

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

THREE DIMENSIONAL MODELLING

OF GENERALIZED NEWTONIAN FLUIDS

IN DOMAINS INCLUDING OBSTRUCTIONS.

By

Noel Rupert Thierry Boukanga

A Doctoral Thesis

Submitted in partial fulfilment of the Requirements for the award

of Doctor of Philosophy of Loughborough University.

2010

Department of Chemical Engineering

Loughborough University

ACKNOWLEDGEMENT

I have to say special thanks to Professor Vahid Nassehi for his strong support during the

course of my study at Loughborough University. Thanks also to my co-supervisor

Professor Richard Wakeman for his valuable advices.

I must thank my parents Mr Auguste Boukanga and Mrs Henriette Boukanga, my

brothers, sisters, and cousins to be around during these though period of times.

My friends Ganiu Alogba, Ravinder Bhandari, Abu, Kenneth, Amale K. Manga Mabada,

Mabiango Mbiangola, and Ahmed Turay are acknowledge for their helps during my time

in United Kingdom.

But most of all, I have to say this: thanks to God.

I acknowledge receipt of financial support during the time of my PhD study at

Loughborough University.

iv

ABSTRACT

Three dimensional flow regimes are encountered in many types of industrial flow

processes such as filtration, mixing, reaction engineering, polymerization and polymer

forming as well as environmental systems. Thus, the analyses of phenomena involved

fluid flow are of great importance and have been subject of numerous ongoing research

projects. The analysis of these important phenomena can be conducted in laboratory

through experiments or simply by using the emerging computational fluid dynamics

(CFD) techniques. But when dealing with three dimensional fluid flow problems, the

complexities encountered make the analysis via the traditional experimental techniques a

daunting task. For this reason, researchers often prefer to use the CFD techniques which

with some care taken, often produce accurate and stable results while maintaining cost as

low as possible.

Many CFD codes have been developed and tested in the past decades and the results have

been successful and thus encouraging researchers to develop new codes and/or improve

existing codes for the solutions of real world problems.

In this present project, CFD techniques are used to simulate the fluid flow phenomena of

interest by solving the flow governing equations numerically through the use of a

personal computer. The aim of this present research is to develop a robust and reliable

technique which includes a novel aspect for the solution of three dimensional generalized

Newtonian fluids in domains including obstructions, and this must be done bearing in

mind that both accuracy and cost efficiency have to be achieved. To this end, the finite

element method (FEM) is chosen as the CFD computational method. There are many

existing FEM techniques namely the streamline upwind Petrov-Galerkin methods, the

streamline diffusion methods, the Taylor-Galerkin methods, among others. But after a

thorough analysis of the physical conditions (geometries, governing equations, boundary

conditions, assumptions …) of the fluid flow problems to be solve in this project, the

appropriate scheme chosen is the UVWP family of the mixed finite element methods. It

is scheme originally developed to solve two dimensional fluid flow problems but since

the scheme produced accurate and stable

v

Abstract

results for two dimensional problems, then attempt is made in this present study to

develop a new version of the UVWP scheme for the numerical analysis of three

dimensional fluid flow problems. But, after some initial results obtained using the

developed three dimensional scheme, investigations were made during the course of this

study on how to speed up solutions’ convergence without affecting the cost efficiency of

the scheme. The outcomes of these investigations yield to the development of a novel

scheme named the modified three dimensional UVWP scheme. Thus a computer model

based on these two numerical schemes (UVWP and the Modified UVWP) is developed,

tested, and validated through some benchmark problems, and then the model is used to

solve some complicated tests problems in this study. Results obtained are accurate, and

stable, moreover, the cost efficiency of the computer model must be mentioned because

all the simulations carried out are done using a simple personal computer.

Keywords: Computational fluid dynamics, CFD, Computational methods, Fluid flow,

Generalized Newtonian fluids, Mathematical modelling, Modelisation, simulation et

analyse numerique, Navier-Stokes, Numerical analysis, Stokes.

vi

 LIST OF TABLES

 Page

Table 5.1: Physical properties of the generalized Newtonian fluid used. 77

vii

LIST OF FIGURES

Chapter 2 Page

Figure 2.1 Computational domain for comparison case. 12

Figure 2.2 Finite element mesh for comparison case. 13

Figure 2.3a 2-D schematic representation of the boundary

 condition in the xy plane for comparison case. 13

Figure 2.3b 2-D schematic representation of the boundary

 condition in the xz plane. 13

Figure 2.4a Velocity contour plot (Modified U-V-W-P scheme). 14

Figure 2.4b Velocity contour plot (U-V-W-P scheme). 14

Figure 2.5a: Velocity section plot (Modified U-V-W-P scheme). 15

Figure 2.5b: Velocity section plot (U-V-W-P scheme). 15

Figure 2.6a: Pressure contour plot (Modified U-V-W-P scheme). 15

Figure 2.6b: Pressure contour plot (U-V-W-P scheme). 15

Figure 2.7: 8 – nodes isoparametric hexahedral element. 19

Chapter 4

Figure 4.1: Flow chart for both the UVWP and the modified UVWP schemes. 77

Chapter 5

Figure 5.1.1: Geometry of the Benchmark problem 1. 80

Figure 5.1.2: Finite element mesh of benchmark problem 1. 81

Figure 5.1.3a: 2-D schematic representation of the boundary condition in

 the xy plane (benchmark problem 1). 81

Figure 5.1.3b: 2-D schematic representation of the boundary condition in

 the xz plane (benchmark problem 1). 82

viii

List of figures

Figure 5.1.4: Pressure distribution (benchmark problem 1). 82

Figure 5.1.5: Graph of pressure distribution across the domain

 (benchmark problem 1) 83

Figure 5.1.6: Vector plot profile coloured by the velocity magnitude contour

 (benchmark problem 1). 84

Figure 5.1.7: Profile of the contour of the velocity magnitude (y = 0.05m plane)

 benchmark problem 1. 85

Figure 5.1.8: Profile of the contour of the velocity magnitude(y = 0.02m plane)

 benchmark problem 1. 85

Figure 5.1.9: Profile of the contour of the velocity magnitude(y = 0.098m plane)

 benchmark problem 1. 86

Figure 5.1.10: Combined profiles of the the velocity magnitude (y = 0.02m, y =

0.05m, and y = 0.098m planes) benchmark problem 1. 86

Figure 5.1.11: Profile of the contour of the velocity magnitude (z = 0.05m plane)

 benchmark problem 1. 86

Figure 5.1.12: Profile of the contour of the velocity magnitude (z = 0.02m plane)

 benchmark problem 1. 86

Figure 5.1.13: Profile of the contour of the velocity magnitude (z = 0.098m plane)

 benchmark problem 1. 87

Figure 5.1.14: Combined profiles of the the velocity magnitude (z = 0.02m, z =

 0.05m, and z = 0.098m planes) benchmark problem 1. 87

Figure 5.2.1: Geometry of benchmark problem 2. 87

Figure 5.2.2: Finite element mesh for benchmark problem 2. 88

Figure 5.2.3a: 2-D schematic representation of the boundary condition in

 the xy plane (benchmark problem 2). 88

ix

List of figures

Figure 5.2.3b: 2-D schematic representation of the boundary condition in

 the xz plane (benchmark problem 2). 89

Figure 5.2.4: Pressure distribution (benchmark problem 2). 90

Figure 5.2.5: Graph of pressure distribution across the domain

 (benchmark problem 2). 90

Figure 5.2.6: Vector plot profile coloured by the velocity magnitude contour.

 (benchmark problem 2). 91

Figure 5.2.7: Vector plot profile coloured by the velocity magnitude contour

 zoomed around the outlet (benchmark problem 2). 91

Figure 5.2.8: Profile of the contour of the velocity magnitude (y = 0.05m plane)

 (benchmark problem 2). 92

Figure 5.2.9: Profile of the contour of the velocity magnitude(y = 0.02m plane)

 (benchmark problem 2). 92

Figure 5.2.10: Profile of the contour of the velocity magnitude(y = 0.098m plane)

 (benchmark problem 2). 92

Figure 5.2.11: Combined profiles of the the velocity magnitude (y = 0.02m, y =

 y = 0.05m, and y = 0.098m planes) (benchmark problem 2). 92

Figure 5.2.12: Profile of the contour of the velocity magnitude (z = 0.5m plane)

 (benchmark problem 2). 93

Figure 5.2.13: Profile of the contour of the velocity magnitude (z = 0.02m plane)

 (benchmark problem 2). 93

Figure 5.2.14: Profile of the contour of the velocity magnitude (z = 0.098m plane)

 (benchmark problem 2). 94

Figure 5.2.15: Combined profiles of the velocity magnitude (z = 0.02m,

 z = 0.05m, and z = 0.098m planes) (benchmark problem 2). 94

Figure 5.3.1: Geometry of benchmark problem 3. 94

x

List of figures

Figure 5.3.2: Finite element mesh for benchmark problem 3. 95

Figure 5.3.3a: 2-D schematic representation of the boundary condition in

 the xy plane (benchmark problem 3). 95

Figure 5.3.3b: 2-D schematic representation of the boundary condition in

 the xz plane (benchmark problem 3). 96

Figure 5.3.4: Pressure distribution (benchmark problem 3). 97

Figure 5.3.5: Graph of pressure distribution across the domain

 (benchmark problem 3). 97

Figure 5.3.6: Vector plot profile coloured by the velocity magnitude contour

 (benchmark problem 3). 99

Figure 5.3.7: Vector plot profile coloured by the velocity magnitude contour

 zoomed around the outlet (benchmark problem 3). 99

Figure 5.3.7: Profile of the contour of the velocity magnitude (y = 0.5m plane)

 benchmark problem 3. 100

Figure 5.3.8: Profile of the contour of the velocity magnitude(y = 0.02m plane)

 benchmark problem 3. 100

Figure 5.3.9: Profile of the contour of the velocity magnitude(y = 0.098m plane)

 benchmark problem 3. 100

Figure 5.3.10: Combined profiles of the velocity magnitude (y = 0.02m,

 y = 0.05m, and y = 0.098m planes) benchmark problem 3. 100

Figure 5.3.11: Profile of the contour of the velocity magnitude (z = 0.5m plane)

 benchmark problem 3. 101

Figure 5.3.12: Profile of the contour of the velocity magnitude (z = 0.02m plane)

 benchmark problem 3. 101

Figure 5.3.13: Profile of the contour of the velocity magnitude (z = 0.098m plane)

 benchmark problem 3. 101

xi

List of figures

Figure 5.3.14: Combined profiles of the velocity magnitude (z = 0.02m,

 z = 0.05m, and z = 0.098m planes) benchmark problem 3. 101

Figure 5.4.1: Computational domain for the test case 1 with a big square

 Blockage. 104

Figure 5.4.2: Finite element mesh for test case 1. 104

Figure 5.4.3a: 2-D schematic representation of the boundary condition in the xy plane

 (test case 1). 105

Figure 5.4.3b: 2-D schematic representation of the boundary condition in the

 xy plane (test case 1). 105

Figure 5.4.4: Pressure distribution (test case 1). 106

Figure 5.4.5: Graph of pressure distribution across the domain (test case 1). 106

Figure 5.4.6: Vector plot profile coloured by the velocity magnitude contour

 (test case 1). 107

Figure 5.4.7: Vector plot profile coloured by the velocity magnitude contour zoomed

 around the obstacle in the x-y plane (test case 1). 107

Figure 5.4.8: Vector plot profile coloured by the velocity magnitude contour zoo

 med around the obstacle in the x-z plane (test case 1). 107

Figure 5.4.9: Profile of the contour of the velocity magnitude (y = 0.05m plane)

 test case 1. 108

Figure 5.4.10: Profile of the contour of the velocity magnitude(y = 0.02m plane)

 (test case 1). 108

Figure 5.4.11: Profile of the contour of the velocity magnitude (y = 0.098m plane)

 test case 1. 108

Figure 5.4.12: Profile of the contour of combined the velocity magnitudes

 (position y = 0.02, 0.05 and 0.098m) test case 1. 108

xii

List of figures

Figure 5.4.13: Profile of the contour of the velocity magnitude (z = 0.05m plane)

 test case 1. 109

Figure 5.4.14: Profile of the contour of the velocity magnitude (z = 0.02m plane)

 test case 1. 109

Figure 5.4.15: Profile of the contour of the velocity magnitude (z = 0.098m plane)

 test case 1. 109

Figure 5.4.16: Combined profiles of the e velocity magnitude (z = 0.02m,

 z = 0.05m, and z = 0.098m planes) test case 1. 109

Figure 5.5.1: Computational domain for test case 2. 110

Figure 5.5.2: Finite element mesh for test case 2. 111

Figure 5.5.3a: 2-D schematic representation of the boundary condition in the

 xy plane (test case 2). 111

Figure 5.5.3b: 2-D schematic representation of the boundary condition in the xz

 Plane (test case 2). 112

Figure 5.5.4: Pressure distribution (test case 2). 113

Figure 5.5.5: Graph of pressure distribution across the domain (test case 2). 113

Figure 5.5.6: Vector plot profile coloured by the velocity magnitude contour

 (test case 2.). 114

Figure 5.5.7: Vector plot profile coloured by the velocity magnitude contour

 zoomed around the obstacle in the x-y plane (test case 2). 114

Figure 5.5.8: Vector plot profile coloured by the velocity magnitude contour

 zoomed around the obstacle in the x-z plane (test case 2). 115

Figure 5.5.9: Profile of the contour of the velocity magnitude (y = 0.5m plane)

 test case 2. 115

Figure 5.5.10: Profile of the contour of the velocity magnitude(y = 0.02m plane)

 test case 2. 115

Figure5.5.11: Profile of the contour of magnitude(y = 0.098m plane) test case 2. 116

xiii

List of figures

Figure 5.5.12: Combined profiles of velocity magnitude (y = 0.02m, y = 0.05m

 and y = 0.098m planes) test case 2. 116

Figure 5.5.13: Profile of the contour of the velocity magnitude (z = 0.5m plane)

 test case 2. 117

Figure 5.5.14: Profile of the contour of the velocity magnitude (z = 0.02m plane)

 test case 2. 117

Figure 5.5.15: Profile of the contour of the velocity magnitude (z = 0.098m plane)

 test case 2. 117

Figure 5.5.16: Combined profiles of the the velocity magnitude (z = 0.02m,

 z = 0.05m, and z = 0.098m planes) test case 2. 117

Figure 5.6.1: Computational domain for test case 3. 118

Figure 5.6.2: Finite element mesh for test case 3. 118

Figure 5.6.3a: 2-D schematic representation of the boundary condition in the

 xy plane (test case 3). 118

Figure 5.6.3b: 2-D schematic representation of the boundary condition in the xz

 plane (test case 3). 119

Figure 5.6.4: Pressure distribution for test case 3. 120

Figure 5.6.5: Graph of pressure distribution across the domain (test case 3). 120

Figure 5.6.6: Vector plot profile coloured by the velocity magnitude contour

 in the z = 0.5m plane (test case 3). 121

Figure 5.6.7: Vector plot profile coloured by the velocity magnitude contour

 in the y = 0.5m plane (test case 3). 121

Figure 5.6.8: Vector plot profile coloured by the pressure contour zoomed 122

 around the obstruction (test case 3).

xiv

List of figures

Figure 5.6.9: Profile of the contour of the velocity magnitude (z = 0.5m plane)

 test case 3. 123

Figure 5.6.10: Profile of the contour of the velocity magnitude (z = 0.02m plane)

 test case 3. 123

Figure 5.6.11: Profile of the contour of the velocity magnitude (z = 0.098m plane)

 test case 3. 123

Figure 5.6.12: Combined profiles of the velocity magnitude (z = 0.02m,

 z = 0.05m, and z = 0.098m planes) test case 3. 123

Figure 5.6.13: Profile of the contour of the velocity magnitude (y = 0.5m plane)

 test case 3. 124

Figure 5.6.14: Profile of the contour of the velocity magnitude(y = 0.02m plane)

 test case 3. 124

Figure 5.6.15: Profile of the contour of the velocity magnitude

 (y = 0.098m plane) test case 3. 124

Figure 5.6.16: Profile of the contour of combined the velocity magnitudes

 (position y = 0.02, 0.05 and 0.098m) test case 3. 124

Figure 5.7.1: Computational domain for test case 4. 125

Figure 5.7.2: Finite element mesh for test case 4. 126

Figure 5.7.3a: 2-D schematic representation of the boundary condition in the

 xy plane (test case 4). 126

Figure 5.7.3b: 2-D schematic representation of the boundary condition in the

 xz Plane (test case 4). 127

Figure 5.7.4: Pressure distribution (test case 4). 128

xv

List of figures

Figure 5.7.5: Graph of pressure distribution across the domain (test case 4). 128

Figure 5.7.6: Vector plot profile coloured by the velocity magnitude contour

 in the z = 0.05m plane (test case 4). 129

Figure 5.7.7: Vector profile coloured by pressure contour and zoomed around

 the obstruction in the z = 0.05m test case 4. 129

Figure 5.7.8: Vector profile coloured by the velocity magnitude contour in the

 z = 0.05m plane test case 4. 129

Figure 5.8.1: Computational domain for test case 5. 130

Figure 5.8.2: Finite element mesh for test case 5. 131

Figure 5.8.3a: 2-D schematic representation of the boundary condition in the

 xy plane (test case 5). 131

Figure 5.8.3b: 2-D schematic representation of the boundary condition in the

 xz Plane (test case 5). 132

Figure 5.8.4: Pressure distribution (test case 5). 133

Figure: 5.8.5: Graph of pressure distribution across the domain (test case 5). 133

Figure 5.8.6: Vector plot profile coloured by the velocity magnitude contour

 in the z = 0.5m plane (test case 5). 134

Figure 5.9.1: Computational domain for the case with a cylindrical blockage

 (test case 6). 135

Figure 5.9.2: Finite element for test case 6. 136

Figure 5.9.3a: 2-D schematic representation of the boundary condition in the

 xy plane. 136

Figure 5.9.3b: 2-D schematic representation of the boundary condition in the

 xz plane. 137

Figure 5.9.4: Pressure distribution (test case 6). 138

xvi

List of figures

Figure 5.9.5: Graph of pressure distribution across the domain (test case 6). 138

Figure 5.9.6: Vector plot profile coloured by the velocity magnitude contour

 in the z = 0.05m plane (test case 6). 139

Figure 5.9.7: Velocity vector section plotted in the y = 0.05m plane (test case 6). 140

Figure 5.9.8: Velocity vector plotted in the z = 0.05m plane and coloured by

 pressure contour (test case 6). 140

Figure 5.9.9: Profile of the contour of the velocity magnitude (y = 0.5m plane)

 test case 6. 141

 Figure 5.9.10: Profile of the contour of the velocity magnitude(y = 0.02m plane)

 test case 6. 141

Figure 5.9.11: Profile of the contour of the velocity magnitude(y = 0.098m plane)

 test case 6. 141

Figure 5.9.12: Combined profiles of the velocity magnitude (y = 0.02m, y = 0.05m,

 and y = 0.098m planes) test case 6. 141

Figure 5.9.13: Profile of the contour of the velocity magnitude (z = 0.05m plane)

 test case 6. 142

Figure 5.9.14: Profile of the contour of the velocity magnitude (z = 0.02m plane)

 test case 6. 142

Figure 5.9.15: Profile of the contour of the velocity magnitude (z = 0.098m plane)

 test case 6. 142

Figure 5.9.16: Combined profiles of the velocity magnitude (z = 0.02m,

 z = 0.05m, and z = 0.098m planes) test case 6. 142

Figure 5.10.1: Computational domain for test case 7. 143

Figure 5.10.2: Finite element mesh for test case 7. 144

Figure 5.10.3a: 2-D schematic representation of the boundary condition in

 the xy plane (test case 7). 144

Figure 5.10.3b: 2-D schematic representation of the boundary condition in

 the xz plane (test case 7). 145

xvii

List of figures

Figure 5.10.4: Pressure distribution (case n = 0.87) test case 7. 146

Figure 5.10.5: Pressure distribution (case n = 1) test case 7. 147

Figure 5.10.6: Pressure distribution (case n = 1.23) test case 7. 147

Figure 5.10.7: Graph of pressure distribution across the domain (cases n =0.87,

 n =1, n = 1.23) test case 7. 148

Figure 5.10.8: Velocity contour plot in the y = 0.05 plan

 (case n = 0.87) test case 7. 148

Figure 5.10.9: Velocity contour plot in the z = 0.05 plan

 (case n = 0.87) test case 7. 149

Figure 5.10.10: Velocity vector plot in the y = 0.05 plan

 (case n = 0.87) test case 7. 149

Figure 5.10.11: Velocity vector plot in the y = 0.05 plan zoomed around

 the obstacles (case n = 0.87) test case 7. 150

Figure 5.10.12: Velocity contour plot in the y = 0.05 plan

 (case n = 1) test case 7. 150

Figure 5.10.13: Velocity contour plot in the y = 0.05 plan

 (case n = 1) test case 7. 151

Figure 5.10.14: Velocity vector plot in the y = 0.05 plan

 (case n = 1) test case 7. 151

Figure 5.10.15: Velocity vector plot in the y = 0.05 plan

 zoomed around the obstacles (case n = 1) test case 7. 152

Figure 5.10.16: Velocity contour plot in the y = 0.05 plan

 (case n = 1.23) test case 7. 152

Figure 5.10.17: Velocity contour plot in the z = 0.05 plan

 (case n = 1.23) test case 7. 153

Figure 5.10.18: Velocity vector plot in the y = 0.05 plan

 (case n = 1.23) test case 7. 153

Figure 5.10.19: Velocity vector plot in the y = 0.05 plan

 zoomed around the obstacles (case n = 1.23) test case 7. 154

xviii

NOMENCLATURE

c Speed of sound in the fluid.

g Body force

L Characteristic length

n Power law index

directionztheinvectorUnitn̂

directionytheinvectorUnitn̂
directionxtheinvectorUnitn̂

z

y

x

−

−
−

P, p Pressure

R Specific volume

Re Reynolds number

S& Source

T Temperature

t Time

vectorVelocityV
→

U, u Velocity component in the x-direction

V, v Velocity component in the y-direction

W, w Velocity component in the z-direction

JW weight (test) function

xix

Nomenclature

Greek symbols

indexyconsistenclawPower
itycosvisApparent

rateShear

function)trial(Shape
eranceergencetolcov

deltakerKronec
schemetheinusednumberearglA

domainelementanofBoundary
domaintheofBoundary

functionstrialtheofderivationtheinusedtCoefficien
parameterincrementTime

o

i

e

i

η
η
γ

φ
ε
δ
λ
Γ
Γ
α
α

&

operatoraldifferenciLinear
)(domainthewithindomainelementAn

Domain
tensorStress

tensorstressCaushy
Density

e

ψ
ΩΩ

Ω
τ
σ
ρ

LaplacianOperator
nablaOperator

2∇

∇

xx

CONTENTS

 Page

Thesis request form i

Title ii

Certificate of originality iii

Acknowledgement iv

Abstract v

List of tables vii

List of Figures viii

Nomenclature xix

1: INTRODUCTION 1

1.1 Purpose of the present study 1

1.2 Outcome and method of study 2

1.3 Structure of the thesis 3

2: LITERATURE REVIEW 4

2.1 Introduction 4

2.2 A survey of published literature 5

2.3 Selection of the computational scheme 7

2.3.1 Comparison of the two schemes used in this project 11

2.4 Mathematical background of the developed schemes 16

2.4.1 Temporal discretization 18

2.4.2 Spatial discretization 20

 2.5 Conclusions 21

xxi

Contents

3: GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 22

3.1 Flow model 22

 3.1.1 Continuity (Mass balance) equation 23

3.1.2 Equation of motion (Momentum equation) 23

 3.1.3 Thermal energy equation 24

 3.1.4 Equation of state 25

3.1.5 Constitutive equation 25

3.2 Assumptions 28

3.2.1 Continuity equation 28

3.2.2 Momentum equation 28

3.2.3 Constitutive equation 29

3.3 Boundary and initial conditions 31

3.3.1 Inlet boundary conditions 33

3.3.2 Outlet Boundary conditions 33

3.3.3 Solid walls and blockages 33

3.3.4 Initial conditions 34

3.4 Conclusions 34

4: WORKING EQUATIONS 35

4.1 U-V-W-P discretization of the governing equations 35

4.2 Modified U-V-W-P discretization of the governing equations 55

4.3 Solution procedure 73

xxii

Contents

4.4 Convergence of the solution 74

4.5 Mesh refinements 75

 4.6 Schematic diagram of the developed schemes 76

5: RESULTS AND DISCUSSIONS 78

5.1 Benchmark problem 1 80

 5.1.1 Computational domain and boundary conditions 81

 5.1.2 Results 82

5.2 Benchmark problem 2 87

 5.2.1 Computational domain and boundary conditions 88

 5.2.2 Results 89

5.3 Benchmark problem 3 94

 5.3.1 Computational domain and boundary conditions 94
 5.3.2 Results 95

5.4 Test case 1: Flow in a duct past a big square obstacle
 (0.05 × 0.05 × 0.05m). 103

 5.4.1 Computational domain and boundary conditions 105
 5.4.2 Results 105

5.5 Test case 2: Flow in a duct past a small square obstacle
 (0.025 × 0.025 × 0.025m). 110

 5.5.1 Computational domain and boundary conditions 111
 5.5.2 Results 112

xxiii

Contents

5.6 Test case 3: Flow in a duct past a big square obstacle
 (0.05 × 0.075 × 0.05m) with an outlet positioned normal
 to the direction of the flow. 118

 5.6.1 Computational domain and boundary conditions 118
 5.6.2 Results 120

5.7 Test case 4: Flow in a duct past a big square obstacle
 (0.05 × 0.075 × 0.05m) with an outlet placed at the top
 end of the domain. 125

 5.7.1 Computational domain and boundary conditions 126
 5.7.2 Results 127

5.8 Test case 5: Flow in a duct past a big square obstacle
 (0.05 × 0.075 × 0.05m) with an outlet placed at the bottom
 end of the domain. 130

 5.8.1 Computational domain and boundary conditions 131
 5.8.2 Results 132

5.9 Test case 6: Flow in a duct past a circular cylinder. 135

 5.9.1 Computational domain and boundary conditions 136
 5.9.2 Results 137

5.10 Test case 7: Flow in a duct past two cylindrical and one rectangular
 obstacles. 143

 5.10.1 Computational domain and boundary conditions 144
 5.10.2 Results 145

xxiv

xxv

Contents

6: CONCLUSION AND RECOMMENDATIONS FOR
 FUTURE WORK 155

 6.1 Conclusions 155

 6.2 Recommendations for future work 157

REFERENCES 159

APPENDICES 168

 Appendix 1 Shape functions derivation 168

 Appendix 2 Input file format 172

 Appendix 3 Program listing 174

 Appendix 3.1 Sample Input File 174

 Appendix 3.2 Computer Program 176

 Appendix 3.3 Sample Output File 263

 Appendix 4 Program manual 267

CHAPTER 1

INTRODUCTION

1.1 Purpose of the present study

Complex three dimensional flow regimes are encountered in many types of industrial

flow processes such as filtration, mixing, reaction engineering, polymerization and

polymer forming as well as environmental systems. In this project after investigating the

effectiveness of different finite element techniques for the modelling of three dimensional

viscous flows in three dimensional domains with obstructions, a robust and reliable

model has been developed. This model has been applied to solve a number of benchmark

problems and its accuracy and validity have been evaluated.

Majority of commercially available CFD packages such as Phoenics, Star-CD, Star-

CCM, Fluent, and Flow3D are based on the finite volume method. Despite the rigour of

its underpinning concepts the finite volume method does not provide mathematical

flexibility required to solve some specific types of problems unless it is essentially based

on a finite element approximation on a computational cell level.

Traditionally relatively high cost of three dimensional finite element computations has

been regarded as a drawback for this method which has provided a motive for using finite

volume approach. One of the main achievements of this work has been to show that very

effective low cost three dimensional finite element models of complex flow problems can

be developed. Therefore it has been demonstrated that finite element schemes can be

extended to complex cases such as those involving multiscale phenomena whilst

maintaining computing economy. Another advantage of using the finite element method

in this study is that it provides a straightforward way of dealing with non-linear terms in

the model equations. This point has been elaborated in later chapters and has shown that a

finite element based approach has wider applicability in the modelling of flow processes

and can easily be used in cases which involve non-Newtonian fluids. Finite volume based

CFD models are generally designed to solve Newtonian flow problems.

1

Chapter 1 Introduction

1.2 Outcome and method of study

As described the main focus of the current project has been the development of a robust,

reliable and cost effective computer model for the solution of three-dimensional viscous

flow problems in domains including obstructions. The deliverable product of this work is,

therefore, a software which can be used in many types of industrial design involving flow

processes. The software can be used to simulate fluid flow inside three dimensional

domains and to visualize the results in form of plots such as contour, and vector plots.

In order to reach this end, the work undertaken in this current study has involved the

following steps:

 (i) Formulation of a well posed mathematical problem for the analysis of

 time dependent generalized Newtonian fluid in three-dimensional

 domains with and without obstructions.

(ii) Selection of appropriate boundary conditions for simulating the problem

of interest.

(iii) The creation of a user-friendly software, with a numerical approach

capable of solving the problem defined in parts (i) and (ii).

(iv) Checking and validating the developed model using well known

benchmark problems.

(v) Checking the developed computer code through different test cases of

generalized Newtonian fluids, and then validating the code by the

principle of mass balance.

2

Chapter 1 Introduction

1.3 Structure of the thesis

The present thesis is composed of a total of six chapters with additional parts devoted to a

list of references cited within the text and appendices. The thesis begins with the

introduction (chapter 1) in which preliminary explanations including processes being

modelled, the objective and the significance of the project are given. Reviews of past

research works undertook on the modelling of incompressible flow using computational

fluid dynamics (CFD), and a brief details of the numerical methods used in CFD are

given in chapter 2. In chapter 3 an overview of governing equations of a generalized fluid

is given in general, and then from the assumptions made in the current study the

governing equations characterizing the physics of the problem to be solved are derived.

Chapter 4 provides a detailed discretization procedure of the flow governing equations

using the two developed numerical methods. Results and discussions are presented in

chapter 5, while the conclusion and recommendations for future work are summarised in

the last chapter (chapter 6) of the thesis. A list of all the references used in this present

study and the appendices are given after the sixth chapter.

Appendix section provides a detailed manual explaining the implementation of the

software developed in this project, additional explanations regarding the structure of the

main software and a list of the source code.

3

CHAPTER 2

LITERATURE REVIEW AND BACKGROUND OF THE USED NUMERICAL

SCHEMES

2.1 Introduction

Processes involving fluid flow are of great importance in many branches of engineering,

namely chemical, aeronautical, civil and biochemical engineering. However, some of the

most modern technologies which depend on fluid systems such as bio-visco-elastic

regimes encountered in medical engineering, non-isothermal elastomeric flows occurring

in rubber products manufacturing and particle capturing in filtration are so complex that

obtaining empirical design relationships for them by the traditional experimental

techniques is not possible. Therefore the development of reliable, robust and cost

effective computer models for the simulation of such flow processes have been subject of

numerous ongoing research projects. Researchers from different backgrounds have

carried out considerable work aiming to reach this end, and most of the works done have

been carried out using computational fluid dynamics (CFD) techniques.

 CFD is defined as a tool for analysing systems involving fluid, heat transfer and

associated phenomena such as chemical reactions by means of computer based

simulation (Versteeg and Malalasekera 1995). The main computational methods at the

core of the CFD techniques are the finite difference methods (FDM), the finite element

methods (FEM), and the finite volume methods (FVM). There are extensive literatures

available for each of these techniques.

For FDM see Thomas (1995), Ciarlet et al.(1980), Ozi (1994), El-Nakkla (1987), Smith

(1985), Wang (c1982), Biggings (1980), Forsythe et al. (1960), Duffy (2006), Bowen

(2005), Shashkov and Steinberg (1996), and Voller (c2009), among others.

For FVM see LeVeque (2002), Versteeg and Malalasekera (1995, 2007), Schneider and

Raw (1987), Masson and Baliga (1994), and Darbandi and Schneider (1999). For FEM

see Masson et al.(1994), Darbandi and Schneider (1999), Donea and Huerta (2003),

Lohner (2008), Wriggler (c2008), Nassehi (2002), Bochev and Gunzburger (2007),

4

Chapter2 Literature review

Pian and Wu (2006), Brenner (c2002), Chen and Shih (1996), Fenner (1996), Beer and

Watson (c1992), Gunzburger (c1989), Girault and Raviart (c1986), Kikuchi (1986), AT

Luri et al. (c1983), Baker (c1983), Akin (1982), Zienkiewick and Cheung (1965),

Zienkiewick and Taylor (1991), Zienkiewick and Codina (1995), Pironneau (1989), and

Oden (1972), among others.

FVM is the most commonly used CFD tool for three dimensional fluid flow modelling,

however, as mentioned earlier FEM which was primarily regarded as too costly can now

be used to generate more flexible and reliable results. Further details about how these

computational methods are formulated will be given later in this chapter. In the following

section, however, the focus is the review of some of relevant publications on the

modelling of fluid flows.

2.2 A survey of published literature

In 2005 Nassehi et al. (2005) modelled fluid flow through pleated cartridge filter using

finite element method (FEM), the computational domain of interest in their work

consisted of a combination of free and porous regions and the flow was assumed to be

governed by the Stokes equation in the free regime and by the Darcy equation in the

porous region. They developed two 2D finite element schemes using perturbed continuity

method and mixed formulation for obtaining the solutions of the described problem.

These models were in conjunction with equal order and Taylor-Hood interpolation

functions, respectively. These two schemes were tested on different problems (using

simple and complex geometries) and the results obtained showed that the mixed

formulation scheme provided accurate and stable solutions to the problems no matter how

complex the selected domain geometry became whilst the perturbed scheme, even though

5

Chapter 2 Literature review

provided accurate and stable solutions for simple geometry cases, yielded spurious and

oscillatory pressure solutions for complex geometries.

Four years later, Hanspal et al. (2009) investigated fluid flows in cross-flow membrane

filtration, the domain of interest in their study was modelled as coupled free/porous

regimes and the fluid was governed by Stokes/Darcy equations. In their approaches to the

problem, they used the U-V-P family of the mixed finite element method in conjunction

with unequal order interpolation functions for velocity and pressure, and then developed

a two-dimensional numerical scheme capable of solving the problem. The developed

scheme was tested on two problems, the computational domain of the first problem

consisted of a rectangular cross-flow membrane filtration with a flat interface between

the two regimes (free and porous) whilst for the second problem, the flat interface was

replaced by a curved interface placed at the same location than the one from the first

problem. Using two different values of permeability () they concluded

from the solutions obtained that the scheme yield stable and accurate solutions which

were validated by calculating the mass balance in both domains. As explained in later

chapters these works have been the main starting step of the present project. However,

other works have also influenced the development of the present models and are

discussed here.

2126 1010 mand −−

In the late 1990’s, Kumar and Naidu (1998) who were interested in simulating nonlinear

pulsatile flow of a viscous fluid through a stenosed vessel used the U-V-P scheme with a

completely different approach. In their approach, they used the Galerkin weighted

residual method to discretize the spatial variables while the temporal variable was

discretized through a combination of the explicit Adams-Basuforth formula as predictor

and the A-stable implicit trapezoidal rule as the corrector. The computational domain in

their study was discretized using a 9-noded Lagrange element and the simulations were

carried out for different time steps. Solutions obtained for these time steps were

compared with results obtained by previous researchers (O’Brien 1985 and Sako 1962)

and the comparison were in good agreement. Zhang (2006) used a different scheme of

the FEM, namely the modified pressure correction method to solve incompressible and

6

Chapter 2 Literature review

viscous flow problems on an unstructured Chimera grid. To reach this end, he divided the

computational domain into sub domains then solved the governing flow equations

(Navier-Stokes) independently before transferring information across the interior

boundaries via Scharz method to couple the solutions of each sub domain. In his

approach, he discretized the spatial variable using second order upwind scheme while the

temporal variable was discretized via the Crank-Nicholson scheme. The field unknowns

in his work were interpolated using Rhie-Chow interpolation functions (Demirdzic and

Muzaferija 1995). This scheme prevents the unphysical decoupling of the pressure field

in the overlapping regions and yields a smoother result. The only drawback of this

scheme is an increase in the total number of grid points, which can eventually affect the

cost effectiveness of the scheme.

2.3 Selection of the computational scheme

Samples described in the previous section are just few among many of the relevant

historical papers related to the current project. The aim of the present project is not to

make judgments on these different existing numerical methods because each scheme

has its strengths and weaknesses, and as it is proved in the literature, the choice of a

particular scheme is problem dependent, that is the physical situation of the fluid will

dictate the governing equations to be used. Therefore the selection of a particular

methodology for the development of new scheme should be based on the information

from previous works plus considerations regarding the main physical features and

associated boundary conditions of the problem which needs to be solved.

For the solutions of incompressible viscous flows of generalized Newtonian fluids, many

authors, (e.g. Chung, 2002) have shown that the appropriate computational method is the

FEM. However the most successful schemes of the FEM are based on the mixed

methods, the penalty methods, and the vortex methods. All of these schemes may,

7

Chapter2 Literature review

however, produce unstable results. To circumvent this instability a condition known as

the LBB (Ladyzhenskaya-1969, Babuska-1973, and Brezzi -1974) condition need to be

satisfied. Many different strategies for the satisfaction of this condition in the context of

the mixed, penalty, and the vortex methods have been developed.

The most common technique adopted in the mixed methods formulation to satisfy the

continuity constraint is to use unequal order interpolation function for velocity and

pressure. The strategy here consists of choosing the shape functions for pressure one

order lower than those for the velocity and to choose the shape functions for pressure to

be identical to the test function for the continuity equation. For instance, if the pressure is

approximated using linear function then the velocity must be approximated using

quadratic function. This yields stable solution but it is computationally expensive.

The main strategy of penalty methods is based on eliminating the pressure term from the

momentum equation by setting the pressure as where ⎟
⎠
⎞

⎜
⎝
⎛ ⋅∇λ−=

→

Vp λ is a very large

number called the penalty parameter, and then substituting into the

momentum equation so that the pressure term will vanish. This will provide a more

compact set of working equations from which one will have to firstly solve for

⎟
⎠
⎞⋅−=

→

Vp ⎜
⎝
⎛∇λ

velocity alone, and when all velocity field calculated then the pressure field can be

obtained by means of . The computational cost of the penalty methods ⎟
⎠
⎞

⎜
⎝
⎛ ⋅∇λ−=

→

Vp

λis less than the computational cost of the mixed methods but when becomes large, the

penalty term will dominate, and this will generate ill-conditioned equations. This will end

up by producing instable results, that is, the LBB criterion is violated. Further

information about these methods can be found from the following authors Hughes et al.

(1972), Gunzburger (1989), Bercover (1978), Falk (1975), Cuvelier et al. (1986), Teman

(1975), and Girault and Raviart (1979).

8

Chapter2 Literature review

λIt is important to mention that the penalty parameter originates from the stress

relation from which τDη=τ is pressure, that is force per unit area and D denotes the

velocity gradient. Thus can be rewritten as Dη=τ

)V(
A
1p

r
⋅∇η=×

Or)V(Ap
r

⋅∇η=

)V(p
r

⋅∇λ=Or where with A denoting the cross section area. η=λ A

The vortex method’s strategy is somewhat similar to the penalty method’s strategy in the

sense that the pressure term is removed from the momentum equation but this time by

taking the curl of the momentum equation. This provides a momentum equation in terms

of velocity and vorticity vector and/or stream function instead of primitive

variables (u, v, w, and p). Hence one can solve the system in the absence of a pressure

term. After obtaining a solution the divergence of the original momentum equation is

used in order to compute the pressure. The vortex method provide numerical stability but

the drawback is that the velocity is coupled with the vorticity vector and this yields a

system with seven equations and seven unknowns () for three-

dimensional problems. With an increased number of unknowns the cost efficiency of the

method is not good. To alleviate this, one can take the double curl of the momentum

equation, that is, when performing the first curl operation on the momentum equation, the

result is a momentum equation in term of velocity and vorticity vectors but when a

second curl operation is performed on this momentum equation, the vorticity vector will

vanish so that the momentum equation will be in term of a single variable (velocity).

pandwvuwww ,,,,,, 321

Attempt was made to apply this strategy to the governing equations in the present project

but after performing the two curl operations, these yielded a momentum equation of high-

order (4th order) derivatives for velocity and this required the use of continuous

Hermite interpolation functions. Unfortunately, as reported by Nassehi and Petera (1994),

these elements lack flexibility and their application in geometrically complex domains

1C

9

Chapter 2 Literature review

involve elaborate schemes. For this reason it was judged to avoid the use of the vortex

method for the discretization for the governing equations of the current project.

Based on Chung’s suggestion (and results obtained by researchers like Nassehi et al

(2004) and Hanspal et al (2009)) and bearing in mind that the goal in computational fluid

dynamics modelling is to obtain accurate and stable results while minimizing cost finally

an FEM based U-V-W-P scheme was developed the governing equations of the present

modelling effort. In order to circumvent the problems of spurious and oscillatory

pressure field, as mentioned by Nassehi et al (2004), which is due to the failure of the

enforcement of the incompressibility condition (), a perturbed form of the

incompressible condition

0V=⋅∇
→

0V
c
p

2 =⋅∇+
ρ
∂ →

 in conjunction with use of equal order

hexahedral isoparametric interpolation functions (figure 2.6) for velocity and pressure

field is used.

0C

As it can be noted from the review of the past papers, most examples of finite element

based mixed formulations were done for two-dimensional problems. In the current study

a new three-dimensional Velocity/Pressure based model capable of providing stable,

accurate solutions of fluid flow problems.

Two different schemes of the U-V-W-P have been developed in this work; the first one is

based on the direct extension of a two-dimensional scheme to a three-dimensional form,

the second scheme is based on a new concept and differs from the usual U-V-P scheme

by the addition of a penalty parameter λ to the continuity equation. The idea is originated

from a method developed by Chang (2002). To solve incompressible viscous flows via

FEM, Chung proposed a scheme which is based on the combination of the penalty

methods with the mixed methods. He achieved such formulation by replacing the

continuity equation with the Galerkin integral of the penalty term and ⎟
⎠
⎞

⎜
⎝
⎛ ⋅∇λ−=

→

Vp

10

Chapter 2 Literature review

ended up with a Galerkin integral of the continuity equation of the form

∫
Ω

→

α =Ω⎟
⎠
⎞

⎜
⎝
⎛

λ
+⋅∇φ 0dpV .

Where λ is the penalty parameter (a large number)

 denotes the velocity vector
→

V

 p represent the pressure

 and ∇ is the gradient operator (nabla operator).

When solving the system of equations consisting of the Galerkin integral of the

continuity equation together with the Galerkin integral of the momentum equation,

Chung noticed that this scheme provided additional computational stability in

comparison with the solutions obtained from the penalty and mixed methods. Thus based

on this idea, the perturbed continuity equation 0V
c
p

2 =⋅∇+
ρ
∂ →

 will be slightly modified

and take the form 0V
c
p

2 =⋅∇+
λρ
∂ →

(variables are as defined above) for

the second U-V-W-P scheme developed in this project work.

2.3.1 Comparison of the two schemes used in this project

Before comparing the schemes developed in this project a question that must be answered

is whether the modified scheme yields stable and accurate results? The U-V-P scheme

has been tested on many two-dimensional problems and has provided stable and accurate

solutions. The scheme based on its extension to three-dimensional cases (U-V-W-P) is

expected to provide similar stable results. Therefore only the stability of the modified

11

Chapter 2 Literature review

scheme needs rigorous investigation. In addition to the stability considerations, during the

course of this project, investigations have been made on how to speed up convergence of

each scheme without affecting its cost efficiency. One important conclusion of these

investigations which can be stated here to prove the validity of effort made to develop an

alternative scheme is that the scheme based on the incorporation of the parameter with

the mass balance equation converges much faster than the normal scheme. To

demonstrate this point a comparison between the solutions obtained by the U-V-W-P

method and the modified U-V-W-P method tested using the same fluid properties is

shown below.

λ

Full details about the fluid properties and the boundary conditions are given in chapter 5.

For this benchmark problem, it can be noted that after only few iterations, the modified

U-V-W-P method yields a converged solution while the U-V-W-P method solution has

not yet converged.

Figure 2.1: Computational domain for comparison case.

12

Chapter 2 Literature review

Figure 2.2: Finite element mesh for comparison case.

 Figure 2.3a: 2-D schematic representation of the boundary condition in
 the xy plane for the comparison case.

 Figure 2.3b: 2-D schematic representation of the boundary condition in
 the xz plane.

13

Chapter 2 Literature review

Figure 2.4a: Velocity contour plot Figure 2.4b: Velocity contour plot
 (Modified U-V-W-P scheme). (U-V-W-P scheme).

Figures 2.4 a, and b represent the contour plots of the velocity for both schemes, and as it

can seen from figure 2.4a (Modified U-V-W-P scheme), there is movement of the fluid as

excepted at the outlet (multicoloured region representing the expected developed flow

profile) while in the case of the U-V-W-P scheme (figure 2.4a), it seems that no fluid is

coming out of the exit to the computational domain. This can be interpreted as the

solution of the U-V-W-P scheme has yet to reach convergence. This interpretation is

confirmed by the plots from figures 2.5.a, and b representing the cross sectional velocity

profiles.

These cross sectional plots show the velocity vectors magnitude at a location of z equal

0.05m of the domain. Overall mass balance in both cases has also been checked. Note

that both schemes are stable as shown by the expected pressure contours (Figs 2.6a and

2.6b)

14

Chapter2 Literature review

Figure 2.5a: Velocity section plot Figure 2.5b: Velocity section plot
 (Modified U-V-W-P scheme) (U-V-W-P scheme)

Figure 2.6a: Pressure contour plot Figure 2.6b: Pressure contour plot
 (Modified U-V-W-P scheme). (U-V-W-P scheme).

Both of the developed three-dimensional schemes are tested extensively using different

complex problems in chapter 5. To the best knowledge of the author, none of these two

schemes have been used previously to model three-dimensional incompressible highly

viscous flow of generalized Newtonian fluids in domains including obstructions.

15

Chapter 2 Literature review

2.4 Mathematical background of the developed schemes

FEM was developed in the late 1950s and was mainly based on the variational

formulation and was mainly used for structural analysis. Since then, considerable efforts

have been made and especially by mathematicians, engineers, and physicists to extend

the use of the FEM to a broad field of continuum mechanics. FEM can now be

formulated either using the variational methods or the weighted residual methods.

The variational formulation of the FEM is based on the minimisation of the variational

principle of the governing differential equations. This formulation work well for

structural analysis but unfortunately cannot be applied to nonlinear fluid mechanics

problems due to the non availability of variational principles in exact forms for nonlinear

fluid mechanics equations. Due to this reason, the variational approach will not be

attempted in this study. Interested reader can obtained further information about this

formulation from Curant (1943, 1953), Mura and Koya (1992), and Reddy (1986).

In the weighted residual formulation on the other hand, the strategy is to minimize to zero

the residual of the governing equation (minimizing the difference between external forces

applied and the internal forces caused by the flow) , and this can be achieved by

constructing the inner product of the weighting or test function and the residual. To

illustrate this, let the residual R defined as

)x(uR 2 +⋅∇= g

Where u(x) is the unknown variable function of independent spatial variables

 and g is the source/sink term.

16

Chapter 2 Literature review

Then the weighted residual statement is given as follows

 () m,...3,2,1j0dRWR,W JJ ==Ω= ∫
Ω

Or () () m,...3,2,1j0dg)x(uWR,W 2
JJ ==Ω+∇= ∫

Ω

Where are linearly independent weights or test functions. JW

 is a sufficiently smooth closed domain surrounded by a continuous boundary Γ . Ω

If u(x) is approximated as ∑
=

φα=≈
m

1i
ii)x()x(u~)x(u

Where are a set of constant coefficients and)m,1i(i =α)m,1i(i =φ denote the trial

(interpolation, shape, or basis) function then the weighted residual statement can be

written as

() m,...3,2,1j0dg)x(WR,W
m

1i
ii

2
JJ ==Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟
⎠

⎞
⎜
⎝

⎛
φα∇= ∫ ∑

Ω =

If the test function is chosen to be identical to the shape function then the

weighted residual method is known as the standard Galerkin method (Zienkiewicz and

Morgan 1983). But if it is chosen differently from the shape function then this yields

different schemes of the weighted residual methods namely the streamline upwind

method (Brooks and Hughes 1982), the streamline upwind Petrov-Galerkin method

(Heinrich et al. 1977), etc.

iφJW

For time dependent problems as is the case in the present project, the discretization

procedure mentioned above must be preceded, followed, or executed simultaneously with

a temporal discretization. In this present work, the temporal discretrization is carried out

prior to the spatial discretization and the two procedures are explained in detail below

17

Chapter 2 Literature review

2.4.1 Temporal discretization

Temporal discretization have been subject of a flood of researches and many numerical

time integrations techniques have been developed, among them are the continuous space-

time method and the discontinuous space-time method (Chung 2002), the θ family of

methods (Donea and Huerta 2003, Ames 1992, Lambert 1991, Wait and Mitchell 1985,

Zienkiewicz and Taylor 2000, Mitchell and Griffiths 1980, Johnson 1987, and Reddy and

Gartling 2000), the Lax-Wendroff method, and the Leap-Frog method (Donea and Huerta

2003) . It is necessary to integrate the temporal variable in order to ensure that

information are accurately transported in time to trace transient respond.

In this present work, Taylor-Galerkin discretization (Nassehi 2002, Donea and Huerta

2003, Townsend and Webster 1987) is chosen for the numerical time integration. The

technique is based on a truncated Taylor series expansion, and is illustrated by the

following example.

Let consider a time-dependent differential equation of the form

() ()[])2.2(0t,x
t

t,x
=β−ψχ+

∂
ψ∂

Where is a linear differential operator with the respect of the special variables ψ

()t,xψThen Taylor series expansion of the field unknown within the time steps n and

n+1 gives

())2.2(...
t

t
2
1

t
t

n

2

2
2

n
n1n +

∂
ψ∂

Δ+
∂
ψ∂

Δ+ψ=ψ +

The first order time derivatives term in expansion (2.2) can be found from equation (2.2)
as

18

Chapter 2 Literature review

() ()[])3.2(t,x
t

t,x
ψχ−β=

∂
ψ∂

Differentiating equation (2.3) with respect to time gives the second order time derivatives

term in expansion (2.2) as

() ()[]{ })4.2(t,x

tt
t,x

tt 2

2

ψχ−β
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛

∂
ψ∂

∂
∂

=
∂
ψ∂

With a similar procedure all the other order time derivatives term in expansion (2.2) can

be found then substituted into equation (2.2) bearing in mind that any first-order

temporal term of has to be substituted from equations (2.3). This will result by

producing a differential equation in terms of spatial variables only which can be

discretized using the weighted residual method described previously and summarised by

step 1 through step 8 below.

()t,xψ

Figure 2.7: 8 – nodes isoparametric hexahedral element

19

Chapter 2 Literature review

2.4.2 Spatial discretization

Regardless of the scheme used to formulate the finite element methods, the spatial

discretization of the governing equation follows these steps.

