
MAXIMUM PRINCIPLES FOR TIME-FRACTIONAL CAUCHY PROBLEMS

WITH SPATIALLY NON-LOCAL COMPONENTS

ANUP BISWAS AND JÓZSEF LŐRINCZI

Abstract. We show a strong maximum principle and an Alexandrov-Bakelman-Pucci estimate for
the weak solutions of a Cauchy problem featuring Caputo time-derivatives and non-local operators
in space variables given in terms of Bernstein functions of the Laplacian. To achieve this, first we
propose a suitable meaning of a weak solution, show their existence and uniqueness, and establish
a probabilistic representation in terms of time-changed Brownian motion. As an application, we
also discuss an inverse source problem.

1. Introduction

Evolution equations featuring fractional time-derivatives currently receive much attention in both
pure and applied mathematics due to, on the one hand, new qualitative properties not encountered
in the realm of PDE and, on the other hand, for their novel modelling capabilities in science
[1, 2, 3, 7, 11, 19, 24, 25, 27, 28]. There are a number of inequivalent concepts of fractional
derivatives in use, which are presently the object of a wide-ranging study. One such concept is the
Caputo-derivative, which for a given number α ∈ (0, 1) and a suitable function f is defined by

dαf(t)

dtα
=

1

Γ(1− α)

∫ t

0

1

(t− s)α
df(s)

ds
ds,

where Γ is the usual Gamma-function. Equations with Caputo-derivatives occur, for instance, in
the context of anomalous transport theory, arising as scaling limits of continuous-time random walk
(CTRW) models. Fractional diffusion models described by the equation

∂αt p(t, x) = D(−∆)ν/2p(t, x),

with Caputo time-derivatives of the order α ∈ (0, 1) and fractional Laplacians in space variables of
index ν ∈ (0, 2), and with diffusion constant D > 0, have been much studied in the literature; for
a discussion see [26] and the references therein. This equation is the continuum limit of a CTRW
model in which the random walker makes jumps z ∈ Rd whose probability distribution has a tail
proportional to |z|−ν/2, separated by random waiting times T with tail distributions proportional
to T−α, leading to a non-Gaussian behaviour of the limit process. This, in particular, captures
more realistically the empirically observed anomalous spread of contaminants in groundwater flow
through a porous soil, see e.g. [12], which is just one of the multiple applications of such equations.

In the present paper our goal is to consider a whole class of integro-differential equations of the
above type, in which we maintain Caputo time-derivative but allow many other choices of non-local
operators in the space variable. Let D ⊂ Rd be a bounded domain, and F : (0,∞) × D → R and
V, ϕ0 : Rd → R be given functions, subject to conditions to be specified below. Also, let Ψ be a
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2 MAXIMUM PRINCIPLES

so called Bernstein function (see Section 2 for the details), which we will use to define non-local
(pseudo-differential) operators of the form Ψ(-∆), where ∆ is the usual Laplacian. A specific choice
is not only the usual or the fractional Laplacian above, but many others of interest such as their
sum (describing jump-diffusion), or relativistic, geometric etc type of stable operators covering
applications in relativistic quantum theory, laser physics etc (for a discussion see [16]). With
these ingredients, in this paper our interest is to establish maximum principles for the solutions of
integro-differential equations of the form

∂αt ϕ+ Ψ(-∆)ϕ+ V ϕ = F (t, x) in (0,∞)×D
ϕ(t, x) = 0 in (0,∞)×Dc

ϕ(0, x) = ϕ0(x) in {0} × D.
(1.1)

Maximum principles and related Alexandrov-Bakelman-Pucci (ABP) estimates are results of
fundamental relevance in the analysis of PDE or, more recently, integro-differential equations. In [5]
we have recently obtained so-called refined and weak maximum principles, anti-maximum principles,
ABP estimates, Liouville-type theorems and related results for elliptic non-local equations of the
type as the space-dependent part in (1.1), as well as a parabolic ABP estimate for the sub-solutions
for the case when time dependence entered via usual derivatives corresponding to α = 1 above.
(We also refer to the introduction of this paper for a review of the state of the art in the PDE
literature.) In particular, the latter has the form

sup
[0,T )×D

ϕ+ ≤

(
sup

[0,T )×Dc
ϕ+ ∨ sup

{T}×D
ϕ+

)
+ C

(
1 +

1

(Ψ([diamD]−2))
2
p′

)
‖F‖p,QT ,

for (the positive part of) a bounded weak sub-solution ϕ of (1.1) with α = 1, where D is assumed
to have a regularity property, Ψ satisfies a one-sided weak scaling condition with parameter µ (see

stated precisely in Assumption 3.2 below), F ∈ Lp([0, T ) × D), C = C(p, d,Ψ) is a constant, p, p′

are Hölder-conjugate exponents, and where p > d
2µ + 1.

For time-fractional equations maximum principles have been considered in [20, 21, 22, 23], how-
ever, only for the cases when instead of a non-local operator Ψ(-∆) the Laplacian or a second order
elliptic differential operator in divergence form is used. Further developing our approach proposed
in [5] to time-fractional equations, in this paper we consider also non-local spatial dependence,
going well beyond the results established by these authors. A counterpart of the ABP estimate for
the time-fractional case leads us to

p >
d

2µ
+

1

α
,

which gives then an explanation of the bound on p above, with a neat separation of space-time
contributions.

The remainder of this paper is organized as follows. In Section 2 we briefly discuss Bernstein
functions and subordinate Brownian motion, which are our main tools in describing the spatial
part in the equations. In our main Section 3 first we show existence and uniqueness of weak
solutions of the Cauchy problem (Theorem 3.1), and then derive a probabilistic representation of
the solution in terms of expectations over time-changed Brownian motion (Theorem 3.2). Next we
prove a strong maximum principle (Theorem 3.3) for any bounded domain with regular boundary.
In Theorem 3.4 we present a result on the stability of solutions under varying the data. Then
we derive an Alexandrov-Bakelman-Pucci type estimate for the solutions under a one-sided weak
scaling property on the Bernstein functions used (Theorem 3.5). Finally, we present an application
to the inverse source problem (Theorem 3.6), which has also a practical relevance.
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2. Bernstein functions of the Laplacian and subordinate Brownian motions

Consider the set of non-negative, completely monotone functions

B =

{
f ∈ C∞((0,∞)) : f ≥ 0 and (−1)n

dnf

dxn
≤ 0, for all n ∈ N

}
and its subset

B0 =

{
f ∈ B : lim

u↓0
f(u) = 0

}
.

