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Abstract

We investigate the theoretical description of adiabatic quantum computing (AQC) algorithms

using the evolution of the Hamiltonian eigenvalues in the framework of the Pechukas-Yukawa

formalism, exactly mapping the eigenvalues to the dynamics of a fictitious one-dimensional

classical gas with cubic repulsion. We exploit the properties of the Pechukas-Yukawa model

to describe the behaviour of quantum algorithms used in AQC.

Specifically, we derive the non-equilibrium nonstationary statistical mechanics of the

Pechukas-Yukawa gas based on the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) chain

of equations with the goal of increasing the efficiency of direct numerical simulation. We

extended our research to consider the impacts of level crossings and avoided crossings to eval-

uate the compatibility of the Pechukas-Yukawa formalism and the Landau-Zener description

of these occurrences. This is valuable to the investigation of decoherence in a quantum sys-

tem and carries scope for research on the description of state dynamics through the energy

level dynamics.

We relate the evolution of a quantum state of a system under external perturbation

to that of its energy levels. Using this relationship, we produced a cumulant expansion

with improved efficiency compared to traditional methods of approximate quantum state

evolution description. It is especially significant for the investigation of decoherence in an

evolving quantum system.
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Chapter 1

Introduction

The impacts of quantum computing would be far reaching and monumental in modern society

with benefits from simulating chemical reactions which contribute to the developments of

new drugs, to boosts in machine learning, assisting self driving cars in assessing situations

better more efficiently, for improved safety.

Announcements by D-Wave Systems Inc, of the production of working adiabatic quantum

computers have led to the ongoing research in the complexity theory it involves. Standard

approaches to the success of quantum computing have focused on the quantum gate model. It

has been conjectured to achieve a quantum speedup in computation with a tradeoff between

time and the probability of the final states [1, 2, 3, 4]. The gate model operates on qubits that

encode a solution in an entangled superposition of eigenstates. Experimental achievements

in this area include the control and entanglement of approximately 10 qubits to develop a

universal computer using the quantum gate model. However, recent experiments have shown

that there are cases where classical computers work just as effectively as quantum computers,

though for incompressible data, there is no competition that quantum computers have the

advantage, still they prove vulnerable to decoherence [1, 2, 3, 4] - the loss of information due

to the interactions of the system with the environment.

An alternative more promising approach is adiabatic quantum computing (AQC) [1].

This is more robust against decoherence. The AQC model encodes the solution dictated by

the adiabatic theorem, in an easily achievable groundstate of the initial Hamiltonian, HI ,

evolving the system under an adiabatic parameter such that the system maps the solution

to the groundstate in HF . This corresponds to an optimal solution of a given optimisation

problem based on quantum annealing algorithms, reducing the vulnerability of the system

dephasing [1]. Using the AQC model, D-Wave jointly sponsored by NASA and Google

announced the achievement of working quantum chips with 128 and 512 qubits, which is

feasible because of the intrinsic features of adiabatic processes rendering the model more
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robust against decoherence.

The standard approach to quantum computing uses a heuristic search algorithm, de-

scribed by quantum annealing. This relies on random walks parameterised Markov chains

to solve combinatorial optimisation problems. This gives the prospect of tackling NP-hard

problems. The algorithms restrict the final Hamiltonian Hf , such that the entire computa-

tion need not be confined to the ground state. These algorithms are realised in both classical

and AQC computational models, providing a bridge between the two.

For the theoretically ideal AQC, an adiabatically closed system without interference from

the environment, the algorithm is probabilistic. The adiabatic theorem is used to bound the

tradeoff between computation time and the probability of ending in the groundstate [1]. For

a physical quantum platform, based on the superposition of states, the system will inevitably

be open such that it is impossible to perfectly isolate the system from the environment, hence

noise must be accounted for [5]. In determining the probability of ending in the groundstate,

one takes a heuristic search approach. In contrast, the classical platform does not support

quantum features of superposition and entanglement, the algorithm is not probabilistic yet

much slower by comparison [1].

In development of insights on the measure of quantumness in the AQC model, the

Pechukas-Yukawa model has been used to map quantum algorithms to classical models [3].

This allows for classical properties to apply to the highly entangled quantum nature of the

system. From this property, we constructed the BBGKY chain of kinetic equations of mo-

tion concerning the level dynamics. Sets of approximate kinetic equations for a generalised

distribution function of the dynamical variables are obtained by breaking this chain at a par-

ticular point. These equations could be factorised, where we found that corrections to the

factorized approximation of the distribution function scale as 1/N , where N is the number

of the Pechukas gas particles corresponding to the number of eigenvalues. This is promising

in particular for large systems which could reach an efficiency that greatly reduces the speed

of numerical simulation.

Under this formalism, decoherences have been modelled such that one could explore their

influences. One source of decoherence we considered had been on account of state transitions

occuring in the event of level crossings and avoided crossings. We investigated these impacts

on an evolving quantum system using the traditional Landau-Zener model. We determined

the conditions required for the applicability of the Landau-Zener mode in the Pechukas-

Yukawa setting. In extension to this investigation, we determine the influences of noise on

the description of avoided crossings. We considered a single source of composite longitudinal

Brownian noise. This carries the potential to cause decoherence in a quantum algorithm.

Furthermore, we derived a relationship between the level dynamics and the evolution

3



of quantum states, allowing for a description of occupation dynamics and the evolution

of coherences beyond the Landau-Zener model. Using the relationship between the quan-

tum states and level dynamics, we produced a cumulant expansion with improved efficiency

compared to traditional methods to approximate quantum state evolution. Our expansion

requires only the initial conditions and the evolution of the perturbation parameter, λ to

determine its convergence to provide highly accurate approximations. This further enabled

us to describe the density matrix, requiring far less information than current approaches.

Allowing for investigation of the density matrix dynamics with fewer imposed conditions, one

obtains analytical insights on the evolution of quantum states and their populations which

can describe better a large quantum coherent system than the currently used approaches

which is especially fruitful in the research of sources of decoherence in quantum systems.

This expansion carries the potential to investigate adiabatic invariances in a system which

could allow for determining the different complexity classes a family of Hamiltonians may fall

under. When the distributions for the level dynamics are complemented by the equations for

the level occupation numbers and inter-level transition amplitudes, they allow to describe

the non-equilibrium evolution of the quantum state of the system. These have potential to

improve the designs of quantum algorithms in the development of AQC.

1.1 Thesis Overview

The following chapter provides a brief introduction to quantum computing and in particu-

lar, the theory of AQC and AQC algorithms. We follow with a background of optimisation

problems which is essentially the backbone of quantum computing. In Chapter 3 we detail

the Pechukas-Yukawa model, providing a derivation of its mapping of eigenvalue dynamics

to a set of coupled ordinary differential equations and its stochastic extension, the stochastic

Pechukas-Yukawa model. In Chapter 4 we also offer a brief introduction of the BBGKY

hierarchy of kinetic equations of motion. Our work on the statistical treatment of the level

dynamics is detailed here, with the derivation for the generalised BBGKY hierarchy in the

Pechukas-Yukawa framework, extending the dynamics to account for parametrically evolving

quantum systems. We also describe our effecive mean-field approximation. Having deter-

mined its accuracy theoretically, we tested numerically our theory using the 2-Qubit Ising

model in illustration of the factorisation approximation. In Chapter 5, we establish a connec-

tion between the level dynamics and the evolution of the eigenstate expansion coefficients,

which allows for characterising the entire system via the level dynamics. We then approx-

imated the evolution of the eigenstate coefficients, exploring different approximations and

comparing them numerically. This was extended to describe the evolution of the density ma-

4



trix such that the entire quantum system could be characterised from eigenvalue dynamics.

We identified the strengths and weaknesses of the approximations, identifying the most ap-

propriate description of the occupation dynamics of the exact cover 3-satisfiability problem

as a specific example. In Chapter 6, we consider the compatibility of Landau-Zener model

in the Pechukas-Yukawa formalism and the conditions governing this marriage. We obtain

a description of level crossings, avoided crossings and stochastic avoided crossings satisfied

in this setting. Finally, we provide a summary of our works in the conclusions with a brief

study of the scope of our work carries for further investigations.
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Chapter 2

Introduction to Quantum Computing

Manin and Feynman introduced the concept of a quantum computer in 1980 [6] and 1982

[7] respectively. This attracted enormous interest under the promise of a quantum speed-up

through exploiting quantum properties such that quantum computations are carried out in

asymptotically fewer basic operations than classical computations. However, this leads to a

tradeoff in probability of realisation in the final states. The standard approach to quantum

computing uses a heuristic search algorithm, yet still due to its susceptibility to decoherence,

achieving a practical quantum computer remains a challenging feat.

In this chapter, the properties of a quantum computer are presented, followed by an

introduction to adiabatic quantum computing (AQC), one approach to quantum computing,

outlining the assumptions required, extending to its applications and vulnerabilities. For

details on basic notation on quantum information, refer to Appendix A.

2.1 Quantum Computing

Quantum computations operate on qubits which exhibit the quantum properties, superpo-

sition and entanglement. Superposition enables storing all 2n states simultaneously. For a

single qubit given by |φ〉 = α|0〉 + β|1〉, superposition allows qubits to store information

simultaneously in states |0〉 and |1〉. Once a qubit is measured, there is probabilistic collapse

of |φ〉 to one of these states, which can be read off to decode the information it stores. This

reasoning can be extended to n-qubit systems. Entanglement occurs when qubits interact

and are subsequently removed from each other. Despite being physically separated they

are no longer independent. For multi-qubit states, after entanglement states cannot be de-

composed into products of individual probabilities. The probability of being observed in any

given state is correlated, allowing for acting on all 2n states simultaneously. A demonstration

of this property is given by the Bell state[8].
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In this representation, one can construct quantum logic gates in order to transform qubits

by acting on them with a combination of Pauli matrices and the identity matrix. These are

used to create all classical logic gates with the crucial difference that quantum gates are

reversible; given the output, it is possible to determine the input. From these, quantum

circuits can be constructed, capable of computing any classical function f defined on n bits.

The general statement here is that for a circuit Cf applied to a register Q, the result is a new

superposition state Cf |φ〉 = |φ′〉 where |φ′〉 denotes a new superposition. This representation

forms the basis of the quantum gate model.

The quantum gate model concerns n qubits in a register Q, operated on by quantum

circuits Ci, where i ∈ N . The circuits operate on Q in parallel and in series such that a com-

putation initialises Q in some known state and after the circuits induce state transformations

on Q, it is measured resulting in a probabilistic collapse of Q to a classical state, providing

the answer which is then returned by the computation. Utilising the quantum properties of

superposition and entanglement respectively, Q holds all 2n states simultaneously and the

quantum circuits are able to act on all n bits simultaneously in constant time. This quan-

tum parallelism carries the potential to provide significant speedups in computation time

compared with classical computers.

Assuming the universal applicability of quantum mechanics, the practical realization of

a universal quantum computer remains a rather distant possibility due to the large number

of physical qubits necessary for its operation and the extreme fragility of its quantum states

with respect to external and internal sources of decoherence [1, 2, 3, 4, 5]. Moreover, as

was shown by Feynman, simulation of a large enough quantum coherent system by classical

means is impossible due to the dimensionality of the corresponding Hilbert space growing

exponentially with the size of the system (e.g. number of qubits) [7, 9]. Unfortunately, the

size of a practically useful universal quantum computer greatly exceeds the limits of what is

tractable by classical means. This makes the task of determining the degree of quantumness

of such a device, its design and optimization exceedingly difficult [1, 2, 3, 4, 10, 11, 12].

An alternative approach to quantum computing is through quantum dynamical systems

where the n qubits in a register Q are regarded as dynamical particles evolving over time

according to the forces acting on it, characterised by an N × N time-dependent Hermitian

Hamiltonian, where Hermiticity imposes N real eigenvalues, which make up the energy

spectrum of the system. When multiple states take the same eigenvalue, they are said to

be degenerate states. The groundstate corresponds to the state with the lowest eigenvalue,

all other states are then excited states. The Hamiltonian operator changes the state of the

system by acting on states just as quantum circuits result in transformations on qubit states,

however the Hamiltonian acts continuously on a state in contrast to discrete transformations.
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This approach to quantum computers leads on to the foundations of adiabatic quantum

computing.

2.2 Adiabatic Quantum Computing

Adiabatic Quantum Computing (AQC) offers an alternative approach to the universal quan-

tum gate model [1, 3, 4, 5, 9, 13], based on the continuous adiabatic time evolution of a

Hamiltonian, modelling the quantum algorithm. Under this framework, qubits are evolved

in accordance with the adiabatic theorem, from an easily achievable groundstate of some

initial Hamiltonian such that after time evolution the groundstate is an eigenstate of the

final Hamiltonian. This corresponds to an optimal solution. It was shown [1], that the two

models are polynomially equivalent.

2.2.1 Adiabatic Theorem

The adiabatic theorem, accredited to Born and Fock, states that the instantaneous rate of

change of the process is proportional to the energy of the process. For a time-dependent

Hamiltonian H(t) system, with wavefunction |ψ(t)〉 satisfying the Schrodinger equation:

i|ψ̇(t)〉 = H(t)|ψ(t)〉, (2.1)

where |En(t)〉 denotes the instantaneous eigenstates of H(t) with instantaneous eigenvalues

En(t). The adiabatic theorem states that, if the system is initialised at t = 0, in an eigenstate

|En(0)〉 of the Hamiltonian H(0), it will remain in the same instantaneous eigenstate, |En(t)〉,
at final time t = T , as long as the evolution of the H(t) is slow enough to satisfy:

maxt∈[0,T ]

∣∣∣∣∣ 〈Em(t)|Ėn(t)〉
En(t)− Em(t)

∣∣∣∣∣� 1, (2.2)

where m 6= n and 〈Em(t)|Ėn(t)〉 = 〈Em(t)|Ḣ(t)|En(t)〉. The adiabatic theorem has recently

gained renewed attention as the basis of AQC.

However, the adiabatic theorem was subjected to controversy due to the result that if a

Hamiltonian, H(t) follows an adiabatic evolution, a related Hamiltonian:
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H̃(t) = −U †(t)H(t)U(t),

U(t) = Te−i
∫ t
0 H(t)dt,

(2.3)

where T represents the time-ordering operator. Then H̃(t) cannot have an adiabatic evo-

lution even if satisfying Eq. (2.2). It was proven by Amin [14], that there is consistency

in the adiabatic theorem, we follow this argument here for a general system with resonant

oscillations. Re-writing the wavefunction expanded under the instantaneous eigenstates:

|ψ(t)〉 =
∑
n

an(t)e−i
∫ t
0 En(t′)dt′ |En(t)〉, (2.4)

where an(t) denotes the instantaneous eigenstate coefficients. For a time-independent Hamil-

tonian, an(t) is a constant whereas for a slowly varying Hamiltonian it is a slow function of

time. Substituting Eq. (2.4) and integrating over time, one obtains:

am(T )− am(0) = −
∑
n6=m

∫ T

0

dtan(t)〈Em(t)|Ėn(t)〉e−i
∫ t
0 [En(t′)−Em(t′)]dt′ . (2.5)

To assure adiabaticity, the right hand side of this equation should be small. With the initial

condition am(0) = δmn. Since the exponential term in the integrand of Eq. (2.5) is a rapidly

oscillating function, if the rest of the terms vary very slowly, the integral will be small[14].

Refer to [14] for the more general proof when the system is absent of resonant oscillations,

demonstrating the applicability of the adiabatic theorem to construct an AQC.

For a quantum dynamical system modelling an AQC algorithm acting on Q, evolving

under t then τ(s) gives the rate of change of H(s). This gives the equivalent Hamiltonian in

timescale s with nondegenerate groundstate. If δs denotes the spectral gap, then δm = minsδs

the minimum spectral gap through s.

The adiabatic theorem states: 1) Q is in the groundstate at s = 0. 2) δm > 0 throughout

evolution in s. 3) the process is slow enough such that τ(s) is bounded by the following:

τ(s)�
|| d
ds
H(s)||
δ2
m

. (2.6)

The bound on τ(s) can be bounded from above by a low-degree polynomial in n. Given

these 3 conditions are satisfied, the process will end in the groundstate of the final Hamilto-
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nian with high probability, optimising the problem. A general Hamiltonian can reveal well

defined gaps between the eigenvalues in the Hamiltonian spectrum, giving δm. The adiabatic

theorem does not hold in instances of level crossings given by δm = 0 [13]. This is used to

govern adiabatic quantum algorithms.

2.2.2 Adiabatic Quantum Algorithms

AQC algorithms are designed to minimise an objective function f acting on the register of

qubits Q, under some constraints. The algorithm is governed by a time-dependent Hamilto-

nian which can be broken up into three key features: 1) The initial Hamiltonian H0 with an

easily achievable ground state. 2) The final Hamiltonian Hf , encoding the objective function

such that the solution is mapped to the ground state of Hf . This yields an optimal solution.

3) An adiabatic evolution path s(t) such that s : 1→ 0 as t : 0→ tf for some final time tf ,

this defines the run-time of the algorithm.

The AQC algorithm describing an adiabatic transition from H0 to Hf can be described by

an adiabatic Hamiltonian, a system that remains in its instantaneous eigenstates to optimise

the problem, given a perturbation acts slow enough in accordance with the adiabatic theorem.

The adiabatic Hamiltonian for the AQC algorithm is given by the following:

H(s(t)) = s(t)H0 + (1− s(t))Hf , (2.7)

where the solution encoded in the ground state of H0 is mapped to the ground state of Hf

given the adiabatic path λ(t) is sufficiently slow. Then, if there is a nonzero gap between the

ground state and the first excited state of H(s(t)) for all s ∈ [0, 1], the success probability

of the algorithm tends to 1 in the infinite run-time limit. This compares with a general

Hamiltonian for λ(t) taken to be an adiabatic path in the following equation:

H(λ(t)) = H0 + λ(t)ZHb, (2.8)

where H0 is the unperturbed Hamiltonian, ZHb is the perturbation in the Hamiltonian

and λ is a time evolving parameter, especially suited to adiabatic systems. H0 encodes

the groundstate solution and ZHb is a large bias term with Z � 1. This is especially

suited, though not restricted to the description of a large adiabatic Hamiltonian [3, 9]. This

formalism is consistent with the notation used in our research groups previous works [3, 4, 5]

in this area. It is a reformulation of Eq. (2.7), forming a more natural description of qubits
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and the external field. This allows a direct mapping between quantum algorithms and the

Pechukas-Yukawa model, describing the evolution of a system via the level dyanmics. This

is described in further detail in Sec. III.

To demonstrate this mapping of quantum algorithms, consider the exact cover three-

satisfiablity problem. Given a Boolean expression defined on n binary variables x1, . . . xn.

The expression contains m clauses Cc each containing 3 variables (xc1, xc2, xc3). Each of

these variables are either equal to xi or (1 − xi). A clause is satisfied if exactly one of the

variables takes the value 1 such that the clause function fc(x) follows:

fc(x) = (1− xc1 − xc2 − xc3)2, (2.9)

The objective function fec(x) is defined as the sum of all the individual clause functions where

fec ≥ 0, taking the value 0 when all clauses are satisfied. It is defined by the following:

fec(x) = −2m+
∑
i<j

Cijxixj, (2.10)

where Cij counts the number of times xi and xj appear together in a clause. To define the

final Hamiltonian for this algorithm, xi = 1−si
2

replacing the binary variables xi, where si

denote spin variables taking values of −1 or 1. The objective function then represents the

energy function corresponding to the eigenvalues of a final Hamiltonian, minimised by Hec.

Under the adiabatic evolution path s(t) = 1− t
tf

, the AQC alorithm for exact cover is given

by:

H(t) = s(t)Hi + (1− s(t))Hf

= s(t)
m∑
i=1

1− σxi
2

+ (1− s(t))
∑
i<j

Cij(1− σzi )(1− σzj ),
(2.11)

where σz is defined by the Pauli matrix as in Appendix A, Hi =
∑m

i=1
1−σxi

2
and Hf =∑

i<j Cij(1− σzi )(1− σzj ).

2.3 Quantum Annealing

A subset of AQC is quantum annealing (QA), describing a heuristic search which minimises

a problem defined on n binary variables x1 . . . xn ∈ [0, 1]n, where the objective function f(x)
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assigns a cost to the solution. The search is applied to combinatorial optimisation problems,

restricted on a final Hamiltonian Hf , representing a classical objective function.

Initialised in some state x, with cost c, the system is iterated according to a random

walk described by a parameterised Markov chain where each iteration of QA depends on

some tunnelling coefficient Γ to control the traversibility of the solution landscape. If a

search starts at some initial state and moves towards a low-cost state where the algorithm

terminates according to some stopping rule. If the landscape moves towards an optimal

solution, it takes a greedy-descent approach. However, this encounters problems in the case

when there are many local minima, resulting in the greedy-descent approach becoming stuck

or moving in circles, never reaching the optimal solution.

Γ starts at some high value and is gradually decreased with each iteration against time.

When Γ decreases slow enough such that Γ(t) ≥ kn
log(t)

, where k is a constant, the QA

algorithm is guaranteed to provide an optimal solution in the long-time limit. This compares

with the adiabatic path s(t). This approach introduces a disordering Hamiltonian, HD which

adds the kinetic energy to the annealing process in the form of quantum fluctuations. HD

does not commute with Hf . Then the Hamiltonian is transformed to a new time-dependent

Hamiltonian:

H(Γ(t)) = Hf + Γ(t)HD. (2.12)

This is analogous to Eq. (2.8) for an AQC. AQC algorithms determine a bound on the

probability to end in the ground state given the problem was encoded in the ground state of

some initial Hamiltonian, whereas QA allows the problem being initialised in an arbitrary

state and analyses the probability to converge to a solution within a small neighbourhood

of the optimal solution.

Analysis of QA depends on the platform it runs on. There are three types of platforms

QA algorithms can run from. 1) A theoretically ideal AQC platform: an adiabatically

closed system with no interference from the environment. In this case, the algorithm is

probabilistic and the adiabatic theorem bounds the tradeoff between the computation time

and the probability to end in the ground state. 2) A physical quantum platform: the system

will inevitably be open such that it is impossible to perfectly isolate the system from the

environment. This results in noise, due to random fluctuations in the environment, reducing

the probability of ending in the ground state. 3) A classical platform: a classical computer

does not adhere to decoherence due to interactions with the environment, however it does

not offer the quantum properties, superposition and entanglement between states that are
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available in using a quantum computer.

On a quantum computing platform, quantum properties are utilised such that calcula-

tions can occur with increased speeds compared to classical computers. Moreover, quantum

computers offer the capability of solving problems that are not tractable on classical com-

puters; the run time for a classical computer algorithm grows polynomially as a function of

the input data. In the following section a brief description of the different complexity classes

are provided.

2.4 Optimisation Problems

Optimisation problems searches for a feasible solution that either maximises or minimises

an objective function. It is the crux to AQC, that appears to out-perform the gate model,

making it an attractive area of research. These are considered in terms of their approximation

complexity; given an instance I in a minimisation problem P , with optimal solution s∗, to

determine the feasibility in returning a solution s with some difference |f(s)−f(s∗)|or bound

from above f(s)
f(s∗)

. If an algorithm returns a feasible solution, then the distance is 0 making

it an exact algorithm. If it returns a non-trivial bound on the distance or the ratio, it is an

approximation algorithm. An NPO denotes a class of optimisation problems with a decision

counterpart in NP, refer to Appendix B for an introduction to the various complexity classes.

