves competitive performance on Pascal VOC
2012, Grabcut and Berkeley datasets. Specifically, com-
pared to RIS-Net, FCTSFN needs fewer clicks to achieve
a certain IoU on Pascal VOC 2012 and Grabcut dataset-780

s; it needs 0.46 more clicks than RIS-Net to achieve 90%
IoU on Berkeley dataset. Compared to DEXTR, FCTSFN
performs better on Grabcut dataset, and it needs 0.58
more clicks to achieve a 85% IoU on Pascal VOC 2012
dataset. Compared to LDN, FCTSFN achieves a better785

performance on Grabcut dataset. Note that, compared
to the proposed FCTSFN, DEXTR achieves the reported
performance with more training data (Pascal VOC 2012
+ SBD [36]), with an online hard example mining (O-
HEM) [37] based training strategy and a more advanced790

base network (ResNet-101 [10]); similarly, LDN achieve its
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Figure 6: Mean IoU vs. number of clicks for restricted comparisons

Table 6: Mean IoU at certain number of clicks for restricted comparisons (in percentage, best performance in bold)

Dataset GC GM RW ESC GSC SSFCN FCTSFN

Pascal VOC 2012 (1 click) 25.2 25.7 34.9 31.4 31.2 57.0 62.3
Microsoft Coco (1 click) 18.1 20.3 32.3 26.9 26.6 38.6 42.5

Grabcut (1 click) 49.6 38.6 39.8 48.2 51.2 76.8 77.7
Berkeley (1 click) 43.8 33.6 34.6 46.7 46.7 68.8 74.5

Pascal VOC 2012 (3 clicks) 33.9 41.4 56.1 44.6 43.1 73.0 78.0
Microsoft Coco (3 clicks) 25.7 35.2 52.0 38.5 36.7 55.1 61.2

Grabcut (3 clicks) 66.2 58.4 56.1 74.4 74.6 83.2 87.9
Berkeley (3 clicks) 51.6 47.1 55.0 58.4 60.1 81.0 84.8

Pascal VOC 2012 (10 clicks) 53.8 73.3 84.2 77.5 75.9 88.2 92.6
Microsoft Coco (10 clicks) 39.8 65.4 77.4 69.9 66.6 72.8 81.5

Grabcut (10 clicks) 84.3 82.5 86.8 91.8 91.0 91.0 94.7
Berkeley (10 clicks) 70.8 76.9 80.6 83.0 83.8 89.4 92.6

Table 7: Mean number of clicks to achieve a certain IoU for resrticted comparisons (best performance in bold)

Dataset GC GM RW ESC GSC SSFCN FCTSFN

Pascal VOC 2012 (85% IoU) 14.81 10.59 7.98 8.22 8.48 5.81 4.58
Microsoft Coco (85% IoU) 17.74 14.57 11.71 11.70 12.11 11.42 9.62

Grabcut (90% IoU) 9.70 9.26 10.28 5.84 5.02 5.02 3.76
Berkeley (90% IoU) 13.68 14.10 13.46 9.73 9.38 8.48 6.49

Table 8: Mean number of clicks to achieve a certain IoU for unresrticted comparisons (best performance in bold)

Dataset RIS-Net DEXTR LDN FCTSFN

Pascal VOC 2012 (85% IoU) 5.12 4.00 - 4.58
Microsoft Coco (85% IoU) - - 7.89 9.62

Microsoft Coco seen categories (85% IoU) 5.98 - - -
Microsoft Coco unseen categories (85% IoU) 6.44 - - -

Grabcut (90% IoU) 5.00 4.00 4.79 3.76
Berkeley (90% IoU) 6.03 - - 6.49

reported performance with a larger training set (SBD) and
a more advanced segmentation network (context aggrega-
tion network [38, 39]). In contrast, the proposed FCTSFN
achieves the performance in Tab. 8 with less training data795

(Pascal VOC 2012 only), without hard mining on training
data during the training process, and with a less advanced

base network (VGG16).
On the other hand, it can be seen from Tab. 8 that

the proposed FCTSFN needs the most number of clicks800

to achieve an IoU of 85% on Microsoft Coco dataset com-
pared to RIS-Net and LDN. However, since each compar-
ison algorithm adopts different random sampling settings,
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Figure 7: Examples of segmentation results of different methods given the same user interaction. (a) Original image with user clicks; (b) GC;
(c) GM; (d) RW; (e) ESC; (f) GSC; (g) SSFCN; (h) FCTSFN; (i) Ground truth

we cannot estimate the effect of such a sampling on the fi-
nal performance. For example, our implementation of SS-805

FCN on our Microsoft Coco test data (as shown in Tab. 7)
results in lower performance than those reported in other
implementations with other randomly sampled Microsoft
Coco test data [20, 28].

In this subsection, we showed that the proposed FCTSFN810

achieved improved performance compared to other com-
parison methods in restricted comparisons. In unrestrict-
ed comparisons, it also achieves competitive performance
with less training data and with a less advanced based
network compared to other methods.815

5. Conclusions

In this paper, we proposed a novel fully convolution-
al two-stream fusion network (FCTSFN) for interactive
image segmentation. The intention is to firstly use a two-
stream late fusion network (TSLFN) to allow the user in-820

teractions to have more direct and higher impact on the
segmentation results to achieve improved accuracy, then
use a multi-scale refining network (MSRN) to refine the
segmentation result at full resolution to address the res-
olution loss in TSLFN. We conduct comprehensive ex-825

perimental analysis and comparisons on four benchmark
datasets. The main findings are summarised as follows:

• We experimentally validate that the two-stream struc-
ture in TSLFN allows the user interactions to have
a higher impact on the segmentation results and it830

achieves improved performance compared to single-
stream networks.

• We experimentally validate the significance of the in-
teraction stream in the TSLFN: the TSLFN with the
interaction stream performs better than the TSLFN835

without this stream. This means that the interaction
stream in the proposed network successfully learn
richer and more meaningful feature representations
from individual user interaction data.

• We experimentally validate the design choice of the840

proposed TSLFN. We show that the proposed archi-
tecture achieves generally better performance com-
pared to its variations, given the fixed base network.

• We experimentally validate that the foreground re-
fining performed by the MSRN in the FCTSFN leads845

to a further improvement on the performance of the
TSLFN.

• In restricted comparisons, the proposed FCTSFN
achieves better performance compared to state-of-
the-art methods.850

• In unrestricted comparisons, the proposed FCTSFN
also achieves competitive performance with less train-
ing data and a less advanced base network, compared
to state-of-the-art methods.

Future works may focus on: (1) implementing the two-855

stream structure with more advanced base networks to
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Figure 8: Examples of segmentation results of the proposed method on different objects in the test data with automatically generated click
sequences; from left to right in each row: the number of clicks increases from 1 to 5.

achieve better performance; (2) conducting more experi-
mental and theoretical analysis to gain a deeper insight
into the two-stream network structure for interactive im-
age segmentation.860
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