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Abstract

Paraconformal or GL(2,R) geometry on an n-dimensional manifold M is defined by a
field of rational normal curves of degree n− 1 in the projectivised cotangent bundle PT ∗M .
Such geometry is known to arise on solution spaces of ODEs with vanishing Wünschmann
(Doubrov-Wilczynski) invariants. In this paper we discuss yet another natural source of
GL(2,R) structures, namely dispersionless integrable hierarchies of PDEs such as the disper-
sionless Kadomtsev-Petviashvili (dKP) hierarchy. In the latter context, GL(2,R) structures
coincide with the characteristic variety (principal symbol) of the hierarchy.

Dispersionless hierarchies provide explicit examples of particularly interesting classes
of involutive GL(2,R) structures studied in the literature. Thus, we obtain torsion-free
GL(2,R) structures of Bryant [5] that appeared in the context of exotic holonomy in dimen-
sion four, as well as totally geodesic GL(2,R) structures of Krynski [33]. The latter possess
a compatible affine connection (with torsion) and a two-parameter family of totally geodesic
α-manifolds (coming from the dispersionless Lax equations), which makes them a natural
generalisation of the Einstein-Weyl geometry.

Our main result states that involutiveGL(2,R) structures are governed by a dispersionless
integrable system whose general local solution depends on 2n − 4 arbitrary functions of 3
variables. This establishes integrability of the system of Wünschmann conditions.
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1 Introduction

1.1 GL(2,R) geometry

On an n-dimensional manifold M , a GL(2,R) geometry (also known as paraconformal geometry
[12], a rational normal structure [7], or a special case of the cone structure [21]) is defined by
a field of rational normal curves of degree n − 1 in the projectivised cotangent bundle PT ∗M .
Equivalently, it can be viewed as a field of 1-forms ω(λ) polynomial of degree n− 1 in λ,

ω(λ) = ω0 + λω1 + · · ·+ λn−1ωn−1, (1)

where ωi is a basis of 1-forms (a coframe) on M . The parameter λ and the 1-form ω(λ) are
defined up to transformations λ→ aλ+b

cλ+d , ω(λ)→ r(cλ+d)n−1ω(λ), where a, b, c, d, r are arbitrary
smooth functions on M such that ad − bc 6= 0, r 6= 0. Without any loss of generality we can
assume ad− bc = 1.

Conventionally, a GL(2,R) geometry is defined by a field of rational normal curves in the
projectivised tangent bundle PTM . Our choice of the cotangent bundle is motivated by the fact
that characteristic varieties of PDEs, which will be our main source of GL(2,R) structures, are
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subvarieties of PT ∗M . In any case, both pictures are projectively dual: the equation ω(λ) = 0
defines a one-parameter family of hyperplanes that osculate a dual rational normal curve ω̃(λ) ⊂
PTM . Below we discuss some of the most natural occurrences of GL(2,R) structures.

Poisson geometry: Given a generic pair of compatible Poisson bivectors η1, η2 of Kronecker
type on an odd-dimensional manifold N2k+1, there is a canonical GL(2,R) structure on the base
Mk+1 (leaf space) of the corresponding action foliation (see [47]). As shown by Gelfand and
Zakharevich such structures, also known as Veronese webs, arise in the theory of bi-Hamiltonian
integrable systems [20].

Exotic holonomy: It was observed by Bryant in [5] that, in four dimensions, there exist torsion-
free affine connections whose holonomy group is the irreducible representation of GL(2,R). Such
connections give rise to canonically defined parallel GL(2,R) structures. Historically, this was
the first example of an ‘exotic’ holonomy not appearing on the Berger list [3], we refer to [6, 39]
for the development of the holonomy problem.

Submanifolds in Grassmannians: Let M be a submanifold of the Grassmannian Gr(k, n).
The flat Segre structure of Gr(k, n) induces on M a generalised conformal structure. Particular
instances of this construction result in a GL(2,R) geometry on M .

Thus, let M4 be a fourfold in the Grassmannian Gr(3, 5). The flat Segre structure of Gr(3, 5)
induces a field of twisted cubics on PTM4, that is, a GL(2,R) structure on M4. These structures
were investigated in [11] in the context of integrability in Grassmann geometries.

Similarly, let Λ(3) be the Grassmannian of 3-dimensional Lagrangian subspaces of a 6-
dimensional symplectic space. Given a hypersurface M5 ⊂ Λ(3), the flat Veronese structure
of Λ(3) induces a GL(2,R) structure on M5. Such structures were discussed in [17, 42] in the
context of integrability of dispersionless Hirota type equations.

Algebraic geometry: Given a compact complex surface X and a rational curve C ⊂ X with
the normal bundle ν ' O(n), the results of Kodaira [35] show that there is a complex-analytic
(n+ 1)-dimensional moduli space M consisting of deformations of C, which carries a canonical
GL(2,R) structure. This was studied in detail by Hitchin [26] for n = 2 (using É. Cartan’s work
on Einstein-Weyl geometry) and by Bryant [5] for n = 3. The case of general n was discussed
by Dunajski, Tod [12] and Krynski [33]. The construction generalises to the case when X is
a holomorphic contact 3-fold and C ⊂ X is a contact rational curve with the normal bundle
ν ' O(n− 1)⊕O(n− 1) [5, 12, 7].

Ordinary differential equations: For every scalar (higher order) ODE with vanishing Wün-
schmann (Doubrov-Wilczynski) invariants, the space M of its solutions is canonically endowed
with a GL(2,R) structure. ODEs of this type have been thoroughly investigated in the literature,
see e.g. [12, 10, 40, 22, 14, 33] and references therein.

Dispersionless integrable hierarchies: Given a dispersionless integrable hierarchy of PDEs,
it will be demonstrated in this paper that the corresponding characteristic variety (zero locus
of the principal symbol) determines canonically a GL(2,R) structure on every solution. In a
somewhat different language examples of this type appeared in [13, 33], although the observation
that these structures coincide with the characteristic variety is apparently new. We will show
that the GL(2,R) structures appearing on solutions to integrable hierarchies are not arbitrary,
and must satisfy an important property of involutivity.
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1.2 Involutive GL(2,R) structures and dispersionless hierarchies

For every x ∈ M , the equation ω(λ) = 0 defines a 1-parameter family of hyperplanes in TxM
parametrised by λ; these are known as α-hyperplanes. A codimension one submanifold of M is
said to be an α-manifold if all its tangent spaces are α-hyperplanes [33].

Definition. A GL(2,R) structure is said to be involutive [7] or α-integrable [33] if every α-
hyperplane is tangential to some α-manifold.

We will relate different approaches to involutivity in Section 3.4. One can show that α-
manifolds of an involutive GL(2,R) structure depend on 1 arbitrary function of 1 variable
(Section 3.3). These manifolds are governed by the so-called ‘eikonal’ system (see the review
[43] for a general discussion). The existence of α-manifolds suggests that involutive GL(2,R)
structures are amenable to twistor-theoretic methods, cf. [21].

In particular, GL(2,R) structures that arise on solution spaces of ODEs with vanishing
Wünschmann invariants are involutive. It was shown in [33] that conversely, every involutive
(α-integrable) GL(2,R) structure can be obtained from an ODE of this type. Four-dimensional
involutive GL(2,R) structures were extensively studied in [5] in the context of exotic holonomy.
These investigations were developed further in [12, 10, 40, 22, 14].

Our main observation is that involutive GL(2,R) structures are induced, as characteristic va-
rieties, on solutions to dispersionless integrable hierarchies of PDEs. Moreover, α-manifolds can
be obtained as projections of integral manifolds of the associated dispersionless Lax equations.

The following example is based on [47, 14, 33]. Equations of the Veronese web hierarchy
have the form

(ci − cj)ukuij + (cj − ck)uiujk + (ck − ci)ujuik = 0, (2)

one equation for every triple (i, j, k) of distinct indices. Here u is a function on the n-dimensional
manifold M with local coordinates x1, . . . , xn, coefficients ci are pairwise distinct constants, and
ui = uxi denote partial derivatives.

The term ‘hierarchy’ refers to the fact that the overdetermined system (2) is in involution
for every n so that any two equations can be viewed as Lie-Bäcklund symmetries of each other:
if we take two different triples and unite the indices, then the system of equations of type (2)
corresponding to all sub-triples of the union is compatible.

The characteristic variety of system (2) is defined by a system of quadrics,

(ci − cj)ukpipj + (cj − ck)uipjpk + (ck − ci)ujpipk = 0,

which specify a rational normal curve in PT ∗M parametrised as pi = ui
λ−ci (the ideal of a rational

normal curve is generated by quadrics, see e.g. [25]). Explicitly,

ω(λ) = pidx
i =

∑ ui
λ− ci

dxi; (3)

note that expression (3) takes form (1) on clearing the denominators (since only the conformal
class of ω(λ) is essential we will not make a distinction in what follows). This supplies M with
a GL(2,R) geometry which depends on the solution u (otherwise said: GL(2,R) geometry on
the solution u considered as a submanifold graph(u) ⊂M × R).

