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Blind quality assessment of 3D images is used to confront 
more real challenges than 2D images. In this Letter, we de-
velop a no-reference stereoscopic image quality assessment 
(SIQA) model based on the proposed left and right (LR)-
similarity map and structural degradation. In the proposed 
method, local binary pattern features are extracted from the 
cyclopean image that are effective for describing the distor-
tion of 3D images. More importantly, we first propose the 
LR-similarity map that can indicate the stereopair quality 
and demonstrate that the use of LR-similarity information 
results in a consistent improvement in the performance. 
The massive experimental results on the LIVE 3D and 
IRCCyN IQA databases demonstrate that the designed 
model is strongly correlated to subjective quality evalua-
tions and competitive to the state-of-the-art SIQA algo-
rithms. 

challenging matters that need additional attention. Chen et al.
[9] proposed the cyclopean view based on the theories of mask-
ing and facilitation effects experienced when viewing stereo-
scopic images. The cyclopean vision can be considered as a
simulation of binocular synthesis vision perceived in the brain
when humans observe left and right views. Accordingly, the
evaluation of 3D quality on cyclopean is of great significance.
At present, the cyclopean image model has brought about a
multitude of promising 3D-IQA algorithms. In addition,
Shao et al. [10] developed a blind stereoscopic image quality
assessment (BSIQA) model based on a binocular feature com-
bination, which led to a more natural and convenient represen-
tation of binocular visual perception.

Currently, machine learning has been applied to some IQA
metrics to predict quality. Distortion Identification-based
Image Verity and Integrity Evaluation (DIIVINE) [11] and
Blind Image Quality Index (BIQI) [12] draw natural scene sta-
tistic features from 2D images, and then employ a regression
model to predict the final objective quality. However, these
metrics cannot effectively predict the quality of stereopairs.
The predominant challenge for machine-learning-based SIQA
is feature representation, in particular, taking the binocular vi-
sion and depth information into account.

In this Letter, we propose a novel framework for BSIQA.
Figure 1 illustrates the procedure of our model. As the first step,
we extract 2D features from the cyclopean. In view of the fact
that cyclopean image considers the binocular visual character-
istics and achieves excellent performance in the evaluation of
3D image quality, the method in Ref. [9] is employed to syn-
thesize the cyclopean in our study. According to the study that
image structures carry the essential visual information, the
gradient magnitude map is calculated from the cyclopean.

The local binary pattern (LBP) operator is an excellent mea-
sure of the spatial structure of the local image texture [13].
Thus, we compute the LBP histogram to represent the texture
invariance. By applying the LBP operator on the cyclopean gra-
dient magnitude map (CGLBP), the CGLBP at one location is
derived as

In recent years, driven by the entertainment industry and the 
application of science, a variety of 3D applications have 
emerged [1–3]. Stereoscopic image quality assessment (SIQA) 
is the crux of the design and optimization of 3D systems. 
Compared to 2D image quality assessment (2D-IQA), 3D-
IQA not only deals with at least twice the amount of 2D data, 
but also needs to consider more factors: visual comfort [4], 3D 
effects [5], and so on.

The existing mature 2D algorithms [6] can be directly 
applied to the left and right views to predict the overall scores 
of the stereopairs. However, extensive studies on human visual 
system (HVS) models have proved that 3D perception is not a 
simple combination of two views. For 3D-IQA, binocular vi-
sion properties [7,8], and 3D factors are very important and
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CGLBPP;R �
XP−1
i�0

s�gp − gc�2p; (1)

where P is the total number of neighbors (P � 8), R is the
radius of the neighborhood (R � 1), gp and gp are gray values
at the center location and its neighbor, and s�·� is the threshold
function as follows:

s�t� �
�
1; t ≥ 0
0; t < 0

: (2)

In the interest of achieving admirable discrimination, a
rotation invariant texture description is defined as

CGLBPriu2P;R �
�PP−1

p�0 s�gp − gc� if U �CGLBPP;R� ≤ 2
P � 1 otherwise;

(3)

U �CGLBPP;R� � js�gP−1 − gc� − s�g0 − gc�j

�
XP−1
p�1

js�gp − gc� − s�gp−1 − gc�j; (4)

whereU is the uniform measure, and superscript superscriptriu2
reflects the use of rotation invariant “uniform” patterns that
have U value of at most 2. It can be seen that CGLBPriu2P;R has
P � 2 distinct output patterns in all. As shown in Fig. 2, the
CGLBP patterns change with different distortions according to
their own characteristics, which make it an effective measure to
capture the degradation by various distortions.

