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ABSTRACT 

 

Three dimensional flow regimes are encountered in many types of industrial flow 

processes such as filtration, mixing, reaction engineering, polymerization and polymer 

forming as well as environmental systems. Thus, the analyses of phenomena involved 

fluid flow are of great importance and have been subject of numerous ongoing research 

projects. The analysis of these important phenomena can be conducted in laboratory 

through experiments or simply by using the emerging computational fluid dynamics 

(CFD) techniques. But when dealing with three dimensional fluid flow problems, the 

complexities encountered make the analysis via the traditional experimental techniques a 

daunting task. For this reason, researchers often prefer to use the CFD techniques which 

with some care taken, often produce accurate and stable results while maintaining cost as 

low as possible. 

Many CFD codes have been developed and tested in the past decades and the results have 

been successful and thus encouraging researchers to develop new codes and/or improve 

existing codes for the solutions of real world problems. 

In this present project, CFD techniques are used to simulate the fluid flow phenomena of 

interest by solving the flow governing equations numerically through the use of a 

personal computer. The aim of this present research is to develop a robust and reliable 

technique which includes a novel aspect for the solution of three dimensional generalized 

Newtonian fluids in domains including obstructions, and this must be done bearing in 

mind that both accuracy and cost efficiency have to be achieved. To this end, the finite 

element method (FEM) is chosen as the CFD computational method. There are many 

existing FEM techniques namely the streamline upwind Petrov-Galerkin methods, the 

streamline diffusion methods, the Taylor-Galerkin methods, among others. But after a 

thorough analysis of the physical conditions (geometries, governing equations, boundary 

conditions, assumptions …) of the fluid flow problems to be solve in this project, the 

appropriate scheme chosen is the UVWP family of the mixed finite element methods. It 

is scheme originally developed to solve two dimensional fluid flow problems but since 

the scheme produced accurate and stable  
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results for two dimensional problems, then attempt is made in this present study to 

develop a new version of the UVWP scheme for the numerical analysis of three 

dimensional fluid flow problems. But, after some initial results obtained using the 

developed three dimensional scheme, investigations were made during the course of this 

study on how to speed up solutions’ convergence without affecting the cost efficiency of 

the scheme. The outcomes of these investigations yield to the development of a novel 

scheme named the modified three dimensional UVWP scheme. Thus a computer model 

based on these two numerical schemes (UVWP and the Modified UVWP) is developed, 

tested, and validated through some benchmark problems, and then the model is used to 

solve some complicated tests problems in this study. Results obtained are accurate, and 

stable, moreover, the cost efficiency of the computer model must be mentioned because 

all the simulations carried out are done using a simple personal computer. 

 

Keywords:   Computational fluid dynamics, CFD, Computational methods, Fluid flow, 

Generalized Newtonian fluids, Mathematical modelling, Modelisation, simulation et 

analyse numerique, Navier-Stokes, Numerical analysis, Stokes.   
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Purpose of the present study  

 

Complex three dimensional flow regimes are encountered in many types of industrial 

flow processes such as filtration, mixing, reaction engineering, polymerization and 

polymer forming as well as environmental systems. In this project after investigating the 

effectiveness of different finite element techniques for the modelling of three dimensional 

viscous flows in three dimensional domains with obstructions, a robust and reliable 

model has been developed. This model has been applied to solve a number of benchmark 

problems and its accuracy and validity have been evaluated. 

Majority of commercially available CFD packages such as Phoenics, Star-CD, Star-

CCM, Fluent, and Flow3D are based on the finite volume method. Despite the rigour of 

its underpinning concepts the finite volume method does not provide mathematical 

flexibility required to solve some specific types of problems unless it is essentially based 

on a finite element approximation on a computational cell level.  

Traditionally relatively high cost of three dimensional finite element computations has 

been regarded as a drawback for this method which has provided a motive for using finite 

volume approach. One of the main achievements of this work has been to show that very 

effective low cost three dimensional finite element models of complex flow problems can 

be developed. Therefore it has been demonstrated that finite element schemes can be 

extended to complex cases such as those involving multiscale phenomena whilst 

maintaining computing economy.  Another advantage of using the finite element method 

in this study is that it provides a straightforward way of dealing with non-linear terms in 

the model equations. This point has been elaborated in later chapters and has shown that a 

finite element based approach has wider applicability in the modelling of flow processes 

and can easily be used in cases which involve non-Newtonian fluids. Finite volume based 

CFD models are generally designed to solve Newtonian flow problems. 
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1.2 Outcome and method of  study 

 

As described the main focus of the current project has been the development of a robust, 

reliable and cost effective computer model for the solution of three-dimensional viscous 

flow problems in domains including obstructions. The deliverable product of this work is, 

therefore, a software which can be used in many types of industrial design involving flow 

processes. The software can be used to simulate fluid flow inside three dimensional 

domains and to visualize the results in form of plots such as contour, and vector plots.   

In order to reach this end, the work undertaken in this current study has involved the 

following steps: 

 

 (i) Formulation of a well posed mathematical problem for the analysis of         

  time dependent generalized Newtonian fluid in three-dimensional  

             domains with and without obstructions. 

(ii)  Selection of appropriate boundary conditions for simulating the problem 

of interest. 

(iii) The creation of a user-friendly software, with a numerical approach   

capable of solving the problem defined in parts (i) and (ii). 

(iv) Checking and validating the developed model using well known 

benchmark problems. 

(v) Checking the developed computer code through different test cases of 

generalized Newtonian fluids, and then validating the code by the 

principle of mass balance.      
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1.3 Structure of the thesis 

 

The present thesis is composed of a total of six chapters with additional parts devoted to a 

list of references cited within the text and appendices. The thesis begins with the 

introduction (chapter 1) in which preliminary explanations including processes being 

modelled, the objective and the significance of the project are given. Reviews of past 

research works undertook on the modelling of incompressible flow using computational 

fluid dynamics (CFD), and a brief details of the numerical methods used in CFD are 

given in chapter 2. In chapter 3 an overview of governing equations of a generalized fluid 

is given in general, and then from the assumptions made in the current study the 

governing equations characterizing the physics of the problem to be solved are derived. 

Chapter 4 provides a detailed discretization procedure of the flow governing equations 

using the two developed numerical methods. Results and discussions are presented in 

chapter 5, while the conclusion and recommendations for future work are summarised in 

the last chapter (chapter 6) of the thesis. A list of all the references used in this present 

study and the appendices are given after the sixth chapter.   

Appendix section provides a detailed manual explaining the implementation of the 

software developed in this project, additional explanations regarding the structure of the 

main software and a list of the source code. 
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CHAPTER 2 

 

LITERATURE REVIEW AND BACKGROUND OF THE USED NUMERICAL 

SCHEMES  

 

2.1 Introduction 

 

Processes involving fluid flow are of great importance in many branches of engineering, 

namely chemical, aeronautical, civil and biochemical engineering. However, some of the 

most modern technologies which depend on fluid systems such as bio-visco-elastic 

regimes encountered in medical engineering, non-isothermal elastomeric flows occurring 

in rubber products manufacturing and particle capturing in filtration are so complex that 

obtaining empirical design relationships for them by the traditional experimental 

techniques is not possible. Therefore the development of reliable, robust and cost 

effective computer models for the simulation of such flow processes have been subject of 

numerous ongoing research projects. Researchers from different backgrounds have 

carried out considerable work aiming to reach this end, and most of the works done have 

been carried out using computational fluid dynamics (CFD) techniques. 

 CFD is defined as a tool for analysing systems involving fluid, heat transfer and 

associated phenomena such as chemical reactions by means of computer based 

simulation (Versteeg and Malalasekera 1995). The main computational methods at the 

core of the CFD techniques are the finite difference methods (FDM), the finite element 

methods (FEM), and the finite volume methods (FVM). There are extensive literatures 

available for each of these techniques. 

For FDM see Thomas (1995), Ciarlet et al.(1980), Ozi (1994), El-Nakkla (1987), Smith 

(1985), Wang (c1982), Biggings (1980), Forsythe et al. (1960), Duffy (2006), Bowen 

(2005), Shashkov and Steinberg (1996), and Voller (c2009), among others. 

For FVM see LeVeque (2002), Versteeg and Malalasekera (1995, 2007), Schneider and 

Raw (1987), Masson and Baliga (1994), and Darbandi and Schneider (1999). For FEM 

see Masson et al.(1994), Darbandi and Schneider (1999), Donea and Huerta (2003), 

Lohner (2008), Wriggler (c2008), Nassehi (2002), Bochev and Gunzburger (2007),  

4 
 



Chapter2                                                                                           Literature review   
 

 

Pian and Wu ( 2006), Brenner (c2002), Chen and Shih (1996), Fenner (1996), Beer and 

Watson (c1992), Gunzburger (c1989), Girault and Raviart (c1986), Kikuchi (1986), AT 

Luri et al. (c1983), Baker (c1983), Akin (1982), Zienkiewick and Cheung (1965), 

Zienkiewick and Taylor (1991), Zienkiewick and Codina (1995), Pironneau (1989), and 

Oden (1972), among others.  

 

FVM is the most commonly used CFD tool for three dimensional fluid flow modelling, 

however, as mentioned earlier FEM which was primarily regarded as too costly can now 

be used to generate more flexible and reliable results. Further details about how these 

computational methods are formulated will be given later in this chapter. In the following 

section, however, the focus is the review of some of relevant publications on the 

modelling of fluid flows.  

 

 

2.2 A survey of published literature 

 

In 2005 Nassehi et al. (2005) modelled fluid flow through pleated cartridge filter using 

finite element method (FEM), the computational domain of interest in their work 

consisted of a combination of free and porous regions and the flow was assumed to be 

governed by the Stokes equation in the free regime and by the Darcy equation in the 

porous region. They developed two 2D finite element schemes using perturbed continuity 

method and mixed formulation for obtaining the solutions of the described problem. 

These models were in conjunction with equal order and Taylor-Hood interpolation 

functions, respectively. These two schemes were tested on different problems (using 

simple and complex geometries) and the results obtained showed that the mixed 

formulation scheme provided accurate and stable solutions to the problems no matter how 

complex the selected domain geometry became whilst the perturbed scheme, even though  
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provided accurate and stable solutions for simple geometry cases, yielded spurious and 

oscillatory pressure solutions for complex geometries. 

Four years later, Hanspal et al. (2009) investigated fluid flows in cross-flow membrane 

filtration, the domain of interest in their study was modelled as coupled free/porous 

regimes and the fluid was governed by Stokes/Darcy equations. In their approaches to the 

problem, they used the U-V-P family of the mixed finite element method in conjunction 

with unequal order interpolation functions for velocity and pressure, and then developed 

a two-dimensional numerical scheme capable of solving the problem. The developed 

scheme was tested on two problems, the computational domain of the first problem 

consisted of a rectangular cross-flow membrane filtration with a flat interface between 

the two regimes (free and porous) whilst for the second problem, the flat interface was 

replaced by a curved interface placed at the same location than the one from the first 

problem. Using two different values of permeability ( ) they concluded 

from the solutions obtained that the scheme yield stable and accurate solutions which 

were validated by calculating the mass balance in both domains. As explained in later 

chapters these works have been the main starting step of the present project. However, 

other works have also influenced the development of the present models and are 

discussed here. 

2126 1010 mand −−

In the late 1990’s, Kumar and Naidu (1998) who were interested in simulating nonlinear 

pulsatile flow of a viscous fluid through a stenosed vessel used the U-V-P scheme with a 

completely different approach. In their approach, they used the Galerkin weighted 

residual method to discretize the spatial variables while the temporal variable was 

discretized through a combination of the explicit Adams-Basuforth formula as predictor 

and the A-stable implicit trapezoidal rule as the corrector. The computational domain in 

their study was discretized using a 9-noded Lagrange element and the simulations were 

carried out for different time steps. Solutions obtained for these time steps were 

compared with results obtained by previous researchers (O’Brien 1985 and Sako 1962) 

and the comparison were in good agreement.  Zhang (2006) used a different scheme of 

the FEM, namely the modified pressure correction method to solve incompressible and  

6 
 



Chapter 2                                                                                           Literature review 
 

 

viscous flow problems on an unstructured Chimera grid. To reach this end, he divided the 

computational domain into sub domains then solved the governing flow equations 

(Navier-Stokes) independently before transferring information across the interior 

boundaries via Scharz method to couple the solutions of each sub domain.  In his 

approach, he discretized the spatial variable using second order upwind scheme while the 

temporal variable was discretized via the Crank-Nicholson scheme. The field unknowns 

in his work were interpolated using Rhie-Chow interpolation functions (Demirdzic and 

Muzaferija 1995). This scheme prevents the unphysical decoupling of the pressure field 

in the overlapping regions and yields a smoother result. The only drawback of this 

scheme is an increase in the total number of grid points, which can eventually affect the 

cost effectiveness of the scheme. 

 

2.3 Selection of the computational scheme   

 

Samples described in the previous section are just few among many of the relevant 

historical papers related to the current project. The aim of the present project is not to 

make judgments on these different existing numerical methods because each scheme 

 

has its strengths and weaknesses, and as it is proved in the literature, the choice of a 

particular scheme is problem dependent, that is the physical situation of the fluid will 

dictate the governing equations to be used. Therefore the selection of a particular 

methodology for the development of new scheme should be based on the information 

from previous works plus considerations regarding the main physical features and 

associated boundary conditions of the problem which needs to be solved.  

For the solutions of incompressible viscous flows of generalized Newtonian fluids, many 

authors, (e.g. Chung, 2002) have shown that the appropriate computational method is the 

FEM. However the most successful schemes of the FEM are based on the mixed 

methods, the penalty methods, and the vortex methods. All of these schemes may,  
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however, produce unstable results. To circumvent this instability a condition known as 

the LBB (Ladyzhenskaya-1969, Babuska-1973, and Brezzi -1974) condition need to be 

satisfied. Many different strategies for the satisfaction of this condition in the context of 

the mixed, penalty, and the vortex methods have been developed. 

The most common technique adopted in the mixed methods formulation to satisfy the 

continuity constraint is to use unequal order interpolation function for velocity and 

pressure. The strategy here consists of choosing the shape functions for pressure one 

order lower than those for the velocity and to choose the shape functions for pressure to 

be identical to the test function for the continuity equation. For instance, if the pressure is 

approximated using linear function then the velocity must be approximated using 

quadratic function. This yields stable solution but it is computationally expensive. 

The main strategy of penalty methods is based on eliminating the pressure term from the 

momentum equation by setting the pressure as  where ⎟
⎠
⎞

⎜
⎝
⎛ ⋅∇λ−=

→

Vp λ  is a very large 

number called the penalty parameter, and then substituting  into the 

momentum equation so that the pressure term will vanish. This will provide a more 

compact set of working equations from which one will have to firstly solve for  

⎟
⎠
⎞⋅−=

→

Vp ⎜
⎝
⎛∇λ

velocity alone, and when all velocity field calculated then the pressure field can be 

obtained by means of . The computational cost of the penalty methods ⎟
⎠
⎞

⎜
⎝
⎛ ⋅∇λ−=

→

Vp

λis less than the computational cost of the mixed methods but when becomes large, the 

penalty term will dominate, and this will generate ill-conditioned equations. This will end 

up by producing instable results, that is, the LBB criterion is violated. Further 

information about these methods can be found from the following authors Hughes et al. 

(1972), Gunzburger (1989), Bercover (1978), Falk (1975), Cuvelier et al. (1986), Teman 

(1975), and Girault and Raviart (1979).  
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λIt is important to mention that the penalty parameter   originates from the stress 

relation   from which τDη=τ is pressure, that is force per unit area and D denotes the 

velocity gradient. Thus can be rewritten as  Dη=τ

)V(
A
1p

r
⋅∇η=×

 

Or  )V(Ap
r

⋅∇η=

)V(p
r

⋅∇λ=Or  where  with A denoting the cross section area. η=λ A

 

The vortex method’s strategy is somewhat similar to the penalty method’s strategy in the 

sense that the pressure term is removed from the momentum equation but this time by 

taking the curl of the momentum equation. This provides a momentum equation in terms 

of velocity and vorticity vector and/or stream function instead of primitive  

variables (u, v, w, and p). Hence one can solve the system in the absence of a  pressure 

term.  After obtaining a solution the divergence of the original momentum equation is 

used in order to compute the pressure. The vortex method provide numerical stability but 

the drawback is that the velocity is coupled with the vorticity vector and this yields a 

system with seven equations and seven unknowns ( ) for three-

dimensional problems. With an increased number of unknowns the cost efficiency of the 

method is not good. To alleviate this, one can take the double curl of the momentum 

equation, that is, when performing the first curl operation on the momentum equation, the 

result is a momentum equation in term of velocity and vorticity vectors but when a 

second curl operation is performed on this momentum equation, the vorticity vector will 

vanish so that the momentum equation will be in term of a single variable (velocity). 

pandwvuwww ,,,,,, 321

 

Attempt was made to apply this strategy to the governing equations in the present project 

but after performing the two curl operations, these yielded a momentum equation of high-

order (4th order) derivatives for velocity and this required the use of  continuous 

Hermite interpolation functions. Unfortunately, as reported by Nassehi and Petera (1994), 

these elements lack flexibility and their application in geometrically complex domains  

1C
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involve elaborate schemes. For this reason it was judged to avoid the use of the vortex 

method for the discretization for the governing equations of the current project. 

Based on Chung’s suggestion (and results obtained by researchers like Nassehi et al 

(2004) and Hanspal et al (2009)) and bearing in mind that the goal in computational fluid 

dynamics modelling is to obtain accurate and stable results while minimizing cost finally 

an  FEM based U-V-W-P scheme was  developed the governing equations of the present 

modelling effort. In order to circumvent  the problems of spurious and oscillatory 

pressure field, as mentioned by Nassehi et al (2004), which is due to the failure of the 

enforcement of the incompressibility condition ( ), a perturbed form of the 

incompressible condition 

0V=⋅∇
→

0V
c
p

2 =⋅∇+
ρ
∂ →

 in conjunction with use of equal order 

hexahedral isoparametric interpolation functions (figure 2.6) for velocity and pressure 

field is used.   

0C

As it can be noted from the review of the past papers, most examples of finite element 

based mixed formulations were done for two-dimensional problems. In the current study 

a new three-dimensional Velocity/Pressure based model capable of providing stable, 

accurate solutions of fluid flow problems.  

 

Two different schemes of the U-V-W-P have been developed in this work; the first one is 

based on the direct extension of a two-dimensional scheme to a three-dimensional form, 

the second scheme is based on a new concept and differs from the usual U-V-P scheme 

by the addition of a penalty parameter λ  to the continuity equation. The idea is originated 

from a method developed by Chang (2002). To solve incompressible viscous flows via 

FEM, Chung proposed a scheme which is based on the combination of the penalty 

methods with the mixed methods. He achieved such formulation by replacing the 

continuity equation with the Galerkin integral of the penalty term  and  ⎟
⎠
⎞

⎜
⎝
⎛ ⋅∇λ−=

→

Vp
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ended up with a Galerkin integral of the continuity   equation of the form 

∫
Ω

→

α =Ω⎟
⎠
⎞

⎜
⎝
⎛

λ
+⋅∇φ 0dpV . 

Where λ  is the penalty parameter (a large number) 

           denotes the velocity vector 
→

V

 

           p represent the pressure 

           and ∇  is the gradient operator (nabla operator). 

 

When solving the system of equations consisting of the Galerkin integral of the 

continuity equation together with the Galerkin integral of the momentum equation, 

Chung noticed that this scheme provided additional computational stability in  

 

comparison with the solutions obtained from the penalty and mixed methods. Thus based 

on this idea, the perturbed continuity equation 0V
c
p

2 =⋅∇+
ρ
∂ →

 will be slightly modified 

and take the form 0V
c
p

2 =⋅∇+
λρ
∂ →

(variables are as defined above) for  

the second U-V-W-P scheme developed in this project work.  

 

 

2.3.1 Comparison of the two schemes used in this project  

 

Before comparing the schemes developed in this project a question that must be answered 

is whether the modified scheme yields stable and accurate results? The U-V-P scheme 

has been tested on many two-dimensional problems and has provided stable and accurate 

solutions. The scheme based on its extension to three-dimensional cases (U-V-W-P) is 

expected to provide similar stable results. Therefore only the stability of the modified  
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scheme needs rigorous investigation. In addition to the stability considerations, during the 

course of this project, investigations have been made on how to speed up convergence of 

each scheme without affecting its cost efficiency. One important conclusion of these 

investigations which can be stated here to prove the validity of effort made to develop an 

alternative scheme is that the scheme based on the incorporation of the parameter  with 

the mass balance equation converges much faster than the normal scheme.  To 

demonstrate this point a comparison between the solutions obtained by the   U-V-W-P 

method and the modified U-V-W-P method tested using the same fluid properties is 

shown below.   

λ

 

Full details about the fluid properties and the boundary conditions are given in chapter 5. 

For this benchmark problem, it can be noted that after only few iterations, the modified 

U-V-W-P method yields a converged solution while the U-V-W-P method solution has 

not yet converged. 

 
 
 

 
Figure 2.1: Computational domain for comparison case.         
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Figure 2.2: Finite element mesh for comparison case. 
 
 

 
     Figure 2.3a: 2-D schematic representation of the boundary condition in  
                               the xy plane for the comparison case. 
 

 
     Figure 2.3b: 2-D schematic representation of the boundary condition in  
                               the xz plane. 
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Figure 2.4a: Velocity contour plot                   Figure 2.4b: Velocity contour plot                    
                 (Modified U-V-W-P scheme).                          (U-V-W-P scheme).   
 

 
 

Figures 2.4 a, and b represent the contour plots of the velocity for both schemes, and as it 

can seen from figure 2.4a (Modified U-V-W-P scheme), there is movement of the fluid as 

excepted at the outlet (multicoloured region representing the expected developed flow 

profile) while in the case of the U-V-W-P scheme (figure 2.4a), it seems that no fluid is 

coming out of the exit to the computational domain. This can be interpreted as the 

solution of the U-V-W-P scheme has yet to reach convergence. This interpretation is 

confirmed by the plots from figures 2.5.a, and b representing the cross sectional velocity 

profiles. 

 

These cross sectional plots show the velocity vectors magnitude at a location of z equal 

0.05m of the domain. Overall mass balance in both cases has also been checked. Note 

that both schemes are stable as shown by the expected pressure contours (Figs 2.6a and 

2.6b) 
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Figure 2.5a: Velocity section plot               Figure 2.5b: Velocity section plot  
                      (Modified U-V-W-P scheme)                       (U-V-W-P scheme)    
 
 

   
Figure 2.6a: Pressure contour plot            Figure 2.6b: Pressure contour plot 
            (Modified U-V-W-P scheme).                             (U-V-W-P scheme). 
 
 
 
 
 
Both of the developed three-dimensional schemes are tested extensively using different 

complex problems in chapter 5. To the best knowledge of the author, none of these two 

schemes have been used previously to model three-dimensional incompressible highly 

viscous flow of generalized Newtonian fluids in domains including obstructions. 
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2.4 Mathematical background of the developed schemes  

 
 
 
FEM was developed in the late 1950s and was mainly based on the variational 

formulation and was mainly used for structural analysis. Since then, considerable efforts 

have been made and especially by mathematicians, engineers, and physicists to extend 

the use of the FEM to a broad field of continuum mechanics. FEM can now be 

formulated either using the variational methods or the weighted residual methods. 

The variational formulation of the FEM is based on the minimisation of the variational 

principle of the governing differential equations. This formulation work  well for 

structural analysis but unfortunately cannot be applied to nonlinear fluid mechanics 

problems due to the non availability of variational principles in exact forms for nonlinear 

fluid mechanics equations. Due to this reason, the variational approach will not be 

attempted in this study. Interested reader can obtained further information about this 

formulation from Curant (1943, 1953), Mura and Koya (1992), and Reddy (1986). 

 

In the weighted residual formulation on the other hand, the strategy is to minimize to zero 

the residual of the governing equation (minimizing the difference between external forces 

applied and the internal forces caused by the flow) , and this can be achieved by 

constructing the inner product of the weighting or test function and the residual. To 

illustrate this, let the residual R defined as  

 

         )x(uR 2 +⋅∇= g

 

Where u(x) is the unknown variable function of independent spatial variables 

                       and g is the source/sink term. 
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Then the weighted residual statement is given as follows 

  

  ( ) m,...3,2,1j0dRWR,W JJ ==Ω= ∫
Ω

 

Or         ( ) ( ) m,...3,2,1j0dg)x(uWR,W 2
JJ ==Ω+∇= ∫

Ω

Where    are linearly independent weights or test functions. JW

 is a sufficiently smooth closed domain surrounded by a continuous boundary  Γ . Ω

 

If u(x) is approximated as  ∑
=

φα=≈
m

1i
ii )x()x(u~)x(u

Where  are a set of constant coefficients and )m,1i(i =α )m,1i(i =φ  denote the trial     

(interpolation, shape, or basis) function then the weighted residual statement can be 

written as 

( ) m,...3,2,1j0dg)x(WR,W
m

1i
ii

2
JJ ==Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟
⎠

⎞
⎜
⎝

⎛
φα∇= ∫ ∑

Ω =

 

If the test function  is chosen to be identical to the shape function  then the   

weighted residual method is known as the standard Galerkin method (Zienkiewicz and 

Morgan 1983). But if it is chosen differently from the shape function then this yields 

different schemes of the weighted residual methods namely the streamline upwind 

method (Brooks and Hughes 1982), the streamline upwind Petrov-Galerkin method 

(Heinrich et al. 1977), etc. 

iφJW

For time dependent problems as is the case in the present project, the discretization   

procedure mentioned above must be preceded, followed, or executed simultaneously with 

a temporal discretization.  In this present work, the temporal discretrization is carried out 

prior to the spatial discretization and the two procedures are explained in detail below  
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2.4.1 Temporal discretization 
 
 
Temporal discretization have been subject of a flood of researches and many numerical 

time integrations techniques have been developed, among them are the continuous space-

time method and the discontinuous space-time method (Chung 2002), the θ family of 

methods (Donea and Huerta 2003, Ames 1992, Lambert 1991, Wait and Mitchell 1985, 

Zienkiewicz and Taylor 2000, Mitchell and Griffiths 1980, Johnson 1987, and Reddy and 

Gartling 2000), the Lax-Wendroff method, and the Leap-Frog method (Donea and Huerta 

2003) . It is necessary to integrate the temporal variable in order to ensure that 

information are accurately transported in time to trace transient respond.   

In this present work, Taylor-Galerkin discretization (Nassehi 2002, Donea and Huerta 

2003, Townsend and Webster 1987) is chosen for the numerical time integration. The  

technique is based on a truncated Taylor series expansion, and is illustrated by the 

following example.  

Let consider a time-dependent differential equation of the form 

 

( ) ( )[ ] )2.2(0t,x
t

t,x
=β−ψχ+

∂
ψ∂         

 

Where    is a linear differential operator with the respect of the special variables ψ

( )t,xψThen Taylor series expansion of the field unknown  within the time steps n and 

n+1 gives 

 

( ) )2.2(...
t

t
2
1

t
t

n

2

2
2

n
n1n +

∂
ψ∂

Δ+
∂
ψ∂

Δ+ψ=ψ +     

 
The first order time derivatives term in expansion (2.2) can be found from equation (2.2) 
as 
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( ) ( )[ ] )3.2(t,x
t

t,x
ψχ−β=

∂
ψ∂  

 
 
Differentiating equation (2.3) with respect to time gives the second order time derivatives 

term in expansion (2.2) as  

 
( ) ( )[ ]{ } )4.2(t,x

tt
t,x

tt 2

2

ψχ−β
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛

∂
ψ∂

∂
∂

=
∂
ψ∂  

 

With a similar procedure all the other order time derivatives term in expansion (2.2) can 

be found then substituted into equation (2.2) bearing in mind that any first-order  

temporal term of has to be substituted from equations (2.3). This will result by 

producing a differential equation in terms of spatial variables only which can be 

discretized using the weighted residual method described previously and summarised by 

step 1 through step 8 below. 

( )t,xψ

 
Figure 2.7: 8 – nodes isoparametric hexahedral element 
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2.4.2 Spatial discretization 

 

Regardless of the scheme used to formulate the finite element methods, the spatial 

discretization of the governing equation follows these steps. 

 

Step 1. Discretization of the problem domain: The domain Ω  is discretized into  

 is discretised into finite element in the             Elements limited by a boundary Γ

           following forms    and . ∑Ω=Ω
n

e
e ∑Γ=Γ

n

e
e

Step 2. Approximation using trial functions: In this step, one needs to assign nodes to  

            each element, and then selects the appropriate trial function to represent the  

            variation of the unknown functions (pressure, velocity, etc) over the elements.  