An element of B is called a Bernstein function, in particular, they are non-negative, increasing, and
concave. Let M be the set of Borel measures m on R \ {0} with the property that

m((−∞, 0)) = 0 and

∫
R\{0}

(y ∧ 1)m(dy) <∞.

It is known that Bernstein functions Ψ ∈ B0 can be represented in the form

Ψ(u) = bu+

∫
(0,∞)

(1− e−yu)m(dy)

with b ≥ 0, and the map [0,∞)×M 3 (b,m) 7→ Ψ ∈ B0 is bijective.

Example 2.1. Some key examples of Ψ include:

(i) Ψ(u) = uν/2, ν ∈ (0, 2]

(ii) Ψ(u) = (u+m2/ν)ν/2 −m, ν ∈ (0, 2), m > 0

(iii) Ψ(u) = uν/2 + uν̃/2, ν, ν̃ ∈ (0, 2]

(iv) Ψ(u) = uν/2(log(1 + u))−ν̃/2, ν ∈ (0, 2], ν̃ ∈ [0, ν)

(v) Ψ(u) = uν/2(log(1 + u))ν̃/2, ν ∈ (0, 2), ν̃ ∈ (0, 2− ν).

Bernstein functions give the Laplace exponents of subordinators. Recall that an R+-valued Lévy
process (St)t≥0 on a probability space (ΩS ,FS ,PS) is called a subordinator whenever PS(Ss ≤ St) =
1 for s ≤ t. There is a bijection between the set of subordinators on a given probability space and
Bernstein functions in B0, and the relationship

EPS [e−uS
Ψ
t ] = e−tΨ(u), u, t ≥ 0,

holds, where Ψ ∈ B0, and where we have written (SΨ
t )t≥0 for the unique subordinator associated

with Bernstein function Ψ. Corresponding to the examples of Bernstein functions above, the related
processes are (i) ν/2-stable subordinator, (ii) relativistic ν/2-stable subordinator, (iii) mixtures of
independent subordinators of different indices etc.

Let (Bt)t≥0 be Rd-valued Brownian motion on Wiener space (ΩW ,FW ,PW ), running twice at
its normal speed so that it has variance EPW [B2

t ] = 2t, t ≥ 0. Also, let (SΨ
t )t≥0 be an independent

subordinator. The random process

ΩW × ΩS 3 (ω,$) 7→ BSΨ
t ($)(ω) ∈ Rd

is called subordinate Brownian motion under (SΨ
t )t≥0, and

EPS×PW [e
iu·B

SΨ
t ] = etΨ(|u|2), t > 0, u ∈ Rd,

holds. Except for the trivial case generated by Ψ(u) = u giving Brownian motion, every subordinate
Brownian motion is a jump Lévy process, satisfying the strong Markov property. For simplicity,
we will denote a subordinate Brownian motion by (Xt)t≥0, its probability measure for the process
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starting at x ∈ Rd by Px, and expectation with respect to this measure by Ex. The subordination
procedure gives, in particular, the expression

P(Xt ∈ A) =

∫ ∞
0
PW (Bs ∈ A)PS(St ∈ ds),

for every measurable set A. For a detailed discussion of Bernstein functions, subordinators and
subordinate Brownian motion we refer to [30].

By subordination it also follows that the infinitesimal generator of subordinate Brownian motion
with a subordinator corresponding to a Bernstein function Ψ ∈ B0 is the pseudo-differential operator
−Ψ(−∆) defined by the Fourier multiplier

̂(Ψ(−∆)f)(y) = Ψ(|y|2)f̂(y), y ∈ Rd, f ∈ Dom(Ψ(−∆)),

with domain Dom(Ψ(−∆)) =
{
f ∈ L2(Rd) : Ψ(| · |2)f̂ ∈ L2(Rd)

}
. By general arguments it can be

seen that −Ψ(−∆) is a negative, self-adjoint operator with core C∞c (Rd).
In what follows, we will use the Hartman-Wintner condition

lim
|u|→∞

Ψ(|u|2)

log|u|
=∞. (2.1)

It is known that under this condition the subordinate Brownian motion (Xt)t≥0 has a bounded
continuous transition probability density qt(x, y) = qt(x − y), and qt(·) is radially decreasing, see
[18].

3. Maximum principles

3.1. Weak solution and stochastic representation

Let D be a bounded connected domain in Rd, V ∈ C(D̄), and consider the first exit time

τD = inf{t > 0 : Xt 6∈ D}
of subordinate Brownian motion (Xt)t≥0 from D. The killed Feynman-Kac semigroup in D is given
by

TD,Vt f(x) = Ex[e−
∫ t
0 V (Xs)dsf(Xt)1{τD>t}], x ∈ D, t > 0, f ∈ L2(D). (3.1)

It is shown in [4, Lem. 3.1] that under condition (2.1) TD,Vt is a Hilbert-Schmidt operator on L2(D)
for every t > 0. Also, it is a strongly continuous semigroup in L2(D) with generator −HD,V , where

HD,V = Ψ(-∆) +V,

defined in form sense. This implies that the spectrum of HD,V is purely discrete, and there exists a
countable set (λn)n∈N of eigenvalues of finite multiplicity each, and corresponding square integrable
eigenfunctions (ϕn)n∈N of HD,V , which form an orthonormal basis in L2(D). Furthermore, the
eigenfunctions are bounded continuous functions in D. Assuming that V ≥ 0, it follows that

0 < λ1 < λ2 ≤ . . .
Every TD,Vt is an integral operator, with integral kernel given by the eigenfunction expansion

TD,V (t, x, y) =

∞∑
n=1

e−λntϕn(x)ϕn(y), t > 0, x, y ∈ D.

These properties hold for the V ≡ 0 case as well, and we will denote HD,0 = HD. For further
details on general facts we refer to [13, Ch. XIX, Th. 6.2, Cor. 6.3].