System (2) is equivalent to the commutativity conditions of the following vector fields
(λ=const),

∂xj −
λ− c1

λ− cj
uj
u1
∂x1 , 1 < j ≤ n.
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Such λ-dependent vector fields are said to define a dispersionless Lax representation for system
(2). Note that these vector fields are annihilated by ω(λ). Their integral manifolds supply
M with a two-parameter family of α-manifolds. Thus, GL(2,R) structure (3) is involutive.
Equivalently, the commutativity of these vector fields can be interpreted as the involutivity of
the corresponding corank 2 vector distribution on the (n + 1)-dimensional manifold M̂ with
coordinates x1, . . . , xn, λ, known as the correspondence space. The (complexified) space of inte-
gral manifolds of this distribution plays important role in the twistor-theoretic approach to the
Veronese web hierarchy.

In Section 2 we provide further examples of involutive GL(2,R) structures supported on
solutions to other well-known dispersionless integrable hierarchies. As it was rightly pointed
out by the referee of this paper, the involutivity of GL(2,R) structures defined by characteristic
varieties of integrable hierarchies is a manifestation of a general phenomenon known as the
‘integrability of characteristics’ [19, 23, 43].

1.3 Affine connections associated with involutive GL(2,R) structures

There are several types of canonical connections defined on the tangent bundle of a manifold
M that can be naturally associated with a GL(2,R) structure on M . Recall that an affine
connection ∇ is said to be compatible with a GL(2,R) structure (paraconformal or GL(2,R)
connection), if for every v∈ TM

∇vω(λ) ∈ span〈ω(λ), ω′(λ)〉, (4)

where prime denotes differentiation by λ, see [33]. Condition (4) means that the parallel trans-
port defined by ∇ preserves rational normal cones of the GL(2,R) structure. Equivalently,
identifying quadratic equations from the ideal of the rational normal curve ω(λ) with symmetric
bivectors gs on M and denoting g = span〈gs〉, we can represent (4) as ∇v g = g ∀ v 6= 0.

Condition (4) alone does not specify ∇ uniquely: for this, additional constraints should
be imposed. In what follows we discuss four types of canonical connections associated with
involutive GL(2,R) structures, of which the first two are based on the previous works and do
not exist universally, while the other two are new and exist for all dispersionless integrable
hierarchies studied so far (let us stress that there exist no general theory or complete description
of such hierarchies). We use the convention ∇j∂k = Γijk∂i.

Torsion-free GL(2,R) connection in 4D

Torsion-free GL(2,R) connections can only exist in four dimensions. Indeed, based on the Berger
criteria, it was shown in [5] that there exist no non-trivial torsion-free GL(2,R) connections in
higher dimensions. On the contrary, in four dimensions, involutivity of a GL(2,R) structure is
equivalent to the existence of a torsion-free GL(2,R) connection.

Since GL(2,R) structures coming from principal symbols of dispersionless integrable hi-
erarchies are automatically involutive (due to the existence of a Lax representation), we ob-
tain an abundance of explicit examples of torsion-free GL(2,R) connections in four dimensions
parametrised by solutions to some well-known integrable PDEs, see Section 2.

For the Veronese web hierarchy, the Christoffel symbols of the torsion-free GL(2,R) connec-
tion associated with four-dimensional GL(2,R) structure (3) are computed to be equal to

Γiii =
uii
ui
− 1

9

∑
j 6=i

(cikcjl + cilcjk)
2

cikcilcjkcjl

uij
uj
, Γjii =

1

9

cjkcjl
cijclk

ui
uj

(
uik
uk
− uil
ul

)
,
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Γiij =
1

3

uij
ui
− 1

9

(
1 +

cikcjl
cijckl

)
ujl
ul
− 1

9

(
1 +

cilcjk
cijclk

)
ujk
uk

, Γjik =
1

9

clj
clk

uk
uj

(
uik
uk
− uil
ul

)
,

here cij = ci − cj , and i, j, k, l are pairwise distinct indices taking values 1, . . . , 4.

Totally geodesic GL(2,R) connections

A particularly interesting subclass of involutive GL(2,R) structures was introduced by Krynski
in [33]: such structures possess a GL(2,R) connection (with torsion) and a two-parameter family
of totally geodesic α-manifolds. We will refer to such structures/connections as totally geodesic
GL(2,R) structures/connections, respectively.

The requirement that ∇ is a totally geodesic GL(2,R) connection specifies it up to transfor-
mation Γijk → Γijk +φjδ

i
k for a covector φ. This freedom can be eliminated by requiring that the

torsion T∇ is trace-free, T iik = 0. In what follows this will be included into the totally geodesic
condition. For GL(2,R) structures (3) coming from the Veronese web hierarchy, the condition
tr
(
T∇(·, X)

)
= 0 is equivalent to the constraint T∇(ω̃(λ), ω̃′(λ)) ∈ span〈ω̃(λ)〉 used in [33].

Examples of totally geodesic GL(2,R) structures include the following:

• Four-dimensional GL(2,R) structures arising, as characteristic varieties, on solutions to
various integrable hierarchies (see Appendix B). We emphasise that, in general, this is
a merely 4-dimensional phenomenon. For instance, 5-dimensional GL(2,R) structures
associated with the dKP hierarchy do not possess totally geodesic GL(2,R) connections.

• Multi-dimensional GL(2,R) structures arising, as characteristic varieties, on solutions to
linearly degenerate integrable hierarchies (those having no ∂λ in the Lax fields, such as
the Veronese web hierarchy and the ‘universal’ hierarchy). The two-parameter family of
totally geodesic α-manifolds is the projection of integral manifolds of the Lax distribution.

It was shown in [33] that totally geodesic GL(2,R) connections ∇ satisfy the following multi-
dimensional generalized Einstein-Weyl property . Namely, the symmetrised Ricci tensor of such
∇ belongs to the span g̃ of symmetric bivectors defining the dual rational normal curve ω̃(λ):
Ricsym
∇ ∈ g̃. Note that in 3D this is precisely the classical Einstein-Weyl condition.

Normal GL(2,R) connections

We call a GL(2,R) connection ∇ normal if its torsion satisfies the following properties:

(i) T∇ is trace-free: tr
(
T∇(·,X)

)
= 0 ∀X;

(ii) T∇ preserves α-hyperplanes as a (2,1)-map: X,Y ∈ ω(λ)⊥ ⇒ T∇(X,Y ) ∈ ω(λ)⊥.

Every totally geodesic GL(2,R) connection is necessarily normal, although the converse is
not true in general. It turns out that for all hierarchies we investigated, the normal GL(2,R)
connection exists, and is unique (we point out that there are no totally geodesic connections
associated with higher-dimensional GL(2,R) structures coming from the dKP and the Adler-
Shabat hierarchies, starting from dimension 5). The importance of normal GL(2,R) connections
lies in the fact that every such ∇ satisfies the generalized Einstein-Weyl property.

The totally geodesic (and thus normal) GL(2,R) connection associated with GL(2,R) struc-
ture (3) of the Veronese web hierarchy is given by the formula

∇j∂k =

(
ujk
uk

+ φj

)
∂k, or Γijk =

(
ujk
uk

+ φj

)
δik;
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here the covector φj is still arbitrary [33]. It can be fixed uniquely by requiring the torsion to
be trace-free:

φj = − 1

n− 1

∑
k 6=j

ujk
uk

.

A canonical projective connection

There exists yet another class of affine connections associated with involutive GL(2,R) struc-
tures, namely, torsion-free connections possessing a two-parameter family of totally geodesic
α-manifolds; note that they do not preserve the GL(2,R) structure in general.

For GL(2,R) structures defined by the characteristic varieties of dispersionless hierarchies,
the two-parameter family of totally geodesic α-manifolds come from projections of integral man-
ifolds of the corresponding dispersionless Lax equations.

The requirement that ∇ is a torsion-free connection with a two-parameter family of totally
geodesic α-manifolds specifies it uniquely up to projective equivalence, Γijk → Γijk +φjδ

i
k +φkδ

i
j ,

for a 1-form φ. Thus, we obtain a canonically defined totally geodesic projective connection.
For the involutive GL(2,R) structure (3) of the Veronese web hierarchy, an affine represen-

tative of this projective connection is computed to be equal to

∇j∂k =
ujk
2

(
∂j
uj

+
∂k
uk

)
.

On every solution, geodesics of this projective connection (considered as unparametrized curves)
can be obtained by intersecting n− 2 generic totally geodesic α-manifolds.

1.4 Summary of the main results

In Section 2 we provide further explicit examples of involutive GL(2,R) structures given by
characteristic varieties of various dispersionless integrable hierarchies, namely the dKP hierarchy,
the ‘universal’ hierarchy of Martinez-Alonso and Shabat, and the consistent Adler-Shabat triples.
In each case we calculate Christoffel’s symbols of the canonical connections discussed in Section
1.3 (these results are relegated to Appendix B).

