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ABSTRACT 

The idea of grid friendly charging is to use electricity from the 

grid to charge batteries when electricity is available in surplus 

and cheap. There are several ways of achieving this, for 

example using droop control, using night time electricity 

tariffs, or using smart metering. The goal is twofold: to avoid 

putting additional load on the electricity grid and power 

generation, and to reduce the cost to the consumer.  

This paper looks at the saving potential when charging an 

electric car using real time tariffs provided by a smart meter, 

using the Ameren tariffs in Illinois as an example. If prices are 

known in advance (day-ahead pricing), the optimization only 

requires picking the cheapest time slots for charging the 

battery. Further savings can be made by using real time prices 

that are not known in advance, but the optimization problem 

then depends on price prediction models, and it becomes much 

more difficult to solve. This paper presents a simple 

suboptimal approach, and it quantifies the potential 

improvements that could be made using more sophisticated 

price predictions.  

The result is that cost savings in the order of about 50 USD 

(1/3 of the electricity costs) are feasible if a fast charger is 

used using real time pricing. The scale of the savings is such 

that complex optimization strategies are not worthwhile, and 

for the foreseeable future simple solutions are expected to be 

more cost effective.  

INTRODUCTION 

The power and transport sectors are the first and second 

largest sources of global greenhouse gas (GHG) emissions. 

The transport sector contributions to both emissions and 

energy use are growing quickly by the year and World Energy 

Outlook projections predict that they will overtake the power 

sector by 2035 [1][2]. In 2007, the road transport sector 

accounted for 71% of the total emissions attributed to the 

sector as a whole, with 63% of them generated by passenger 

cars [3]. The world community has set ambitious targets for 

GHG reduction in the future and many countries (especially 

the developed nations) have registered emission reduction 

targets or commitments to the actions by 2020. As an 

example, the European Union’s (EU) ambitious target is set 

for 2020 to reduce GHG emissions by at least 20%, improve 

energy efficiency by 20% and ensure the contribution of 

renewable energy sources in gross energy consumption is 20% 

[4].  

Electric Vehicles 

The problem of climate change has been demanding cleaner 

and more energy-efficient powertrains, for over two decades. 

However, the recent route towards ‘greener environment’ 

policies has brought electric vehicles (EV) to attention and EV 

research to the forefront of many original equipment 

manufacturers’ (OEM) future plans.  

1. Hybrid electric vehicles (HEV) are a combination of the 

typical internal combustion engine (ICE) and a battery 

electric vehicle (BEV), with the electric motor supplying 

auxiliary power when the ICE is not in use. The ICE is 

able to recharge the batteries when the EV is not in use 

and the on board computer manages the correct mix of 

electric and fuel power depending on the engine and 

battery power available. The ICE essentially works as a 

range extender while the urban battery use reduces overall 

emissions. 

2. BEVs are purely battery powered and use a motor or 

combination of motors to drive the vehicle. BEVs suffer 

from limited driving range because of battery limits. 

However, research in battery technology is rigorous in the 

current environment and is bringing many improvements 

in range and battery life. Currently, lithium-ion (Li-ion) 

batteries are the most promising battery technology with 

the ability to store significantly more electricity in much 

lighter cell packs. 

3. Plug-in hybrid vehicles (PHEV) combine the advantages 

of the HEV and BEV. They work in two modes: fully 

electric or hybrid. The ICE can facilitate the drive or 

function individually, just like the BEV. The other 

advantage this technology has is that it can be charged 

using a wall socket just like BEVs thus being able to have 

electric power for most urban trips without engaging the 

ICE at all. Currently, the pure electric drive mileage of 
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PHEVs is limited to 10 and 60 miles depending on battery 

size.  

HEV have been mildly successful in the past decade with the 

major producer, Toyota (Prius) selling 2 million units by 2009. 

Whilst it is widely accepted that market forces alone have not 

been able to make the EV a first choice for many consumers; 

government policy support, research to make EVs less 

expensive and economy improvement will improve their 

market significantly [5][6]. The barriers in EV penetration into 

the main market have been limited driving range and high cost 

of electric technology. Although, electric driving ranges are 

limited for all three HEV, PHEV and BEVs; surveys have 

indicated that 47-55% of single vehicle usage in a single day is 

less than 20 miles, with 82-88% of vehicles travelling less 

than 60 miles [7]. Kang and Recker’s 2009 [7] study 

concludes that it is possible to convert between 80% to 90% of 

daily mileage to electric when using PHEV with a 60 mile 

range in California; under the condition that both home and 

public place charging stations are in use. These numbers 

indicate that EVs are more feasible than previously thought. 

JP Morgan performed a study in 2009 which forecasted 11.28 

million EVs worldwide by 2020 and 20% of the total cars sold 

in North America [8].  

Impact of Electric Vehicle Penetration 

Although, a change from ICEVs to EVs means a little change 

for consumers in context of refueling patterns; their main 

impact will be that on the already stressed electric grids. The 

batteries of these vehicles require long times and high power 

and currents for charging. For most domestic users, charging 

will take place overnight at their homes. Moreover, the 

tendency to plug the vehicle in as soon as they reach home is 

high. Other typical charging loads could be concentrated in 

office or public car parks depending on the actual use of the 

vehicle during the day. If the consumers charge the vehicles 

after every trip: for example, every time they reach office or a 

supermarket or come home and leave again, this would be of 

even higher concern to electricity peaks. Although, peak load 

times would be different in different parts of the world, 

depending on weather, some kind of load shifting to 

accommodate EV charging may be required.  