Step 1. Discretization of the problem domain: The domain Ω is discretized into

 is discretised into finite element in the Elements limited by a boundary Γ

 following forms and . ∑Ω=Ω
n

e
e ∑Γ=Γ

n

e
e

Step 2. Approximation using trial functions: In this step, one needs to assign nodes to

 each element, and then selects the appropriate trial function to represent the

 variation of the unknown functions (pressure, velocity, etc) over the elements.

 The unknown functions are approximated using the following forms

 ∑∑∑∑
====

=≈=≈=≈=≈
n

i
ii

n

i
ii

n

i
ii

n

i
ii pppwwwvvvuuu

1111

~~~ φφφφ

            Where ),1( nii =φ  denote the trial (interpolation, shape, or basis) function (see  

            figure 2.7). 

 

Step 3. Formulation of the weighted residual statement: in this step, one needs to    

           substitute the interpolated values of the unknown functions found in step2 into 

            the residual of the governing equations, and then construct the inner product of  

            the test function with the residual. 

 

Step 4. Application of Green’s theorem: At this stage, one has to apply Green’s 

           theorem to all second-order derivatives from the weighted residual statement  

           obtained in step 3 in order to reduce the second-order derivatives to first-order  

           derivatives so that  elements can generate an acceptable solution. This    0C

           process will produce the weak form of the weighted residual statement. 

20 
 



Chapter 2                                                                                           Literature review 
 
 
 
Step 5. Formulation of the elemental stiffness equations: Here, one needs to write an  

           equation corresponding to the weak statement (step 4) for each test function. 

 

Step 6. Assembly of the elemental stiffness equations into a global system of  

           equations: to get the solution of the global system, all the elemental weak  

           statement equations obtained in step 5 must be assemble over their common  

          nodes to form a global system of algebraic equations to be solved. 
 

Step 7. Imposition of the boundary conditions: At this stage, one needs to insert the  

            prescribed values of the unknown functions at the boundaries of  into the  Ω

            global system of algebraic equations obtained in step 6. Redundant equations  

            corresponding  to the boundary nodes must be eliminated from the set. 
 
Step 8. Solve the global algebraic system: The global system of algebraic equations  

            obtained in step 7 can now be solved in order to obtained the unknown nodal  

            values of the problem. 

 
 

 
 
2.5    Conclusion 

 

 

In this chapter, a review of past papers on the modelling of generalized Newtonian fluids 

has been presented and after thorough analysis of them, a choice about which 

computational method to use in the present project has been made. The chosen 

computational method is used to discretize the governing flow governing equations 

representative of the flow regimes considered here in chapter 4 of this thesis. 

 
 
 

21 
 



CHAPTER 3 
 

 
GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

 
 

3.1 Flow model 

 

Mathematical modelling of fluid flows is based on the solution of partial differential 

equations governing the physical behaviour of the flows. These governing equations 

represent mathematical statements of the conservation law of physics, which can be 

stated as 

 

a) The mass of a fluid is conserved across the entire domain (Conservation of mass). 

b) The rate of change of momentum equals the sum of the forces on a fluid particle. 

This comes from Newton’s second law. 

c) The rate of change of energy is equal to the sum of the rate of heat addition to and 

the rate of work done on a fluid particle. This is simply the first law of 

thermodynamics. 

 

Combining these three statements together with the equation of state and the specified 

boundary conditions will make the problem to be solved a well-posed mathematical 

problem representing the physics of the fluid. 

 

In addition to the statements above, in the present study, it is necessary to include a 

rheological relationship that describes the constitutive behaviour of the fluid. Thus, with 

the continuum assumption made, that is scalars like density, temperature, and pressure 

and a vector like velocity vary smoothly and continuously in space and time  and 

adopting a macroscopic viewpoint, in a fixed (stationary or Eulerian) coordinate system 

(using vector notations), the following equations can be derived. 

 

 

 

22 
 



Chapter 3                                         Governing equations and boundary conditions 
 
 
 
3.1.1 Continuity (Mass balance) equation 

 

The continuity or mass balance equation is the mathematical representation of the 

statement that: the rate of increase of mass in fluid element equals the net rate of flow of 

mass into fluid element. This can be mathematically written as 

 

)1.3(0V
t

=⎟
⎠
⎞

⎜
⎝
⎛ρ∇+

∂
ρ∂ →

  

 

 Where ∇  is the operator nabla (gradient operator) 

                         denotes the velocity vector having u, v, and w as component in 
→

V

                         the x, y, and z direction respectively. 

                        ρ  is the density of the fluid 

                        and t is time. 

 

3.1.2 Equation of motion (Momentum equation) 

 

The momentum equation which is Newton’s second law states that the rate of change of 

momentum of a fluid particle equals the sum of the forces acting on the particle. This 

statement can be mathematically written as 

 

  

(3.2)gVV
t
V

ρ+σ⋅∇=∇⋅ρ+
∂
∂

ρ
→→

→
rr  

 

Where σ  denotes the Cauchy stress tensor 
rr

            g is the body force per unit volume of fluid. 

23 
 



Chapter 3                                         Governing equations and boundary conditions 
 
 
 

            and  are as defined previously. ∇ρ
→

,V,

 

The Cauchy stress tensor is given as 

 

  )3.3(p τ+δ−=σ
rrrrrr

 

            Where p is the hydrostatic pressure 

                       δ
rr

 is the unit second-order tensor (Kronecker delta) 

                       and  is the extra stress tensor. τ
rr

 

Substituting the expression of the Cauchy stress tensor equation (3.3) in to 

equation (3.2) yield 

 

(3.4)gpVV
t
V

ijij ρ+τ⋅∇+δ∇−=∇⋅ρ+
∂
∂

ρ
→→

→

 

               

3.1.3 Thermal energy equation 

 

 

The energy equation is based on the first law of thermodynamics stating that the rate of 

change of energy of a fluid particle is equal to the rate of heat addition to the fluid 

particle plus the rate of work done on the particle. This statement can be mathematically 

written as. 

 

 

)5.3(Sv:Tk
Dt
DTc 2 &+∇τ+∇=ρ  

24 
 



Chapter 3                                         Governing equations and boundary conditions 
 
 
 

Where c is the specific heat 

           k is the thermal conductivity 

           T denotes the temperature 

           is the Laplacian operator 2∇

Dt
D           represents the substantial or material derivative 

           and S  is the source. &

 

3.1.4 Equation of state 

 

It is useful to add the equation of state to the system of equations (mass balance, 

momentum, and energy) because it allows a linkage between the thermodynamic 

variables p,  and T. It has been observed that in practice most fluid follow the perfect 

gas law, and that in general, pressure is a function of both density and temperature except 

in the case of baratropic fluids where pressure is function of density only.   

,ρ

 

The equation of state is given as 

 

  )6.3(RTp ρ=

 

Where R is the specific volume 

           and p, and T are as defined previously. 

 

3.1.5 Constitutive equation  

 

The constitutive equation is a relation between the extra stress ( )τ  and the rate of 

deformation that a fluid experiences as it flows. 

 

25 
 



Chapter 3                                         Governing equations and boundary conditions            
 

 

But the derivation of a universally applicable constitutive model for non-Newtonian 

fluids is generally not accepted as it is extremely difficult due to the difficulty that arises 

in establishing exact quantitative relationship between the microscopic structure of non-

Newtonian fluids and their macroscopic properties (Nassehi 2002). There are various 

formulae used to represent the constitutive equation, see for instance Middleman (1977), 

Pittman, and Nakazawa (1984), and Carreau (1968), but the one adopted in this study to 

calculate and update the value of the apparent viscosity is the power law model proposed 

by Waele (1923), and Ostwald (1925). The power law model is chosen because it is able 

to describe both shear thinning and shear thickening fluids behaviour. The power law 

formula is given by  

 

  ( ) )7.3(1n
o

−γη=η &

 

            Where  is the consistency coefficient. oη

                        η  is the apparent viscosity 

                         n is the power law index 

                        γ   denotes the shear rate &

 

For n < 1, the fluid exhibits shear thinning properties. 

For n = 1, the fluid shows Newtonian behaviour. 

For n >1, the fluid shows shear thickening behaviour. 

 

The shear rate ( ) is calculated using the following relation γ&

222222

z
w2

z
v

y
w

y
v2

z
u

x
w

y
u

x
v

x
u2 ⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=γ&  

 

 Where u, v, and w are the three components of the velocity vector . 
→

V

26 
 



Chapter 3                                         Governing equations and boundary conditions 
  

 
 
 
The shear rate ( ) is calculated after each iteration, then the value obtained is used to 

calculate the apparent viscosity (

γ&

η ) through the constitutive equation (3.7). This process 

is repeated until convergence is reached.  

 

Shear-thinning (or pseudoplastic), viscoplastic, shear-thickening (or dilatant) are all the 

characteristics of the time independent non-Newtonian fluid. It is well established that 

non-Newtonian fluid can be conveniently grouped into three general classes: 

 

1)     The time independent, or purely viscous, or inelastic, or generalized Newtonian 

         fluids in which the rate of shear at any point is determined only by the value of  

         the shear stress at that point at that instant. 

 

2)     Time dependent fluids, in which in addition of the criterion mentioned in 1), the   

        relation between shear stress and shear rate depends upon the duration of  

        shearing and their kinematic history. 

 

3)    The visco-elastics fluids, in which substances exhibiting characteristics of both    

        ideal fluids and elastic solids and showing partial elastic recovery after  

  deformation. 

 

Interested reader about this classification may refer to the following authors for further 

information Hou-Cheng Huang et al. (1999), Harris (1977), Chhabra and Richardson 

(1999), Crochet et al. 1984, and Nassehi (2002). 

 

 

 

 

27 
 



Chapter 3                                         Governing equations and boundary conditions 
 
 
 
3.2 Assumptions 

 

The necessary assumptions made in this work are as stated below: 

 

- The incompressible assumption; that is the fluid undergo no changes in volume or  

   density. 

 

- The computational domain is assumed to be isothermal. 

 

- The flow is laminar 

 

- And since the Re is very small ( 1Re 〈〈 ) in this study, then the convective term (i.e. 

) and the body force g from the equation of the motion (3.4) are small and can 

be omitted Bird., et al (2002), and Nassehi (2002). 

⎟
⎠
⎞

⎜
⎝
⎛ ∇⋅

→→

VV

 

Taking these assumptions into consideration, the governing equations (3.1 through 3.7) 

reduced to 

 

3.2.1 Continuity equation  

 

)8.3(0V =⋅∇
→

 

 

3.2.2 Momentum equation 

 

 

)9.3(p
t
V

ijij τ⋅∇+δ∇−=
∂
∂

ρ

→

 

28 
 



Chapter 3                                         Governing equations and boundary conditions 
 

 

 

3.2.3 Constitutive equation 

 

 

( ) )10.3(1n
o

−γη=η &  

 

The first remark one can made from the system of equation given by 3.8 through 3.10 is 

that there is no pressure term in the continuity equation (3.8) this will make the solution 

of such system difficult to obtain because the enforcement of the incompressibility 

conditions (conservation of mass) is difficult. As a result, the computed pressure (p) may 

be spurious and oscillatory, known as checkerboard type oscillations. 

 

To circumvent this difficulty and satisfy the Ladyzhenskaya (1969), Babuska (1971), and 

Brezzi (1974) stability condition or simply the LBB condition, the approach adopted in 

the present project is to replace the continuity equation (3.8) by an equation 

corresponding to slightly compressible fluids, and it is given as  

 

 

)11.3(0V
t
p

c
1

2 =⋅∇+
∂
∂

ρ

→

              

 

   

             Where c is the speed of sound in the fluid 

 

Equations 3.9 through 3.11 represent the flow model governing equations solved in this 

project. Using three-dimensional Cartesian coordinates, equations 3.9 and 3.11 can be 

written as 

 

29 
 



Chapter 3                                         Governing equations and boundary conditions 
 
 
 
 
 
 

( ) )12.3(continuity0
z
w

y
v

x
u

t
p

c
1

2 =
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

ρ
 

 

 

Before writing the momentum equation in Cartesian coordinates, it is important to write 

the component of the Cauchy stress tensor. As mentioned previously, the Cauchy stress 

tensor is related to the extra stress through the relation   τ+δ−=σ
vv

rrrr p  

This can be written in three-dimensional Cartesian coordinates as 

( )
( )
( )c13.3p

b13.3p

a13.3p

τ+−=σ

τ+−=σ

τ+−=σ

rrrr

rrrr

rrrr

 

 

 

 

Where the normal stresses are given by 

 

 

)c14.3(
z
w2

)b14.3(
y
v2

)a14.3(
x
u2

zz

yy

xx

∂
∂

η=τ

∂
∂

η=τ

∂
∂

η=τ

  

 

and the shear stresses given by 

 

 

30 
 



Chapter 3                                              Governing equations and boundary conditions 
 
 
 

( )

( )

( )c15.3
z
u

x
w

b15.3
y
w

z
v

a15.3
x
v

y
u

xzzx

zyyz

yxxy

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

η=τ=τ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

η=τ=τ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

η=τ=τ

 

 

Substituting theses expressions of the normal and shear stresses into the momentum 

equation (3.9) and expanded the result yield 

 

 

( )

( ) ( )

( )c16.3
z
w2

zy
w

z
v

yz
u

x
w

xz
p

t
w

b16.3momentum
y
w

z
v

zy
v2

yx
v

y
u

xy
p

t
v

a16.3
z
u

x
w

zx
v

y
u

yx
u2

xx
p

t
u

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

η
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

η
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

η
∂
∂

+
∂
∂

−=
∂
∂

ρ

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

η
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

η
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

η
∂
∂

+
∂
∂

−=
∂
∂

ρ

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

η
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

η
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

η
∂
∂

+
∂
∂

−=
∂
∂

ρ

 

 

The mass balance, momentum, and constitutive equations as given by 3.12, 3.16a,b,c, and 

3.10 respectively represent the final system of equations which will be discretized in 

chapter 4 and solve in chapter 5.  

 

 

3.3 Boundary and initial conditions 

 

The system of equations representing the flow governing equations (continuity, 

momentum, and constitutive) as given in section 3.2 does not constitute a consistent 

system in mathematical viewpoint. To make this system of equations consistent or a well-

posed mathematical model, initial and boundary conditions must be specified.  

31 
 



Chapter 3                                              Governing equations and boundary conditions 
 
 
 
 
There are three type of boundary conditions; Dirichlet or essential boundary conditions 

(values of variable specified at boundaries), Neumann or natural boundary conditions 

(derivatives of variables specified at boundaries), and Cauchy or Robin boundary 

conditions which is a combination of Dirichlet and Neumann conditions. 

The specification of Neumann boundary conditions is the unique future in finite element 

method (FEM) since Neumann boundary conditions naturally arises in the formulations 

process of FEM. 

 The choice of which boundary conditions to apply depends on the type of partial 

differential equations which can be elliptic, parabolic, hyperbolic or a combination of two 

or three of them, and the type of flows that can be compressible, incompressible, 

turbulent, laminar, irrotational, vertical, etc… 

In general scalar like pressure may not be specified at the boundaries as it is an implicit 

variable in an incompressible flow (Lewis., et al 1995) which adjusts itself to deliver a 

solenoidal velocity field. However, in the case of contained flow, that is specified 

velocities on all boundaries, the pressure becomes indeterminate and it must be specified 

at least at one point as a datum. 

 

ott =The initial conditions on the other hand must be specified at time  in the domain Ω  

as mentioned by Hou-Cheng Hang et al. (1999) and can take the following form 

 

  ( ) ( ) Ω= inxv0t,xv i
0
iii

 

Taking these remarks into consideration, in the present project, the flow governing 

equations are solved in conjunction with the following boundary conditions. 

 

 

 

32 
 



Chapter 3                                         Governing equations and boundary conditions 
 

 

 

3.3.1 Inlet boundary conditions 

 

The inlet is placed perpendicular to the x direction for all the simulations carried out in 

this project. And at the inlet, only Dirichlet type boundary conditions are specified 

and for velocity variable only. The three component (u, v, and w) of the vector velocity 

are specified as follow 

 

 u = a 

            v = w = 0 

            Where a is small number ( ) 1sm −⋅

 

 

3.3.2 Outlet Boundary conditions 

 

Although there are three type of outlets used for the problems in this project, care was 

taken that they are all placed far away from geometrical disturbance allowing the flow to 

reach a fully developed state where no change occurs in the flow directions. Researchers 

like Nassehi (1998), and Das. et al (2002) have suggested that the imposition of artificial 

boundary conditions at the outlet might lead to unrealistic numerical results in 

simulations. Hence based on their suggestions, in this work, no velocity conditions will 

be specified at the exit, and only a zero datum pressure condition will be specified. 

 

 

3.3.3 Solid walls and blockages 

 

The remaining sides of the geometries and all the faces of the blockages (rectangular or 

cylindrical) are considered as solid and non permeable walls, on which perfect  

33 
 



Chapter 3                                         Governing equations and boundary conditions  
 
 
 
 
no-slip conditions are specified, that is the three components (u, v, and w) of the velocity 

vector are all set equal zero. 

 

 

3.3.4 Initial conditions 

 

For all the problems solved in this project, the inlet boundary conditions will be used as 

initial conditions for all nodes. 

  

 

3.4 Conclusion 

 

A summary of the derivation of the partial differential equations governing the flow 

model was presented in this chapter together with the problem of incompressibility 

enforcement that may occur if care is not taken. Many methods have been developed to 

overcome this incompressibility enforcement problem and among them are the penalty 

methods, the vortex transport method, and the mixed finite element method. 

 

In this present project two different finite element techniques are used which differ from 

the traditional mixed finite element method, penalty, and vortex transport method in the 

way that the pressure term is not eliminated from the momentum equation but instead an 

artificial pressure term is added to the continuity equation. The discretization of the 

derived governing equations will be subject of the next chapter.   

 
 
 
 
 
 
 

34 
 



CHAPTER 4 
 
 

WORKING EQUATIONS 
 
 
 

This chapter is dedicated to the discretization of the governing equations given in the 

previous chapter. The discretization procedures are followed by briefs description of the 

solution techniques, the convergence criteria, and the mesh refinements adopted in the 

present study.  

 

 
4.1 U-V-W-P discretization of the governing equations 

  

The flow governing equations given in chapter 3 are as follow 

 

 

)1.4()continuity(
z
w

y
v

x
uc

t
p 2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

ρ−=
∂
∂  

( )

( ) ( )

( )c2.4
z
w2

zy
w

z
v

yz
u

x
w

xz
p

t
w

b2.4momentum
y
w

z
v

zy
v2

yx
v

y
u

xy
p

t
v

a2.4
z
u

x
w

zx
v

y
u

yx
u2

xx
p

t
u

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

η
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

η
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

η
∂
∂

+
∂
∂

−=
∂
∂

ρ

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

η
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

η
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

η
∂
∂

+
∂
∂

−=
∂
∂

ρ

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

η
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

η
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

η
∂
∂

+
∂
∂

−=
∂
∂

ρ

 

 

All variables are as previously defined. 

 

The first step in the U-V-W-P discretization technique is to normalized the governing 

equations by setting 

 

 U = u 

            V = v  for the components of the velocity vector 

35 
 



Chapter 4                                                                                      Working equations 
 

 

 

 

 W = w   

ρ
=

pP   for pressure. And      

 

Thus one obtains after substitution of these terms into equations (4.1) and (4.2) 

 

For the mass balance equation 

 

)3.4(
z

W
y
V

x
Uc

t
P 2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

−=
∂
∂  

 

And for the momentum equation 

 

( )

( )

( )c4.4
z

W2
zy

W
z
V

yz
U

x
W

xz
P

t
W

b4.4
y
W

z
V

zy
V2

yx
V

y
U

xy
P

t
V

a4.4
z
U

x
W

zx
V

y
U

yx
U2

xx
P

t
U

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

η
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

η
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

η
∂
∂

+
∂
∂

−=
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

η
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

η
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

η
∂
∂

+
∂
∂

−=
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

η
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

η
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

η
∂
∂

+
∂
∂

−=
∂
∂

         

 

Then the discretization continues with the numerical time integration as explained in 

chapter 2 as follow. The application of the Taylor-Galerkin method to the temporal terms 

in equation (4.3) and (4.4a, b, and c) gives 

  

  

 

36 
 



Chapter 4                                                                                        Working equations  
 

 

 

)8.4(
t
Pt

2
1

t
P

t
PP

t
P

)7.4(
t
Wt

2
1

t
W

t
WW

t
W

)6.4(
t
Vt

2
1

t
V

t
VV

t
V

)5.4(
t
Ut

2
1

t
U

t
UU

t
U

tn
2

2

tn

n1n

tn
2

2

tn

n1n

tn
2

2

tn

n1n

tn
2

2

tn

n1n

Δα+Δα+

+

Δα+Δα+

+

Δα+Δα+

+

Δα+Δα+

+

∂
∂

Δα+
∂
∂

=
Δ

−
=

Δ
Δ

∂
∂

Δα+
∂
∂

=
Δ

−
=

Δ
Δ

∂
∂

Δα+
∂
∂

=
Δ

−
=

Δ
Δ

∂
∂

Δα+
∂
∂

=
Δ

−
=

Δ
Δ

 

 

α  must be as  Where the value of the time increment parameter 10 ≤α≤

 

tntntntn t
Wand,

t
V,

t
U,

t
P

Δα+Δα+Δα+Δα+ ∂
∂

∂
∂

∂
∂

∂
∂ ) from  The first order derivatives terms (

 

 

 

equations (4.5) through (4.8) can be readily found from the governing equations (4.3) and 

(4.4a, b, and c) as 

 

For pressure term 

 

 

)9.4(
z

W
y
V

x
Uc

t
P

tn

2

tn Δα+Δα+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

−=
∂
∂           

 

 

 

37 
 



Chapter 4                                                                                       Working equations 
  

 

 

And for the velocity components 

 

)12.4(
z

W2
zy

W
z
V

yz
U

x
W

xz
P

t
W

)11.4(
y
W

z
V

zy
V2

yx
V

y
U

xy
P

t
V

)10.4(
z
U

x
W

zx
V

y
U

yx
U2

xx
P

t
U

tntntntntn

tntntntntn

tntntntntn

Δα+Δα+Δα+Δα+Δα+

Δα+Δα+Δα+Δα+Δα+

Δα+Δα+Δα+Δα+Δα+

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

η
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

η
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

η
∂
∂

+
∂
∂

−=
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

η
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

η
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

η
∂
∂

+
∂
∂

−=
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

η
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

η
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

η
∂
∂

+
∂
∂

−=
∂
∂

  

 

 

tn
2

2

t
V

Δα+
∂
∂

tn
2

2

t
W

Δα+
∂
∂

tn
2

2

t
P

Δα+
∂
∂

tn
2

2

t
U

Δα+
∂
∂The second-order derivatives terms ( , , , and ) 

from equations (4.5) through (4.8) can now be obtained from equations (4.9) through 

(4.12) as 

For pressure term 

 

)13.4(
t

W
zt

V
yt

U
x

c

z
W

y
V

x
Uc

tt
P

tt
P

tn

2

tn

2

tntn
2

2

Δα+

Δα+Δα+Δα+

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

−=

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

−
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

=
∂
∂

 

t
U
∂
∂

t
V
∂
∂

t
W
∂
∂Substituting the expressions of , , and  from equations (4.4a, b, and c) into 

equation (4.13) gives 

 

 

38 
 



Chapter 4                                                                                       Working Equations   
 
 
 
 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

η
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

η
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

η
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

η
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

η
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

η
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

η
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

η
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

η
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

−=
∂
∂

Δα+

z
W2

zz
V

y
W

yx
W

z
U

xz
P

z
c

)14.4(
z
V

y
W

zy
V2

yx
V

y
U

xy
P

y
c

z
U

x
W

zx
V

y
U

yx
U2

xx
P

x
c

t
P

2

2

2

tn
2

2

 

For the first component (U) of the velocity vector one obtains 

 

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

η
∂
∂

+

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

η
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

η
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

η
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

η
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

η
∂
∂

+
∂
∂

−
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

=
∂
∂

Δα+Δα+

t
U

zt
W

xz

)15.4(
t
V

xt
U

yyt
U

x
2

xt
P

x

x
W

z
U

zx
V

y
U

yx
U2

xx
P

tt
U

tt
U

tntn
2

2

 
 
 
Using a similar approach, one can obtain for the second component (V) of the velocity 

vector         

 

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

η
∂
∂

+

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

η
∂
∂

+
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

η
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

η
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

η
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

η
∂
∂

+
∂
∂

−
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

=
∂
∂

Δα+Δα+

t
V

zt
W

yz

)16.4(
t
V

y
2

yt
V

xt
U

yxt
P

y

y
W

z
V

zy
V2

yx
V

y
U

xy
P

tt
V

tt
V

tntn
2

2

                              

 

 

And finally for the third component (W) of the velocity vector, one obtains 

39 
 



Chapter 4                                                                                        Working equations 
 

 

 

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

η
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

η
∂
∂

+

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

η
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

η
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

η
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

η
∂
∂

+
∂
∂

−
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

=
∂
∂

Δα+Δα+

t
W

z
2

zt
V

zt
W

yy

)17.4(
t

W
xt

U
zxt

P
z

z
W2

zy
W

z
V

yx
W

z
U

xz
P

tt
W

tt
W

tntn
2

2

   

t
P
∂
∂

t
U
∂
∂

t
V
∂
∂

t
W
∂
∂Substituting the expressions of , , , and  from equations (4.3) and (4.4a, b, 

and c) into equations (4.15) through (4.17), yield equations containing high-order 

derivative terms. However, as previously published works show (e.g. see Nassehi 

(2002)), the contributions of these terms with high-order derivatives (that is 3rd or above 

in the present work) are negligible and hence they can be omitted from equations (4.13) 

through (4.17). Thus one obtains 

 

)18.4(
z
P

zy
P

yx
P

x
c

t
P

tn

2

tn
2

2

Δα+Δα+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂
∂            

 

)19.4(
z

W
y
V

x
U

x
c

t
U

tn

2

tn
2

2

Δα+Δα+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

∂
∂

=
∂
∂          

 

 

)20.4(
z

W
y
V

x
U

y
c

t
V

tn

2

tn
2

2

Δα+Δα+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

∂
∂

=
∂
∂  

 

)21.4(
z

W
y
V

x
U

z
c

t
W

tn

2

tn
2

2

Δα+Δα+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

∂
∂

=
∂
∂  

40 
 



Chapter 4                                                                                        Working equations 
 
 
 
 

Substituting the first-order time derivatives from equations (4.9 through 4.12) and the 

second-order time derivatives from equations (4.18 through 4.21) into equations (4.5 

through 4.8) yield 

  

For pressure term 

 

 

)22.4(
z
P

zy
P

yx
P

x
tc

2
1

z
W

y
V

x
Uc

t
Pt

2
1

t
P

t
PP

t
P

tn

2

tn

2

tn
2

2

tn

n1n

Δα+Δα+

Δα+Δα+

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

Δα+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

−=

∂
∂

Δα+
∂
∂

=
Δ

−
=

Δ
Δ

 

For the first component (U) of the velocity vector 

 

)23.4(
z

W
y
V

x
U

x
ct

2
1

z
U

x
W

zx
V

y
U

yx
U2

xx
P

t
Ut

2
1

t
U

t
UU

t
U

tn

2

tntntntn

tn
2

2

tn

n1n

Δα+

Δα+Δα+Δα+Δα+

Δα+Δα+

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

∂
∂

Δα+

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

η
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

η
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

η
∂
∂

+
∂
∂

−=

∂
∂

Δα+
∂
∂

=
Δ

−
=

Δ
Δ

 

 

For the second component (V) of the velocity vector 

 

 

 

 

 

 

41 
 



Chapter 4                                                                                        Working equations 
 

 

 

)24.4(
z

W
y
V

x
U

y
ct

2
1

y
W

z
V

zy
V2

yx
V

y
U

xy
P

t
Vt

2
1

t
V

t
VV

t
V

tn

2

tntntntn

tn
2

2

tn

n1n

Δα+

Δα+Δα+Δα+Δα+

Δα+Δα+

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

∂
∂

Δα+

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

η
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

η
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

η
∂
∂

+
∂
∂

−=

∂
∂

Δα+
∂
∂

=
Δ

−
=

Δ
Δ

 

And finally for the third component (W) of the velocity vector 

 

 

 

)25.4(
z

W
y
V

x
U

z
ct

2
1

z
W2

zy
W

z
V

yz
U

x
W

xz
P

t
Wt

2
1

t
W

t
WW

t
W

tn

2

tntntntn

tn
2

2

tn

n1n

Δα+

Δα+Δα+Δα+Δα+

Δα+Δα+

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

∂
∂

Δα+

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

η
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

η
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

η
∂
∂

+
∂
∂

−=

∂
∂

Δα+
∂
∂

=
Δ

−
=

Δ
Δ

 

 

These mark the end of the temporal discretization procedure, and hence one can proceed 

with the spatial discretization explained in chapter 2. Recall that in the U-V-W-P scheme, 

velocity and pressure are considered as primitive variables and are discretized as 

unknowns. In this work, the primitive variables (U, V, W, and P) from equations (4.22) 

through (4.25) are approximated using 8-noded isoparametric hexahedral element and the 

approximated variable can be written using the following statements 

 

 

 

42 
 



Chapter 4                                                                                        Working equations 
 

 

                               

⎭
⎬
⎫

⎩
⎨
⎧≅=

⎭
⎬
⎫

⎩
⎨
⎧≅=

⎭
⎬
⎫

⎩
⎨
⎧≅=

⎭
⎬
⎫

⎩
⎨
⎧≅=

•

=

•

=

•

=

•

=

∑

∑

∑

∑

PNPNP

)26.4(WNWNW

VNVNV

UNUNU

j

n

1j
jj

j

n

1j
jj

j

n

1j
jj

j

n

1j
jj

 

 

Where  (j = 1 …n) are the shape functions (8-noded isoparametric hexahedral  jN

             element used for the approximation of both velocity and pressure) 

            and n the number of nodes per elements 

 

Substituting the approximated values from the relations given by (4.26) into equations 

(4.22) through (4.26) and writing the weighted residual finite element statement give  

 

For the first component (U) of the velocity vector 

 

( ) ( )

( ) ( )

( )

)27.4(
2
1

2
1

2
1

2

.
22

.
22

.
22

.

..

..

..

1

∫∫

∫∫

∫∫

∫∫

∫ ∫∫

Ω Δ+Ω Δ+

Ω Δ+Ω Δ+

Ω Δ+Ω Δ+

Ω Δ+Ω Δ+

Ω Δ+Ω+

⋅

Ω

⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−=

⎭
⎬
⎫

⎩
⎨
⎧Ω−

⎭
⎬
⎫

⎩
⎨
⎧Ω

ee

ee

ee

ee

e ee

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

n
eji

n
eji

Wd
z

N
x

NctVd
y

N
x

Nct

Ud
x

N
x

NctWd
x

N
z

tN

Ud
z

N
z

tNUd
y

N
y

tN

Vd
x

N
y

tNUd
x

N
x

tN

Pd
x

N
NtUdNNUdNN

αα

αα

αα

αα

α

αα

αη

ηη

ηη

 

43 
 



Chapter 4                                                                                        Working equations 
 
 
 
 
Where   denote the test function. iN

 

Similarly, for the second component (V) of the velocity vector one obtains 

 

( ) ( )

( ) ( )

( )

)28.4(
2
1

2
1

2
1

2

.
22

.
22

.
22

.

..

..

..

1

∫ ∫

∫∫

∫∫

∫∫

∫ ∫∫

Ω Ω Δ+Δ+

Ω Δ+Ω Δ+

Ω Δ+Ω Δ+

Ω Δ+Ω Δ+

Ω Δ+Ω+

⋅

Ω

⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−=

⎭
⎬
⎫

⎩
⎨
⎧Ω−

⎭
⎬
⎫

⎩
⎨
⎧Ω

e e

ee

ee

ee

e ee

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

n
eji

n
eji

Wd
z

N
y

NctVd
y

N
y

Nct

Ud
x

N
y

NctVd
z

N
z

tN

Wd
y

N
z

tNVd
y

N
y

tN

Ud
y

N
x

tNVd
x

N
x

tN

Pd
y

N
NtVdNNVdNN

αα

αα

αα

αα

α

αα

αη

ηη

ηη

  

And for the third component (W) of the velocity vector 

 
 

( ) ( )

( ) ( )

( )

)29.4(
2
1

2
1

2
12

.
22

.
22

.
22

.

..

..

..

1

∫ ∫

∫∫

∫∫

∫∫

∫ ∫∫

Ω Ω Δ+Δ+

Ω Δ+Ω Δ+

Ω Δ+Ω Δ+

Ω Δ+Ω Δ+

Ω Δ+Ω+

⋅

Ω

⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−=

⎭
⎬
⎫

⎩
⎨
⎧Ω−

⎭
⎬
⎫

⎩
⎨
⎧Ω

e e

ee

ee

ee

e ee

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

n
eji

n
eji

Wd
z

N
z

NctVd
y

N
z

Nct

Ud
x

N
z

NctWd
z

N
z

tN

Vd
z

N
y

tNWd
y

N
y

tN

Wd
x

N
x

tNUd
z

N
x

tN

Pd
z

N
NtWdNNWdNN

αα

αα

αα

αα

α

αα

αη

ηη

ηη

 
 
And with the same procedure the pressure term can be obtained from the mass balance 
equation as 

44 
 



Chapter 4                                                                                        Working equations 
 
 
 

)30.4(
2
1

2
1

2
1

.
22

.
22

.
22

.
2

.
2

.
2

.

1

∫

∫∫

∫∫

∫ ∫∫

Ω Δ+

Ω Δ+Ω Δ+

Ω Δ+Ω Δ+

Ω Δ+Ω+

⋅

Ω

⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−=

⎭
⎬
⎫

⎩
⎨
⎧Ω−

⎭
⎬
⎫

⎩
⎨
⎧Ω

e

ee

ee

e ee

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

n
eji

n
eji

Pd
z

N
z

Nct

Pd
y

N
y

NctPd
x

N
x

Nct

Wd
z

N
NtcVd

y
N

Ntc

Ud
x

N
NctPdNNPdNN

α

αα

αα

α

α

αα

 

Seeing that there are some terms of second-order derivatives in equations (4.27) through 

(4.30), it is necessary to apply Green’s theorem to such terms to reduce them to first-

order derivatives terms and thus one can ensure inter element continuity. It must be also 

noted that functions given at time level tn Δ+α  are interpolated using the relation 

nntn
AAA )1(

1
αα

α
−+=

+Δ+
  (Nassehi 2002). 

 
Thus one obtains for the first component (U) of the velocity 
 
 
 
 
 

∫∫

∫∫

∫∫

∫∫

∫∫

∫∫

ΓΓ +

ΩΩ +

ΓΓ +

ΩΩ +

Ω+Ω

Ω+

⋅

Ω

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−

=
⎭
⎬
⎫

⎩
⎨
⎧Ω−

⎭
⎬
⎫

⎩
⎨
⎧Ω

ee

ee

ee

ee

ee

ee

n
ey

j
i

n
ey

j
i

n
e

ji

n
e

ji

n
ex

j
i

n
ex

j
i

n
e

ji

n
e

ji

n
e

j
i

n
e

j
i

n
eji

n
eji

Vdn
x

N
NtVdn

x
N

Nt

Vd
x

N
y

N
tVd

x
N

y
N

t

Udn
x

N
NtUdn

x
N

Nt

Ud
x

N
x

N
tUd

x
N

x
N

t

Pd
x

N
NtPd

x
N

Nt

UdNNUdNN

.

1

.

.

1

.

.

1

.

.

1

.

.

1

.

.

1

ˆ))1((ˆ)(

)1(

ˆ)2)1((ˆ)2(

2)1(2

)1(

ηαηα

ηαηα

ηαηα

ηαηα

αα

 

45 
 



Chapter 4                                                                                        Working equations 
 

 

{ } { }

{ } { }

{ } { }

{ } { }∫∫

∫∫

∫∫

∫∫

ΓΓ
+

ΩΩ
+

ΓΓ
+

ΩΩ
+

Γ
∂

∂
ηΔα−+Γ

∂

∂
ηΔα+

Ω
∂

∂

∂
∂

ηΔα−−Ω
∂

∂

∂
∂

ηΔα−

Γ
∂

∂
ηΔα−+Γ

∂

∂
ηΔα+

Ω
∂

∂

∂
∂

ηΔα−−Ω
∂

∂

∂
∂

ηΔα−

ee

ee

ee

ee

nez
j

i1nez
j

i

ne
ji

1ne
ji

ney
j

i1ney
j

i

ne
ji

1ne
ji

Udn̂)
z

N
Nt)1((Udn̂)

z
N

Nt(

Ud
z

N
z

Nt)1(Ud
z

N
z

Nt

Udn̂)
y

N
Nt)1((Udn̂)

y
N

Nt(

Ud
y

N
y

Nt)1(Ud
y

N
y

Nt

&&

&&

&&

&&

 

 

∫∫

∫∫

∫∫

∫∫

∫∫

ΩΩ +

ΓΓ +

ΩΩ +

ΓΓ +

ΩΩ +

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂
∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

ee

ee

ee

ee

ee

n
e

ji

n
e

ji

n
ex

j
i

n
ex

j
i

n
e

ji

n
e

ji

n
ez

j
i

n
ez

j
i

n
e

ji

n
e

ji

Vd
y

N
x

NctVd
y

N
x

Nct

Udn
x

N
NctUdn

x
N

Nct

Ud
x

N
x

NctUd
x

N
x

Nct

Wdn
x

N
NtWdn

x
N

Nt

Wd
x

N
z

NtWd
x

N
z

Nt

.
22

1

.
222

.
22

1

.
222

.
22

1

.
222

.

1

.

.

1

.

)1(
2
1

2
1

ˆ))1(
2
1(ˆ)

2
1(

)1(
2
1

2
1

ˆ))1((ˆ)(

)1(

ααα

ααα

ααα

ηαηα

ηαηα

 

)31.4(ˆ))1(
2
1(ˆ)

2
1(

)1(
2
1

2
1

ˆ))1(
2
1(ˆ)

2
1(

.
22

1

.
222

.
22

1

.
222

.
22

1

.
222

∫∫

∫∫

∫∫

ΓΓ +

ΩΩ +

ΓΓ +

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

ee

ee

ee

n
ex

j
i

n
ex

j
i

n
e

ji

n
e

ji

n
ex

j
i

n
ex

j
i

Wdn
z

N
NctWdn

z
N

Nct

Wd
z

N
x

N
ctWd

z
N

x
N

ct

Vdn
y

N
NctVdn

y
N

Nct

ααα

ααα

ααα

 

 

Similarly for the second velocity component (V) one obtains 

 

46 
 



Chapter 4                                                                                       Working equations 
 
 
 

∫∫

∫∫

∫∫

∫∫

ΓΓ +

ΩΩ +

Ω+Ω

Ω+

⋅

Ω

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−

=
⎭
⎬
⎫

⎩
⎨
⎧Ω−

⎭
⎬
⎫

⎩
⎨
⎧Ω

ee

ee

ee

ee

n
ex

j
i

n
ex

j
i

n
e

ji

n
e

ji

n
e

j
i

n
e

j
i

n
eji

n
eji

Vdn
x

N
NtVdn

x
N

Nt

Vd
x

N
x

N
tVd

x
N

x
N

t

Pd
y

N
NtPd

y
N

Nt

VdNNVdNN

.

1

.

.

1

.

.

1

.

.

1

ˆ))1((ˆ)(

)1(

)1(

ηαηα

ηαηα

αα

  

 
 

∫∫

∫∫

∫∫

∫∫

ΓΓ +

ΩΩ +

ΓΓ +

ΩΩ +

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
ηΔα−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
ηΔα+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

ηΔα−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

ηΔα−

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
ηΔα−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
ηΔα+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

ηΔα−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

ηΔα−

ee

ee

ee

ee

n

.

ey
j

i
1n

.

ey
j

i

n

.

e
ji

1n

.

e
ji

n

.

ex
j

i
1n

.

ex
j

i

n

.

e
ji

1n

.

e
ji

Vdn̂)
y

N
N2t)1((Vdn̂)

y
N

N2t(

Vd
y

N
y

N2t)1(Vd
y

N
y

N2t

Udn̂)
y

N
Nt)1((Udn̂)

y
N

Nt(

Ud
y

N
x

Nt)1(Ud
y

N
x

Nt

 

 

∫∫

∫∫

∫∫

∫∫

ΓΓ +

ΩΩ +

ΓΓ +

ΩΩ +

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

ee

ee

ee

ee

n
ez

j
i

n
ez

j
i

n
e

ji

n
e

ji

n
ez

j
i

n
ez

j
i

n
e

ji

n
e

ji

Vdn
z

N
NtVdn

z
N

Nt

Vd
z

N
z

N
tVd

z
N

z
N

t

Wdn
y

N
NtWdn

y
N

Nt

Wd
y

N
z

N
tWd

y
N

z
N

t

.

1

.

.

1

.

.

1

.

.

1

.

ˆ))1((ˆ)(

)1(

ˆ))1((ˆ)(

)1(

ηαηα

ηαηα

ηαηα

ηαηα

 

 
 
 
 
 

47 
 



 Chapter 4                                                                                       Working equations 

)32.4(Wdn̂)
z

N
Nct)1(

2
1(Wdn̂)

z
N

Nct
2
1(

Wd
z

N
y

N
ct)1(

2
1Wd

z
N

y
N

ct
2
1

Vdn̂)
y

N
Nct)1(

2
1(Vdn̂)

y
N

Nct
2
1(

Vd
y

N
y

N
ct)1(

2
1Vd

y
N

y
N

ct
2
1

Udn̂)
x

N
Nct)1(

2
1(Udn̂)

x
N

Nct
2
1(

Ud
x

N
y

N
ct)1(

2
1Ud

x
N

y
N

ct
2
1

ee

ee

ee

ee

ee

ee

n

.

ey
j

i
22

1n

.

ey
j

i
222

n

.

e
ji22

1n

.

e
ji222

n

.

ey
j

i
22

1n

.

ey
j

i
222

n

.

e
ji22

1n

.

e
ji222

n

.

ey
j

i
22

1n

.

ey
j

i
222

n

.

e
ji22

1n

.

e
ji222

∫∫

∫∫

∫∫

∫∫

∫∫

∫∫

ΓΓ +

ΩΩ +

ΓΓ +

ΩΩ +

ΓΓ +

ΩΩ +

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δα−α+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δα+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δα−α−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δα−

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δα−α+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δα+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δα−α−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δα−

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δα−α+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δα+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δα−α−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δα−

 
For the third component (W) of the velocity vector, one obtains 
 

∫∫

∫∫

∫∫

∫∫

ΓΓ +

ΩΩ +

Ω+Ω

Ω+

⋅

Ω

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
ηΔα−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
ηΔα+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

ηΔα−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

ηΔα−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δα−−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δα−

=
⎭
⎬
⎫

⎩
⎨
⎧Ω−

⎭
⎬
⎫

⎩
⎨
⎧Ω

ee

ee

ee

ee

n

.

ex
j

i
1n

.

ex
j

i

n

.

e
ji

1n

.

e
ji

n

.

e
j

i
1n

.

e
j

i

n

.

eji
1n

eji

Udn̂)
z

N
Nt)1((Udn̂)

z
N

Nt(

Ud
y

N
x

Nt)1(Ud
z

N
x

Nt

Pd
z

N
Nt)1(Pd

z
N

Nt

WdNNWdNN

 

∫∫

∫∫

∫∫

∫∫

ΓΓ +

ΩΩ +

ΓΓ +

ΩΩ +

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
ηΔα−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
ηΔα+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

ηΔα−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

ηΔα−

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
ηΔα−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
ηΔα+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

ηΔα−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

ηΔα−

ee

ee

ee

ee

n

.

ey
j

i
1n

.

ey
j

i

n

.

e
ji

1n

.

e
ji

n

.

ex
j

i
1n

.

ex
j

i

n

.

e
ji

1n

.

e
ji

Wdn̂)
y

N
Nt)1((Wdn̂)

y
N

Nt(

Wd
y

N
y

N
t)1(Wd

y
N

y
N

t

Wdn̂)
x

N
Nt)1((Wdn̂)

x
N

Nt(

Wd
x

N
x

N
t)1(Wd

x
N

x
N

t

 

48 
 



Chapter 4                                                                                        Working equations 
 
 
 

∫∫

∫∫

∫∫

∫∫

∫∫

∫∫

∫∫

ΩΩ +

ΓΓ +

ΩΩ +

ΓΓ +

ΩΩ +

ΓΓ +

ΩΩ +

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δα−α−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δα−

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δα−α+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δα+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δα−α−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δα−

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
ηΔα−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
ηΔα+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

ηΔα−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

ηΔα−

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
ηΔα−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
ηΔα+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

ηΔα−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

ηΔα−

ee

ee

ee

ee

ee

ee

ee

n

.

e
ji22

1n

.

e
ji222

n

.

ez
j

i
22

1n

.

ez
j

i
222

n

.

e
ji22

1n

.

e
ji222

n

.

ez
j

i
1n

.

ez
j

i

n

.

e
ji

1n

.

e
ji

n

.

ey
j

i
1n

.

ey
j

i

n

.

e
ji

1n

.

e
ji

Vd
y

N
z

Nct)1(
2
1Vd

y
N

z
Nct

2
1

Udn̂)
x

N
Nct)1(

2
1(Udn̂)

x
N

Nct
2
1(

Ud
x

N
z

Nct)1(
2
1Ud

x
N

z
Nct

2
1

Wdn̂)
z

N
N2t)1((Wdn̂)

z
N

N2t(

Wd
z

N
z

N
2t)1(Wd

z
N

z
N

2t

Vdn̂)
z

N
Nt)1((Vdn̂)

z
N

Nt(

Vd
z

N
y

N
t)1(Vd

z
N

y
N

t

 

)33.4(ˆ))1(
2
1(ˆ)

2
1(

)1(
2
1

2
1

ˆ))1(
2
1(ˆ)

2
1(

.
22

1

.
222

.
22

1

.
222

.
22

1

.
222

∫∫

∫∫

∫∫

ΓΓ +

ΩΩ +

ΓΓ +

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

ee

ee

ee

n
ez

j
i

n
ez

j
i

n
e

ji

n
e

ji

n
ez

j
i

n
ez

j
i

Wdn
z

N
NctWdn

z
N

Nct

Wd
z

N
z

N
ctWd

z
N

z
N

ct

Vdn
y

N
NctVdn

y
N

Nct

ααα

ααα

ααα

 
 
And finally one can obtain for the mass balance equation 
 

n
e

j
i

n
e

j
i

n
eji

n
eji

Ud
x

N
NtcUd

x
N

Ntc

PdNNPdNN

ee

ee

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−

=
⎭
⎬
⎫

⎩
⎨
⎧Ω−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∫∫

∫∫

Ω+Ω

Ω+

⋅

Ω

.
2

1

.
2

.

1

)1( αα
 

 
 
 

49 
 



Chapter 4                                                                                        Working equations 
 
 
 
 
 

)34.4(Pdn̂)
z

N
Nct)1(

2
1(Pdn̂)

z
N

Nct
2
1(

Pd
z

N
z

N
ct)1(

2
1Pd

z
N

z
N

ct
2
1

Pdn̂)
y

N
Nct)1(

2
1(Pdn̂)

y
N

Nct
2
1(

Pd
y

N
y

N
ct)1(

2
1Pd

y
N

y
N

ct
2
1

Pdn̂)
x

N
Nct)1(

2
1(Pdn̂)

x
N

Nct
2
1(

Pd
x

N
x

N
ct)1(

2
1Pd

x
N

x
N

ct
2
1

Wd
z

N
Ntc)1(Wd

z
N

Ntc

Vd
y

N
Ntc)1(Vd

y
N

Ntc

ee

ee

ee

ee

ee

ee

ee

ee

n

.

ez
j

i
22

1n

.

ez
j

i
222

n

.

e
ji22

1n

.

e
ji222

n

.

ey
j

i
22

1n

.

ey
j

i
222

n

.

e
ji22

1n

.

e
ji222

n

.

ex
j

i
22

1n

.

ex
j

i
222

n

.

e
ji22

1n

.

e
ji222

n

.

e
j

i
2

1n

.

e
j

i
2

n

.

e
j

i
2

1n

.

e
j

i
2

∫∫

∫∫

∫∫

∫∫

∫∫

∫∫

∫∫

∫∫

ΓΓ +

ΩΩ +

ΓΓ +

ΩΩ +

ΓΓ +

ΩΩ +

Ω+Ω

Ω+Ω

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δα−α+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δα+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δα−α−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δα−

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δα−α+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δα+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δα−α−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δα−

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δα−α+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δα+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δα−α−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δα−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δα−−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δα−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δα−−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δα−

 

Equations 4.31 through 4.34 can be written in matrix form as 
 
 
 

)35.4(

4

3

2

11

4

3

2

1

.

.

.

.

44434241

34333231

24232221

14131211
1

.

.

.

.1

44434241

34333231

24232221

14131211

n

j

j

j

j

n

j

j

j

j

nn

ijijijij

ijijijij

ijijijij

ijijijij

nn

ijijijij

ijijijij

ijijijij

ijijijij

D
D
D
D

C
C
C
C

P
W
V
U

KKKK
KKKK
KKKK
KKKK

P
W
V
U

MMMM
MMMM
MMMM
MMMM

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

++

 

Where the left hand sides are given as 
 
 

50 
 



Chapter 4                                                                                       Working equations 
 
 
 
 
 

)39.4(dxdydz
x

N
NtM

)38.4(dxdydz
z

N
x

N
ct

2
1

x
N

z
N

tM

)37.4(dxdydz
y

N
x

N
ct

2
1

x
N

y
N

tM

)36.4(dxdydz
z

N
z

N
y

N
y

N
t

x
N

x
N

ct
2
12tNNM

e

e

e

e

j
i

14
ij

ji222ji13
ij

ji222ji12
ij

jijiji222
ji

11
ij

∫∫∫

∫∫∫

∫∫∫

∫∫∫

Ω

Ω

Ω

Ω

⎭
⎬
⎫

⎩
⎨
⎧

∂

∂
αΔ=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δα+
∂

∂

∂
∂

αηΔ=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δα+
∂

∂

∂
∂

αηΔ=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

+
∂

∂

∂
∂

αηΔ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛ Δα+ηαΔ+=

)43.4(dxdydz
y

N
NtM

)42.4(dxdydz
z

N
y

N
ct

2
1

y
N

z
N

tM

)41.4(dxdydz
z

N
z

N
x

N
x

N
t

y
N

y
N

ct
2
12tNNM

)40.4(dxdydz
x

N
y

N
ct

2
1

y
N

x
N

tM

e

e

e

e

j
i

24
ij

ji222ji23
ij

jijiji222
ji

22
ij

ji222ji21
ij

∫∫∫

∫∫∫

∫∫∫

∫∫∫

Ω

Ω

Ω

Ω

⎭
⎬
⎫

⎩
⎨
⎧

∂

∂
αΔ=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δα+
∂

∂

∂
∂

αηΔ=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

+
∂

∂

∂
∂

αηΔ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛ Δα+ηαΔ+=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δα+
∂

∂

∂
∂

αηΔ=

 
 

)46.4(dxdydz
y

N
y

N
x

N
x

N
t

z
N

z
N

ct
2
12tNNM

)45.4(dxdydz
y

N
z

N
ct

2
1

z
N

y
N

tM

)44.4(dxdydz
x

N
z

N
ct

2
1

z
N

x
N

tM

e

e

e

jijiji222
ji

33
ij

ji222ji32
ij

ji222ji31
ij

∫∫∫

∫∫∫

∫∫∫

Ω

Ω

Ω

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

+
∂

∂

∂
∂

αηΔ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛ Δα+ηαΔ+=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δα+
∂

∂

∂
∂

αηΔ=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δα+
∂

∂

∂
∂

αηΔ=

 

)47.4(dxdydz
z

N
NtM

e

j
i

34
ij ∫∫∫

Ω ⎭
⎬
⎫

⎩
⎨
⎧

∂

∂
αΔ=

 
 
  

51 
 



Chapter 4                                                                                        Working equations 
 
 
 
 

∫∫∫

∫∫∫

∫∫∫

∫∫∫

Ω

Ω

Ω

Ω

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

+
∂

∂

∂
∂

+
∂

∂

∂
∂

Δα+=

⎭
⎬
⎫

⎩
⎨
⎧

∂

∂
αΔ=

⎭
⎬
⎫

⎩
⎨
⎧

∂

∂
αΔ=

⎭
⎬
⎫

⎩
⎨
⎧

∂

∂
αΔ=

e

e

e

e

)51.4(dxdydz
z

N
z

N
y

N
y

N
x

N
x

N
ct

2
1NNM

)50.4(dxdydz
z

N
NctM

)49.4(dxdydz
y

N
NctM

)48.4(dxdydz
x

N
NctM

jijiji222
ji

44
ij

j
i

243
ij

j
i

242
ij

j
i

241
ij

 
 

ez
j

i
222

y
j

i
222

x
j

ix
j

ix
j

i
222

z
j

iy
j

ix
j

i
1
j

dn̂
x

N
Nct

2
1n̂

x
N

Nct
2
1

)52.4(n̂
z

N
Ntn̂

y
N

Ntn̂
x

N
Nct

2
1

n̂
z

N
Ntn̂

y
N

Ntn̂
x

N
N2tC

e

Γ
⎪⎭

⎪
⎬
⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δα+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δα+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δα+

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα= ∫

Γ

 
 
 

ez
j

i
222

y
j

i
222

y
j

iz
j

ix
j

i
222

y
j

ix
j

iy
j

i
2
j

dn̂
y

N
Nct

2
1n̂

y
N

Nct
2
1

)53.4(n̂
z

N
Ntn̂

z
N

Ntn̂
y

N
Nct

2
1

n̂
y

N
N2tn̂

x
N

Ntn̂
x

N
NtC

e

Γ
⎪⎭

⎪
⎬
⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δα+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δα+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δα+

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα= ∫

Γ

 

 

ez
j

i
222

y
j

i
222

z
j

iy
j

ix
j

i
222

x
j

iz
j

iz
j

i
3
j

dn̂
y

N
Nct

2
1n̂

z
N

Nct
2
1

)54.4(n̂
z

N
N2tn̂

y
N

Ntn̂
z

N
Nct

2
1

n̂
x

N
Ntn̂

y
N

Ntn̂
x

N
NtC

e

Γ
⎪⎭

⎪
⎬
⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δα+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δα+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δα+

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα= ∫

Γ

 

52 
 



Chapter 4                                                                                        Working equations     
 
 
 
 

)55.4(dn̂
z

N
Nct

2
1

n̂
y

N
Nct

2
1n̂

x
N

Nct
2
1C

ez
j

i
222

y
j

i
222

x
j

i
2224

j

e

Γ
⎪⎭

⎪
⎬
⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δα+

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δα+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δα= ∫

Γ  

 
 
 
And the right hand sides as 
 
 

)59.4()1(

)58.4()1(
2
1)1(

)57.4()1(
2
1)1(

)56.4()1(

)1(
2
12)1(

14

2213

2212

2211

∫∫∫

∫∫∫

∫∫∫

∫∫∫

Ω

Ω

Ω

Ω

⎭
⎬
⎫

⎩
⎨
⎧

∂

∂
−Δ−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ−−
∂

∂

∂
∂

−Δ−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ−−
∂

∂

∂
∂

−Δ−=

⎪⎭

⎪
⎬
⎫
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

+
∂

∂

∂
∂

−Δ−

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛ Δ−+−Δ−=

e

e

e

e

dxdydz
x

N
NtK

dxdydz
z

N
x

N
ct

x
N

z
N

tK

dxdydz
y

N
x

N
ct

x
N

y
N

tK

dxdydz
z

N
z

N
y

N
y

N
t

x
N

x
N

cttNNK

j
iij

jiji
ij

jiji
ij

jiji

ji
jiij

α

ααηα

ααηα

ηα

ααηα

 

)63.4()1(

)62.4()1(
2
1)1(

)61.4()1(

)1(
2
12)1(

)60.4()1(
2
1)1(

24

2223

2222

2221

∫∫∫

∫∫∫

∫∫∫

∫∫∫

Ω

Ω

Ω

Ω

⎭
⎬
⎫

⎩
⎨
⎧

∂

∂
−Δ−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ−−
∂

∂

∂
∂

−Δ−=

⎪⎭

⎪
⎬
⎫
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

+
∂

∂

∂
∂

−Δ−

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛ Δ−+−Δ−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ−−
∂

∂

∂
∂

−Δ−=

e

e

e

e

dxdydz
y

N
NtK

dxdydz
z

N
y

N
ct

y
N

z
N

tK

dxdydz
z

N
z

N
x

N
x

N
t

y
N

y
N

cttNNK

dxdydz
x

N
y

N
ct

y
N

x
N

tK

j
iij

jiji
ij

jiji

ji
jiij

jiji
ij

α

ααηα

ηα

ααηα

ααηα

 

53 
 



Chapter 4                                                                                        Working equations 
 
 
 

)66.4()1()1(
2
12)1(

)65.4()1(
2
1)1(

)64.4()1(
2
1)1(

2233

2232

2231

∫∫∫

∫∫∫

∫∫∫

Ω

Ω

Ω

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

+
∂

∂

∂
∂

−Δ−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛ Δ−+−Δ−=

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

Δ−−
∂
∂

∂
∂

−Δ−=

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

Δ−−
∂
∂

∂
∂

−Δ−=

e

e

e

dxdydz
y

N
y
N

x
N

x
Nt

z
N

z
NcttNNK

dxdydz
y

N
z

Nct
z

N
y

NtK

dxdydz
x

N
z

Nct
z

N
x

NtK

jijiji
jiij

jiji
ij

jiji
ij

ηαααηα

ααηα

ααηα

 

)67.4()1(34 ∫∫∫
Ω ⎭

⎬
⎫

⎩
⎨
⎧

∂

∂
−Δ−=

e

dxdydz
z

N
NtK j

iij α  

 

)71.4()1(
2
1

)70.4()1(

)69.4()1(

)68.4()1(

2244

243

242

241

∫∫∫

∫∫∫

∫∫∫

∫∫∫

Ω

Ω

Ω

Ω

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

+
∂

∂

∂
∂

+
∂

∂

∂
∂

Δ−=

⎭
⎬
⎫

⎩
⎨
⎧

∂

∂
−Δ−=

⎭
⎬
⎫

⎩
⎨
⎧

∂

∂
−Δ−=

⎭
⎬
⎫

⎩
⎨
⎧

∂

∂
−Δ−=

e

e

e

e

dxdydz
z

N
z

N
y

N
y

N
x

N
x

N
ctNNK

dxdydz
z

N
NctK

dxdydz
y

N
NctK

dxdydz
x

N
NctK

jijiji
jiij

j
iij

j
iij

j
iij

αα

α

α

α

 

ez
j

i
22

y
j

i
22

x
j

ix
j

ix
j

i
22

z
j

iy
j

ix
j

i
1
j

dn̂
x

N
Nct)1(

2
1n̂

x
N

Nct)1(
2
1

)72.4(n̂
z

N
Nt)1(n̂

y
N

Nt)1(n̂
x

N
Nct)1(

2
1

n̂
z

N
Nt)1(n̂

y
N

Nt)1(n̂
x

N
N2t)1(D

e

Γ
⎪⎭

⎪
⎬
⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δα−α+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δα−α+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δα−α+

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα−= ∫

Γ

 

ez
j

i
22

y
j

i
22

y
j

iz
j

ix
j

i
22

y
j

ix
j

iy
j

i
2
j

dn̂
y

N
Nct)1(

2
1n̂

y
N

Nct)1(
2
1

)73.4(n̂
z

N
Nt)1(n̂

z
N

Nt)1(n̂
y

N
Nct)1(

2
1

n̂
y

N
N2t)1(n̂

x
N

Nt)1(n̂
x

N
Nt)1(D

e

Γ
⎪⎭

⎪
⎬
⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δα−α+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δα−α+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δα−α+

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα−= ∫

Γ

  

54 
 



Chapter 4                                                                                        Working equations 
 
 
 

ez
j

i
22

y
j

i
22

z
j

iy
j

ix
j

i
22

x
j

iz
j

iz
j

i
3
j

dn̂
y

N
Nct)1(

2
1n̂

z
N

Nct)1(
2
1

)74.4(n̂
z

N
N2t)1(n̂

y
N

Nt)1(n̂
z

N
Nct)1(

2
1

n̂
x

N
Nt)1(n̂

y
N

Nt)1(n̂
x

N
Nt)1(D

e

Γ
⎪⎭

⎪
⎬
⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δα−α+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δα−α+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δα−α+

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα−= ∫

Γ

)75.4(dn̂
z

N
Nct)1(

2
1

n̂
y

N
Nct)1(

2
1n̂

x
N

Nct)1(
2
1D

ez
j

i
22

y
j

i
22

x
j

i
224

j

e

Γ
⎪⎭

⎪
⎬
⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δα−α+

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δα−α+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δα−α= ∫

Γ

 
 
4.2   Modified U-V-W-P discretization of the governing equations 

 

The governing equations in the modified U-V-W-P discretization technique differ from 

those of the U-V-W-P scheme by the fact that a new parameter  λ   (as defined in chapter 

2) is introduced to the perturbed form of the continuity equation, and hence the governing 

equations in this scheme take the following form. 

 

)76.4()(2 continuity
z
w

y
v

x
uc

t
p

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

−=
∂
∂ λρ

 

The momentum equation remain as it was in the previous scheme and is written as 

 

( )

( ) ( )

( )c
z
w

zy
w

z
v

yz
u

x
w

xz
p

t
w

bmomentum
y
w

z
v

zy
v

yx
v

y
u

xy
p

t
v

a
z
u

x
w

zx
v

y
u

yx
u

xx
p

t
u

77.42

77.42

77.42

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

∂
∂

+
∂
∂

−=
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

∂
∂

+
∂
∂

−=
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

+
∂
∂

−=
∂
∂

ηηηρ

ηηηρ

ηηηρ

 

55 
 



Chapter 4                                                                                       Working Equations 
 

 

After the normalization of the primitive variables using the expressions given by  

 

  

 U = u 

            V = v  for the components of the velocity vector 

 W = w   

 

 

ρ
=

pP   for pressure. and      

One obtains for the continuity equation 

 

 

)78.4(2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

−=
∂
∂

z
W

y
V

x
Uc

t
P λ

 

 

and for the momentum equation 

 

       

( )

( )

( )c
z

W
zy

W
z
V

yz
U

x
W

xz
P

t
W

b
y
W

z
V

zy
V

yx
V

y
U

xy
P

t
V

a
z
U

x
W

zx
V

y
U

yx
U

xx
P

t
U

79.42

79.42

79.42

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

∂
∂

+
∂
∂

−=
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

∂
∂

+
∂
∂

−=
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

+
∂
∂

−=
∂
∂

ηηη

ηηη

ηηη

  

 

 

56 
 



Chapter 4                                                                                       Working Equations 
 
 
 
Following the same procedure as applied for the U-V-W-P scheme (equations (4.5) 

through (4.21)); one obtains the following Taylor series expansion. 

For pressure term 

 

)80.4(
2
1

2
1

22

2

2
1

tntn

tntn

nn

z
P

zy
P

yx
P

x
tc

z
W

y
V

x
Uc

t
Pt

t
P

t
PP

t
P

Δ+Δ+

Δ+Δ+

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

Δ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

−=

∂
∂

Δ+
∂
∂

=
Δ

−
=

Δ
Δ

αα

αα

λαλ

α

 
 
 
For the first component (U) of the velocity vector 

 

 

)81.4(
2
1

2

2
1

2

2

2
1

a
z

W
y
V

x
U

x
ct

z
U

x
W

zx
V

y
U

yx
U

xx
P

t
Ut

t
U

t
UU

t
U

tn

tntntntn

tntn

nn

Δ+

Δ+Δ+Δ+Δ+

Δ+Δ+

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

∂
∂

Δ+

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

+
∂
∂

−=

∂
∂

Δ+
∂
∂

=
Δ

−
=

Δ
Δ

α

αααα

αα

λα

ηηη

α

 

For the second component (V) of the velocity vector 

 

 

)81.4(
2
1

2

2
1

2

2

2
1

b
z

W
y
V

x
U

y
ct

y
W

z
V

zy
V

yx
V

y
U

xy
P

t
Vt

t
V

t
VV

t
V

tn

tntntntn

tntn

nn

Δ+

Δ+Δ+Δ+Δ+

Δ+Δ+

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

∂
∂

Δ+

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

∂
∂

+
∂
∂

−=

∂
∂

Δ+
∂
∂

=
Δ

−
=

Δ
Δ

α

αααα

αα

λα

ηηη

α

 

57 
 



Chapter 4                                                                                        Working equations  
 
 
 
And finally for the third component (W) of the velocity vector 

 

 

)81.4(
2
1

2

2
1

2

2

2
1

c
z

W
y
V

x
U

z
ct

z
W

zy
W

z
V

yz
U

x
W

xz
P

t
Wt

t
W

t
WW

t
W

tn

tntntntn

tntn

nn

Δ+

Δ+Δ+Δ+Δ+

Δ+Δ+

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

∂
∂

Δ+

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

∂
∂

+
∂
∂

−=

∂
∂

Δ+
∂
∂

=
Δ

−
=

Δ
Δ

α

αααα

αα

λα

ηηη

α

 

 

Substituting the approximation expressions of the primitive variables given by (4.26) in 

to equations (4.80) through (4.81a,b, and c) and writing the weighted residual statement 

yield  

 

 

For the first component (U) of the velocity vector  

( ) ( )

( ) ( )

( )

)82.4(
2
1

2
1

2
1

2

.
22

.
22

.
22

.

..

..

..

1

aWd
z

N
x

NctVd
y

N
x

Nct

Ud
x

N
x

NctWd
x

N
z

tN

Ud
z

N
z

tNUd
y

N
y

tN

Vd
x

N
y

tNUd
x

N
x

tN

Pd
x

N
NtUdNNUdNN

ee

ee

ee

ee

e ee

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

n
eji

n
eji

∫∫

∫∫

∫∫

∫∫

∫ ∫∫

Ω Δ+Ω Δ+

Ω Δ+Ω Δ+

Ω Δ+Ω Δ+

Ω Δ+Ω Δ+

Ω Δ+Ω+

⋅

Ω

⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−=

⎭
⎬
⎫

⎩
⎨
⎧Ω−

⎭
⎬
⎫

⎩
⎨
⎧Ω

αα

αα

αα

αα

α

λαλα

λαη

ηη

ηη

 

Similarly, for the second component (V) of the velocity vector one obtains 

 

58 
 



Chapter 4                                                                                       Working equations 
 

( ) ( )

( ) ( )

( )

)82.4(
2
1

2
1

2
1

2

.
22

.
22

.
22

.

..

..

..

1

bWd
z

N
y

NctVd
y

N
y

Nct

Ud
x

N
y

NctVd
z
N

z
tN

Wd
y
N

z
tNVd

y
N

y
tN

Ud
y
N

x
tNVd

x
N

x
tN

Pd
y

N
NtVdNNVdNN

e e

ee

ee

ee

e ee

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

n
eji

n
eji

∫ ∫

∫∫

∫∫