Let {λ0
1 < λ0

2 ≤ . . .} be the eigenvalues of the operator HD = Ψ(-∆). Since V ≥ 0, we can see
by the min-max principle that

λn ≥ λ0
n − ‖V ‖∞, n ∈ N. (3.2)
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Indeed, note that for any f ∈ L2(D)∫
D

(
1

t
Ex
[
(e−

∫ t
0 V (Xs) ds − 1)f(Xt)1{τD>t}

]
− Ex

[
V (Xt)f(Xt)1{τD>t}

])2

dx

=

∫
D
Ex
[

1

t
(e−

∫ t
0 V (Xs) ds − 1− tV (Xt))f(Xt)1{τD>t}

]2

dx

≤
∫
D
Ex
[
f2(Xt)1{τD>t}

]
Ex[Ξ2

t ]dx, (3.3)

where

Ξt =
1

t

(
e−

∫ t
0 V (Xs) ds − 1− tV (Xt)

)
.

Let ε > 0 be arbitrary, and take a compactly supported continuous function ψ ∈ L2(D) such that∫
D|f

2(y)−ψ2(y)|dy < ε. Note that Ξt is bounded uniformly in t > 0 almost surely, and Ex[Ξt]→ 0
as t→ 0 for all x ∈ D. Therefore, by the dominated convergence theorem we have∫

D
Ex
[
ψ2(Xt)1{τD>t}

]
Ex[Ξ2

t ]dx→ 0, as t→ 0.

On the other hand∫
D
Ex
[(
f2(Xt)− ψ2(Xt)

)
1{τD>t}

]
Ex[Ξ2

t ]dx ≤ κ
∫
D

[∫
D
|f2(y)− ψ2(y)|qt(x− y) dy

]
dx

≤ κ
∫
D
|f2(y)− ψ2(y)|dy = κε,

with a constant κ dependent on ‖V ‖∞, where qt is the transition density of (Xt)t≥0 at time t.
Hence (3.3) tends to zero as t→ 0. Clearly, this implies

1

t
Ex
[
(e−

∫ t
0 V (Xs) ds − 1)f(Xt)1{τD>t}

]
→ V (x)f(x) as t→ 0,

in L2(D). Hence Dom(HD,V ) = Dom(HD), and for every f ∈ Dom(HD) we have

HD,V f = HDf + V f.

Let now Ln be any n-dimensional subspace of Dom(HD,V ) = Dom(HD). By the min-max repre-
sentation of the eigenvalues it the follows that

λn = inf
Ln

sup
{
〈HD,V f, f〉 : f ∈ Ln and ‖f‖L2(D) = 1

}
= inf

Ln
sup

{
〈HDf, f〉+ 〈fV, f〉 : f ∈ Ln and ‖f‖L2(D) = 1

}
≥ inf

Ln
sup

{
〈HDf, f〉 : f ∈ Ln and ‖f‖L2(D) = 1

}
− ‖V ‖∞

= λ0
n − ‖V ‖∞,

which shows (3.2).

To define a mild or weak solution of the Cauchy problem (1.1) we will use the operators

Stψ =
∑
n≥1

Eα,1(−λntα)〈ϕn, ψ〉ϕn,

and

Ktψ =
∑
n≥1

tα−1Eα,α(−λntα)〈ϕn, ψ〉ϕn,
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where the pointed brackets mean scalar product in L2(D) and

Eα,β(z) =
∑
n≥0

zn

Γ(αk + β)
, z ∈ C,

denotes the Mittag-Leffler function (see [14]). Recall from [28, p. 35] that for a suitable constant
C = C(α, β), the estimate

|Eα,β(−s)| ≤ C

1 + s
, s ≥ 0, (3.4)

holds for α ∈ (0, 2) and β ∈ R. Thus we have for every t ≥ 0 that(
sup
n∈N
|Eα,1(−λntα)|

)
∨
(

sup
n∈N

tα−1|Eα,α(−λntα)|
)
<∞,

ensuring that St and Kt are well-defined linear operators on L2(D) for all t > 0.
To study the existence of a weak solution, we define powers of the operator HD,V . For γ ∈ R let

HD,Vγ ψ =
∞∑
n=1

λγn〈ϕn, ψ〉ϕn, ψ ∈ Dom(HD,Vγ )

with

Dom(HD,Vγ ) =

{
ψ ∈ L2(D) :

∞∑
n=1

λ2γ
n 〈ϕn, ψ〉2 <∞

}
:= Hγ .

Note that Hγ is a Hilbert space with norm

‖ψ‖Hγ =

( ∞∑
n=1

λ2γ
n 〈ϕn, ψ〉2

)1/2

.

We also have for γ > 0 that

Dom(HD,Vγ ) ⊂ L2(D) ' (L2(D))′ ⊂
(
Dom(HD,Vγ )

)′
.

For notational economy we set
(

Dom(HD,Vγ )
)′

= Dom(HD,V−γ ) =: H−γ . For every f ∈ H−γ we

denote its action on ψ ∈ Hγ by −γ〈f, ψ〉γ . The space H−γ is again a Hilbert space with norm

‖f‖H−γ =

( ∞∑
n=1

λ−2γ
n −γ〈ϕn, f〉2γ

)1/2

.

Now we define weak solutions in the spirit of [29]. Throughout this paper we use Caputo-time
derivative as defined in the Introduction.

Definition 3.1. We say that ϕ is a weak solution of (1.1) if

(1) ϕ(t, ·) ∈ Dom(HD,V ) for almost every t ∈ (0, T ), and ∂αϕ ∈ L2
loc((0, T ), L2(D)),

(2) the equality

∂αt ϕ+ Ψ(-∆)ϕ+ V ϕ = F (t, ·) (3.5)

holds in L2(D) for almost every t ∈ (0, T ),

(3) for a γ > 0 we have ϕ ∈ C([0, T ];H−γ) with

lim
t→0
‖ϕ(t, ·)− ϕ0‖H−γ = 0 .

Our first goal in this section is to establish existence of a weak solution for (1.1). We will use
the following assumption on the Bernstein function.
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Assumption 3.1. There exists β ∈ (0, 1] such that

lim inf
|u|→∞

Ψ(u)

uβ
> 0 .

