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ABSTRACT

Three dimensional flow regimes are encountered in many types of industrial flow
processes such as filtration, mixing, reaction engineering, polymerization and polymer
forming as well as environmental systems. Thus, the analyses of phenomena involved
fluid flow are of great importance and have been subject of numerous ongoing research
projects. The analysis of these important phenomena can be conducted in laboratory
through experiments or simply by using the emerging computational fluid dynamics
(CFD) techniques. But when dealing with three dimensional fluid flow problems, the
complexities encountered make the analysis via the traditional experimental techniques a
daunting task. For this reason, researchers often prefer to use the CFD techniques which
with some care taken, often produce accurate and stable results while maintaining cost as
low as possible.

Many CFD codes have been developed and tested in the past decades and the results have
been successful and thus encouraging researchers to develop new codes and/or improve
existing codes for the solutions of real world problems.

In this present project, CFD techniques are used to simulate the fluid flow phenomena of
interest by solving the flow governing equations numerically through the use of a
personal computer. The aim of this present research is to develop a robust and reliable
technique which includes a novel aspect for the solution of three dimensional generalized
Newtonian fluids in domains including obstructions, and this must be done bearing in
mind that both accuracy and cost efficiency have to be achieved. To this end, the finite
element method (FEM) is chosen as the CFD computational method. There are many
existing FEM techniques namely the streamline upwind Petrov-Galerkin methods, the
streamline diffusion methods, the Taylor-Galerkin methods, among others. But after a
thorough analysis of the physical conditions (geometries, governing equations, boundary
conditions, assumptions ...) of the fluid flow problems to be solve in this project, the
appropriate scheme chosen is the UVWP family of the mixed finite element methods. It
is scheme originally developed to solve two dimensional fluid flow problems but since

the scheme produced accurate and stable



Abstract

results for two dimensional problems, then attempt is made in this present study to
develop a new version of the UVWP scheme for the numerical analysis of three
dimensional fluid flow problems. But, after some initial results obtained using the
developed three dimensional scheme, investigations were made during the course of this
study on how to speed up solutions’ convergence without affecting the cost efficiency of
the scheme. The outcomes of these investigations yield to the development of a novel
scheme named the modified three dimensional UVWP scheme. Thus a computer model
based on these two numerical schemes (UVWP and the Modified UVWP) is developed,
tested, and validated through some benchmark problems, and then the model is used to
solve some complicated tests problems in this study. Results obtained are accurate, and
stable, moreover, the cost efficiency of the computer model must be mentioned because

all the simulations carried out are done using a simple personal computer.
Keywords: Computational fluid dynamics, CFD, Computational methods, Fluid flow,

Generalized Newtonian fluids, Mathematical modelling, Modelisation, simulation et

analyse numerique, Navier-Stokes, Numerical analysis, Stokes.
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CHAPTER 1

INTRODUCTION

1.1 Purpose of the present study

Complex three dimensional flow regimes are encountered in many types of industrial
flow processes such as filtration, mixing, reaction engineering, polymerization and
polymer forming as well as environmental systems. In this project after investigating the
effectiveness of different finite element techniques for the modelling of three dimensional
viscous flows in three dimensional domains with obstructions, a robust and reliable
model has been developed. This model has been applied to solve a number of benchmark
problems and its accuracy and validity have been evaluated.

Majority of commercially available CFD packages such as Phoenics, Star-CD, Star-
CCM, Fluent, and Flow3D are based on the finite volume method. Despite the rigour of
its underpinning concepts the finite volume method does not provide mathematical
flexibility required to solve some specific types of problems unless it is essentially based
on a finite element approximation on a computational cell level.

Traditionally relatively high cost of three dimensional finite element computations has
been regarded as a drawback for this method which has provided a motive for using finite
volume approach. One of the main achievements of this work has been to show that very
effective low cost three dimensional finite element models of complex flow problems can
be developed. Therefore it has been demonstrated that finite element schemes can be
extended to complex cases such as those involving multiscale phenomena whilst
maintaining computing economy. Another advantage of using the finite element method
in this study is that it provides a straightforward way of dealing with non-linear terms in
the model equations. This point has been elaborated in later chapters and has shown that a
finite element based approach has wider applicability in the modelling of flow processes
and can easily be used in cases which involve non-Newtonian fluids. Finite volume based

CFD models are generally designed to solve Newtonian flow problems.
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1.2  Outcome and method of study

As described the main focus of the current project has been the development of a robust,
reliable and cost effective computer model for the solution of three-dimensional viscous
flow problems in domains including obstructions. The deliverable product of this work is,
therefore, a software which can be used in many types of industrial design involving flow
processes. The software can be used to simulate fluid flow inside three dimensional
domains and to visualize the results in form of plots such as contour, and vector plots.

In order to reach this end, the work undertaken in this current study has involved the

following steps:

(1) Formulation of a well posed mathematical problem for the analysis of
time dependent generalized Newtonian fluid in three-dimensional
domains with and without obstructions.

(i1) Selection of appropriate boundary conditions for simulating the problem
of interest.

(ii1))  The creation of a user-friendly software, with a numerical approach
capable of solving the problem defined in parts (i) and (ii).

(iv)  Checking and validating the developed model using well known
benchmark problems.

(V) Checking the developed computer code through different test cases of
generalized Newtonian fluids, and then validating the code by the

principle of mass balance.
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1.3  Structure of the thesis

The present thesis is composed of a total of six chapters with additional parts devoted to a
list of references cited within the text and appendices. The thesis begins with the
introduction (chapter 1) in which preliminary explanations including processes being
modelled, the objective and the significance of the project are given. Reviews of past
research works undertook on the modelling of incompressible flow using computational
fluid dynamics (CFD), and a brief details of the numerical methods used in CFD are
given in chapter 2. In chapter 3 an overview of governing equations of a generalized fluid
is given in general, and then from the assumptions made in the current study the
governing equations characterizing the physics of the problem to be solved are derived.
Chapter 4 provides a detailed discretization procedure of the flow governing equations
using the two developed numerical methods. Results and discussions are presented in
chapter 5, while the conclusion and recommendations for future work are summarised in
the last chapter (chapter 6) of the thesis. A list of all the references used in this present
study and the appendices are given after the sixth chapter.

Appendix section provides a detailed manual explaining the implementation of the
software developed in this project, additional explanations regarding the structure of the

main software and a list of the source code.



CHAPTER 2

LITERATURE REVIEW AND BACKGROUND OF THE USED NUMERICAL
SCHEMES

2.1 Introduction

Processes involving fluid flow are of great importance in many branches of engineering,
namely chemical, aeronautical, civil and biochemical engineering. However, some of the
most modern technologies which depend on fluid systems such as bio-visco-elastic
regimes encountered in medical engineering, non-isothermal elastomeric flows occurring
in rubber products manufacturing and particle capturing in filtration are so complex that
obtaining empirical design relationships for them by the traditional experimental
techniques is not possible. Therefore the development of reliable, robust and cost
effective computer models for the simulation of such flow processes have been subject of
numerous ongoing research projects. Researchers from different backgrounds have
carried out considerable work aiming to reach this end, and most of the works done have
been carried out using computational fluid dynamics (CFD) techniques.

CFD is defined as a tool for analysing systems involving fluid, heat transfer and
associated phenomena such as chemical reactions by means of computer based
simulation (Versteeg and Malalasekera 1995). The main computational methods at the
core of the CFD techniques are the finite difference methods (FDM), the finite element
methods (FEM), and the finite volume methods (FVM). There are extensive literatures
available for each of these techniques.

For FDM see Thomas (1995), Ciarlet et al.(1980), Ozi (1994), El-Nakkla (1987), Smith
(1985), Wang (c1982), Biggings (1980), Forsythe et al. (1960), Duffy (2006), Bowen
(2005), Shashkov and Steinberg (1996), and Voller (c2009), among others.

For FVM see LeVeque (2002), Versteeg and Malalasekera (1995, 2007), Schneider and
Raw (1987), Masson and Baliga (1994), and Darbandi and Schneider (1999). For FEM
see Masson et al.(1994), Darbandi and Schneider (1999), Donea and Huerta (2003),
Lohner (2008), Wriggler (c2008), Nassehi (2002), Bochev and Gunzburger (2007),
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Pian and Wu ( 2006), Brenner (c2002), Chen and Shih (1996), Fenner (1996), Beer and
Watson (¢1992), Gunzburger (c1989), Girault and Raviart (¢1986), Kikuchi (1986), AT
Luri et al. (c1983), Baker (c1983), Akin (1982), Zienkiewick and Cheung (1965),
Zienkiewick and Taylor (1991), Zienkiewick and Codina (1995), Pironneau (1989), and
Oden (1972), among others.

FVM is the most commonly used CFD tool for three dimensional fluid flow modelling,
however, as mentioned earlier FEM which was primarily regarded as too costly can now
be used to generate more flexible and reliable results. Further details about how these
computational methods are formulated will be given later in this chapter. In the following
section, however, the focus is the review of some of relevant publications on the

modelling of fluid flows.

2.2 A survey of published literature

In 2005 Nassehi et al. (2005) modelled fluid flow through pleated cartridge filter using
finite element method (FEM), the computational domain of interest in their work
consisted of a combination of free and porous regions and the flow was assumed to be
governed by the Stokes equation in the free regime and by the Darcy equation in the
porous region. They developed two 2D finite element schemes using perturbed continuity
method and mixed formulation for obtaining the solutions of the described problem.
These models were in conjunction with equal order and Taylor-Hood interpolation
functions, respectively. These two schemes were tested on different problems (using
simple and complex geometries) and the results obtained showed that the mixed
formulation scheme provided accurate and stable solutions to the problems no matter how

complex the selected domain geometry became whilst the perturbed scheme, even though
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provided accurate and stable solutions for simple geometry cases, yielded spurious and
oscillatory pressure solutions for complex geometries.

Four years later, Hanspal et al. (2009) investigated fluid flows in cross-flow membrane
filtration, the domain of interest in their study was modelled as coupled free/porous
regimes and the fluid was governed by Stokes/Darcy equations. In their approaches to the
problem, they used the U-V-P family of the mixed finite element method in conjunction
with unequal order interpolation functions for velocity and pressure, and then developed
a two-dimensional numerical scheme capable of solving the problem. The developed
scheme was tested on two problems, the computational domain of the first problem
consisted of a rectangular cross-flow membrane filtration with a flat interface between
the two regimes (free and porous) whilst for the second problem, the flat interface was

replaced by a curved interface placed at the same location than the one from the first
problem. Using two different values of permeability (10° and 107'>m?) they concluded

from the solutions obtained that the scheme yield stable and accurate solutions which
were validated by calculating the mass balance in both domains. As explained in later
chapters these works have been the main starting step of the present project. However,
other works have also influenced the development of the present models and are
discussed here.

In the late 1990’s, Kumar and Naidu (1998) who were interested in simulating nonlinear
pulsatile flow of a viscous fluid through a stenosed vessel used the U-V-P scheme with a
completely different approach. In their approach, they used the Galerkin weighted
residual method to discretize the spatial variables while the temporal variable was
discretized through a combination of the explicit Adams-Basuforth formula as predictor
and the A-stable implicit trapezoidal rule as the corrector. The computational domain in
their study was discretized using a 9-noded Lagrange element and the simulations were
carried out for different time steps. Solutions obtained for these time steps were
compared with results obtained by previous researchers (O’Brien 1985 and Sako 1962)
and the comparison were in good agreement. Zhang (2006) used a different scheme of

the FEM, namely the modified pressure correction method to solve incompressible and
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viscous flow problems on an unstructured Chimera grid. To reach this end, he divided the
computational domain into sub domains then solved the governing flow equations
(Navier-Stokes) independently before transferring information across the interior
boundaries via Scharz method to couple the solutions of each sub domain. In his
approach, he discretized the spatial variable using second order upwind scheme while the
temporal variable was discretized via the Crank-Nicholson scheme. The field unknowns
in his work were interpolated using Rhie-Chow interpolation functions (Demirdzic and
Muzaferija 1995). This scheme prevents the unphysical decoupling of the pressure field
in the overlapping regions and yields a smoother result. The only drawback of this
scheme is an increase in the total number of grid points, which can eventually affect the

cost effectiveness of the scheme.

23 Selection of the computational scheme

Samples described in the previous section are just few among many of the relevant
historical papers related to the current project. The aim of the present project is not to

make judgments on these different existing numerical methods because each scheme

has its strengths and weaknesses, and as it is proved in the literature, the choice of a
particular scheme is problem dependent, that is the physical situation of the fluid will
dictate the governing equations to be used. Therefore the selection of a particular
methodology for the development of new scheme should be based on the information
from previous works plus considerations regarding the main physical features and
associated boundary conditions of the problem which needs to be solved.

For the solutions of incompressible viscous flows of generalized Newtonian fluids, many
authors, (e.g. Chung, 2002) have shown that the appropriate computational method is the
FEM. However the most successful schemes of the FEM are based on the mixed

methods, the penalty methods, and the vortex methods. All of these schemes may,
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however, produce unstable results. To circumvent this instability a condition known as
the LBB (Ladyzhenskaya-1969, Babuska-1973, and Brezzi -1974) condition need to be
satisfied. Many different strategies for the satisfaction of this condition in the context of
the mixed, penalty, and the vortex methods have been developed.

The most common technique adopted in the mixed methods formulation to satisfy the
continuity constraint is to use unequal order interpolation function for velocity and
pressure. The strategy here consists of choosing the shape functions for pressure one
order lower than those for the velocity and to choose the shape functions for pressure to
be identical to the test function for the continuity equation. For instance, if the pressure is
approximated using linear function then the velocity must be approximated using
quadratic function. This yields stable solution but it is computationally expensive.

The main strategy of penalty methods is based on eliminating the pressure term from the

momentum equation by setting the pressure as p = — k(V . Vj where A is a very large

number called the penalty parameter, and then substituting p = —X[V-V) into the

momentum equation so that the pressure term will vanish. This will provide a more
compact set of working equations from which one will have to firstly solve for

velocity alone, and when all velocity field calculated then the pressure field can be

obtained by means ofp = — k(V . \_}) . The computational cost of the penalty methods

is less than the computational cost of the mixed methods but when A becomes large, the
penalty term will dominate, and this will generate ill-conditioned equations. This will end
up by producing instable results, that is, the LBB criterion is violated. Further
information about these methods can be found from the following authors Hughes et al.
(1972), Gunzburger (1989), Bercover (1978), Falk (1975), Cuvelier et al. (1986), Teman
(1975), and Girault and Raviart (1979).
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It is important to mention that the penalty parameter A originates from the stress

relation t=mD from which 7 is pressure, that is force per unit area and D denotes the

velocity gradient. Thus t =nD can be rewritten as
X 1 (V-V)
p A n

Or p=An(V-V)

Or p =MV -V) where A = An with A denoting the cross section area.

The vortex method’s strategy is somewhat similar to the penalty method’s strategy in the
sense that the pressure term is removed from the momentum equation but this time by
taking the curl of the momentum equation. This provides a momentum equation in terms
of velocity and vorticity vector and/or stream function instead of primitive

variables (u, v, w, and p). Hence one can solve the system in the absence of a pressure
term. After obtaining a solution the divergence of the original momentum equation is
used in order to compute the pressure. The vortex method provide numerical stability but
the drawback is that the velocity is coupled with the vorticity vector and this yields a

system with seven equations and seven unknowns (w,,w,,w,,u,v,w,and p) for three-

dimensional problems. With an increased number of unknowns the cost efficiency of the
method is not good. To alleviate this, one can take the double curl of the momentum
equation, that is, when performing the first curl operation on the momentum equation, the
result is a momentum equation in term of velocity and vorticity vectors but when a
second curl operation is performed on this momentum equation, the vorticity vector will

vanish so that the momentum equation will be in term of a single variable (velocity).

Attempt was made to apply this strategy to the governing equations in the present project
but after performing the two curl operations, these yielded a momentum equation of high-
order (4™ order) derivatives for velocity and this required the use of C' continuous
Hermite interpolation functions. Unfortunately, as reported by Nassehi and Petera (1994),

these elements lack flexibility and their application in geometrically complex domains
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involve elaborate schemes. For this reason it was judged to avoid the use of the vortex
method for the discretization for the governing equations of the current project.

Based on Chung’s suggestion (and results obtained by researchers like Nassehi et al
(2004) and Hanspal et al (2009)) and bearing in mind that the goal in computational fluid
dynamics modelling is to obtain accurate and stable results while minimizing cost finally
an FEM based U-V-W-P scheme was developed the governing equations of the present
modelling effort. In order to circumvent the problems of spurious and oscillatory

pressure field, as mentioned by Nassehi et al (2004), which is due to the failure of the

enforcement of the incompressibility condition (V-V=0), a perturbed form of the

p

N
incompressible condition ——+V-V=0 in conjunction with use of equal order
pc

hexahedral isoparametric C°interpolation functions (figure 2.6) for velocity and pressure
field is used.

As it can be noted from the review of the past papers, most examples of finite element
based mixed formulations were done for two-dimensional problems. In the current study
a new three-dimensional Velocity/Pressure based model capable of providing stable,

accurate solutions of fluid flow problems.

Two different schemes of the U-V-W-P have been developed in this work; the first one is
based on the direct extension of a two-dimensional scheme to a three-dimensional form,
the second scheme is based on a new concept and differs from the usual U-V-P scheme
by the addition of a penalty parameter A to the continuity equation. The idea is originated
from a method developed by Chang (2002). To solve incompressible viscous flows via
FEM, Chung proposed a scheme which is based on the combination of the penalty

methods with the mixed methods. He achieved such formulation by replacing the

continuity equation with the Galerkin integral of the penalty term p = — X(V -Vj and

10
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ended up with a Galerkin integral of the continuity equation of the form
j¢a[V-V+RJdQ=O.

5 A

Where A is the penalty parameter (a large number)

N
V denotes the velocity vector

p represent the pressure

and V is the gradient operator (nabla operator).

When solving the system of equations consisting of the Galerkin integral of the
continuity equation together with the Galerkin integral of the momentum equation,

Chung noticed that this scheme provided additional computational stability in

comparison with the solutions obtained from the penalty and mixed methods. Thus based

on this idea, the perturbed continuity equation 8—pz+V -V =0 will be slightly modified
pc

p
Apc

and take the form

>+ V- V=0 (variables are as defined above) for

the second U-V-W-P scheme developed in this project work.

2.3.1 Comparison of the two schemes used in this project

Before comparing the schemes developed in this project a question that must be answered
is whether the modified scheme yields stable and accurate results? The U-V-P scheme
has been tested on many two-dimensional problems and has provided stable and accurate
solutions. The scheme based on its extension to three-dimensional cases (U-V-W-P) is

expected to provide similar stable results. Therefore only the stability of the modified

11
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scheme needs rigorous investigation. In addition to the stability considerations, during the
course of this project, investigations have been made on how to speed up convergence of
each scheme without affecting its cost efficiency. One important conclusion of these
investigations which can be stated here to prove the validity of effort made to develop an
alternative scheme is that the scheme based on the incorporation of the parameter A with
the mass balance equation converges much faster than the normal scheme. To
demonstrate this point a comparison between the solutions obtained by the U-V-W-P
method and the modified U-V-W-P method tested using the same fluid properties is

shown below.

Full details about the fluid properties and the boundary conditions are given in chapter 5.
For this benchmark problem, it can be noted that after only few iterations, the modified
U-V-W-P method yields a converged solution while the U-V-W-P method solution has

not yet converged.

/ﬂe t

Outlet

Figure 2.1: Computational domain for comparison case.
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the xz plane.
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F igure 2.4a: Velocity contour plot | Figure 2.4b: Velocity contour plot
(Modified U-V-W-P scheme). (U-V-W-P scheme).

Figures 2.4 a, and b represent the contour plots of the velocity for both schemes, and as it
can seen from figure 2.4a (Modified U-V-W-P scheme), there is movement of the fluid as
excepted at the outlet (multicoloured region representing the expected developed flow
profile) while in the case of the U-V-W-P scheme (figure 2.4a), it seems that no fluid is
coming out of the exit to the computational domain. This can be interpreted as the
solution of the U-V-W-P scheme has yet to reach convergence. This interpretation is
confirmed by the plots from figures 2.5.a, and b representing the cross sectional velocity

profiles.

These cross sectional plots show the velocity vectors magnitude at a location of z equal
0.05m of the domain. Overall mass balance in both cases has also been checked. Note
that both schemes are stable as shown by the expected pressure contours (Figs 2.6a and

2.6b)

14
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Figure 2.5a: Velocity section plot Figure 2.5b: Velocity section plot
(Modified U-V-W-P scheme) (U-V-W-P scheme)

i

A

10000

Figure 2.6a: Pressure contour plot Figure 2.6b: Pressure contour plot
(Modified U-V-W-P scheme). (U-V-W-P scheme).

Both of the developed three-dimensional schemes are tested extensively using different
complex problems in chapter 5. To the best knowledge of the author, none of these two
schemes have been used previously to model three-dimensional incompressible highly

viscous flow of generalized Newtonian fluids in domains including obstructions.

15
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2.4  Mathematical background of the developed schemes

FEM was developed in the late 1950s and was mainly based on the variational
formulation and was mainly used for structural analysis. Since then, considerable efforts
have been made and especially by mathematicians, engineers, and physicists to extend
the use of the FEM to a broad field of continuum mechanics. FEM can now be
formulated either using the variational methods or the weighted residual methods.

The variational formulation of the FEM is based on the minimisation of the variational
principle of the governing differential equations. This formulation work well for
structural analysis but unfortunately cannot be applied to nonlinear fluid mechanics
problems due to the non availability of variational principles in exact forms for nonlinear
fluid mechanics equations. Due to this reason, the variational approach will not be
attempted in this study. Interested reader can obtained further information about this

formulation from Curant (1943, 1953), Mura and Koya (1992), and Reddy (1986).

In the weighted residual formulation on the other hand, the strategy is to minimize to zero
the residual of the governing equation (minimizing the difference between external forces
applied and the internal forces caused by the flow) , and this can be achieved by
constructing the inner product of the weighting or test function and the residual. To

illustrate this, let the residual R defined as

R=V’ ux)+g

Where u(x) is the unknown variable function of independent spatial variables

and g is the source/sink term.

16
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Then the weighted residual statement is given as follows

(W,,R)=[W,RdQ=0 j=1,2,3,.m
Q

o (W,.R)=[W,(Vu()+g)da=0 j=123..m
Q

Where W, are linearly independent weights or test functions.

Q is a sufficiently smooth closed domain surrounded by a continuous boundary T

If u(x) is approximated as u(x) = u(x) = Zlociq)i (x)

i=1
Where o, (i=1,m) are a set of constant coefficients and ¢,(i=1,m) denote the trial

(interpolation, shape, or basis) function then the weighted residual statement can be

written as
(W,.R)=[W, (Vz(iai¢i(x)j+gjd9 =0 j=1,23,.m
Q i=1

If the test function W, is chosen to be identical to the shape function ¢, then the

weighted residual method is known as the standard Galerkin method (Zienkiewicz and
Morgan 1983). But if it is chosen differently from the shape function then this yields
different schemes of the weighted residual methods namely the streamline upwind
method (Brooks and Hughes 1982), the streamline upwind Petrov-Galerkin method
(Heinrich et al. 1977), etc.

For time dependent problems as is the case in the present project, the discretization
procedure mentioned above must be preceded, followed, or executed simultaneously with
a temporal discretization. In this present work, the temporal discretrization is carried out

prior to the spatial discretization and the two procedures are explained in detail below

17
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2.4.1 Temporal discretization

Temporal discretization have been subject of a flood of researches and many numerical
time integrations techniques have been developed, among them are the continuous space-
time method and the discontinuous space-time method (Chung 2002), the 6 family of
methods (Donea and Huerta 2003, Ames 1992, Lambert 1991, Wait and Mitchell 1985,
Zienkiewicz and Taylor 2000, Mitchell and Griffiths 1980, Johnson 1987, and Reddy and
Gartling 2000), the Lax-Wendroff method, and the Leap-Frog method (Donea and Huerta
2003) . It is necessary to integrate the temporal variable in order to ensure that
information are accurately transported in time to trace transient respond.

In this present work, Taylor-Galerkin discretization (Nassehi 2002, Donea and Huerta
2003, Townsend and Webster 1987) is chosen for the numerical time integration. The
technique is based on a truncated Taylor series expansion, and is illustrated by the
following example.

Let consider a time-dependent differential equation of the form

oy(x,t)
ot

+x[w(x, t)]-p=0 (2.2)

Where v is a linear differential operator with the respect of the special variables
Then Taylor series expansion of the field unknown \y(x,t) within the time steps n and
n+l1 gives

n+l a\lj

v =yt At—

- ... (2.2)

The first order time derivatives term in expansion (2.2) can be found from equation (2.2)
as

18
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= B— x[w(x.t)] (2.3)

Differentiating equation (2.3) with respect to time gives the second order time derivatives

term in expansion (2.2) as

O Ly S YO

With a similar procedure all the other order time derivatives term in expansion (2.2) can
be found then substituted into equation (2.2) bearing in mind that any first-order

temporal term of \u(x,t)has to be substituted from equations (2.3). This will result by
producing a differential equation in terms of spatial variables only which can be
discretized using the weighted residual method described previously and summarised by

step 1 through step 8 below.
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Figure 2.7: 8 — nodes isoparametric hexahedral element
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2.4.2 Spatial discretization

Regardless of the scheme used to formulate the finite element methods, the spatial

discretization of the governing equation follows these steps.

Step 1. Discretization of the problem domain: The domain Q is discretized into

Elements limited by a boundary I is discretised into finite element in the
following forms Q= Z Q, andl'= Z r,.

Step 2. Approximation using trial functions: In this step, one needs to assign nodes to
each element, and then selects the appropriate trial function to represent the
variation of the unknown functions (pressure, velocity, etc) over the elements.

The unknown functions are approximated using the following forms
url=Y gu, vaV=>dv, waW=) 4w, pxp=>.4p
i=1 i=1 i=1 i=1

Where ¢, (i=1,n) denote the trial (interpolation, shape, or basis) function (see

figure 2.7).

Step 3. Formulation of the weighted residual statement: in this step, one needs to
substitute the interpolated values of the unknown functions found in step2 into
the residual of the governing equations, and then construct the inner product of

the test function with the residual.

Step 4. Application of Green’s theorem: At this stage, one has to apply Green’s
theorem to all second-order derivatives from the weighted residual statement
obtained in step 3 in order to reduce the second-order derivatives to first-order
derivatives so that C° elements can generate an acceptable solution. This

process will produce the weak form of the weighted residual statement.

20
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Step 5. Formulation of the elemental stiffness equations: Here, one needs to write an

equation corresponding to the weak statement (step 4) for each test function.

Step 6. Assembly of the elemental stiffness equations into a global system of
equations: to get the solution of the global system, all the elemental weak
statement equations obtained in step 5 must be assemble over their common

nodes to form a global system of algebraic equations to be solved.

Step 7. Imposition of the boundary conditions: At this stage, one needs to insert the
prescribed values of the unknown functions at the boundaries of Q into the
global system of algebraic equations obtained in step 6. Redundant equations

corresponding to the boundary nodes must be eliminated from the set.

Step 8. Solve the global algebraic system: The global system of algebraic equations
obtained in step 7 can now be solved in order to obtained the unknown nodal

values of the problem.

2.5 Conclusion

In this chapter, a review of past papers on the modelling of generalized Newtonian fluids
has been presented and after thorough analysis of them, a choice about which
computational method to use in the present project has been made. The chosen
computational method is used to discretize the governing flow governing equations

representative of the flow regimes considered here in chapter 4 of this thesis.
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CHAPTER 3

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

3.1 Flow model

Mathematical modelling of fluid flows is based on the solution of partial differential
equations governing the physical behaviour of the flows. These governing equations
represent mathematical statements of the conservation law of physics, which can be

stated as

a) The mass of a fluid is conserved across the entire domain (Conservation of mass).

b) The rate of change of momentum equals the sum of the forces on a fluid particle.
This comes from Newton’s second law.

c) The rate of change of energy is equal to the sum of the rate of heat addition to and
the rate of work done on a fluid particle. This is simply the first law of

thermodynamics.

Combining these three statements together with the equation of state and the specified
boundary conditions will make the problem to be solved a well-posed mathematical

problem representing the physics of the fluid.

In addition to the statements above, in the present study, it is necessary to include a
rheological relationship that describes the constitutive behaviour of the fluid. Thus, with
the continuum assumption made, that is scalars like density, temperature, and pressure
and a vector like velocity vary smoothly and continuously in space and time and
adopting a macroscopic viewpoint, in a fixed (stationary or Eulerian) coordinate system

(using vector notations), the following equations can be derived.

22
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3.1.1 Continuity (Mass balance) equation

The continuity or mass balance equation is the mathematical representation of the
statement that: the rate of increase of mass in fluid element equals the net rate of flow of

mass into fluid element. This can be mathematically written as

%+ V(p\_)/j=0 3.1)

Where V is the operator nabla (gradient operator)

N
V denotes the velocity vector having u, v, and w as component in
the x, y, and z direction respectively.

p is the density of the fluid

and t is time.
3.1.2 Equation of motion (Momentum equation)
The momentum equation which is Newton’s second law states that the rate of change of

momentum of a fluid particle equals the sum of the forces acting on the particle. This

statement can be mathematically written as

—

p%er\ﬂVV:V-cszrpg (3.2)

Where G denotes the Cauchy stress tensor

g is the body force per unit volume of fluid.
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and p,V,V are as defined previously.

The Cauchy stress tensor is given as
G=—po+1  (3.3)

Where p is the hydrostatic pressure

O is the unit second-order tensor (Kronecker delta)

and T is the extra stress tensor.

Substituting the expression of the Cauchy stress tensor equation (3.3) in to

equation (3.2) yield

—

p%+pV-VV:—Vp&j+V-rﬂ+pg (3.4)

3.1.3 Thermal energy equation

The energy equation is based on the first law of thermodynamics stating that the rate of
change of energy of a fluid particle is equal to the rate of heat addition to the fluid

particle plus the rate of work done on the particle. This statement can be mathematically

written as.

DT .
pcﬁ=kV2T+t:VV+S (3.9
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Where c is the specific heat
k is the thermal conductivity

T denotes the temperature

V? is the Laplacian operator

D . . .
Dt represents the substantial or material derivative

and S is the source.

3.1.4 Equation of state
It is useful to add the equation of state to the system of equations (mass balance,

momentum, and energy) because it allows a linkage between the thermodynamic

variables p, p, and T. It has been observed that in practice most fluid follow the perfect

gas law, and that in general, pressure is a function of both density and temperature except

in the case of baratropic fluids where pressure is function of density only.
The equation of state is given as
p=pRT (3.6)

Where R is the specific volume

and p, and T are as defined previously.
3.1.5 Constitutive equation

The constitutive equation is a relation between the extra stress (t) and the rate of

deformation that a fluid experiences as it flows.
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But the derivation of a universally applicable constitutive model for non-Newtonian
fluids is generally not accepted as it is extremely difficult due to the difficulty that arises
in establishing exact quantitative relationship between the microscopic structure of non-
Newtonian fluids and their macroscopic properties (Nassehi 2002). There are various
formulae used to represent the constitutive equation, see for instance Middleman (1977),
Pittman, and Nakazawa (1984), and Carreau (1968), but the one adopted in this study to
calculate and update the value of the apparent viscosity is the power law model proposed
by Waele (1923), and Ostwald (1925). The power law model is chosen because it is able
to describe both shear thinning and shear thickening fluids behaviour. The power law

formula is given by

n=n,({)" (3.7)

Where n, is the consistency coefficient.
n is the apparent viscosity

n is the power law index

v denotes the shear rate
For n < 1, the fluid exhibits shear thinning properties.
For n = 1, the fluid shows Newtonian behaviour.

For n >1, the fluid shows shear thickening behaviour.

The shear rate () is calculated using the following relation
. (aujz o au) (ﬁw auj2 ovY (ow avY (awjz
Y=.2l —| +| —+— | +| —+— | +2] — | +|—+—| +2| —
ox ox Oy ox 0z oy oy 0z 0z

N
Where u, v, and w are the three components of the velocity vectorV .
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The shear rate () is calculated after each iteration, then the value obtained is used to
calculate the apparent viscosity (7) through the constitutive equation (3.7). This process

is repeated until convergence is reached.

Shear-thinning (or pseudoplastic), viscoplastic, shear-thickening (or dilatant) are all the
characteristics of the time independent non-Newtonian fluid. It is well established that

non-Newtonian fluid can be conveniently grouped into three general classes:

1) The time independent, or purely viscous, or inelastic, or generalized Newtonian
fluids in which the rate of shear at any point is determined only by the value of

the shear stress at that point at that instant.

2) Time dependent fluids, in which in addition of the criterion mentioned in 1), the
relation between shear stress and shear rate depends upon the duration of

shearing and their kinematic history.

3) The visco-elastics fluids, in which substances exhibiting characteristics of both
ideal fluids and elastic solids and showing partial elastic recovery after

deformation.
Interested reader about this classification may refer to the following authors for further

information Hou-Cheng Huang et al. (1999), Harris (1977), Chhabra and Richardson
(1999), Crochet et al. 1984, and Nassehi (2002).
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3.2 Assumptions
The necessary assumptions made in this work are as stated below:

- The incompressible assumption; that is the fluid undergo no changes in volume or

density.
- The computational domain is assumed to be isothermal.
- The flow is laminar

- And since the Re is very small (Re({1) in this study, then the convective term (i.e.
(V -VV)) and the body force g from the equation of the motion (3.4) are small and can

be omitted Bird., et al (2002), and Nassehi (2002).

Taking these assumptions into consideration, the governing equations (3.1 through 3.7)

reduced to

3.2.1 Continuity equation

V-V=0 (3.8)

3.2.2 Momentum equation

—

oV
pE=—Vp8ij +V'Tij (39)
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3.2.3 Constitutive equation

n=n,({)" (3.10)

The first remark one can made from the system of equation given by 3.8 through 3.10 is
that there is no pressure term in the continuity equation (3.8) this will make the solution
of such system difficult to obtain because the enforcement of the incompressibility
conditions (conservation of mass) is difficult. As a result, the computed pressure (p) may

be spurious and oscillatory, known as checkerboard type oscillations.