CGLBPriu2P;R is an excellent measure of the spatial patterns,
but, in accordance with the definition, it is a grayscale invariant
measure and abandons contrast. Cyclopean gradient magni-
tude is an impactful measure to encode contrast information
and HVS is highly sensitive to it. The change of local contrast
has a significant influence on image quality [14], so we want to
incorporate the contrast of the local image in our model as well.
We merge the cyclopean gradient magnitude in CGLBPriu2P;R as
the weight coefficient (G − CGLBPriu2P;R ). At present, the final
G − CGLBPriu2P;R is expected to be a very powerful quality evalu-
ation measure and can be represented as

G − CGLBPriu2P;R �k� �
XN
i�1

wig�CGLBPriu2P;R �i�; k�; (5)

g�x; y� �
�
1; x � y
0; otherwise;

(6)

where k ∈ �0; P � 1�, N denote the total number of pixels in
an image, g�·� is the discriminant function, and wi is the weight
coefficient assigned to each pixel. This expression is based on
the property that the HVS is expert in capturing texture fea-
tures. Now, the final 2D features can be expressed as the fre-
quency of each pattern. Considering the HVS’s perceive ability
for image details depends on the sampling density of the image
signal, we implement these features in four scales, yielding 40
dimensional features.

As the second step, 3D feature extraction is performed on
the left and right (LR)-similarity map. Taking into considera-
tion that the feature extracted from the disparity map has less
improvement on the overall performance of SIQA, for the first
time, to the best of our knowledge, we propose and construct
the LR-similarity map to represent the relationship between the
left and right images. The LR-similarity map produced by the
stereo matching algorithm is a powerful feature for the task of
SIQA. In our implementation, in order to improve the com-
putational efficiency, the LR-similarity map is based on struc-
tural similarity index measurement (SSIM)-based stereo
matching algorithm, which is also used in the cyclopean pro-
duction. The energy cost function is defined as

f � �2μlμr � C1��2σl r � C2�
�μ2l � μ2r � C1��σ2l � σ2r � C2�

; (7)

where l is the left-view image, and r is the right-view image.
According to the principle of winner take all, the point with
maximum energy cost function in the matching image (right
view) is considered to be the matching point of the original
image (left view), and the corresponding value is considered
to be the similarity degree of the two pixels. Ultimately, the
LR-similarity map is obtained by normalizing all the values
of similarity. We assume that the degree of similarity, to a
certain extent, can indicate the degree and type of distortion.
The greater the distortion of the image is, the smaller the degree
of similarity in the corresponding point becomes. Figure 3
demonstrates the LR-similarity maps under the same distortion
levels as in Fig. 2.

By comparing (b)–(f ) with (a) in Fig. 3, we can find that the
distortion type and degree affect the LR-similarity maps. And
in a LR-similarity map, the parts of the worst similarity are clus-
tered around the edge. Image spatial entropy indicates the
amount of information and spatial distribution of information

Fig. 1. Proposed blind quality assessment framework for
stereopairs.

Fig. 2. CGLBP maps under different distortions: (a) pristine;
(b) JP2K, difference mean opinion scores �DMOS� � 30.0645;
(c) JPEG, DMOS � 17.3438; (d) WN, DMOS � 60.9635; (e) blur,
DMOS � 13.8411; (f ) FF, DMOS � 54.0365.



within an image. Therefore, the spatial entropy is extracted
from the LR-similarity map. We divide each map into 8 × 8
blocks, and then compute spatial entropy within each block.
The spatial entropy is defined as

E � −
X
x

p�x�log2 p�x�; (8)

where x are the pixel values within a block, and p�x� are the
relative frequency density. To explore the behavior of the local
spatial entropy values against the LR-similarity maps that are
produced from the same images with different degrees and
types of distortions, we conducted a series of validation ex-
periments.