Section 3 contains the main results of the paper. In Theorem 1 we demonstrate that the
general involutive GL(2,R) structure can be brought to the normal form

ω(λ) =
n∑
i=1

ui
λ− ui

vi

dxi, (5)

which can be reduced to (1) by clearing denominators. Here the functions u and v satisfy a
system of second-order PDEs, 2 equations for each quadruple of indices 1 ≤ i < j < k < l ≤ n:

S
(jkl)

(ai − aj)(ak − al)
(

2uij − (ai + aj)vij
uiuj

+
2ukl − (ak + al)vkl

ukul

)
= 0, (6)

S
(jkl)

(bi − bj)(bk − bl)
(

2vij − (bi + bj)uij
vivj

+
2vkl − (bk + bl)ukl

vkvl

)
= 0, (7)

where ai = ui
vi
, bi = vi

ui
, and S denotes cyclic summation over the indicated indices.

In Theorem 2 we prove that overdetermined system (6), (7) is in involution, and its charac-
teristic variety is the tangential variety of the rational normal curve ω(λ) given by (5). Since
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the degree of the tangential variety equals 2n− 4, we conclude that general involutive GL(2,R)
structures depend (modulo diffeomorphisms) on 2n − 4 arbitrary functions of 3 variables. For
n = 4 this reproduces the count in [5]; we also refer to [34] for an alternative PDE system
governing involutive GL(2,R) structures for n = 4. For general n, the functional freedom of
2n− 4 arbitrary functions of 3 variables was announced by Robert Bryant in a series of talks in
the early 2000s [7] (we thank him for sending us the slides), but no proofs have appeared. Our
proof is based on the formal theory of PDEs developed in recent years.

Finally, in Theorem 3 we show that equations (6), (7) governing general involutive GL(2,R)
structures constitute a dispersionless integrable hierarchy with Lax representation in parameter-
dependent vector fields.

It was shown in [33] that involutive GL(2,R) structures are in one-to-one correspondence
with ODEs having vanishing Wünschmann invariants. Thus, integrability of system (6), (7)
implies integrability of the Wünschmann conditions.

Our considerations are local. All results on the functional freedom in the general solution
referring to the Cartan-Kähler theorem hold in the analytic or formal categories.

2 Examples of involutive GL(2,R) structures

In this section we give further examples of involutive GL(2,R) structures arising on solutions of
various dispersionless integrable hierarchies. Our main observation is that GL(2,R) structures
discussed in a similar context by Dunajski and Krynski in [13, 33] are nothing but characteristic
varieties of the corresponding PDEs. This makes the construction entirely explicit and intrinsic.

We mainly focus on GL(2,R) geometry in four dimensions, defined by the first three equa-
tions of the corresponding hierarchies. Higher-dimensional generalisations are then obtained by
adding higher flows (with higher time variables). Christoffel’s symbols of the canonical connec-
tions associated with these examples are presented in Appendix B.

2.1 GL(2,R) structures via dKP hierarchy

The first three equations of the dKP hierarchy have the form

uxt − uyy − uxuxx = 0,
uxz − uyt − uxuxy − uyuxx = 0,
uyz − utt + u2

xuxx − uyuxy = 0.
(8)

Here u is a function on the 4-dimensional manifold M with local coordinates x, y, t, z. The
characteristic variety of this system is the intersection of three quadrics,

pxpt − p2
y − uxp2

x = 0,

pxpz − pypt − uxpxpy − uyp2
x = 0,

pypz − p2
t + u2

xp
2
x − uypxpy = 0,

(9)

which specify a rational normal curve (twisted cubic) in PT ∗M parametrised as

px = 1, py = λ, pt = λ2 + ux, pz = λ3 + 2uxλ+ uy,

so that
ω(λ) = dx+ λdy + (λ2 + ux)dt+ (λ3 + 2uxλ+ uy)dz.
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This supplies M with a GL(2,R) geometry which depends on the solution u. The occurrence of
a rational normal curve in the theory of dKP hierarchy was also noted in [28] in the context of
coisotropic deformations of algebraic curves. Equations (8) are equivalent to the commutativity
conditions of the following vector fields,

∂y − λ∂x + uxx∂λ,
∂t − (λ2 + ux)∂x + (λuxx + uxy)∂λ,

∂z − (λ3 + 2uxλ+ uy)∂x + (λ2uxx + λuxy + uxt + uxuxx)∂λ,
(10)

which constitute a dispersionless Lax representation. These vector fields live in the extended
5-dimensional space M̂ with coordinates x, y, t, z, λ; note the explicit presence of ∂λ. Projecting
integral manifolds of these vector fields from M̂ to M we obtain a two-parameter family of
α-manifolds of the corresponding GL(2,R) structure, thus establishing its involutivity.

Higher-dimensional generalisation of this construction can be obtained by taking higher flows
of the dKP hierarchy,

ui,j+1 − uj,i+1 +
i∑

k=1

ui−kujk −
j∑

k=1

uj−kuik = 0, 1 ≤ i < j,

see e.g. [27]. For (i, j) = (1, 2), (1, 3) and (2, 3) this reproduces equations (8). Here we use the
notation u = u(x1, x2, x3, x4, . . . ) where x1 = x, x2 = y, x3 = t, x4 = z, etc, and subscripts
of u denote partial derivatives. The corresponding characteristic variety is the intersection of
quadrics,

pipj+1 − pjpi+1 +
i∑

k=1

ui−kpjpk −
j∑

k=1

uj−kpipk = 0.

It defines a rational normal curve; setting p1 = 1 we can parametrise it recurrently as

pi+1 = λpi +
i−1∑
k=1

ui−kpk, i ≥ 1.

Explicitly, this gives

p1 = 1, p2 = λ, p3 = λ2 + u1, p4 = λ3 + 2u1λ+ u2, p5 = λ4 + 3u1λ
2 + 2u2λ+ u3 + u2

1,

etc. The dispersionless Lax representation of the dKP hierarchy is given by a family of involutive
parameter-dependent vector fields

Xi = ∂xi+1 − λ∂xi −
i−1∑
k=1

ui−k∂xk + u1i∂λ, i ≥ 1.

2.2 GL(2,R) structures via the universal hierarchy

The first three equations of the universal hierarchy of Martinez-Alonso and Shabat [38] have the
form

uxt − uyy + uyuxx − uxuxy = 0,
uxz − uyt + utuxx − uxuxt = 0,
uyz − utt + utuxy − uyuxt = 0.

(11)
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Here u is a function on the 4-dimensional manifold M with local coordinates x, y, t, z. The
characteristic variety of this system is the intersection of three quadrics,

pxpt − p2
y + uyp

2
x − uxpxpy = 0,

pxpz − pypt + utp
2
x − uxpxpt = 0,

pypz − p2
t + utpxpy − uypxpt = 0,

which specify a rational normal curve in PT ∗M parametrised as

px = 1, py = λ− ux, pt = λ2 − uxλ− uy, pz = λ3 − uxλ2 − uyλ− ut,

so that

ω(λ) = dx+ (λ− ux)dy + (λ2 − uxλ− uy)dt+ (λ3 − uxλ2 − uyλ− ut)dz.

Equations (11) are equivalent to the commutativity conditions of the following vector fields,

∂y − (λ− ux)∂x,
∂t − (λ2 − uxλ− uy)∂x,

∂z − (λ3 − uxλ2 − uyλ− ut)∂x,

which constitute a dispersionless Lax representation. Note the absence of ∂λ, which indicates a
close similarity with the Veronese web hierarchy. Integral manifolds of these vector fields provide
a two-parameter family of α-manifolds of the corresponding GL(2,R) structure.

This has a straightforward higher-dimensional generalisation: the equations are

ui,j+1 − ui+1,j + uju1,i − uiu1,j = 0, 0 < i < j < n;

the GL(2,R) structure is given by

ω(λ) =
n∑
i=1

(λi−1 − u1λ
i−2 − · · · − ui−1) dxi;

the Lax representation is

Xi = ∂xi − (λi−1 − u1λ
i−2 − · · · − ui−1)∂x1 , 1 < i ≤ n.

Considered altogether, these equations form an integrable hierarchy.

2.3 GL(2,R) structures via Adler-Shabat triples

Further examples of GL(2,R) structures arise as characteristic varieties on solutions to triples
of consistent 3D second-order PDEs discussed by Adler and Shabat in [1],

u23 = f(u1, u2, u3, u12, u13),
u24 = g(u1, u2, u4, u12, u14),
u34 = h(u1, u3, u4, u13, u14),

(12)

where u is a function on the 4-dimensional manifold M with local coordinates x1, . . . , x4. Note
that system (2) belongs to class (12). As yet another example of this type let us consider the
system

u23 =
u12 − u13

u2 − u3
, u24 =

u12 − u14

u2 − u4
, u34 =

u13 − u14

u3 − u4
. (13)
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Its characteristic variety is defined by a system of quadrics,

p2p3 =
p1p2 − p1p3

u2 − u3
, p2p4 =

p1p2 − p1p4

u2 − u4
, p3p4 =

p1p3 − p1p4

u3 − u4
,

which specify a rational normal curve in PT ∗M parametrised as p1 = 1, pi = 1
λ−ui , so that

ω(λ) = dx1 +
1

λ− u2
dx2 +

1

λ− u3
dx3 +

1

λ− u4
dx4.