The subsequent effect to consider is the logical change to 

electricity generation and retail or wholesale prices in the 

future. The higher peaks, consumption and addition of more 

renewable energy might change the prices in markets 

significantly. In most countries the industrial sectors are on 

wholesale electricity prices- buying electricity at lower rates 

during off-peak hours. There is a possibility for such ‘spot-

markets’ even for domestic electricity consumers as is case in 

Portugal, Germany, some parts of continental Europe and a 

few states in the USA. In such markets, the consumers are 

encouraged to shift their electricity usage to off-peak hours 

through high-price updates/alerts either hourly or daily. 

Advances in ‘Smart-Grid’ technology can allow this elastic 

behavior from households, helping them to reduce costs. The 

meter records hourly consumption and also alerts the 

consumers of the latest and future prices. This essentially ties 

in with the idea of ‘Real-Time Pricing (RTP)’ where prices 

change on an hourly basis as mentioned before. The smart-

grid technology includes communication devices which allow 

real time consumption checking and communication to and 

from the consumers’ meter. The smart grid is being promoted 

and provided to consumers in the U.S.A. for some time now. 

Electric utility providers in California, Colorado, Florida, 

Illinois, Indiana, Ohio, Texas, Washington and some other 

states have already been introducing smart grids to many 

customers. There is also a strong financial incentive being 

provided for both smart grid research and introduction via the 

Energy Independence Act of 2007 and the US Stimulus 

Package of 2009 [9]. This strongly indicates that smart grids 

and RTP are the future of electric pricing and management. 

The state of Illinois is a good example where RTP has been 

available to customers since 2003. The RTP programs have 

been successful in reducing the participating consumers’ 

electric usage and bills and shifting usage to non-peak times of 

the day [10]. The two electricity providers which allow the 

choice of RTP are Amaren and ComEd. Amaren’s Power 

Smart Pricing (PSP) and ComEd’s Residential Real Time 

Pricing (RRTP) programs have reduced their peak demand in 

the range of 15% and achieved participant bill savings 

between 10-15% [10]. 

The above discussion shows that there are two problems to 

consider when EV penetration becomes high in the future. 

Firstly, it will be important to manage the electricity loads and 

peak demands due to user profile of EV charging. Some load 

may have to be shifted from peak afternoon and evening times 

in some manner either by persuading or enforcing the 

consumer to charge earlier or later. Secondly, charging the 

vehicle without control might also be a disadvantage for the 

consumer due to the possibility of a future with RTP for 

electricity. However both these problems can be looked as an 

opportunity for EVs. The flexibility of charging time can be 

looked as an advantage for load shifting opportunities and the 

daily mileage being enough for urban travel means times of 

charging can be varied. When smart-grid infrastructure is in 

place in the future, communication with it can not only allow 

automatic flexible charging but can also be used to provide 

electricity from the vehicle to grid (V2G).V2G technology can 

level any load fluctuations by supporting the grid and gives 

the opportunity to sell surplus electricity in the EV to national 

grids). Flexible charging by smart-grid communication can 

allow future EVs to access RTP for electricity and charge for 

the lowest cost. 

Finally, the charging of electric vehicles has impact on the 

electricity grid on a number of time scales, ranging from the 

millisecond range to hours and days. The potential is there for 

all these effects to be beneficial to the grid: active inverters 

can absorb harmonics, they can apply droop control to 

enhance grid stability, and they can pick times for charging 

when excess electricity is available. However, very little 

progress has been made towards these goals so far, and 
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regulations often only aim to prevent harmful effects, not to 

leverage potential benefits. This paper concentrates on the 

slow time scale, and what kind of effects smart metering has 

on the optimal charging timing.  

Table 1: Grid Effects by Timescale 

Time Scale Significance Function Advantage 

Very Fast 

0.1-10ms 

Harmonics 

and Noise 

Absorbs 

Disturbances 

Improves 

Local Power 

Quality 

Medium  

0.1-10s 

Grid 

Frequency 

Stability 

Droop 

Control 

Supports 

Grid 

Long  

0.1-10h 

Battery 

Charge and 

Electricity 

Prices 

Cost 

Optimisation 

Reduces 

Charge Cost 

 

LITERATURE REVIEW 

Studies on the effect of EV penetration to the electricity grid 

date back to the 1980s. In [11], Heydt discusses the effects on 

and of electric load management due to EV penetration. The 

study concludes that it is likely that charging will occur at 

peak demand times and some form of load management must 

be introduced to manage the additional EV charging load. 

Webster’s review of electric infrastructure in the UK [12] 

concludes that in case of high EV penetration, it is likely that 

battery recharging times will coincide with peak electricity 

demand. Measures must be taken to avoid this although the 

electric networks can cope with the additional load. Both these 

authors consider the user profiles to be of primary impact on 

recharging times. In a much more recent study, Camus et al. 

[13] simulate a 2020 scenario of 2 million EVs in the 

Portuguese spot electricity market, considering different mixes 

of renewable power generation. They conclude that with low 

renewables and high cost, charging of EVs during peak times 

can lead to electricity prices of 17 Euro cents/KWh. This can 

be brought down to 7 Euro cents/KWh with off-peak charging 

and with higher renewables and low general costs, down to 5.6 

Euro cents/KWh. Mahalik et al. [14] performed a simulation 

to realize EV impacts on the Illinois grid in 2020 and 

concluded that on-peak uncontrolled charging would require 

an additional 400 MW unit to support the state’s reserve 

margin. If off-peak and controlled charging is facilitated, no 

additional supporting grid would be needed. The additional 

electricity required could be provided by reducing the 

electricity exports Illinois makes. All the above research 

recognizes the problems related to on-peak charging in a high 

EV penetration scenario but no mathematical formulations are 

presented for optimal charging.  