All decision problems in NP can be solved by an exact algorithm for the analogous prob-

lem in NPO APX denote the set of problems that can be approximated within the upper

bound of the problem in polynomial time. PTAS describes a set of problems with a polyno-

mial time approximation scheme. A parameterised algorithm Aq for any q ∈ Q where q > 1,

the solution cost is within the upper bound of the problem, returned in polynomial time

with respect to the problem size and inversely exponential in q. Similarly, FPTAS describes

a fully-polynomial time approximation scheme. It is a parameterised approximation scheme

that returns a solution within the upper bound of the problem, returned in polynomial time

in both the size of the problem and 1
(1−q) .

In the context of AQC, we aim to optimise the solution of a quantum algorithm to speed

up calculations beyond that which is achievable in traditional computations.

2.5 Summary

In this chapter, we introduced the basic concepts behind a quantum computer, superposition

and entanglement. As a result, information can be both stored in 2N simultaneously where

N denotes the number of bits, states as well as acted on all states together.
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Furthermore, a discussion of the different approaches to quantum computing via the

quantum gate model, quantum dynamical systems and AQC, the primary motivation be-

hind our research, developing alternative approaches to investigate nonequilibrium quantum

systems. This relies on the adiabatic theorem, where the evolution of the system is suffi-

ciently slow that state transitions do not occur. Formulation of this theorem is given and

extended to its applications in the context of AQC algorithms. Following this, quantum

annealing is discussed providing the key elements behind initialising and evolving an AQC

system.

Finally, a brief discussion of optimisation problems was given. This leads into our work

using the Pechukas-Yukawa model as described in the following chapter, carrying the poten-

tial to characterise different complexity classes which could prove valuable in designing AQC

algorithms.

14



Chapter 3

Pechukas-Yukawa Formalism

The Pechukas-Yukawa model describes a fictitious one-dimensional classical gas with para-

metric evolution in time[15, 16, 17, 18]. This model provides a homeomorphism between a

perturbed quantum system of general Hamiltonian given by H(λ(t)) = H0 +λ(t)ZHb, where

H0 denotes the free Hamiltonian, Hb a perturbation, Z is some factor and λ(t) evolves para-

metrically in time, to a one-dimensional classical gas, where the level dynamics are described

by a set of coupled ordinary differential equations[15, 19], governed by the initial conditions.

These equations correspond to the Hamilton’s equations for the fictitious classical particles

evolving in time. Under this mapping the number of fictitious particles N , corresponds to

number of eigenvalues. However, in phase space the dimension for the system grows beyond

2N in this formalism, as a consequence of particle-particle interactions becoming dynamic

variables. This formalism is well suited to highly entangled many level quantum systems

with connections to quantum chaos. In [20], it was shown that the system admits a Lax

formalism and is completely integrable[20, 21] which has been invaluable in the study of

quantum chaos, see Appendix F for details on Lax representation.

This chapter presents a derivation of the Pechukas-Yukawa model, mapping from a general

perturbed quantum Hamiltonian to a set of coupled ordinary differential equations of a

classical 1D gas. A brief summary of the Pechukas-Yukawa model is provided with an

overview of its applications to adiabatically evolving quantum Hamiltonian systems. This is

extended to the stochastic Pechukas-Yukawa model, where it was shown that this formalism

accommodates for open quantum systems whilst preserving its structure.

3.1 Derivation of the Pechukas-Yukawa Gas Equation

Consider a time-dependent Hamiltonian given by, H(λt) = H0+λV
∑∞

n=−∞ δ(t−n) where H0

denoted the free Hamiltonian, λ evolving parametrically in time and V some perturbation.
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The associated single-period Floquet operators are given as F = e−iλV e−iH0 . Assuming the

Hilbert space has finite dimension N and that by varying λ, the eigenvalues and eigenvectors

change, then the Floquet operator acting on an eigenstate |m〉 with m ∈ N is governed by,

F |m〉 = e−iφm|m〉. (3.1)

Taking an approach similar to perturbation theory and expanding Eq. (3.1) in terms of

λ, Fmm = e−iφm . This can be used to show that φ̇m = Vmm + i(〈ṁ|m〉 + 〈m|ṁ〉). Taking

orthonormal eigenstates, φ̇m = Vmm. Then V̇mm =
∑

n(〈ṁ|n〉Vmm + Vmn〈n|m〉).

Differentiating Eq. (3.1) and taking the scalar product with 〈n| where m 6= n, we obtain the

following:

〈n|ṁ〉 = (〈ṁ|n〉)∗ =
−iVnm

1− e−iφnm
, (3.2)

the rate of change of Vmm is then given as:

V̇mm = i
∑
n6=m

VmnVnm

(
1

1− e−iφmn
− 1

1− eiφmn

)
, (3.3)

where φmn = φm − φn describing the difference between 2 quasi-energies. Similarly, the

off-diagonal perturbation components (without loss of generality taking gauge factors as

zero) are given by:

V̇mn = −iVmn(Vmm − Vnn)

1− e−iφmn
+ i

∑
k 6=m,n

VmkVkn

(
1

1− e−iφmk
− 1

1− eiφkn

)
. (3.4)

The equations for φ̇m, V̇mm and V̇mn form a complete set capable of describing the quasi-

energies and the perturbation components for any λ given the initial conditions are set.

Taking a reformulation of these set of equations using the classical Hamiltonian flow, one

obtains the following equation:

∑
m

(
∂φ̇m
∂φm

+
∂V̇mm
∂Vmm

)
+
∑
m 6=n

∂V̇mn
∂Vmn

= −i
∑
m6=n

Vmm − Vnn
1− e−iφmn

. (3.5)
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The flow is non-zero with the only divergence arising from Vmn, one can replace the off-

diagonal terms with lmn = Vmnfmn, where fmn are factors chosen to cancel the second term

in Eq.3.4. This requirement leads to the following:

ḟmn
fmn

=
iφ̇mn

1− e−iφmn
= i

φ̇mn
2

+ Ln

(
sin

(
φmn

2

))
. (3.6)

This simply integrates to fmn = Aeiφmn/2sin(φmn/2). Choosing the intgration constant A

to be −2, lmn = −2Vmne
iφmn/2sin(φmn/2) = −l∗nm, where ∗ denotes the complex conjugate.

The source free equations can then be written as:

φ̇mm = ρm,

ρ̇mm = −1

4

∑
m6=n

lmnlnm
cos(φmn/2)

sin3(φmn/2)
,

l̇mn =
1

4

∑
k 6=m,n

lmklkn

(
1

sin2(φmk/2)
− 1

sin2(φkn/2)

)
,

(3.7)

where ρm = Vmm.

The first 2 equations can be interpreted as classical Hamiltonian equations and associated

Poisson brackets, φ̇m = ∂H
∂ρm

= {H,φm} and ρ̇m = − ∂H
∂φm

= {H, ρm} for an associated

Hamiltonian H = 1
2

∑N
m=1 ρ

2
m+

∑
m 6=n

|lmn|2
8sin2(φmn/2)

. In order to determine the Poisson bracket

for lmn, we demand its independence of φm and ρm such that {ρm, lij} = {φm, lij} = 0.

This follows from the Leibniz product rule and the Jacobi identity. Then, in the unitary

class of Floquet operators, {lmn, lij} = δinlmj − δmjlin. One can similarly determine the

expressions in the orthogonal and symplectic cases for the Floquet operators. Note that this

expression and the Jacobi identity forbids the assumption of identically vanishing diagonal

elements lmm but restricts these elements such that lmm = −l∗mm which is unavoidable in the

Hamiltonian reformulation. However, one finds that {H, lmn} = 0 revealing these relative

angular momenta terms as constants of motion, then if they vanish at some initial λ, without

loss of generality lmm = 0. This leads to the Pechukas-Yukawa gas equations, of the form:

ẋm =
∂H

∂ρm
,

ρ̇mm = − ∂H

∂xm
,

l̇mn = (H, lmn).

(3.8)
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The following section summarises the model and its applications to AQC systems.

3.2 The Pechukas-Yukawa model

The Pechukas-Yukawa model maps from a general Hamiltonin H(λ(t)) = H0 + λ(t)ZHB to

a fictitious one-dimensional gas. It is well suited to adiabatic systems with the additional

feature that all information of the system is encoded in the initial conditions [15, 16, 17, 18].

The contribution from H0 is fully determined at all times. Information of all initial conditions

are obtained through instantaneous matrix elements given by < m|H0|n >= Em(λ)δmn −
λ < m|ZHb|n > and λ (t)ZHb. This relationship maps from a general Hamiltonian to the

Pechukas equations [3, 4, 5, 15, 16, 17, 18, 19, 22, 23, 24]. This can be used to model an AQC

[3], where the associated Hamiltonian describes the quantum algorithm used to optimise a

problem. The Hamiltonian in the Pechukas-Yukawa formalism takes the form:

H(λ(t)) =
1

2

∑
m

v2
m +

∑
m6=n

|lmn|2

(xm − xn)2
, (3.9)

where xm denotes the eigenvalues of the Hamiltonian system, vm the diagonal entries of

the perturbation and lmn the relative angular momenta of the fictitious gas. This governs

a complex system that evolves in time parametrically through λ, described through the

instantaneous eigenstates |m(λ)〉 and eigenvalues Em(λ), related by H(λ)|m〉 = Em(λ) where

the nature of a system can be determined by its eigenvalues [15, 16, 17, 18]. It has an easily

achievable nondegenerate groundstate with the solution found in an eigenstate of the final

Hamiltonian, optimising the problem. This describes the quantum annealing procedure.

The level dynamics of this system is governed by the following closed set of ordinary

differential equations. These equations enable treating quantum systems in the light of

classical dynamics. Under this formalism, one can derive the Pechukas equations, describing

the “position” (xm), “velocity” (vm) and “relative angular momentum” (lmn), given by the

following[15, 16, 17, 18]:

ẋm = vm

v̇m = 2
∑
m 6=n

|lmn|
2

(xm − xn)3

l̇mn =
∑
k 6=m,n

lmklkn

(
1

(xm − xk)2 −
1

(xk − xn)2

)
,

(3.10)
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where xm (λ) = Em(λ), vm (λ) = 〈m|ZHb|m〉 and lmn (λ) = (Em (λ)− En(λ)) 〈m|ZHb|n〉
where this is a antisymmetric complex quantity such that lmn = −l∗nm. The indices (m)

represent the positions, velocities and particle-particle repulsion as determined by the relative

angular momenta, for the corresponding mth particle interaction. Here λ plays the role of

time [3, 4, 15, 16, 17, 18, 19]. This procedure describes the aforementioned mapping of the

level dynamics of a system to that of a one-dimensional classical gas, interacting with long

range couplings described by the relative angular momenta, valid for an arbitrary choice

of H0 and Hb and an arbitrary time dependence of λ not necessarily adiabatic. Note that

time does not explicitly enter the Pechukas equation, rather concerning the evolution in time

parametrically through λ which determines the instantaneoues energy levels.

It was shown that the parametric evolution of the system described by Eq. (2.8) can

be mapped on the classical Hamiltonian dynamics of a one-dimensional (1D) gas model

with long-range repulsion: the Pechukas gas. The level dynamics of a system are given

by the evolution of the eigenvalues on a Hamiltonian [15, 16, 17]. Under the Pechukas-

Yukawa formalism, there is an exact mapping between adiabatic quantum evolution and the

1D classical Hamiltonian dynamics[3, 4, 5, 9]. Using this approach, described in adiabatic

quantum computing, a complex Hamiltonian is considered with a nondegenerate groundstate.

This Hamiltonian is mapped to the Pechukas model, a set of ordinary differential equations

describing a classical 1D gas with long range repulsion [15, 16, 17]. These govern the effects

of adiabatic evolution on the level dynamics. Consider a Hamiltonian of N levels, in phase

space there are over 2N levels describing the dynamics of the system, as a consequence of

the coupling strengths being dynamics variables. The equilibrium statistical mechanics of

Pechukas-Yukawa gas turned out a useful tool in justifying the random matrix theory [9].

This approach was successfully used to describe the operation of a small-scale adiabatic

quantum computer, but its scaling up was restricted for the same reason as mentioned

above, and it was suggested that building the kinetic theory of the Pechukas-Yukawa gas

may provide a useful solution. The Pechukas equations had been adapted to a system with

noise in order to determine how well this mapping held in the presence of noise [5]. One major

challenge to achieving AQC is the decoherence of quantum systems under time evolution is

noise, resulting in dissipation in the evolution of states.

3.3 Stochastic Pechukas-Yukawa Model

Quantum systems adhere to random fluctuations as a consequence of interactions with the

environment and intrinsically due to the Heisenberg uncertainty principle[25]. These result

in decoherence in quantum states. Noise inherently enters a system either internally from the
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physical system itself or the system may be subject to noise due to external interactions due

to the inability to perfectly isolate a system from the environment. As a result, stochastic

influences must be accounted for. In our research, we studied the effects of noise on the

dynamics of a many-body perturbed quantum system. For simplicity we considered white

noise models, however our formalism extends to any general stochastic process. We refer the

reader to Appendix C for more background on stochastic dynamics.

An idealised mathematical model of noise is to treat it as white noise η(t) [26] having

zero expectation, 〈η〉 = 0. For η(t) and η(t′) where t 6= t′ the noise terms are statistically

independent, described as being uncorrelated. This is described by the following:

〈η(t)η(t′)〉 = δ(t− t′). (3.11)

Formally, white noise is defined as the derivative of a Wiener process W (t), which is a

Markovian process on Rd, see Appendix D.

These concepts are applied to classical integrable descriptions of quantum systems, such

that they carry the added advantage of providing insight on the influences of noise on the

nature of eigenstate dynamics via classical elements. This is used to formulate many-body

quantum systems analytically using eigenvalue dynamics under the stochastic Pechukas-

Yukawa model, which is otherwise intractable. For more background, refer to Appendix

E.

The stochastic Pechukas-Yukawa formalism accommodates for noise arising from random

fluctuations in the environment, affecting the level dynamics of the system[5]. Using the

central limit theorem; noise arises from a number of independent identical sources, therefore

it is reasonable to assume the sum of its effect is Gaussian [26, 5]. The noise contribution in

the Hamiltonian is denoted as δh(λ(t)) in the Hamiltonian, H(λ(t)) = H0+λ(t)ZHb+δh(λ(t).

For real eigenvalues, δh is Hermitian. We take δh to be real, to simplify the system. It is

shown that with the added stochastic term, the Pechukas mapping still applies and we can

extend Eq. (3.10) to the closed stochastic Pechukas equations. The generalised Pechukas

equations are given by the following [5]:
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ẋm = vm + δ̇hmm,

v̇m = 2
∑
m6=n

|lmn|
2

(xm − xn)3 +
lmnδ̇hnm − δ̇hmnlnm

(xm − xn)2
,

l̇mn =
∑
k 6=m,n

lmklkn

(
1

(xm − xk)2 −
1

(xk − xn)2

)
+

(xm − xn)(lmkδ̇hkm − δ̇hmklkm)

(xm − xk)(xn − xk)

+δ̇hmn(vm − vn) +
lmn(δ̇hmm − δ̇hnn)

(xm − xn)
.

(3.12)

The derivative is taken with respect to λ. The mapping retains its structure; whereby if

δh = 0, Eq. (3.12) reduces to Eq. (3.10). The stochastic Pechukas equations, Eq. (3.12) is

independent of any assumptions on the nature of the noise, therefore applicable to a wide

range of stochastic systems.

3.4 Summary

In this chapter, we presented the Pechukas-Yukawa formalism, describing a fully integrable

model for a set of N fictitious particles and their interactions through a coupled set of

ordinary differential equations. Under this formalism, one can describe the evolution of

highly entangled quantum systems using classical dynamics. Furthermore, the level dynamics

are governed by their initial conditions, which is advantageous in regard to adiabatically

evolving systems. This carries promise in the theoretical development of adiabatic quantum

computing, however we consider this mapping in the general sense with applications to

adiabatic quantum algorithms. A derivation of this model has been provided, demonstrating

this mapping. Finally, we presented an extended Pechukas-Yukawa model, accounting for

general dissipative influences whilst maintaining the properties of integrability, accounting

for the dynamics of large entangled out of equilibrium systems governed by initial conditions.

Using this formalism, we construct a statistical mechanical framework to investigate non-

equilibrium, nonstationary quantum systems governed by their level dynamics, extending the

standard BBGKY hierarchy. Furthermore, we explore the applicability of the Landau-Zener

model and the conditions required. We further extend this description to explore the impacts

of Brownian noise on these conditions. In extension, we developed the formalism beyond

Hamiltonian eigenvalue dynamics to include state dynamics via the density matrix such that

the entire quantum system is described through its level dynamics. Whilst these methods

provide valuable insights on the solutions and dynamics of a system, an alternative approach

to characterise these dynamics is through Lax pairs which enables access to further conser-
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vation laws within the system. This description was invaluable to this project as will become

more apparent in the following sections. Furthermore, as the Pechukas-Yukawa formalism

supports the random matrix theory for equilibrium statistical mechanics, we extended the

description to non-equilibrium, nonstationary evolution.
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Chapter 4

Statistical Treatment of Eigenvalue

Dynamics

Extending the standard BBGKY hierarchy of the statistical treatment of particle dynam-

ics, we provide a consistent description of a non-equilibrium, nonstationary evolution of a

perturbed quantum system based on the kinetic theory of Pechukas-Yukawa gas. Describing

parametrically driven evolution of quantum systems, is especially useful in accommodat-

ing for adiabatic systems, however the formalism is applicable to an arbitrary Hamiltonian

system with parametric evolution in time given by Eq. (2.8). This formalism explores an

important new direction in contemporary physics and open further investigations in order

to understand the connection to the physics of the Pechukas gas.

Extending on [5, 24], using probability distributions to investigate eigenvalue dynamics

in Landau-Zener transitions, we consider the overall evolution of levels, not restricted to level

crossings or anti-crossings, statistically via probability distributions. As in classical kinetic

theory, it is expected that the statistical approach to the level dynamics (as functions of

the parameter λ) would allow a reduced description in terms of correlation functions, which

can be used as a basis for controlled approximations. This could provide a better insight

into what measurable characteristics of a system can be used as criteria of its quantum

performance, and make possible an approximate simulation of larger systems than those

tractable by other methods.

In this chapter, the standard BBGKY hierarchy is introduced, describing the kinetic

equations of motion for an arbitrary Hamiltonian governing N particles via coupled differ-

ential equations concerning probability distributions of particle positions and velocities. A

derivation of the BBGKY hierarchy in the Pechukas-Yukawa formalism is provided, extending

this theory to parametrically driven perturbed quantum systems using the Pechukas-Yukawa

model, governing the evolution of the quantum system via the statistical treatment of level
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dynamics. A factorisation approximation based on the statistically independent treatment

of level dynamics is then investigated, followed by an analytical study of its accuracy. We

then test our theory numerically for a small system of two interacting qubits, simulated by

a transverse field Ising Hamiltonian (TFIH), summarising our results.

4.1 The Standard BBGKY Hierarchy

The standard BBGKY hierarchy arises from the continuity equation in phase space. It is

used to describe the evolution of classical reduced distribution functions for a general time-

independent Hamiltonian. The chain relates the distribution function for N particles to the

distribution function for N + 1 particles concerning positions and velocities [2, 22, 23, 27,

28, 29].

Consider an arbitrary perturbed Hamiltonian, under the influence of an external field,

H =
∑
i

v2
i

2m
+
∑
i

V (xi) +
∑
i<j

V (xi − xj), (4.1)

where the first term corresponds to a massless free Hamiltonian with positions xi and ve-

locities vi, V represents the potential such that the second term denotes self-interaction

terms as consequence of the potential and the final term being the interaction between other

terms associated to the angular momentum. We denote an empirical distribution function,

FN(x1 . . . xN , v1 . . . vN) averaged over the initial conditions, of the form:

FN(x1 . . . xN , v1 . . . vN) = 〈
∏
m

δ (xm − ξm) δ(vm − ωm)〉, (4.2)

where xn denotes the particles in the Hamiltonian systems with respective velocities vn.

The averaging procedure is described through:

〈f(xm, vn)〉 :=
1

|I|
∑

x0, v0∈I

f(xt, vt;x0, v0), (4.3)

where |I| denotes the size of I, the set of initial conditions and f(xt, vt;x0, v0) denotes the

function evaluated at (xt, vt, t), the propagated coordinates up to time t, parameterised by

(x0, v0). This is essentially a counting function of where the particles are present.

The BBGKY hierarchy for this arbitrary distribution function FN (x1 . . . xN , v1 . . . vN) ,
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in phase space is defined through the following set of equations:

∂tFs =
s∑
j=1

L0
jFs +

s∑
j=1

LFj Fs +
s∑
j=1

j−1∑
n=1

LIjnFs +
s∑
j=1

∫
dxs+1L

I
j(s+1)Fs+1. (4.4)

The reduced distribution function, Fs := Fs(x1 . . . xs, v1 . . . vs) taken up to the s-particle

interactions hence it takes into account only the distribution functions of the s-particle and

the (s + 1)-particle. The first term, L0 corresponds to the free part of the Hamiltonian,

the second term, LF describes the external field for example, noise. The final two terms

associated with LI correspond to the perturbation contribution of the Hamiltonian as result

of interaction [22, 23, 27, 28, 2, 30, 31, 32]. Truncating the system to the first four equations,

the equations read:

∂tF0 = 0,

(∂t − L0
1 − LF1 )F1 =

∫
dx2dv2L

I
12F2,

(∂t − L0
1 − L0

2 − LF1 − LF2 )F2 = LI12F2 +

∫
dx3dv3(LI13 + LI23)F3,

(∂t −
3∑
1

L0
j −

3∑
1

LFj )F3 = (LI12 + LI13 + LI23)F3 +

∫
dx4dv4(LI14 + LI24 + LI34)F4.

(4.5)

Here we have demonstrated the BBGKY hierarchy up to the 4th chain, revealing the re-

lationship between the s-particle distribution functions with the (s+1)-particle distribution

functions.

Although this hierarchy produces a scheme which determines the kinetic equations of

motion, it does not describe the nature of time dependent non-equilibrium Hamiltonians.

In the following section, we derive a generalised BBGKY hierarchy that describes a non-

equilibrium parametrically evolving Hamiltonian, using the Pechukas model.

4.2 The BBGKY Hierarchy in the Pechukas-Yukawa

Model

The BBGKY chain for the Pechukas equations governs the statistical dynamics of the system

from the evolution of the probability distribution functions concerning the levels. These levels

can be thought of as interacting particles with the respective distribution functions relating

that of N -particles to (N + 1) particles. Consider the distribution with dynamic variables
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xm, vn and lmn: averaging over ξ, ω, λ,

FN,N(N−1)(x1, . . . , xn, v1, . . . , vn, l12, . . . , lmn) = 〈
∏
m

δ(xm − ξm)δ(vm − ωm)
∏
mn

δ(lmn − Λmn)〉,

(4.6)

following a similar averaging procedure as in Eq. (4.3), where |S| is the size of S being

the set of all initial conditions (x0, v0, l0) and similar to the classical BBGKY hierarchy

of reduced distribution functions, FN(xt, vt, lt, t;x0, v0, l0) denotes the function evaluated

at (xt, vt, lt, t), the propagated coordinates obtained through the Pechukas equation up to

time t. We denote the probability distribution function by the following, FN,N(N−1) :=

FN,N(N−1)(x1, . . . , xn, v1, . . . , vn, l12, . . . , lmn) All distribution functions are symmetric with

respect to permutations of arguments [15, 16, 19, 23].