∫∫

∫ ∫∫

Ω Ω Δ+Δ+

Ω Δ+Ω Δ+

Ω Δ+Ω Δ+

Ω Δ+Ω Δ+

Ω Δ+Ω+

⋅

Ω

⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−=

⎭
⎬
⎫

⎩
⎨
⎧Ω−

⎭
⎬
⎫

⎩
⎨
⎧Ω

αα

αα

αα

αα

α

λαλα

λα
η

ηη

ηη

 

For the third component (W) of the velocity vector 

 

( ) ( )

( ) ( )

( )

)82.4(
2
1

2
1

2
12

.
22

.
22

.
22

.

..

..

..

1

cWd
z

N
z

NctVd
y

N
z

Nct

Ud
x

N
z

NctWd
z

N
z

tN

Vd
z

N
y

tNWd
y

N
y

tN

Wd
x

N
x

tNUd
z

N
x

tN

Pd
z

N
NtWdNNWdNN

e e

ee

ee

ee

e ee

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

n
eji

n
eji

∫ ∫

∫∫

∫∫

∫∫

∫ ∫∫

Ω Ω Δ+Δ+

Ω Δ+Ω Δ+

Ω Δ+Ω Δ+

Ω Δ+Ω Δ+

Ω Δ+Ω+

⋅

Ω

⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−=

⎭
⎬
⎫

⎩
⎨
⎧Ω−

⎭
⎬
⎫

⎩
⎨
⎧Ω

αα

αα

αα

αα

α

λαλα

λαη

ηη

ηη

 
 
And one gets from the continuity equation 
 

)83.4(
2
1

2
1

2
1

.
22

.
22

.
22

.
2

.
2

.
2

.

1

∫

∫∫

∫∫

∫ ∫∫

Ω Δ+

Ω Δ+Ω Δ+

Ω Δ+Ω Δ+

Ω Δ+Ω+

⋅

Ω

⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−=

⎭
⎬
⎫

⎩
⎨
⎧Ω−

⎭
⎬
⎫

⎩
⎨
⎧Ω

e

ee

ee

e ee

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

n
eji

n
eji

Pd
z

N
z

Nct

Pd
y

N
y

NctPd
x

N
x

Nct

Wd
z

N
NtcVd

y
N

Ntc

Ud
x

N
NctPdNNPdNN

α

αα

αα

α

αλ

αλαλ

λλ

λ

 

59 
 



Chapter 4                                                                                        Working equations 
 

 

The application of Greens’ theorem to the second-order derivatives contained in 

equations (4.82a, b, and) and (4.83) yield 

 

For the first component (U) of the velocity 

 

{ } { } { }

{ } { }

{ } { }

{ } { }

{ } { }

{ } { }

{ } { }

{ } { }

{ } { } )84.4(ˆ
2
1

2
1

ˆ
2
1

2
1

ˆ
2
1

2
1

ˆ

ˆ

ˆ

ˆ

ˆ22

2222

2222

2222

1

aUdn
z

N
NctWd

z
N

x
N

ct

Udn
y

N
NctVd

y
N

x
N

ct

Udn
x

N
NctUd

x
N

x
N

ct

Wdn
x

N
NtWd

x
N

z
N

t

Udn
x

N
NtUd

z
N

z
N

t

Udn
x

N
NtUd

y
N

y
N

t

Vdn
x

N
NtVd

x
N

y
N

t

Udn
x

N
NtUd

x
N

x
N

t

Pd
x

N
tNUdNNUdNN

tnex
j

itne
ji

tnex
j

itne
ji

tnex
j

itne
ji

tnez
j

itne
ji

tnez
j

itne
ji

tney
j

itne
ji

tney
j

itne
ji

tnex
j

itne
ji

tne
j

inejineji

ee

ee

ee

ee

ee

ee

ee

ee

eee

Δ+
Γ

Δ+
Ω

Δ+
Γ

Δ+
Ω

Δ+
Γ

Δ+
Ω

Δ+
Γ

Δ+
Ω

Δ+
Γ

Δ+
Ω

Δ+
Γ

Δ+
Ω

Δ+
Γ

Δ+
Ω

Δ+
Γ

Δ+
Ω

Ω
Δ+

ΩΩ
+

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δ+Ω

∂

∂

∂
∂

Δ−

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δ+Ω

∂

∂

∂
∂

Δ−

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δ+Ω

∂

∂

∂
∂

Δ−

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δ+Ω

∂

∂

∂
∂

Δ−

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δ+Ω

∂

∂

∂
∂

Δ−

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δ+Ω

∂

∂

∂
∂

Δ−

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δ+Ω

∂

∂

∂
∂

Δ−

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δ+Ω

∂

∂

∂
∂

Δ−

Ω
∂

∂
Δ−=Ω−Ω

∫∫

∫∫

∫∫

∫∫

∫∫

∫∫

∫∫

∫∫

∫∫∫

αα

αα

αα

αα

αα

αα

αα

αα

α

λαλα

λαλα

λαλα

ηη

ηη

ηη

ηη

ηη

&&

&&

&&

&&

&&

&&

&&

&&

&&&

 

 

The expression of the second component (V) of the velocity vector can be obtained in the 

similar way as  

 

{ } { } { }∫∫∫
Ω

Δ+
ΩΩ

+ Ω
∂

∂
Δ−=Ω−Ω

eee

tne
j

inejineji Pd
y

N
tNVdNNVdNN α

&&&
1  

60 
 



Chapter 4                                                                                        Working equations 
 
 
 

{ } { }

{ } { }

{ } { }

{ } { }

{ } { }

{ } { }

{ } { }

{ } { } )84.4(ˆ
2
1

2
1

ˆ
2
1

2
1

ˆ
2
1

2
1

ˆ

ˆ

ˆ22

ˆ

ˆ

2222

2222

2222

bWdn
z

N
NctWd

z
N

y
N

ct

Vdn
y

N
NctVd

y
N

y
N

ct

Udn
x

N
NctUd

x
N

y
N

ct

Vdn
z

N
NtVd

z
N

z
N

t

Wdn
y

N
NtWd

y
N

z
N

t

Vdn
y

N
NtVd

y
N

y
N

t

Udn
y

N
NtUd

y
N

x
N

t

Vdn
x

N
NtVd

x
N

x
N

t

tney
j

itne
ji

tney
j

itne
ji

tney
j

itne
ji

tnez
j

itne
ji

tnez
j

itne
ji

tney
j

itne
ji

tnex
j

itne
ji

tnex
j

itne
ji

ee

ee

ee

ee

ee

ee

ee

ee

Δ+
Γ

Δ+
Ω

Δ+
Γ

Δ+
Ω

Δ+
Γ

Δ+
Ω

Δ+
Γ

Δ+
Ω

Δ+
Γ

Δ+
Ω

Δ+
Γ

Δ+
Ω

Δ+
Γ

Δ+
Ω

Δ+
Γ

Δ+
Ω

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δ+Ω

∂

∂

∂
∂

Δ−

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δ+Ω

∂

∂

∂
∂

Δ−

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δ+Ω

∂

∂

∂
∂

Δ−

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δ+Ω

∂

∂

∂
∂

Δ−

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δ+Ω

∂

∂

∂
∂

Δ−

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δ+Ω

∂

∂

∂
∂

Δ−

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δ+Ω

∂

∂

∂
∂

Δ−

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δ+Ω

∂

∂

∂
∂

Δ−

∫∫

∫∫

∫∫

∫∫

∫∫

∫∫

∫∫

∫∫

αα

αα

αα

αα

αα

αα

αα

αα

λαλα

λαλα

λαλα

ηη

ηη

ηη

ηη

ηη

&&

&&

&&

&&

&&

&&

&&

&&

 
And we have for the third component (W) of the velocity vector  
 
 
 

{ } { } { }∫∫∫
Ω

Δ+
ΩΩ

+ Ω
∂

∂
Δ−=Ω−Ω

eee

tne
j

inejineji Pd
y

N
tNWdNNWdNN α

&&&
1  

{ } { }

{ } { }

{ } { } tney
j

itne
ji

tnex
j

itne
ji

tnex
j

itne
ji

Wdn
y

N
NtWd

y
N

y
Nt

Wdn
x

N
NtWd

x
N

x
Nt

Udn
z

N
NtUd

z
N

x
Nt

ee

ee

ee

Δ+
Γ

Δ+
Ω

Δ+
Γ

Δ+
Ω

Δ+
Γ

Δ+
Ω

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δ+Ω

∂

∂

∂
∂

Δ−

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δ+Ω

∂

∂

∂
∂

Δ−

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δ+Ω

∂

∂

∂
∂

Δ−

∫∫

∫∫

∫∫

αα

αα

αα

ηη

ηη

ηη

&&

&&

&&

ˆ

ˆ

ˆ

        

          
        

61 
 



Chapter 4                                                                                        Working equations 
 
 
       
 
 

{ } { }

{ } { } tnez
j

itne
ji

tney
j

itne
ji

Wdn
z

N
NtWd

z
N

z
Nt

Vdn
z

N
NtVd

z
N

y
Nt

ee

ee

Δ+
Γ

Δ+
Ω

Δ+
Γ

Δ+
Ω

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δ+Ω

∂

∂

∂
∂

Δ−

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δ+Ω

∂

∂

∂
∂

Δ−

∫∫

∫∫

αα

αα

ηη

ηη

&&

&&

ˆ22

ˆ

    

{ } { }

{ } { }

{ } { } )84.4(ˆ
2
1

2
1

ˆ
2
1

2
1

ˆ
2
1

2
1

2222

2222

2222

cWdn
z

N
NctWd

z
N

z
N

ct

Vdn
y

N
NctVd

y
N

z
N

ct

Udn
x

N
NctUd

x
N

z
N

ct

tnez
j

itne
ji

tnez
j

itne
ji

tnez
j

itne
ji

ee

ee

ee

Δ+
Γ

Δ+
Ω

Δ+
Γ

Δ+
Ω

Δ+
Γ

Δ+
Ω

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δ+Ω

∂

∂

∂
∂

Δ−

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δ+Ω

∂

∂

∂
∂

Δ−

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
Δ+Ω

∂

∂

∂
∂

Δ−

∫∫

∫∫

∫∫

αα

αα

αα

λαλα

λαλα

λαλα

&&

&&

&&

 
 
One obtains from the continuity equation 
 
 

∫∫

∫∫

∫∫

∫∫

∫ ∫∫

Ω Δ+Ω Δ+

Ω Δ+Ω Δ+

Ω Δ+Ω Δ+

Ω Δ+Ω Δ+

Ω Δ+Ω+

⋅

Ω

⎭
⎬
⎫

⎩
⎨
⎧⎟

⎠

⎞
⎜
⎝

⎛
∂
∂

Δ+
⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ−

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

Δ+
⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ−

⎭
⎬
⎫

⎩
⎨
⎧⎟

⎠

⎞
⎜
⎝

⎛
∂
∂

Δ+
⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−=

⎭
⎬
⎫

⎩
⎨
⎧Ω−

⎭
⎬
⎫

⎩
⎨
⎧Ω

ee

ee

ee

ee

e ee

tn
z

J
i

tn
e

ji

tn
y

J
i

tn
e

ji

tn
x

J
i

tn
e

ji

tn
e

j
i

tn
e

j
i

tn
e

j
i

n
eji

n
eji

Pn
z

N
NctPd

z
N

z
N

ct

Pn
y

N
NctPd

y
N

y
N

ct

Pn
x

N
NctPd

x
N

x
N

ct

Wd
z

N
NtcVd

y
N

Ntc

Ud
x

N
NctPdNNPdNN

αα

αα

αα

αα

α

αλαλ

αλαλ

αλαλ

λλ

λ

.
22

.
22

.
22

.
22

.
22

.
22

.
2

.
2

.
2

.

1

ˆ
2
1

2
1

)85.4(ˆ
2
1

2
1

ˆ
2
1

2
1  

 
tn Δ+αAfter expanding terms containing  from equations (4.84a, b, and c) through 

(4.85) using the relation
ntn

AA )1 α
α

−=
Δ+ n

A (
1

α +
+

, one obtains  

 

62 
 



Chapter 4                                                                                        Working equations 
 
For the first component (U) of the velocity vector 

∫∫

∫∫

∫∫

∫∫

∫∫

ΩΩ +

ΓΓ +

ΩΩ +

Ω+Ω

Ω+

⋅

Ω

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−

=
⎭
⎬
⎫

⎩
⎨
⎧Ω−

⎭
⎬
⎫

⎩
⎨
⎧Ω

ee

ee

ee

ee

ee

n
e

ji

n
e

ji

n
ex

j
i

n
ex

j
i

n
e

ji

n
e

ji

n
e

j
i

n
e

j
i

n
eji

n
eji

Vd
x

N
y

NtVd
x

N
y

Nt

Udn
x

N
NtUdn

x
N

Nt

Ud
x

N
x

NtUd
x

N
x

Nt

Pd
x

N
NtPd

x
N

Nt

UdNNUdNN

.

1

.

.

1

.

.

1

.

.

1

.

.

1

)1(

ˆ)2)1((ˆ)2(

2)1(2

)1(

ηαηα

ηαηα

ηαηα

αα

 

 

∫∫
ΓΓ + ⎭

⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

ee n
ey

j
i

n
ey

j
i Vdn

x
N

NtVdn
x

N
Nt

.

1

.
ˆ))1((ˆ)( ηαηα  

 

∫∫

∫∫

∫∫

∫∫

ΓΓ +

ΩΩ +

ΓΓ +

ΩΩ +

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

ee

ee

ee

ee

n
ez

j
i

n
ez

j
i

n
e

ji

n
e

ji

n
ey

j
i

n
ey

j
i

n
e

ji

n
e

ji

Udn
y

N
NtUdn

z
N

Nt

Ud
z

N
z

N
tUd

z
N

z
N

t

Udn
y

N
NtUdn

y
N

Nt

Ud
y

N
y

N
tUd

y
N

y
N

t

.

1

.

.

1

.

.

1

.

.

1

.

ˆ))1((ˆ)(

)1(

ˆ))1((ˆ)(

)1(

ηαηα

ηαηα

ηαηα

ηαηα

 

∫∫

∫∫

∫∫

∫∫

∫∫

ΩΩ +

ΓΓ +

ΩΩ +

ΓΓ +

ΩΩ +

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

ee

ee

ee

ee

ee

n
e

ji

n
e

ji

n
ex

j
i

n
ex

j
i

n
e

ji

n
e

ji

n
ez

j
i

n
ez

j
i

n
e

ji

n
e

ji

Vd
y

N
x

N
ctVd

y
N

x
N

ct

Udn
x

N
NctUdn

x
N

Nct

Ud
x

N
x

N
ctUd

x
N

x
N

ct

Wdn
x

N
NtWdn

x
N

Nt

Wd
x

N
z

N
tWd

x
N

z
N

t

.
22

1

.
222

.
22

1

.
222

.
22

1

.
222

.

1

.

.

1

.

)1(
2
1

2
1

ˆ))1(
2
1(ˆ)

2
1(

)1(
2
1

2
1

ˆ))1((ˆ)(

)1(

λααλα

λααλα

λααλα

ηαηα

ηαηα

 

63 
 



Chapter 4                                                                                        Working equations 
 
 
 

)86.4(ˆ))1(
2
1(ˆ)

2
1(

)1(
2
1

2
1

ˆ))1(
2
1(ˆ)

2
1(

.
22

1

.
222

.
22

1

.
222

.
22

1

.
222

aWdn
z

N
NctWdn

z
N

Nct

Wd
z

N
x

N
ctWd

z
N

x
N

ct

Vdn
y

N
NctVdn

y
N

Nct

ee

ee

ee

n
ex

j
i

n
ex

j
i

n
e

ji

n
e

ji

n
ex

j
i

n
ex

j
i

∫∫

∫∫

∫∫

ΓΓ +

ΩΩ +

ΓΓ +

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

λααλα

λααλα

λααλα

 
With the same procedure the second component (V) of the velocity vector can be written 
as  

∫∫

∫∫

∫∫

∫∫

ΓΓ +

ΩΩ +

Ω+Ω

Ω+

⋅

Ω

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−

=
⎭
⎬
⎫

⎩
⎨
⎧Ω−

⎭
⎬
⎫

⎩
⎨
⎧Ω

ee

ee

ee

ee

n
ex

j
i

n
ex

j
i

n
e

ji

n
e

ji

n
e

j
i

n
e

j
i

n
eji

n
eji

Vdn
x

N
NtVdn

x
N

Nt

Vd
x

N
x

N
tVd

x
N

x
N

t

Pd
y

N
NtPd

y
N

Nt

VdNNVdNN

.

1

.

.

1

.

.

1

.

.

1

ˆ))1((ˆ)(

)1(

)1(

ηαηα

ηαηα

αα

 

∫∫

∫∫

∫∫

∫∫

ΓΓ +

ΩΩ +

ΓΓ +

ΩΩ +

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
ηΔα−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
ηΔα+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

ηΔα−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

ηΔα−

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
ηΔα−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
ηΔα+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

ηΔα−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

ηΔα−

ee

ee

ee

ee

n

.

ey
j

i
1n

.

ey
j

i

n

.

e
ji

1n

.

e
ji

n

.

ex
j

i
1n

.

ex
j

i

n

.

e
ji

1n

.

e
ji

Vdn̂)
y

N
N2t)1((Vdn̂)

y
N

N2t(

Vd
y

N
y

N2t)1(Vd
y

N
y

N2t

Udn̂)
y

N
Nt)1((Udn̂)

y
N

Nt(

Ud
y

N
x

Nt)1(Ud
y

N
x

Nt

 

 
 
 
 

64 
 



Chapter 4                                                                                        Working equations 

 

∫∫

∫∫

∫∫

∫∫

ΓΓ +

ΩΩ +

ΓΓ +

ΩΩ +

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

ee

ee

ee

ee

n
ez

j
i

n
ez

j
i

n
e

ji

n
e

ji

n
ez

j
i

n
ez

j
i

n
e

ji

n
e

ji

Vdn
z

N
NtVdn

z
N

Nt

Vd
z

N
z

N
tVd

z
N

z
N

t

Wdn
y

N
NtWdn

y
N

Nt

Wd
y

N
z

N
tWd

y
N

z
N

t

.

1

.

.

1

.

.

1

.

.

1

.

ˆ))1((ˆ)(

)1(

ˆ))1((ˆ)(

)1(

ηαηα

ηαηα

ηαηα

ηαηα

 

 

∫∫

∫∫

∫∫

∫∫

ΓΓ +

ΩΩ +

ΓΓ +

ΩΩ +

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

ee

ee

ee

ee

n
ey

j
i

n
ey

j
i

n
e

ji

n
e

ji

n
ey

j
i

n
ey

j
i

n
e

ji

n
e

ji

Vdn
y

N
NctVdn

y
N

Nct

Vd
y

N
y

N
ctVd

y
N

y
N

ct

Udn
x

N
NctUdn

x
N

Nct

Ud
x

N
y

N
ctUd

x
N

y
N

ct

.
22

1

.
222

.
22

1

.
222

.
22

1

.
222

.
22

1

.
222

ˆ))1(
2
1(ˆ)

2
1(

)1(
2
1

2
1

ˆ))1(
2
1(ˆ)

2
1(

)1(
2
1

2
1

λααλα

λααλα

λααλα

λααλα

 

 

)86.4(ˆ))1(
2
1(ˆ)

2
1(

)1(
2
1

2
1

.
22

1

.
222

.
22

1

.
222

bWdn
z

N
NctWdn

z
N

Nct

Wd
z

N
y

N
ctWd

z
N

y
N

ct

ee

ee

n
ey

j
i

n
ey

j
i

n
e

ji

n
e

ji

∫∫

∫∫

ΓΓ +

ΩΩ +

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

λααλα

λααλα

 
For the third component (W) of the velocity vector, one obtains 
 
 
 
 
 
 
 
 

65 
 



Chapter 4                                                                                        Working equations  
 
 

∫∫

∫∫

∫∫

∫∫

ΓΓ +

ΩΩ +

Ω+Ω

Ω+

⋅

Ω

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−

=
⎭
⎬
⎫

⎩
⎨
⎧Ω−

⎭
⎬
⎫

⎩
⎨
⎧Ω

ee

ee

ee

ee

n
ex

j
i

n
ex

j
i

n
e

ji

n
e

ji

n
e

j
i

n
e

j
i

n
eji

n
eji

Udn
z

N
NtUdn

z
N

Nt

Ud
y

N
x

N
tUd

z
N

x
N

t

Pd
z

N
NtPd

z
N

Nt

WdNNWdNN

.

1

.

.

1

.

.

1

.

.

1

ˆ))1((ˆ)(

)1(

)1(

ηαηα

ηαηα

αα

 

∫∫

∫∫

∫∫

∫∫

ΓΓ +

ΩΩ +

ΓΓ +

ΩΩ +

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂
∂

Δ−+
⎭
⎬
⎫

⎩
⎨
⎧Γ

∂
∂

Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂
∂

Δ−+
⎭
⎬
⎫

⎩
⎨
⎧Γ

∂
∂

Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

ee

ee

ee

ee

n
ey

j
i

n
ey

j
i

n
e

ji

n
e

ji

n
ex

j
i

n
ex

j
i

n
e

ji

n
e

ji

Wdn
y

N
NtWdn

y
N

Nt

Wd
y

N
y

NtWd
y

N
y

Nt

Wdn
x

N
NtWdn

x
N

Nt

Wd
x

N
x

NtWd
x

N
x

Nt

.

1

.

.

1

.

.

1

.

.

1

.

ˆ))1((ˆ)(

)1(

ˆ))1((ˆ)(

)1(

ηαηα

ηαηα

ηαηα

ηαηα

 

 

∫∫

∫∫

∫∫

∫∫

∫∫

ΩΩ +

ΓΓ +

ΩΩ +

ΓΓ +

ΩΩ +

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

ee

ee

ee

ee

ee

n
e

ji

n
e

ji

n
ez

j
i

n
ez

j
i

n
e

ji

n
e

ji

n
ey

j
i

n
ey

j
i

n
e

ji

n
e

ji

Ud
x

N
z

N
ctUd

x
N

z
N

ct

Wdn
z

N
NtWdn

z
N

Nt

Wd
z

N
z

N
tWd

z
N

z
N

t

Vdn
z

N
NtVdn

z
N

Nt

Vd
z

N
y

N
tVd

z
N

y
N

t

.
22

1

.
222

.

1

.

.

1

.

.

1

.

.

1

.

)1(
2
1

2
1

ˆ)2)1((ˆ)2(

2)1(2

ˆ))1((ˆ)(

)1(

λααλα

ηαηα

ηαηα

ηαηα

ηαηα

 
 
 
 
 
 

 

66 
 



Chapter 4                                                                                        Working equations  
 

∫∫

∫∫

ΩΩ +

ΓΓ +

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

ee

ee

n
e

ji

n
e

ji

n
ez

j
i

n
ez

j
i

Vd
y

N
z

N
ctVd

y
N

z
N

ct

Udn
x

N
NctUdn

x
N

Nct

.
22

1

.
222

.
22

1

.
222

)1(
2
1

2
1

ˆ))1(
2
1(ˆ)

2
1(

λααλα

λααλα

)86.4(ˆ))1(
2
1(ˆ)

2
1(

)1(
2
1

2
1

ˆ))1(
2
1(ˆ)

2
1(

.
22

1

.
222

.
22

1

.
222

.
22

1

.
222

cWdn
z

N
NctWdn

z
N

Nct

Wd
z

N
z

N
ctWd

z
N

z
N

ct

Vdn
y

N
NctVdn

y
N

Nct

ee

ee

ee

n
ez

j
i

n
ez

j
i

n
e

ji

n
e

ji

n
ez

j
i

n
ez

j
i

∫∫

∫∫

∫∫

ΓΓ +

ΩΩ +

ΓΓ +

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

λααλα

λααλα

λααλα

 
 
And finally from the continuity equation, one obtains 
 

n
e

j
i

n
e

j
i

n
eji

n
eji

Ud
x

N
NtcUd

x
N

Ntc

PdNNPdNN

ee

ee

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−

=
⎭
⎬
⎫

⎩
⎨
⎧Ω−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∫∫

∫∫

Ω+Ω

Ω+

⋅

Ω

.
2

1

.
2

.

1

)1( λαλα
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

67 
 



Chapter 4                                                                                        Working equations 
 
 
 
 

)87.4(ˆ))1(
2
1(ˆ)

2
1(

)1(
2
1

2
1

ˆ))1(
2
1(ˆ)

2
1(

)1(
2
1

2
1

ˆ))1(
2
1(ˆ)

2
1(

)1(
2
1

2
1

)1(

)1(

.
22

1

.
222

.
22

1

.
222

.
22

1

.
222

.
22

1

.
222

.
22

1

.
222

.
22

1

.
222

.
2

1

.
2

.
2

1

.
2

∫∫

∫∫

∫∫

∫∫

∫∫

∫∫

∫∫

∫∫

ΓΓ +

ΩΩ +

ΓΓ +

ΩΩ +

ΓΓ +

ΩΩ +

Ω+Ω

Ω+Ω

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ−+

⎭
⎬
⎫

⎩
⎨
⎧Γ

∂

∂
Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−−
⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂

∂
∂

Δ−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−

ee

ee

ee

ee

ee

ee

ee

ee

n
ez

j
i

n
ez

j
i

n
e

ji

n
e

ji

n
ey

j
i

n
ey

j
i

n
e

ji

n
e

ji

n
ex

j
i

n
ex

j
i

n
e

ji

n
e

ji

n
e

j
i

n
e

j
i

n
e

j
i

n
e

j
i

Pdn
z

N
NctPdn

z
N

Nct

Pd
z

N
z

N
ctPd

z
N

z
N

ct

Pdn
y

N
NctPdn

y
N

Nct

Pd
y

N
y

N
ctPd

y
N

y
N

ct

Pdn
x

N
NctPdn

x
N

Nct

Pd
x

N
x

N
ctPd

x
N

x
N

ct

Wd
z

N
NtcWd

z
N

Ntc

Vd
y

N
NtcVd

y
N

Ntc

λααλα

λααλα

λααλα

λααλα

λααλα

λααλα

λαλα

λαλα

 
 
Equations (4.86a, b, and c) and (4.87) can be written in matrix form given by (4.35) 

previously but this time with the left hand side given by   

 
 

)91.4(

)90.4(
2
1

)89.4(
2
1

)88.4(2
2
1

14

22213

22212

22211

∫∫∫

∫∫∫

∫∫∫

∫∫∫

Ω

Ω

Ω

Ω

⎭
⎬
⎫

⎩
⎨
⎧

∂

∂
Δ=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
∂

∂

∂
∂

Δ=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
∂

∂

∂
∂

Δ=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

+
∂

∂

∂
∂

+
∂

∂

∂
∂

Δ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+=

e

e

e

e

dxdydz
x

N
NtM

dxdydz
z

N
x

N
ct

x
N

z
N

tM

dxdydz
y

N
x

N
ct

x
N

y
N

tM

dxdydz
z

N
z

N
y

N
y

N
x

N
x

N
t

x
N

x
N

ctNNM

j
iij

jiji
ij

jiji
ij

jijijiji
jiij

α

λααη

λααη

αηλα

 
 

68 
 



Chapter 4                                                                                        Working equations 
 
 
 
 

)95.4(

)94.4(
2
1

)93.4(2
2
1

)92.4(
2
1

24

22223

22222

22221

∫∫∫

∫∫∫

∫∫∫

∫∫∫

Ω

Ω

Ω

Ω

⎭
⎬
⎫

⎩
⎨
⎧

∂

∂
Δ=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
∂

∂

∂
∂

Δ=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

+
∂

∂

∂
∂

+
∂

∂

∂
∂

Δ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
∂

∂

∂
∂

Δ=

e

e

e

e

dxdydz
y

N
NtM

dxdydz
z

N
y

N
ct

y
N

z
N

tM

dxdydz
z

N
z

N
y

N
y

N
x

N
x

N
t

y
N

y
N

ctNNM

dxdydz
x

N
y

N
ct

y
N

x
N

tM

j
iij

jiji
ij

jijijiji
jiij

jiji
ij

α

λααη

αηλα

λααη

 

)98.4(2
2
1

)97.4(
2
1

)96.4(
2
1

22233

22232

22231

∫∫∫

∫∫∫

∫∫∫

Ω

Ω

Ω

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

+
∂

∂

∂
∂

+
∂

∂

∂
∂

Δ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
∂

∂

∂
∂

Δ=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
∂

∂

∂
∂

Δ=

e

e

e

dxdydz
z

N
z

N
y

N
y

N
x

N
x

N
t

z
N

z
N

ctNNM

dxdydz
y

N
z

N
ct

z
N

y
N

tM

dxdydz
x

N
z

N
ct

z
N

x
N

tM

jijijiji
jiij

jiji
ij

jiji
ij

αηλα

λααη

λααη

)99.4(34 ∫∫∫
Ω ⎭

⎬
⎫

⎩
⎨
⎧

∂

∂
Δ=

e

dxdydz
z

N
NtM j

iij α

 

∫∫∫

∫∫∫

∫∫∫

∫∫∫

Ω

Ω

Ω

Ω

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

+
∂

∂

∂
∂

+
∂

∂

∂
∂

Δ+=

⎭
⎬
⎫

⎩
⎨
⎧

∂

∂
Δ=

⎭
⎬
⎫

⎩
⎨
⎧

∂

∂
Δ=

⎭
⎬
⎫

⎩
⎨
⎧

∂

∂
Δ=

e

e

e

e

dxdydz
z

N
z

N
y

N
y

N
x

N
x

N
ctNNM

dxdydz
z

N
NctM

dxdydz
y

N
NctM

dxdydz
x

N
NctM

jijiji
jiij

j
iij

j
iij

j
iij

)103.4(
2
1

)102.4(

)101.4(

)100.4(

22244

243

242

241

λα

λα

λα

λα

 
 
 
 
 

69 
 



Chapter 4                                                                                        Working equations 
 
 
 
 

)107.4()1(

)106.4()1(
2
1)1(

)105.4()1(
2
1)1(

)104.4(2)1(

)1(
2
1

14

2213

2212

2211

∫∫∫

∫∫∫

∫∫∫

∫∫∫

Ω

Ω

Ω

Ω

⎭
⎬
⎫

⎩
⎨
⎧

∂

∂
−Δ−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ−−
∂

∂

∂
∂

−Δ−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ−−
∂

∂

∂
∂

−Δ−=

⎪⎭

⎪
⎬
⎫
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

+
∂

∂

∂
∂

+
∂

∂

∂
∂

−Δ−

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛ Δ−−=

e

e

e

e

dxdydz
x

N
NtK

dxdydz
z

N
x

N
ct

x
N

z
N

tK

dxdydz
y

N
x

N
ct

x
N

y
N

tK

dxdydz
z

N
z

N
y

N
y

N
x

N
x

N
t

x
N

x
N

ctNNK

j
iij

jiji
ij

jiji
ij

jijiji

ji
jiij

α

λααηα

λααηα

ηα

λαα

 

)111.4()1(

)110.4()1(
2
1)1(

)109.4(2)1(

)1(
2
1

)108.4()1(
2
1)1(

24

2223

2222

2221

∫∫∫

∫∫∫

∫∫∫

∫∫∫

Ω

Ω

Ω

Ω

⎭
⎬
⎫

⎩
⎨
⎧

∂

∂
−Δ−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ−−
∂

∂

∂
∂

−Δ−=

⎪⎭

⎪
⎬
⎫
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

+
∂

∂

∂
∂

+
∂

∂

∂
∂

−Δ−

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛ Δ−−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ−−
∂

∂

∂
∂

−Δ−=

e

e

e

e

dxdydz
y

N
NtK

dxdydz
z

N
y

N
ct

y
N

z
N

tK

dxdydz
z

N
z

N
y

N
y

N
x

N
x

N
t

y
N

y
N

ctNNK

dxdydz
x

N
y

N
ct

y
N

x
N

tK

j
iij

jiji
ij

jijiji

ji
jiij

jiji
ij

α

λααηα

ηα

λαα

λααηα

 

)114.4(2)1()1(
2
1

)113.4()1(
2
1)1(

)112.4()1(
2
1)1(

2233

2232

2231

∫∫∫

∫∫∫

∫∫∫

Ω

Ω

Ω

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

+
∂

∂

∂
∂

+
∂

∂

∂
∂

−Δ−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛ Δ−−=

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ−−
∂

∂

∂
∂

−Δ−=

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ−−
∂

∂

∂
∂

−Δ−=

e

e

e

dxdydz
z

N
z

N
y

N
y

N
x

N
x

Nt
z

N
z

NctNNK

dxdydz
y

N
z

Nct
z

N
y
NtK

dxdydz
x

N
z

Nct
z

N
x

NtK

jijijiji
jiij

jiji
ij

jiji
ij

ηαλαα

λααηα

λααηα

)115.4()1(34 ∫∫∫
Ω ⎭

⎬
⎫

⎩
⎨
⎧

∂

∂
−Δ−=

e

dxdydz
z

N
NtK j

iij α

 
 

70 
 



Chapter 4                                                                                        Working equations  
 
 
 

)119.4(dxdydz
z

N
z

N
y

N
y

N
x

N
x

N
ct)1(

2
1NNK

)118.4(dxdydz
z

N
Nc)1(tK

)117.4(dxdydz
y

N
Nc)1(tK

)116.4(dxdydz
x

N
Nc)1(tK

e

e

e

e

jijiji22
ji

44
ij

j
i

243
ij

j
i

242
ij

j
i

241
ij

∫∫∫

∫∫∫

∫∫∫

∫∫∫

Ω

Ω

Ω

Ω

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

+
∂

∂

∂
∂

+
∂

∂

∂
∂

λΔα−α=

⎭
⎬
⎫

⎩
⎨
⎧

∂

∂
λα−Δ−=

⎭
⎬
⎫

⎩
⎨
⎧

∂

∂
λα−Δ−=

⎭
⎬
⎫

⎩
⎨
⎧

∂

∂
λα−Δ−=

ez
j

i
222

y
j

i
222

x
j

ix
j

ix
j

i
222

z
j

iy
j

ix
j

i
1
j

dn̂
x

N
Nct

2
1n̂

x
N

Nct
2
1

)120.4(n̂
z

N
Ntn̂

y
N

Ntn̂
x

N
Nct

2
1

n̂
z

N
Ntn̂

y
N

Ntn̂
x

N
N2tC

e

Γ
⎪⎭

⎪
⎬
⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
λΔα+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
λΔα+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
λΔα+

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα= ∫

Γ

  

ez
j

i
222

y
j

i
222

y
j

iz
j

ix
j

i
222

y
j

ix
j

iy
j

i
2
j

dn̂
y

N
Nct

2
1n̂

y
N

Nct
2
1

)121.4(n̂
z

N
Ntn̂

z
N

Ntn̂
y

N
Nct

2
1

n̂
y

N
N2tn̂

x
N

Ntn̂
x

N
NtC

e

Γ
⎪⎭

⎪
⎬
⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
λΔα+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
λΔα+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
λΔα+

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα= ∫

Γ

 

ez
j

i
222

y
j

i
222

z
j

iy
j

ix
j

i
222

x
j

iz
j

iz
j

i
3
j

dn̂
y

N
Nct

2
1n̂

z
N

Nct
2
1

)122.4(n̂
z

N
N2tn̂

y
N

Ntn̂
z

N
Nct

2
1

n̂
x

N
Ntn̂

y
N

Ntn̂
x

N
NtC

e

Γ
⎪⎭

⎪
⎬
⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
λΔα+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
λΔα+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
λΔα+

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα= ∫

Γ

 
 
 

71 
 



Chapter 4                                                                                        Working equations 
 
 
 

)123.4(dn̂
z

N
Nct

2
1

n̂
y

N
Nct

2
1n̂

x
N

Nct
2
1C

ez
j

i
222

y
j

i
222

x
j

i
2224

j

e

Γ
⎪⎭

⎪
⎬
⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
λΔα+

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
λΔα+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
λΔα= ∫

Γ  

 

ez
j

i
22

y
j

i
22

x
j

ix
j

ix
j

i
22

z
j

iy
j

ix
j

i
1
j

dn̂
x

N
Nct)1(

2
1n̂

x
N

Nct)1(
2
1

)124.4(n̂
z

N
Nt)1(n̂

y
N

Nt)1(n̂
x

N
Nct)1(

2
1

n̂
z

N
Nt)1(n̂

y
N

Nt)1(n̂
x

N
N2t)1(D

e

Γ
⎪⎭

⎪
⎬
⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
λΔα−α+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
λΔα−α+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
λΔα−α+

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα−= ∫

Γ

 

ez
j

i
22

y
j

i
22

y
j

iz
j

ix
j

i
22

y
j

ix
j

iy
j

i
2
j

dn̂
y

N
Nct)1(

2
1n̂

y
N

Nct)1(
2
1

)125.4(n̂
z

N
Nt)1(n̂

z
N

Nt)1(n̂
y

N
Nct)1(

2
1

n̂
y

N
N2t)1(n̂

x
N

Nt)1(n̂
x

N
Nt)1(D

e

Γ
⎪⎭

⎪
⎬
⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
λΔα−α+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
λΔα−α+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
λΔα−α+

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα−= ∫

Γ

 

ez
j

i
22

y
j

i
22

z
j

iy
j

ix
j

i
22

x
j

iz
j

iz
j

i
3
j

dn̂
y

N
Nct)1(

2
1n̂

z
N

Nct)1(
2
1

)126.4(n̂
z

N
N2t)1(n̂

y
N

Nt)1(n̂
z

N
Nct)1(

2
1

n̂
x

N
Nt)1(n̂

y
N

Nt)1(n̂
x

N
Nt)1(D

e

Γ
⎪⎭

⎪
⎬
⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
λΔα−α+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
λΔα−α+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
λΔα−α+

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
ηΔα−= ∫

Γ

)127.4(dn̂
z

N
Nct)1(

2
1

n̂
y

N
Nct)1(

2
1n̂

x
N

Nct)1(
2
1D

ez
j

i
22

y
j

i
22

x
j

i
224

j

e

Γ
⎪⎭

⎪
⎬
⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
λΔα−α+

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
λΔα−α+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
λΔα−α= ∫

Γ

 
 
 

72 
 



Chapter 4                                                                                        Working equations 
 

 
4.3 Solution procedure 
 
 
The discretization of the governing equations by the two developed schemes yields 

systems of algebraic equations which need to be solved; this can be achieved by using 

direct methods or iterative methods. Thus it is informative to briefly examine the 

difference, advantages and disadvantages of these two methods and then select an 

appropriate method to adopt in this project. 

Direct methods regroup techniques such as Cramer’s rule, Gaussian elimination, 

Cholesky method, Thomas algorithm (TDMA), Runge-Kutta method, among others. 

These groups of solution techniques are mainly suitable for linear system of equations, 

have the disadvantages of being time consuming and are susceptible to round-off errors, 

which in case of large system of equations can lead to unacceptable results. Interested 

reader about these techniques may refer to Butcher (1993), Duff (1986), Shampine 

(1994), Sewell (1988), Lapidus (1971), Greenspan (1960), and Curtis and Patrick (1994), 

among others. 

The iterative methods on the other hand have the unique advantage, that round-off errors 

in each step are corrected in the subsequent step, they can be used to solved both linear 

and nonlinear systems of equations, and when the coefficient matrix is sparse, they are 

non-time consuming and economical in term of computer storage. Many iterative 

techniques have been developed and among them are the Jacobi method, Gauss-Seidel 

method, Alternating direction implicit (ADI) method, conjugate gradient methods 

(CGM), domain decomposition methods (DDM) and the generalized minimal residual 

(GMRES) methods. Further information about these techniques can be found from 

authors like Greenbaun (1997), Axelsson (1994), Hageman (1981), Traub (1964), Varga 

(1962), Wachspress (1966), Dahlquist (1974), Saad (1996), Hestenes and Stiefel (1952), 

Concus et al. (1976), Kershaw (1978),  Press et al. (1992), Glowinski and Wheeler 

(1987), Lions (1988), and Scharz (1869). 

 
 
 

73 
 



Chapter 4                                                                                        Working equations 
 
 
The solution technique adopted in the present project is the frontal method which is a 

modification of the Gaussian elimination. The technique was developed to tackle the 

problem of total  

 
assembly of elemental stiffness equations experienced with direct methods. The frontal 

method readily avoid such problem by stepwise reduction of the total matrix 

(non-zero band) in a Gaussian elimination procedure, further information  about this 

technique can be obtained from Iron (1970), Platonov and Trivailo (1979), Light and 

Luxmoore (1977), Beer and Haas (1982), Postnov et al. (1979), Forsaith and Moler 

(1969), Duff and Reid  (1983),  Duff et al. (1986), and Hood (1976).  

 

4.4 Convergence of the solution 

 

In the present study, the convergence of the solutions is checked using the calculated 

ratio of the difference of the Euclidian norm (Lapidus and Pinder, 1982) between 

successive iterations to the norm of the solution. This is given by  

 

)128.4(
X

XX

21r
i

N

1i

2r
i

1r
i

ε≤
−

∑

∑
+

=

+

   

 
Where r denotes the number of the iteration cycle 
 
        N is the total number of degrees of freedom 

        X are the field unknowns 

        And  denotes the convergence tolerance value. ε

 
The criterion given by (4.128) is used for both pressure and velocity components in 

separated calculations and converged solution is obtained when both sets of results satisfy 

this criterion. 

 

74 
 



Chapter 4                                                                                        Working equations 
 

 

4.5 Mesh refinements 
 
The aim of solving real world problems using the computational fluid dynamics 

techniques is to obtain desired solutions as accurately as possible while maintaining cost 

as efficient as possible. But achieving both cost efficiency and accuracy is often no trivial 

matter, especially when one is constrained to use a fixed computational method and 

limited computer resources like is the case experienced during the course of this study, in 

which the researcher is confronted to use a fixed computational scheme (the UVWP 

method) and a limited computer resources (a Pentium (R) IV 3.00GHz). Given this 

circumstance, the best strategy to adopt to obtain stable and accurate results at low cost is 

the refinement of the computational grid known as mesh refinements. Mesh refinements 

also can be used for testing the convergence in the solution of non-linear problems 

through the comparison of the results obtained on successively refined meshes. Mesh 

refinements are part of adaptive methods which are designated to achieve both accuracy 

and efficiency and in which mesh refinements are applied only where needed.  The 

adaptive methods generally provide mesh refinements for efficiency as dictated by 

predetermined criteria, the criteria are determined by some error indicators which are 

usually represented by gradients of a suitable variable and the larger the gradient, the 

finer the mesh required. 

There are two types of adaptive methods namely the structured adaptive methods (Dwyer 

et al., 1982, Gnoffo, 1980, Nakamura 1982, Eiseman 1985, and Brackbill and Saltzmann 

1982) developed for finite difference method and the unstructured adaptive methods 

(Oden et al. 1986, and Babuska et al. 1986) developed for finite element method 

formulation. The latter can be formulated using mesh refinement methods (h-methods), 

mesh movement methods (r-methods), mesh enrichment methods (p-methods), combined 

mesh refinements and movements (hr-methods), and combined mesh refinements and 

enrichments (hp-methods). The mesh refinement methods (h-methods) are adopted in the 

present work. The basic idea of the h-methods consist of keeping unchanged the element 

selected for the domain discretization while the number and size of the elements vary 

75 
 



Chapter 4                                                                                        Working equations 
 
 
 
with each level of mesh refinement. Further information about the  structured adaptive 

methods and the unstructured adaptive methods can be found from the following authors 

Bathe (1996), Zienkiewick and Taylor (1994), Babuska and Suri (1990), Oden et al. 

(1989, 1995), Chung (2002), Oden (1988), Peraire et al. (1987), Probert et al. (1991), 

Ghia et al. (1989), and Altas and Stephenson (1991).   

 
 
4.6 Schematic diagram of the developed schemes 
 
The solution algorithms for the two developed schemes described above can be 

summarised by the flow chart given by figure 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

76 
 



Chapter 4                                                                                        Working equations 
 

 

 

Domain discretization 

Initialisation of values 
(Velocity & Pressure) 

Set up: physical and material properties, 
geometrical data and boundary 

conditions. 

Time variable incremented 

Yes 
Pre-programmed 
Time reached?

No 

Solve governing equations for 
Pressure and velocity fields 

No 
Check for convergence 

Yes 

Print output and Stop 

 
 
Figure 4.1: Flow chart for both the UVWP and the modified UVWP schemes. 
 

77 
 



CHAPTER 5 
 

RESULTS AND DISCUSSIONS 
 
 
 
In this chapter simulations results obtained in the present study are presented and 

discussed. These results are generated using the following procedure. The two schemes 

developed in chapter 4 were coded and compiled using FORTRAN via Microsoft Visual 

Studio 2005, to serve as the solver routines in the present simulation studies. The pre-

processing (mesh generation) part of the simulation was done using Cosmos GeoStar 

software and the post-processing (visualization of results) was carried out using Tecplot 

software. 

The software used for pre-processing, number crunching and post-processing, ( here 

referred to as Cosmos GeoStar, FORTRAN and Tecplot) are linked via an in-house 

developed utility programme (FEUT) which reads the output files from the pre-processor 

(Cosmos GeoStar)  converting them into input files in a format readable by the solver 

(FORTRAN). Once the solution process completed, the solver returns the solutions back 

to the utility FEUT programme which rewrites the solutions in a format readable by the 

post-processor (Tecplot) in order to proceed with the analysis of results. 

All these processes (geometry definition, mesh generation and visualization) are carried 

out using an Intel Pentium ® IV 3.00 GHz personal computer. 

 

In all of the simulations presented in this chapter the fluid rheology is based on assuming 

a generalized Newtonian behaviour. Typical set of physical properties of such a fluid are 

as given in the following table. 

 

Physical properties Values 

 (density) ρ 3m−980 kg  

0.87-1.23 n  (power law index) 

 (consistency index) 0η 80 kg  11 sm −−

c (speed of sound) 1500  1sm −

Table 5.1: Physical properties of the generalized Newtonian fluid used. 

78 
 



Chapter 5                                                                                 Results and discussions 
 

α tΔThe simulations are carried out using a time level ( ) of 0.95 and a time increment ( ) 

of 0.001 s.    

Although the results obtained using the two developed schemes are mainly similar, the 

modified UVWP scheme reaches convergence quicker than the traditional UVWP 

scheme. Therefore, for each simulation only one set of converged results is shown, 

however, the important difference in the time of taken to obtain such a result using 

different schemes is noted. 

Starting with three benchmark problems in which the simulated fluid is considered to be 

purely Newtonian (i.e. power law index is set to be 1 in the power law model), the 

developed codes are used for the numerical analysis of complex problems for generalized 

Newtonian fluids (for both shear thinning and shear thickening cases). Dimensions of the 

computational domains used in the complex problems are the same as the benchmark 

problems but with the difference that in complex problems various types of internal 

obstructions are introduced within the flow domain.  

In the benchmark cases domains consist of rectangular ducts, in which the fluid enters the 

domain at one end and exits at a specified outlet situated far from the inlet to make the 

imposition of simple exit boundary conditions acceptable. Three different outlets are of 

interest in this work, the first one is placed in a position normal to the direction of the 

fluid flow, the second one is situated at the end of top solid wall while the last outlet is 

placed at the end of the bottom solid wall. These domains are shown in figures 5.1.1, 

5.2.1, and 5.2.3, respectively. The cross section areas of the inlets and outlets for the 

different geometries in this work are all the same and have a dimension of 0.01 .  2m

 

As there are no experimental data to validate the results obtained in this project, the 

validation processes is based on the examination of mass balance across the entire 

computational domain as well as evaluation of the logical consistency of the 

computational results.  

 
 
             

79 
 



Chapter 5                                                                                 Results and discussions  
 
 
The drawback of the program is that it cannot be used to simulate fluid flow within a 

short domain. For such simulation, the imposition of stress free exit conditions may not 

be realistic, and thus this method may not generate very accurate results. 

 
5.1 Benchmark problem 1 

5.1.1 Computational domain and boundary conditions 

 

In the first benchmark problem, the domain consists of a simple rectangular box of 1m 

length, 0.1m width and 0.1m high and there is no obstruction to flow as shown in figure 

6-1-1. The computational domain is discretized using 8-noded hexahedral isoparametric 

elements into a mesh of 8550 nodes, and 7252 elements (see figure 5-1-2) and the 

prescribed boundary conditions correspond to the fluid entering the domain with a 

velocity of 0.1  perpendicular to the inlet; the other components of the velocity (v, 

and w) are zero. The only prescribed boundary condition at the outlet is a zero datum 

pressure, and the no-slip conditions are applied to the remaining sides of the rectangular 

box (see figure 5-1-3). Although there is no apparent imposition of exit conditions (as no 

velocity value is given at this point) stress free conditions at this boundary have been 

imposed (i.e. the gradient terms appearing after the application of the Green’s theorem to 

the second order derivatives in the equation of motion are set to be zero). 

1−sm

 
Figure 5.1.1: Geometry of benchmark problem 1. 

80 
 



 
Chapter 5                                                                                 Results and discussions 
 
 
 

 
Figure 5.1.2: Finite element mesh of benchmark problem 1 

 
 
 
 
 

 
 

Figure 5.1.3a: 2-D schematic representation of the boundary condition in 
the xy plane (benchmark problem 1). 

 
 

81 
 



Chapter 5                                                                                 Results and discussions  
 

 
Figure 5.1.3b: 2-D schematic representation of the boundary condition in 

the xz plane (benchmark problem 1). 
 
5.1.2 Results 
The results obtained after running the simulation for this first benchmark case are given 

by figure 5.1.4 through 5.1.14, and as it can be seen from figure 5.1.4, pressure decrease 

in the direction of the flow with the highest pressure (about 10K Pa) found in the vicinity 

of the inlet and as the fluid moves across the domain there is loss of energy which explain 

the decrease in the pressure values which reached zero around the outlet as given by 

figure 5.1.5.  

 

 
Figure 5.1.4: Pressure distribution (benchmark problem 1). 

82 
 



Chapter 5                                                                                 Results and discussions  
 
 
 
 
 

 

Pressure Distribution

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

1.00E+04

1.20E+04

0.00E+
00

2.00E-
01

4.00E-
01

6.00E-
01

8.00E-
01

1.00E+
00

1.20E+
00

Domain Length (m)

P
re

ss
ur

e 
(P

a)

Pressure

 
Figure 5.1.5:  pressure distribution across the domain (benchmark problem 1) 

 
 
Figure 5.1.6 shows the velocity vector profile in the x-y plane taken at position z = 

0.05m. The fluid enters the domain through the inlet with an average velocity of 0.1 

 giving mass inflow rate of 1 and exit the domain with an average velocity of 

0.0988  giving a mass outflow rate of 0.988 . These figures prove that there is 

conservation of mass since the error between the mass inflow and mass outflow is only 

1.2% which falls in the acceptable range. The maximum velocity of about 0.12  is 

found to be located between the range starting from x = 0.1m to x = 1m, y = 0.02m to y = 

0.07m, and z = 0.02m to z = 0.07m across the domain length high, width respectively.  

1. −skg1. −sm

1. −skg1. −sm

1. −sm

 

83 
 



Chapter 5                                                                                Results and discussions 
 
  
 
 

 
Figure 5.1.6:  Vector plot profile coloured by the velocity magnitude contour 
(benchmark problem 1). 
 
 
As there are always viscous momentum boundary layers at solid surfaces, different 

section contour plots of the velocity in the vicinity of the solid surfaces are presented for 

each of the simulations done in this project. For the first test case these contours plot are 

represented by figures 5.1.7 through 5.1.10. Figure 5.1.8 illustrates the velocity  section 

contour plotted at position y equal 0.002m, that is just 0.002m above the bottom solid 

wall, while figure 5.1.9  illustrates the velocity  section contour plotted at position y equal 

0.098min that is just 0.002m below the top solid wall, and 

 
 
 

84 
 



Chapter 5                                                                                 Results and discussions 
 
 
 
 
 
figure 5.1.10 represent a plot combined the section plot from figure 5.1.9, figure 5.1.10 

plus an additional section plotted at position y equal 0.05m which represents half of the 

domain in the y direction and the region where the fluid moves with maximum velocity.  

It can be noted that in the vicinity of the solid walls, the fluid flow experiences a velocity 

change and this change is due to the presence of boundary layers. And as proved by many 

researchers, the velocity profiles are less developed in planes closer to solid walls 

because of the boundary layers effect. 

 

     
Figure 5.1.7: Profile of the contour of         Figure 5.1.8: Profile of the contour of 
the velocity magnitude (y = 0.05m plane)    the velocity magnitude(y = 0.02m plane). 
benchmark problem 1.                                  benchmark problem 1. 

 

 

 

 

 

 

 

85 
 



 Chapter 5                                                                                Results and discussions 
 

     
Figure 5.1.9: Profile of the contour of the   Figure 5.1.10: Combined profiles of the 
velocity magnitude(y = 0.098m plane)        the velocity magnitude (y = 0.02m,  
benchmark problem 1.                                  y = 0.05m, and y = 0.098m planes).     
                                                                      benchmark problem 1. 
 
 
The results presented in figures 5.1.11 through 5.1.14 represent section plot of the 

velocity contours in the x-y plane. The contours are plotted at location z equal 0.5m 

(middle of the domain), z equal 0.02m (close to the right solid wall), and at z equal 

0.098m (close to the left solid wall). One can note that even with these plots in the x-y 

plane the results obtained are similar to obtained those obtained previously in x-z plan 

(figure 5.1.7 through 5.1.10). 

    
Figure 5.1.11: Profile of the contour of      Figure 5.1.12: Profile of the contour of    
the velocity magnitude (z = 0.05m plane)     the velocity magnitude(z = 0.02m plane) 
benchmark problem 1.                                 benchmark problem 1. 

86 
 



Chapter 5                                                                                 Results and discussions 
 
 

    
Figure 5.1.13: Profile of the contour of      Figure 5.1.14: Combined profiles of the 
the velocity magnitude (z = 0.098m plane)   the velocity magnitude (z = 0.02m, 
benchmark problem 1.                                 z = 0.05m, and z = 0.098m planes) 
                                                                     benchmark problem 1. 
 
5.2           Benchmark problem 2 
 
5.2.1 Computational domain and boundary conditions 
 
The geometry dimension, finite element mesh sizes are the same as for the one for bench 

mark problem 1, the outlet for this case is positioned as given in figure 5.2.1, 

the finite element mesh size, and the boundary conditions are given by figure 5.2.2 and 

5.2.3, respectively.  

 
Figure 5.2.1: Geometry of benchmark problem 2. 

87 
 



Chapter 5                                                                                Results and discussions 
 
 
 

 
Figure 5.2.2: Finite element mesh for benchmark problem 2. 

 

 
Figure 5.2.3a: 2-D schematic representation of the boundary condition in 

the xy plane (benchmark problem 2). 

88 
 



Chapter 5                                                                                 Results and discussions 
 
 

 
Figure 5.2.3b: 2-D schematic representation of the boundary condition in 

the xz plane (benchmark problem 2). 
 
5.2.2 Results 
 
The results for the benchmark problem 2 are given in figures 5.2.4 through 5.2.14. One 

can note that when the outlet is placed at the top end of the top solid wall, there is an 

increase in both pressure and velocity values with the pressure values vary between zero 

(the initial value) to a maximum of 20KPa (figures 5.2.4 – 5.2.5), and the velocity 

magnitudes vary from 0.01  to a maximum of 0.14  (figure 5.2.6) compared to 

the previous benchmark problem where the outlet was situated at a position normal to the 

fluid flow. Once again, it can be noted from figure 5.2.4 that pressure decreases in the 

direction of the flow. But although the fluid moves slightly fast in this second benchmark 

case, the mass flow from the outlet is 0.983  which is lower than 0.988  

obtained for benchmark problem 1. The difference between the mass flow in and the 

mass flow out is about 1.7% which represent 0.7% increase compared to the 1.2% error 

obtained for the first benchmark case, the lower value of the mass flow from the outlet in 

this benchmark case can be explained by the fact that the region where the fluid moves 

faster is found to be far from the outlet (figure 5.2.6), but in the vicinity of the outlet the 

velocity of the fluid is low.  The pressure distribution and graph given by figures 5.2.4 

and 5.2.5 show that the highest values of the pressure (18KPa-20KPa) are distributed 

over a length of 0.211m which is longer than the length of 0.105m  on which the highest 

values of pressure (9KPa to 10KPa) were distributed for benchmark problem 1.           

1−sm 1−sm

1. −skg 1. −skg

89 
 



Chapter 5                                                                                 Results and discussions 
 
 

 
Figure 5.2.4: Pressure distribution (benchmark problem 2). 

 

Pressure Distribution

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

0.00E+
00

2.00E-
01

4.00E-
01

6.00E-
01

8.00E-
01

1.00E+
00

1.20E+
00

Domain Length (m)

Pr
es

su
re

 (P
a)

Pressure

Figure 5.2.5: pressure distribution across the domain (benchmark problem 2). 

90 
 



Chapter 5                                                                               Results and discussions 
 
 

 
Figure 5.2.6:  Vector plot profile coloured by the velocity magnitude contour. 

(benchmark problem 2). 

 
Figure 5.2.7:  Vector plot profile coloured by the velocity magnitude contour 

zoomed  around the outlet (benchmark problem 2). 

91 
 



Chapter 5                                                                                 Results and discussions 
 

     
Figure 5.2.8: Profile of the contour of       Figure 5.2.9: Profile of the contour of 
the velocity magnitude (y = 0.05m plane)  the velocity magnitude(y = 0.02m plane)  
(benchmark problem 2).                              (benchmark problem 2). 
 

     
Figure 5.2.10: Profile of the contour of Figure 5.2.11: Combined profiles of the 
the velocity magnitude(y = 0.098m plane)    the velocity magnitude (y = 0.02m, 
(benchmark problem 2).                                y = 0.05m, and y = 0.098m planes) 
                                                                       (benchmark problem 2). 
 
 
Figures 5.2.7 through 5.2.8 above represent the contours plots of the velocity plotted in 

different positions (x-z plane) in the vicinity of the bottom solid wall (figure 5.2.8), and 

of the top solid wall (figure 5.2.9). Note that in the second benchmark case, the boundary 

layers have a parabolic shape with a higher width but cover over a distance of about half 

of the entire domain whereas in the previous test case, the boundary 

92 
 



Chapter 5                                                                                 Results and discussions  
 

 

 

layers are thinner but cover the entire length of the domain (figure 5.1.8 and 5.1.9).    

Figures 5.2.12 and 5.2.13 represent the contours plots of the velocity in different 

positions (x-y plane) in the vicinity of the right solid wall (figure 5.2.8), and of the left 

solid wall (figure 5.2.9). It can be seen that the shape and size of these boundary layers 

are now different compared to the ones obtained in the x-z plane, the length of the 

boundary layers are now of about 0.70m but their starting points are located about 0.3m 

ahead of the inlet. Another difference to note is that for the benchmark case 1, the shape 

and size of the boundary layers were the same regardless of whether the contour plots 

were taken in the x-y or x-z plane. 

 

  

     
Figure 5.2.12: Profile of the contour of       Figure 5.2.13: Profile of the contour of  
the velocity magnitude (z = 0.5m plane)       the velocity magnitude (z = 0.02m plane) 
(benchmark problem 2).                              (benchmark problem 2).     
 
 
 
 
 
 
 
 

93 
 



Chapter 5                                                                               Results and discussions  
 
 

     
Figure 5.2.14: Profile of the contour of      Figure 5.2.15: Combined profiles of the 
the velocity magnitude (z = 0.098m plane)   the velocity magnitude (z = 0.02m, 
(benchmark problem 2).                               z = 0.05m, and z = 0.098m planes) 
.                                                                     (benchmark problem 2). 
 
 
5.3 Benchmark problem 3 
 
5.3.1 Computational domain and boundary conditions 
 
 
The geometry dimension, finite element mesh sizes are the same as for the two previous 

cases, the outlet for this case is positioned as given in figure 5.3.1, the finite element 

mesh size, and the boundary conditions are given by figure 5.3.2 and 5.3.3 respectively.  

 
Figure 5.3.1: Geometry of benchmark problem 3. 

94 
 



Chapter 5                                                                                 Results and discussions  
 
 
 
 
  

 
Figure 5.3.2: Finite element mesh for benchmark problem 3 

 

 
Figure 5.3.3a: 2-D schematic representation of the boundary condition in 

the xy plane (benchmark problem 3). 
 

95 
 



Chapter 5                                                                                 Results and discussions  
 
 

 
Figure 5.3.3b: 2-D schematic representation of the boundary condition in 

the xz plane (benchmark problem 3). 
 
5.3.2 Results 
 
 
 
The results obtained when the outlet is located at the bottom end of the solid wall show 

an increase in pressure values compared to the two previous cases. The values of the 

pressure for in this case vary from 0 initially set at the outlet to 26K Pa (figure 5.3.4 and 

5.3.5) compared to the maximal value of 10K Pa for benchmark problem 1 (outlet located 

at the end of the geometry) and 20K Pa for benchmark problem 2 (outlet located at the 

end of the top solid wall). But the maximum magnitude of the velocity remains the same 

as it was for benchmark case 2; the values vary from 0.01  to 0.14  whereas the 

same figure was from 0.01  to 0.12  for benchmark case 1 and from 0.01  

to 0.14  for benchmark case 2. The pressure decrease in the direction of the flow 

(figure 5.3.4) just as obtained for the two previous benchmark problems. But although the 

magnitude of the velocity is high for this third benchmark case, the computed mass flow 

from the outlet 0.980  is lower than the ones obtained for benchmark problem 1 and 

2 and this low value of outlet mass flow yield a 2% error in difference between the mass 

in and the mass out. 

1−sm 1−sm
1−sm

1

1−sm 1−sm
1−sm

−skg

96 
 



Chapter 5                                                                                Results and discussions  
 

  
Figure 5.3.4: Pressure distribution (benchmark problem 3). 

 

Pressure Distribution

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

3.00E+04

0.00E+0
0

2.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+0
0

Domain Length (m)

P
re

ss
ur

e 
(P

a)

Pressure

 
Figure 5.3.5:  Graph of pressure distribution across the domain 

(benchmark problem 3). 

97 
 



Chapter 5                                                                                 Results and discussions  
 
 
 
 

 
Figure 5.3.6:  Vector plot profile coloured by the velocity magnitude contour 

(benchmark problem 3). 
 

 
Figure 5.3.7:  Vector plot profile coloured by the velocity magnitude contour 

zoomed around the outlet (benchmark problem 3). 

98 
 



Chapter 5                                                                                 Results and discussions  
 
Figures 5.3.7 through 5.3.10 represent the contour plots of the velocity in the x-z plan and 

are similar to the ones obtained for benchmark problem 2 (figures 5.2.7 through 5.2.10), 

which means when the outlet is located at the end of the bottom solid wall, the fluid flow 

experienced the same effect in the vicinity of the solid walls than when the outlet is 

placed at the end of the top solid wall. But when the contour plots are taken in the x-z 

plan (figures 5.3.11 through 5.3.14), the shape and size of the boundary layers are 

different from those obtained in benchmark problem 1 (figures 5.1.10 through 5.1.14) and 

benchmark problem 2 (figures 5.2.10 through 5.3.14). One can note that the length of 

these boundary layers is short and that their thicknesses are smaller compared to those 

obtained in the two previous benchmark cases. 

     
Figure 5.3.7: Profile of the contour of  Figure 5.3.8: Profile of the contour of 
the velocity magnitude (y = 0.5m plane)      the velocity magnitude(y = 0.02m plane) 
benchmark problem 3.                                   benchmark problem 3. 

    
Figure 5.3.9: Profile of the contour of         Figure 5.3.10: Combined profiles of the 
the velocity magnitude(y = 0.098m plane)  the velocity magnitude (y = 0.02m, 
benchmark problem 3.                                    y = 0.05m, and y = 0.098m planes). 
                                                                       benchmark problem 3. 

99 
 



Chapter 5                                                                                Results and discussions  
 
 
 
 
 
 

     
Figure 5.3.11: Profile of the contour of       Figure 5.3.12: Profile of the contour of 
the velocity magnitude (z = 0.5m plane)     the velocity magnitude (z = 0.02m plane) 
benchmark problem 3.                                 benchmark problem 3. 
 

 
Figure 5.3.13: Profile of the contour of       Figure 5.3.14: Combined profiles of the 
the velocity magnitude (z = 0.098m plane)    the velocity magnitude (z = 0.02m, 
benchmark problem 3.                                   z = 0.05m, and z = 0.098m planes) 
                                                                       benchmark problem 3.    
 
 
  
 

100 
 



Chapter 5                                                                                 Results and discussions 
 
 
The results obtained for the three benchmark problems were stable and accurate these 

showed that the conservation of mass and momentum across the entire domain were not 

violated. The worst case of difference between the mass in and the mass out was found to 

be 2% (benchmark problem 3) which still in the acceptable range. The velocity profiles 

and pressure contours were all as expected for the three cases. Therefore the numerical 

schemes developed in chapter four can be used with confidence to proceed with the 

simulations of the complex test cases planned for this thesis. For the simulations that will 

follow, an obstruction or obstructions to the fluid flow will be placed somewhere inside 

the geometry but far away from the outlet so that the flow could reached a fully 

developed state before exiting the domain. The reason to introduce an obstruction or 

obstructions is to investigate how it or they will affect the velocity profiles and the 

pressure distributions across the domain. The obstruction will consist of a square block, 

or a cylindrical block, or a combination of them. The computational domain in each case 

will have the same size than the ones used for the benchmark problems 1, 2, and 3 and 

the emplacement of the outlet will chosen to be one of the three used previously for each 

case. 

 
The geometries selected for the simulations are used to generate maximum possible 

contrast between simple flow fields and more complex flow fields including obstructions. 

The various cases simulated in this work are all typical situations often encountered 

during process such as polymer moulding, coating, extrusion, and mixing among others. 

Although the seven test cases are simulated using rectangular geometrical domains, the 

program can be used for the simulation of fluid flow within others domains of different 

geometrical shapes. And as mentioned earlier in this chapter, only results obtained using 

the modified UVWP scheme are presented. Both schemes presents same results when a 

converged solution is reached, the main difference between the two schemes is that the 

modified scheme converges faster than the standard  UVWP scheme. For instance, with a 

value of ∆t = 0.001s used for the test cases simulations, the modified scheme reached 

convergence just after 3 iterations  

101 
 



Chapter 5                                                                                 Results and discussions  
 
 
While the standard scheme needed 5 iterations for the solutions to converge. It took about 

45 minutes to the modified scheme to run one iteration of a problem with 7344 elements 

and 8882 nodes, whereas with the same data, the standard scheme took about 65 minutes 

to run a simulation. 

 

The only drawback of the program is that it cannot be used to simulate fluid flow within a 

short domain. For such simulation, the imposition of stress free exit conditions may not 

be realistic, and thus this method may not generate very accurate results. 

 

 

 

 
5.4  Test case 1: Flow in a duct past a big square obstacle (0.05 × 0.05 × 0.05m) 
   
5.4.1  Computational domain and boundary conditions 
 
For first test case problem, a square blockage of 0.05m of length, width, and high is 

placed inside the rectangular domain given in the benchmark problem 1 (figure 5.2.1), the 

domain is discretized using 8-noded hexahedral isoparametric elements giving a finite 

element mesh of 8912 nodes, and 7392 elements (figure 5.4.2). The boundary conditions 

given by figures 5.4.3a and 5.4.3b are as the ones specified for the benchmark problem 1 

but with additional no slip boundary conditions (u, v, and w set to zero) around the six 

faces of the square blockage.  

 
 
 
 
 
 

 
 
 
 
 

102 
 



Chapter 5                                                                                 Results and discussions 

 
 
 

 
 
Figure 5.4.1: Computational domain for the test case 1 with a big square 
blockage. 
 

 
Figure 5.4.2: Finite element mesh for test case 1. 

 

103 
 



Chapter 5                                                                                 Results and discussions 

 
Figure 5.4.3a: 2-D schematic representation of the boundary condition in the xy plane 
(test case 1). 

 
 

Figure 5.4.3b: 2-D schematic representation of the boundary condition in the 
xy plane (test case 1). 

 
5.4.2 Results  
 
Results obtained are given by figures 5.4.9 through 5.4.16, and in contrast to the 

benchmark problem 1 where there was no obstruction, one notes an increase for the 

pressure values for this case, pressure decrease in the direction of the flow (figure 5.4.4) 

from a maximum values of 22000Pa around the inlet to 0Pa initially set at the outlet 

(figure 5.4.5). Figures 5.4.6 through 5.4.8 also show an increase for the velocity with 

values varying from 0.02  to 0.2  compared to 0.01  to 0.12  

previously obtained for benchmark problem 1. But despite this increase in velocity 

values, it can be seen from figures 5.4.6 through 5.4.8 that the region where fluid moves 

with high velocity is narrow and situated just at the top, bottom, left, and bottom sides of 

the obstacle. There is no fluid or fluid flowing only with a very low velocity at about 0.02 

 in most of region behind the obstacle. The average velocity of the outlet is 0.097 

 giving an outflow mass rate of 0.97  and hence a 3% error difference between 

the mass in and mass out of the computational domain. 

1−sm 1−sm

1. −skg

1−sm 1−sm

1−sm
1−sm

 

104 
 



Chapter 5                                                                                 Results and discussions 

 

 
Figure 5.4.4: Pressure distribution (test case 1). 

 
 

Pressure Distribution

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