            The unknown functions are approximated using the following forms 

             ∑∑∑∑
====

=≈=≈=≈=≈
n

i
ii

n

i
ii

n

i
ii

n

i
ii pppwwwvvvuuu

1111

~~~ φφφφ

            Where ),1( nii =φ  denote the trial (interpolation, shape, or basis) function (see  

            figure 2.7). 

 

Step 3. Formulation of the weighted residual statement: in this step, one needs to    

           substitute the interpolated values of the unknown functions found in step2 into 

            the residual of the governing equations, and then construct the inner product of  

            the test function with the residual. 

 

Step 4. Application of Green’s theorem: At this stage, one has to apply Green’s 

           theorem to all second-order derivatives from the weighted residual statement  

           obtained in step 3 in order to reduce the second-order derivatives to first-order  

           derivatives so that  elements can generate an acceptable solution. This    0C

           process will produce the weak form of the weighted residual statement. 
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Step 5. Formulation of the elemental stiffness equations: Here, one needs to write an  

           equation corresponding to the weak statement (step 4) for each test function. 

 

Step 6. Assembly of the elemental stiffness equations into a global system of  

           equations: to get the solution of the global system, all the elemental weak  

           statement equations obtained in step 5 must be assemble over their common  

          nodes to form a global system of algebraic equations to be solved. 
 

Step 7. Imposition of the boundary conditions: At this stage, one needs to insert the  

            prescribed values of the unknown functions at the boundaries of  into the  Ω

            global system of algebraic equations obtained in step 6. Redundant equations  

            corresponding  to the boundary nodes must be eliminated from the set. 
 
Step 8. Solve the global algebraic system: The global system of algebraic equations  

            obtained in step 7 can now be solved in order to obtained the unknown nodal  

            values of the problem. 

 
 

 
 
2.5    Conclusion 

 

 

In this chapter, a review of past papers on the modelling of generalized Newtonian fluids 

has been presented and after thorough analysis of them, a choice about which 

computational method to use in the present project has been made. The chosen 

computational method is used to discretize the governing flow governing equations 

representative of the flow regimes considered here in chapter 4 of this thesis. 
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CHAPTER 3 
 

 
GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

 
 

3.1 Flow model 

 

Mathematical modelling of fluid flows is based on the solution of partial differential 

equations governing the physical behaviour of the flows. These governing equations 

represent mathematical statements of the conservation law of physics, which can be 

stated as 

 

a) The mass of a fluid is conserved across the entire domain (Conservation of mass). 

b) The rate of change of momentum equals the sum of the forces on a fluid particle. 

This comes from Newton’s second law. 

c) The rate of change of energy is equal to the sum of the rate of heat addition to and 

the rate of work done on a fluid particle. This is simply the first law of 

thermodynamics. 

 

Combining these three statements together with the equation of state and the specified 

boundary conditions will make the problem to be solved a well-posed mathematical 

problem representing the physics of the fluid. 

 

In addition to the statements above, in the present study, it is necessary to include a 

rheological relationship that describes the constitutive behaviour of the fluid. Thus, with 

the continuum assumption made, that is scalars like density, temperature, and pressure 

and a vector like velocity vary smoothly and continuously in space and time  and 

adopting a macroscopic viewpoint, in a fixed (stationary or Eulerian) coordinate system 

(using vector notations), the following equations can be derived. 
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3.1.1 Continuity (Mass balance) equation 

 

The continuity or mass balance equation is the mathematical representation of the 

statement that: the rate of increase of mass in fluid element equals the net rate of flow of 

mass into fluid element. This can be mathematically written as 

 

)1.3(0V
t

=⎟
⎠
⎞

⎜
⎝
⎛ρ∇+

∂
ρ∂ →

  

 

 Where ∇  is the operator nabla (gradient operator) 

                         denotes the velocity vector having u, v, and w as component in 
→

V

                         the x, y, and z direction respectively. 

                        ρ  is the density of the fluid 

                        and t is time. 

 

3.1.2 Equation of motion (Momentum equation) 

 

The momentum equation which is Newton’s second law states that the rate of change of 

momentum of a fluid particle equals the sum of the forces acting on the particle. This 

statement can be mathematically written as 

 

  

(3.2)gVV
t
V

ρ+σ⋅∇=∇⋅ρ+
∂
∂

ρ
→→

→
rr  

 

Where σ  denotes the Cauchy stress tensor 
rr

            g is the body force per unit volume of fluid. 
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            and  are as defined previously. ∇ρ
→

,V,

 

The Cauchy stress tensor is given as 

 

  )3.3(p τ+δ−=σ
rrrrrr

 

            Where p is the hydrostatic pressure 

                       δ
rr

 is the unit second-order tensor (Kronecker delta) 

                       and  is the extra stress tensor. τ
rr

 

Substituting the expression of the Cauchy stress tensor equation (3.3) in to 

equation (3.2) yield 

 

(3.4)gpVV
t
V

ijij ρ+τ⋅∇+δ∇−=∇⋅ρ+
∂
∂

ρ
→→

→

 

               

3.1.3 Thermal energy equation 

 

 

The energy equation is based on the first law of thermodynamics stating that the rate of 

change of energy of a fluid particle is equal to the rate of heat addition to the fluid 

particle plus the rate of work done on the particle. This statement can be mathematically 

written as. 

 

 

)5.3(Sv:Tk
Dt
DTc 2 &+∇τ+∇=ρ  

24 
 



Chapter 3                                         Governing equations and boundary conditions 
 
 
 

Where c is the specific heat 

           k is the thermal conductivity 

           T denotes the temperature 

           is the Laplacian operator 2∇

Dt
D           represents the substantial or material derivative 

           and S  is the source. &

 

3.1.4 Equation of state 

 

It is useful to add the equation of state to the system of equations (mass balance, 

momentum, and energy) because it allows a linkage between the thermodynamic 

variables p,  and T. It has been observed that in practice most fluid follow the perfect 

gas law, and that in general, pressure is a function of both density and temperature except 

in the case of baratropic fluids where pressure is function of density only.   

,ρ

 

The equation of state is given as 

 

  )6.3(RTp ρ=

 

Where R is the specific volume 

           and p, and T are as defined previously. 

 

3.1.5 Constitutive equation  

 

The constitutive equation is a relation between the extra stress ( )τ  and the rate of 

deformation that a fluid experiences as it flows. 
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But the derivation of a universally applicable constitutive model for non-Newtonian 

fluids is generally not accepted as it is extremely difficult due to the difficulty that arises 

in establishing exact quantitative relationship between the microscopic structure of non-

Newtonian fluids and their macroscopic properties (Nassehi 2002). There are various 

formulae used to represent the constitutive equation, see for instance Middleman (1977), 

Pittman, and Nakazawa (1984), and Carreau (1968), but the one adopted in this study to 

calculate and update the value of the apparent viscosity is the power law model proposed 

by Waele (1923), and Ostwald (1925). The power law model is chosen because it is able 

to describe both shear thinning and shear thickening fluids behaviour. The power law 

formula is given by  

 

  ( ) )7.3(1n
o

−γη=η &

 

            Where  is the consistency coefficient. oη

                        η  is the apparent viscosity 

                         n is the power law index 

                        γ   denotes the shear rate &

 

For n < 1, the fluid exhibits shear thinning properties. 

For n = 1, the fluid shows Newtonian behaviour. 

For n >1, the fluid shows shear thickening behaviour. 

 

The shear rate ( ) is calculated using the following relation γ&
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 Where u, v, and w are the three components of the velocity vector . 
→

V
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The shear rate ( ) is calculated after each iteration, then the value obtained is used to 

calculate the apparent viscosity (

γ&

η ) through the constitutive equation (3.7). This process 

is repeated until convergence is reached.  

 

Shear-thinning (or pseudoplastic), viscoplastic, shear-thickening (or dilatant) are all the 

characteristics of the time independent non-Newtonian fluid. It is well established that 

non-Newtonian fluid can be conveniently grouped into three general classes: 

 

1)     The time independent, or purely viscous, or inelastic, or generalized Newtonian 

         fluids in which the rate of shear at any point is determined only by the value of  

         the shear stress at that point at that instant. 

 

2)     Time dependent fluids, in which in addition of the criterion mentioned in 1), the   

        relation between shear stress and shear rate depends upon the duration of  

        shearing and their kinematic history. 

 

3)    The visco-elastics fluids, in which substances exhibiting characteristics of both    

        ideal fluids and elastic solids and showing partial elastic recovery after  

  deformation. 

 

Interested reader about this classification may refer to the following authors for further 

information Hou-Cheng Huang et al. (1999), Harris (1977), Chhabra and Richardson 

(1999), Crochet et al. 1984, and Nassehi (2002). 
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3.2 Assumptions 

 

The necessary assumptions made in this work are as stated below: 

 

- The incompressible assumption; that is the fluid undergo no changes in volume or  

   density. 

 

- The computational domain is assumed to be isothermal. 

 

- The flow is laminar 

 

- And since the Re is very small ( 1Re 〈〈 ) in this study, then the convective term (i.e. 

) and the body force g from the equation of the motion (3.4) are small and can 

be omitted Bird., et al (2002), and Nassehi (2002). 

⎟
⎠
⎞

⎜
⎝
⎛ ∇⋅

→→

VV

 

Taking these assumptions into consideration, the governing equations (3.1 through 3.7) 

reduced to 

 

3.2.1 Continuity equation  

 

)8.3(0V =⋅∇
→

 

 

3.2.2 Momentum equation 

 

 

)9.3(p
t
V

ijij τ⋅∇+δ∇−=
∂
∂

ρ

→
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3.2.3 Constitutive equation 

 

 

( ) )10.3(1n
o

−γη=η &  

 

The first remark one can made from the system of equation given by 3.8 through 3.10 is 

that there is no pressure term in the continuity equation (3.8) this will make the solution 

of such system difficult to obtain because the enforcement of the incompressibility 

conditions (conservation of mass) is difficult. As a result, the computed pressure (p) may 

be spurious and oscillatory, known as checkerboard type oscillations. 

 

To circumvent this difficulty and satisfy the Ladyzhenskaya (1969), Babuska (1971), and 

Brezzi (1974) stability condition or simply the LBB condition, the approach adopted in 

the present project is to replace the continuity equation (3.8) by an equation 

corresponding to slightly compressible fluids, and it is given as  

 

 

)11.3(0V
t
p

c
1

2 =⋅∇+
∂
∂

ρ

→

              

 

   

             Where c is the speed of sound in the fluid 

 

Equations 3.9 through 3.11 represent the flow model governing equations solved in this 

project. Using three-dimensional Cartesian coordinates, equations 3.9 and 3.11 can be 

written as 
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( ) )12.3(continuity0
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+
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Before writing the momentum equation in Cartesian coordinates, it is important to write 

the component of the Cauchy stress tensor. As mentioned previously, the Cauchy stress 

tensor is related to the extra stress through the relation   τ+δ−=σ
vv

rrrr p  

This can be written in three-dimensional Cartesian coordinates as 

( )
( )
( )c13.3p

b13.3p

a13.3p

τ+−=σ

τ+−=σ

τ+−=σ

rrrr

rrrr

rrrr

 

 

 

 

Where the normal stresses are given by 
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and the shear stresses given by 
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Substituting theses expressions of the normal and shear stresses into the momentum 

equation (3.9) and expanded the result yield 
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The mass balance, momentum, and constitutive equations as given by 3.12, 3.16a,b,c, and 

3.10 respectively represent the final system of equations which will be discretized in 

chapter 4 and solve in chapter 5.  

 

 

3.3 Boundary and initial conditions 

 

The system of equations representing the flow governing equations (continuity, 

momentum, and constitutive) as given in section 3.2 does not constitute a consistent 

system in mathematical viewpoint. To make this system of equations consistent or a well-

posed mathematical model, initial and boundary conditions must be specified.  
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There are three type of boundary conditions; Dirichlet or essential boundary conditions 

(values of variable specified at boundaries), Neumann or natural boundary conditions 

(derivatives of variables specified at boundaries), and Cauchy or Robin boundary 

conditions which is a combination of Dirichlet and Neumann conditions. 

The specification of Neumann boundary conditions is the unique future in finite element 

method (FEM) since Neumann boundary conditions naturally arises in the formulations 

process of FEM. 

 The choice of which boundary conditions to apply depends on the type of partial 

differential equations which can be elliptic, parabolic, hyperbolic or a combination of two 

or three of them, and the type of flows that can be compressible, incompressible, 

turbulent, laminar, irrotational, vertical, etc… 

In general scalar like pressure may not be specified at the boundaries as it is an implicit 

variable in an incompressible flow (Lewis., et al 1995) which adjusts itself to deliver a 

solenoidal velocity field. However, in the case of contained flow, that is specified 

velocities on all boundaries, the pressure becomes indeterminate and it must be specified 

at least at one point as a datum. 

 

ott =The initial conditions on the other hand must be specified at time  in the domain Ω  

as mentioned by Hou-Cheng Hang et al. (1999) and can take the following form 

 

  ( ) ( ) Ω= inxv0t,xv i
0
iii

 

Taking these remarks into consideration, in the present project, the flow governing 

equations are solved in conjunction with the following boundary conditions. 
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3.3.1 Inlet boundary conditions 

 

The inlet is placed perpendicular to the x direction for all the simulations carried out in 

this project. And at the inlet, only Dirichlet type boundary conditions are specified 

and for velocity variable only. The three component (u, v, and w) of the vector velocity 

are specified as follow 

 

 u = a 

            v = w = 0 

            Where a is small number ( ) 1sm −⋅

 

 

3.3.2 Outlet Boundary conditions 

 

Although there are three type of outlets used for the problems in this project, care was 

taken that they are all placed far away from geometrical disturbance allowing the flow to 

reach a fully developed state where no change occurs in the flow directions. Researchers 

like Nassehi (1998), and Das. et al (2002) have suggested that the imposition of artificial 

boundary conditions at the outlet might lead to unrealistic numerical results in 

simulations. Hence based on their suggestions, in this work, no velocity conditions will 

be specified at the exit, and only a zero datum pressure condition will be specified. 

 

 

3.3.3 Solid walls and blockages 

 

The remaining sides of the geometries and all the faces of the blockages (rectangular or 

cylindrical) are considered as solid and non permeable walls, on which perfect  
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no-slip conditions are specified, that is the three components (u, v, and w) of the velocity 

vector are all set equal zero. 

 

 

3.3.4 Initial conditions 

 

For all the problems solved in this project, the inlet boundary conditions will be used as 

initial conditions for all nodes. 

  

 

3.4 Conclusion 

 

A summary of the derivation of the partial differential equations governing the flow 

model was presented in this chapter together with the problem of incompressibility 

enforcement that may occur if care is not taken. Many methods have been developed to 

overcome this incompressibility enforcement problem and among them are the penalty 

methods, the vortex transport method, and the mixed finite element method. 

 

In this present project two different finite element techniques are used which differ from 

the traditional mixed finite element method, penalty, and vortex transport method in the 

way that the pressure term is not eliminated from the momentum equation but instead an 

artificial pressure term is added to the continuity equation. The discretization of the 

derived governing equations will be subject of the next chapter.   
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CHAPTER 4 
 
 

WORKING EQUATIONS 
 
 
 

This chapter is dedicated to the discretization of the governing equations given in the 

previous chapter. The discretization procedures are followed by briefs description of the 

solution techniques, the convergence criteria, and the mesh refinements adopted in the 

present study.  

 

 
4.1 U-V-W-P discretization of the governing equations 

  

The flow governing equations given in chapter 3 are as follow 
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All variables are as previously defined. 

 

The first step in the U-V-W-P discretization technique is to normalized the governing 

equations by setting 

 

 U = u 

            V = v  for the components of the velocity vector 
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pP   for pressure. And      

 

Thus one obtains after substitution of these terms into equations (4.1) and (4.2) 
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And for the momentum equation 
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Then the discretization continues with the numerical time integration as explained in 

chapter 2 as follow. The application of the Taylor-Galerkin method to the temporal terms 

in equation (4.3) and (4.4a, b, and c) gives 
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equations (4.5) through (4.8) can be readily found from the governing equations (4.3) and 

(4.4a, b, and c) as 
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And for the velocity components 
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For the first component (U) of the velocity vector one obtains 
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Using a similar approach, one can obtain for the second component (V) of the velocity 

vector         
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And finally for the third component (W) of the velocity vector, one obtains 
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and c) into equations (4.15) through (4.17), yield equations containing high-order 

derivative terms. However, as previously published works show (e.g. see Nassehi 

(2002)), the contributions of these terms with high-order derivatives (that is 3rd or above 

in the present work) are negligible and hence they can be omitted from equations (4.13) 

through (4.17). Thus one obtains 
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Substituting the first-order time derivatives from equations (4.9 through 4.12) and the 

second-order time derivatives from equations (4.18 through 4.21) into equations (4.5 

through 4.8) yield 

  

For pressure term 
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For the first component (U) of the velocity vector 
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For the second component (V) of the velocity vector 
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And finally for the third component (W) of the velocity vector 
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These mark the end of the temporal discretization procedure, and hence one can proceed 

with the spatial discretization explained in chapter 2. Recall that in the U-V-W-P scheme, 

velocity and pressure are considered as primitive variables and are discretized as 

unknowns. In this work, the primitive variables (U, V, W, and P) from equations (4.22) 

through (4.25) are approximated using 8-noded isoparametric hexahedral element and the 

approximated variable can be written using the following statements 
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Where  (j = 1 …n) are the shape functions (8-noded isoparametric hexahedral  jN

             element used for the approximation of both velocity and pressure) 

            and n the number of nodes per elements 

 

Substituting the approximated values from the relations given by (4.26) into equations 

(4.22) through (4.26) and writing the weighted residual finite element statement give  

 

For the first component (U) of the velocity vector 
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Where   denote the test function. iN

 

Similarly, for the second component (V) of the velocity vector one obtains 
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And for the third component (W) of the velocity vector 
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And with the same procedure the pressure term can be obtained from the mass balance 
equation as 

44 
 



Chapter 4                                                                                        Working equations 
 
 
 

)30.4(
2
1

2
1

2
1

.
22

.
22

.
22

.
2

.
2

.
2

.

1

∫

∫∫

∫∫

∫ ∫∫

Ω Δ+

Ω Δ+Ω Δ+

Ω Δ+Ω Δ+

Ω Δ+Ω+

⋅

Ω

⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+
⎭
⎬
⎫

⎩
⎨
⎧Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

Δ+

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−

⎭
⎬
⎫

⎩
⎨
⎧Ω

∂

∂
Δ−=

⎭
⎬
⎫

⎩
⎨
⎧Ω−

⎭
⎬
⎫

⎩
⎨
⎧Ω

e

ee

ee

e ee

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

tn
e

j
i

n
eji

n
eji

Pd
z

N
z

Nct

Pd
y

N
y

NctPd
x

N
x

Nct

Wd
z

N
NtcVd

y
N

Ntc

Ud
x

N
NctPdNNPdNN

α

αα

αα

α

α

αα

 

Seeing that there are some terms of second-order derivatives in equations (4.27) through 

(4.30), it is necessary to apply Green’s theorem to such terms to reduce them to first-

order derivatives terms and thus one can ensure inter element continuity. It must be also 

noted that functions given at time level tn Δ+α  are interpolated using the relation 

nntn
AAA )1(

1
αα

α
−+=

+Δ+
  (Nassehi 2002). 

 
Thus one obtains for the first component (U) of the velocity 
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Similarly for the second velocity component (V) one obtains 
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For the third component (W) of the velocity vector, one obtains 
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And finally one can obtain for the mass balance equation 
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Where the left hand sides are given as 
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4.2   Modified U-V-W-P discretization of the governing equations 

 

The governing equations in the modified U-V-W-P discretization technique differ from 

those of the U-V-W-P scheme by the fact that a new parameter  λ   (as defined in chapter 

2) is introduced to the perturbed form of the continuity equation, and hence the governing 

equations in this scheme take the following form. 
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The momentum equation remain as it was in the previous scheme and is written as 
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After the normalization of the primitive variables using the expressions given by  

 

  

 U = u 

            V = v  for the components of the velocity vector 

 W = w   

 

 

ρ
=

pP   for pressure. and      

One obtains for the continuity equation 
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and for the momentum equation 
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Following the same procedure as applied for the U-V-W-P scheme (equations (4.5) 

through (4.21)); one obtains the following Taylor series expansion. 

For pressure term 
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For the first component (U) of the velocity vector 
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For the second component (V) of the velocity vector 
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And finally for the third component (W) of the velocity vector 
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Substituting the approximation expressions of the primitive variables given by (4.26) in 

to equations (4.80) through (4.81a,b, and c) and writing the weighted residual statement 

yield  

 

 

For the first component (U) of the velocity vector  
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Similarly, for the second component (V) of the velocity vector one obtains 
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For the third component (W) of the velocity vector 
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And one gets from the continuity equation 
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The application of Greens’ theorem to the second-order derivatives contained in 

equations (4.82a, b, and) and (4.83) yield 

 

For the first component (U) of the velocity 
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The expression of the second component (V) of the velocity vector can be obtained in the 

similar way as  
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And we have for the third component (W) of the velocity vector  
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One obtains from the continuity equation 
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For the first component (U) of the velocity vector 
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With the same procedure the second component (V) of the velocity vector can be written 
as  
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For the third component (W) of the velocity vector, one obtains 
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Equations (4.86a, b, and c) and (4.87) can be written in matrix form given by (4.35) 

previously but this time with the left hand side given by   
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4.3 Solution procedure 
 
 
The discretization of the governing equations by the two developed schemes yields 

systems of algebraic equations which need to be solved; this can be achieved by using 

direct methods or iterative methods. Thus it is informative to briefly examine the 

difference, advantages and disadvantages of these two methods and then select an 

appropriate method to adopt in this project. 

Direct methods regroup techniques such as Cramer’s rule, Gaussian elimination, 

Cholesky method, Thomas algorithm (TDMA), Runge-Kutta method, among others. 

These groups of solution techniques are mainly suitable for linear system of equations, 

have the disadvantages of being time consuming and are susceptible to round-off errors, 

which in case of large system of equations can lead to unacceptable results. Interested 

reader about these techniques may refer to Butcher (1993), Duff (1986), Shampine 

(1994), Sewell (1988), Lapidus (1971), Greenspan (1960), and Curtis and Patrick (1994), 

among others. 

The iterative methods on the other hand have the unique advantage, that round-off errors 

in each step are corrected in the subsequent step, they can be used to solved both linear 

and nonlinear systems of equations, and when the coefficient matrix is sparse, they are 

non-time consuming and economical in term of computer storage. Many iterative 

techniques have been developed and among them are the Jacobi method, Gauss-Seidel 

method, Alternating direction implicit (ADI) method, conjugate gradient methods 

(CGM), domain decomposition methods (DDM) and the generalized minimal residual 

(GMRES) methods. Further information about these techniques can be found from 

authors like Greenbaun (1997), Axelsson (1994), Hageman (1981), Traub (1964), Varga 

(1962), Wachspress (1966), Dahlquist (1974), Saad (1996), Hestenes and Stiefel (1952), 

Concus et al. (1976), Kershaw (1978),  Press et al. (1992), Glowinski and Wheeler 

(1987), Lions (1988), and Scharz (1869). 
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The solution technique adopted in the present project is the frontal method which is a 

modification of the Gaussian elimination. The technique was developed to tackle the 

problem of total  

 
assembly of elemental stiffness equations experienced with direct methods. The frontal 

method readily avoid such problem by stepwise reduction of the total matrix 

(non-zero band) in a Gaussian elimination procedure, further information  about this 

technique can be obtained from Iron (1970), Platonov and Trivailo (1979), Light and 

Luxmoore (1977), Beer and Haas (1982), Postnov et al. (1979), Forsaith and Moler 

(1969), Duff and Reid  (1983),  Duff et al. (1986), and Hood (1976).  

 

4.4 Convergence of the solution 

 

In the present study, the convergence of the solutions is checked using the calculated 

ratio of the difference of the Euclidian norm (Lapidus and Pinder, 1982) between 

successive iterations to the norm of the solution. This is given by  

 

)128.4(
X

XX

21r
i

N

1i

2r
i

1r
i

ε≤
−

∑

∑
+

=

+

   

 
Where r denotes the number of the iteration cycle 
 
        N is the total number of degrees of freedom 

        X are the field unknowns 

        And  denotes the convergence tolerance value. ε

 
The criterion given by (4.128) is used for both pressure and velocity components in 

separated calculations and converged solution is obtained when both sets of results satisfy 

this criterion. 
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4.5 Mesh refinements 
 
The aim of solving real world problems using the computational fluid dynamics 

techniques is to obtain desired solutions as accurately as possible while maintaining cost 

as efficient as possible. But achieving both cost efficiency and accuracy is often no trivial 

matter, especially when one is constrained to use a fixed computational method and 

limited computer resources like is the case experienced during the course of this study, in 

which the researcher is confronted to use a fixed computational scheme (the UVWP 

method) and a limited computer resources (a Pentium (R) IV 3.00GHz). Given this 

circumstance, the best strategy to adopt to obtain stable and accurate results at low cost is 

the refinement of the computational grid known as mesh refinements. Mesh refinements 

also can be used for testing the convergence in the solution of non-linear problems 

through the comparison of the results obtained on successively refined meshes. Mesh 

refinements are part of adaptive methods which are designated to achieve both accuracy 

and efficiency and in which mesh refinements are applied only where needed.  The 

adaptive methods generally provide mesh refinements for efficiency as dictated by 

predetermined criteria, the criteria are determined by some error indicators which are 

usually represented by gradients of a suitable variable and the larger the gradient, the 

finer the mesh required. 

There are two types of adaptive methods namely the structured adaptive methods (Dwyer 

et al., 1982, Gnoffo, 1980, Nakamura 1982, Eiseman 1985, and Brackbill and Saltzmann 

1982) developed for finite difference method and the unstructured adaptive methods 

(Oden et al. 1986, and Babuska et al. 1986) developed for finite element method 

formulation. The latter can be formulated using mesh refinement methods (h-methods), 

mesh movement methods (r-methods), mesh enrichment methods (p-methods), combined 

mesh refinements and movements (hr-methods), and combined mesh refinements and 

enrichments (hp-methods). The mesh refinement methods (h-methods) are adopted in the 

present work. The basic idea of the h-methods consist of keeping unchanged the element 

selected for the domain discretization while the number and size of the elements vary 
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with each level of mesh refinement. Further information about the  structured adaptive 

methods and the unstructured adaptive methods can be found from the following authors 

Bathe (1996), Zienkiewick and Taylor (1994), Babuska and Suri (1990), Oden et al. 

(1989, 1995), Chung (2002), Oden (1988), Peraire et al. (1987), Probert et al. (1991), 

Ghia et al. (1989), and Altas and Stephenson (1991).   

 
 
4.6 Schematic diagram of the developed schemes 
 
The solution algorithms for the two developed schemes described above can be 

summarised by the flow chart given by figure 4.1. 
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Domain discretization 

Initialisation of values 
(Velocity & Pressure) 

Set up: physical and material properties, 
geometrical data and boundary 

conditions. 

Time variable incremented 

Yes 
Pre-programmed 
Time reached?

No 

Solve governing equations for 
Pressure and velocity fields 

No 
Check for convergence 

Yes 

Print output and Stop 

 
 
Figure 4.1: Flow chart for both the UVWP and the modified UVWP schemes. 
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RESULTS AND DISCUSSIONS 
 
 
 
In this chapter simulations results obtained in the present study are presented and 

discussed. These results are generated using the following procedure. The two schemes 

developed in chapter 4 were coded and compiled using FORTRAN via Microsoft Visual 

Studio 2005, to serve as the solver routines in the present simulation studies. The pre-

processing (mesh generation) part of the simulation was done using Cosmos GeoStar 

software and the post-processing (visualization of results) was carried out using Tecplot 

software. 

The software used for pre-processing, number crunching and post-processing, ( here 

referred to as Cosmos GeoStar, FORTRAN and Tecplot) are linked via an in-house 

developed utility programme (FEUT) which reads the output files from the pre-processor 

(Cosmos GeoStar)  converting them into input files in a format readable by the solver 

(FORTRAN). Once the solution process completed, the solver returns the solutions back 

to the utility FEUT programme which rewrites the solutions in a format readable by the 

post-processor (Tecplot) in order to proceed with the analysis of results. 

All these processes (geometry definition, mesh generation and visualization) are carried 

out using an Intel Pentium ® IV 3.00 GHz personal computer. 

 

In all of the simulations presented in this chapter the fluid rheology is based on assuming 

a generalized Newtonian behaviour. Typical set of physical properties of such a fluid are 

as given in the following table. 

 

Physical properties Values 

 (density) ρ 3m−980 kg  

0.87-1.23 n  (power law index) 

 (consistency index) 0η 80 kg  11 sm −−

c (speed of sound) 1500  1sm −

Table 5.1: Physical properties of the generalized Newtonian fluid used. 
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α tΔThe simulations are carried out using a time level ( ) of 0.95 and a time increment ( ) 

of 0.001 s.    

Although the results obtained using the two developed schemes are mainly similar, the 

modified UVWP scheme reaches convergence quicker than the traditional UVWP 

scheme. Therefore, for each simulation only one set of converged results is shown, 

however, the important difference in the time of taken to obtain such a result using 

different schemes is noted. 

Starting with three benchmark problems in which the simulated fluid is considered to be 

purely Newtonian (i.e. power law index is set to be 1 in the power law model), the 

developed codes are used for the numerical analysis of complex problems for generalized 

Newtonian fluids (for both shear thinning and shear thickening cases). Dimensions of the 

computational domains used in the complex problems are the same as the benchmark 

problems but with the difference that in complex problems various types of internal 

obstructions are introduced within the flow domain.  

In the benchmark cases domains consist of rectangular ducts, in which the fluid enters the 

domain at one end and exits at a specified outlet situated far from the inlet to make the 

imposition of simple exit boundary conditions acceptable. Three different outlets are of 

interest in this work, the first one is placed in a position normal to the direction of the 

fluid flow, the second one is situated at the end of top solid wall while the last outlet is 

placed at the end of the bottom solid wall. These domains are shown in figures 5.1.1, 

5.2.1, and 5.2.3, respectively. The cross section areas of the inlets and outlets for the 

different geometries in this work are all the same and have a dimension of 0.01 .  2m

 

As there are no experimental data to validate the results obtained in this project, the 

validation processes is based on the examination of mass balance across the entire 

computational domain as well as evaluation of the logical consistency of the 

computational results.  
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The drawback of the program is that it cannot be used to simulate fluid flow within a 

short domain. For such simulation, the imposition of stress free exit conditions may not 

be realistic, and thus this method may not generate very accurate results. 

 
5.1 Benchmark problem 1 

5.1.1 Computational domain and boundary conditions 

 

In the first benchmark problem, the domain consists of a simple rectangular box of 1m 

length, 0.1m width and 0.1m high and there is no obstruction to flow as shown in figure 

6-1-1. The computational domain is discretized using 8-noded hexahedral isoparametric 

elements into a mesh of 8550 nodes, and 7252 elements (see figure 5-1-2) and the 

prescribed boundary conditions correspond to the fluid entering the domain with a 

velocity of 0.1  perpendicular to the inlet; the other components of the velocity (v, 

and w) are zero. The only prescribed boundary condition at the outlet is a zero datum 

pressure, and the no-slip conditions are applied to the remaining sides of the rectangular 

box (see figure 5-1-3). Although there is no apparent imposition of exit conditions (as no 

velocity value is given at this point) stress free conditions at this boundary have been 

imposed (i.e. the gradient terms appearing after the application of the Green’s theorem to 

the second order derivatives in the equation of motion are set to be zero). 

1−sm

 
Figure 5.1.1: Geometry of benchmark problem 1. 
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Figure 5.1.2: Finite element mesh of benchmark problem 1 

 
 
 
 
 

 
 

Figure 5.1.3a: 2-D schematic representation of the boundary condition in 
the xy plane (benchmark problem 1). 
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Figure 5.1.3b: 2-D schematic representation of the boundary condition in 

the xz plane (benchmark problem 1). 
 
5.1.2 Results 
The results obtained after running the simulation for this first benchmark case are given 

by figure 5.1.4 through 5.1.14, and as it can be seen from figure 5.1.4, pressure decrease 

in the direction of the flow with the highest pressure (about 10K Pa) found in the vicinity 

of the inlet and as the fluid moves across the domain there is loss of energy which explain 

the decrease in the pressure values which reached zero around the outlet as given by 

figure 5.1.5.  

 

 
Figure 5.1.4: Pressure distribution (benchmark problem 1). 
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Figure 5.1.5:  pressure distribution across the domain (benchmark problem 1) 

 
 
Figure 5.1.6 shows the velocity vector profile in the x-y plane taken at position z = 

0.05m. The fluid enters the domain through the inlet with an average velocity of 0.1 

 giving mass inflow rate of 1 and exit the domain with an average velocity of 

0.0988  giving a mass outflow rate of 0.988 . These figures prove that there is 

conservation of mass since the error between the mass inflow and mass outflow is only 

1.2% which falls in the acceptable range. The maximum velocity of about 0.12  is 

found to be located between the range starting from x = 0.1m to x = 1m, y = 0.02m to y = 

0.07m, and z = 0.02m to z = 0.07m across the domain length high, width respectively.  

1. −skg1. −sm

1. −skg1. −sm

1. −sm
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Figure 5.1.6:  Vector plot profile coloured by the velocity magnitude contour 
(benchmark problem 1). 
 
 
As there are always viscous momentum boundary layers at solid surfaces, different 

section contour plots of the velocity in the vicinity of the solid surfaces are presented for 

each of the simulations done in this project. For the first test case these contours plot are 

represented by figures 5.1.7 through 5.1.10. Figure 5.1.8 illustrates the velocity  section 

contour plotted at position y equal 0.002m, that is just 0.002m above the bottom solid 

wall, while figure 5.1.9  illustrates the velocity  section contour plotted at position y equal 

0.098min that is just 0.002m below the top solid wall, and 
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figure 5.1.10 represent a plot combined the section plot from figure 5.1.9, figure 5.1.10 

plus an additional section plotted at position y equal 0.05m which represents half of the 

domain in the y direction and the region where the fluid moves with maximum velocity.  

It can be noted that in the vicinity of the solid walls, the fluid flow experiences a velocity 

change and this change is due to the presence of boundary layers. And as proved by many 

researchers, the velocity profiles are less developed in planes closer to solid walls 

because of the boundary layers effect. 

 

     
Figure 5.1.7: Profile of the contour of         Figure 5.1.8: Profile of the contour of 
the velocity magnitude (y = 0.05m plane)    the velocity magnitude(y = 0.02m plane). 
benchmark problem 1.                                  benchmark problem 1. 
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Figure 5.1.9: Profile of the contour of the   Figure 5.1.10: Combined profiles of the 
velocity magnitude(y = 0.098m plane)        the velocity magnitude (y = 0.02m,  
benchmark problem 1.                                  y = 0.05m, and y = 0.098m planes).     
                                                                      benchmark problem 1. 
 
 
The results presented in figures 5.1.11 through 5.1.14 represent section plot of the 

velocity contours in the x-y plane. The contours are plotted at location z equal 0.5m 

(middle of the domain), z equal 0.02m (close to the right solid wall), and at z equal 

0.098m (close to the left solid wall). One can note that even with these plots in the x-y 

plane the results obtained are similar to obtained those obtained previously in x-z plan 

(figure 5.1.7 through 5.1.10). 

    
Figure 5.1.11: Profile of the contour of      Figure 5.1.12: Profile of the contour of    
the velocity magnitude (z = 0.05m plane)     the velocity magnitude(z = 0.02m plane) 
benchmark problem 1.                                 benchmark problem 1. 
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Figure 5.1.13: Profile of the contour of      Figure 5.1.14: Combined profiles of the 
the velocity magnitude (z = 0.098m plane)   the velocity magnitude (z = 0.02m, 
benchmark problem 1.                                 z = 0.05m, and z = 0.098m planes) 
                                                                     benchmark problem 1. 
 
5.2           Benchmark problem 2 
 
5.2.1 Computational domain and boundary conditions 
 
The geometry dimension, finite element mesh sizes are the same as for the one for bench 

mark problem 1, the outlet for this case is positioned as given in figure 5.2.1, 

the finite element mesh size, and the boundary conditions are given by figure 5.2.2 and 

5.2.3, respectively.  

 
Figure 5.2.1: Geometry of benchmark problem 2. 
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Figure 5.2.2: Finite element mesh for benchmark problem 2. 

 

 
Figure 5.2.3a: 2-D schematic representation of the boundary condition in 

the xy plane (benchmark problem 2). 
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Figure 5.2.3b: 2-D schematic representation of the boundary condition in 

the xz plane (benchmark problem 2). 
 
5.2.2 Results 
 
The results for the benchmark problem 2 are given in figures 5.2.4 through 5.2.14. One 

can note that when the outlet is placed at the top end of the top solid wall, there is an 

increase in both pressure and velocity values with the pressure values vary between zero 

(the initial value) to a maximum of 20KPa (figures 5.2.4 – 5.2.5), and the velocity 

magnitudes vary from 0.01  to a maximum of 0.14  (figure 5.2.6) compared to 

the previous benchmark problem where the outlet was situated at a position normal to the 

fluid flow. Once again, it can be noted from figure 5.2.4 that pressure decreases in the 

direction of the flow. But although the fluid moves slightly fast in this second benchmark 

case, the mass flow from the outlet is 0.983  which is lower than 0.988  

obtained for benchmark problem 1. The difference between the mass flow in and the 

mass flow out is about 1.7% which represent 0.7% increase compared to the 1.2% error 

obtained for the first benchmark case, the lower value of the mass flow from the outlet in 

this benchmark case can be explained by the fact that the region where the fluid moves 

faster is found to be far from the outlet (figure 5.2.6), but in the vicinity of the outlet the 

velocity of the fluid is low.  The pressure distribution and graph given by figures 5.2.4 

and 5.2.5 show that the highest values of the pressure (18KPa-20KPa) are distributed 

over a length of 0.211m which is longer than the length of 0.105m  on which the highest 

values of pressure (9KPa to 10KPa) were distributed for benchmark problem 1.           

1−sm 1−sm

1. −skg 1. −skg
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Figure 5.2.4: Pressure distribution (benchmark problem 2). 

 

Pressure Distribution

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

0.00E+
00

2.00E-
01

4.00E-
01

6.00E-
01

8.00E-
01

1.00E+
00

1.20E+
00

Domain Length (m)

Pr
es

su
re

 (P
a)

Pressure

Figure 5.2.5: pressure distribution across the domain (benchmark problem 2). 
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Figure 5.2.6:  Vector plot profile coloured by the velocity magnitude contour. 

(benchmark problem 2). 

 
Figure 5.2.7:  Vector plot profile coloured by the velocity magnitude contour 

zoomed  around the outlet (benchmark problem 2). 
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Figure 5.2.8: Profile of the contour of       Figure 5.2.9: Profile of the contour of 
the velocity magnitude (y = 0.05m plane)  the velocity magnitude(y = 0.02m plane)  
(benchmark problem 2).                              (benchmark problem 2). 
 

     
Figure 5.2.10: Profile of the contour of Figure 5.2.11: Combined profiles of the 
the velocity magnitude(y = 0.098m plane)    the velocity magnitude (y = 0.02m, 
(benchmark problem 2).                                y = 0.05m, and y = 0.098m planes) 
                                                                       (benchmark problem 2). 
 
 
Figures 5.2.7 through 5.2.8 above represent the contours plots of the velocity plotted in 

different positions (x-z plane) in the vicinity of the bottom solid wall (figure 5.2.8), and 

of the top solid wall (figure 5.2.9). Note that in the second benchmark case, the boundary 

layers have a parabolic shape with a higher width but cover over a distance of about half 

of the entire domain whereas in the previous test case, the boundary 
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layers are thinner but cover the entire length of the domain (figure 5.1.8 and 5.1.9).    

Figures 5.2.12 and 5.2.13 represent the contours plots of the velocity in different 

positions (x-y plane) in the vicinity of the right solid wall (figure 5.2.8), and of the left 

solid wall (figure 5.2.9). It can be seen that the shape and size of these boundary layers 

are now different compared to the ones obtained in the x-z plane, the length of the 

boundary layers are now of about 0.70m but their starting points are located about 0.3m 

ahead of the inlet. Another difference to note is that for the benchmark case 1, the shape 

and size of the boundary layers were the same regardless of whether the contour plots 

were taken in the x-y or x-z plane. 

 

  

     
Figure 5.2.12: Profile of the contour of       Figure 5.2.13: Profile of the contour of  
the velocity magnitude (z = 0.5m plane)       the velocity magnitude (z = 0.02m plane) 
(benchmark problem 2).                              (benchmark problem 2).     
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Figure 5.2.14: Profile of the contour of      Figure 5.2.15: Combined profiles of the 
the velocity magnitude (z = 0.098m plane)   the velocity magnitude (z = 0.02m, 
(benchmark problem 2).                               z = 0.05m, and z = 0.098m planes) 
.                                                                     (benchmark problem 2). 
 
 
5.3 Benchmark problem 3 
 
5.3.1 Computational domain and boundary conditions 
 
 
The geometry dimension, finite element mesh sizes are the same as for the two previous 

cases, the outlet for this case is positioned as given in figure 5.3.1, the finite element 

mesh size, and the boundary conditions are given by figure 5.3.2 and 5.3.3 respectively.  

 
Figure 5.3.1: Geometry of benchmark problem 3. 
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Figure 5.3.2: Finite element mesh for benchmark problem 3 

 

 
Figure 5.3.3a: 2-D schematic representation of the boundary condition in 

the xy plane (benchmark problem 3). 
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Figure 5.3.3b: 2-D schematic representation of the boundary condition in 

the xz plane (benchmark problem 3). 
 
5.3.2 Results 
 
 
 
The results obtained when the outlet is located at the bottom end of the solid wall show 

an increase in pressure values compared to the two previous cases. The values of the 

pressure for in this case vary from 0 initially set at the outlet to 26K Pa (figure 5.3.4 and 

5.3.5) compared to the maximal value of 10K Pa for benchmark problem 1 (outlet located 

at the end of the geometry) and 20K Pa for benchmark problem 2 (outlet located at the 

end of the top solid wall). But the maximum magnitude of the velocity remains the same 

as it was for benchmark case 2; the values vary from 0.01  to 0.14  whereas the 

same figure was from 0.01  to 0.12  for benchmark case 1 and from 0.01  

to 0.14  for benchmark case 2. The pressure decrease in the direction of the flow 

(figure 5.3.4) just as obtained for the two previous benchmark problems. But although the 

magnitude of the velocity is high for this third benchmark case, the computed mass flow 

from the outlet 0.980  is lower than the ones obtained for benchmark problem 1 and 

2 and this low value of outlet mass flow yield a 2% error in difference between the mass 

in and the mass out. 

1−sm 1−sm
1−sm
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Figure 5.3.4: Pressure distribution (benchmark problem 3). 
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Figure 5.3.5:  Graph of pressure distribution across the domain 