Here xm, vn and lmn are independent coordinates which describe the centre frame and

ξ, ω and Λ are shifted coordinates from this centre frame. Taking a total derivative of this

distribution with respect to the adiabatic parameter λ, we obtain the following:

d

dλ
FN,N(N−1) =

∑
m6=m′

<
∏
m′

∂

∂ξm
δ(xm′ − ξm′ ) ˙ξmδ(vm′ − ωm′ )

∏
m′n′

δ(lm′n′ − Λm′n′ ) >

+
∑
m6=m′

<
∏
m

δ(xm′ − ξm′ )
∂

∂ωm
δ(vm′ − ωm′ )ω̇m

∏
m′n′

δ(lm′n′ − Λm′n′ ) >

+ <
∏
m′

δ(xm′ − ξm′ )δ(vm′ − ωm′ )
∑
mn

∏
m′n′

∂

∂Λmn

δ(lm′n′ − Λm′n′ )Λ̇mn > +
∂

∂t
FN(N−1). (4.7)

Given that ∂
∂ξ

= − ∂
∂x

, ∂
∂ω

= − ∂
∂v

, ∂
∂Λ

= − ∂
∂l

where ’.’ describes differentiation with respect

to λ. Note that time does not explicitly enter these equations but is parameterised by λ.,

which plays the same role. We substitute this into the total derivative with the related

Pechukas equations. We use the chain rule with respect to time to obtain:

d

dλ
FN(N−1) = −

∑
m

vm
∂

∂ξm
FN,N(N−1) −

∑
m

∂

∂vm
2
∑
m 6=n

|lmn|
2

(xm − xn)3FN,N(N−1)

−
∑
mn

∂

∂lmn

∑
k 6=m,n

lmklkn

(
1

(xm − xk)2 −
1

(xk − xn)2

)
FN,N(N−1) +

∂

∂t
FN,N(N−1). (4.8)

Applying Liouville’s theorem, which states that the number of particles at the start stays

constant in the system as time evolves [15, 16, 19, 23]:
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d

dλ
FN(N−1) = 0. (4.9)

From this we rearrange the total derivative to express ∂
∂λ
FN,N(N−1) (xm, vm, lmn) by the fol-

lowing:

∂

∂λ
FN,N(N−1) =

∑
m

vm
∂

∂xm
FN,N(N−1) +

∑
m

∂

∂vm
2
∑
m6=n

|lmn|
2

(xm − xn)3FN,N(N−1)

+
∑
mn

∂

∂lmn

∑
k 6=m,n

lmklkn

(
1

(xm − xk)2 −
1

(xk − xn)2

)
FN,N(N−1). (4.10)

In the scheme of BBGKY, we consider s number of particles where s ≤ {1, . . . N} in order

to build up the chain. For this we consider the way this affects each term of the distribution.

The s-particle distribution function is thus given by the following:

Fs,s(s−1):=
N !

(N − s)!
.

(N2 −N)!

(N2 −N − s(s− 1))!

×
∫
dxs+1 . . . dxndvs+1 . . . dvndls+1,s . . . dln,n(n−1)FN,N(N−1).

(4.11)

The normalisation constants in the front of the integral comes from the combinatorics of xm

and vm for N !
(N−s)! with N ! representing the total number of combinations in both xm and

vm and (N − s)! representing the number of combinations of particles not included in the

distribution. Similarly, for lmn we have the total number of possible values in lmn determined

by (N2 −N)! where dictated by s there are s(s−1) possible values in the distribution giving

rise to the normalisation constant
(N2−N)!

(N2−N−s(s−1))!
included in the definition for Fs,s(s−1). These

come about from the symmetry in the distribution functions with respect to permutations

in their arguments.

Considering the s-particle distribution in the above relation for Eq. (4.10) we obtain:
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∂

∂λ
Fs,s(s−1) =

N !

(N − s)!
.

(N2 −N)!

(N2 −N − s(s− 1))!

∫
dxs+1 . . . dxndvs+1 . . . dvndls+1,s . . . dln,n(n−1)∑

m

vm
∂

∂xm
FN,N(N−1) +

∑
m

∂

∂vm
2
∑
m6=n

|lmn|
2

(xm − xn)3FN,N(N−1)

+
∑
mn

∂

∂lmn

∑
k 6=m,n

lmklkn

(
1

(xm − xk)2 −
1

(xk − xn)2

)
FN,N(N−1).

(4.12)

Determining the way the first term is affected by the reduced distribution function concerning

up to s-particle interactions is expressed by the following:

N !

(N − s)!
.

(N2 −N)!

(N2 −N − s(s− 1))!

∫
dxs+1 . . . dxndvs+1 . . . dvndls+1,s . . . dln,n(n−1)

s∑
m=1

vm
∂

∂xm
FN,N(N−1) +

∫
dxs+1dvs+1Dls+1

N∑
m=s+1

vm
∂

∂xm
FN,N(N−1), (4.13)

where we denote Dls+1 as the following:

Dls+1 =
s∏
i=1

dls+1,idli,s+1. (4.14)

By Green’s theorem the last term is equivalent to integrating on the boundary and so vanishes

as the system tends to infinity, which reduces the expression as given by the following:

N !

(N − s)!
.

(N2 −N)!

(N2 −N − s(s− 1))!

×
∫
dxs+1 . . . dxndvs+1 . . . dvndls+1,s . . . dln,n(n−1)

s∑
m=1

vm
∂

∂xm
FN,N(N−1).

(4.15)

Following this procedure, we determine the way Fs,s(s−1) affects the second term in the

relation for ∂
∂λ
FN,N(N−1) such that it concerns only the s-particle distribution and (s + 1)

particle distribution as determined below:

N !

(N − s)!
.

(N2 −N)!

(N2 −N − s(s− 1))!

∫
dxs+1 . . . dxndvs+1 . . . dvndls+1,s . . . dln,n(n−1)
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2
s∑

m=1

m−1∑
n=1

(
|lmn|

2

(xm − xn)3 +
|lnm|

2

(xn − xm)3

)
∂

∂vm
FN,N(N−1)

+2

∫
dxs+1dvs+1Dls+1

s∑
m=1

(
|lm(s+1)|

2

(xm − xs+1)3 +
|l(s+1)m|

2

(xs+1 − xm)3

)
∂

∂vm
FN,N(N−1). (4.16)

Finally, we determine the way taking Fs,s(s−1) affects the last term in the relation for
∂
∂λ
FN,N(N−1), where we obtain the following:

N !

(N − s)!
.

(N2 −N)!

(N2 −N − s(s− 1))!

∫
dxs+1 . . . dxndvs+1 . . . dvndls+1,s . . . dln,n(n−1)

s∑
m=1

m−1∑
k=1

k−1∑
n=1

lmklkn

(
1

(xm − xk)2 −
1

(xk − xn)2

)
∂

∂lmn
FN,N(N−1)

+

∫
dxs+1dvs+1Dls+1

s∑
k=1

k−1∑
n=1

ls+1klkn

(
1

(xs+1 − xk)2 −
1

(xk − xn)2

)
∂

∂l(s+1)n

FN,N(N−1).

(4.17)

Combining these expressions and simplifying them with the definition for Fs,s(s−1) we derive

the BBGKY chain for the Pechukas equations as given by the following equations:

∂

∂λ
Fs,s(s−1) =

s∑
m=1

vm
∂

∂xm
Fs,s(s−1) + 2

s∑
m=1

m−1∑
n=1

(
|lmn|

2

(xm − xn)3 +
|lnm|

2

(xn − xm)3

)
∂

∂vm
Fs,s(s−1)

+2

∫
dxs+1dvs+1Dls+1

s∑
m=1

(
|lm(s+1)|

2

(xm − xs+1)3 +
|l(s+1)m|

2

(xs+1 − xm)3

)
∂

∂vm
Fs+1,s(s+1)

+
s∑

m=1

m−1∑
k=1

k−1∑
n=1

lmklkn

(
1

(xm − xk)2 −
1

(xk − xn)2

)
∂

∂lmn
Fs,s(s−1)

+

∫
dxs+1dvs+1Dls+1

s∑
k=1

k−1∑
n=1

ls+1klkn

(
1

(xs+1 − xk)2 −
1

(xk − xn)2

)
∂

∂l(s+1)n

Fs+1,s(s+1).

(4.18)

This gives us the BBGKY hierarchy for the Pechukas model with respect to a full dis-

tribution concerning position, velocity and relative angular momentum, where Fs,s(s−1) :=

Fs,s(s−1)(x1, . . . xs, v1, . . . vs, l12, . . . ls,s−1) describes the reduced distribution function up to s-

particle interactions and Fs+1,s(s+1) := Fs+1,s(s+1)(x1, . . . xs+1, v1 . . . vs+1, l12, . . . ls+1,s) being

the reduced distribution function concerning the (s + 1) particle interactions. This is our

main result for this section, providing a coupled set of differential equations concerning the

statistical properties of kinetic equations for the level dynamics. These equations extend

29



the standard BBGKY hierarchy to non-equilibrium, nonstationary parametrically evolving

systems.

To illustrate the scheme more explicitly, we write the BBGKY chain up to the 2nd equa-

tion. We neglect the s = 0 level as this merely vanishes on the right hand side of the chain.

Starting from s = 1 we obtain that F1,0(x1, v1) the associated chain is:

∂

∂λ
F1,0 = v1

∂

∂x1

F1,0 + 2

∫
dx2dv2dl12dl21

(
|l12|

2

(x1 − x2)3 +
|l21|

2

(x2 − x1)3

)
∂

∂v1

F2,2. (4.19)

In the same manner, the chain has been explicitly built up for s = 2 with F2,2 (x1, x2, v1, v2, l12, l21).

For s = 2, we obtain:

∂

∂λ
F2,2 = v1

∂

∂x1

F2,2 + v2
∂

∂x2

F2,2 + 2

(
|l12|

2

(x1 − x2)3 +
|l21|

2

(x2 − x1)3

)
∂

∂v2

F2,2

+2

∫
dx3dv3dl13dl31dl23dl32

(
|l13|

2

(x1 − x3)3 +
|l31|

2

(x3 − x1)3

)
∂

∂v1

F3,6

+2

∫
dx3dv3dl13dl31dl23dl32

(
|l23|

2

(x2 − x3)3 +
|l32|

2

(x3 − x2)3

)
∂

∂v2

F3,6.

(4.20)

These provide insights on the evolution of the statistical dynamics of the levels. How-

ever, the BBGKY heirarchy cannot be solved without truncation. We have considered the

factorisation approximation in order to truncate this hierarchy.

4.3 Factorisation Approximation of the BBGKY Heirar-

chy in the Pechukas-Yukawa Formalism

Eq. (4.18) extends the BBGKY hierarchy to non-equilibrium parametrically evolving sys-

tems, using the Pechukas model. The coupled differential equations determine the kinetics of

the distribution functions associated to the level dynamics of the Pechukas-Yukawa gas. The

hierarchy clearly demonstrates the relationship between the associated distribution functions

of the s-particles to (s + 1) interacting particles. We make the approximation that the dis-

tribution functions of the system can be expressed as a product of F1,0 (x1, v1) distributions.

Taking into account the chain for s = 1, we introduce a factorisation approximation

based on the independence of the the set of coordinates xm, vm and the set of relative angular

momenta terms lmn such that we can construct probability distribution functions of xm and
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vm that are independent of the probability distribution functions of lmn. As a consequence,

the distribution FN,N(N−1) can be factorised in terms of the one-particle distribution and the

distribution of lmn separately. Under the approximation, F2,2 (x1, x2, v1, v2, l12, l21) can be

factorised in terms of the distribution functions of F1,0 (x1, v1), F1,0 (x2, v2) and h(l12, l21)

with negligible contributions from the mixed terms. This is expressed below:

F2,2(x1, x2, v1, v2, l12, l21) ≈ F1,0(x1, v1)F1,0(x2, v2)h(l12, l21). (4.21)

Considering the approximation, Eq. (4.19) can be transformed in a way that precisely

reflects an effective mean field theory, where the definitions of F1,0 (x1, v1), F1,0 (x2, v2) and

h(l12, l21) are expressed in the same way as the generalised Fs,s(s−1).

Substituting Eq. (4.21) into Eq. (4.19) and using the product rule under the integral,

(including the arguments for clarity), we obtain the following:

∂

∂λ
F1,0(x1, v1) = v1

∂

∂x1

F1,0(x1, v1)

+2

∫
dx2dv2dl12dl21

(
|l12|

2

(x1 − x2)3 +
|l21|

2

(x2 − x1)3

)(
∂

∂v1

F1,0(x1, v1)

)
F1,0(x2, v2)h(l12, l21)

+F1,0(x1, v1)

(
∂

∂v1

F1,0(x2, v2)

)
h(l12, l21) + F1,0(x1, v1)F1,0(x2, v2)

(
∂

∂v1

h(l12, l21)

)
.

(4.22)

It is clear to see that the last two terms vanish and
(

∂
∂v1
F1,0 (x1, v1)

)
can be taken out from

under the integral obtaining:

∂

∂λ
F1,0(x1, v1) = v1

∂

∂x1

F1,0(x1, v1)

+2
∂

∂v1

F1,0(x1, v1)

∫
dx2dv2dl12dl21

(
|l12|

2

(x1 − x2)3 +
|l21|

2

(x2 − x1)3

)
F1,0(x2, v2)h(l12, l21).

(4.23)

Using this approximation, we reduce the chain after breaking it at the first link such that

it only concerns the F1,0 (x1, v1), F1,0 (x2, v2) and h(l12, l21) distributions hence reducing

to a one-body problem. This approximation extends to an N -body system, rendering the

heirarchy solvable.
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4.3.1 Accuracy of the Factorisation Approximation

In this section, we estimate the accuracy of the factorisation approximation as this is impor-

tant to know the validity of the effective mean field approximation. Taking the definition for

FN,N(N−1) (xm, vn, lmn) and evaluating the integral in Eq. (4.12) we obtain the distribution

for F2,2 (x1, x2, v1, v2, l12, l21) expressed as the product of δ functions:

F2,2(x1, x2, v1, v2, l12, l21) =

< δ(x1 − ξ1)δ(x2 − ξ2)δ(v1 − ω1)δ(v2 − ω2)δ(l12 − λ12)δ(l21 − λ21) > .
(4.24)

Similarly the product of the distributions F1,0 (x1, v1) , F1,0(x2, v2) and h(l12, l21) ob-

tained from evaluating Eq. (4.23) specifically with these distribution functions takes the

same form with the only difference being the normalisation constants,

F1,0(x1, v1)F1,0(x2, v2)h(l12, l21) =

< δ(x1 − ξ1)δ(v1 − ω1) >< δ(x2 − ξ2)δ(v2 − ω2) >< δ(l12 − λ12)δ(l21 − λ21) > .
(4.25)

In order to verify the factorisation approximation holds, depends solely on the normalisa-

tion constants used in the averaging procedure as defined in Eq. (4.12) such that Eq. (4.21)

holds. The normalisation constant for Eq. (4.24) can be expressed by the following:

N !

(N − 2)!
.

(N2 −N)!

((N2 −N)− 2)!
= N(N − 1)(N2 −N)(N2 −N − 1). (4.26)

On the other hand, for Eq. (4.25), the normalisation constant is similarly determined from

the following:

(
N !

(N − 1)!
)
2

.
(N2 −N)!

((N2 −N)− 2)!
= N2(N2 −N)(N2 −N − 1). (4.27)

The normalisation constant relating to lmn is the same in both equations. This is a

consequence of the fact that the lmn term from h(l12, l21) comes from a system associated

to the F2,2 (x1, x2, v1, v2, l12, l21) distribution function. We determine the relative error, Er
from the difference of these normalisations given by the following expression:

Er :=
F1,0(x1, v1)F1,0(x2, v2)h1,0(l12, l21)− F 2,2(x1, x2, v1, v2, l12, l21)

F2,2(x1, x2, v1, v2, l12, l21)
. (4.28)
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Using this expression, we obtain the following:

Er =
N − (N − 1)

(N − 1)
= O(

1

N
). (4.29)

Taking a large limit of the number N of particles, it is possible to determine exactly the

ground state and to encode solutions into through brute force. For the limit that N → ∞
we find that Er decays asymptotically. This comes as a consequence of pairwise interactions

between particles having less significance in a large system such that it can be essentially

decoupled, validating the factorisation approximation.

We extend this further to consider the factorisation approximation for a general s-particle

distribution function Fs,s(s−1) such that it can be factorised as s one particle distributions and
s(s−1)

2
number of h distributions. Using the same idea as the case for F2,2(x1, x2, v1, v2, l12, l21)

we consider the way the normalisations constants will differ and the Er between them. Taking

the same approach, for the generalised factorisation for an N -particle distribution function

composed as the product of N one-particle distributions functions.

The normalisation constant for Fs,s(s−1) is expressed as the following:

N !

(N − s)!
.

(N2 −N)!

(N2 −N − s(s− 1))!
=

N(N − 1) . . . (N − s− 1).(N2 −N)(N2 −N − 1) . . . (N2 −N − s(s− 1)− 1).

(4.30)

In contrast to this, the factorisation has normalisation constants expressed by the following:

(
N !

(N − 1)!
)
s

.(
(N2 −N)!

(N2 −N − 2)!
)

s(s−1)
2

= N s.((N2 −N)(N2 −N − 1))
s(s−1)

2 . (4.31)

Then Er reads:

Er =
N s

N(N − 1) . . . (N − s− 1)
.

((N2 −N)(N2 −N − 1))
s(s−1)

2

(N2 −N)(N2 −N − 1) . . . (N2 −N − s(s− 1)− 1)
− 1

= O(
1

N
).

(4.32)

From these results, it can be inferred that to solve the BBGKY chain for the Pechukas

equations at the first link, only distributions functions for F1,0 (x1, v1) and h(l12, l21) are

required. The same rationale can be extended for higher order interactions in writing these

distribution functions as products of one-particle distribution functions. We further illustrate

this model on a two-qubit system.
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4.3.2 Accuracy of the Factorisation Approximation in the Two

Qubit Ising Model

We consider a two qubit system described by the Ising model in order to test the BBGKY

hierarchy for the Pechukas equations. We take the TFIH as the Hamiltonian that governs

the two qubit system:

H(λ(t)) = Jσz1σ
z
2 + λZh1σ

x
1 + λZh2σ

x
2 , (4.33)

where σzj and σxj represent the corresponding Pauli matrices for the j-th qubit.

For the case that J > 0 the interaction favours antiferromagnetism whereas for J < 0,

it favors ferromagnetism. We take random values for J , Gaussian distributed with mean 0

and standard deviation 1, reflecting the different initial conditions. When J � λZh1, λZh2

the system is in the ground state. We obtain the values for xn from the eigenvalues of

the system given by xn (λ) = En (λ) =< n |H0|n >. The perturbation matrix defined by

ZHb(λ) = λZh1σ
x
1 + λZh2σ

x
2 determines the variables for velocity as vn(λ) =< n |ZHb|n >

and relative angular momentum, lmn using its definition that lmn (λ) = (Em (λ)− En (λ)) <

m |ZHb|n >.

The Hamiltonian reads:

H (λ (t)) = J


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

+ λZh1


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

+ λZh2


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 .

(4.34)

Diagonalising the Hamiltonian and using their respective definitions, we determine the

values for xn, vn, lmn in order to construct the distribution functions for f1(ξ, ω), f1(ξ′, ω′),

f2(ξ, ξ′, ω, ω′, l, l′) and h(l, l′) as in Eq. (4.11), where ξ, ξ′, ω, ω′, l, l′ are the running vari-

ables of the probability distribution functions parameterising the coordinates xn, vn, lmn

respectively.

The coordinates for xn are of the form J+λHn. Given that the values for J are Gaussian

distributed, J ∼ N (µ, σ) the values for each xn are Gaussian distributed varying only

by a translation by Hn, randomising the initial conditions hence, xn ∼ N (µ+ λHn, σ) =

N (λHn, 1) := Ñn, with the same mean and standard deviation where Hn = {−h1−h2, −h1+

h2, h1 − h2, h1 + h2}. The values for vn are deterministic, we define them as vn ∼ δHn . We
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observe that the terms describing lmn determined from its definiton are translated Gaussian

distributions, which we denote by Li,j. Using these definitions we build the distributions for

f1 (ξ, ω) , f1(ξ′, ω′), f2(ξ, ξ′, ω, ω′, l, l′) and h(l, l′) as given below:

f1(ξ, ω) =
1

4

4∑
n=1

Ñn(ξ)δHn(ω),

h(l, l′) =
10!

12!

∑
i 6=j

Lij(l)
∑
i′ 6=i,j′

L
′

i′,j′(l
′),

f2(ξ, ξ′, ω, ω′, l, l′) =
10!

4!12!

∑
i 6=j

Lij(l)
∑
i′ 6=i,j′

L
′

i′,j′(l
′)

4∑
n 6=n′ ,n,n′=1

Ñn(ξ)δHn(ω)Ñn′ (ξ′)δHn′ (ω
′).

(4.35)

Substituting the definitions in Eq. (4.28), we analytically determine Er for this system.

We reduce the Er as given in the expression below. Keeping concise, we omit the arguments

of the distributions:

Er =
3

2
(
Ñ1δH1Ñ1′δH1

′ + Ñ2δH2Ñ2′δH2
′ + Ñ3δH3Ñ3′δH3

′ + Ñ4δH4Ñ4′δH4
′∑4

n6=n′ ,n,n′=1 ÑnδHnÑn′δHn′
) +

1

2
. (4.36)

Bounding the error from above by maximising the numerator with 4(Ñ4(ξ)δH4(ω)Ñ4′ (ξ
′)δH

4
′ (ω
′))

where (Ñ4(ξ)δH4(ω)Ñ4′ (ξ
′)δH

4
′ (ω
′)) takes the largest value, and minimising the denomina-

tor with 12(Ñ4(ξ)δH4(ω)N1′ (ξ
′)δH

1
′ (ω
′)) as this divides by the smallest of these terms in

f2 (ξ, ξ′, ω, ω′, l, l′). Using the normal distribution density, we expand these terms to obtain

the following, again omitting the arguments in the distributions:

Er ≤
1

2
+

3

2
.

4

12

(
Ñ4δH4Ñ4′δH4

′

Ñ4δH4Ñ1′δH1
′

)
≤ 1

2
+

1

2

(
eλ(h1+h2)(ξ+ξ′)

e
ξ2+ξ′2

2 eλ
2(h1+h2)2

)
δH

4
′(

eλ(h1+h2)ξeλ(−h1−h2)ξ′

e
ξ2+ξ′2

2 e
λ2(h1+h2)2

2 e
λ2(−h1−h2)2

2

)
δH

1
′

.