Acha et al. [15] present a time coordinated optimal power flow 

(TCOPF) tool for distribution networks to decide on load 

control approaches for EVs in the future. The algorithms 

concentrate on showing different charging strategies to the 

electricity providers to see how they may have to change 

energy production to reduce carbon emissions and cost. They 

conclude for the UK context that, UK will need to introduce 

more renewables or non-carbon fuel mix to offset costs and 

emissions for high EV charging scenarios. Kristoffersen et al. 

[16] use a linear regression to minimize charging costs based 

on the Danish (Norpool) electricity market prices. The study 

made the assumption of an EV fleet controller who managed 

the participation of EVs during charging or providing 

electricity to the grid, based on fleet driving patterns and 

electricity prices. They concluded that EV driving patterns and 

hence charging time is highly flexible during the day but not 

from day to day. In [17], Rotering and Ilic present two time-

discrete algorithms for optimal charging; one considering only 

minimizing cost and the other also taking into account V2G 

support. The perform a case study based on the California day 

ahead electricity price market and conclude that optimal/smart 

charge reduces the charging cost from 0.43 USD to 0.2 USD 

daily. In case of V2G support, the profit amounts to 1.71 USD 

including charging.  

The following paper presents a study on an optimal charging 

algorithm for future EVs which considers battery charging in a 

spot or real-time electricity market. The idea is to 

automatically manage the charging time once the vehicle is 

plugged in to provide a full charge when required but at the 

lowest cost. This means that the charging would be shifted to 

off-peak hours when the price is lower. The subsequent 

advantage of this can be to the grid in a way of load shifting. 

Firstly the optimal charging problem is explored based on 

time-discrete solution and then variability is introduced with 

the assumption that there might be power reduction at peak 

times. Secondly, the implication of introducing dynamics in 

the optimal solution achieved is looked at in the context of the 

unpredictability of the actual electric prices. A stochastic 

approach is discussed for the solution of the dynamic problem. 

Lastly, the example of Illinois RTP is taken and a possible 

scenario and case study for optimal charging is shown. 

THE BASIC OPTIMAL CHARGING 

PROBLEM 

A highly abstracted version of the optimal charging problem 

will be introduced first because this leads to a very simple 

solution that lends itself well to both implementation and 

further analysis. Additional details will be added and 

discussed afterwards.  

The basic optimal charging problem is defined in discrete time 

with step size 𝑇. It has one control variable: the charging 

power 𝑝𝑘. The power is subject to two constraints: it cannot be 

negative and there is a constant maximum power 𝑝 such 

that 𝑝𝑘 ∈ [0, 𝑝].  



Page 4 of 13 

 

The behavior of the system is determined by two separate 

dynamics: the battery state and the total cost. Both accumulate 

(integrate) over time and the only difference is the coefficient.  

The battery state 𝐸𝑘 is an integral of the charge power over 

time:  

𝐸𝑘+1 = 𝐸𝑘 + 𝑇𝑝𝑘 , (1) 
assuming that the self-discharge and charging losses are 

negligible. 

The total cost 𝐶𝑘 is also an integral of the charge power but 

weighted by the current electricity price:  

𝐶𝑘+1 = 𝐶𝑘 + 𝑇𝑐𝑘𝑝𝑘 , (2) 
where 𝑐𝑘 denotes the electricity price and 𝐶0 = 0. The price is 

a disturbance for the system, for now it is assumed that it is 

known in advance, which simplifies the problem significantly. 

The total number of steps 𝑙 to consider with 𝑘 = 0… 𝑙 is also 

defined in advance.  

Definition 1: The basic optimal charging problem. 

The basic optimal charging problem is defined by the cost 

function 𝐽 = 𝐶𝑙 representing the total electricity cost and the 

boundary condition 𝐸𝑙 = 𝐸𝑓𝑢𝑙𝑙 , which requires the battery to 

be fully charged at the end of the charging process.  

Because no discharge is allowed, it is not necessary to impose 

limits on the charge state 𝐸𝑘, as it is already bounded by 𝐸0 

and 𝐸𝑓𝑢𝑙𝑙 . 

The advantage of using this simple model is that the final state 

and cost can easily be calculated as: 

𝐸𝑙 = 𝐸0 + ∑ 𝑇𝑝𝑘
𝑘=0…𝑙−1

  (3𝑎) 

𝐶𝑙 = ∑ 𝑇𝑐𝑘𝑝𝑘
𝑘=0…𝑙−1

        (3𝑏) 

Lemma: 

The solution to basic optimal charging problem is  

𝑝𝑘
∗ = {

0, 𝑐𝑘 > 𝑐′

𝑝′, 𝑐𝑘 = 𝑐′

𝑝, 𝑐𝑘 < 𝑐
′ 

     (4) 

The threshold price 𝑐′ is one of the prices 𝑐𝑘 and the threshold 

charging power 𝑝′ can be found from the boundary condition 

using a linear equation. There may be more than one solution 

if several time steps have the same price 𝑐𝑘 = 𝑐𝑘′ = 𝑐
′ and for 

now it is assumed that is not the case.  

Proof: 

The proof has two parts. The first step is to demonstrate that 

the presented from is an admissible solution to the problem 

and the second is to show that it is indeed the/an optimal 

solution.  

