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Abstract 

Ti-6Al-4V machining chips were recycled using equal channel angular 

pressing (ECAP). The microstructural and texture evolution of the recycled 

Ti-6Al-4V have been investigated using scanning electron microscopy, 

electron backscattered diffraction and transmission electron microscopy. For 

samples consolidated at 500 °C with a back-pressure of 100 MPa, the 

as-pressed density reached up to 99.9% after 8 passes. Pronounced grain 

refinement was also observed with increasing number of passes. The 

morphology of the grains has been changed from elongated and coarse to 

equiaxed and ultrafine as the number of passes increases. Strong textures 

were also introduced during multiple passes via Bc route. Texture has been 

developed with basal planes parallel to the inclination direction which is at 21° 

of the extrusion direction. After 4 and 8 passes, basal planes were rotated 

towards the transverse direction. No oxide can be detected at the chip-chip 

boundaries when the Ti-Al-4V machining chips was consolidated at 500 °C. 

When the sample was processed at 550 °C, significant grain growth and clear 

oxide layers at the chip-chip interface were observed. In addition, the c-axis 

were rotated towards the longitudinal direction due to the non-basal slip activity. 

TEM observation revealed the <a�⃗ + c⃗> dislocations presence in the 550 °C 

ECAP-processed sample. 
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1. Introduction 

Ti-6Al-4V is widely used in aerospace and biomedical applications due to its 

high specific strength, anti-corrosion property and bio-compatibility [1-3]. 

However, the relatively high price of Ti-6Al-4V alloy limits its broader 

applications. Traditional manufacture process of Ti-6Al-4V parts usually 

involves large amount of machining leading to substantial material waste. 

Conventional recycling methods involve re-melting and re-casting, which are 

high energy consumption processes. Recently, solid-state recycling with 

severe plastic deformation (SPD) process has been proposed as an 

energy-saving method for recycling various metallic machining chips mainly for 

softer metals and alloys, such as Mg alloys [4; 5], Al alloys [6; 7] and pure Ti [8]. In 

addition, SPD, such as equal channel angular pressing (ECAP) recycling has 

also been reported successfully demonstrated in harder alloys system, for 

example Ti-6Al-4V [9-12]. The ECAP recycled product can achieve 99.0% 

density without any post processing [11].  

ECAP is a well-established SPD method to produce ultrafine grained bulk 

materials [13; 14]. During ECAP, simple shear deformation occurs in a narrow 

region at the intersecting plane of the inlet and outlet channels [15], as marked 

as shear zone in Fig. 1. Since the sample is pressed through a die with the 

cross-sectional dimension unchanged, very large accumulative strain is 

possible to be imposed via repetitive passes. In this way, significant grain 

refinement and strong texture can be introduced. Both microstructure and 

crystallographic texture evolution strongly depend on the ECAP process 

parameters (e.g. prescribed processing route, temperature and number of 

passes) [16-19]. 
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Studies have shown that texture has pronounced influence on mechanical 

properties, especially for hexagonal close packed (HCP) materials due to the 

anisotropy [20-23], i.e. the mechanical properties of materials vary significantly 

with the loading directions. Several studies have been made on the 

microstructure and texture evolution of bulk ECAP-processed pure Ti alloys 

[24-27] and a few on Ti-6Al-4V [28]. The evolution of the texture of 

ECAP-processed pure Ti was reported to be originated mainly from twinning in 

the first pass at the processing temperature of 350 °C [29]. However, in the 

subsequent passes, the twinning was suppressed and the deformation was 

mainly accommodated by dislocation slips. Nevertheless, the active slip 

system during deformation in Ti-6Al-4V was under controversy in ECAP 

process: it was either depending on the specific route at the processing 

temperature of 350 °C [29] or predominantly basal slip irrespective of routes at 

the ECAP temperature of 400 °C [30]. Very limited works have been reported 

for the texture evolution of ECAP-processed Ti-6Al-4V. Due to the addition of 

Al, it was expected that the twinning activity would be minimised in Ti-6Al-4V 

[31]. The current study revealed the possibility of producing bulk Ti-6Al-4V 

directly from machining chips at moderate temperature with refined grain 

structure. The microstructure evolution such as grain size and texture of the 

ECAP recycled Ti-6Al-4V after multiple passes (1, 2, 4 and 8 passes) and at 

different temperatures (500°C and 550°C) will be discussed in this paper.  