Cancelling common terms, this bound reduces to the following:

Er ≤
1

2
+

1

2
e2λξ′(h1+h2). (4.37)

Similarly, bounding from below by minimising the numerator using Ñ3(ξ)δH3(ω)Ñ3′ (ξ
′)δH

3
′ (ω
′)

and maximising the denominator with 12(Ñ3(ξ)δH3(ω)Ñ2′ (ξ
′)δH

2
′ (ω
′)) where we find the fol-

lowing, omitting the arguments in the distributions:
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Er ≥
3

2
.

1

12

(
N3δH3N3′δH3

′

N3δH3N2′δH2
′

)
≥ 1

8

(
eλ(h1−h2)(ξ+ξ′)

e
ξ2+ξ′2

2 eλ
2(h1−h2)2

)
δH

3
′(

eλ(h1−h2)ξeλ(−h1+h2)ξ′

e
ξ2+ξ′2

2 e
λ2(h1−h2)2

2 e
λ2(−h1+h2)2

2

)
δH

2
′

.

We bound Er from above and below to examine the applicability of the factorisation approx-

imation. This reduces to the following:

1

8
e2λξ′(h1−h2) ≤ Er ≤

1

2
+

1

2
e2λξ′(h1+h2). (4.38)

Using these bounds, we find that the factorisation approximation does not hold. This

is expected because to approximate well a probability distribution function as a product

of one-particle distribution functions, the system must be essentially uncorrelated. In the

specific case of the two qubit system the qubits are not statistically independent because the

eigenvalues of the system are related as there is only one J . In order to explore this error

further we test the system numerically using cloud dynamics and determine the distribution

functions associated to the interactions. We draw 100 trials of J ∼ N (0, 1) terms, diagonal-

ising the system to determine its eigenvalues, as demonstrated in Fig. 1. Choosing a large

bias such that Z = 10, we take h1 = 0.01 and h2 = 0.02, keeping these values small so as to

reduce their impact on Er. However, to explore the dynamics of these values we observe the

system when h1 as 0.1 and h2 as 0.2 such that the perturbation is of the same order of the

values of J associated to the unperturbed Hamiltonian as in Eq. (4.33) as demonstrated in

Fig. 4.1.

Further to this, we construct the normalised distribution functions for f2(ξ, ξ′, ω, ω′, l, l′)

and that of f1 (ξ, ω) , f1(ξ′, ω′) and h(l, l′) in order to test the factorisation approximation for

the first link of the BBGKY hierarchy using the Pechukas model. To build these distribution

functions, we split the time interval in 0.1 from initial time at 0 and final time at 1, each

of these distributions had been normalised. We determine the values of vn through taking

xn+1 − xn and dividing it through by the time step of 0.1. We obtain values for lmn using

its definition described above. From this we produce the distribution for f1 (ξ, ω) shown in

Fig. 4.2.

In Fig. 4.2 we observe how the probability distributions of the level dynamics in Fig. 4.1,

demonstrating the statistical consistence between the evolution of the eigenvalues and their

respective evolution of probability distribution functions.

From the distribution functions, it is evident that the factorisation approximation does

not hold for a two qubit system as discussed above. We use Eq. (4.28) to determine Er and
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Figure 4.1: Evolution of eigenvalues: all the eigenvalues of Hamiltonian Eq. (4.33) for 100
simulations with random initial conditions obtained from the different values of J . These
eigenvalues are of the form J + λHn, they are Gaussian distributed as J is Gaussian dis-
tributed with mean 0 and standard deviation 1, through their evolution in λ from 0 to 1
in steps of 0.1. When the perturbation is much weaker than the interaction J , the system
stays close to its ground state see left panel. When the perturbation is of the same order as
J , the eigenvalues deviate from an initially Gaussian distribution, evolving into four distinct
peaks, see right panel.

how it varies through the evolution of the adiabatic parameter, considering nonzero points

between the factorised distributions and that of f2(ξ, ξ′, ω, ω′, l, l′). The results are presented

in the Table 1 below:

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

〈Er〉 0.668 3.203 0.578 1.18 0.335 1.54 0.4803 0.0659 0.366

SD of

Er

0.00127 0.00393 0.00119 0.00216 0.00120 0.00312 0.00142 0.00109 0.00153

Table 1: the average Er and its standard deviation (SD) are described through time up to 3

significant figures, to determine the accuracy of the factorisation approximation, using the

Pechukas model for a two qubit system.

The verdict is that the factorisation approximation does not hold for a two qubit system

due to the interaction term. We note that Er’s standard deviation remains below 0.005

throughout the evolution of the adiabatic parameter. We observe, anomalous averaged

relative errors as in the cases for λ being 0.2 ,0.4 and 0.6 that which do not fall in the range

of the analytic bounds determined from Eq. (4.38). This is a result of the sample being

taken from 100 trials. However Er follows the prediction of Eq. (4.29) with Er expected to

be 1 for a two qubit system whereas Eq. (4.38) suggests an exponential growth in the upper
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Figure 4.2: One-particle distributions: this gives the evolution of F1,0 (x1, v1) as the time
parameter increases, clearly it is seen that it is initially Gaussian distributed about a single
peak however as time increases, it settles into 4 equally distributed peaks due to the large
perturbation as expected. The velocities here are deterministic, as such the distribution is
centred around the four velocity points.
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bound for a two qubit system with a minimum of 1
2
. This is a consequence of the system

having its eigenvalues determining xn and, in turn, both vn and lmn being related through

the coupling constant J . The influence of J reduces significantly as N grows. Though the

factorisation approximation has not been numerically tested for large N , we have shown that

Er scales as 1/N , suggesting that it is possible to reduce the BBGKY chain to a factorisation

of F1,0 (x1, v1) distributions. We leave the numerical demonstration of this for future work

as it is beyond the scope of the present analytical study. We note that in the z basis, for large

λ the J terms are negligible where the two qubit Ising model could be completely decoupled

as such we would expect the factorisation approximation to hold, however in the basis used

in this investigation, we do not make such observations.

Using this approach, we have determined the statistical level dynamics of a general

nonequillibrum system through the Pechukas equations. In the realms of AQC, level cross-

ings of the system result in state transfer, resulting in decoherence in the system. We explore

these further in the following section.

4.4 Summary

Using the BBGKY hierarchy in the Pechukas formalism to develop a set of coupled ki-

netic equations of motion, one can investigate the level dynamics of a quantum perturbed

system, statistically. This extends the kinetic equations concerning the level dynamics to

parametrically driven evolution of a quantum system which is especially convenient for the

investigation of adiabatically evolving systems however the formalism is not strictly adia-

batic and is applicable to a general system of parametric time evolution with arbitrary time

dependence in λ.

In extension, a factorisation approximation is constructed such that the s-particle re-

duced probability distribution functions can be constructed from a product of s one-particle

distributions. This approximation is motivated by the fact that the coordinates in the

Pechukas equations are independent and so may lead to effectively independent probability

distribution functions, reducing the many body systems to that of a one-body system. This

is a great simplification as it amounts to solving the BBGKY hierarchy by solving just the

one-body system. All the information of the level dynamics can be determined from the

one-particle distribution functions. To test the factorisation approximation, we analytically

considered the way the factorisations vary from the many particle probability distribution

functions giving an effective mean field theory approximation. We find that the relative

error εr decays asymptotically as O(1/N) as the number of the interacting particles tend to

infinity. This gives confidence that for systems with large number of particle interactions,
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the approximation holds.

To illustrate the theory, we consider the simplest possible system of two qubits, and

compared it with the exact solution of the Hamiltonian. Breaking the BBGKY hierarchy

at its first chain, we built the related s-particle distributions, where we found that the

factorisation approximation is not accurate due to coupling between the eigenvalues where

the energy levels are not mutually independent for any given λ.

This research has significance to the study occupation dynamics at eigenvalue crossings

and avoided crossings with current relevance to a range of applications, two directly related

realms would be AQC and photonic systems, both of which carry great prospect.
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Chapter 5

Evolution of Quantum States

In this chapter, we study how the evolution of the eigenvalues provides useful information

on the evolution of the energy gap and the distribution of avoided crossings. Using the

Pechukas-Yukawa model, we connect the level dynamics of a system to the quantum states

through the evolution of eigenstate coefficients,C(t) for a wavefunction expanded in the

instantaneous eigenstates. The advantage under this description for a quantum coherent

system is that the instantaneous eigenstates include all higher level entanglements.

One can extend this description from eigenvalue dynamics to determine the form of

the density matrices. This provides insight in the dynamics of occupation numbers and

the coherences in the system which will prove useful in determining the probability for the

system to remain in its initial state. Using this description, one can, for example, determine

the effects of avoided level crossings on the systems evolution and the extent to which the

noise affects the population of states. Our work here extends the standard Pechukas-Yukawa

model from the statistical mechanics of energy levels to the description of quantum states

themselves. It is worth stressing that these works build a general scheme applicable to the

investigation of AQC, however, they are not restricted to AQC.

To proceed we use a Magnus series expansion to approximate C(t), a convenient way

to obtain an asymptotic expansion. This approach is contrasted against both the adiabatic

approximation and the time dependent perturbation theory (TDPT). We determine the coef-

ficients of the eigenstates to compare how well these approximations accommodate adiabatic

parameters [33, 34]. Using the Magnus series, C(t) can be approximated by a cumulant

expansion to re-sum the TDPT, in powers of λ̇ = dλ/dt, with respect to the adiabaticity.

Each term of the expansion corresponds to a sum of an infinite number of terms in a direct

expansion of the density matrix. Given the Magnus series converges, the cumulant expan-

sion provides a source of improved efficiency in the result. This is important to study the

adiabatic invariants of the system. Knowledge of this could yield important features of the
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behaviour of an AQC. This description may provide useful analytics to study sources of de-

coherence in highly entangled systems using the eigenvalue expansion coefficients. Moreover

this can be used to investigate dissipative influences on occupation numbers and coherences

which can be extended to study the effects of multi-level Landau-Zener transitions. Fur-

thermore, our analysis shows that the convergence of the Magnus series approximating the

evolution of C(t) is governed by the initial conditions. This could provide better insight

into what measurable characteristics of a system can be used as a criterion for its quantum

performance. Additionally, this carries the potential to specify Hamiltonians of different

complexity classes, governed by the initial conditions in the PechukasYukawa formalism. It

may be possible to extend the argument to stoquastic (stochastic quantum) systems where

noise is added; this may prove crucial experimentally.

This chapter is as follows: we provide a derivation of the evolution of the occupation

eigenstate coefficients under the Pechukas-Yukawa formalism which forms the main results of

this chapter. This is followed with approximations to solve for the eigenstate coefficients both

analytically and numerically. Analytically, we consider the Magnus series approximation that

we develop to study the evolution of the perturbed quantum system. The Magnus series

is compared numerically against two other approximations; the adiabatic approximation

and the time dependent perturbation theory (TDPT), investigating its limitations. These

results are numerically tested by use of an example, determining the occupation dynamics

numerically for the exact cover 3 NP-complete problem.

5.1 Derivation of the Evolution of Occupation Eigen-

state Coefficients

In this section, we establish the relationship between the occupation numbers and the level

dynamics through the Pechukas model. Recall that a wave function on a Hilbert space can

be expressed as the sum of linear combination of eigenstates that is:

|ψ(t)〉 =
∑
n

Cn(t)|n(t)〉. (5.1)

For eigenstate coefficients for each fixed instant in time Cn(t) ∈ C , related to the occupation

numbers (the number of states at energy level n) Nn by the following:

|Cn(t)|2 = Nn. (5.2)
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The evolution of Cn associated to the eigenvalues of the state is obtained by:

H(t)|ψ(t)〉 = i
∂

∂t
|ψ〉 = i

∂

∂t

∑
n

Cn(t)|n(t)〉 =
∑
n

En(t)|ψ(t)〉. (5.3)

Here Em(t) denotes the eigenvalues of the system for state |m(t)〉. Taking time derivative:

. = ∂
∂t

using Leibniz rule, we obtain:

i
∂|ψ〉
∂t

= i
∑
n

Ċn(t)|n(t)〉+ Cn(t)|ṅ(t)〉 =
∑
n

Cn(t)En(t)|n(t)〉. (5.4)

Applying 〈m(t)| on both sides and through linearity we obtain the dynamics of these coeffi-

cients through time with regards to the eigenvalues of the state,

i
∑
n

Ċn(t)δmn + 〈m(t)|Cn(t)|ṅ(t)〉 =
∑
n

Cn(t)En(t)δmn. (5.5)

Hence by evaluating the δ-distributions and rearranging the expression we have the following:

iĊm(t)− Cm(t)Em = −i
∑
n6=m

Cn(t)〈m(t)| ∂
∂λ
|n(t)〉λ̇, (5.6)

where Em(t) are the eigenvalues of the system and 〈m(t)| and |n(t)〉 denote the eigenstates.

In order to evaluate the dynamics with respect to the level dynamics, it is necessary to

determine
∑

n iCn(t)〈m(t)| ∂
∂λ
|n (t)〉λ̇ where the term vanishes for m(t) = n(t). We adopt

the Pechukas-Yukawa model in order to express the evolution of Cn(t) in terms of variables

describing level dynamics. The evolution of 〈m(t)
∣∣ ∂
∂λ

∣∣n(t)〉 is determined from the following

argument:

∂

∂λ
En(t)|n(t)〉 =

∂

∂λ
H(t)|n(t)〉. (5.7)

Applying Leibniz rule on both sides we obtain the following:

En(t)(
∂

∂λ
|n(t)〉) + |n(t)〉( ∂

∂λ
En(t)) = V (t)|n(t)〉+H(t)

∂

∂λ
|n(t)〉,
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where V (t) represents the potential. We act on both sides with 〈m(t)| and through linearity

such that m 6= n, we find that the dynamics reads:

En(t)〈m(t)| ∂
∂λ
|n(t)〉 = 〈m(t)|V (t)|n(t)〉+ Em(t)〈m(t)| ∂

∂λ
|n(t)〉. (5.8)

Hence,

(En(t)− Em(t))〈m(t)| ∂
∂λ
|n(t)〉 = 〈m(t)|V (t)|n(t)〉. (5.9)

By applying the Pechukas equations, for determining lmn described in Eq. (3.10), giving

〈m(t)|V (T )|n(t)〉 = lmn
Em−En , we are able to determine the evolution of 〈m(t)

∣∣ ∂
∂λ

∣∣n(t)〉 entirely

using level dynamics:

(xn − xm)〈m(t)| ∂
∂λ
|n(t)〉 =

lmn
xm − xn

. (5.10)

Thus,

〈m(t)| ∂
∂λ
|n(t)〉 =

−lmn
(xm − xn)2 . (5.11)

Substituting Eq. (5.11) into Eq. (5.6) the dynamics of the occupation numbers are given

through the following relation, which provides us with the main result of this chapter:

iĊm(t)− Cmxm = iλ̇
∑
n6=m

Cn
lmn

(xm − xn)2 . (5.12)

This describes the wavefunction in its entirety at any given time. We established the relation-

ship between the occupation numbers and the level dynamics through the Pechukas-Yukawa

model, given by Eq. (5.12). For the simplified case that λ̇ = 0, we solve this ordinary differ-

ential equation to find that Cm (t) = Cm(0)e−i
∫ t
0 xm(s)ds, describing an adiabatically evolving

system. We consider the case that Eq. (5.12) is inhomogeneous.

We denote:

X = diag (x1 . . . xn) ,
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P = pmn, where pmn = lmn
(xm−xn)2 and pmm = 0,

C(t) = (C1(t) . . . Cn(t))T .

Here X is diagonal and P is skew-Hermitian as lmn = −l∗nm, thus diagonalisable. Then

Eq (5.12) can be written as the following:

i
∂

∂t
C(t) = A(t)C(t). (5.13)

where A = (iX + λ̇(t)P ) does not commute with itself at different time instances.

5.2 Approximating the Evolution of the Eigenstate Co-

efficients

In the present work, we investigate approximate methods to solve for C(t), from which the

occupation numbers are obtained. Using the Peano-Baker series[35] (PBS) we find that the

solution comes in the form:

C(t;t0)=1+
∞∑
n=1

In(t), (5.14)

where t0 is the initial time and In is expressed as the following:

In(t) :=

∫ t

t0

A(τ1)

∫ τ1

t0

A(τ2)· · ·
∫ τn−1

t0

A(τn)dτn . . . dτ1. (5.15)

We are interested in a nonzero constant λ̇ such that the adiabatic parameter evolves slow

enough that the system is not excited from its eigenstate. In the case A(t) commutes with

itself at each instant in time, we may use classic linear algebra to determine Cn(t) at each

instance through the following relation:

C(t) = e−i
∫ t
0 A(s)dsC0. (5.16)

This expression holds only for the case that A (t) can be approximated as constant. Using

PBS, we demonstrate that a solution exists for a general λ̇(t), however obtaining an explicit
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form to determine Cn(t) at each instant is much more complicated. Instead, it is useful to

consider an alternative approximation.

5.3 Discretising the Evolution of Eigenstate Coefficients

Treating Eq. (5.13) as constant at each instant in time, we model the system through

step functions such that X,P and λ̇ are constant at each instant time. This discretises the

system, essentially building a piecewise constant approximation such that the solution is of

the following form, where 0 < t0 < t1 < · · · < tI :

C(t) = e(t−tI)(−iXI−λ̇(tI)PI)...e(t2−t1)(−iX1−λ̇(t1)P1et1(−iX0−λ̇(t0)P0)C0, (5.17)

where Xi and Pi represent matrices X(λ(t)) and P (λ(t)) at time step i. Note, these matrices

do not depend explicitly on time but rather implicitly through λ(t). C0 denotes the initial

condition of the eigenstate coefficient.

Numerically choosing δt = T
N

, small such that the approximation is close, we model the

eigenstate expansion coefficients. This is used as our true value of the solution such that

further approximations are compared against this model to determine their accuracy.

This method is tractable numerically, providing a close characterisation of the eigenstate

coefficients for small δt, however it does not provide information related to the influence of

λ̇(t) on the evolution of C(t). Using the discretised solution of Eq. (5.13), we contrast against

the time dependent perturbation theory, the adiabatic approximation and the Magnus series

truncated at different orders of λ(t) to calculate the relative error. This allows us to evaluate

the accuracy of the adiabatic theorem against the other approximations to verify whether

the non-adiabatic contributions are negligible.

5.4 Standard Eigenstate Coefficient Approximations

The adiabatic approximation assumes the rate of evolution in the perturbation of a system

is sufficiently slow such that λ̇→ 0 in Eq. (3.9), having negligible influence on the evolution

of eigenstate coefficients. Then the solution to Eq. (5.13) is simply given as:

C(t) = e−i
∫ t
0 X(s)dsC0. (5.18)

This corresponds to a first order correction to the standard TDPT expansion. In our
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research, we determined higher order contributions in Cn(t) to contrast accuracies against

the adiabatic theorem.

TDPT uses an iterative procedure to construct an expansion of the eigenstate coefficients.

Approximated up to the nth excited eigenstate state, the solution to Eq. (5.13) is given as

the following infinite sum truncated to n:

Cn(t) =
n∑
i=0

Ci
n, (5.19)

where Ci
n represent orders in corrections of the eigenstate coefficients Cn(t), of general form

as below,

Ci
n(t) =

∫ t

0

(−iX(λ(s))− λ̇(s)P (λ(s)))Ci−1
n (s)ds. (5.20)

This offers higher corrections to the eigenstate coefficients than given by the adiabatic

approximation. We take up to 10 iterations, compared against the piecewise constant ap-

proach to determine its relative error. This allows us to evaluate the the different accuracies

between the different approximations, accommodating for non-adiabatic parameters. We

further compare against the Magnus series approximation.

5.5 Magnus Series Expansion

Like the TDPT, the Magnus series approximation offers a solution for the eigenstate coeffi-

cients whilst accounting for non-adiabatic parameters. It is given as a cumulant expansion,

in powers of λ̇ = dλ/dt, where each term of the expansion corresponds to a sum of an infinite

number of terms in a direct expansion of the density matrix.

The Magnus series provides a solution to Eq. (5.13), taking into account the non-

commutativity of A(t)[36, 37, 38, 39]. We begin by writing C(t) in the form:

C(t) = eΩ(t)C0,

Ω(t) =
∞∑
k=1

Ωk(t),
(5.21)

where C0 = C(0) is the initial conditions for C(t). Here Ωk corresponds to the kth order

term of the Baker-Campbell-Hausdorff (BCH) formula [36, 39] and is given as integrals of
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successive commutators. This can be used to construct an infinite hierarchy of λ̇ terms from

a cumulant expansion, which both improves the efficiency of the series and allows for the

study of the adiabatic properties of the system related to C(t). The first two terms of the

series for Ωk(t) read:

Ω1(t) =

∫ t

0

A(s)ds,

Ω2(t) =
1

2

∫ t

0

∫ s

0

[A(s), A(s′)]ds′ds.

(5.22)

Since the full Magnus series is not tractable, one resorts to a truncation, approximating

the solution. Investigating the asymptotic convergence of this series would be of interest in

future research. In our subsequent analysis, we truncate the Magnus series to the 2nd order

and test it numerically. If the Magnus series converges, the cumulant expansion provides

a source of improved efficiency in the result, relevant to studying the adiabatic invariants

of the system. Knowledge of this could yield important features of the behaviour of an

AQC, improving our understanding of the relationship between control parameters which

may significantly affect adiabatic algorithm designs.

5.5.1 Convergence of the Magnus series

In the Pechukas model, all information for the Hamiltonian dynamics is encoded in its initial

conditions; we translate the conditions for convergence of the full Magnus series in terms of

initial conditions. The Magnus series converges if[36, 37, 38, 39]:

∫ t

0

||A(s)||ds < π. (5.23)

Using the triangle inequality and the expression for A(t), it suffices to show that:

∫ t

0

||X||ds+

∫ t

0

λ̇(s)||P ||ds < π. (5.24)

Rewriting the ||X|| integral in Eq. (5.24) in terms of initial conditions xn(0), vn(0), lmn(0),

we consider the Lax formalism in order to express the Pechukas equations Eq. (3.10) in Lax

formalism[20, 40, 41]:
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Ẋ = W + [P,X],

Ẇ = [P,W ],

L̇ = [P,L],

(5.25)

where P is as expressed in Eq. (5.13) and matrices W and L are skew-Hermitian, given by:

W = wmn where wmn = lmn
(xm−xn)

and wmm = 0,

L = lmn and lmm = 0.

As before, X = diag (x1 . . . xn) denotes the diagonal matrix of the eigenvalues of the system.

X can be transformed, through a unitary transformation to a nondiagonal matrix Y (the

reason will become apparent in later in this section), X = UY U−1, where U is a matrix of

eigenvectors. The matrix Q is defined by:

Q = W + diag (v1 . . . vn) .

In Lax formalism, Y is then expressed in terms of the initial conditions[41]:

Y (t) = λ(t)Q(0) +X(0). (5.26)

Time dependence exists solely through the evolution of λ. Using the unitary transformation

of X and Eq. (5.26),

||X(t)|| = ||Y (t)|| =
√
Tr(Y ∗(t)Y (t)) =

√
||X(0)||2 + λ(t)Tr(X(0)Q(0)) + λ2(t)||Q(0)||2.