(benchmark problem 3). 
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Figure 5.3.6:  Vector plot profile coloured by the velocity magnitude contour 

(benchmark problem 3). 
 

 
Figure 5.3.7:  Vector plot profile coloured by the velocity magnitude contour 

zoomed around the outlet (benchmark problem 3). 
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Figures 5.3.7 through 5.3.10 represent the contour plots of the velocity in the x-z plan and 

are similar to the ones obtained for benchmark problem 2 (figures 5.2.7 through 5.2.10), 

which means when the outlet is located at the end of the bottom solid wall, the fluid flow 

experienced the same effect in the vicinity of the solid walls than when the outlet is 

placed at the end of the top solid wall. But when the contour plots are taken in the x-z 

plan (figures 5.3.11 through 5.3.14), the shape and size of the boundary layers are 

different from those obtained in benchmark problem 1 (figures 5.1.10 through 5.1.14) and 

benchmark problem 2 (figures 5.2.10 through 5.3.14). One can note that the length of 

these boundary layers is short and that their thicknesses are smaller compared to those 

obtained in the two previous benchmark cases. 

     
Figure 5.3.7: Profile of the contour of  Figure 5.3.8: Profile of the contour of 
the velocity magnitude (y = 0.5m plane)      the velocity magnitude(y = 0.02m plane) 
benchmark problem 3.                                   benchmark problem 3. 

    
Figure 5.3.9: Profile of the contour of         Figure 5.3.10: Combined profiles of the 
the velocity magnitude(y = 0.098m plane)  the velocity magnitude (y = 0.02m, 
benchmark problem 3.                                    y = 0.05m, and y = 0.098m planes). 
                                                                       benchmark problem 3. 
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Figure 5.3.11: Profile of the contour of       Figure 5.3.12: Profile of the contour of 
the velocity magnitude (z = 0.5m plane)     the velocity magnitude (z = 0.02m plane) 
benchmark problem 3.                                 benchmark problem 3. 
 

 
Figure 5.3.13: Profile of the contour of       Figure 5.3.14: Combined profiles of the 
the velocity magnitude (z = 0.098m plane)    the velocity magnitude (z = 0.02m, 
benchmark problem 3.                                   z = 0.05m, and z = 0.098m planes) 
                                                                       benchmark problem 3.    
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The results obtained for the three benchmark problems were stable and accurate these 

showed that the conservation of mass and momentum across the entire domain were not 

violated. The worst case of difference between the mass in and the mass out was found to 

be 2% (benchmark problem 3) which still in the acceptable range. The velocity profiles 

and pressure contours were all as expected for the three cases. Therefore the numerical 

schemes developed in chapter four can be used with confidence to proceed with the 

simulations of the complex test cases planned for this thesis. For the simulations that will 

follow, an obstruction or obstructions to the fluid flow will be placed somewhere inside 

the geometry but far away from the outlet so that the flow could reached a fully 

developed state before exiting the domain. The reason to introduce an obstruction or 

obstructions is to investigate how it or they will affect the velocity profiles and the 

pressure distributions across the domain. The obstruction will consist of a square block, 

or a cylindrical block, or a combination of them. The computational domain in each case 

will have the same size than the ones used for the benchmark problems 1, 2, and 3 and 

the emplacement of the outlet will chosen to be one of the three used previously for each 

case. 

 
The geometries selected for the simulations are used to generate maximum possible 

contrast between simple flow fields and more complex flow fields including obstructions. 

The various cases simulated in this work are all typical situations often encountered 

during process such as polymer moulding, coating, extrusion, and mixing among others. 

Although the seven test cases are simulated using rectangular geometrical domains, the 

program can be used for the simulation of fluid flow within others domains of different 

geometrical shapes. And as mentioned earlier in this chapter, only results obtained using 

the modified UVWP scheme are presented. Both schemes presents same results when a 

converged solution is reached, the main difference between the two schemes is that the 

modified scheme converges faster than the standard  UVWP scheme. For instance, with a 

value of ∆t = 0.001s used for the test cases simulations, the modified scheme reached 

convergence just after 3 iterations  
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While the standard scheme needed 5 iterations for the solutions to converge. It took about 

45 minutes to the modified scheme to run one iteration of a problem with 7344 elements 

and 8882 nodes, whereas with the same data, the standard scheme took about 65 minutes 

to run a simulation. 

 

The only drawback of the program is that it cannot be used to simulate fluid flow within a 

short domain. For such simulation, the imposition of stress free exit conditions may not 

be realistic, and thus this method may not generate very accurate results. 

 

 

 

 
5.4  Test case 1: Flow in a duct past a big square obstacle (0.05 × 0.05 × 0.05m) 
   
5.4.1  Computational domain and boundary conditions 
 
For first test case problem, a square blockage of 0.05m of length, width, and high is 

placed inside the rectangular domain given in the benchmark problem 1 (figure 5.2.1), the 

domain is discretized using 8-noded hexahedral isoparametric elements giving a finite 

element mesh of 8912 nodes, and 7392 elements (figure 5.4.2). The boundary conditions 

given by figures 5.4.3a and 5.4.3b are as the ones specified for the benchmark problem 1 

but with additional no slip boundary conditions (u, v, and w set to zero) around the six 

faces of the square blockage.  
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Figure 5.4.1: Computational domain for the test case 1 with a big square 
blockage. 
 

 
Figure 5.4.2: Finite element mesh for test case 1. 
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Figure 5.4.3a: 2-D schematic representation of the boundary condition in the xy plane 
(test case 1). 

 
 

Figure 5.4.3b: 2-D schematic representation of the boundary condition in the 
xy plane (test case 1). 

 
5.4.2 Results  
 
Results obtained are given by figures 5.4.9 through 5.4.16, and in contrast to the 

benchmark problem 1 where there was no obstruction, one notes an increase for the 

pressure values for this case, pressure decrease in the direction of the flow (figure 5.4.4) 

from a maximum values of 22000Pa around the inlet to 0Pa initially set at the outlet 

(figure 5.4.5). Figures 5.4.6 through 5.4.8 also show an increase for the velocity with 

values varying from 0.02  to 0.2  compared to 0.01  to 0.12  

previously obtained for benchmark problem 1. But despite this increase in velocity 

values, it can be seen from figures 5.4.6 through 5.4.8 that the region where fluid moves 

with high velocity is narrow and situated just at the top, bottom, left, and bottom sides of 

the obstacle. There is no fluid or fluid flowing only with a very low velocity at about 0.02 

 in most of region behind the obstacle. The average velocity of the outlet is 0.097 

 giving an outflow mass rate of 0.97  and hence a 3% error difference between 

the mass in and mass out of the computational domain. 

1−sm 1−sm

1. −skg

1−sm 1−sm

1−sm
1−sm

 

104 
 



Chapter 5                                                                                 Results and discussions 

 

 
Figure 5.4.4: Pressure distribution (test case 1). 
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Figure 5.4.5:  Graph of pressure distribution across the domain (test case 1). 
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Figure 5.4.6:  Vector plot profile coloured by the velocity magnitude contour 

(test case 1). 
 

    
Figure 5.4.7:  Vector plot profile coloured Figure 5.4.8:  Vector plot profile coloured  
by the velocity magnitude contour zoomed    by the velocity magnitude contour  zoo 
around the obstacle in the x-y plane              med around the obstacle in the x-z plane 
(test case 1).                                                   (test case 1). 
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Figure 5.4.9: Profile of the contour of       Figure 5.4.10: Profile of the contour of 
the velocity magnitude (y = 0.05m plane)    the velocity magnitude(y = 0.02m plane) 
(test case 1).                                                  (test case 1). 
        
  

    
Figure 5.4.11: Profile of the contour of     Figure 5.4.12: Profile of the contour of 
the velocity magnitude (y = 0.098m plane)  combined the velocity magnitudes  
(test case 1).                                                  (position y = 0.02, 0.05 and 0.098m) 
                                                                      (test case 1). 
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Figure 5.4.13: Profile of the contour of   Figure 5.4.14: Profile of the contour of    
the velocity magnitude (z = 0.05m plane)    the velocity magnitude (z = 0.02m plane). 
(test case 1).                                                (test case 1). 
 

    
Figure 5.4.15: Profile of the contour of   Figure 5.4.16: Combined profiles of the 
the velocity magnitude (z = 0.098m plane)   the velocity magnitude (z = 0.02m, 
 (test case 1).                                              z = 0.05m, and z = 0.098m planes) 
                                                                   (test case 1). 
 
 
Figures 5.4.9 through 5.4.16 above represent different section contour plots of the 

velocity taken at the same locations as for figures 5.1.7 through 5.1.14 (benchmark 

problem 1). It is interesting to investigate again the profile of the velocity in the vicinity 

of the solid walls for this case with a square blockage and compared with the same  
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figures obtained for benchmark problem 1 where there was no obstruction inside the 

computational domain.  

As it can be noted from these plots, the boundary layers for this test case are wider, 

higher, but shorter in length compared to those obtained for the benchmark problem 1. 

This change of shape is certainly due to the presence of the blockage that disrupts the 

fluid movement. 

 
5.5 Test case 2: Flow in a duct past a small square obstacle (0.025 × 0.025 × 

0.025m) 
 
5.5.1 Computational domain and boundary conditions 
 
In this second test case, the size of the blockage is reduced by half (0.025m×0.025m×

0.025m) in order to investigate whether the obstruction size has an effect on the flow. 

The geometry (figure 5.4.17), the finite element mesh (figure 5.4.18), and the imposed 

boundary conditions (figure 5.4.19a, and figure 5.4.20b) for this case are similar to those 

for the benchmark problem 1. 

 

 

  
 

Figure 5.5.1: Computational domain for test case 2. 

109 
 



Chapter 5                                                                                 Results and discussions 
 
 
 
 
 

 
Figure 5.5.2:   Finite element mesh for test case 2. 

 

 
Figure 5.5.3a: 2-D schematic representation of the boundary condition in the 

xy plane (test case 2). 
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Figure 5.5.3b: 2-D schematic representation of the boundary condition in the xz 

Plane (test case 2). 

 

5.4.2     Results 

 

 

The results obtained for this test case with the square blockage size halved showed that 

pressure decreased in the direction of the flow as obtained for the previous case and with 

an increase in pressure values starting for 0Pa to 55000Pa (figures 5.4.20 and 5.4.21) 

compared to the same figure obtained for test case 1; which was from 0Pa to 22000Pa 

(figures 5.4.4 and 5.4.5), this pressure rise reduced the magnitude of velocity which vary 

in this case from the initial values of 0.01  to 0.16 (figure 5.4.22). Given that 

the obstacle is small, the fluid entering the domain have more free space around it to 

move freely and this can be seen from figures 5.4.23 and 5.4.24 (orange coloured region 

representing the region of the domain where the flow occurs with high velocity and at 

about 0.14  ). The fluid exits the domain with an average velocity of 0.0975  

giving a mass outflow rate of 0.975 , and hence an error in mass balance of 2.5%. 

Thus reducing the size of the obstacle by half improves the mass balance by 0.5%. 

1−sm 1−sm

1−sm 1−sm
1. −skg
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Figure 5.5.4.: Pressure distribution (test case 2). 
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Figure 5.5.5: Graph of pressure distribution across the domain (test case 2). 
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Figure 5.5.6:  Vector plot profile coloured by the velocity magnitude contour 

(test case 2.  ). 
 

 
 

Figure 5.5.7:  Vector plot profile coloured by the velocity magnitude contour 
zoomed around the obstacle in the x-y plane (test case 2). 
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Figure 5.5.8:  Vector plot profile coloured by the velocity magnitude contour 

zoomed around the obstacle in the x-z plane (test case 2). 
 

    
Figure 5.5.9: Profile of the contour of        Figure 5.5.10: Profile of the contour of 
the velocity magnitude (y = 0.5m plane)    the velocity magnitude(y = 0.02m plane) 
test case 2.                                                   test case 2. 
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Figure5.5.11: Profile of the contour of        Figure 5.5.12: Combined profiles of the 
thevelocity magnitude(y = 0.098m plane)     velocity magnitude (y = 0.02m,  
test case 2.                                                      y = 0.05m, and y = 0.098m planes). 
                                                                        test case 2. 
 
 
 
 
Figures5.4.25 through 5.4.32 of this section represent different section contour plots of 

the velocity taken at the same locations as for the benchmark problem 1. These plots 

show that in the vicinity of the solid walls, the shapes of the boundary layers are similar 

to those obtained for test case 1 problem but the only difference is that there are smaller. 
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Figure 5.5.13: Profile of the contour of     Figure 5.5.14: Profile of the contour of    
the velocity magnitude (z = 0.5m plane)     the velocity magnitude(z = 0.02m plane) 
test case 2.                                                    test case 2. 
 

   
Figure 5.5.15: Profile of the contour of     Figure 5.5.16: Combined profiles of the 
the velocity magnitude (z = 0.098m plane)   the velocity magnitude (z = 0.02m, 
test case 2.                                                      z = 0.05m, and z = 0.098m planes) 
                                                                        test case 2. 
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5.6 Test case 3:  Flow in a duct past a big square obstacle (0.05 × 0.075 × 0.05m) 

with an outlet positioned normal to the direction of the flow.  
 
5.6.1 Computational domain and boundary conditions 
 
Seeing that the results obtained for test cases 1 and 2 showed that the case with a bigger 

obstruction (test case 1) had a bad percentage (3%) error in mass balance, the next 

simulation (test case 3) that follows will be carry out over a domain including a slightly 

bigger obstruction than the one for test case 1. The size of the obstacle in this 

case is 0.05m, 0.70m, and 0.05m for length, height, and wide respectively, the 

computational domain size remain the same (see figure 5.6.1). The entire domain is 

discretized using 8-noded hexahedral isoparametric elements giving a finite element 

mesh of 8882 nodes and 7344 elements (figure 5.6.2). The three different emplacement of 

the outlets used for benchmark problems 1, 2, and 3 will be use for this case. The aim of 

the simulation in this case is to investigate whether bigger obstacles and the emplacement 

of the outlet will cause the violation of the mass balance and hence the reliability of the 

developed codes.     

 

 
Figure 5.6.1: Computational domain for test case 3. 
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Figure 5.6.2:   Finite element mesh for test case 3. 

 
Figure 5.6.3a: 2-D schematic representation of the boundary condition in the 

xy plane (test case 3). 
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Figure 5.6.3b:  2-D schematic representation of the boundary condition in the xz 

Plane (test case 3). 
 
5.6.2 Results  
 
Increasing the obstacle size has no effect on the pressure distribution as it can seen from 

figures 5.6.4 and 5.6.5, the values of computed pressure obtained vary from 0Pa to 

22KPa and are similar to the computed pressure obtained in test case 1. The velocity 

profiles on the other hand experience an increase in magnitude values, the values here 

vary from 0.02  to 0.26  whereas the same figure was 0.02  to 0.2  for 

test case 1. But as it can be seen from figures 5.6.6 and 5.6.7, the regions where the fluid 

moves with high velocity are very smaller. The computed average exit velocity for this 

case is 0.0963  giving a mass outflow of 0.963  and an error mass balance 

difference of 3.7% which is bigger than the 3% obtained in test case 1 but still in within 

the tolerated limit. Hence, even with a big obstacle as used in this case, the mass balance 

criterion is not violated, that is the developed computational scheme still valid regardless 

of the size of the obstruction.   
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Figure 5.6.4:  Pressure distribution. for test case 3.   
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Figure 5.6.5:  Graph of pressure distribution across the domain (test case 3). 
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Figure 5.6.6:  Vector plot profile coloured by the velocity magnitude contour in the z = 

 
Figure 5.6.7:  Vector plot profile coloured by the velocity magnitude contour in the y = 
0.5m plane (test case 3). 

0.5m plane (test case 3). 
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Figure 5.6.8 (in the z = 0.05m plane) shows the velocity vector profile around the 

 
Figure 5.6.8:  Vector plot profile coloured by the pressure contour zoomed around 

the obstruction (test case 3). 

obstruction, the contour pressure is chosen in this case as background for the velocity 

vectors because it provides better view than the velocity magnitude contour. The profile 

is as expected, one can see that in the vicinity of the blockage, the fluid deviates and 

move toward the top of the computational domain where it can moves freely, then once 

passing the obstruction, some the fluid move back down and continues to flow toward the 

exit.  
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Figure 5.6.9: Profile of the contour of      Figure 5.6.10: Profile of the contour of    
the velocity magnitude (z = 0.5m plane)  elocity magnitude (z = 0.02m plane).

   
Figure 5.6.11: Profile of the contour of      Figure 5.6.12: Combined profiles of the 
the velocity magnitude (z = 0.098m plane agnitude (z = 0.02m, 

the contours of the magnitude of 

to the inlet to end at the outlet whereas for the test case 1 problem  

 

     the v  
test case 3.                                                     test case 3. 

 

)   the velocity m
test case 3.                                                     z = 0.05m, and z = 0.098m planes) 
                                                                       test case 3. 
 
Figures 5.6.9 through 5.6.12 show the section plots of 

the velocity plotted in the same position than those plotted for test case 1 problem 

(figures 5.4.9 through 5.4.16). It can be seen that when the size of the obstruction is 

increased and that it is placed at the bottom of the domain, the boundary layers obtained 

in the z = 0.02m and z = 0.098m planes are similar, bigger and start from a region close 
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(figures 5.4.9-5.4.12) where the obstruction was smaller and placed far from the bottom 

ter 

   
Figure 5.6.13: Profile of the contour of      Figure 5.6.14: Profile of the contour of 
the velocity magnitude (y = 0.5m plane)     the velocity magnitude(y = 0.02m plane) 
test case 3.                                                     test case 3. 

     
Figure 5.6.15: Profile of the contour of        Figure 5.6.16: Profile of the contour of 
the velocity magnitude (y = 0.098m plane)   combined the velocity magnitudes  
test case 3.                                                      (position y = 0.02, 0.05 and 0.098m) 

solid wall, the boundary layers obtained at the same positions where smaller and shor

in length. Another difference is that in the planes y = 0.02m and y = 0.098m, for the 

present case, the shape of the boundary layer at position y = 0.02m (figure 5.6.14) differs 

from the one at position y = 0.098m whereas the same figure obtained for test case 1 

problem (figures 5.4.13-5.4.16) showed that they were similar.   

 

 

 

                                                                        test case 3. 
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5.7 Test case 4: Flow in a duct past a big square obstacle (0.05 × 0.075 × 0.05m)

with an outlet placed at the top end of the domain. 

5.7.1  

he dimension of the domain (figure 5.4.49), finite element mesh (figure 5.4.50), and 

oundary conditions for this test case are similar to those given for test case 3, except the 

 
Figure 5.7.1: Computational domain for test case 4. 

 
 

 

 

 
 

 Computational domain and boundary conditions
 
 
 
 
T

b

fact that here the outlet is placed at the top end of the domain. 
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Figure 5.7.2:   Finite element mesh for test case 4. 

 
 
 

 
 

Figure 5.7.3a: 2-D schematic representation of the boundary condition in the 
xy plane (test case 4). 
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Figure 5.7.3b:  2-D schematic representation of the boundary condition in the xz 
Plane (test case 4). 

 
 
.7.2 Results 

hen the outlet is placed at the top end of the geometry, the pressure gradient obtained 

sed at the outlet to 28KPa (figures 5.7.4 and 5.7.5) with the pressure 

nflow

 

5
 
W

vary from 0 impo

gradient decreasing in the direction of the flow. The developed pressure profile can be 

justified with the accompanying flow field expressed by the velocity vectors in figures 

5.7.6 through 5.7.8 from which it can be noted that the fluid moves with a minimum 

velocity of 0.02 1−sm  and a maximum velocity of 0.26 1−sm . The computed mass 

balance across the computational domain shows that 96.05% of the fluid entering the 

domain exit, that is an error of 3.95% between the mass i  and mass outflow is 

recorded.  
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Figure 5.7.4:  Pressure distribution (test case 4). 

 
 

Figure 5.7.5: Graph of pressure distribution across the domain (test case 4). 
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z = 0.05m plane (test case 4). 

        
 
Fig
pressure contour and zoomed e velocity magnitude  

struction in the z = 0.05m plane.                   contour in the z  = 0.05m plane 
test case 4.                                                         test case 4. 

 
Figure 5.7.6:  Vector plot profile coloured by the velocity magnitude contour in the 

  

 

ure 5.7.7: Vector profile coloured by         Figure 5.7.8: Vector profile  
around the         coloured by th

ob
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5.8 Test case 5: Flow in a duct past a big square obstacle (0.05 × 0.075 × 0.05m) 

with an outlet placed at the bottom end of the domain. 
  
 
5.8.1 Computational domain and boundary conditions 
 
 
 
 

 
Figure 5.8.1: Computational domain for test case 5. 
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Figure 5.8.2: Finite element mesh for test case 5. 

  

 
Figure 5.8.3a: 2-D schematic representation of the boundary condition in the  
                         xy plane (test case 5). 
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Figure 5.8.3b:  2-D schematic representation of the boundary condition in the xz 

Plane (test case 5). 
 
  
 

  

The results obtained (figure 5.8.4 through 5.8.6) for this case with the outlet placed at the 

bottom end of the geometry show a similar figure in term the pressure gradient and 

velocity magnitude with the results obtained in the previous test case where the outlet 

was placed at the top end of the geometry. The only difference for the present case is that 

the average velocity at the outlet is found to be 0.0958  giving a mass outflow of 

0.958 kg  and hence the discrepancy between the e outlet masses gave an 

error of 4.2%. 

 
 
 

5.8.2     Results 
 

1−sm

 inlet and th1s−
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Figure 5.8.4:  Pressure distribution (test case 5). 

Figure: 5.8.5:  Graph of pressure distribution across the domain (test case 5). 
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Figure 5.8.6:  Vector plot profile coloured by the velocity magnitude contour in the 

z = 0.5m plane (test case 5). 
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5.9 Test case 6: Flow in a duct past a circular cylinder.  
 
 
5.9.1 Computational domain and boundary conditions 
 
 
 
The simulation for the sixth test case is carried out on a rectangular domain (figure 5.9.1) 

of same dimension than for the previous simulations, the domain is discretized using 8 

nodes isoparametric hexahedral element into a finite element mesh consisting of 9062 

nodes and 7560 elements (figure 5.9.2). But the obstacle in this case has a cylindrical 

shape. The imposed boundary conditions are given by figures 5.9.3a, b.  

 
 

 
Figure 5.9.1: Computational domain for the case with a cylindrical blockage 

 

 
 

(test case 6). 
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Figure 5.9.2: Finite element for test case 6.  
 
 

Figure 5.9.3a: 2-D schematic representation of the boundary condition in the xy  

 

 

                              Plane (test case 6). 
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Figure 5.9.3b: 2-D schematic representation of the boundary condition in the xz  
                Plane (test case 6). 
 
 
 
 
5.9.2 Results 
 
 

he results obtained with the case of cylindrical shaped obstacle show that the pressure 

n of the flow as in previous cases but with values from high 

pressure of about 45KPa to 0 imposed at the exit of the domain (figure 5.9.4 and 5.9.5). 

The velocity vectors plots given by figures 5.9.6 through 5.9.8 show that the flow 

remains fully developed throughout the length of the computational domain as it 

progress. 

 

 

 
 
T

decrease in the directio
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  Graph of pressure distribution across the domain (test case 6). 

 
Figure 5.9.4: Pressure distribution (test case 6). 
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Figure 5.9.5:
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 velocity magnitude contour in the                               
                     z = 0.05m plane (test case 6). 

 

 
Figure 5.9.6:  Vector plot profile coloured by the
  

Figure 5.9.7: Velocity vector section plotted in the y = 0.05m plane (test case 6). 
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Figure 5.9.8: Velocity vector plotted in the z = 0.05m plane and coloured by pressure 
                       Contour (test case 6). 
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Figure 5.9.9: Profile of the contour of      Figure 5.9.10: Profile of the contour of 
the velocity magnitude (y = 0.5m plane)   the velocity magnitude(y = 0.02m plane) 
test case 6.                                                   test case 6. 
 

  
igure 5.9.11: Profile of the contour of     Figure 5.9.12: Combined profiles of  
e velocity magnitude(y = 0.098m plane)  the velocity magnitude (y = 0.02m,  
st case 6.                                                   y = 0.05m, and y = 0.098m planes) 
                                                                   test case 6.     
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.14: Profile of the contour of    
e velocity magnitude (z = 0.05m plane)      the velocity magnitude (z = 0.02m plane) 

test case 6.                                                      test case 6. 

f the 
, 

nd z = 0.098m planes) 
                                                                       test case 6. 

      
Figure 5.9.13: Profile of the contour of        Figure 5.9
th

     
Figure 5.9.15: Profile of the contour of         Figure 5.9.16: Combined profiles o

 

the velocity magnitude (z = 0.098m plane)    the velocity magnitude (z = 0.02m
test case 6.                                                       z = 0.05m, a
  
 
 
 
 
 
 
 
 
 

142 
 



Chapter 5                                                                                 Results and discussions 
   

 
  
5.10     Test case 7: Flow in a duct past two cylindrical and one rectangular   

obstacles. 
 
5.10.1 Computational domain and boundary conditions 
 
For this final simulation case, three problems are solved in order to investigate the flow 

fields unknowns (velocity and pressure) using three different values of the power law 

parameter n. The three case are as follow; n = 0.87 (for shear thinning fluids), n = 1 (for 

purely Newtonian fluids), and n = 1.23 (for shear thickening fluids). 

he 

o 

cylindrical and one square blockages. The cylinders volumes are 4.91  m

The domain in this case consists of a rectangular box with a similar dimension as for t

previous problems solved, but the obstructions here consist of a combination of tw
3510−×    each, 

the length, width, and height of the square are 0.025m as shown in figure 6.8.1, and the 

entire domain was discretized in a finite element mesh of 8834 nodes, and 7389 elements 

(figure 6.8.2). The imposed boundary conditions for this case are given by figures 6.8.3 

and 6.8.4 respectively. 

 

 
Figure 5.10.1: Computational domain for test case 7. 
 

143 
 



Chapter 5                                                                                 Results and discussions 
 
 
 

 

 

 
Figure 5.10.3a: 2-D schematic representation of the boundary condition in  

 

Figure 5.10.2: Finite element mesh for test case 7. 

                     the xy  plane (test case 7). 
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Figure 5.10.3b: 2-D schematic representation of the boundary condition in  
                           the xz plane (test case 7). 
 
The results obtained in term of pressure and velocity contours and vector are presented 

(figure 5.10.4 through figure 5.10.19) and discussed below 

 
5.10.2 Results 
 
 

wer law index (n) is set equal to 0.87

hear thinning fluids) the pressure across the entire computational domain decrease in 

the direction of the flow from a maximum value of about 26KPa to 0 initially set at the 

exit of the domain. The same figure for the case of purely Newtonian fluids (n = 1) show 

a decrease of 22KPa to 0 whereas when n = 1.23 (shear thickening fluids), the decrease in 

pressure values is only form 20KPa to 0. In other hand, the velocity profile given by 

figure 5.10.8 through figure 5.10.19 represent the velocity contour plots and vector for 

the shear thinning fluids, which have the lowest velocity of the three cases simulated. As 

it can seen, the fluids move with a velocity of between 0.01   and 0.19 , the 

computation of the mass balance for this case showed that 92% of the fluid entering the 

 and mass 

et equal to 1 (purely Newtonian flow case) given 

y figures 5.10.12 through 5.10.15, the mass balance calculated showed that 94.3% of the 

uid entering the domain exited, thus in this case the discrepancy between the inlet and  

Figures 5.10.4 through 5.10.7 show that when the po  

(s

1s.m − 1s.m −

domain exited this indicated there is an error of 8% between the mass inflow

outflow. When the power law index is s

b

fl
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the outlet mass is 5.7%. The velocity magnitude of this case varies from 0.02  to 0.3

 which is higher than the same figure obtained in the case of   shear thinning fluids. 

 last simulation (shear thickening fluids), the velocity plots ob igures 

5.10.16 through 5.10.19) showed that the fluid moves with slightly fast

previous cases with a velocity magnitude varying from  0.02  to 0.4  with  

95.5% of fluid entering the domain exiting hence the discrepancy between the inlet and 

 

1s.m −

tained (f

er than in the two 
1s.m −

1s.m −

For the

1s.m −

the outlet masses gave an error of  4.5% only. 

 

 

 

Figure 5.10.4:  Pressure distribution (case n = 0.87) test case 7. 
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Figure 5.10.5:  Pressure distribution (case n = 1) test case 7. 

 
Figure 5.10.6:  Pressure distribution (case n = 1.23) test case 7. 
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Figure 5.10.7: Graph of pressure distribution across the domain (cases n =0.87,  
                          n =1, n = 1.23) test case 7. 

 
igure 5.10.8: Velocity contour plot in the y = 0.05 plan (case n = 0.87) test case 7. 
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he z = 0.05 plan (case n = 0.87) test case 7. 

 

 

Figure 5.10.9: Velocity contour plot in t

Figure 5.10.10: Velocity vector plot in the y = 0.05 plan (case n = 0.87) test case 7. 
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Figure 5.10.11: Velocity vector plot in the y = 0.05 plan zoomed around the obstacles 

(case n = 0.87) test case 7. 

 
Figure 5.10.12: Velocity contour plot in the y = 0.05 plan (case n = 1) test case 7. 
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Figure 5.10.13: Velocity contour plot in the y = 0.05 plan (case n = 1) test case 7. 

 
Figure 5.10.14: Velocity vector plot in the y = 0.05 plan (case n = 1) test case 7. 
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Figure 5.10.15: Velocity vector plot in the y = 0.05 plan zoomed around the obstacles 

(case n = 1) test case 7. 

 
 

Figure 5.10.16: Velocity contour plot in the y = 0.05 plan (case n = 1.23) test case 7.
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Figure 5.10.17: Velocity conto an (case n = 1.23) test case 7. 

 

ur plot in the z = 0.05 pl

Figure 5.10.18: Velocity vector plot in the y = 0.05 plan (case n = 1.23) test case 7. 
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Figure 5.10.19: Velocity vector plot in the y = 0.05 plan zoomed around the obstacles 

(case n = 1.23) test case 7. 
 
 
Large number of results discussed in this chapter all show self- consistency of the 

simulations obtained by the developed schemes. In addition where ever possible other 

evidence such as pattern of pressure drop or accuracy of the conservation of mass have 

been taken into account. Therefore the main conclusion of this chapter is the developed 

three dimensional finite element schemes can be used to solve realistic flow problems 

with minimum computational cost. Flexibility of an in-house developed scheme 

combined with the mathematical rigour and computational economy makes the outcome

of 

 

this research a useful engineering tool.    
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CHAPTER 6 

 

 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

 

 

6.1  Conclusions 

 

Three dimensional finite element computer models for the solution of governing 

equations of generalized Newtonian fluids have been developed and used to simulate 

flow of power-law fluids through domains involving obstructions. These models are 

based on two different finite element schemes, namely the mixed velocity-pressure 

(UVWP) and a modification of the mixed velocity-pressure (UVWP) methods. Both 

models utilize 8-noded isoparametric  continuous hexahedral elements to discretize 

velocity and pressure unknowns. Therefore, in contrast to the traditional mixed finite 

element schemes, the use of lower order of interpolation function for pressure is avoided 

and the required stability condition (i.e. the LBB condition) is satisfied, for the first time 

in three dimensional simulations, via the use of a perturbed continuity constraint. The 

discretizations of the temporal variables in both schemes are carried out using the first

o l 

omain which is based on the n the value of the power law 

dex and the computer models can be used to simulate Newtonian fluid flow (power law 

 The comparisons done for all 

f the test cases results show that the differences between the mass flow from the  

0c

 

rder Taylor-Galerkin scheme. The variation of the viscosity across the computationa

d power law model depends o

in

index equal 1), shear thinning fluid (power law index less than 1) and shear thickening 

fluid (power law index greater than 1). 

The accuracy and validity of the models have been evaluated by solving three benchmark 

problems and seven test cases.  

Because there is no available experimental data to validate results obtained for the test 

cases problems, the validation processes of these cases have been based on the 

comparison of mass flow rate in and out of the computational domain, as well as the 

overall consistency and logical interpretation of the results.

o
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utlets and the mass flow from the inlet were insignificant. These mass balance 

computations were backed up by the different plots representing flow and pressure drop 

table and theoretically expected forms. Therefore, the novel 

pproach used here to simulate three dimensional flows via the use of equal order 

f

uch as the theta method will work in three 

ted here are obtained using a Pentium IV personal 

o

patterns which show s

a

hexahedral discretization of pressure and velocity in conjunction with a perturbed 

continuity constraint has been justified. The main conclusions of this project can hence be 

summarised as: 

1- Three dimensional finite element schemes for the simulation of incompressible 

regimes demonstrating non-linear rheological behaviour in complex domains 

which are computationally very e ficient can be developed. 

2- The use of perturbed continuity constraint in conjunction with an isoparametric 

tensor product element such as tri-linear 8 noded brick element results in a robust 

scheme which can readily satisfy LBB condition. 

3- Although both mixed UVWP and Modified mixed UVWP generate stable 

accurate results the modified scheme converges much faster than the traditional 

approach. 

4- Temporal discretization of the governing equations plays an important role in 

maintaining stability of the present schemes. Here first order Taylor –Galerkin 

approach has been used successfully. It is doubtful that the use of a simpler finite 

difference based techniques s

dimensional simulations.  

5- The simulations presen

computer hence maintain maximum computing economy.  

 

 

 

 

156 
 



Chapter 6                                Conclusions and recommendations for future work   
 

 

6.2 Recommendations for future work  

 developed in this present study assumed isothermal regimes and hence 

o-dimensional flow 

 

6.2

n these situations as the concentration is low the fundamental flow 

6.2.3 can be put in the non-dimensional form by using the 

 

 

There are many novel areas which using the schemes developed in this project can be 

further investigated. To provide some examples of such extensions the following 

examples can be considered.  

 

6.2.1 The code

omitted the energy equation from the system of equations representing 

incompressible fluid flow. However, in many engineering applications flow 

regimes are non-isothermal. Experience gained from tw

simulations show that addition of a challenging. A very important extension will 

therefore be the inclusion of the energy equation in the discretization scheme.  

.2 Another extension can be based on the application of the basic scheme with 

required modifications to model viscous flows carrying small amounts of solid 

particles. I

equations remain the same, however, need to be modified to include variable 

density. Variations of density can be tracked via the use of an equation of state 

which needs to be updated at the end of each time step.  

 
 The governing equations 

following non-dimensional variables.  

 

L
zz,

L
yy,

L
xx === ∗∗∗          

 

∞∞

∗

∞

∗ ===
u
ww,

u
vv,
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∞
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∞

∞∞

η
ρ
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LuRe  

 
 

 
∞η
η

=η  

resents non-dimensional variables, Infinity is the free-stream 

e reference length.   

 
 
Where an asterisk rep

conditions and L denotes th

lthough this seems as a trivial extension of the present work nevertheless its 

m

comparison of the perform

used. 

 
6.2.4 

such as

achieve  for the discretization of 

instructions to link the differe  

 
 
 
 
 
 
 
 
 

A

imple entation can be lengthy and require care. This extension allows a more direct 

ance of the scheme with respect to the type of discretization 

The program can be extended and use for the simulation for various flow regimes 

 Darcy flow, flow through porous media, and combined free/porous flows. To 

 such simulation, the user will need to add one subroutine

the flow governing equations and in case of combined free/porous flows some 

nt flows regimes at interfaces.
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APPENDIX 1 

SHAPE FUNCTIONS DERIVATION 

dix, reader interested in further information about this interpolation function 

ecall that name isoparametric is used to describe the element because the same 

t  field 

nknowns within an element. The isoparametric element is classified as one of the natural 

 
igure A1: 8-noded hexahedral isoparametric element. 

PPENDICES

 

 

 

A brief detail on how the isoparametric interpolation function used in this study is given 

in this appen

may refer to Zienkiewicz (1971), Chung (2002), and Nassehi (2002). 

R

parametric function which describes the geometry may be used to in erpolate the

u

coordinate elements because of its use of the nondimensionalized coordinate. 

 

  

F
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Appendix 1                                                                        Shape functions derivation 
 

 

Consider the hexahedral element as shown in figure A1, the natural coordinates ( ζηξ ,, ) 

are related to the referen the relation 

x, y, z = 

ce Cartesian coordinates (x, y, z) through 

 

             (A1) ξζα+ηζα+ξηα+ξηζα+ζα+ηα+ξα+α 87654321

 

 

 

 

 

It usually recommended to place the natural coordinates ( ζηξ ,, ) at the centroid of the 

element so that their values could range from 0 to ± 1, thus writing relation (A1) in term 

f the nodal values gives 

 

 

The system of equations given by (A2) can be written in a matrix form as 

 

 

 

Where the matrix [M] is given by 

o

 

)1)(1()1)(1()1)(1()1)(1)(1()1()1()1(x
)1)(1()1)(1()1)(1()1)(1)(1()1()1()1(x

)2A()1)(1()1)(1()1)(1()1)(1)(1()1()1()1(x
)1)(1()1)(1()1)(1()1)(1)(1()1()1()1(x

)1)(1()1)(1()1)(1()1)(1)(1()1()1()1(x
)1)(1()1)(1()1)(1()1)(1)(1()1()1()1(x

)1)(1()1)(1()1)(1()1)(1)(1()1()1()1(x
)1)(1()1)(1()1)(1()1)(1)(1()1()1()1(x

876543218

876543217

876543216

876543215

876543214

876543213

876543212

876543211

−−α+−α+−α+−−α+−α+α+−α+α=
−α+−α+α+−α+−α+α+α+α=

α+α+α+α+α+α+α+α=
−α+α+−α+−α+α+α+−α+α=

−−α+−−α+−−α+−−−α+−α+−α+−α+α=
−α+−−α+−α+−−α+−α+−α+α+α=

α+−α+−α+−α+α+−α+α+α=
−α+−α+−−α+−−α+α+−α+−α+α=

)3A(]][M[]x[ α=  
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Substituting (A4) into (A1) yields 

 

iN
)e(

Ni xx φ=   

 

Where 
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)5A()1)(1)(1(
8
1

33N22N11N
)e(

N ξξ+ξξ+ξξ+=φ  

 

If one sets ζ=ξη=ξξ=ξ 321 and,,

3  into equation (A5) give the he

 then substituting the nodal values of 

ight terpolation functions as 

 

N2N1N and,, ξξξ  in

)1)(1)(1(
8
1

)1)(1)(1(
8
1

)1)(1)(1(
8
1

)1)(1)(1(
8
1

)1)(1)(1(
8
1

)1)(1)(1(
8
1

)e(
6

)e(
5

)e(
4

)e( =φ
 

3

)e(
2

)e(
1

ζ+η+ξ+=φ

ζ+η+ξ−=φ

ζ−η−ξ−=φ

ζ−η−ξ+

ζ+η−ξ+=φ

ζ+η−ξ−=φ

 

 
)1)(1)(1(

8
1

)1)(1)(1(
8
1

)e(
8

)e(
7

ζ−η+ξ−=φ

ζ−η+ξ+=φ
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APPENDIX 2 
 

INPUT FILE FORMAT 
 

 
Heading & Formats Variables Description 
 

ine 1 Format (A) 
 
Title 

 
Title of the input file 

riables 
) 

       Variable 1 
       Variable 2 

esh data 
Line 3 Format(4I5) 
       Variable 3 
       Variable 4 
       Variable 5 
       Variable 6 
Output control 
Line 4 Format(2I5) 
     Variable 7 

       Variable 8 
 
Gravity force data 
Line 5 Format(3F10.0) 
       Variable 9 
       Variable 10 
       Variable 11 
Convergence tolerance 

     Variable 12 
       Variable 13 
       Variable 14 

heological & physical data 
ine 7 Format(9D10.5) 
     Variable 15 

     Variable 16 
     Variable 17 
     Variable 18 
     Variable 19 
     Variable 20 
     Variable 21 
     Variable 22 
     Variable 23 

 
 

ngaus 
 
 
nnp 
nel 
nbc 
nmat 
 
 
ntep 
icord 
 
 
 
grav1 
grav2 
grav3 
 
 
tolv 
tolp 
tolc 
 
 
rvisc 
 
power 
tref 
tbco 
taco 
dispc 
pref 
roden 
gamad 

Number of integration full points 
 
 
Total number of nodes 
Total number of elements 
Total number of boundary conditions  
Total number of materials 
 
 
Number of iteration 
Coordinate system selection ( 0 for 
Cartesian and 1 for cylindrical) 
 
 
Body force in x-direction 
Body force in y-direction 
Body force in z-direction 
 
 
Velocity convergence tolerance factor  
Pressure convergence tolerance factor 
Concentration convergence tolerance factor 
 
 
Consistency coefficient in the power law 
model 
Power law index 
Reference temperature 
Coefficient b in the power law model 
Coefficient a in the power law model 
Coefficient for convective equation 
Reference pressure 
Density 
Shear rate 
 

L
Basic control va
Line 2 Format(2I5

ncn 

 
 
Number of nodes per element 

M

  

Line 6 Format(3F10.5) 
  

R
L
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eading & Formats Variables Description

20.12)

  
 

 27    
ty data 

rmat(21I7) 
  
 
 

 
 

     Variable 35 

ta  
rmat(2I5,F10.4) 

 
m 

) 

z(m) 
 

e(n,1) 
(n,2) 

node(n,3) 
node(n,4) 

e(n,5) 
(n,6) 

node(n,7) 
node(n,8) 
 

jbc 
 

 

 
Node number m 

Z-coordinate of node m 
 

r n 
ment number n 

Node number 3 of element number n 
Node number 4 of element number n 

 of element number n 
ber n 

 number n 
Node number 8 of element number n 
 

h the boundary 
le 

= 1 for x-direction velocity 
= 2 for y-direction velocity 

 

 
 
H
Nodal coordinates   
Line8-linemFormat(I7,3E  
       Variable 24 
       Variable 25 x(m X-coordinate of node m 
       Variable 26 y(m) Y-coordinate of node m 
       Variable
Element connectivi
Line m-line n Fo   
       Variable 28 n Element number n 
       Variable 29 nod Node number 1 of element numbe
       Variable 30 node Node number 2 of ele
       Variable 31 
       Variable 32 
       Variable 33 nod Node number 5
       Variable 34 node Node number 6 of element num

Node number 7 of element  
       Variable 36 
Boundary condition da
Line n-line k Fo   
        Variable 37 ibc Node number at whic
  condition is applicab
        Variable 38  
 
  = 3 for z-direction velocity 
  = 4 for pressure 
        Variable 39 vbc Boundary condition value 
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APPENDIX 3 
 

 
.1 Sample input file 

  1 

  0.000 
1 
00D+ 3.14000D-

000D+00.10132 06.10000D+0
00000E+00  0.00 0E+0
00000E+00  0.83 0E-02
00000E+00  0.16 0E-01
00000E+00  0.25 0E-01
00000E+00  0.33 0E-01
00000E+00  0.41 0E-01
00000E+00  0.50 0E-01

000000E+01  0. 33340000E-
  9057  0.100000000000E+01  0. 0000000000E+ 00 

00 000E+01  0. 66690000E-
  9059  0.100000000000E+01  0. 3333430000E-
  9060  0.100000000000E+01  0. 0000030000E-
  9061  0.100000000000E+01  0. 6666700000E- 00E+00 

000000E+01  0. 3340000E-
    1     79      2      1     78     86      9      8     85 
    2     80      3      2     79     87     10      9     86 
    3     81      4      3     80     88     11     10     87 
    4     82      5      4     81     89     12     11     88 
    5     83      6      5     82     90     13     12     89 
    6     84      7      6     83     91     14     13     90 
    7     86      9      8     85     93     16     15     92 
    . 
    . 
    . 
 7554   8802   8774   9026   9050   8809   8781   9032   9056 
 7555   9052   9028   9027   9051   9058   9034   9033   9057 
 7556   9053   9029   9028   9052   9059   9035   9034   9058 

PROGRAM LISTING 

3
 
 
Sample input file 
                         
    8    3 
 9062 7560 8390  
    1    0 
     0.000     0.000   
   0.00001   0.00001   0.0000
.80000D+02.10000D+01.293 0
01.20000D+00.20 D+ 4.20000D+00 
       1  0.0000000 000000000 0  0.000000000000E+00 
       2  0.0000000 333347000   0.000000000000E+00 
       3  0.0000000 666668000   0.000000000000E+00 
       4  0.0000000 000000000   0.000000000000E+00 
       5  0.0000000 333335000   0.000000000000E+00 
       6  0.0000000 666668000   0.000000000000E+00 
       7  0.0000000 000001000   0.000000000000E+00 
       . 
       . 
       . 
    9056  0.100000 5833 01  0.937500000000E-01 

00  0.100000000000E+  10
    9058  0.100000 0 9166 01  0.100000000000E+00 
  83 01  0.100000000000E+00 
  75 01  0.100000000000E+00 
  66 01  0.1000000000
    9062  0.100000 58333 01  0.100000000000E+00 
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   Appendix 3.1                                                                                      Sample input file 
 
 
   7559   9056   9032   9031   9055   9062   9038   9037   9061 

60    9056   8816   8788   9038   9062 
  1    1    0.1000 
  1    2    0.0000 

 
  0.0000 

  0.1000 

1    0.1000 
2    0.0000 
3    0.0000 

    4    0.0000 
    4    0.0000 
    4    0.0000 

   75    8809   8781   9032
  
  
    1    3    0.0000 
    2    1    0.1000
    2    2  
    2    3    0.0000 
    3    1  
    3    2    0.0000 
    3    3    0.0000 
    4    1    0.1000 
    4    2    0.0000 
    4    3    0.0000 
    5    1    0.1000 
    5    2    0.0000 
    5    3    0.0000 
    6    1    0.1000 
    6    2    0.0000 
    6    3    0.0000 
    7    
    7    
    7    
    . 
    . 
    . 
 9060    3    0.0000 
 9061    1    0.0000 
 9061    2    0.0000 
 9061    3    0.0000 
 9062    1    0.0000 
 9062    2    0.0000 
 9062    3    0.0000 
    .  
    . 
    . 
 9021    4    0.0000 
 9027
 9033
 9039
 9045    4    0.0000 
 9051    4    0.0000 
 9057    4    0.0000 

175 
 



Appendix 3.2                                                                                  Computer program 
 
 
 
 
      Program StokesSolution 

==============================================  c 
                                                                                                           c 
 for the solution of generalised newtonian fluids of                         c 

 fluids governed by Stokes equations. The solution is                      c 
 weighted residual galerkin finite element method in                      c 

th the use of 8 nodes isoparametric hexahedral elements.                 c 
                                                                                                           c 
putational domain is assumed to be isothermal.                                c 
                                                                                                           c 
 schemes are developed for the problem solutions:                           c 
method in which velocity components and pressure are regarded    c 
iables and discretized as unknowns.                                                 c  

                                                                                                           c 
eme is a modification of the U-V-W-P method with  a faster          c c    
                                                                                                     c 