With the given control law, the final charge state 𝐸𝑙  is a 

function the initial state 𝐸0, the threshold charging power 𝑝′ 
and the number of full charging cycles 𝑛 that satisfy 𝑐𝑘 < 𝑐’. 
As long as 𝐸𝑙 ≥ 𝐸0 and 𝐸𝑙 ≤ 𝐸0 + 𝑙𝑇𝑝, the problem has a 

solution.  

Assuming that the prices are different at each time step, there 

is exactly one solution, which is given by the following two 

equations:  

𝑛 = floor 
𝐸𝑙 − 𝐸0
𝑇𝑝

  (5𝑎) 

𝑝′ =
𝐸𝑙 − 𝐸0
𝑇

− 𝑛𝑝  (5𝑏) 

This solution is not just admissible but also optimal because 

any deviation from this solution within the charging power 

limits leads to a higher cost. In order to maintain the same 

final charge state 𝐶𝑙, an alternate solution needs to be 

decreased the charging power at some time step 𝑝𝑖 = 𝑝𝑖
∗  −

Δ𝑝, and increased it at another 𝑝𝑗 = 𝑝𝑗
∗ + Δ 𝑝. This maintains 

the same integral and therefore satisfies the boundary 

condition. But increases are only admissible when 𝑝𝑗 < 𝑝 , 

and decreases only when 𝑝𝑖 > 0. It follows that 𝑐𝑖 ≤ 𝑐’ ≤  𝑐𝑗, 

and therefore the net effect is an increase of charging cost by 

Δ𝐽 = 𝑇(𝑐𝑗 − 𝑐𝑖)Δ𝑝. (qed) 

VARIATIONS OF THE BASIC 

CHARGING PROBLEM 

There are several extensions that can be made to make this 

problem more applicable. This section will list a number of 

variations that lead to essentially similar solutions. The basic 

approach is that the variation is converted back into the 

original form of the problem, so the same simple solution 

algorithm can be used. 

Varying Charge Power Limit 

The amount of available charging power 𝑝 may change over 

time, for example to do electricity use restrictions at peak load 

periods. This means a new time series 𝑝
𝑘
 has to be introduced. 

The closed formulation of the optimal solution is no longer 

applicable but a simple iterative algorithm can still find the 

best solution. The proof applies appropriately.  

Algorithm 1:  

1. Determine the required energy 𝐸𝑙 − 𝐸0 

2. Sort the costs 𝑐𝑘 
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3. Iterate starting from the lowest cost: add up the 

energy per time step 𝑐𝑘𝑝𝑘𝑇 until the required energy 

is exceeded. 

4. Reduce the power 𝑝′ for the last time step as required. 

Self-Discharge and Losses 

It is reasonable to assume that the charging efficiency is less 

than 100% and that the battery loses a certain part of its 

charge every time step. In general this leads to a new battery 

model:  

𝐸𝑘+1 = 𝛼𝐸𝑘 − 𝛽 + 𝛾𝑇𝑝𝑘 , (6) 

where 1 − 𝛼 is the relative discharge coefficient for each time 

step, 𝛽 is the absolute discharge energy per time step and 𝛾 is 

the charging efficiency. This changes the battery state of 

charge calculation to: 

𝐸𝑙 = 𝛼
𝑙𝐸0 − 𝛽 ∑ 𝛼𝑘

𝑘=0…𝑙−1

+ 𝛾 ∑ 𝛼𝑙−𝑘−1𝑇𝑝𝑘
𝑘=0…𝑙−1

 

A simple input transformation with 𝑝𝑘
′ =

𝑝𝑘

𝛼𝑙−𝑘−1
 and  

𝐸0
′ = 𝛼𝑙𝐸0 − 𝛽 ∑ 𝛼𝑘

𝑘=0…𝑙−1

 

can turn this new problem back into the problem discussed 

above. The transformation also applies to the charge power 

limit, which will therefore be time varying. The inverse 

transformation can be used to find the solution.  

Penalty on Final State of Charge 

Instead of making the final state of charge a fixed boundary 

condition, it is also possible to leave it variable but apply a 

cost penalty to any difference from the goal state. This would 

leak to an additional cost term  

 𝐽penalty = 𝜆(𝐸𝑙 − 𝐸Goal)     (7)  

Again this new problem can easily be converted into the 

problem formulation above by adding an additional time step 

at the end where further charging at a cost equivalent to 𝜆 is 

available to satisfy the original boundary condition.  

Resistive Losses 

Resistive losses within the battery (and the electricity supply) 

can be the dominating factor for charging losses. These 

resistive losses are proportional to the square of the current, 

which is approximately proportional to the square of the 

charging power:  

𝑝𝑖𝑛 = 𝑝𝑜𝑢𝑡 + 𝑅𝑝𝑜𝑢𝑡
2       (8) 

where 𝑅 is the resistance normalized for the charging power. 

In terms of the optimization problem, the losses can be 

included either in the power going into the battery or in the 

cost of the electricity, depending on whether 𝑝𝑖𝑛  or 𝑝𝑜𝑢𝑡  is the 

wanted variable. The latter produces an easier problem 

definition:  

𝐶𝑘+1 = 𝐶𝑘 + 𝑇𝑐𝑘(𝑝𝑘 + 𝑅𝑝𝑘
2)    (9) 

The solution to this extended problem lies in finding the 

admissible charge power inputs with the same differential cost 
𝜕𝐽

𝜕𝑝𝑘
= 𝑐𝑘(1 + 2𝑅𝑝𝑘). This cost should be equal to the 

threshold cost 𝑐′. The equation can be solved for the charging 

power 𝑝𝑘 =
𝑐′−𝑐𝑘

2𝑅𝑐𝑘
 , leading to the new control law:  

𝑝𝑘
∗ =

{
 

 
0, 𝑐𝑘 > 𝑐′

𝑐′ − 𝑐𝑘
2𝑅𝑐𝑘

, 𝑐𝑘 < 𝑐
′and

𝑐′ − 𝑐𝑘
2𝑅𝑐𝑘

< 𝑝

𝑝, otherwise            

      (10) 

Finding 𝑐′ is more difficult now, because it is no longer equal 

to one of the 𝑐𝑘. Since the boundary condition 𝐸𝑙  is a 

monotonous function of 𝑐′, it can be found using an iterative 

algorithm performing interval bisection.  