(5.27)

Substituting this for the ||X|| integral in Eq. (5.24). From this we describe the ||X|| integral

by the following:
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∫ t

0

√
||X(0)||2 + λ(s)Tr(X(0)Q(0)) + λ2(s)||Q(0)||2ds

≤ t||X(0)||+
√
Tr(X(0)Q(0))

∫ t

0

√
λ(s)ds+ ||Q(0)||

∫ t

0

|λ(s)|ds.
(5.28)

Thereby the convergence of the first integral is reduced solely to the dependence of initial

conditions and the time evolution of λ. This method however, is restricted to finite times

such that initial conditions can be set to satisfy Eq. (5.24). As t→∞, it is not possible to

meet this convergence criteria regardless of the restrictions on the initial conditions.

Similarly, for ||P ||, using that the square root of a sum is less than the sum of the square

roots and interchanging the sum and integral using Tonelli’s theorem, we can rewrite the

second integral in Eq. (5.24):

∫ t

0

λ̇(s)||P ||ds ≤
∑
m6=n

∫ t

0

λ̇(s)pmnds. (5.29)

Taylor expanding around the initial time for short time intervals, pmn is expressed in terms

of initial conditions, pmn = pmn(0) + δλ(s)ṗmn(0) (using our definition of pmn from before)

where δλ(s) = (λ(s)− λ(0)). Then Eq. (5.29) becomes:

∫ t

0

λ̇(s)(pmn(0) + δλṗmn(0))ds =
ṗmn(0)

2
(λ2(t)− λ2(0)) + δλ(t)(pmn(0)− λ(0)ṗmn(0)),

(5.30)

where ṗmn can be computed entirely from xm(0), vm(0) and lmn(0). We conclude that using

Eq. (5.24), Eq. (5.28) and Eq. (5.30), the convergence of Magnus series is guaranteed and

is expressed entirely through its parametric evolution, λ and initial conditions.

A potential source of divergence of the Magnus series involves level crossings; in the case

of Landau-Zener transitions, the system is simplified to 2 levels with linear evolution in λ

hence λ̇ is constant. We show that level crossings can be disregarded as they have zero

measure.

5.5.2 Convergence of the Magnus Series: Level Crossings

Level crossings may result in Landau-Zener transitions of the population of states. These

occur at a λ∗, potentially involving multiple levels which is considered separately. Note that
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in the N = 2 case described by the Landau-Zener model, the system collapses to the Calegro-

Sutherland model with constant lmn terms. We show in this section that level crossings due

to the symmetries of the Hamiltonian, have zero measure.

For a level crossing xm = xn at λ∗ , then Eq. (3.10) implies lmn = 0 and l̇mn = 0. The

converse is not necessarily true, that is if lmn = 0 does not imply xm = xn. Expanding both

numerator and denominator of ||P || about this point with δλ∗ = (λ − λ∗), we obtain the

following expression for the upper bound on Eq. (5.29):

N∑
m 6=n

|lmn(λ∗) + δλl̇mn(λ∗) + 1
2
δλ2l̈mn|

(xm(λ∗)− xn(λ∗))2 + 2δλ(xm(λ∗)− xn(λ∗))(vm(λ∗)− vn(λ∗)) + δλ2(vm(λ∗)− vn(λ∗))2
+O(λ3),

(5.31)

where l̈mn is given by
∑N

k 6=m,n
−2lmklkn(vm−vn)

(xm−xk)3 . Cancelling zero valued terms and substituting

l̈mn into Eq. (5.31),

|lmn|
(xm − xn)2

=
N∑

k 6=m,n

|lmklkn +O(λ3)|
(xm − xk)3(vm − vn) +O(λ3)

∣∣∣∣∣
λ∗

. (5.32)

This series diverges in two scenarios, case 1: degenerate level crossings: xk = xm = xn

for some k, which again by Eq. (3.10) gives lmn, lmk, lnk vanishes and case 2: that vm = vn

describing a system where levels coalesce. For case 1, as both numerator and denominator

are zero, warrants the application of l’Hopital’s rule on Eq. (5.32). At its third iteration, we

obtain:

|lmn|
(xm − xn)2

=
∑
k 6=m,n

0 +O(λ3)

6(vm − vn)(vm − vk)3 +O(λ3)
. (5.33)

The expression converges to zero at the critical point λ∗, implying that degenerate level

crossing do not cause Eq. (5.32) to diverge.

Exploring case 2, we use the interpretation of the Pechukas equations as describing a 1D

gas. As λ approaches λ∗; λ− = λ∗− ε and without loss of generality x−m > x−n , it is clear that

vm = limε→0
xm−x−m

ε
hence (vm− vn) ≈ (x−m−x−n )

ε
greater than 0 by assumption. By symmetry,

this argument holds for x−n > x−m. In the case vm = vn, at λ∗ we consider the difference

between acceleration terms given by the following:
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(v̇m − v̇n)

2
=

N∑
k 6=m,n

(
|lmk|2

(xm − xk)3
− |lnk|2

(xn − xk)3

)
+
|lmn|2 + |lnm|2

(xm − xn)3
. (5.34)

The latter term corresponding to the level crossing, tends to 0 as λ→ λ∗ as determined by

the application of l’Hopital’s rule three times, however the terms in the sum are non-zero,

describing acceleration between the levels at λ∗, modelling repulsion such that levels do not

coalesce. This shows that level crossings occur only for an instant λ∗ rather than an interval,

as such they do not contribute to Eq. (5.29) as they have zero measure.

From these expressions, one can determine (from the initial conditions encoding the

evolution of the system) when the convergence criterion outlined in Eq. (5.24) are met.

5.6 Numerically Comparing the Magnus Series Against

the Adiabatic Approximation and TDPT

We compare numerically the Magnus series (up to its second order) against the adia-

batic approximation, treating λ̇ as negligible. Under the adiabatic approximation, C(t) =

e−i
∫ t
0 X(s)dsC0. Both these approximations are contrasted against the TDPT expanding C(t)

in powers of the interaction. The TDPT is useful for exactly solvable systems with an in-

teraction to its environment described by a small perturbation[42]. Under this description,

C(t) ≈
∑∞

i=0 C
i(t), where Ci(t) =

∫ t
0
A(s)Ci−1(s)ds, represent higher order corrections.

These are obtained iteratively for 10 iterations. This solution breaks down for the TDPT

when perturbations are large. To avoid this, initial levels are chosen with a minimum spacing

of 0.01 and 0.05. This ensures that initial ||P || is not large as a consequence of level (avoided)

crossings. Levels tend to diverge away from each other as the system evolves, hence ||P ||
decreases with time. However, it is unavoidable that for large N level (avoided) crossings

would not occur. This approach is sensitive to the time steps of evolution, requiring that they

be small. The TDPT depends on the quantum states C(t); unlike both the Magnus series

and the adiabatic approximation, where comparisons are made between matrix propagators

in determining relative error.

To compare these methods numerically, we take a piecewise constant approximation.

Treating A as constant over sufficiently small time steps, such that the TDPT is applicable,

we break the interval of evolution in steps of 0.01. This approximation numerically converges

to the true solution. This explicit solution is given by:
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C(t) =
∏
i=0

e(ti−ti−1)AiC0, (5.35)

where 0 ≤ t0 < t1 < · · · ≤ t and Ai is constant on interval [ti−1, ti].

We investigate different classes of Hamiltonians, each parameterised by their initial condi-

tions H(λ(t);x0, v0, l0) with x0, v0 and l0 describing the initial time level dynamics, governed

by functions of λ(t): 1) linear λ(t) = 10−3t, 2) cubic λ(t) = 10−3(t3 + t2 + t) and 3) exponen-

tial decay; λ(t) = 10−3e−t. In accordance to Eq. (5.28) and Eq. (5.30), the upper bound on

the convergence criterion of the Magnus series grows as O(t2) for linear functions of λ, O(t6)

for the cubic function and O(t) for the exponential decay. This suggests the convergences

are expected to hold longest for an exponential decay. Under the same initial conditions,

these different λ yield the same level dynamics. Fig. 5.1 depicts the level dynamics for a

linear function of λ.

We use the Euler method with random initial conditions uniformly distributed over a

ball of radius π
6

to evolve the general Pechukas-Yukawa equations Eq. (3.10), such that the

conditions outlined in Eq. (5.24) are met for 0-1 in steps of 0.01 for 1000 simulations to

average over the random initial conditions for x, v, l. We evolve the dynamics up to t = 100,

without amending initial conditions in order to observe the limitations of the Magnus series.

We compare the logarithm of the relative errors between the piecewise constant approach

given by Eq. (5.35). The average relative error (R.E.), at each time step per simulation is

given by:

R.E. =
1

1000

1000∑
i=1

||C̃[i]− CPC [i]||
||CPC [i]||

, (5.36)

where C̃[i] describes the approximation of C(t) and CPC [i] the piecewise constant solution

at time step i. Taking the norm provides a real valued relative error to plot against time.

We take N = 2, 4, 8 excited states for an initial minimum level spacing of 0.01 and N =

2, 4, 5 excited states for 0.05 to check the effectiveness of the methods as the dimensionality

increases. Note that for a radius of π
6

for the distribution of initial conditions, it is not

possible for a minimum level spacing of 0.05 beyond N = 5. Comparative results are given

in Figs. 5.2, 5.3 and 5.4 for minimum initial level spacing 0.01 and 0.05. These detail the

growth of the logarithmic relative errors with time between the approximations, for each

function of λ.
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Figure 5.1: The time evolution of an 8 level system under the Pechukas-Yukawa model, for
t ∈ [0, 100]. Levels are initially Gaussian distributed with al minimum spacing of 0.05. The
dynamics is encoded in the initial conditions, governed by λ being the linear function of
time. Different λ correspond to different nonlinear stretchings in the dynamics against time.
Given the inital conditions are the same, the dynamics are the same. We observe multiple
avoided crossings between the different levels during their dynamics. We note that the levels
are seen to be moving away from each other as time evolves.
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Figure 5.2: (a) The logarithmic relative error (R.E.) between the piecewise constant
approach and the Magnus series (dashed blue line), the adiabatic approximation (solid
black line) and the TDPT approximation (red crosses) against time for the linear case:
λ(t) = 10−3t. These errors have been investigated for different dimensions; N = 2, 4 and
8, with a minimum level spacing of 0.01. The Magnus series best approximates C(t), when
t ≤ 60. The accuracy improves with dimension, a consequence of the increased number of
level crossings and anti-crossings which are handled better using the Magnus series. For
N = 8, the Magnus series best approximates C(t) for t ≤ 100. This demonstrates that the
point of intersection between these R.E.s shift to the right as dimension grows. During the
evolution, the R.E.s are bounded by 100 for all approximations through time. The R.E.
for the Magnus series increases with time as the system approaches a limit such that the
convergence criterion in Eq. (5.23) does not hold. The errors for the adiabatic approxima-
tion overlaps with the TDPT. (b) Similar to (a) with an initial minimum level spacing of
0.05. These errors have been investigated for dimensions; N = 2, 4 and 5. One observes at
N = 2, the Magnus series best approximates C(t) for t ≤ 40, again this period increases
with dimension, at N = 5, reaching t ≤ 50. This demonstrates that the point of intersection
between these R.E.s shift to the right as dimension grows. During the evolution, the R.E.s
are bounded by 100 for all approximations. Only for N = 2 does the Magnus series approach
100. There is a growth in R.E with time as the system approaches a limit such that the con-
vergence criterion in Eq. (5.23) does not hold. The errors for the adiabatic approximation
overlaps with the TDPT, both appear to decrease as time grows large as levels spread fur-
ther apart, so level crossings and avoided crossings are less frequent. Compared against (a),
the periods before the intersection between the Magnus series and the TDPT and adiabatic
approximations are shorter as having a larger minimum separation between levels improves
the accuracy in both the latter approximations.
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Figure 5.3: (a) Same as in Fig. 5.2 (a), averaged over the same initial conditions, for cubic
λ(t) = 10−3(t3 +t2 +t). The errors have been obtained for N = 2, 4 and 5, it was not possible
to obtain results for larger N as the approximations broke down. The Magnus series best
approximates C(t) when t ≤ 10, and plateaus at 100, demonstrating a break down in meeting
Eq. (5.23) for the Magnus series. This is expected as the cubic function grows faster than
all other classes of λ considered in this paper. The relative error for TDPT peaks initially
and also plateaus at 100, whereas the R.E. for the adiabatic approximation decreases with
time as the levels spread further apart in this system, resulting in fewer level crossings and
avoided crossings. (b) Same as in 5.2 (b), averaged over the same initial conditions, with
cubic λ(t) = 10−3(t3 + t2 + t). The Magnus series best approximates C(t) for t ≤ 10. This
interval is shorter than for all other classes of λ, as the cubic function grows faster than all
other classes of λ considered in this paper. The R.E. for the Magnus series plateaus at 100 for
all dimensions, demonstrating a break down in meeting Eq. (5.23). One observes the errors
for the adiabatic approximation overlaps with the TDPT. One observes the duration in the
overlap increases with dimension however, as time increases the adiabatic approximation is
most accurate, decreasing with time, whereas the TDPT plateaus at 10−1. Again, compared
against (a), the periods before the intersection between the Magnus series and the TDPT
and adiabatic approximations are shorter as having a larger minimum separation between
levels improves the accuracy in both the latter approximations.
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Figure 5.4: Same as in Fig. 5.2 (a), again averaged over the same initial conditions, for
exponential decay λ(t) = 10−3e−t. For t ≤ 10 and N = 2, the Magnus series best approxi-
mates C(t). This period increases with dimension, going beyond t = 100 for N = 8, where
the point of intersection between the R.E.s shift to the right as dimension grows. For the
exponential decay, the R.E.s for all approximations remain bounded below 10−1, as time
grows large the Magnus series plateaus yet provides accurate results throughout the evo-
lution, demonstrating thus far the Magnus series convergence criterion is met. Again, the
errors for the adiabatic approximation overlaps with the TDPT, where their errors plateau
below 10−1. (b) Same as in Fig. 5.2 (b), again averaged the same initial conditions, for
exponential decay λ(t) = 10−3e−t. For t ≤ 20, the Magnus series best approximates C(t).
This period increases with dimension, reaching t ≤ 30 at N = 5, where, again the point of
intersection between the R.E.s shift to the right as dimension grows. For the exponential
decay, the R.E.s for all approximations remains below 10−2, as time grows large the Magnus
series plateaus yet provides accurate results throughout the evolution, demonstrating thus
far the Magnus series convergence criterion is met. Again, the errors for the adiabatic ap-
proximation overlaps with the TDPT, both seen to decrease as time grows large at the same
rate such that beyond t = 30, these provide better approximations for C(t) a consequence of
the levels moving further apart hence level crossings and avoided crossings are less frequent.
Compared against (a), again one observes the periods before the intersection between the
Magnus series and the TDPT and adiabatic approximations are shorter as having a larger
minimum separation between levels improves the accuracy in both the latter approximations.
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We observe for short time intervals, the best approximation for C(t) is the Magnus series.

However, as time grows large there is a break down in meeting the convergence criteria Eq.

(5.23) for the set initial conditions. Exponential decay is an exception case; the growth of the

system is slow enough that the R.E saturates before reaching errors of 10−2. This provides

accurate solutions throughout the evolution. The R.E.s from the adiabatic approximation

and the TDPT decrease below the Magnus series R.E. as time grows large, a consequence of

the levels becoming further apart resulting in ||P || becoming less significant. We note that

this weakens the approach. The Magnus series in contrast is well suited to the ‘spaghetti

regime’ where levels are close, a result of the Magnus series being less vulnerable to the

effects of level crossings (as shown in Appendix B). This is observed in the general trend,

that for larger N where level interactions are more frequent, the Magnus series relative errors

overtake the errors for both the adiabatic and TDPT approximations at later times.

5.7 Density Matrix Evolution

Using the Pechukas-Yukawa formalism, we obtain an explicit description of both the occu-

pation numbers and coherences of a quantum system continuous through time from the level

dynamics. This has great potential for the development of AQC, providing insight on the

decoherences of a system, a major challenge faced by AQC. We later extend our investigation

to the study of Landau-Zener transitions occurring at level crossings and avoided crossings

leading to decoherences. Decoherences arise from a number of various elements intrinsically

and from the environment ranging from level crossings and avoided crossings to random dis-

sipative influences from the environment, however the investigation of these various sources

are beyond the scope of this paper.

The density matrix is determined from the eigenstate coefficients, C(t):

ρ(t) = C(t)
⊗

C∗T (t). (5.37)

This provides insight on both the dynamics of occupation numbers (the probability of re-

maining in a state after level “collisions”) and the coherences (interlevel correlations). One

gains crucial insights on the decoherence of the system in relation to its initial conditions.

Taking the Magnus series expansion to approximate C(t), one obtains a convenient

asymptotic cumulant expansion in powers of λ̇, improving the efficiency of the result given

that the series converges. Each term of the expansion corresponds to a sum of an infinite

number of terms in a direct expansion of the density matrix. The convergence of this approx-
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imation is governed by the initial conditions and the evolution of λ such that these solely

characterise the entire system dynamics.

This description is well suited to nonequilibrium systems where levels are close together,

described by the “spaghetti” regime. Using this description, one can investigate the effects

of level crossings and avoided crossings on the system’s evolution and the extent to which

these affects the population of states[43].

Under the Magnus series approximation, the occupation numbers are given by,

ρmm(t) =
N∑
n=1

(
e
∫ t
0 A(s)ds+ 1

2

∫ t
0

∫ s
0 [A(s),A(s′)]ds′ds

)
mn
× C1n(0)C∗n1

(
e
∫ t
0 A(s)ds+ 1

2

∫ t
0

∫ s
0 [A(s),A(s′)]ds′ds

)
nm
.

(5.38)

This describes continuously through time, the probability of remaining in the same quantum

states as the system evolves. The diagonal elements of the density matrix describe the

probability of states remaining in the same state, accounting for the influences of interference

on the system. We apply these properties of the Magnus series, comparing against the

different approximations for a concrete example.

5.8 Occupation Dynamics for the Exact Cover Algo-

rithm: A Variation on 3-Satisfiability

Applying our approach to a concrete example, the exact cover 3-satisfiability problem, we

compare the applicability of the different approximations to this problem. We determine

the eigenstate coefficients from which one obtains the occupation dynamics crucial to the

understanding of sources of decoherences in a quantum system.

The exact cover algorithm, belongs to the class of NP-complete problems[44, 45], first

proposed by Knuth[44]. It has since been extended to the AQC setting[1], cast as a variation

on 3-satisfiability[1, 10, 45]. The problem is described by a Boolean expression, the intersec-

tion of all clauses for a string of N binary variables in a set S, constrained by M clauses, each

acting on three variables; yα, yβ and yγ with α, β, γ ∈ N. The clause is satisfied if and only

if one of the three variables takes the value 1 whilst the other two take 0; yα + yβ + yγ = 1,

described by the clause function such that each violated clause is associated with a fixed

energy penalty[45]:
∑

Clauses(yα + yβ + yγ − 1)2 used to obtain a solution to the problem.

The Hamiltonian describing this problem can be translated to an M -qubit problem, given

by the following:
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H = λ
M∑
i=1

1− σxi
2

+ (1− λ)
M∑
i<j

Cij(1− σzi )(1− σzj ), (5.39)

where Cij ∈ N counts the pairwise occurrence of any two distinct variables in the clauses and

σx and σz are given by the Pauli spin matrices, translating the description through qubits.

We consider three distinct clauses with C12 = C23 = 2 and C13 = 1 with an exponential

decay function for λ = 10−3e−t. The energy spectrum is determined by diagonalising Eq.

(5.39), giving the eigenvalues. Combined with Eq. (3.10) we determine the evolution of the

level dynamics. We note here that the initial conditions do not meet Eq. (5.23). However,

as one observes in Figs. 5.2 and 5.4, the Magnus series is robust in that despite the initial

conditions having not satisfied the criterion outlined in Eq. (5.23) for in the interval [0,

1], the approximation had accurately provided solutions far beyond this duration. Using

this flexibility, we compare the different approximations explored in Sec. 5.6 to obtain

the evolution of the eigenstate coefficients, up to t = 100 in steps of 0.01 with Gaussian

distributed initial conditions, normalised for C(0). We determine the logarithm of the relative

errors compared against the piecewise constant approach for each approximation through

time in Fig. 5.5.

We observe the Magnus series best approximates the evolution of the eigenstate coeffi-

cients throughout the duration, with the error bounded below 10−2 up to t ≤ 35. Using

the relation ρ = C(t) ⊗ C∗T (t), where C∗T (t) denotes the complex conjugate transpose of

C(t), we determine the evolution of the density matrix for this system hence we obtain the

dynamics of the occupation numbers, given in Fig. 5.5 (b).

One obtains the evolution of the occupation numbers from diagonalising the density

matrices, these describe the probability of remaining in the initial states where the off-

diagonal terms describe the dynamics of the coherences, giving the probability of state

transitions. Using this description, one can explore various sources of decoherence from

stochastic processes as well as Landau-Zener transitions from interactions between the levels

and their impact on the population of states.

These investigations on the evolution of eigenstate coefficients could be realised experi-

mentally. For example, consider the experiments by D-Wave One concerning 108 qubits[46].

One could translate their quantum annealed Hamiltonian based on the Ising model to the

Pechukas-Yukawa setting using Eq. (3.10); choosing some function of λ(t) to satisfy the

start and end points of an interval such that it simulates time over t ∈ [0, tf ][46]. Under this

description, one could then approximate the eigenstate coefficients which can then be used

to determine the occupation numbers and coherences as the system evolves in time.
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Figure 5.5: (a) The logarithm of the relative error against time for the adiabatic approxi-
mation (thick crosses), the TDPT (solid line) and the Magnus series approximation (dashed
line). One observes the errors throughout the evolution, in all cases are bounded by 10−2.
The adiabatic approximation overlaps with the TDPT, however up to t ≤ 35, the Magnus se-
ries best approximates C(t) providing accurately the dynamics of the eigenstate coefficients.
(b) The evolution of the occupation numbers of the 3-Satisfiablity qubit system to study
the exact cover 3 problem of 8 bits. We observe the presence of an avoided crossing between
states 7 and 8, resulting in a reflection in their occupation dynamics, suggesting a transfer
in the population of states. In contrast, all other states have remained essentially constant
despite a level crossing between states 7, 1 and 2. It would be of interest to determine the
dynamics under the influence of noise modelling interactions with the environment.
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5.9 Summary

In this chapter, we derived the relationship between the evolution of quantum states and

level dynamics under the Pechukas-Yukawa formalism. This allows for describing a non-

equilibrium, nonstationary quantum system in its entirety via level dynamics and their ini-

tial conditions. Solving for the eigenstate coefficients under three different approximation

schemes, the adiabatic approximation, TDPT and Magnus series expansion, we compared

the suitability of each regime. Determining the convergence criterion for the Magnus series,

we determine the theoretical bounds on the approximation. We found the Magnus series

held better in a “spaghetti” regime where level crossings and avoided crossings are frequent.