Experimental materials and procedure 

The raw material used in this investigation was machining chips from a 

Ti-6Al-4V round bar with a diameter of 80 mm [32]. In order to avoid 

contamination, coolant and lubricant were not used during the machining 

process. The machining chips were of ~180 μm thickness and saw-tooth 

shaped. According to our previous study, the machining chips consisted of the 
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lamellar microstructure inherited from the bulk Ti-6Al-4V and primary shear 

zones induced during machining[11]. The detailed microstructure 

characterization of the initial machining chips has been reported elsewhere [11]. 

Before ECAP, Ti-6Al-4V chips were pre-compacted into cylindrical bars with a 

diameter of 10 mm and a length of ~70 mm by a hydraulic press and then 

wrapped with Al foil. The wrapped and pre-compacted specimens were 

subjected to ECAP via route BC up to 8 passes at the temperature of 500 °C 

accompanied with a back-pressure of 100 MPa. In addition, samples pressed 

with a back-pressure of 250 MPa at temperatures of 500 °C and 550 °C for a 

single pass were used for comparison. The pressing speed was also kept 

constant at 4 mm/min, and molybdenum disulphide (MoS2) was used as 

lubricant in the ECAP channels. The ECAP die has an angle (𝜙𝜙) of 90° 

between two channels and a relief angle (𝜓𝜓) of ~36° at the intersection, as 

shown in Fig. 1. This design gives a shear strain of ~1 after each passage 

through the die. 

 
Fig. 1 Schematic cross section of the ECAP die, for which 𝜙𝜙 and 𝜓𝜓 equal to 90° and ~36°, 

respectively. The extrusion direction (ED), longitudinal direction (LD), transverse direction (TD), 
shear direction (SD) and normal to shear direction (NSD) of the ECAP process are also 

indicated. 

Specimens for TEM examination were mechanically ground to a thickness of 

~100 µm, and then Ar+ ion milled for perforation. TEM images and 
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corresponding selected area diffraction (SAD) patterns were obtained in a 

JEOL 2000FX operated at 200 kV.  

The texture of the LD-ED plane (as shown in Fig. 1) was measured by a Carl 

Zeiss (LEO) 1530VP field emission gun (FEG) scanning electron microscope 

(SEM) fitted with a HKL Nordlys F high speed electron backscatter diffraction 

(EBSD) camera. The EBSD scans were done at an acceleration voltage of 20 

kV with a 0.2 µm step size and scan area of 100 × 100 μm. The coordinate 

systems of the as-pressed specimen extrusion direction (ED), longitudinal 

direction (LD) and shear direction (SD) is shown in Fig. 2(a). It should be noted 

that the shear direction is 45° to the longitudinal direction when the relief angle 

ψ of the die is 0°. In the current die, ψ is of 36°, therefore the shear direction is 

of ~69° to the longitudinal direction. The relative directions used in pole figures 

are shown in Fig. 2 (b) with direction normal to the shear direction (NSD), 

inclination direction (ID) and normal to inclination direction (NID) added to 

facilitate the texture description in the discussion section.  

 
Fig. 2 (a) The coordinate system of as-pressed specimen, and (b) the reference coordinate 
system used in the pole figures, the dotted line and arrows indicating the shear directions of 

the current die design. 