Allowing Discharge 

From the global perspective of grid stability, it would be 

desirable that a charging car feeds back electricity into the grid 

at times of high demand. Given the losses and regulatory 

difficulties involved this may not be an easy or profitable 

application to set up. Still, in exceptional circumstances (such 

as a grid in danger of collapse due to an unexpected electricity 

shortage), it would be advisable to do so.  

In a way, formulating this new problem is as easy as extending 

the admissible values for charging power to negative values: 

𝑝𝑘 ∈ [𝑝, 𝑝]. Given some boundary conditions, this formulation 

is sufficient to find an admissible solution.  

However, this problem formulation is missing an essential 

constraint: the lower limit of the battery state of charge. It was 

not previously relevant, but it could be violated by discharging 

an already empty battery. Another complicating factor is that 

the reward for feeding electricity back into the grid is different 

from the cost of taking electricity out of it – this is due to 

distribution charges and efficiencies.  

For these reasons, the introduction of battery discharge breaks 

the temporal symmetry of the problem, and this leads directly 

to the more complex formulation detailed below.  

THE DYNAMIC CHARGING 

PROBLEM 

Once process dynamics and the order of events have been 

taken into account, the charging problem becomes a lot more 
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complex. The simple solution above was only possible 

because the order of steps did not matter, and this temporal 

symmetry lead to a simple optimal control law.  

Without the temporal symmetry, the problem is similar to a 

model predictive control (MPC) problem, and depending on 

the assumption it can be linear, stochastic, or even non-linear. 

While standard solutions are available for the linear case, 

these do not apply to the stochastic or the non-linear case. The 

differences will be explained using a few typical problem 

formulations. 

Allowing Discharge 

As discussed above, allowing discharge seems like a trivial 

extension, but it requires the introduction of a state limit on 

the battery state of charge:  

𝐸𝑘 ∈ [0, 𝐸full] 

This leads to a standard MPC problem. Typical solutions 

involve a discrete optimization to identify the time steps where 

limits apply.  

Stochastic Prices 

Real time electricity prices can change unexpectedly, so the 

assumption that they are known in advance is not a very 

practical one. A more realistic model uses a stochastic process 

to describe future prices. A standard first order linear process 

has this form where 𝑧𝑘  is an uncorrelated random variable 

with normal distribution. 

𝑐𝑘+1 = 𝑎1𝑐𝑘 + 𝑏1𝑧𝑘 + 𝑏0 

𝐸〈𝑧𝑘〉 = 0 
𝐸〈𝑧𝑘

2〉 = 1   

The optimal solution, defined as providing the lowest expected 

cost 𝐸〈𝐽〉, is very difficult to find. The standard MPC approach 

does not apply because the applicability of limits is no longer 

a discrete decision, but a stochastic event. The limits then turn 

the Gaussian probability distributions into piecewise Gaussian 

distributions, which are difficult to handle numerically. 

This problem is of a much more complicated nature, because it 

asks the basic question whether it is better to charge at current 

electricity prices, or to wait for them to fall. The central 

question “are prices going up or down?” lies at the heart of 

economic markets and market theory, and it cannot be 

answered with certainty.  

Typical solutions will be based on the Hamilton-Jacobi-

Bellman equation, which traces the expected cost based on a 

stochastic pricing model. Approximating and solving this 

equation is numerically challenging and it may not be 

practically feasible with any degree of accuracy. Theoretical 

advances are being made in a number of fields. Model 

Predictive Control (MPC) with stochastic weight models can 

be used [18] (most stochastic MPC approaches will consider 

only stochastic limits, not weights). On the other hand 

dynamic programming (usually involving quantization) and 

mixed integer algorithms can help to find the expected cost 

benefit of charging at specific times [19]. Finally there are a 

number of industry specific approaches coming from 

operations research, that deal with the question of optimal load 

shifting and scheduling using a limited capacity [20][21]. 

However, the complexity is significant, and while such 

approaches may be worthwhile for the management of large 

storage elements such as pumped-storage hydroelectric 

machines, they are not suitable for domestic applications at 

this point.  

There is another interesting avenue: suboptimal solutions. 

Given that the price model is at best a simplification of the 

real market behavior, the problem formulation is not expected 

to be exact and there is little point in finding the optimal 

solution. Instead, a suboptimal approach offers the potential 

for a solution that is much easier to find and delivers most of 

the benefits of the optimal solution. There is a trade-off 

between computational complexity and error, and further 

studies are required to analyze this trade-off.  

Charge Dependency 

The last important class of extensions deals with charge 

dependent aspects. For example, a battery may age faster 

when fully charged or discharged, and this could be 

formulated as an additional non-linear cost term. Also the self-

discharge is typically higher at very high state of charge. Apart 

from breaking the temporal symmetry because of the state 

dependency, these issues also make the problem non-linear.  

Non-linear MPC offers a way of solving this problem by using 

piece-wise linear functions to approximate the non-linearities, 

standard methods are again applicable.  