To circumvent this difficulty and satisfy the Ladyzhenskaya (1969), Babuska (1971), and
Brezzi (1974) stability condition or simply the LBB condition, the approach adopted in
the present project is to replace the continuity equation (3.8) by an equation

corresponding to slightly compressible fluids, and it is given as

Lza—p+V-V:0 (3.11)
pc” Ot
Where c is the speed of sound in the fluid
Equations 3.9 through 3.11 represent the flow model governing equations solved in this

project. Using three-dimensional Cartesian coordinates, equations 3.9 and 3.11 can be

written as
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—_——t—+—+—=0 (continuity) (3.12)

Before writing the momentum equation in Cartesian coordinates, it is important to write

the component of the Cauchy stress tensor. As mentioned previously, the Cauchy stress

tensor is related to the extra stress through the relation G=— pS +7T

This can be written in three-dimensional Cartesian coordinates as

S=—p+1 (3.13a)
G=—p+1 (3.13b)
G =—p+1 (3.13¢)

Where the normal stresses are given by

T, =2N— (3.14a)
ox

T, =2n% (3.14b)

o —m (3.14c)
0z

and the shear stresses given by
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Ty =Ty =n(@+%] (3.15a)

ay
ov Ow
Tyz :’Czy :T"(g +gj (315b)
Oow Ou
= =N —+— 3.15
TZX TXZ n[ ax + az) ( C)

Substituting theses expressions of the normal and shear stresses into the momentum

equation (3.9) and expanded the result yield

ou__op, 0f, Ou) 0| (u ovi} 0| (ow Ou

Pt ox ox (211 6Xj+8y{n(8y+8xﬂ+82{n(8x +azﬂ (.162)
p%:—% +§{n(%+%ﬂ +%(2ngj +%{n(%+%ﬂ (momentum) (3.16b)
ow__Op 0| (Ow du)| 0| (Ov OW}| Of, OW

' 62+8X[n(6x+82ﬂ+5‘y{n(8z+8yﬂ+82(2n 62) (3-16¢)

The mass balance, momentum, and constitutive equations as given by 3.12, 3.16a,b,c, and
3.10 respectively represent the final system of equations which will be discretized in

chapter 4 and solve in chapter 5.

33 Boundary and initial conditions

The system of equations representing the flow governing equations (continuity,
momentum, and constitutive) as given in section 3.2 does not constitute a consistent
system in mathematical viewpoint. To make this system of equations consistent or a well-

posed mathematical model, initial and boundary conditions must be specified.
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There are three type of boundary conditions; Dirichlet or essential boundary conditions
(values of variable specified at boundaries), Neumann or natural boundary conditions
(derivatives of variables specified at boundaries), and Cauchy or Robin boundary
conditions which is a combination of Dirichlet and Neumann conditions.

The specification of Neumann boundary conditions is the unique future in finite element
method (FEM) since Neumann boundary conditions naturally arises in the formulations
process of FEM.

The choice of which boundary conditions to apply depends on the type of partial
differential equations which can be elliptic, parabolic, hyperbolic or a combination of two
or three of them, and the type of flows that can be compressible, incompressible,
turbulent, laminar, irrotational, vertical, etc...

In general scalar like pressure may not be specified at the boundaries as it is an implicit
variable in an incompressible flow (Lewis., et al 1995) which adjusts itself to deliver a
solenoidal velocity field. However, in the case of contained flow, that is specified
velocities on all boundaries, the pressure becomes indeterminate and it must be specified

at least at one point as a datum.

The initial conditions on the other hand must be specified at time t =t in the domain Q

as mentioned by Hou-Cheng Hang et al. (1999) and can take the following form

vi(x,,t=0)v'(x,) inQ

Taking these remarks into consideration, in the present project, the flow governing

equations are solved in conjunction with the following boundary conditions.
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3.3.1 Inlet boundary conditions

The inlet is placed perpendicular to the x direction for all the simulations carried out in
this project. And at the inlet, only Dirichlet type boundary conditions are specified
and for velocity variable only. The three component (u, v, and w) of the vector velocity

are specified as follow

u=a
v=w=0

Where a is small number (m-s™")

3.3.2 Outlet Boundary conditions

Although there are three type of outlets used for the problems in this project, care was
taken that they are all placed far away from geometrical disturbance allowing the flow to
reach a fully developed state where no change occurs in the flow directions. Researchers
like Nassehi (1998), and Das. et al (2002) have suggested that the imposition of artificial
boundary conditions at the outlet might lead to unrealistic numerical results in
simulations. Hence based on their suggestions, in this work, no velocity conditions will

be specified at the exit, and only a zero datum pressure condition will be specified.

3.3.3 Solid walls and blockages

The remaining sides of the geometries and all the faces of the blockages (rectangular or

cylindrical) are considered as solid and non permeable walls, on which perfect
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no-slip conditions are specified, that is the three components (u, v, and w) of the velocity

vector are all set equal zero.

3.3.4 Initial conditions

For all the problems solved in this project, the inlet boundary conditions will be used as

initial conditions for all nodes.

34 Conclusion

A summary of the derivation of the partial differential equations governing the flow
model was presented in this chapter together with the problem of incompressibility
enforcement that may occur if care is not taken. Many methods have been developed to
overcome this incompressibility enforcement problem and among them are the penalty

methods, the vortex transport method, and the mixed finite element method.

In this present project two different finite element techniques are used which differ from
the traditional mixed finite element method, penalty, and vortex transport method in the
way that the pressure term is not eliminated from the momentum equation but instead an
artificial pressure term is added to the continuity equation. The discretization of the

derived governing equations will be subject of the next chapter.
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CHAPTER 4

WORKING EQUATIONS

This chapter is dedicated to the discretization of the governing equations given in the
previous chapter. The discretization procedures are followed by briefs description of the
solution techniques, the convergence criteria, and the mesh refinements adopted in the

present study.

4.1 U-V-W-P discretization of the governing equations

The flow governing equations given in chapter 3 are as follow

o°__ o, OV, oW inui

. c [8X+8y+ GZJ (continuity) 4.1

u__op, 0(, 0u) 0| fou ov) 0| (0w ou

P~ 8X+6X(2naxj+8y{n(8y+8xﬂ+az{n(ax+8ZH (422)
n__ AH@&H +i(zn@]+i{n(a_v+@ﬂ (momentum) ~ (4.20)
ot oy ox| \oy ox)| oyl oy) oz| \oz oy

ow__op 0| (ow oujyl 0| fov ow]| Of, oW

Pt oz +axH ox +azﬂ+ ayHaz+ 8yﬂ+az(2n 62) (4:2¢)

All variables are as previously defined.

The first step in the U-V-W-P discretization technique is to normalized the governing

equations by setting

U=u
Vv

v for the components of the velocity vector
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And P

oo =

for pressure.

Thus one obtains after substitution of these terms into equations (4.1) and (4.2)

For the mass balance equation

.

OP 2 ou oV oW (4.3)
ox o0y o0z

And for the momentum equation

ou oP 0O ou 0 ou oV 0 oW ouU
—:——+—(Zn—J+—{n[—+—ﬂ+—{n(—+—ﬂ (4.4a)
o ox ox\ Vox) oyl oy ox )| oz| Uox ez

ou oV 0 oV 0 oV oW
(o)) e (g alla ) e

oW 0P 0 oW ouU 0 oV oW 0 oW
—=——4+—|n—+—||+—|M —F— | |[+—| 2n— (4.4c)
ot 0z 0Ox ox 0Oz oy 0z 0oy 0z 0z

Then the discretization continues with the numerical time integration as explained in

chapter 2 as follow. The application of the Taylor-Galerkin method to the temporal terms

in equation (4.3) and (4.4a, b, and c) gives
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Ul,.,-U 2
AU_Ul..-U. _au LomZV 45)
At At O |y G N,

V], -V 2
AV Tl 2% VP LoalY (4.6)
At At Ot a2 07|

W, - W k
AW _ Wl =W, _ow| 1 @ \2N @7
At At Ot | oo s

Pl,., P k
AP T T P Loalt (4.8)
At At Otlypae 2 O]

Where the value of the time increment parameter oo must be as 0 <o <1

oP

. oW
The first order derivatives terms (—

a_U , and_

ot

N

) from
ot

n+oAt

s
n+aAt

s
n+aAt

n+aAt

equations (4.5) through (4.8) can be readily found from the governing equations (4.3) and
(4.4a,b,and c) as

For pressure term

P

- (4.9)

2(aU oV awj
=—Cc|—+—+—
n+oAt ax ay aZ

n+oAt
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And for the velocity components

ou oP 0 ou 0 ou oV 0 oW ou

— =—— +—|2n— +—In—+— +—|n —+— (4.10)
at n+oAt ax n+aAt aX aX n+oAt ay ay 6X n+aAt aZ GX aZ n+oAt

ov oP 0 ou oV 0 oV 0 oV oW

— =—— +—|n —+— +—| 2n— +—|n —+— (4.11)
at n+aAt ay n+oAt aX 8}’ aX n+oAt ay ay n+oaAt 82 OZ ay n+aAt

oW oP 0 oW ouU 0 oV oW 0 oW

2 = 5 g 2 +—|n =+ + =] = (4.12)
Ot |oront 0Z|,,un  OX ox oz)| . 0Oy 0z 0Oy Con 0z 0z )|, on

’ o’ul V| 0°W
> 2 > A2 , and ot>

n+oaAt n+oAt n+aAt

)

n+oAt

The second-order derivatives terms (

2

from equations (4.5) through (4.8) can now be obtained from equations (4.9) through
(4.12) as

For pressure term

a[apj a{ Z(GU oV awﬂ
== =—|-¢'| —+—+—
o\ ot )| .ot ox  dy oz
{a[an a(avj a(awﬂ
=—Cc|—| — [+—| — |+—| —
ox\ ot ) oylot ) az\ e

Substituting the expressions of aa_ltj ,aa—\t/ ,and (%V from equations (4.4a, b, and ¢) into

0°P
atz

n+aAt n+oAt

(4.13)

n+oaAt

equation (4.13) gives
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Chapter 4

0°P

z{a{( 8PJ a( an ol [GU avﬂ a{ (aw aum}
— =—cH—||l-——|+—|2Nn— |+— || —+— ||+ — N —+—
Ot | on ox ox ox) oy| \dy 0Ox 0z ox 0z

2{5 {[ aP] a{ (GU avJ_ a[ avj a{ (aw av]”
= -+ =M=+ ||+ 2N |+ =— || —+— (4.14)
ox oy o0x )| 0y oy ) o0z oy 0z ]

ay|\ oy

2{3{( apj a[ [aU awj" a{ (aw avﬂ a( aw)}
- == |+=|n=—F—||+=— || —F+— | |[+=—| 2n—
0z 0z) oOx 0z 0x )| Oy oy 0z 0z 0z |

For the first component (U) of the velocity vector one obtains

0°U _a(auj _a{ oP a( an a“au avﬂ aHaU awﬂ}
> == =St 2n— |+ —+— ||+ — | —+—
o | Tatla ), o] ox ax\"lox) oy ox )| oz| \oz  ox
:_Q(G_P}g{zng(a_uﬂg{n{g(a_ﬂ+3(6_Vﬂ} 4.15)
ox\ot) ox| axlat )| ay| Loyl at ) ox\ ot

2222

Using a similar approach, one can obtain for the second component (V) of the velocity

vector
ERY _a(a\/} _a{ oP a{ (8U avﬂ a( avj a{ (av awﬂ}
= — =—S——+—In—+—||+—|2n— |+—|n| —+ —
atz n+oAt ot\ ot n+oAt ot ay ox ay ox ay ay 0z oz G‘y
:_z(a_P}g{nP(a_U}g[a_Vm+3{Zn3(6_vﬂ (4.16)
oylot) ox | |oylat ) ox ot oyl oy ot

@)@

And finally for the third component (W) of the velocity vector, one obtains
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a{ P aHaU awﬂ a“av awﬂ a( awj}
=—q——+— N —+—||+=—|nN —F+— ||+ =—| 2n—
ot ) ... o] oz ox| \oz ox )| oy| \ez oy )| o\ ez
Z_E(a_l’}i{n{i(aﬂ}i(@_wﬂ} 417

oz\ ot ) ox| |oz\ ot ) ox\ at

a2 G e F)
+—n = — |+ =—| — ||+ =—| 2n=—| —

oy | oyl at ) az\ et )| oz| ez et

Substituting the expressions of (Z—It’ , %J , a—V, and 86_\2] from equations (4.3) and (4.4a, b,

ot
and c) into equations (4.15) through (4.17), yield equations containing high-order

ot’ ot

n+aAt

o*°W 0 (8Wj

derivative terms. However, as previously published works show (e.g. see Nassehi
(2002)), the contributions of these terms with high-order derivatives (that is 3" or above
in the present work) are negligible and hence they can be omitted from equations (4.13)

through (4.17). Thus one obtains

2
o o(i® 2@ o) @)
n+oAt ax ax ay ay aZ a n+oAt

0°U = 2i 6_U+8_V 6_W (4.19)
8t2 n+oAt aX 8x ay a n+oAt ‘

2
oV :Czi(ﬁ_Uﬁ_Vﬁlj (420,
at n+oAt 6y aX ay aZ n+oaAt

2
0 \27\/ :czi NNV W (4.21)
at n+aAt aZ 8X ay aZ n+oaAt
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Substituting the first-order time derivatives from equations (4.9 through 4.12) and the
second-order time derivatives from equations (4.18 through 4.21) into equations (4.5

through 4.8) yield

For pressure term

AP Pl —P, op o
- = = +—aAt
At At Otlpare 2 O]
— —C2 3_U+8_V+5ﬂ +laAtc2 ié_P_Fia_P +36_P (422)
ox oy oz) . 2 Ox0x 0Oydy 0zoz)

For the first component (U) of the velocity vector

AU U, -U}, au 1 . oU
e LT f—aAt
At At Ot |, v un ot |
oP a( an o| (ou ov 0 (6W GUJ
= —— +—| 2n— +—In—+— +—|n —+—
OX|,on  OX OxX )| .. Oy| \ Oy 0x s 0z ox oz)| .
+locAtc22 N, N W (4.23)
2 ox\0x 0Oy o0z o

For the second component (V) of the velocity vector
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AV V..V, oV 1 0°V
e .Y
At At Ot |, on 2 o

opP a[ (aU avﬂ a( avj a{ (av awﬂ

=—— +—n —+— +—2n— +—n —+—

ay n+oAt ax ay 6X n+oAt 6y 8}’ n+oAt aZ aZ ay n+aAt

JrlocAtczi 0_U+6_V+8ﬂ (4.24)

2 ay 8X ay aZ n+oAt

And finally for the third component (W) of the velocity vector

AW Wi — W, ow| 1 W
= = +— oAt >
At At O e 2 00|
opP a{ (aw 8Uﬂ a{ (av awﬂ a[ awj
=—— +—In —+— +—In —+— —| 2n—
0zZ| .0 OX ox 0z o oy 0z 0Oy s oz 0Z )|, on

oy o (4.25)

+%amc23(w ov aw]

0z
n+aAt

These mark the end of the temporal discretization procedure, and hence one can proceed
with the spatial discretization explained in chapter 2. Recall that in the U-V-W-P scheme,
velocity and pressure are considered as primitive variables and are discretized as
unknowns. In this work, the primitive variables (U, V, W, and P) from equations (4.22)
through (4.25) are approximated using 8-noded isoparametric hexahedral element and the

approximated variable can be written using the following statements
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U= ZN U, ;NJ{'

Where N; (j =1 ...n) are the shape functions (8-noded isoparametric hexahedral

element used for the approximation of both velocity and pressure)

and n the number of nodes per elements

Substituting the approximated values from the relations given by (4.26) into equations

(4.22) through (4.26) and writing the weighted residual finite element statement give

For the first component (U) of the velocity vector

. . aNj .
jNideQe{U} —jNideQe{u} :—IAtNi—dQe{P}
OX
Q. n+1 Q, n Q, n+aAt

N, , N .
+ A, 2 (277) dQe{U} + A, Ol dQe{V}
Q. aX n+aAt Q, ay aX n+aAt
N, A
+ A, K J U + [ A, ﬁ{(ﬂ)—’JdQe{U}
Q. ay n +aAt Q, 82 82 n+aAt
oN N,
JrfAtNi2 —‘ o, W S aACEN, 21 o {U}
Q. aZ aX n+aAt ax X n+oAt

+flaAt2c2N = —j { } ~ aAt?c®N .ﬁ( J
Qez ay n+aAt X n+aAt

(4.27)
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Where N. denote the test function.

Similarly, for the second component (V) of the velocity vector one obtains

[NiNdo, {v}
Q. n+l1
oN, ON . .
+ jAtNii (7)— |dQ {v} + jAtNii (n)—= dQe{U}
Q, aX aX n+aAt Q, ax ay n+aAt
ON . . ON . .
+ [ A, < (2n)—’dee{V} + [ A, i((77)—’Jcige{w}
Q, ay ay n+aAt  Q, oz ay n+aAt
oN, oN . .
+ [ A, LR de {v} —aAt’c’N, 3( ’dee{U}
Q, aZ (32 n+aAt Q, 2 ay ax n+aAt

ON . . ON . .
+ jlaAﬁczNi i(—'jdge{v} + jlaAﬁczNi i(—’JdQe{W}
0.2 oy\ oy nrast 0,2 oy\ oz n+ant

And for the third component (W) of the velocity vector

. 8Nj .
—jNideQe{V} = — [a, dQe{P}
oy
Q. n+aAt

n

Y _ _ J
S_)[NideQe{ } J'N N dQe{W jAtN dQ {P -

aN J
} + AtN — dQ,
n+aAt Q, n+aAt

+jAtNi3 N, dQ, {w + | AtN aN’ dQ,
Q, ay 8y n+aAt n+aAt

+jAtN.3 ‘dQ U
X

aN
+jAtNiﬁ ’de {W l aAt’c?N, [
az n+aAt e2
0

oz
oN oN .
+[f AtzczN ! dQ{ logAtzczN ) dQe{W}
ay n+aAt Q, 2 az az n+aAt

n+aAt

And with the same procedure the pressure term can be obtained from the mass balance
equation as
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: 4 N, .
JNideQe{P} —jNideQe{P} = 2N, {u}
OX
Q, n+l Q, n Q, n+aAt
5 8Nj . 5 aNj :
- [Ate’N, dQe{V} - [ate’N, dQE{W}
Q. ay n+aAt Q. az n+aAt
ON . . ON . .
+j1(mt2c2Nii J dQe{P} +jlaAt2c2Ni3 ’ dQe{P}
Q. 2 8X aX n+aAt Q. 2 ay ay n+aAt

oN A
+ jlaAIZCZNi O dQe{P} (4.30)
982 62 62 n+aAt

Seeing that there are some terms of second-order derivatives in equations (4.27) through

(4.30), it is necessary to apply Green’s theorem to such terms to reduce them to first-

order derivatives terms and thus one can ensure inter element continuity. It must be also

noted that functions given at time level N+ «aAt are interpolated using the relation

A|n+aAt =a AI,HI +(1- 0!)A| _ (Nassehi 2002).

Thus one obtains for the first component (U) of the velocity

—jNideQe{U} =

n

jNideQe{U}
E oN ) N
— [aAtN, —dQ { } —j(l a)AtN, —-dQ) { }
o OX OX .
ON. ON, :
- j aAth {u} = j (1- a)Atha—' 6)(’ dQ { }
‘ f{u} of

o
—jaAtnaN ’dQ {v} —j(l a)AtnaN {v}
L

A

N,
+j(aAtnN {v +j((1— AN, — )ndee{V}
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ON, ON : ON, ON;
- IocAtn o Gy dQe{U}n+l —gJ;(l—oc)AtnE !

do, {0},

A0,
J.(l o )Atn 8;\1 a@z e{U}n

A0,

ot I (-

ON, ON;
50 o)

- J.ocAtn

n+1

oN, ON . : oN, ON
— | aAt —LdQ W - [(-a)At —1do
J‘a 77 a aX e{ }nﬂ J‘( a) 77 a a { }n

z

ON, . N .
+ j (aAtnNi—’)nzdFe W+ [((1-a)AtN,—D)i,dr, W
8X n+l1 T, 8X n
N, N, . N .
—j J dQe{U} - jla(l—a)Atzczﬁ—JdQe{u}
OX N OX OX 0

) . 1 ON . .
+ 2AtzczN.—J n,dr’ {U} + | (za(l-a)At’c*N, —D)A,dT, {U}
j< SN JGa-eaten, Zhn,ar,

n+l1

ON. ‘ oN. .
- j—azmzczﬂ—‘dge{v} - jla(l—a)mzczﬂ—’dge{v}
Qez aX 8y n+1 Qez OX ay n

n

N . . N . .
+ j(loﬂAtZ&Ni —’)ﬁxdre{v} + j(la(l —a)At’c?N, —’)ﬁxdre{v}
2 ay n+l1 T, 2 ay

oN, : i ON; ‘
J‘ 2At202 | j dQe{W} _ J.la(l—a)At2C2 %_JdQE{W}
oz n+1 Qez ox 0z n

Q.

n

N : oN . .
+ I(—azAtzczNi —)A dr, {W} + j(l a(l—a)At*c*N, —)i dr, {W} (4.31)
P2 0z P2 0z

n+l1 n

Similarly for the second velocity component (V) one obtains
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NN dee{V}
Qe n+1
ON . . ON . .
— [antN, — dQe{P} - [a-a)AN, —’dQe{P}
Q. 8y n+1 Q. ay n

oN, ON oN, ON
— | aAt Ldo — | (1= a)At ~ 4o v
Ia 77 8 { }nﬂ I( a) 77 a a { }n

—jNideQe{V} =
Q.

n

OX
AtNaj”dl“V N s ar v
+l:[(a n ig)nx e{ }Ml : - i X X e{ }n
ON. ON.
- j aAtn JdQ {U} - j (1- a)Atn% 8yj do {U}
+ J’ (A {U} + j ((1- a)Atn {U}
- jamzn JdQ {V} - j (1- a)Atzn JdQ {V}
V) 14}
oN. ON. N
- jaAm N, dQ {W - j(l a)Atna—'W‘dQ { }
j {W} +j((1 )AtnN 8N")ﬁ dr {W}
e i
z e 77 1 ay z e .
oN, N, |
= jaAtn N, L0 {v} = j(1 Aty —t azj dQe{v}n
AtpN, —L Vv 1-a)AtnN, N, A dr,{V
+I(a t7N, { } +j(( @)AtN, ), Fe{ }
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ON. . ON. .
- jlazmzcz% JdQe{U} - J.la(l—oc)Atzczﬁ ’dQe{U}
Qez ay aX n+l Qez 8y 5x n
{4}
ON. ON. . ON. 4
- IlazAtzcz N dQe{V} - Ila(l—a)Atzcz N, 7, dQe{V}
a2 ay oy i a2 dy oy .

N

ON. . N .
—j o ’At%c? I—JdQe{W} - Ila(l—a)AtZCZ%—’dﬁe{W}
a n+l QC2 ay aZ

2.2

1 ) : 1
+ [ , Fe{U} + [Ga-aace?
T, 2 n+l T, 2

+j( a

22N, N f e{V} + | (=a(l - a)At’c
8y g n+l 1:‘: 2

Z n

+ (—a
Iq
For the third component (W) of the velocity vector, one obtains
INideQe{W} - INiNJdQe{W} =
Q. n+l Q, n
ON. ON. :
—IaAtN LdQ, —j(l—a)AtN 40 {Pp
0z 0z .

_ j aAtn JdQ {U} - j (1- o)At a; a@yj dQe{U}n
ol 19,
L.

oN N ON. |
\Y — | (1-a)At ! LA W
{ I( AN { }

ON. . ON. 4
+ j(aAmN,. ")nxdl"c{W} + j((l - a)AMN, J)nXdFC{W}
r ox P ox A

n+l

ON. ON. . ON. ON . .
~ Jaam=— JdQe{W} - [a-a)am = JdQe{W}
Q, ay ay n+l Q, ay ay n

+ [(aamN Ny )i dr {W} + [ (1= a)AmN N D) dr {W}
(04 : n (04 : n
1 a) Y ‘ n+l T, l 6y g ‘ n

ON; : 1 ON . .
22N, —H)n Wi +|(=a(l— 2N, —H)i {W} 4.32
l aZ g e{ }nﬂ 1:':(2 ( 1 aZ g ) n ( )
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- ON, : - ON . :
— J.ocAtn% ! dQc{V} - I(I—Q)Atn% ! dQc{V}
Q, 8y aZ n+l Q. 8y aZ n

N, : ON; . :
+ (N, — )i, T}V + [ (= )AMN; —D)f drJ V
T, n+l T,

oz

N, | N, .
= IaAth% ) dQe{W} - Ja- A2y N dQe{W}
o, il 0z 0z

0z 0z

n

ON
oz

. . N, |
+ [(aA2nN, —)h, dr, {W} + [ (= o)A2nN; —H)h, dr, {W}
T, n+l T, n

0z
ON;

Ox

lorare 2%
Q02 0z X

. ON. .
dQe{U} - j L - matie? N, 7, dQe{U}
n+l ch aZ a n

N . N ‘

+ j(lazAtzczNi D), dr, {U} + j(la(l — )AL N, —)f drI, {U}

I, 2 aX n+l T, 2 aX n
ON,

— J.lazAtzcz %
Qez 0z z

ON . . ON . _
+ I(lazAtzczNi —‘)ﬁzdl"e{v} + j(la(l—oz)AtzczNi —’)ﬁzdl“e{v}
P2 oy ro2 oy n

n+1

N A N .
- jlazmzﬁﬁ—’dge{w} - Jla(l—a)Atch%—’dQe{W}
3,2 0z oz 0,2 oz oz n

ON . . ON . .
+ j(laﬁAtzczNi —’)ﬁzdl“e{w} +[(loz(1—oz)At2c:2Ni —’)ﬁzdl“e{w}
o2 oz P2 0z

n+1 n

And finally one can obtain for the mass balance equation

INideQe{P} —INideQe{P} -
Q, Q,
oN

2 8Nj | 2 i |
- [ac?AN,—1dQ Ut~ [(1-a)c’ AN, —dQ,qU
a, OX o Q, OX N

n+1

) ON. )
dQC{V} - j la(l—a)mzcz% JdQe{V}
n+l 952 a ay n

(4.33)
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, 0N, . .
- [acAN, —2dQ 4V~ [(1-o)c AV
Q. ay n+l Q. n
oN. . .
aafw) - fo- e{w}
Q. aZ n+l Q,
N 4 .
—J.loczAtzcz% JdQC{P} —j ol — oAt?e? N JdQ {P}
QC2 8X 8X n+l
+j(la2At2c2N, %)ﬁ dr {P} +j( oc(l—oc)AtzczN )n dr {P}
2 l 8x i ¢ n+l

_Il o 2At2c2 ia;deQ{} _J‘ a(l - )At22 N; JdQ{P}

n+l

+1'-[(Ea 2.2 8y { }n+1+'|.( ol —a)At’c F{P}
_ Ilazmzcz%mi dQe{P} —j a(l—-a)At’c’ —- JdQ {P}
Qe2 0z 0z el

e Sonal] s fla-awen Sl

Equations 4.31 through 4.34 can be written in matrix form as

11 12 13 nel (M n(. "
M ij M ij M ij M i}4 U Kiﬂl Kiﬁz Ki? Ki1j4 U
I R VEE I N I S S S A

31 3 33 34 : =| 31 3 33 34 :
Mij Mij Mij Mij W Kij Kij Kij Kij W

41 4 43 44 . 41 4 43 44 .
M ij M ij M ij M ij P Kij Kij Kij Kii P

C} n+l1 D} n
2 2
+ C; + D; (4.35)
C; D;
c? D!

Where the left hand sides are given as

(4.34)
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oN, N,
ox

1 2At202(
2

M =HHNiNj +(Ata2n+;a2At2c j{
Q.
{ 0

ON, ON; 1 ON. ON.
13 _ Ato, L wPAt?e? !
! “‘I{ 1 oz ox 2 [ 0x 0z

2 a2At2c? % aNJ
0z 0

MY m{ N, Lo

ﬂﬂ ON;

ON; ON;
ox  0x

|
|

N,

0
0y

N .
! }dxdydz
N J

}dxdydz

. ON;
JJ}dxdydz
0x
- ON.
—L JJ+Atoc
dy Oy

ON
—a’At’c’ N, dxdydz
8y 82

dxdydz

}dxdydz

X

oN, ON,
0z oy

ON, ON;
M = [[[INN, +(Ata2n+la2At2c2j ——L 4 Ata
o, 2 0z 0z

M3 = o,

}dxdydz

+ Aton
8y ay

0z 0z

J}dxdydz

LN, N,

ON;, 8N
ox Ox

1

! |laxdyd
S e

ON,; ON; LN, ON;

ox 0x 6y oy

J}dxdydz
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Mgl =J.J.J. Atoc’N, N, dxdydz
Q.

Ox

1

2 aNj
Atac™N. o dxdydz
ON }

ON; ON;

NN, +loc2Atzcz(
2

X ON; |, ON
C; :j aAt2nN. n_+| aAtnN;
1)
re

. ON
o n, + aAtmN; .

ON. \, ON
n_+| aAtnN,
oy 0z

oN
,+ lazAtzczNi
2 o

ON .
+ loczAtzczNi LA, +| aAtN,
2 )4

ON.
+ loczAtzczNi !
2 ox

5 ON; ). ON; ). ON
C; =.[ aAtMN; — |n +| cAMN, —= In_ +| 0At2nN;
" ox ox oy

ON.
+ lazAtzczNi—J i, +| aAtN,
2 oy

ON.
+ lotzAtzczNi—J i, +
2 oy )7 |2
; ON; ). ON
C =I oAtMN, n, +| aAtnN,
3 Ox oy

ON.
+ loczAtzc2Ni LA, +
2 oz

1 ON. . 1 ON
+(2(12At202Ni JJHY +{2<)L2A‘[202Ni

oz

+ +
ox 0x Oy Oy 0z oz

ON. . ON
n, +| aAmN,
0 0z

ZAt2CAN, %J
"oy

. ON
an + (OLA‘mNi
ox

ON. ) ON.
0, +| aAt2nN, —>
oy )’ 0z

aAtN, —

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)
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’c? iaNj n, + loc
X 2
ON .
o Lorage? ,— [, ¢dl,
2 0z

And the right hand sides as

2.2 i aal\;j Jﬁy

Ky = J.J‘J.{N N; _(At(l—a)277+ a(l—a)Atzczj(ag(i a{r;)l(j}

ON; ON; N, ON,
oy

—At(1- a)n( }dxdydz

ON . ON;
At(l—a)ry———z a(l- )Atzcz[aal\)l( By J}dxdydz

oy 0
oN;
8aN J}dxdydz

. . ON; , o[ N, ON;
Kt =[]] —At(l—a)n—x—’——a(l— a)At’c (8y ~ J}dxdydz

oN, 0
N;N; —| At(1 - )2 1-a)At’c
( (I-a)2n+ a( @) j{ay J

oN, ON; aN ON;
]}dxdydz

—At(1- a)n( }dxdydz

OX 0z

Ki?:gH At(l—a)n—%—— (1- )At%{a

K = j Qj j {— At(1- a)N, a(';ly—’}dxolyolz

(4.55)
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31 j 1 2.2 %%
K: ”j{ PR (az ~ j}dxdydz (4.64)
K2 = m { A c 2(66'\: 56’\)'/; J}dxdydz (4.65)
33 » o) ON; oN B ON; ON; 0N, ON;
K: ﬂj{ At(l a)277+ a(l-a)Atc j{ ~ az] At(1-a)n (6x ~ i Y J}dxdydz (4.66)
K =” j{ At(1- )N, }dxdydz (4.67)
ON .
Ki' =[] { At(l—a)czNia—‘}dxdydz (4.68)
X
K = j j j — At(1-a)c*N Ni | gvydz (4.69)
i i oy Y/ .
K = m — At(1 - a)c*N, —- N, | ixdydz (4.70)
o 6 Yy )

(4.71)
OX OX oy 8y 62 0z

D j (1- a)At2nN N )3 (1 - 0)AMN N i (1- 0)AMN N s
= -a — 0, +|(1-a —n, +| (- — |
) NN ox | TN oy | NN I
1 2.2 aNj N aNj o
+|—a(l-a)At"c"N, — n +| (1- ; n +|(1-
2 ox oy
- GN » 2., ONj;
oc(l— oc(l—oc)At ¢c'N,—|n, [,
2 Ox 2 ox
ON . ON. ON .
Dj?zj{(l— i Jjﬁy{ - 1 J)ﬁx{ - 1 ’Jﬁy
r ox ox oy
1 2.2 aNj ~ ON; n aNj A
+| —o(l—a)At"c*N, — |, +| (1- Lia, +| (1- 1 f (4.73)
2 oy 0z oz | °

1 2.2 8Nj A 1 2.2 aNj A
+|—o(l-a)At"c°N, — [n, +| —o(l-a)At"c"N, — [n, (dI,
2 oy )7 (2 oy

. ON, ON; - ON .
K =J'”{NiNj %a(l—a)Atzcz[aN' LN + N J}dxdydz
Q,

ON. ).
— ]nx (4.72)
oz
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3 aNj ~ aNj ~ aNj A
Dj = j - i n, + - i n, + - i 0,
r 0x oy 0x

1 L. 0N ON ). ON. ).
+| —a(l-)At? N, —L i, +| (1- —>a, 4| (1- —L1n, (4.74)
2 0z oy )’ 0z

aN ON;,
[ 2c? J ( a(l—a)At’c’N; j Z}dre
0z oy
ON. ON.
D* :j loc(l—oc)AtzczNi—J o, + loc(l—Ot)AtzCzNi—J n
a2 Ox 2 ogy )’
1 2.2 aNj A
+| —a(l-a)At°c"N, — |n, ¢dI, (4.75)
2 oz

4.2 Modified U-V-W-P discretization of the governing equations

The governing equations in the modified U-V-W-P discretization technique differ from
those of the U-V-W-P scheme by the fact that a new parameter A (as defined in chapter
2) is introduced to the perturbed form of the continuity equation, and hence the governing

equations in this scheme take the following form.

op ou ov ow -
L= pC?| —+—+— continuit 4.76
ot P (6x 6‘yJr 6zj ( ) (370

The momentum equation remain as it was in the previous scheme and is written as

a_ oy ) of (o av)], af fow au
o 6x+8x(2776 j+ay{n(8y+6xﬂ+az Max%zﬂ (4.772)
v, of (o o o), of fov ow
P Ay ax{n(ay aﬂ (néy}raz{ (aerayﬂ (momentum) (4.77b)
w__a o fow )] of (v aw] o, aw
o o axMa +aﬂ ayH +ayﬂ+az(2”az) (4.77¢)
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After the normalization of the primitive variables using the expressions given by

U=u
V=v for the components of the velocity vector
W=w
and P=P for pressure.
p

One obtains for the continuity equation

8P__/1C ouU 8V+8W (4.78)
oXx oy oz

and for the momentum equation

a_uz_a_mg(z,,a_uw{,{au 6VH+3H8W a“ﬂ (4.79)
ot OX 0OX ox ) oy oy oOx ox oz
a_v:_a_mg{,{a_ma_v)}_ L0 n[av GW} (4.790)
ot oy ox oy OXx

a o N\ x &

4
2l S
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Following the same procedure as applied for the U-V-W-P scheme (equations (4.5)

through (4.21)); one obtains the following Taylor series expansion.