                                                                                                           c 
ram running after typing in some basic data, the user will prompt  c  c   
me to use.                                                                                      c 
                                                                                                           c     

he apparent viscosity is calculated and updated using the power law model          c 
                                                                                                                                 c 
he system of algebraic equations obtained after the discretization process is         c 

 method.                                                                                          c  
                                                                                                        c 
f options is given on the program listing.                                      c 
                                                                                                        c 
sists of a main module and subroutines and among the are two    c         
                                                                                                        c 
s written for Tecplot and Cosmos Geostar for visualizations.       c           

                                                                                                                                c 
he program is written in FORTRAN programming language                                c 
                                                                                                                                 c 

rom scratch) by N. Rupert. Boukanga (last updated April 2010)   c    c                               

s Prof V. Nassehi for his hard work by originally developing the c 
e subroutines                                                                                  c 
                                                                                                        c 

============================================  c 

 
c ============
c                           
c   This program is
c   incompressible
c   obtained via the
c   conjunction wi
c                           
c   The entire com
c                           
c   Two numerical
c   The U-V-W-P 
c   as primitive var
c                           
c   The second sch
convergence  rate 
c                           
c   During the prog
to select with sche
c                           
c   T
c     
c   T
c   solved by frontal
c                              
c   A complete list o
c                              
c   The program con
c                              
c   output subroutine
c      
c   T
c     
c   Developed (not f
c 
c   The author thank
c   the majority of th
c                              
 
c==============
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Appendix 3.2                                                                                  Computer program 
c     unit                    contents                                                                                        c  
==========================================================  c 
       51    i               input data file                                                                                c 
               i                                                                                                                      c 

e for documentation                                                       c 
               i                                                                                                                 c 

c 

 

 

   grav2               second component of the applied body force                                 c 

     tolp                convergence tolerance factor for pressures                                      c 

c
c
c
c       60    i               output fil
c
c       11    i               output file containing velocity field data for  plotting              c 
c               i               plotting                                                                                      c 
c               i                                                                                                                 c 
c       12    i    output file containing concentration data for  contour plotting           c 
c               i                                                                                                                 c  
c       14    i    used as a work file in the solver routine                                              c    
c               i                                                                                                                  c 
c       15    i    stores shape functions and their derivatives at   'full'                           c  
c               i     integration points                                                                                 c 
c               i                                                                                                                  c 
c       17    i    output file containing pressure data for                                                c 
c               i    contour plotting                                                                                     c 
c               i                                                                                                                   c 
c       20    i    output file containing elemental stiffness matrix                                   c 
c               i    for element number 14 as seen on the mesh                                           
c               i                                                                                                                    c 
c       610   i    output for Cosmos Geostar post-processing                                          c 
c       614   i    output for Tecplot post-processing                                                        c
c                                                                                                                                     c  
c ========================================================== c   
c                                                                                                                                     c 
c     List of variables                                                                                                      c 
c     =================                                                                                          c  
c     aa   (   27,  27)   element coefficient matrices on LHS                                           c 
c     K    (   27,  27)   element coefficient matrices on RHS                                           c  
c     b    (    3,  20)   global derivatives of shape functions                                             c 
c     bc   (maxdf     )   nodal constraints (boundary conditions)                                     c 
c     conc (maxnp     )   nodal concentrations                                                                 c 
c     cord (maxnp,ndim)   nodal coordinates                                                                  c    
c     del  (    3,  20)   local  derivatives of shape functions                                             c 
c     vel  (maxdf     )   nodal velocities  (displacements)                                               c 
c     dsc1, dsc2          depths of slip layers                                                                     c   
c     grav1               first  component of the applied body force                                     c 
c  
c     icord               indicates whether the coordinate system is cartesian (planar)        c 
c                         or cylindrical (axisymmetric)                                                             c 
c     tolc                convergence tolerance factor for concentration                               c 
c
c     tolv                convergence tolerance factor for velocities                                     c 
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Appendix 3.2                                                                                  Computer program 
 
 
 
c     ndf                 degree of freedom per node                                                              c 
c     ndim                dimensions of the solution domain                                                  c 
c     nel                 total number of elements                                                                   c     

 c   
c 
 c 
c 
c  

 

c     ngaus               number of integration points                                                          
c     nnp                 total number of nodal points                                                            
c     node (maxel,maxst)   element connectivity                                                            
c     nter                maximum number of iterations for non-newtonian case                  
c     num                 number of integration points per element                                       
c     p    (    20    )   shape functions                                                                         c  
c     press(maxnp     )   nodal pressures                                                                   c 
c     r1   (maxdf     )   global load vector  (r.h.s.)                                                     c 
c     rfrct               friction coefficient (slip)                                                            c 
c     rr   (   27     )   element load vector                                                                   c 
c     stiff(maxar     )   global stiffness matrix ( a in ax=r.h.s.)                                 c 
c     rvisc               mu nought;consistency coefficient in power-law model          c 
c     power               power law index                                                                      c 
c     stemp               temperature                                                                              c   
c     rtem                reference temperature                                                                c 
c     spress              pressure                                                                                     c 
c     rpress              reference pressure                                                                     c     
c     tco                 coefficient relating viscosity to temperature                              c 
c     pco                 coefficient relating viscosity to pressure                                   c 
c     gamad               shear rate                                                                                c 
c     nwr                 no. of sample nodes for recording transient solutions              c 
c                                                                                                                              c 
c ======================================================= c 
c     List of Subroutines                                                                                           c 
c     ===================                                                                               c  
c                                                                                                                               c  
c     bacsub              backsubstitution method for finding the final                         c   
c                         solution vector                                                                              c 
c     clean               cleans the arrays and prepares them for                                    c 
c                         solution                                                                                          c 
c     conc                calculates the concentrations                                                     c 
c     contol              makes a check for the convergence                                          c 
c     deriv               calculates the jacobian matrix, its determinant                          c 
c                         and global derivatives of the shape functions                             c 
c     flow Stokes         calculates the velocities and pressures via the UVWP method   c
c     flow Stokes2        calculates the velocities and pressures via the modified      c 
c                         UVWP method                                                                              c 
c     front               frontal method for solving the final set                                      c 
c                         of equations                                                                                   c 
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c     getmat              reads the input material data                                                    c 

 
 

c 
c 

 c  
 c 

 
 c   
 c 

 

c     getnod              reads the nodal co-ordinates for cartesian                                c 
c                         and axisymmetric systems                                                            c 
c     lumpm               evaluates the terms of the mass matrix                                   c 
c     output              prints the final solution                                                             c 
c     putbcv              imposes the primary boundary conditions for                         c   
c                         velocity                                                                                         c 
c     putbcc              imposes the primary boundary conditions for                          c 
c                         concentration                                                                                 c 
c     setprm              Sets the location data for nodal degrees of                               c 
c                         freedom                                                                                           c
c     shape               calculates the shape functions and their                                      c
c                         derivatives                                                                                        
c     slip                identifies the upper and lower boundary                                        
c                         layers.                                                                                              
c     stress              calculates stress components at integration                                  
c                         points                                                                                                c 
c     visca               calculates the viscosity                                                                  c
c     viscb               calculates virtual viscosity for slip walls                                      
c                                                                                                                                   
c========================================================== c 
 
      parameter (maxel  = 60000    ) 
     parameter (maxnp  = 37000    ) 
     parameter (maxbc  = 20000    ) 
      parameter (maxdf  = maxnp*4  ) 
     parameter (maxst  = 80      ) 
     parameter (maxfr  = 5000   ) 
      parameter (ndim   = 3       ) 
 
      implicit real*8 (a-h,o-z) 
c 
c    Storage allocation 
c    ================== 
c       
      dimension title (         80) 
      dimension node  (maxel,maxst) ,pmat (maxel,  9) ,cord (maxnp,ndim) 
      dimension ncod  (maxdf      ), bc   (maxdf    )  
      dimension ibc   (maxbc      ) ,jbc  (maxbc    ) ,vbc  (maxbc    ) 
      dimension vel   (maxdf      ) ,conc (maxnp    ) ,press(maxnp    ) 
      dimension r1    (maxdf      )  
      dimension clump (maxnp      ) ,stres(maxnp,  6)  
      dimension vet   (maxdf      ) ,cet  (maxnp    ) ,pet  (maxnp    )  
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      dimension ldest (maxst      ) ,kdest(maxst    ) ,nk   (maxst    ) 
      dimension eq    (maxfr,maxfr) ,lhed (maxfr    ) ,khed (maxfr    ) 
      dimension kpiv  (maxfr      ) ,lpiv (maxfr    ) ,jmod (maxfr    ) 
      dimension qq    (maxfr      ) ,pvkol(maxfr    ) ,sinv (maxel, 27) 
      dimension mdf   (maxdf      ) ,ndn  (maxdf    )  
      dimension ldsc  (22         ) 
      dimension temp  (maxnp      ) ,actpress(maxnp) 
      dimension rmat1 (maxel,   13) ,rmat2(maxel, 13) 
      character *20 filnam 
c 
c    Opening of input and output data files  
c===================================================c 
       
      call GFMFEM 
       
 print*,'enter the name of your data file' 
 read(*,2000) filnam  
 
      open(unit=51,File=filnam,access='sequential',form='formatted', 
     1     status="unknown",iostat=ios) 
            
 open(unit=60,file='res.txt',access='sequential',form='formatted', 

s) 

',access='sequential',form='formatted', 

access='sequential',form='formatted', 
ios) 

  
rmatted',status='scratch',iostat=ios) 

  open(unit=15,form='unformatted',status='scratch',iostat=ios) 

  print*,"files opened" 

     1     status="unknown",iostat=io
   
 open(unit=17,file='stress.txt
     1     status="unknown",iostat=ios) 
      open(unit=20,file='stiffmat',
     1     status="unknown",iostat=
            
 
      open(unit=14,form='unfo
    
 
        if(ios==0)then 
 
   else  
   print*,"files not opened" 
   stop   
   end if 
 
 rewind 51 
 rewind 60 
 rewind 20 
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      do 5010 itl = 1,maxel 
      do 5010 ivl = 1,80 
                          node (itl,ivl) = 0 
5010  continue 
      do 5020 itl = 1,maxel 
      do 5020 ivl = 1,8 
                          pmat (itl,ivl) = 0.0 
5020  continue 
      do 5030 itl = 1,maxnp 

  do 5030 ivl = 1,3 

o 5040 itl = 1,maxnp 
6 

                  stres(itl,ivl) = 0.0 

                    vel  (itl    ) = 0.0  

             ncod   (itl)   = 0 

vet    (itl)   = 0.0 

070 itl = 1,maxnp 
 (itl)   = 0.0 

     pet    (itl)   = 0.0 
   press  (itl)   = 0.0 

    do 5  = 1,maxbc 

          jbc   (itl)    = 0 
          vbc   (itl)    = 0.0 
080  continue 

)  = 0.0 
)  = 0.0 

    
                          cord (itl,ivl) = 0.0 
5030  continue 
      d
      do 5040 ivl = 1,
        
5040  continue 
      do 5050 itl = 1,maxdf 
 
5050  continue      
      do 5060 itl = 1,maxdf 
             
                          r1     (itl)   = 0.0 
                          bc     (itl)   = 0.0 
                          
                          mdf    (itl)   = 0 
                          ndn    (itl)   = 0 
                          nopp   (itl)   = 0 
5060  continue 
      do 5
                          clump 
                          cet    (itl)   = 0.0 
                          conc   (itl)   = 0.0 
 
   
5070  continue 
  080 itl
                          ibc   (itl)    = 0 
                
                
5
      do 5090 itl = 1,20 
                          del   (1,itl
                          del   (2,itl
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                          kdest (itl  )  = 0 

l  )  = 0 

 1,maxfr 
  = 0 

(itl  )  = 0 

lpiv  (itl  )  = 0 
  = 0 

itl  )  = 0.0 

 1,maxfr 
= 0.0 

------------------------------ 

             

d (51,2010) title 

=== 

0) ncn ,ngaus 

0) ncn ,ngaus 

material parameters 
=========================== 

1)) read (51,2040) ntep ,icord 

) 
) 

0) 

                          nk    (it
5100  continue 
      do 5110 itl =
                          lhed  (itl  )
                          khed  
                          kpiv  (itl  )  = 0 
                          
                          jmod  (itl  )
                          qq    (
                          pvkol (itl  )  = 0.0 
      do 5110 ill =
                          eq    (itl,ill)
5110  continue 
c-----------------------------------------
     
c     Title of the program    
c     ==================== 
 
 if(.not. eof(51)) rea
      write(60,4010) title 
  
c     Element description data 
c     =====================
      
      if (.not. eof(51)) read (51,202
 print*, "ncn, ngaus read" 
      write(60,402
 
c     Mesh, boundary condition and 
c     =====================
  
 if (.not. eof(51)) read (51,2030) nnp  ,nel  ,nbc  ,nmat 
 print*, "nnp, nel ,nbc ,nmat read" 
      if (.not. eof(5
c 
      if(icord.eq.0) write(60,4030
      if(icord.eq.1) write(60,4040
 
      write(60,405
      
      if(ntep.eq.0) ntep=1 
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c    if ntep = 1 then computed result after every iteration will 

d the result of intermediate 
s choose your own ntep;the result of first and 

ill always be printed. 
====================================== 

gt.maxnp) then 
e(60,4060) 

t.maxel) then 
60,4060) 

t.maxbc) then 
   write(60,4060) 

 .gt.maxel) then 
                   write(60,4060) 

   print*, "the program is aborted" 

       endif 
     

np ,nel ,nbc ,nmat 

050) grav1, grav2, grav3 
" 

rite(60,4080) grav1, grav2, grav3 

) tolv ,tolp, tolc 
 

===================

are arrays for solution process 
  

=======================================

nmat,pmat,51,60,maxel,rtem,rpef) 
call getnod(nnp,cord,51,60,maxnp,ndim,icord) 

ode,51,60,maxer) 
     call getbcd(nbc,ibc,jbc,vbc,51,60,maxbc) 

c    be printed ;if you do not nee
c    computation
c    converged solutions w
c    =====================
 
                if(nnp   .eq.0  .or.nnp  .
                                             writ
            elseif(nel   .eq.0  .or.nel  .g
                                             write(
            elseif(nbc   .eq.0  .or.nbc  .g
                                          
            elseif(nmat  .eq.0  .or.nmat
                          
             
 
            stop 
        
 
  
 write(60,4070) n
 
      if (.not. eof(51)) read (51,2
 print*, "grav1 grav2 grav3 read
      w
 
      if (.not. eof(51)) read(51,2060
      print*, "tolv, tolp, tolc read"
 
      maxer=maxel 
 
c    
============================================
============ 
c    Read input data from main data file and prep
c  
========================
============ 
 
       call getmat(nel,
       
       call getelm(nel,ncn,n
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c============================================================c 

================c 

     if specified) 

r non-newtonian case 
lution domain 

                              do 5125 iel = 1,maxel 

                         sinv(iel,lg)=0.0 
125                         continue  

                              do 5130 ivel= 1,maxdf 

130                                  continue 

axnp 
   rtem 

140                                  continue 

======================================c 
                                 Transient data 

=============================================================c 

e stepping technique (backward difference,  
    forward difference, central difference, galerkin)  

mployed for finding solution 
============================= 

c     Start of the time loop 
c============================================
c 
c     Set control parameters (default values are overwritten by input data 
c
c 
c     ncn      number of nodes per element 
c     ngaus    number of integration points 
c     nter     maximum number of iterations fo
c     ndim     number of space dimensions in the so
c 
c      nter  = 5 
       num = 13 
   
                                   do 5125 lg = 1,num 
          
5          
                         
        
                                         vel (ivel)  =   0.0 
5
 
                                      do 5140 item= 1,m
                                         temp(item)  = 
5
    
c=======================
c
c    
c
c 
c     stime  starting time 
c 
c     deltat  time increment 
c 
c     alpha       indicates the choice of method being employed in alpha 
c             tim
c
c 
c     nter        maximum number of time steps being e
c===============================
      print*,"  " 
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    t of time steps desired"   prin *,"Enter the number 

  read*, nter  

) nter 

  write(60,4110) deltat        

111  er between 0 and 1 " 

< 0 .OR. alpha > 1) then 

, type in another value"  

goto 1111   

 print*, "alpha=",alpha 

  

   
" Sele

   

  Print *,'1: UVW-P scheme with Taylor-Galerkin method' 
thod' 

 

iter*deltat 

c 
    
 
      write(60,4100
 
      print*,"Enter the delta t desired" 
c 
      read*, deltat  
  
    
 
 
1 print*," Enter the value of alpha: any numb
      
 read*, alpha 
      
 if(alpha 
   
 print*, " Invalid alpha value entered
  
 
  
 end if  
 
     
 
        tcode = 0 
       
   Print *,'           ' 
 
    print*, ct a scheme " 
 
 
 
   Print *,'2: Modified UVW-P scheme with Taylor-Galerkin me
    
   read(*,*) tcode 
 
      do 5150 iter = 1 ,nter 
      print*,'iter=',iter 
 time = 
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c==========================================================c 

ures 
=========================================================c 

                           rewind 11 
 14 

                           rewind 15 

                         ntov  = ndf * nnp 
 ntrix = ndf * ncn 

   call clean 
1   ,maxel,maxst,maxdf, 

   2     bc   ,ncod ,icho ) 

   1      ,nel  ,ncn  ,node ,ndf  ,maxel,maxst,ndn  ,ntrix, 
pp ) 

ibc ,jbc ,vbc ,ncod ,bc,maxbc,maxdf,maxel,maxst, 

file specifier for unit=20 
     == ============================== 

  

o 5160 iel=1,nel 

    
      if ode ==1) then 
      

   2jm  qq, pvkol, iter ,nel ,ncn , ngaus,grav1, 
   3gra b, ntrix, maxel, maxnp, maxst, maxfr, maxdf, 

g ,da ,ntov ,num, icord, rr, iel, del1,deltat,alpha, 
ref) 

    

c                         Calculate Nodal Velocities & Press
c=
      icho=1 
  
                             rewind
  
                             ndf   = 4 
    
                             
   
     1    (ncn  ,nel  ,ndf  ,node ,r
  
 
      call setprm 
  (nnp
     2     maxdf,ntov ,mdf  ,no
 
      call putbcv 
     1  (nnp ,nbc ,
     2   node) 
 
 
c     idv4 is the 
c ======
  
      idv4=20   
 
       
        d
 
 
  
  (tc
  
       call flowStokes(node ,cord ,pmat ,nopp ,mdf ,ndn ,ncod , 
 1bc ,vel  ,press, r1, temp,ldest,kdest,nk ,eq ,lhed ,khed ,kpiv ,lpiv, 
  od,
  v2, grav3, p, del, 
     4ndim ,aa ,x
     5idv4,sinv, icho, nnp, t
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     2jmod, qq, pvkol, iter ,nel ,ncn , ngaus,grav1, 
     3grav2, grav3, p, del, b, ntrix, maxel, maxnp, maxst, maxfr, maxdf, 

v, icho, nnp, tref) 

================c 
              calculates the second invariant of rate of deformation                                c 

 at integration points.                                                                         c 
                                  

==================================c 
    call secinv 

  ,ncn  ,ngaus,node ,sinv ,cord ,p  ,b, 

,num) 

==========================================================c 

====================c 

l( el ,con  ,iter ,ntov ,nnp,maxnp,maxdf,errov, errop 
1,vet ,cet, pet, press)   

===========================================c 
 *** calculation of the nodal stress;using variational recovery 
===========================================================c 

all lumpm 
p,nel  ,ngaus,p   ,del   ,b  ,maxst, 

   node ,maxel,ncn  ) 

 maxel,  maxst ,  

=============== 
Print the output 

     4ndim ,aa ,xg ,da ,ntov ,num, icord, rr, iel, del1,deltat,alpha, 
     5idv4,sin
 
       else  
  stop 
  endif  
 
 
5160  end do 
 
c==========================================
c
c              tensor
c                                                                                               
c========================
  
     1   (nel  ,nnp
     2    del  ,da   ,vel  ,maxnp,maxel,maxst,ndim ,icord, 
     3    maxdf
 
c
c                           Convergence check 
c     c======================================
 
      call conto v c
 
 
c================
c
c
      c
     1    (clump,nnp  ,maxn
     2  
c 
      call stress 
     1     (nel,nnp,ncn ,node ,p , b , da ,vel  ,maxnp,
     2      maxdf, stres, press, rvisc ,clump ,ngaus  )  
 
 
c   =
c     
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      if(iter.eq.1.or.iiter.eq.iter) then 
       
 call output 
 1   (nnp  ,vel  ,press, maxdf,maxnp,icord, stres) 

 
d if  

q.nter) then 
 
 

smos 
1       (nnp  ,  vel  ,  press   ,  maxdf  ,  maxnp  , icord   , 

ord   , 
rd   ,  ncn    , nel     , 

   3        node ,  ndim  ) 

   2        pmat ,  maxel,  actpress,  cord   ,  ncn    , nel     , 

    
endif 

    End of time loop 

========================================c 

 

    close(unit=60) 
    close(unit=11) 

 
 en
  
 if(iter.e
 
 
 call co
 
     2        pmat ,  maxel,  actpress, nel                         ) 
      
      call cosmos2 
 1       (nnp  ,  vel  ,  press   ,  maxdf  ,  maxnp  , icord   , 
     2        pmat ,  maxel,  actpress, nel                         ) 
 
      call tecplot 
 1       (nnp  ,  vel  ,  press   ,  maxdf  ,  maxnp  , ic
     2        pmat ,  maxel,  actpress,  co
  
      
      call tecplot2 
 1       (nnp  ,  vel  ,  press   ,  maxdf  ,  maxnp  , icord   , 
  
     3        node ,  ndim  ) 
  
 
c 
c 
c========================================================= =c 
c                        
c     c c 
c===================
 
5150  continue
 
      close(51) 
  
  
      close(unit=14) 
      close(unit=15) 
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c    c===========================================================c 

  format(a) 

5) 
i5) 
10.0) 

========================================c 

=====================c 

/),' ',20x,60('*'),/' ',20x,'*',58x,'*',/ 
', 

sing ', 
   320x,'*',/' ',20x,'*','  the UVWP method.  ',38x,'*',/' ',20x,'*', 

0x,60('*')///,' ',20x,80('-'),/' ',20x,80a,/' ', 

,' element description data',10('.'),/ 
25x,'no.of nodes per element                  =',i10,/ 

tegration points                 =',i10,/ 
   3//) 

dinate system is cartesian (planar) ***') 
  format('*** coordinate system is cylindrical(axisymmetric) ***') 

60  format(' ',10('['),'input data unacceptable',10(']')///) 

           =',i10,/ 
,'no.of elements                           =',i10,/ 

   425x,'no.of different materials                =',i10,//) 

080  format(' ',20x,3('['),' uniform body force vector ',10('.'),/ 
                                    =',f15.4,/ 

                            =',f15.4,/ 
                            =',f15.4,//) 
iteration no.',i5,//) 
tal number of time steps  =',i5,//) 

c 
2000
2010  format(80a) 
2020  format(2i5) 
2030  format(4i
2040  format(2
2050  format(3f
2060  format(3f10.5) 
c 
c 
c===================
c                         Write statements 
c======================================
 
4010  format(' ',5(
     1' ',20x,'*','  A  three  dimensional finite element model of a  
     27x,'*',/' ',20x,'*','  non-newtonian isothermal flow u
  
     558x,'*',/' ',2
     620x,80('-'),///) 
c 
4020  format(' ',20x,3('[')
     1
     225x,'no.of in
  
c 
4030  format('    *** coor
4040
4050  format(' ') 
40
c 
4070  format(' ',20x,3('['),' mesh description data ',10('.'),/ 
        125x,'no.of nodal points            
     225x
     325x,'no.of nodal constraints on boundary      =',i10,/ 
  
c 
4
     125x,'grav1
     225x,'grav2        
     325x,'grav3        
4090  format(///'     
4100  format(///' To
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c===========================================================c 
      end program  

===============================================c 

sp(ngaus,xg,cg) 

 precision(a-h,o-z) 

 coordinates of the Gauss points 
   c(g)   specifies the Gauss weights 

    xg(1)=0.0 

  else 

) = 0.55555555556d00 
  cg(2) = 0.88888888889d00 

  end 

======================c 

c============
 
      subroutine gaus
c 
      implicit double
c 
c     x(g)   specifies the
c  
c 
      dimension xg(3),cg(3) 
 
      if(ngaus.eq.1) then 
  
      cg(1)=2.0 
      elseif(ngaus.eq.2)  then 
      xg(1) = 0.57735026919d00 
      xg(2) = -xg(1) 
      cg(1) = 1.00 
      cg(2) = 1.00 
    
      xg(1) = 0.77459666924d00 
      xg(2) = 0.0 
      xg(3) = -xg(1) 
      cg(1
    
      cg(3) = cg(1) 
c 
      endif 
      return 
    
c 
c====================================
 
 
 
 
      subroutine shape ( xi , eta , zeta, p ,del , ncn ) 
      implicit double precision (a-h,o-z) 
c 
      DIMENSION p(20) ,del(3,20) 
      if (ncn.eq.8) then 
         del(1,1)=-0.125*(1-eta)*(1-zeta) 
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         del(1,5)=-0.125*(1-eta)*(1+zeta) 

       del(1,7)= 0.125*(1+eta)*(1+zeta) 
a) 

...................................................... 

     del(2,2)= 0.125*(1-xi)*(1-zeta) 

     del(2,5)=-0.125*(1-xi)*(1+zeta) 
)*(1+zeta) 

       del(2,7)= 0.125*(1+xi)*(1+zeta) 
+xi)*(1+zeta) 

...................................... 
-0.125*(1-xi)*(1-eta) 

*(1+eta) 
+eta) 

5*(1+xi)*(1-eta) 
125*(1-xi)*(1-eta) 
125*(1-xi)*(1+eta) 

(3,7)= 0.125*(1+xi)*(1+eta) 
eta) 

.................................... 

(1-zeta) 
*(1-zeta) 

(1+xi)*(1+eta)*(1-zeta) 
     p(4)=0.125*(1+xi)*(1-eta)*(1-zeta) 

0.125*(1-xi)*(1-eta)*(1+zeta) 
0.125*(1-xi)*(1+eta)*(1+zeta) 

)=0.125*(1+xi)*(1+eta)*(1+zeta) 
     p(8)=0.125*(1+xi)*(1-eta)*(1+zeta) 

    endif 
    return 
    end 

====================c 

 ,da ,cg ,node, 

         del(1,6)=-0.125*(1+eta)*(1+zeta) 
  
         del(1,8)= 0.125*(1-eta)*(1+zet
C.
         del(2,1)=-0.125*(1-xi)*(1-zeta) 
    
         del(2,3)= 0.125*(1+xi)*(1-zeta) 
         del(2,4)=-0.125*(1+xi)*(1-zeta) 
    
         del(2,6)= 0.125*(1-xi
  
         del(2,8)=-0.125*(1
C.....................
         del(3,1)=
         del(3,2)=-0.125*(1-xi)
         del(3,3)=-0.125*(1+xi)*(1
         del(3,4)=-0.12
         del(3,5)= 0.
         del(3,6)= 0.
         del
         del(3,8)= 0.125*(1+xi)*(1-
C.......................
 
         p(1)=0.125*(1-xi)*(1-eta)*
         p(2)=0.125*(1-xi)*(1+eta)
         p(3)=0.125*
    
         p(5)=
         p(6)=
         p(7
    
C........................................................... 
 
  
  
  
c===================================
 
 
c 
      subroutine deriv 
     1    (iel  ,ig   ,jg   ,kg, p    ,del  ,b ,ncn
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      dimension node(maxel,27),cord(maxnp,3) 

,1)*cj(3,2)*cj(1,3) 
*cj(2,2)*cj(3,1) 

   2      - cj(1,2)*cj(2,1)*cj(3,3)-cj(2,3)*cj(3,2)*cj(1,1)    

Jacobian. ', i6,g20.5) 

    cji(1,1) =  (cj(2,2)*cj(3,3)-cj(3,2)*cj(2,3))  / detj 
) = ((cj(1,2)*cj(3,3)-cj(3,2)*cj(1,3))) / detj 
 =  (cj(1,2)*cj(2,3)-cj(2,2)*cj(1,3))  / detj 

1) = ((cj(2,1)*cj(3,3)-cj(3,1)*cj(2,3))) / detj 

    cji(2,3) = ((cj(1,1)*cj(2,3)-cj(2,1)*cj(1,3))) / detj 
    cji(3,1) =  (cj(2,1)*cj(3,2)-cj(3,1)*cj(2,2))  / detj 
  cji(3,2) = ((cj(1,1)*cj(3,2)-cj(3,1)*cj(1,2))) / detj 

*cj(2,2)-cj(2,1)*cj(1,2))  / detj 

c 
 
  
  
 do 6010 j=1,3 
      do 6010 l=1,3 
      gash=0.0 
             
      do 6020 k=1,ncn 
       
      nn=iabs(node(iel,k)) 
     
 
6020  gash=gash + del(j,k)*cord(nn,l) 
       
 cj(j,l)=gash  
 
6010  continue 
 
       
 
      detj =  cj(1,1)*cj(2,2)*cj(3,3)+cj(2
     1      + cj(1,2)*cj(2,3)*cj(3,1)-cj(1,3)
  
       
 if(detj.le.0.0) then 
      write(60,3010) iel,detj 
3010  format(1x ,' Error: Zero or Negative 
      stop  
      
c 
      endif 
 
  
      cji(1,2
      cji(1,3)
      cji(2,
      cji(2,2) =  (cj(1,1)*cj(3,3)-cj(3,1)*cj(1,3))  / detj 
  
  
    
      cji(3,3) =  (cj(1,1)
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      do 6030 l=1,ncn 
    b(j,l)=0.0 

,3 
j,l) + cji(j,k) * del(k,l) 

     
(ig)*cg(jg)*cg(kg) 

nd 

===========================================================c 

ubroutine front 
axel,maxst,ldest,kdest,nk   ,maxfr, 

   2     eq   ,lhed ,khed ,kpiv ,lpiv ,jmod ,qq   ,pvkol,vel  ,r1   , 
   ,nopp ,mdf  ,ndn  ,maxdf,nel  ,maxte,ntov ,lcol , 

   4     nell ,ntra, press,icho,c,akf,ak ) 

     Frontal elimination routine using diagonal pivoting 

imension nop  (maxel,maxst) 
dest(maxst)       ,nk   (maxst) 

axfr) ,lhed (maxfr)       ,khed (maxfr) 

sion jmod (maxfr)       ,qq   (maxfr)       ,pvkol(maxfr) 
imension vel  (maxte)       ,r1   (maxdf)       ,ncod (maxdf) 

  dimension bc   (maxdf)       ,nopp (maxdf)       ,mdf  (maxdf) 
sion ndn  (maxdf)       ,press(maxdf) 

 
 14 respectively 

========================c 

    ncrit=20 

  
      do 6030 k=1
6030  b(j,l) = b(
  
      da= detj*cg
c 
 
      return 
      e
 
c 
c
c 
      s
     1    (aa   ,rr   ,iel  ,nop  ,m
  
     3     ncod ,bc
  
c 
c
c 
      implicit double precision(a-h,o-z) 
      dimension aa   (maxst,maxst) ,rr   (maxst) 
      d
      dimension ldest(maxst)       ,k
      dimension eq   (maxfr,m
      dimension kpiv (maxfr)       ,lpiv (maxfr) 
      dimen
      d
    
      dimen
c
c     nlp and ndl are the file specifiers for units 60 and
c     c===================================
 
      nlp=60 
      nd1=14 
c 
c     Prefront 
c     ======== 
      nmax=maxfr 
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      if(ntra.eq.0) goto 6040 

 

larg = nmax-10   

   Find last appeareance of each node 
     ================================== 

0 
10 i = 1,ntov 

    do 6020 n = 1,nel 
  jdn = ndn(n) 

  if(nop(n,l).ne.i)go to 6030 

  if(nlast.eq.0) go to 6010 

  nlast = 0 

  eq(j,i) = 0. 

    n = nell 
n(nell) 

  do 6070 j = 1,jdn  
n,j) 

 

(m) 

      nmax = maxfr     
      ntra = 0 
      ncrit = 20        
      lfron = 0 
      n
c 
c  
c
      nlast = 
      do 60
  
    
      do 6030 l = 1,jdn 
    
      nlast1 = n 
      nlast = n 
      l1 = l 
6030  continue 
6020  continue 
    
      nop(nlast,l1) = -nop(nlast,l1) 
    
6010  continue 
      ntrix = jdn 
c 
c     Assembly 
c     ========    
6040  continue 
      if(iel.gt.1) go to 6060 
      lcol = 0 
      do 6050 i = 1,nmax 
      do 6050 j = 1,nmax 
    
6050  continue 
6060  nell = nell+1 
  
      jdn = nd
      kc = 0 
    
      nn = nop(
      m = iabs(nn)
      k = nopp(m) 
      idf = mdf
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      if(nn.lt.0)ii = -ii 
      nk(kc) = ii 

tors 
   ====================== 

(lk) 
0 

bs(lhed(l)))go to 6110 

l+1 
 lcol 

ol) = node 

 ll 

max)go to 6130 

10)nerror 
  stop 

c 

t(k) 
aa(k,l) 

it.and.nell.lt.nel) return 

matrix elements are fully assembeled 
============================================= 

o 6160 

6070  continue 
c 
c     Set up heading vec
c  
c 
      do 6080 lk = 1,kc 
      node = nk
      if(lcol.eq.0)goto 610
      do 6090 l = 1,lcol 
      ll = l 
      if(iabs(node).eq.ia
6090  continue 
6100  lcol = lco
      ldest(lk) =
      lhed(lc
      go to 6080 
6110  ldest(lk) =
      lhed(ll) = node 
6080  continue 
      if(lcol.le.n
      nerror = 2 
      write(nlp,30
    
6130  continue 
      do 6140 l = 1,k
      ll = ldest(l) 
      do 6140 k = 1,kc 
      kk = ldes
      eq(kk,ll) = eq(kk,ll)+
6140  continue 
      if(lcol.lt.ncr
c 
c     Find out which 
c     ======
6150  lc = 0 
      ir = 0 
      do 6160 l = 1,lcol 
      kt = lhed(l) 
      if(kt.ge.0)go t
      lc = lc+1 
      lpiv(lc) = l 
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      ncod(kro) = 2 
      r1(kro) = bc(kro) 

pplied boundary conditions 
========================== 

  if(ir.eq.0)go to 6190 

) = 0. 

q(k,l) = 1. 

 to 6200 

ncrit 
rg) return 

030)nerror 

tinue 

te pivot 
================ 

lc 

 

  if(abs(piva).lt.abs(pivot))go to 6220 

kpivr 
inue 

.0) return 

 pivotal row 
============= 

6160  continue 
c 
c     Modify equations with a
c     =======================
    
      do 6170 irr = 1,ir 
      k = jmod(irr) 
      kh = iabs(lhed(k)) 
      do 6180 l = 1,lcol 
      eq(k,l
      lh = iabs(lhed(l)) 
      if(lh.eq.kh)e
6180  continue 
6170  continue 
6190  continue 
      if(lc.gt.0)go
      ncrit = ncrit+10 
c     write(nlp,3020)
      if(ncrit.le.nla
      nerror = 3 
      write(nlp,3
      stop 
6200  con
c 
c     Search for absolu
c     =========
      pivot = 0. 
      do 6210 l = 1,
      lpivc = lpiv(l) 
      kpivr = lpivc
      piva = eq(kpivr,lpivc) 
    
      pivot = piva 
      lpivco = lpivc 
      kpivro = 
6220  cont
6210  continue 
      if(pivot.eq.0
c 
c     Normalise
c     ========
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c6230 continue 
 
      if(abs(pivot).lt.0.1d-28) write(nlp,3050) 

  do 6240 l = 1,lcol 

= pivot 

ete pivotal row and column 
=================================== 

o 6300 

1,kpivr 
hed(k)) 
ivco) 

fac.eq.0.)go to 6270 

(k,l)-fac*qq(l) 

pivco.eq.lcol)go to 6290 
o+1 

  do 6280 l = lpivc,lcol 
) 

= r1(krw)-fac*rhs 

lcol)go to 6360 
+1 

vco) 

o to 6330 
o-1 
1,lpivc 

qq(l) 
20  continue 

 6350 

    
      qq(l) = eq(kpivro,l)/pivot 
6240  continue 
      rhs = r1(kro)/pivot 
      r1(kro) = rhs 
      pvkol(kpivro) 
c 
c     Eliminate then del
c     =========
      if(kpivro.eq.1)go t
      kpivr = kpivro-1 
      do 6250 k = 
      krw = iabs(l
      fac = eq(k,lp
      pvkol(k) = fac 
      if(lpivco.eq.1.or.
      lpivc = lpivco-1 
      do 6260 l = 1,lpivc 
      eq(k,l) = eq
6260  continue 
6270  if(l
      lpivc = lpivc
    
      eq(k,l-1) = eq(k,l)-fac*qq(l
6280  continue 
6290  r1(krw) 
6250  continue 
6300  if(kpivro.eq.
      kpivr = kpivro
      do 6310 k = kpivr,lcol 
      krw = iabs(lhed(k)) 
      fac = eq(k,lpi
      pvkol(k) = fac 
      if(lpivco.eq.1)g
      lpivc = lpivc
      do 6320 l = 
      eq(k-1,l) = eq(k,l)-fac*
63
6330  if(lpivco.eq.lcol)go to
      lpivc = lpivco+1 
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6310  continue 

 

=================    
(lhed(l),qq(l),l = 1,lcol) 

1,lcol 

)go to 6390 
l 

er to assemble,eliminate,or backsubstitute 
=========================================== 

 return 

) 

eq.0)go to 6400 
pivot 

8)go to 6410 

d(1),qq(1) 

========== 

6360  continue 
c
c     Write pivotal equation on disc 
c     =============
      write(nd1) kro,lcol,lpivco,
      do 6370 l = 
      eq(l,lcol) = 0. 
      eq(lcol,l) = 0. 
6370  continue 
c 
c     Rearrange heading vectors 
c     ========================= 
      lcol = lcol-1 
      if(lpivco.eq.lcol+1
      do 6380 l = lpivco,lco
      lhed(l) = lhed(l+1) 
6380  continue 
6390  continue 
c 
c     Determine wheth
c     ==============
      if(lcol.gt.ncrit)go to 6150 
      if(nell.lt.nel)
      if(lcol.gt.1)go to 6150 
      lco = iabs(lhed(1)
      kpivro = 1 
      pivot = eq(1,1) 
      kro = lco 
      lpivco = 1 
      qq(1) = 1. 
 
c     if(nit.eq.0.or.npra.
c     write(nlp,3040)lco,kro,
 
      if(abs(pivot).lt.1d-2
 
c6400 continue 
 
      r1(kro) = r1(kro)/pivot 
      write(nd1) kro,lcol,lpivco,lhe
c 
c     start back-substitution 
c     =============
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c     main exit with solution 

   ======================= 

ax-ncrit is not sufficiently large' 
e assembly of the next element---' 
se nmax or lower ncrit' 

020  format('  frontwidth value=',i4) 

ed,this may be due to---' 
t coding of nop or nk arrays' 

crease ncrit to permit' 
ssembled' 

3h pivotal row=,i4,16h pivotal column=,i4,7h pivot=,e20.10 
  1) 

=================================================

bacsub 
x ,vfix ,rhs  ,soln ,soln1, mfrnt,rwork,iwork,idv2, 

   2     icho ) 

    implicit double precision(a-h,o-z) 
hs (ntotl),soln (ntotl) 

    dimension rwork(mfrnt) ,iwork(mfrnt) ,soln1(ntotl)  

 

                     soln(ipos) =0.0 
ne.0) soln(ipos)=vfix(ipos) 

c  
6410  continue 
c 
3010  format(/'  nerror=',i5// 
     1 '  the difference nm
     1/'  to permit th
     1/'  either increa
     1/) 
c3
3030  format(/'  nerror=',i5// 
     1 '  there are no more rows fully summ
     1/'  (1)incorrec
     1/'  (2)incorrect value of ncrit. in
     1/'     whole front to be a
     1/) 
 
c3040  format(1
c  
 
3050  format('  warning-matrix singular or ill conditioned') 
 
      return 
      end 
c 
c     
==============
=== 
      subroutine 
     1    (ntotl,ifi
  
c 
c 
  
      dimension ifix (ntotl),vfix (ntotl),r
  
c 
c
c  
                         do 6010 ipos=1,ntotl 
    
                         if(ifix(ipos).
6010                     continue 
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c 

(k),rwork(k),k=1,ifrnt) 
v2 

020 

rk(k)) 

020  continue 

if (icho .eq. 2) goto 6050 

       j       = ipos -((3*ntotl)/4) 
soln1(j) = soln(ipos) 

40  continue  

         
==========================================================c 

scheme via Taylor-Galerkin 

===================c 

  subroutine flowStokes(node ,cord ,pmat ,nopp ,mdf ,ndn ,ncod , 
1bc ,vel  ,press, r1, temp,ldest,kdest,nk ,eq ,lhed ,khed ,kpiv ,lpiv, 

aus,grav1, 
axel, maxnp, maxst, maxfr, maxdf, 

,alpha, 
f) 

      backspace idv2 
      read(idv2)     ipos,ifrnt,jfrnt,(iwork
      backspace id
c 
      if(ifix(ipos).ne.0)  go to 6
c 
      ww           = 0.0 
      rwork(jfrnt) = 0.0 
c 
                         do 6030 k=1,ifrnt 
                         jpos=iabs(iwo
                         ww  =ww - rwork(k)*soln(jpos) 
6030                     continue 
c 
      soln (ipos)=rhs(ipos)+ww 
       
6
 
 
 
      do  6040 ipos  = ((3*ntotl)/4)+1 , ntotl 
 
       
 
60
 
6050 continue 
 
      return 
      end 
c 
    
c=
c     Stokes Solution based on UVW-P 
c     time stepping method. 
c========================================
 
    
 
     2jmod, qq, pvkol, iter ,nel ,ncn , ng
     3grav2, grav3, p, del, b, ntrix, m
     4ndim ,aa ,xg ,da ,ntov ,num, icord, rr, iel, del1,deltat
     5idv4,sinv, icho, nnp, tre
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      dimension node (maxel,maxst),pmat (maxel,   9),cord (maxnp, ndim) 

 27) 
axnp ,   3),r1   (maxdf     ),conc (maxnp      ) 

  dimension aa   (maxst,maxst),rr   (maxst     ),ldest(maxst      ) 
         3),kdest(maxst      ) 

  dimension x    (          3),v    (         3),nk   (maxst      ) 
          2),hh   (         3) 

   20),del  (   3,   20),b    (   3,    20) 
  dimension eq   (maxfr,maxfr),nopp (maxdf     )      

(maxfr     ),jmod (maxfr      ) 
q   (maxfr      ) 

     ),mdf  (maxdf     ),ndn  (maxdf      ) 
  dimension ppp  (20    ,  20),pp   (20        ) 

) 
dimension akf  (100    )    

n NQ   (20    ,  20),NP   (3    ,   4) 
dimension C    (maxst      ),temp (maxnp     ) 

) 
          dimension press(maxnp      ),clump(maxnp     ),SHAPE1D(3       ) 

axst) 
dimension aa02 (maxst,maxst)  

n ak01 (maxst,maxst) 
dimension ak02 (maxst,maxst)  

                                             rvisc = pmat(iel,1) 
                                   rpef  = pmat(iel,2) 

    tbco  = pmat(iel,5) 

                                               roden = pmat(iel,8) 
      

amad 

      dimension ncod (maxdf      ),bc   (maxdf     ),sinv (maxel,  
      dimension vel  (m
    
      dimension xg   (          3),cg   (
    
      dimension bicn (
      dimension p    (      
    
      dimension ldsc (         22) 
      dimension lhed (maxfr      ),khed 
      dimension lpiv (maxfr      ),kpiv (maxfr     ),q
      dimension pvkol(maxfr 
    
 dimension ak   (100,100
 
            dimensio
 
 dimension DEL1 (3          
  
 dimension gdsf (    3,   20) 
 dimension dmass(100, 100) 
 dimension aa01 (maxst,m
 
 dimensio
 
 
 
            
       
    
              
                                                 power = pmat(iel,3) 
                                                 rtem  = pmat(iel,4) 
                                             
                                                 taco  = pmat(iel,6) 
  
          
g = pmat(iel,9)  
                                                
           
      velsound = 1500.0 
 beta     =    0.0 
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cn) 

                                  f = xg(kg) 
                                                               

                lg = lg + 1 

rd, 

              jjg=jg 

                akf(idf)      = 0.0  
     C  (idf)      = 0.0 
    do 6010 jdf= 1,ntrix 
 
                 aa   (idf,jdf)=0.0 
            dmass(idf,jdf)=0.0 
                 ak   (idf,jdf)=0.0 
                 aa01 (idf,jdf) = 0.0 
                 aa02 (idf,jdf)= 0.0 
                 ak01 (idf,jdf)= 0.0 
                 ak02 (idf,jdf)= 0.0 
6010             continue 
       
       
 if (ncn==4) then  
 call gausspt(ngaus,xg,cg,n
 else if (ncn==8) then                                
      call gaussp(ngaus,xg,cg,ncn) 
 end if 
 
        lg=0 
      do 6020 ig=1,ngaus 
                                    g = xg(ig) 
      do 6020 jg=1,ngaus 
                                    h = xg(jg) 
      do 6020 kg=1,ngaus 
  
  
  
  
   
      if(iter.eq.1) then 
 
 
      call shape (g,h,f,p,del,ncn) 
 
      call deriv (iel,ig,jg,kg,p,del,b,ncn,da,cg,node,co
     1            maxel,maxnp) 
 
               iig=ig 
 
                    kkg=kg 
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      endif 
c 

ed on the constitutive equation. 
 

n 
ip)) 
 temp(jp) * p(ip) 

 
        gamad = sinv(iel,lg) 
        if(gamad.lt.epsii) gamad = epsii 

,rpef,taco,gamad)              

0 idff= 1,3 
                     x(idff)     = 0.0 
         ff)     = 0.0 

= 0.0 

n 
)) 

 

,idff) 
060 ontinu  

 
 
     modify da for axisymmetric computations. 

    da = da * x(1) 

    

c     calculation of viscosity bas
c
      spress = 0.0 
      stemp  = 0.0 
 
           do 5333 ip = 1,nc
                jp    = iabs(node(iel,
           stemp = stemp +
 5333           continue 
                epsii = 1.d-10
        
        
  
      call visca 
 1(rvisc,power,visc,stemp,rtem,tbco,spress
 
                       do 605
  
              v(id
                       hh(idff)    
6050                   continue 
          do 6060 icn = 1 ,nc
                  jcn = iabs(node(iel,icn
          do 6060 idff= 1 ,  3
          x(idff)     = x(idff) + p(icn)*cord(jcn,idff) 
          v(idff)     = v(idff) + p(icn)*vel (jcn
6  c e
 
 
      if(icord.eq.1) then
c
c
c 
  
      endif 
 
  
c     column index 
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                j13= i + 2*ncn 

                 j14= i + 3*ncn 

  do 6070 j=1,ncn 
 j 
 j + ncn 

               j23= j + 2*ncn 

then                

 

Matrix of Left Hand Side ------------------------------------------------- 

     For Transient state (Cartesian co-ordinate system)  

p(i)*p(j)*da 
a*deltat*2.0*(visc/roden) 

.5*alpha*alpha*deltat*deltat*velsound*velsound) 
(1,i)*b(1,j)*da) 

visc/roden) 
i)*b(2,j)+b(3,i)*b(3,j))*da)    

j22)  +  alpha*deltat*(visc/roden) 
1        *  (b(2,i)*b(1,j)*da) 
2                        +  0.5*alpha*alpha*deltat*deltat*velsound 

     *  velsound*(b(1,i)*b(2,j)*da) 
 

/roden) 
1        *  (b(3,i)*b(1,j)*da) 

       +  0.5*alpha*alpha*deltat*deltat*velsound 
       *  velsound*(b(1,i)*b(3,j)*da) 

 
a(j11,j24)=aa(j11,j24) +  alpha*deltat*(b(1,j) 

          *p(i)*da) 
    

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~ 

    
  
    
                     j21=
                     j22=
 
                j24= j + 3*ncn 
                 
                 
c if (iel.le.3000) 
 
 
c     Dicretized form of 3D Stokes Equation
c 
c --- Stiffness 
c 
c
 
  
      aa(j11,j21)=aa(j11,j21) +  
 1                        +  (alph
 2    +  0
            3    *  (b
     3                        +  alpha*deltat*(
     4                        * ((b(2,
          
                 
      aa(j11, =aa(j11,j22)
 
 
 3   
 
      aa(j11,j23)=aa(j11,j23) +  alpha*deltat*(visc
 
 2                 
 3 
 
      a
 1                 
 
c
~
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 3        *  velsound*(b(2,i)*b(1,j)*da) 

   aa(j12,j22)=aa(j12,j22) +  p(i)*p(j)*da 
    +  (alpha*deltat*2.0*(visc/roden) 
      +  

    *  (b(2,i)*b(2,j)*da) 
t*(visc/roden) 

   4      * ((b(1,i)*b(1,j)+b(3,i)*b(3,j))*da)       
    

    aa(j12,j23)=aa(j12,j23) +  alpha*deltat*(visc/roden) 
1        *  (b(3,i)*b(2,j)*da) 

eltat*deltat*velsound 
3        *  velsound*(b(2,i)*b(3,j)*da) 

  aa(j12,j24)=aa(j12,j24) +  alpha*deltat*(b(2,j) 

     
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

   *  (b(1,i) *b(3,j)*da) 
ltat*velsound 

 *  (b(3,i)*b(3,j)*da) 

   4    b(2,i)*b(2,j))*da)      

)=aa(j13,j24) +  alpha*deltat*(b(3,j) 

          
   
 1                    
 2  
0.5*alpha*alpha*deltat*deltat*velsound*velsound) 
 3    
     3                        +  alpha*delta
                    
  
 
  
 
 2                        +  0.5*alpha*alpha*d
 
 
    
 1                           *p(i)*da) 
  
c~~~~~~~~~~~
~~~~~~~~~ 
 