2. Experimental results and discussions 

2.1 Effect of number of passes on microstructural and texture formation 

of recycled Ti-6Al-4V 

ID 

NID 
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The microstructure feature was firstly illustrated by optical microscopy. Fig. 3a 

shows an optical micrograph of a recycled Ti-6Al-4V after single pass. It 

indicates that the chips inclined at ~21° with respect to the ED after one pass 

of the ECAP process, which is defined as the inclination direction (ID) in this 

study. The inclination direction of the chips with respect to the ED is near the 

theoretical shear flow line (i.e. the shear direction SD) which is about 21° to the 

ED for a die with φ = 90° and ψ = 36° [33] and it also agreed with the the 

experimental results presented elsewhere [30; 34; 35]. The inclination angle 

remains unchanged in the subsequent passes when the samples are 

processed with route Bc as shown in Fig 3b. The inclination angle is still ~21° 

after four passes.  

 

(a)                              (b) 
Fig. 3 Optical micrograph showing the Ti-6Al-4V chips after a) the first pass, b) the fourth pass. 

Chips are orientated at an inclination angle of ~21°with respect to the ED after the first and 
fourth pass.  

Figs. 4 (a) to (d) illustrate the texture evolution of the recycled Ti-6Al-4V after 1, 

2, 4 and 8 ECAP passes in {0002} and {101�0} pole figures. To facilitate the 

discussion, the ideal fibre texture identified by Beausir et al. [36] is shown in Fig. 

4(e). The five ideal shear texture components (P, B, Y, C1 and C2) have been 

referred to in the analysis for HCP crystals under simple shear, for example Ti 

alloys [30; 37-39], although it is obtained from pure magnesium [36; 40]. 

100µm 



7 

 

As shown in Fig. 4(a), the basal poles were titled towards the direction inclining 

an angle of ~21° with the LD. This implies that the basal plane was almost 

aligned with the ID of ECAP. As evident by the {101�0} pole figure, grain 

orientation with <101�0> directions parallel to the ID is formed after one pass, 

and the development of three clusters at an angle of ~60° interval as shown in 

the pole figure represent the crystallographic symmetry of {101�0} family of 

planes. A schematic diagram of HCP crystal representing the orientation with 

respect to the reference coordinate system is shown in Fig. 5. Comparing with 

the ideal fibres, it is apparent that the textures developed after the first pass 

are the B fibre as indicated by both {0002} and {101�0}  pole figures; 

nevertheless, the basal and prismatic poles drifted from the ideal position (SD 

is 45° from ED in the ideal case). This is likely because the die used in the 

current study had a corner angle of ~36°, while the ideal textures were 

simulated using relief angle of 0° [36]. Although the applied back-pressure could 

facilitate to narrow the ECAP shear zone, the area of deformation still fanned 

out during processing. This fibre texture is typical in ECAP-processed bulk 

Ti-6Al-4V [20; 28] and many other HCP materials [36; 41-43], although with ± 5° 

deviations of the inclination direction (ID) which is the imposed shear direction 

for the current die used in this study. 

As the machining chips before ECAP were compacted similar to briquetting, all 

chips were assumed to be aggregated randomly, thus the initial texture is 

regarded weak. The strong B fibre texture after the first pass as shown in Fig. 

4(a) is mainly attributed to basal slip activity during ECAP, because basal slip 

{0001}〈112�0〉 is the dominant deformation system in Ti-6Al-4V subjected to 

moderate-temperature ECAP [20]. This results in {0002}∥ID texture. Although 

prismatic slip {101�0}〈112�0〉 is usually considered as the easiest slip system to 

be activated in α-Ti, during deformation the alloying elements like Al suppress 

the prismatic slip [44]. Furthermore, the critical resolved shear stress (CRSS) of 



8 

 

basal slip reduces faster than prismatic slip with increasing temperature [28; 45]. 