For pressure term

AP Pl..—Pl, P 1 0P
STt T ot
At At Ot | ot oo
T L L PN ok o0k
ox oy oz ot 2 OX OX 0oy oy

For the first component (U) of the velocity vector

AU Yl Yl _au| 1 Y
At At O 2 e
_oP 0 ( 6U) 0 ouU av 0
= +—| 2n— +—| | — +—
x neant OX OX )| oot OY oy ax o oz
Daster 2 W @ s1a)
2 ox\ ox oy oz ) .

For the second component (V) of the velocity vector

VI, 2

AV Vo=Vl _av| LY

At At at |n+aAt n+aAt
oP a{ (au avj_ a( avj d

=—— +—|n —+— 2n— +

ay n+aAt ay a dln+aAt ay ay n+aAt 82
et 2 OfM NV W (4.81b)
2 oy\ox oy oz ) .

o oP
+
0z az

23]

(4.80)

n+aAt

A5

n+aAt

n+aAt
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And finally for the third component (W) of the velocity vector

aw Wl W aw| 1 ew
= +— At 5
At At M e 2 0|
oP a{ (aw auﬂ a{ [av awﬂ a( awj
=—— +—|n —+— +— |l —+— + 2n—
OZ|,.on OX ox o)) . 0y oL oy - oz 0 )|..on
1 aAtc’ o +ﬂ+% (4.81c)
2 52 oy oz n+aAt

Substituting the approximation expressions of the primitive variables given by (4.26) in
to equations (4.80) through (4.81a,b, and c) and writing the weighted residual statement
yield

For the first component (U) of the velocity vector

. A 8Nj A
jNideQe{U} —jNideQe{U} :—jAtNi—dQe{P}
OX
Q, n+l1 Q, Q,

e 5 oo 0% o)
+ | AN, —| (2 do U + | AN, — — |dQ <V
i w1 j S AR 'ay((”) x ) U

Qe

n+aAt

+ [ AN, — 0 ‘)dQ { + jAtN L ’JdQ {u}

Q. ay n+aAt a n+aAt

a NJ 2.2

+ (AN, | ()L e, W —ﬂ,aAtc N, —

o, 0z a n+aAt n+aAt

oN oN,

+jl/1aAt2c2Ni—[ ‘Jd jl/l aAt’c’N, a[ de { } (4.82a)

o 2 ox\ oy naAt O, 2 Lox| oz n+aAt

Similarly, for the second component (V) of the velocity vector one obtains
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: : ON . :
JNideQe{V} - INideQe{V} = - [aN,—> dQe{P}
. n+1 Q, n Q, ay n+aAt
oln)N . : ol )N . :
+ [, 9 &Jdge{v} + A, i[&JdQe{U}
Q 8)( 8)( n+aAt Q, aX ay n+aAt

o2n )N < o )N . 4
+ [, 9 LJdge{v} + AN, 3{&}19&@}
Q. ay ay n+aAt Q. 62 ay n+aAt
ol )N . . ON . .
+ jAtNii AN, dQe{V} + jl,mAtzczNii ‘ dQe{U}
Q 82 82 n+aAt Q, 2 ay 8)( n+oAt

N, | oN,
+ [ 2anrern, 2 S0 dQe{V} + [2aanern, [ T lag { }
Q, 2 8y 8y n+aAt Q. 2 ay A n+aAt

For the third component (W) of the velocity vector

é[NideQe{W} —jN N ,dQ {W} :—jAtN Ni 40 {P}MN

n+

aN
+jAtNi3 jg{u} +jAtN ( ’de
Q, ax n+aAt n+aAt
oN
+jAtNiﬁ J 9) {W} + AtN ( ’de
Q, 6y n+aAt n+aAt
ON . ON . .
+jAtNi3 (2n)— dQe{W} jfz ant?e’N, 2| dQe{U}
Q, 62 82 n+aAt Q. 2 82 a n+aAt

JdQe {W}
n+aAt

X
oN . : oN .
+jlzaAt2c2Nia[ ‘]dQe{V} +j1;LaAt2c2Ni6[ )
5.2 o\ oy neast &, 2 o\ oz
And one gets from the continuity equation
: . oN, .
jNideQe{P} —JNideQe{P} = - [aae’N, dQe{U}
OX
Q, n+l1 Q. n Q. n+aAt
5., ON; : , . ON; :
- [Aate’N, —LdQ, v - [Aate’N; —LdQ, W
Q. ay n+aAt  Q oz n+aAt
oN , oN . ,
’dee{P} + jlomtzczNi a( ’JdQe{P}
aX n+aAt Q. 2 8y 8y n+aAt
ON .
dQe{P}
62 n+aAt

+j1a/mt2c2Ni3
Qe2

OX

+ J%aﬂAtzczNi a( (4.83)
Q.

oz
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The application of Greens’ theorem to the second-order derivatives contained in

equations (4.82a, b, and) and (4.83) yield

For the first component (U) of the velocity

n+aAt

jNNdQ{U}n+l jNNdQ{ ——jAtN aIgl—’dQ{P}

e e

_ J'Atznaaia_dQ et T [AthN —Jn dr, {U }mam
Q,

J
r,
— jAtﬂaN a n+aAt + (AtUN _J f,dr, {v}nﬂmt

oy

e

_ jAtnaa’\:/ %dﬁ {U

ntaat T [A“?N _Jn dr {U }n+aAt
Q, T,

- jAtﬂa(;\l aa_dQ {U ntaat T [AtUN _Jn dr’ {‘J}nﬂmt
Qe e

. ON

_ _[Atﬂ 8_dQ {\N oot T J[AWN —]n dr {\N},WM

e
1 ON, 0N, | 1 oN
_é[EaAtzc% e ””“J( aAt’c2iN, WJ f,d0, U ], o
ON, oN

—jl aAt?cil i
2 ox

n+aAt

de RV, +1‘"[£1 aAt*c? N, %} A dr, U}

_ j Loate?s a(;\' aa—dQ W+ [ (laAt c aNZ Jﬁxdre{u' b (4843)
e

The expression of the second component (V) of the velocity vector can be obtained in the

similar way as

_ N,
J’NNdQ{\/n+1 jNNdQ{v jAtN ade{}"”‘“

e
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- J.Atﬂ aal\)l(l _dQe{V n+aAt + (AtﬂN _Jn dre{\/}n+aAt
Q.
- ON. . .
- ({Atn %Ejdge {U }n+aAt + : (At 77N| EjJﬁxdre {U }n+aAt
- IAtznﬁal\I—JdQe {V }n+aAt + I[At2ﬂN _Jn dre {V }n+aAt
o oy oy i

- IAU] N, _dQ {W n+aat T I[AU]N _jn dr’, {W}nmAt
T,

a, oz oy
jn A

j; atic g N %dg Ul +j[2aAt2C2/1N aalxjn dr, U}
T

_IAtry = —dQ {\/ - uAt+J‘[
I
n+aAt
—jl atrera M a—dQ{\/ +j( ant’c N, j dr,
2 ay n +aAt : e n+aAt
—IlaAt2 218 —dQ i +j Laaveran, Dk A, dr, W |
a 2 ay n-+aAt ; a n+aAt

And we have for the third component (W) of the velocity vector

‘dﬂ{}

n+aAt

JN N, do, W1, - jN N, de, W, :-jAtN

- J.A'U] —dQ {U P (AU?N _J n+aAt

OX

n+aAt

— | At ——dQ + A'[ N, ]
_[ n X ox n+aAt ( n

n+aAt

J b
- At77 a—dQ n+aAt+ AtnN — Fe
oy oy

(4.84b)
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Jan % Dol j[m e

- IAt2U pe _dQ M h+aat +J.(At277N %)n dr’ {\N}nmm

- [y oo, bl [ Jascean, T hen .,
Q, e

. Eaﬂw%%dge{v o ;[1 CACCN, %] o )
Q, e
- %aAtzczﬂ%%dQe{W vt + | (1 aAt’c’ N, %j A,dr, W), (4.84c)

Q, e

One obtains from the continuity equation

. ‘ oN . .
jNideQe{P} —jNideQe{P} = - [aate’N, — dQe{U}
OX
Q, n+1 Q, n Q, n+aAt
L. ON, . L. ON, .
- [2ate*N, —-dQ, 1V - [Aate*N, —-dQ, W
Q. ay n+aAt Q. az n+aAt

ON. (N, . oN -
—jlamtzcz—' ’ dQe{P} + | Loaaven, J] {P}
Q, 2 2 n+aAt 2 OX n+aAt

OX
ON. (0N . oN ,
—jla/mtzcz—' ‘ dQe{P} +| lalAtQCzNiJjﬁy{P} (4.85)
Qez ay ay n+aAt Q, 2 ay n+aAt

—_—

ON. ( ON . ON :
—jla/mtzcz—' ! dQe{P} + [ Laratre? i Jjﬁz{P}
Q. 2 aZ aZ n+aAt Q, 2 az n+aAt

After expanding terms containing n+ At from equations (4.84a, b, and c¢) through

(4.85) using the relation A| = 05A|n+1 +(1- a)Aln , one obtains

n+aAt
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For the first component (U) of the velocity vector

INideQe{U} - jNideQe{u} -
Qe n+l

—jaAtN LolQ{ } —j(l a) AN, LdQ{ }
o o

n

oN, oN
—IaAtZry {U} —I(l a)At2n—+ = o —LdQ { }
+_[(aAt277N ' r{u} + j ((1- a)At277N ' {U}
_ jaAtn aal\;/ N 4o {V}M— j(l a)Atn { }

e

4, o 1,

ON. ON; ON. ON
— |aAtn—-—LdQ {U — | (1=a)At dQ U
Jartn H I( M {}
N, 4 N, .
+ j(aAtnNi a—y)nydre{u}n+l + j(a —a)AtzN, W)nydl"e {U}

N, N
- jaAtn—'—dQe{u} - j(1 a)Atn%a—’dQ {u}
n+l

n

N, A .
+[ (aAtyN. —L)A dr,{U +j (- a)AtnN )A.dI,<U
1 az 4 e

e

+ j ((1- a)AtN,

—jaAtn—‘aN" dQ, W —j(l—a)mn—‘ JdQ
0z OX e

ON; | { }
z e W
n+1 ax n

oON, . ON. .
= J.lazAtzczZ% ’ dQe{U} = J-—a(l—a)Atzczl%—’dQe{U}
2 G, 2 OX OX n

oX OX
. ON . .
{u} +j(la(1—a)m —)A, {U}
n+1 T, 2 8X n

0N, . ON. |
—j a’At’c 2,1 —L dQe{V} - J.la(l—a)Atzcz/I% ’dQe{V}
ay n+1 992 aX ay n

c
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ON . . ON . .
+ j(loﬂAtzcﬂ/ll\li —’)ﬁxdre{v} + j(la(l — )AL’ AN, —’)ﬁxdFe{V}
2 oy i 2 oy

n+l1 n

ON . ‘ ~ON . :
—j a*are?a N —‘dQe{W} —jlaa—a)mzcu%—’dge{w}
0z 0,2 OX 0z n

240422 oN inA \ 1 2.2 aNj A \
+j(—a At?c*N, A—L)A, dI,{W +j(—a(1—a)At c2AN, —L)A dI,JW (4.862)
L2 oz e p 2 0z

n

With the same procedure the second component (V) of the velocity vector can be written
as

jNideQe{V} - J.Ni deQe{V} -

Q. n+1 n

- jaAtN %dQ { }

(P,

oN. ON. A
- jaAtn —1do {v} - j(l—a)mna— axj dQe{V}n
oN| .
+j(aAt77N L) dr {v} +j((1 DA, — )ﬁxdl“e{v}
ON. ON :
- j aAm JdQ {U} - j (1-a)Atn ;\I Gyj dQ {U}
+ j (0l Atn dr {U} + j ((1— )AMN, {U}
- jamzn JdQ {V} - j (1- a)Atzn—i JdQ {V}

.

.
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N, N, : ON, N, ‘
—jaAtn Sy dQe{W}nH—J(l Aty 5 dQe{W}n
N, : N, .
+j(aAt77N ay )nZdFe{W} +I((l—a)AtnNiW)nzdFe{W}n
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n

1 2 aNj A | 1 2.2 aNj A |
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I, 2 ay n+1 T, 2 ay

N. ON. : N. ON .
- jlazmzczzL—’dQe{w} - Jla(l—a)Atzcz/lL—’dQe{W}
2 ay az n+1 Qez ay az n

QE‘

n

N . , oN .
+ .[(lazAtzczﬂNi —)A,dr, {W} + j(la(l — a)At*c? AN, —’)ﬁdee{W} (4.86b)
r2 oz el 1 2 oz

For the third component (W) of the velocity vector, one obtains
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- jNideQe{W} =

n

jNideQe{W}
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+j(aAtn )A d {u} +j(( AN, — —)A, re{u}n
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e
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) ]
i 29t e W - i 9 te W
82 n+1 T, 62 n
N, ‘ N A
—j t? 2/1 - dQe{U} - jla(l—a)Atzczﬂ%—‘dQe{U}
OX 0,2 0z 0OX N

66



Chapter 4 Working equations

ON . . ON . )
+ j(laﬂAtzcz/zNi —’)ﬁzdre{u} + j(la(l — a)At2 2N, —‘)ﬁzdl"e{u}
P2 OX e p 2 OX
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2
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+ j(—azAtzcz/lNi —‘)ﬁzdre{w} + j(la(l — a)At>c? AN, —’)ﬁzdre{w}
) oz o f 2 oz "

n

And finally from the continuity equation, one obtains

jNideQe{P} —INideQe{P} -
Q, Q,

) oN| . . oN| .
~ [oc? AN, —LdQ Ut - [(-a)c?AatN, —dQ,{U
Q, 6X n+1 6X n

Qe
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ON. | ON ‘
—'—’dQe{V} = Jla(l—a)Atzczl% ) dQe{v}
az 8y n+1 Qez 82 ay n

n

(4.86C)
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.

- jacz/th {v} - j(l—a)c
W e 1 2 JAtN N, dQ, W
{ } - Ja-ae ' { }
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- jac
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Equations (4.86a, b, and c) and (4.87) can be written in matrix form given by (4.35)

previously but this time with the left hand side given by

oN; ON; ON; ON; aN ON; 0N, oN;
+ Atan| 2— N,
OX 6x ay 6y az 0z

ON ; ON;
M :III At naN' N L gearzerq N dxdydz
oy ox 2 ox oy

ON, ON; ON. ON .
Atan —-—2 Loarzerg) D dxdydz
2 oxX oz

(4.87)
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oN, 1 oN. N
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4.3 Solution procedure

The discretization of the governing equations by the two developed schemes yields
systems of algebraic equations which need to be solved; this can be achieved by using
direct methods or iterative methods. Thus it is informative to briefly examine the
difference, advantages and disadvantages of these two methods and then select an
appropriate method to adopt in this project.

Direct methods regroup techniques such as Cramer’s rule, Gaussian elimination,
Cholesky method, Thomas algorithm (TDMA), Runge-Kutta method, among others.
These groups of solution techniques are mainly suitable for linear system of equations,
have the disadvantages of being time consuming and are susceptible to round-off errors,
which in case of large system of equations can lead to unacceptable results. Interested
reader about these techniques may refer to Butcher (1993), Duff (1986), Shampine
(1994), Sewell (1988), Lapidus (1971), Greenspan (1960), and Curtis and Patrick (1994),
among others.

The iterative methods on the other hand have the unique advantage, that round-off errors
in each step are corrected in the subsequent step, they can be used to solved both linear
and nonlinear systems of equations, and when the coefficient matrix is sparse, they are
non-time consuming and economical in term of computer storage. Many iterative
techniques have been developed and among them are the Jacobi method, Gauss-Seidel
method, Alternating direction implicit (ADI) method, conjugate gradient methods
(CGM), domain decomposition methods (DDM) and the generalized minimal residual
(GMRES) methods. Further information about these techniques can be found from
authors like Greenbaun (1997), Axelsson (1994), Hageman (1981), Traub (1964), Varga
(1962), Wachspress (1966), Dahlquist (1974), Saad (1996), Hestenes and Stiefel (1952),
Concus et al. (1976), Kershaw (1978), Press et al. (1992), Glowinski and Wheeler
(1987), Lions (1988), and Scharz (1869).
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The solution technique adopted in the present project is the frontal method which is a
modification of the Gaussian elimination. The technique was developed to tackle the

problem of total

assembly of elemental stiffness equations experienced with direct methods. The frontal
method readily avoid such problem by stepwise reduction of the total matrix

(non-zero band) in a Gaussian elimination procedure, further information about this
technique can be obtained from Iron (1970), Platonov and Trivailo (1979), Light and
Luxmoore (1977), Beer and Haas (1982), Postnov et al. (1979), Forsaith and Moler
(1969), Duff and Reid (1983), Duffet al. (1986), and Hood (1976).

4.4 Convergence of the solution

In the present study, the convergence of the solutions is checked using the calculated

ratio of the difference of the Euclidian norm (Lapidus and Pinder, 1982) between

successive iterations to the norm of the solution. This is given by

N 2
> -x;
= <g (4.128)

Z‘Xiﬁ—l 2

Where r denotes the number of the iteration cycle

N is the total number of degrees of freedom
X are the field unknowns

And ¢ denotes the convergence tolerance value.

The criterion given by (4.128) is used for both pressure and velocity components in
separated calculations and converged solution is obtained when both sets of results satisfy

this criterion.
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4.5 Mesh refinements

The aim of solving real world problems using the computational fluid dynamics
techniques is to obtain desired solutions as accurately as possible while maintaining cost
as efficient as possible. But achieving both cost efficiency and accuracy is often no trivial
matter, especially when one is constrained to use a fixed computational method and
limited computer resources like is the case experienced during the course of this study, in
which the researcher is confronted to use a fixed computational scheme (the UVWP
method) and a limited computer resources (a Pentium (R) IV 3.00GHz). Given this
circumstance, the best strategy to adopt to obtain stable and accurate results at low cost is
the refinement of the computational grid known as mesh refinements. Mesh refinements
also can be used for testing the convergence in the solution of non-linear problems
through the comparison of the results obtained on successively refined meshes. Mesh
refinements are part of adaptive methods which are designated to achieve both accuracy
and efficiency and in which mesh refinements are applied only where needed. The
adaptive methods generally provide mesh refinements for efficiency as dictated by
predetermined criteria, the criteria are determined by some error indicators which are
usually represented by gradients of a suitable variable and the larger the gradient, the
finer the mesh required.

There are two types of adaptive methods namely the structured adaptive methods (Dwyer
et al., 1982, Gnoffo, 1980, Nakamura 1982, Eiseman 1985, and Brackbill and Saltzmann
1982) developed for finite difference method and the unstructured adaptive methods
(Oden et al. 1986, and Babuska et al. 1986) developed for finite element method
formulation. The latter can be formulated using mesh refinement methods (h-methods),
mesh movement methods (r-methods), mesh enrichment methods (p-methods), combined
mesh refinements and movements (hr-methods), and combined mesh refinements and
enrichments (hp-methods). The mesh refinement methods (h-methods) are adopted in the
present work. The basic idea of the h-methods consist of keeping unchanged the element

selected for the domain discretization while the number and size of the elements vary
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with each level of mesh refinement. Further information about the structured adaptive
methods and the unstructured adaptive methods can be found from the following authors
Bathe (1996), Zienkiewick and Taylor (1994), Babuska and Suri (1990), Oden et al.
(1989, 1995), Chung (2002), Oden (1988), Peraire et al. (1987), Probert et al. (1991),
Ghia et al. (1989), and Altas and Stephenson (1991).

4.6 Schematic diagram of the developed schemes

The solution algorithms for the two developed schemes described above can be

summarised by the flow chart given by figure 4.1.
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Domain discretization

Initialisation of values
(Velocity & Pressure)

'

Set up: physical and material properties,
geometrical data and boundary
conditions.

1
l

A 4

Time variable incremented

!

Yes

Pre-programmed
Time reached?

Solve governing equations for
Pressure and velocity fields

No

Check for convergence

i Yes

»| Print output and Stop

Figure 4.1: Flow chart for both the UVWP and the modified UVWP schemes.
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RESULTS AND DISCUSSIONS

In this chapter simulations results obtained in the present study are presented and
discussed. These results are generated using the following procedure. The two schemes
developed in chapter 4 were coded and compiled using FORTRAN via Microsoft Visual
Studio 2005, to serve as the solver routines in the present simulation studies. The pre-
processing (mesh generation) part of the simulation was done using Cosmos GeoStar
software and the post-processing (visualization of results) was carried out using Tecplot
software.

The software used for pre-processing, number crunching and post-processing, ( here
referred to as Cosmos GeoStar, FORTRAN and Tecplot) are linked via an in-house
developed utility programme (FEUT) which reads the output files from the pre-processor
(Cosmos GeoStar) converting them into input files in a format readable by the solver
(FORTRAN). Once the solution process completed, the solver returns the solutions back
to the utility FEUT programme which rewrites the solutions in a format readable by the
post-processor (Tecplot) in order to proceed with the analysis of results.

All these processes (geometry definition, mesh generation and visualization) are carried

out using an Intel Pentium ® IV 3.00 GHz personal computer.

In all of the simulations presented in this chapter the fluid rheology is based on assuming
a generalized Newtonian behaviour. Typical set of physical properties of such a fluid are

as given in the following table.

Physical properties Values

p (density) 980 kg m™
n (power law index) 0.87-1.23

N, (consistency index) 80kg m™'s™
c (speed of sound) 1500 ms™'

Table 5.1: Physical properties of the generalized Newtonian fluid used.
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The simulations are carried out using a time level (o) of 0.95 and a time increment (At )
of 0.001 s.

Although the results obtained using the two developed schemes are mainly similar, the
modified UVWP scheme reaches convergence quicker than the traditional UVWP
scheme. Therefore, for each simulation only one set of converged results is shown,
however, the important difference in the time of taken to obtain such a result using
different schemes is noted.

Starting with three benchmark problems in which the simulated fluid is considered to be
purely Newtonian (i.e. power law index is set to be 1 in the power law model), the
developed codes are used for the numerical analysis of complex problems for generalized
Newtonian fluids (for both shear thinning and shear thickening cases). Dimensions of the
computational domains used in the complex problems are the same as the benchmark
problems but with the difference that in complex problems various types of internal
obstructions are introduced within the flow domain.

In the benchmark cases domains consist of rectangular ducts, in which the fluid enters the
domain at one end and exits at a specified outlet situated far from the inlet to make the
imposition of simple exit boundary conditions acceptable. Three different outlets are of
interest in this work, the first one is placed in a position normal to the direction of the
fluid flow, the second one is situated at the end of top solid wall while the last outlet is
placed at the end of the bottom solid wall. These domains are shown in figures 5.1.1,

5.2.1, and 5.2.3, respectively. The cross section areas of the inlets and outlets for the

different geometries in this work are all the same and have a dimension of 0.01 m?.

As there are no experimental data to validate the results obtained in this project, the
validation processes is based on the examination of mass balance across the entire
computational domain as well as evaluation of the logical consistency of the

computational results.
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The drawback of the program is that it cannot be used to simulate fluid flow within a
short domain. For such simulation, the imposition of stress free exit conditions may not

be realistic, and thus this method may not generate very accurate results.

5.1 Benchmark problem 1

5.1.1 Computational domain and boundary conditions

In the first benchmark problem, the domain consists of a simple rectangular box of Im
length, 0.1m width and 0.1m high and there is no obstruction to flow as shown in figure
6-1-1. The computational domain is discretized using 8-noded hexahedral isoparametric
elements into a mesh of 8550 nodes, and 7252 elements (see figure 5-1-2) and the
prescribed boundary conditions correspond to the fluid entering the domain with a
velocity of 0.1 ms™" perpendicular to the inlet; the other components of the velocity (v,
and w) are zero. The only prescribed boundary condition at the outlet is a zero datum
pressure, and the no-slip conditions are applied to the remaining sides of the rectangular
box (see figure 5-1-3). Although there is no apparent imposition of exit conditions (as no
velocity value is given at this point) stress free conditions at this boundary have been
imposed (i.e. the gradient terms appearing after the application of the Green’s theorem to

the second order derivatives in the equation of motion are set to be zero).

Inlet

Outlet

Figure 5.1.1: Geometry of benchmark problem 1.
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Figure 5.1.3b: 2-D schematic representation of the boundary condition in
the xz plane (benchmark problem 1).

5.1.2 Results

The results obtained after running the simulation for this first benchmark case are given
by figure 5.1.4 through 5.1.14, and as it can be seen from figure 5.1.4, pressure decrease
in the direction of the flow with the highest pressure (about 10K Pa) found in the vicinity
of the inlet and as the fluid moves across the domain there is loss of energy which explain
the decrease in the pressure values which reached zero around the outlet as given by

figure 5.1.5.

Figure 5.1.4: Pressure distribution (benchmark problem 1).
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Figure 5.1.5: pressure distribution across the domain (benchmark problem 1)

Figure 5.1.6 shows the velocity vector profile in the x-y plane taken at position z =

0.05m. The fluid enters the domain through the inlet with an average velocity of 0.1
m.s~' giving mass inflow rate of 1kg.s™'and exit the domain with an average velocity of
0.0988m.s™" giving a mass outflow rate of 0.988kg.s™'. These figures prove that there is
conservation of mass since the error between the mass inflow and mass outflow is only

1.2% which falls in the acceptable range. The maximum velocity of about 0.12m.s™" is
found to be located between the range starting from x =0.Imto x = Im, y =0.02mtoy =

0.07m, and z = 0.02m to z = 0.07m across the domain length high, width respectively.
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Figure 5.1.6: Vector plot profile coloured by the velocity magnitude contour
(benchmark problem 1).

As there are always viscous momentum boundary layers at solid surfaces, different
section contour plots of the velocity in the vicinity of the solid surfaces are presented for
each of the simulations done in this project. For the first test case these contours plot are
represented by figures 5.1.7 through 5.1.10. Figure 5.1.8 illustrates the velocity section
contour plotted at position y equal 0.002m, that is just 0.002m above the bottom solid
wall, while figure 5.1.9 illustrates the velocity section contour plotted at position y equal

0.098min that is just 0.002m below the top solid wall, and
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figure 5.1.10 represent a plot combined the section plot from figure 5.1.9, figure 5.1.10
plus an additional section plotted at position y equal 0.05m which represents half of the
domain in the y direction and the region where the fluid moves with maximum velocity.

It can be noted that in the vicinity of the solid walls, the fluid flow experiences a velocity
change and this change is due to the presence of boundary layers. And as proved by many
researchers, the velocity profiles are less developed in planes closer to solid walls

because of the boundary layers effect.

Figure 5.1.7: Profile of the contour of Figure 5.1.8: Profile of the contour of
the velocity magnitude (y = 0.05m plane) the velocity magnitude(y = 0.02m plane).
benchmark problem 1. benchmark problem 1.
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Figure 5.1.9: Profile of the contour of the Figure 5.1.10: Combined profiles of the

velocity magnitude(y = 0.098m plane) the velocity magnitude (y = 0.02m,

benchmark problem 1. y =0.05m, and y = 0.098m planes).
benchmark problem 1.

The results presented in figures 5.1.11 through 5.1.14 represent section plot of the
velocity contours in the x-y plane. The contours are plotted at location z equal 0.5m
(middle of the domain), z equal 0.02m (close to the right solid wall), and at z equal
0.098m (close to the left solid wall). One can note that even with these plots in the x-y
plane the results obtained are similar to obtained those obtained previously in x-z plan

(figure 5.1.7 through 5.1.10).

Figure 5.1.11: Profile of the contour of  Figure 5.1.12: Profile of the contour of
the velocity magnitude (z = 0.05m plane) the velocity magnitude(z = 0.02m plane)
benchmark problem 1. benchmark problem 1.
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Figure 5.1.13: Profile of the contour of  Figure 5.1.14: Combined profiles of the

the velocity magnitude (z = 0.098m plane) the velocity magnitude (z = 0.02m,

benchmark problem 1. z=10.05m, and z = 0.098m planes)
benchmark problem 1.

5.2 Benchmark problem 2
5.2.1 Computational domain and boundary conditions

The geometry dimension, finite element mesh sizes are the same as for the one for bench
mark problem 1, the outlet for this case is positioned as given in figure 5.2.1,
the finite element mesh size, and the boundary conditions are given by figure 5.2.2 and

5.2.3, respectively.

Figure 5.2.1: Geometry of benchmark problem 2.
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Oulet:
p=0

I u=w=20

Inlet:
v=w=10
u=0.1m's
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Figure 5.2.3b: 2-D schematic representation of the boundary condition in
the xz plane (benchmark problem 2).

5.2.2 Results

The results for the benchmark problem 2 are given in figures 5.2.4 through 5.2.14. One
can note that when the outlet is placed at the top end of the top solid wall, there is an
increase in both pressure and velocity values with the pressure values vary between zero

(the initial value) to a maximum of 20KPa (figures 5.2.4 — 5.2.5), and the velocity
magnitudes vary from 0.01ms™" to a maximum of 0.14ms™" (figure 5.2.6) compared to

the previous benchmark problem where the outlet was situated at a position normal to the
fluid flow. Once again, it can be noted from figure 5.2.4 that pressure decreases in the

direction of the flow. But although the fluid moves slightly fast in this second benchmark
case, the mass flow from the outlet is 0.983kg.s™ which is lower than 0.988kg.s™

obtained for benchmark problem 1. The difference between the mass flow in and the
mass flow out is about 1.7% which represent 0.7% increase compared to the 1.2% error
obtained for the first benchmark case, the lower value of the mass flow from the outlet in
this benchmark case can be explained by the fact that the region where the fluid moves
faster is found to be far from the outlet (figure 5.2.6), but in the vicinity of the outlet the
velocity of the fluid is low. The pressure distribution and graph given by figures 5.2.4
and 5.2.5 show that the highest values of the pressure (18KPa-20KPa) are distributed
over a length of 0.211m which is longer than the length of 0.105m on which the highest
values of pressure (9KPa to 10KPa) were distributed for benchmark problem 1.
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Figure 5.2.4: Pressure distribution (benchmark problem 2).
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Figure 5.2.5: pressure distribution across the domain (benchmark problem 2).
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Figure 5.2.6: Vector plot profile coloured by the velocity magnitude contour.
(benchmark problem 2).
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Figure 5.2.7: Vector plot profile coloured by the velocity magnitude contour
zoomed around the outlet (benchmark problem 2).
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Figure 5.2.8: Profile of the contour of ~ Figure 5.2.9: Profile of the contour of
the velocity magnitude (y = 0.05m plane) the velocity magnitude(y = 0.02m plane)
(benchmark problem 2). (benchmark problem 2).

Figure 5.2.10: Profile of the contour of =~ Figure 5.2.11: Combined profiles of the

the velocity magnitude(y = 0.098m plane) the velocity magnitude (y = 0.02m,

(benchmark problem 2). y =0.05m, and y = 0.098m planes)
(benchmark problem 2).

Figures 5.2.7 through 5.2.8 above represent the contours plots of the velocity plotted in
different positions (x-z plane) in the vicinity of the bottom solid wall (figure 5.2.8), and
of the top solid wall (figure 5.2.9). Note that in the second benchmark case, the boundary
layers have a parabolic shape with a higher width but cover over a distance of about half

of the entire domain whereas in the previous test case, the boundary
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layers are thinner but cover the entire length of the domain (figure 5.1.8 and 5.1.9).

Figures 5.2.12 and 5.2.13 represent the contours plots of the velocity in different
positions (x-y plane) in the vicinity of the right solid wall (figure 5.2.8), and of the left
solid wall (figure 5.2.9). It can be seen that the shape and size of these boundary layers
are now different compared to the ones obtained in the x-z plane, the length of the
boundary layers are now of about 0.70m but their starting points are located about 0.3m
ahead of the inlet. Another difference to note is that for the benchmark case 1, the shape
and size of the boundary layers were the same regardless of whether the contour plots

were taken in the x-y or x-z plane.

Figure 5.2.12: Profile of the contour of  Figure 5.2.13: Profile of the contour of
the velocity magnitude (z=0.5m plane)  the velocity magnitude (z = 0.02m plane)
(benchmark problem 2). (benchmark problem 2).
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Figure 5.2.14: Profile of the contour of  Figure 5.2.15: Combined profiles of the
the velocity magnitude (z = 0.098m plane) the velocity magnitude (z = 0.02m,
(benchmark problem 2). z=0.05m, and z = 0.098m planes)

. (benchmark problem 2).

53 Benchmark problem 3

5.3.1 Computational domain and boundary conditions

The geometry dimension, finite element mesh sizes are the same as for the two previous
cases, the outlet for this case is positioned as given in figure 5.3.1, the finite element

mesh size, and the boundary conditions are given by figure 5.3.2 and 5.3.3 respectively.

Tnlet

Outlet

Figure 5.3.1: Geometry of benchmark problem 3.
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Figure 5.3.3b: 2-D schematic representation of the boundary condition in
the xz plane (benchmark problem 3).