APPLICATION EXAMPLE: SMART 

METERS IN ILLINOIS 

Smart Meters 

Smart meters are being rolled out in several places in the 

world, for example in Holland, Germany, and in the State of 

Illinois. Instead of the fixed tariff used by a conventional 

meter, smart meters can deal with frequently changing tariffs. 

Typically the cost of electricity charged changes every hour or 

half an hour, and the electricity company communicates either 

the current tariff or the expected tariff development for the 

next day to the customer. 

The reason for introducing smart meters is that they encourage 

load shifting. This means that customers can move electricity 
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intensive activities into periods where electricity is cheap and 

plentiful. This reduces the strain on the electricity grid both in 

terms of distribution and in terms of generation. 

Once a significant share of electricity is generated from 

(generally uncontrollable) renewable sources, load shifting 

will be an important measure needed to align generation and 

consumption. However, little is known about consumer 

behavior.  It is unclear whether small incentives are sufficient 

to change behavior in any significant way and it is also unclear 

whether there is a business case for automatic solutions.  

This study tries to answer the second question, by calculating 

the potential benefit of a smart charging strategy for an 

electric vehicle in combination with a smart meter in Illinois.  

Assumptions 

The case study assumes a typical electric vehicle that is being 

used for a regular commute to work during the week and for 

reduced driving during the weekend.  

The car is driven to work at 7am and driven back home at 

5pm. Charging is possible at home between 7pm and 7am 

using a smart meter. The electricity is provided by Ameren, 

and two tariffs are considered: the day-ahead tariff, where 

prices are set at 5pm for the following day and real time 

pricing. The prices for Ameren Illinois Zone have been taken 

from the Ameren web site [22] for the period from September 

1st 2011 to September 1st 2012. These prices exclude the 

distribution cost, which is constant and therefore not relevant 

for comparison purposes.  

Looking at the pricing information from a statistical point of 

view reveals a few surprises as shown in Table 2. First of all 

both the day-ahead price and even more so, the real time price 

become negative at times. The standard deviation of the real-

time price is much higher than the day-ahead price. The 

difference between the day-ahead price and the real-time price 

can be seen as prediction error and interestingly its standard 

deviation is only slightly lower than standard deviation of the 

real-time price. The correlation coefficient between day-ahead 

prices and real time prices is 0.43, which indicates that day-

ahead prices have only moderate value as a prediction of the 

real-time prices. Certainly the latter are much more volatile – 

and therefore more interesting for load shifting.   

Table 2: Statistic Properties of the Prices in cent 

 Mean SD Min Max 

Day-Ahead 2.73 1.04 -0.19 19.81 

Real Time 2.63 2.20 -8.85 107.58 

Difference -0.10 1.99 -13.19 99.19 

In addition, the following assumptions (Table 3) are used for 

the simulation. No specific vehicle is used as a reference, 

since electric vehicles are still at a very early stage. The GM 

Volt and the Nissan Leaf for example both have a smaller 

battery than assumed here (The Nissan Leaf has a battery with 

nominal 24 kWh capacity but not all of that is actually usable.) 

Instead these figures are based on a slightly longer than 

average commute of about 35 miles one way, where the 

savings of an electric vehicle should be more pronounced than 

on a shorter commute.  

Table 3: Assumed Constants 

Constant Symbol Value Unit 

Usable Battery Capacity 𝐸𝑇𝑜𝑡𝑎𝑙  24 kWh 

Weekday Consumption 𝐸𝑊𝐷 16 kWh 

Weekend Consumption 𝐸𝑊𝐸  8 kWh 

Charging Power 𝑃𝑆𝑙𝑜𝑤 2 kW 

Charging Efficiency 𝜂 90 % 

Charging Period 𝑇𝐶ℎ𝑎𝑟𝑔𝑒  12 h 

Charging Strategy 

The charging strategy is based on the basic optimal charging 

problem. The day-ahead prices are used as an indication for 

the electricity prices during the charging period, and the 

cheapest prices are used to charge the battery. The effect of 

this can be seen in Figure 1 – charging takes place during the 

hours of the night when the electricity has its lowest price. The 

detailed Simulink models used to create this simulation can be 

seen in Figure 5 and Figure 6. 

 
Figure 1: Charging Profile Overnight 
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A number of different strategies and assumptions are 

simulated to test the effect on the overall electricity cost. 

RESULTS 

The car uses a total of 4928 kW during the simulated year and 

with the assumed 90% efficiency this means 5476 kW of 

electricity is used from the grid. With a traditional tariff at an 

average electricity price of 2.73 cent per kWh, this would cost 

149.4 USD.  

Charging Strategies 

The first graph compares the impact of the charging strategy 

on the electricity cost. For comparison purposes, two dumb 

strategies are considered first: charging as soon as the car is 

plugged in (“fixed early”), and charging as late as possible 

while still filling the battery before setting off (“fixed late”).  

The optimal strategy implements the selection of the cheapest 

tariffs while still filling the battery before setting off. For this 

purpose, a price prediction horizon of 24h is used, of which 

only the 12h covering the charging period are relevant.   

As a variation, a second strategy looks ahead to the next night 

and decides whether it is cheaper to charge the battery fully or 

to fill the battery only as much as required for the daily 

commute, followed by an expected complete charge during the 

following night. Ideally this requires a prediction horizon 

covering two nights (48h), but this is not actually feasible 

because the prediction only extends to the end of the next day 

(indicated by a star in the graph). Therefore a realistic horizon 

of 31h is also added to the comparison. 