0.00E+00 2.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.20E+00

Domain Length (m)

Pr
es

su
re

 (P
a)

Series1

 
Figure 5.4.5:  Graph of pressure distribution across the domain (test case 1). 
 

 

105 
 



Chapter 5                                                                               Results and discussions  

 
 

 
Figure 5.4.6:  Vector plot profile coloured by the velocity magnitude contour 

(test case 1). 
 

    
Figure 5.4.7:  Vector plot profile coloured Figure 5.4.8:  Vector plot profile coloured  
by the velocity magnitude contour zoomed    by the velocity magnitude contour  zoo 
around the obstacle in the x-y plane              med around the obstacle in the x-z plane 
(test case 1).                                                   (test case 1). 

106 
 



Chapter 5                                                                                 Results and discussions 
 
 

   
Figure 5.4.9: Profile of the contour of       Figure 5.4.10: Profile of the contour of 
the velocity magnitude (y = 0.05m plane)    the velocity magnitude(y = 0.02m plane) 
(test case 1).                                                  (test case 1). 
        
  

    
Figure 5.4.11: Profile of the contour of     Figure 5.4.12: Profile of the contour of 
the velocity magnitude (y = 0.098m plane)  combined the velocity magnitudes  
(test case 1).                                                  (position y = 0.02, 0.05 and 0.098m) 
                                                                      (test case 1). 
 
 
 
 
 
 
 
 
 

107 
 



Chapter 5                                                                                     Results and discussions 
 
 

   
Figure 5.4.13: Profile of the contour of   Figure 5.4.14: Profile of the contour of    
the velocity magnitude (z = 0.05m plane)    the velocity magnitude (z = 0.02m plane). 
(test case 1).                                                (test case 1). 
 

    
Figure 5.4.15: Profile of the contour of   Figure 5.4.16: Combined profiles of the 
the velocity magnitude (z = 0.098m plane)   the velocity magnitude (z = 0.02m, 
 (test case 1).                                              z = 0.05m, and z = 0.098m planes) 
                                                                   (test case 1). 
 
 
Figures 5.4.9 through 5.4.16 above represent different section contour plots of the 

velocity taken at the same locations as for figures 5.1.7 through 5.1.14 (benchmark 

problem 1). It is interesting to investigate again the profile of the velocity in the vicinity 

of the solid walls for this case with a square blockage and compared with the same  

 

108 
 



Chapter 5                                                                                Results and discussions  
 
 
figures obtained for benchmark problem 1 where there was no obstruction inside the 

computational domain.  

As it can be noted from these plots, the boundary layers for this test case are wider, 

higher, but shorter in length compared to those obtained for the benchmark problem 1. 

This change of shape is certainly due to the presence of the blockage that disrupts the 

fluid movement. 

 
5.5 Test case 2: Flow in a duct past a small square obstacle (0.025 × 0.025 × 

0.025m) 
 
5.5.1 Computational domain and boundary conditions 
 
In this second test case, the size of the blockage is reduced by half (0.025m×0.025m×

0.025m) in order to investigate whether the obstruction size has an effect on the flow. 

The geometry (figure 5.4.17), the finite element mesh (figure 5.4.18), and the imposed 

boundary conditions (figure 5.4.19a, and figure 5.4.20b) for this case are similar to those 

for the benchmark problem 1. 

 

 

  
 

Figure 5.5.1: Computational domain for test case 2. 

109 
 



Chapter 5                                                                                 Results and discussions 
 
 
 
 
 

 
Figure 5.5.2:   Finite element mesh for test case 2. 

 

 
Figure 5.5.3a: 2-D schematic representation of the boundary condition in the 

xy plane (test case 2). 
 
 
 

110 
 



Chapter 5                                                                                 Results and discussions  
 

 
Figure 5.5.3b: 2-D schematic representation of the boundary condition in the xz 

Plane (test case 2). 

 

5.4.2     Results 

 

 

The results obtained for this test case with the square blockage size halved showed that 

pressure decreased in the direction of the flow as obtained for the previous case and with 

an increase in pressure values starting for 0Pa to 55000Pa (figures 5.4.20 and 5.4.21) 

compared to the same figure obtained for test case 1; which was from 0Pa to 22000Pa 

(figures 5.4.4 and 5.4.5), this pressure rise reduced the magnitude of velocity which vary 

in this case from the initial values of 0.01  to 0.16 (figure 5.4.22). Given that 

the obstacle is small, the fluid entering the domain have more free space around it to 

move freely and this can be seen from figures 5.4.23 and 5.4.24 (orange coloured region 

representing the region of the domain where the flow occurs with high velocity and at 

about 0.14  ). The fluid exits the domain with an average velocity of 0.0975  

giving a mass outflow rate of 0.975 , and hence an error in mass balance of 2.5%. 

Thus reducing the size of the obstacle by half improves the mass balance by 0.5%. 

1−sm 1−sm

1−sm 1−sm
1. −skg

 
 
 
 

111 
 



Chapter 5                                                                                 Results and discussions 
 
 

 
Figure 5.5.4.: Pressure distribution (test case 2). 

 
 

Pressure distibution

0.00E+00

1.00E+04

2.00E+04

3.00E+04

4.00E+04

5.00E+04

6.00E+04

0.00E+00 2.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.20E+00

Domain length (m)

P
re

ss
ur

e 
va

lu
e 

(P
a)

Press

 
Figure 5.5.5: Graph of pressure distribution across the domain (test case 2). 

112 
 



Chapter 5                                                                                Results and discussions  
 
 

 
Figure 5.5.6:  Vector plot profile coloured by the velocity magnitude contour 

(test case 2.  ). 
 

 
 

Figure 5.5.7:  Vector plot profile coloured by the velocity magnitude contour 
zoomed around the obstacle in the x-y plane (test case 2). 

113 
 



Chapter 5                                                                                Results and discussions  
 

 
 

 
Figure 5.5.8:  Vector plot profile coloured by the velocity magnitude contour 

zoomed around the obstacle in the x-z plane (test case 2). 
 

    
Figure 5.5.9: Profile of the contour of        Figure 5.5.10: Profile of the contour of 
the velocity magnitude (y = 0.5m plane)    the velocity magnitude(y = 0.02m plane) 
test case 2.                                                   test case 2. 
 

 

114 
 



Chapter 5                                                                                 Results and discussions 
 
 
 
 
   

    
Figure5.5.11: Profile of the contour of        Figure 5.5.12: Combined profiles of the 
thevelocity magnitude(y = 0.098m plane)     velocity magnitude (y = 0.02m,  
test case 2.                                                      y = 0.05m, and y = 0.098m planes). 
                                                                        test case 2. 
 
 
 
 
Figures5.4.25 through 5.4.32 of this section represent different section contour plots of 

the velocity taken at the same locations as for the benchmark problem 1. These plots 

show that in the vicinity of the solid walls, the shapes of the boundary layers are similar 

to those obtained for test case 1 problem but the only difference is that there are smaller. 

 
 
 
 
 
 
 
 
 
 
 
 
 

115 
 



Chapter 5                                                                                 Results and discussions 
 
  
 
 

   
Figure 5.5.13: Profile of the contour of     Figure 5.5.14: Profile of the contour of    
the velocity magnitude (z = 0.5m plane)     the velocity magnitude(z = 0.02m plane) 
test case 2.                                                    test case 2. 
 

   
Figure 5.5.15: Profile of the contour of     Figure 5.5.16: Combined profiles of the 
the velocity magnitude (z = 0.098m plane)   the velocity magnitude (z = 0.02m, 
test case 2.                                                      z = 0.05m, and z = 0.098m planes) 
                                                                        test case 2. 
 
 
 
 
 
 
 

116 
 



Chapter 5                                                                                     Results and discussions  
 
 
5.6 Test case 3:  Flow in a duct past a big square obstacle (0.05 × 0.075 × 0.05m) 

with an outlet positioned normal to the direction of the flow.  
 
5.6.1 Computational domain and boundary conditions 
 
Seeing that the results obtained for test cases 1 and 2 showed that the case with a bigger 

obstruction (test case 1) had a bad percentage (3%) error in mass balance, the next 

simulation (test case 3) that follows will be carry out over a domain including a slightly 

bigger obstruction than the one for test case 1. The size of the obstacle in this 

case is 0.05m, 0.70m, and 0.05m for length, height, and wide respectively, the 

computational domain size remain the same (see figure 5.6.1). The entire domain is 

discretized using 8-noded hexahedral isoparametric elements giving a finite element 

mesh of 8882 nodes and 7344 elements (figure 5.6.2). The three different emplacement of 

the outlets used for benchmark problems 1, 2, and 3 will be use for this case. The aim of 

the simulation in this case is to investigate whether bigger obstacles and the emplacement 

of the outlet will cause the violation of the mass balance and hence the reliability of the 

developed codes.     

 

 
Figure 5.6.1: Computational domain for test case 3. 

117 
 



Chapter 5                                                                                Results and discussions 
 
 
 
 

 
Figure 5.6.2:   Finite element mesh for test case 3. 

 
Figure 5.6.3a: 2-D schematic representation of the boundary condition in the 

xy plane (test case 3). 
 
 

118 
 



Chapter 5                                                                                 Results and discussions 

 
Figure 5.6.3b:  2-D schematic representation of the boundary condition in the xz 

Plane (test case 3). 
 
5.6.2 Results  
 
Increasing the obstacle size has no effect on the pressure distribution as it can seen from 

figures 5.6.4 and 5.6.5, the values of computed pressure obtained vary from 0Pa to 

22KPa and are similar to the computed pressure obtained in test case 1. The velocity 

profiles on the other hand experience an increase in magnitude values, the values here 

vary from 0.02  to 0.26  whereas the same figure was 0.02  to 0.2  for 

test case 1. But as it can be seen from figures 5.6.6 and 5.6.7, the regions where the fluid 

moves with high velocity are very smaller. The computed average exit velocity for this 

case is 0.0963  giving a mass outflow of 0.963  and an error mass balance 

difference of 3.7% which is bigger than the 3% obtained in test case 1 but still in within 

the tolerated limit. Hence, even with a big obstacle as used in this case, the mass balance 

criterion is not violated, that is the developed computational scheme still valid regardless 

of the size of the obstruction.   

1−sm

1−sm

1−sm 1−sm 1−sm

1. −skg

 

 

 

 

 

 

 

 

119 
 



Chapter 5                                                                                 Results and discussions 
 
 

 
Figure 5.6.4:  Pressure distribution. for test case 3.   

Pressure Distribution

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

0.00E+
00

2.00E-
01

4.00E-
01

6.00E-
01

8.00E-
01

1.00E+
00

1.20E+
00

Domain Length (m)

P
re

ss
ur

e 
(P

a)

Pressure

Figure 5.6.5:  Graph of pressure distribution across the domain (test case 3). 

120 
 



Chapter 5                                                                                 Results and discussions 
 
 

 
Figure 5.6.6:  Vector plot profile coloured by the velocity magnitude contour in the z = 

 
Figure 5.6.7:  Vector plot profile coloured by the velocity magnitude contour in the y = 
0.5m plane (test case 3). 

0.5m plane (test case 3). 
 

121 
 



Chapter 5                                                                                 Results and discussions 
 
 
 
Figure 5.6.8 (in the z = 0.05m plane) shows the velocity vector profile around the 

 
Figure 5.6.8:  Vector plot profile coloured by the pressure contour zoomed around 

the obstruction (test case 3). 

obstruction, the contour pressure is chosen in this case as background for the velocity 

vectors because it provides better view than the velocity magnitude contour. The profile 

is as expected, one can see that in the vicinity of the blockage, the fluid deviates and 

move toward the top of the computational domain where it can moves freely, then once 

passing the obstruction, some the fluid move back down and continues to flow toward the 

exit.  

 
 
 
 

122 
 



Ch
 

apter 5                                                                                 Results and discussions 

  
Figure 5.6.9: Profile of the contour of      Figure 5.6.10: Profile of the contour of    
the velocity magnitude (z = 0.5m plane)  elocity magnitude (z = 0.02m plane).

   
Figure 5.6.11: Profile of the contour of      Figure 5.6.12: Combined profiles of the 
the velocity magnitude (z = 0.098m plane agnitude (z = 0.02m, 

the contours of the magnitude of 

to the inlet to end at the outlet whereas for the test case 1 problem  

 

     the v  
test case 3.                                                     test case 3. 

 

)   the velocity m
test case 3.                                                     z = 0.05m, and z = 0.098m planes) 
                                                                       test case 3. 
 
Figures 5.6.9 through 5.6.12 show the section plots of 

the velocity plotted in the same position than those plotted for test case 1 problem 

(figures 5.4.9 through 5.4.16). It can be seen that when the size of the obstruction is 

increased and that it is placed at the bottom of the domain, the boundary layers obtained 

in the z = 0.02m and z = 0.098m planes are similar, bigger and start from a region close 

123 
 



Chapter 5                                                                                 Results and discussions 
 
(figures 5.4.9-5.4.12) where the obstruction was smaller and placed far from the bottom 

ter 

   
Figure 5.6.13: Profile of the contour of      Figure 5.6.14: Profile of the contour of 
the velocity magnitude (y = 0.5m plane)     the velocity magnitude(y = 0.02m plane) 
test case 3.                                                     test case 3. 

     
Figure 5.6.15: Profile of the contour of        Figure 5.6.16: Profile of the contour of 
the velocity magnitude (y = 0.098m plane)   combined the velocity magnitudes  
test case 3.                                                      (position y = 0.02, 0.05 and 0.098m) 

solid wall, the boundary layers obtained at the same positions where smaller and shor

in length. Another difference is that in the planes y = 0.02m and y = 0.098m, for the 

present case, the shape of the boundary layer at position y = 0.02m (figure 5.6.14) differs 

from the one at position y = 0.098m whereas the same figure obtained for test case 1 

problem (figures 5.4.13-5.4.16) showed that they were similar.   

 

 

 

                                                                        test case 3. 

124 
 



Chapter 5                                                                                Results and discussions 
 
 
 

 
5.7 Test case 4: Flow in a duct past a big square obstacle (0.05 × 0.075 × 0.05m)

with an outlet placed at the top end of the domain. 

5.7.1  

he dimension of the domain (figure 5.4.49), finite element mesh (figure 5.4.50), and 

oundary conditions for this test case are similar to those given for test case 3, except the 

 
Figure 5.7.1: Computational domain for test case 4. 

 
 

 

 

 
 

 Computational domain and boundary conditions
 
 
 
 
T

b

fact that here the outlet is placed at the top end of the domain. 

 
 
 
 
  

125 
 



Chapter 5                                                                                 Results and discussions 
 
 
 
 
 

 
Figure 5.7.2:   Finite element mesh for test case 4. 

 
 
 

 
 

Figure 5.7.3a: 2-D schematic representation of the boundary condition in the 
xy plane (test case 4). 

 

 

126 
 



Chapter 5                                                                                 Results and discussions 
 
 
 

 
 

Figure 5.7.3b:  2-D schematic representation of the boundary condition in the xz 
Plane (test case 4). 

 
 
.7.2 Results 

hen the outlet is placed at the top end of the geometry, the pressure gradient obtained 

sed at the outlet to 28KPa (figures 5.7.4 and 5.7.5) with the pressure 

nflow

 

5
 
W

vary from 0 impo

gradient decreasing in the direction of the flow. The developed pressure profile can be 

justified with the accompanying flow field expressed by the velocity vectors in figures 

5.7.6 through 5.7.8 from which it can be noted that the fluid moves with a minimum 

velocity of 0.02 1−sm  and a maximum velocity of 0.26 1−sm . The computed mass 

balance across the computational domain shows that 96.05% of the fluid entering the 

domain exit, that is an error of 3.95% between the mass i  and mass outflow is 

recorded.  

 

 

 

 

 

 

 

127 
 



Chapter 5                                                                                 Results and discussions 
 
 

 
Figure 5.7.4:  Pressure distribution (test case 4). 

 
 

Figure 5.7.5: Graph of pressure distribution across the domain (test case 4). 

Pressure Distribution

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

3.00E+04

3.50E+04

0.00E+
00

2.00E-
01

4.00E-
01

6.00E-
01

8.00E-
01

1.00E+
00

1.20E+
00

Domain Length (m)

Pr
es

su
re

 (P
a)

Pressure

 

128 
 



Chapter 5                                                                                 Results and discussions 
 
 

z = 0.05m plane (test case 4). 

        
 
Fig
pressure contour and zoomed e velocity magnitude  

struction in the z = 0.05m plane.                   contour in the z  = 0.05m plane 
test case 4.                                                         test case 4. 

 
Figure 5.7.6:  Vector plot profile coloured by the velocity magnitude contour in the 

  

 

ure 5.7.7: Vector profile coloured by         Figure 5.7.8: Vector profile  
around the         coloured by th

ob

129 
 



Chapter 5                                                                                 Results and discussions 
 
 
 
 
 
5.8 Test case 5: Flow in a duct past a big square obstacle (0.05 × 0.075 × 0.05m) 

with an outlet placed at the bottom end of the domain. 
  
 
5.8.1 Computational domain and boundary conditions 
 
 
 
 

 
Figure 5.8.1: Computational domain for test case 5. 

 
 
 
 
 
 
 
 

130 
 



Chapter 5                                                                                 Results and discussions 
 
 
 
 

 
Figure 5.8.2: Finite element mesh for test case 5. 

  

 
Figure 5.8.3a: 2-D schematic representation of the boundary condition in the  
                         xy plane (test case 5). 
 

 
 
 

  

 
 

131 
 



Chapter 5                                                                                 Results and discussions 
 
 
 
 

 
Figure 5.8.3b:  2-D schematic representation of the boundary condition in the xz 

Plane (test case 5). 
 
  
 

  

The results obtained (figure 5.8.4 through 5.8.6) for this case with the outlet placed at the 

bottom end of the geometry show a similar figure in term the pressure gradient and 

velocity magnitude with the results obtained in the previous test case where the outlet 

was placed at the top end of the geometry. The only difference for the present case is that 

the average velocity at the outlet is found to be 0.0958  giving a mass outflow of 

0.958 kg  and hence the discrepancy between the e outlet masses gave an 

error of 4.2%. 

 
 
 

5.8.2     Results 
 

1−sm

 inlet and th1s−

 
 
 
 

 
 
 
 
 
 
 

132 
 



Chapter 5                                                                                Results and discussions  
 
 

Figure 5.8.4:  Pressure distribution (test case 5). 

Figure: 5.8.5:  Graph of pressure distribution across the domain (test case 5). 

 

Pressure Distribution

 

0.00E+00
0.00E+ 2.00E- 4.00E- 6.00E- 8.00E- 1.00E+ 1.20E+

5.00E+03

1.00E+04

1.50E+04

2.00E+04

3.00E+04

3.50E+04

00 01 01 01 01 00 00

Domain Length (m)

P
re

ss
ur

e 
(P

a)

2.50E+04

Pressure

133 
 



Chapter 5                                                                                 Results and discussions 
 
 
 

 
Figure 5.8.6:  Vector plot profile coloured by the velocity magnitude contour in the 

z = 0.5m plane (test case 5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

134 
 



Chapter 5                                                                                 Results and discussions 
 
 
 
 
5.9 Test case 6: Flow in a duct past a circular cylinder.  
 
 
5.9.1 Computational domain and boundary conditions 
 
 
 
The simulation for the sixth test case is carried out on a rectangular domain (figure 5.9.1) 

of same dimension than for the previous simulations, the domain is discretized using 8 

nodes isoparametric hexahedral element into a finite element mesh consisting of 9062 

nodes and 7560 elements (figure 5.9.2). But the obstacle in this case has a cylindrical 

shape. The imposed boundary conditions are given by figures 5.9.3a, b.  

 
 

 
Figure 5.9.1: Computational domain for the case with a cylindrical blockage 

 

 
 

(test case 6). 
 

135 
 



Chapter 5                                                                                 Results and discussions 
  

Figure 5.9.2: Finite element for test case 6.  
 
 

Figure 5.9.3a: 2-D schematic representation of the boundary condition in the xy  

 

 

                              Plane (test case 6). 
 
 

136 
 



Chapter 5                                                                                 Results and discussions  
 
 
 
 

 
Figure 5.9.3b: 2-D schematic representation of the boundary condition in the xz  
                Plane (test case 6). 
 
 
 
 
5.9.2 Results 
 
 

he results obtained with the case of cylindrical shaped obstacle show that the pressure 

n of the flow as in previous cases but with values from high 

pressure of about 45KPa to 0 imposed at the exit of the domain (figure 5.9.4 and 5.9.5). 

The velocity vectors plots given by figures 5.9.6 through 5.9.8 show that the flow 

remains fully developed throughout the length of the computational domain as it 

progress. 

 

 

 
 
T

decrease in the directio

 

 

 

 

 

137 
 



Chapter 5                                                                                 Results and discussions 
 
 

  Graph of pressure distribution across the domain (test case 6). 

 
Figure 5.9.4: Pressure distribution (test case 6). 
 

Pressure distribution

5.00E

6.00E+04

0.00E+00

1.00E+04

2.00E+04

3.00E+04

4.00E+04

+04

0.00E+00 2.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.20E+00

Pr
es

su
re

 v
al

ue
 (P

a)

Press

Domain length (m)

 
Figure 5.9.5:

138 
 



Chapter 5                                                                                 Results and discussions  
 
 

 velocity magnitude contour in the                               
                     z = 0.05m plane (test case 6). 

 

 
Figure 5.9.6:  Vector plot profile coloured by the
  

Figure 5.9.7: Velocity vector section plotted in the y = 0.05m plane (test case 6). 
 

139 
 



Chapter 5                                                                                 Results and discussions 
 
 
 

 
Figure 5.9.8: Velocity vector plotted in the z = 0.05m plane and coloured by pressure 
                       Contour (test case 6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

140 
 



Chapter 5                                                                                 Results and discussions 
 
 
 

  
Figure 5.9.9: Profile of the contour of      Figure 5.9.10: Profile of the contour of 
the velocity magnitude (y = 0.5m plane)   the velocity magnitude(y = 0.02m plane) 
test case 6.                                                   test case 6. 
 

  
igure 5.9.11: Profile of the contour of     Figure 5.9.12: Combined profiles of  
e velocity magnitude(y = 0.098m plane)  the velocity magnitude (y = 0.02m,  
st case 6.                                                   y = 0.05m, and y = 0.098m planes) 
                                                                   test case 6.     

 

 
F
th
te
  
 
 
 
 
 
 
 
 

141 
 



Chapter 5                                                                                 Results and discussions 
   

 
 

.14: Profile of the contour of    
e velocity magnitude (z = 0.05m plane)      the velocity magnitude (z = 0.02m plane) 

test case 6.                                                      test case 6. 

f the 
, 

nd z = 0.098m planes) 
                                                                       test case 6. 

      
Figure 5.9.13: Profile of the contour of        Figure 5.9
th

     
Figure 5.9.15: Profile of the contour of         Figure 5.9.16: Combined profiles o

 

the velocity magnitude (z = 0.098m plane)    the velocity magnitude (z = 0.02m
test case 6.                                                       z = 0.05m, a
  
 
 
 
 
 
 
 
 
 

142 
 



Chapter 5                                                                                 Results and discussions 
   

 
  
5.10     Test case 7: Flow in a duct past two cylindrical and one rectangular   

obstacles. 
 
5.10.1 Computational domain and boundary conditions 
 
For this final simulation case, three problems are solved in order to investigate the flow 

fields unknowns (velocity and pressure) using three different values of the power law 

parameter n. The three case are as follow; n = 0.87 (for shear thinning fluids), n = 1 (for 

purely Newtonian fluids), and n = 1.23 (for shear thickening fluids). 

he 

o 

cylindrical and one square blockages. The cylinders volumes are 4.91  m

The domain in this case consists of a rectangular box with a similar dimension as for t

previous problems solved, but the obstructions here consist of a combination of tw
3510−×    each, 

the length, width, and height of the square are 0.025m as shown in figure 6.8.1, and the 

entire domain was discretized in a finite element mesh of 8834 nodes, and 7389 elements 

(figure 6.8.2). The imposed boundary conditions for this case are given by figures 6.8.3 

and 6.8.4 respectively. 

 

 
Figure 5.10.1: Computational domain for test case 7. 
 

143 
 



Chapter 5                                                                                 Results and discussions 
 
 
 

 

 

 
Figure 5.10.3a: 2-D schematic representation of the boundary condition in  

 

Figure 5.10.2: Finite element mesh for test case 7. 

                     the xy  plane (test case 7). 
 
 

144 
 



Chapter 5                                                                                 Results and discussions 
 

 
Figure 5.10.3b: 2-D schematic representation of the boundary condition in  
                           the xz plane (test case 7). 
 
The results obtained in term of pressure and velocity contours and vector are presented 

(figure 5.10.4 through figure 5.10.19) and discussed below 

 
5.10.2 Results 
 
 

wer law index (n) is set equal to 0.87

hear thinning fluids) the pressure across the entire computational domain decrease in 

the direction of the flow from a maximum value of about 26KPa to 0 initially set at the 

exit of the domain. The same figure for the case of purely Newtonian fluids (n = 1) show 

a decrease of 22KPa to 0 whereas when n = 1.23 (shear thickening fluids), the decrease in 

pressure values is only form 20KPa to 0. In other hand, the velocity profile given by 

figure 5.10.8 through figure 5.10.19 represent the velocity contour plots and vector for 

the shear thinning fluids, which have the lowest velocity of the three cases simulated. As 

it can seen, the fluids move with a velocity of between 0.01   and 0.19 , the 

computation of the mass balance for this case showed that 92% of the fluid entering the 

 and mass 

et equal to 1 (purely Newtonian flow case) given 

y figures 5.10.12 through 5.10.15, the mass balance calculated showed that 94.3% of the 

uid entering the domain exited, thus in this case the discrepancy between the inlet and  

Figures 5.10.4 through 5.10.7 show that when the po  

(s

1s.m − 1s.m −

domain exited this indicated there is an error of 8% between the mass inflow

outflow. When the power law index is s

b

fl

145 
 



Chapter 5                                                                                 Results and discussions 

 

 

the outlet mass is 5.7%. The velocity magnitude of this case varies from 0.02  to 0.3

 which is higher than the same figure obtained in the case of   shear thinning fluids. 

 last simulation (shear thickening fluids), the velocity plots ob igures 

5.10.16 through 5.10.19) showed that the fluid moves with slightly fast

previous cases with a velocity magnitude varying from  0.02  to 0.4  with  

95.5% of fluid entering the domain exiting hence the discrepancy between the inlet and 

 

1s.m −

tained (f

er than in the two 
1s.m −

1s.m −

For the

1s.m −

the outlet masses gave an error of  4.5% only. 

 

 

 

Figure 5.10.4:  Pressure distribution (case n = 0.87) test case 7. 
 

146 
 



Chapter 5                                                                                 Results and discussions 
 
 
 

 
Figure 5.10.5:  Pressure distribution (case n = 1) test case 7. 

 
Figure 5.10.6:  Pressure distribution (case n = 1.23) test case 7. 

147 
 



Chapter 5                                                                                 Results and discussions 
 
 

Figure 5.10.7: Graph of pressure distribution across the domain (cases n =0.87,  
                          n =1, n = 1.23) test case 7. 

 
igure 5.10.8: Velocity contour plot in the y = 0.05 plan (case n = 0.87) test case 7. 

Pressure distribution

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

3.00E+04

0.00E+00 2.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.20E+00

Domain length (m)

P
re

ss
ur

e 
(P

a)

0.87N
1N

1.23N

 

F

148 
 



Chapter 5                                                                                 Results and discussions 
 
 

 
he z = 0.05 plan (case n = 0.87) test case 7. 

 

 

Figure 5.10.9: Velocity contour plot in t

Figure 5.10.10: Velocity vector plot in the y = 0.05 plan (case n = 0.87) test case 7. 
 

149 
 



Chapter 5                                                                                 Results and discussions 
 
 

 
Figure 5.10.11: Velocity vector plot in the y = 0.05 plan zoomed around the obstacles 

(case n = 0.87) test case 7. 

 
Figure 5.10.12: Velocity contour plot in the y = 0.05 plan (case n = 1) test case 7. 

150 
 



Chapter 5                                                                                 Results and discussions 
 
 

 
Figure 5.10.13: Velocity contour plot in the y = 0.05 plan (case n = 1) test case 7. 

 
Figure 5.10.14: Velocity vector plot in the y = 0.05 plan (case n = 1) test case 7. 

151 
 



Chapter 5                                                                                 Results and discussions 
 
 

 
Figure 5.10.15: Velocity vector plot in the y = 0.05 plan zoomed around the obstacles 

(case n = 1) test case 7. 

 
 

Figure 5.10.16: Velocity contour plot in the y = 0.05 plan (case n = 1.23) test case 7.

152 
 



Chapter 5                                                                                 Results and discussions 
 
 
 

 
Figure 5.10.17: Velocity conto an (case n = 1.23) test case 7. 

 

ur plot in the z = 0.05 pl

Figure 5.10.18: Velocity vector plot in the y = 0.05 plan (case n = 1.23) test case 7. 

153 
 



Chapter 5                                                                                 Results and discussions 
 
 
 

 
Figure 5.10.19: Velocity vector plot in the y = 0.05 plan zoomed around the obstacles 

(case n = 1.23) test case 7. 
 
 
Large number of results discussed in this chapter all show self- consistency of the 

simulations obtained by the developed schemes. In addition where ever possible other 

evidence such as pattern of pressure drop or accuracy of the conservation of mass have 

been taken into account. Therefore the main conclusion of this chapter is the developed 

three dimensional finite element schemes can be used to solve realistic flow problems 

with minimum computational cost. Flexibility of an in-house developed scheme 

combined with the mathematical rigour and computational economy makes the outcome

of 

 

this research a useful engineering tool.    

 

154 
 



CHAPTER 6 

 

 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

 

 

6.1  Conclusions 

 

Three dimensional finite element computer models for the solution of governing 

equations of generalized Newtonian fluids have been developed and used to simulate 

flow of power-law fluids through domains involving obstructions. These models are 

based on two different finite element schemes, namely the mixed velocity-pressure 

(UVWP) and a modification of the mixed velocity-pressure (UVWP) methods. Both 

models utilize 8-noded isoparametric  continuous hexahedral elements to discretize 

velocity and pressure unknowns. Therefore, in contrast to the traditional mixed finite 

element schemes, the use of lower order of interpolation function for pressure is avoided 

and the required stability condition (i.e. the LBB condition) is satisfied, for the first time 

in three dimensional simulations, via the use of a perturbed continuity constraint. The 

discretizations of the temporal variables in both schemes are carried out using the first

o l 

omain which is based on the n the value of the power law 

dex and the computer models can be used to simulate Newtonian fluid flow (power law 

 The comparisons done for all 

f the test cases results show that the differences between the mass flow from the  

0c

 

rder Taylor-Galerkin scheme. The variation of the viscosity across the computationa

d power law model depends o

in

index equal 1), shear thinning fluid (power law index less than 1) and shear thickening 

fluid (power law index greater than 1). 

The accuracy and validity of the models have been evaluated by solving three benchmark 

problems and seven test cases.  

Because there is no available experimental data to validate results obtained for the test 

cases problems, the validation processes of these cases have been based on the 

comparison of mass flow rate in and out of the computational domain, as well as the 

overall consistency and logical interpretation of the results.

o

155 
 



Chapter 6                                 Conclusions and recommendations for future work       
 

 

 

utlets and the mass flow from the inlet were insignificant. These mass balance 

computations were backed up by the different plots representing flow and pressure drop 

table and theoretically expected forms. Therefore, the novel 

pproach used here to simulate three dimensional flows via the use of equal order 

f

uch as the theta method will work in three 

ted here are obtained using a Pentium IV personal 

o

patterns which show s

a

hexahedral discretization of pressure and velocity in conjunction with a perturbed 

continuity constraint has been justified. The main conclusions of this project can hence be 

summarised as: 

1- Three dimensional finite element schemes for the simulation of incompressible 

regimes demonstrating non-linear rheological behaviour in complex domains 

which are computationally very e ficient can be developed. 

2- The use of perturbed continuity constraint in conjunction with an isoparametric 

tensor product element such as tri-linear 8 noded brick element results in a robust 

scheme which can readily satisfy LBB condition. 

3- Although both mixed UVWP and Modified mixed UVWP generate stable 

accurate results the modified scheme converges much faster than the traditional 

approach. 

4- Temporal discretization of the governing equations plays an important role in 

maintaining stability of the present schemes. Here first order Taylor –Galerkin 

approach has been used successfully. It is doubtful that the use of a simpler finite 

difference based techniques s

dimensional simulations.  

5- The simulations presen

computer hence maintain maximum computing economy.  

 

 

 

 

156 
 



Chapter 6                                Conclusions and recommendations for future work   
 

 

6.2 Recommendations for future work  

 developed in this present study assumed isothermal regimes and hence 

o-dimensional flow 

 

6.2

n these situations as the concentration is low the fundamental flow 

6.2.3 can be put in the non-dimensional form by using the 

 

 

There are many novel areas which using the schemes developed in this project can be 

further investigated. To provide some examples of such extensions the following 

examples can be considered.  

 

6.2.1 The code

omitted the energy equation from the system of equations representing 

incompressible fluid flow. However, in many engineering applications flow 

regimes are non-isothermal. Experience gained from tw

simulations show that addition of a challenging. A very important extension will 

therefore be the inclusion of the energy equation in the discretization scheme.  

.2 Another extension can be based on the application of the basic scheme with 

required modifications to model viscous flows carrying small amounts of solid 

particles. I

equations remain the same, however, need to be modified to include variable 

density. Variations of density can be tracked via the use of an equation of state 

which needs to be updated at the end of each time step.  

 
 The governing equations 

following non-dimensional variables.  

 

L
zz,

L
yy,

L
xx === ∗∗∗          

 

∞∞

∗

∞

∗ ===
u
ww,

u
vv,

u
uu  

157 
 



Chapter 6                                 Conclusions and recommendations for future work   
 

 

∞

∗∗∗

∞∞ η
η

=η
ρ

=ρ= ,,tt  
ρu/L

2u∞∞ρ

     

pp∗ =  

∞

∞∞

η
ρ

=
LuRe  

 
 

 
∞η
η

=η  

resents non-dimensional variables, Infinity is the free-stream 

e reference length.   

 
 
Where an asterisk rep

conditions and L denotes th

lthough this seems as a trivial extension of the present work nevertheless its 

m

comparison of the perform

used. 

 
6.2.4 

such as

achieve  for the discretization of 

instructions to link the differe  

 
 
 
 
 
 
 
 
 

A

imple entation can be lengthy and require care. This extension allows a more direct 

ance of the scheme with respect to the type of discretization 

The program can be extended and use for the simulation for various flow regimes 

 Darcy flow, flow through porous media, and combined free/porous flows. To 

 such simulation, the user will need to add one subroutine

the flow governing equations and in case of combined free/porous flows some 

nt flows regimes at interfaces.

158 
 



REFERENCES 
 
 
Akin, J.E. (1982). Application and implementation of finite element methods. 
Academic press, London. 
 
Atluri, S. N, Gallagher, R. H. Zienkiewick, O. C. Pian, T. H. H. (c1983). Hybrid and 
Mixed finite element methods. Wiley, Chichester. 
 
Altas, I., and Stephenson, J. w. 1991. A two-dimensional adaptive mesh generation 

p. Phys., 94, 201-24.  
 
Axelsson, O (1994) Iterative solution methods. Cambridge: Cambridge University Press. 

abuska, B. 1971. Error bounds for finite element method. Numer. Math. 16, 322- 
33. 

Babuska, I., and Suri, M., 1990. The p- and hp- versions of the finite element method. An 
verview. Comp. Meth. Appl. Mech. Eng., 80, 5-26.                     

ent computations. Chichester: Wiley. 

. and Haas, W (1982) A partitioned frontal solver for finite-element analysis. Int. 
 Num. Meth. Eng., 18, No. ii, 1623-1654. 

tions 
logy. 

ochev, P. B. and Gunzburger, M. D. (2007). Least-squares finite element methods. 
pringer, New York; London. 

owen, M. (2005). High-order finite difference methods for partial differential equa 
ons.  Thesis (PhD) Loughborough University. 

rackbill, J. U. and Saltzmann, J.S. 1982. Adaptive zoning for singular problems in two 
imensions. J. Comp. Phys., 46, 342.   

methods. J. Com

 
B
3
 

o
 
Babuska, I., Zienkiewicz, O.C., Gago, J., and Oliveira, E. R. A. (ed.)., 1986. Accuracy 
estimates and adaptive refinements in finite elem
 
Baker, A. J. (c1983). Finite element computational fluid mechanics. Washington 
(D.C): London: Hemisphere. 
 
Bathe, K. J. 1996. Finite element procedures. Prentice Hall, Englewood Cliffs, NJ. 
 
Beer, G
J.
 
Beer, G. and Watson, J. O (c1992). Introduction to finite and boundary element met 
hods for engineers. Wiley, Chichester. 
 
Biggins, M. J. (1980). The numerical solution of elliptic partial differential equa
by finite difference methods. Thesis (PhD) Loughborough University of Techno
 
B
S
 
B
ti
 
B
d
 

159 
 



References 
 
 
Brenner, S.C. The mathematical theory of finite element methods. 2nd ed. New York; 

, Serie Rouge, 8R-2, 
29-151. 

ester: Wiley, c1987. 

ons. Singapore, river edge, World Scientific, N. J. 

n, A.J. 1967. A Numerical method for solving incompressible viscous flows 
roblems. J. Comp. Phys., 2, 12-26. 

A. (1980). Finite dif 
rence methods Part 1: Solution of equations in Rn (Part 1). Elsevier, 

oncus, P. Golub, G. H. and O’Leary, D. P (1976) A generalised conjugate gradient 
. Bunch 

putations, Academic Press, New York. 

iley. 

 the solutions of problems of equilibrium 
nd vibrations, Bull. Am. Math. Soc, vol 49, pp 1-23. 

4) Applied numerical analysis, 5th ed; Reading, 
ass.; Wokingham: Addison-Wesley. 

ce-
all. 

. E. (1999). Application of an all-speed flow algorithm 
 heat transfer problems. Num. Heat Trans, 35, 695-715. 

thods for flow problems. Wiley, 
hichester. 

rse matrices, Oxford: Clarendon. 

London: Springer, c2002. 
 
Brezzi, F., 1974. On the existence, uniqueness and approximation of saddle point 
problems arising with Lagrange multipliers. RAIRO
1
Butcher, J. C (1993) The numerical analysis of ordinary differential equations: Runge-
Kutta and general linear methods. Chich
 
Chen, C. and Shih, T.  (c1998). Finite element methods for integro differential equa 
ti
 
Chori
P
 
Ciarlet, P. G. Lions, J. L. Marchuk, G. I. Thomee, V. and Bjorck, 
fe
Amsterdam, London. 
 
C
method for the numerical solution of elliptic partial differential equations. In J. R
and D J Rose (eds) sparse matrix com
 
Courant, R. and Hilbert, D. (1953). Methods of mathematical physics, vol 1, John 
W
 
Courant, R. (1943). Variational methods for
a
 
Curtis, F. G. and Patrick, O. W (199
M
 
Dahlquist G. and Bjork, A. (1974) Numerical methods. Englewood Cliffs, NJ:   Prenti
H
 
Darbandi, M. and Schneider, G
to
 
Donea, J. and Huerta. (2003). Finite element me
C
 
Duff, I. S (1986) Direct methods for spa
 

160 
 



References 
 
 
Duffy, D. J. (2006). Finite difference methods in financial engineering: A partial 
differential equation approach. Wiley, Chichester, England; Hoboken, NJ. 

atrices, 

, vol 9, 3, pp 302-325. 

g for 
r problems. In J.F. Thompson (ed.). 

umerical grid generation, New York: North-holland, 339. 
st a 

293. 

pl. 

l-Nakla, J. A. H. (1987). Finite difference methods for solving midly nonlinear 

enner, R. T. (1996). Finite element methods for engineers. Imperial College Press, 

orsaith, J. and Moler, K. (1969) Numeric solution of systems of linear algebraic 

orsythe, G. E. and Wasow Wolfgang. R (1960). Finite difference methods for partial 

allagher, R.H. and Zienkiewicz, O.C., 1983. Hybrid and mixed finite element meth 

hia, K. N., Osswald, G. A., and Ghia, U. 1989. Analysis of incompressible massively 
l., 

w 
vier-Stokes equations and a multigrid method. J. Comput. Phys. 

8, 387-411. 

 
Duff, I. S. Erisman A. M. and   Reid, J. K. (1986) Direct methods for sparse m
Oxford University Press, Inc., New York.  
 
Duff, I. S. and Reid, J. K. (1983) The multifrontal solution of indefinite sparse symmetric 
linear, ACM Transactions on mathematical software (TOMS)
 
Dwyer, H. A., Smooke, D. Mitchell, and Kee, Robert. J. 1982. Adaptive griddin
finite difference solutions to heat and mass transfe
N
D’Alessio, S. J. and Dennis, S. C. R. (1994). A vorticity model for viscous flow pa
cylinder. Der. Comp. Fluids. 23, 279-
 
Eiseman, P. R. 1985. Alternating direction adaptive grid generation. Comp. Meth. Ap
Mech. Eng., 64, 321-76. 
 
E
Elliptic partial differential equations. Thesis (PhD) Loughborough University 
of Technology. 
 
F
London. 
 
F
equations [Russian translation], Mir, Moscow.  
 
F
difference equations. Wiley. 
 
G
ods. Wiley, Chichester. 
 
G
separated viscous flows using unsteady Navier-Stokes equations. Int. J. Num. Meth. F
9, 1025-50.  
 
Ghia, U. Ghia, K.N. and Shin, C.T. (1982). High resolution for incompressible flo
using the Na
4
 
 

161 
 



References 
 
 
Girault. V and Raviart, P. A. (1986). Finite element methods for Navier-Stokes equa 
tions: Theory and algorithms. Berlin; New York: Springer-Verlag 
 
Glowinski, R. and Wheeler, M. F (1987) Domain decomposition and mixed finite 
element methods for elliptic problems. In R. Glowinski et al. (ed.) Domain 
ecomposition methods for partial differential equations, SIAM publication, 144-72. 

lized 
rthogonal coordinate system. NASA TM 81784. 

r system. Philadelphia, Pa.: 

reenspan, D (1960) Theory and solution of ordinary differential equations, MacMillan 

unzburger, M. D. (c1989). Finite element methods for viscous in compressible flows 

1981) Applied iterative methods. New York; London: Academic Press. 

f 
ve mathematical model for coupled predictive mathematical model 

r coupled Stokes/Darcy flows in cross-flow membrane filtration. Chem.Eng. 

einrich, J. C. Huyakorn, P. S. Zienkiewick, O. C. and Mitchell, A. R (1977). An up 

11, no. 1, 131-144. 

ood, P. (1976) Frontal solution program for unsymmetric matrices. Int. J. Numer. 

(1970) A frontal solution program for finite element analysis. Int J. Num. 
eth. Eng., ~, No. I, 5-32. 

ershaw, D. S (1978) The incomplete Cholesky conjugate gradient method for the 
erative solution of linear equations. J. Comput. Phys., Vol 26, pp. 43-65. 

d
 
Gnoffo, P. A. 1980. Complete supersonic flowfields over blunt bodies in a genera
o
 
 
Greenbaun, A (1997) Iterative method for solving linea
Society for industrial and applied mathematics. 
 
G
1960. 
 
G
A guide to theory, practice, and algorithms. Boston Academic Press. 
 
Hageman, L. A (
 
Hanspal, N.S. Waghobe, A.N. Nassehi, V. and Wakeman, R.J. 2009. Development o
a predicti
fo
J.149, 132-142. 
 
H
Wind finite element scheme for two-dimensional convective transport equa 
tion. Int. J. Num. Meth. Eng, 
 
Hestenes, M. R and Stiefel, E. L (1952) NBS J. Res., Vol 49, pp 409-436. 
 
H
Methods Eng. 10, 379-399.   
 
Irons, B. M. 
M
 
Kardestuncer, H. Ed. Finite element handbook. 
 
K
it

162 
 



 
References 

 
 
 
KiKuchi, N. (1986). Finite element methods in mechanics. Cambridge University 

s of a nonlinear pulsatile flow in a stenosed vessel. Int. J. Comp. Fluid. 

adyszhenskaya, O.A. 1969. The mathematical theory of viscous incompressible 
ow. Gordon and Breach, New York. 

inary differential equations. New York; 
ondon: Academic Press. 

s, L. and Pinder, G. F., 1982. Numerical Solution of Partial Differential Equations 
 Science and Engineering, Wiley, New York. 

r certain primiti 
e variable solutions of the Navier-Stokes equations. Int. J. Numer. Methods 

. Vortex element methods for fluid dynamic analysis of engineering 

and 
i, No 2, 393-

i et al. (eds). 
omain decomposition methods for partial differential equations Philadelphia: SIAM 

ohner, R. (c2008). Applied computational fluid dynamics techniques: An introdu 

asson, C. Saabas, H. J. and Baliga, B. R. (1994). Co-located equal order control 
nal axisymmetric incompres 

ble fluid flow. Int. J. Num. Meth. Eng, 18, 12-26. 

ew York. 

Press, Cambridge. 
 
Kumar, B.V. Rathish and Naidu, K. B. (1998). A transient UVP finite element analy 
si
Dynamics, 9:1, 71-76. 
 
L
fl
 
Lapidus, L (1971) Numerical solution of ord
L
 
Lapidu
in
 
Lee, R.L. Gresho, P.M. and Sani, R.L. 1979. Smoothing techniques fo
v
Eng. 14, 1785-1804. 
 
LeVeque, R. J. (2002). Finite volume methods for hyperbolic problems. Cambridge 
University Press, Cambridge. 
 
Lewis, R.I. 1991
 
Light, M. F. and Luxmoore, A. R. (1977) Application of the front solution to two-
three-dimensional elastoplastic crack problems. Int. J. Num. Meth. Eng., i
395. 
 
Lions, P. L (1988) On the Scharz alternating method. In R. Gloswinsk
D
Publications, 1-42. 
 
L
tion based on finite element methods, 2nd ed. John Wiley, Chichester. 
 
M
Volume finite element method for two-dimensio
si
 
Mura. T and Koya. T. (1992). Variational methods in mechanics. Oxford; N

163 
 



References 
 

akamura, S. 1982. Marching grid generation using parabolic partial differential 
North-

) 
Eng. 

tric 

den, J. T. 1988. Adaptive FEM in complex flow problems. In J. R. Whiteman (ed.). The 

ent 

den, J. T. 1989. Progress in adaptive methods in computational fluid dynamics. In J. 
phia: 

 for 
e analysis of inviscid compressible flow: I. Fast refinement/unrefinement and moving 

den, J. T., Wu, W., and Legat, V. 1995. An hp adaptive strategy for finite element 

zi Sik, M. N. (1994). Finite difference methods in heat transfer. Boca Raton, 

eshing 

ian, T. H. H and Wu Chang-Chun. (2006). Hybrid and incompatible finite element 

 
 
N
equations. In J. F. Thompson (ed.). Numerical grid generation, New York: 
Holland. 775.  
 
Nassehi, V. Hanspal, N. S. Waghode, A. N. Ruziwa, W. R. and Wakeman, R.J. (2005
finite element simulation of flow through pleated cartridge filters. Chem. 
Sci . 60 (4), 995-1006. 
 
O’Brien, V. and Ehrlich, L.W. 1985. Simple pulsatile flow in an artery with a cons
tion, J. Bio. Mech. 18, pp 117-127. 
 
Oden, J. T. (1972). Finite elements of nonlinear continua. McGraw-hill, New York. 
 
O
mathematics of finite elements with applications, Vol 6, London: Academic Press Lt., 1-
29. 
 
Oden, J. T., Babuska, I., and Baumann, C. E., 1998. A discontinuous hp finite elem
method for diffusion problems. J. Comp. Phys., 146, 491-519. 
 
O
Flaherty, et al (ed.). Adaptive methods for partial differential equations; Philadel
SIAM publications. 
 
Oden, J. T., Strouboulis, T., and Devloo, P. 1986. Adaptive finite element methods
th
mesh methods for unstructured meshes. Comp. Meth. Appl. Mech. Eng., 59, no 3, 327-
62. 
 
O
approximations of the Navier-Stokes equations. Int. J. Num. Meth. Fl., 20, 831-51. 
 
 
O
London: CRC. 
 
 
Peraire, J., Vahdati, M., Morgan, K., and   Zienkiewicz, O.C. 1987. Adaptive rem
for compressible flow computations. J. comp. Phys., 72, no 2, 449-66. 
 
P
methods. Boca-Raton; Fla.: Chapman & Hall/CRC. 

164 
 



 
References 

 
 
Pironneau, O. (1989). Finite element methods for flows. Wiley, New York. 
 
Pittman, J.F.T. 1989. Finite elements for field problems.  In: Tucker, C.L. III (ed); 

omputer modelling for polymer processing, chapter 6, Hanser publishers, 

vailo, P. M. (1979) An algorithm for eliminating unknowns in the 
ontal method. Probl. Prochn., No 8, 30-31. 

ent method. Springer-Verlag, Berlin; New York. 

uperelement method in computations of engineering structures. Postnov, V. A (ed.) [in 

s, W. H., Flannery, B.P., Tewkolsky, S. A. and Velterling, W. T (1992). Numerical 
cipes- The art of scientific computing (FORTRAN version), Cambridge  University 

robert, J., Hassan, O., Peraire, J, and Morgan, K., 1991. An adaptive finite element 

 Chhabra, R. P. and Eswaran. V. (2006). Steady flow of power 
w fluids  across a circular cylinder. The Can. J. Chem. Eng, Vol 84. 

aad, Y (1996) Iterative methods for sparse linear systems. Boston: PWS Publishing. 

therosclerosis. J. Am. Med. Ass. 179, 36-40. 

ngewaudt 
, 1005-20 

chneider, G. E. and Raw, M. J. (1987). Control volume finite element method for 

ions. 

C
Munich, pp. 237-331. 
 
Platonov, A. D. and Tri
fr
 
Poceski, A. 1992. Mixed finite elem
 
Postnov, V. A., Dmitriev, S. A., Eltyshev, B. K. and Rodionov, A. A (1979) 
S
Russian], Sudostroenie, - Leningrad. 
 
Pres
re
Press, Cambridge. 
 
P
method for transient compressible flows. Int. J. Num. Meth. Eng., 32, 1145-59.  
 
Ram Prakash Bharti,
la
 
Reddy, J. N. (1986). Applied functional analysis and variational methods in engineers, 
McGraw-Hill, New York. 
 
S
 
Sako, Y. 1962. Effect of turbulent blood flow and hypertension on experimental 
a
 
Scharz, H. A (1869) Uber einige abbidungsaufgauben J. fur die reine und A
Mathematik, 70
 
S
Heat transfer and fluid flow using collocated variables-1. Computational proce 
dure. Num. Heat Trans, 11, 363-399. 
 
Sewell, G (1988) The numerical solution of ordinary and partial differential equat
Academic Press. 

165 
 



References 
 

hampine, L. F (1994) Numerical solution of ordinary differential equations. New York; 

mith, G. D. (1985). Numerical solution of partial differential equations: Finite differ 

oares, A. A. Ferriera, J. M. and Chhabra, R. P. (2005). Flow and forced convection 

d. Eng. Chem. Res. 44, 5815-5827. 

n. 

Matrix iterative analysis. Englewood cliffs, NJ: Prentice-Hall. 

0, 279-308. 

utational fluid 
ynamics: The finite volume method, 2  ed. Harlow: Pearson. 

 volume finite element methods for fluids and 
lids. Hackensack, NJ. ; London:  World scientific, c2009. 

achspress, E. L (1966) Iterative solution of elliptic systems. Englewood cliffs, NJ: 

ang, H. (c1982). Introduction to groundwater modelling: Finite difference and finite 

riggers, P. Nonlinear finite element methods. Berlin; London: Springer, c2008. 

rk. 

hang, Xing. 2006. Computation of viscous incompressible flow using pressure cor 

 
S
London: Chapman & Hall. 
 
Shashkov, M. and Steinberg, S. (1996). Conservative finite difference methods on 
general grids. Boka Raton, Flo; CRC press London. 
 
S
rence methods, 3rd ed; Oxford, Clarendon. 
 
S
heat  transfer in cross flow of non-Newtonian fluids over a circular cylinder. 
In
 
Thomas, J. W. (1995). Numerical partial differential equations: Finite difference 
methods. Springer, New York, Londo
 
Traub, J. F. (1964)  Iterative methods for the solution of equations. Prentice-Hall. 
 
Varga, R. S (1962) 
 
Verma, A. K. and Eswaran, V. (1999). An overlapping control volume method for the 
Navier-Stokes equations on non-staggered grids. Int. J. Numer. Meth. Fluids. 
3
 
Versteeg, H. K and Malalasekera, W. (2007). An introduction to comp

ndd
 
Voller, V. R. Basic control
so
 
W
Prentice-Hall. 
 
W
Element methods. Academic press, San Diego. 
 
W
 
Yanenko, N.N. 1971. The method of fractional steps. Springer-Verlag,  New Yo
 
Z
rection method on unstructured Chimera grid. Int. J. Comp. Fluid. Dynamics, 
20:9, 637-650. 

166 
 



References 
 
 
 
Zienkiewick, O. C. and Cheung, Y. K. (1965). Finite elements in the solution of field 
roblems. The engineer, 507-510. 

 algorithm for compressible 
nd incompressible flow-Part I. Characteristic-based scheme. Int. J. Num. 

ienkiewick, O. C. and Morgan, K. (1983). Finite element and approximation. Wiley 

. 

 

estrictions on mixed formulation. Int. J. Numer. Methods Eng. 32, 1189-1203. 

ienkiewicz, O.C. 1971. The finite element method in engineering science, 2  ed. New 

p
 
Zienkiewick, O. C. and Codina, R. (1995). A general
A
Methods in Fluids, 20, 869-885. 
 
Z
New York. 
Zienkiewick, O. C. and Taylor, R. L (1991). The finite element method, Vol 2
New York: McGraw-Hill. 
 
Zienkiewicz, O.C. and Taylor, R.L. 1994. The finite element method, 4th ed, Vol 1
and 2, McGraw-Hill, London. 
 
Zienkiewicz, O.C. and Wu, J. 1991. Incompressibility without tears-How to avoid 
R
 

ndZ
York: McGraw-Hill. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

167 
 



A  
 
 

APPENDIX 1 

SHAPE FUNCTIONS DERIVATION 

dix, reader interested in further information about this interpolation function 

ecall that name isoparametric is used to describe the element because the same 

t  field 

nknowns within an element. The isoparametric element is classified as one of the natural 

 
igure A1: 8-noded hexahedral isoparametric element. 

PPENDICES

 

 

 

A brief detail on how the isoparametric interpolation function used in this study is given 

in this appen

may refer to Zienkiewicz (1971), Chung (2002), and Nassehi (2002). 

R

parametric function which describes the geometry may be used to in erpolate the

u

coordinate elements because of its use of the nondimensionalized coordinate. 

 

  

F

168 
 



Appendix 1                                                                        Shape functions derivation 
 

 

Consider the hexahedral element as shown in figure A1, the natural coordinates ( ζηξ ,, ) 

are related to the referen the relation 

x, y, z = 

ce Cartesian coordinates (x, y, z) through 

 

             (A1) ξζα+ηζα+ξηα+ξηζα+ζα+ηα+ξα+α 87654321

 

 

 

 

 

It usually recommended to place the natural coordinates ( ζηξ ,, ) at the centroid of the 

element so that their values could range from 0 to ± 1, thus writing relation (A1) in term 

f the nodal values gives 

 

 

The system of equations given by (A2) can be written in a matrix form as 

 

 

 

Where the matrix [M] is given by 

o

 

)1)(1()1)(1()1)(1()1)(1)(1()1()1()1(x
)1)(1()1)(1()1)(1()1)(1)(1()1()1()1(x

)2A()1)(1()1)(1()1)(1()1)(1)(1()1()1()1(x
)1)(1()1)(1()1)(1()1)(1)(1()1()1()1(x

)1)(1()1)(1()1)(1()1)(1)(1()1()1()1(x
)1)(1()1)(1()1)(1()1)(1)(1()1()1()1(x

)1)(1()1)(1()1)(1()1)(1)(1()1()1()1(x
)1)(1()1)(1()1)(1()1)(1)(1()1()1()1(x

876543218

876543217

876543216

876543215

876543214

876543213

876543212

876543211

−−α+−α+−α+−−α+−α+α+−α+α=
−α+−α+α+−α+−α+α+α+α=

α+α+α+α+α+α+α+α=
−α+α+−α+−α+α+α+−α+α=

−−α+−−α+−−α+−−−α+−α+−α+−α+α=
−α+−−α+−α+−−α+−α+−α+α+α=

α+−α+−α+−α+α+−α+α+α=
−α+−α+−−α+−−α+α+−α+−α+α=

)3A(]][M[]x[ α=  

 

169 
 



Appendix 1                                                                        Shape functions derivation 
 

 

 

⎤⎡ −−−− 11111111

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎢
⎢

⎣ −−−−
−−−−

−−−−
−−−−

−−−−
−−−−

=

11111111
11111111

11111111
11111111

11111111
1111111

11111111

M  
⎢
⎢1

 

 

And [α ] by 

 

 [ ] ]x[M][ 1−=α )4A(  

 

With 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−−−
−−−−

−−−−
−−−−

−−−−
−−−−

=−

11111111
11111111
11111111

11111111
11111111

11111111
11111111

11111111

8
1]M[ 1  

 

Substituting (A4) into (A1) yields 

 

iN
)e(

Ni xx φ=   

 

Where 

170 
 



Appendix 1                                                                        Shape functions derivation 
  

 

)5A()1)(1)(1(
8
1

33N22N11N
)e(

N ξξ+ξξ+ξξ+=φ  

 

If one sets ζ=ξη=ξξ=ξ 321 and,,

3  into equation (A5) give the he

 then substituting the nodal values of 

ight terpolation functions as 

 

N2N1N and,, ξξξ  in

)1)(1)(1(
8
1

)1)(1)(1(
8
1

)1)(1)(1(
8
1

)1)(1)(1(
8
1

)1)(1)(1(
8
1

)1)(1)(1(
8
1

)e(
6

)e(
5

)e(
4

)e( =φ
 

3

)e(
2

)e(
1

ζ+η+ξ+=φ

ζ+η+ξ−=φ

ζ−η−ξ−=φ

ζ−η−ξ+

ζ+η−ξ+=φ

ζ+η−ξ−=φ

 

 
)1)(1)(1(

8
1

)1)(1)(1(
8
1

)e(
8

)e(
7

ζ−η+ξ−=φ

ζ−η+ξ+=φ
 

 

 
 

 

 
 
 
 
 
 

 
 
 

171 
 



APPENDIX 2 
 

INPUT FILE FORMAT 
 

 
Heading & Formats Variables Description 
 

ine 1 Format (A) 
 
Title 

 
Title of the input file 

riables 
) 

       Variable 1 
       Variable 2 

esh data 
Line 3 Format(4I5) 
       Variable 3 
       Variable 4 
       Variable 5 
       Variable 6 
Output control 
Line 4 Format(2I5) 
     Variable 7 

       Variable 8 
 
Gravity force data 
Line 5 Format(3F10.0) 
       Variable 9 
       Variable 10 
       Variable 11 
Convergence tolerance 

     Variable 12 
       Variable 13 
       Variable 14 

heological & physical data 
ine 7 Format(9D10.5) 
     Variable 15 

     Variable 16 
     Variable 17 
     Variable 18 
     Variable 19 
     Variable 20 
     Variable 21 
     Variable 22 
     Variable 23 

 
 

ngaus 
 
 
nnp 
nel 
nbc 
nmat 
 
 
ntep 
icord 
 
 
 
grav1 
grav2 
grav3 
 
 
tolv 
tolp 
tolc 
 
 
rvisc 
 
power 
tref 
tbco 
taco 
dispc 
pref 
roden 
gamad 

Number of integration full points 
 
 
Total number of nodes 
Total number of elements 
Total number of boundary conditions  
Total number of materials 
 
 
Number of iteration 
Coordinate system selection ( 0 for 
Cartesian and 1 for cylindrical) 
 
 
Body force in x-direction 
Body force in y-direction 
Body force in z-direction 
 
 
Velocity convergence tolerance factor  
Pressure convergence tolerance factor 
Concentration convergence tolerance factor 
 
 