5.3.2 Results

The results obtained when the outlet is located at the bottom end of the solid wall show
an increase in pressure values compared to the two previous cases. The values of the
pressure for in this case vary from 0 initially set at the outlet to 26K Pa (figure 5.3.4 and
5.3.5) compared to the maximal value of 10K Pa for benchmark problem 1 (outlet located
at the end of the geometry) and 20K Pa for benchmark problem 2 (outlet located at the

end of the top solid wall). But the maximum magnitude of the velocity remains the same

as it was for benchmark case 2; the values vary from 0.01ms™" to 0.14 ms™" whereas the
same figure was from 0.01ms™ to 0.12ms™" for benchmark case 1 and from 0.01 ms™'

to 0.14ms™" for benchmark case 2. The pressure decrease in the direction of the flow

(figure 5.3.4) just as obtained for the two previous benchmark problems. But although the

magnitude of the velocity is high for this third benchmark case, the computed mass flow
from the outlet 0.980kgs™ is lower than the ones obtained for benchmark problem 1 and

2 and this low value of outlet mass flow yield a 2% error in difference between the mass

in and the mass out.
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Figure 5.3.4: Pressure distribution (benchmark problem 3).
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Figure 5.3.5: Graph of pressure distribution across the domain

(benchmark problem 3).
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Figure 5.3.6: Vector plot profile coloured by the velocity magnitude contour
(benchmark problem 3).
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Figure 5.3.7: Vector plot profile coloured by the velocity magnitude contour
zoomed around the outlet (benchmark problem 3).
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Figures 5.3.7 through 5.3.10 represent the contour plots of the velocity in the x-z plan and
are similar to the ones obtained for benchmark problem 2 (figures 5.2.7 through 5.2.10),
which means when the outlet is located at the end of the bottom solid wall, the fluid flow
experienced the same effect in the vicinity of the solid walls than when the outlet is
placed at the end of the top solid wall. But when the contour plots are taken in the x-z
plan (figures 5.3.11 through 5.3.14), the shape and size of the boundary layers are
different from those obtained in benchmark problem 1 (figures 5.1.10 through 5.1.14) and
benchmark problem 2 (figures 5.2.10 through 5.3.14). One can note that the length of
these boundary layers is short and that their thicknesses are smaller compared to those

obtained in the two previous benchmark cases.

Figure 5.3.7: Profile of the contour of Figure 5.3.8: Profile of the contour of
the velocity magnitude (y = 0.5m plane)  the velocity magnitude(y = 0.02m plane)
benchmark problem 3. benchmark problem 3.
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Figure 5.3.9: Profile of the contour of Figure 5.3.10: Combined profiles of the
the velocity magnitude(y = 0.098m plane) the velocity magnitude (y = 0.02m,
benchmark problem 3. y =0.05m, and y = 0.098m planes).
benchmark problem 3.
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Figure 5.3.11: Profile of the contour of  Figure 5.3.12: Profile of the contour of
the velocity magnitude (z = 0.5m plane) the velocity magnitude (z = 0.02m plane)
benchmark problem 3. benchmark problem 3.

Figure 5.3.13: Profile of the contour of  Figure 5.3.14: Combined profiles of the

the velocity magnitude (z = 0.098m plane) the velocity magnitude (z = 0.02m,

benchmark problem 3. z=0.05m, and z = 0.098m planes)
benchmark problem 3.
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The results obtained for the three benchmark problems were stable and accurate these
showed that the conservation of mass and momentum across the entire domain were not
violated. The worst case of difference between the mass in and the mass out was found to
be 2% (benchmark problem 3) which still in the acceptable range. The velocity profiles
and pressure contours were all as expected for the three cases. Therefore the numerical
schemes developed in chapter four can be used with confidence to proceed with the
simulations of the complex test cases planned for this thesis. For the simulations that will
follow, an obstruction or obstructions to the fluid flow will be placed somewhere inside
the geometry but far away from the outlet so that the flow could reached a fully
developed state before exiting the domain. The reason to introduce an obstruction or
obstructions is to investigate how it or they will affect the velocity profiles and the
pressure distributions across the domain. The obstruction will consist of a square block,
or a cylindrical block, or a combination of them. The computational domain in each case
will have the same size than the ones used for the benchmark problems 1, 2, and 3 and
the emplacement of the outlet will chosen to be one of the three used previously for each

case.

The geometries selected for the simulations are used to generate maximum possible
contrast between simple flow fields and more complex flow fields including obstructions.
The various cases simulated in this work are all typical situations often encountered
during process such as polymer moulding, coating, extrusion, and mixing among others.
Although the seven test cases are simulated using rectangular geometrical domains, the
program can be used for the simulation of fluid flow within others domains of different
geometrical shapes. And as mentioned earlier in this chapter, only results obtained using
the modified UVWP scheme are presented. Both schemes presents same results when a
converged solution is reached, the main difference between the two schemes is that the
modified scheme converges faster than the standard UVWP scheme. For instance, with a
value of At = 0.001s used for the test cases simulations, the modified scheme reached

convergence just after 3 iterations
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While the standard scheme needed 5 iterations for the solutions to converge. It took about
45 minutes to the modified scheme to run one iteration of a problem with 7344 elements
and 8882 nodes, whereas with the same data, the standard scheme took about 65 minutes

to run a simulation.

The only drawback of the program is that it cannot be used to simulate fluid flow within a
short domain. For such simulation, the imposition of stress free exit conditions may not

be realistic, and thus this method may not generate very accurate results.

5.4 Test case 1: Flow in a duct past a big square obstacle (0.05 x 0.05 % 0.05m)
5.4.1 Computational domain and boundary conditions

For first test case problem, a square blockage of 0.05m of length, width, and high is
placed inside the rectangular domain given in the benchmark problem 1 (figure 5.2.1), the
domain is discretized using 8-noded hexahedral isoparametric elements giving a finite
element mesh of 8912 nodes, and 7392 elements (figure 5.4.2). The boundary conditions
given by figures 5.4.3a and 5.4.3b are as the ones specified for the benchmark problem 1
but with additional no slip boundary conditions (u, v, and w set to zero) around the six

faces of the square blockage.
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Figure 5.4.3a: 2-D schematic representation of the boundary condition in the xy plane
(test case 1).

Figure 5.4.3b: 2-D schematic representation of the boundary condition in the
Xy plane (test case 1).

5.4.2 Results

Results obtained are given by figures 5.4.9 through 5.4.16, and in contrast to the
benchmark problem 1 where there was no obstruction, one notes an increase for the
pressure values for this case, pressure decrease in the direction of the flow (figure 5.4.4)
from a maximum values of 22000Pa around the inlet to OPa initially set at the outlet
(figure 5.4.5). Figures 5.4.6 through 5.4.8 also show an increase for the velocity with
values varying from 0.02 ms™ to 0.2ms™' compared to 0.01ms™ to 0.12ms™
previously obtained for benchmark problem 1. But despite this increase in velocity
values, it can be seen from figures 5.4.6 through 5.4.8 that the region where fluid moves
with high velocity is narrow and situated just at the top, bottom, left, and bottom sides of

the obstacle. There is no fluid or fluid flowing only with a very low velocity at about 0.02

ms~' in most of region behind the obstacle. The average velocity of the outlet is 0.097

ms~' giving an outflow mass rate of 0.97kg.s™' and hence a 3% error difference between

the mass in and mass out of the computational domain.
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Figure 5.4.4: Pressure distribution (test case 1).
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Figure 5.4.5: Graph of pressure distribution across the domain (test case 1).
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Figure 5.4.6: Vector plot profile coloured by the velocity magnitude contour
(test case 1).

Figure 5.4.7: Vector plot profile coloured Figure 5.4.8: Vector plot profile coloured
by the velocity magnitude contour zoomed by the velocity magnitude contour zoo
around the obstacle in the x-y plane med around the obstacle in the x-z plane
(test case 1). (test case 1).
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Figure 5.4.9: Profile of the contour of ~ Figure 5.4.10: Profile of the contour of
the velocity magnitude (y = 0.05m plane) the velocity magnitude(y = 0.02m plane)
(test case 1). (test case 1).

Figure 5.4.11: Profile of the contour of  Figure 5.4.12: Profile of the contour of

the velocity magnitude (y = 0.098m plane) combined the velocity magnitudes

(test case 1). (position y = 0.02, 0.05 and 0.098m)
(test case 1).
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Figure 5.4.13: Profile of the contour of Figure 5.4.14: Profile of the contour of
the velocity magnitude (z = 0.05m plane) the velocity magnitude (z = 0.02m plane).
(test case 1). (test case 1).

Figure 5.4.15: Profile of the contour of Figure 5.4.16: Combined profiles of the
the velocity magnitude (z = 0.098m plane) the velocity magnitude (z = 0.02m,
(test case 1). z=0.05m, and z = 0.098m planes)

(test case 1).

Figures 5.4.9 through 5.4.16 above represent different section contour plots of the
velocity taken at the same locations as for figures 5.1.7 through 5.1.14 (benchmark
problem 1). It is interesting to investigate again the profile of the velocity in the vicinity

of the solid walls for this case with a square blockage and compared with the same
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figures obtained for benchmark problem 1 where there was no obstruction inside the
computational domain.

As it can be noted from these plots, the boundary layers for this test case are wider,
higher, but shorter in length compared to those obtained for the benchmark problem 1.
This change of shape is certainly due to the presence of the blockage that disrupts the

fluid movement.

5.5 Test case 2: Flow in a duct past a small square obstacle (0.025 x 0.025 x
0.025m)

5.5.1 Computational domain and boundary conditions

In this second test case, the size of the blockage is reduced by half (0.025mx 0.025m x
0.025m) in order to investigate whether the obstruction size has an effect on the flow.
The geometry (figure 5.4.17), the finite element mesh (figure 5.4.18), and the imposed
boundary conditions (figure 5.4.19a, and figure 5.4.20b) for this case are similar to those

for the benchmark problem 1.

/lﬂlet

Blockage

Figure 5.5.1: Computational domain for test case 2.
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Finite element mesh for test case 2.

Xy plane (test case 2).

2-D schematic representation of the boundary condition in the

Figure 5.5.2

Figure 5.5.3a
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u=w

I
>

Inlet:
v=w=10
u=0.1m's

Outlet:
P=0

Figure 5.5.3b: 2-D schematic representation of the boundary condition in the xz

Plane (test case 2).

5.4.2 Results

The results obtained for this test case with the square blockage size halved showed that
pressure decreased in the direction of the flow as obtained for the previous case and with
an increase in pressure values starting for OPa to 55000Pa (figures 5.4.20 and 5.4.21)
compared to the same figure obtained for test case 1; which was from OPa to 22000Pa
(figures 5.4.4 and 5.4.5), this pressure rise reduced the magnitude of velocity which vary
in this case from the initial values of 0.01ms™ to 0.16 ms™ (figure 5.4.22). Given that
the obstacle is small, the fluid entering the domain have more free space around it to
move freely and this can be seen from figures 5.4.23 and 5.4.24 (orange coloured region

representing the region of the domain where the flow occurs with high velocity and at

about 0.14ms™" ). The fluid exits the domain with an average velocity of 0.0975ms"'

giving a mass outflow rate of 0.975kg.s™", and hence an error in mass balance of 2.5%.

Thus reducing the size of the obstacle by half improves the mass balance by 0.5%.
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Figure 5.5.4.: Pressure distribution (test case 2).
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Figure 5.5.5: Graph of pressure distribution across the domain (test case 2).
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Figure 5.5.6: Vector plot profile coloured by the velocity magnitude contour
(test case 2. ).

Figure 5.5.7: Vector plot profile coloured by the velocity magnitude contour
zoomed around the obstacle in the x-y plane (test case 2).
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Figure 5.5.8: Vector plot profile coloured by the velocity magnitude contour
zoomed around the obstacle in the x-z plane (test case 2).

Figure 5.5.9: Profile of the contour of Figure 5.5.10: Profile of the contour of
the velocity magnitude (y = 0.5m plane) the velocity magnitude(y = 0.02m plane)
test case 2. test case 2.
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Figure5.5.11: Profile of the contour of Figure 5.5.12: Combined profiles of the

thevelocity magnitude(y = 0.098m plane)  velocity magnitude (y = 0.02m,

test case 2. y =0.05m, and y = 0.098m planes).
test case 2.

Figures5.4.25 through 5.4.32 of this section represent different section contour plots of
the velocity taken at the same locations as for the benchmark problem 1. These plots
show that in the vicinity of the solid walls, the shapes of the boundary layers are similar

to those obtained for test case 1 problem but the only difference is that there are smaller.
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Figure 5.5.13: Profile of the contour of  Figure 5.5.14: Profile of the contour of
the velocity magnitude (z=0.5m plane) the velocity magnitude(z = 0.02m plane)
test case 2. test case 2.

Figure 5.5.15: Profile of the contour of  Figure 5.5.16: Combined profiles of the

the velocity magnitude (z = 0.098m plane) the velocity magnitude (z = 0.02m,

test case 2. z=0.05m, and z = 0.098m planes)
test case 2.
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5.6 Test case 3: Flow in a duct past a big square obstacle (0.05 x 0.075 x 0.05m)
with an outlet positioned normal to the direction of the flow.

5.6.1 Computational domain and boundary conditions

Seeing that the results obtained for test cases 1 and 2 showed that the case with a bigger
obstruction (test case 1) had a bad percentage (3%) error in mass balance, the next
simulation (test case 3) that follows will be carry out over a domain including a slightly
bigger obstruction than the one for test case 1. The size of the obstacle in this

case is 0.05m, 0.70m, and 0.05m for length, height, and wide respectively, the
computational domain size remain the same (see figure 5.6.1). The entire domain is
discretized using 8-noded hexahedral isoparametric elements giving a finite element
mesh of 8882 nodes and 7344 elements (figure 5.6.2). The three different emplacement of
the outlets used for benchmark problems 1, 2, and 3 will be use for this case. The aim of
the simulation in this case is to investigate whether bigger obstacles and the emplacement
of the outlet will cause the violation of the mass balance and hence the reliability of the

developed codes.

/ihﬂet

Outlet

Obstruction

Figure 5.6.1: Computational domain for test case 3.
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2-D schematic representation of the boundary condition in the

Figure 5.6.3a

Xy plane (test case 3).
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Figure 5.6.3b: 2-D schematic representation of the boundary condition in the xz
Plane (test case 3).

5.6.2 Results

Increasing the obstacle size has no effect on the pressure distribution as it can seen from
figures 5.6.4 and 5.6.5, the values of computed pressure obtained vary from OPa to
22KPa and are similar to the computed pressure obtained in test case 1. The velocity
profiles on the other hand experience an increase in magnitude values, the values here

vary from 0.02ms™" to 0.26ms™" whereas the same figure was 0.02ms™" to 0.2ms™" for

test case 1. But as it can be seen from figures 5.6.6 and 5.6.7, the regions where the fluid
moves with high velocity are very smaller. The computed average exit velocity for this
case is 0.0963ms™" giving a mass outflow of 0.963kg.s™ and an error mass balance
difference of 3.7% which is bigger than the 3% obtained in test case 1 but still in within
the tolerated limit. Hence, even with a big obstacle as used in this case, the mass balance
criterion is not violated, that is the developed computational scheme still valid regardless

of the size of the obstruction.
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Figure 5.6.4: Pressure distribution. for test case 3.
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Figure 5.6.5: Graph of pressure distribution across the domain (test case 3).
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Figure 5.6.6: Vector plot profile coloured by the velocity magnitude contour in the z =
0.5m plane (test case 3).
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Figure 5.6.7: Vector plot profile coloured by the velocity magnitude contour in the y =
0.5m plane (test case 3).
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Figure 5.6.8 (in the z = 0.05m plane) shows the velocity vector profile around the
obstruction, the contour pressure is chosen in this case as background for the velocity
vectors because it provides better view than the velocity magnitude contour. The profile
is as expected, one can see that in the vicinity of the blockage, the fluid deviates and
move toward the top of the computational domain where it can moves freely, then once

passing the obstruction, some the fluid move back down and continues to flow toward the

exit.
Y
X
| P | - - = -
. 22000 . -
20000 |- ; N -
— 18000
1 16000 |- P o B
= 14000
— 12000 |~ - ~ .
1 10000
— 8000 |~ ~ — .
— 8000 By
4000 | - —
2000 p

Figure 5.6.8: Vector plot profile coloured by the pressure contour zoomed around
the obstruction (test case 3).
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Figure 5.6.9: Profile of the contour of  Figure 5.6.10: Profile of the contour of
the velocity magnitude (z = 0.5m plane)  the velocity magnitude (z = 0.02m plane).
test case 3. test case 3.

Figure 5.6.11: Profile of the contour of  Figure 5.6.12: Combined profiles of the

the velocity magnitude (z = 0.098m plane) the velocity magnitude (z = 0.02m,

test case 3. z=0.05m, and z = 0.098m planes)

test case 3.

Figures 5.6.9 through 5.6.12 show the section plots of the contours of the magnitude of
the velocity plotted in the same position than those plotted for test case 1 problem
(figures 5.4.9 through 5.4.16). It can be seen that when the size of the obstruction is
increased and that it is placed at the bottom of the domain, the boundary layers obtained

in the z = 0.02m and z = 0.098m planes are similar, bigger and start from a region close

to the inlet to end at the outlet whereas for the test case 1 problem
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(figures 5.4.9-5.4.12) where the obstruction was smaller and placed far from the bottom
solid wall, the boundary layers obtained at the same positions where smaller and shorter
in length. Another difference is that in the planes y = 0.02m and y = 0.098m, for the
present case, the shape of the boundary layer at position y = 0.02m (figure 5.6.14) differs
from the one at position y = 0.098m whereas the same figure obtained for test case 1

problem (figures 5.4.13-5.4.16) showed that they were similar.

Figure 5.6.13: Profile of the contour of  Figure 5.6.14: Profile of the contour of
the velocity magnitude (y = 0.5m plane) the velocity magnitude(y = 0.02m plane)
test case 3. test case 3.

¥

Figure 5.6.15: Profile of the contour of Figure 5.6.16: Profile of the contour of

the velocity magnitude (y = 0.098m plane) combined the velocity magnitudes

test case 3. (position y = 0.02, 0.05 and 0.098m)
test case 3.
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5.7 Test case 4: Flow in a duct past a big square obstacle (0.05 x 0.075 x 0.05m)
with an outlet placed at the top end of the domain.

5.7.1 Computational domain and boundary conditions

The dimension of the domain (figure 5.4.49), finite element mesh (figure 5.4.50), and
boundary conditions for this test case are similar to those given for test case 3, except the

fact that here the outlet is placed at the top end of the domain.

{_f_____/___JInlet

Outlet

Obstruction

Figure 5.7.1: Computational domain for test case 4.
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Figure 5.7.2: Finite element mesh for test case 4.
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Figure 5.7.3a: 2-D schematic representation of the boundary condition in the
Xy plane (test case 4).
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Outlet:
p=10

‘ n=w=10 ‘ ‘

Inlet:
u=0.1n's
v=w=10

u=v=w=10

Figure 5.7.3b: 2-D schematic representation of the boundary condition in the xz
Plane (test case 4).

5.7.2 Results

When the outlet is placed at the top end of the geometry, the pressure gradient obtained
vary from O imposed at the outlet to 28KPa (figures 5.7.4 and 5.7.5) with the pressure
gradient decreasing in the direction of the flow. The developed pressure profile can be
justified with the accompanying flow field expressed by the velocity vectors in figures
5.7.6 through 5.7.8 from which it can be noted that the fluid moves with a minimum
velocity of 0.02 ms™ and a maximum velocity of 0.26ms™'. The computed mass
balance across the computational domain shows that 96.05% of the fluid entering the
domain exit, that is an error of 3.95% between the mass inflow and mass outflow is

recorded.
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Figure 5.7.4: Pressure distribution (test case 4).
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Figure 5.7.5: Graph of pressure distribution across the domain (test case 4).
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Figure 5.7.6: Vector plot profile coloured by the velocity magnitude contour in the
z=0.05m plane (test case 4).

Figure 5.7.7: Vector profile coloured by Figure 5.7.8: Vector profile

pressure contour and zoomed around the coloured by the velocity magnitude
obstruction in the z = 0.05m plane. contour in the z = 0.05m plane
test case 4. test case 4.
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5.8 Test case 5: Flow in a duct past a big square obstacle (0.05 % 0.075 x 0.05m)
with an outlet placed at the bottom end of the domain.

5.8.1 Computational domain and boundary conditions

Obstruction

Figure 5.8.1: Computational domain for test case 5.
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Figure 5.8.2: Finite element mesh for test case 5.

Xy plane (test case 5).
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Figure 5.8.3a: 2-D schematic representation of the boundary condition in the
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u=v=w=10

‘ u=w=>0 ‘

=

Inlet: Outlet:
u=10 p=20
v=w=10

Figure 5.8.3b: 2-D schematic representation of the boundary condition in the xz
Plane (test case 5).

5.8.2 Results

The results obtained (figure 5.8.4 through 5.8.6) for this case with the outlet placed at the
bottom end of the geometry show a similar figure in term the pressure gradient and
velocity magnitude with the results obtained in the previous test case where the outlet

was placed at the top end of the geometry. The only difference for the present case is that

the average velocity at the outlet is found to be 0.0958 ms™' giving a mass outflow of

0.958 kg s~ and hence the discrepancy between the inlet and the outlet masses gave an

error of 4.2%.
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Figure 5.8.4: Pressure distribution (test case 5).
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Figure: 5.8.5: Graph of pressure distribution across the domain (test case 5).
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Figure 5.8.6: Vector plot profile coloured by the velocity magnitude contour in the
z = 0.5m plane (test case 5).
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5.9 Test case 6: Flow in a duct past a circular cylinder.

5.9.1 Computational domain and boundary conditions

The simulation for the sixth test case is carried out on a rectangular domain (figure 5.9.1)
of same dimension than for the previous simulations, the domain is discretized using 8
nodes isoparametric hexahedral element into a finite element mesh consisting of 9062
nodes and 7560 elements (figure 5.9.2). But the obstacle in this case has a cylindrical

shape. The imposed boundary conditions are given by figures 5.9.3a, b.

Outlet

Inlet

Blockage

Figure 5.9.1: Computational domain for the case with a cylindrical blockage
(test case 6).

135



1Iscussions

Results and d

Chapter 5

Finite element for test case 6.

Figure 5.9.2

Inlet:

Outlet:

u=0.1m's

2-D schematic representation of the boundary condition in the xy

Figure 5.9.3a

Plane (test case 6).
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Figure 5.9.3b: 2-D schematic representation of the boundary condition in the xz
Plane (test case 6).

5.9.2 Results

The results obtained with the case of cylindrical shaped obstacle show that the pressure
decrease in the direction of the flow as in previous cases but with values from high
pressure of about 45KPa to 0 imposed at the exit of the domain (figure 5.9.4 and 5.9.5).
The velocity vectors plots given by figures 5.9.6 through 5.9.8 show that the flow
remains fully developed throughout the length of the computational domain as it

progress.

137



Chapter 5

Results and discussions

Figure 5.9.4: Pressure distribution (test case 6).
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Figure 5.9.5: Graph of pressure distribution across the domain (test case 6).
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Figure 5.9.6: Vector plot profile coloured by the velocity magnitude contour in the
z = 0.05m plane (test case 6).

Figure 5.9.7: Velocity vector section plotted in the y = 0.05m plane (test case 6).
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Figure 5.9.8: Velocity vector plotted in the z= 0.05m plane and coloured by pressure
Contour (test case 6).
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Figure 5.9.9: Profile of the contour of  Figure 5.9.10: Profile of the contour of
the velocity magnitude (y = 0.5m plane) the velocity magnitude(y = 0.02m plane)
test case 6. test case 6.

Figure 5.9.11: Profile of the contour of  Figure 5.9.12: Combined profiles of

the velocity magnitude(y = 0.098m plane) the velocity magnitude (y = 0.02m,

test case 6. y =0.05m, and y = 0.098m planes)
test case 6.
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Figure 5.9.13: Profile of the contour of Figure 5.9.14: Profile of the contour of
the velocity magnitude (z = 0.05m plane)  the velocity magnitude (z = 0.02m plane)
test case 6. test case 6.

Figure 5.9.15: Profile of the contour of Figure 5.9.16: Combined profiles of the
the velocity magnitude (z = 0.098m plane) the velocity magnitude (z = 0.02m,
test case 6. z=0.05m, and z = 0.098m planes)

test case 6.
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5.10 Test case 7: Flow in a duct past two cylindrical and one rectangular
obstacles.

5.10.1 Computational domain and boundary conditions

For this final simulation case, three problems are solved in order to investigate the flow
fields unknowns (velocity and pressure) using three different values of the power law
parameter n. The three case are as follow; n = 0.87 (for shear thinning fluids), n = 1 (for
purely Newtonian fluids), and n = 1.23 (for shear thickening fluids).

The domain in this case consists of a rectangular box with a similar dimension as for the
previous problems solved, but the obstructions here consist of a combination of two
cylindrical and one square blockages. The cylinders volumes are 4.91x10”° m’ each,
the length, width, and height of the square are 0.025m as shown in figure 6.8.1, and the
entire domain was discretized in a finite element mesh of 8834 nodes, and 7389 elements
(figure 6.8.2). The imposed boundary conditions for this case are given by figures 6.8.3
and 6.8.4 respectively.

o / .

Inlet

Outlet \

Figure 5.10.1: Computational domain for test case 7.
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Figure 5.10.3a: 2-D schematic representation of the boundary condition in

Figure 5.10.2: Finite element mesh for test case 7.
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Figure 5.10.3b: 2-D schematic representation of the boundary condition in
the xz plane (test case 7).
The results obtained in term of pressure and velocity contours and vector are presented

(figure 5.10.4 through figure 5.10.19) and discussed below

5.10.2 Results

Figures 5.10.4 through 5.10.7 show that when the power law index (n) is set equal to 0.87
(shear thinning fluids) the pressure across the entire computational domain decrease in
the direction of the flow from a maximum value of about 26KPa to 0 initially set at the
exit of the domain. The same figure for the case of purely Newtonian fluids (n = 1) show
a decrease of 22KPa to 0 whereas when n = 1.23 (shear thickening fluids), the decrease in
pressure values is only form 20KPa to 0. In other hand, the velocity profile given by
figure 5.10.8 through figure 5.10.19 represent the velocity contour plots and vector for
the shear thinning fluids, which have the lowest velocity of the three cases simulated. As
it can seen, the fluids move with a velocity of between 0.0l ms™ and 0.19ms™', the
computation of the mass balance for this case showed that 92% of the fluid entering the
domain exited this indicated there is an error of 8% between the mass inflow and mass
outflow. When the power law index is set equal to 1 (purely Newtonian flow case) given
by figures 5.10.12 through 5.10.15, the mass balance calculated showed that 94.3% of the

fluid entering the domain exited, thus in this case the discrepancy between the inlet and
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the outlet mass is 5.7%. The velocity magnitude of this case varies from 0.02m.s™" to 0.3

ms™

which is higher than the same figure obtained in the case of shear thinning fluids.
For the last simulation (shear thickening fluids), the velocity plots obtained (figures
5.10.16 through 5.10.19) showed that the fluid moves with slightly faster than in the two
previous cases with a velocity magnitude varying from 0.02ms™ to 0.4ms™" with
95.5% of fluid entering the domain exiting hence the discrepancy between the inlet and

the outlet masses gave an error of 4.5% only.

Figure 5.10.4: Pressure distribution (case n = 0.87) test case 7.
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Figure 5.10.5: Pressure distribution (case n = 1) test case 7.

Y

Figure 5.10.6: Pressure distribution (case n = 1.23) test case 7.
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Pressure distribution
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Figure 5.10.7: Graph of pressure distribution across the domain (cases n =0.87,

n=1,n=1.23) test case 7.
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Figure 5.10.8: Velocity contour plot in the y = 0.05 plan (case n = 0.87) test case 7.
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Figure 5.10.9: Velocity contour plot in the z = 0.05 plan (case n = 0.87) test case 7.
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Figure 5.10.10: Velocity vector plot in the y = 0.05 plan (case n = 0.87) test case 7.
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Figure 5.10.11: Velocity vector plot in the y = 0.05 plan zoomed around the obstacles
(case n =0.87) test case 7.

Figure 5.10.12: Velocity contour plot in the y = 0.05 plan (case n = 1) test case 7.
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Figure 5.10.13: Velocity contour plot in the y = 0.05 plan (case n = 1) test case 7.

Figure 5.10.14: Velocity vector plot in the y = 0.05 plan (case n = 1) test case 7.
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Figure 5.10.15: Velocity vector plot in the y = 0.05 plan zoomed around the obstacles
(case n = 1) test case 7.
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Figure 5.10.16: Velocity contour plot in the y = 0.05 plan (case n = 1.23) test case 7.
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Figure 5.10.17: Velocity contour plot in the z = 0.05 plan (case n = 1.23) test case 7.
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Figure 5.10.18: Velocity vector plot in the y = 0.05 plan (case n = 1.23) test case 7.
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Figure 5.10.19: Velocity vector plot in the y = 0.05 plan zoomed around the obstacles
(case n = 1.23) test case 7.

Large number of results discussed in this chapter all show self- consistency of the
simulations obtained by the developed schemes. In addition where ever possible other
evidence such as pattern of pressure drop or accuracy of the conservation of mass have
been taken into account. Therefore the main conclusion of this chapter is the developed
three dimensional finite element schemes can be used to solve realistic flow problems
with minimum computational cost. Flexibility of an in-house developed scheme
combined with the mathematical rigour and computational economy makes the outcome

of this research a useful engineering tool.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

6.1 Conclusions

Three dimensional finite element computer models for the solution of governing
equations of generalized Newtonian fluids have been developed and used to simulate
flow of power-law fluids through domains involving obstructions. These models are
based on two different finite element schemes, namely the mixed velocity-pressure
(UVWP) and a modification of the mixed velocity-pressure (UVWP) methods. Both
models utilize 8-noded isoparametric ¢’ continuous hexahedral elements to discretize
velocity and pressure unknowns. Therefore, in contrast to the traditional mixed finite
element schemes, the use of lower order of interpolation function for pressure is avoided
and the required stability condition (i.e. the LBB condition) is satisfied, for the first time
in three dimensional simulations, via the use of a perturbed continuity constraint. The
discretizations of the temporal variables in both schemes are carried out using the first
order Taylor-Galerkin scheme. The variation of the viscosity across the computational
domain which is based on the power law model depends on the value of the power law
index and the computer models can be used to simulate Newtonian fluid flow (power law
index equal 1), shear thinning fluid (power law index less than 1) and shear thickening
fluid (power law index greater than 1).

The accuracy and validity of the models have been evaluated by solving three benchmark
problems and seven test cases.

Because there is no available experimental data to validate results obtained for the test
cases problems, the validation processes of these cases have been based on the
comparison of mass flow rate in and out of the computational domain, as well as the
overall consistency and logical interpretation of the results. The comparisons done for all

of the test cases results show that the differences between the mass flow from the
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outlets and the mass flow from the inlet were insignificant. These mass balance

computations were backed up by the different plots representing flow and pressure drop

patterns which show stable and theoretically expected forms. Therefore, the novel

approach used here to simulate three dimensional flows via the use of equal order

hexahedral discretization of pressure and velocity in conjunction with a perturbed

continuity constraint has been justified. The main conclusions of this project can hence be

summarised as:

1-

Three dimensional finite element schemes for the simulation of incompressible
regimes demonstrating non-linear rheological behaviour in complex domains
which are computationally very efficient can be developed.

The use of perturbed continuity constraint in conjunction with an isoparametric
tensor product element such as tri-linear 8 noded brick element results in a robust
scheme which can readily satisfy LBB condition.

Although both mixed UVWP and Modified mixed UVWP generate stable
accurate results the modified scheme converges much faster than the traditional
approach.

Temporal discretization of the governing equations plays an important role in
maintaining stability of the present schemes. Here first order Taylor —Galerkin
approach has been used successfully. It is doubtful that the use of a simpler finite
difference based techniques such as the theta method will work in three
dimensional simulations.

The simulations presented here are obtained using a Pentium IV personal

computer hence maintain maximum computing economy.
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6.2

Recommendations for future work

There are many novel areas which using the schemes developed in this project can be

further investigated. To provide some examples of such extensions the following

examples can be considered.

6.2.1

6.2.2

6.2.3

The code developed in this present study assumed isothermal regimes and hence
omitted the energy equation from the system of equations representing
incompressible fluid flow. However, in many engineering applications flow
regimes are non-isothermal. Experience gained from two-dimensional flow
simulations show that addition of a challenging. A very important extension will

therefore be the inclusion of the energy equation in the discretization scheme.

Another extension can be based on the application of the basic scheme with
required modifications to model viscous flows carrying small amounts of solid
particles. In these situations as the concentration is low the fundamental flow
equations remain the same, however, need to be modified to include variable
density. Variations of density can be tracked via the use of an equation of state

which needs to be updated at the end of each time step.

The governing equations can be put in the non-dimensional form by using the

following non-dimensional variables.

. X .y .z
X ==, ¥ =7, Z =—
L L L

* u " v w

ua =, V =—, W=—
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Where an asterisk represents non-dimensional variables, Infinity is the free-stream
conditions and L denotes the reference length.

Although this seems as a trivial extension of the present work nevertheless its
implementation can be lengthy and require care. This extension allows a more direct
comparison of the performance of the scheme with respect to the type of discretization

used.

6.2.4 The program can be extended and use for the simulation for various flow regimes
such as Darcy flow, flow through porous media, and combined free/porous flows. To
achieve such simulation, the user will need to add one subroutine for the discretization of
the flow governing equations and in case of combined free/porous flows some

instructions to link the different flows regimes at interfaces.
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APPENDICES

APPENDIX 1

SHAPE FUNCTIONS DERIVATION

A brief detail on how the isoparametric interpolation function used in this study is given
in this appendix, reader interested in further information about this interpolation function
may refer to Zienkiewicz (1971), Chung (2002), and Nassehi (2002).

Recall that name isoparametric is used to describe the element because the same
parametric function which describes the geometry may be used to interpolate the field
unknowns within an element. The isoparametric element is classified as one of the natural

coordinate elements because of its use of the nondimensionalized coordinate.