In the current experimental conditions (ECAP-processed at 500°C), the 

relative activity of basal slip is much higher than other deformation systems 

and it is agreed with the simulated results reported in the literature [28, 30]. 
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Fig. 4 {0002} and {101�0} pole figures of Ti-6Al-4V recycled at 500 °C with a back-pressure 

of 100 MPa after (a) 1, (b) 2, (c) 4,(d) 8 passes and (e) ideal fibres of Mg after ECAP with 

shear direction (SD) of 45° about longitudinal direction (LD) (modified after[36]). 
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Fig. 5 Schematic diagram of α-Ti crystal after the first pass showing the basal plane parallel to 

the inclination direction (ID) 

After the second pass, it can be seen that the consequent texture exhibits 

three peaks in the {0002} pole figure, as labelled in Fig. 4(b). In route BC the 

sample is rotated around the ED by 90° in the same direct after each pass. 

The strong texture component labelled as peak 1 after two passes is the P1 

texture component, which is likely to inherit from the first pass, i.e. the B 

texture developed after the first pass was rotated 90° around ED, as illustrated 

in Fig. 6, resulting the c-axis about 17° away from TD. Peak 2 is attributed to 

the grain rotated by the imposed shear stress during the second pass, and 

hence a B texture. Peak 3 (deviated from P fibre texture) is formed due to the 

insufficient rotation of the B texture after first pass (i.e. {0002}//ID) [37]. 

Comparing the texture of ECAP-processed pure Ti measured by XRD, both 

peaks 1 and 3 were observed [30; 37]. The existence of peak 2 implies that for 

ECAP recycled Ti-6Al-4V chips, texture development differ to the bulk pure Ti 

is likely attribute to the different deformation mechanisms in Ti-6Al-4V [42]. 

The addition of alloying elements, constraint of chip boundaries and pressing 

temperature will affect the deformation mechanism. The corresponding {101�0} 

pole figure after two passes shows the presence of an incomplete P1 fibre 

texture, as indicated by dotted lines in Fig. 4(b).  
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Fig. 4(c) shows that after 4 passes, the resulting {0002} texture is dominant by 

the B and P fibre textures with 10 - 20° spread. As shown in Fig. 4(d), it is 

observed that the basal texture after 8 passes is still dominated with the B and 

P fibres with a much smaller spread than that after 4 passes. The strongest 

texture, P1 (peak 5) was found near the ideal position after 8 passes. 

Complementary with {101�0} pole figures, it is obvious that after 4 and 8 

passes, P fibre textures are sharpened, although the positions are slightly 

rotated from the ideal locations. The evolution of the texture development 

shows that B and P textures are the most commonly occurred among the five 

ideal shear texture components after the second pass and these fibre textures 

are sharpened with the increase in number of passes. 

 

Fig. 6 Schematic diagram showing the rotation of α-Ti crystal after 2 passes. 

The most significant feature of the texture evolution after 4 and 8 passes is the 

rotation of c-axis towards the TD (P1 texture). This resembles the texture 

evolution of ECAP-processed pure Ti at 400 °C [30], although they only 

performed the ECAP experiments and simulations up to the 3rd pass and 

ignored the activity of twining in the simulation. For ECAP-processed pure Ti 

the twinning is an important mechanism to accommodate the deformation, 

especially in the first pass [29], nonetheless, in the subsequent passes, the 

CRSS required to activate twinning is much larger than that required for 

activating dislocation slip in fine grain structure [29]. Eliminating of twinning 
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activities in the simulation of pure Ti is more applicable in the case of Ti-6Al-4V, 

because the addition of alloying elements (e.g. Al) in Ti will suppress the 

twinning deformation mechanism [31; 46; 47]. The only observation of twinning in 

ECAP-processed Ti-6Al-4V was reported by Yapici et al. [28], where Ti-6Al-4V 

was pressed at 800 °C using route A. Based on the present experimental 

results, the plastic deformation during the ECAP is expected to be majorly 

accommodated by dislocation slips.  

The microstructures of samples after different numbers of passes are also 

shown in TEM micrographs (Fig. 7). The microstructure after one pass (Fig. 