Consistency coefficient in the power law 
model 
Power law index 
Reference temperature 
Coefficient b in the power law model 
Coefficient a in the power law model 
Coefficient for convective equation 
Reference pressure 
Density 
Shear rate 
 

L
Basic control va
Line 2 Format(2I5

ncn 

 
 
Number of nodes per element 

M

  

Line 6 Format(3F10.5) 
  

R
L
  
 
  
  
  
  
  
  
  
  
 

172 
 



 
 

Appendix 2                                                                                          Input file format 

 

 

eading & Formats Variables Description

20.12)

  
 

 27    
ty data 

rmat(21I7) 
  
 
 

 
 

     Variable 35 

ta  
rmat(2I5,F10.4) 

 
m 

) 

z(m) 
 

e(n,1) 
(n,2) 

node(n,3) 
node(n,4) 

e(n,5) 
(n,6) 

node(n,7) 
node(n,8) 
 

jbc 
 

 

 
Node number m 

Z-coordinate of node m 
 

r n 
ment number n 

Node number 3 of element number n 
Node number 4 of element number n 

 of element number n 
ber n 

 number n 
Node number 8 of element number n 
 

h the boundary 
le 

= 1 for x-direction velocity 
= 2 for y-direction velocity 

 

 
 
H
Nodal coordinates   
Line8-linemFormat(I7,3E  
       Variable 24 
       Variable 25 x(m X-coordinate of node m 
       Variable 26 y(m) Y-coordinate of node m 
       Variable
Element connectivi
Line m-line n Fo   
       Variable 28 n Element number n 
       Variable 29 nod Node number 1 of element numbe
       Variable 30 node Node number 2 of ele
       Variable 31 
       Variable 32 
       Variable 33 nod Node number 5
       Variable 34 node Node number 6 of element num

Node number 7 of element  
       Variable 36 
Boundary condition da
Line n-line k Fo   
        Variable 37 ibc Node number at whic
  condition is applicab
        Variable 38  
 
  = 3 for z-direction velocity 
  = 4 for pressure 
        Variable 39 vbc Boundary condition value 
 
 
 
 
 
 
 
 
 
 
 
 
 

173 
 



APPENDIX 3 
 

 
.1 Sample input file 

  1 

  0.000 
1 
00D+ 3.14000D-

000D+00.10132 06.10000D+0
00000E+00  0.00 0E+0
00000E+00  0.83 0E-02
00000E+00  0.16 0E-01
00000E+00  0.25 0E-01
00000E+00  0.33 0E-01
00000E+00  0.41 0E-01
00000E+00  0.50 0E-01

000000E+01  0. 33340000E-
  9057  0.100000000000E+01  0. 0000000000E+ 00 

00 000E+01  0. 66690000E-
  9059  0.100000000000E+01  0. 3333430000E-
  9060  0.100000000000E+01  0. 0000030000E-
  9061  0.100000000000E+01  0. 6666700000E- 00E+00 

000000E+01  0. 3340000E-
    1     79      2      1     78     86      9      8     85 
    2     80      3      2     79     87     10      9     86 
    3     81      4      3     80     88     11     10     87 
    4     82      5      4     81     89     12     11     88 
    5     83      6      5     82     90     13     12     89 
    6     84      7      6     83     91     14     13     90 
    7     86      9      8     85     93     16     15     92 
    . 
    . 
    . 
 7554   8802   8774   9026   9050   8809   8781   9032   9056 
 7555   9052   9028   9027   9051   9058   9034   9033   9057 
 7556   9053   9029   9028   9052   9059   9035   9034   9058 

PROGRAM LISTING 

3
 
 
Sample input file 
                         
    8    3 
 9062 7560 8390  
    1    0 
     0.000     0.000   
   0.00001   0.00001   0.0000
.80000D+02.10000D+01.293 0
01.20000D+00.20 D+ 4.20000D+00 
       1  0.0000000 000000000 0  0.000000000000E+00 
       2  0.0000000 333347000   0.000000000000E+00 
       3  0.0000000 666668000   0.000000000000E+00 
       4  0.0000000 000000000   0.000000000000E+00 
       5  0.0000000 333335000   0.000000000000E+00 
       6  0.0000000 666668000   0.000000000000E+00 
       7  0.0000000 000001000   0.000000000000E+00 
       . 
       . 
       . 
    9056  0.100000 5833 01  0.937500000000E-01 

00  0.100000000000E+  10
    9058  0.100000 0 9166 01  0.100000000000E+00 
  83 01  0.100000000000E+00 
  75 01  0.100000000000E+00 
  66 01  0.1000000000
    9062  0.100000 58333 01  0.100000000000E+00 
  
  
  
  
  
  
  
  
  
  
  
  
  

174 
 



   Appendix 3.1                                                                                      Sample input file 
 
 
   7559   9056   9032   9031   9055   9062   9038   9037   9061 

60    9056   8816   8788   9038   9062 
  1    1    0.1000 
  1    2    0.0000 

 
  0.0000 

  0.1000 

1    0.1000 
2    0.0000 
3    0.0000 

    4    0.0000 
    4    0.0000 
    4    0.0000 

   75    8809   8781   9032
  
  
    1    3    0.0000 
    2    1    0.1000
    2    2  
    2    3    0.0000 
    3    1  
    3    2    0.0000 
    3    3    0.0000 
    4    1    0.1000 
    4    2    0.0000 
    4    3    0.0000 
    5    1    0.1000 
    5    2    0.0000 
    5    3    0.0000 
    6    1    0.1000 
    6    2    0.0000 
    6    3    0.0000 
    7    
    7    
    7    
    . 
    . 
    . 
 9060    3    0.0000 
 9061    1    0.0000 
 9061    2    0.0000 
 9061    3    0.0000 
 9062    1    0.0000 
 9062    2    0.0000 
 9062    3    0.0000 
    .  
    . 
    . 
 9021    4    0.0000 
 9027
 9033
 9039
 9045    4    0.0000 
 9051    4    0.0000 
 9057    4    0.0000 

175 
 



Appendix 3.2                                                                                  Computer program 
 
 
 
 
      Program StokesSolution 

==============================================  c 
                                                                                                           c 
 for the solution of generalised newtonian fluids of                         c 

 fluids governed by Stokes equations. The solution is                      c 
 weighted residual galerkin finite element method in                      c 

th the use of 8 nodes isoparametric hexahedral elements.                 c 
                                                                                                           c 
putational domain is assumed to be isothermal.                                c 
                                                                                                           c 
 schemes are developed for the problem solutions:                           c 
method in which velocity components and pressure are regarded    c 
iables and discretized as unknowns.                                                 c  

                                                                                                           c 
eme is a modification of the U-V-W-P method with  a faster          c c    
                                                                                                     c 
                                                                                                           c 
ram running after typing in some basic data, the user will prompt  c  c   
me to use.                                                                                      c 
                                                                                                           c     

he apparent viscosity is calculated and updated using the power law model          c 
                                                                                                                                 c 
he system of algebraic equations obtained after the discretization process is         c 

 method.                                                                                          c  
                                                                                                        c 
f options is given on the program listing.                                      c 
                                                                                                        c 
sists of a main module and subroutines and among the are two    c         
                                                                                                        c 
s written for Tecplot and Cosmos Geostar for visualizations.       c           

                                                                                                                                c 
he program is written in FORTRAN programming language                                c 
                                                                                                                                 c 

rom scratch) by N. Rupert. Boukanga (last updated April 2010)   c    c                               

s Prof V. Nassehi for his hard work by originally developing the c 
e subroutines                                                                                  c 
                                                                                                        c 

============================================  c 

 
c ============
c                           
c   This program is
c   incompressible
c   obtained via the
c   conjunction wi
c                           
c   The entire com
c                           
c   Two numerical
c   The U-V-W-P 
c   as primitive var
c                           
c   The second sch
convergence  rate 
c                           
c   During the prog
to select with sche
c                           
c   T
c     
c   T
c   solved by frontal
c                              
c   A complete list o
c                              
c   The program con
c                              
c   output subroutine
c      
c   T
c     
c   Developed (not f
c 
c   The author thank
c   the majority of th
c                              
 
c==============

176 
 



Appendix 3.2                                                                                  Computer program 
c     unit                    contents                                                                                        c  
==========================================================  c 
       51    i               input data file                                                                                c 
               i                                                                                                                      c 

e for documentation                                                       c 
               i                                                                                                                 c 

c 

 

 

   grav2               second component of the applied body force                                 c 

     tolp                convergence tolerance factor for pressures                                      c 

c
c
c
c       60    i               output fil
c
c       11    i               output file containing velocity field data for  plotting              c 
c               i               plotting                                                                                      c 
c               i                                                                                                                 c 
c       12    i    output file containing concentration data for  contour plotting           c 
c               i                                                                                                                 c  
c       14    i    used as a work file in the solver routine                                              c    
c               i                                                                                                                  c 
c       15    i    stores shape functions and their derivatives at   'full'                           c  
c               i     integration points                                                                                 c 
c               i                                                                                                                  c 
c       17    i    output file containing pressure data for                                                c 
c               i    contour plotting                                                                                     c 
c               i                                                                                                                   c 
c       20    i    output file containing elemental stiffness matrix                                   c 
c               i    for element number 14 as seen on the mesh                                           
c               i                                                                                                                    c 
c       610   i    output for Cosmos Geostar post-processing                                          c 
c       614   i    output for Tecplot post-processing                                                        c
c                                                                                                                                     c  
c ========================================================== c   
c                                                                                                                                     c 
c     List of variables                                                                                                      c 
c     =================                                                                                          c  
c     aa   (   27,  27)   element coefficient matrices on LHS                                           c 
c     K    (   27,  27)   element coefficient matrices on RHS                                           c  
c     b    (    3,  20)   global derivatives of shape functions                                             c 
c     bc   (maxdf     )   nodal constraints (boundary conditions)                                     c 
c     conc (maxnp     )   nodal concentrations                                                                 c 
c     cord (maxnp,ndim)   nodal coordinates                                                                  c    
c     del  (    3,  20)   local  derivatives of shape functions                                             c 
c     vel  (maxdf     )   nodal velocities  (displacements)                                               c 
c     dsc1, dsc2          depths of slip layers                                                                     c   
c     grav1               first  component of the applied body force                                     c 
c  
c     icord               indicates whether the coordinate system is cartesian (planar)        c 
c                         or cylindrical (axisymmetric)                                                             c 
c     tolc                convergence tolerance factor for concentration                               c 
c
c     tolv                convergence tolerance factor for velocities                                     c 

177 
 



Appendix 3.2                                                                                  Computer program 
 
 
 
c     ndf                 degree of freedom per node                                                              c 
c     ndim                dimensions of the solution domain                                                  c 
c     nel                 total number of elements                                                                   c     

 c   
c 
 c 
c 
c  

 

c     ngaus               number of integration points                                                          
c     nnp                 total number of nodal points                                                            
c     node (maxel,maxst)   element connectivity                                                            
c     nter                maximum number of iterations for non-newtonian case                  
c     num                 number of integration points per element                                       
c     p    (    20    )   shape functions                                                                         c  
c     press(maxnp     )   nodal pressures                                                                   c 
c     r1   (maxdf     )   global load vector  (r.h.s.)                                                     c 
c     rfrct               friction coefficient (slip)                                                            c 
c     rr   (   27     )   element load vector                                                                   c 
c     stiff(maxar     )   global stiffness matrix ( a in ax=r.h.s.)                                 c 
c     rvisc               mu nought;consistency coefficient in power-law model          c 
c     power               power law index                                                                      c 
c     stemp               temperature                                                                              c   
c     rtem                reference temperature                                                                c 
c     spress              pressure                                                                                     c 
c     rpress              reference pressure                                                                     c     
c     tco                 coefficient relating viscosity to temperature                              c 
c     pco                 coefficient relating viscosity to pressure                                   c 
c     gamad               shear rate                                                                                c 
c     nwr                 no. of sample nodes for recording transient solutions              c 
c                                                                                                                              c 
c ======================================================= c 
c     List of Subroutines                                                                                           c 
c     ===================                                                                               c  
c                                                                                                                               c  
c     bacsub              backsubstitution method for finding the final                         c   
c                         solution vector                                                                              c 
c     clean               cleans the arrays and prepares them for                                    c 
c                         solution                                                                                          c 
c     conc                calculates the concentrations                                                     c 
c     contol              makes a check for the convergence                                          c 
c     deriv               calculates the jacobian matrix, its determinant                          c 
c                         and global derivatives of the shape functions                             c 
c     flow Stokes         calculates the velocities and pressures via the UVWP method   c
c     flow Stokes2        calculates the velocities and pressures via the modified      c 
c                         UVWP method                                                                              c 
c     front               frontal method for solving the final set                                      c 
c                         of equations                                                                                   c 

178 
 



Appendix 3.2                                                                                  Computer program 
 
 
c     getmat              reads the input material data                                                    c 

 
 

c 
c 

 c  
 c 

 
 c   
 c 

 

c     getnod              reads the nodal co-ordinates for cartesian                                c 
c                         and axisymmetric systems                                                            c 
c     lumpm               evaluates the terms of the mass matrix                                   c 
c     output              prints the final solution                                                             c 
c     putbcv              imposes the primary boundary conditions for                         c   
c                         velocity                                                                                         c 
c     putbcc              imposes the primary boundary conditions for                          c 
c                         concentration                                                                                 c 
c     setprm              Sets the location data for nodal degrees of                               c 
c                         freedom                                                                                           c
c     shape               calculates the shape functions and their                                      c
c                         derivatives                                                                                        
c     slip                identifies the upper and lower boundary                                        
c                         layers.                                                                                              
c     stress              calculates stress components at integration                                  
c                         points                                                                                                c 
c     visca               calculates the viscosity                                                                  c
c     viscb               calculates virtual viscosity for slip walls                                      
c                                                                                                                                   
c========================================================== c 
 
      parameter (maxel  = 60000    ) 
     parameter (maxnp  = 37000    ) 
     parameter (maxbc  = 20000    ) 
      parameter (maxdf  = maxnp*4  ) 
     parameter (maxst  = 80      ) 
     parameter (maxfr  = 5000   ) 
      parameter (ndim   = 3       ) 
 
      implicit real*8 (a-h,o-z) 
c 
c    Storage allocation 
c    ================== 
c       
      dimension title (         80) 
      dimension node  (maxel,maxst) ,pmat (maxel,  9) ,cord (maxnp,ndim) 
      dimension ncod  (maxdf      ), bc   (maxdf    )  
      dimension ibc   (maxbc      ) ,jbc  (maxbc    ) ,vbc  (maxbc    ) 
      dimension vel   (maxdf      ) ,conc (maxnp    ) ,press(maxnp    ) 
      dimension r1    (maxdf      )  
      dimension clump (maxnp      ) ,stres(maxnp,  6)  
      dimension vet   (maxdf      ) ,cet  (maxnp    ) ,pet  (maxnp    )  

179 
 



Appendix 3.2                                                                                  Computer program 
 
 
      dimension ldest (maxst      ) ,kdest(maxst    ) ,nk   (maxst    ) 
      dimension eq    (maxfr,maxfr) ,lhed (maxfr    ) ,khed (maxfr    ) 
      dimension kpiv  (maxfr      ) ,lpiv (maxfr    ) ,jmod (maxfr    ) 
      dimension qq    (maxfr      ) ,pvkol(maxfr    ) ,sinv (maxel, 27) 
      dimension mdf   (maxdf      ) ,ndn  (maxdf    )  
      dimension ldsc  (22         ) 
      dimension temp  (maxnp      ) ,actpress(maxnp) 
      dimension rmat1 (maxel,   13) ,rmat2(maxel, 13) 
      character *20 filnam 
c 
c    Opening of input and output data files  
c===================================================c 
       
      call GFMFEM 
       
 print*,'enter the name of your data file' 
 read(*,2000) filnam  
 
      open(unit=51,File=filnam,access='sequential',form='formatted', 
     1     status="unknown",iostat=ios) 
            
 open(unit=60,file='res.txt',access='sequential',form='formatted', 

s) 

',access='sequential',form='formatted', 

access='sequential',form='formatted', 
ios) 

  
rmatted',status='scratch',iostat=ios) 

  open(unit=15,form='unformatted',status='scratch',iostat=ios) 

  print*,"files opened" 

     1     status="unknown",iostat=io
   
 open(unit=17,file='stress.txt
     1     status="unknown",iostat=ios) 
      open(unit=20,file='stiffmat',
     1     status="unknown",iostat=
            
 
      open(unit=14,form='unfo
    
 
        if(ios==0)then 
 
   else  
   print*,"files not opened" 
   stop   
   end if 
 
 rewind 51 
 rewind 60 
 rewind 20 

180 
 



Appendix 3.2                                                                                  Computer program 
 
 
      do 5010 itl = 1,maxel 
      do 5010 ivl = 1,80 
                          node (itl,ivl) = 0 
5010  continue 
      do 5020 itl = 1,maxel 
      do 5020 ivl = 1,8 
                          pmat (itl,ivl) = 0.0 
5020  continue 
      do 5030 itl = 1,maxnp 

  do 5030 ivl = 1,3 

o 5040 itl = 1,maxnp 
6 

                  stres(itl,ivl) = 0.0 

                    vel  (itl    ) = 0.0  

             ncod   (itl)   = 0 

vet    (itl)   = 0.0 

070 itl = 1,maxnp 
 (itl)   = 0.0 

     pet    (itl)   = 0.0 
   press  (itl)   = 0.0 

    do 5  = 1,maxbc 

          jbc   (itl)    = 0 
          vbc   (itl)    = 0.0 
080  continue 

)  = 0.0 
)  = 0.0 

    
                          cord (itl,ivl) = 0.0 
5030  continue 
      d
      do 5040 ivl = 1,
        
5040  continue 
      do 5050 itl = 1,maxdf 
 
5050  continue      
      do 5060 itl = 1,maxdf 
             
                          r1     (itl)   = 0.0 
                          bc     (itl)   = 0.0 
                          
                          mdf    (itl)   = 0 
                          ndn    (itl)   = 0 
                          nopp   (itl)   = 0 
5060  continue 
      do 5
                          clump 
                          cet    (itl)   = 0.0 
                          conc   (itl)   = 0.0 
 
   
5070  continue 
  080 itl
                          ibc   (itl)    = 0 
                
                
5
      do 5090 itl = 1,20 
                          del   (1,itl
                          del   (2,itl

181 
 



Appendix 3.2                                                                                  Computer program 
 
 
                          kdest (itl  )  = 0 

l  )  = 0 

 1,maxfr 
  = 0 

(itl  )  = 0 

lpiv  (itl  )  = 0 
  = 0 

itl  )  = 0.0 

 1,maxfr 
= 0.0 

------------------------------ 

             

d (51,2010) title 

=== 

0) ncn ,ngaus 

0) ncn ,ngaus 

material parameters 
=========================== 

1)) read (51,2040) ntep ,icord 

) 
) 

0) 

                          nk    (it
5100  continue 
      do 5110 itl =
                          lhed  (itl  )
                          khed  
                          kpiv  (itl  )  = 0 
                          
                          jmod  (itl  )
                          qq    (
                          pvkol (itl  )  = 0.0 
      do 5110 ill =
                          eq    (itl,ill)
5110  continue 
c-----------------------------------------
     
c     Title of the program    
c     ==================== 
 
 if(.not. eof(51)) rea
      write(60,4010) title 
  
c     Element description data 
c     =====================
      
      if (.not. eof(51)) read (51,202
 print*, "ncn, ngaus read" 
      write(60,402
 
c     Mesh, boundary condition and 
c     =====================
  
 if (.not. eof(51)) read (51,2030) nnp  ,nel  ,nbc  ,nmat 
 print*, "nnp, nel ,nbc ,nmat read" 
      if (.not. eof(5
c 
      if(icord.eq.0) write(60,4030
      if(icord.eq.1) write(60,4040
 
      write(60,405
      
      if(ntep.eq.0) ntep=1 
 

182 
 



Appendix 3.2                                                                                  Computer program 
 
 
c    if ntep = 1 then computed result after every iteration will 

d the result of intermediate 
s choose your own ntep;the result of first and 

ill always be printed. 
====================================== 

gt.maxnp) then 
e(60,4060) 

t.maxel) then 
60,4060) 

t.maxbc) then 
   write(60,4060) 

 .gt.maxel) then 
                   write(60,4060) 

   print*, "the program is aborted" 

       endif 
     

np ,nel ,nbc ,nmat 

050) grav1, grav2, grav3 
" 

rite(60,4080) grav1, grav2, grav3 

) tolv ,tolp, tolc 
 

===================

are arrays for solution process 
  

=======================================

nmat,pmat,51,60,maxel,rtem,rpef) 
call getnod(nnp,cord,51,60,maxnp,ndim,icord) 

ode,51,60,maxer) 
     call getbcd(nbc,ibc,jbc,vbc,51,60,maxbc) 

c    be printed ;if you do not nee
c    computation
c    converged solutions w
c    =====================
 
                if(nnp   .eq.0  .or.nnp  .
                                             writ
            elseif(nel   .eq.0  .or.nel  .g
                                             write(
            elseif(nbc   .eq.0  .or.nbc  .g
                                          
            elseif(nmat  .eq.0  .or.nmat
                          
             
 
            stop 
        
 
  
 write(60,4070) n
 
      if (.not. eof(51)) read (51,2
 print*, "grav1 grav2 grav3 read
      w
 
      if (.not. eof(51)) read(51,2060
      print*, "tolv, tolp, tolc read"
 
      maxer=maxel 
 
c    
============================================
============ 
c    Read input data from main data file and prep
c  
========================
============ 
 
       call getmat(nel,
       
       call getelm(nel,ncn,n
  

183 
 



Appendix 3.2                                                                                  Computer program     
 
 
c============================================================c 

================c 

     if specified) 

r non-newtonian case 
lution domain 

                              do 5125 iel = 1,maxel 

                         sinv(iel,lg)=0.0 
125                         continue  

                              do 5130 ivel= 1,maxdf 

130                                  continue 

axnp 
   rtem 

140                                  continue 

======================================c 
                                 Transient data 

=============================================================c 

e stepping technique (backward difference,  
    forward difference, central difference, galerkin)  

mployed for finding solution 
============================= 

c     Start of the time loop 
c============================================
c 
c     Set control parameters (default values are overwritten by input data 
c
c 
c     ncn      number of nodes per element 
c     ngaus    number of integration points 
c     nter     maximum number of iterations fo
c     ndim     number of space dimensions in the so
c 
c      nter  = 5 
       num = 13 
   
                                   do 5125 lg = 1,num 
          
5          
                         
        
                                         vel (ivel)  =   0.0 
5
 
                                      do 5140 item= 1,m
                                         temp(item)  = 
5
    
c=======================
c
c    
c
c 
c     stime  starting time 
c 
c     deltat  time increment 
c 
c     alpha       indicates the choice of method being employed in alpha 
c             tim
c
c 
c     nter        maximum number of time steps being e
c===============================
      print*,"  " 

184 
 



  Appendix 3.2                                                                                  Computer program 
 
 
 
    t of time steps desired"   prin *,"Enter the number 

  read*, nter  

) nter 

  write(60,4110) deltat        

111  er between 0 and 1 " 

< 0 .OR. alpha > 1) then 

, type in another value"  

goto 1111   

 print*, "alpha=",alpha 

  

   
" Sele

   

  Print *,'1: UVW-P scheme with Taylor-Galerkin method' 
thod' 

 

iter*deltat 

c 
    
 
      write(60,4100
 
      print*,"Enter the delta t desired" 
c 
      read*, deltat  
  
    
 
 
1 print*," Enter the value of alpha: any numb
      
 read*, alpha 
      
 if(alpha 
   
 print*, " Invalid alpha value entered
  
 
  
 end if  
 
     
 
        tcode = 0 
       
   Print *,'           ' 
 
    print*, ct a scheme " 
 
 
 
   Print *,'2: Modified UVW-P scheme with Taylor-Galerkin me
    
   read(*,*) tcode 
 
      do 5150 iter = 1 ,nter 
      print*,'iter=',iter 
 time = 

185 
 



Appendix 3.2                                                                                  Computer program 
 
 
c==========================================================c 

ures 
=========================================================c 

                           rewind 11 
 14 

                           rewind 15 

                         ntov  = ndf * nnp 
 ntrix = ndf * ncn 

   call clean 
1   ,maxel,maxst,maxdf, 

   2     bc   ,ncod ,icho ) 

   1      ,nel  ,ncn  ,node ,ndf  ,maxel,maxst,ndn  ,ntrix, 
pp ) 

ibc ,jbc ,vbc ,ncod ,bc,maxbc,maxdf,maxel,maxst, 

file specifier for unit=20 
     == ============================== 

  

o 5160 iel=1,nel 

    
      if ode ==1) then 
      

   2jm  qq, pvkol, iter ,nel ,ncn , ngaus,grav1, 
   3gra b, ntrix, maxel, maxnp, maxst, maxfr, maxdf, 

g ,da ,ntov ,num, icord, rr, iel, del1,deltat,alpha, 
ref) 

    

c                         Calculate Nodal Velocities & Press
c=
      icho=1 
  
                             rewind
  
                             ndf   = 4 
    
                             
   
     1    (ncn  ,nel  ,ndf  ,node ,r
  
 
      call setprm 
  (nnp
     2     maxdf,ntov ,mdf  ,no
 
      call putbcv 
     1  (nnp ,nbc ,
     2   node) 
 
 
c     idv4 is the 
c ======
  
      idv4=20   
 
       
        d
 
 
  
  (tc
  
       call flowStokes(node ,cord ,pmat ,nopp ,mdf ,ndn ,ncod , 
 1bc ,vel  ,press, r1, temp,ldest,kdest,nk ,eq ,lhed ,khed ,kpiv ,lpiv, 
  od,
  v2, grav3, p, del, 
     4ndim ,aa ,x
     5idv4,sinv, icho, nnp, t
      
  

186 
 



Appendix 3.2                                                                                 Computer program 
 
 
     2jmod, qq, pvkol, iter ,nel ,ncn , ngaus,grav1, 
     3grav2, grav3, p, del, b, ntrix, maxel, maxnp, maxst, maxfr, maxdf, 

v, icho, nnp, tref) 

================c 
              calculates the second invariant of rate of deformation                                c 

 at integration points.                                                                         c 
                                  

==================================c 
    call secinv 

  ,ncn  ,ngaus,node ,sinv ,cord ,p  ,b, 

,num) 

==========================================================c 

====================c 

l( el ,con  ,iter ,ntov ,nnp,maxnp,maxdf,errov, errop 
1,vet ,cet, pet, press)   

===========================================c 
 *** calculation of the nodal stress;using variational recovery 
===========================================================c 

all lumpm 
p,nel  ,ngaus,p   ,del   ,b  ,maxst, 

   node ,maxel,ncn  ) 

 maxel,  maxst ,  

=============== 
Print the output 

     4ndim ,aa ,xg ,da ,ntov ,num, icord, rr, iel, del1,deltat,alpha, 
     5idv4,sin
 
       else  
  stop 
  endif  
 
 
5160  end do 
 
c==========================================
c
c              tensor
c                                                                                               
c========================
  
     1   (nel  ,nnp
     2    del  ,da   ,vel  ,maxnp,maxel,maxst,ndim ,icord, 
     3    maxdf
 
c
c                           Convergence check 
c     c======================================
 
      call conto v c
 
 
c================
c
c
      c
     1    (clump,nnp  ,maxn
     2  
c 
      call stress 
     1     (nel,nnp,ncn ,node ,p , b , da ,vel  ,maxnp,
     2      maxdf, stres, press, rvisc ,clump ,ngaus  )  
 
 
c   =
c     

187 
 



Appendix 3.2                                                                                 Computer program 
 
 
      if(iter.eq.1.or.iiter.eq.iter) then 
       
 call output 
 1   (nnp  ,vel  ,press, maxdf,maxnp,icord, stres) 

 
d if  

q.nter) then 
 
 

smos 
1       (nnp  ,  vel  ,  press   ,  maxdf  ,  maxnp  , icord   , 

ord   , 
rd   ,  ncn    , nel     , 

   3        node ,  ndim  ) 

   2        pmat ,  maxel,  actpress,  cord   ,  ncn    , nel     , 

    
endif 

    End of time loop 

========================================c 

 

    close(unit=60) 
    close(unit=11) 

 
 en
  
 if(iter.e
 
 
 call co
 
     2        pmat ,  maxel,  actpress, nel                         ) 
      
      call cosmos2 
 1       (nnp  ,  vel  ,  press   ,  maxdf  ,  maxnp  , icord   , 
     2        pmat ,  maxel,  actpress, nel                         ) 
 
      call tecplot 
 1       (nnp  ,  vel  ,  press   ,  maxdf  ,  maxnp  , ic
     2        pmat ,  maxel,  actpress,  co
  
      
      call tecplot2 
 1       (nnp  ,  vel  ,  press   ,  maxdf  ,  maxnp  , icord   , 
  
     3        node ,  ndim  ) 
  
 
c 
c 
c========================================================= =c 
c                        
c     c c 
c===================
 
5150  continue
 
      close(51) 
  
  
      close(unit=14) 
      close(unit=15) 

188 
 



Appendix 3.2                                                                                  Computer program 
 
c    c===========================================================c 

  format(a) 

5) 
i5) 
10.0) 

========================================c 

=====================c 

/),' ',20x,60('*'),/' ',20x,'*',58x,'*',/ 
', 

sing ', 
   320x,'*',/' ',20x,'*','  the UVWP method.  ',38x,'*',/' ',20x,'*', 

0x,60('*')///,' ',20x,80('-'),/' ',20x,80a,/' ', 

,' element description data',10('.'),/ 
25x,'no.of nodes per element                  =',i10,/ 

tegration points                 =',i10,/ 
   3//) 

dinate system is cartesian (planar) ***') 
  format('*** coordinate system is cylindrical(axisymmetric) ***') 

60  format(' ',10('['),'input data unacceptable',10(']')///) 

           =',i10,/ 
,'no.of elements                           =',i10,/ 

   425x,'no.of different materials                =',i10,//) 

080  format(' ',20x,3('['),' uniform body force vector ',10('.'),/ 
                                    =',f15.4,/ 

                            =',f15.4,/ 
                            =',f15.4,//) 
iteration no.',i5,//) 
tal number of time steps  =',i5,//) 

c 
2000
2010  format(80a) 
2020  format(2i5) 
2030  format(4i
2040  format(2
2050  format(3f
2060  format(3f10.5) 
c 
c 
c===================
c                         Write statements 
c======================================
 
4010  format(' ',5(
     1' ',20x,'*','  A  three  dimensional finite element model of a  
     27x,'*',/' ',20x,'*','  non-newtonian isothermal flow u
  
     558x,'*',/' ',2
     620x,80('-'),///) 
c 
4020  format(' ',20x,3('[')
     1
     225x,'no.of in
  
c 
4030  format('    *** coor
4040
4050  format(' ') 
40
c 
4070  format(' ',20x,3('['),' mesh description data ',10('.'),/ 
        125x,'no.of nodal points            
     225x
     325x,'no.of nodal constraints on boundary      =',i10,/ 
  
c 
4
     125x,'grav1
     225x,'grav2        
     325x,'grav3        
4090  format(///'     
4100  format(///' To

189 
 



Appendix 3.2                                                                                  Computer program 
 
c===========================================================c 
      end program  

===============================================c 

sp(ngaus,xg,cg) 

 precision(a-h,o-z) 

 coordinates of the Gauss points 
   c(g)   specifies the Gauss weights 

    xg(1)=0.0 

  else 

) = 0.55555555556d00 
  cg(2) = 0.88888888889d00 

  end 

======================c 

c============
 
      subroutine gaus
c 
      implicit double
c 
c     x(g)   specifies the
c  
c 
      dimension xg(3),cg(3) 
 
      if(ngaus.eq.1) then 
  
      cg(1)=2.0 
      elseif(ngaus.eq.2)  then 
      xg(1) = 0.57735026919d00 
      xg(2) = -xg(1) 
      cg(1) = 1.00 
      cg(2) = 1.00 
    
      xg(1) = 0.77459666924d00 
      xg(2) = 0.0 
      xg(3) = -xg(1) 
      cg(1
    
      cg(3) = cg(1) 
c 
      endif 
      return 
    
c 
c====================================
 
 
 
 
      subroutine shape ( xi , eta , zeta, p ,del , ncn ) 
      implicit double precision (a-h,o-z) 
c 
      DIMENSION p(20) ,del(3,20) 
      if (ncn.eq.8) then 
         del(1,1)=-0.125*(1-eta)*(1-zeta) 

190 
 



Appendix 3.2                                                                                  Computer program 
 
 
         del(1,5)=-0.125*(1-eta)*(1+zeta) 

       del(1,7)= 0.125*(1+eta)*(1+zeta) 
a) 

...................................................... 

     del(2,2)= 0.125*(1-xi)*(1-zeta) 

     del(2,5)=-0.125*(1-xi)*(1+zeta) 
)*(1+zeta) 

       del(2,7)= 0.125*(1+xi)*(1+zeta) 
+xi)*(1+zeta) 

...................................... 
-0.125*(1-xi)*(1-eta) 

*(1+eta) 
+eta) 

5*(1+xi)*(1-eta) 
125*(1-xi)*(1-eta) 
125*(1-xi)*(1+eta) 

(3,7)= 0.125*(1+xi)*(1+eta) 
eta) 

.................................... 

(1-zeta) 
*(1-zeta) 

(1+xi)*(1+eta)*(1-zeta) 
     p(4)=0.125*(1+xi)*(1-eta)*(1-zeta) 

0.125*(1-xi)*(1-eta)*(1+zeta) 
0.125*(1-xi)*(1+eta)*(1+zeta) 

)=0.125*(1+xi)*(1+eta)*(1+zeta) 
     p(8)=0.125*(1+xi)*(1-eta)*(1+zeta) 

    endif 
    return 
    end 

====================c 

 ,da ,cg ,node, 

         del(1,6)=-0.125*(1+eta)*(1+zeta) 
  
         del(1,8)= 0.125*(1-eta)*(1+zet
C.
         del(2,1)=-0.125*(1-xi)*(1-zeta) 
    
         del(2,3)= 0.125*(1+xi)*(1-zeta) 
         del(2,4)=-0.125*(1+xi)*(1-zeta) 
    
         del(2,6)= 0.125*(1-xi
  
         del(2,8)=-0.125*(1
C.....................
         del(3,1)=
         del(3,2)=-0.125*(1-xi)
         del(3,3)=-0.125*(1+xi)*(1
         del(3,4)=-0.12
         del(3,5)= 0.
         del(3,6)= 0.
         del
         del(3,8)= 0.125*(1+xi)*(1-
C.......................
 
         p(1)=0.125*(1-xi)*(1-eta)*
         p(2)=0.125*(1-xi)*(1+eta)
         p(3)=0.125*
    
         p(5)=
         p(6)=
         p(7
    
C........................................................... 
 
  
  
  
c===================================
 
 
c 
      subroutine deriv 
     1    (iel  ,ig   ,jg   ,kg, p    ,del  ,b ,ncn

191 
 



Appendix 3.2                                                                                  Computer program 
 
      dimension node(maxel,27),cord(maxnp,3) 

,1)*cj(3,2)*cj(1,3) 
*cj(2,2)*cj(3,1) 

   2      - cj(1,2)*cj(2,1)*cj(3,3)-cj(2,3)*cj(3,2)*cj(1,1)    

Jacobian. ', i6,g20.5) 

    cji(1,1) =  (cj(2,2)*cj(3,3)-cj(3,2)*cj(2,3))  / detj 
) = ((cj(1,2)*cj(3,3)-cj(3,2)*cj(1,3))) / detj 
 =  (cj(1,2)*cj(2,3)-cj(2,2)*cj(1,3))  / detj 

1) = ((cj(2,1)*cj(3,3)-cj(3,1)*cj(2,3))) / detj 

    cji(2,3) = ((cj(1,1)*cj(2,3)-cj(2,1)*cj(1,3))) / detj 
    cji(3,1) =  (cj(2,1)*cj(3,2)-cj(3,1)*cj(2,2))  / detj 
  cji(3,2) = ((cj(1,1)*cj(3,2)-cj(3,1)*cj(1,2))) / detj 

*cj(2,2)-cj(2,1)*cj(1,2))  / detj 

c 
 
  
  
 do 6010 j=1,3 
      do 6010 l=1,3 
      gash=0.0 
             
      do 6020 k=1,ncn 
       
      nn=iabs(node(iel,k)) 
     
 
6020  gash=gash + del(j,k)*cord(nn,l) 
       
 cj(j,l)=gash  
 
6010  continue 
 
       
 
      detj =  cj(1,1)*cj(2,2)*cj(3,3)+cj(2
     1      + cj(1,2)*cj(2,3)*cj(3,1)-cj(1,3)
  
       
 if(detj.le.0.0) then 
      write(60,3010) iel,detj 
3010  format(1x ,' Error: Zero or Negative 
      stop  
      
c 
      endif 
 
  
      cji(1,2
      cji(1,3)
      cji(2,
      cji(2,2) =  (cj(1,1)*cj(3,3)-cj(3,1)*cj(1,3))  / detj 
  
  
    
      cji(3,3) =  (cj(1,1)
 

192 
 



Appendix 3.2                                                                                  Computer program 
 
 
      do 6030 l=1,ncn 
    b(j,l)=0.0 

,3 
j,l) + cji(j,k) * del(k,l) 

     
(ig)*cg(jg)*cg(kg) 

nd 

===========================================================c 

ubroutine front 
axel,maxst,ldest,kdest,nk   ,maxfr, 

   2     eq   ,lhed ,khed ,kpiv ,lpiv ,jmod ,qq   ,pvkol,vel  ,r1   , 
   ,nopp ,mdf  ,ndn  ,maxdf,nel  ,maxte,ntov ,lcol , 

   4     nell ,ntra, press,icho,c,akf,ak ) 

     Frontal elimination routine using diagonal pivoting 

imension nop  (maxel,maxst) 
dest(maxst)       ,nk   (maxst) 

axfr) ,lhed (maxfr)       ,khed (maxfr) 

sion jmod (maxfr)       ,qq   (maxfr)       ,pvkol(maxfr) 
imension vel  (maxte)       ,r1   (maxdf)       ,ncod (maxdf) 

  dimension bc   (maxdf)       ,nopp (maxdf)       ,mdf  (maxdf) 
sion ndn  (maxdf)       ,press(maxdf) 

 
 14 respectively 

========================c 

    ncrit=20 

  
      do 6030 k=1
6030  b(j,l) = b(
  
      da= detj*cg
c 
 
      return 
      e
 
c 
c
c 
      s
     1    (aa   ,rr   ,iel  ,nop  ,m
  
     3     ncod ,bc
  
c 
c
c 
      implicit double precision(a-h,o-z) 
      dimension aa   (maxst,maxst) ,rr   (maxst) 
      d
      dimension ldest(maxst)       ,k
      dimension eq   (maxfr,m
      dimension kpiv (maxfr)       ,lpiv (maxfr) 
      dimen
      d
    
      dimen
c
c     nlp and ndl are the file specifiers for units 60 and
c     c===================================
 
      nlp=60 
      nd1=14 
c 
c     Prefront 
c     ======== 
      nmax=maxfr 
  

193 
 



Appendix 3.2                                                                                  Computer program 
 
      if(ntra.eq.0) goto 6040 

 

larg = nmax-10   

   Find last appeareance of each node 
     ================================== 

0 
10 i = 1,ntov 

    do 6020 n = 1,nel 
  jdn = ndn(n) 

  if(nop(n,l).ne.i)go to 6030 

  if(nlast.eq.0) go to 6010 

  nlast = 0 

  eq(j,i) = 0. 

    n = nell 
n(nell) 

  do 6070 j = 1,jdn  
n,j) 

 

(m) 

      nmax = maxfr     
      ntra = 0 
      ncrit = 20        
      lfron = 0 
      n
c 
c  
c
      nlast = 
      do 60
  
    
      do 6030 l = 1,jdn 
    
      nlast1 = n 
      nlast = n 
      l1 = l 
6030  continue 
6020  continue 
    
      nop(nlast,l1) = -nop(nlast,l1) 
    
6010  continue 
      ntrix = jdn 
c 
c     Assembly 
c     ========    
6040  continue 
      if(iel.gt.1) go to 6060 
      lcol = 0 
      do 6050 i = 1,nmax 
      do 6050 j = 1,nmax 
    
6050  continue 
6060  nell = nell+1 
  
      jdn = nd
      kc = 0 
    
      nn = nop(
      m = iabs(nn)
      k = nopp(m) 
      idf = mdf

194 
 



Appendix 3.2                                                                                  Computer program 
 
 
      if(nn.lt.0)ii = -ii 
      nk(kc) = ii 

tors 
   ====================== 

(lk) 
0 

bs(lhed(l)))go to 6110 

l+1 
 lcol 

ol) = node 

 ll 

max)go to 6130 

10)nerror 
  stop 

c 

t(k) 
aa(k,l) 

it.and.nell.lt.nel) return 

matrix elements are fully assembeled 
============================================= 

o 6160 

6070  continue 
c 
c     Set up heading vec
c  
c 
      do 6080 lk = 1,kc 
      node = nk
      if(lcol.eq.0)goto 610
      do 6090 l = 1,lcol 
      ll = l 
      if(iabs(node).eq.ia
6090  continue 
6100  lcol = lco
      ldest(lk) =
      lhed(lc
      go to 6080 
6110  ldest(lk) =
      lhed(ll) = node 
6080  continue 
      if(lcol.le.n
      nerror = 2 
      write(nlp,30
    
6130  continue 
      do 6140 l = 1,k
      ll = ldest(l) 
      do 6140 k = 1,kc 
      kk = ldes
      eq(kk,ll) = eq(kk,ll)+
6140  continue 
      if(lcol.lt.ncr
c 
c     Find out which 
c     ======
6150  lc = 0 
      ir = 0 
      do 6160 l = 1,lcol 
      kt = lhed(l) 
      if(kt.ge.0)go t
      lc = lc+1 
      lpiv(lc) = l 

195 
 



Appendix 3.2                                                                                  Computer program 
 
 
      ncod(kro) = 2 
      r1(kro) = bc(kro) 

pplied boundary conditions 
========================== 

  if(ir.eq.0)go to 6190 

) = 0. 

q(k,l) = 1. 

 to 6200 

ncrit 
rg) return 

030)nerror 

tinue 

te pivot 
================ 

lc 

 

  if(abs(piva).lt.abs(pivot))go to 6220 

kpivr 
inue 

.0) return 

 pivotal row 
============= 

6160  continue 
c 
c     Modify equations with a
c     =======================
    
      do 6170 irr = 1,ir 
      k = jmod(irr) 
      kh = iabs(lhed(k)) 
      do 6180 l = 1,lcol 
      eq(k,l
      lh = iabs(lhed(l)) 
      if(lh.eq.kh)e
6180  continue 
6170  continue 
6190  continue 
      if(lc.gt.0)go
      ncrit = ncrit+10 
c     write(nlp,3020)
      if(ncrit.le.nla
      nerror = 3 
      write(nlp,3
      stop 
6200  con
c 
c     Search for absolu
c     =========
      pivot = 0. 
      do 6210 l = 1,
      lpivc = lpiv(l) 
      kpivr = lpivc
      piva = eq(kpivr,lpivc) 
    
      pivot = piva 
      lpivco = lpivc 
      kpivro = 
6220  cont
6210  continue 
      if(pivot.eq.0
c 
c     Normalise
c     ========

196 
 



Appendix 3.2                                                                                 Computer program 
 
 
c6230 continue 
 
      if(abs(pivot).lt.0.1d-28) write(nlp,3050) 

  do 6240 l = 1,lcol 

= pivot 

ete pivotal row and column 
=================================== 

o 6300 

1,kpivr 
hed(k)) 
ivco) 

fac.eq.0.)go to 6270 

(k,l)-fac*qq(l) 

pivco.eq.lcol)go to 6290 
o+1 

  do 6280 l = lpivc,lcol 
) 

= r1(krw)-fac*rhs 

lcol)go to 6360 
+1 

vco) 

o to 6330 
o-1 
1,lpivc 

qq(l) 
20  continue 

 6350 

    
      qq(l) = eq(kpivro,l)/pivot 
6240  continue 
      rhs = r1(kro)/pivot 
      r1(kro) = rhs 
      pvkol(kpivro) 
c 
c     Eliminate then del
c     =========
      if(kpivro.eq.1)go t
      kpivr = kpivro-1 
      do 6250 k = 
      krw = iabs(l
      fac = eq(k,lp
      pvkol(k) = fac 
      if(lpivco.eq.1.or.
      lpivc = lpivco-1 
      do 6260 l = 1,lpivc 
      eq(k,l) = eq
6260  continue 
6270  if(l
      lpivc = lpivc
    
      eq(k,l-1) = eq(k,l)-fac*qq(l
6280  continue 
6290  r1(krw) 
6250  continue 
6300  if(kpivro.eq.
      kpivr = kpivro
      do 6310 k = kpivr,lcol 
      krw = iabs(lhed(k)) 
      fac = eq(k,lpi
      pvkol(k) = fac 
      if(lpivco.eq.1)g
      lpivc = lpivc
      do 6320 l = 
      eq(k-1,l) = eq(k,l)-fac*
63
6330  if(lpivco.eq.lcol)go to
      lpivc = lpivco+1 

197 
 



Appendix 3.2                                                                                 Computer program 
 
6310  continue 

 

=================    
(lhed(l),qq(l),l = 1,lcol) 

1,lcol 

)go to 6390 
l 

er to assemble,eliminate,or backsubstitute 
=========================================== 

 return 

) 

eq.0)go to 6400 
pivot 

8)go to 6410 

d(1),qq(1) 

========== 

6360  continue 
c
c     Write pivotal equation on disc 
c     =============
      write(nd1) kro,lcol,lpivco,
      do 6370 l = 
      eq(l,lcol) = 0. 
      eq(lcol,l) = 0. 
6370  continue 
c 
c     Rearrange heading vectors 
c     ========================= 
      lcol = lcol-1 
      if(lpivco.eq.lcol+1
      do 6380 l = lpivco,lco
      lhed(l) = lhed(l+1) 
6380  continue 
6390  continue 
c 
c     Determine wheth
c     ==============
      if(lcol.gt.ncrit)go to 6150 
      if(nell.lt.nel)
      if(lcol.gt.1)go to 6150 
      lco = iabs(lhed(1)
      kpivro = 1 
      pivot = eq(1,1) 
      kro = lco 
      lpivco = 1 
      qq(1) = 1. 
 
c     if(nit.eq.0.or.npra.
c     write(nlp,3040)lco,kro,
 
      if(abs(pivot).lt.1d-2
 
c6400 continue 
 
      r1(kro) = r1(kro)/pivot 
      write(nd1) kro,lcol,lpivco,lhe
c 
c     start back-substitution 
c     =============

198 
 



Appendix 3.2                                                                                  Computer program 
 
 
c     main exit with solution 

   ======================= 

ax-ncrit is not sufficiently large' 
e assembly of the next element---' 
se nmax or lower ncrit' 

020  format('  frontwidth value=',i4) 

ed,this may be due to---' 
t coding of nop or nk arrays' 

crease ncrit to permit' 
ssembled' 

3h pivotal row=,i4,16h pivotal column=,i4,7h pivot=,e20.10 
  1) 

=================================================

bacsub 
x ,vfix ,rhs  ,soln ,soln1, mfrnt,rwork,iwork,idv2, 

   2     icho ) 

    implicit double precision(a-h,o-z) 
hs (ntotl),soln (ntotl) 

    dimension rwork(mfrnt) ,iwork(mfrnt) ,soln1(ntotl)  

 

                     soln(ipos) =0.0 
ne.0) soln(ipos)=vfix(ipos) 

c  
6410  continue 
c 
3010  format(/'  nerror=',i5// 
     1 '  the difference nm
     1/'  to permit th
     1/'  either increa
     1/) 
c3
3030  format(/'  nerror=',i5// 
     1 '  there are no more rows fully summ
     1/'  (1)incorrec
     1/'  (2)incorrect value of ncrit. in
     1/'     whole front to be a
     1/) 
 
c3040  format(1
c  
 
3050  format('  warning-matrix singular or ill conditioned') 
 
      return 
      end 
c 
c     
==============
=== 
      subroutine 
     1    (ntotl,ifi
  
c 
c 
  
      dimension ifix (ntotl),vfix (ntotl),r
  
c 
c
c  
                         do 6010 ipos=1,ntotl 
    
                         if(ifix(ipos).
6010                     continue 

199 
 



Appendix 3.2                                                                                  Computer program 
 
c 

(k),rwork(k),k=1,ifrnt) 
v2 

020 

rk(k)) 

020  continue 

if (icho .eq. 2) goto 6050 

       j       = ipos -((3*ntotl)/4) 
soln1(j) = soln(ipos) 

40  continue  

         
==========================================================c 

scheme via Taylor-Galerkin 

===================c 

  subroutine flowStokes(node ,cord ,pmat ,nopp ,mdf ,ndn ,ncod , 
1bc ,vel  ,press, r1, temp,ldest,kdest,nk ,eq ,lhed ,khed ,kpiv ,lpiv, 

aus,grav1, 
axel, maxnp, maxst, maxfr, maxdf, 

,alpha, 
f) 

      backspace idv2 
      read(idv2)     ipos,ifrnt,jfrnt,(iwork
      backspace id
c 
      if(ifix(ipos).ne.0)  go to 6
c 
      ww           = 0.0 
      rwork(jfrnt) = 0.0 
c 
                         do 6030 k=1,ifrnt 
                         jpos=iabs(iwo
                         ww  =ww - rwork(k)*soln(jpos) 
6030                     continue 
c 
      soln (ipos)=rhs(ipos)+ww 
       
6
 
 
 
      do  6040 ipos  = ((3*ntotl)/4)+1 , ntotl 
 
       
 
60
 
6050 continue 
 
      return 
      end 
c 
    
c=
c     Stokes Solution based on UVW-P 
c     time stepping method. 
c========================================
 
    
 
     2jmod, qq, pvkol, iter ,nel ,ncn , ng
     3grav2, grav3, p, del, b, ntrix, m
     4ndim ,aa ,xg ,da ,ntov ,num, icord, rr, iel, del1,deltat
     5idv4,sinv, icho, nnp, tre

200 
 



Appendix 3.2                                                                                 Computer program 
 
 
      dimension node (maxel,maxst),pmat (maxel,   9),cord (maxnp, ndim) 

 27) 
axnp ,   3),r1   (maxdf     ),conc (maxnp      ) 

  dimension aa   (maxst,maxst),rr   (maxst     ),ldest(maxst      ) 
         3),kdest(maxst      ) 

  dimension x    (          3),v    (         3),nk   (maxst      ) 
          2),hh   (         3) 

   20),del  (   3,   20),b    (   3,    20) 
  dimension eq   (maxfr,maxfr),nopp (maxdf     )      

(maxfr     ),jmod (maxfr      ) 
q   (maxfr      ) 

     ),mdf  (maxdf     ),ndn  (maxdf      ) 
  dimension ppp  (20    ,  20),pp   (20        ) 

) 
dimension akf  (100    )    

n NQ   (20    ,  20),NP   (3    ,   4) 
dimension C    (maxst      ),temp (maxnp     ) 

) 
          dimension press(maxnp      ),clump(maxnp     ),SHAPE1D(3       ) 

axst) 
dimension aa02 (maxst,maxst)  

n ak01 (maxst,maxst) 
dimension ak02 (maxst,maxst)  

                                             rvisc = pmat(iel,1) 
                                   rpef  = pmat(iel,2) 

    tbco  = pmat(iel,5) 

                                               roden = pmat(iel,8) 
      

amad 

      dimension ncod (maxdf      ),bc   (maxdf     ),sinv (maxel,  
      dimension vel  (m
    
      dimension xg   (          3),cg   (
    
      dimension bicn (
      dimension p    (      
    
      dimension ldsc (         22) 
      dimension lhed (maxfr      ),khed 
      dimension lpiv (maxfr      ),kpiv (maxfr     ),q
      dimension pvkol(maxfr 
    
 dimension ak   (100,100
 
            dimensio
 
 dimension DEL1 (3          
  
 dimension gdsf (    3,   20) 
 dimension dmass(100, 100) 
 dimension aa01 (maxst,m
 
 dimensio
 
 
 
            
       
    
              
                                                 power = pmat(iel,3) 
                                                 rtem  = pmat(iel,4) 
                                             
                                                 taco  = pmat(iel,6) 
  
          
g = pmat(iel,9)  
                                                
           
      velsound = 1500.0 
 beta     =    0.0 

201 
 



Appendix 3.2                                                                                  Computer program 
 
                 

cn) 

                                  f = xg(kg) 
                                                               

                lg = lg + 1 

rd, 

              jjg=jg 

                akf(idf)      = 0.0  
     C  (idf)      = 0.0 
    do 6010 jdf= 1,ntrix 
 
                 aa   (idf,jdf)=0.0 
            dmass(idf,jdf)=0.0 
                 ak   (idf,jdf)=0.0 
                 aa01 (idf,jdf) = 0.0 
                 aa02 (idf,jdf)= 0.0 
                 ak01 (idf,jdf)= 0.0 
                 ak02 (idf,jdf)= 0.0 
6010             continue 
       
       
 if (ncn==4) then  
 call gausspt(ngaus,xg,cg,n
 else if (ncn==8) then                                
      call gaussp(ngaus,xg,cg,ncn) 
 end if 
 
        lg=0 
      do 6020 ig=1,ngaus 
                                    g = xg(ig) 
      do 6020 jg=1,ngaus 
                                    h = xg(jg) 
      do 6020 kg=1,ngaus 
  
  
  
  
   
      if(iter.eq.1) then 
 
 
      call shape (g,h,f,p,del,ncn) 
 
      call deriv (iel,ig,jg,kg,p,del,b,ncn,da,cg,node,co
     1            maxel,maxnp) 
 
               iig=ig 
 
                    kkg=kg 
 

202 
 



Appendix 3.2                                                                                  Computer program 
 
 
      endif 
c 

ed on the constitutive equation. 
 

n 
ip)) 
 temp(jp) * p(ip) 

 
        gamad = sinv(iel,lg) 
        if(gamad.lt.epsii) gamad = epsii 

,rpef,taco,gamad)              

0 idff= 1,3 
                     x(idff)     = 0.0 
         ff)     = 0.0 

= 0.0 

n 
)) 

 

,idff) 
060 ontinu  

 
 
     modify da for axisymmetric computations. 

    da = da * x(1) 

    

c     calculation of viscosity bas
c
      spress = 0.0 
      stemp  = 0.0 
 
           do 5333 ip = 1,nc
                jp    = iabs(node(iel,
           stemp = stemp +
 5333           continue 
                epsii = 1.d-10
        
        
  
      call visca 
 1(rvisc,power,visc,stemp,rtem,tbco,spress
 
                       do 605
  
              v(id
                       hh(idff)    
6050                   continue 
          do 6060 icn = 1 ,nc
                  jcn = iabs(node(iel,icn
          do 6060 idff= 1 ,  3
          x(idff)     = x(idff) + p(icn)*cord(jcn,idff) 
          v(idff)     = v(idff) + p(icn)*vel (jcn
6  c e
 
 
      if(icord.eq.1) then
c
c
c 
  
      endif 
 
  
c     column index 
 
 
 

203 
 



Appendix 3.2                                                                                 Computer program 
 
 
                j13= i + 2*ncn 

                 j14= i + 3*ncn 

  do 6070 j=1,ncn 
 j 
 j + ncn 

               j23= j + 2*ncn 

then                

 

Matrix of Left Hand Side ------------------------------------------------- 

     For Transient state (Cartesian co-ordinate system)  

p(i)*p(j)*da 
a*deltat*2.0*(visc/roden) 

.5*alpha*alpha*deltat*deltat*velsound*velsound) 
(1,i)*b(1,j)*da) 

visc/roden) 
i)*b(2,j)+b(3,i)*b(3,j))*da)    

j22)  +  alpha*deltat*(visc/roden) 
1        *  (b(2,i)*b(1,j)*da) 
2                        +  0.5*alpha*alpha*deltat*deltat*velsound 

     *  velsound*(b(1,i)*b(2,j)*da) 
 

/roden) 
1        *  (b(3,i)*b(1,j)*da) 

       +  0.5*alpha*alpha*deltat*deltat*velsound 
       *  velsound*(b(1,i)*b(3,j)*da) 

 
a(j11,j24)=aa(j11,j24) +  alpha*deltat*(b(1,j) 

          *p(i)*da) 
    

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~ 

    
  
    
                     j21=
                     j22=
 
                j24= j + 3*ncn 
                 
                 
c if (iel.le.3000) 
 
 
c     Dicretized form of 3D Stokes Equation
c 
c --- Stiffness 
c 
c
 
  
      aa(j11,j21)=aa(j11,j21) +  
 1                        +  (alph
 2    +  0
            3    *  (b
     3                        +  alpha*deltat*(
     4                        * ((b(2,
          
                 
      aa(j11, =aa(j11,j22)
 
 
 3   
 
      aa(j11,j23)=aa(j11,j23) +  alpha*deltat*(visc
 
 2                 
 3 
 
      a
 1                 
 
c
~

204 
 



Appendix 3.2                                                                                 Computer program 
 
 
 3        *  velsound*(b(2,i)*b(1,j)*da) 

   aa(j12,j22)=aa(j12,j22) +  p(i)*p(j)*da 
    +  (alpha*deltat*2.0*(visc/roden) 
      +  

    *  (b(2,i)*b(2,j)*da) 
t*(visc/roden) 

   4      * ((b(1,i)*b(1,j)+b(3,i)*b(3,j))*da)       
    

    aa(j12,j23)=aa(j12,j23) +  alpha*deltat*(visc/roden) 
1        *  (b(3,i)*b(2,j)*da) 

eltat*deltat*velsound 
3        *  velsound*(b(2,i)*b(3,j)*da) 

  aa(j12,j24)=aa(j12,j24) +  alpha*deltat*(b(2,j) 

     
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 * (b(1,i) *b(3,j)*da)
ltat*velsound

 * (b(3,i)*b(3,j)*da)

 4 b(2,i)*b(2,j))*da)

)=aa(j13,j24) + alpha*deltat*(b(3,j)

 1
 2
0.5*alpha*alpha*deltat*deltat*velsound*velsound)
 3
 3 + alpha*delta

 2 + 0.5*alpha*alpha*d

 1 *p(i)*da)

c~~~~~~~~~~~
~~~~~~~~~ 
 