-t

Figure A1l: 8-noded hexahedral isoparametric element.
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Appendix 1 Shape functions derivation

Consider the hexahedral element as shown in figure A1, the natural coordinates (&,n,§ )

are related to the reference Cartesian coordinates (X, y, z) through the relation

X,¥,2= o, +o,E+o,m+o,0+aEnl+aEn+o,ni+o,EQ (A1)

It usually recommended to place the natural coordinates (&,m,C ) at the centroid of the

element so that their values could range from 0 to * 1, thus writing relation (A1) in term

of the nodal values gives

X, =0y +o, (=D + o (=D +a, (D) +os (=D(=DA) +a g (=D(=1) + o; (=1){A) + g (=1)(D)

Xy =0y + oy (D + oy (=) + o, (1) + o (NEDA) + o (D1 + o, (=1D(A) + o (D)

Xy = oy + oy (1) +a;(=1) + oy, (=) + os (DD + o (D) + o, (DD + o (D(=1)

Xy =0+, (=D +as (=D +a, (=1 +os(=D=DED + o (D=1 + o, (=D(=1) + o (=1D(=1)
X5 = oy +a, (=) + o (1) + o (1) + o (=DHIA) + ot (D) + a7 (H(A) + ot (=1(1)

Xg =0y 0, (D) +a; (1) + o, (1) + o (HAD) + ot (D) + o (H(A) + g (D) (A2)
X7 =0y + o, (D) + oy (D) + o, (=) + o (NI + o (D) + o, (DD + o (D(=1)

Xg =0y + 0 (=) + oy (1) + o, (=1 + o (DD + o (=1)A) + oy (N(=1) + g (=D)(=1)

The system of equations given by (A2) can be written in a matrix form as
[x]=[M][a] (A3)

Where the matrix [M] is given by
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1 -1 -1 1 1 1 -1 —1]
1 1 -1 1 -1 -1 -1 1
1 1 -1 -1 1 -1 1 -1
[M]=1 -1 -1 -1 -1 1 1 1
1 -1 1 1 -1 -1 1 -1
1 1 1 1 1 1 1 1
1 1 1 -1 -1 1 -1 -1
-1 1 -1 1 -1 -1 1|
And [a ] by
[o] = [M]'[x] (A4)
With
11 1 1 1 1 1 1]
-11 1 -1 -11 1 -1
-1 -1 -1 -1 1 1 1 1
Lo 1 -1 -1 1 1 -1 -1
M]" ==
g1 -1 1 -1 -1 1 -1 1
1 -1 -1 1 -11 1 -1
-1 -1 1 1 1 1 -1 -1
-1 1 -1 1 -1 1 -1 1

Substituting (A4) into (A1) yields
X = ¢§) XN,

Where
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Appendix 1 Shape functions derivation

0 =1+ BB )1+ Bl )1+ E0E) (AS)

If one sets &, =&,&,=mn,and&, =C then substituting the nodal values of

Eni»Enar-and &5 Into equation (AS) give the height interpolation functions as

o =< (1-E)1=)(1+0
0 = (1811 +)
0 = 1+ E)1-)(1-0)
o = (1-E)1-)(1 =)
0 = (=B L1+

¢?=éa+®a+ma+@

M“=%G+éXLHﬂO—Q

0 =< (=81 + M- 0)
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Heading & Formats

Line 1 Format (A)
Basic control variables
Line 2 Format(215)
Variable 1
Variable 2
Mesh data
Line 3 Format(415)
Variable 3
Variable 4
Variable 5
Variable 6
Output control
Line 4 Format(215)
Variable 7
Variable 8

Gravity force data
Line 5 Format(3F10.0)
Variable 9
Variable 10
Variable 11
Convergence tolerance
Line 6 Format(3F10.5)
Variable 12
Variable 13
Variable 14
Rheological & physical data
Line 7 Format(9D10.5)
Variable 15

Variable 16
Variable 17
Variable 18
Variable 19
Variable 20
Variable 21
Variable 22
Variable 23

APPENDIX 2

INPUT FILE FORMAT
Variables Description
Title Title of the input file

ncn
ngaus

nnp
nel
nbc
nmat

ntep
1cord

gravl
grav2
grav3

tolv
tolp
tolc

rvisc

power
tref
tbco
taco
dispc
pref
roden
gamad

Number of nodes per element
Number of integration full points

Total number of nodes

Total number of elements

Total number of boundary conditions
Total number of materials

Number of iteration
Coordinate system selection ( 0 for
Cartesian and 1 for cylindrical)

Body force in x-direction
Body force in y-direction
Body force in z-direction

Velocity convergence tolerance factor
Pressure convergence tolerance factor
Concentration convergence tolerance factor

Consistency coefficient in the power law
model

Power law index

Reference temperature

Coefficient b in the power law model
Coefficient a in the power law model
Coefficient for convective equation
Reference pressure

Density

Shear rate
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Input file format

Heading & Formats
Nodal coordinates
Line8-linemFormat(17,3E20.12)

Variable 24
Variable 25
Variable 26
Variable 27

Element connectivity data
Line m-line n Format(2117)

Variable 28
Variable 29
Variable 30
Variable 31
Variable 32
Variable 33
Variable 34
Variable 35
Variable 36

Boundary condition data
Line n-line k Format(215,F10.4)

Variable 37

Variable 38

Variable 39

Variables

x(m)

y(m)
z(m)

n
node(n,1)
node(n,2)
node(n,3)
node(n,4)
node(n,5)
node(n,6)
node(n,7)
node(n,8)

ibc

jbc

vbe

Description

Node number m

X-coordinate of node m
Y-coordinate of node m
Z-coordinate of node m

Element number n

Node number 1 of element number n
Node number 2 of element number n
Node number 3 of element number n
Node number 4 of element number n
Node number 5 of element number n
Node number 6 of element number n
Node number 7 of element number n
Node number 8 of element number n

Node number at which the boundary
condition is applicable

= 1 for x-direction velocity

= 2 for y-direction velocity

= 3 for z-direction velocity

= 4 for pressure

Boundary condition value
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3.1

Sample input file

Sample input file

8
9062
1

3
7560 8390 1
0

0.000 0.000 0.000
0.00001 0.00001 0.00001
.80000D+02.10000D+01.29300D+03.14000D-
01.20000D+00.20000D+00.10132D+06.10000D+04.20000D+00

1

N NN R W

0.000000000000E+00
0.000000000000E+00
0.000000000000E+00
0.000000000000E+00
0.000000000000E+00
0.000000000000E+00
0.000000000000E+00

APPENDIX 3

PROGRAM LISTING

0.000000000000E+00 0.000000000000E+00

0.833333470000E-02
0.166666680000E-01
0.250000000000E-01
0.333333350000E-01
0.416666680000E-01
0.500000010000E-01

0.000000000000E+00
0.000000000000E+00
0.000000000000E+00
0.000000000000E+00
0.000000000000E+00
0.000000000000E+00

9056
9057
9058
9059
9060
9061
9062
1

~N N kW

0.100000000000E+01
0.100000000000E+01
0.100000000000E+01
0.100000000000E+01
0.100000000000E+01
0.100000000000E+01
0.100000000000E+01
79 2 1 78 86

80 3 2 79 87
81 4 3 80 88
82 5 4 81 89
83 6 5 82 90
84 7 6 83 091
86 9 8 8 93

0.583333340000E-01 0.937500000000E-01

0.100000000000E+00 0.100000000000E+00
0.916666690000E-01 0.100000000000E+00
0.833333430000E-01 0.100000000000E+00
0.750000030000E-01 0.100000000000E+00
0.666666700000E-01 0.100000000000E+00
0.583333340000E-01 0.100000000000E+00

9 8 &5

10 9 86
11 10 87
12 11 88
13 12 89
14 13 90
16 15 92

7554 8802 8774 9026 9050 8809 8781 9032 9056
7555 9052 9028 9027 9051 9058 9034 9033 9057
7556 9053 9029 9028 9052 9059 9035 9034 9058
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Sample input file

7559 9056 9032 9031 9055 9062

7560

LI I AU UUEABRRNWWWNRNON — — —

9060
9061
9061
9061
9062
9062
9062

9021
9027
9033
9039
9045
9051
9057

W N = W= WK WK — W — W — W —

8809 8781 9032 9056 8816 8788 9038 9062

W N~ W~ W

N N

0.1000
0.0000
0.0000
0.1000
0.0000
0.0000
0.1000
0.0000
0.0000
0.1000
0.0000
0.0000
0.1000
0.0000
0.0000
0.1000
0.0000
0.0000
0.1000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

9038 9037 9061
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Appendix 3.2 Computer program

Program StokesSolution

C c
C C
¢ This program is for the solution of generalised newtonian fluids of c
¢ incompressible fluids governed by Stokes equations. The solution is C
c obtained via the weighted residual galerkin finite element method in c
¢ conjunction with the use of 8 nodes isoparametric hexahedral elements. c
C C
¢ The entire computational domain is assumed to be isothermal. c
C C
¢ Two numerical schemes are developed for the problem solutions: c
¢ The U-V-W-P method in which velocity components and pressure are regarded ¢
¢ as primitive variables and discretized as unknowns. c
C C
¢ The second scheme is a modification of the U-V-W-P method with a faster c
convergence rate c

C c
¢ During the program running after typing in some basic data, the user will prompt ¢
to select with scheme to use. C

C C
c The apparent viscosity is calculated and updated using the power law model C
C c
c The system of algebraic equations obtained after the discretization process is C
c solved by frontal method. c
C C
c A complete list of options is given on the program listing. c

C C
¢ The program consists of a main module and subroutines and among the are two ¢
C C
c output subroutines written for Tecplot and Cosmos Geostar for visualizations. c
C C
¢ The program is written in FORTRAN programming language C

C C
¢ Developed (not from scratch) by N. Rupert. Boukanga (last updated April 2010) ¢
C

c The author thanks Prof V. Nassehi for his hard work by originally developing the c
¢ the majority of the subroutines C
C c
C c
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Computer program

(¢
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
(¢
C
(¢
C
(¢
C
(¢
C
(¢
C
(¢
C
(¢
C
(¢
C
C
C
C

for element number 14 as seen on the mesh

unit contents c
c
51 1 input data file c
i c
60 1 output file for documentation
i
11 1 output file containing velocity field data for plotting
1 plotting
i
12 1 output file containing concentration data for contour plotting
i
14 1 used as a work file in the solver routine
i
15 1 stores shape functions and their derivatives at 'full'
1 integration points
i
17 1 output file containing pressure data for
1 contour plotting
i
20 1 output file containing elemental stiffness matrix
i
i

610 1 output for Cosmos Geostar post-processing
614 1 output for Tecplot post-processing

List of variables

aa ( 27, 27) element coefficient matrices on LHS

K ( 27, 27) element coefficient matrices on RHS

b ( 3, 20) global derivatives of shape functions

bc (maxdf ) nodal constraints (boundary conditions)
conc (maxnp ) nodal concentrations

cord (maxnp,ndim) nodal coordinates

del (3, 20) local derivatives of shape functions

vel (maxdf ) nodal velocities (displacements)

dscl, dsc2 depths of slip layers

gravl first component of the applied body force

grav2 second component of the applied body force

icord indicates whether the coordinate system is cartesian (planar)
or cylindrical (axisymmetric)

tolc convergence tolerance factor for concentration

tolp convergence tolerance factor for pressures

tolv convergence tolerance factor for velocities

O 0 o 0 oo O
6 600600
©C 0000600000600 0006000C060CO00 e
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Appendix 3.2 Computer program

¢ ndf degree of freedom per node c
¢ ndim dimensions of the solution domain c
c nel total number of elements c
C ngaus number of integration points C
c nnp total number of nodal points c
¢ node (maxel,maxst) element connectivity c
c nter maximum number of iterations for non-newtonian case c
C num number of integration points per element c
c p ( 20 ) shape functions c

c press(maxnp ) nodal pressures c

¢ rl (maxdf ) globalload vector (r.h.s.) c

c rfrct friction coefficient (slip) c

c 1r ( 27 ) element load vector c

c stiff(maxar ) global stiffness matrix ( a in ax=r.h.s.) c

c rvisc mu nought;consistency coefficient in power-law model C

c power power law index c

c stemp temperature c

c rtem reference temperature C

C  spress pressure C

C  rpress reference pressure c

c tco coefficient relating viscosity to temperature c

c pco coefficient relating viscosity to pressure c

¢ gamad shear rate c

c nwr no. of sample nodes for recording transient solutions c

C c

c c

c List of Subroutines c

c c

C c

c bacsub backsubstitution method for finding the final C

C solution vector C

¢ clean cleans the arrays and prepares them for c

C solution c

c conc calculates the concentrations c

c contol makes a check for the convergence c

c deriv calculates the jacobian matrix, its determinant c

C and global derivatives of the shape functions c

c flow Stokes calculates the velocities and pressures via the UVWP method ¢
c flow Stokes2 calculates the velocities and pressures via the modified ¢

c UVWP method c

c front frontal method for solving the final set c

c of equations C
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Computer program

parameter (maxel = 60000 )
parameter (maxnp = 37000 )
parameter (maxbc = 20000 )
parameter (maxdf = maxnp*4 )
parameter (maxst =80 )
parameter (maxfr = 5000 )
parameter (ndim =3 )

implicit real*8 (a-h,0-z)

Storage allocation

o 0 00

dimension title ( 80)

dimension node (maxel,maxst) ,pmat (maxel, 9) ,cord (maxnp,ndim)

dimension ncod (maxdf ),bc (maxdf )
dimension ibc (maxbc ) .,bc (maxbc ),vbc (maxbc )
dimension vel (maxdf ),conc(maxnp ),press(maxnp )

dimension rl

(maxdf )

dimension clump (maxnp ) ,stres(maxnp, 6)
dimension vet (maxdf ),cet (maxnp ),pet (maxnp )

c getmat reads the input material data c

c getnod reads the nodal co-ordinates for cartesian c

C and axisymmetric systems c

¢ lumpm evaluates the terms of the mass matrix c

c output prints the final solution C

c putbcv imposes the primary boundary conditions for c

C velocity C

¢ putbce imposes the primary boundary conditions for c

c concentration c

c setprm Sets the location data for nodal degrees of c

C freedom c
¢ shape calculates the shape functions and their c
C derivatives C
c slip identifies the upper and lower boundary c
C layers. c
c  stress calculates stress components at integration c
C points C
c visca calculates the viscosity c
c visch calculates virtual viscosity for slip walls C
c c
C c
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Appendix 3.2 Computer program

dimension ldest (maxst ) ,kdest(maxst ),nk (maxst )
dimension eq (maxfr,maxfr) ,lhed (maxfr ).khed (maxfr )
dimension kpiv (maxfr ) ,lpiv (maxfr ).,mod (maxfr )
dimension qq (maxfr ) ,pvkol(maxfr ) ,sinv (maxel, 27)
dimension mdf (maxdf ),ndn (maxdf )

dimension ldsc (22 )

dimension temp (maxnp ) ,actpress(maxnp)

dimension rmatl (maxel, 13),rmat2(maxel, 13)

character *20 filnam

Opening of input and output data files

call GFMFEM

print* 'enter the name of your data file'
read(*,2000) filnam

open(unit=51,File=filnam,access='sequential',form="formatted',
1 status="unknown",iostat=10s)

open(unit=60,file="res.txt',access='sequential’,form='formatted',
1  status="unknown",iostat=i0s)

open(unit=17,file='stress.txt',access='sequential',form="formatted',
1  status="unknown",iostat=ios)
open(unit=20,file='stiffmat',access='sequential’,form='formatted',
1  status="unknown",iostat=ios)

open(unit=14,form="unformatted',status='scratch',iostat=ios)
open(unit=15,form="unformatted',status='scratch',iostat=ios)

if(ios==0)then
print*,"files opened"
else
print*,"files not opened"
stop
end if

rewind 51
rewind 60
rewind 20
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Computer program

do 5010 itl = 1,maxel
do 5010 ivl=1,80
node (itl,ivl) =0
5010 continue
do 5020 itl = 1,maxel
do 5020 ivl=1,8
pmat (itL,ivl) = 0.0
5020 continue
do 5030 itl = 1,maxnp
do 5030 ivi=1,3
cord (itl,ivl) = 0.0
5030 continue
do 5040 itl = I,maxnp
do 5040 ivi=1,6
stres(itl,ivl) = 0.0
5040 continue
do 5050 itl = 1,maxdf
vel (itl )=0.0
5050 continue
do 5060 itl = 1,maxdf
ncod (it) =0
rl  (it) =0.0
bc (itl) =0.0
vet (itl) =0.0
mdf (itl) =0
ndn (it) =0
nopp (it) =0
5060 continue
do 5070 itl = 1,maxnp
clump (it) =0.0
cet (itl) =0.0
conc (it) =0.0
pet (itl) =0.0
press (itl) =0.0
5070 continue
do 5080 itl = 1,maxbc
ibc (itl) =0
jbc (it) =0
vbe (itl) =0.0
5080 continue
do 5090 itl = 1,20
del (1,itl) =0.0
del (2.tl) =0.0

181



Appendix 3.2
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kdest (itl ) =0
nk (itl ) =0

5100 continue

do 5110 itl = 1,maxfr
lhed (itl ) =0
khed (itl ) =0
kpiv (itl ) =0
Ipiv (itl ) =0
jmod (itl ) =0
qq (@tl ) =0.0
pvkol (itl ) =0.0
do 5110 ill = 1,maxfr
eq (itLill)=0.0

5110 continue

C

(@)

Title of the program

if(.not. eof(51)) read (51,2010) title
write(60,4010) title

Element description data

if (.not. eof(51)) read (51,2020) ncn ,ngaus
print*, "ncn, ngaus read"
write(60,4020) ncn ,ngaus

Mesh, boundary condition and material parameters

if (.not. eof(51)) read (51,2030) nnp ,nel ,nbc ,nmat
print*, "nnp, nel ,nbc ,nmat read"
if (.not. eof(51)) read (51,2040) ntep ,icord

if(icord.eq.0) write(60,4030)
if(icord.eq.1) write(60,4040)

write(60,4050)

if(ntep.eq.0) ntep=1
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Appendix 3.2 Computer program

if ntep = 1 then computed result after every iteration will
be printed ;if you do not need the result of intermediate
computations choose your own ntep;the result of first and
converged solutions will always be printed.

o o0 o0 o o0

if(nnp .eq.0 .or.nnp .gt.maxnp) then
write(60,4060)
elseif(nel .eq.0 .or.nel .gt.maxel) then
write(60,4060)
elseif(nbc .eq.0 .or.nbc .gt.maxbc) then
write(60,4060)
elseif(nmat .eq.0 .or.nmat .gt.maxel) then
write(60,4060)

print*, "the program is aborted"
stop

endif
write(60,4070) nnp ,nel ,nbc ,nmat
if (.not. eof(51)) read (51,2050) gravl, grav2, grav3
print*, "grav1 grav2 grav3 read"

write(60,4080) gravl, grav2, grav3

if (.not. eof(51)) read(51,2060) tolv ,tolp, tolc
print*, "tolv, tolp, tolc read"

maxer=maxel

¢ Read input data from main data file and prepare arrays for solution process

call getmat(nel,nmat,pmat,51,60,maxel,rtem,rpef)
call getnod(nnp,cord,51,60,maxnp,ndim,icord)
call getelm(nel,ncn,node,51,60,maxer)

call getbcd(nbe,ibc,jbc,vbe,51,60,maxbc)
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(@]

(e]

c c
c Start of the time loop
C c
C
c Set control parameters (default values are overwritten by input data
¢ if specified)
C
¢ ncn  number of nodes per element
c ngaus number of integration points
c nter maximum number of iterations for non-newtonian case
¢ ndim number of space dimensions in the solution domain
c
¢ nter =5

num = 13

do 5125 iel = 1,maxel
do 5125 1g = 1,num
sinv(iel,1g)=0.0
5125 continue
do 5130 ivel= 1,maxdf
vel (ivel) = 0.0
5130 continue
do 5140 item= 1,maxnp
temp(item) = rtem

5140 continue
C
C Transient data
C
C
C
c stime starting time
C
c deltat time increment
C
c alpha indicates the choice of method being employed in alpha
C time stepping technique (backward difference,
v forward difference, central difference, galerkin)
C
c nter maximum number of time steps being employed for finding solution
C

print*," "
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print*,"Enter the number of time steps desired"
read*, nter

write(60,4100) nter

print*,"Enter the delta t desired"

read*, deltat

write(60,4110) deltat

1111 print*," Enter the value of alpha: any number between 0 and 1 "
read*, alpha
if(alpha < 0 .OR. alpha > 1) then
print*, " Invalid alpha value entered, type in another value"
goto 1111
end if
print*, "alpha=",alpha
tcode =0
Print *,' '
print*," Select a scheme "
Print *,'1: UVW-P scheme with Taylor-Galerkin method'
Print *,'2: Modified UVW-P scheme with Taylor-Galerkin method'
read(*,*) tcode
do 5150 iter = 1 ,nter

print* 'iter="iter
time = iter*deltat
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c c
c Calculate Nodal Velocities & Pressures
c c
icho=1

rewind 11

rewind 14

rewind 15

ndf =4

ntov = ndf * nnp

ntrix = ndf * ncn
call clean
1 (ncn ,nel ,ndf ,node.,rl ,maxel,maxst,maxdf,
2 bc ,ncod,icho)

call setprm
1 (nnp ,nel ,ncn ,node ,ndf ,maxel,maxst,ndn ,ntrix,
2 maxdf,ntov ,mdf ,nopp )

call putbcv

1 (nnp ,nbc ,ibc ,jbc ,vbe ,ncod ,bc,maxbe,maxdf,maxel,maxst,
2 node)

c 1idv4 is the file specifier for unit=20

1dv4=20

do 5160 iel=1,nel

if (tcode ==1) then

call flowStokes(node ,cord ,pmat ,nopp ,mdf ,ndn ,ncod ,
Ibc ,vel ,press, rl, temp,ldest,kdest,nk ,eq ,lhed ,khed ,kpiv ,Ipiv,
2jmod, qq, pvkol, iter ,nel ,ncn , ngaus,gravl,
3grav2, grav3, p, del, b, ntrix, maxel, maxnp, maxst, maxfr, maxdf,
4ndim ,aa ,xg ,da ,ntov ,num, icord, rr, iel, dell,deltat,alpha,
5idv4,sinv, icho, nnp, tref)
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2jmod, qq, pvkol, iter ,nel ,ncn , ngaus,gravl,

3grav2, grav3, p, del, b, ntrix, maxel, maxnp, maxst, maxfr, maxdf,
4ndim ,aa ,xg ,da ,ntov ,num, icord, rr, iel, dell,deltat,alpha,
5idv4,sinv, icho, nnp, tref)

else
stop
endif
5160 end do
c c
c calculates the second invariant of rate of deformation c
C tensor at integration points. C
c
c c
call secinv
1 (nel ,nnp ,ncn ,ngaus,node ,sinv ,cord ,p ,b,
2 del ,da ,vel ,maxnp,maxel,maxst,ndim ,icord,
3 maxdf,num)
c c
C Convergence check
cC ¢ c
call contol(vel ,conc ,iter ,ntov ,nnp,maxnp,maxdf,errov, errop
1,vet ,cet, pet, press)
c c
c *** calculation of the nodal stress;using variational recovery
c c
call lumpm
1 (clump,nnp ,maxnp,nel ,ngaus,p ,del ,b ,maxst,
2 node ,maxel,ncn )
c
call stress
1 (nel,nnp,ncn ,node ,p, b, da,vel ,maxnp, maxel, maxst,
2 maxdf, stres, press, rvisc ,clump ,ngaus )
c
c Print the output
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if(iter.eq.1.or.iiter.eq.iter) then

call output
1 (nnp ,vel ,press, maxdf,maxnp,icord, stres)

end if

if(iter.eq.nter) then

call cosmos

1 (nnp , vel , press , maxdf , maxnp ,icord |,

2 pmat , maxel, actpress, nel )

call cosmos2
1 (nnp , vel , press , maxdf , maxnp ,icord ,

2 pmat , maxel, actpress, nel )
call tecplot
1 (nnp , vel , press , maxdf , maxnp ,icord ,
2 pmat , maxel, actpress, cord , ncn ,nel
3 node, ndim )
call tecplot2
1 (nnp , vel , press , maxdf , maxnp ,icord |,
2 pmat , maxel, actpress, cord , ncn ,nel
3 node , ndim )
endif
c
v
c =C
c End of time loop
cC cc
v c

5150 continue

close(51)

close(unit=60)
close(unit=11)
close(unit=14)
close(unit=15)
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c c
C
2000 format(a)
2010 format(80a)
2020 format(2i5)
2030 format(4i5)
2040 format(2i5)
2050 format(3£10.0)
2060 format(3f10.5)
C

o

(@]

Write statements

O o0 O o

(@]

4010 format('',5(/),' ',20x,60('*"),/" ',20x,"*',58x%,"*",/
1'',20x,"*",' A three dimensional finite element model of a ',
27x,*'/",20x,"*",)' non-newtonian isothermal flow using ',
320x,"*",/'',20x,"*",)' the UVWP method. ',38x,*'/'',20x,"*',
558x,"*"./'',20x,60("*")///,' ',20x,80("-"),/" ',20x,80a,/" ',
620x,80("-"),///)

c

4020 format('',20x,3('['),' element description data',10("."),/
125x,'no.of nodes per element =110,/
225x,'no.of integration points ='110,/
3/7)

c

4030 format(' *** coordinate system is cartesian (planar) ***')

4040 format('*** coordinate system is cylindrical(axisymmetric) ***")
4050 format('")

4060 format('',10('["),'input data unacceptable',10(']")///)

v
4070 format('',20x,3('['),' mesh description data ',10("."),/
125x,'no.of nodal points ="110,/

225x%,'no.of elements ='110,/
325x,'no.of nodal constraints on boundary =110,/
425%,'no.of different materials ='110.,//)

v

4080 format('',20x,3('['),' uniform body force vector ',10("."),/
125x%,'grav1 ='f15.4,/
225x,'grav2 ='f15.4,/
325x,'grav3 ='£15.4,//)

4090 format(///' iteration no.',i5,//)
4100 format(///' Total number of time steps =',15.//)
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C C
end program

subroutine gaussp(ngaus,xg,cg)
implicit double precision(a-h,o0-z)

x(g) specifies the coordinates of the Gauss points
c(g) specifies the Gauss weights

O o0 o0 0

dimension xg(3),cg(3)

if(ngaus.eq.1) then
xg(1)=0.0

cg(1)=2.0
elseif(ngaus.eq.2) then
xg(1) = 0.57735026919d00
xg(2) = -xg(1)

cg(1)=1.00

cg(2)=1.00

else

xg(1) =0.77459666924d00
xg(2)=0.0

xg(3) = -xg(1)

cg(1) =0.55555555556d00
cg(2) = 0.88888888889d00

cg(3) =cg(l)

endif
return
end

subroutine shape ( xi, eta , zeta, p ,del , ncn )
implicit double precision (a-h,0-z)

DIMENSION p(20) ,del(3,20)

if (ncn.eq.8) then
del(1,1)=-0.125*(1-eta)*(1-zeta)
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del(1,5)=-0.125*(1-eta)*(1+zeta)
del(1,6)=-0.125*(1+eta)*(1+zeta)
del(1,7)=0.125*(1+eta)*(1+zeta)
del(1,8)=0.125*(1-eta)*(1+zeta)

del(2,1)=-0.125*(1-xi)*(1-zeta)
del(2,2)=0.125*(1-x1)*(1-zeta)
del(2,3)=0.125*(1+xi)*(1-zeta)
del(2,4)=-0.125*(1+xi)*(1-zeta)
del(2,5)=-0.125*(1-x1)*(1+zeta)
del(2,6)= 0.125*(1-x1)*(1+zeta)
del(2,7)= 0.125*(1+xi)*(1+zeta)
del(2,8)=-0.125*(1+xi)*(1+zeta)

del(3,1)=-0.125*(1-xi)*(1-eta)
del(3,2)=-0.125%(1-xi)*(1+eta)
del(3,3)=-0.125*(1+xi)*(1+eta)
del(3,4)=-0.125*(1+xi)*(1-eta)
del(3,5)= 0.125%(1-xi)*(1-eta)
del(3,6)= 0.125%(1-xi)*(1+eta)
del(3,7)= 0.125%(1+xi)*(1+eta)
del(3,8)= 0.125%(1+xi)*(1-eta)

p(1)=0.125*(1-x1)*(1-eta)*(1-zeta)
p(2)=0.125*(1-x1)*(1+eta)*(1-zeta)
p(3)=0.125*(1+x1)*(1+eta)*(1-zeta)
p(4)=0.125*(1+xi)*(1-eta)*(1-zeta)
p(5)=0.125*(1-x1)*(1-eta)*(1+zeta)
p(6)=0.125*(1-xi)*(1+eta)*(1+zeta)
p(7)=0.125*(1+xi)*(1+eta)*(1+zeta)
p(8)=0.125*(1+xi)*(1-eta)*(1+zeta)

endif
return
end

subroutine deriv
1 (el ,ig ,jg kg, p ,del ,b,ncn.da,cg,node,

(@]
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dimension node(maxel,27),cord(maxnp,3)

do 6010 j=1,3
do 6010 1=1,3
gash=0.0

do 6020 k=1,ncn

nn=iabs(node(iel,k))

6020 gash=gash + del(j,k)*cord(nn,l)

cj(,l=gash

6010 continue

detj = cj(1,1)*¢j(2,2)*cj(3,3)+cj(2,1)*cj(3,2)*cj(1,3)
1 +¢j(1,2)*¢j(2,3)*ci(3,1)-¢j(1,3)*cj(2,2)*cj(3,1)
2 - C.](l52)*(:.](291)*C.](333)_0.](293)*0.](372)*0.](1a1)

if(detj.le.0.0) then
write(60,3010) iel,det;
3010 format(1x ," Error: Zero or Negative Jacobian. ', 16,220.5)
stop

endif

cii(1,1) = (cj(2,2)*¢i(3,3)-¢j(3,2)*ci(2,3)) / detj
cji(1,2) = ((cj(1,2)*¢j(3,3)-¢j(3,2)*cj(1,3))) / detj
cii(1,3) = (cj(1,2)*cj(2,3)-¢j(2,2)*ci(1,3)) / detj
cji(2,1) = ((c3(2,1)*¢j(3,3)-¢j(3,1)*cj(2,3))) / detj
Gii(2,2) = (cj(1,1)*cj(3,3)-cj(3,1)*cj(1,3)) / detj
¢ji(2,3) = ((cj(1,1)*¢j(2,3)-¢cj(2,1)*cj(1,3))) / detj
cii(3,1) = (cj(2,1)*¢j(3,2)-¢j(3,1)*cj(2,2)) / detj
¢ji(3,2) = ((cj(1,1)*¢j(3,2)-¢j(3,1)*cj(1,2))) / detj
cii(3,3) = (cj(1,1)*¢cj(2,2)-cj(2,1)*cj(1,2)) / detj
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do 6030 I=1,ncn
b(j,1)=0.0
do 6030 k=1,3

6030 b(j,]) = b(j,1) + cji(j,k) * del(k,l)

da= detj*cg(ig)*cg(jg)*cg(kg)

return
end

o

o

subroutine front

1 (aa ,rr el ,nop ,maxel,maxst,ldest,kdest,nk ,maxfr,
2 eq .lhed khed kpiv lpiv ,jmod ,qq ,pvkol,vel ;1 ,

3  ncod.,bc ,nopp ,mdf ,ndn ,maxdf,nel ,maxte,ntov ,lcol,
4 nell ,ntra, press,icho,c,akf,ak )

Frontal elimination routine using diagonal pivoting
implicit double precision(a-h,o0-z)

dimension aa (maxst,maxst) ,rr (maxst)
dimension nop (maxel,maxst)

dimension ldest(maxst)  ,kdest(maxst)  ,nk (maxst)
dimension eq (maxfr,maxfr) ,lhed (maxfr) ,khed (maxfr)
dimension kpiv (maxfr)  ,Ipiv (maxfr)

dimension jmod (maxfr) ,qq (maxfr) ,pvkol(maxfr)
dimension vel (maxte) ,r1 (maxdf) ,ncod (maxdf)
dimension bc (maxdf) ,nopp (maxdf) ,mdf (maxdf)
dimension ndn (maxdf)  ,press(maxdf)

nlp and ndl are the file specifiers for units 60 and 14 respectively

C

nlp=60
nd1=14

Prefront

nmax=maxfr
ncrit=20

(@]
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if(ntra.eq.0) goto 6040
nmax = maxfr
ntra=0

ncrit = 20

Ifron= 0

nlarg = nmax-10

c Find last appeareance of each node

nlast=0
do 6010 i = 1,ntov
do 6020 n = 1,nel
jdn =ndn(n)
do 6030 1=1,jdn
if(nop(n,l).ne.i)go to 6030
nlastl =n
nlast=n
11=1

6030 continue

6020 continue
if(nlast.eq.0) go to 6010
nop(nlast,11) = -nop(nlast,I1)
nlast =0

6010 continue

ntrix = jdn
C
c Assembly
C e ——————————

6040 continue
if(iel.gt.1) go to 6060
Icol=0
do 6050 i = 1,nmax
do 6050 j = 1,nmax
eq(j,1) = 0.

6050 continue

6060 nell = nell+1
n = nell
jdn = ndn(nell)
kc=0
do 6070 j=1,jdn
nn = nop(n,j)

m = iabs(nn)
k = nopp(m)
idf = mdf(m)
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if(nn.1t.0)ii = -ii
nk(kc) =i
6070 continue

o o

Set up heading vectors

o

(@)

do 6080 Ik = 1,kc
node = nk(lk)
if(Icol.eq.0)goto 6100
do 6090 1=1,lcol
=1
if(iabs(node).eq.iabs(lhed(1)))go to 6110
6090 continue
6100 Icol = lcol+1
ldest(1k) = Icol
lhed(Ilcol) = node
go to 6080
6110 ldest(lk) =11
lhed(ll) = node
6080 continue
if(Icol.le.nmax)go to 6130
nerror = 2
write(nlp,3010)nerror
stop
6130 continue
do 6140 1= 1,kc
11 = ldest(1)
do 6140 k= 1,kc
kk = 1dest(k)
eq(kk,1l) = eq(kk,Il)+aa(k,l)
6140 continue
if(Icol.lt.ncrit.and.nell.It.nel) return
C

¢ Find out which matrix elements are fully assembeled

C

6150 1c=0
ir=0
do 6160 1= 1,Icol
kt = Thed(I)
if(kt.ge.0)go to 6160
lc =1lc+1
Ipiv(lc) =1
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ncod(kro) =2
rl(kro) = be(kro)
6160 continue
c
¢ Modify equations with applied boundary conditions

c
if(ir.eq.0)go to 6190
do 6170 irr = 1,ir
k = jmod(irr)
kh = iabs(lhed(k))
do 6180 1=1,lcol
eq(k,l) =0.
lh = iabs(lhed(1))
if(lh.eq.kh)eq(k,l) = 1.