Theorem 3.1 (Existence and uniqueness of weak solution). Let Assumption 3.1 hold and
D be a bounded domain in Rd satisfying the exterior cone condition. If F ∈ L∞((0, T );L2(D)) and
ϕ0 ∈ L2(D), then

ϕ(t, x) = Stϕ0(x) +

∫ t

0
Kt−sF (s, x) ds, x ∈ D, t > 0, (3.6)

is the unique weak solution of (1.1) such that ϕ ∈ L2((0, T );H1) and ∂αt ϕ ∈ L2((0, T ) × D).
Moreover, we have

lim
t→0
‖ϕ(t, ·)− ϕ0‖H−γ = 0,

for every γ > d
4β − 1.

Proof. The arguments below are inspired by [29] and some details are left to the reader to avoid
repetitions.

Step 1 : First consider F = 0. In this case we have

ϕ(t, x) =

∞∑
n=1

〈ϕn, ϕ0〉Eα,1(−λntα)ϕn(x).

By similar arguments as in [29, Th. 2.1(i)] we obtain

lim
t→0
‖ϕ(t, ·)− ϕ‖L2(D) = 0.

Step 2 : Next consider ϕ0 = 0. In this case we have

ϕ(t, x) =

∞∑
n=1

[∫ t

0
(t− s)α−1Eα,α(−λn(t− s)α)〈ϕn, F (s, ·)〉ds

]
ϕn(x).

As observed in [29], it follows that

∂αt

[∫ t

0
(t− s)α−1Eα,α(−λn(t− s)α)〈ϕn, F (s, ·)〉ds

]
= −λn

[∫ t

0
(t− s)α−1Eα,α(−λn(t− s)α)〈ϕn, F (s, ·)〉 ds

]
+ 〈F (t, ·), ϕn〉. (3.7)

The arguments in [29, Th. 2.2] also give that

‖∂αt ϕ‖2L2((0,T )×D) + ‖HD,V ϕ‖L2((0,T )×D) ≤ κ‖F‖L2((0,T )×D),

with a constant κ, independently of F . Hence, applying (3.7) we see that (3.5) holds. Next we
show that

lim
t→0
‖ϕ(t, ·)‖H−γ = 0. (3.8)

By a similar type of calculation as in [29, p. 434] we obtain

‖ϕ(t, ·)‖H−γ ≤ κ1‖F‖L∞((0,T );L2(D))

∞∑
n=1

1

λ2γ+2
n

(1− Eα,1(−λntα)), (3.9)

for a constant κ1. By the assumption on D and [8, Th. 4.5], there exists δ ∈ (0, 1) satisfying

λ0
n ≥ δΨ(λn,Lap),
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where λn,Lap denotes the eigenvalues of the Laplacian with Dirichlet boundary condition in D,
arranged in increasing order and including multiplicity. On the other hand, from [9] we have

λn,Lap & n
2/d. Combining this with (3.2) and (3.9), and using Assumption 3.1, we find

‖ϕ(t, ·)‖H−γ ≤ κ2‖F‖L∞((0,T );L2(D))

∞∑
n=1

1

n
2β
d

(2γ+2)
(1− Eα,1(−λntα)),

with a constant κ2. By our assumption on γ we have 2β
d (2γ + 2) > 1. Since 1 − Eα,1(−λntα) is

bounded, see [29, Lem. 3.1], and tends to zero as t→ 0, we readily obtain (3.8).
Finally, to show uniqueness a reasoning similar to [29, pp.432-433] can be used. �

Remark 3.1. It is easily seen from (3.6) and (3.4) that for F = 0 and ϕ ∈ L2(D) we obtain the
decay rate

‖ϕ(t, ·)‖L2(D) ≤
C

1 + λ1 tα
, t > 0,

with a constant C > 0, which can be compared with [29, Cor. 2.6].

In the remaining part of this paper our main tool will be formula (3.6) and its probabilistic
representation which we derive next. Let (ξt)t≥0 be a stable subordinator with exponent α ∈ (0, 1),
and denote by gt its smooth transition probability density at time t. The function gt is bounded
for every t > 0, see [17]. Moreover, by [32, Th. 1.1] there exists a constant c1 > 0 such that

g1(x) ≤ c1

(1 + x)1+α
, x > 0. (3.10)

By usual scaling it is also known that

gt(u) = t−
1/αg1(t−

1/αu), t > 0 .

Let (ηt)t≥0 be the inverse of (ξt)t≥0, i.e., the process

ηt = inf{s > 0 : ξs > t}, t > 0.

It is known [25] that (ηt)t≥0 has density

ηt(du) = tα−1u−1−1/αg1(u−
1/αt) du, t > 0. (3.11)

We choose the process (ηt)t≥0 to be independent of the subordinate Brownian motion (Xt)t≥0, and
continue to make the assumption V ≥ 0 without specifying it explicitly.

Theorem 3.2 (Probabilistic representation). Let ϕ satisfy (3.6) with given ϕ0 ∈ L2(D) and
F ∈ L2((0, T )×D). Then we have

ϕ(t, x) =

∫ ∞
0

TD,Vu ϕ0(x) ηt(du) +

∫ t

0

[∫ ∞
0

l−
1/αg1(l−

1/α(t− s))TD,Vl F (s, x) dl

]
ds , (3.12)

where {TD,Vt : t ≥ 0} is the semigroup defined by (3.1).

Proof. First we show that

Stϕ0(x) = Ex
[
e−

∫ ηt
0 V (Xs) dsϕ0(Xηt)1{τD>ηt}

]
, (3.13)

which gives the first term at the right hand side of (3.12). Denote Laplace transform by L, and
the transition probability density of (Xt)t≥0 at time t > 0 by qt. We use the fact that the Laplace

transform of Eα,1(−λtα) is sα−1

sα+λ . Also, for every ψ ∈ L2(D), extending it to Rd by zero, we have

‖TD,Vl ψ‖2L2(D) ≤
∫
D

[
Ex[ψ(Xl)1{τD>l}]

]2
dx

≤
∫
D
Ex[ψ2(Xl)]Px(τD > l)dx
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≤
[
sup
D
Px(τD > l)

] ∫
Rd

∫
Rd
ψ2(y)ql(x, y)dy dx ≤ ‖ψ‖2L2(D). (3.14)

Thus we have

L(S·ϕ0)(s) =
∞∑
n=1

sα−1

sα + λn
〈ϕn, ϕ0〉ϕn,

=
∞∑
n=1

sα−1

[∫ ∞
0

e−(sα+λn)l dl

]
〈ϕn, ϕ0〉ϕn,

=

∫ ∞
0

sα−1e−s
α l

[ ∞∑
n=1

e−λnl〈ϕn, ϕ0〉ϕn

]
dl

=

∫ ∞
0

sα−1e−s
α lTD,Vl ϕ0(x) dl.