      aa(j13,j21)=aa(j13,j21) +  alpha*deltat*(visc/roden) 
 1     
     2                        +  0.5*alpha*alpha*deltat*de
 3        *  velsound*(b(3,i)*b(1,j)*da) 
   
 
      aa(j13,j22)=aa(j13,j22) +  alpha*deltat*(visc/roden) 
 1        *  (b(2,i) *b(3,j)*da) 
     2                        +  0.5*alpha*alpha*deltat*deltat*velsound 
 3        *  velsound*(b(3,i)*b(2,j)*da) 
 
      aa(j13,j23)=aa(j13,j23) +  p(i)*p(j)*da 
 1                        +  (alpha*deltat*2.0*(visc/roden) 
 2        +  
0.5*alpha*alpha*deltat*deltat*velsound*velsound) 
 3       
     3                        +  alpha*deltat*(visc/roden) 
                      * ((b(1,i)*b(1,j)+
 
 
      aa(j13,j24
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      aa(j14,j21)=aa(j14,j21) +  alpha*deltat*velsound*velsound 
 1                        *  (p(i)*b(1,j)*da) 

lso d 
1                        *  (p(i)*b(3,j)*da) 

   3                        +  b(2,i)*b(2,j)+b(3,i)*b(3,j))*da) 

 --- M --------------------------------------------- 

ha*(1.0-

     *  (b(1,i)*b(1,j)*da) 
   3                        -  (1.0-alpha)*deltat*(visc/roden) 

 

1        *  (b(2,i)*b(1,j)*da) 
ha)*deltat*deltat*velsound 

lsound*(b(1,i)*b(2,j)*da) 

c/roden) 

eltat*deltat*velsound 
 velsound*(b(1,i)*b(3,j)*da) 

 
(1,j) 

 
 
      aa(j14,j22)=aa(j14,j22) +  alpha*deltat*velsound*velsound 
 1                        *  (p(i)*b(2,j)*da) 
  
 
      aa(j14,j23)=aa(j14,j23) +  alpha*deltat*velsound*ve un
 
 
 
      aa(j14,j24)=aa(j14,j24) +  p(i)*p(j)*da 
 1                        +  (0.5*alpha*alpha*deltat*deltat 
 2                        *  velsound*velsound)*((b(1,i)*b(1,j) 
  
   
c atrix on Right Hand Side ----
c 
c     For Transient State (Cartesian co-ordinate system)  
 
 
      ak(j11,j21)=ak(j11,j21) +  p(i)*p(j)*da 
 1                        -  ((1.0-alpha)*deltat*2.0*(visc/roden) 
 2        +  0.5*alp
alpha)*deltat*deltat*velsound*velsound) 
 3   
  
     4                        * ((b(2,i)*b(2,j)+b(3,i)*b(3,j))*da)   
     
                   
      ak(j11,j22)=ak(j11,j22) -  (1.0-alpha)*deltat*(visc/roden) 
 
 2                       -  0.5*alpha*(1.0-alp
 3        *  ve
   
      ak(j11,j23)=ak(j11,j23) -  (1.0-alpha)*deltat*(vis
 1        *  (b(3,i)*b(1,j)*da) 
 2                       -  0.5*alpha*(1.0-alpha)*d
 3        * 
 
 
      ak(j11,j24)=ak(j11,j24) -  (1.0-alpha)*deltat*(b
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   *  (b(1,i) *b(2,j)*da) 
   2                        -  0.5*alpha*(1.0-alpha)*deltat*deltat 

3        *  

    ak(j12,j22)=ak(j12,j22) +  p(i)*p(j)*da 

   +  0.5*alpha*(1.0-
lpha)*deltat*deltat*velsound*velsound) 

3        *  (b(2,i)*b(2,j)*da) 
c/roden) 

  

  ak(j12,j23)=ak(j12,j23) -  (1.0-alpha)*deltat*(visc/roden) 

2                       -  0.5*alpha*(1.0-alpha)*deltat*deltat*velsound 
velsound*(b(2,i)*b(3,j)*da) 

        

ltat*(b(2,j) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

den  
1        *  (b(1,i) *b(3,j)*da) 

           -  0.5*alpha*(1.0-alpha)*deltat*deltat 

     *  (b(2,i) *b(3,j)*da) 

      ak(j12,j21)=ak(j12,j21) -  (1.0-alpha)*deltat*(visc/roden) 
 1     
  
 
velsound*velsound*(b(2,i)*b(1,j)*da) 
 
 
  
 1                        -  ((1.0-alpha)*deltat*2.0*(visc/roden) 
 2     
a
 
     3                        -  (1.0-alpha)*deltat*(vis
     4                        * ((b(1,i)*b(1,j)+b(3,i)*b(3,j))*da)    
 
 
    
 1        *  (b(3,i)*b(2,j)*da) 
 
 3        *  
 
 
      ak(j12,j24)=ak(j12,j24) -  (1.0-alpha)*de
 1                           *p(i)*da) 
 
c~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~ 
                
      ak(j13,j21)=ak(j13,j21) -  (1.0-alpha)*deltat*(visc/ro )
 
     2             
 3        *  
velsound*velsound*(b(3,i)*b(1,j)*da) 
 
      ak(j13,j22)=ak(j13,j22) -  (1.0-alpha)*deltat*(visc/roden) 
 1   
     2                        -  0.5*alpha*(1.0-alpha)*deltat*deltat 
 3        *  
velsound*velsound*(b(3,i)*b(2,j)*da) 
 
 
 
      ak(j13,j23)=ak(j13,j23) +  p(i)*p(j)*da 
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     3                        -  (1.0-alpha)*deltat*(visc/roden) 
     4                        * ((b(1,i)*b(1,j)+b(2,i)*b(2,j))*da)       

a)*deltat*(b(3,j) 
1                           *p(i)*da) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

deltat*velsound*velsound 

    ak(j14,j22)=ak(j14,j22) -  (1.0-alpha)*deltat*velsound*velsound 

 