System (13) is equivalent to the conditions of commutativity of the following vector fields,

∂x2 +
1

u2 − λ
∂x1 +

u12

u2 − λ
∂λ, ∂x3 +

1

u3 − λ
∂x1 +

u13

u3 − λ
∂λ, ∂x4 +

1

u4 − λ
∂x1 +

u14

u4 − λ
∂λ,

note the explicit presence of ∂λ. Projecting their integral manifolds from the extended space M̂
to M we obtain a two-parameter family of α-manifolds of the corresponding GL(2,R) structure.

This has a straightforward higher-dimensional generalization: the equations are

(ui − uj)uij = u1i − u1j , 1 < i < j ≤ n;

the GL(2,R) structure is given by

ω(λ) = dx1 +
n∑
i=2

1

λ− ui
dxi;

the Lax representation is

Xi = ∂xi −
1

λ− ui
∂x1 −

u1i

λ− ui
∂λ, 1 < i ≤ n.

Considered altogether, these equations form an integrable hierarchy.

3 General involutive GL(2,R) structures

In this section we demonstrate that general involutive GL(2,R) structures are governed by
a dispersionless integrable hierarchy and derive the corresponding Lax system describing α-
manifolds.

3.1 Parametrisation of involutive GL(2,R) structures

We begin by encoding all involutive structures in a simple ansatz.

Theorem 1. Every involutive GL(2,R) structure can be locally represented by formula (5),
which upon clearing the denominators takes the form

ω(λ) =

n∑
i=1

[∏
j 6=i

(
λ− uj

vj

)]
uidx

i. (14)

Here u and v are functions of (x1, . . . , xn) and subscripts denote partial derivatives: ui =
uxi , vi = vxi. The functions u and v must satisfy a system of PDEs (6), (7) coming from
the integrability condition dω(λ) ∧ ω(λ) = 0.
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Proof:

Let (1) be an involutive GL(2,R) structure on n-dimensional manifold M . It is easy to see
that the space of α-manifolds is at least 2-dimensional (in fact, it is parametrised by 1 arbitrary
function of 1 variable, see Section 3.3). Choosing a 1-parameter family of α-manifolds we obtain
a (local) foliation of M . This foliation consists of integral manifolds of an integrable distribution
ω(a) = 0 obtained by substituting λ with some function a on M . We can thus set ω(a) = fdx
for some functions f and x. Let us now choose n different 1-parameter families of α-manifolds
that correspond to the choice of n functions ai such that ω(ai) = fidx

i (no summation). We will
use xi as a local coordinate system on Mn. Note that although one can always set, say, f1 = 1
by using conformal freedom in ω, it is not always possible to eliminate all fi simultaneously.
Taking into account that ω is polynomial (of degree n − 1) in λ, the above conditions fix ω
uniquely:

ω(λ) =

n∑
i=1

[∏
j 6=i

λ− aj
ai − aj

]
fidx

i.

Let us choose two extra 1-parameter families of α-manifolds such that ω(an+1) = fn+1du and
ω(an+2) = fn+2dv (here u, v are precisely the functions that will appear later in formula (5)).
Explicitly, this gives

fi
∏
j 6=i

an+1 − aj
ai − aj

= fn+1ui, fi
∏
j 6=i

an+2 − aj
ai − aj

= fn+2vi. (15)

The first of these relations allows one to rewrite ω as

ω(λ) = fn+1

n∑
i=1

[∏
j 6=i

λ− aj
an+1 − aj

]
uidx

i. (16)

Taking the ratio of relations (15) we obtain∏
j 6=i

an+1 − aj
an+2 − aj

=
fn+1

fn+2

ui
vi
,

which is equivalent to

an+2 − ai
an+1 − ai

= s
ui
vi
, s =

fn+1

fn+2

n∏
k=1

an+2 − ak
an+1 − ak

.

Solving the last relation for ai and substituting the result into (16) yields

ω(λ) = fn+1

n∑
i=1

[∏
j 6=i

λ− an+2 − s(λ− an+1)
uj
vj

an+1 − an+2

]
uidx

i.

Using the linear-fractional freedom in λ (sending an+1 and an+2 to ∞ and 0, respectively), as
well as the conformal freedom in ω, we can reduce the last expression to form (14).

Calculating the integrability condition dω(λ)∧ω(λ) = 0 (it is more convenient to use (5) for
this purpose) and collecting coefficients at dxi ∧ dxj ∧ dxk we obtain

λ−ai
ui

(
1

λ−ak −
1

λ−aj

)
λi +

λ−aj
uj

(
1

λ−ai −
1

λ−ak

)
λj + λ−ak

uk

(
1

λ−aj −
1

λ−ai

)
λk + Sijk = 0. (17)
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Here λi = λxi (λ is viewed as a function of x), and

Sijk = uij
aj−ai
uiuj

(
λ

λ−ai + λ
λ−aj

)
+ uik

ai−ak
uiuk

(
λ

λ−ai + λ
λ−ak

)
+ ujk

ak−aj
ujuk

(
λ

λ−aj + λ
λ−ak

)
− vij aj−aiuiuj

(
λai
λ−ai +

λaj
λ−aj

)
− vik ai−akuiuk

(
λai
λ−ai + λak

λ−ak

)
− vjk

ak−aj
ujuk

(
λaj
λ−aj + λak

λ−ak

)
.

System (6), (7) governing general involutive GL(2,R) structures results on elimination of the
derivatives of λ from equations (17). This can be done as follows. Let us denote Tijk the left-
hand side of (17). Taking 4 distinct indices i 6= j 6= k 6= l one can verify that there are only two
non-trivial linear combinations, namely

Tikj + Tijl + Tilk + Tjkl

and
1

λ− al
Tikj +

1

λ− ak
Tijl +

1

λ− aj
Tilk +

1

λ− ai
Tjkl,

that do not contain derivatives of λ. The first linear combination is equal to zero identically,
while the second combination vanishes (identically in λ) if and only if relations (6) and (7) are
satisfied, namely the following expression must vanish:

Eijkl = S
(jkl)

(ai − aj)(ak − al)
(

2uij − (ai + aj)vij
uiuj

+
2ukl − (ak + al)vkl

ukul

)
,

as well as similar expressions obtained by interchanging u and v,

Fijkl = S
(jkl)

(bi − bj)(bk − bl)
(

2vij − (bi + bj)uij
vivj

+
2vkl − (bk + bl)ukl

vkvl

)
,

recall that ai = ui
vi
, bi = vi

ui
. �

Although system (6), (7) formally consists of 2
(
n
4

)
equations, only 2

(
n−2

2

)
of them are linearly

independent. Indeed, we can restrict to equations E12kl = 0 and F12kl = 0 for 3 ≤ k < l ≤ n
since all other equations are their linear combinations: denoting αij = ai − aj we have

α12Eijkl = αklE12ij + αjlE12ki + αjkE12il + αilE12jk + αikE12lj + αijE12kl (18)

for all indices distinct (note that αij 6= 0 for i 6= j), and similarly for Fijkl.
For n = 4 system (6), (7) is determined: it consists of 2 second-order PDEs for 2 functions u

and v of 4 independent variables, so its general solution is parametrised by 4 arbitrary functions
of 3 variables. This gives an explicit confirmation of the result of [5] that modulo diffeomorphisms
general involutive GL(2,R) structures in four dimensions depend on 4 functions of 3 variables.
The case of general n is more complicated because system (6), (7) becomes overdetermined.

Theorem 2. For every value of n, the following holds:
(a) The characteristic variety of system (6), (7) is the tangential variety of rational normal
curve (5); it has degree 2n− 4. Rational normal curve (5) can be recovered as the singular locus
of the characteristic variety.
(b) System (6), (7) is in involution.
(c) The general solution of system (6), (7) depends on 2n − 4 functions of 3 variables (in the
analytic or formal categories).
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Proof:

(a) Let us parametrize rational normal curve (5) as

λ 7→ [p1 : · · · : pn] ∈ PT ∗M, pi =
ui

λ− ai
, ai =

ui
vi
, (19)

so that its tangential variety is given by

(λ, µ) 7→ [p1 : · · · : pn] ∈ PT ∗M, pi =
ui

λ− ai
+

uiµ

(λ− ai)2
. (20)

Let E = E[u, v] and F = F [u, v] be non-linear differential operators on the left-hand sides of
(6) and (7). The symbol of the system E = {E = 0, F = 0} is given by the matrix

`E(p) =

[
`uE(p) `vE(p)
`uF (p) `vF (p)

]
, (21)

where `uE(p) =
∑
a≤b

∂E
∂uab

papb is the symbol of u-linearization of E, etc. As noted after Theorem

1, E = (Eijkl) has
(
n−2

2

)
independent components, and similarly for F = (Fijkl), so that the

matrix `E is of the size 2
(
n−2

2

)
× 2. The characteristic variety is defined by the formula

Char(E) = {[p] ∈ PT ∗M : rank
(
`E(p)

)
< 2}.

From (6) we have

`uEijkl
(p) = 2 S

(jkl)
(ai − aj)(ak − al)

( pipj
uiuj

+
pkpl
ukul

)
.

This expression vanishes if we substitute p from (19). Similarly, all other components `vEijkl
(p),

`uFijkl
(p), `vFijkl

(p) of the symbolic matrix vanish, and we conclude that `E(p) = 0 modulo (19).