Furthermore, the Magnus series admits a cumulant exapansion which could prove insightful

in the investigation of adiabatic invariants, which could yield promising in the design of AQC

features.

Comparing numerically the different schemes, we show the Magnus series had up to 4

orders of log errors below the adiabatic and TDPT approximation. Moreover, we found the

Magnus series accuracy against both the adiabatic and TDPT approximations improved with

larger systems. This can be attributed to the fact that Magnus series is well suited to level

crossings and avoided crossings which become more frequent for larger systems whereas the

TDPT is prone to divergences as a result. We also found that the TDPT adds no improved

accuracy than the adiabatic approximation.

Finally, we discuss the evolution of the density matrix in the Pechukas-Yukawa formalism,

describing the entirety of the quantum system via level dynamics. Using this description,

one can study sources of decoherence on quantum systems via occupation numbers and

coherences. Under this formalism, we determine the evolution of the occupation numbers

for the 3-Satisfiability exact cover algorithm using these three approximations. Despite the

initial conditions not meeting the convergence criterion for the Magnus series, it was shown

that the logarithm of the relative error for Magnus series was 4 orders less than the adiabatic

approximation and TDPT expansion, demonstrating the robustness of the Magnus series.

This description of occupation numbers through level dynamics, related directly with

Landau-Zener transitions. In extension to our description of occupation numbers, we verify

the description of Landau-Zener transitions in the Pechukas-Yukawa formalism for level

dynamics.
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Chapter 6

Investigating the Landau-Zener

Tunnelling Model via Eigenvalue

Dynamics

Quantum systems experience decoherence from both intrinsic interactions as well as random

fluctuations from the environment. We investigate the influence of noise on the dynamics of

an adiabatic quantum computer using the Pechukas-Yukawa formalism. Under this descrip-

tion, the level dynamics of a parametrically perturbed quantum Hamiltonian are mapped to

the dynamics of 1D classical gas.

We develop the Landau-Zener model in the Pechukas-Yukawa formalism to gain insight

on the effects of random fluctuations on the evolution of quantum states. It is well equipped

for the description of a non-equilibrium interacting system of highly entangled states and

especially for the understanding of the dynamics of a system and its vulnerability to decoher-

ence. Under the this formalism, we investigate the compatibility of the Landau-Zener model

through determining the requirements in the Pechukas-Yukawa formalism for the conditions

necessary for the Landau-Zener model to be applicable. We further explore the impact of

Brownian noise on these requirements. Under these conditions, we explore the behaviour of

levels approaching the point of minimum distance under the influence of noise. We aim at

developing basic elements of such an approach, which would seem especially useful for, but

not necessarily restricted to, modelling adiabatic quantum computers.

As discussed earlier, decoherence is one of the key challenges in AQC. This could be

investigated using the Landau-Zener transition model, detailing changes in the occupation

umbers of quantum states as a consequence the non-adiabatic population transfer at level

crossings and avoided crossings in perturbed Hamiltonian systems or quantum phase tran-

sitions. These describe fundamental results of nonstationary quantum mechanics. The
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Landau-Zener model has been extended to stoquastic systems. This details the probabilities

of state transitions under random environmental influences, which may additionally lead to

decoherence in the system.

6.0.1 Landau-Zener Transitions

Landau-Zener transitions occur at level crossings or avoided crossings, where they reach

minimum separation at a λ∗ and repel. They can occur degenerately and these cases are

considered separately. The Pechukas equations, Eq. (3.10) are well equipped to describe

level crossings and avoided crossings in a system. In the deterministic case, level crossings

occur when xm(λ∗) = xn(λ∗) describing degeneracies[47, 48, 49], as a result lmn(λ∗) = 0 at

some level crossing at λ∗ (converse is not necessarily true[3, 4, 9]). Avoided crossings arise

when levels approach a minimum non-zero distance before repelling.

The conditions to apply the Landau-Zener transition model to a time-dependent Hamil-

tonian are based on meeting the following simplifications. 1) The energy separation is a

linear function of time: xm−xn = αt where α is a constant. 2) The perturbation parameter,

λ is a linear function of time. 3) The perturbation takes a 1
r

potential with radius r. The

standard approach to model the interactions assumes all other level interactions are negli-

gible. This comes from the assumption that level crossings are locally more dominant than

all other interactions during this period, reducing the system to 2 interacting levels at any

time. Multi-level crossings are rare occurrences, their statistical significance is negligible.

Avoided crossings are parameterised by the size of the gap at closest approach and the

asymptotic slope of the curves[49, 50, 51]. For an isolated avoided crossing, the energy levels

take hyperbolic form: x±(λ) = x(λ∗)+B(λ−λ∗)± 1
2
(∆2

min+A2(λ−λ∗)) 1
2 with ∆min denoting

the minimum gap size, B(λ − λ∗) and A(λ − λ∗) respectively describing the mean and the

difference in the asymptotic slopes[49, 50].

The Landau-Zener model is used to describe these interactions through a statistical dis-

tribution of gap sizes, governing the rate of excitation due to non-adiabatic population

transfers. This gives the probability to remain in its initial state after a level crossing or

avoided crossing. The non-adiabatic transition probability is given by the following proba-

bility distribution, PLZ [3, 52]:

PLZ = e
− ∆2

min
4π|〈m|ZHb|n〉|λ̇ . (6.1)

This provides a useful description for avoided crossings in a system independent of external

noise. Given the outlined Landau-Zener conditions are satisfied, the transition time is τLZ =
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∆min

λ̇
, defined by the interval in time the levels interact in a small neighbourhood of each other

which we denote by γ, (for a level crossing this interaction is instantaneous)[47, 49, 53, 54,

55]. Under the Pechukas-Yukawa formalism, one can determine from the initial conditions

whether a system will exhibit quantum phase transitions. This allows for the investigation

of “quantum phase transition friendly” initial conditions. Additionally, this could be used

to provide insight on the effects of quantum phase transitions. It was suggested[56] that one

can expect quantum phase transitions to occur if there is a fast initial compression of the

whole spectrum, leading to sharp scatterings, however this investigation is beyond the scope

of our current work. In the setting of bosonic systems, this compares with the works by

Gangardt in [57] where it was shown for coupling strengths in the interval (1, 2) the system

can be described as a quasi-super-solid where the potential energies are of the same order as

the kinetic energies. The coupling constant in our system is given by the golden ratio.

6.1 The Landau-Zener Model in the Pechukas-Yukawa

Formalism

To ensure compatibility between the Landau-Zener model and the Pechukas-Yukawa for-

malism, it is necessary that Landau-Zener conditions are satisfied. In the neighbourhood

of a level crossing or avoided crossing, both λ and the level separation must be a linear

function of time. Expanding about λ∗, we linearise the system in regards to level crossings,

avoided crossings with and without the influences of noise to verify the Landau-Zener model

conditions are met. Given these conditions are satisfied, one can extend the traditional de-

scription of state dynamics through the lens of level dynamics which could yield fruitful in

the development of quantum computing system, however this carries potentials beyond AQC

for general state transitioning systems.

6.2 Level Crossings

Recall our earlier investigation on level crossings in Sec. 5.5.2, we determine how these results

compare when considering the applicability of the Landau-Zener model in the Pechukas-

Yukawa formalism. We use the underlying assumption that levels outside the γ neighbour-

hood of the level crossings or avoided crossings are far away such that their coupling inter-

actions are by comparison negligible. Under these assumptions, we investigated the impacts

on the Pechukas equations, Eqs.(3.10) to show that in the Pechukas-Yukawa formalism, the

N level system can be reduced to solely the interacting levels. Furthermore, we find that the
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Pechukas-Yukawa formalism can indeed be simplified to linear level separations. We examine

the behaviour of the level separations about λ∗ using a Taylor expansion. For a level crossing,

we have shown the relative angular momenta terms are constantly 0 and the acceleration

terms independently tend to 0. This demonstrates linear evolution in level separations. We

show that when there is a level crossing, all non-interacting levels are considered far apart.

Then, the Pechukas-Yukawa equations can be reduced to only the interacting levels.

Suppose xm = xn are the interacting levels and all other levels are far apart, i.e. xm−xk
and xn − xk large for k 6= n,m and angular moment lmklkn are small, the quotient is small

and so one takes the following approximation:

l̇mn =
∑
k 6=m,n

lmklkn

(
1

(xm − xk)2 −
1

(xk − xn)2

)
≈ 0. (6.2)

It is known that when xm = xn that lmn = 0 hence stays constantly zero throughout

the transition time. Similarly, the other non-interacting angular momentum can be paired

into the following coupled differential equations. All other terms are negligible. These are

approximated as follows: for i 6= m,n

l̇mi ≈ lmnlni

(
1

(xm − xn)2

)
,

l̇ni ≈ lnmlmi

(
1

(xn − xm)2

)
.

(6.3)

Applying l’Hopital on this term twice, we have shown this term tends to 0 as λ → λ∗

demonstrating the relative angular momenta terms can be reduced to only the interacting

levels. Under this approximation, it follows that the acceleration terms are also independent

of all other level interactions, determined by the following:

v̇m = 2
∑
i 6=n

|lmi|
2

(xm − xi)3 +
|lmn|

2

(xm − xn)3 ,

v̇i = 2
∑

i,j 6=m,n

|lij|
2

(xi − xj)3 +
|lmj|

2

(xm − xj)3 +
|lnj|

2

(xn − xj)3 .

(6.4)

For the v̇i expression, all terms are negligible. Again the same argument holds for v̇n as does

v̇m. Using the expressions in Eq. (6.2), lmi is constant hence the terms under the sum in v̇m

are negligible. After performing l’Hopital 3 times, the expression
|lmn|

2

(xm−xn)3 was found to tend
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to 0 as λ → λ∗. Expanding about λ∗, level separation is described by xm − xn = δλ(vm −
vn) + δλ2(v̇m − v̇n) + O(δλ3), where acceleration terms independently tend to 0 at a level

crossing. This linearises level separations in this region during the Landau-Zener transition.

For vm = vn, the numerator and denominator in the acceleration terms, identically go to 0,

thus one can treat v̇m as constant, such that for small δλ level separation can be taken as

linear. These compare against Eq. (5.34), where outside the Landau-Zener framework, level

accelerations are non-zero in the event of a level crossing.

This demonstrates the applicability of the Pechukas-Yukawa formalism to the Landau-

Zener model as one can indeed reduce and N level system down to 2, neglecting all other

interactions. Additionally, for a level crossing τLZ → 0 which reflects a strong repulsion

between the levels such that the transition time is instantaneous. Given that multi-level

crossings are statistically negligible and that no more than 2 levels in a close vicinity cross at

a single point hence the level crossings are independent of each other and the Landau-Zener

model in the Pechukas-Yukawa formalism applies.

6.3 Avoided Crossings

Avoided crossings occur when levels approaching each other, reach a local minimum before

deflecting away. To verify the compatibility of the Landau-Zener model in the Pechukas-

Yukawa formalism, it is required that the Landau-Zener conditions are satisfied for the

avoided crossing. In such cases, xm − xn = ∆min and lmn is not necessarily 0. In the same

way, Eq. (6.2) and Eq. (6.4) apply. Under the same approximation that all other levels

are far away, again l̇mn = 0 thus lmn = β where β is a constant. Considering the equations

for lmi and lni, the terms under the sum are negligible as is the final term, leaving the only

surviving term:

l̇mi = lmnlni

(
1

(xm − xn)2

)
= lniβ

(
1

∆min
2

)
,

l̇ni = lmnlmi

(
1

(xn − xm)2

)
= −lmiβ∗

(
1

∆min
2

)
.

(6.5)

We obtain coupled differential equations. Rewritten as

(
l̇mi

l̇ni

)
= 1

∆2
min

(
0 β

−β∗ 0

)(
lmi

lni

)
.

The system is readily solved as:
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lmi =
iβ

|β|
1

2

(
e

i|β|
∆2
min + e

−i|β|
∆2
min

)
=
iβ

|β|
cos

(
|β|

∆2
min

)
,

lni =
−1

2
(e

i|β|
∆2
min − e

− i|β|
∆2
min ) = −i sin

(
|β|

∆2
min

)

(6.6)

Then about λ∗, the relative angular momenta lmn are constants independent of all other

levels. We further showed, lmi and lni are constants with Re(lmi) = 0 and Re(lni) = 0 with

Im(lmi) and Im(lni), bounded between [-1, 1]. This demonstrates the couplings are weak

between the levels involved in an avoided crossing and those that are not. This allows for

treating the avoided crossing, independent of all other levels. Substituting these results into

Eq. (6.4), v̇i = 0, the only surviving terms in v̇m and v̇n evaluated at λ∗ are constants;

(v̇m − v̇n) = 4|β|2

∆min
3 . For small enough δλ, one can linearise the level separations such that

level evolutions are reduced to only the interacting levels, then it is justifiable in applying

the Pechukas-Yukawa formalism to the Landau-Zener model for avoided crossings. Under

these approximations, the Pechukas-Yukawa formalism is reduced to the Calogero-Sutherland

model.

To ensure that non-interacting levels are negligible in a Landau-Zener transition, we must

ensure that level crossings are isolated from each other. We compare the differences in the

transition times between level crossings or avoided crossings in a close vicinity of each other.

Given that the transition times do not overlap, these level crossings and avoided crossings can

be regarded as independent of each other. Considering 2 level avoided crossings occurring in a

close vicinity with minimum level separations at λ∗ and λ∗∗ = λ∗+δ and transition times τLZ

and τ ′LZ respectively. We take symmetric avoided crossings such that τLZ = 2ξ. Recall that

in the adiabatic regime, τLZ = ∆min

λ̇
. These avoided crossings are considered isolated given

that their respective transition times do not overlap such that (λ∗∗−ξ′)−(λ∗+ξ) > 0. Then,

the Landau-Zener transition model is applicable to describe the probabilities of population

transitions.

We denote level separations as d(λ) = x1 − x2, where d(λ∗) = ∆min. Let δλ = λ− λ∗, then

expanding about λ∗, d(λ) = ∆min+δλ(v1−v2+δ̇h11−δ̇h22)+δλ2( 4β2

∆3
min

+δ̈h11−δ̈h22)+O(δλ3).

Given that d(λ) reaches a local minimum at λ∗, then v1 − v2 + δ̇h11 − δ̇h22 = 0, we have the

following:

d(λ) = ∆min + δλ2 4β2

∆3
min

. (6.7)

Take d(λ∗ + ξ) = γ, such that one could rearrange the equation to obtain:
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∆min = γ − ξ2 4β2

∆3
min

. (6.8)

In order to ensure that avoided crossings can be treated independently, (λ∗∗−ξ′)−(λ∗+ξ) > 0

where λ∗∗ = λ∗ + δ. Recall τLZ = ∆min

λ̇
= 2ξ for a symmetric avoided crossing. Then it is

essentially τLZ < 2(δ − ξ′). One could rearrange this bound for ∆min,

γ − ξ2 4β2

∆3
min

< 2λ̇(δ − ξ′). (6.9)

Given that δ > 1
2λ̇

(γ − 4β2

∆3
min

ξ2) + ξ′, the conditions for level crossings to be treated indepen-

dently are satisfied.

In contrast to the level crossing case, avoided crossings have constant relative angular

momenta,

between levels at the level crossing or avoided crossing. In this case all other relative

angular momenta lmi and lni, are constants where Re(lmi), Re(lni) = 0 and Im(lmi), Im(lni)

are bounded in the interval [−1, 1]. The difference between the acceleration terms of the

interacting levels is constant, 4|β|2
∆3
min

at λ∗. Choosing a sufficiently small δλ, these terms are

negligible therefore linearising the level separations. We extend this investigation to account

for the impacts of noise on these conditions. This enables further understanding of dissipative

influences on the properties of level interactions.

6.4 Stochastic Avoided Crossings

In a stochastically perturbed Hamiltonian, Landau-Zener transitions manifest as avoided

level crossings (under the effects of noise, levels do not cross). We explore the influences of

noise on a quantum system. Depending on the nature of the noise, whether the source is

longitudinal (with only diagonal elements) or transverse (with only off-diagonal elements),

the system behaves differently. Longitudinal contributions result in decoherence in the sys-

tem whereas transverse noise results in couplings to the environment. Our analysis could

be extended to various types of noise, here we consider intrinsic longitudinal noise modelled

as a single composite source of Brownian noise δh such that δ̇h = εηM . Here η is white

noise, a random normal distributed stochastic process[53, 54], M represents a general di-

agonal matrix and ε denotes the noise amplitude. As explained earlier, for white noise the

expectation is zero and the autocorrelation function is given by 〈ηmn(λ), ηmn(λ
′
)〉 = δ(λ−λ′)
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and 〈εηmn(λ), εηmn(λ
′
)〉 = ε2δ(λ−λ′). The correlation time τc = 0. White noise is the formal

derivative of a Wiener process, W (t).

To ensure the applicability of the Landau-Zener model, we reduce the system from N

levels to 2. Again, under the assumption that levels outside the avoided crossings are far

away with weaker coupling interactions we show that the avoided crossing is independent

of all non-interacting level contributions. The Pechukas-Yukawa model is highly entangled,

hence it is important to verify that the conditions required for the Landau-Zener description

are met. The model described in Eq. (3.12), must be regarded as independent of all non-

interacting levels about an avoided crossing.

To determine the applicability of the Pechukas-Yukawa formalism under dissiptive influ-

ences, it is neccessary to ensure that level interactions in an avoided crossing are independent

of all other interactions. Again, xm−xn = ∆min at some λ∗ (denoting the point of minimum

separation) and lmn is not neccessarily 0. Similarly to Eq. (6.17), we have the following for

the coupling between levels at an avoided crossing,

l̇mn =
∑
k 6=m,n

lmklkn

(
1

(xm − xk)2 −
1

(xk − xn)2

)
+

(xm − xn)(lmkδ̇hkm − δ̇hmklkn)

(xm − xk)(xn − xk)
+

δ̇hmn(vm − vn) +
lmn(δ̇hmm − δ̇hnn)

(xm − xn)
.

(6.10)

We consider a single source of composite longitudinal Brownian noise. Again, assuming

all non-interacting couplings are negligible and the levels are far away from the level crossing.

This simplifies the relative angular moment dynamics to the following:

l̇mn ≈
lmn(δ̇hmm − δ̇hnn)

(xm − xn)
≈ lmn

∆min

εµη, (6.11)

where ε denotes the noise amplitude, µ is a constant giving the difference between the noise

components and η represents a stochastic white noise term. Let σ = εµ
∆min

. We consider sep-

arately real and imaginary components. In each component, we observe a driftless geometric

Brownian motion:

Ṙe(lmn) = σRe(lmn)η,

İm(lmn) = σIm(lmn)η.
(6.12)

Using the Euler-Maruyama method to solve these stochastic differential equations, we
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rewrite the expression for Re(lmn) as dRe(lmn) = σRe(lmn)dW . Integrating these terms,

where we zero out noise at λ∗ − ξ, we obtain the following:

∫ λ

λ∗−ξ

dRe(lmn)

lmn
= σdW. (6.13)

We apply Ito’s formula such that d(Ln(Re(lmn))) = dRe(lmn)
lmn

− 1
2

1
Re(lmn)2dRe(lmn)dRe(lmn)

where dRe(lmn)dRe(lmn) is the quadratic variation of the stochastic differential equation such

that dRe(lmn)dRe(lmn) = σ2Re(lmn)2dλ. Substituting this into the integral, we have:

∫ λ

λ∗−ξ
d(Ln(Re(lmn))) +

σ2

2
= σdW. (6.14)

Then,

Ln

(
Re(lmn(λ))

Re(lmn(λ∗ − ξ))

)
= −1

2
σ2(λ− (λ∗ − ξ)) + σW (λ). (6.15)

The start time of the levels approaching a minimum separation in a γ neighbourhood of

each other is taken as (λ∗− ξ), and µ denotes the difference in the noise components. Expo-

nentiating the result, we find that Re(lmn(λ)) = Re(lmn(λ∗ − ξ))e−σ
2

2
(λ−(λ∗−ξ))+σW (λ). Using

the same method to solve for the imaginary components, we have Im(lmn(λ)) = Im(lmn(λ∗−
ξ))e−

σ2

2
(λ−(λ∗−ξ))+σW (λ). Combining these terms, lmn(λ) = lmn(λ∗ − ξ)e−σ

2

2
(λ−(λ∗−ξ))+ση(λ) in

the region of the transition time. This term has expectation, E(lmn) = lmn(λ∗ − ξ) and

variance V ar(lmn) = |lmn(λ∗ − ξ)|2(e
σ2

2
(λ−(λ∗−ξ)) − 1). Here, (λ∗ − ξ) represents the start

time of levels approaching a minimum separation in a γ neighbourhood of each other. This

describes lmn as a martingale (the conditional probability of the next step is dependent only

on the current step) where for λ → ∞, lmn → 0 with probability 1, which follows from the

law of iterative logarithm.

The equations for lmi are given by the following:
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l̇mi =
∑

k 6=m,i;i 6=n

lmklki

(
1

(xm − xk)2 −
1

(xk − xi)2

)
+

(xm − xi)(lmkδ̇hkm − δ̇hmklki)
(xm − xk)(xi − xk)

+

δ̇hmn(vm − vi) +
lmi(δhmm − δhii)

(xm − xi)
+ lmklkn

(
1

(xm − xk)2 −
1

(xk − xn)2

)
+

(xm − xn)(lmkδ̇hkm − δ̇hmklkn)

(xm − xk)(xn − xk)
+ δ̇hmn(vm − vn) +

lmn(δhmm − δhnn)

(xm − xn)
.

(6.16)

We consider a single source of longitudinal noise such that off-diagonal components are

0. Under the Landau-Zener assumption that all other levels have weaker couplings and large

level separations, we obtain pairs of coupled differential equations:

l̇mi ≈ lmnlni

(
1

(xm − xn)2

)
= lmnlni

(
1

∆min
2

)
,

l̇ni ≈ lnmlmi

(
1

(xn − xm)2

)
= −l∗mnlmi

(
1

∆min
2

)
.

(6.17)

Taking a matrix of ordinary differential equations,

(
l̇mi

l̇ni

)
=
f(λ)

∆2
min

(
0 lmn(λ∗ − ξ)

−l∗mn(λ∗ − ξ) 0

)(
lmi

lni

)
, (6.18)

where f(λ) = e
σ2

2
(λ−(λ∗−ξ))+ση(λ), capturing the stochastic element. Diagonalising the ma-

trix and changing bases to the eigenvectors, we can simply integrate the decoupled set of

equations. We obtain the following:

lmi =
ilmn

2|lmn|

(
e
i
f(λ)

∆2
min

|lmn|
+ e

−i f(λ)

∆2
min

|lmn|
)

=
ilmn
|lmn|

cos

(
f(λ)

∆2
min

|lmn|
)
,

lni = −1

2

(
e
i
f(λ)

∆2
min

|lmn| − e
−i f(λ)

∆2
min

|lmn|
)

= −isin
(
f(λ)

∆2
min

|lmn|
)
.