As can be seen in Figure 2, the annual electricity cost of 

charging an electric vehicle is highest when it is charged as 

soon as the owner gets home. Charging late in the morning 

(just in time) is more cost effective. Using an optimal charging 

strategy further reduces the cost and the benefit is increased 

very slightly by extending the prediction horizon.  

Real Time Pricing 

One issue with using day-ahead prices is that while the 

optimization algorithm is very simple, the price prediction is 

not very accurate. There are typically very significant 

differences between the prediction and the real time price of 

electricity, which means that using day-ahead prices is not 

providing the full benefit of load shifting to the individual and 

to the electricity grid.  

As detailed above, the optimal charging problem for stochastic 

prices is both complicated and computational intensive, and no 

attempt is made here to provide an optimal solution. Instead, a 

number of approximations are pursued.  

The first approximation is using the day-ahead price 

information to schedule the charging of the electric vehicle but 

in fact real time prices are used to calculate the cost (“RT 

Rate”). This can be achieved with minimal effort by changing 

electricity tariffs. In this case, the day-ahead price becomes 

effectively a disturbance model for the real time price 

development.  

The second approximation uses the threshold cost 𝑐′ as 

calculated using the day-ahead price information, but it 

compares it to the real time price of electricity to decide 

whether charging takes place or not (“RT Trigger”). Again 

this is simple to implement, although special care needs to be 

taken to ensure that the car always has sufficient charge at the 

beginning of the commute. The simulation does this by 

starting to charge irrespective of price if this is necessary to 

reach sufficient charge.  

The final approximation assumes complete knowledge of real 

time prices ahead of time – otherwise it is identical to the day-

ahead optimization (“RT Optimal”). Obviously this is only 

possible to simulate in retrospect and it is not implementable 

because it uses knowledge of future events. But the simulation 

provides an upper limit for the potential savings possible using 

a price prediction model. It is worth noting that even using a 

optimal model, the savings may be significantly less than this 

upper limit.  

It can be seen in Figure 2 that these algorithms provide 

significant reductions in cost. The more sophisticated the 

algorithm is, the bigger the savings. The effect of real time 

prices is distinctly more pronounced than the effect of 

different prediction horizons discussed before.  

Fast Charging 

All previous simulations are performed with a moderate 

charging power of 2kW, which is approximately the amount 

of power that can be provided by a standard electricity outlet. 

If a smart charger is used, it is reasonable to assume that it will 

be a dedicated fast charging unit, which can provide higher 

power levels. A higher charging power means a shorter 

charging duration and therefore load shifting is expected to 

become more effective.  

To study this effect, charging powers of 2kW, 4kW and 8kW 

are simulated using the charging strategies and pricing 

schemes introduced above. The same charging efficiency is 

assumed for all charging powers, which may not be quite 

realistic depending on battery technology. Although, when the 

infrastructure is advanced enough to support fast charging, the 

realistic powers could be higher than 10kW; it is important to 

remember that higher powers means a tradeoff between 

charging efficiency and price optimization.  

The result shown in Figure 3 paints an interesting picture. First 

of all it is worth noting that fast charging is more expensive, if 
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a bad fixed time charging strategy is being used. This is 

because the cheapest prices are typically found during the 

middle of the night and neither the early nor the late charging 

times make use of them. Especially charging once the vehicle 

is home can get quite expensive. Setting an early morning time 

for the start of charge, for example 3am, provides much better 

results, leading to a cost of approximately 100 USD.  

The next interesting conclusion is that fast charging does 

indeed provide better load shifting and a further reduction in 

electricity costs. The benefit depends on the charging strategy 

but it is in the order of 10 USD or more and it certainly is 

higher than the potential loss of efficiency due to the faster 

charging. Whether it is also high enough to compensate for the 

increased wear of the battery and the investment cost of the 

fast charger remains very much doubtful.  

Finally the difference between the best feasible charging 

strategy (“RT Trigger”) and the retrospect theoretical optimum 

(“RT Optimal”) increases significantly with higher charging 

powers. It is only about 2.5 USD at 2 kW but it increases to 

over 15 USD at 8 kW. This means that fast chargers create 

significant demand for better real time price prediction 

strategies.  

Of course fast chargers may also provide an opportunity to 

perform load shifting on the faster time scales mentioned 

above. For example, they can help to absorb harmonics and 

noise to improve local power quality, or they could apply 

droop control to improve frequency stability of the electricity 

grid. But so far there is no business case for these measures 

and in fact it would cost the consumer both in terms of 

investment and in terms of loss of cheap electricity. 

SUMMARY/CONCLUSIONS 

The paper presented an optimization problem for the cost 

effective charging of electric vehicle. Assuming a day-ahead 

tariff, electricity prices are known in advance and a simple 

solution to this problem can be found and implemented. 

According to numerical simulations using real price 

information from Illinois, this leads to very moderate savings 

in the order of about 30 USD a year compared to immediate 

charging, and 10 USD compared to fixed time charging.  

Larger savings can only be achieved by combining two 

measures: using a fast charger and changing to a real-time 

price tariff, where electricity prices are not known in advance. 

The problem of identifying the cheapest charging times 

becomes much more complicated in this case, because it 

depends on the prediction of future prices, which is not 

reliable. Using the same simple approach informed by day-

ahead price information, a reasonable solution can be found 

that saves another 20 USD. The potential for further savings in 

the order of 15 USD exists but it would rely on an operation 

model for predicting future electricity prices. It is questionable 

whether the effort for this would be worthwhile for a domestic 

application, however it might be beneficial if it is planned on a 

larger scale. 