For the tangential variety (20), the entries of `E(p) do not vanish identically, however, a
straightforward computation shows that independently of (ijkl) we get

λ `uEijkl
(p) + `vEijkl

(p) = 0 and λ `uFijkl
(p) + `vFijkl

(p) = 0,

and these identities characterise (20). Thus, all columns of `E(p) are proportional whenever p
satisfies (20), and rank

(
`E(p)

)
= 1 unless p belongs to the rational normal curve (in which case

we have rank
(
`E(p)

)
= 0). Finally, for a rational normal curve of degree n− 1, the degree of its

tangential variety equals 2n− 4. This variety is known to be generated by quartics [25].

(b) System E = {E12kl = 0, F12kl = 0} given by (6), (7) is involutive iff its compatibility
conditions are identically satisfied modulo E . A long computation, which we present in Appendix
A, shows that these conditions are numerated by 5-tuples of distinct indices (12ijk) where
2 < i < j < k ≤ n. More precisely, the compatibility conditions corresponding to any such
5-tuple are first-order differential operators applied to E12ij , E12jk, E12ki and F12ij , F12jk, F12ki,
and involving only differentiations by variables x1, x2, xi, xj , xk. There are four compatibility
conditions for each 5-tuple (12ijk).

Thus it suffices to check compatibility for n = 5 to conclude it for general n. For n = 5

the resolution from Appendix A becomes a short exact sequence R2 `E−→ R6 CE−→ R4, where
R = R[p1, . . . , pn] is the algebra of homogeneous polynomials on T ∗M and CE is the compatibility
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operator. From this we read off the 4 compatibility conditions. A direct verification (using
symbolic computations in Maple) shows that they are satisfied. This implies the involutivity.

(c) By a classical result going back to Cartan the general local solution of an involutive PDE
system E depends on d arbitrary functions of m variables where the numbers d (formal rank)
and m (formal dimension) can be read off the Cartan characters characterising involutivity. The
result is formal, but it also holds in the analytic category due to the Cartan-Kähler theorem.
Serre reformulated this criterion in homological terms, relating the numbers d,m to the Hilbert
function of the symbolic module. Since the characteristic variety is the support of this module,
these numbers can be read off the geometry of this variety and the sheaf ker(`E) over Char(E).

We refer to [8], Chapter 5 and [29] for a modern exposition of these results. In the case when
Char(E) is irreducible the number m is the affine dimension of this variety, while d is its degree
multiplied by the rank of the sheaf ker

(
`E(p)

)
at generic point p ∈ Char(E). Since system (6), (7)

is in involution and its characteristic variety has affine dimension m = 3, degree d = 2n− 4 and
the kernel sheaf of dimension 2− rank

(
`E(p)

)
= 1 at any point p ∈ Char(E) that belongs to (20)

with µ 6= 0, the general solution depends on 2n− 4 arbitrary functions of 3 variables. �

Remark 1. The system E can be represented in a simple parametric form (1 ≤ i < j ≤ n)

2uij−(ai+aj)vij
uiuj

= ri + rj +
∑n−1

k=3 lk
aki−akj
ai−aj ,

2vij−(bi+bj)uij
vivj

= si + sj +
∑n−1

k=3 mk
bki−bkj
bi−bj ,

This system has n(n − 1) equations and 4n− 6 parameters r1, . . . , rn, s1, . . . , sn, l3, . . . ln−1,
m3, . . . ,mn−1. Elimination of these parameters yields (n− 2)(n− 3) equations (6), (7).

3.2 Integrability of involutive GL(2,R) structures

Theorem 3. For every n, system (6), (7) is integrable via a dispersionless Lax representation
in parameter-dependent vector fields. Letting n→∞ we obtain the corresponding dispersionless
integrable hierarchy.

Proof:

Let us associate with equations (17) the following family of λ-dependent vector fields,

Vijk = λ−ai
ui

(
1

λ−ak −
1

λ−aj

)
∂xi +

λ−aj
uj

(
1

λ−ai −
1

λ−ak

)
∂xj + λ−ak

uk

(
1

λ−aj −
1

λ−ai

)
∂xk − Sijk∂λ,

which live in the extended space M̂ with coordinates x1, . . . , xn, λ. These vector fields generate
a distribution V = span〈Vijk〉 in TM̂ of dimension n − 2. Indeed, the identities noted in the
proof of Theorem 1 for Tijk hold for Vijk, so these latter vector fields are expressed as linear
combinations of V12l for 3 ≤ l ≤ n. This, in particular, implies that modulo (6), (7) there are
only n− 2 linearly independent relations (17).

The geometry behind system (17) and the distribution V is as follows. Consider a hypersur-
face H in M̂ defined explicitly as λ = λ(x1, . . . , xn). Then the distribution V is tangential to
H if and only if the function λ(x1, . . . , xn) solves system (17). Thus system (17) is compatible
if and only if the associated distribution V is involutive. In this case the general solution of
system (17) depends on 1 arbitrary function of 2 variables: there exists a 3-parametric family
of integral manifolds of V , and a generic hypersurface H ⊂ M̂ with V |H ⊂ TH is formed by a
2-parametric subfamily of integral manifolds of V , whence the functional freedom.

Direct calculation based on the Frobenius theorem shows that by virtue of equations (6), (7)
the distribution V is involutive. Thus, λ-dependent vector fields Vijk constitute a dispersionless
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Lax representation for system (6), (7). Projecting integral manifolds of V from M̂ to M we
obtain a 3-parameter family of codimension 2 submanifolds of M . Tangent spaces to these
submanifolds are (n − 2)-dimensional osculating spaces of the dual curve ω̃(λ). Indeed, the
distribution V is annihilated by the (pulled-back) 1-forms ω(λ) and ω′(λ).

Equations (6), (7) for u and v are organised in pairs, each pair involving 4 independent
variables indexed from 1 to n. As n grows, the collection of PDEs is nested and compatible.
Ultimately when n→∞ we obtain the corresponding dispersionless hierarchy. �

In the context of the general heavenly hierarchy, similar Lax equations appeared recently in
[4]. A modification of the inverse scattering transform for Lax equations in parameter-dependent
vector fields was developed in [37].

Remark 2. System (6), (7) governing general involutive GL(2,R) structures can be viewed as
a generalisation of the Veronese web hierarchy. Indeed, the Veronese web hierarchy results upon
setting vi = 1

ci
qui, where ci are constants and q is some function. Then the reparametrisation

λ→ λ/q identifies GL(2,R) structure (5) with (3) (up to unessential conformal factor q), so that
system (6), (7) reduces to equations (2) of the Veronese web hierarchy. Note that reductions of
the general system (6), (7) to other examples of Sect. 2 (say, the dKP hierarchy) are far more
complicated, requiring highly transcendental nonlocal changes of the independent variables xi

and the dependent variables u, v. Indeed, although the coordinate planes xi = const constitute
α-manifolds for GL(2,R) structure (5), this is not the case for the dKP hierarchy.

Another class of (translationally non-invariant) integrable deformations of the Veronese web
hierarchy was considered recently in [32]: the corresponding Lax equations do not however
contain ∂λ, and are specifically 3-dimensional.

Remark 3. For n = 4 there exists a unique torsion-free GL(2,R) connection associated with
GL(2,R) structure (5). It can be parametrised as

Γijk =
u2
i ujuk

(ai−aj)(ai−ak)ψi, Γijj =
u2
i u

2
j

(ai−aj)2ψi, Γiij = Γiji =
uiuj
ai−aj φi, Γiii = ρi,

where i, j, k ∈ {1, . . . , 4} are pairwise distinct indices, and the quantities ψi, φi, ρi are yet to be
determined from the following linear system with extra parameters sj , s̃j to be eliminated.

uij
uiuj

−
∑
k

Γkij
uk
uiuj

= s2aiaj + s1(ai + aj) + s0,
vij
vivj

−
∑
k

Γkij
vk
vivj

= s̃2bibj + s̃1(bi + bj) + s̃0.

This system contains 20 linear equations for the 18 unknowns ψi, φi, ρi, sj , s̃j . These equations
are consistent modulo (6), (7), and lead to a unique torsion-free GL(2,R) connection.

3.3 Counting α-manifolds

The disperionless Lax representation provides a two-parametric family of α-manifolds. The
totality of all α-manifolds is bigger.

Proposition 1. For an involutive GL(2,R) structure, its local α-manifolds are parametrised by
1 function of 1 variable.

Proof:

Let us invoke a relation with ordinary differential equations having all Wünschmann invari-
ants zero, see [33] for details (recall that all involutive structures arise on solution spaces of
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such ODEs). An ODE E of order n is given by a submanifold xn = F (t, x0, x1, . . . , xn−1) in
the jet-space Jn = Rn+2(t, x0, . . . , xn), and E is diffeomorphic (via the jet-projection) to the
jet-space Jn−1. The solution space Mn is identified with the space of integral curves of the field
XF = ∂t + x1∂0 + · · ·+ xn−1∂n−2 + F∂n−1, where ∂i = ∂xi and F = F (t, x0, x1, . . . , xn−1).