(j)*da 
1                        -  (0.5*alpha*(1.0-alpha)*deltat*deltat 

         +  b(2,i)*b(2,j)+b(3,i)*b(3,j))*da) 

~~~~~

 
).... 

== 

    C(j12) =C(j12) + (1.0-alpha)*deltat*p(j)*grav2*da   

    C(j13) =C(j13) + (1.0-alpha)*deltat*p(j)*grav3*da   

 
 
      ak(j13,j24)=ak(j13,j24) -  (1.0-alph
 
 
c~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~ 
 
      ak(j14,j21)=ak(j14,j21) -  (1.0-alpha)*
 1                        *  (p(i)*b(1,j)*da) 
 
 
 
  
 1                        *  (p(i)*b(2,j)*da) 
 
  
      ak(j14,j23)=ak(j14,j23) -  (1.0-alpha)*deltat*velsound*velsound 
 1                        *  (p(i)*b(3,j)*da) 
 
 
      ak(j14,j24)=ak(j13,j24) +  p(i)*p
 
 2                        *  velsound*velsound)*((b(1,i)*b(1,j) 
     3               
 
 
c~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~ 
c      end if 
 
c
c     Body Force Effect (for Elemental Load Vector Calculation
c     ========================================================
c 
 C(j11) =C(j11) + (1.0-alpha)*deltat*p(j)*grav1*da      
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6070  continue 
       
020  continue 

     Writing the Stiffness Matrix for Element Number 14 

14) then 
 

    write (idv4,3055) ((aa(i,j),j=1,ntrix),i=1,ntrix) 
        
045  format(///,' ',10('*'),' element stiffness matrix for element  

/)  
055  format(27(E15.8,3x)) 

        

========  

     ============================ 

    j11= i 
                   j12= i + ncn 

               j13= i + 2*ncn 

  do 6080 j=1,ncn 

               j22= j + ncn 

               j24= j + 3*ncn 

    nn=iabs(node(iel,j)) 

6
 
 
c
 
         If (iel==
 
 write (idv4,3045)  
 write (idv4,3050) iter 
  
  
3
     114',10('*'),///) 
3050  format(///,' ','Iteration number =',i5,//
3
       
         end if  
  
          
  
 
c     For Transient State (Cartesian Co-ordinate System) 
c     ==========================================
c     Term one on RHS is evaluated  
c
 
      do 6080 i=1,ncn 
 
         
  
 
                j14= i + 3*ncn 
  
    
                     j21= j 
      
                j23= j + 2*ncn 
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     3                    ak(j11,j24)*press(nn) 

 

akf(j12)=akf(j12) + ak(j12,j21)*vel(nn,1) +  
   1                 ak(j12,j22)*vel(nn,2) + 

   3                    ak(j12,j24)*press(nn)  

 ak(j13,j21)*vel(nn,1) + 
   1 el(nn,2) + 

                ak(j13,j24)*press(nn)  

,1) + 

                ak(j14,j23)*vel(nn,3) + 
      ak(j14,j24)*press(nn) 

 
ontinue 

   
 

   j11= i 
                   j12= i + ncn 

          j13=  
*ncn 

     
an Co-ordinate System)  

    
) + akf(j11) + C(j11) 

 akf(j12) + C(j12) 
kf(j13) + C(j13) 

 + C(j14) 

085  continue  

 
  
 
  
     2                    ak(j12,j23)*vel(nn,3) + 
  
 
 
 akf(j13)=akf(j13) +
                  ak(j13,j22)*v
     2                    ak(j13,j23)*vel(nn,3) + 
     3    
 
 
 akf(j14)=akf(j14) + ak(j14,j21)*vel(nn
     1                 ak(j14,j22)*vel(nn,2) + 
     2 
     3              
 
6080  c
   
c
c    Evaluation of Elemental Load Vector 
c    =================================== 
    
      do 6085 i=1,ncn 
 
          
  
      i + 2*ncn
                j14= i + 3
  
c     For Transient State  (Cartesi
   
 rr(j11)= rr(j11
      rr(j12)= rr(j12) +
 rr(j13)= rr(j13) + a
 rr(j14)= rr(j14) + akf(j14)
  
6
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     2,eq   ,lhed ,khed ,kpiv ,lpiv ,jmod ,qq   ,pvkol,vel  ,r1 

,nopp ,mdf  ,ndn  ,maxdf,nel  ,maxte,ntov ,lcol 
ress,icho ) 

     
==============================================================

 UVW-P scheme via  
d. 

==============================================================
== 

at ,nopp ,mdf ,ndn ,ncod , 
t,nk ,eq ,lhed ,khed ,kpiv ,lpiv, 

us,grav1, 
3, p, del, b, ntrix, maxel, maxnp, maxst, maxfr, maxdf, 
 ,da ,ntov ,num, icord, rr, iel, del1,deltat,alpha, 

idv4,sinv, icho, nnp, tref) 
  

 implicit double precision(a-h,o-z) 

    dimension node (maxel,maxst),pmat (maxel,   9),cord (maxnp, ndim) 
m nsion cod (m ,bc   (maxdf     ),sinv (maxel,   27) 

 ,   3),r1   (maxdf     ),conc (maxnp      ) 
    dim ,rr   (maxst     ),ldest(maxst      ) 
    dim  (         3),kdest(maxst      ) 

imension x    (          3),v    (         3),nk   (maxst      ) 

imension p    (         20),del  (   3,   20),b    (   3,    20) 
xdf     )      

     ),jmod (maxfr      ) 
    ),qq   (maxfr      ) 

   dimension pvkol(maxfr      ),mdf  (maxdf     ),ndn  (maxdf      ) 
p  (20    ,  20),pp   (20        ) 

dimension ak   (100,100) 

     3,ncod ,bc   
     4,nell ,ntra, p
c 
      return 
      end 
                
c
=
=== 
c     Stokes Solution based on the modified
c     Taylor-Galerkin time stepping metho
c     
=
=
 
      subroutine flowStokes2(node ,cord ,pm
 1bc ,vel  ,press, r1, temp,ldest,kdes
     2jmod, qq, pvkol, iter ,nel ,ncn , nga
     3grav2, grav
     4ndim ,aa ,xg
     5
    
      
      
     
 
  
      di e n axdf      )
      dimension vel  (maxnp
  ension aa   (maxst,maxst)
  ension xg   (          3),cg  
      d
      dimension bicn (          2),hh   (         3) 
      d
      dimension eq   (maxfr,maxfr),nopp (ma
      dimension ldsc (         22) 
      dimension lhed (maxfr      ),khed (maxfr
      dimension lpiv (maxfr      ),kpiv (maxfr 
   
      dimension pp
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 dimension gdsf (    3,   20) 

dimension dmass(100, 100) 

xst,maxst) 
dimension ak02 (maxst,maxst)  

isc = pmat(iel,1) 

wer = pmat(iel,3) 

co  = pmat(iel,6) 

gamad = pmat(iel,9)  
                                              

isc    ! From Zienkienwicz  

               rr (idf)      = 0.0 

 
 dimension aa01 (maxst,maxst) 
 dimension aa02 (maxst,maxst)  
 dimension ak01 (ma
 
 
 
            
      rv
      rpef  = pmat(iel,2) 
      po
      rtem  = pmat(iel,4) 
      tbco  = pmat(iel,5) 
      ta
      roden = pmat(iel,8) 
 
  
           
      velsound = 1500.0 
 beta     =    0.0 
           
       lambda   =  10E2                
c      lambda   = (10E7-10E8)/v
c 
       
       
      do 6010 idf= 1,ntrix 
  
                 akf(idf)      = 0.0  
            C  (idf)      = 0.0 
      do 6010 jdf= 1,ntrix 
 
                 aa   (idf,jdf)=0.0 
            dmass(idf,jdf)=0.0 
                 ak   (idf,jdf)=0.0 
                 aa01 (idf,jdf) = 0.0 
                 aa02 (idf,jdf)= 0.0 
                 ak01 (idf,jdf)= 0.0 
                 ak02 (idf,jdf)= 0.0 
6010             continue 
       
       
 if (ncn==4) then  
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    do 6020 kg=1,ngaus 
                                  f = xg(kg) 

                        

           lg = lg + 1 

) 

 deriv (iel,ig,jg,kg,p,del,b,ncn,da,cg,node,cord, 
p) 

              iig=ig 

            write(15)   iel ,ig ,jg ,kg, p ,del ,b ,da 
lse 

(15) iel,iig,jjg,kkg,p ,del ,b , da 

 
titutive equation. 

 

n 
ip)) 
 temp(jp) * p(ip) 

 
        gamad = sinv(iel,lg) 
       if(gamad.lt.epsii) gamad = epsii 

 
       lg=0 
      do 6020 ig=1,ngaus 
                                    g = xg(ig) 
      do 6020 jg=1,ngaus 
                                    h = xg(jg) 
  
  
             
                             
    
  
   
      if(iter.eq.1) then 
 
 
      call shape (g,h,f,p,del,ncn
 
      call
     1            maxel,maxn
 
 
               jjg=jg 
                    kkg=kg 
 
        
      e
      if(.not. EOF(15))read
 
      endif 
c
c     calculation of viscosity based on the cons
c
      spress = 0.0 
      stemp  = 0.0 
 
           do 5333 ip = 1,nc
                jp    = iabs(node(iel,
           stemp = stemp +
5333           continue 
               epsii = 1.d-10
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c     preparation of the convective acceleration terms/balancing 

ff= 1,3 

 0.0 

e 
= 1 ,ncn 

             jcn  iabs( de(iel,icn)) 
       do 6060 idff= 1 ,  3 
      x(idff)     = x(idff) + p(icn)*cord(jcn,idff) 

ff) + p(icn)*vel (jcn,idff) 
060  continue 

 

    da = da * x(1) 

     column index 

70 i=1,ncn 

           j11= i 
     j12= i + ncn 

               j13= i + 2*ncn 

cn 
 j 

                   j22= j + ncn 

form of 3D Stokes Equation 

c     dissipation is used 
c 
                       do 6050 id
                       x(idff)     = 0.0 
                       v(idff)     =
                       hh(idff)    = 0.0 
6050                   continu
          do 6060 icn 
      = no
   
    
          v(idff)     = v(id
6
 
      if(icord.eq.1) then 
c
c     modify da for axisymmetric computations. 
c 
  
      endif 
 
      
c
 
      do 60
 
  
                
 
                     j14= i + 3*ncn 
  
      do 6070 j=1,n
                     j21=
  
                j23= j + 2*ncn 
                j24= j + 3*ncn 
                 
                 
            
 
 
c     Dicretized 
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+  (alpha*deltat*2.0*(visc/roden) 
2    +  0.5*lambda*alpha*alpha*deltat*deltat*velsound*velsound) 

    *  (b(1,i)*b(1,j)*da) 
ltat*(visc/roden) 
(2,j)+b(3,i)*b(3,j))*da)    

  alpha*deltat*(visc/roden) 
    *  (b(2,i)*b(1,j)*da) 

*lambda*alpha*alpha*deltat*deltat*velsound 
  *  velsound*(b(1,i)*b(2,j)*da) 

j23)  +  alpha*deltat*(visc/roden) 
1        *  (b(3,i)*b(1,j)*da) 

.5*lambda*alpha*alpha*deltat*deltat*velsound 
3        *  velsound*(b(1,i)*b(3,j)*da) 

  aa(j11,j24)=aa(j11,j24) +  alpha*deltat*(b(1,j) 
          *p(i)*da) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~ 

    aa(j12,j21)=aa(j12,j21) +  alpha*deltat*(visc/roden) 
      *  (b(1,i) *b(2,j)*da) 

   2               +  0.5*lambda*alpha*alpha*deltat*deltat*velsound 
     *  velsound*(b(2,i)*b(1,j)*da) 

)*p(j)*da 
pha*deltat*2.0*(visc/roden) 

2   +  0.5*lambda*alpha*alpha*deltat*deltat*velsound*velsound) 
      *  (b(2,i)*b(2,j)*da) 

  alpha*deltat*(visc/roden) 
i)*b(1,j)+b(3,i)*b(3,j))*da)       

    

    aa( (j12,j23) +  alpha*deltat*(visc/roden) 
      *  (b(3,i)*b(2,j)*da) 

bda*alpha*alpha*deltat*deltat*velsound 
3        *  velsound*(b(2,i)*b(3,j)*da) 

b(2,j) 

      aa(j11,j21)=aa(j11,j21) +  p(i)*p(j)*da 
 1                        
 
 3    
     3                        +  alpha*de
     4                        * ((b(2,i)*b
          
                 
      aa(j11,j22)=aa(j11,j22) +
 1    
 2                    +  0.5
 3      
  
      aa(j11, =aa(j11,j23)
 
 2                 +  0
 
  
    
 1                 
     
c
~~~
                        
  
 1  
  
 3    
          
      aa(j12,j22)=aa(j12,j22) +  p(i
 1                        +  (al
 
 3  
     3                        +
     4                        * ((b(1,
  
 
  j12,j23)=aa
 1  
 2           +  0.5*lam
 
 
      aa(j12,j24)=aa(j12,j24) +  alpha*deltat*(
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      aa(j13,j21)=aa(j13,j21) +  alpha*deltat*(visc/roden) 

   *  (b(1,i) *b(3,j)*da) 
sound 

     *  (b(2,i) *b(3,j)*da) 
     +  0.5*lambda*alpha*alpha*deltat*deltat*velsound 

bda*alpha*alpha*deltat*deltat*velsound*velsound) 

  

und*velsound 

j14,j22)=aa(j14,j22) +  lambda*alpha*deltat*velsound*velsound 

    aa(j14,j24)=aa(j14,j24) +  p(i)*p(j)*da 
at*deltat 

 --- Matrix on Right Hand Side -------------------------------------------- 

 1     
     2             +  0.5*lambda*alpha*alpha*deltat*deltat*vel
 3        *  velsound*(b(3,i)*b(1,j)*da) 
   
 
      aa(j13,j22)=aa(j13,j22) +  alpha*deltat*(visc/roden) 
 1    
     2           
 3        *  velsound*(b(3,i)*b(2,j)*da) 
 
      aa(j13,j23)=aa(j13,j23) +  p(i)*p(j)*da 
 1                        +  (alpha*deltat*2.0*(visc/roden) 
 2 +  0.5*lam
 3        *  (b(3,i)*b(3,j)*da) 
     3                        +  alpha*deltat*(visc/roden) 
     4                        * ((b(1,i)*b(1,j)+b(2,i)*b(2,j))*da)    
 
 
      aa(j13,j24)=aa(j13,j24) +  alpha*deltat*(b(3,j) 
 1                           *p(i)*da) 
 
c~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~ 
 
      aa(j14,j21)=aa(j14,j21) +  lambda*alpha*deltat*velso
 1                        *  (p(i)*b(1,j)*da) 
 
 
      aa(
 1                        *  (p(i)*b(2,j)*da) 
  
 
      aa(j14,j23)=aa(j14,j23) +  lambda*alpha*deltat*velsound*velsound 
 1                        *  (p(i)*b(3,j)*da) 
 
 
  
 1                       +  (0.5*lambda*alpha*alpha*delt
 2                        *  velsound*velsound)*((b(1,i)*b(1,j) 
     3                        +  b(2,i)*b(2,j)+b(3,i)*b(3,j))*da) 
   
c
c 
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 1                  -  ((1.0-alpha)*deltat*2.0*(visc/roden) 
 2 +  0.5*lambda*alpha*(1.0-alpha)*deltat*deltat*velsound*velsound) 

.0-alpha)*deltat*(visc/roden) 
   4                        * ((b(2,i)*b(2,j)+b(3,i)*b(3,j))*da)    

2       -  0.5*lambda*alpha*(1.0-alpha)*deltat*deltat*velsound 
   *  velsound*(b(1,i)*b(2,j)*da) 

eltat*deltat*velsound 
 velsound*(b(1,i)*b(3,j)*da) 

 
(1,j) 

    

                             

   *  (b(1,i) *b(2,j)*da) 
   2                   -  0.5*lambda*alpha*(1.0-alpha)*deltat*deltat 

3        *  

    ak(j12,j22)=ak(j12,j22) +  p(i)*p(j)*da 

alpha)*deltat*deltat*velsound*velsound) 
3        *  (b(2,i)*b(2,j)*da) 

   3                        -  (1.0-alpha)*deltat*(visc/roden) 
(3,j))*da)      

roden) 
1        *  (b(3,i)*b(2,j)*da) 

 
3        *  velsound*(b(2,i)*b(3,j)*da) 

 3        *  (b(1,i)*b(1,j)*da) 
     3                        -  (1
  
     
                   
      ak(j11,j22)=ak(j11,j22) -  (1.0-alpha)*deltat*(visc/roden) 
 1        *  (b(2,i)*b(1,j)*da) 
 
 3     
   
      ak(j11,j23)=ak(j11,j23) -  (1.0-alpha)*deltat*(visc/roden) 
 1        *  (b(3,i)*b(1,j)*da) 
 2         -  0.5*lambda*alpha*(1.0-alpha)*d
 3        * 
 
 
      ak(j11,j24)=ak(j11,j24) -  (1.0-alpha)*deltat*(b
 1                           *p(i)*da) 
 
c~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~ 
 
      ak(j12,j21)=ak(j12,j21) -  (1.0-alpha)*deltat*(visc/roden) 
 1     
  
 
velsound*velsound*(b(2,i)*b(1,j)*da) 
 
 
  
 1                        -  ((1.0-alpha)*deltat*2.0*(visc/roden) 
 2  +  0.5*lambda*alpha*(1.0-
 
  
     4                        * ((b(1,i)*b(1,j)+b(3,i)*b
 
 
      ak(j12,j23)=ak(j12,j23) -  (1.0-alpha)*deltat*(visc/
 
 2         -  0.5*lambda*alpha*(1.0-alpha)*deltat*deltat*velsound
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ltat*deltat 

ound*velsound*(b(3,i)*b(1,j)*da) 

3,i)*b(2,j)*da) 

1                        -  ((1.0-alpha)*deltat*2.0*(visc/roden) 
lambda*alpha*(1.0-alpha)*deltat*deltat*velsound*velsound) 

   3    ltat*(visc/roden) 
   4                  * ((b(1,i)*b(1,j)+b(2,i)*b(2,j))*da)       