The above equality should be understood in L2(D), which is justified by (3.14).
Recall the equality

sα−1e−s
α l =

1

α

∫ ∞
0

ue−sug1(ul−
1/α)l−1−1/α du,

see [24]. Combining it with the above gives

L(S·ϕ0)(s) =

∫ ∞
0

e−su
[

1

α

∫ ∞
0

ug1(ul−
1/α)l−1−1/αTD,Vl ψ0(x) dl

]
du

Comparing the Laplace transforms on both sides and using (3.11), we obtain (3.13). We note that
a similar argument appeared in [25] in another context.

Next we calculate the second term at the right hand side of (3.12). We will use that for fλ(t) =
tα−1Eα,α(−λtα), λ > 0, the expression

L(fλ)(s) =
1

sα + λ
, s > λ

1/α,

holds, see [14, p. 312]. Let ψ ∈ Cc(D), i.e., a continuous function with compact support. Define

Km
t ψ =

m∑
n=1

tα−1Eα,α(−λntα)〈ϕn, ψ〉ϕn,

and

TD,V,ml ψ =
m∑
n=1

e−λnl〈ϕn, ψ〉ϕn.

Note that Kmψ and TD,V,ml ψ are continuous functions in (t, x) ∈ (0,∞) × D. Thus for every
sα > max{λ1, . . . , λm} we have

L(Km
· ψ)(s) =

m∑
n=1

1

sα + λn
〈ϕn, ψ〉ϕn =

m∑
n=0

∫ ∞
0

e−(sα+λn)ldl 〈ϕn, ψ〉ϕn

=

∫ ∞
0

e−s
α l

[
m∑
n=1

e−λnl〈ϕn, ψ〉ϕn

]
dl =

∫ ∞
0

e−s
α lTD,V,ml ψ dl

=

∫ ∞
0

[∫ ∞
0

e−sugl(u) du

]
TD,V,ml ψ dl

=

∫ ∞
0

e−su
[∫ ∞

0
l−

1/αg1(l−
1/αu)TD,V,ml ψ dl

]
du.
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Again comparing the two Laplace transforms, we get

Km
t ψ =

∫ ∞
0

l−
1/αg1(l−

1/αt)TD,V,ml ψ dl.

Letting m→∞ and using a denseness argument, we obtain

Ktψ =

∫ ∞
0

l−
1/αg1(l−

1/αt)TD,Vl ψ dl, ψ ∈ L2(D).

Applying this equality to F in (3.6), the result follows. �

Remark 3.2. Note that for every κ > 0 and s > 0 we have by (3.10)∫ κ

0
l−

1/αg1(sl−
1/α) dl ≤ c1

∫ κ

0
l−

1/α 1

(1 + sl−1/α)1+α
dl

= c1s
1−α

∫ κs−α

0

u

(1 + u1/α)1+α
du,

≤ c1s
1−α

∫ ∞
0

u

(1 + u1/α)1+α
du = c2s

1−α,

with a constant c2, and in the second line we used the substitution l = sαu. The above integral is
finite since α ∈ (0, 1). The estimate also implies that the rightmost term in (3.12) is finite.

As a consequence of Thoerem 3.2 we have the following results which generalize Theorems 1
and 3 in [23] substantially.

Corollary 3.1. Let ϕi0 ∈ L2(D) and Fi ∈ L2((0, T ) × D) for i = 1, 2. Furthermore, assume that
ϕ1

0 ≥ ϕ2
0 and F1 ≥ F2. Then we have ϕ1(t, x) ≥ ϕ2(t, x) almost surely in (0, T )×D.

Corollary 3.2. Let Vi ∈ C(D̄) and satisfy V1 ≥ V2. Let ϕi denote the solution of (3.6) with
non-negative data (ϕ0, F ) and Vi, i = 1, 2. Then we have ϕ1 ≤ ϕ2, almost surely in (0, T )×D.

Proof. This follows from the fact that TD,V1
t ψ ≤ TD,V2

t ψ for all t whenever ψ ≥ 0. �

3.2. Maximum principles and an Aleksandrov-Bakelman-Pucci estimate

Next we turn to proving maximum principles. For the remainder of the paper we assume that
the domain D is such that all its boundary points are regular with respect to (Xt)t≥0, i.e.,

Pz(τD = 0) = 1, z ∈ ∂D.

In [4] we have shown that every bounded convex set is regular with respect to subordinate Brownian
motion. When (Xt)t≥0 is an isotropic α-stable process, any domain D with the exterior cone
condition is regular with respect to this process.

Recall the notation

h 
 0 meaning h(x) ≥ 0 for all x ∈ D and h 6≡ 0.