Denote by π : Jn−1 → M = Jn−1/XF the projection (since the construction is local, this
quotient exists, and is non-singular), and let Dn−1 = 〈∂1, . . . , ∂n−1〉 be the vertical distribution
in Jn−1 with respect to the projection of Jn−1 to J0 = R2(t, x0). The family of hyperplanes
π∗Dn−1 ⊂ TM parametrised by the coordinate λ = t along integral curves of XF coincides with
α-hyperplanes of a GL(2,R) structure on M provided the Wünschmann invariants vanish.

Thus α-manifolds are projections of integral manifolds of (maximal possible) dimension n−1
for the (non-holonomic) distribution

Dn = π−1
∗ π∗(Dn−1) = 〈XF , ∂1, . . . , ∂n−1〉 = 〈∂t + x1∂0, ∂1, . . . , ∂n−1〉.

This distribution has rank n and possesses a sub-distribution of Cauchy characteristics of rank
n− 2 given by Ch(Dn) = 〈∂2, . . . , ∂n−1〉. Consequently, integral manifolds of Dn are foliated by
the Cauchy characteristics, and therefore coincide with vertical lifts of Legendrian curves of the
standard contact structure on the quotient J1 = Jn−1/Ch(Dn).

Note that generic Legendrian curves in J1 = R3(t, x0, x1) are uniquely determined by their
projection to the plane J0 = R2(t, x0); the curves whose projections degenerate to a point
correspond to the standard two-parameter family of α-manifolds. Since curves in the plane are
parametrised by 1 function of 1 variable, the claim follows. �

Remark 4. By a theorem of Sophus Lie a system of PDEs with the general solution depending
on 1 function of 1 variable is solvable via ODEs [36, 31]. Thus α-manifolds of any involutive
GL(2,R) structure can be found as solutions to a system of ODEs.

3.4 Equivalent definitions of involutivity

Proposition 2. For a GL(2,R) structure, the definitions of involutivity in the sense of Bryant
[7] and α-integrability in the sense of Krynski [33] are equivalent.

Proof:

Consider a manifold Mn, the associated contact manifold PT ∗M of dimension 2n−1 with the
contact distribution CM , and a submanifold Z ⊂ PT ∗M of dimension n+ 1 that corresponds to
a GL(2,R) structure on M . We have dim(TZ ∩ CM ) = n. Since the projection π : PT ∗M →M
is surjective on Z, the intersection Zx = Z ∩π−1(x) ⊂ PT ∗xM is a curve (rational normal curve)
for each x ∈M . For p ∈ Zx we have dpπ(TZ ∩ CM ) = p⊥ ⊂ TxM , p⊥ ' TZ ∩ CM/TpZx.

Denote the contact form by ω. Then Z is involutive in the sense of [7] if ω ∧ (dω)2|Z = 0 ⇔
(dω|TZ∩CM )2 = 0 (and dω|TZ∩CM 6= 0 for dimensional reasons), whence for the subbundle ΠM =
Ker(dω|TZ∩CM ) we have rank ΠM = n − 2. The local quotient (SM , DM ) = (Z, TZ ∩ CM )/ΠM

is a 3-dimensional contact manifold. Denoting the projection by ρ : Z → SM , the corresponding
α-manifolds can be represented in the form ρ−1(L) where L ⊂ SM is a Legendrian curve with
respect to DM (compare with the proof of Proposition 1 from Section 3.3).

Conversely, if for every x ∈ M , p ∈ Zx there exists an α-manifold tangent to p⊥ ⊂ TxM ,
then the restriction of the canonical conformally symplectic form [dω] to TZ ∩ CM has rank 2,
so that α-integrability implies involutivity in the sense of [7].
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4 Concluding remarks

We conclude with two general comments.

• It was demonstrated that involutive GL(2,R) structures in 4D or, equivalently, torsion-free
affine connections with the irreducible GL(2,R) holonomy, are governed by a dispersionless
integrable system. It would be interesting to understand which special holonomies lead to
nonlinear PDEs that are either explicitly solvable/linearisable, or belong to the class of
integrable systems.

• Interesting generalisations of involutive GL(2,R) structures arise in the context of inte-
grable hierarchies whose characteristic varieties are elliptic curves. For instance, the first
two equations of the dispersionless Pfaff-Toda hierarchy [44] are of the form (see [2])

eFxxFxt = eFyyFyz,

Fzt = 2eFxx+Fyy sinh(2Fxy).

Here F is a function on the 4-dimensional manifold M with coordinates x, y, t, z. The
characteristic variety of this system is a complete intersection of two quadrics in P3:

eFxxpxpt + eFxxFxtp
2
x = eFyypypz + eFyyFyzp

2
y,

pzpt = eFxx+Fyy(e2Fxy(px + py)
2 − e−2Fxy(px − py)2).

This specifies a field of elliptic curves in the projectivised cotangent bundle PT ∗M , recall
that the genus g of a nonsingular complete intersection of two nonsingular surfaces of
degrees d, e in P3 equals g = 1

2de(d+ e− 4) + 1, see e.g. [24], Chapter 2, exercise 8.4 (g).
For d = e = 2 this gives g = 1. The geometry of such structures is yet unclear, primarily
due to the lack of a naturally adapted connection (analogous to GL(2,R) connection)
compatible with the above family of elliptic curves in the spirit of (4) (indeed, any such
connection would automatically preserve all scalar differential invariants of the curves,
however, their j-invariants are non-constant).

A Compatibility conditions via free resolutions

In this section we explain how techniques from commutative algebra can be used to effectively
compute compatibility conditions of overdetermined systems of PDEs. Then we apply this to
our overdetermined system (6)-(7) encoding involutive GL(2,R) structures.

We refer to [29, 30] for details on this approach to involutivity of overdetermined systems of
PDEs, and for a background on jet machinery in the formal theory of differential equations.

A.1 Projective resolutions and linear differential operators

Let us first consider the case of a linear system E of PDEs given by a k-th order differential oper-
ator ∆ : Γ(π)→ Γ(ν) on sections of vector bundles π, ν over M . Such an operator corresponds
to a morphism of vector bundles ψ∆

k : Jkπ → ν with jet-prolongations ψ∆
k+i : Jk+iπ → J iν.

Then Ek+i = Ker(ψ∆
k+i) for i ≥ 0 and El = J lπ for 0 ≤ l < k. The bundle E∞ is the projective

limit of Ek with respect to projections πi+1,i : Ei+1 → Ei.
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The dual bundle E∗ = {E∗k} allows to characterise involutivity as follows: the system E is
compatible (involutive) iff Γ(E∗k ) are projective C∞(M)-modules and π∗i+1,i are injective. Com-
patibility complex is related to projective resolution of the module Γ(E∗∞), but it is more conve-
nient to construct this at the symbolic level.

At a point x ∈ M the symbol sequence of E is gk = Ker(dπk,k−1 : TxEk → TxEk−1) ⊂
SkT ∗xM ⊗ π. The dual (over R) sequence determines the module ME = ⊕g∗k over the algebra
R = ST = ⊕∞i=0S

iTxM of homogeneous polynomials on T ∗xM , called the symbolic module of E .
Since localisation of a projective module is free, we can construct a minimal free resolution

of this module, where σ∆ is the symbol of ∆, the dual of which defines relations among the
generators of ME , and ψ∗ is the first syzygy (we use ∗ for further convenience):

· · · → R⊗$∗ ψ∗−→ R⊗ ν∗
σ∗∆−→ R⊗ π∗ −→ME → 0. (22)

Applying to this the functor ∗ = HomR(·,R) we get the following exact sequence

0→ g ↪→ ST ∗ ⊗ π σ∆−→ ST ∗ ⊗ ν ψ−→ ST ∗ ⊗$ → . . .

from which we obtain the compatibility condition for E = {∆ = 0} as follows. Let Ψ ∈ Diff(ν,$)
be a differential operator with the symbol ψ at x. Then the compatibility is Ψ ◦∆|E = 0.

More specifically, if the operator ∆ has order k and Ψ has order m (we consider the simplest
case when we have only one order), then Ψ ◦ ∆ has order ≤ k + m − 1 and it should be in
the differential ideal of E , so that Ψ ◦ ∆ = Ξ ◦ ∆ for a differential operator Ξ of order < m.
Modification Ψ 7→ Ψ′ = Ψ − Ξ does not change the symbol and we get what is called the
differential syzygy:

Ψ′ ◦∆ = 0. (23)

This is how algebraic syzygy determines compatibility conditions in the linear case.
For nonlinear equations, apply the linearisation operator on a solution instead of ∆. Its

symbol again leads to a syzygy, from which we deduce compatibility operators; in this case
however Ψ is an operator in total derivatives. Differential syzygy (23), considered as a differential
corollary of E , yields the complete compatibility condition for this system.

A.2 Application to involutive GL(2,R) structures

Let us indicate how to construct the syzygy ψ corresponding to system (6)-(7). In this case the
order of the system is k = 2 and the order of the syzygy will be m = 1.