    ak( 3,j24) ak(j13 24) -  (1.0-alpha)*deltat*(b(3,j) 

~~~~~~~~~~~~~~~~~~

    ak(j14,j21)=ak(j14,j21) -  lambda*(1.0-alpha)*deltat*velsound 
1                        *velsound * (p(i)*b(1,j)*da) 

 
    ak(j14,j23)=ak(j14,j23) -  lambda*(1.0-alpha)*deltat*velsound 

 
ak(j13,j21)=ak(j13,j21) -  (1.0-alpha)*deltat*(visc/roden) 
 1        *  (b(1,i) *b(3,j)*da) 
     2                     -  0.5*lambda*alpha*(1.0-alpha)*de
 3        *  
vels
 
      ak(j13,j22)=ak(j13,j22) -  (1.0-alpha)*deltat*(visc/roden) 
 1        *  (b(2,i) *b(3,j)*da) 
     2                     -  0.5*lambda*alpha*(1.0-alpha)*deltat*deltat 
 3        *  
velsound*velsound*(b(
 
 
 
      ak(j13,j23)=ak(j13,j23) +  p(i)*p(j)*da 
 
 2 +  0.5*
 3        *  (b(3,i)*b(3,j)*da) 
                      -  (1.0-alpha)*de
        
 
 
  j1 = ,j
 1                           *p(i)*da) 
 
c~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~ 
 
  
 
 
 
 
      ak(j14,j22)=ak(j14,j22) -  lambda*(1.0-alpha)*deltat*velsound 
 1                        *  velsound * (p(i)*b(2,j)*da) 
 
 
  
 1                        *  velsound * (p(i)*b(3,j)*da) 
  
 
      ak(j14,j24)=ak(j13,j24) +  p(i)*p(j)*da 
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c 

tion) 
=c 

    C(j12) =C(j12) + (1.0-alpha)*deltat*p(j)*grav2*da   

     

     

 

       If (iel==14) then 

write (idv4,3050) iter 

045  format(///,' ',10('*'),' element stiffness matrix for element  

055  format(27(E15.8,3x)) 
     
       end if  

        

==============  
n RHS is evaluated  

     ============================ 

c     Body Force Effect (for Elemental Load Vector Calcula
c     ========================================================
c 
 C(j11) =C(j11) + (1.0-alpha)*deltat*p(j)*grav1*da      
     
  
 
      C(j13) =C(j13) + (1.0-alpha)*deltat*p(j)*grav3*da   
 
      C(j14) =C(j14) + 0 
 
 
  
 
6070  continue 
  
6020  continue 
 
 
c     Writing the Stiffness Matrix for Element Number 14
 
  
  
 write (idv4,3045)  
 
      write (idv4,3055) ((aa(i,j),j=1,ntrix),i=1,ntrix) 
          
3
     114',10('*'),///) 
3050  format(///,' ','Iteration number =',i5,///)  
3
  
  
          
  
  
 
c     For Transient State (Cartesian Co-ordinate System) 
c     ====================================
c     Term one o
c
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                     j12= i + ncn 

               j13= i + 2*ncn 

  do 6080 j=1,ncn 

               j22= j + ncn 

               j24= j + 3*ncn 

    nn=iabs(node(iel,j)) 

akf(j11)=akf(j11) + ak(j11,j21)*vel(nn,1) +  
                   ak(j11,j22)*vel(nn,2) + 

   2                    ak(j11,j23)*vel(nn,3) + 
 ak(j11,j24)*press(nn) 

 

akf(j12)=akf(j12) + ak(j12,j21)*vel(nn,1) +  
   1                 ak(j12,j22)*vel(nn,2) + 

   3                    ak(j12,j24)*press(nn)  

 ak(j13,j21)*vel(nn,1) + 
   1 el(nn,2) + 

                ak(j13,j24)*press(nn)  

,1) + 

                ak(j14,j23)*vel(nn,3) + 
      ak(j14,j24)*press(nn) 

 
ontinue 

   
 

 
                j14= i + 3*ncn 
  
    
                     j21= j 
      
                j23= j + 2*ncn 
 
 
  
 
 
 
     1 
  
     3                   
 
  
 
  
     2                    ak(j12,j23)*vel(nn,3) + 
  
 
 
 akf(j13)=akf(j13) +
                  ak(j13,j22)*v
     2                    ak(j13,j23)*vel(nn,3) + 
     3    
 
 
 akf(j14)=akf(j14) + ak(j14,j21)*vel(nn
     1                 ak(j14,j22)*vel(nn,2) + 
     2 
     3              
 
6080  c
   
c
c    Evaluation of Elemental Load Vector 
c    =================================== 
    
      do 6085 i=1,ncn 
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c     For Transient State  (Cartesian Co-ordinate System) hnt  

     
rr(j11)= rr(j11) + akf(j11) + C(j11) 

akf(j12) + C(j12) 
3) + akf(j13) + C(j13) 

kf(j14) + C(j14) 

 
    maxte=maxdf 

t,kdest,nk   ,maxfr 
  ,pvkol,vel  ,r1 

,nel  ,maxte,ntov ,lcol 
ress,icho ) 

     
==============================================================

n  ,ncod ,bc   ,conc ,vel 
   2    ,r1   ,xg   ,ndim ,da   ,ldest,kdest,nk   ,eq   ,lhed 
   3    ,khed ,kpiv ,lpiv ,jmod ,qq   ,pvkol,iter ,nel  ,ncn  ,ntov 

 
 

ble precision(a-h,o-z) 

imension node (maxel,maxst),cord (maxnp, ndim) 
  dimension ncod (maxdf      ),bc   (maxdf      ) 

f      ),vel  (maxnp,    3) 

 dimension p    (         20),del  (   3,    20),b    (   3,    20) 
       3),v    (          3) 

    dimension bicn (          3),bjcn (          3) 

  
 
      rr(j12)= rr(j12) + 
 rr(j13)= rr(j1
 rr(j14)= rr(j14) + a
  
6085  continue  
 
       
c
  
      call front 
     1(aa   ,rr   ,iel  ,node ,maxel,maxst,ldes
     2,eq   ,lhed ,khed ,kpiv ,lpiv ,jmod ,qq 
     3,ncod ,bc   ,nopp ,mdf  ,ndn  ,maxdf
     4,nell ,ntra, p
c 
      return 
      end 
 
 
c
=
=== 
c 
      subroutine concn 
     1    (node ,cord ,pmat ,nopp ,mdf  ,nd
  
  
     4    ,icord,ngaus, p    ,del  ,b    ,ntrix,maxel,maxnp
     5    ,maxst,maxfr,maxdf,num  ,ijmo ,ae
     6    ,re   ,cg   ,iel, del1  ) 
c 
      implicit dou
c 
      d
    
      dimension conc (maxnp      ),r1   (maxd
      dimension ae   (maxst,maxst),re   (maxst      ) 
     
      dimension x    (   
  

221 
 



       
Appendix 3.2                                                                                  Computer program 
 
 
      dimension khed (maxfr      ),kpiv (maxfr      ),lpiv (maxfr      ) 

      ),pvkol(maxfr      ) 
axdf      ) 

          ) 
maxst      ) 

dimension NQ   (4    ,    3),NP   (3    ,    4) 
n C    (maxst      ) 

    dimension DEL1 (3          ) 

                   rvisc = pmat(iel,1) 
                          rbulk = pmat(iel,2) 

    roden = pmat(iel,6) 
             dispc 

7)  

     Basic element loop  
     ==================     

                     do 6010 itrix  = 1 ,maxst 

                    do 6010 jtrix  = 1 ,maxst 
                         ae(itrix,jtrix)= 0.0 

ntinue 

       lg=0 

  do 6020 ig=1,ngaus 

      dimension jmod (maxfr      ),qq   (maxfr
      dimension mdf  (maxdf      ),ndn  (m
 dimension ppp  (20    ,    20),pp   (20
 dimension kae  (maxst,maxst),kaef (
 
 dimensio
  
c 
c 
                              
                       
                                                 power = pmat(iel,3) 
                                                 rtem  = pmat(iel,4) 
                                                 tco   = pmat(iel,5) 
                                             
 
= pmat(iel,
c 
c
c
        
                             re(itrix)      = 0.0 
         
    
6010                         co
c 
c     Numerical integration 
c     ===================== 
c 
      call gaussp(ngaus,xg,cg) 
c 
 
 
    
                                    g = xg(ig) 
      do 6020 jg=1,ngaus 
                                    h = xg(jg) 
      do 6020 kg=1,ngaus 
                                    f = xg(kg) 
             lg=lg+1 
                                          if(iter.eq.1) then 
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      end if 

     

     
    ijm

   Coefficients evaluated at integration point 

 x(idf) + p(icn)*cord(jcn,idf) 
           v(idf) = v(idf) + p(icn)*vel (jcn,idf) 

s. 
===============  

  do 6060 icn = 1 ,ncn 

   Row index 

                                 ir = icn 

c = jcn 

c 
c     Read shape functions and their cartesian derivatives data from 
c     a work file 
  
 read (15)   iiel,iig,jjg,kkg,p,del,b,da 
  
  o=ijmo+1 
c 
c  
c 
                              do 6040 idf = 1 , 3 
                              x(idf)      = 0.0 
                              v(idf)      = 0.0 
6040                          continue 
          do 6050 icn = 1 ,ncn 
                  jcn = iabs(node(iel,icn)) 
          do 6050 idf = 1 , 2 
               x(idf) =
    
6050      continue 
c 
      if(icord.eq.1) then 
c 
c    Modify da for axisymmetric computation
c    ========================
      da = da * x(1) 
 
      endif 
 
    
 
c  
c     ========= 
 
      do 6060 jcn = 1 ,ncn 
                          
c     Column index 
c     ============ 
                                       i
 
6060  continue 
6020  continue 
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      do 6080 icn = 1 , ncn 

   ir = icn 

              
    ic = jcn 

KAEF(ir)=KAEF(ir) + kae(ir,ic)*conc(ic) 

ulation of Line Integrals   
================================= 

  NQ(2,2)=6 

  NQ(3,3)=4 

    NQ(4,2)=8 
1)=4  

     

   do J=1,3 
-J,1)=node(iel,NQ(I,4-J))  

=1,4 
 

gaus 
       g = xg(ig) 

     if(iter.eq.1) then 

 
          
  
      do 6080 jcn = 1 , ncn 
        
   
 
       
 
  
6080  continue 
 
c     Term two on RHS i.e. Calc
c     =================
  
      NQ(1,3)=2 
      NQ(1,2)=5 
      NQ(1,1)=1 
      NQ(2,3)=3 
    
      NQ(2,1)=2 
    
      NQ(3,2)=7 
      NQ(3,1)=3 
      NQ(4,3)=1 
  
      NQ(4,
  
 do I=1,4 
 
       NP(4
    end do  
      end do  
 
 do 6096 L
  call gaussp(ngaus,xg,cg) 
   
        do 6096 ig=1,n
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ix=0.0 

    dsiy=0.0 

 I=1,ngaus 
      dsix=dsix+p(I)*cord(NP(I,L),1) 

cord(NP(I,L),2) 
    end do  
       

oncy=0.0 

       do I=1,ngaus 

               concy   = concy  + DEL1(I)*conc(NP(I,L)) 
z   = concz  + DEL1(I)*conc(NP(I,L)) 

 u11  = u11  + DEL1(I)*vel (NP(I,L),1) 
 = u12  + DEL1(I)*vel (NP(I,L),1) 
 = u21  + DEL1(I)*vel (NP(I,L),2) 
 = u22  + DEL1(I)*vel (NP(I,L),2) 
   velx    = velx   + DEL1(I)*vel (NP(I,L),1) 
 vely    = vely   + DEL1(I)*vel (NP(I,L),2) 
   
  end do 
         

qrt(dsix**2 + dsiy**2+dsiz**2) 
  

 dsix/ellgth 
m = dsiy/ellgth 

 
 s = dcelm 

y  = -dcell 
    dnz        =      dceln 

*ellgth 

     

     ir = icn 

           end if  
 
     ds
 
      
 
     do
  
     dsiy=dsiy+p(I)*
 
 
    concx=0.0  
             c
                   
 
                   
             concx   = concx  + DEL1(I)*conc(NP(I,L)) 
   
                  conc
   
                  u12 
                  u21 
                  u22 
   
   
   
   
   
 
c ellgth = s
 
  dcell =
  dcel
c  dceln   =       dsiz/ellgth 
  dnx
     dn
  
     ellgth  =   2.0
  djacob =   ellgth/2.0 
      
  
 do 6087 icn=1,ncn 
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c     Calculation of the Elemental Load Vector 

============== 

    do 6085 icn =1 , ncn 

      

aef(ir) + C(ir)  
     

========= 

hed  , iv ,lp

ress,ic o,c,ak
 
     En of bas  elem

===== 

     ret n 
     end 

===================================

    sub ress 
e ,p , b , da ,vel  ,maxnp, maxel,  maxst ,  

c ,clump ,ngaus  )  
   
     im icit do le precision(a-h,o-z) 

 -------- 
 at integration points,  

c     ==========================
       
  
 
       ir = icn 
                   
      re(ir)  = re(ir) + k
  
 6085 continue  
 
  
c     Solve equations 
c     ======
 
      maxte=maxnp 
      call front 
     1(ae   ,re   ,iel   ,node ,maxel,maxst,ldest,kdest,nk   ,maxfr 
     2,eq   ,lhed ,k kp iv ,jmod ,qq   ,pvkol, conc ,r1 
     3,ncod ,bc   ,nopp  ,mdf  ,ndn  ,maxdf,nel  ,maxte,ntov ,lcol 
     4,nell ,ntra ,p h f,ak) 
c
c d ic ent loop 
c     ====================
 
  ur
  
c 
 
 
c     
============================
=== 
  routine st
     1     (nel,nnp,ncn ,nod
     2      maxdf, stres, press, rvis
c
  pl ub
c 
c function 
c
c     calculates stress components

226 
 



Appendix 3.2                                                                                  Computer program 
 
      dimension clump(maxnp      ) 
 

 

                                          do 4990 inp   =1,maxnp 
         do 4990 icp   =1, 6 

                                                stres(inp,icp)= 0.0 
                     continue               

o 5000 iel = 1 ,nel 

    do 6010 ig=1,ngaus 
            

us 

    do 6010 kg=1,ngaus 
      

F(15))read(15) iiel,iig,jjg,kkg,p ,del ,b , da 

              u21 = 0.0 

                u31 = 0.0 
32 = 0.0 

   u33 = 0.0 
          pres1 = 0.0 

      do 6020 icn = 1 ,ncn 
        jcn = iabs(node(iel,icn)) 

         u12 = u12 + b(2,icn)*vel(jcn,1) 
+ b(3,icn)*vel(jcn,1) 

            u23 = u23 + b(3,icn)*vel(jcn,2) 
,3) 

              u32 = u32 + b(2,icn)*vel(jcn,3) 
u33 = u33 + b(3,icn)*vel(jcn,3) 

   pres1 = pres1 + p(icn)*press(jcn) 

c
                                                             rewind 15
c 
        
                                         
  
 4990                         
c 
 
      d
c 
  
                         
      do 6010 jg=1,nga
                                     
  
                               
       if(.not. EO
                                      
    u11 = 0.0 
                  u12 = 0.0 
                  u13 = 0.0 
    
                  u22 = 0.0 
                  u23 = 0.0 
  
                  u
               
 
 
  
        
                  u11 = u11 + b(1,icn)*vel(jcn,1) 
         
                  u13 = u13 
                  u21 = u21 + b(1,icn)*vel(jcn,2) 
                  u22 = u22 + b(2,icn)*vel(jcn,2) 
      
                  u31 = u31 + b(1,icn)*vel(jcn
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c    cartesian components of the stress tensor 

  =========================================  

  ========================================= 

  sd12 = rvisc * (u12 +  u21) 
    sd13 = rvisc * (u13 +  u31) 

  u32)   

==========================  

========================== 

 

===============================================

at nodal points  

===============================================
  

)) 

                  stres(jcn,5)= stres(jcn,5) 

c  
c    Shear Stress (Tau) 
c  
 
      sd11 = 2.0   *rvisc *  u11 
      sd22 = 2.0   *rvisc *  u22 
 sd33 = 2.0   *rvisc *  u33 
    
  
      sd23 = rvisc * (u23 +
 
c    ===============
c    Normal Stress (Pi) 
c    ===============
 
      s11  =-pres1 + sd11 
      s22  =-pres1 + sd22
      s33  =-pres1 + sd33 
      s12  = sd12 
      s13  = sd13 
      s23  = sd23 
 
c    
================
=  
c *** calculate stress 
c    
================
=
 
 
         do 6500 icn = 1 ,ncn 
                                    jcn = iabs(node(iel,icn
 
                    stres(jcn,1)= stres(jcn,1) 
     1                          + p(icn) *s11  *da 
                    stres(jcn,2)= stres(jcn,2) 
     1                          + p(icn) *s22  *da 
                    stres(jcn,3)= stres(jcn,3) 
     1                          + p(icn) *s33  *da 
                    stres(jcn,4)= stres(jcn,4) 
     1                          + p(icn) *s12  *da 
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 6500               continue 
 
c 
 6010 continue 

 

==============================================

np,nel  ,ngaus,p   ,del  ,b   ,maxst, 
 ) 

le precision(a-h,o-z) 
   (    3,   20) ,del  (   3,   20) ,p   (  20) 

    dimension clump(maxnp      ) 
imension node (maxel,maxst) 

 ,nnp 
                             clump  (inp)= 0.0 

            rewind 15 
 

           do 5020            ig  = 1 ,ngaus 

,iig ,jjg ,kkg ,p ,del ,b ,da 

  
 5000 continue 
 
      return 
c 
      end 
c
c     
=================
=== 
 
      subroutine lumpm 
     1    (clump,nnp  ,max
     2     node ,maxel,ncn 
c 
      implicit doub
      dimension b 
  
      d
      dimension pp   (ncn  ,ncn  ) 
c 
                                    do 5000 inp = 1
       
 5000                               continue 
c 
  
c
      do 5010 iel = 1 ,nel 
 
  
             do 5020            jg  = 1 ,ngaus 
             do 5020            kg  = 1 ,ngaus 
                   
 
 if(.not. EOF(15)) read (15) jel 
  
                     do 5030    icn = 1 ,ncn 
                                 ww = 0.0 
                     do 5040    jcn = 1 ,ncn 
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5030                continue 

020        continue 
10        continue 

   return 

 

=============================================================

ubroutine getnod (nnp  ,cord ,idv1 ,idv2 ,maxnp,ndim,icord) 

plicit double precision(a-h,o-z) 
 

odal points in the mesh 
   cord   array for nodal coordinates 

) 

1,nnp) 

  if(icord.eq.1) write(idv2,3020) 
) (jnp ,(cord(jnp,idf),idf=1,3) ,jnp=1,nnp) 

 
 
dinates ',20('*'),// 
rd',13x,'z-coord',13x)/) 

t(' ',///' ',20('*'),' nodal coordinates ',20('*'),// 
   1' ',2(7x,'id/',7x,'r-coord',7x,'z-coord',20x)/) 

==================================c 

 
 5
 50
 
   
      end 
c
c     
==
=== 
 
      s
c 
      im
c
c     arguments 
c     ========= 
c     nnp    total number of n
c  
c     idv1   input device id.  
c     idv2   output device id.  
c     ndim   see below 
c 
      dimension cord(maxnp, ndim
c 
      if (.NOT. EOF(51)) read (idv1,1010)  
 1(jnp ,(cord(jnp,idf),idf=1,3),jnp=
      if(icord.eq.0) write(idv2,3010) 
    
      write(idv2,3030
c 
      return 
c
1010  format(i8,e20.12,e20.12,e20.12)
3010  format(' ',///' ',20('*'),' nodal coor
     1' ',(7x,'id.',13x,'x-coord',13x,'y-coo
3020  forma
  
3030  format(' ',i10,10x,f10.6,10x,f10.6,10x,f10.6) 
c 
      end 
c 
c==========================
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      subroutine getelm (nel  ,ncn  ,node ,idv1 ,idv2 ,maxel) 
 

recision(a-h,o-z) 

     arguments 
==== 

   number of nodes per element 
   node   array for element connectivity data 

dv1   input device id.  

axel  see below 
 

10  if (.not. eof(51))read (idv1,1010) iel ,(node(iel,icn),icn=1,ncn) 
al connectivity array read" 

0) 

n),icn=1,ncn) 

10  format(' ',///,' ',20('*'),' element connectivity ',20('*'),// 
i e s',/) 

   
=======================================================

= 

   arguments 
====== 

   nbc    number of nodal constraint data 

c
      implicit double p
c 
c
c     =====
c     ncn 
c  
c     i
c     idv2   output device id.  
c     m
c
      dimension node (maxel, ncn) 
c 
              do 6010 iel = 1 ,nel 
60
      print*, "nod
      write(idv2,301
               do 6020 jel = 1 ,nel 
6020  write(idv2,3020) jel ,(node(jel,ic
c 
      return 
c 
 
1010  format(21i7) 
30
     1' ',4x,'id.',7x,'n o d a l - p o i n t  e n t r 
3020  format(21i7) 
c 
      end 
c 
c  
========
==
 
      subroutine getbcd (nbc  ,ibc  ,jbc  ,vbc 
     1                  ,idv1 ,idv2 ,maxbc) 
c 
      implicit double precision(a-h,o-z) 
c 
c  
c     ===
c  
c     ibc    array for constrained nodal points 
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c     maxbc  see below 

  dimension ibc  (maxbc) ,jbc  (maxbc),vbc  (maxbc) 

))read (idv1,1010) (ibc(ind) ,jbc(ind) ,vbc(ind) 

"  

) ,jbc(ind) ,vbc(ind) ,ind=1,nbc) 

  return 

10  format(2i5,f10.4) 
 nodal constraint ',20('*'),// 

   
=======================================================

 

v 
axst, 

  implicit double precision(a-h,o-z) 

   arguments 
======== 

c      array for storing contraint value 
     maxbc   see below 

  dimension ibc  (maxbc) ,jbc  (maxbc) ,vbc  (maxbc) 
df) ,node (maxel,maxst) 

 = 1 ,nbc 
goto 6010 

c 
    
c 
      if (.not. eof(51
 1    ,ind=1,nbc) 
 print*, "boundary conditions array read
      write(idv2,3010) 
      write(idv2,3020) (ibc(ind
c 
    
c 
10
3010  format(' ',//  /,' ',20('*'),'
     1' ',(8x,'id.',7x,'dof',10x,'value',10x)/) 
3020  format(5x,i5,5x,i5,f17.4) 
c 
      end 
c 
c  
========
==
 
      subroutine putbc
     1 (nnp  ,nbc ,ibc ,jbc ,vbc ,ncod ,bc ,maxbc,maxdf,maxel,m
     2  node) 
c 
    
c 
c  
c     =
c     ncod    array for constraint switch defined for every d.o.f. 
c     b
c
c     maxdf   see below 
c 
    
      dimension ncod (maxdf) ,bc   (max
c 
      do 6010 ind
      if(jbc(ind)>4) 
      jnd         = ibc(ind)+(jbc(ind)-1)*nnp 
      bc    (jnd) = vbc(ind) 
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c iel=16 

kc=iabs(node(iel,inp)) 

  return 

 

 1    (nbc  ,ibc  ,jbc  ,vbc  ,ncod ,bc   ,maxbc,maxdf) 

  implicit double precision(a-h,o-z) 

e putbcv 

nsion ibc  (maxbc) ,jbc  (maxbc) ,vbc  (maxbc) 
  dimension ncod (maxdf) ,bc   (maxdf) 

f(jbc(ind).eq.5) then 
    jnd         = ibc(ind) 

) 

10  continue 

  return 

================================

  subroutine putbcs 
df) 

  implicit double precision(a-h,o-z) 

broutine putbcv 

c inp=24    
c 
c  
    
      end 
c
 
 
      subroutine putbcc 
    
c 
    
c 
c     arguments 
c     ========= 
c     arguments same as subroutin
c 
      dime
    
c 
      do 6010 ind = 1 ,nbc 
      i
  
      bc     (jnd)= vbc(ind
      ncod   (jnd)= 1 
      endif 
60
c 
    
      end 
c 
c    
===============================
=== 
 
    
     1    (nnp  ,nbc  ,ibc  ,jbc  ,vbc  ,ncod ,bc   ,maxbc,max
c 
    
c 
c     arguments 
c     ========= 
c     arguments same as su
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    6010 ind =  do  1 ,nbc 

ibc(ind) 
nd)= vbc(ind) 

   (jnd)= 1 
  endif 

010  continue 
 

=============================================================

n 
maxdf, 

 2     bc   ,ncod ,icho ) 

fined elsewhere. 

axdf) ,node(maxel,maxst) 
sion bc   (maxdf) ,ncod(maxdf      ) 

   function 
=== 

s the used arrays and makes them ready for  solution 

    do  6010 i   = 1,maxdf 

         bc(i) = 0.0 
              ncod(i) = 0 

ue 

       do  6020 iel = 1,nel 

       node(iel,inp) = iabs(node(iel,inp)) 
  continue 

)then 

      if(jbc(ind).eq.6) then 
      jnd         = 
      bc     (j
      ncod
    
6
c
      return 
      end 
c 
c    
==
=== 
      subroutine clea
     1    (ncn  ,nel  ,ndf  ,node ,r1   ,maxel,maxst,
    
c 
      implicit double precision(a-h,o-z) 
c 
c     arguments 
c     ========= 
c     all arguments are de
c 
      dimension r1   (m
      dimen
c 
c  
c     =====
c     clean
c 
       
                  r1(i) = 0.0 
         
  
6010                   contin
                ntrix   = ndf *ncn 
    
           do  6020 inp = 1,ntrix 
    
6020                 
           if(icho.ne.1
           do 6030 iel = 1,nel 

234 
 



Appendix 3.2                                                                                  Computer program 
 
 
           endif 
c 
      return 
      end 
c 
c    
===============================================================

= 
ine setprm 

np  ,nel  ,ncn  ,node ,ndf  ,maxel,maxst,ndn  ,ntrix, 
 2      maxdf,ntov ,mdf  ,nopp ) 

ined elsewhere. 

n  (maxdf) 
  dimension mdf  (maxdf      ), nopp (maxdf) 

   Sets the location data for nodal degrees of freedom 

     ndn(iel) = ntrix 
n = 1 ,ncn 

de(iel,icn) 

          lacn= kcn+(ndf-3)*nnp 

bcn= icn+(ndf-2)*ncn 
f-2)*nnp 

= icn+(ndf-1)*ncn 
np 

==
      subrout
     1     (n
    
c 
      implicit double precision(a-h,o-z) 
c 
c     arguments 
c     ========= 
c     all arguments are def
c 
      dimension node (maxel,maxst), nd
    
c 
c     function 
c     ======== 
c  
c 
      do 6010 iel = 1 ,nel 
    
      do 6010 ic
              kcn = no
   jacn= icn+(ndf-3)*ncn 
    
 
   j
              lbcn= kcn+(nd
 
   jccn
              lccn= kcn+(ndf-1)*n
 
      node(iel,jacn) = lacn 
      node(iel,jbcn) = lbcn 
      node(iel,jccn) = lccn 
 
6010  continue 
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6020  continue 

  return 

   
============================================================

broutine getmat (nel ,nmat,pmat, idv1, idv2,maxel,rtem, rpef) 

   arguments 

   nmat  number of materials 
for material constants for each element 

ice id. 

   maxel see below 

,3010) 

  if (.NOT. EOF(51)) read(idv1,1010) rvisc, power, tref, tbco, taco, 
          dispc, pref, roden, gamad  

roperties read" 
 

q.0.) rtem  = 0.001 
              if(rpef .eq.0.) rpef  = 0.001 

       pmat(iel,1) = rvisc 

       pmat(iel,4) = tref 

   pmat(iel,8) = roden 
 = gamad 

c 
    
      end 
c 
c  
===
=== 
      su
c 
      implicit double precision(a-h,o-z) 
c 
c  
c     ========= 
c  
c     pmat  array 
c     idv1 input dev
c     idv2  output devide id. 
c  
c 
      dimension pmat (maxel,   9) 
c 
      write(idv2
c 
      do 6010 imat = 1 ,nmat 
    
 1                         
      print*, "material p
CCCC                ifrom = 1
CCCC                ito   = nel 
                 
     if(rtem .e
  
       
 do 6020 iel  = 1 ,nel 
  
         pmat(iel,2) = pref 
         pmat(iel,3) = power 
  
         pmat(iel,5) = tbco 
         pmat(iel,6) = taco 
         pmat(iel,7) = dispc 
 
         pmat(iel,9)
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c     rvisc    mu nought; consistency coefficient 

 reference pressure 
er    power law index 

   tref     reference temperature 
bco     coefficient b in the power law model 

ispc    dispersion coefficient 

020) imat ,ifrom ,ito ,rvisc ,power 
0) 

ref, taco 

 , roden , gamad 

aterial properties ',35('*'),// 

,g15.5) 
temperature   coefficient b 
efficient a '/) 

at(f16.3,f22.4,6x,g10.3,9x,g10.3) 
050  f mat(/x, 

          Shear rate'/) 
  format(g13.3,15x,g7.1,6x,g16.5) 

 

==============================================

   1(ve   ,maxnp,maxdf,errov,errop,vet ,cet, 

c     pref    
c     pow
c  
c     t
c     taco     coefficient a in the power law model 
c     d
c     gamad    shear rate 
c 
6020  continue 
c 
      write(idv2,3
      write(idv2,303
      write(idv2,3040) tref ,tbco, p
      write(idv2,3050) 
      write(idv2,3060) dispc
 
6010  continue 
c 
      return 
c 
1010  format(9d10.5) 
c 
3010  format(' ',//' ',35('*'),' m
     1     ' ',2x,'id.',5x,'eid.(from-to)',3x,'consistency co-efficient' 
     2,5x,'power law index',/) 
3020  format(' ',i3,i12,i4,5x,g15.5,15x
3030  format(/x,' reference 
     1   reference pressure  co
3040  form
3 or
     1'Dispersion Coefficient     Density
3060
c
      end 
c 
c     
=================
=== 
c 
      subroutine contol 
  l  ,conc ,iter ,ntov ,nnp
     2 pet, press)   
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      dimension vel  (maxdf),conc (maxnp), press(maxnp) 

  (maxnp), pet  (maxnp) 

errp  = 0.0 
.0 

cutive iterations 

=================================

                   do 6010 icheck = 1,ntov 
et(icheck) = 0.0 

61008                     errv = errv + 
  1          (vel(icheck)-vet(icheck)) * (vel(icheck)-vet(icheck)) 

 1       vel(icheck)*vel(icheck)- 2*vel(icheck)*vet(icheck) 

tive iterations 

=============================================================
 

                 do 6020 icheck = 1,nnp 
(iter.eq.1)  cet(icheck) = 0.0 

    (conc(icheck)*conc(icheck))-2*conc(icheck)*cet(icheck) 
 2      + cet(icheck)*cet(icheck) 

c + conc(icheck)*conc(icheck) 

conc(icheck) 

      dimension vet  (maxdf),cet
 
 errv  = 0.0 
      torv  = 0.0 
      errc  = 0.0 
      torc  = 0.0 
 
 torp  = 0
c 
c    calculate difference between velocities in conse
c    
==============================
== 
c 
  
      if(iter.eq.1) v
C0
C061008   
 
       errv = errv +  
    
     2      +vet(icheck)*vet(icheck)        
       torv = torv + vel(icheck)*vel(icheck) 
c 
      vet(icheck) = vel(icheck) 
c 
6010                 continue 
                     errov= errv/torv 
c 
c    calculate difference between concentrations in consecu
c    
==
======
    
      if
       errc = errc + 
     1  
    
                     torc = tor
 
      cet(icheck) = 
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                     do 6030 icheck = 1,nnp 

230908            if(iter.eq.1)  press(icheck) = 0.0 

icheck)*press(icheck)-2*press(icheck)*pet(icheck) 
heck)*pet(icheck)  

 + press(icheck)*press(icheck) 
 
          = press(icheck) 

              errop= errp/torp 

  return 

===========
== 

,icord, stres) 

  implicit double precision(a-h,o-z) 

   arguments are already defined 
============== 

ss(maxnp), conc(maxnp) 
dimension stres(maxnp,    6) 

write(60,3010) 

d.eq.0) write(60,3020) 

p = 1,nnp 

   knp = inp + (2*nnp) 

    write(60,3040)inp,vel(inp),vel(jnp),vel(knp),press(inp), 

      if(iter.eq.1)  pet(icheck) = 0.0 
 
c
       errp = errp + 
     1        press(
     2      + pet(ic
       torp = torp
c
    pet(icheck)
c 
6030                 continue 
       
 
c 
    
      end 
 
c     
====================================================
=
 
      subroutine output 
     1     (nnp  ,vel  ,press, maxdf,maxnp
c 
    
c 
c  
c     ===============
      dimension vel(maxdf), pre
 
       
 
 
      if(icor
      if(icord.eq.1) write(60,3030) 
       
 do 6010 in
                         jnp = inp + nnp 
     
      press(inp)=press(inp) 
  
 1stres(inp,1) 
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      call minimax 
 1( cmax  , pmax  , vel  , conc  ,  press ,  maxnp,  nnp  ,    nc,     

2  np    , nm    , ncm  , nvxm  ,  nvym  ,  nvzm ,   

in , vymax, vymin ,  vzmax ,  vzmin,  ndim , maxdf ) 

l(nvxl) 
 

write(60,3060)nvym,vel(nnp+nvym),nvyl,vel(nnp+nvyl) 

write(60,3070)nvzm,vel(2*nnp+nvzm),nvzl,vel(2*nnp+nvzl) 
 

te(60,3075) 
rite(60,3080)np,press(np),nm,press(nm) 

  

 format('  id.      ux         uy          uz     press  stress'/) 
030  format('  id.      ur         uz          uz             press'/) 

,e22.8,g15.5) 

45  format('node no.         max ux    node no.         min ux') 

    node no.         min uy') 

  node no.         min uz') 
  format(i5,e22.8,i5,e22.8,/) 

075  format('node no.         max p     node no.         min p') 

eturn 

    
============================================

duces the slip wall boundary conditions 

 
     3  nvxl  , nvyl  , nvzl , pmin  ,  cmin  , 
     4  vxmax , vxm
       
 write(60,3045) 
 write(60,3050)nvxm,vel(nvxm),nvxl,ve
 
 write(60,3055) 
 
  
 write(60,3065) 
 
 
 wri
 w
 
 
3010  format(/' nodal velocities and  pressures  '/) 
3020 
3
3040  format(i5,3e13.4
 
30
3050  format(i5,e22.8,i5,e22.8,/) 
   
3055  format('node no.         max uy
3060  format(i5,e22.8,i5,e22.8,/) 
 
3065  format('node no.         max uz  
3070
 
3
3080  format(i5,e22.8,i5,e22.8,/) 
 
      r
      end 
c 
c
===================
=== 
c    The subroutine slip intro
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 subroutine slip (ldsc) 

    imp

th data for slip wall b.c. & friction c. 
================================ 

0)rfrct 

 used for identifying upper slip layer 
=============================== 

    do 6030 ids=1,nel-13,14 

 

============================= 

       do 6020 j=1,2 

020  continue 

    return 

  
============================================================

 
  licit double precision(a-h,o-z) 
 
      dimension ldsc  (22         ) 
 
 
C 
c    Channel dep
c    ===================
  
      read(50,101
1010  format(f10.0) 
c 
c    This loop is
c    ===================
  
      i1=0 
  
         do 6030  j=1,2 
         i1=i1+1 
         ldsc(i1)=ids+j-1 
6030  continue 
c
c    This loop is used for identifying lower slip layers 
c    ======================
 
      i1=0 
      do 6020 ids=13,nel-2,14 
  
         i1=i1+1 
         ldsc(i1)=ids+j-1 
6
c 
c 
  
      end 
 
c  
===
=== 
 
      subroutine hgstvl ( cmax, pmax , conc  ,  press , maxnp, 
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      cmax= conc(1) 
    pm
    pmin= press (1) 

    np=1 

    do i=2,nnp 
       cm= conc(i) 

    pm= press (i) 

         cmax=cm 

     if ( pm.gt.pmax ) then 

      endif 
i.lt.pmin ) then 

  end 

==============================================================

              . 

output2 ( nnp , vel  , conc , press , maxdf, maxnp, 
nwr  , iter , errov , erroc, errop) 

            
  implicit real*8 (a-h,o-z) 
  dimension vel   ( maxdf) , conc  ( maxnp) , press ( maxnp) 

ion nwr (10) ,  vr  (10) , pv(10) , cr (10) 

call hgstvl ( cmax, pmax , conc  ,  press , maxnp, 
                    nnp , nc   , np   , nm   , pmin      ) 

rite ( 2 , 5111) iter,errov,erroc,errop 

  ax= press (1) 
  
      nc=1 
  
      nm=1 
  
  
     
         pi= press (i) 
         if ( cm.gt.cmax ) then 
   
            nc  =i 
         endif 
    
            pmax=pm 
            np  =i 
   
         if ( p
            pmin = pi 
            nm   = i 
         endif 
      enddo 
      return 
    
c 
c    
=
=== 
c     write nodal outputs          
c     
      subroutine 
     1                    time , 
                          
    
    
      dimens
       
 
     1
 
      w
 
      write ( 2 , 5115 ) time 
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      do 24  i=1,nnp 
        vres= dsqrt (vel(i+i-1)**2+vel(i+i)**2) 

 (2,5130) i,vel(i+i-1),vel(i+i),vres,conc(i),press(i) 

n ,node ,p , b , da ,vel  ,maxnp, maxel,  maxst ,  
visc ,clump ,ngaus  )  

tress components 
===================== 

 ) 
130 ) i,   sd11,  sd12,  sd22 

ts 
=============== 

,3 
 = nwr(k) 
k) = dsqrt (vel(i+i-1)**2+vel(i+i)**2) 

v(k)  = press(i) 
        cr (k) = conc (i) 

  enddo 

............................................................... 
teration(s) -', 

       1x,/,'-  error oval ( velocity ) =',f20.9, 

mum concentration = ',g20.5,'  at node =',i5) 
 pressure    = ',g20.5,'  at node =',i5) 

) 

 format (1x,//,' result ( node no. ,vx, vy, |v|, concentration, 

130 format (1x,i4,2x,5(d11.5,2x)) 
 ',/) 

    return 

        psee= press(i) 
 
        write
 
 24   continue 
 
      call stress       
     1     (nel,nnp,nc
     2      maxdf, stres, press, r
c   
c     write the s
c     ======
   
      write ( 2 , 5133
      write ( 2 , 5
         
c     writing of output resul
c     ==========
 
         do k=1
            i     
            vr (
            p
    
       
         write ( 4 , 5125 ) time , (vr(i),pv(i),cr(i),i=1,3) 
c.......
 5111 format (1x,/,'-  solution after',i5,'  i
     1 
     2        1x,/,'-  error oval ( concentration ) =',f20.9, 
     3        1x,/,'-  error oval ( pressure ) =',f20.9) 
 5112 format (1x,'  maxi
 5113 format (1x,'  maximum
 5114 format (1x,'  minimum pressure    = ',g20.5,'  at node =',i5
 5115 format (1x,'solution at time = ',g20.5,/) 
 5120
     1 pressure)',/) 
 5125 format (1x,e11.6,3(' |',3e12.4)) 
 5
 5133 format (1x,//,1x,' sd11   , sd12  , sd22
  
      end 
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c     This subroutine calculate the viscosity using the power law model 

    subroutine visca 
 

   2          ,gamad ) 

    implicit double precision(a-h,o-z) 

mad**((power-1.0)*0.5)) 

           visc = rvisc*(gamad**((power-1.0)))  

d 

==============================================================

-z) 
n shape1d(3), del1(3) 

==================================================

max  , pmax  , vel  , conc  ,  press ,  maxnp,  nnp  ,    nc,     
  np    , nm    , ncm  , nvxm  ,  nvym  ,  nvzm ,   

c   
  
     1          (rvisc,power,visc,stemp,rtem,tbco,spress,rpef,taco
  
 
  
        
c230908        visc   = rvisc*(4.0*gamad**((power-1.0)*0.5)) 
c230908 1           *exp(-tbco*(stemp-rtem)) 
 
c110909        visc = rvisc*(4.0*ga
 
    
   
      return 
      en
c 
c    
=
=== 
   
      subroutine lagsh1 ( xi , shape1d , del1 ) 
 
      implicit real*8 (a-h,o
      dimensio
        shape1d(1)   = -0.5*xi*(1.0-xi) 
        shape1d(2)   = (1.0+xi)*(1.0-xi) 
        shape1d(3)   =  0.5*g*(1.0+xi) 
        del1(1)  = -0.5+xi 
        del1(2)  = -2.0*xi 
        del1(3)  =  0.5+xi 
      return 
      end 
 
 
c     
=============
===                            . 
     
      subroutine minimax 
 1( c
 2
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      dimension conc  ( maxnp )  , vel  (maxdf) 
      dimension press ( maxnp ) 

vel(1) 
vxmin = vel(1) 

vymin = vel(nnp+1) 

min 

    pmin = press (1) 

 
 = 1 

cm  = 1 
  np  = 1 

m  = 1 

nvym  = 1 
nvzm  = 1 

nvyl  = 1 
1 

(i) 
) 
) 

x    =   vel(nnp+i) 
ymn    =   vel(nnp+i) 

vzmx    =   vel(2*nnp+i) 
vzmn    =   vel(2*nnp+i) 

  

      np  =i 

 
c 
      vxmax = 
 
 vymax = vel(nnp+1) 
 
 vzmax = vel(2*nnp+1) 
 vz = vel(2*nnp+1) 
  
      pmax = press (1) 
  
       
 
 nc 
 n
    
      n
 nvxm  = 1 
 
 
 nvxl  = 1 
 
 nvzl  = 
        
 do 6020 i=2,nnp 
       
      pm  = press (i) 
      pi  =   press 
 vxmx    =   vel(i
 vxmn    =   vel(i
 vym
 v
 
 
        
         if (   pm.gt.pmax  ) then 
            pmax=pm 
      
         endif 
         if (   pi.lt.pmin  ) then 
            pmin = pi 
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            nvxm  = i 

 
          vymax= vymx 
        nvym  = i 

   if ( vxmn.lt.vxmin ) then 
in= vxmn 

 endif 
lt.vymin ) then 

if 
 vzmn vzm  then 

===== =========================================  
 

   1   ( ode ,sinv ,cord ,p  ,b , 
   2    axel,maxst,ndim ,icord, 

 

es the second invariant of rate of deformation 
ts. 

         endif 
         if ( vymx.gt.vymax ) then
  
    
         endif 
         if ( vzmx.gt.vzmax ) then 
            vzmax= vzmx 
            nvzm  = i 
         endif 
 
 
            vxm
            nvxl  = i 
        
         if ( vymn.
            vymin= vymn 
            nvyl  = i 
         end
         if ( .lt. in )
            vzmin= vzmn 
            nvzl  = i 
         endif 
 6020 continue 
       
 return 
      end 
 
c 
c     
====== =========
c
      subroutine secinv 
  nel  ,nnp  ,ncn  ,ngaus,n
  del  ,da   ,vel  ,maxnp,m
     3    maxdf,num) 
c
      implicit double precision(a-h,o-z) 
c 
c function 
c -------- 
c     calculat
c     tensor at integration poin
c 
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      dimension b    (    3,   20) 

    rewind 15 
        

 iel= 1 , nel 

us 
 ,ngaus 

010 kg = 1 ,ngaus 

iel,iig,jjg,p,del,b,da 

 u13 = 0.0 
21 = 0.0 

.0 
1 = 0.0 

     u32 = 0.0 
33 = 0.0 

 ,ncn 
                      jcn = iabs(node(iel,icn)) 

                                    mcn = jcn + nnp 
         kcn = jcn + (2*nnp) 

 b(1,icn)*vel(jcn,1) 

jcn,1) 
 + b(1,icn)*vel(jcn,2) 

              u22 = u22 + b(2,icn)*vel(jcn,2) 
3 + b(3,icn)*vel(jcn,2) 

   u31 = u31 + b(1,icn)*vel(jcn,3) 
u32 = u32 + b(2,icn)*vel(jcn,3) 

  u33 = u33 + b(3,icn)*vel(jcn,3) 

c 
                                     
                              
      do 5000
              lg = 0 
      do 5010 ig = 1 ,nga
      do 5010 jg = 1
 do 5
 
              lg = lg+1 
c 
           read (15) i
c 
                  u11 = 0.0 
                  u12 = 0.0 
   
                  u
                  u22 = 0.0 
             u23 = 0
             u3
        
             u
 
          do 5020 icn = 1
              
c
c 
 
c *** components of the rate of deformation tensor 
 
                  u11 = u11 +
                  u12 = u12 + b(2,icn)*vel(jcn,1) 
    u13 = u13 + b(3,icn)*vel(
                  u21 = u21
    
    u23 = u2
 
                  
  
 
 5020     continue 
c 
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 2     (u13+u31)*(u13+u31)+ 

 3                    (u21+u12)*(u21+u12)+ 
2)+ 

  (u23+u32)*(u23+u32)+ 
  (u31+u13)*(u31+u13)+ 

 (u32+u23)*(u32+u23)+ 
  (u33+u33)*(u33+u33)) 

000 continue  

  return 

===========================================c 

sspt(ngaus,xg,cg,ncn) 

    implicit double precision(a-h,o-z) 
 

ordinates of the Gauss points 
uss weights 

 
 

 

cg=0.0 

xg(1,2)=be 
  

xg(1,4)=be 

    
     4                    (u22+u22)*(u22+u2
 5   
 6   
     7                   
 8   
      
 5010 continue 
 5
 
    
      end 
 
c===============
 
 
 subroutine gau
c 
  
c
c     x(g)   specifies the co
c     c(g)   specifies the Ga
c
      dimension xg(5,5),cg(3)
 Real:: al, be 
 al=0.58541020 
 be=0.13819660 
 
 xg=0.0 
 
  
 if (ngaus==1) then 
 xg(1,1)= 1.0/4.0 
 xg(1,2)= xg(1,1) 
 xg(1,3)= xg(1,1) 
 xg(1,4)= xg(1,1) 
 cg(1)=1 
 else if (ngauss==2)then 
 xg(1,1)=al 
 
 xg(1,3)=be
 

248 
 



Appendix 3.2                                                                                  Computer program 
 
 xg(3,1)=be 

cg(1)=1.0/4.0 
(1) 
auss==3) then 

xg(1,1)=1.0/4.0 
1,2)=1.0/4.0 

g(1,3)=1.0/4.0  
xg(1,4)=1.0/4.0 

xg(2,1)=1.0/2.0 
xg(2,2)=1.0/6.0 

xg(2,4)=1.0/6.0 

xg(3,1)=1.0/6.0 

xg(3,4)=1.0/6.0 

1.0/6.0 

 
1.0/6.0 

======================================c 

 xg(3,2)=be 
 xg(3,3)=al 
 xg(3,4)=be 
 xg(4,1)=be 
 xg(4,2)=be 
 xg(4,3)=be 
 xg(4,4)=al 
 
 cg(2)=cg
 else if (ng
 
 xg(
 x
 
 
 
 
 xg(2,3)=1.0/6.0 
 
 
 
 xg(3,2)=1.0/2.0 
 xg(3,3)=1.0/6.0 
 
 
 xg(4,1)=1.0/6.0 
 xg(4,2)=1.0/6.0 
 xg(4,3)=1.0/2.0 
 xg(4,4)=
 
 xg(5,1)=1.0/6.0
 xg(5,2)=
 xg(5,3)=1.0/6.0 
 xg(5,4)=1.0/2.0 
 
 end if  
 cg(1)=-4.0/5.0 
 cg(2)=9.0/20.0 
      return 
      end 
 
c=====================
 

249 
 



  
Appendix 3.2                                                                                  Computer program 
 
 
SUBROUTINE GFMFEM 

axbc  = 25000    ) 
f  = maxnp*4  ) 

st  = 80       ) 
   ) 

 3        ) 

h,o-z) 

E*30,VL*2,VM*2,VN*2,CD*4,CE*5 
CW*4 
80) 

    DIMENSION NOD(27) 
 ndim),node (maxel, 27) 

RM file name    ',$) 

ME,FORM='FORMATTED') 
    OPEN (UNIT=2,STATUS='SCRATCH',FORM='FORMATTED') 

'SCRATCH',FORM='FORMATTED') 
'SCRATCH',FORM='FORMATTED') 
SH.FEM',FORM='FORMATTED') 
ut.dat',FORM='FORMATTED') 

    OPEN (UNIT=7,STATUS='SCRATCH',FORM='FORMATTED') 
IT=8,STATUS='SCRATCH',FORM='FORMATTED') 

='SCRATCH',FORM='FORMATTED') 
S='SCRATCH',FORM='FORMATTED') 

(UNIT=11,STATUS='SCRATCH',FORM='FORMATTED')  

  
 PARAMETER (maxel  = 250000   ) 
 PARAMETER (maxnp  = 50000    ) 
 
 PARAMETER (m
            PARAMETER (maxd
 PARAMETER (max
 PARAMETER (maxfr  = 2000  
           PARAMETER (ndim   =
 
      IMPLICIT double PRECISION(a-
 
 
      CHARACTER         
CH(150)*1,SF*4,CC*2,FNAM
      CHARACTER C1*2,C2*2,
 CHARACTER filnam (
  
      DIMENSION cord(maxnp,
 
      WRITE (*,130 ) 
130   FORMAT(1X,'Enter GFO
 
      READ (*,135) FNAME 
135   FORMAT (A30) 
 
      OPEN (UNIT=1,FILE=FNA
  
      OPEN (UNIT=3,STATUS=
      OPEN (UNIT=4,STATUS=
      OPEN (UNIT=5,FILE='ME
      OPEN (UNIT=6,FILE='inp
  
      OPEN (UN
      OPEN (UNIT=9,STATUS
      OPEN (UNIT=10,STATU
      OPEN 
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c===============================================================

================================
==== 
     

umber between 0.5 and 2 " 

 
y again."  

 

 
END IF 

============

CATION 
==========================================

.EQ.0 ) 
T=IOS) (CH(J),J=1,150) 

       CC=CH(1)//CH(2) 
(3) 

)//CH(3)//CH(4)//CH(5) 
    

    
                        
       IF (CD.EQ.'VND') THEN 
           WRITE (3,'(50A)') (CH(K),K=5,30) 

===== 
c      TO SCALE THE GEOMETRY 
c===============================
=
  