      aa(j13,j21)=aa(j13,j21) +  alpha*deltat*(visc/roden) 
 1     
     2                        +  0.5*alpha*alpha*deltat*de
 3        *  velsound*(b(3,i)*b(1,j)*da) 
   
 
      aa(j13,j22)=aa(j13,j22) +  alpha*deltat*(visc/roden) 
 1        *  (b(2,i) *b(3,j)*da) 
     2                        +  0.5*alpha*alpha*deltat*deltat*velsound 
 3        *  velsound*(b(3,i)*b(2,j)*da) 
 
      aa(j13,j23)=aa(j13,j23) +  p(i)*p(j)*da 
 1                        +  (alpha*deltat*2.0*(visc/roden) 
 2        +  
0.5*alpha*alpha*deltat*deltat*velsound*velsound) 
 3       
     3                        +  alpha*deltat*(visc/roden) 
                      * ((b(1,i)*b(1,j)+
 
 
      aa(j13,j24

205 
 



Appendix 3.2                                                                                 Computer program 
 
 
      aa(j14,j21)=aa(j14,j21) +  alpha*deltat*velsound*velsound 
 1                        *  (p(i)*b(1,j)*da) 

lso d 
1                        *  (p(i)*b(3,j)*da) 

   3                        +  b(2,i)*b(2,j)+b(3,i)*b(3,j))*da) 

 --- M --------------------------------------------- 

ha*(1.0-

     *  (b(1,i)*b(1,j)*da) 
   3                        -  (1.0-alpha)*deltat*(visc/roden) 

 

1        *  (b(2,i)*b(1,j)*da) 
ha)*deltat*deltat*velsound 

lsound*(b(1,i)*b(2,j)*da) 

c/roden) 

eltat*deltat*velsound 
 velsound*(b(1,i)*b(3,j)*da) 