Recall that at fixed point x ∈ M we denote R = R[p1, . . . , pn] = STxM = ⊕∞k=0S
kTxM the

algebra of homogeneous polynomials on T ∗xM . Denote also Rq = R⊗R Rq.
The symbol `E of the nonlinear vector-operator defining E is given by matrix (21), and in

new coordinates ξi = pi
ui

on T ∗xM it has components

`uEijkl
(ξ) = 2 S

(jkl)
(ai − aj)(ak − al)

(
ξiξj + ξkξl

)
,

`vEijkl
(ξ) = − S

(jkl)
(ai − aj)(ak − al)

(
(ai + aj)ξiξj + (ak + al)ξkξl

)
,

`uFijkl
(ξ) = − S

(jkl)

(ai − aj)(ak − al)
aiajakal

(
(ai + aj)ξiξj + (ak + al)ξkξl

)
,

`vFijkl
(ξ) = 2 S

(jkl)
(ai − aj)(ak − al)

( ξiξj
akal

+
ξkξl
aiaj

)
,
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in the basis eu, ev of R2 and basis eEijkl
, eFijkl

of R2(n−2
2 ), where due to relations (18) we restrict

to indices i = 1, j = 2, 2 < k < l ≤ n. This means that the homomorphism `E maps f(ξ)eu to
f(ξ)

∑
k<l(`

u
E12kl

(ξ)eE12kl
+ `uF12kl

(ξ)eF12kl
) and similarly for h(ξ)ev.

Now we resolve `E by a homomorphism C = CE . For w =
∑

i<j(wE12ijeE12ij + wF12ijeF12ij )
the image C(ξ)(w) has the following components (2 < i < j < k ≤ n):

CIijk = S
(ijk)

(
(a2 − ak)ξ1 + (ak − a1)ξ2 + (a1 − a2)ξk

)
wE12ij ,

CIIijk = S
(ijk)

[(
(a1 − a2)(a2 − ak)a1ξ1 + (a2 − a1)(a1 − ak)a2ξ2

+ ((a2 − ak)2a1 + (a1 − ak)2a2)ξk
)
wE12ij + 2a1a2aiaj(a1 − ak)(a2 − ak)ξkwF12ij

]
,

CIIIijk = S
(ijk)

[
2(a1 − ak)(a2 − ak)ξkwE12ij +

(
(a1 − a2)(a2 − ak)a1ξ1

+ (a2 − a1)(a1 − ak)a2ξ2 + ((a2 − ak)2a1 + (a1 − ak)2a2)ξk
)
aiajwF12ij

]
,

CIVijk = S
(ijk)

(
(a2 − ak)a2

1ξ1 + (ak − a1)a2
2ξ2 + (a1 − a2)a2

kξk
)
aiajwF12ij .

One verifies that with these homomorphisms the following sequence is exact:

R2 `E−→ R2(n−2
2 ) CE−→ R4(n−2

3 ). (24)

In other words, CE is the first syzygy for the moduleM?
E = Ker(`E) = HomR(ME ,R). Therefore,

the differential syzygies (23) for E given by system (6)-(7) are enumerated by 5 different indices
(12ijk), 2 < i < j < k ≤ n. Consequently to verify compatibility conditions for each of
these 5-tuples one can work in the corresponding 5-dimensional space, and this justifies the key
argument used in the proof of part (b) of Theorem 2.

A.3 Constructing the minimal free resolution

The higher syzygies resolve the dual M?
E of the symbolic module as follows. Let us recall a

construction from the commutative algebra adapted to our situation. For a homomorphism
ϕ : Rn−2 → R2 the following sequence is known as the Eagon-Northcott complex [15, Appendix
A2] (all tensor products are over R, and ? is the dualisation over R)

· · · → S3R?2 ⊗ Λ5Rn−2 ∂−→ S2R?2 ⊗ Λ4Rn−2 ∂−→ R?2 ⊗ Λ3Rn−2 ∂−→ Λ2Rn−2 ε−→ R.

Here ε = Λ2ϕ and the differential ∂ is the following composition, in which δ is the Spencer
differential and > is the Hodge dual via a volume form:

Sd+1R?2 ⊗ Λd+3Rn−2 δ⊗>−→ SdR?2 ⊗R?2 ⊗ Λn−d−5R?(n−2) 1⊗ϕ?⊗1−→

SdR?2 ⊗R?(n−2) ⊗ Λn−d−5R?(n−2) 1⊗∧−→ SdR?2 ⊗ Λn−d−4R?(n−2) 1⊗>−→ SdR?2 ⊗ Λd+2Rn−2.

The Eagon-Northcott complex is exact when the Fitting ideal I(ϕ), obtained by taking all 2× 2
determinants of the matrix of ϕ, contains a regular sequence of length (n− 3).

For the system E that we study the map `E can be split. Indeed, one easily checks that

`E(eu) and `E(ev) in sequence (24) generate two complementary submodules Λ2Rn−2 ⊂ R2(n−2
2 ).
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Therefore this splitting generates two copies of the ?-dual Eagon-Northcott complex (in partic-
ular C?E is the doubling of the first differential ∂) implying the following resolution of the ?-dual
symbolic module, i.e. dualisation of (22) over R for E given by system (6)-(7) is

0→M?
E → R2 `E−→ R2 ⊗ Λ2Rn−2 CE−→ R?2 ⊗R2 ⊗ Λ3Rn−2 ∂?−→ S2R?2 ⊗R2 ⊗ Λ4Rn−2 → . . .

The Fitting condition mentioned above follows from the fact that the zero set of I(`E) is the
tangential variety to the rational normal curve (see the initial steps of the proof of Theorem 2)
that has codimension n− 3.

The claim that only 5-tuples of distinct indices enter the compatibility conditions can be
visualised in terms of the above complex as follows: the factor Λ3Rn−2 in the space of compati-
bility conditions refers to triples of indices (ijk) that yield the equations E12ij , E12jk, E12ki and
F12ij , F12jk, F12ki. For each such 5-tuple (12ijk) the number of compatibility conditions is four,
which equals the rank of the factor R∗2 ⊗R2.

It is not surprising that the Eagon-Northcott complex arises in our study since it is used to
show that the ideal of a rational normal curve is Cohen-Macaulay [15, A2.19].

B Canonical connections for integrable PDEs

In this section we calculate Christoffel’s symbols of the canonical connections associated with
4D examples of Section 2. This provides explicit formulae for involutive GL(2,R) structures and
the associated connections parametrised by solutions of dispersionless integrable systems (exact
solutions can be constructed by the method of hydrodynamic reductions [16]).

In all cases, totally geodesic α-manifolds are projections of integral manifolds of commuting
vector fields from the dispersionless Lax representation. These computations together with the
corresponding higher-dimensional (5D etc) counterparts (not included here) were performed in
Maple’s DifferentialGeometry package (see arXiv:1607.01966v2).

Note that in the 4D cases considered here the normal connections coincide with totally
geodesic ones; in higher dimensions the totally geodesic connection does not exist for dKP and
Adler-Shabat hierarchies (the normal connection exists), while for the universal hierarchy it
exists and coincides with the normal connection.

B.1 Connections associated with the dKP hierarchy

We use the notation (x1, x2, x3, x4) = (x, y, t, z), note that Γijk 6= Γikj in general. Not listed

Christoffel symbols are zero (unless the connection is torsion-free, in which case Γijk = Γikj).

Torsion-free GL(2,R) connection is given by

Γ1
13 = u11, Γ1

14 = u12, Γ2
14 = 2u11, Γ1

22 = 4
9u11, Γ1

23 = u12, Γ2
23 = 8

9u11,

Γ1
24 = 13

9 u22 − 4
9u13, Γ2

24 = 2u12, Γ3
24 = 4

3u11, Γ1
33 = 11

9 u13 − 2
9u22,

Γ2
33 = 2u12, Γ3

33 = 7
9u11, Γ1

34 = 2u23 − u14 + 4
3u2u11, Γ2

34 = 22
9 u13 − 4

9u22,

Γ3
34 = 3u12, Γ4

34 = 2
3u11, Γ1

44 = u33 + 32
9 u1u22 − 41

9 u1u13 − 2u2u12,

Γ2
44 = 4u23 − 2u14 + 6u2u11, Γ3

44 = 16
3 u13 − 7

3u22, Γ4
44 = 4u12.
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Normal (totally geodesic) GL(2,R) connection with trace-free torsion is given by

Γ1
13 = u11, Γ1

14 = u12, Γ2
14 = 2u11, Γ1

22 = u11, Γ1
23 = u12, Γ2

23 = 2u11,

Γ1
24 = 2u22 − u13, Γ2

24 = 2u12, Γ3
24 = 3u11, Γ1

31 = −2
3u11, Γ1

32 = u12,

Γ2
32 = 1

3u11, Γ1
33 = 2u22 − u13, Γ2

33 = 2u12, Γ3
33 = 4

3u11, Γ2
34 = 4u22 − 2u13,

Γ1
34 = 2u23 − u14 − 2u2u11, Γ3

34 = 3u12, Γ4
34 = 7

3u11, Γ1
41 = u12, Γ2

41 = −3u11,

Γ1
42 = 4u13 − 3u22, Γ2

42 = 2u12, Γ3
42 = −2u11, Γ1

43 = 2u23 − u14 + 3u2u11,

Γ2
43 = 3u13 − u22, Γ3

43 = 3u12, Γ4
43 = −u11, Γ1

44 = 3u33 − u1u13 − 2u24,

Γ2
44 = 4u23 − 2u14 + u2u11, Γ3

44 = 2u13 + u22, Γ4
44 = 4u12.