Theorem 3.3 (Strong maximum principle). Let ϕ0 
 0 and F = 0, and suppose that D has a
regular boundary with respect to (Xt)t≥0. Furthermore, assume that ϕ0 ∈ L∞(D). If ϕ is a weak
solution satisfying (3.6), then ϕ(t, ·) ∈ C(D̄) and ϕ(t, x) > 0 for every t > 0 and x ∈ D.
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Proof. From [4, Lem. 3.1] we know that

TD,Vt ϕ0(x) =

∫
D
TD,V (t, x, y)ϕ0(y) dy, t > 0, (3.15)

with kernel

TD,V (t, x, y) = EPS

[
pSΨ

t
(x− y)Ex,y

0,SΨ
t

[
e
−

∫ t
0 V (B

SΨ
s

) ds
1{τD>t}

]]
,

where pt(x − y) = (4πt)−d/2 exp(− |x−y|
2

4t ), and Ex,y
0,SΨ

t
[·] denotes expectation with respect to the

Brownian bridge measure from x at time 0 to y at time s, evaluated at random time s = SΨ
t . It is

also shown in [4, Lem. 3.1] that TD,V (t, x, y) = TD,V (t, y, x) for t > 0 and TD,V (t, x, y) is continuous

in (0,∞) × D × D. This implies that x 7→ TD,Vt ϕ0(x) is continuous in D for t > 0. Furthermore,

by [4, Lem. 3.1(v)], we see that x 7→ TD,Vt 1(x) is continuous in D̄ and vanishes on the boundary.
Since

|TD,Vt ϕ0(x)| ≤ ‖ϕ0‖L2(D)‖TD,V (t, x, ·)‖1/2
L∞(D)|T

D,V
t 1(x)|1/2,

it follows that x 7→ TD,Vt ϕ0(x) is continuous in D̄ for every t > 0 and the function vanishes on ∂D.
Again, for every t > 0,

|TD,Vt ϕ0(x)| ≤ ‖ϕ0‖L∞(D)T
D,V
t 1(x) ≤ ‖ϕ0‖L∞(D) Px(τD > t).

Since

ϕ(t, x) =

∫ ∞
0

TD,Vu ϕ0(x) ηt(du), t > 0

by (3.12), it follows from the dominated convergence theorem that ϕ(t, ·) ∈ C(D̄). The second claim
follows by (3.15) and the observation that TD,V (t, x, y) > 0 for t > 0 and x, y ∈ D. Indeed, note
that for every κ > 0, by the support theorem of Brownian paths there are paths inside D starting
from x at time 0 and ending at y at time κ with positive probability. This implies that for a given
SΨ
t ,

Ex,y
0,SΨ

t

[
e
−

∫ t
0 V (B

SΨ
s

) ds
1{τD>t}

]
> 0

holds which, in turn, implies TD,V (t, x, y) > 0. �

Remark 3.3. A much weaker version of Theorem 3.2 has been obtained in [21, Th. 1.1] and
[23, Cor. 4] where HD,V was given by a divergence form elliptic operator. A strong maximum
principle was conjectured in [21]. Our result applies to a much larger class of non-local operators
and establishes the full strong maximum principle.

We also have a stability result.

Theorem 3.4 (Stability of solutions). Suppose that Vi ∈ C(D̄), Vi ≥ 0, ϕi0 ∈ L2(D) and
Fi ∈ L∞((0, T );L2(D)) for i = 1, 2. Let ϕi be the corresponding weak solution given by (3.12).
Then for a constant C = C(T, d,Ψ,D, α) we have

ess sup
(0,T )

‖ϕ1(t, ·)− ϕ2(t, ·)‖L2(D) ≤ C
[
A ‖V1 − V2‖L∞(D) + ‖ϕ1

0 − ϕ2
0‖L2(D)

+ ess sup
(0,T )

‖F1(s, ·)− F2(s, ·)‖L2(D) ds
]
, (3.16)

where

A = max

{
‖ϕ1

0‖L2(D), ‖ϕ2
0‖L2(D), ess sup

(0,T )
‖F1(s, ·)‖L2(D), ess sup

(0,T )
‖F2(s, ·)‖L2(D)

}
.
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Proof. We begin with the following estimate. Consider ψi ∈ L2(D), i = 1, 2, and extend them
outside of D by zero. Then for every x ∈ D, t > 0, we note that

|TD,V1
t ψ1(x)− TD,V2

t ψ2(x)| ≤ Ex
[
|e−

∫ t
0 V1(Xs) ds − e−

∫ t
0 V2(Xs) ds||ψ1(Xt)|1{τD>t}

]
+ Ex

[
e−

∫ t
0 V2(Xs) ds|ψ1(Xt)− ψ2(Xt)|1{τD>t}

]
≤ t‖V1 − V2‖L∞(D)Ex[|ψ1(Xt)|1{τD>t}] + Ex

[
|ψ1(Xt)− ψ2(Xt)|1{τD>t}

]
≤ t‖V1 − V2‖L∞(D)

(
sup
x∈D

Px(τD > t)
)1/2 Ex[|ψ1(Xt)|2]

1/2

+
(

sup
x∈D

Px(τD > t)
)1/2 E[|ψ1(Xt)− ψ2(Xt)|2]

1/2,

where in the second inequality we used the fact that x 7→ e−x is Lipschitz continuous in [0,∞) and
V2 ≥ 0. Thus, following a calculation similar to (3.14), we obtain∫

D
|TD,V1
t ψ1(x)− TD,V2

t ψ2(x)|2 dx ≤ κ1t
2
(

sup
x∈D

Px(τD > t)
)
‖V1 − V2‖2L∞(D) ‖ψ1‖2L2(D)

+
(

sup
x∈D

Px(τD > t)
)
‖ψ1 − ψ2‖2L2(D) , (3.17)

with a constant κ1. By [5, Lem. 3.1], for every k ∈ N there exists a constant ck, dependent on d, k,
satisfying

sup
D
Ex[τkD] ≤ ck

(Ψ([diamD]−2))k
, (3.18)

where diamD denotes the diameter of D. Therefore choosing k = 5 in (3.18) and putting it in
(3.17), with a constant κ2 we have∫

D
|TD,V1
t ψ1(x)− TD,V2

t ψ2(x)|2 dx

≤ κ2t
2(1 ∧ t−5)‖V1 − V2‖2L∞(D) ‖ψ1‖2L2(D) + κ2(1 ∧ t−5) ‖ψ1 − ψ2‖2L2(D) . (3.19)

We use (3.19) to estimate the left hand side of (3.16). Our main ingredient is formula (3.12). By
Minkowski’s integral inequality we note that[∫

D

∣∣∣∣∫ ∞
0

TD,V1
u ϕ1

0(x)− TD,V1
u ϕ2

0(x) ηt(du)

∣∣∣∣2 dx

]1/2

≤
∫ ∞

0

[∫
D
|TD,V1
u ϕ1

0(x)− TD,V1
u ϕ2

0(x)|2 dx

]1/2

ηt(du)