1111  PRINT *," Enter the scale factor: any n
 READ*, scale 
 IF(scale < 0.5 .OR. scale > 2) THEN
 PRINT*, " Invalid scale factor, tr
 
 GOTO 1111   
 
 
  
C==================================================
======= 
C     DYNAMIC MEMORY ALLO
C====================
======= 
 
      DO WHILE ( IOS
         READ (1,'(150A)',ERR=300,END=300,IOSTA
  
         CD=CH(1)//CH(2)//CH
         CE=CH(1)//CH(2
 
    IF (CC.EQ.'ND')THEN 
             WRITE (2,'(100A)') (CH(K),K=4,100) 
             WRITE (8,'(100A)') (CH(K),K=4,100) 
             NND=NND+1 
         ENDIF 
          
    IF (CC.EQ.'EL')THEN 
             WRITE (2,'(100A)') (CH(K),K=4,100) 
             WRITE (8,'(100A)') (CH(K),K=4,100)  
             NEM=NEM+1 
         ENDIF 
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             WRITE (10,'(150A)') (CH(K),K=7,85) 
           NNP=NNP+1 

(CW.EQ.'ND')THEN 
=4,100) 

NND=NND+1 
 ENDIF 

CH(K),K=4,100) 
0) 

)THEN 
 (7,'(100A)') (CH(K),K=4,100) 

0A)') (CH(K),K=4,100) 
ND+1 

W.EQ.'VZ')THEN 
 

D=NND+1 
       ENDIF  

11 

     
=============================

INATES 
=====================================================

= 

  
         ENDIF 
         IF 
             WRITE (7,'(100A)') (CH(K),K
             WRITE (11,'(100A)') (CH(K),K=4,100) 
             
        
         IF (CW.EQ.'VX')THEN 
             WRITE (7,'(100A)') (
             WRITE (11,'(100A)') (CH(K),K=4,10
             NND=NND+1 
         ENDIF 
         IF (CW.EQ.'VY'
             WRITE
             WRITE (11,'(10
             NND=N
         ENDIF 
         IF (C
             WRITE (7,'(100A)') (CH(K),K=4,100)
             WRITE (11,'(100A)') (CH(K),K=4,100) 
             NN
  
          
      ENDDO 
       
300   REWIND 2 
      REWIND 3 
      REWIND 4 
      REWIND 7 
      REWIND 8 
      REWIND 9 
      REWIND 10 
      REWIND 
 
  
C=================================
==== 
C       NODAL COORD
C=========
===
       
      DO I=1,NND 
        READ (2,*) N,X,Y,Z 
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      ENDDO 
       
C010908=========================================================

 (7,*,ERR=333,END=333,IOSTAT=IOS) K,VX,VY,VZ,X,Y,Z 
Z,X,Y,Z 

=====================================================

============================

),K=1,NPE) 

E (5,120) I,NOD(2),NOD(6),NOD(5),NOD(1),NOD(3), 
1                   NOD(7),NOD(8),NOD(4)  

 FORMAT (9I8) 

===================================================

Y BOUNDARY CONDITION 
===================================================

    DO J= 1,NNV 
READ (3,1601) ND,VL,CU,V,NT,NP,VM,VN 

----------- 

ND,ND,VX,VAL 
    IF (VL.EQ.'VX') THEN  

E (5,'(2I5,F10.4)') ND,NCODE1,V 

=== 
 
       DO I=1,NND 
            READ
            WRITE (11) VX,VY,V
       ENDDO 
333    REWIND(7)       
 
C=========
==== 
C       ELEMENT CONNECTIVITY 
C==================================
==== 
       
      DO I=1,NEM 
        READ (2,*) NNEE,SF,NSF,NPE,(NOD(K
       
       
   WRIT
 
       
120  
      ENDDO 
       
C===========
==== 
C       VELOCIT
C===========
==== 
       
  
        
1601 FORMAT (I7,A2,A1,G20.8,2I5,A2,A3) 
 
C---------------------------------------
        IF (NP.EQ.0) THEN  
!-----V
        
               WRIT
!-----VND,ND,VY,VAL 
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    END IF  

NVN=NVN+1 
          NBC=NBC+1 

    IF (VL.EQ.'VX') THEN          
-----VND,ND,VX,VAL,ND,NPE,VY,VZ   

M.EQ.'VY').AND.(VN.EQ.'VZ'))THEN 

ND,NCODE2,V 
   WRITE (5,'(2I5,F10.4)') ND,NCODE3,V 

NVN + 3 
              NBC = NBC + 3 

          ELSE IF (VM.EQ.'VY') THEN  
)') ND,NCODE1,V 

              NVN = NVN + 2 
              NBC = NBC + 2 

,VAL,ND,NPE,VZ  

              WRITE (5,'(2I5,F10.4)') ND,NCODE1,V 
              WRITE (5,'(2I5,F10.4)') ND,NCODE3,V 

               
.'VX')Then 

,VX,VAL,NPE 
      WRITE (5,'(2I5,F10.4)') ND,NCODE1,V 

      NBC=NBC+1 

ND,VY,VAL,ND,NPE,VZ 
ELSE IF(VL.EQ.'VY'.AND.(VM.EQ.'VZ'))THEN 

(5,'(2I5,F10.4)') ND,NCODE2,V 

          NBC = NBC + 2 

F10.4)') ND,NCODE2,V 

,F10.4)') ND,NCODE3,V 

           
 
   ELSE IF (NP.EQ.1) THEN 
         
!-
           IF((V
               WRITE (5,'(2I5,F10.4)') ND,NCODE1,V 
               WRITE (5,'(2I5,F10.4)') 
            
               NVN = 
 
!------VND,ND,VX,VAL,ND,NPE,VY  
 
               WRITE (5,'(2I5,F10.4
               WRITE (5,'(2I5,F10.4)') ND,NCODE2,V 
 
 
!------VND,ND,VX
           ELSE IF(VM.EQ.'VZ') THEN 
 
 
               NVN = NVN + 2 
               NBC = NBC + 2 
 
            ElSE IF(VL.EQ
!-----VND,ND
 
       NVN=NVN+1 
 
CCC       END IF 
            END IF 
!-----V
        
       WRITE 
       WRITE (5,'(2I5,F10.4)') ND,NCODE3,V 
           NVN = NVN + 2 
 
   ELSE IF(VL.EQ.'VY')then 
       WRITE (5,'(2I5,
                NVN=NVN+1 
           NBC=NBC+1 
        ELSE IF(VL.EQ.'VZ') THEN 
                WRITE (5,'(2I5
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      END DO 
     
==== ==========================================
=== 

DITION 
=============================

=== 
      

,NCODEP,VP 

       
=====================

=== 
     Da

==========================
=== 

05 

===== ===========================================

  
C ================
=
C       PRESSURE BOUNDARY CON
C=================================
=
  
        DO I=1,NNP 
            READ (4,'(I5,G20.8)') PC,VP 
            WRITE (5,'(2I5,F10.4)' ) PC
            NBC=NBC+1 
            NAT=NAT+1 
        END DO 
  
C=========================================
=
C ta file preparation 
C====================================
=
 
      ncn=NPE 
 ngauss = 3 
 nmat=1 
 ntep=1 
 icord=0 
      grav1=0.0  
 grav2=0.0 
 grav3=0.0 
 tolv= 1e-05 
 tolp= 1e-05 
 tolc= 1e-
 rvisc = 80.0 
 power = 1.23 
 tref= 293.0 
 tbco = 0.014 
 taco = 0.2 
 dispc = 0.2 
 pref =1.01325e5 
 roden = 1000.0 
  
c ===============
=== 
c     writing the data file 
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            write (6,'(2i5)') ncn,ngauss 

write (6,'(2i5)') ntep,icord 

write (6,'(9d10.5)') rvisc, power, tref, tbco, taco, 
1               dispc, pref, roden, gamad 

===================================

INATES 
===============================================

EAD (8,*) N,X,Y,Z 

      Z=Z/scale 
      cord(I,1)=X 

d(I,2)=Y 
)=Z 

(I8,3e20.12)') N,X,Y,Z 

====================================================

CTIVITY 
============================================

      R E,SF,NSF,NPE,(node(I,K),K=1,NPE) 

         hen 
(6,'(5I8)')I,node(I,3),node(I,2), 

   1    (I,1),node(I,4) 

,'(21I7)') I,node(I,2),node(I,6), 
      node(I,5),node(I,1),node(I,3), 

      else if (NPE==20) then  
TE (6,'(10I8)') I,NOD(2),NOD(6),NOD(5), 

 write (6,'(4i5)') NND,NEM,NBC,nmat 
 
 write (6,'(3f10.3)') grav1, grav2, grav3 
 write (6,'(3f10.5)') tolv,tolp,tolc 
 
 
 
C===========================
==== 
C       NODAL COORD
C===============
==== 
       
      DO I=1,NND 
        R
       X=X/scale 
       Y=Y/scale 
 
 
       cor
       cord(I,3
       WRITE (6,'
      ENDDO 
 
C==========
==== 
C       ELEMENT CONNE
C==================
==== 
       
      DO I=1,NEM 
  EAD (8,*) NNE
      
   if (NPE==4) t
                WRITE 
               node
            else if (npe==8) then 
           WRITE (6
 2           
     3                 node(I,7),node(I,8),node(I,4)  
 
          WRI

256 
 



      
Appendix 3.2                                                                                  Computer program 
 
 
C==============================================================

=== 
 

==================================
=== 
         

DO J= 1,NNV 

EAD (9,1602) ND,VL,CU,V,NT,NP,VM,VN 
8,2I5,A2,A3) 

 (NP.EQ.0) THEN  
    IF (VL.EQ.'VX') THEN  

E (6,'(2I5,F10.4)') ND,NCODE1,V 
.'VY') THEN 

6,'(2I5,F10.4)') ND,NCODE2,V 
L.EQ.'VZ') THEN 

NCODE3,V 

Q.1) THEN 
          THEN  

'))THEN 
    WRITE (6,'(2I5,F10.4)') ND,NCODE1,V 

              WRITE (6,'(2I5,F10.4)') ND,NCODE2,V 

          ELSE IF (VM.EQ.'VY') THEN  
)') ND,NCODE1,V 

          ELSE IF(VM.EQ.'VZ') THEN 
              WRITE (6,'(2I5,F10.4)') ND,NCODE1,V 

RITE (6,'(2I5,F10.4)') ND,NCODE3,V 

              WRITE (6,'(2I5,F10.4)') ND,NCODE1,V 

)') ND,NCODE2,V 
,F10.4)') ND,NCODE3,V 

E2,V 

D,NCODE3,V 

=
C       VELOCITY BOUNDARY CONDITION
C============================
=
  
 
 
        R
1602 FORMAT (I7,A2,A1,G20.
 
        IF
        
               WRIT
       ELSE IF (VL.EQ
           WRITE (
       ELSE IF (V
           WRITE (6,'(2I5,F10.4)') ND,
       END IF  
   ELSE IF (NP.E
   IF (VL.EQ.'VX')
           IF((VM.EQ.'VY').AND.(VN.EQ.'VZ
           
 
               WRITE (6,'(2I5,F10.4)') ND,NCODE3,V 
 
               WRITE (6,'(2I5,F10.4
               WRITE (6,'(2I5,F10.4)') ND,NCODE2,V 
 
 
               W
                ElSE IF(VL.EQ.'VX')Then 
 
           END IF 
            ELSE IF(VL.EQ.'VY'.AND.(VM.EQ.'VZ'))THEN 
           WRITE (6,'(2I5,F10.4
           WRITE (6,'(2I5
       ELSE IF(VL.EQ.'VY')then 
           WRITE (6,'(2I5,F10.4)') ND,NCOD
            ELSE IF(VL.EQ.'VZ') THEN 
                WRITE (6,'(2I5,F10.4)') N
            END IF  
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C===========================================================C 

O I=1,NNP 

D DO 

==== ===========================================C 
       OUTPUT OF RESULTS 

======================C 

       PRINT *,' ' 
try is discretized into a finite element 

    

   ' 

         
        D
            READ (10,'(I5,G20.8)') PC,VP 
                WRITE (6,'(2I5,F10.4)' ) PC,NCODEP,VP 
        EN
         
C ============
C
C=====================================
 
  
         PRINT *,"The geome
     1 mesh of: " 
         PRINT *,' ' 
         PRINT *,NND, 
     1    "Nodes"  
         PRINT *,' '  
         PRINT *,NEM, 
     2    "Elements" 
    PRINT *,"With" 
         PRINT *,NNP, 
     4    'Applied nodal pressure boundary conditions' 
    PRINT *,"And" 
         PRINT *, NVN, 
     5   "Applied nodal velocity boundary conditions" 
         PRINT *,"Giving a" 
         PRINT *,NBC, 
     3    'total number of applied boundary conditions'  
  
c         PRINT*,' ' 
c         PRINT*, ' THE SHEAR RATE = ',GAMAD 
         
 
      CLOSE (1) 
      CLOSE (2) 
      CLOSE (3) 
      CLOSE (4) 
      CLOSE (5) 
 CLOSE (6) 
      CLOSE (11) 
 print *,'       ' 
 print *,'    
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c===========================================================c 
c     This subroutine prepares output data to use for visualization 

eoStar software.   

=================================================c 
broutine cosmos 

 ,nel                          ) 

    implicit double precision(a-h,o-z) 

==================== 
(maxdf    ), press   (maxnp)  

maxel,  9), actpress(maxnp) 
 vm      (nnp  ) 

10   ,   file='cosmGraph',   access='sequential', 
   1for us="unknown" ,   iostat=ios         ) 

 end do 

en=pmat(inp,8) 
    END DO  

rt((vel(j,1)**2)+(vel(j,2)**2)+(vel(j,3)**2)) 

     
       

c     using Cosmos G
c      
C     
c==========
      su
 1       (nnp  ,  vel  ,  press   ,  maxdf  ,  maxnp  , icord   , 
     2        pmat ,  maxel,  actpress
c 
  
c 
c     arguments are already defined 
c     =========
      dimension vel 
 dimension pmat(
 dimension
  
 
      open(unit=6
  m='formatted',   stat
       
 j=0 
 k=5 
 
 write(610,3010) nnp, j, k 
       
c      do i = 1, nel 
c        roden=pmat(1,8) 
c     
 
      DO inp=1,nel 
      rod
  
       
c      do i=1,nnp 
c j=i 
c vm(j)=sq
c end do  
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                        knp = inp + (2*nnp) 
       
c actpress(inp)=roden*press(inp)*-1 

tpress(inp)=roden*press(inp) 

vel(inp),vel(jnp),vel(knp), 

10  continue 

  close (610) 

    return 

===============c 
his subroutine prepares output data to use for visualization                                c 

ftware.                                                                                            c   
==============================================c 

    subroutine tecplot 
 ,  maxdf  ,  maxnp  , icord   , 

       pmat ,  maxel,  actpress,  cord   ,  ncn    , nel     , 
dim  ) 

ouble precision(a-h,o-z) 
 

already defined 
=============== 

vel     (nnp,3), press (maxnp)     , pmat(maxel ,  9) 
dimension actpress(maxnp), cord  (maxnp,ndim), node(maxel, ncn) 

 vm      (nnp  ) 

ential', 
 1for atted',   status="unknown" ,   iostat=ios         ) 

ompute the Magnitude of the resultant velocity 
==============================================  

 
      ac
      vm(inp)=sqrt((vel(inp)**2)+(vel(jnp)**2)+(vel(knp)**2)) 
      write(610,3020)inp,
     1               vm(inp),actpress(inp) 
 
60
 
    
 
3010  format(3i5) 
3020  format(i5,4e13.4,e22.8) 
6000  FORMAT(8X,'U',8X,'V',5X,'W',5X, 'M' 
     1       8X,'PRESSURE',/)  
 
  
      end 
c============================================
c     T
c     using tecplot so
c=============
  
 1       (nnp  ,  vel  ,  press  
     2 
     3        node ,  n
c 
      implicit d
c
c     arguments are 
c     ==============
      dimension 
 
 dimension
 
      open(unit=614   ,   file='tecpGraph.dat',   access='sequ
    m='form
       
c     C
c     =
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c     Write the Techplot file for post-processing 

=========== 
      nnel=4*nel 

    roden=pmat(1,8) 

    do i=1,nnp 

 actpress(i)=roden*press(i)* -1 
en*press(i) 

d(i,3), 
l(i,2), vel(i,3), 

   2                 vm(i), actpress(i)   
 

     ,abs(node(j,8)) 
(node(j,4)) 

,6000) abs(node(j,9)), abs(node(j,4)), abs(node(j,5)) 
30908 1                ,abs(node(j,6)) 

de(j,8)), abs(node(j,9)), abs(node(j,6)) 
30908 1                ,abs(node(j,7)) 

---------- 

 (ncn==8)then 
), abs(node(i,6)) 

   2                   ,abs(node(i,7)), abs(node(i,8)) 

c     ================================
c
 
      write (614,1000) 
 write (614,2000) nnp, nel 
 
  
 
  
c j=i 
c
      actpress(i)=rod
       
 write (614,5000) cord(i,1), cord(i,2), cor
 1                 vel(i,1), ve
  
      end do 
 
 
c230908      do i=1,nel 
c230908 j=i 
c230908 write (614,6000) abs(node(j,1)), abs(node(j,2)), abs(node(j,9)) 
c230908 1           
c230908      write (614,6000) abs(node(j,2)), abs(node(j,3)), abs
c230908 1                ,abs(node(j,9)) 
c230908 write (614
c2
c230908 write (614,6000) abs(no
c2
c230908      end do  
       
       
c     Elemental connectivity for techplot files 
c---------------------------------------
 
      do  i=1,nel 
c j=i 
      if
 write (614,'(8i8)') abs(node(i,1)), abs(node(i,2)
 1                   ,abs(node(i,5)), abs(node(i,4)), abs(node(i,3)) 
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      close (614) 
 
1000  format(/'Variables = "X", "Y","Z","U","V","W","M","P"'/) 
 2000  format(/'ZONE N=',i5,',E=',i5,',F=FEPOINT,ET=QUADRILATERAL'/) 

000  format(/'ZONE N=',i5,',E=',i5,',F=FEPOINT,ET=BRICK'/) 

000  format(3e20.12,3e13.4,e13.4,e22.8)  
8)  

      

=======================================c 
    o    f    p    r    o    g    r    a    m                                                              c 

=========================================================== c 

c
 
 
2
 
5
6000  format(4i
 
      return 
      end 
 
c
 
c     =====================
c     e    n    d
c
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**************************************************** 
                                                                                                                                *         *                                

                            Generalized-Newtonian isothermal flow using                         * 
                            the UVWP or the modified UVWP method.                             * 

                      *                  
                                                                                                                               *   

                                                          *                    
************************************************* 

   -------------------------------------------------------------------------------- 
        Sample output File.                                                                                                                        

                   -------------------------------------------------------------------------------- 

                   [[[ element description data.......... 

  *** coordinate system is cartesian (planar) *** 

                   [[[ mesh description data .......... 
                       no.of nodal points                       =      9062 
                       no.of elements                           =      7560 
                       no.of nodal constraints on boundary      =      8390 
                       no.of different materials                =         1 

                   [[[ uniform body force vector .......... 
                       grav1                                    =         0.0000 
                       grav2                                    =         0.0000 
                       grav3                                    =         0.0000 

********************* material properties************************* 

 id.     eid.(from-to)   consistency co-efficient     power law index 

 1           17560          80.000                        1.0000     

reference temperature   coefficient b   reference pressure  coefficient a  

       293.000                0.0140       0.101E+06          0.200     

*************
*
* 
*                            A three dimensional finite element model of a                         * 
*
*
*                                                                                                         
*
*                                                                     
****************
 
                  
              
  
 
  
                         no.of nodes per element                  =         8 
                         no.of integration points                   =         3 
 
  
  
  
  
  
  
  
 
  
  
  
  
 
 *
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 Dispersion Coefficient     Density          Shear rate 

****************** nodal coordinates ******************** 

        5            0.000000            0.033333            0.000000 

        . 

     9058            1.000000            0.091667            0.100000 
0.100000 

    9060            1.000000            0.075000            0.100000 
       0.100000 

 

**** 

   id.       n o d a l - p o i n t  e n t r i e s 

    4     82      5      4     81     89     12     11     88 

    6     84      7      6     83     91     14     13     90 

    . 

    . 

 7555   9052   9028   9027   9051   9058   9034   9033   9057 
 

 7557   9054   9030   9029   9053   9060   9036   9035   9059 

 
    0.200                   0.1E+04           0.20000     
  
 **
 
        id.             x-coord             y-coord             z-coord 
 
          1            0.000000            0.000000            0.000000 
          2            0.000000            0.008333            0.000000 
          3            0.000000            0.016667            0.000000 
          4            0.000000            0.025000            0.000000 
  
          6            0.000000            0.041667            0.000000 
          7            0.000000            0.050000            0.000000 
          . 
  
          . 
       9056            1.000000            0.058333            0.093750 
       9057            1.000000            0.100000            0.100000 
  
       9059            1.000000            0.083333            
   
       9061            1.000000            0.066667     
       9062            1.000000            0.058333            0.100000
 
******************** element connectivity ****************
 
  
 
      1     79      2      1     78     86      9      8     85 
      2     80      3      2     79     87     10      9     86 
      3     81      4      3     80     88     11     10     87 
  
      5     83      6      5     82     90     13     12     89 
  
      7     86      9      8     85     93     16     15     92   
  
      . 
  
   7554   8802   8774   9026   9050   8809   8781   9032   9056 
  
   7556   9053   9029   9028   9052   9059   9035   9034   9058
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 7559   9056   9032   9031   9055   9062   9038   9037   9061 
   9038   9062 

*************** 

       2           0.0000 
       3           0.0000 
       1           0.1000 

       5         3           0.0000 

       6         2           0.0000 

       7         1           0.1000 

9         3           0.0000 
. 
. 

 
  
   7560   8809   8781   9032   9056   8816   8788
  
 
 
********************** nodal constraint *********
 
 
        id.       dof          value 
 
         1         1           0.1000 
         1         2           0.0000 
         1         3           0.0000 
         2         1           0.1000 
         2  
         2  
         3  
         3         2           0.0000 
         3         3           0.0000 
         4         1           0.1000 
         4         2           0.0000 
         4         3           0.0000 
         5         1           0.1000 
         5         2           0.0000 
  
         6         1           0.1000 
  
         6         3           0.0000 
  
         7         2           0.0000 
         7         3           0.0000 
         8         1           0.0000 
         8         2           0.0000 
         8         3           0.0000 
         9         1           0.0000 
         9         2           0.0000 
         
         
         
         . 
      4639         4           0.0000 
      4645         4           0.0000 
      4651         4           0.0000 
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Total number of time steps  =    5 
 
 
 
 Deltat                      =         0.0010 

   iteration no.    5 

es   

          press               

00   0.0000E+00        0.37831296E+02          
00   0.0000E+00        0.37732291E+02          
00   0.0000E+00        0.37624267E+02          
00   0.0000E+00        0.37558306E+02          
00   0.0000E+00        0.37518140E+02          
00   0.0000E+00        0.37495612E+02          
00   0.0000E+00        0.37487137E+02          

E+00   0.0000E+00        0.48201533E+00         
E+00   0.0000E+00        0.00000000E+00         
E+00   0.0000E+00        0.99745670E-01         
E+00   0.0000E+00        0.20045870E+00         
E+00   0.0000E+00        0.29998994E+00         
E+00   0.0000E+00        0.39553431E+00        
E+00   0.0000E+00        0.48493800E+00     

 no.         min ux 
003       -0.41400282E-02 

.         max uy    node no.         min uy 
     0.17519545E+00 2349       -0.22368228E-01 

o.         min uz 
0       -0.16184282E-01 

 
 
 
 
  
 
 
 
 nodal velocities and  pressur
 
  id.   u            v            z       
 
    1   0.1000E+00   0.0000E+
    2   0.1000E+00   0.0000E+
    3   0.1000E+00   0.0000E+
    4   0.1000E+00   0.0000E+
    5   0.1000E+00   0.0000E+
    6   0.1000E+00   0.0000E+
    7   0.1000E+00   0.0000E+
    . 
    .  
    . 
 9056   0.0000E+00   0.0000
 9057   0.0000E+00   0.0000
 9058   0.0000E+00   0.0000
 9059   0.0000E+00   0.0000
 9060   0.0000E+00   0.0000
 9061   0.0000E+00   0.0000
 9062   0.0000E+00   0.0000
     
node no.         max ux    node
  231        0.23911295E+00 9
 
node no
 7849   
 
node no.         max uz    node n
   77        0.13617839E+00 102
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PROGRAM MANUAL 

 

he Fortran software is incorporated in the Visual Studio 2005, it can be found by 

licking on Start\Programs\Microsoft Visual 2005\ Microsoft Visual 2005. Once the 

roject followed by double clicking on the desired 

roject name in order to open it. 

 be run for the first time, then it is a good practise to rebuild it by 

licking on Build\Rebuild Flowsolution09. Bear in mind that Flowsolution09 is used in 

is manual simply because it was a name given to the program. Once the Building 

e program can be run by following the steps described 

type in the   

d by the    

                              .gfm extension, and hit the Enter key from the keyboard. 

► Step 4: Enter the desired scale factor (1 is usually preferred) press the   

 display   

d  

date file  

ype in the file name with the .dat   

 In this program, the data file   

ill be prompted to enter the  

sired. Press the Enter Key after entering  

T

c

software opened, click on Open P

p

 

If the program is to

c

th

process successfully done, then th

below 

 

 ► Step 1: Click on Debug    

 ► Step 2: Select Start Without Debugging  

 ► Step 3: When prompted to enter the GFORM file name then 

                                     Name of the gfm file created using GeoStart followe

       

 

                                    Enter key again.     

 ► Step 5: The steps described above will create the data file and

                                    the basic discretizations variables (nodes, elements, an

                                    boundary conditions) on the screen. 

 ► Step 6: At this stage, the user will be prompted to enter the 

                                    name created in step 5. T

                                   extension and press the Enter key.

                                   name is set to input.dat. 

            ► Step 7: Once step 6 completed, the user w

                                   Number of time steps de

                                   the value. 
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alue of alpha and press the Enter key once again. 

                        by a last hit on the Enter key. 

he fo rial e the 10 steps described above. In this tutorial, a 

fm fil eat eshing, and the specification of 

e 

 

t further 

forma the als 

.1m width 

s shown in figure A4.1. The 

omputational domain ments 

ditions 

he 

, and w) are zero (see figure A4.2 through 

 and 

 

 ► Step 8: Enter the value of delta t when prompted, then hit the   

                                    Enter key. 

 ► Step 9: Enter the v

 

 

► Step 10: The last step of the process consists of choosing the desired   

                                    scheme, and this can be achieved by typing 1 for the UVWP   

                                    scheme or 2 for the modified UVWP scheme. Then followed   

            

 

T llowing tuto  is used to illustrat

g e will be cr ed after the geometry definition, m

the boundary conditions. The gfm file will be given the name model.gfm, which will b

used at later stage to create the data file. The data file will be given the name input.dat.

The user must consul the “Help” section of GeoStar where he/she could ge

in tion about  software. The user is strongly advised to try the GeoStar tutori

available from the “Help” section. 

 

The domain in this tutorial consists of a simple rectangular box of 1m length, 0

and 0.1m high and there is no obstruction to the flow a

c  is discretized using 8-noded hexahedral isoparametric ele

into a mesh of 3751 nodes, and 3000 elements and the prescribed boundary con

are as follow; the fluid enters the domain with a velocity of 0.1m/s  perpendicular to t

inlet; the other components of the velocity (v

A4.3). The only prescribed boundary condition at the outlet is a zero datum pressure,

the no-slip conditions are applied to the remaining sides of the rectangular box. 
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   Figure A4.1: Geometry of example 1. 

 

 
  Figure A4.2: 2-D schematic representation of the boundary condition in 

 
     Figure A4.3: 2-D schematic representation of the boundary condition in 

the xz plane. 

 

the xy plane.  
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Pre-processing steps 
 
► Begin the step by clicking on Start\Programs\Cosmos Applications\GeoStart 256. 

► Select My Documents, and create a new folder (TutoExple in this case). 

► Double click this newly created folder (TutoExple) and type in model in the file       

     name dialog box then click on the “Open” button. 

► Select “Yes” from the “Open Problem Files”. 

► Click on Status 1 from the Geo Panel (left hand side of the screen) and check the  

     PT, CR, SF and VL under the “Labl” tag. Once this is done, click on the “Save”   

     button.   

► The next step consists on creating 8 points with the following coordinates: 

     Point 1 (0,0,0), point ,0). 

     point 5 (0,0,0.1), point 6 (0,0.1,0.1), point 7 (1,0.1,0.1),and point 8 (1, 0, 0.1). 

    This can be achieved by clicking on Geometry\Points\Define from the Geo Panel. 

► Click on “Auto” under the “Scale” tag from the Geo Panel in order to get a better  

     view of the points created. The user is expected to get an image similar to one  

     given by figure A4.4.  

2 (0,0.1,0), point 3 (1, 0.1, 0), point 4 (1, 0

 
Figure A4.4: 8 Points representation. 
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► Since the domain in this example consists of a simple rectangular box, one can  

 numbers  

o the one given by figure A4.5 

 
Figure A4.5: Volume representation. 

► The next step is to proceed with the finite element discretization of the domain into  

     elements and the associated nodes. This can be achieved by selecting  

     Meshing\Parametric_Mesh\Volumes from the Geo Panel. Keep unchanged the  

     default value of 8 (representing 3D brick element) from the number of nodes per   

     element, but enter 10 into the number of elements on the first curve, 30 into the  

     number of elements on the second curve, and 10 into the  number of elements 

     on the third curve dialo om the dialog boxes 

     create the volume directly by linking the 8 points as follow:  

     Click on Geometry\Volumes\8 points from the Geo Panel, and then enter

      1 to 8 into the Vertex Keypoint dialog boxes. Click the “OK” button once this is  

      done. 

     The user is expected to have an image similar t

g boxes. Leave the remaining values fr
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     unchanged and click the “OK” button. 

ed by clicking on the  

lements  

   

n.   

l. 

► The previous action discretized the domain into a finite element mesh of 3000  

     elements and 3751 nodes (see figure A4.6). This can be verifi

     Status 1 button from the Geo  Panel. 

 

 
Figure A4.6: Finite element mesh 

 

    Note: For complex geometries, it is important to merge the nodes and e

              after the discretization of the domain. This can be done as follow: 

              For nodes; click on Meshing\Nodes\Merge and when the NMERGE window 

              appear keep all the values to their default values, then press the “OK” butto

              Once this is done, click on Meshing\Nodes\Compress from the Geo Pane

              This will lead the user to the NCompress window where one needs  
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              to click on the   “OK” button to complete the task. 

              Similar actions must be performed for elements by clicking 

              Meshing\Elements\Merge Elements and the “OK” button followed by 

            Meshing\Elements\Compress. 

 

  ► The next step is to assign boundary conditions to the discretized domain. To this   

        end, click on Clear Screen (CLS) button (bottom left side) from the Geo Panel,  

       then plot the Domain by clicking on Edit\Plot\Surfaces from the Geo Panel, this    

       will give an image shown by figure A4.7.    

 

 

 

  

Figure A4.7: Surface plot 

 

The inlet in figure A4.7 is represented by surface 3, the outlet by surface 4, while the

solid walls are represented by surfaces 1, 2, 4, and 6. 
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► Click on LoadsBC\Fluid_Flow\Velocity\Define by Surfaces from the Geo Panel,  

  Velocity label:         VX; Velocity in X 

Repeat the same operation to specify the boundary conditions in the VY, and VZ  

  direction with a value of 0 each. 

 

   At the end of these operations, the user is expected to have a figure similar to figu 

   re A4.8. 

 

Figure A4.8: Inlet boundary conditions 

     and enter the following data from the “VSF” dialog box. 

      

    Beginning Surface: 3 

  

    Value:                      0.1 

    Increment:               1 

 

  Then click on “OK”. 
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The boundary conditions on the solid walls (surfaces 1, 2, 4, and 6) can be specified as 

city label:  Al; Velocity in all 

e 5) can be specified as follow 

d_Flow\Pressure (Nodal)\Define by Surfaces, then from the 

  “NPRSF” dialog box enter 

 

  Increment:              1 

of these operations, the user is expected to have a figure similar to figure A4.9 

 
Figu

for the inlet case but with the following differences: 

Velo

Value:              0. 

The boundary conditions at the exit (surfac

 

► Click on LoadBC\Flui

  

    Beginning surface: 5

    Value:                     0 

    Ending surface:      5  

  

    And click “OK”. 

At the end 

 

re A4.9: Domain with boundary conditions. 
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Note: To avoid viewing the mesh attached to the 3D contour plot during the post-

processing, it is important at this stage to do the following operation: 

el, click on Display\Display_Option\Eval Element bound, then select 

tion boxes and 

lick “OK”. 

sing stage is the creation of the .gfm file. This can be 

g operation. 

lick Control\Utility\Create GFM file, then click “Continue” 

 click on the “OK” button. 

Note: GeoStar will automatically give the geometry name plus the .gfm extension 

(model.gfm for this tutorial) to the GFM file created. 

 

 

Solver steps 

 

Before proceeding to the solution of the problem, the user must make sure that a copy of 

the GFM file (model.gfm for this tutorial) created is copied and pasted in the folder 

containing the FORTRAN program (My Documents\Visual Studio 

2005\Projects\3FlowSoluFinal09C\FlowSolution09; for this tutorial). Once this done,  

Then the program can be run by performing the operations as explained in steps 1 

through 10 which can be summarise here as:  

 

 

From the Geo Pan

“Yes” as values of the boundary face evaluation and boundary edge evalua

c

 

The last step of the pre-proces

achieved by the followin

 

► From the Geo Panel, c

     following by a second

 

This mark the end of the pre-processing steps.  
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From the FORTRAN software (Microsoft Visual Studio 2005) 

 

► Click Debug\Start without Debugging, then enter the name of the GFM file  

 desired scale factor (1 is usually the best value) and hit the Enter key 

  again. 

esh (number of nodes, elements, boundary 

onditions…) on the screen. 

 Enter the desired time steps and press the   Enter key.  

 Type in the value of delta t and hit the Enter key.   

 Select the desired numerical scheme (1 or 2) then press the Enter key to start the 

 

, 

software. 

    (model.gfmfor this tutorial) when prompted, and press the Enter key. 

 

►Type in the

  

These last two actions will create a data file with the name input.dat then display 

information about the finite element m

c

► When prompted type in the data file name (input.dat) and press the Enter key.  

 

►

 

►

 

► Enter the value of alpha and press the Enter key. 

 

►

    solution process.

 

Once the solution process terminated, the program will create two output files 

(CosmGraph and tecpGraph.dat) that the user can use to proceed with the post-

processing. 

 

CosmGraph can be used for post-processing analysis via Cosmos GeoStar software

while tecpGraph.dat can be used with Tecplot 
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Note: If Cosmos GeoStar is chosen as post-processing software, then the user must copy 

 the variables. 

eo 

 

nd, then select the CosmGraph file which is saved on the 

re and 

elocity) in term of contour and section plots. 

t the different components of 

e velocity (1 for U, 2 for V, 3 for W, and 4 for their magnitude) and pressure (5). 

or instance the pressure contour plot can be obtained by selecting 5 as value of 

ton from the “ACTUSRPLOT” 

indow. This will give a plot given by figure A4.10 

de contour plot can be obtained similarly but with the difference 

at 4 must be entered as the value of Component number, and the plot is as given by 

the CosmGraph file and paste it to the desktop location before visualizing

 

Post-processing via Cosmos GeoStar software 

 

Once a copy of the CosmGraph file is saved on the desktop, the user can go the G

Panel menu then click on Results\Plot\User Results in order to get the plot window

(ACTUSRPLOT). Click on fi

desktop and click open. Once this done, the user can now plot the variables (pressu

v

The numbers in “Component number” dialog box represen

th

 

F

Component number and press the “Contour plot” but

w

 

The velocity magnitu

th

figure A4.11  
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Figure A4.11: Velocity magnitude contour plot. 

Figure A4.10: Pressure contour plot. 
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Section plots can be obtained similarly, but by pressing Section plot button instead of the 

Contour plot button. Once the Section plot button pressed, the user will be prompted to 

choose a desired plan in the “Orientation of section planes” dialog box from the 

“SECPLOT” window. Click the continue button after choosing the desired plan, then 

type in the number of plan needed and select 1: Yes (if the section plot (s) is or are to 

plotted at specific location(s)) otherwise leave it to its default value of 0: No. Once this 

done, click the continue button again followed by a last click on the OK button. 

 

Some sample of section plots are given by figures A4.12 through figure A4.13 

 

 
Figure A4.12: Pressure section plot in the Z plan. 
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Figure A4.12: Velocity magnitude section plot in the Y plan. 

 
Figure A4.12: Velocity magnitude section plot in the Z plan. 
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Post-processing via Tecplot software 

 

Once the Tecplot software is turn on, then do the following 

 

► Select File\Load Data File(s), then select Tecplot Data Loader from the  

     “Select Import Format” window. 

► Select the Tecplot output file (tecpGraph.dat) from its location and click OK from  

     the “Select Initial Plot” window. 

► If the orientation of the geometry is not as expected, then this can be corrected 

    by clicking on X, Y, or Z button under “Option and Tools”, then move the mouse  

    over the geometry to change the orientation. 

► Click on View\Fit to Full Size to have a good view of the object. 

► Uncheck the Mesh dialog box from the “Zone Surface”. 

► Check the Contour dialog box to make contour plots. Click the “…” button opposi 

     te to Conto

     The “Contour & Multi-Colouring Details” window contains information about the 

      variables. Pressure is represented by P, the components of the velocity vector 

      by U, V, W, and M for their magnitude. 

► Pressure contour can be plotted by selecting P from the “Contour & Multi- 

     Colouring Details”. This will give a plot as given by figure A4.13. 

 

 

 

 

 

 

 

 

ur and select the Legend tag to add a legend to the plots. 

282 
 



Appendix 4                                                                                        Program manual 
 

 

    

 Figure A4.13: Pressure contour. 

 

 Selecting M will plot the velocity magnitude shown by figure A4.14 

 To plot section of plots, the user must uncheck the Contour from the “Zone 

   Surfaces”, then check the “Shade” and “Translucency” boxes, and checked 

   the “Slice” box under “Derived Objects”. Click the “…” button opposite to 

   “Slice” to get the “Slice Details” window from which different plot planes can 

    be obtained. Vectors plot can be obtained by clicking the “Vector” tag from  

►

►
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      the “Slice Details” window then checking the “Show Vectors” dialog box and 

      pressing the OK button from the “Select Variable” window. The length of the 

      vectors can be modified by clicking of “Plot” from the main menu (top screen) 

      then select “Vector\Length\, and choose “Uniform” or one of the Relative  

      options. 

 

Some samples of the velocity magnitude and section plots are given by figure A4.14 

through figure A4.19. 

 

 

 
Figure A4.14: Velocity magnitude contour. 
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Figure A4.15: Pressure section plot in the Z plan. 

 

 

 

 

 

 

 

 

 

285 
 



Appendix 4                                                                                        Program manual 
 

 

 
Figure A4.16: Velocity magnitude section plot in the Y plan. 
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Figur  plan. 
 

e A4.17: Vector section plot of the velocity magnitude in the Y

 

 

 

 

 

 

 

 

287 
 



 

 

Appendix 4                                                                                         Program manual 
 

 

 
Figure A4.18: Velocity magnitude section plot in the Z plan. 
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Figure A4.19: Vector section plot of the velocity magnitude in the Z plan. 

 

 

The aim of this tutorial is to initialise the user to the Cosmos GeoStar (pre-processing and 

post-processing parts), FORTRAN (solver), and Tecplot (post -processing) environments. 

The user is strongly advised to try the tutorials available from the help sections of both 

Cosmos GeoStar and Tecplot software for further information.  

 

Closure 