7(a)) contains chains of elongated grains, as indicated by the arrows. These 

deformed grains are originated from the lamellar structure (with size about 

3µm) of the initial machining chips as reported elsewhere [11]. As a result of 

the shearing during ECAP, the lamellae were refined and transverse grain 

boundaries formed due to the aggregation of dislocation cell walls. With further 

ECAP to 4 passes, as shown in Fig. 7(b), equiaxed grains with average size of 

~70 nm in diameter were started developing, but some elongated grains 

remained (as indicated by the arrows). After 8 passes, it is observed that there 

is no further grain refinement, however, the elongated grains were eliminated 

and the microstructure is dominated by nano-scaled and equiaxed grains. 

Similar results have been reported in our previous paper [11].” 

The schematic diagram of grain refinement mechanism during multiple-pass 

ECAP is illustrated in Fig 8. The grains elongated at the first pass and more 

equiaxed grains will form with subsequent passes until reaching an equilibrium 

state. 
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Fig. 7 TEM microstructure of recycled Ti-6Al-4V at 500 °C with a back-pressure of 100 MPa for 

(a) 1, (b) 4 and (c) 8 passes. 

 
Fig. 8 Schematic diagram showing the grain refinement of recycled Ti-6Al-4V with the increase 

in number of ECAP passes. d is denoted the smallest width (~70 nm) of the lamella 
microstructure in the chips.   

2.2 Effect of pressing temperature on microstructure and texture 

formation of recycled Ti-6Al-4V 

Figs. 9(a) and (b) show the EBSD orientation maps of the samples after single 

pass with a back-pressure of 250 MPa at 500 °C and 550 °C, respectively. The 

sample processed at 500 °C had a relatively low EBSD indexing rate (Fig. 

9(a)), because the quality EBSD patterns were poor in the regions consisting 

of ultrafine grains with high level of plastic strain. It is observed that the 

elongated grains were again parallel to the ID (Fig. 3). The increase in the 

processing temperature by 50 °C resulted in larger dynamic recovery and 

stress relief of the as-pressed sample, which has been indicated in the EBSD 

result with better indexing rate (Fig. 9(b)). In addition to ultrafine grains 
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(marked by ovals, regions 1 and 2), larger and elongated grains were found 

(indicated by arrows), unlike those which processed at lower back pressure 

and temperature (Figs 8 and 9 (a)). The average diameter of the ultrafine 

grains in regions 1 and 2 is ~250±60 nm. The elongated grains have width 

ranged from 5 – 10 µm and possess orientation change within a grain as 

indicated by the arrows in Fig 9. The misorientation profiles in Fig. 10(a) and (b) 

suggest the misorientation within the elongated grains in both samples 

pressed at different temperatures are less than 15° indicating the existing of 

low angle grain boundaries in the deformed grain.  

 
Fig. 9 EBSD orientation maps showing the microstructures of the recycled samples by single 
ECAP with a back-pressure of 250 MPa at: (a) 500 °C and (b) 550 °C. Post processing EBSD 

noise reduction was performed by extrapolating using the 5 nearest neighbours with a 5° 
angular tolerance.  
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Fig. 10 Misorienation profiles measured along:(a) line AB in EBSD map of sample pressed at 

500 °C (Fig. 9(a)) and (b) line CD in EBSD map of sample pressed at 550 °C (Fig. 9(b)). 