≤
√
κ2

∫ ∞
0

[
u(1 ∧ u−5/2)A‖V1 − V2‖L∞(D) + (1 ∧ u−5/2)‖ϕ1

0 − ϕ2
0‖L2(D)

]
ηt(du)

≤ κ3

(
A‖V1 − V2‖L∞(D) + ‖ϕ1

0 − ϕ2
0‖L2(D)

)
, (3.20)

with a constant κ3, where in the third line we used (3.19). Now we compute the difference for the
rightmost term in (3.12). We again apply Minkowski’s integral inequality to get[∫

D

[∫ t

0

∫ ∞
0

l−
1/αg1(l−

1/α(t− s))|TD,V1

l F1(s, x)− TD,V2

l F2(s, x)| dl ds
]2

dx

]1/2

≤
∫ t

0

∫ ∞
0

l−
1/αg1(l−

1/α(t− s))
[∫
D
|TD,V1

l F1(s, x)− TD,V2

l F2(s, x)|2 dx

]1/2

dl ds
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≤
∫ t

0

∫ ∞
0

l−
1/αg1(l−

1/α(t− s))
[∫
D
|TD,V1

l F1(s, x)− TD,V2

l F2(s, x)|2 dx

]1/2

dl ds

≤ κ4

∫ t

0

∫ ∞
0

l−
1/αg1(l−

1/α(t− s))
[
l(1 ∧ l−5/2)‖F1(s, ·)‖L2(D) ‖V1 − V2‖L∞(D)+

(1 ∧ l−5/2)‖F1(s, ·)− F2(s, ·)‖L2(D)

]
dl ds

≤ κ5

(
A‖V1 − V2‖L∞(D) + ess sup

(0,T )
‖F1(s, ·)− F2(s, ·)‖L2(D) ds

)
, (3.21)

with constants κ4, κ5, where in the fourth line we used again (3.19). In (3.21) we made use of
Remark 3.2 showing that the integral in l converges. Then (3.16) follows by combining (3.12),
(3.20) and (3.21). �

The next result gives an Aleksandrov-Bakelman-Pucci (ABP) estimate for the time-fractional
Cauchy problem (1.1). We will use a class of Bernstein functions with the following property, for
an introduction see [6].

Assumption 3.2. The function Ψ is said to satisfy a weak lower scaling (WLSC) property with
parameters µ > 0, c ∈ (0, 1] and θ ≥ 0, if

Ψ(γu) ≥ c γµΨ(u), u > θ, γ ≥ 1.

We note that the WLSC property implies that the Hartman-Wintner condition (2.1) holds.

Example 3.1. The specific cases of Ψ in Example 2.1 satisfy Assumption 3.2 with θ = 0 and the
following values:

(i) µ = ν
2

(ii) µ = ν
2

(iii) µ = ν
2 ∧

ν̃
2

(iv) µ = ν−ν̃
2

(v) µ = ν
2 ,

where the order of cases listed above corresponds to the enumeration in Example 2.1.

We recall the standing assumption V ≥ 0.

Theorem 3.5 (ABP estimate). Let Ψ satisfy Assumption 3.2, and ϕ be a weak solution of (1.1)
given by representation (3.6). Furthermore, assume ϕ+

0 ∈ L∞(D) and F ∈ Lp((0, T ) × D) with

p > d
2µ + 1

α . Then for almost every (t, x) ∈ (0, T )×D we have

ϕ+(t, x) ≤ ‖ϕ+
0 ‖L∞(D) + C‖F+‖Lp((0,T )×D) , (3.22)

with a constant C, dependent on D, p, d,Ψ. (Here the plus superscript means positive part.)

Proof. As before, we denote by qt the transition density of (Xt)t≥0. Extending ϕ0 by 0 outside of
D, we note that for t > 0

TD,Vt ϕ(x) ≤ Ex [ϕ(Xt)] ≤
∫
Rd
ϕ+

0 (y)qt(x− y) dy ≤ ‖ϕ+
0 ‖L∞(D),

where the last estimate follows by the Hölder inequality. Thus also∫ ∞
0

TD,Vu ϕ0(x) ηt(du) ≤ ‖ϕ+
0 ‖L∞(D). (3.23)
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Taking into account (3.12) and (3.23), we only need to estimate the rightmost term in (3.12). Due
to Assumption 3.2 and [5, Lem. 2.1] there exist positive constants κ1, κ2 satisfying

qt(x) ≤ κ1t
− d

2µ , x ∈ Rd, t ∈ (0, κ2] . (3.24)

Consider ψ ∈ Lp(D) with p > d
2µ + 1

α , and extend it outside D by 0. Then for t ∈ (0, κ2] we obtain

TD,Vt ψ(x) ≤
∫
Rd
ψ+(y)qt(x− y) dy ≤

[∫
Rd
ψ+(y)pqt(x− y) dy

]1/p

≤ κ1/p
1 t
− d

2pµ ‖ψ+‖Lp(D),

where in the last line we used (3.24). Therefore,∫ κ2

0
l−

1/αg1(l−
1/α(t− s))TD,Vl ψ(x) dl ≤ κ1/p

1 ‖ψ‖Lp(D)

∫ κ2

0
l−

1/αl
− d

2pµ g1(l−
1/α(t− s)) dl

≤ κ3(t− s)α−1− dα
2pµ ‖ψ+‖Lp(D), (3.25)

with a constant κ3. To obtain the last line, note that by (3.10) (see also Remark 3.2) with γ =
1
α + d