6180 continue

6170 continue

6190 continue
if(lc.gt.0)go to 6200
ncrit = ncrit+10

¢ write(nlp,3020)ncrit
if(ncrit.le.nlarg) return

nerror =3
write(nlp,3030)nerror
stop
6200 continue
c
¢ Search for absolute pivot
c
pivot = 0.

do 62101=1,lc
Ipive = Ipiv(l)
kpivr = Ipivc
piva = eq(kpivr,lpivc)
if(abs(piva).lt.abs(pivot))go to 6220
pivot = piva
Ipivco = Ipivc
kpivro = kpivr
6220 continue
6210 continue
if(pivot.eq.0.0) return
C
¢ Normalise pivotal row
C

196



Appendix 3.2

Computer program

6230 continue

if(abs(pivot).1t.0.1d-28) write(nlp,3050)
do 6240 1=1,lcol
qq(l) = eq(kpivro,l)/pivot
6240 continue
rhs = r1(kro)/pivot
rl(kro) = rhs
pvkol(kpivro) = pivot

¢ Eliminate then delete pivotal row and column

if(kpivro.eq.1)go to 6300
kpivr = kpivro-1
do 6250 k = 1,kpivr
krw = iabs(lhed(k))
fac = eq(k,Ipivco)
pvkol(k) = fac
if(Ipivco.eq.1.or.fac.eq.0.)go to 6270
Ipive = Ipivco-1
do 6260 1 = 1,lpivc
eq(k,l) = eq(k,1)-fac*qq(l)
6260 continue
6270 if(Ipivco.eq.lcol)go to 6290
Ipive = Ipiveo+1
do 6280 1 = Ipivc,lcol
eq(k,l-1) = eq(k,l)-fac*qq(l)
6280 continue
6290 rl(krw) = rl(krw)-fac*rhs
6250 continue
6300 if(kpivro.eq.lcol)go to 6360
kpivr = kpivro+1
do 6310 k = kpivr,lcol
krw = iabs(lhed(k))
fac = eq(k,lpivco)
pvkol(k) = fac
if(Ipivco.eq.1)go to 6330
Ipive = Ipiveo-1
do 6320 1=1,lpive
eq(k-1,1) = eq(k,l)-fac*qq(l)
6320 continue
6330 if(Ipivco.eq.lcol)go to 6350
Ipive = Ipivco+1
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6310 continue

6360 continue

C

c  Write pivotal equation on disc
C

write(nd1) kro,lcol,Ipivco,(lhed(1),qq(l),l = 1,lcol)
do 6370 1=1,lcol
eq(Llcol) = 0.
eq(lcol,l) = 0.
6370 continue
C
¢ Rearrange heading vectors
C

Icol = Icol-1
if(Ipivco.eq.lcol+1)go to 6390
do 6380 1 = Ipivco,lcol
lhed(l) = lhed(l+1)

6380 continue

6390 continue

C

¢ Determine whether to assemble,eliminate,or backsubstitute

C
if(Icol.gt.ncrit)go to 6150
if(nell.lt.nel) return
if(Icol.gt.1)go to 6150
Ico = iabs(lhed(1))
kpivro =1
pivot =eq(1,1)
kro = Ico
Ipivco =1
qq(l)=1.

¢ if(nit.eq.0.or.npra.eq.0)go to 6400
¢ write(nlp,3040)lco,kro,pivot

if(abs(pivot).It.1d-28)go to 6410
c6400 continue

rl(kro) = r1(kro)/pivot
write(nd1) kro,lcol,Ipivco,lhed(1),qq(1)

¢ start back-substitution
c
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¢ main exit with solution
C
6410 continue
C
3010 format(/' nerror=',i5//
1' the difference nmax-ncrit is not sufficiently large'
1/' to permit the assembly of the next element---'
1/' either increase nmax or lower ncrit'
1/)
c3020 format(" frontwidth value=',i4)
3030 format(/' nerror=',i5//
1' there are no more rows fully summed,this may be due to---'
1/' (1)incorrect coding of nop or nk arrays'
1/" (2)incorrect value of ncrit. increase ncrit to permit'
1/ whole front to be assembled'
1/)

c3040 format(13h pivotal row=,i4,16h pivotal column=,i4,7h pivot=,e20.10
c 1

3050 format(" warning-matrix singular or ill conditioned')

return
end
C
C
subroutine bacsub
1 (ntotl,ifix ,vfix ,ths ,soln ,solnl, mfrnt,rwork,iwork,idv2,
2 icho)
C
C
implicit double precision(a-h,o0-z)
dimension ifix (ntotl),vfix (ntotl),rhs (ntotl),soln (ntotl)
dimension rwork(mfrnt) ,iwork(mfrnt) ,solnl1(ntotl)
C
C
C
do 6010 ipos=1,ntotl
soln(ipos) =0.0
if(ifix(ipos).ne.0) soln(ipos)=vfix(ipos)
6010 continue
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C
backspace idv2
read(idv2) ipos,ifrnt,jfrnt,(iwork(k),rwork(k),k=1,ifrnt)
backspace idv2
C
if(ifix(ipos).ne.0) go to 6020
C
WW =0.0
rwork(jfrnt) = 0.0
C
do 6030 k=1,ifrnt
jpos=iabs(iwork(k))
ww =ww - rwork(k)*soln(jpos)
6030 continue
C

soln (ipos)=rhs(ipos)+ww
6020 continue
if (icho .eq. 2) goto 6050
do 6040 ipos = ((3*ntotl)/4)+1 , ntotl
j = ipos -((3*ntotl)/4)
soln1(j) = soln(ipos)

6040 continue

6050 continue

(@]

return
end
C
C
c  Stokes Solution based on UVW-P scheme via Taylor-Galerkin
c time stepping method.
C

subroutine flowStokes(node ,cord ,pmat ,nopp ,mdf ,ndn ,ncod ,

Ibc ,vel ,press, rl, temp,ldest,kdest,nk ,eq ,lhed ,khed ,kpiv ,Ipiv,
2jmod, qq, pvkol, iter ,nel ,ncn , ngaus,gravl,
3grav2, grav3, p, del, b, ntrix, maxel, maxnp, maxst, maxfr, maxdf,
4ndim ,aa ,xg ,da ,ntov ,num, icord, rr, iel, del1,deltat,alpha,
5idv4,sinv, icho, nnp, tref)

(@]
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dimension node (maxel,maxst),pmat (maxel, 9),cord (maxnp, ndim)
dimension ncod (maxdf ),bc (maxdf ),sinv (maxel, 27)
dimension vel (maxnp, 3),r1 (maxdf ),conc (maxnp )
dimension aa (maxst,maxst),rr (maxst ),Idest(maxst )
dimension xg ( 3).cg ( 3),kdest(maxst )
dimension x  ( 3).v ( 3),nk (maxst )
dimension bicn ( 2),hh ( 3)
dimensionp ( 20),del ( 3, 20),b ( 3, 20)
dimension eq (maxfr,maxfr),nopp (maxdf )
dimension ldsc ( 22)
dimension lhed (maxfr ), khed (maxfr ),jmod (maxfr )
dimension Ipiv (maxfr  ),kpiv (maxfr ),qq (maxfr )
dimension pvkol(maxfr  ),mdf (maxdf ),ndn (maxdf )
dimension ppp (20 , 20),pp (20 )

dimension ak (100,100)

dimension akf (100 )

dimension NQ (20 , 20),NP (3 , 4)

dimension C (maxst ),temp (maxnp )

dimension DEL1 (3 )

dimension press(maxnp ),clump(maxnp ),SHAPEID(3 )

dimension gdsf( 3, 20)

dimension dmass(100, 100)

dimension aa01 (maxst,maxst)

dimension aa02 (maxst,maxst)

dimension ak01 (maxst,maxst)

dimension ak02 (maxst,maxst)

rvisc = pmat(iel,1)
rpef = pmat(iel,2)
power = pmat(iel,3)
rtem = pmat(iel,4)
tbco = pmat(iel,5)
taco = pmat(iel,6)
roden = pmat(iel,8)

gamad = pmat(iel,9)

velsound = 1500.0
beta = 0.0
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akf(idf) =0.0
C (df) =0.0
do 6010 jdf= 1,ntrix

aa (idf,jd)=0.0
dmass(idf,jdf)=0.0
ak (idf,jdf)=0.0
aa01 (idf,jdf) = 0.0
aa02 (idf,jdf)= 0.0
akO1 (idf,jdf)= 0.0
ak02 (idf,jdf)= 0.0
6010 continue

if (ncn==4) then
call gausspt(ngaus,xg,cg,ncn)
else if (ncn===8) then
call gaussp(ngaus,xg,cg,ncn)
end if

1g=0
do 6020 ig=1,ngaus

g = xg(ig)
do 6020 jg=1,ngaus

h =xg(jg)
do 6020 kg=1,ngaus
f=xg(kg)

lg=l1g+1

if(iter.eq.1) then

call shape (g,h,f,p,del,ncn)

call deriv (iel,ig,jg.kg,p,del,b,ncn,da,cg,node,cord,
1 maxel,maxnp)

lig=ig
jg=ig
kkg=kg
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endif
C
c calculation of viscosity based on the constitutive equation.
C

spress = 0.0

stemp =0.0

do 5333 ip=1,ncn
jp = iabs(node(iel,ip))
stemp = stemp + temp(jp) * p(ip)
5333 continue
epsii = 1.d-10
gamad = sinv(iel,lg)
if(gamad.lt.epsii) gamad = epsii

call visca
I(rvisc,power,visc,stemp,rtem,tbco,spress,rpef,taco,gamad)

do 6050 idff=1,3
x(idff) =0.0
v(idff) =0.0
hh(idff) =0.0
6050 continue
do 6060 icn =1 ,ncn
jen = iabs(node(iel,icn))
do 6060 idff=1, 3
x(idff) = x(idff) + p(icn)*cord(jcn,idff)
v(idff) = v(idff) + p(icn)*vel (jcn,idff)
6060 continue

if(icord.eq.1) then

modify da for axisymmetric computations.

a o

da=da* x(1)
endif

¢ column index
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j13=1+ 2*ncn
jl4=1+ 3*ncn

do 6070 j=1,ncn
j21=]
j22=j+ ncn
j23=j +2*ncn
j24=7 + 3*ncn

C if (iel.1e.3000) then

¢ Dicretized form of 3D Stokes Equation
C
¢ --- Stiffness Matrix of Left Hand Side
C
¢ For Transient state (Cartesian co-ordinate system)

aa(j11,j21)=aa(j11,j21) + p(i)*p(j)*da

1 + (alpha*deltat*2.0*(visc/roden)
2 + 0.5*alpha*alpha*deltat*deltat*velsound*velsound)
3 * (b(1,1)*b(1,))*da)

3 + alpha*deltat®(visc/roden)

4 * (b(2,1)*b(2,))+b(3,1)*b(3,j))*da)

aa(j11,j22)=aa(j11,j22) + alpha*deltat*(visc/roden)

1 * (b(2,1)*b(1,j)*da)

2 + 0.5*alpha*alpha*deltat*deltat*velsound

3 * velsound*(b(1,1)*b(2,j)*da)
aa(jl11,j23)=aa(j11,j23) + alpha*deltat*(visc/roden)

1 * (b(3,1)*b(1,)*da)

2 + 0.5*alpha*alpha*deltat*deltat*velsound

3 * velsound*(b(1,1)*b(3,j)*da)

aa(j11,j24)=aa(j11,j24) + alpha*deltat*(b(1,j)
1 *p(i)*da)

U~ I~~~
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3 * velsound*(b(2,1)*b(1,j)*da)
aa(j12,)22)=aa(j12,j22) + p(i)*p(j)*da

1 + (alpha*deltat*2.0*(visc/roden)

2 +

0.5*alpha*alpha*deltat*deltat*velsound*velsound)

3 * (b(2,1)*b(2,))*da)
3 + alpha*deltat*(visc/roden)
4 * ((b(L,)*b(1,j)+b(3,1)*b(3,)))*da)

aa(j12,j23)=aa(j12,j23) + alpha*deltat*(visc/roden)

1 * (b(3,1)*b(2,))*da)

2 + 0.5*alpha*alpha*deltat*deltat*velsound

3 * velsound*(b(2,1)*b(3,j)*da)
aa(j12,)24)=aa(j12,j24) + alpha*deltat®*(b(2,))

1 *p(i)*da)

C NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

aa(j13,j21)=aa(j13,j21) + alpha*deltat*(visc/roden)

1 * (b(L,1) *b(3,))*da)
2 + 0.5*alpha*alpha*deltat*deltat*velsound

3 * velsound*(b(3,1)*b(1,j)*da)
aa(j13,j22)=aa(j13,j22) + alpha*deltat™*(visc/roden)

1 * (b(2,0) *b(3,))*da)
2 + 0.5*alpha*alpha*deltat*deltat*velsound

3 * velsound*(b(3,1)*b(2,j)*da)
aa013,J23) aa(j13,j23) + p(i)*p(j)*da

+ (alpha*deltat*2.0*(visc/roden)
2 +
0.5*alpha*alpha*deltat*deltat*velsound*velsound)

3 * (b(3,1)*b(3,))*da)
3 + alpha*deltat™(visc/roden)
4 * ((b(L)*b(1,))+b(2,1)*b(2.)))*da)

aa(j13,j24)=aa(j13,j24) + alpha*deltat*(b(3,))
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aa(jl4,21)=aa(j14,j21) + alpha*deltat*velsound*velsound
1 * (p())*b(1,))*da)

aa(jl4,)22)=aa(j14,j22) + alpha*deltat*velsound*velsound
1 * (p(1)*b(2,))*da)

aa(jl14,)23)=aa(j14,j23) + alpha*deltat*velsound*velsound
1 * (p())*b(3.))*da)

aa(j14.j24)=aa(j14.,;24) + p(i)*p(j)*da

1 + (0.5*alpha*alpha*deltat*deltat
2 * velsound*velsound)*((b(1,1)*b(1,j)
3 + b(2,1)*b(2,))tb(3,1)*b(3.)))*da)

¢ --- Matrix on Right Hand Side
C
¢ For Transient State (Cartesian co-ordinate system)

ak(j11,j21)=ak(j11,j21) + p(i)*p(j)*da

1 - ((1.0-alpha)*deltat*2.0*(visc/roden)
2 + 0.5*alpha*(1.0-
alpha)*deltat*deltat*velsound*velsound)
3 * (b(1,1)*b(1,j)*da)
3 - (1.0-alpha)*deltat*(visc/roden)
4 * ((b(2,1)*b(2,j)+b(3,1)*b(3,j))*da)

ak(j11,j22)=ak(j11,j22) - (1.0-alpha)*deltat*(visc/roden)

1 * (b(2,1)*b(1,j)*da)

2 - 0.5*alpha*(1.0-alpha)*deltat*deltat*velsound

3 * velsound*(b(1,1)*b(2,j)*da)
ak(j11,j23)=ak(j11,j23) - (1.0-alpha)*deltat*(visc/roden)

1 * (b(3,1)*b(1,j)*da)

2 - 0.5*alpha*(1.0-alpha)*deltat*deltat*velsound

3 * velsound*(b(1,1)*b(3,j)*da)

ak(j11,j24)=ak(j11,j24) - (1.0-alpha)*deltat*(b(1,j)
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ak(j12,j21)=ak(j12,j21) - (1.0-alpha)*deltat*(visc/roden)

1 * (b(1,1) *b(2,j)*da)
2 - 0.5*alpha*(1.0-alpha)*deltat*deltat
3 *

velsound*velsound*(b(2,1)*b(1,))*da)

ak(j12,j22)=ak(j12,22) + p(i)*p(j)*da

1 - ((1.0-alpha)*deltat*2.0*(visc/roden)
2 + 0.5*alpha*(1.0-
alpha)*deltat*deltat*velsound*velsound)
3 * (b(2,1)*b(2,j)*da)
3 - (1.0-alpha)*deltat*(visc/roden)
4 * ((b(1,1)*b(1,))+b(3,1)*b(3,j))*da)

ak(j12,j23)=ak(j12,j23) - (1.0-alpha)*deltat*(visc/roden)

1 * (b(3,1)*b(2,))*da)
2 - 0.5*alpha*(1.0-alpha)*deltat*deltat*velsound
3 * velsound*(b(2,1)*b(3,j)*da)

ak(j 12,)24) ak(j 12,_]24) (1.0-alpha)*deltat*(b(2,))
*p(i)*da)

I~ I~~~

ak(_]l3,]21) ak(j13,j21) - (1.0-alpha)*deltat*(visc/roden)
* (b(1,1) *b(3,j)*da)
2 - 0.5*alpha*(1.0-alpha)*deltat*deltat
3 %
velsound*velsound*(b(3,1)*b(1,j)*da)

ak(j 13,]22) ak(j13,j22) - (1.0-alpha)*deltat*(visc/roden)
* (b(2,1) *b(3,j)*da)
2 - 0.5*alpha*(1.0-alpha)*deltat*deltat
3 %
velsound*velsound*(b(3,1)*b(2,))*da)

ak(j13,j23)=ak(j13,23) + p(i)*p(j)*da
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3 - (1.0-alpha)*deltat*(visc/roden)
4 * ((b(L)*b(1,))+b(2,1)*b(2,)))*da)

ak(Jl3,J24) ak(j13,j24) - (1.0-alpha)*deltat*(b(3.,j)

*p(i)*da)
C ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ak(Jl4,J21) ak(j14,j21) - (1.0-alpha)*deltat*velsound*velsound
* (p(1)*b(1,))*da)
ak(]14,J22) ak(j14,j22) - (1.0-alpha)*deltat*velsound*velsound
* (p(1)*b(2,))*da)
ak(j14,j23)=ak(j14,j23) - (1.0-alpha)*deltat*velsound*velsound
1 * (p(1)*b(3.j)*da)
ak(j14,j24)=ak(j13,j24) + p(i)*p(j)*da
1 - (0.5*alpha*(1.0-alpha)*deltat*deltat
2 * velsound*velsound)*((b(1,1)*b(1,j)
3 + b(2,)*b(2,))tb(3,1)*b(3.j))*da)
C NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
c endif
c
¢ Body Force Effect (for Elemental Load Vector Calculation)....
c
c

C(11)=C(11) + (1.0-alpha)*deltat*p(j)*gravl*da
C(j12) =C(j12) + (1.0-alpha)*deltat*p(j)*grav2*da

C(j13) =C(j13) + (1.0-alpha)*deltat*p(j)*grav3*da
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6070 continue

6020 continue

c  Writing the Stiffness Matrix for Element Number 14
If (iel==14) then
write (idv4,3045)
write (idv4,3050) iter
write (1dv4,3055) ((aa(i,j),j=1,ntrix),i=1,ntrix)
3045 format(///,'',10('*"), element stiffness matrix for element
114',10("*"),///)
3050 format(///,"",'Iteration number =',i5,///)
3055 format(27(E15.8,3x))

end if

For Transient State (Cartesian Co-ordinate System)

Term one on RHS is evaluated

o o0 o0 0

do 6080 i=1,ncn

jli=1i
j12=1+ncn
j13=1+2*ncn
jl4=1+3*ncn

do 6080 j=1,ncn
j21=]
j22=j+ ncn
j23=j+ 2*ncn
j24=j+ 3*ncn

nn=iabs(node(iel,j))
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3 ak(j11,j24)*press(nn)

akf(j12)=akf(j12) + ak(j12,j21)*vel(nn,1) +

1 ak(j12,j22)*vel(nn,2) +
2 ak(j12,j23)*vel(nn,3) +
3 ak(j12,j24)*press(nn)
akf(j13)=akf(j13) + ak(j13,j21)*vel(nn,1) +
1 ak(j13,j22)*vel(nn,2) +
2 ak(j13,j23)*vel(nn,3) +
3 ak(j13,j24)*press(nn)
akf(j14)=akf(j14) + ak(j14,j21)*vel(nn,1) +
1 ak(j14,j22)*vel(nn,2) +
ak(j14,j23)*vel(nn,3) +
3 ak(j14,j24)*press(nn)

6080 continue

Evaluation of Elemental Load Vector

(e]

do 6085 i=1,ncn

jli=1i
j12=1+ncn

j13=1+2*ncn

jl4=1+ 3*ncn

¢ For Transient State (Cartesian Co-ordinate System)

rr(j11)=rr(j11) + akf(§11) + C(j11)
rr(j12)=1r(j12) + akf(j12) + C(j12)

rr(j13)= rr(j13) + akf(j13) + C(j13)

rr(j14)=1r(j14) + akf(j14) + C(j14)

6085 continue
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2,eq ,lhed khed kpiv lpiv ,jmod ,qq ,pvkol,vel ,rl
3,ncod ,bc ,nopp ,mdf ,ndn ,maxdf,nel ,maxte,ntov ,lcol
4,nell ,ntra, press,icho )

return
end

¢ Stokes Solution based on the modified UVW-P scheme via
c Taylor-Galerkin time stepping method.

subroutine flowStokes2(node ,cord ,pmat ,nopp ,mdf ,ndn ,ncod ,

Ibc ,vel ,press, rl, temp,ldest,kdest,nk ,eq ,lhed ,khed ,kpiv ,Ipiv,
2jmod, qq, pvkol, iter ,nel ,ncn , ngaus,gravl,
3grav2, grav3, p, del, b, ntrix, maxel, maxnp, maxst, maxfr, maxdf,
4ndim ,aa ,xg ,da ,ntov ,num, icord, rr, iel, del1,deltat,alpha,
5idv4,sinv, icho, nnp, tref)

implicit double precision(a-h,0-z)

dimension node (maxel,maxst),pmat (maxel, 9),cord (maxnp, ndim)
dimension ncod (maxdf ),bc (maxdf ),sinv (maxel, 27)
dimension vel (maxnp, 3),r1 (maxdf ),conc (maxnp )
dimension aa (maxst,maxst),rr (maxst ),ldest(maxst )
dimension xg ( 3).cg ( 3).,kdest(maxst )
dimension x  ( 3, v ( 3),nk (maxst )
dimension bicn ( 2),hh ( 3)
dimensionp ( 20),del ( 3, 20),b ( 3, 20)
dimension eq (maxfr,maxfr),nopp (maxdf )
dimension ldsc ( 22)
dimension lhed (maxfr  ),khed (maxfr ),jmod (maxfr )
dimension Ipiv (maxfr ),kpiv (maxfr ),qq (maxfr )
dimension pvkol(maxfr  ),mdf (maxdf ),ndn (maxdf )
dimension ppp (20 , 20),pp (20 )

dimension ak (100,100)
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dimension gdsf( 3, 20)
dimension dmass(100, 100)
dimension aa0l (maxst,maxst)
dimension aa02 (maxst,maxst)
dimension ak01 (maxst,maxst)
dimension ak02 (maxst,maxst)

rvisc = pmat(iel,1)
rpef = pmat(iel,2)
power = pmat(iel,3)
rtem = pmat(iel,4)
tbco = pmat(iel,5)
taco = pmat(iel,6)
roden = pmat(iel,8)
gamad = pmat(iel,9)

velsound = 1500.0
beta = 0.0

lambda = 10E2
c lambda = (10E7-10E8)/visc ! From Zienkienwicz

do 6010 idf= 1,ntrix
rr (idf) =0.0
akf(idf) =0.0
C (df) =0.0
do 6010 jdf= 1,ntrix

aa (idf,jdf)=0.0
dmass(idf,jdf)=0.0
ak (idf,jdf)=0.0
aa0l (idf,jdf) = 0.0
aa02 (idf,jdf)=0.0
ak01 (idf,jdf)= 0.0
ak02 (idf,jdf)= 0.0
6010 continue

if (ncn==4) then
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1g=0
do 6020 ig=1,ngaus

g = xg(ig)
do 6020 jg=1,ngaus

h=xg(jg)
do 6020 kg=1,ngaus

f=xg(kg)

lg=lg+1

if(iter.eq.1) then

call shape (g,h,f,p,del,ncn)

call deriv (iel,ig,jg.kg,p,del,b,ncn,da,cg,node,cord,
1 maxel,maxnp)

lig=ig
jigmig
kkg=kg
write(15) iel ,ig ,jg kg, p ,del ,b ,da

else
if(.not. EOF(15))read(15) iel,iig,jjg.kkg.,p ,del ,b , da

endif
c calculation of viscosity based on the constitutive equation.

spress = 0.0
stemp = 0.0

do 5333 ip = 1,ncn
jp = iabs(node(iel,ip))
stemp = stemp + temp(jp) * p(ip)
5333 continue
epsii = 1.d-10
gamad = sinv(iel,lg)
if(gamad.lt.epsii) gamad = epsii
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c preparation of the convective acceleration terms/balancing
c dissipation is used

C
do 6050 idff=1,3
x(idff) =0.0
v(idff) =0.0
hh(idff) =0.0
6050 continue
do 6060 icn =1 ,ncn
jen = iabs(node(iel,icn))
do 6060 idff=1, 3
x(idff) = x(idff) + p(icn)*cord(jcn,idff)
v(idff) = v(idff) + p(icn)*vel (jen,idft)
6060 continue
if(icord.eq.1) then
C
¢ modify da for axisymmetric computations.
C
da=da *x(1)
endif

¢ column index
do 6070 i=1,ncn

jli=1i

j12=1+ncn
j13=1+2*ncn

jl4=1+ 3*ncn

do 6070 j=1,ncn

j21=]

j22=j+ ncn
j23=j+ 2*ncn
j24=j + 3*ncn

¢ Dicretized form of 3D Stokes Equation
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aa(j11,j21)=aa(j11,j21) + p(i)*p(j)*da

1 + (alpha*deltat*2.0*(visc/roden)
2 + 0.5*lambda*alpha*alpha*deltat*deltat*velsound*velsound)
3 * (b(1,1)*b(1,))*da)

3 + alpha*deltat*(visc/roden)

4 *((b(2,1)*b(2,))+b(3,1)*b(3,5))*da)

aa(jl11,j22)=aa(j11,j22) + alpha*deltat*(visc/roden)

1 * (b(2,1)*b(1,j)*da)

2 + 0.5*lambda*alpha*alpha*deltat*deltat*velsound

3 * velsound*(b(1,1)*b(2,j)*da)
aa(j11,j23)=aa(j11,j23) + alpha*deltat*(visc/roden)

1 * (b(3,1)*b(1,j)*da)

2 + 0.5*lambda*alpha*alpha*deltat*deltat*velsound

3 * velsound*(b(1,1)*b(3,j)*da)

aa(j11,j24)=aa(j11,j24) + alpha*deltat*(b(1,))
1 *p(i)*da)

U I~~~

aa(j12,21)=aa(j12,j21) + alpha*deltat*(visc/roden)

1 * (b(1,1) *b(2,j)*da)
2 + 0.5*lambda*alpha*alpha*deltat*deltat*velsound
3 * velsound*(b(2,1)*b(1,j)*da)
aa(j12,j22)=aa(j12,j22) + p(i)*p(j)*da
1 + (alpha*deltat*2.0*(visc/roden)
2 + 0.5*lambda*alpha*alpha*deltat*deltat*velsound*velsound)
3 * (b(2,1)*b(2,))*da)
3 + alpha*deltat*(visc/roden)
4 * ((b(L)*b(1,))+b(3,1)*b(3,))*da)

aa(j12,j23)=aa(j12,j23) + alpha*deltat*(visc/roden)

1 * (b(3,1)*b(2,))*da)
2 + 0.5*lambda*alpha*alpha*deltat*deltat*velsound
3 * velsound*(b(2,1)*b(3,j)*da)

aa(j12,j24)=aa(j12,j24) + alpha*deltat*(b(2,j)

i~
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aa(j13,j21)=aa(j13,j21) + alpha*deltat*(visc/roden)

1 * (b(1,i) *b(3,j)*da)
2 + 0.5*lambda*alpha*alpha*deltat*deltat*velsound
3 * velsound*(b(3,1)*b(1,j)*da)

aa(j13,j22)=aa(j13,j22) + alpha*deltat*(visc/roden)

1 * (b(2,1) *b(3,j)*da)
2 + 0.5*lambda*alpha*alpha*deltat*deltat*velsound
3 * velsound*(b(3,1)*b(2,j)*da)

aa(Jl3,J23) aa(j13,)23) + p()*p(j)*da
+ (alpha*deltat*2.0*(visc/roden)

2 + 0.5*lambda*alpha*alpha*deltat*deltat*velsound*velsound)
3 * (b(3,1)*b(3,j)*da)

3 + alpha*deltat™(visc/roden)

4 * ((b(1,1)*b(1,j)+b(2,1)*b(2,j))*da)

aa(j13,)24)=aa(j13,j24) + alpha*deltat*(b(3,))
1 *p(i)*da)

I~ I~~~

aa(j14,)21)=aa(j14,j21) + lambda*alpha*deltat*velsound*velsound
1 * (p(1)*b(1,j)*da)

aa(j14,)22)=aa(j14,j22) + lambda*alpha*deltat*velsound*velsound
1 * (p(1)*b(2,))*da)

aa(j14,j23)=aa(j14,j23) + lambda*alpha*deltat*velsound*velsound
1 * (p()*b(3.))*da)

aa(j14.,j24)=aa(j14.,j24) + p(i)*p(j)*da

1 + (0.5*lambda*alpha*alpha*deltat*deltat
2 * velsound*velsound)*((b(1,1)*b(1,j)
3 + b(2,1)*b(2,))tb(3,1)*b(3.)))*da)

¢ --- Matrix on Right Hand Side
c

~r~
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1 - ((1.0-alpha)*deltat*2.0*(visc/roden)
2 + 0.5*lambda*alpha*(1.0-alpha)*deltat*deltat*velsound*velsound)
3 * (b(1,1)*b(1,j)*da)

3 - (1.0-alpha)*deltat*(visc/roden)

4 * ((b(2,1)*b(2,j)+b(3,1)*b(3,j))*da)

ak(j11,j22)=ak(j11,j22) - (1.0-alpha)*deltat*(visc/roden)

1 * (b(2,1)*b(1,j)*da)

2 - 0.5*lambda*alpha*(1.0-alpha)*deltat*deltat*velsound

3 * velsound*(b(1,1)*b(2,j)*da)
ak(j11,j23)=ak(j11,j23) - (1.0-alpha)*deltat*(visc/roden)

1 * (b(3,1)*b(1,j)*da)

2 - 0.5*lambda*alpha*(1.0-alpha)*deltat*deltat*velsound

3 * velsound*(b(1,1)*b(3,j)*da)

ak(j11,j24)=ak(j11,j24) - (1.0-alpha)*deltat*(b(1,)

1 *p(i)*da)
C NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
ak(j12,j21)=ak(j12,j21) - (1.0-alpha)*deltat*(visc/roden)
1 * (b(L,i) *b(2,j)*da)
2 - 0.5*lambda*alpha*(1.0-alpha)*deltat*deltat
3 *

velsound*velsound*(b(2,1)*b(1,j)*da)

ak(j12,j22)=ak(j12.,22) + p(i)*p(j)*da

1 - ((1.0-alpha)*deltat*2.0*(visc/roden)
2 + 0.5*lambda*alpha*(1.0-alpha)*deltat*deltat*velsound*velsound)
3 * (b(2,1)*b(2,j)*da)

3 - (1.0-alpha)*deltat*(visc/roden)

4 * ((b(1,1)*b(1,j)+b(3,1)*b(3,j))*da)

ak(j12,j23)=ak(j12,j23) - (1.0-alpha)*deltat*(visc/roden)
1 * (b(3,1)*b(2,)*da)
2 - 0.5*lambda*alpha*(1.0-alpha)*deltat*deltat*velsound
3 * velsound*(b(2,1)*b(3,j)*da)
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ak(j13,j21)=ak(j13,j21) - (1.0-alpha)*deltat*(visc/roden)

1 * (b(1,1) *b(3,j)*da)
2 - 0.5*lambda*alpha*(1.0-alpha)*deltat*deltat
3 *

velsound*velsound*(b(3,1)*b(1,))*da)

ak(j13,j22)=ak(j13,j22) - (1.0-alpha)*deltat*(visc/roden)

1 * (b(2,) *b(3,))*da)
2 - 0.5*lambda*alpha*(1.0-alpha)*deltat*deltat
3 *

velsound*velsound*(b(3,1)*b(2,))*da)

ak(j13,j23)=ak(j13.,j23) + p(i)*p(j)*da

1 - ((1.0-alpha)*deltat*2.0*(visc/roden)
2 + 0.5*lambda*alpha*(1.0-alpha)*deltat*deltat*velsound*velsound)
3 * (b(3,1)*b(3,))*da)

3 - (1.0-alpha)*deltat*(visc/roden)

4 * ((b(1,1)*b(1,j)+b(2,1)*b(2,j))*da)

ak(j13,j24)=ak(j13,j24) - (1.0-alpha)*deltat*(b(3,j)
1 *p(i)*da)

ak(j14,j21)=ak(j14,j21) - lambda*(1.0-alpha)*deltat*velsound
1 *velsound * (p(i)*b(1,j)*da)

ak(]14,_]22) ak(j14,j22) - lambda*(1.0-alpha)*deltat*velsound
* velsound * (p(i)*b(2,))*da)

ak(j14,j23)=ak(j14,j23) - lambda*(1.0-alpha)*deltat*velsound
1 * velsound * (p(i)*b(3,))*da)

ak(j14.j24)=ak(j13.j24) + p(i)*p(j)*da
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Body Force Effect (for Elemental Load Vector Calculation)

o o0 0 0

C(11)=C(j11) + (1.0-alpha)*deltat*p(j)*gravl *da
C(12) =C(j12) + (1.0-alpha)*deltat*p(j)*grav2*da
C(13) =C(j13) + (1.0-alpha)*deltat*p(j)*grav3*da

C(j14) =C(j14) + 0

6070 continue

6020 continue

¢ Writing the Stiffness Matrix for Element Number 14
If (iel==14) then
write (1dv4,3045)
write (idv4,3050) iter
write (1dv4,3055) ((aa(i,j),j=1,ntrix),i=1,ntrix)
3045 format(///,'',10("*")," element stiffness matrix for element
114',10('*"),///)
3050 format(///,"",'Iteration number =',i5,///)
3055 format(27(E15.8,3x))

end if

For Transient State (Cartesian Co-ordinate System)

Term one on RHS is evaluated

o 0 0 0

(@]
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jl12=1+ncn
j13=1+ 2*ncn
j14=1+ 3*ncn

do 6080 j=1,ncn

j21=]

j22=j + ncn
j23=j + 2*ncn
j24=j + 3*ncn

nn=iabs(node(ielj))

akf(j11)=akf(j11) + ak(j11,j21)*vel(nn,1) +

1 ak(j11,j22)*vel(nn,2) +

2 ak(j11,j23)*vel(nn,3) +

3 ak(j11,j24)*press(nn)
akf(j12)=akf(j12) + ak(j12,j21)*vel(nn,1) +

1 ak(j12,j22)*vel(nn,2) +

2 ak(j12,j23)*vel(nn,3) +

3 ak(j12,j24)*press(nn)
akf(j13)=akf(j13) + ak(j13,j21)*vel(nn,1) +

1 ak(j13,j22)*vel(nn,2) +

ak(j13,j23)*vel(nn,3) +

3 ak(j13,j24)*press(nn)
akf(j14)=akf(j14) + ak(j14,j21)*vel(nn,1) +

1 ak(j14,j22)*vel(nn,2) +

2 ak(j14,j23)*vel(nn,3) +

3 ak(j14,j24)*press(nn)