Totally geodesic projective connection is given by

Γ1
13 = −1

2u11, Γ1
14 = −u12, Γ2

14 = −1
2u11, Γ1

22 = u11, Γ1
23 = u12, Γ2

23 = 1
2u11,

Γ1
24 = 3

2u1u11 + u22, Γ3
24 = 1

2u11, Γ1
33 = u22 − u1u11, Γ2

33 = 2u12,

Γ1
34 = u14 − 2u1u12 − 3

2u2u11, Γ2
34 = 1

2u1u11 + 2u22, Γ3
34 = u12,

Γ1
44 = 2u33 − u1u22 − u2u12 − u24,Γ

2
44 = 2u14 − 4u1u12 − 3u2u11, Γ3

44 = 3u13 − u1u11.

B.2 Connections associated with the universal hierarchy

We again use the notation (x1, x2, x3, x4) = (x, y, t, z), note that Γijk 6= Γikj in general. Not listed

Christoffel symbols are zero (unless the connection is torsion-free, in which case Γijk = Γikj).

Torsion-free GL(2,R) connection is given by

Γ2
11 = −2

3u11, Γ3
11 = −2

3u1u11 − u12, Γ3
21 = −1

3u11,

Γ4
11 = −1

3(2u2
1 + u2)u11 − u1u12 − u13, Γ4

21 = −2
3u1u11 − u12,

Γ2
12 = −8

9u12, Γ2
22 = −4

9u11, Γ3
12 = 1

9u1u12 − 5
9u2u11 − u13,

Γ3
22 = −2

9u1u11 − 7
9u12, Γ3

32 = −2
9u11,

Γ4
12 = 1

9(u2
1 − 7u2)u12 − 1

9(7u1u2 + 3u3)u11 − u14,

Γ4
22 = 1

9u1u12 − 5
9u2u11 − u13, Γ4

32 = −4
9u1u11 − 2

3u12,

Γ3
13 = 1

9(u2
1 + 4u2)u12 − 10

9 u3u11 − u14, Γ3
23 = −1

9(u2
1 + 4u2)u11 − u13,

Γ3
33 = −2

9u1u11 − 5
9u12, Γ3

43 = −1
9u11,

Γ4
13 = 1

9(u3
1 + 4u1u2)u12 − 1

9(u2
1u2 + 5u1u3 + 4u2

2)u11 − u1u14 − 1
3u3u12 − u24,

Γ4
23 = 1

9(u2
1 + 4u2)u12 − 2

3u3u11 − u14, Γ4
33 = −1

9(2u2
1 + 7u2)u11 − 1

9u1u12 − u13,

Γ4
43 = −2

9u1u11 − 1
3u12, Γ4

14 = 1
9(u4

1 + 5u2
1u2 + 6u1u3 + 4u2

2)u12 − u1u24

−1
9(u3

1u2 + u2
1u3 + 4u1u

2
2 + 12u2u3)u11 − (u2

1 + u2)u14 − u34,

Γ4
24 = 1

9(u3
1 + 4u1u2 + 9u3)u12 − 1

9(u2
1u2 − 3u1u3 + 4u2

2)u11 − u1u14 − u24,

Γ4
34 = −1

9u1u22 − 8
9u1u13 + 1

3u2u12 − u23, Γ4
44 = −4

9u
2
1u11 − 4

3u1u12 − u22.
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Normal (totally geodesic) GL(2,R) connection with trace-free torsion is given by

Γ2
11 = Γ3

21 = Γ4
31 = −u11, Γ3

11 = Γ4
21 = −u1u11 − u12,

Γ4
11 = −u2

1u11 − u1u12 − u2u11 − u13, Γ1
12 = Γ2

22 = Γ3
32 = Γ4

42 = −1
3u11,

Γ2
12 = Γ3

22 = Γ4
32 = −u12, Γ3

12 = Γ4
22 = −u2u11 − u13,

Γ4
12 = −u1u2u11 − u2u12 − u3u11 − u14,

Γ1
13 = Γ2

23 = Γ3
33 = Γ4

43 = −1
3u1u11 − 2

3u12, Γ2
13 = Γ3

23 = Γ4
33 = −u13,

Γ3
13 = Γ4

23 = −u3u11 − u14, Γ4
13 = −u1u3u11 − u1u14 − u2u13 − u33,

Γ1
14 = Γ2

24 = Γ3
34 = Γ4

44 = −1
3u

2
1u11 − 1

3u1u12 − 2
3u2u11 − u13,

Γ2
14 = Γ3

24 = Γ4
34 = −u14, Γ3

14 = Γ4
24 = −u1u14 − u24,

Γ4
14 = −u2

1u14 − u1u24 − u2u14 − u34,

note that Γkij = Γk+a
i+a,j , as long as the indices are in the range.

Totally geodesic projective connection is given by

Γ1
12 = Γ2

13 = Γ3
14 = −1

2u11, Γ1
13 = −1

2u1u11, Γ1
14 = −1

2u
2
1u11 − 1

2u1u12 − 1
2u2u11,

Γ2
14 = −1

2u1u11 − 1
2u12, Γ1

22 = −u12, Γ1
23 = −1

2u2u11 − u13,

Γ1
24 = −1

2u1u2u11 − 1
2u2u12 − 1

2u3u11 − u14, Γ2
24 = −1

2u2u11,

Γ3
24 = −1

2u12, Γ1
33 = −u3u11 − u14, Γ2

33 = −u13, Γ3
33 = u12,

Γ1
34 = −1

2u1u3u11 − u1u14 − u24 − 1
2u3u12, Γ2

34 = −1
2u3u11 − u14,

Γ4
34 = 1

2u12, Γ1
44 = −u2

1u14 − u1u24 − u2u14 − u34,

Γ2
44 = −u1u14 − u24, Γ3

44 = −u14, Γ4
44 = u13.

B.3 Connections associated with Adler-Shabat triples

In what follows, i, j, k are pairwise distinct indices taking values 2, 3, 4.

Torsion-free GL(2,R) connection is given by (no summation unless specified):

Γ1
11 = 2

9

(
3Rd −Ra

)
− 1

9

∑
i 6=1

σijkuii, Γ1
1i = 1

3(γjkuij + γkjuik)− 1
9Re,

Γi11 = 1
9(ui − uj)(ui − uk)(γjk(ujj − 4uij) + γkj(ukk − 4uik)),

Γi1i = −2
9Ra −

4
9uii +

1

9

γjk
γji

(ujj − uij) +
1

9

γkj
γki

(ukk − uik) + 5
9(uij + uik),

Γj1i =
1

9

γki
γkj

(
uii − 4uij + 4ujk − ukk

)
, Γ1

ii = −1
9Rf , Γ1

ij = −1
9Rf ,

Γiii = −1
3Re +

σijk + 2

9
(γjkujj + γkjukk) +

2

9

(
γjk − γij + γik −

γijγik
γjk

)
(uij − uik),

Γjii = −γij
9

γki
γkj

(
uii − 4uij + 4ujk − ukk

)
, Γkij =

γij
9

(
uii − 4uik + 4ujk − ujj

)
,

Γiij = −2
3γijRa −

1
9(γjk − 4γij)(ujj + uik) + 1

9(γjk + 5γij)(ukk + uij),

23



where

γij =
1

ui − uj
, σijk =

γij
γik

+
γik
γij

=
ui − uk
ui − uj

+
ui − uj
ui − uk

,

Rd =
∑
i 6=1

(γij + γik)u1i, Re =
∑
i 6=1

(γij + γik)uii, Rf =
∑
i 6=1

γijγikuii.

Normal (totally geodesic) GL(2,R) connection with trace-free torsion is given by

Γ1
11 = 1

3(2Rb −Ra), Γ1
1i = Rc, Γ1

i1 = −1

3

(uii − ujj
ui − uj

+
uii − ukk
ui − uk

+ 5Rc

)
,

Γi1i = 2ukl − 1
3(Ra +Rb), Γii1 = −uii +

ui − uk
uj − uk

uij +
ui − uj
uk − uj

uik,

Γiii = Γ1
i1 +Rc, Γiij =

Rb − uii − 2ujk
ui − uj

,

Γjij =
2uii + ujj − 3uij − uik + ujk

3(ui − uj)
− uii − ukk

3(ui − uk)
,

where

Ra = u22 + u33 + u44, Rb = u23 + u24 + u34,

Rc =
u2u34

(u2 − u3)(u2 − u4)
+

u3u24

(u3 − u2)(u3 − u4)
+

u4u23

(u4 − u2)(u4 − u3)
.

Totally geodesic projective connection is given by

Γi1i = −1
2uii, Γiij =

2uij − uii − ujj
2(ui − uj)

,

recall that Γijk = Γikj , all other Christoffel symbols are zero.
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