We can find in Fig. 4 that the LR-similarity map extracted
from the undistorted image has a spatial entropy histogram
with a mean of about 3.5, and which is mildly “left-skewed.”
However, the introduction of distortion will change its mean
and skew. For example, “JP2K,” “JPEG,” “WN,” and “FF” tend
to increase the mean sharply and induce the histogram to be
typically “left-skewed.” While “blur” tends to reduce the mean
and the degree of “left-skewed.”

Since we believe that there exists a strong relationship be-
tween spectral entropy values and the LR-similarity maps under
different distortion types and degree, the block discrete cosine
transform (DCT) coefficient matrix is also computed on each
8 × 8 block. Then, the DCT coefficients are normalized to pro-
duce a spectral probability map P�i; j�. We define the spectral
entropy as

E � −
X
i

X
j

P�i; j�log2 P�i; j�; (9)

where 1 ≤ i ≤ 8, 1 ≤ j ≤ 8, and i, j ≠ 1.
Figure 5 shows the value of spectral entropy varies with the

distortion degree and type. Clearly, we may find that the intro-
duction of distortion will also alter the spectral entropy of the
original LR-similarity map. For instance, “JPEG,” “JP2K,”
“blur,” and “FF” slightly change the trend of “right-skewed”
and the mean of spectral entropy values. However, “WN” will
introduce much high-frequency information, so spectral entropy
values of LR-similarity maps under “WN” increase sharply.

Overall, entropy features are strongly indicative of the LR-
similarity maps under different distortion. Therefore, we use
the mean and skew as descriptive quality features.

The final stage is quality prediction. The support vector re-
gression (SVR) is employed as the mapping function from the
2D and 3D feature vectors to the quality score.

We appraise the performance of our model on two publicly
3D IQA databases: LIVE 3D IQA database (LIVE Phase-I and
Phase-II) and the IRCCyN database. All indices reported are
the results of fitting using a standard nonlinear five-parameter
logistic function. In the experiment, a database is randomly sep-
arated into nonoverlapping training subset and testing subset.
In each train–test process, 80% of the database is elected for
training and the rest is for testing. The aforementioned pro-
cedure is executed 1000 times, and the median performance
are reported.

We compare the performance of our algorithm on LIVE 3D
database with seven IQA approaches: DIIVINE [11], BIQI
[12], Chen’s scheme [9], Benoit’s scheme [15], Lin’s scheme
[16], Shao’s scheme [17], and Chen’s scheme [18]. Since the
first two metrics are 2D-IQA metrics, feature vectors are
extracted separately from the left and right views, and then
averaged to obtain the final feature vector for support vector
machine (SVM) to train a regression function. Chen’s [9],
Lin’s [16], and Shao’s scheme [17] are full-reference (FR) met-
rics and do not need training, we report their results on the
entire database. While Chen’s scheme [18] and our proposed
model are no-reference (NR) metrics and need training, their
results are reported in accordance with the principles of 80%
for training and 20% for testing.

Table 1 illustrates the performance results on LIVE Phase-I
and Phase-II data sets. Table 2 gives the detailed values of each
individual distortion type on LIVE Phase-I. One can see that,
even though the performance of the proposed model on some
specific types of distortion is lower than other schemes, the
overall performance of the proposed model is higher than
the other metrics.

(a) (b) (c)

(d) (e) (f)

Fig. 3. LR-similarity maps under different distortions, where
brightness indicates the degree of similarity.
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Fig. 4. Histograms of spatial entropy values for LR-similarity maps
in Fig. 3.
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Fig. 5. Histograms of spectral entropy values for LR-similarity maps
in Fig. 3.