REFERENCES 

[1] 2008, “World Energy Outlook 2008,” IEA 

(International Energy Agency), Paris. 

[2] Birol F., 2010, “World energy outlook 2010,” IEA 

(International Energy Agency), Paris. 

[3] Commission E., 2009, “Technology map: A European 

Strategic Energy Technology Plan (SET-Plan),” Joint 

Research Centre-European Commission, …. 

[4] COMMUNITIES C. O. T. E., 2008, 

“COMMUNICATION FROM THE COMMISSION 

TO THE COUNCIL, THE EUROPEAN 

PARLIAMENT, THE EUROPEAN ECONOMIC 

AND SOCIAL COMMITTEE, 20 20 by 2020 

Europe’s climate change opportunity,” European 

Union, pp. 1–12. 

[5] Zubaryeva A., Thiel C., Barbone E., and Mercier A., 

2012, “Assessing factors for the identification of 

potential lead markets for electrified vehicles in 

Europe: expert opinion elicitation,” Technological 

Forecasting and Social Change, pp. 1–16. 

[6] 2009, “World energy outlook 2009,” IEA 

(International Energy Agency), Paris. 

[7] Kang J. E., and Recker W. W., 2009, “An activity-

based assessment of the potential impacts of plug-in 

hybrid electric vehicles on energy and emissions using 

1-day travel data,” Transportation Research Part D: 

Transport and Environment, 14(8), pp. 541–556. 

[8] 2009, “Nearly 20% of U.S. cars will be hybrids by 

2020, forecast says,” Automotive News. 

[9] Allcott H., 2011, “Rethinking real-time electricity 

pricing,” Resource and Energy Economics, 33(4), pp. 

820–842. 

[10] Pricing R. R., 2009, “Bringing Residential Real-Time 

Pricing to Scale in Illinois : Policy 

Recommendations,” pp. 2–5. 

[11] Heydt G., 1983, “The impact of electric vehicle 

deployment on load management strategies,” IEEE 

Trans. Power Appar. Syst.;(United States), (5). 



Page 10 of 13 

 

[12] Webster R., 1999, “Can the electricity distribution 

network cope with an influx of electric vehicles?,” 

Journal of Power Sources, 80(1-2), pp. 217–225. 

[13] Camus C., and Farias T., 2011, “Impacts of electric 

vehicles’ charging strategies in the electricity prices,” 

2011 8th International Conference on the European 

Energy Market (EEM), (May), pp. 833–838. 

[14] Mahalik M., Poch L., Botterud A., and Vyas A., 2010, 

“Impacts of plug-in hybrid electric vehicles on the 

electric power system in Illinois,” 2010 IEEE 

Conference on Innovative Technologies for an 

Efficient and Reliable Electricity Supply, pp. 341–

348. 

[15] Acha S., Green T., and Shah N., 2011, “Optimal 

charging strategies of electric vehicles in the UK 

power market,” Innovative Smart Grid …, pp. 1–8. 

[16] Kristoffersen T. K., Capion K., and Meibom P., 2011, 

“Optimal charging of electric drive vehicles in a 

market environment,” Applied Energy, 88(5), pp. 

1940–1948. 

[17] Rotering N., Member S., and Ilic M., “Optimal Charge 

Control of Plug-In Hybrid Electric Vehicles In 

Deregulated Electricity Markets,” pp. 1–9. 

[18] Bemporad A., Puglia L., and Gabbrielline T., 2011, 

“A stochastic model predictive control approach to 

dynamic option hedging with transaction costs,” 

American Control Conference, San Francisco, CA, 

USA, pp. 3862–3867. 

[19] Thompson A. M., and Cluett W. R., 2005, “Stochastic 

iterative dynamic programming: a Monte Carlo 

approach to dual control,” Automatica, 41(5), pp. 

767–778. 

[20] Kuznia L., Zeng B., Centeno G., and Miao Z., 2011, 

“Stochastic optimization for power system 

configuration with renewable energy in remote areas,” 

Annals of Operations Research, (March), pp. 1–23. 

[21] Schroeder A., Siegmeier J., and Creusen M., 2011, 

Demand management and storage sizing in electricity 

distribution grids. 

[22] Corporation A., “Real Time Prices” [Online]. 

Available: 

https://www2.ameren.com/RetailEnergy/realtimeprice

s.aspx. [Accessed: 14-Sep-2012].  

CONTACT INFORMATION 

Please see http://smartinv.notlong.com for an overview of the 

research project and the people involved. The work has been 

conducted in the Department of Aeronautical and Automotive 

Engineering at Loughborough University. 

http://www.lboro.ac.uk/departments/aae/ 

ACKNOWLEDGMENTS 

Part of this work is supported by the UK government via 

EPSRC, the Engineering and Physical Sciences Research 

Council, under grant EP/E055877/1. 

DEFINITIONS/ABBREVIATIONS 

BEV battery electric vehicle 

DA day-ahead pricing 

HEV hybrid electric vehicle 

ICE internal combustion engine 

MPC model (based) predictive control 

RT/RTP real time pricing 

PHEV plugin-in hybrid electric vehicle 

SOC (battery) state of charge 

SD standard deviation 

V2G vehicle to grid 
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APPENDIX 

Cost Results 

 
Figure 2: Comparison of Charging Strategies Using Day-Ahead Pricing 

 
Figure 3: Comparison of Charging Strategies Using Real Time Pricing 
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Figure 4: Comparison of Impact of Fast Charging for Different Strategies 

Simulation Model 

 
Figure 5: The Main Simulink Model 
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Figure 6: The Sub-Model with the Optimization Algorithm 
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