(6.19)

Then, lmi and lni are stochastic terms, whereRe(lmi) = 0 andRe(lni) = 0 with Im(lmi), Im(lni)

bounded in the interval [−1, 1]. Taking δλ sufficiently small, these terms are negligible in

the avoided crossing. Applying these relative angular momenta formulae to the acceleration

terms (again taking account that the noise source comes from a single longitudinal Brownian

source) we have the following:
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v̇m = 2
∑
i 6=n

|lmi|
2

(xm − xi)3 +
2δ̇hmiRe(lmi)

(xm − xi)2 +
|lmn|

2

(xm − xn)3 +
2δ̇hmnRe(lmn)

(xm − xn)2 ,

v̇i = 2
∑

i,j 6=m,n

|lij|
2

(xi − xj)3 +
2δ̇hijRe(lij)

(xi − xj)2 +
|lim|

2

(xi − xm)3 +
2δ̇himRe(lim)

(xi − xm)2

+
|lin|

2

(xi − xn)3 +
2δ̇hinRe(lin)

(xi − xn)2 .

(6.20)

All terms are negligible for vi under the approximation on the level separation in this region

is negligible.

For the difference between v̇m and v̇n, all terms under the sum are negligible except for

lmn 6≈ 0 is given by 4|lmn|2

∆min
3 , independent of all other levels. Here, lmn is a martingale with

constant expectation. To determine the effects of the stochastic terms on the difference

between accelerations, we consider the expectation during τLZ . The expectation of |lmn|2 is

given by,

|lmn|2 = Re(lmn)2 + Im(lmn)2,

E|lmn|2 = E(Re(lmn)2) + E(Im(lmn)2)

= V ar(Re(lmn)) + V ar(Im(lmn)) + E2(Re(lmn)) + E2(Im(lmn))

= |lmn(λ∗ + ξ)|2e
σ2

2
(λ−(λ∗−ξ)).

(6.21)

Then the expectation of the difference between the acceleration terms are given by
4|lmn(λ∗+ξ)|2

∆3
min

e
σ2

2
(λ−(λ∗−ξ)). These dynamics are bounded between [4|lmn(λ∗+ξ)|2

∆3
min

, 4|lmn(λ∗+ξ)|2
∆3
min

eξσ
2
]

where λ ∈ [λ∗ − ξ, λ∗ + ξ]. For τLZ being short time durations, this motion is under stricter

bounds, near-constant. Choosing δλ small enough, the difference in acceleration terms are

negligible, linearising the level separations. Then it is observed that indeed the Pechukas-

Yukawa formalism under the influence of noise is applicable to the Landau-Zener model,

reducing the system from N levels to 2. This analysis can be extended to various types of

noise.

In order for the Landau-Zener model to hold in the stochastic sense, it is necessary to

consider avoided crossings in a close vicinity of each other, such that they can be regarded as

isolated crossings. The transition time of an avoided crossing is changed under the influence

of noise. Of particular interest are the influences of noise on the minimum separation. These

in turn have an impact on both the probability of transitions and the transition times. By

the central limit theorem, white noise is a reasonable model for noise from many stochastic

73



influences however, an attractive extension of these works involve the consideration of avoided

crossings under more realistic models of noise such as coloured noise.

6.5 Summary

In this chapter, we outline the conditions required for the applicability of the Landau-Zener

model. Considering each case separately for level crossings, avoided crossings and stochastic

avoided crossings, we show the Landau-Zener conditions are met in the Pechukas-Yukawa

formalism. Utilising the close relation between level dynamics and the evolution of quantum

states, we demonstrate that state transitions can be investigated through level dynamics.

Having shown that the Landau-Zener model is compatible with the Pechukas-Yukawa

formalism, we provided the justification of the investigations by Zagoskin[3] and Wilson[5]

where it was observed that there is a significant difference between the scaling exponents of

the escape probability for the edge states and intermediate states. We provide analytical

expressions which can be used to investigate the reasons for their differences.

Moreover, the marriage of the Landau-Zener model and the Pechukas-Yukawa formalism

provides one example of the relationship between level dynamics and state dynamics. A

generalisation of this scheme would be to include state dynamic outside of Landau-Zener

transitions via level dynamics, independent of the imposed conditions, allowing for the de-

scription of state dynamics for nonstationary, dissipative systems. This may be achieved

using a quantum master equation in the Pechukas-Yukawa formalism, reducing the descrip-

tion of the density matrix through eigenvalue dynamics however, goes beyond the extent of

our current investigation.
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Chapter 7

Conclusions

In this project, we developed a novel approach to the theoretical description of large quantum

coherent systems out of equilibrium, based on the Pechukas-Yukawa formalism. Under this

description, the dynamics of energy levels are mapped to a fictitious one-dimensional classical

gas with long-range repulsion.

We developed a consistent description of non-equilibrium, nonstationary evolution of

a perturbed quantum system based on the kinetic theory of the Pechukas-Yukawa model.

Under this formalism, we obtained non-equilibrium statistical kinetic equations of motion

for the level dynamics of the system, from the application of the BBGKY hierarchy to the

Pechukas-Yukawa model, which extends the kinetic equations concerning level dynamics to

parametrically driven evolution of a quantum system. This procedure provides a fundamen-

tal extension of previous study which establish the use of the Pechukas-Yukawa model and

the random matrix theory in equilibrium statistical mechanics of level dynamics. The appli-

cation of the BBGKY hierarchy to the Pechukas-Yukawa model describing a parametrically

driven evolution of a quantum system, especially convenient in accomodating adiabatic sys-

tems. However, the formalism is applicable to a general system with parametric evolution

in time, exploring an important new direction in contemporary physics which opens further

investigations to understand the connection to the physics of the Pechukas gas.

Statistical approach to level dynamics would allow a reduced description of correlation

functions. Given that coordinates in the Pechukas-Yukawa framework are independent,

we investigate the factorisation approximation where sets of approximations are obtained

from breaking the chain at a particular point such that higher-order reduced distribution

functions can be constructed from a product of lower-order ones under this factorisation

approximation. This describes an s-particle reduced probability distribution function from

a product of s one-particle distribution functions. Moreover this results in independent

probability distribution functions, reducing the many-body system to a single-body system,
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where the number of particles correspond to the number of energy levels in the system. This

is a great simplification that enables solving the BBGKY hierarchy from solving just the

one-body system. Under this approximation one can infer the statistical properties of the

level dynamics using only one-particle distribution functions.

Analytically considering the accuracy of the factorisation approximation, providing an

effective mean field theory approximation, we find that corrections to the factorised approx-

imation of the distribution function scale as 1/N , where N is the number of energy levels in

the system. This is shown from the asymptotic decay in the relative error of order O
(

1
N

)
as N tends to infinity. This provides confidence that for large systems, this approximation

holds.

To illustrate this theory, we considered a simple system of two-qubits compared against

the exact solution of the Hamiltonian. Using the eigenvalues in accordance with the Pechukas

equations, the velocities and relative angular momenta were determined. Then the distri-

bution functions involved in the first chain of the BBGKY hierarchy were constructed to

test the factorisation approximation for higher order chains. In the case of two-qubits, this

approximation was not accurate as the energy levels were not mutually independent at any

given λ, however a comprehensive numerical comparison for larger systems is impractical as

it proves more challenging to diagonalise the corresponding Hamiltonian. This description is

advantageous as it is expected to have significant developments in non-equilibrium processes

such as decoherence, with fruitful extensions into the description of AQC.

Furthermore, we obtain equations for the for level occupations and inter-level transi-

tion amplitudes, which allow for the description of the evolution of quantum states in non-

equilibrium systems. This description of a quantum coherent system is advantageous as

it includes all higher level entanglements. Having established the relationship between the

level dynamics and the occupation numbers as a function of time using the PechukasYukawa

model, we provide a description of the full wavefunction under the Pechukas-Yukawa formal-

ism, detailing the system in its entirety. Then, it is possible to determine the groundstate

of large systems efficiently and hence demonstrate that AQC is a viable alternative to quan-

tum computing. Moreover, this provides scope to better describe a large quantum coherent

system than approaches currently in practice.

Through the evolution of the eigenstate coefficients, we considered the dynamics of quan-

tum states using the Magnus series. This approach was contrasted against the TDPT and

the adiabatic approximation compared with a direct numeric simulation. The Magnus se-

ries provides an infinite hierarchy in powers of λ̇ parameters. The structure is that of a

cumulant expansion and it would be of interest to consider asymptotic convergences in the

series which would improve the efficiency of the result. Considering the eigenstate coefficents
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in the adiabatic limit, one can explore the significance of these terms with respect to the

development of adiabatic invariants which has the potential to significantly impact features

of the adiabatic algorithm design. We also showed the convergence of the Magnus series

is governed by the initial conditions in the Pechukas-Yukawa formalism which could gain

better insight into what measurable characteristics of a system could be used as a criterion

for its quantum performance. This carries the potential to specify Hamiltonians of different

complexity classes, governed by the initial conditions of the system.

We investigated the limits of the Magnus series, reducing the convergence criterion such

that the entire evolution of the system is governed by the initial conditions and the choice

in λ. Numerically, it was found that for short intervals, where the convergence criterion is

satisfied, the Magnus series was most accurate with its relative errors lower than the relative

errors for both the TDPT and the adiabatic approximation by multiple orders. We found

that the Magnus series is robust, as time evolves, the error increases yet the Magnus series

remains the better approximation far beyond the interval where he convergence criterion is

met. It was also shown that for larger systems with a greater number of interacting levels, the

relative error for the Magnus series overtook the relative errors for the TDPT and adiabatic

approximations at later times, demonstrating that the Magnus series is better suited to

the “spaghetti” regime. The Magnus series is less prone to divergences in the error due to

level crossings and avoided crossings, which become more prevalent in higher dimensions of

excited states.

Finding that the Magnus series offers an especially convenient description of non-adiabatic

evolution, we explored the relationship between the level dynamics and that of the evolution

of the quantum states described by the density matrix. We obtained the occupation dynamics

for the 3-Sat problem, providing insight on the population of states which offers analytical

insights on the sources of decoherence on the evolution of a quantum system. This approach

is general and has applications beyond quantum algorithms.

Separately, we developed the Landau-Zener model in the Pechukas-Yukawa formalism,

showing that our framework coincides with the results of the classical Landau-Zener transi-

tions upon linearisation. As a starting point, we take all assumptions that form the basis of

the Landau-Zener model and explore the conditions they impose on the Pechukas-Yukawa

formalism to be applicable. This led to the developments in the understanding of level

crossings and avoided crossings in this setting, identifying various properties of the level

interaction. Particularly, we provide a detailed insight on the level repulsions extended to

the influence of external noise and its impacts on the minimum separations characterising

avoided crossings. The investigation of level repulsions at an avoided crossing under the

influence of longitudinal noise was not possible without a thorough description of the level
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dynamics given by the Pechukas-Yukawa formalism. From this, we built on earlier works

by Zagoskin[3] and Wilson[5], to gain insight on level interactions beyond the Landau-Zener

probability. Under this description, one could investigate the differences in the scaling prop-

erties observed in these earlier works.

An attractive development to this investigation would be to apply the Landau-Zener

probability to the Pechukas-Yukawa description of quantum states which could lead to the

exploration of quantum phase transitions through the initial condition of the eigenvalues

of a quantum Hamiltonian system. The eigenstate coefficients have been expressed using

the Pechukas equations such that one could extend this description to obtain both the

occupation dynamics and the coherences of the system, crucial to the development of AQC.

An interesting extension of these works would be to consider the effects of different types of

noise such as coloured noise and the impacts of transverse components.

In continuation of our investigation, using the Magnus series, we obtain an explicit an-

alytical description of both the occupation numbers and coherences of a general quantum

system, continuously through time. Discretising the occupation numbers and averaging over

the levels, we gain statistical insight in the changes of the occupation dynamics as a con-

sequence of Landau-Zener transitions. Under this description, we contrasted between edge

and intermediate states in exploration of the differences in the Landau-Zener transitions and

their impacts on the transition probabilities. This allows us to investigate the scaling rela-

tions found by Zagoskin[3] and Wilson[5], so we can identify the reasons for their apparent

differences. Statistically, the primary contributions for the differences between the transi-

tions can be attributed to the differences in the frequency of occurrences which enables one

to consider these impacts on decoherences.

Additionally, these results would serve as a starting point to gain insight on multi-state

Landau-Zener transitions. The standard Landau-Zener model only deals with 2 interact-

ing levels. Extending to multi-state problems could yield more interesting physics. The

Pechukas-Yukawa model concerns an interacting system of N entangled levels hence it is

highly equipped to consider interacting systems with entangled states. A further extension

it would be useful to consider detailed analytics of multiple level interactions and their in-

fluence on each other’s dynamics. This approach can be used to describe a non-equilibrium

interacting system of highly entangled states, especially the dynamics of a system and its

vulnerability to decoherence. Future scope in this realm would be to investigate the analyt-

ical expressions under the influences of external noise. Furthermore, it would be interesting

to develop on the evolution of quantum states, independent of the Landau-Zener transition

model and the assumptions it demands.
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7.1 Further Investigations

Theoretical description of quantum many-body systems is a critical area of research with

strong connections to modern nuclear physics of nuclei far from equilibrium, optical systems

and quantum technologies. It has led to significant developments in the theory of quan-

tum computing, with one of the most viable competing theories being adiabatic quantum

computing (AQC). However, due to the persisting obstacle of decoherence, the realisation

of quantum computers remains a challenging task. The similarities between the theory of

AQC and quantum phase transitions (QPT) have instigated research on decoherence through

QPT. Most of these works consider only equilibrium systems, however for a physical quantum

platform, based on the superposition of states, the system will inevitably be open due to the

impossibility of perfectly isolating the system from its environment[5], hence noise must be

accounted for. One can develop on the theory of AQC from out of equilibrium QTP, building

a formalism capable of describing highly entangled many-body interactions, under stochastic

influences using Hamiltonian dynamics which is a novel concept. Under this description, one

can provide an improved understanding of the relationship between nonequilibrium QPTs

and decoherence which has significant impacts to a wide range of applications from the de-

velopment of AQC, the understanding of strongly interacting many-body optical systems to

describing shape-phase transitions in the nucleus.

The scope of the impacts of a quantum computer would be far reaching and monumental

in modern society with benefits from simulating chemical reactions, enabling insights on

the developments of new drugs and how they react to boosts in machine learning, assisting

self-driving cars in assessing situations more efficiently, for improved safety. Optical systems

are both economically advantageous and highly beneficial to optical computing systems

allowing for high speed data transmission where data growth has become large, a prominent

limitation to electronic systems. Another advantage photonic systems offer is their robustness

against synchronisation problems, unavoidable in electronic systems. Optical correlation

systems also have the advantage of accessing individual lattices experimentally offering the

ability to design quantum-mechanical devices for quantum information processes. These

compare with quantum signal transmission, understood through simple qubit systems with

extensions to complex artificial structures enabling the utilisation of quantum properties in

data transmission, improving efficiencies.

A major challenge to the realisation of a practical quantum computer is the fragility of

quantum states and their susceptibility to decoherence (the loss of information due to the

interactions with the environment). A promising alternative approach is AQC, encoding the

system in an easily achievable groundstate of the initial Hamiltonian and evolving the system
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under an adiabatic parameter such that the system maps the system to the groundstate of

the final Hamiltonian. This corresponds to an optimal solution. The groundstate is more

robust against decoherence however it is not immune to it.

There is a remarkable similarity between AQC algorithms and QPT in their Hamiltonians

governing their dynamics; H(λ(t)) = H0 + λ(t)H1. There have been studies of algorithms

bringing a quantum system near critical points, similar to that observed in QPT, which are

relevant to the study of evolving quantum systems and the development in the study of

sources of decoherence, prevalent for many-body systems. There exist various models that

seek to describe the relations between quantum phase transitions, decoherence and entan-

glement, however these models are often reliant on mean field approximations to simplify

the system due to the large amounts of information required; this research offers a seamless

description for all these properties from the eigenvalue dynamics of a quantum system out

of equilibrium. The Pechukas-Yukawa model is also expressible in Lax formalism enabling

the study of symmetries and conserved quantities in QPT, however this area of research on

out of equilibrium steady states is still a very young field with much to consider.

QPT under dissipative influences result in the manifestation of critical behaviour in

steady states rather than groundstates. Adiabatic systems initialised in some steady state,

remain in the steady state throughout the duration of the system exhibiting criticalities. For

a single steady state, this has the advantage that when the system deviates from the steady

state because of stochastic influences, it returns to the steady state. In the realms of AQC,

decoherence could be monitored such that the system approaches a desired steady state

manifold under controlled dissipative systems. Our understanding of non-equilibrium QPT

is limited in contrast to equilibrium QPT, despite its relevance in the studies of quantum

computing, atomic molecular and optical systems. One reason for this is that simulating the

evolution of a master equation proves more difficult than Hamiltonian dynamics due to the

sheer amount of information required for the density matrix in contrast to wavefunctions.

The Pechukas-Yukawa model has the capability of studying the evolution of the density

matrix without restriction on the type of noise, understood through eigenvalue dynamics.

This provides great insights to and beyond AQC, to the development of non-equilibrium

QPT analytically and within grasp of experimental testing which plays a crucial role to the

understanding of dynamical phase transitions. Through this understanding of eigenvalue

dynamics, the Pechukas-Yukawa formalism could be used to develop on this alternate theory

of AQC, under a new framework using Hamiltonian dynamics to understand stochastic QPT

to investigate steady states and how their properties could be harnessed for the development

of AQC, which has never been considered. This allows for an immersive detail into this

relatively new field of study.
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Chapter 8

Appendix

8.1 Appendix A: Quantum Information

Classical computations rely on a register of bits, taking values either 1 or 0. For quantum

computations, a register of qubits are used to exploit quantum properties which offer signif-

icantly improved speeds in execution of computer algorithms. They store information in a

register of 2n quantum states for n qubits rather than the classical analogue of a register of

bits.

Qubit: A two-level quantum system that lives in the Hilbert space, used to carry quan-

tum information also referred to as a quantum bit.

The basis vectors are given by the following:

|0〉 =

(
1

0

)
, |1〉 =

(
0

1

)
.

A qubit can be represented as a linear combination of these basis eigenvectors, given as

|φ〉 = α|0〉+ β|1〉, with α, β ∈ C. Then, the probability of observing the qubit in state |0〉 is

given by |α|2 and |β|2 for the probability of observing the qubit in state |1〉. The combined

probability, |α|2 + |β|2 = 1. This state vector can be mapped directly to the Bloch sphere,

where the poles are given by the eigenvectors |0〉 and |1〉. One can represent a collection of

qubits through taking a tensor product of their state vectors.

Quantum information is carried in a set of n qubits, the Hilbert space is given the n-tupe

tensor product, a 2n complex space with a general basis of |N〉 where N is a binary string

of length n given by N = (N1 . . . Nn) ∈ 0, 1n. In tensor notation, |N〉 = |N1〉 ⊗ · · · ⊗ |Nn〉 =

|N1 . . . Nn〉. Then, any vector denoting the information stored in the quantum register of

qubits is given as a linear combination of basis states given by |φ〉 =
∑

N∈1,0n αN |N〉, where

αN ∈ C. These qubits are manipulated via quantum operators also referred to as quantum
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logic gates.

Quantum operators in the two-dimensional Hilbert space are made up of the three funda-

mental rotation operators given by the Pauli matrices which are both unitary and Hermitian,

and the identity transformation 1. The Pauli matrices each have two eigenvalues +1 and

−1 from acting on the two basis vectors. These are used to construct quantum gates used

in quantum computing, discussed in the following section.

8.2 Appedix B: Complexity Classes

Complexity classes can be categorised into three different types of computable problems;

decision problems, optimisation problems and counting problems.

8.2.1 Decision Problems

Decision problems contains the most diversity in the different problem classes, with at least

ten other subclasses. The defining feature of this class of problems are that their outcome

is binary, yes or no instances. P, : PSPACE, EXPTIME, NP and NPC make up the

majority of classes in this set. These are familiar between both deterministic and non-

deterministic computations. P problems have runtimes that grow polynomially with the

size of the problem whereas NP problems take polynomial time to verify a problem. NPC

problems, also referred to as NP-Complete form a subset of NP problems with the property

that any NP problem can be translated as an NPC in polynomial time.

An open challenge in relating these problems remain; given a polynomial time algorithm

for an NPC, the algorithm could be used as a subroutine to solve all other NPC problems

in polynomial time.

Another class of decision problems is bounded-error probabilistic polynomial time (BPP).

A probabilistic problem that returns an answer, correct to some fixed probability p. It is

solved in polynomial time, using a probabilistic algorithm with an error of 1 − p. Another

probabilistic algorithm is the Merlin-Arthur computation class (MA), defined as the prob-

abilistic analog of NP. In this class of problems, Merlin is computationally unbounded,

providing a certificate that Arthur can verfiy using a BPP computer.

In contrast, we have the quantum analogs of these classes of problems. The bounded-

error quantum polynomial time (BQP) describes the quantum analog of the BPP, where

a quantum model of computation based on the arrangements of quantum circuits operating

on qubits. Quantum Merlin-Arthur(QMA), represents the set of problems where the binary

output is verified polynomially in time with an error 1 − p. This type of problem defines

the quantum analog to both MA and NP. Similarly, QMAC defines the quantum analog
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of NPC problems, defined in the same way however operating on a circuit of qubits to take

advantage of quantum properties. A related class of problems is Quantum-Classical Merlin-

Arthur (QCMA), similar to QMA, however the binary value for a ‘yes’-instance is required

to take the form of a classical string.

8.2.2 Counting Problems

Counting problems are defined by those that count the number of optimal solutions. One

example of this group is the sharp-P set of problems which carry decision analogues in NP

and optimisation analogues in NPO, returning the number of optimum solutions.

8.2.3 NP-Hard Problems

A problem is NP-hard if there is a polynomial time reduction from an NPC to the problem.

This reduction implies that an algorithm to solve the problem in polynomial time could be

used as a subroutine to solve the NPC problem, hence all NPC problems. The set of

problems, NPC, QMAC, QCMA, NPO, APX and PTAS fall into the group of NP-

hard problems.

8.3 Appendix C: Density Matrix Formalism

The density matrix is a statistical operator which takes the role of state vectors, encoding

all information of the quantum system including incoherent mixtures of the system, inde-

scribable through pure states |ψ〉. Consider an ensemble of objects in the set states |ψi〉.
If all objects are in the same state, the ensemble is represented by a pure state. Take the

state |ψ〉 expanded in the eigenstates of an operator D; |ψ〉 =
∑

nCn|n〉 where Cn denote

the eigenstate coefficients, then the expectation value of D is given by,

〈D〉 =
∑
n

|Cn|2dn =
∑
n

Nn

N
dn, (8.1)

where dn denotes the eigenvalues of D, |Cn|2 gives the probability of obtaining the eigenvalue

dn, corresponding to the fraction Nn
N

, where Nn gives the number of times eigenvalue dn is

measured out of an ensemble of N objects. This can be described in the form of a density

matrix, characterised by pure states:
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ρ := |ψ〉〈ψ|. (8.2)

This matrix has the following four properties respectively, 1. being a projector: ρ2 = ρ,

2. hermiticity: ρ† = ρ, 3. normalisation: Tr(ρ) = 1 and 4. positivity: ρ ≥ 0. The first

two properties can be shown directly from the definition Eq. (8.2), 3. follows from the

definition of the trace of an operator. Consider an operator D, then the trace of D is given

by TrD :=
∑

n 〈n|D|n〉, where |n〉 is an orthonormal eigenbasis. In the case that D = ρ,

Trρ =
∑

n 〈n|ρ|n〉 =
∑

n〈n|ψ〉〈ψ|n〉, then by unitary projection, property 3. is satisfied.