To demonstrate the effectiveness of our proposed 3D fea-
tures, we combine the 3D features with the 2D-extended fea-
tures, and the SVM is employed to train regression function.
Table 3 shows that the 3D features can greatly improve the
performance of the 2D-extended algorithm. To further verify
the performance of our model, we also report the performance
of our metrics on the IRCCyN database. Table 4 displays the
performance of our model on the IRCCyN database.

Accordingly, we can come to the conclusion that our pro-
posed metric is powerful for predicting the 3D image quality,
and the 3D information of the LR-similarity can enormously
improve the performance of SIQA algorithms.

In conclusion, we have presented a new framework for
BSIQA accounting for the LR-similarity map and the sensitiv-
ity of HVS to the structure. Our results demonstrate that the
proposed model is promising in handling the quality assess-
ment problem of stereoscopic images. The extraordinary con-
tribution of this work is that we construct the first effective
LR-similarity map and the experimental results prove the
validity of LR-similarity map. This is just the results of our
preliminary research, future work will be focused on further
studying the LR-similarity map and exploring more effective
features.
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Table 1. Comparison with State of the Art over Live 3D
IQA Database (Best Performance Is Marked in Bold)a

LIVE 3D Phase-I LIVE 3D Phase-II

Metric PLCC SRCC RMSE PLCC SRCC RMSE

DIIVINE [11] 0.8419 0.7885 8.7660 0.6654 0.5821 8.3273
BIQI [12] 0.9210 0.8892 6.3672 0.6955 0.6036 8.0391
Ref. [9] 0.916 0.9153 8.7697 0.9067 0.9017 4.7603
Ref. [15] 0.8829 0.8862 102681 0.6938 0.7140 12.5746
Ref. [16] 0.8645 0.8559 10.9898 0.6584 0.6375 8.4956
Ref. [17] 0.9367 0.9365 5.7426 0.8601 0.8387 5.7581
Ref. [18] 0.8950 0.8910 7.2470 0.8950 0.8800 5.1020
Only 2D
features

0.9397 0.9360 5.5438 0.9177 0.8977 4.4429

2D� 3D
features

0.9505 0.9457 5.0389 0.9292 0.9170 4.1406

aFor an efficient metric, its Pearson linear correlation coefficient (PLCC) and
Spearman rank order correlation coefficient (SRCC) values should be high
while its root mean squared error (RMSE) values should be low.

Table 2. Detailed PLCC Performance Comparison on
LIVE Phase-I

JPEG JP2K WN Blur FF All

DIIVINE [11] 0.6315 0.6870 0.9379 0.9034 0.7739 0.8419
BIQI [12] 0.6901 0.8777 0.9546 0.9411 0.6884 0.9210
Ref. [9] 0.6356 0.8381 0.9351 0.9417 0.7579 0.916
Ref. [15] 0.5579 0.8897 0.9360 0.9256 0.7514 0.8645
Ref. [16] 0.2866 0.8381 0.928 0.9475 0.7086 0.8645
Ref. [17] 0.7636 0.9518 0.9271 0.9600 0.8765 0.9367
Ref. [18] 0.9170 0.907 0.695 0.917 0.735 0.895
2D� 3D
features

0.8529 0.9647 0.9662 0.9574 0.7810 0.9505

Table 3. Performance of 2D-Extended Metrics on LIVE
3D IQA Database

LIVE 3D Phase-I LIVE 3D Phase-II

Metric PLCC SRCC RMSE PLCC SRCC RMSE

DIIVINE [11] 0.8419 0.7885 8.7660 0.6654 0.5821 8.3273
DIIVINE + 3D
features

0.9026 0.8895 6.9757 0.7520 0.7271 7.3728

BIQI [12] 0.9210 0.8892 6.3672 0.6955 0.6036 8.0391
BIQI + 3D
features

0.9447 0.9330 5.3338 0.8046 0.8086 6.6544

Table 4. Performance Comparison on the IRCCyN
Database

Metric PLCC SRCC RMSE

Ref. [9] 0.6779 0.6376 20.2737
Ref. [19] 0.7700 0.7400 16.17
STRIQE [20] 0.8504 0.8413 11.60
2D + 3D features 0.9326 0.9133 7.6757
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