Due to the limited spatial resolution of EBSD, TEM was used to study the nano 

sized microstructures. In the samples processed at 500 °C, the lamellar 

structure of the machining chips which was about 5 microns is refined down to 

lamellae with a width of ~70 nm, and transverse sub-grain boundaries are 

observed within the lamellae, as indicated by arrows in Fig. 11(a). The 

equiaxed grains with an average size of ~70 nm are produced during the first 

pass (Fig. 11(b)). Such a bimodal structure in the single-pass sample has been 

reported in the previous research [11]. The coexisting of elongated and 

equiaxed α grains implies that the shearing strain during the first pass has not 

effectively refined the initial microstructure. Apart from the dominated α phase, 

lamellar β phase was also identified, as shown in Fig. 11(c): The EDS analysis 

(Al: ~3.04 wt.%; V: ~26.11 wt.%) and corresponding SAD pattern confirms that 

the lamellar structure was β phase. Compared to the initial β phase (Fig. 11(d)), 

the grain size is decreased from ~80 nm to ~40 nm. Similar result was 

obtained in bulk Ti-6Al-4V ECAP-processed at 600 °C to 800 °C, where the β 

lamellae were thinned after the first pass by fragmentation [34].  
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Fig. 11 Typical TEM microstructures developed during the single-pass ECAP at 500 °C with a 
back-pressure of 250 MPa: (a) lamellar structure, (b) equiaxed α grains with the inset showing 

the corresponding ring-shape SAD pattern, (c and d) β lamella with the inset of the 
corresponding SAD pattern. 

 
Fig. 12 TEM images of Ti-6Al-4V recycled by single ECAP at 550 °C with a back-pressure of 

250 MPa: (a) equiaxed α grains, (b) abnormally large α grains, (c) β grain marked by the circle 
and (d) a chip/chip interface and corresponding SAD pattern. 
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Table 1 Weight percentage of the chemical elements detected by EDS analysis at the 
chip/chip interface (marked by the circle in Fig. 12(d)) of the specimen processed at 550 °C. 

Element Ti Al V O 

Concentration (wt.%) 58.5 5.7 2.6 33.2 

TEM micrographs show that the sample processed at 550 °C has a relatively 

coarser and heterogeneous microstructure (Fig. 12). The grain size of the α 

phase was fallen into a wider range. Majority of the α grains have diameter of 

~300 nm (Fig. 12(a)), which is consistent with the EBSD results. In addition, 

some extra-large α grains with diameter of ~600 nm were observed (Fig. 

12(b)). The grain growth also occurred in β phase as marked by the circle in 

Fig. 12(c): an equiaxed β grain (V content of ~26.17 wt.%) with a diameter of 

~100 nm. The chip/chip interface is shown in Fig. 12(d) and the bright field 

image indicates a layer of finer structure which is not observable in the sample 

pressed at lower temperature (500°C). The corresponding SAD and EDS 

analysis (Table 1) suggest that is an oxide layer. The two innermost 

continuous rings of the SAD pattern are contributed by ultrafine grained TiO2 [8], 

and corresponding to the {110} and {101} rings of the tetragonal TiO2, as 

indicated in the inset of Fig. 12(d). The formation of oxide layers along the 

chip/chip boundaries or oxide particles within the matrix were reported in 

previous researches on solid state recycling of metallic chips [5; 9; 48]. The 

existence of oxide layers on machining chip surfaces was believed to be 

introduced during the machining process because of the substantial heat 

generation at the chip/tool interface [9]. However, in the current study, the oxide 

layer at the chip boundary was only observed in the sample processed at 

550 °C. The thickness of the naturally formed oxide layer on titanium alloys is 

less than 5 nm [49]. Thus, it is plausible that the oxide layer in the samples 

pressed at 500 °C was too thin or has been fragmented to even finer oxide 
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particles and those could not be detected by TEM EDS. The present result 

indicates thicker oxide layer was formed at the chip/chip interface when the 

sample was pressed at 550 °C. The increase in temperature facilitated the 

formation of thicker oxide layer along the chip/chip interface. These oxide 

layers may be broken up into particles due to the severe plastic deformation 

during ECAP. The oxide dispersion strengthening (ODS) in ECAP-processed 

Mg and Ti alloys have been observed and partly responsible for the enhanced 

mechanical properties [5; 48]. The microhardness histograms of the samples 

ECAP-processed at 500 °C and 550 °C are plotted in Figs. 13(a) and (b), 

respectively. The red lines indicate the average hardness values. It is noticed 

that the degree of scattering for these two diagrams is almost identical; 

nonetheless, the sample pressed at 550 °C possessed a slightly higher 

average hardness than the sample pressed at 500 °C (384±21 HV vs. 359±14 

HV). Considering the relatively coarser grains observed in the 

ECAP-processed sample at 550 °C, the hardness measurement seems to be 

contradicted to the Hall-Petch relation. In this case, the hardness 

enhancement in the 550 °C ECAP-processed sample may be due to the 

strengthening by the fine oxide dispersed within the matrix [45]. 