 
(1,j) 

 
 
      aa(j14,j22)=aa(j14,j22) +  alpha*deltat*velsound*velsound 
 1                        *  (p(i)*b(2,j)*da) 
  
 
      aa(j14,j23)=aa(j14,j23) +  alpha*deltat*velsound*ve un
 
 
 
      aa(j14,j24)=aa(j14,j24) +  p(i)*p(j)*da 
 1                        +  (0.5*alpha*alpha*deltat*deltat 
 2                        *  velsound*velsound)*((b(1,i)*b(1,j) 
  
   
c atrix on Right Hand Side ----
c 
c     For Transient State (Cartesian co-ordinate system)  
 
 
      ak(j11,j21)=ak(j11,j21) +  p(i)*p(j)*da 
 1                        -  ((1.0-alpha)*deltat*2.0*(visc/roden) 
 2        +  0.5*alp
alpha)*deltat*deltat*velsound*velsound) 
 3   
  
     4                        * ((b(2,i)*b(2,j)+b(3,i)*b(3,j))*da)   
     
                   
      ak(j11,j22)=ak(j11,j22) -  (1.0-alpha)*deltat*(visc/roden) 
 
 2                       -  0.5*alpha*(1.0-alp
 3        *  ve
   
      ak(j11,j23)=ak(j11,j23) -  (1.0-alpha)*deltat*(vis
 1        *  (b(3,i)*b(1,j)*da) 
 2                       -  0.5*alpha*(1.0-alpha)*d
 3        * 
 
 
      ak(j11,j24)=ak(j11,j24) -  (1.0-alpha)*deltat*(b

206 
 



Appendix 3.2                                                                                 Computer program 
 
                              

   *  (b(1,i) *b(2,j)*da) 
   2                        -  0.5*alpha*(1.0-alpha)*deltat*deltat 

3        *  

    ak(j12,j22)=ak(j12,j22) +  p(i)*p(j)*da 

   +  0.5*alpha*(1.0-
lpha)*deltat*deltat*velsound*velsound) 

3        *  (b(2,i)*b(2,j)*da) 
c/roden) 

  

  ak(j12,j23)=ak(j12,j23) -  (1.0-alpha)*deltat*(visc/roden) 

2                       -  0.5*alpha*(1.0-alpha)*deltat*deltat*velsound 
velsound*(b(2,i)*b(3,j)*da) 

        

ltat*(b(2,j) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

den
1 * (b(1,i) *b(3,j)*da)

 - 0.5*alpha*(1.0-alpha)*deltat*deltat

 * (b(2,i) *b(3,j)*da)

 ak(j12,j21)=ak(j12,j21) - (1.0-alpha)*deltat*(visc/roden)
 1

velsound*velsound*(b(2,i)*b(1,j)*da)

 1 - ((1.0-alpha)*deltat*2.0*(visc/roden)
 2
a

 3 - (1.0-alpha)*deltat*(vis
 4 * ((b(1,i)*b(1,j)+b(3,i)*b(3,j))*da)

 1 * (b(3,i)*b(2,j)*da)

 3 *

 ak(j12,j24)=ak(j12,j24) - (1.0-alpha)*de
 1 *p(i)*da)

c~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~ 
                
      ak(j13,j21)=ak(j13,j21) -  (1.0-alpha)*deltat*(visc/ro )
 
     2             
 3        *  
velsound*velsound*(b(3,i)*b(1,j)*da) 
 
      ak(j13,j22)=ak(j13,j22) -  (1.0-alpha)*deltat*(visc/roden) 
 1   
     2                        -  0.5*alpha*(1.0-alpha)*deltat*deltat 
 3        *  
velsound*velsound*(b(3,i)*b(2,j)*da) 
 
 
 
      ak(j13,j23)=ak(j13,j23) +  p(i)*p(j)*da 

207 
 



Appendix 3.2                                                                                 Computer program 
 
 
     3                        -  (1.0-alpha)*deltat*(visc/roden) 
     4                        * ((b(1,i)*b(1,j)+b(2,i)*b(2,j))*da)       

a)*deltat*(b(3,j) 
1                           *p(i)*da) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

deltat*velsound*velsound

 ak(j14,j22)=ak(j14,j22) - (1.0-alpha)*deltat*velsound*velsound

(j)*da
1 - (0.5*alpha*(1.0-alpha)*deltat*deltat

 + b(2,i)*b(2,j)+b(3,i)*b(3,j))*da)

~~~~~

 
).... 

== 

    C(j12) =C(j12) + (1.0-alpha)*deltat*p(j)*grav2*da   

    C(j13) =C(j13) + (1.0-alpha)*deltat*p(j)*grav3*da   

 
 
      ak(j13,j24)=ak(j13,j24) -  (1.0-alph
 
 
c~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~ 

 ak(j14,j21)=ak(j14,j21) - (1.0-alpha)*
 1 * (p(i)*b(1,j)*da)

 1 * (p(i)*b(2,j)*da)

 ak(j14,j23)=ak(j14,j23) - (1.0-alpha)*deltat*velsound*velsound
 1 * (p(i)*b(3,j)*da)

 ak(j14,j24)=ak(j13,j24) + p(i)*p

 2 * velsound*velsound)*((b(1,i)*b(1,j)
 3

c~~
~~~~~~~~~ 
c      end if 
 
c
c     Body Force Effect (for Elemental Load Vector Calculation
c     ========================================================
c 
 C(j11) =C(j11) + (1.0-alpha)*deltat*p(j)*grav1*da      
     
  
 
  
 

208 
 



   
Appendix 3.2                                                                                 Computer program 
 
 
6070  continue 
       
020  continue 

     Writing the Stiffness Matrix for Element Number 14 

14) then 
 

    write (idv4,3055) ((aa(i,j),j=1,ntrix),i=1,ntrix) 
        
045  format(///,' ',10('*'),' element stiffness matrix for element  

/)  
055  format(27(E15.8,3x)) 

        

========  

     ============================ 

    j11= i 
                   j12= i + ncn 

               j13= i + 2*ncn 

  do 6080 j=1,ncn 

               j22= j + ncn 

               j24= j + 3*ncn 

    nn=iabs(node(iel,j)) 

6
 
 
c
 
         If (iel==
 
 write (idv4,3045)  
 write (idv4,3050) iter 
  
  
3
     114',10('*'),///) 
3050  format(///,' ','Iteration number =',i5,//
3
       
         end if  
  
          
  
 
c     For Transient State (Cartesian Co-ordinate System) 
c     ==========================================
c     Term one on RHS is evaluated  
c
 
      do 6080 i=1,ncn 
 
         
  
 
                j14= i + 3*ncn 
  
    
                     j21= j 
      
                j23= j + 2*ncn 
 
 
  

209 
 



 
Appendix 3.2                                                                                  Computer program 
 
 
     3                    ak(j11,j24)*press(nn) 

 

akf(j12)=akf(j12) + ak(j12,j21)*vel(nn,1) +  
   1                 ak(j12,j22)*vel(nn,2) + 

   3                    ak(j12,j24)*press(nn)  

 ak(j13,j21)*vel(nn,1) + 
   1 el(nn,2) + 

                ak(j13,j24)*press(nn)  

,1) + 

                ak(j14,j23)*vel(nn,3) + 
      ak(j14,j24)*press(nn) 

 
ontinue 

   
 

   j11= i 
                   j12= i + ncn 

          j13=  
*ncn 

     
an Co-ordinate System)  

    
) + akf(j11) + C(j11) 

 akf(j12) + C(j12) 
kf(j13) + C(j13) 

 + C(j14) 

085  continue  

 
  
 
  
     2                    ak(j12,j23)*vel(nn,3) + 
  
 
 
 akf(j13)=akf(j13) +
                  ak(j13,j22)*v
     2                    ak(j13,j23)*vel(nn,3) + 
     3    
 
 
 akf(j14)=akf(j14) + ak(j14,j21)*vel(nn
     1                 ak(j14,j22)*vel(nn,2) + 
     2 
     3              
 
6080  c
   
c
c    Evaluation of Elemental Load Vector 
c    =================================== 
    
      do 6085 i=1,ncn 
 
          
  
      i + 2*ncn
                j14= i + 3
  
c     For Transient State  (Cartesi
   
 rr(j11)= rr(j11
      rr(j12)= rr(j12) +
 rr(j13)= rr(j13) + a
 rr(j14)= rr(j14) + akf(j14)
  
6
 

210 
 



       
Appendix 3.2                                                                                  Computer program 
 
 
     2,eq   ,lhed ,khed ,kpiv ,lpiv ,jmod ,qq   ,pvkol,vel  ,r1 

,nopp ,mdf  ,ndn  ,maxdf,nel  ,maxte,ntov ,lcol 
ress,icho ) 

     
==============================================================

 UVW-P scheme via  
d. 

==============================================================
== 

at ,nopp ,mdf ,ndn ,ncod , 
t,nk ,eq ,lhed ,khed ,kpiv ,lpiv, 

us,grav1, 
3, p, del, b, ntrix, maxel, maxnp, maxst, maxfr, maxdf, 
 ,da ,ntov ,num, icord, rr, iel, del1,deltat,alpha, 

idv4,sinv, icho, nnp, tref) 
  

 implicit double precision(a-h,o-z) 

    dimension node (maxel,maxst),pmat (maxel,   9),cord (maxnp, ndim) 
m nsion cod (m ,bc   (maxdf     ),sinv (maxel,   27) 

 ,   3),r1   (maxdf     ),conc (maxnp      ) 
    dim ,rr   (maxst     ),ldest(maxst      ) 
    dim  (         3),kdest(maxst      ) 

imension x    (          3),v    (         3),nk   (maxst      ) 

imension p    (         20),del  (   3,   20),b    (   3,    20) 
xdf     )      

     ),jmod (maxfr      ) 
    ),qq   (maxfr      ) 

   dimension pvkol(maxfr      ),mdf  (maxdf     ),ndn  (maxdf      ) 
p  (20    ,  20),pp   (20        ) 

dimension ak   (100,100) 

     3,ncod ,bc   
     4,nell ,ntra, p
c 
      return 
      end 
                
c
=
=== 
c     Stokes Solution based on the modified
c     Taylor-Galerkin time stepping metho
c     
=
=
 
      subroutine flowStokes2(node ,cord ,pm
 1bc ,vel  ,press, r1, temp,ldest,kdes
     2jmod, qq, pvkol, iter ,nel ,ncn , nga
     3grav2, grav
     4ndim ,aa ,xg
     5
    
      
      
     
 
  
      di e n axdf      )
      dimension vel  (maxnp
  ension aa   (maxst,maxst)
  ension xg   (          3),cg  
      d
      dimension bicn (          2),hh   (         3) 
      d
      dimension eq   (maxfr,maxfr),nopp (ma
      dimension ldsc (         22) 
      dimension lhed (maxfr      ),khed (maxfr
      dimension lpiv (maxfr      ),kpiv (maxfr 
   
      dimension pp
 

211 
 



Appendix 3.2                                                                                  Computer program 
 
 dimension gdsf (    3,   20) 

dimension dmass(100, 100) 

xst,maxst) 
dimension ak02 (maxst,maxst)  

isc = pmat(iel,1) 

wer = pmat(iel,3) 

co  = pmat(iel,6) 

gamad = pmat(iel,9)  
                                              

isc    ! From Zienkienwicz  

               rr (idf)      = 0.0 

 
 dimension aa01 (maxst,maxst) 
 dimension aa02 (maxst,maxst)  
 dimension ak01 (ma
 
 
 
            
      rv
      rpef  = pmat(iel,2) 
      po
      rtem  = pmat(iel,4) 
      tbco  = pmat(iel,5) 
      ta
      roden = pmat(iel,8) 
 
  
           
      velsound = 1500.0 
 beta     =    0.0 
           
       lambda   =  10E2                
c      lambda   = (10E7-10E8)/v
c 
       
       
      do 6010 idf= 1,ntrix 
  
                 akf(idf)      = 0.0  
            C  (idf)      = 0.0 
      do 6010 jdf= 1,ntrix 
 
                 aa   (idf,jdf)=0.0 
            dmass(idf,jdf)=0.0 
                 ak   (idf,jdf)=0.0 
                 aa01 (idf,jdf) = 0.0 
                 aa02 (idf,jdf)= 0.0 
                 ak01 (idf,jdf)= 0.0 
                 ak02 (idf,jdf)= 0.0 
6010             continue 
       
       
 if (ncn==4) then  

212 
 



Appendix 3.2                                                                                  Computer program 
  

    do 6020 kg=1,ngaus 
                                  f = xg(kg) 

                        

           lg = lg + 1 

) 

 deriv (iel,ig,jg,kg,p,del,b,ncn,da,cg,node,cord, 
p) 

              iig=ig 

            write(15)   iel ,ig ,jg ,kg, p ,del ,b ,da 
lse 

(15) iel,iig,jjg,kkg,p ,del ,b , da 

 
titutive equation. 

 

n 
ip)) 
 temp(jp) * p(ip) 

 
        gamad = sinv(iel,lg) 
       if(gamad.lt.epsii) gamad = epsii 

 
       lg=0 
      do 6020 ig=1,ngaus 
                                    g = xg(ig) 
      do 6020 jg=1,ngaus 
                                    h = xg(jg) 
  
  
             
                             
    
  
   
      if(iter.eq.1) then 
 
 
      call shape (g,h,f,p,del,ncn
 
      call
     1            maxel,maxn
 
 
               jjg=jg 
                    kkg=kg 
 
        
      e
      if(.not. EOF(15))read
 
      endif 
c
c     calculation of viscosity based on the cons
c
      spress = 0.0 
      stemp  = 0.0 
 
           do 5333 ip = 1,nc
                jp    = iabs(node(iel,
           stemp = stemp +
5333           continue 
               epsii = 1.d-10
        
        
  

213 
 



Appendix 3.2                                                                                  Computer program 
 
 
c     preparation of the convective acceleration terms/balancing 

ff= 1,3 

 0.0 

e 
= 1 ,ncn 

             jcn  iabs( de(iel,icn)) 
       do 6060 idff= 1 ,  3 
      x(idff)     = x(idff) + p(icn)*cord(jcn,idff) 

ff) + p(icn)*vel (jcn,idff) 
060  continue 

 

    da = da * x(1) 

     column index 

70 i=1,ncn 

           j11= i 
     j12= i + ncn 

               j13= i + 2*ncn 

cn 
 j 

                   j22= j + ncn 

form of 3D Stokes Equation 

c     dissipation is used 
c 
                       do 6050 id
                       x(idff)     = 0.0 
                       v(idff)     =
                       hh(idff)    = 0.0 
6050                   continu
          do 6060 icn 
      = no
   
    
          v(idff)     = v(id
6
 
      if(icord.eq.1) then 
c
c     modify da for axisymmetric computations. 
c 
  
      endif 
 
      
c
 
      do 60
 
  
                
 
                     j14= i + 3*ncn 
  
      do 6070 j=1,n
                     j21=
  
                j23= j + 2*ncn 
                j24= j + 3*ncn 
                 
                 
            
 
 
c     Dicretized 

214 
 



Appendix 3.2                                                                                  Computer program 
 
  

+  (alpha*deltat*2.0*(visc/roden) 
2    +  0.5*lambda*alpha*alpha*deltat*deltat*velsound*velsound) 

    *  (b(1,i)*b(1,j)*da) 
ltat*(visc/roden) 
(2,j)+b(3,i)*b(3,j))*da)    

  alpha*deltat*(visc/roden) 
    *  (b(2,i)*b(1,j)*da) 

*lambda*alpha*alpha*deltat*deltat*velsound 
  *  velsound*(b(1,i)*b(2,j)*da) 

j23)  +  alpha*deltat*(visc/roden) 
1        *  (b(3,i)*b(1,j)*da) 

.5*lambda*alpha*alpha*deltat*deltat*velsound 
3        *  velsound*(b(1,i)*b(3,j)*da) 

  aa(j11,j24)=aa(j11,j24) +  alpha*deltat*(b(1,j) 
          *p(i)*da) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~ 

    aa(j12,j21)=aa(j12,j21) +  alpha*deltat*(visc/roden) 
      *  (b(1,i) *b(2,j)*da) 

   2               +  0.5*lambda*alpha*alpha*deltat*deltat*velsound 
     *  velsound*(b(2,i)*b(1,j)*da) 

)*p(j)*da 
pha*deltat*2.0*(visc/roden) 

2   +  0.5*lambda*alpha*alpha*deltat*deltat*velsound*velsound) 
      *  (b(2,i)*b(2,j)*da) 

  alpha*deltat*(visc/roden) 
i)*b(1,j)+b(3,i)*b(3,j))*da)       

    

    aa( (j12,j23) +  alpha*deltat*(visc/roden) 
      *  (b(3,i)*b(2,j)*da) 

bda*alpha*alpha*deltat*deltat*velsound 
3        *  velsound*(b(2,i)*b(3,j)*da) 

b(2,j) 

      aa(j11,j21)=aa(j11,j21) +  p(i)*p(j)*da 
 1                        
 
 3    
     3                        +  alpha*de
     4                        * ((b(2,i)*b
          
                 
      aa(j11,j22)=aa(j11,j22) +
 1    
 2                    +  0.5
 3      
  
      aa(j11, =aa(j11,j23)
 
 2                 +  0
 
  
    
 1                 
     
c
~~~


 1

 3

 aa(j12,j22)=aa(j12,j22) + p(i
 1 + (al

 3
 3 +
 4 * ((b(1,

 j12,j23)=aa
 1
 2 + 0.5*lam

 aa(j12,j24)=aa(j12,j24) + alpha*deltat*(

215

Appendix 3.2 Computer program

 aa(j13,j21)=aa(j13,j21) + alpha*deltat*(visc/roden)

 * (b(1,i) *b(3,j)*da)
sound

 * (b(2,i) *b(3,j)*da)
 + 0.5*lambda*alpha*alpha*deltat*deltat*velsound

bda*alpha*alpha*deltat*deltat*velsound*velsound)

und*velsound

j14,j22)=aa(j14,j22) + lambda*alpha*deltat*velsound*velsound

 aa(j14,j24)=aa(j14,j24) + p(i)*p(j)*da
at*deltat

 --- Matrix on Right Hand Side --

 1
 2 + 0.5*lambda*alpha*alpha*deltat*deltat*vel
 3 * velsound*(b(3,i)*b(1,j)*da)

 aa(j13,j22)=aa(j13,j22) + alpha*deltat*(visc/roden)
 1
 2
 3 * velsound*(b(3,i)*b(2,j)*da)

 aa(j13,j23)=aa(j13,j23) + p(i)*p(j)*da
 1 + (alpha*deltat*2.0*(visc/roden)
 2 + 0.5*lam
 3 * (b(3,i)*b(3,j)*da)
 3 + alpha*deltat*(visc/roden)
 4 * ((b(1,i)*b(1,j)+b(2,i)*b(2,j))*da)

 aa(j13,j24)=aa(j13,j24) + alpha*deltat*(b(3,j)
 1 *p(i)*da)

c~~~
~~~~~~~~~ 
 
      aa(j14,j21)=aa(j14,j21) +  lambda*alpha*deltat*velso
 1                        *  (p(i)*b(1,j)*da) 
 
 
      aa(
 1                        *  (p(i)*b(2,j)*da) 
  
 
      aa(j14,j23)=aa(j14,j23) +  lambda*alpha*deltat*velsound*velsound 
 1                        *  (p(i)*b(3,j)*da) 
 
 
  
 1                       +  (0.5*lambda*alpha*alpha*delt
 2                        *  velsound*velsound)*((b(1,i)*b(1,j) 
     3                        +  b(2,i)*b(2,j)+b(3,i)*b(3,j))*da) 
   
c
c 

216 
 



Appendix 3.2                                                                                  Computer program 
 
 
 1                  -  ((1.0-alpha)*deltat*2.0*(visc/roden) 
 2 +  0.5*lambda*alpha*(1.0-alpha)*deltat*deltat*velsound*velsound) 

.0-alpha)*deltat*(visc/roden) 
   4                        * ((b(2,i)*b(2,j)+b(3,i)*b(3,j))*da)    

2       -  0.5*lambda*alpha*(1.0-alpha)*deltat*deltat*velsound 
   *  velsound*(b(1,i)*b(2,j)*da) 

eltat*deltat*velsound 
 velsound*(b(1,i)*b(3,j)*da) 

 
(1,j) 

    

                             

   *  (b(1,i) *b(2,j)*da) 
   2                   -  0.5*lambda*alpha*(1.0-alpha)*deltat*deltat 

3        *  

    ak(j12,j22)=ak(j12,j22) +  p(i)*p(j)*da 

alpha)*deltat*deltat*velsound*velsound) 
3        *  (b(2,i)*b(2,j)*da) 

   3                        -  (1.0-alpha)*deltat*(visc/roden) 
(3,j))*da)      

roden) 
1        *  (b(3,i)*b(2,j)*da) 

 
3        *  velsound*(b(2,i)*b(3,j)*da) 

 3        *  (b(1,i)*b(1,j)*da) 
     3                        -  (1
  
     
                   
      ak(j11,j22)=ak(j11,j22) -  (1.0-alpha)*deltat*(visc/roden) 
 1        *  (b(2,i)*b(1,j)*da) 
 
 3     
   
      ak(j11,j23)=ak(j11,j23) -  (1.0-alpha)*deltat*(visc/roden) 
 1        *  (b(3,i)*b(1,j)*da) 
 2         -  0.5*lambda*alpha*(1.0-alpha)*d
 3        * 
 
 
      ak(j11,j24)=ak(j11,j24) -  (1.0-alpha)*deltat*(b
 1                           *p(i)*da) 
 
c~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~ 

 ak(j12,j21)=ak(j12,j21) - (1.0-alpha)*deltat*(visc/roden)
 1

velsound*velsound*(b(2,i)*b(1,j)*da)

 1 - ((1.0-alpha)*deltat*2.0*(visc/roden)
 2 + 0.5*lambda*alpha*(1.0-

 4 * ((b(1,i)*b(1,j)+b(3,i)*b

 ak(j12,j23)=ak(j12,j23) - (1.0-alpha)*deltat*(visc/

 2 - 0.5*lambda*alpha*(1.0-alpha)*deltat*deltat*velsound

217

Appendix 3.2 Computer program

ltat*deltat

ound*velsound*(b(3,i)*b(1,j)*da)

3,i)*b(2,j)*da)

1 - ((1.0-alpha)*deltat*2.0*(visc/roden)
lambda*alpha*(1.0-alpha)*deltat*deltat*velsound*velsound)

 3 ltat*(visc/roden)
 4 * ((b(1,i)*b(1,j)+b(2,i)*b(2,j))*da)