6080 continue

C
C
C

Evaluation of Elemental Load Vector

do 6085 1=1,ncn
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c For Transient State (Cartesian Co-ordinate System) hnt

rr(11)=rr(j11) + akf(§11) + C(j11)
rr(j12)=1r(j12) + akf(j12) + C(j12)

rr(j13)=rr(j13) + akf(j13) + C(j13)

rr(j14)=r(j14) + akf(j14) + C(j14)

6085 continue

c
maxte=maxdf
call front
l(aa ,rr ,iel ,node ,maxel,maxst,ldest,kdest,nk ,maxfr
2,eq ,lhed khed kpiv lpiv ,jmod ,qq ,pvkol,vel ,rl
3,ncod ,bc ,nopp ,mdf ,ndn ,maxdf,nel ,maxte,ntov ,lcol
4 nell ntra, press,icho )

c
return
end

c

c
subroutine concn
1 (node ,cord ,pmat ,nopp ,mdf ,ndn ,ncod ,bc ,conc,vel
2 1 xg ,ndim.,da ,ldestkdestink ,eq ,lhed
3 khed kpiv Ipiv jmod ,qq ,pvkoliter ,nel ,ncn ,ntov
4 cord,ngaus,p .,del ,b ,ntrix,maxel,maxnp
5 ,maxst,maxfr,maxdf,num ,ijmo ,ae
6 .,re ,cg ,el, dell )

c
implicit double precision(a-h,o0-z)

c

dimension node (maxel,maxst),cord (maxnp, ndim)

dimension ncod (maxdf ),bc (maxdf )

dimension conc (maxnp  ),rl (maxdf ),vel (maxnp, 3)
dimension ae (maxst,maxst),re (maxst )

dimensionp ( 20),del ( 3, 20),b ( 3, 20)
dimension x  ( v ( 3)

dimension bicn ( 3),bjen ( 3)
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dimension khed (maxfr  ),kpiv (maxfr ),Ipiv(maxfr )
dimension jmod (maxfr  ),qq (maxfr ),pvkol(maxfr )
dimension mdf (maxdf ),ndn (maxdf )

dimension ppp (20 , 20),pp (20 )

dimension kae (maxst,maxst),kaef (maxst )

dimension NQ (4 , 3)NP 3 , 4)

dimension C (maxst )
dimension DEL1 (3 )

c
C
rvisc = pmat(iel, 1)
rbulk = pmat(iel,2)
power = pmat(iel,3)
rtem = pmat(iel,4)
tco = pmat(iel,5)
roden = pmat(iel,6)
dispc
= pmat(iel,7)
c
¢ Basic element loop
c
do 6010 itrix =1 ,maxst
re(itrix) =0.0
do 6010 jtrix =1 ,maxst
ae(itrix,jtrix)= 0.0
6010 continue
C
¢ Numerical integration
C
c
call gaussp(ngaus,xg,cg)
c
1g=0
do 6020 ig=1,ngaus
g =xg(ig)
do 6020 jg=1,ngaus
h =xg(jg)
do 6020 kg=1,ngaus
f=xg(kg)

lg=lg+1
if(iter.eq.1) then
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end if

¢ Read shape functions and their cartesian derivatives data from

¢ awork file
read (15) iiel,iig,jjg,kkg,p,del,b,da

ijmo=ijmo-+1

c
¢ Coefficients evaluated at integration point
c
do 6040 idf=1,3
x(idf) =0.0
v(idf) =0.0
6040 continue

do 6050 icn =1 ,ncn
jen = iabs(node(iel,icn))
do 6050 idf=1,2
x(idf) = x(idf) + p(icn)*cord(jcn,idf)
v(idf) = v(idf) + p(icn)*vel (jcn,idf)
6050  continue
C
if(icord.eq.1) then

¢ Modify da for axisymmetric computations.

da=da *x(1)
endif
do 6060 icn =1 ,ncn

¢ Row index

¢ =——————==
ir =icn
do 6060 jcn =1 ,ncn
¢ Column index
c
ic=jcn

6060 continue
6020 continue
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do 6080 icn =1, ncn
ir =1icn
do 6080 jen =1, ncn

ic=jcn

KAEF(ir)=KAEF(ir) + kae(ir,ic)*conc(ic)
6080 continue

¢ Term two on RHS i.e. Calculation of Line Integrals

C

NQ(1,3)=2
NQ(1,2)=5
NQ(1,1)=1
NQ(2,3)=3
NQ(2,2)=6
NQ(2,1)=2
NQ(3,3)=4
NQ(3,2)=7
NQ(@3,1)=3
NQ(4,3)=1
NQ(4,2)=8
NQ(4,1)=4

doI=14
doJ=13
NP(4-J,1)=node(iel, NQ(L,4-J))
end do
end do

do 6096 L=1,4
call gaussp(ngaus,xg,cg)

do 6096 ig=1,ngaus

g = xg(ig)
if(iter.eq.1) then
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end if

dsix=0.0
dsiy=0.0

do I=1,ngaus

dsix=dsix+p(I)*cord(NP(I,L),1)
dsty=dsiy+p(I)*cord(NP(I,L),2)

end do

concx=0.0
concy=0.0

do I=1,ngaus

concx =concx + DELI1(I)*conc(NP(I,L))
concy =concy + DELI1(I)*conc(NP(I,L))
concz =concz + DELI1(I)*conc(NP(I,L))
+ DEL1(I)*vel (NP(L,L),1)

ull =ull
ul2 =ul2 + DELI1(I)*vel (NP(L,L),1)
u2l =u2l + DELI1(I)*vel (NP(L,L),2)
u22 =u22 + DELI1(I)*vel (NP(L,L),2)

velx =velx + DELI1(I)*vel (NP(L,LL),1)
vely =vely + DEL1(I)*vel (NP(LL),2)

end do

c ellgth = sqrt(dsix**2 + dsiy**2+dsiz**2)

deell = dsix/ellgth
dcelm = dsiy/ellgth
C dceln =  dsiz/ellgth
dnx s = dcelm
dny = -dcell
dnz = dceln

ellgth = 2.0*ellgth
djacob = ellgth/2.0

do 6087 icn=1,ncn

ir = icn
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¢ Calculation of the Elemental Load Vector
c

do 6085 icn =1 , ncn
ir=1icn
re(ir) =re(ir) + kaef{(ir) + C(ir)

6085 continue

¢ Solve equations
C

maxte=maxnp

call front

I(ae ,re ,el ,node,maxel,maxst,Idest,kdest,nk ,maxfr
2,eq ,lhed ,khed .kpiv ,lpiv ,jmod,qq ,pvkol, conc ,rl
3,ncod ,bc ,nopp ,mdf ,ndn ,maxdf,nel ,maxte,ntov ,lcol
4,nell ,ntra ,press,icho,c,akf,ak)

c
¢ End of basic element loop
c

return

end
c
C

subroutine stress
1 (nel,nnp,ncn ,node ,p, b, da,vel ,maxnp, maxel, maxst,
2 maxdf, stres, press, rvisc ,clump ,ngaus )

C
implicit double precision(a-h,o0-z)

C

¢ function

C ________

c calculates stress components at integration points,
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dimension clump(maxnp )

C
rewind 15

C
do 4990 inp =1,maxnp
do 4990 icp =1,6
stres(inp,icp)= 0.0

4990 continue

C

do 5000 iel = 1 ,nel
C

do 6010 ig=1,ngaus
do 6010 jg=1,ngaus
do 6010 kg=1,ngaus
if(.not. EOF(15))read(15) iiel,iig,jjg.kkg,p ,del ,b, da

ull=0.0
ul2=0.0
ul3=0.0
u2l =0.0
u22=0.0
u23=0.0
u31=0.0
u32=20.0
u33=0.0
presl =0.0

do 6020 icn =1 ,ncn
jen = iabs(node(iel,icn))
ull =ull + b(1,icn)*vel(jen,1)
ul2 =ul2 + b(2,icn)*vel(jcn,1)
ul3 =ul3 + b(3,icn)*vel(jen,1)
u2l =u2l + b(1,icn)*vel(jcn,2)
u22 =u22 + b(2,icn)*vel(jcn,2)
u23 =u23 + b(3,icn)*vel(jcn,2)
u3l =u31 + b(1,icn)*vel(jcn,3)
u32 =u32 + b(2,icn)*vel(jcn,3)
u33 =u33 + b(3,icn)*vel(jcn,3)
presl = presl + p(icn)*press(jcn)
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C
C
C
C

cartesian components of the stress tensor

Shear Stress (Tau)

sd11=2.0 *rvisc * ull
sd22=2.0 *rvisc * u22
sd33=2.0 *rvisc * u33
sd12 =rvisc * (ul2 + u2l)
sd13 =rvisc * (ul3 + u3l)
sd23 =rvisc * (u23 + u32)

Normal Stress (P1)

sl1 =-presl +sdl1
s22 =-presl +sd22
s33 =-presl + sd33
s12 =sdI2
s13 =sdl13
$23 =sd23

*#% calculate stress at nodal points

do 6500 icn =1 ,ncn
jen = iabs(node(iel,icn))

stres(jen, 1)= stres(jen, 1)

1 + p(icn) *s11 *da

stres(jcn,2)= stres(jcn,2)

1 + p(icn) *s22 *da

stres(jcn,3)= stres(jcn,3)

1 + p(icn) *s33 *da

stres(jen,4)= stres(jen,4)

1 + p(icn) *s12 *da

stres(jen,5)= stres(jen,S)
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6500 continue

c
6010 continue

5000 continue

return
C
end
C
C
subroutine lumpm
1 (clump,nnp ,maxnp,nel ,ngaus,p .,del ,b ,maxst,
2 node ,maxel,ncn )
C
implicit double precision(a-h,0-z)
dimensionb ( 3, 20),del ( 3, 20),p ( 20)
dimension clump(maxnp )
dimension node (maxel,maxst)
dimension pp (ncn ,ncn )
c
do 5000 inp =1 ,nnp
clump (inp)=0.0
5000 continue
c
rewind 15
c

do 5010 iel = 1 ,nel

do 5020 ig =1 ,ngaus
do 5020 jg =1 ,ngaus
do 5020 kg =1 ,ngaus

if(.not. EOF(15)) read (15) jel ,iig .,jjg ,kkg ,p ,del ,b ,da
do 5030 icn=1 ,ncn

ww = 0.0
do 5040 jen=1 ,ncn
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5030 continue
5020 continue
5010 continue

return
end

c

c

subroutine getnod (nnp ,cord ,idv1 ,idv2 ,maxnp,ndim,icord)

C
implicit double precision(a-h,o0-z)
C
c arguments
C e ——————————
¢ nnp total number of nodal points in the mesh
¢ cord array for nodal coordinates
¢ 1dvl input device id.
c 1dv2 output device id.
¢ ndim see below
C
dimension cord(maxnp, ndim)
C
if (NOT. EOF(51)) read (idv1,1010)
1(jnp ,(cord(jnp,idf),idf=1,3),jnp=1,nnp)
if(icord.eq.0) write(idv2,3010)
if(icord.eq.1) write(idv2,3020)
write(idv2,3030) (jnp ,(cord(jnp,idf),idf=1,3) ,jnp=1,nnp)
C
return
C

1010 format(i8,e20.12,e20.12,e20.12)

3010 format('',///'",20('*"),' nodal coordinates ',20("'*"),//
1'',(7x,'1d.",13x,'x-coord',13x,"'y-coord',13x,'z-coord',13x)/)

3020 format('',///"",20('*"),' nodal coordinates ',20("'*'),//
1'',2(7x,'id/',7x,'r-coord',7x,'z-coord',20x)/)

3030 format('',i10,10x,f10.6,10x,10.6,10x,f10.6)

C
end
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subroutine getelm (nel ,ncn ,node ,idvl ,idv2 ,maxel)

C
implicit double precision(a-h,o0-z)
C
c arguments
R —
¢ ncn  number of nodes per element
¢ node array for element connectivity data
¢ idvl input device id.
¢ 1dv2 output device id.
c maxel see below
C
dimension node (maxel, ncn)
C

do 6010 iel =1 ,nel

6010 if (.not. eof(51))read (idv1,1010) iel ,(node(iel,icn),icn=1,ncn)

print*, "nodal connectivity array read"
write(idv2,3010)
do 6020 jel =1 ,nel
6020 write(idv2,3020) jel ,(node(jel,icn),icn=1,ncn)
C
return
C

1010 format(21i7)

3010 format('",///,'',20("*")," element connectivity ',20("*"),//
1''4x,id.\7x, nodal-point entries'/)

3020 format(21i7)

c
end
c
c
subroutine getbcd (nbc ,ibc ,jbc ,vbc
1 ,idv1 ,idv2 ,maxbc)
c
implicit double precision(a-h,o0-z)
c
¢ arguments
C = —————

¢ nbc number of nodal constraint data
c ibc array for constrained nodal points
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¢ maxbc see below

c
dimension ibc (maxbc) ,jbc (maxbc),vbc (maxbc)
c
if (.not. eof(51))read (idv1,1010) (ibc(ind) ,jbc(ind) ,vbe(ind)
1 ,ind=1,nbc)
print*, "boundary conditions array read"
write(idv2,3010)
write(idv2,3020) (ibc(ind) ,jbe(ind) ,vbe(ind) ,ind=1,nbc)
c
return
c

1010 format(2i5,f10.4)

3010 format('",// /,'',20("*"),' nodal constraint ',20('*"),//
1'',(8x,'id.",7x,'dof",10x,'value',10x)/)

3020 format(5x,i5,5x,15,f17.4)

C
end

C

c
subroutine putbcv
1 (nnp ,nbc ,ibc ,jbe ,vbc ,ncod ,bc ,maxbc,maxdf,maxel,maxst,
2 node)

c
implicit double precision(a-h,0-z)

c

¢ arguments

c = —————

¢ ncod array for constraint switch defined for every d.o.f.

c bc array for storing contraint value

c maxbc see below

c maxdf see below

c
dimension ibc (maxbc) ,jbc (maxbc) ,vbe (maxbc)
dimension ncod (maxdf) ,bc (maxdf) ,node (maxel,maxst)

c

do 6010 ind =1 ,nbc

if(jbc(ind)>4) goto 6010

jnd = ibc(ind)+(jbc(ind)-1)*nnp
bc (jnd) = vbe(ind)
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C iel=16

C inp=24

C kc=iabs(node(iel,inp))

C
return
end

C
subroutine putbcc
1 (nbc ,ibc ,jbc ,vbc ,ncod ,bc ,maxbc,maxdf)

C
implicit double precision(a-h,o0-z)

C

c arguments

C b ——————————

c arguments same as subroutine putbcv
dimension ibc (maxbc) ,jbc (maxbc) ,vbc (maxbc)
dimension ncod (maxdf) ,bc (maxdf)

C
do 6010 ind =1 ,nbc
if(jbc(ind).eq.5) then
jnd = ibc(ind)
bc  (jnd)= vbe(ind)
ncod (jnd)=1
endif

6010 continue

C
return
end

C

C
subroutine putbcs
1 (nnp ,nbc ,ibc ,jbc ,vbc ,ncod .,bc ,maxbc,maxdf)

C
implicit double precision(a-h,0-z)

¢ arguments

c e

c arguments same as subroutine putbcv
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do 6010 ind =1 ,nbc

if(jbc(ind).eq.6) then
jnd = ibc(ind)
bc  (jnd)= vbe(ind)
ncod (jnd)=1
endif
6010 continue
C
return
end
C
C
subroutine clean
1 (ncn ,nel ,ndf ,node.,rl ,maxel,maxst,maxdf,
2  bc ,ncod,icho)
C
implicit double precision(a-h,0-z)
c
¢ arguments
C —_—
c all arguments are defined elsewhere.
C
dimension r1 (maxdf) ,node(maxel,maxst)
dimension bc (maxdf) ,ncod(maxdf )
C
¢ function
C —_——
c cleans the used arrays and makes them ready for solution
C
do 60101 = 1,maxdf
rl(i)=0.0
be(i) = 0.0
ncod(i) =0
6010 continue

ntrix = ndf *ncn
do 6020 iel = 1,nel
do 6020 inp = 1,ntrix
node(iel,inp) = iabs(node(iel,inp))
6020 continue
if(icho.ne.1)then
do 6030 iel = 1,nel
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endif
C
return
end
subroutine setprm
1  (nnp ,nel ,ncn ,node ,ndf ,maxel,maxst,ndn ,ntrix,
2 maxdf,ntov ,mdf ,nopp )
C
implicit double precision(a-h,0-z)
C
¢ arguments
c —_—
c all arguments are defined elsewhere.
C
dimension node (maxel,maxst), ndn (maxdf)
dimension mdf (maxdf ), nopp (maxdf)
C
¢ function
C e ———————

c Sets the location data for nodal degrees of freedom

do 6010 iel = 1 ,nel
ndn(iel) = ntrix
do 6010 icn =1 ,ncn
ken = node(iel,icn)
jacn= icn+(ndf-3)*ncn
lacn= ken+(ndf-3)*nnp

jben=icn+(ndf-2)*ncn
Iben= ken+(ndf-2)*nnp

jeen= icnt(ndf-1)*ncn
lcecn= ken+(ndf-1)*nnp

node(iel,jacn) = lacn
node(iel,jbcn) = Ibcn

node(iel,jccn) = lcen

6010 continue
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6020 continue

C
return
end
subroutine getmat (nel ,nmat,pmat, idv1, idv2,maxel,rtem, rpef)
C
implicit double precision(a-h,0-z)
C
c arguments
C e ————————
¢ nmat number of materials
c pmat array for material constants for each element
¢ 1dvl input device id.
¢ 1dv2 output devide id.
¢ maxel see below
C
dimension pmat (maxel, 9)
C
write(idv2,3010)
C
do 6010 imat =1 ,nmat
if (NOT. EOF(51)) read(idv1,1010) rvisc, power, tref, tbco, taco,
1 dispc, pref, roden, gamad
print*, "material properties read"
ccccC ifrom =1
CCCC ito =nel

if(rtem .eq.0.) rtem = 0.001
if(rpef .eq.0.) rpef = 0.001

do 6020 iel =1 ,nel
pmat(iel,1) = rvisc
pmat(iel,2) = pref
pmat(iel,3) = power
pmat(iel,4) = tref
pmat(iel,5) = tbco
pmat(iel,6) = taco
pmat(iel,7) = dispc
pmat(iel,8) = roden

pmat(iel,9) = gamad
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rvisc mu nought; consistency coefficient
pref reference pressure

power power law index

tref reference temperature

tbco coefficient b in the power law model
taco  coefficient a in the power law model
dispc dispersion coefficient

gamad shear rate

020 continue

O N OO0 0O 0006 O o6 0

write(idv2,3020) imat ,ifrom ,ito ,rvisc ,power
write(idv2,3030)

write(idv2,3040) tref ,tbco, pref, taco
write(idv2,3050)

write(idv2,3060) dispc , roden , gamad

6010 continue

C
return

C

1010 format(9d10.5)

C

3010 format('',//'',35('*"),' material properties ',35('*"),//
1 ''.2x,'id.",5x,"eid.(from-to)',3x,'consistency co-efficient'
2,5x,'power law index',/)

3020 format('',i3,112,14,5x,215.5,15x,g15.5)

3030 format(/x,' reference temperature coefficient b
1 reference pressure coefficient a '/)

3040 format(f16.3,22.4,6x,210.3,9x,210.3)

3050 format(/x,

1'Dispersion Coefficient Density Shear rate'/)
3060 format(gl3.3,15x,g7.1,6x,216.5)
C
end
C
C
C

subroutine contol

I(vel ,conc ,iter ,ntov ,nnp ,maxnp,maxdf,errov,errop,vet ,cet,

2 pet, press)
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dimension vel (maxdf),conc (maxnp), press(maxnp)
dimension vet (maxdf),cet (maxnp), pet (maxnp)

errv =0.0
torv =0.0
errc =0.0
torc =0.0
errp =0.0
torp = 0.0
c
¢ calculate difference between velocities in consecutive iterations

do 6010 icheck = 1,ntov
if(iter.eq.1) vet(icheck) = 0.0
C061008 errv = errv +
C061008 1 (vel(icheck)-vet(icheck)) * (vel(icheck)-vet(icheck))

errv = errv +
1 vel(icheck)*vel(icheck)- 2*vel(icheck)*vet(icheck)
2 +vet(icheck)*vet(icheck)

torv = torv + vel(icheck)*vel(icheck)

c
vet(icheck) = vel(icheck)
c
6010 continue
errov= errv/torv
c

¢ calculate difference between concentrations in consecutive iterations

do 6020 icheck = 1,nnp
if(iter.eq.1) cet(icheck)= 0.0
errc = errc +
1 (conc(icheck)*conc(icheck))-2*conc(icheck)*cet(icheck)
2+ cet(icheck)*cet(icheck)
torc = torc + conc(icheck)*conc(icheck)

cet(icheck) = conc(icheck)
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do 6030 icheck = 1,nnp
if(iter.eq.1) pet(icheck) = 0.0

c230908 if(iter.eq.1) press(icheck) = 0.0
errp = errp +

1 press(icheck)*press(icheck)-2*press(icheck)*pet(icheck)

2+ pet(icheck)*pet(icheck)
torp = torp + press(icheck)*press(icheck)

C
pet(icheck) = press(icheck)
C
6030 continue
errop= errp/torp

C

return

end
C

subroutine output

1 (nnp ,vel ,press, maxdf,maxnp,icord, stres)
C

implicit double precision(a-h,0-z)
C

¢ arguments are already defined

dimension vel(maxdf), press(maxnp), conc(maxnp)
dimension stres(maxnp, 6)

write(60,3010)

if(icord.eq.0) write(60,3020)
if(icord.eq.1) write(60,3030)

do 6010 inp = 1,nnp
jnp = inp + nnp
knp = inp + (2*nnp)
press(inp)=press(inp)
write(60,3040)inp,vel(inp),vel(jnp),vel(knp),press(inp),
Istres(inp,1)
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call minimax

I( cmax , pmax , vel ,conc , press, maxnp, nnp , nc,
2 np ,nm ,ncm ,nvxm , nvym , nvzm,

3 nvxl ,nvyl ,nvzl, pmin , cmin ,
4 vxmax , vxmin , vymax, vymin, vzmax , vzmin, ndim , maxdf)

write(60,3045)
write(60,3050)nvxm,vel(nvxm),nvxl,vel(nvxl)

write(60,3055)
write(60,3060)nvym,vel(nnp+nvym),nvyl,vel(nnp+nvyl)

write(60,3065)
write(60,3070)nvzm,vel(2*nnp+nvzm),nvzl,vel(2*nnp+nvzl)

write(60,3075)
write(60,3080)np,press(np),nm,press(nm)

3010 format(/' nodal velocities and pressures '/)
3020 format(' id. ux uy uz press stress'/)
3030 format(' id. wur uz uz press'/)
3040 format(i5,3e13.4,e22.8,g15.5)
3045 format('node no. max ux node no. min ux')
3050 format(i5,e22.8,15,e22.8,/)
3055 format('node no. max uy node no. min uy')
3060 format(i5,e22.8,15,e22.8./)
3065 format('node no. max uz node no. min uz')
3070 format(i5,e22.8,15,e22.8,/)
3075 format('node no. max p node no. min p')
3080 format(i5,e22.8,15,e22.8./)

return

end
C
C

¢ The subroutine slip introduces the slip wall boundary conditions
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subroutine slip (ldsc)
implicit double precision(a-h,0-z)
dimension ldsc (22 )

C
¢ Channel depth data for slip wall b.c. & friction c.

C

read(50,1010)rfrct
1010 format(f10.0)
c
c This loop is used for identifying upper slip layer

C

1=0
do 6030 ids=1,nel-13,14
do 6030 j=1,2
il=il+1
ldsc(il)=ids+j-1
6030 continue
C
c This loop is used for identifying lower slip layers

C

11=0
do 6020 ids=13,nel-2,14
do 6020 j=1,2
11=i1+1
ldsc(il)=ids+j-1
6020 continue

C

C
return
end

C

subroutine hgstvl ( cmax, pmax , conc , press , maxnp,
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cmax= conc(1)
pmax= press (1)
pmin= press (1)
nc=1
np=1
nm=1
do i=2,nnp
cm= conc(i)
pm= press (1)
pi= press (1)
if ( cm.gt.cmax ) then
cmax=cm
nc =i
endif
if ( pm.gt.pmax ) then
pmax=pm
np =i
endif
if ( pi.lt.pmin ) then
pmin = pi
nm =i
endif
enddo
return
end

C
C

write nodal outputs

subroutine output2 ( nnp , vel , conc , press , maxdf, maxnp,
1 time , nwr , iter , errov , erroc, errop)

implicit real*8 (a-h,0-z)
dimension vel ( maxdf), conc ( maxnp), press ( maxnp)

dimension nwr (10), vr (10), pv(10), cr (10)

call hgstvl ( cmax, pmax , conc , press, maxnp,
1 nnp,nc ,np ,nm ,pmin )

write ( 2, 5111) iter,errov,erroc,errop

write (2, 5115) time
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do 24 i=1,nnp
vres= dsqrt (vel(i+i-1)**2+vel(i+i)**2)
psee= press(i)

write (2,5130) i,vel(i+i-1),vel(i+i),vres,conc(i),press(i)
24 continue
call stress

1 (nel,nnp,ncn ,node ,p, b, da,vel ,maxnp, maxel, maxst,
2 maxdf, stres, press, rvisc ,clump ,ngaus )

C
c write the stress components
C
write (2, 5133)
write (2,5130)1, sdll1, sd12, sd22
¢ writing of output results
C
do k=1,3
i =nwr(k)
vr (k) = dsqrt (vel(i+i-1)**2+vel(i+1)**2)
pv(k) = press(i)
cr (k) = conc (1)
enddo
write (4, 5125 ) time , (vr(i),pv(i),cr(i),i=1,3)
Gttt ettt ettt ettt et b et sttt eaean

5111 format (1x,/,'- solution after',i5,' iteration(s) -',

1 1x,/,- error oval ( velocity ) =',£20.9,

2 1x,/,'- error oval ( concentration ) =',£20.9,

3 1x,/,- error oval ( pressure ) =',20.9)
5112 format (1x,' maximum concentration ="',g20.5,' at node =',i5)
5113 format (1x," maximum pressure ='g20.5," at node =',i5)
5114 format (1x," minimum pressure ="',g20.5,' at node =',15)
5115 format (1x,'solution at time =',g20.5,/)
5120 format (1x,//,' result ( node no. ,vx, vy, |v|, concentration,

1 pressure)',/)
5125 format (1x,e11.6,3(' |',3e12.4))
5130 format (1x,14,2x,5(d11.5,2x))
5133 format (1x,//,1x,' sd11 ,sd12 ,sd22"')/)

return

end
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c This subroutine calculate the viscosity using the power law model
C

subroutine visca

1 (rvisc,power,visc,stemp,rtem,tbco,spress,rpef,taco

2 ,gamad )

implicit double precision(a-h,0-z)

c230908 visc = rvisc*(4.0*gamad**((power-1.0)*0.5))
c230908 1 *exp(-tbco*(stemp-rtem))

c110909 visc = rvisc*(4.0*gamad**((power-1.0)*0.5))

visc = rvisc*(gamad**((power-1.0)))

return
end
C
C
subroutine lagshl ( xi, shapeld , dell )
implicit real*8 (a-h,0-z)
dimension shapeld(3), del1(3)
shapeld(1) =-0.5*x1*(1.0-x1)
shapeld(2) = (1.0+xi)*(1.0-xi)
shapeld(3) = 0.5*g*(1.0+x1)
dell(1) =-0.5+xi
dell(2) =-2.0*xi
del1(3) = 0.5+xi
return
end
c

subroutine minimax
I( cmax , pmax ,vel ,conc , press, maxnp, nnp , nc,
2 np ,nm ,ncm ,nvXm , nvym , nvzm,
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dimension conc ( maxnp ) , vel (maxdf)
dimension press ( maxnp )

vXmax = vel(1)
vxmin = vel(1)
vymax = vel(nnp+1)
vymin = vel(nnp+1)
vzmax = vel(2*nnp+1)
vzmin = vel(2*nnp+1)
pmax = press (1)
pmin = press (1)
nc = 1
ncm = 1
np 1
nm 1
nvxm = 1
nvym = 1
nvzm 1
nvxl = 1
nvyl = 1
nvzl = 1

do 6020 i=2,nnp

pm = press (i)

pi = press (i)
vxmx = vel(i)
vxmn = vel(i)
vymx = vel(nnp+i)
vymn = vel(nnp+i)
vzmx = vel(2*nnp+i)
vzmn = vel(2*nnp+i)

if ( pm.gt.pmax ) then
pmax=pm
np =i

endif

if ( pt.lt.pmin ) then
pmin = pi
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nvxm =i

endif

if ( vymx.gt.vymax ) then
vymax= vymx
nvym =i

endif

if ( vzmx.gt.vzmax ) then
VZmax= vzmx
nvzm =i

endif

if ( vxmn.lt.vxmin ) then

vXmin= vxmn
nvxl =1

endif

if ( vymn.It.vymin ) then
vymin= vymn
nvyl =1

endif

if ( vzmn.lt.vzmin ) then
vzZzmin= vzmn
nvzl =1

endif

6020 continue

return
end

subroutine secinv

1 (nel ,nnp ,ncn ,ngaus,node ,sinv ,cord.p ,b,
2 del ,da ,vel ,maxnp,maxel,maxst,ndim ,icord,
3 maxdf,num)

implicit double precision(a-h,o0-z)
C
c function

¢ calculates the second invariant of rate of deformation
c tensor at integration points.
c
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dimensionb ( 3, 20)
rewind 15

do 5000 iel= 1, nel
lg=0
do 5010 ig =1 ,ngaus
do 5010 jg =1 ,ngaus
do 5010 kg =1 ,ngaus

lg =1g+1
read (15) iiel,iig,jjg,p,del,b,da

ull =0.0
ul2=0.0
ul3=0.0

u2l1 =0.0
u22=0.0

u23=0.0

u31=0.0

u32=0.0

u33=0.0

do 5020 icn =1 ,ncn
jen = iabs(node(iel,icn))
c mcen = jen + nnp
c ken = jen + (2*nnp)

¢ *** components of the rate of deformation tensor

ull =ull + b(1,icn)*vel(jen,1)
ul2 =ul2 + b(2,icn)*vel(jcn,1)
ul3 =ul3 + b(3,icn)*vel(jen,1)
u2l =u2l + b(1,icn)*vel(jcn,2)
u22 =u22 + b(2,icn)*vel(jcn,2)
u23 =u23 + b(3,icn)*vel(jcn,2)
u3l =u31 + b(1,icn)*vel(jcn,3)
u32 =u32 + b(2,icn)*vel(jcn,3)
u33 =u33 + b(3,icn)*vel(jcn,3)

5020 continue
c
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2
3 (u21+ul2)*(u21+ul2)+
4 (u22+u22)*(u22+u22)+
5
6
7 (u32+u23)*(u32+u23)+
8

5010 continue
5000 continue

return
end

(ul3+u31)*(ul3+u3l)+

(u23+u32)*(u23+u32)+
(u31+ul3)*(u31+ul3)+

(u33+u33)*(u33+u3l))

subroutine gausspt(ngaus,xg,cg,ncn)

implicit double precision(a-h,0-z)

c(g) specifies the Gauss weights

o o0 0 0

dimension xg(5,5),cg(3)
Real:: al, be
al=0.58541020
be=0.13819660

xg=0.0
cg=0.0

if (ngaus==1) then
xg(1,1)=1.0/4.0
xg(1,2)= xg(1,1)
xg(1,3)= xg(1,1)
xg(1,4)=xg(1,1)
cg(l)=1

else if (ngauss==2)then
xg(1,1)=al
xg(1,2)=be
xg(1,3)=be
xg(1,4)=be

x(g) specifies the coordinates of the Gauss points

o
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xg(3,1)=be
xg(3,2)=be
xg(3,3)=al
xg(3,4)=be
xg(4,1)=be
xg(4,2)=be
xg(4,3)=be
xg(4,4)=al
cg(1)=1.0/4.0
cg(2)=cg(1)

else if (ngauss==3) then

xg(1,1)=1.0/4.0
xg(1,2)=1.0/4.0
xg(1,3)=1.0/4.0
xg(1,4)=1.0/4.0

xg(2,1)=1.0/2.0
xg(2,2)=1.0/6.0
xg(2,3)=1.0/6.0
xg(2,4)=1.0/6.0

xg(3,1)=1.0/6.0
xg(3,2)=1.0/2.0
xg(3,3)=1.0/6.0
xg(3,4)=1.0/6.0

xg(4,1)=1.0/6.0
xg(4,2)=1.0/6.0
xg(4,3)=1.0/2.0
xg(4,4)=1.0/6.0

xg(5,1)=1.0/6.0
xg(5,2)=1.0/6.0
xg(5,3)=1.0/6.0
xg(5,4)=1.0/2.0

end if
cg(1)=-4.0/5.0
cg(2)=9.0/20.0

return

end

a
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SUBROUTINE GFMFEM

PARAMETER (maxel =250000 )
PARAMETER (maxnp = 50000 )

PARAMETER (maxbc =25000 )
PARAMETER (maxdf = maxnp*4 )
PARAMETER (maxst = 80 )
PARAMETER (maxfr =2000 )
PARAMETER (ndim =3 )

IMPLICIT double PRECISION(a-h,0-z)

CHARACTER
CH(150)*1,SF*4,CC*2,FNAME*30,VL*2,VM*2 VN*2,CD*4,CE*5
CHARACTER C1*¥2,C2*2,CW*4
CHARACTER filnam (80)
DIMENSION NOD(27)
DIMENSION cord(maxnp, ndim),node (maxel, 27)

WRITE (%,130)
130 FORMAT(1X,'Enter GFORM file name ',$)

READ (*,135) FNAME
135 FORMAT (A30)

OPEN (UNIT=1,FILE=FNAME,FORM=FORMATTED")

OPEN (UNIT=2,STATUS='SCRATCH',FORM=FORMATTED')
OPEN (UNIT=3,STATUS='SCRATCH',FORM=FORMATTED")
OPEN (UNIT=4,STATUS='SCRATCH',FORM=FORMATTED')
OPEN (UNIT=5,FILE='MESH.FEM',FORM=FORMATTED')
OPEN (UNIT=6,FILE="input.dat ,FORM=FORMATTED')

OPEN (UNIT=7,STATUS='SCRATCH',FORM=FORMATTED')
OPEN (UNIT=8,STATUS='SCRATCH',FORM=FORMATTED")
OPEN (UNIT=9,STATUS='SCRATCH',FORM=FORMATTED")
OPEN (UNIT=10,STATUS='SCRATCH',FORM=TFORMATTED")
OPEN (UNIT=11,STATUS='SCRATCH',FORM=FORMATTED")
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1111  PRINT *," Enter the scale factor: any number between 0.5 and 2 "
READ*, scale
[F(scale < 0.5 .OR. scale >2) THEN
PRINT*, " Invalid scale factor, try again."