 
Fig. 13 The histograms showing the microhardness distributions of the samples after single 

ECAP pass with a back-pressure of 250 MPa at (a) 500 °C and (b) 550 °C. 

Figs. 14(a) and (b) show {0002} pole figures of recycled Ti-6Al-4V after single 

pass with a back-pressure of 250 MPa at 500 °C and 550 °C, respectively. 
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Comparing the texture in Fig. 14(a) with the simulated ideal orientations (Fig. 

4(e)), both B and P fibres were observed. In comparison to the single-pass 

recycled Ti-6Al-4V using a lower back-pressure of 100 MPa (Fig. 4(a)), the 

texture components are rotated towards the LD. This may be due to the 

activation of the non-basal slip systems when the applied back-pressure 

increased [50; 51]. The increase in back-pressure leads to a narrow plastic 

deformation zone (PDZ) [52], making the ECAP process close to the simple 

shear model. The shearing force can aggravate the deformation heating during 

ECAP [53], resulting in the reduced critical resolved shear stress (CRSS) for 

non-basal slip. In the sample processed at 550 °C, the basal poles are rotated 

further towards the LD (Fig. 14(b)). It is because the CRSS for non-basal slip 

systems was further reduced with increasing processing temperature. 

TEM observation provides evidence of the non-basal slip activity of the sample 

pressed at 550°C. Fig. 15 shows the bright field images of dislocations under 

two beam conditions using a reflection of �⃗�𝑔 = [0002] . Because the 

dislocations (marked by arrows) are visible in this reflection condition, based 

on the invisibility criterion of �⃗�𝑔 ∙ 𝐵𝐵�⃗ = 0, the dislocations must be non-basal 

〈�⃗�𝑎 + 𝑐𝑐〉 type with Burgers vector of 1
3

< 112�3]. 

 
Fig. 14 {0002} pole figures of recycled Ti-6Al-4V after one pass with a back-pressure of 250 

MPa at temperatures of (a) 500 °C and (b) 550 °C. 
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Fig. 15 TEM iamges of dislocations in the sample processed at 550 °C with a back-pressure of 

250 MPa after one pass, under two beam conditions using diffraction vector �⃗�𝑔 = [0002]. 

 

3. Conclusions 

In the present study, the microstructural and texture evolution of recycled 

Ti-6Al-4V by using ECAP were investigated after multiple passes and at 

different temperatures. At the processing temperature of 500 °C, the 

microstructure is refined from elongated and coarser grains after a single pass 

to fully equiaxed and ultrafine grains after 8 passes. The shear deformation 

during ECAP leads to the formation of texture. The texture development after 

the first pass showed a strong B texture. The further increase of passes to 4 

and 8 makes the c-axis rotate towards the TD and NID with 10° - 20° 

orientation spread due to the deformation by slips during the ECAP process 

using Bc route. The increase in back pressure has no effect on the grain size 

and morphology of the ECAP processed samples, only the fibre texture is 

strengthened slightly with the increase in back pressure. The increase of the 

processing temperature by 50 °C resulted in the significant grain coarsening 

and the formation of oxide layer at the chip/chip interface. The fragmented 

oxide during ECAP may contribute to the improvement of microhardness. 
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Additionally, the c-axis were observed to rotate towards the LD because of the 

activation of the non-basal slip resulting {0002}∥LD texture.  
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