2pµ and s > 0 we have∫ κ2

0
l−γg1(l−

1/αs) dl ≤ c1

∫ κ2

0
l−γ

1

(1 + l−1/αs)1+α
dl

= s−αγ+α

∫ κ2s−α

0

u
1− d

2pµ

(1 + u1/α)1+α
du

≤ s−αγ+α

∫ ∞
0

u
1− d

2pµ

(1 + u1/α)1+α
du, (3.26)

where the integral above is finite and −αγ + α = α − 1 − dα
2pµ . Observe that the assumption

p > d
2µ + 1

α gives (α− 1− dα
2pµ) p

p−1 + 1 > 0. Thus by using Young’s inequality and (3.25) we obtain

that ∫ t

0

∫ κ2

0
l−

1/αg1(l−
1/α(t− s))TD,Vl F+(s, x) dl ds ≤ κ3

∫ t

0
(t− s)α−1− dα

2pµ ‖F+(s, ·)‖Lp(D) ds

≤ κ′3‖F+‖Lp((0,T )×D), (3.27)

with a constant κ′3.
Next consider t ∈ (κ2,∞). Since for t ≥ κ2 we have

sup
x∈Rd

qt(x) =
1

(2π)d

∫
Rd
e−ix·ye−tΨ(|y|2)dy ≤ 1

(2π)d

∫
Rd
e−tΨ(|y|2)dy ≤ 1

(2π)d

∫
Rd
e−κ2Ψ(|y|2)dy,

we obtain

sup
t≥κ2

sup
x,y∈Rd

qt(x, y) ≤ qκ2(0). (3.28)

Then for t ≥ κ2 we get

TD,Vt ψ(x) ≤ Ex
[
ψ+(Xt)1{τD>t}

]
≤ Ex

[(
ψ+(Xt)

)p] 1
p Px(τD > t)

p−1
p

≤ qκ2(0)
1
p ‖ψ+‖Lp(D),

using (3.28) in the last line. Since 1
α > 1, we have then∫ ∞

κ2

l−
1/αg1(l−

1/α(t− s))TD,Vl ψ(x) dl ≤ κ4‖ψ+‖Lp(D), (3.29)
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with constant κ4. From (3.29) we get∫ t

0

∫ ∞
κ2

l−
1/αg1(l−

1/α(t− s))TD,Vl F (s, x) dl ≤ κ5‖F+‖Lp((0,T )×D),

with a constant κ5. Thus (3.22) follows by using (3.12), (3.23) and (3.27). �

Remark 3.4. It is interesting to point out the similarity of the bound in Theorem 3.5 and the
result obtained in [5, Th. 3.2]. For α = 1 a similar parabolic ABP estimate is obtained in [5,
Th. 3.2] for p > d

2µ + 1, and now it is seen that the second term equal to 1 is a contribution due to

the usual time-derivative.

The above results are useful in the study of the inverse source problem discussed in [21]. This
problem can be roughly stated as follows: Given x0 ∈ D, T > 0 fixed, and ϕ0 = 0, if the inho-
mogeneity is given in the form F (t, x) = ρ1(t)ρ2(x), is it possible to determine ρ1 by single point
observation data ϕ(t, x0) for t ∈ [0, T ]? The spatial component ρ2 simulates, for instance, a source
of contaminants which may be hazardous, see [15, 21, 29] for further discussion.

Theorem 3.6. Let ϕ0 = 0 and F (t, x) = ρ1(s)ρ2(x). We assume that either ρ2 ∈ L∞(D) or, in
case Assumption 3.2 holds, ρ2 ∈ Lp(D) for some p > d

2µ . Then for ϕ satisfying (3.12) we have that

the map

D 3 x 7→ ϕ(·, x) ∈ L1(0, T )

is continuous. Moreover, if ρ2 
 0 and for some x0 ∈ D we have ϕ(·, x0) = 0 in L1(0, T ), then
ρ1 = 0.

Proof. Recall from (3.15)

TD,Vt f(x) =

∫
D
TD,V (t, x, y)f(y) dy, t > 0,

where the kernel T (t, x, y) is bounded for every t > 0 and continuous in the variables x, y ∈ D.

This implies for every f ∈ L1(D) that the map x 7→ TD,Vt f(x) is continuous in D, for every t > 0.
For x ∈ D and t > 0 define

χt(x) =

∫ ∞
0

l−
1/αg1(l−

1/αt)TD,Vl ρ2(x) dl.

If ρ2 ∈ L∞(D), then we have |TD,Vl ρ2(x)| ≤ ‖ρ2‖L∞(D), as V ≥ 0, and therefore, by Remark 3.2 and
the dominated convergence theorem it follows that χt is continuous in D for t > 0. Also, observe
that in this situation

|χt(x)| ≤ κ3‖ρ2‖L∞(D)(t
α−1 + 1), t > 0, x ∈ D,

with a constant κ3; see also Remark 3.2. Now suppose that Assumption 3.2 holds and ρ2 ∈ Lp(D)
for some p > d

2µ . Then from the proof of Theorem 3.5 we see that for every x ∈ D

|TD,Vl ρ2(x)| ≤ C
[
l
− d

2pµ1(0,κ2](l) + 1(κ2,∞)

]
‖ρ2‖Lp(D),

with a constant C. Thus by (3.26) it is seen that χt is continuous in D for every t > 0. Again by
the proof of Theorem 3.5 we find

|χt(x)| ≤ κ3‖ρ2‖Lp(D)(t
α−1− dα

2pµ + 1), t > 0, x ∈ D,

with a constant κ3. Observe from (3.12) that

ϕ(t, x) =

∫ t

0
ρ1(t− s)χs(x)ds.
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Let xn → x ∈ D. Then∫ T

0
|ϕ(t, xn)− ϕ(t, x)|dt ≤

∫ T

0

∫ t

0
|ρ1(t− s)||χs(xn)− χs(x)|ds dt.

Using the above bounds on χt and its continuity in D, it follows by Young’s inequality and dom-
inated convergence that the right hand side above tends to zero as n → ∞. This shows the first
part of the theorem.

To obtain the second part, note that χ·(x0) ∈ L1(0, T ). By the given condition we also have∫ t

0
ρ1(s)χt−s(x0)ds = 0, t ∈ [0, T ].

The above equality makes sense due to the continuity result we proved above. By Titchmarsh’s
theorem [10, 31] there exist non-negative κ1, κ2 with κ1 + κ2 ≥ T and ρ1 = 0 almost everywhere in
(0, κ1) and χ·(x0) = 0 almost everywhere in (0, κ2). However, by our assumption on ρ2 it follows

that TD,Vl ρ2 > 0 on D (see the proof of Theorem 3.3) and g1 > 0 on (0,∞), implying χ·(x0) > 0 in
every (0, κ2) for κ2 > 0. Thus κ1 ≥ T , which completes the proof of the theorem. �
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