GOTO 1111

END IF

DO WHILE ( I0S.EQ.0)
READ (1,/(150A),ERR=300,END=300,I0STAT=I0S) (CH(J),J=1,150)
CC=CH(1)//CH(2)
CD=CH(1)//CH(2)//CH(3)
CE=CH(1)//CH(2)//CH(3)//CH(4)//CH(5)

IF (CC.EQ.ND"THEN
WRITE (2,/(100A)") (CH(K),K=4,100)
WRITE (8,(100A)") (CH(K),K=4,100)
NND=NND+1
ENDIF

IF (CC.EQ.'EL)THEN
WRITE (2,/(100A)") (CH(K),K=4,100)
WRITE (8,(100A)") (CH(K),K=4,100)
NEM=NEM+1
ENDIF

IF (CD.EQ.'VND') THEN
WRITE (3,'(50A)') (CH(K),K=5,30)
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WRITE (10,/(150A)) (CH(K),K=7,85)
NNP=NNP+1

ENDIF

IF (CW.EQ.ND"THEN
WRITE (7,'(100A)") (CH(K),K=4,100)
WRITE (11,/(100A)") (CH(K),K=4,100)
NND=NND+1

ENDIF

IF (CW.EQ.'VX")THEN
WRITE (7,(100A)") (CH(K),K=4,100)
WRITE (11,'(100A)') (CH(K),K=4,100)
NND=NND+1

ENDIF

IF (CW.EQ.'VY"THEN
WRITE (7,'(100A)") (CH(K),K=4,100)
WRITE (11,'(100A)") (CH(K),K=4,100)
NND=NND+1

ENDIF

IF (CW.EQ.'VZ)THEN
WRITE (7,'(100A)") (CH(K),K=4,100)
WRITE (11,(100A)") (CH(K),K=4,100)
NND=NND+1

ENDIF

ENDDO

300 REWIND 2
REWIND 3
REWIND 4
REWIND 7
REWIND 8§
REWIND 9
REWIND 10
REWIND 11

C  NODAL COORDINATES

DO I=1,NND
READ (2,*) N,X,Y,Z
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ENDDO

C010908

DO I=1,NND
READ (7,* ERR=333,END=333,I0STAT=I0S) K,VX,VY,VZX,Y,Z
WRITE (11) VX,VY,VZ,X,Y,Z
ENDDO
333 REWIND(7)

C  ELEMENT CONNECTIVITY

DO I=1,NEM
READ (2,*) NNEE,SF,NSF,NPE,(NOD(K),K=1,NPE)

WRITE (5,120) LNOD(2),NOD(6),NOD(5),NOD(1),NOD(3),
1 NOD(7),NOD(8),NOD(4)

120 FORMAT (918)
ENDDO

C  VELOCITY BOUNDARY CONDITION

DO J=1,NNV
READ (3,1601) ND,VL,CU,V,NT,NP,VM,VN
1601 FORMAT (17,A2,A1,G20.8,215,A2,A3)

C

IF (NP.EQ.0) THEN
l----VND,ND,VX,VAL
IF (VL.EQ.'VX') THEN
WRITE (5,'(215,F10.4)") ND,NCODEL,V
l----VND,ND,VY,VAL
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END IF

NVN=NVN+1
NBC=NBC+1

ELSE IF (NP.EQ.1) THEN

IF (VL.EQ.'VX') THEN

l--——--VND,ND,VX,VAL,ND,NPE,VY,VZ

IF((VM.EQ.'VY").AND.(VN.EQ.'VZ'"))THEN
WRITE (5,'(215,F10.4)") ND,NCODE1,V
WRITE (5,'(215,F10.4)') ND,NCODE2,V
WRITE (5,'(215,F10.4)") ND,NCODE3,V
NVN =NVN +3
NBC =NBC +3
“VND,ND,VX,VAL,ND,NPE,VY
ELSE IF (VM.EQ.'VY") THEN
WRITE (5,'(215,F10.4)') ND,NCODE1,V
WRITE (5,'(215,F10.4)") ND,NCODE2,V
NVN =NVN +2
NBC =NBC +2
“VND,ND,VX,VAL,ND,NPE,VZ
ELSE IF(VM.EQ.'VZ') THEN
WRITE (5,'(215,F10.4)') ND,NCODE1,V
WRITE (5,'(215,F10.4)') ND,NCODE3,V
NVN =NVN +2
NBC = NBC +2

EISE IF(VL.EQ.'VX")Then
VND,ND,VX,VAL,NPE
WRITE (5,'(215,F10.4)") ND,NCODE1,V
NVN=NVN+1
NBC=NBC+1
END IF
END IF
VND,VY,VALND,NPE,VZ
ELSE IF(VL.EQ.'VY".AND.(VM.EQ.'VZ"))THEN
WRITE (5,'(215,F10.4)") ND,NCODE2,V
WRITE (5,'(215,F10.4)") ND,NCODE3,V
NVN =NVN +2
NBC =NBC +2
ELSE IF(VL.EQ.'VY")then
WRITE (5,'(215,F10.4)") ND,NCODE2,V
NVN=NVN+1
NBC=NBC+1
ELSE IF(VL.EQ.'VZ') THEN
WRITE (5,'(215,F10.4)") ND,NCODE3,V
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END DO

C PRESSURE BOUNDARY CONDITION

DO I=1,NNP
READ (4,'(15,G20.8)") PC,VP
WRITE (5,'(215,F10.4)' ) PC,NCODEP,VP
NBC=NBC+1
NAT=NAT+1

END DO

ncn=NPE
ngauss =3
nmat=1
ntep=1
icord=0

grav1=0.0
grav2=0.0
grav3=0.0
tolv=1e-05
tolp= 1e-05
tolc= 1e-05
rvisc = 80.0
power = 1.23
tref=293.0
tbco =0.014
taco =0.2
dispc = 0.2
pref=1.01325e5
roden = 1000.0

C

c  writing the data file
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write (6,'(215)') ncn,ngauss

write (6,'(415)") NND,NEM,NBC,nmat

write (6,'(215)") ntep,icord

write (6,'(3f10.3)") gravl, grav2, grav3

write (6,'(3f10.5)") tolv,tolp,tolc

write (6,'(9d10.5)") rvisc, power, tref, tbco, taco,
1 dispc, pref, roden, gamad

C  NODAL COORDINATES

DO I=1,NND
READ (8,*) N,X,Y,Z
X=X/scale
Y=Y/scale
Z=7/scale
cord(I,1)=X
cord(I,2)=Y
cord(I,3)=2
WRITE (6,'(I8,3¢20.12)") N,X,Y,Z
ENDDO

C ELEMENT CONNECTIVITY

DO I=1,NEM
READ (8,*) NNEE,SF,NSF,NPE,(node(I,K),K=1,NPE)

if (NPE==4) then
WRITE (6,'(518)")I,node(1,3),node(1,2),
1 node(I,1),node(1,4)
else if (npe==8) then
WRITE (6,'(2117)") I,node(1,2),node(L,6),
2 node(1,5),node(1,1),node(1,3),
3 node(1,7),node(1,8),node(1,4)
else if (NPE==20) then
WRITE (6,'(10I8)") LNOD(2),NOD(6),NOD(5),
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C  VELOCITY BOUNDARY CONDITION

DO J= 1NNV

READ (9,1602) ND,VL,CU,V,NT,NP,VM,VN
1602 FORMAT (17,A2,A1,G20.8,215,A2,A3)

IF (NP.EQ.0) THEN
IF (VL.EQ.'VX') THEN
WRITE (6,'(215,F10.4)") ND,NCODE1,V
ELSE IF (VL.EQ.'VY') THEN
WRITE (6,'(215,F10.4)") ND,NCODE2,V
ELSE IF (VL.EQ.'VZ') THEN
WRITE (6,'(215,F10.4)") ND,NCODE3,V
END IF
ELSE IF (NP.EQ.1) THEN
IF (VL.EQ.'VX') THEN
IF((VM.EQ.'VY").AND.(VN.EQ.'VZ"))THEN
WRITE (6,'(215,F10.4)") ND,NCODE1,V
WRITE (6,'(215,F10.4)') ND,NCODE2,V
WRITE (6,'(215,F10.4)") ND,NCODE3,V
ELSE IF (VM.EQ.'VY') THEN
WRITE (6,'(215,F10.4)') ND,NCODE1,V
WRITE (6,'(215,F10.4)') ND,NCODE2,V
ELSE IF(VM.EQ.'VZ') THEN
WRITE (6,'(215,F10.4)') ND,NCODE1,V
WRITE (6,'(215,F10.4)') ND,NCODE3,V
EISE IF(VL.EQ.'VX')Then
WRITE (6,'(215,F10.4)") ND,NCODE1,V
END IF
ELSE IF(VL.EQ.'VY'.AND.(VM.EQ.'VZ'))THEN
WRITE (6,'(215,F10.4)") ND,NCODE2,V
WRITE (6,'(215,F10.4)") ND,NCODE3,V
ELSE IF(VL.EQ.'VY")then
WRITE (6,'(215,F10.4)") ND,NCODE2,V
ELSE IF(VL.EQ.'VZ') THEN
WRITE (6,'(215,F10.4)") ND,NCODE3,V
END IF
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C
C
C

C
C

@

DO I=1,NNP
READ (10,'(15,G20.8)") PC,VP
WRITE (6,'(215,F10.4)' ) PC,NCODEP,VP
END DO

@

OUTPUT OF RESULTS

@

PRINT *,"
PRINT *,"The geometry is discretized into a finite element
1 mesh of: "
PRINT *,""
PRINT *,NND,
1 "Nodes"
PRINT *,"
PRINT *,NEM,
2 "Elements"
PRINT *,"With"
PRINT *,NNP,
4 'Applied nodal pressure boundary conditions'
PRINT *,"And"
PRINT *, NVN,
5 "Applied nodal velocity boundary conditions'
PRINT *,"Giving a"
PRINT *)NBC,
3 'total number of applied boundary conditions

'

PRINT*,"!
PRINT*,' THE SHEAR RATE =',GAMAD

CLOSE (1)
CLOSE (2)
CLOSE (3)
CLOSE (4)
CLOSE (5)
CLOSE (6)
CLOSE (11)
print *,'
print *'

'
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This subroutine prepares output data to use for visualization
using Cosmos GeoStar software.

o Mo o o 0

(@]

subroutine cosmos
1 (nnp , vel , press , maxdf , maxnp ,icord ,

2 pmat, maxel, actpress ,nel )
c
implicit double precision(a-h,0-z)
C
c arguments are already defined
C

dimension vel (maxdf ), press (maxnp)
dimension pmat(maxel, 9), actpress(maxnp)
dimension vm  (nnp )

open(unit=610 , file="cosmGraph', access='sequential’,
Iform="formatted', status="unknown", iostat=ios )

write(610,3010) nnp, j, k

o

doi=1, nel
roden=pmat(1,8)
end do

o o

DO inp=1,nel
roden=pmat(inp,8)
END DO

do i=1,nnp
J=i
vm(j)=sqrt((vel(j,1)**2)+(vel(j,2)**2)+(vel(j,3)**2))
end do

o o o o

(@]

259



Appendix 3.2

Computer program

knp = inp + (2*nnp)
c actpress(inp)=roden*press(inp)*-1

actpress(inp)=roden*press(inp)
vm(inp)=sqrt((vel(inp)**2)+(vel(np)**2)+(vel(knp)**2))
write(610,3020)inp,vel(inp),vel(jnp),vel(knp),

1 vm(inp),actpress(inp)

6010 continue
close (610)
3010 format(3i5)
3020 format(iS5,4e13.4,e22.8)

6000 FORMAT(8X,'U",8X,"V',5X,'W',5X, 'M'
1 8X,'PRESSURE",/)

return
end
C
¢ This subroutine prepares output data to use for visualization
c using tecplot software.
C
subroutine tecplot
1 (nnp , vel , press , maxdf , maxnp ,icord |,
2 pmat , maxel, actpress, cord , ncn ,nel
3 node , ndim )
C
implicit double precision(a-h,o0-z)
C
¢ arguments are already defined
C
dimension vel  (nnp,3), press (maxnp) , pmat(maxel, 9)
dimension actpress(maxnp), cord (maxnp,ndim), node(maxel, ncn)
dimension vm  (nnp )
open(unit=614 , file="tecpGraph.dat', access='sequential’,
Iform="formatted', status="unknown", iostat=ios )
c  Compute the Magnitude of the resultant velocity
C

O o OO0
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o

Write the Techplot file for post-processing

¢ nnel=4*nel

write (614,1000)
write (614,2000) nnp, nel

roden=pmat(1,8)

do i=1,nnp
c J=i
c actpress(i)=roden*press(i)* -1

actpress(i)=roden*press(i)

write (614,5000) cord(i,1), cord(i,2), cord(i,3),
1 vel(i,1), vel(i,2), vel(i,3),

2 vm(i), actpress(i)

end do

c230908  do i=1,nel
c230908 J=i
c230908 write (614,6000) abs(node(j,1)), abs(node(j,2)), abs(node(j,9))

c230908 1 ,abs(node(},8))

c230908  write (614,6000) abs(node(j,2)), abs(node(j,3)), abs(node(j,4))
c230908 1 ,abs(node(j,9))

c230908 write (614,6000) abs(node(j,9)), abs(node(j,4)), abs(node(j,5))
c230908 1 ,abs(node(j,6))

c230908 write (614,6000) abs(node(j,8)), abs(node(j,9)), abs(node(j,6))
c230908 1 ,abs(node(j,7))

¢230908 end do

c Elemental connectivity for techplot files

do i=1,nel
C J=1
if (ncn==8)then
write (614,'(818)") abs(node(i, 1)), abs(node(i,2)), abs(node(i,6))
1 ,abs(node(i,5)), abs(node(i,4)), abs(node(i,3))
2 ,abs(node(1,7)), abs(node(i,8))
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close (614)
1000 forl,nat(/vvariables — HX"’ "Y","ZH’"UH,"V",”WH’HM"’"P"'/)
¢ 2000 format(/'ZONE N="i5,"E="i5,",F=FEPOINT,ET=QUADRILATERAL')
2000 format(/'ZONE N='i5,",E="15,",F=FEPOINT,ET=BRICK/)

5000 format(3e20.12,3e13.4,e13.4,e22.8)
6000 format(4i8)

return
end

e ndofprogram

(@)

(@]
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3k st st sk sfe sk sk sk sk sk sk st sk s sk sk sk sk sk sk st sk sk sk sk sk sk sk sk ste sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ste sk s sk sk sk sk sk ke ke skeoskoskoskoskoskok

% % %
%

* A three dimensional finite element model of a *

* Generalized-Newtonian isothermal flow using *

* the UVWP or the modified UVWP method. *

% *

% %

% *

3t s sk sk s sk sk s sk sk s sk sk s sk sk s sk sk s sk sk s sk sk s sk sk s sk sk s sk sk s sk sk s sk sk s sk sk s sk sk s sk sk sk sk sk sk skosk sk skosk sk sk sk sk

Sample output File.

[[[ element description data..........
no.of nodes per element = 8
no.of integration points = 3

*#* coordinate system is cartesian (planar) ***

[[[ mesh description data ..........

no.of nodal points = 9062

no.of elements = 7560

no.of nodal constraints on boundary = 8390
no.of different materials = 1

[[[ uniform body force vector ..........

gravl = 0.0000
grav2 = 0.0000
grav3 = 0.0000

sk sk sk sk sfe ke sk ske ke sk ske ke sk sk ke skeoskeoske skeoskeoke sk material prOpertieS*************************
id. eid.(from-to) consistency co-efficient power law index
1 17560 80.000 1.0000

reference temperature coefficient b reference pressure coefficient a

293.000 0.0140  0.101E+06 0.200
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Dispersion Coefficient

0.200

0.1E+04

Density Shear rate

0.20000

>k ok sk sk sk sk sk s ok s sk ok skosk sk sk sk nOdal Coordinates >k sk ok sk sk s sk s sk ok sk sk ook sk skoskosk ok

id.

~N NN kW -

9056
9057
9058
9059
9060
9061
9062

x-coord

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

1.000000
1.000000
1.000000
1.000000
1.000000
1.000000
1.000000

y-coord z-coord
0.000000 0.000000
0.008333 0.000000
0.016667 0.000000
0.025000 0.000000
0.033333 0.000000
0.041667 0.000000
0.050000 0.000000
0.058333 0.093750
0.100000 0.100000
0.091667 0.100000
0.083333 0.100000
0.075000 0.100000
0.066667 0.100000
0.058333 0.100000

3k sk st sfe s sk sk sk ok sk sk sk sk sk sk skoskokosk ok element Connectivity sk st st sk s sfe sk ok ok sk sk sk sk sk skoskoskoskosk ok

id. nodal-pointentries

1 79 2 1 78 8 9 8 85

2 8 3 2 79 87 10 9 86

3 8 4 3 8 8 11 10 &7

4 8 5 4 81 8 12 11 88

5 8 6 5 8 90 13 12 &9

6 8 7 6 83 91 14 13 90

7 8 9 8 8 93 16 15 92
7554 8802 8774 9026 9050 8809 8781 9032 9056
7555 9052 9028 9027 9051 9058 9034 9033 9057
7556 9053 9029 9028 9052 9059 9035 9034 9058
7557 9054 9030 9029 9053 9060 9036 9035 9059
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7559 9056 9032 9031 9055 9062 9038 9037 9061
7560 8809 8781 9032 9056 8816 8788 9038 9062

sk sk s sk s sk sk sk ok ook sk skeosk skok skoskesk kosk sk nOdal Constraint s ke sk sk sk s sk s sk sk sk sk ook sk ke sk skeosk skosk skokosk

—
&

dof value

0.1000
0.0000
0.0000
0.1000
0.0000
0.0000
0.1000
0.0000
0.0000
0.1000
0.0000
0.0000
0.1000
0.0000
0.0000
0.1000
0.0000
0.0000
0.1000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

O O OO I I I UNUNUND PR DNWWWNDDNDND A~ ——
W N = W= WA= WK — W — WK — WK == WN — WN —

4639 4 0.0000
4645 4 0.0000
4651 4 0.0000

265



Appendix 3.3 Sample output file
Total number of time steps = 5
Deltat = 0.0010
iteration no. 5
nodal velocities and pressures
id. u \% z press
1 0.1000E+00 0.0000E+00 0.0000E+00 0.37831296E+02
2 0.1000E+00 0.0000E+00 0.0000E+00 0.37732291E+02
3 0.1000E+00 0.0000E+00 0.0000E+00 0.37624267E+02
4 0.1000E+00 0.0000E+00 0.0000E+00 0.37558306E+02
5 0.1000E+00 0.0000E+00 0.0000E+00 0.37518140E+02
6 0.1000E+00 0.0000E+00 0.0000E+00 0.37495612E+02
7 0.1000E+00 0.0000E+00 0.0000E+00 0.37487137E+02
9056 0.0000E+00 0.0000E+00 0.0000E+00 0.48201533E+00
9057 0.0000E+00 0.0000E+00 0.0000E+00 0.00000000E+00
9058 0.0000E+00 0.0000E+00 0.0000E+00 0.99745670E-01
9059 0.0000E+00 0.0000E+00 0.0000E+00 0.20045870E+00
9060 0.0000E+00 0.0000E+00 0.0000E+00 0.29998994E+00
9061 0.0000E+00 0.0000E+00 0.0000E+00 0.39553431E+00
9062 0.0000E+00 0.0000E+00 0.0000E+00 0.48493800E+00
node no. max ux node no. min ux
231 0.23911295E+00 9003 -0.41400282E-02
node no. max uy node no. min uy
7849 0.17519545E+00 2349  -0.22368228E-01
node no. max uz node no. min uz

77 0.13617839E+00 1020

-0.16184282E-01
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PROGRAM MANUAL

The Fortran software is incorporated in the Visual Studio 2005, it can be found by

clicking on Start\Programs\Microsoft Visual 2005\ Microsoft Visual 2005. Once the

software opened, click on Open Project followed by double clicking on the desired

project name in order to open it.

If the program is to be run for the first time, then it is a good practise to rebuild it by

clicking on Build\Rebuild Flowsolution09. Bear in mind that Flowsolution09 is used in

this manual simply because it was a name given to the program. Once the Building

process successfully done, then the program can be run by following the steps described

below

» Step 1:
» Step 2:
» Step 3:

» Step 4:

» Step 5:

» Step 6:

» Step 7:

Click on Debug

Select Start Without Debugging

When prompted to enter the GFORM file name then type in the

Name of the gfm file created using GeoStart followed by the

.gfm extension, and hit the Enter key from the keyboard.

Enter the desired scale factor (1 is usually preferred) press the
Enter key again.

The steps described above will create the data file and display
the basic discretizations variables (nodes, elements, and
boundary conditions) on the screen.

At this stage, the user will be prompted to enter the date file
name created in step 5. Type in the file name with the .dat
extension and press the Enter key. In this program, the data file
name is set to input.dat.

Once step 6 completed, the user will be prompted to enter the
Number of time steps desired. Press the Enter Key after entering

the value.
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» Step 8: Enter the value of delta t when prompted, then hit the
Enter key.
» Step 9: Enter the value of alpha and press the Enter key once again.

» Step 10:  The last step of the process consists of choosing the desired
scheme, and this can be achieved by typing 1 for the UVWP
scheme or 2 for the modified UVWP scheme. Then followed
by a last hit on the Enter key.

The following tutorial is used to illustrate the 10 steps described above. In this tutorial, a
gfm file will be created after the geometry definition, meshing, and the specification of
the boundary conditions. The gfm file will be given the name model.gfm, which will be
used at later stage to create the data file. The data file will be given the name input.dat.

The user must consul the “Help” section of GeoStar where he/she could get further
information about the software. The user is strongly advised to try the GeoStar tutorials

available from the “Help” section.

The domain in this tutorial consists of a simple rectangular box of 1m length, 0.1m width
and 0.1m high and there is no obstruction to the flow as shown in figure A4.1. The
computational domain is discretized using 8-noded hexahedral isoparametric elements
into a mesh of 3751 nodes, and 3000 elements and the prescribed boundary conditions
are as follow; the fluid enters the domain with a velocity of 0.1m/s perpendicular to the
inlet; the other components of the velocity (v, and w) are zero (see figure A4.2 through
A4.3). The only prescribed boundary condition at the outlet is a zero datum pressure, and

the no-slip conditions are applied to the remaining sides of the rectangular box.
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Figure A4.1: Geometry of example 1.

t: Outlet:
0 P=0
0.1m/'s

Figure A4.2: 2-D schematic representation of the boundary condition in
the xy plane.

Inlet:
v=w=0
u=0.1m's

Outlet:
P=0

Figure A4.3: 2-D schematic representation of the boundary condition in
the xz plane.
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Pre-processing steps

» Begin the step by clicking on Start\Programs\Cosmos Applications\GeoStart 256.

» Select My Documents, and create a new folder (TutoExple in this case).

» Double click this newly created folder (TutoExple) and type in model in the file
name dialog box then click on the “Open” button.

» Select “Yes” from the “Open Problem Files™.

» Click on Status 1 from the Geo Panel (left hand side of the screen) and check the
PT, CR, SF and VL under the “Labl” tag. Once this is done, click on the “Save”
button.

» The next step consists on creating 8 points with the following coordinates:

Point 1 (0,0,0), point 2 (0,0.1,0), point 3 (1, 0.1, 0), point 4 (1, 0,0).

point 5 (0,0,0.1), point 6 (0,0.1,0.1), point 7 (1,0.1,0.1),and point 8 (1, 0, 0.1).

This can be achieved by clicking on Geometry\Points\Define from the Geo Panel.
» Click on “Auto” under the “Scale” tag from the Geo Panel in order to get a better

view of the points created. The user is expected to get an image similar to one

given by figure A4.4.

Figure A4.4: 8 Points representation.
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» Since the domain in this example consists of a simple rectangular box, one can
create the volume directly by linking the 8 points as follow:
Click on Geometry\Volumes\8 points from the Geo Panel, and then enter numbers
1 to 8 into the Vertex Keypoint dialog boxes. Click the “OK” button once this is

done.

The user is expected to have an image similar to the one given by figure A4.5

Figure A4.5: Volume representation.

» The next step is to proceed with the finite element discretization of the domain into
elements and the associated nodes. This can be achieved by selecting
Meshing\Parametric Mesh\Volumes from the Geo Panel. Keep unchanged the
default value of 8 (representing 3D brick element) from the number of nodes per
element, but enter 10 into the number of elements on the first curve, 30 into the
number of elements on the second curve, and 10 into the number of elements

on the third curve dialog boxes. Leave the remaining values from the dialog boxes
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unchanged and click the “OK” button.
» The previous action discretized the domain into a finite element mesh of 3000
elements and 3751 nodes (see figure A4.6). This can be verified by clicking on the

Status 1 button from the Geo Panel.

Figure A4.6: Finite element mesh

Note: For complex geometries, it is important to merge the nodes and elements
after the discretization of the domain. This can be done as follow:
For nodes; click on Meshing\Nodes\Merge and when the NMERGE window
appear keep all the values to their default values, then press the “OK” button.
Once this is done, click on Meshing\Nodes\Compress from the Geo Panel.

This will lead the user to the NCompress window where one needs
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to click on the “OK” button to complete the task.

Similar actions must be performed for elements by clicking
Meshing\Elements\Merge Elements and the “OK” button followed by
Meshing\Elements\Compress.

» The next step is to assign boundary conditions to the discretized domain. To this
end, click on Clear Screen (CLS) button (bottom left side) from the Geo Panel,
then plot the Domain by clicking on Edit\Plot\Surfaces from the Geo Panel, this

will give an image shown by figure A4.7.

Figure A4.7: Surface plot

The inlet in figure A4.7 is represented by surface 3, the outlet by surface 4, while the

solid walls are represented by surfaces 1, 2, 4, and 6.
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» Click on LoadsBC\Fluid Flow\Velocity\Define by Surfaces from the Geo Panel,
and enter the following data from the “VSF” dialog box.

Beginning Surface: 3

Velocity label: VX; Velocity in X
Value: 0.1

Increment: 1

Then click on “OK”.

Repeat the same operation to specify the boundary conditions in the VY, and VZ

direction with a value of O each.

At the end of these operations, the user is expected to have a figure similar to figu
re A4.8.

Figure A4.8: Inlet boundary conditions
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The boundary conditions on the solid walls (surfaces 1, 2, 4, and 6) can be specified as
for the inlet case but with the following differences:

Velocity label: Al; Velocity in all

Value: 0.

The boundary conditions at the exit (surface 5) can be specified as follow

» Click on LoadBC\Fluid_Flow\Pressure (Nodal)\Define by Surfaces, then from the
“NPRSF” dialog box enter
Beginning surface: 5
Value: 0
Ending surface: 5
Increment: 1
And click “OK”.

At the end of these operations, the user is expected to have a figure similar to figure A4.9

Figure A4.9: Domain with boundary conditions.
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Note: To avoid viewing the mesh attached to the 3D contour plot during the post-

processing, it is important at this stage to do the following operation:

From the Geo Panel, click on Display\Display Option\Eval Element bound, then select
“Yes” as values of the boundary face evaluation and boundary edge evaluation boxes and

click “OK”.

The last step of the pre-processing stage is the creation of the .gfm file. This can be

achieved by the following operation.

» From the Geo Panel, click Control\Utility\Create GFM file, then click “Continue”
following by a second click on the “OK” button.

This mark the end of the pre-processing steps.

Note: GeoStar will automatically give the geometry name plus the .gfm extension

(model.gfm for this tutorial) to the GFM file created.

Solver steps

Before proceeding to the solution of the problem, the user must make sure that a copy of
the GFM file (model.gfm for this tutorial) created is copied and pasted in the folder
containing the FORTRAN program (My Documents\Visual Studio
2005\Projects\3FlowSoluFinal09C\FlowSolution(09; for this tutorial). Once this done,
Then the program can be run by performing the operations as explained in steps 1

through 10 which can be summarise here as:
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From the FORTRAN software (Microsoft Visual Studio 2005)

» Click Debug\Start without Debugging, then enter the name of the GFM file
(model.gfmfor this tutorial) when prompted, and press the Enter key.

» Type in the desired scale factor (1 is usually the best value) and hit the Enter key
again.

These last two actions will create a data file with the name input.dat then display

information about the finite element mesh (number of nodes, elements, boundary

conditions...) on the screen.

» When prompted type in the data file name (input.dat) and press the Enter key.

» Enter the desired time steps and press the Enter key.

» Type in the value of delta t and hit the Enter key.

» Enter the value of alpha and press the Enter key.

» Select the desired numerical scheme (1 or 2) then press the Enter key to start the

solution process.

Once the solution process terminated, the program will create two output files
(CosmGraph and tecpGraph.dat) that the user can use to proceed with the post-

processing.

CosmGraph can be used for post-processing analysis via Cosmos GeoStar software,

while tecpGraph.dat can be used with Tecplot software.

277



Appendix 4 Program manual

Note: If Cosmos GeoStar is chosen as post-processing software, then the user must copy

the CosmGraph file and paste it to the desktop location before visualizing the variables.

Post-processing via Cosmos GeoStar software

Once a copy of the CosmGraph file is saved on the desktop, the user can go the Geo
Panel menu then click on Results\Plot\User Results in order to get the plot window
(ACTUSRPLOT). Click on find, then select the CosmGraph file which is saved on the
desktop and click open. Once this done, the user can now plot the variables (pressure and
velocity) in term of contour and section plots.

The numbers in “Component number” dialog box represent the different components of

the velocity (1 for U, 2 for V, 3 for W, and 4 for their magnitude) and pressure (5).

For instance the pressure contour plot can be obtained by selecting 5 as value of
Component number and press the “Contour plot” button from the “ACTUSRPLOT”
window. This will give a plot given by figure A4.10

The velocity magnitude contour plot can be obtained similarly but with the difference
that 4 must be entered as the value of Component number, and the plot is as given by

figure A4.11

278



Appendix 4 Program manual

Figure A4.10: Pressure contour plot.

Figure A4.11: Velocity magnitude contour plot.
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Section plots can be obtained similarly, but by pressing Section plot button instead of the
Contour plot button. Once the Section plot button pressed, the user will be prompted to
choose a desired plan in the “Orientation of section planes” dialog box from the
“SECPLOT” window. Click the continue button after choosing the desired plan, then
type in the number of plan needed and select 1: Yes (if the section plot (s) is or are to
plotted at specific location(s)) otherwise leave it to its default value of 0: No. Once this

done, click the continue button again followed by a last click on the OK button.

Some sample of section plots are given by figures A4.12 through figure A4.13

Figure A4.12: Pressure section plot in the Z plan.
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Figure A4.12: Velocity magnitude section plot in the Y plan.

Figure A4.12: Velocity magnitude section plot in the Z plan.
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Post-processing via Tecplot software

Once the Tecplot software is turn on, then do the following

» Select File\Load Data File(s), then select Tecplot Data Loader from the
“Select Import Format” window.
» Select the Tecplot output file (tecpGraph.dat) from its location and click OK from
the “Select Initial Plot” window.
P If the orientation of the geometry is not as expected, then this can be corrected
by clicking on X, Y, or Z button under “Option and Tools”, then move the mouse
over the geometry to change the orientation.
» Click on View\Fit to Full Size to have a good view of the object.
» Uncheck the Mesh dialog box from the “Zone Surface”.
» Check the Contour dialog box to make contour plots. Click the “...” button opposi
te to Contour and select the Legend tag to add a legend to the plots.
The “Contour & Multi-Colouring Details” window contains information about the
variables. Pressure is represented by P, the components of the velocity vector
by U, V, W, and M for their magnitude.
» Pressure contour can be plotted by selecting P from the “Contour & Multi-

Colouring Details”. This will give a plot as given by figure A4.13.
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Figure A4.13: Pressure contour.

P Selecting M will plot the velocity magnitude shown by figure A4.14

» To plot section of plots, the user must uncheck the Contour from the “Zone
Surfaces”, then check the “Shade” and “Translucency” boxes, and checked
the “Slice” box under “Derived Objects”. Click the “...” button opposite to
“Slice” to get the “Slice Details” window from which different plot planes can

be obtained. Vectors plot can be obtained by clicking the “Vector” tag from
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the “Slice Details” window then checking the “Show Vectors” dialog box and

pressing the OK button from the “Select Variable” window. The length of the

vectors can be modified by clicking of “Plot” from the main menu (top screen)
then select “Vector\Length\, and choose “Uniform” or one of the Relative

options.

Some samples of the velocity magnitude and section plots are given by figure A4.14

through figure A4.19.

Figure A4.14: Velocity magnitude contour.
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Figure A4.15: Pressure section plot in the Z plan.
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0.006

Figure A4.16: Velocity magnitude section plot in the Y plan.
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M

0.095
0.09
0.085
0.08
0.075
0.07
0.065
0.06
0.055
0.05
0.045
0.04
0.035
0.03
0.025
0.02
0.015
0.01
0.005

Figure A4.17: Vector section plot of the velocity magnitude in the Y plan.
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0.005

Figure A4.18: Velocity magnitude section plot in the Z plan.
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M

0.095
0.09
0.085
0.08
0.075
0.07
0.065
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0.055
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0.04
0.035
0.03
0.025
0.02
0.015
0.01
0.005

Figure A4.19: Vector section plot of the velocity magnitude in the Z plan.
Closure
The aim of this tutorial is to initialise the user to the Cosmos GeoStar (pre-processing and
post-processing parts), FORTRAN (solver), and Tecplot (post -processing) environments.

The user is strongly advised to try the tutorials available from the help sections of both

Cosmos GeoStar and Tecplot software for further information.
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