 ak(3,j24) ak(j13 24) - (1.0-alpha)*deltat*(b(3,j)

~~~~~~~~~~~~~~~~~~

    ak(j14,j21)=ak(j14,j21) -  lambda*(1.0-alpha)*deltat*velsound 
1                        *velsound * (p(i)*b(1,j)*da) 

 
    ak(j14,j23)=ak(j14,j23) -  lambda*(1.0-alpha)*deltat*velsound 

 
ak(j13,j21)=ak(j13,j21) -  (1.0-alpha)*deltat*(visc/roden) 
 1        *  (b(1,i) *b(3,j)*da) 
     2                     -  0.5*lambda*alpha*(1.0-alpha)*de
 3        *  
vels
 
      ak(j13,j22)=ak(j13,j22) -  (1.0-alpha)*deltat*(visc/roden) 
 1        *  (b(2,i) *b(3,j)*da) 
     2                     -  0.5*lambda*alpha*(1.0-alpha)*deltat*deltat 
 3        *  
velsound*velsound*(b(
 
 
 
      ak(j13,j23)=ak(j13,j23) +  p(i)*p(j)*da 
 
 2 +  0.5*
 3        *  (b(3,i)*b(3,j)*da) 
                      -  (1.0-alpha)*de
        
 
 
  j1 = ,j
 1                           *p(i)*da) 
 
c~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~ 


 ak(j14,j22)=ak(j14,j22) - lambda*(1.0-alpha)*deltat*velsound
 1 * velsound * (p(i)*b(2,j)*da)

 1 * velsound * (p(i)*b(3,j)*da)

 ak(j14,j24)=ak(j13,j24) + p(i)*p(j)*da

218

Appendix 3.2 Computer program

c

tion)
=c

 C(j12) =C(j12) + (1.0-alpha)*deltat*p(j)*grav2*da

 If (iel==14) then

write (idv4,3050) iter

045 format(///,' ',10('*'),' element stiffness matrix for element

055 format(27(E15.8,3x))

 end if

==============
n RHS is evaluated

 ============================

c Body Force Effect (for Elemental Load Vector Calcula
c ==
c
 C(j11) =C(j11) + (1.0-alpha)*deltat*p(j)*grav1*da

 C(j13) =C(j13) + (1.0-alpha)*deltat*p(j)*grav3*da

 C(j14) =C(j14) + 0

6070 continue

6020 continue

c Writing the Stiffness Matrix for Element Number 14

 write (idv4,3045)

 write (idv4,3055) ((aa(i,j),j=1,ntrix),i=1,ntrix)

3
 114',10('*'),///)
3050 format(///,' ','Iteration number =',i5,///)
3

c For Transient State (Cartesian Co-ordinate System)
c ====================================
c Term one o
c

219

Appendix 3.2 Computer program

 j12= i + ncn

 j13= i + 2*ncn

 do 6080 j=1,ncn

 j22= j + ncn

 j24= j + 3*ncn

 nn=iabs(node(iel,j))

akf(j11)=akf(j11) + ak(j11,j21)*vel(nn,1) +
 ak(j11,j22)*vel(nn,2) +

 2 ak(j11,j23)*vel(nn,3) +
 ak(j11,j24)*press(nn)

akf(j12)=akf(j12) + ak(j12,j21)*vel(nn,1) +
 1 ak(j12,j22)*vel(nn,2) +

 3 ak(j12,j24)*press(nn)

 ak(j13,j21)*vel(nn,1) +
 1 el(nn,2) +

 ak(j13,j24)*press(nn)

,1) +

 ak(j14,j23)*vel(nn,3) +
 ak(j14,j24)*press(nn)

ontinue

 j14= i + 3*ncn

 j21= j

 j23= j + 2*ncn

 1

 3

 2 ak(j12,j23)*vel(nn,3) +

 akf(j13)=akf(j13) +
 ak(j13,j22)*v
 2 ak(j13,j23)*vel(nn,3) +
 3

 akf(j14)=akf(j14) + ak(j14,j21)*vel(nn
 1 ak(j14,j22)*vel(nn,2) +
 2
 3

6080 c

c
c Evaluation of Elemental Load Vector
c ===================================

 do 6085 i=1,ncn

220

 Appendix 3.2 Computer program

c For Transient State (Cartesian Co-ordinate System) hnt

rr(j11)= rr(j11) + akf(j11) + C(j11)

akf(j12) + C(j12)
3) + akf(j13) + C(j13)

kf(j14) + C(j14)

 maxte=maxdf

t,kdest,nk ,maxfr
 ,pvkol,vel ,r1

,nel ,maxte,ntov ,lcol
ress,icho)

==

n ,ncod ,bc ,conc ,vel
 2 ,r1 ,xg ,ndim ,da ,ldest,kdest,nk ,eq ,lhed
 3 ,khed ,kpiv ,lpiv ,jmod ,qq ,pvkol,iter ,nel ,ncn ,ntov

ble precision(a-h,o-z)

imension node (maxel,maxst),cord (maxnp, ndim)
 dimension ncod (maxdf),bc (maxdf)

f),vel (maxnp, 3)

 dimension p (20),del (3, 20),b (3, 20)
 3),v (3)

 dimension bicn (3),bjcn (3)

 rr(j12)= rr(j12) +
 rr(j13)= rr(j1
 rr(j14)= rr(j14) + a

6085 continue

c

 call front
 1(aa ,rr ,iel ,node ,maxel,maxst,ldes
 2,eq ,lhed ,khed ,kpiv ,lpiv ,jmod ,qq
 3,ncod ,bc ,nopp ,mdf ,ndn ,maxdf
 4,nell ,ntra, p
c
 return
 end

c
=
===
c
 subroutine concn
 1 (node ,cord ,pmat ,nopp ,mdf ,nd

 4 ,icord,ngaus, p ,del ,b ,ntrix,maxel,maxnp
 5 ,maxst,maxfr,maxdf,num ,ijmo ,ae
 6 ,re ,cg ,iel, del1)
c
 implicit dou
c
 d

 dimension conc (maxnp),r1 (maxd
 dimension ae (maxst,maxst),re (maxst)

 dimension x (

221

Appendix 3.2 Computer program

 dimension khed (maxfr),kpiv (maxfr),lpiv (maxfr)

),pvkol(maxfr)
axdf)

)
maxst)

dimension NQ (4 , 3),NP (3 , 4)
n C (maxst)

 dimension DEL1 (3)

 rvisc = pmat(iel,1)
 rbulk = pmat(iel,2)

 roden = pmat(iel,6)
 dispc

7)

 Basic element loop
 ==================

 do 6010 itrix = 1 ,maxst

 do 6010 jtrix = 1 ,maxst
 ae(itrix,jtrix)= 0.0

ntinue

 lg=0

 do 6020 ig=1,ngaus

 dimension jmod (maxfr),qq (maxfr
 dimension mdf (maxdf),ndn (m
 dimension ppp (20 , 20),pp (20
 dimension kae (maxst,maxst),kaef (

 dimensio

c
c

 power = pmat(iel,3)
 rtem = pmat(iel,4)
 tco = pmat(iel,5)

= pmat(iel,
c
c
c

 re(itrix) = 0.0

6010 co
c
c Numerical integration
c =====================
c
 call gaussp(ngaus,xg,cg)
c

 g = xg(ig)
 do 6020 jg=1,ngaus
 h = xg(jg)
 do 6020 kg=1,ngaus
 f = xg(kg)
 lg=lg+1
 if(iter.eq.1) then

222

Appendix 3.2 Computer program

 end if

 ijm

 Coefficients evaluated at integration point

 x(idf) + p(icn)*cord(jcn,idf)
 v(idf) = v(idf) + p(icn)*vel (jcn,idf)

s.
===============

 do 6060 icn = 1 ,ncn

 Row index

 ir = icn

c = jcn

c
c Read shape functions and their cartesian derivatives data from
c a work file

 read (15) iiel,iig,jjg,kkg,p,del,b,da

 o=ijmo+1
c
c
c
 do 6040 idf = 1 , 3
 x(idf) = 0.0
 v(idf) = 0.0
6040 continue
 do 6050 icn = 1 ,ncn
 jcn = iabs(node(iel,icn))
 do 6050 idf = 1 , 2
 x(idf) =

6050 continue
c
 if(icord.eq.1) then
c
c Modify da for axisymmetric computation
c ========================
 da = da * x(1)

 endif

c
c =========

 do 6060 jcn = 1 ,ncn

c Column index
c ============
 i

6060 continue
6020 continue

223

Appendix 3.2 Computer program

 do 6080 icn = 1 , ncn

 ir = icn

 ic = jcn

KAEF(ir)=KAEF(ir) + kae(ir,ic)*conc(ic)

ulation of Line Integrals
=================================

 NQ(2,2)=6

 NQ(3,3)=4

 NQ(4,2)=8
1)=4

 do J=1,3
-J,1)=node(iel,NQ(I,4-J))

=1,4

gaus
 g = xg(ig)

 if(iter.eq.1) then

 do 6080 jcn = 1 , ncn

6080 continue

c Term two on RHS i.e. Calc
c =================

 NQ(1,3)=2
 NQ(1,2)=5
 NQ(1,1)=1
 NQ(2,3)=3

 NQ(2,1)=2

 NQ(3,2)=7
 NQ(3,1)=3
 NQ(4,3)=1

 NQ(4,

 do I=1,4

 NP(4
 end do
 end do

 do 6096 L
 call gaussp(ngaus,xg,cg)

 do 6096 ig=1,n

224

Appendix 3.2 Computer program

ix=0.0

 dsiy=0.0

 I=1,ngaus
 dsix=dsix+p(I)*cord(NP(I,L),1)

cord(NP(I,L),2)
 end do

oncy=0.0

 do I=1,ngaus

 concy = concy + DEL1(I)*conc(NP(I,L))
z = concz + DEL1(I)*conc(NP(I,L))

 u11 = u11 + DEL1(I)*vel (NP(I,L),1)
 = u12 + DEL1(I)*vel (NP(I,L),1)
 = u21 + DEL1(I)*vel (NP(I,L),2)
 = u22 + DEL1(I)*vel (NP(I,L),2)
 velx = velx + DEL1(I)*vel (NP(I,L),1)
 vely = vely + DEL1(I)*vel (NP(I,L),2)

 end do

qrt(dsix**2 + dsiy**2+dsiz**2)

 dsix/ellgth
m = dsiy/ellgth

 s = dcelm

y = -dcell
 dnz = dceln

*ellgth

 ir = icn

 end if

 ds

 do

 dsiy=dsiy+p(I)*

 concx=0.0
 c

 concx = concx + DEL1(I)*conc(NP(I,L))

 conc

 u12
 u21
 u22

c ellgth = s

 dcell =
 dcel
c dceln = dsiz/ellgth
 dnx
 dn

 ellgth = 2.0
 djacob = ellgth/2.0

 do 6087 icn=1,ncn

225

Appendix 3.2 Computer program

c Calculation of the Elemental Load Vector

==============

 do 6085 icn =1 , ncn

aef(ir) + C(ir)

=========

hed , iv ,lp

ress,ic o,c,ak

 En of bas elem

=====

 ret n
 end

===================================

 sub ress
e ,p , b , da ,vel ,maxnp, maxel, maxst ,

c ,clump ,ngaus)

 im icit do le precision(a-h,o-z)

 at integration points,

c ==========================

 ir = icn

 re(ir) = re(ir) + k

 6085 continue

c Solve equations
c ======

 maxte=maxnp
 call front
 1(ae ,re ,iel ,node ,maxel,maxst,ldest,kdest,nk ,maxfr
 2,eq ,lhed ,k kp iv ,jmod ,qq ,pvkol, conc ,r1
 3,ncod ,bc ,nopp ,mdf ,ndn ,maxdf,nel ,maxte,ntov ,lcol
 4,nell ,ntra ,p h f,ak)
c
c d ic ent loop
c ====================

 ur

c

c
============================
===
 routine st
 1 (nel,nnp,ncn ,nod
 2 maxdf, stres, press, rvis
c
 pl ub
c
c function
c
c calculates stress components

226

Appendix 3.2 Computer program

 dimension clump(maxnp)

 do 4990 inp =1,maxnp
 do 4990 icp =1, 6

 stres(inp,icp)= 0.0
 continue

o 5000 iel = 1 ,nel

 do 6010 ig=1,ngaus

us

 do 6010 kg=1,ngaus

F(15))read(15) iiel,iig,jjg,kkg,p ,del ,b , da

 u21 = 0.0

 u31 = 0.0
32 = 0.0

 u33 = 0.0
 pres1 = 0.0

 do 6020 icn = 1 ,ncn
 jcn = iabs(node(iel,icn))

 u12 = u12 + b(2,icn)*vel(jcn,1)
+ b(3,icn)*vel(jcn,1)

 u23 = u23 + b(3,icn)*vel(jcn,2)
,3)

 u32 = u32 + b(2,icn)*vel(jcn,3)
u33 = u33 + b(3,icn)*vel(jcn,3)

 pres1 = pres1 + p(icn)*press(jcn)

c
 rewind 15
c

 4990
c

 d
c

 do 6010 jg=1,nga

 if(.not. EO

 u11 = 0.0
 u12 = 0.0
 u13 = 0.0

 u22 = 0.0
 u23 = 0.0

 u

 u11 = u11 + b(1,icn)*vel(jcn,1)

 u13 = u13
 u21 = u21 + b(1,icn)*vel(jcn,2)
 u22 = u22 + b(2,icn)*vel(jcn,2)

 u31 = u31 + b(1,icn)*vel(jcn

227

Appendix 3.2 Computer program

c cartesian components of the stress tensor

 ===

 ===

 sd12 = rvisc * (u12 + u21)
 sd13 = rvisc * (u13 + u31)

 u32)

==========================

==========================

===

at nodal points

===

))

 stres(jcn,5)= stres(jcn,5)

c
c Shear Stress (Tau)
c

 sd11 = 2.0 *rvisc * u11
 sd22 = 2.0 *rvisc * u22
 sd33 = 2.0 *rvisc * u33

 sd23 = rvisc * (u23 +

c ===============
c Normal Stress (Pi)
c ===============

 s11 =-pres1 + sd11
 s22 =-pres1 + sd22
 s33 =-pres1 + sd33
 s12 = sd12
 s13 = sd13
 s23 = sd23

c
================
=
c *** calculate stress
c
================
=

 do 6500 icn = 1 ,ncn
 jcn = iabs(node(iel,icn

 stres(jcn,1)= stres(jcn,1)
 1 + p(icn) *s11 *da
 stres(jcn,2)= stres(jcn,2)
 1 + p(icn) *s22 *da
 stres(jcn,3)= stres(jcn,3)
 1 + p(icn) *s33 *da
 stres(jcn,4)= stres(jcn,4)
 1 + p(icn) *s12 *da

228

 Appendix 3.2 Computer program

 6500 continue

c
 6010 continue

==

np,nel ,ngaus,p ,del ,b ,maxst,
)

le precision(a-h,o-z)
 (3, 20) ,del (3, 20) ,p (20)

 dimension clump(maxnp)
imension node (maxel,maxst)

 ,nnp
 clump (inp)= 0.0

 rewind 15

 do 5020 ig = 1 ,ngaus

,iig ,jjg ,kkg ,p ,del ,b ,da

 5000 continue

 return
c
 end
c
c
=================
===

 subroutine lumpm
 1 (clump,nnp ,max
 2 node ,maxel,ncn
c
 implicit doub
 dimension b

 d
 dimension pp (ncn ,ncn)
c
 do 5000 inp = 1

 5000 continue
c

c
 do 5010 iel = 1 ,nel

 do 5020 jg = 1 ,ngaus
 do 5020 kg = 1 ,ngaus

 if(.not. EOF(15)) read (15) jel

 do 5030 icn = 1 ,ncn
 ww = 0.0
 do 5040 jcn = 1 ,ncn

229

Appendix 3.2 Computer program

5030 continue

020 continue
10 continue

 return

===

ubroutine getnod (nnp ,cord ,idv1 ,idv2 ,maxnp,ndim,icord)

plicit double precision(a-h,o-z)

odal points in the mesh
 cord array for nodal coordinates

)

1,nnp)

 if(icord.eq.1) write(idv2,3020)
) (jnp ,(cord(jnp,idf),idf=1,3) ,jnp=1,nnp)

dinates ',20('*'),//
rd',13x,'z-coord',13x)/)

t(' ',///' ',20('*'),' nodal coordinates ',20('*'),//
 1' ',2(7x,'id/',7x,'r-coord',7x,'z-coord',20x)/)

==================================c

 5
 50

 end
c
c
==
===

 s
c
 im
c
c arguments
c =========
c nnp total number of n
c
c idv1 input device id.
c idv2 output device id.
c ndim see below
c
 dimension cord(maxnp, ndim
c
 if (.NOT. EOF(51)) read (idv1,1010)
 1(jnp ,(cord(jnp,idf),idf=1,3),jnp=
 if(icord.eq.0) write(idv2,3010)

 write(idv2,3030
c
 return
c
1010 format(i8,e20.12,e20.12,e20.12)
3010 format(' ',///' ',20('*'),' nodal coor
 1' ',(7x,'id.',13x,'x-coord',13x,'y-coo
3020 forma

3030 format(' ',i10,10x,f10.6,10x,f10.6,10x,f10.6)
c
 end
c
c==========================

230

Appendix 3.2 Computer program

 subroutine getelm (nel ,ncn ,node ,idv1 ,idv2 ,maxel)

recision(a-h,o-z)

 arguments
====

 number of nodes per element
 node array for element connectivity data

dv1 input device id.

axel see below

10 if (.not. eof(51))read (idv1,1010) iel ,(node(iel,icn),icn=1,ncn)
al connectivity array read"

0)

n),icn=1,ncn)

10 format(' ',///,' ',20('*'),' element connectivity ',20('*'),//
i e s',/)

===

=

 arguments
======

 nbc number of nodal constraint data

c
 implicit double p
c
c
c =====
c ncn
c
c i
c idv2 output device id.
c m
c
 dimension node (maxel, ncn)
c
 do 6010 iel = 1 ,nel
60
 print*, "nod
 write(idv2,301
 do 6020 jel = 1 ,nel
6020 write(idv2,3020) jel ,(node(jel,ic
c
 return
c

1010 format(21i7)
30
 1' ',4x,'id.',7x,'n o d a l - p o i n t e n t r
3020 format(21i7)
c
 end
c
c
========
==

 subroutine getbcd (nbc ,ibc ,jbc ,vbc
 1 ,idv1 ,idv2 ,maxbc)
c
 implicit double precision(a-h,o-z)
c
c
c ===
c
c ibc array for constrained nodal points

231

Appendix 3.2 Computer program

c maxbc see below

 dimension ibc (maxbc) ,jbc (maxbc),vbc (maxbc)

))read (idv1,1010) (ibc(ind) ,jbc(ind) ,vbc(ind)

"

) ,jbc(ind) ,vbc(ind) ,ind=1,nbc)

 return

10 format(2i5,f10.4)
 nodal constraint ',20('*'),//

===

v
axst,

 implicit double precision(a-h,o-z)

 arguments
========

c array for storing contraint value
 maxbc see below

 dimension ibc (maxbc) ,jbc (maxbc) ,vbc (maxbc)
df) ,node (maxel,maxst)

 = 1 ,nbc
goto 6010

c

c
 if (.not. eof(51
 1 ,ind=1,nbc)
 print*, "boundary conditions array read
 write(idv2,3010)
 write(idv2,3020) (ibc(ind
c

c
10
3010 format(' ',// /,' ',20('*'),'
 1' ',(8x,'id.',7x,'dof',10x,'value',10x)/)
3020 format(5x,i5,5x,i5,f17.4)
c
 end
c
c
========
==

 subroutine putbc
 1 (nnp ,nbc ,ibc ,jbc ,vbc ,ncod ,bc ,maxbc,maxdf,maxel,m
 2 node)
c

c
c
c =
c ncod array for constraint switch defined for every d.o.f.
c b
c
c maxdf see below
c

 dimension ncod (maxdf) ,bc (max
c
 do 6010 ind
 if(jbc(ind)>4)
 jnd = ibc(ind)+(jbc(ind)-1)*nnp
 bc (jnd) = vbc(ind)

232

Appendix 3.2 Computer program

c iel=16

kc=iabs(node(iel,inp))

 return

 1 (nbc ,ibc ,jbc ,vbc ,ncod ,bc ,maxbc,maxdf)

 implicit double precision(a-h,o-z)

e putbcv

nsion ibc (maxbc) ,jbc (maxbc) ,vbc (maxbc)
 dimension ncod (maxdf) ,bc (maxdf)

f(jbc(ind).eq.5) then
 jnd = ibc(ind)

)

10 continue

 return

================================

 subroutine putbcs
df)

 implicit double precision(a-h,o-z)

broutine putbcv

c inp=24
c
c

 end
c

 subroutine putbcc

c

c
c arguments
c =========
c arguments same as subroutin
c
 dime

c
 do 6010 ind = 1 ,nbc
 i

 bc (jnd)= vbc(ind
 ncod (jnd)= 1
 endif
60
c

 end
c
c
===============================
===

 1 (nnp ,nbc ,ibc ,jbc ,vbc ,ncod ,bc ,maxbc,max
c

c
c arguments
c =========
c arguments same as su

233

Appendix 3.2 Computer program

 6010 ind = do 1 ,nbc

ibc(ind)
nd)= vbc(ind)

 (jnd)= 1
 endif

010 continue

===

n
maxdf,

 2 bc ,ncod ,icho)

fined elsewhere.

axdf) ,node(maxel,maxst)
sion bc (maxdf) ,ncod(maxdf)

 function
===

s the used arrays and makes them ready for solution

 do 6010 i = 1,maxdf

 bc(i) = 0.0
 ncod(i) = 0

ue

 do 6020 iel = 1,nel

 node(iel,inp) = iabs(node(iel,inp))
 continue

)then

 if(jbc(ind).eq.6) then
 jnd =
 bc (j
 ncod

6
c
 return
 end
c
c
==
===
 subroutine clea
 1 (ncn ,nel ,ndf ,node ,r1 ,maxel,maxst,

c
 implicit double precision(a-h,o-z)
c
c arguments
c =========
c all arguments are de
c
 dimension r1 (m
 dimen
c
c
c =====
c clean
c

 r1(i) = 0.0

6010 contin
 ntrix = ndf *ncn

 do 6020 inp = 1,ntrix

6020
 if(icho.ne.1
 do 6030 iel = 1,nel

234

Appendix 3.2 Computer program

 endif
c
 return
 end
c
c
===

=
ine setprm

np ,nel ,ncn ,node ,ndf ,maxel,maxst,ndn ,ntrix,
 2 maxdf,ntov ,mdf ,nopp)

ined elsewhere.

n (maxdf)
 dimension mdf (maxdf), nopp (maxdf)

 Sets the location data for nodal degrees of freedom

 ndn(iel) = ntrix
n = 1 ,ncn

de(iel,icn)

 lacn= kcn+(ndf-3)*nnp

bcn= icn+(ndf-2)*ncn
f-2)*nnp

= icn+(ndf-1)*ncn
np

==
 subrout
 1 (n

c
 implicit double precision(a-h,o-z)
c
c arguments
c =========
c all arguments are def
c
 dimension node (maxel,maxst), nd

c
c function
c ========
c
c
 do 6010 iel = 1 ,nel

 do 6010 ic
 kcn = no
 jacn= icn+(ndf-3)*ncn

 j
 lbcn= kcn+(nd

 jccn
 lccn= kcn+(ndf-1)*n

 node(iel,jacn) = lacn
 node(iel,jbcn) = lbcn
 node(iel,jccn) = lccn

6010 continue

235

Appendix 3.2 Computer program

6020 continue

 return

==

broutine getmat (nel ,nmat,pmat, idv1, idv2,maxel,rtem, rpef)

 arguments

 nmat number of materials
for material constants for each element

ice id.

 maxel see below

,3010)

 if (.NOT. EOF(51)) read(idv1,1010) rvisc, power, tref, tbco, taco,
 dispc, pref, roden, gamad

roperties read"

q.0.) rtem = 0.001
 if(rpef .eq.0.) rpef = 0.001

 pmat(iel,1) = rvisc

 pmat(iel,4) = tref

 pmat(iel,8) = roden
 = gamad

c

 end
c
c
===
===
 su
c
 implicit double precision(a-h,o-z)
c
c
c =========
c
c pmat array
c idv1 input dev
c idv2 output devide id.
c
c
 dimension pmat (maxel, 9)
c
 write(idv2
c
 do 6010 imat = 1 ,nmat

 1
 print*, "material p
CCCC ifrom = 1
CCCC ito = nel

 if(rtem .e

 do 6020 iel = 1 ,nel

 pmat(iel,2) = pref
 pmat(iel,3) = power

 pmat(iel,5) = tbco
 pmat(iel,6) = taco
 pmat(iel,7) = dispc

 pmat(iel,9)

236

Appendix 3.2 Computer program

c rvisc mu nought; consistency coefficient

 reference pressure
er power law index

 tref reference temperature
bco coefficient b in the power law model

ispc dispersion coefficient

020) imat ,ifrom ,ito ,rvisc ,power
0)

ref, taco

 , roden , gamad

aterial properties ',35('*'),//

,g15.5)
temperature coefficient b
efficient a '/)

at(f16.3,f22.4,6x,g10.3,9x,g10.3)
050 f mat(/x,

 Shear rate'/)
 format(g13.3,15x,g7.1,6x,g16.5)

==

 1(ve ,maxnp,maxdf,errov,errop,vet ,cet,

c pref
c pow
c
c t
c taco coefficient a in the power law model
c d
c gamad shear rate
c
6020 continue
c
 write(idv2,3
 write(idv2,303
 write(idv2,3040) tref ,tbco, p
 write(idv2,3050)
 write(idv2,3060) dispc

6010 continue
c
 return
c
1010 format(9d10.5)
c
3010 format(' ',//' ',35('*'),' m
 1 ' ',2x,'id.',5x,'eid.(from-to)',3x,'consistency co-efficient'
 2,5x,'power law index',/)
3020 format(' ',i3,i12,i4,5x,g15.5,15x
3030 format(/x,' reference
 1 reference pressure co
3040 form
3 or
 1'Dispersion Coefficient Density
3060
c
 end
c
c
=================
===
c
 subroutine contol
 l ,conc ,iter ,ntov ,nnp
 2 pet, press)

237

Appendix 3.2 Computer program

 dimension vel (maxdf),conc (maxnp), press(maxnp)

 (maxnp), pet (maxnp)

errp = 0.0
.0

cutive iterations

=================================

 do 6010 icheck = 1,ntov
et(icheck) = 0.0

61008 errv = errv +
 1 (vel(icheck)-vet(icheck)) * (vel(icheck)-vet(icheck))

 1 vel(icheck)*vel(icheck)- 2*vel(icheck)*vet(icheck)

tive iterations

===

 do 6020 icheck = 1,nnp
(iter.eq.1) cet(icheck) = 0.0

 (conc(icheck)*conc(icheck))-2*conc(icheck)*cet(icheck)
 2 + cet(icheck)*cet(icheck)

c + conc(icheck)*conc(icheck)

conc(icheck)

 dimension vet (maxdf),cet

 errv = 0.0
 torv = 0.0
 errc = 0.0
 torc = 0.0

 torp = 0
c
c calculate difference between velocities in conse
c
==============================
==
c

 if(iter.eq.1) v
C0
C061008

 errv = errv +

 2 +vet(icheck)*vet(icheck)
 torv = torv + vel(icheck)*vel(icheck)
c
 vet(icheck) = vel(icheck)
c
6010 continue
 errov= errv/torv
c
c calculate difference between concentrations in consecu
c
==
======

 if
 errc = errc +
 1

 torc = tor

 cet(icheck) =

238

Appendix 3.2 Computer program

 do 6030 icheck = 1,nnp

230908 if(iter.eq.1) press(icheck) = 0.0

icheck)*press(icheck)-2*press(icheck)*pet(icheck)
heck)*pet(icheck)

 + press(icheck)*press(icheck)

 = press(icheck)

 errop= errp/torp

 return

===========
==

,icord, stres)

 implicit double precision(a-h,o-z)

 arguments are already defined
==============

ss(maxnp), conc(maxnp)
dimension stres(maxnp, 6)

write(60,3010)

d.eq.0) write(60,3020)

p = 1,nnp

 knp = inp + (2*nnp)

 write(60,3040)inp,vel(inp),vel(jnp),vel(knp),press(inp),

 if(iter.eq.1) pet(icheck) = 0.0

c
 errp = errp +
 1 press(
 2 + pet(ic
 torp = torp
c
 pet(icheck)
c
6030 continue

c

 end

c
==
=

 subroutine output
 1 (nnp ,vel ,press, maxdf,maxnp
c

c
c
c ===============
 dimension vel(maxdf), pre

 if(icor
 if(icord.eq.1) write(60,3030)

 do 6010 in
 jnp = inp + nnp

 press(inp)=press(inp)

 1stres(inp,1)

239

Appendix 3.2 Computer program

 call minimax
 1(cmax , pmax , vel , conc , press , maxnp, nnp , nc,

2 np , nm , ncm , nvxm , nvym , nvzm ,

in , vymax, vymin , vzmax , vzmin, ndim , maxdf)

l(nvxl)

write(60,3060)nvym,vel(nnp+nvym),nvyl,vel(nnp+nvyl)

write(60,3070)nvzm,vel(2*nnp+nvzm),nvzl,vel(2*nnp+nvzl)

te(60,3075)
rite(60,3080)np,press(np),nm,press(nm)

 format(' id. ux uy uz press stress'/)
030 format(' id. ur uz uz press'/)

,e22.8,g15.5)

45 format('node no. max ux node no. min ux')

 node no. min uy')

 node no. min uz')
 format(i5,e22.8,i5,e22.8,/)

075 format('node no. max p node no. min p')

eturn

==

duces the slip wall boundary conditions

 3 nvxl , nvyl , nvzl , pmin , cmin ,
 4 vxmax , vxm

 write(60,3045)
 write(60,3050)nvxm,vel(nvxm),nvxl,ve

 write(60,3055)

 write(60,3065)

 wri
 w

3010 format(/' nodal velocities and pressures '/)
3020
3
3040 format(i5,3e13.4

30
3050 format(i5,e22.8,i5,e22.8,/)

3055 format('node no. max uy
3060 format(i5,e22.8,i5,e22.8,/)

3065 format('node no. max uz
3070

3
3080 format(i5,e22.8,i5,e22.8,/)

 r
 end
c
c
===================
===
c The subroutine slip intro

240

Appendix 3.2 Computer program

 subroutine slip (ldsc)

 imp

th data for slip wall b.c. & friction c.
================================

0)rfrct

 used for identifying upper slip layer
===============================

 do 6030 ids=1,nel-13,14

=============================

 do 6020 j=1,2

020 continue

 return

==

 licit double precision(a-h,o-z)

 dimension ldsc (22)

C
c Channel dep
c ===================

 read(50,101
1010 format(f10.0)
c
c This loop is
c ===================

 i1=0

 do 6030 j=1,2
 i1=i1+1
 ldsc(i1)=ids+j-1
6030 continue
c
c This loop is used for identifying lower slip layers
c ======================

 i1=0
 do 6020 ids=13,nel-2,14

 i1=i1+1
 ldsc(i1)=ids+j-1
6
c
c

 end

c
===
===

 subroutine hgstvl (cmax, pmax , conc , press , maxnp,

241

Appendix 3.2 Computer program

 cmax= conc(1)
 pm
 pmin= press (1)

 np=1

 do i=2,nnp
 cm= conc(i)

 pm= press (i)

 cmax=cm

 if (pm.gt.pmax) then

 endif
i.lt.pmin) then

 end

==

 .

output2 (nnp , vel , conc , press , maxdf, maxnp,
nwr , iter , errov , erroc, errop)

 implicit real*8 (a-h,o-z)
 dimension vel (maxdf) , conc (maxnp) , press (maxnp)

ion nwr (10) , vr (10) , pv(10) , cr (10)

call hgstvl (cmax, pmax , conc , press , maxnp,
 nnp , nc , np , nm , pmin)

rite (2 , 5111) iter,errov,erroc,errop

 ax= press (1)

 nc=1

 nm=1

 pi= press (i)
 if (cm.gt.cmax) then

 nc =i
 endif

 pmax=pm
 np =i

 if (p
 pmin = pi
 nm = i
 endif
 enddo
 return

c
c
=
===
c write nodal outputs
c
 subroutine
 1 time ,

 dimens

 1

 w

 write (2 , 5115) time

242

Appendix 3.2 Computer program

 do 24 i=1,nnp
 vres= dsqrt (vel(i+i-1)**2+vel(i+i)**2)

 (2,5130) i,vel(i+i-1),vel(i+i),vres,conc(i),press(i)

n ,node ,p , b , da ,vel ,maxnp, maxel, maxst ,
visc ,clump ,ngaus)

tress components
=====================

)
130) i, sd11, sd12, sd22

ts
===============

,3
 = nwr(k)
k) = dsqrt (vel(i+i-1)**2+vel(i+i)**2)

v(k) = press(i)
 cr (k) = conc (i)

 enddo

...
teration(s) -',

 1x,/,'- error oval (velocity) =',f20.9,

mum concentration = ',g20.5,' at node =',i5)
 pressure = ',g20.5,' at node =',i5)

)

 format (1x,//,' result (node no. ,vx, vy, |v|, concentration,

130 format (1x,i4,2x,5(d11.5,2x))
 ',/)

 return

 psee= press(i)

 write

 24 continue

 call stress
 1 (nel,nnp,nc
 2 maxdf, stres, press, r
c
c write the s
c ======

 write (2 , 5133
 write (2 , 5

c writing of output resul
c ==========

 do k=1
 i
 vr (
 p

 write (4 , 5125) time , (vr(i),pv(i),cr(i),i=1,3)
c.......
 5111 format (1x,/,'- solution after',i5,' i
 1
 2 1x,/,'- error oval (concentration) =',f20.9,
 3 1x,/,'- error oval (pressure) =',f20.9)
 5112 format (1x,' maxi
 5113 format (1x,' maximum
 5114 format (1x,' minimum pressure = ',g20.5,' at node =',i5
 5115 format (1x,'solution at time = ',g20.5,/)
 5120
 1 pressure)',/)
 5125 format (1x,e11.6,3(' |',3e12.4))
 5
 5133 format (1x,//,1x,' sd11 , sd12 , sd22

 end

243

Appendix 3.2 Computer program

c This subroutine calculate the viscosity using the power law model

 subroutine visca

 2 ,gamad)

 implicit double precision(a-h,o-z)

mad**((power-1.0)*0.5))

 visc = rvisc*(gamad**((power-1.0)))

d

==

-z)
n shape1d(3), del1(3)

==

max , pmax , vel , conc , press , maxnp, nnp , nc,
 np , nm , ncm , nvxm , nvym , nvzm ,

c

 1 (rvisc,power,visc,stemp,rtem,tbco,spress,rpef,taco

c230908 visc = rvisc*(4.0*gamad**((power-1.0)*0.5))
c230908 1 *exp(-tbco*(stemp-rtem))

c110909 visc = rvisc*(4.0*ga

 return
 en
c
c
=
===

 subroutine lagsh1 (xi , shape1d , del1)

 implicit real*8 (a-h,o
 dimensio
 shape1d(1) = -0.5*xi*(1.0-xi)
 shape1d(2) = (1.0+xi)*(1.0-xi)
 shape1d(3) = 0.5*g*(1.0+xi)
 del1(1) = -0.5+xi
 del1(2) = -2.0*xi
 del1(3) = 0.5+xi
 return
 end

c
=============
=== .

 subroutine minimax
 1(c
 2

244

Appendix 3.2 Computer program

 dimension conc (maxnp) , vel (maxdf)
 dimension press (maxnp)

vel(1)
vxmin = vel(1)

vymin = vel(nnp+1)

min

 pmin = press (1)

 = 1

cm = 1
 np = 1

m = 1

nvym = 1
nvzm = 1

nvyl = 1
1

(i)
)
)

x = vel(nnp+i)
ymn = vel(nnp+i)

vzmx = vel(2*nnp+i)
vzmn = vel(2*nnp+i)

 np =i

c
 vxmax =

 vymax = vel(nnp+1)

 vzmax = vel(2*nnp+1)
 vz = vel(2*nnp+1)

 pmax = press (1)

 nc
 n

 n
 nvxm = 1

 nvxl = 1

 nvzl =

 do 6020 i=2,nnp

 pm = press (i)
 pi = press
 vxmx = vel(i
 vxmn = vel(i
 vym
 v

 if (pm.gt.pmax) then
 pmax=pm

 endif
 if (pi.lt.pmin) then
 pmin = pi

245

Appendix 3.2 Computer program

 nvxm = i

 vymax= vymx
 nvym = i

 if (vxmn.lt.vxmin) then
in= vxmn

 endif
lt.vymin) then

if
 vzmn vzm then

===== ===

 1 (ode ,sinv ,cord ,p ,b ,
 2 axel,maxst,ndim ,icord,

es the second invariant of rate of deformation
ts.

 endif
 if (vymx.gt.vymax) then

 endif
 if (vzmx.gt.vzmax) then
 vzmax= vzmx
 nvzm = i
 endif

 vxm
 nvxl = i

 if (vymn.
 vymin= vymn
 nvyl = i
 end
 if (.lt. in)
 vzmin= vzmn
 nvzl = i
 endif
 6020 continue

 return
 end

c
c
====== =========
c
 subroutine secinv
 nel ,nnp ,ncn ,ngaus,n
 del ,da ,vel ,maxnp,m
 3 maxdf,num)
c
 implicit double precision(a-h,o-z)
c
c function
c --------
c calculat
c tensor at integration poin
c

246

Appendix 3.2 Computer program

 dimension b (3, 20)

 rewind 15

 iel= 1 , nel

us
 ,ngaus

010 kg = 1 ,ngaus

iel,iig,jjg,p,del,b,da

 u13 = 0.0
21 = 0.0

.0
1 = 0.0

 u32 = 0.0
33 = 0.0

 ,ncn
 jcn = iabs(node(iel,icn))

 mcn = jcn + nnp
 kcn = jcn + (2*nnp)

 b(1,icn)*vel(jcn,1)

jcn,1)
 + b(1,icn)*vel(jcn,2)

 u22 = u22 + b(2,icn)*vel(jcn,2)
3 + b(3,icn)*vel(jcn,2)

 u31 = u31 + b(1,icn)*vel(jcn,3)
u32 = u32 + b(2,icn)*vel(jcn,3)

 u33 = u33 + b(3,icn)*vel(jcn,3)

c

 do 5000
 lg = 0
 do 5010 ig = 1 ,nga
 do 5010 jg = 1
 do 5

 lg = lg+1
c
 read (15) i
c
 u11 = 0.0
 u12 = 0.0

 u
 u22 = 0.0
 u23 = 0
 u3

 u

 do 5020 icn = 1

c
c

c *** components of the rate of deformation tensor

 u11 = u11 +
 u12 = u12 + b(2,icn)*vel(jcn,1)
 u13 = u13 + b(3,icn)*vel(
 u21 = u21

 u23 = u2

 5020 continue
c

247

Appendix 3.2 Computer program

 2 (u13+u31)*(u13+u31)+

 3 (u21+u12)*(u21+u12)+
2)+

 (u23+u32)*(u23+u32)+
 (u31+u13)*(u31+u13)+

 (u32+u23)*(u32+u23)+
 (u33+u33)*(u33+u33))

000 continue

 return

===c

sspt(ngaus,xg,cg,ncn)

 implicit double precision(a-h,o-z)

ordinates of the Gauss points
uss weights

cg=0.0

xg(1,2)=be

xg(1,4)=be

 4 (u22+u22)*(u22+u2
 5
 6
 7
 8

 5010 continue
 5

 end

c===============

 subroutine gau
c

c
c x(g) specifies the co
c c(g) specifies the Ga
c
 dimension xg(5,5),cg(3)
 Real:: al, be
 al=0.58541020
 be=0.13819660

 xg=0.0

 if (ngaus==1) then
 xg(1,1)= 1.0/4.0
 xg(1,2)= xg(1,1)
 xg(1,3)= xg(1,1)
 xg(1,4)= xg(1,1)
 cg(1)=1
 else if (ngauss==2)then
 xg(1,1)=al

 xg(1,3)=be

248

Appendix 3.2 Computer program

 xg(3,1)=be

cg(1)=1.0/4.0
(1)
auss==3) then

xg(1,1)=1.0/4.0
1,2)=1.0/4.0

g(1,3)=1.0/4.0
xg(1,4)=1.0/4.0

xg(2,1)=1.0/2.0
xg(2,2)=1.0/6.0

xg(2,4)=1.0/6.0

xg(3,1)=1.0/6.0

xg(3,4)=1.0/6.0

1.0/6.0

1.0/6.0

======================================c

 xg(3,2)=be
 xg(3,3)=al
 xg(3,4)=be
 xg(4,1)=be
 xg(4,2)=be
 xg(4,3)=be
 xg(4,4)=al

 cg(2)=cg
 else if (ng

 xg(
 x

 xg(2,3)=1.0/6.0

 xg(3,2)=1.0/2.0
 xg(3,3)=1.0/6.0

 xg(4,1)=1.0/6.0
 xg(4,2)=1.0/6.0
 xg(4,3)=1.0/2.0
 xg(4,4)=

 xg(5,1)=1.0/6.0
 xg(5,2)=
 xg(5,3)=1.0/6.0
 xg(5,4)=1.0/2.0

 end if
 cg(1)=-4.0/5.0
 cg(2)=9.0/20.0
 return
 end

c=====================

249

Appendix 3.2 Computer program

SUBROUTINE GFMFEM

axbc = 25000)
f = maxnp*4)

st = 80)
)

 3)

h,o-z)

E*30,VL*2,VM*2,VN*2,CD*4,CE*5
CW*4
80)

 DIMENSION NOD(27)
 ndim),node (maxel, 27)

RM file name ',$)

ME,FORM='FORMATTED')
 OPEN (UNIT=2,STATUS='SCRATCH',FORM='FORMATTED')

'SCRATCH',FORM='FORMATTED')
'SCRATCH',FORM='FORMATTED')
SH.FEM',FORM='FORMATTED')
ut.dat',FORM='FORMATTED')

 OPEN (UNIT=7,STATUS='SCRATCH',FORM='FORMATTED')
IT=8,STATUS='SCRATCH',FORM='FORMATTED')

='SCRATCH',FORM='FORMATTED')
S='SCRATCH',FORM='FORMATTED')

(UNIT=11,STATUS='SCRATCH',FORM='FORMATTED')

 PARAMETER (maxel = 250000)
 PARAMETER (maxnp = 50000)

 PARAMETER (m
 PARAMETER (maxd
 PARAMETER (max
 PARAMETER (maxfr = 2000
 PARAMETER (ndim =

 IMPLICIT double PRECISION(a-

 CHARACTER
CH(150)*1,SF*4,CC*2,FNAM
 CHARACTER C1*2,C2*2,
 CHARACTER filnam (

 DIMENSION cord(maxnp,

 WRITE (*,130)
130 FORMAT(1X,'Enter GFO

 READ (*,135) FNAME
135 FORMAT (A30)

 OPEN (UNIT=1,FILE=FNA

 OPEN (UNIT=3,STATUS=
 OPEN (UNIT=4,STATUS=
 OPEN (UNIT=5,FILE='ME
 OPEN (UNIT=6,FILE='inp

 OPEN (UN
 OPEN (UNIT=9,STATUS
 OPEN (UNIT=10,STATU
 OPEN

250

Appendix 3.2 Computer program

c===

================================
====

umber between 0.5 and 2 "

y again."

END IF

============

CATION
==

.EQ.0)
T=IOS) (CH(J),J=1,150)

 CC=CH(1)//CH(2)
(3)

)//CH(3)//CH(4)//CH(5)

 IF (CD.EQ.'VND') THEN
 WRITE (3,'(50A)') (CH(K),K=5,30)

=====
c TO SCALE THE GEOMETRY
c===============================
=

1111 PRINT *," Enter the scale factor: any n
 READ*, scale
 IF(scale < 0.5 .OR. scale > 2) THEN
 PRINT*, " Invalid scale factor, tr

 GOTO 1111

C==
=======
C DYNAMIC MEMORY ALLO
C====================
=======

 DO WHILE (IOS
 READ (1,'(150A)',ERR=300,END=300,IOSTA

 CD=CH(1)//CH(2)//CH
 CE=CH(1)//CH(2

 IF (CC.EQ.'ND')THEN
 WRITE (2,'(100A)') (CH(K),K=4,100)
 WRITE (8,'(100A)') (CH(K),K=4,100)
 NND=NND+1
 ENDIF

 IF (CC.EQ.'EL')THEN
 WRITE (2,'(100A)') (CH(K),K=4,100)
 WRITE (8,'(100A)') (CH(K),K=4,100)
 NEM=NEM+1
 ENDIF

251

Appendix 3.2 Computer program

 WRITE (10,'(150A)') (CH(K),K=7,85)
 NNP=NNP+1

(CW.EQ.'ND')THEN
=4,100)

NND=NND+1
 ENDIF

CH(K),K=4,100)
0)

)THEN
 (7,'(100A)') (CH(K),K=4,100)

0A)') (CH(K),K=4,100)
ND+1

W.EQ.'VZ')THEN

D=NND+1
 ENDIF

11

=============================

INATES
===

=

 ENDIF
 IF
 WRITE (7,'(100A)') (CH(K),K
 WRITE (11,'(100A)') (CH(K),K=4,100)

 IF (CW.EQ.'VX')THEN
 WRITE (7,'(100A)') (
 WRITE (11,'(100A)') (CH(K),K=4,10
 NND=NND+1
 ENDIF
 IF (CW.EQ.'VY'
 WRITE
 WRITE (11,'(10
 NND=N
 ENDIF
 IF (C
 WRITE (7,'(100A)') (CH(K),K=4,100)
 WRITE (11,'(100A)') (CH(K),K=4,100)
 NN

 ENDDO

300 REWIND 2
 REWIND 3
 REWIND 4
 REWIND 7
 REWIND 8
 REWIND 9
 REWIND 10
 REWIND

C=================================
====
C NODAL COORD
C=========
===

 DO I=1,NND
 READ (2,*) N,X,Y,Z

252

Appendix 3.2 Computer program

 ENDDO

C010908===

 (7,*,ERR=333,END=333,IOSTAT=IOS) K,VX,VY,VZ,X,Y,Z
Z,X,Y,Z

===

============================

),K=1,NPE)

E (5,120) I,NOD(2),NOD(6),NOD(5),NOD(1),NOD(3),
1 NOD(7),NOD(8),NOD(4)

 FORMAT (9I8)

===

Y BOUNDARY CONDITION
===

 DO J= 1,NNV
READ (3,1601) ND,VL,CU,V,NT,NP,VM,VN

ND,ND,VX,VAL
 IF (VL.EQ.'VX') THEN

E (5,'(2I5,F10.4)') ND,NCODE1,V

===

 DO I=1,NND
 READ
 WRITE (11) VX,VY,V
 ENDDO
333 REWIND(7)

C=========
====
C ELEMENT CONNECTIVITY
C==================================
====

 DO I=1,NEM
 READ (2,*) NNEE,SF,NSF,NPE,(NOD(K

 WRIT

120
 ENDDO

C===========
====
C VELOCIT
C===========
====

1601 FORMAT (I7,A2,A1,G20.8,2I5,A2,A3)

C---------------------------------------
 IF (NP.EQ.0) THEN
!-----V

 WRIT
!-----VND,ND,VY,VAL

253

Appendix 3.2 Computer program

 END IF

NVN=NVN+1
 NBC=NBC+1

 IF (VL.EQ.'VX') THEN
-----VND,ND,VX,VAL,ND,NPE,VY,VZ

M.EQ.'VY').AND.(VN.EQ.'VZ'))THEN

ND,NCODE2,V
 WRITE (5,'(2I5,F10.4)') ND,NCODE3,V

NVN + 3
 NBC = NBC + 3

 ELSE IF (VM.EQ.'VY') THEN
)') ND,NCODE1,V

 NVN = NVN + 2
 NBC = NBC + 2

,VAL,ND,NPE,VZ

 WRITE (5,'(2I5,F10.4)') ND,NCODE1,V
 WRITE (5,'(2I5,F10.4)') ND,NCODE3,V

.'VX')Then

,VX,VAL,NPE
 WRITE (5,'(2I5,F10.4)') ND,NCODE1,V

 NBC=NBC+1

ND,VY,VAL,ND,NPE,VZ
ELSE IF(VL.EQ.'VY'.AND.(VM.EQ.'VZ'))THEN

(5,'(2I5,F10.4)') ND,NCODE2,V

 NBC = NBC + 2

F10.4)') ND,NCODE2,V

,F10.4)') ND,NCODE3,V

 ELSE IF (NP.EQ.1) THEN

!-
 IF((V
 WRITE (5,'(2I5,F10.4)') ND,NCODE1,V
 WRITE (5,'(2I5,F10.4)')

 NVN =

!------VND,ND,VX,VAL,ND,NPE,VY

 WRITE (5,'(2I5,F10.4
 WRITE (5,'(2I5,F10.4)') ND,NCODE2,V

!------VND,ND,VX
 ELSE IF(VM.EQ.'VZ') THEN

 NVN = NVN + 2
 NBC = NBC + 2

 ElSE IF(VL.EQ
!-----VND,ND

 NVN=NVN+1

CCC END IF
 END IF
!-----V

 WRITE
 WRITE (5,'(2I5,F10.4)') ND,NCODE3,V
 NVN = NVN + 2

 ELSE IF(VL.EQ.'VY')then
 WRITE (5,'(2I5,
 NVN=NVN+1
 NBC=NBC+1
 ELSE IF(VL.EQ.'VZ') THEN
 WRITE (5,'(2I5

254

Appendix 3.2 Computer program

 END DO

==== ==
===

DITION
=============================

===

,NCODEP,VP

=====================

===
 Da

==========================
===

05

===== ===

C ================
=
C PRESSURE BOUNDARY CON
C=================================
=

 DO I=1,NNP
 READ (4,'(I5,G20.8)') PC,VP
 WRITE (5,'(2I5,F10.4)') PC
 NBC=NBC+1
 NAT=NAT+1
 END DO

C===
=
C ta file preparation
C====================================
=

 ncn=NPE
 ngauss = 3
 nmat=1
 ntep=1
 icord=0
 grav1=0.0
 grav2=0.0
 grav3=0.0
 tolv= 1e-05
 tolp= 1e-05
 tolc= 1e-
 rvisc = 80.0
 power = 1.23
 tref= 293.0
 tbco = 0.014
 taco = 0.2
 dispc = 0.2
 pref =1.01325e5
 roden = 1000.0

c ===============
===
c writing the data file

255

Appendix 3.2 Computer program

 write (6,'(2i5)') ncn,ngauss

write (6,'(2i5)') ntep,icord

write (6,'(9d10.5)') rvisc, power, tref, tbco, taco,
1 dispc, pref, roden, gamad

===================================

INATES
===

EAD (8,*) N,X,Y,Z

 Z=Z/scale
 cord(I,1)=X

d(I,2)=Y
)=Z

(I8,3e20.12)') N,X,Y,Z

==

CTIVITY
==

 R E,SF,NSF,NPE,(node(I,K),K=1,NPE)

 hen
(6,'(5I8)')I,node(I,3),node(I,2),

 1 (I,1),node(I,4)

,'(21I7)') I,node(I,2),node(I,6),
 node(I,5),node(I,1),node(I,3),

 else if (NPE==20) then
TE (6,'(10I8)') I,NOD(2),NOD(6),NOD(5),

 write (6,'(4i5)') NND,NEM,NBC,nmat

 write (6,'(3f10.3)') grav1, grav2, grav3
 write (6,'(3f10.5)') tolv,tolp,tolc

C===========================
====
C NODAL COORD
C===============
====

 DO I=1,NND
 R
 X=X/scale
 Y=Y/scale

 cor
 cord(I,3
 WRITE (6,'
 ENDDO

C==========
====
C ELEMENT CONNE
C==================
====

 DO I=1,NEM
 EAD (8,*) NNE

 if (NPE==4) t
 WRITE
 node
 else if (npe==8) then
 WRITE (6
 2
 3 node(I,7),node(I,8),node(I,4)

 WRI

256

Appendix 3.2 Computer program

C==

===

==================================
===

DO J= 1,NNV

EAD (9,1602) ND,VL,CU,V,NT,NP,VM,VN
8,2I5,A2,A3)

 (NP.EQ.0) THEN
 IF (VL.EQ.'VX') THEN

E (6,'(2I5,F10.4)') ND,NCODE1,V
.'VY') THEN

6,'(2I5,F10.4)') ND,NCODE2,V
L.EQ.'VZ') THEN

NCODE3,V

Q.1) THEN
 THEN

'))THEN
 WRITE (6,'(2I5,F10.4)') ND,NCODE1,V

 WRITE (6,'(2I5,F10.4)') ND,NCODE2,V

 ELSE IF (VM.EQ.'VY') THEN
)') ND,NCODE1,V

 ELSE IF(VM.EQ.'VZ') THEN
 WRITE (6,'(2I5,F10.4)') ND,NCODE1,V

RITE (6,'(2I5,F10.4)') ND,NCODE3,V

 WRITE (6,'(2I5,F10.4)') ND,NCODE1,V

)') ND,NCODE2,V
,F10.4)') ND,NCODE3,V

E2,V

D,NCODE3,V

=
C VELOCITY BOUNDARY CONDITION
C============================
=

 R
1602 FORMAT (I7,A2,A1,G20.

 IF

 WRIT
 ELSE IF (VL.EQ
 WRITE (
 ELSE IF (V
 WRITE (6,'(2I5,F10.4)') ND,
 END IF
 ELSE IF (NP.E
 IF (VL.EQ.'VX')
 IF((VM.EQ.'VY').AND.(VN.EQ.'VZ

 WRITE (6,'(2I5,F10.4)') ND,NCODE3,V

 WRITE (6,'(2I5,F10.4
 WRITE (6,'(2I5,F10.4)') ND,NCODE2,V

 W
 ElSE IF(VL.EQ.'VX')Then

 END IF
 ELSE IF(VL.EQ.'VY'.AND.(VM.EQ.'VZ'))THEN
 WRITE (6,'(2I5,F10.4
 WRITE (6,'(2I5
 ELSE IF(VL.EQ.'VY')then
 WRITE (6,'(2I5,F10.4)') ND,NCOD
 ELSE IF(VL.EQ.'VZ') THEN
 WRITE (6,'(2I5,F10.4)') N
 END IF

257

Appendix 3.2 Computer program

C===C

O I=1,NNP

D DO

==== ===C
 OUTPUT OF RESULTS

======================C

 PRINT *,' '
try is discretized into a finite element

 '

 D
 READ (10,'(I5,G20.8)') PC,VP
 WRITE (6,'(2I5,F10.4)') PC,NCODEP,VP
 EN

C ============
C
C=====================================

 PRINT *,"The geome
 1 mesh of: "
 PRINT *,' '
 PRINT *,NND,
 1 "Nodes"
 PRINT *,' '
 PRINT *,NEM,
 2 "Elements"
 PRINT *,"With"
 PRINT *,NNP,
 4 'Applied nodal pressure boundary conditions'
 PRINT *,"And"
 PRINT *, NVN,
 5 "Applied nodal velocity boundary conditions"
 PRINT *,"Giving a"
 PRINT *,NBC,
 3 'total number of applied boundary conditions'

c PRINT*,' '
c PRINT*, ' THE SHEAR RATE = ',GAMAD

 CLOSE (1)
 CLOSE (2)
 CLOSE (3)
 CLOSE (4)
 CLOSE (5)
 CLOSE (6)
 CLOSE (11)
 print *,' '
 print *,'

258

Appendix 3.2 Computer program

c===c
c This subroutine prepares output data to use for visualization

eoStar software.

===c
broutine cosmos

 ,nel)

 implicit double precision(a-h,o-z)

====================
(maxdf), press (maxnp)

maxel, 9), actpress(maxnp)
 vm (nnp)

10 , file='cosmGraph', access='sequential',
 1for us="unknown" , iostat=ios)

 end do

en=pmat(inp,8)
 END DO

rt((vel(j,1)**2)+(vel(j,2)**2)+(vel(j,3)**2))

c using Cosmos G
c
C
c==========
 su
 1 (nnp , vel , press , maxdf , maxnp , icord ,
 2 pmat , maxel, actpress
c

c
c arguments are already defined
c =========
 dimension vel
 dimension pmat(
 dimension

 open(unit=6
 m='formatted', stat

 j=0
 k=5

 write(610,3010) nnp, j, k

c do i = 1, nel
c roden=pmat(1,8)
c

 DO inp=1,nel
 rod

c do i=1,nnp
c j=i
c vm(j)=sq
c end do

259

Appendix 3.2 Computer program

 knp = inp + (2*nnp)

c actpress(inp)=roden*press(inp)*-1

tpress(inp)=roden*press(inp)

vel(inp),vel(jnp),vel(knp),

10 continue

 close (610)

 return

===============c
his subroutine prepares output data to use for visualization c

ftware. c
==c

 subroutine tecplot
 , maxdf , maxnp , icord ,

 pmat , maxel, actpress, cord , ncn , nel ,
dim)

ouble precision(a-h,o-z)

already defined
===============

vel (nnp,3), press (maxnp) , pmat(maxel , 9)
dimension actpress(maxnp), cord (maxnp,ndim), node(maxel, ncn)

 vm (nnp)

ential',
 1for atted', status="unknown" , iostat=ios)

ompute the Magnitude of the resultant velocity
==

 ac
 vm(inp)=sqrt((vel(inp)**2)+(vel(jnp)**2)+(vel(knp)**2))
 write(610,3020)inp,
 1 vm(inp),actpress(inp)

60

3010 format(3i5)
3020 format(i5,4e13.4,e22.8)
6000 FORMAT(8X,'U',8X,'V',5X,'W',5X, 'M'
 1 8X,'PRESSURE',/)

 end
c==
c T
c using tecplot so
c=============

 1 (nnp , vel , press
 2
 3 node , n
c
 implicit d
c
c arguments are
c ==============
 dimension

 dimension

 open(unit=614 , file='tecpGraph.dat', access='sequ
 m='form

c C
c =

260

Appendix 3.2 Computer program

c Write the Techplot file for post-processing

===========
 nnel=4*nel

 roden=pmat(1,8)

 do i=1,nnp

 actpress(i)=roden*press(i)* -1
en*press(i)

d(i,3),
l(i,2), vel(i,3),

 2 vm(i), actpress(i)

 ,abs(node(j,8))
(node(j,4))

,6000) abs(node(j,9)), abs(node(j,4)), abs(node(j,5))
30908 1 ,abs(node(j,6))

de(j,8)), abs(node(j,9)), abs(node(j,6))
30908 1 ,abs(node(j,7))

 (ncn==8)then
), abs(node(i,6))

 2 ,abs(node(i,7)), abs(node(i,8))

c ================================
c

 write (614,1000)
 write (614,2000) nnp, nel

c j=i
c
 actpress(i)=rod

 write (614,5000) cord(i,1), cord(i,2), cor
 1 vel(i,1), ve

 end do

c230908 do i=1,nel
c230908 j=i
c230908 write (614,6000) abs(node(j,1)), abs(node(j,2)), abs(node(j,9))
c230908 1
c230908 write (614,6000) abs(node(j,2)), abs(node(j,3)), abs
c230908 1 ,abs(node(j,9))
c230908 write (614
c2
c230908 write (614,6000) abs(no
c2
c230908 end do

c Elemental connectivity for techplot files
c---------------------------------------

 do i=1,nel
c j=i
 if
 write (614,'(8i8)') abs(node(i,1)), abs(node(i,2)
 1 ,abs(node(i,5)), abs(node(i,4)), abs(node(i,3))

261

 Computer program Appendix 3.2

 close (614)

1000 format(/'Variables = "X", "Y","Z","U","V","W","M","P"'/)
 2000 format(/'ZONE N=',i5,',E=',i5,',F=FEPOINT,ET=QUADRILATERAL'/)

000 format(/'ZONE N=',i5,',E=',i5,',F=FEPOINT,ET=BRICK'/)

000 format(3e20.12,3e13.4,e13.4,e22.8)
8)

=======================================c
 o f p r o g r a m c

=== c

c

2

5
6000 format(4i

 return
 end

c

c =====================
c e n d
c

262

Appendix 3.3 Sample output file

**
 * *

 Generalized-Newtonian isothermal flow using *
 the UVWP or the modified UVWP method. *

 *
 *

 *

 --
 Sample output File.

 --

 [[[element description data..........

 *** coordinate system is cartesian (planar) ***

 [[[mesh description data
 no.of nodal points = 9062
 no.of elements = 7560
 no.of nodal constraints on boundary = 8390
 no.of different materials = 1

 [[[uniform body force vector
 grav1 = 0.0000
 grav2 = 0.0000
 grav3 = 0.0000

********************* material properties*************************

 id. eid.(from-to) consistency co-efficient power law index

 1 17560 80.000 1.0000

reference temperature coefficient b reference pressure coefficient a

 293.000 0.0140 0.101E+06 0.200

*
*
* A three dimensional finite element model of a *
*
*
*
*
*

 no.of nodes per element = 8
 no.of integration points = 3

 *

263

Appendix 3.3 Sample output file

 Dispersion Coefficient Density Shear rate

****************** nodal coordinates ********************

 5 0.000000 0.033333 0.000000

 .

 9058 1.000000 0.091667 0.100000
0.100000

 9060 1.000000 0.075000 0.100000
 0.100000

 id. n o d a l - p o i n t e n t r i e s

 4 82 5 4 81 89 12 11 88

 6 84 7 6 83 91 14 13 90

 .

 .

 7555 9052 9028 9027 9051 9058 9034 9033 9057

 7557 9054 9030 9029 9053 9060 9036 9035 9059

 0.200 0.1E+04 0.20000

 **

 id. x-coord y-coord z-coord

 1 0.000000 0.000000 0.000000
 2 0.000000 0.008333 0.000000
 3 0.000000 0.016667 0.000000
 4 0.000000 0.025000 0.000000

 6 0.000000 0.041667 0.000000
 7 0.000000 0.050000 0.000000
 .

 .
 9056 1.000000 0.058333 0.093750
 9057 1.000000 0.100000 0.100000

 9059 1.000000 0.083333

 9061 1.000000 0.066667
 9062 1.000000 0.058333 0.100000

******************** element connectivity ****************

 1 79 2 1 78 86 9 8 85
 2 80 3 2 79 87 10 9 86
 3 81 4 3 80 88 11 10 87

 5 83 6 5 82 90 13 12 89

 7 86 9 8 85 93 16 15 92

 .

 7554 8802 8774 9026 9050 8809 8781 9032 9056

 7556 9053 9029 9028 9052 9059 9035 9034 9058

264

Appendix 3.3 Sample output file

 7559 9056 9032 9031 9055 9062 9038 9037 9061
 9038 9062

 2 0.0000
 3 0.0000
 1 0.1000

 5 3 0.0000

 6 2 0.0000

 7 1 0.1000

9 3 0.0000
.
.

 7560 8809 8781 9032 9056 8816 8788

********************** nodal constraint *********

 id. dof value

 1 1 0.1000
 1 2 0.0000
 1 3 0.0000
 2 1 0.1000
 2
 2
 3
 3 2 0.0000
 3 3 0.0000
 4 1 0.1000
 4 2 0.0000
 4 3 0.0000
 5 1 0.1000
 5 2 0.0000

 6 1 0.1000

 6 3 0.0000

 7 2 0.0000
 7 3 0.0000
 8 1 0.0000
 8 2 0.0000
 8 3 0.0000
 9 1 0.0000
 9 2 0.0000

 .
 4639 4 0.0000
 4645 4 0.0000
 4651 4 0.0000

265

Appendix 3.3 Sample output file

Total number of time steps = 5

 Deltat = 0.0010

 iteration no. 5

es

 press

00 0.0000E+00 0.37831296E+02
00 0.0000E+00 0.37732291E+02
00 0.0000E+00 0.37624267E+02
00 0.0000E+00 0.37558306E+02
00 0.0000E+00 0.37518140E+02
00 0.0000E+00 0.37495612E+02
00 0.0000E+00 0.37487137E+02

E+00 0.0000E+00 0.48201533E+00
E+00 0.0000E+00 0.00000000E+00
E+00 0.0000E+00 0.99745670E-01
E+00 0.0000E+00 0.20045870E+00
E+00 0.0000E+00 0.29998994E+00
E+00 0.0000E+00 0.39553431E+00
E+00 0.0000E+00 0.48493800E+00

 no. min ux
003 -0.41400282E-02

. max uy node no. min uy
 0.17519545E+00 2349 -0.22368228E-01

o. min uz
0 -0.16184282E-01

 nodal velocities and pressur

 id. u v z

 1 0.1000E+00 0.0000E+
 2 0.1000E+00 0.0000E+
 3 0.1000E+00 0.0000E+
 4 0.1000E+00 0.0000E+
 5 0.1000E+00 0.0000E+
 6 0.1000E+00 0.0000E+
 7 0.1000E+00 0.0000E+
 .
 .
 .
 9056 0.0000E+00 0.0000
 9057 0.0000E+00 0.0000
 9058 0.0000E+00 0.0000
 9059 0.0000E+00 0.0000
 9060 0.0000E+00 0.0000
 9061 0.0000E+00 0.0000
 9062 0.0000E+00 0.0000

node no. max ux node
 231 0.23911295E+00 9

node no
 7849

node no. max uz node n
 77 0.13617839E+00 102

266

APPENDIX 4

PROGRAM MANUAL

he Fortran software is incorporated in the Visual Studio 2005, it can be found by

licking on Start\Programs\Microsoft Visual 2005\ Microsoft Visual 2005. Once the

roject followed by double clicking on the desired

roject name in order to open it.

 be run for the first time, then it is a good practise to rebuild it by

licking on Build\Rebuild Flowsolution09. Bear in mind that Flowsolution09 is used in

is manual simply because it was a name given to the program. Once the Building

e program can be run by following the steps described

type in the

d by the

 .gfm extension, and hit the Enter key from the keyboard.

► Step 4: Enter the desired scale factor (1 is usually preferred) press the

 display

d

date file

ype in the file name with the .dat

 In this program, the data file

ill be prompted to enter the

sired. Press the Enter Key after entering

T

c

software opened, click on Open P

p

If the program is to

c

th

process successfully done, then th

below

 ► Step 1: Click on Debug

 ► Step 2: Select Start Without Debugging

 ► Step 3: When prompted to enter the GFORM file name then

 Name of the gfm file created using GeoStart followe

 Enter key again.

 ► Step 5: The steps described above will create the data file and

 the basic discretizations variables (nodes, elements, an

 boundary conditions) on the screen.

 ► Step 6: At this stage, the user will be prompted to enter the

 name created in step 5. T

 extension and press the Enter key.

 name is set to input.dat.

 ► Step 7: Once step 6 completed, the user w

 Number of time steps de

 the value.

267

Appendix 4 Program manual

alue of alpha and press the Enter key once again.

 by a last hit on the Enter key.

he fo rial e the 10 steps described above. In this tutorial, a

fm fil eat eshing, and the specification of

e

t further

forma the als

.1m width

s shown in figure A4.1. The

omputational domain ments

ditions

he

, and w) are zero (see figure A4.2 through

 and

 ► Step 8: Enter the value of delta t when prompted, then hit the

 Enter key.

 ► Step 9: Enter the v

► Step 10: The last step of the process consists of choosing the desired

 scheme, and this can be achieved by typing 1 for the UVWP

 scheme or 2 for the modified UVWP scheme. Then followed

T llowing tuto is used to illustrat

g e will be cr ed after the geometry definition, m

the boundary conditions. The gfm file will be given the name model.gfm, which will b

used at later stage to create the data file. The data file will be given the name input.dat.

The user must consul the “Help” section of GeoStar where he/she could ge

in tion about software. The user is strongly advised to try the GeoStar tutori

available from the “Help” section.

The domain in this tutorial consists of a simple rectangular box of 1m length, 0

and 0.1m high and there is no obstruction to the flow a

c is discretized using 8-noded hexahedral isoparametric ele

into a mesh of 3751 nodes, and 3000 elements and the prescribed boundary con

are as follow; the fluid enters the domain with a velocity of 0.1m/s perpendicular to t

inlet; the other components of the velocity (v

A4.3). The only prescribed boundary condition at the outlet is a zero datum pressure,

the no-slip conditions are applied to the remaining sides of the rectangular box.

268

Appendix 4 Program manual

 Figure A4.1: Geometry of example 1.

 Figure A4.2: 2-D schematic representation of the boundary condition in

 Figure A4.3: 2-D schematic representation of the boundary condition in

the xz plane.

the xy plane.

269

Appendix 4 Program manual

Pre-processing steps

► Begin the step by clicking on Start\Programs\Cosmos Applications\GeoStart 256.

► Select My Documents, and create a new folder (TutoExple in this case).

► Double click this newly created folder (TutoExple) and type in model in the file

 name dialog box then click on the “Open” button.

► Select “Yes” from the “Open Problem Files”.

► Click on Status 1 from the Geo Panel (left hand side of the screen) and check the

 PT, CR, SF and VL under the “Labl” tag. Once this is done, click on the “Save”

 button.

► The next step consists on creating 8 points with the following coordinates:

 Point 1 (0,0,0), point ,0).

 point 5 (0,0,0.1), point 6 (0,0.1,0.1), point 7 (1,0.1,0.1),and point 8 (1, 0, 0.1).

 This can be achieved by clicking on Geometry\Points\Define from the Geo Panel.

► Click on “Auto” under the “Scale” tag from the Geo Panel in order to get a better

 view of the points created. The user is expected to get an image similar to one

 given by figure A4.4.

2 (0,0.1,0), point 3 (1, 0.1, 0), point 4 (1, 0

Figure A4.4: 8 Points representation.

270

App den ix 4 Program manual

► Since the domain in this example consists of a simple rectangular box, one can

 numbers

o the one given by figure A4.5

Figure A4.5: Volume representation.

► The next step is to proceed with the finite element discretization of the domain into

 elements and the associated nodes. This can be achieved by selecting

 Meshing\Parametric_Mesh\Volumes from the Geo Panel. Keep unchanged the

 default value of 8 (representing 3D brick element) from the number of nodes per

 element, but enter 10 into the number of elements on the first curve, 30 into the

 number of elements on the second curve, and 10 into the number of elements

 on the third curve dialo om the dialog boxes

 create the volume directly by linking the 8 points as follow:

 Click on Geometry\Volumes\8 points from the Geo Panel, and then enter

 1 to 8 into the Vertex Keypoint dialog boxes. Click the “OK” button once this is

 done.

 The user is expected to have an image similar t

g boxes. Leave the remaining values fr

271

Appendix 4 Program manual

 unchanged and click the “OK” button.

ed by clicking on the

lements

n.

l.

► The previous action discretized the domain into a finite element mesh of 3000

 elements and 3751 nodes (see figure A4.6). This can be verifi

 Status 1 button from the Geo Panel.

Figure A4.6: Finite element mesh

 Note: For complex geometries, it is important to merge the nodes and e

 after the discretization of the domain. This can be done as follow:

 For nodes; click on Meshing\Nodes\Merge and when the NMERGE window

 appear keep all the values to their default values, then press the “OK” butto

 Once this is done, click on Meshing\Nodes\Compress from the Geo Pane

 This will lead the user to the NCompress window where one needs

272

Appendix 4 Program manual

 to click on the “OK” button to complete the task.

 Similar actions must be performed for elements by clicking

 Meshing\Elements\Merge Elements and the “OK” button followed by

 Meshing\Elements\Compress.

 ► The next step is to assign boundary conditions to the discretized domain. To this

 end, click on Clear Screen (CLS) button (bottom left side) from the Geo Panel,

 then plot the Domain by clicking on Edit\Plot\Surfaces from the Geo Panel, this

 will give an image shown by figure A4.7.

Figure A4.7: Surface plot

The inlet in figure A4.7 is represented by surface 3, the outlet by surface 4, while the

solid walls are represented by surfaces 1, 2, 4, and 6.

273

Appendix 4 Program manual

► Click on LoadsBC\Fluid_Flow\Velocity\Define by Surfaces from the Geo Panel,

 Velocity label: VX; Velocity in X

Repeat the same operation to specify the boundary conditions in the VY, and VZ

 direction with a value of 0 each.

 At the end of these operations, the user is expected to have a figure similar to figu

 re A4.8.

Figure A4.8: Inlet boundary conditions

 and enter the following data from the “VSF” dialog box.

 Beginning Surface: 3

 Value: 0.1

 Increment: 1

 Then click on “OK”.

274

Appendix 4 Program manual

The boundary conditions on the solid walls (surfaces 1, 2, 4, and 6) can be specified as

city label: Al; Velocity in all

e 5) can be specified as follow

d_Flow\Pressure (Nodal)\Define by Surfaces, then from the

 “NPRSF” dialog box enter

 Increment: 1

of these operations, the user is expected to have a figure similar to figure A4.9

Figu

for the inlet case but with the following differences:

Velo

Value: 0.

The boundary conditions at the exit (surfac

► Click on LoadBC\Flui

 Beginning surface: 5

 Value: 0

 Ending surface: 5

 And click “OK”.

At the end

re A4.9: Domain with boundary conditions.

275

Ap dpen ix 4 Program manual

Note: To avoid viewing the mesh attached to the 3D contour plot during the post-

processing, it is important at this stage to do the following operation:

el, click on Display\Display_Option\Eval Element bound, then select

tion boxes and

lick “OK”.

sing stage is the creation of the .gfm file. This can be

g operation.

lick Control\Utility\Create GFM file, then click “Continue”

 click on the “OK” button.

Note: GeoStar will automatically give the geometry name plus the .gfm extension

(model.gfm for this tutorial) to the GFM file created.

Solver steps

Before proceeding to the solution of the problem, the user must make sure that a copy of

the GFM file (model.gfm for this tutorial) created is copied and pasted in the folder

containing the FORTRAN program (My Documents\Visual Studio

2005\Projects\3FlowSoluFinal09C\FlowSolution09; for this tutorial). Once this done,

Then the program can be run by performing the operations as explained in steps 1

through 10 which can be summarise here as:

From the Geo Pan

“Yes” as values of the boundary face evaluation and boundary edge evalua

c

The last step of the pre-proces

achieved by the followin

► From the Geo Panel, c

 following by a second

This mark the end of the pre-processing steps.

276

Appendix 4 Program manual

From the FORTRAN software (Microsoft Visual Studio 2005)

► Click Debug\Start without Debugging, then enter the name of the GFM file

 desired scale factor (1 is usually the best value) and hit the Enter key

 again.

esh (number of nodes, elements, boundary

onditions…) on the screen.

 Enter the desired time steps and press the Enter key.

 Type in the value of delta t and hit the Enter key.

 Select the desired numerical scheme (1 or 2) then press the Enter key to start the

,

software.

 (model.gfmfor this tutorial) when prompted, and press the Enter key.

►Type in the

These last two actions will create a data file with the name input.dat then display

information about the finite element m

c

► When prompted type in the data file name (input.dat) and press the Enter key.

►

►

► Enter the value of alpha and press the Enter key.

►

 solution process.

Once the solution process terminated, the program will create two output files

(CosmGraph and tecpGraph.dat) that the user can use to proceed with the post-

processing.

CosmGraph can be used for post-processing analysis via Cosmos GeoStar software

while tecpGraph.dat can be used with Tecplot

277

Appendix 4 Program manual

Note: If Cosmos GeoStar is chosen as post-processing software, then the user must copy

 the variables.

eo

nd, then select the CosmGraph file which is saved on the

re and

elocity) in term of contour and section plots.

t the different components of

e velocity (1 for U, 2 for V, 3 for W, and 4 for their magnitude) and pressure (5).

or instance the pressure contour plot can be obtained by selecting 5 as value of

ton from the “ACTUSRPLOT”

indow. This will give a plot given by figure A4.10

de contour plot can be obtained similarly but with the difference

at 4 must be entered as the value of Component number, and the plot is as given by

the CosmGraph file and paste it to the desktop location before visualizing

Post-processing via Cosmos GeoStar software

Once a copy of the CosmGraph file is saved on the desktop, the user can go the G

Panel menu then click on Results\Plot\User Results in order to get the plot window

(ACTUSRPLOT). Click on fi

desktop and click open. Once this done, the user can now plot the variables (pressu

v

The numbers in “Component number” dialog box represen

th

F

Component number and press the “Contour plot” but

w

The velocity magnitu

th

figure A4.11

278

Appendix 4 Program manual

Figure A4.11: Velocity magnitude contour plot.

Figure A4.10: Pressure contour plot.

279

Appendix 4 Program manual

Section plots can be obtained similarly, but by pressing Section plot button instead of the

Contour plot button. Once the Section plot button pressed, the user will be prompted to

choose a desired plan in the “Orientation of section planes” dialog box from the

“SECPLOT” window. Click the continue button after choosing the desired plan, then

type in the number of plan needed and select 1: Yes (if the section plot (s) is or are to

plotted at specific location(s)) otherwise leave it to its default value of 0: No. Once this

done, click the continue button again followed by a last click on the OK button.

Some sample of section plots are given by figures A4.12 through figure A4.13

Figure A4.12: Pressure section plot in the Z plan.

280

Appendix 4 Program manual

Figure A4.12: Velocity magnitude section plot in the Y plan.

Figure A4.12: Velocity magnitude section plot in the Z plan.

281

Appendix 4 Program manual

Post-processing via Tecplot software

Once the Tecplot software is turn on, then do the following

► Select File\Load Data File(s), then select Tecplot Data Loader from the

 “Select Import Format” window.

► Select the Tecplot output file (tecpGraph.dat) from its location and click OK from

 the “Select Initial Plot” window.

► If the orientation of the geometry is not as expected, then this can be corrected

 by clicking on X, Y, or Z button under “Option and Tools”, then move the mouse

 over the geometry to change the orientation.

► Click on View\Fit to Full Size to have a good view of the object.

► Uncheck the Mesh dialog box from the “Zone Surface”.

► Check the Contour dialog box to make contour plots. Click the “…” button opposi

 te to Conto

 The “Contour & Multi-Colouring Details” window contains information about the

 variables. Pressure is represented by P, the components of the velocity vector

 by U, V, W, and M for their magnitude.

► Pressure contour can be plotted by selecting P from the “Contour & Multi-

 Colouring Details”. This will give a plot as given by figure A4.13.

ur and select the Legend tag to add a legend to the plots.

282

Appendix 4 Program manual

 Figure A4.13: Pressure contour.

 Selecting M will plot the velocity magnitude shown by figure A4.14

 To plot section of plots, the user must uncheck the Contour from the “Zone

 Surfaces”, then check the “Shade” and “Translucency” boxes, and checked

 the “Slice” box under “Derived Objects”. Click the “…” button opposite to

 “Slice” to get the “Slice Details” window from which different plot planes can

 be obtained. Vectors plot can be obtained by clicking the “Vector” tag from

►

►

283

Appendix 4 Program manual

 the “Slice Details” window then checking the “Show Vectors” dialog box and

 pressing the OK button from the “Select Variable” window. The length of the

 vectors can be modified by clicking of “Plot” from the main menu (top screen)

 then select “Vector\Length\, and choose “Uniform” or one of the Relative

 options.

Some samples of the velocity magnitude and section plots are given by figure A4.14

through figure A4.19.

Figure A4.14: Velocity magnitude contour.

284

Appendix 4 Program manual

Figure A4.15: Pressure section plot in the Z plan.

285

Appendix 4 Program manual

Figure A4.16: Velocity magnitude section plot in the Y plan.

286

Appendix 4 Program manual

Figur plan.

e A4.17: Vector section plot of the velocity magnitude in the Y

287

Appendix 4 Program manual

Figure A4.18: Velocity magnitude section plot in the Z plan.

288

289

Appendix 4 Program manual

Figure A4.19: Vector section plot of the velocity magnitude in the Z plan.

The aim of this tutorial is to initialise the user to the Cosmos GeoStar (pre-processing and

post-processing parts), FORTRAN (solver), and Tecplot (post -processing) environments.

The user is strongly advised to try the tutorials available from the help sections of both

Cosmos GeoStar and Tecplot software for further information.

Closure