Property 4. implies that the eigenvalues of ρ are greater or equal to 0. This is important as

the eigenvalues of ρ correspond to probabilities, hence they must always be greater or equal

to 0.

Under this density matrix formalism, one can determine the expectation of an observable

O by the following:

〈O〉 = Tr(ρO). (8.3)

This can be shown from the definition of the trace operation. In the pure state, one can

combine properties 1-3 to show Trρ2 = 1.

In the case of mixed states, all N objects of the ensemble are not in the same state.

Then one defines the probability pi to find an individual system in the |ψi〉 by pi = Ni
N

where∑
i pi = 1, Ni denotes the number of systems in state |ψi〉 and N , the total number of objects

in the ensemble. Then the mixed state can be described by the following:

ρmix =
∑
i

piρi =
∑
i

pi|ψ〉〈ψ|. (8.4)

Using this definition and following the same argument as in the pure state definition, the

expectation value of an observable O is given by,

〈O〉 = Tr(ρmixO) =
∑
i

pi〈ψi|O|ψi〉. (8.5)

This follows from the definition of the trace. Properties 2-4 are obeyed in the mixed state

density matrix formalism, however property 1. is violated. Furthermore, taking the trace of
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ρ2
mix no longer gives a value of 1 but is shown in the following to be less than 1.

Then the trace is used as a good measure for mixedness in the density matrix. For

maximally mixed states, Trρ2
mix = 1

d
> 0, where d denoted the dimension of the system.

8.4 Evolution of the Density Matrix

In order to determine the equation of motion for the density matrix, one considers the

time-dependent Schrodinger equation and its Hermitian conjugate.

i~
∂

∂t
|ψ〉 = H|ψ〉,

−i~ ∂
∂t
〈ψ| = 〈ψ|H.

(8.6)

Then, by differentiating the density matrix with respect to time and manipulating the

equations in the form of the Schrodinger equation, we arrive at the von Neumann equation

of motion, the quantum analogue of the classical Liouville equation:

i~
∂ρ(t)

∂t
= [H, ρ]. (8.7)

This equation holds for both the mixed state and pure state descriptions of the density

matrix. The time evolution of the density matrix could alternatively be studied via the time

operator U(t, t0) = e−
i
~H(t−t0), where ρ(t) = U(t, t0)ρ(t0)U †(t, t0) which can be used to prove

the mixedness of the trace of ρ2 is time-independent.

In this thesis however, we focus on the time evolution of the density matrix. Under the

influences of noise, the evolution of the density matrix could be used to describe the system

and its properties in its entirety via a master equation. This concept shall be built on in the

following sections.

8.5 Appendix C: Stochastic Dynamics

8.5.1 Historical Note

The famous botanist, Robert Brown studied the irregular motion of pollen grains suspended

in water, resulting in the concept, bearing his name, Brownian motion. Rayleigh was the

first to take a statistical approach to the understanding of this behaviour, however it was

not understood until 1905 when Einstein delivered a clear and elegant solution, based on
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two major points: 1. the motion is caused by exceedingly frequent impacts on the pollen

grain from the incessantly moving molecules in which it is suspended; 2. the motion of the

molecules are so complicated, the effect can only be described probabilistically in terms of

exceedingly frequent statistically independent impacts. Einstein’s solution was based on a

discrete time assumption which provided an approximate solution to the diffusion problem.

Langevin provided an alternative understanding to Einstein’s reasoning, based on the

kinetic theory of gas particles. From statistical mechanics, the mean kinetic energy of a

Brownian particle in equilibrium could be expressed as the following:

〈1
2
mv2〉 =

1

2
kBT. (8.8)

where m represents the mass of the particle, v the velocity, kB the Boltzmann constant and

T the temperature. Then there are two forces acting on the particle, viscous drag and the

effective force of the incessant impacts between the molecules.

8.6 Langevin Equation

There is an underlying assumption in Langevin’s reasoning, that the impacts are statistically

independent.

Then, by Newton’s second law,

m
d2x

dt2
= −6πηvr

dx

dt
+ χ, (8.9)

where the left-hand side corresponds to Newton’s second law, the first term on the right-

hand side denoting the viscous drag, with ηv representing the viscosity of the fluid and r

being the radius of the Brownian particle, and finally the last term corresponds to random

fluctuations as a result of the incessant impacts due to the motion of the molecules of the

fluid. This equation can be transformed into the following via integration with respect to x:

m

2

d2

dt2
x2 = −3πηvr

d

dt
x2 + χx. (8.10)

Averaging over a large number of particles,
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m

2

d2

dt2
〈x2〉+ 3πηvr

d

dt
〈x2〉 − kBT, (8.11)

where 〈χx〉 is taken to be zero due to the independency of χ. The last term arises from using

the equipartition theorem, where the average kinetic energy for a single particle is given by
m
2
〈(dx

dt
)2〉 = KBT

2
. Under classical dissipation action, this random force must then satisfy the

following,

〈χ(t)χ(t′)〉 =

∫
D[χ]χ(t)χ(t′)e

− 1
4kBT

∫
dtχ2(t)

= 2kBTδ(t− t′). (8.12)

This describes a white noise term. Then the general solution is given as:

d

dt
〈x2〉 =

kBT

3πηvr
+ Ce

−6πηvat
m , (8.13)

where C is some constant. For practical approximations, one can neglect the exponential

decay term and integrate the result to obtain the following:

〈x2〉 − 〈x2
0〉 =

kBT

3πηvr
t. (8.14)

Langevin’s equation was the first stochastic differential equation. A stochastic process de-

scribes a system evolving probabilistically due to the influences of a time dependent random

variable.

Since, descriptions of this nature have shifted towards continuous evolutions. These

random influences can be modelled in many different ways depending on their nature[25].

The impacts of noise for these systems can vary greatly from its deterministic counterpart.

A system’s behaviour can be modelled in terms of slowly varying state variables and rapidly

changing random forces. In order to describe stochastic dynamical equations, one must

consider dynamical contributions from both the slowly changing deterministic part as well

as the fast changing random part as given by Langevin’s work which allows for considering

the deterministic and stochastic dynamical contributions separately.

Random forces can be classified as either internal or external noise contributions. Dis-

tinguishing between these different types, depends on the boundary between the system and

the external noise. External noise is considered to be imposed on a subsystem by a larger
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changing environment. Often, external noise is characterised with correlation times much

less than the characteristic time whereas internal noise is described with comparable correla-

tion and characteristic times, often modelled via Langevin equations. For nonlinear systems,

noise can act as a driving force.

Classical systems experience random perturbations. These arise from a multitude of

factors, primarily these effects are accredited to thermal fluctuations. The trajectories of a

classical bodies subject to noise can be described by the Langevin equation[58]. Consider a

massless particle under the effects of a fluctuating force χ. In a more general setting, the

Langevin equation for this model is given by,

ẍ = −γẋ− V ′(x) + χ(t), (8.15)

where x denotes the position, V (x) is the potential and γ is a scalar. This describes a New-

tonian equation with a friction force χ(t) modelled as a random variable[58]. The different

solutions to the Langevin equation correspond to different random trajectories[58]. Under

the Langevin model, it is necessary that χ is irregular and the dynamics are independent of

χ, this criterion follows from the central limit theorem (detailed in Sec. 8.7.5). This equation

could be rewritten as the following:

dx

dt
= a(x, t) + b(x, t)η(t), (8.16)

where x is a variable under the influence of noise, a(x, t) and b(x, t) are known functions.

Here, η(t) denotes a white noise term which has strong connections in diffusion processes.

In order to obtain a considerable study of this type of equation, it is necessary to deter-

mine the properties of the random force. Often, once assumes the random force has a very

small correlation time compared with the characteristic time of the system about a locally

stable state, then it is justifiable to consider the random force to have zero correlation time,

modelled as white noise.

In this setting, all frequencies in the power spectrum, s(ω) have equal weighting, given

by the following:

s(ω) =

∫ ∞
−∞
〈ξ(t)ξ(s)〉e−iωtdt = 2D, (8.17)

where D is a constant. This describes white noise properties where there are several, well-
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understood classes of these terms, defined by the derivative of ξ(t) for stationary processes

of independent increments. Beyond white noise models, consider the Ornstein - Uhlenbeck

description for coloured noise.

8.6.1 Coloured Noise

Physically, white noise models are never exactly realised, however for systems dominated by

noise, white noise models provide identical predictions to experimental results. When noise

does not dominate, stochastic noise models with zero correlation time leads to stochastic

realisations with non-continuous noise sample paths which are unphysical in reality. State

variables are driven by white noise, have sample paths with unbounded variation which is

neither continuous nor differentiable hence dynamical predictions based on these models

have timescales beyond the regime of validity in the system, as such some systems bene-

fit from more physically realistic stochastic models where noise has finite correlation time

τc[59]. As mentioned in the previous section, this corresponds to a coloured noise description,

characterised by the following:

〈χ(t)χ(s)〉 =
D

τc
e−
|t−s|
τc . (8.18)

This is referred to as an Ornstein-Uhlembeck process, describing coloured noise driven

flows, where ε denotes the noise amplitude and η is a white noise term.

dχ = −τcχdt+ εηdt. (8.19)

This description for noise is more challenging than the Markovian dynamics governing white

noise models, however it is a more realistic model accounting for finite correlation times such

that the noise term is differentiable. However, despite coloured noise being more realistic,

white noise is still an excellent choice in modelling the combined effects of many weakly

coupled environmental degrees of freedom outside critical neighbourhoods such that the

noise on a system is described by the central limit theorem[26]. This states that a random

variable composed of many independent random components, is Gaussian distributed as

described by white noise.

In the case that ξ(t) is Markovian, Doob’s theorem states that ξ(t) is necessarily an

Ornstein-Uhlembeck process with exponential correlation function described by Eq. (8.18)

with a Lorentzian power spectrum given by:
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s(ω) =
2D

τ 2
c ω

2 + 1
. (8.20)

The absorption spectrum for coloured noise of arbitrarily long τc, can be used to a Lorentzian

spectrum in the white noise limit:

I0(ω − ω0) =
1

π

D

(ω − ω0)2 +D2
. (8.21)

Another interesting class of coloured noise is when the noise term is described by, Z(t) =

a(−1)−n(t) where

〈Z(t)Z(s)〉 = a2e−λ|t−s|, (8.22)

where a and λ are constants. This describes both telegraphic noise and dichotomous noise,

particularly useful for modelling nonlinear coloured noise flows, Eq. (8.18), which provides

an exact, retarded closed master equation and thus has stationary probabilities.

8.7 Appendix D: Master Equation

Modelling the random nature of a system via stochastic differential equations imposes the

implication that the deterministic and stochastic components arise from independent ori-

gins. This is an unrealistic assumption which requires the study of fluctuation-dissipation

arguments in order to rationalise an SDE model. However, measurable results can be ob-

tained from considering the statistical properties of the random solutions. By measuring a

random variable at different instances, one can form a probability distribution function over

the random variable at each of the different instances it is measured hence modelling the

stochastic dynamics of a system[58]. This can be explored using master equations, which

encapsulate the complete description of a system. A simple example of such an equation is

as follows, let Pi(t) denotes the probability of a system being in a classical/quantum state i

at time t, then one can construct a simple master equation given by:

dPi(t)

dt
=
∑
j

(WijPj −WjiPi), (8.23)
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where Wij ≥ 0 for all i, j and Wii = 0, denoting the rate of transition from state i to j. A

corollary of this is that given Wij ≥ 0, then Pi(t = 0) ≥ 0 which implies that Pi(t) ≥ 0 for all

t ≥ 0. In the quantum sense, Eg.(8.23) corresponds to Fermi’s Golden rule of states, where

Wij takes the form,

Wij =
2π

~
|〈i|V |j〉|2ρ(Ej), (8.24)

where Ej denotes the eigenvalue of the system at state |i〉, V represents the potential resulting

in the transition and ρ(Ej) is the density of states at Ej. the formal solution to this is

determined from considering both left and right eigenvectors, φαi and ψαi , respectively. From

this, the characteristic polynomial is used to investigate the relationship between these two

given that the eigenvalues are the same. As a consequence, one arrives at the solution,

Wij =
∑
α

λαφ
α
i ψ

α
j . (8.25)

Then, in terms of the right eigenvectors (a similar result is found for the left eigenvectors),

Pi(t) =
∑
α

Cα(t)ψαi . (8.26)

Differentiating with respect to t, where linear independence in the eigenvalues gives Cα(t) =

cα(0)eλαt, then the complete form of Eq. (8.26) is as follows,

Pi(t) =
∑
α

Cα(t)eλαtψαi . (8.27)

This dictates that Re(λα) ≥ 0, else there is negative probability. As t → ∞, Pi(t) →
P equilibrium
i , relaxing to λ = 0. In general, these dynamics are often difficult to investigate in

complete form and so approximations are taken.

In considering such a description, it is necessary to realise the significance of macroscopic

deterministic laws, where there is a shortcoming in the solution of any master equation

approximation asymptotically in the deterministic and stochastic contributions describable

by an SDE. Developing such asymptotic expansions provide developments of simpler models

as given by the Fokker-Planck equation, equivalent to a master equation such that one could

study an entire system simply from the Fokker-Planck equations without a master equation.
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Both descriptions are highly valuable, they are advantageous for different systems. A list of

such benefits however goes beyond the scope of this thesis.

8.7.1 Fokker-Planck Equation

The Fokker-Planck equation describes the evolution of the probability density of a particle

for a certain class of stochastic differential equation;

dxt = f(xt, t)dt+ g(xt, t)dWt, (8.28)

where f(xt, t) denotes the drift coefficient, g(xt, t) is the diffusion coefficient and Wt is Wiener

process. The Fokker-Planck equation is given by the second order partial differential equa-

tion, providing an analogue of the Schrodinger equation that bridges from stochastic classical

dynamics to quantum systems:

∂ρ(x, t)

∂t
= − ∂

∂x
(f(x, t)ρ(x, t)) +

1

2

∂2

∂x2
(g2(x, t)ρ(x, t)), (8.29)

where ρ denotes the density with initial condition ρ(x, t0|x0, t0) = δ(x− x0). This describes

the Fokker-Planck evolution of the probability distribution function of stochastic systems

for a diffusive process under Ito regularisation, see Sec.8.7.2. Hamilton’s equations for this

system is given by the following:

χ̇ = ∂pH(p, χ),

ṗ = −∂χH(p, χ).
(8.30)

It is especially suited to systems with short correlation times, providing an exact description

for Gaussian white noise models. The structure of the Fokker-Planck equation is the same

as that of the continuity relation. This can be demonstrated for the 1-time probability by

the following;

p(x, t) =

∫
dx0p(x, t;x0, t0) =

∫
dx0p(x, t|x0, t0)P (x0, t0). (8.31)

At t1, the conditional probability at t1 is then:
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p(x2, t2|x0, t0) =

∫ ∞
−∞

dx1p(x2, t2;x1, t1)p(x1, t1;x0, t0). (8.32)

We note that the conditional probability p(x2, t2;x1, t1) is independent of (x0, t0), therefore

the system is described by a Markov process. Then,

p(x, t+ δt|x0, t0) =

∫ ∞
−∞

dx′p(x, t+ δt|x′, t)p(x′, t|x0, t0), (8.33)

where

p(x, t+ δt|x′, t) = δ(x− x′) + A(x)
dδ(x− x′)

dx′
δt+

1

2
B(x)

d2δ(x− x′)
dx′2

δt. (8.34)

Averaging over real variables and substituting into the integral for the conditional probability,

dividing by δt as δt→ 0, then one arrives at the standard Fokker-Planck equation; ∂p(x,t)
∂t

=

− ∂
∂x

(A(x, t)p(x, t)) + 1
2
∂2

∂x2 (B(x, t)p(x, t)).

Deriving this equation of motion for the probability density is based on finding a particle

in the interval (x;xdx) and (v, v + dv) at time t for a single realisation of noise, ξ(t). With

the particle is located in the infinitesimal area dxdv with probability p(x, v, t)dxdv. Since

the particle must lie somewhere in the phase-space −∞ < x, v <∞, then the following must

be satisfied,

∫ ∞
−∞

dx

∫ ∞
−∞

dvρ(x, v, t) = 1, (8.35)

where ρ(x, v, t) denotes the probability density. Considering a finite volume, where the

particle is not destroyed or changed, therefore any change must arise from changes in the

probability through the surface S0 surrounding initial volume, V0, then:

d

dt

∫ ∫
V0

dxdvρ(x, v, t) = −
∫
S0

ρ(x, v, t)ẋ.ds, (8.36)

where x = (x,v) and ẋ = (ẋ, v̇). Then by applying Gauss’ theorem, the surface integral

takes the following form:
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∫ ∫
V0

dxdv
d

dt
ρ(x, v, t) = −

∫ ∫
V0

dxdv∇.(ẋρ(x,v, t)). (8.37)

For some fixed arbitrary V0, one obtains the continuity equation:

∂

∂t
(ρ(x, v, t) = −∇.(ẋρ(x,v, t)) = − ∂

∂x
(ẋρ(x,v, t))− ∂

∂v
(v̇ρ(x,v, t)). (8.38)

This describes the continuity equation in the phase-space which states that the probability

is conserved. By averaging over many realisations of noise, p(x, v, t) = 〈ρ(x, v, t)〉, where

p(x, v, t) macroscopic probability density of the particle. A second order differential equation

that corresponds to a time dependence via the Langevin equation. It is exact for Gaussian

white noise models, governing the evolution of the probability density of a Brownian particle.

For a Brownian particle, it is necessary to know the Langevin equation governing the

evolution of a particle, given by the following:

ẋ = vv̇ =
−γ
m
v +

1

m
(F (x) + ξ(t)), (8.39)

where F (x) = V ‘(x) for some potential V . This is used to obtain an exact description of the

dynamics under the influence of noise such that the Fokker-Planck equation is then given as,

∂ρ(x, v, t)

∂t
= − ∂

∂x
(V (x)ρ(x, t)) +

γ

m

∂

∂v
(V (x)ρ(x, v, t))

− 1

m
F (x)

∂

∂v
ρ(x, v, t)− 1

m
ξ(t)

∂

∂v
ρ(x, v, t).

(8.40)

Here, ξ(t) is a stochastic variable, ρ(x, v, t) is in principle different for each realisation of ξ(t).

However, in actual Brownian particles, one observes an averaging in the random nature of

ξ(t). The Fokker-Planck equation can be solved using a stochastic integral, for this it is

neccesary to consider Ito formalism.

8.7.2 Ito Calculus

To solve the Fokker-Planck equation, one must define the stochastic integration procedure.

Let G(t) and W (t) be stochastic processes and consider the following:
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∫ t

t0

G(t′)dW (t′). (8.41)

It is challenging to compute this integral as it changes randomly due to the stochastic terms.

Discretising the integral into n subintervals with t0 ≤ t1 ≤ · · · ≤ tn−1 ≤ t, with intermediate

points ti−1 ≤ τi ≤ ti, the integral is then defined as the limit of partial sums Sn,

Sn =
n∑
i=1

G(τi)(W (ti)−W (ti−1)). (8.42)

This limit is dependent on the choice of τi. Taking τi = ti, we arrive at the Ito stochastic

integral:

∫ t

t0

G(t′)dW (t′) = (meansquarelimit)− limn→∞

(
n∑
i=1

G(ti−1)(W (ti)−W (ti−1))

)
. (8.43)

Properties of the Ito stochastic integral include the following:

a) Existence: The integral defined by Eq. (8.41) exists when G(t′) is continuous and nonan-

ticipating (a process that cannot see the future) on [t0, t].

b) Integration of polynomials are given as follows:

∫ t

t0

W (t′)ndW (t′) =
1

n+ 1
(W (t)n+1 −W (t0)n+1)− n

2

∫ t

t0

W (t′)n−1dt′. (8.44)

One arrives at this result from considering the following random process, d(W (t))n =

(W (t) + dW (t)) − W (t)n =
∑n

r=1 nCrW (t)n−rdW (t)r, where dW (t)r → 0 for all r > 2.

Consequently, dW (t)n = nW (t)n−1dW (t) + n(n−1)
2

W (t)n−2dt which integrates to the above

result.

c) For every G(t), there exists two kinds of integrals, that described in Eq. (8.41) and∫ t
t0
G(t′)dt′ where there is no connection between these two integrals.

d) Differentiation keeps up to the second order of dW (t). Consider the general chain rule,

df(W (t), t) = ∂f
∂t
dt+ 1

2
∂2f
∂t2

(dt)2+ ∂f
∂W (t)

dW (t)+ 1
2

∂2f
∂W (t)

(dW (t))2+ ∂2f
∂W (t)∂t

(dW (t))dt+. . . where,

(dt)2 → 0, dtdW (t) → 0, (dW (t))2 = dt and all higher orders vanish, then this chain rule

takes the following form:
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df(W (t), t) =

(
∂f

∂t
+

1

2

∂2f

∂W (t)2

)
dt+

∂f

∂W (t)
dW (t). (8.45)

The reasoning used here applies to all other differentiation rules. Similarly, this is used

to define the change of variables in Ito formalism with, df(x(t)) = (a(x(t), t)f ′(x(t)) +
1
2
b(x(t), t)2f ′′(x(t)))dt+ b(x(t), t)f ′(x(t))dW (t)

e) The mean value formula, for a nonanticipating G(t) takes the form 〈
∫ t
t0
G(t′)dW (t′)〉 = 0

such that 〈
∑

iGi−1∆Wi〉 =
∑

i〈Gi−1〉〈∆Wi〉 = 0.

f) The correlation formula for arbitrary nonanticipating functions G(t) and H(t);

〈
∫ t

t0

G(t′)dW (t′)

∫ t

t0

H(t′)dW (t′)〉 =

∫ t

t0

dt′〈G(t′)H(t′)〉. (8.46)

Under this formalism, we see that the Langevin equation Eq. (8.16) obeys an Ito

stochastic differential equation such that dx(t) = a(x(t), t)dt + b(x(t), t)dW (t) if for all

t ∈ [t0, t], x(t) = x(t0) +
∫ t
t0
dt′a(x(t′), t′) +

∫ t
t0
dW (t′)b(x(t′), t′). Taking a discretised version

of this with t0 < t1 . . . tn−1 < tn = t, then xi+1 = xi + a(xi, ti)∆ti + b(xi, ti)∆Wi where

xi = x(ti),∆ti = ti+1 − ti,∆Wi = W (ti+1) −W (ti) then to calculate xi+1, requires taking

increments of the Weiner process, being statistically independent of xi. One can determine

the solution iteratively, with xi always independent of ∆wj for all j ≥ i.

Under Ito formula, one can obtain the the Fokker-Planck description of a stochastic

system. Take the following:

〈df(x(t))〉
dt

=

〈
df(x(t))

dt

〉
=

d

dt
〈f(x(t))〉

= 〈a(x(t), t)
∂

∂x
f(x(t)) +

1

2
b(x(t), t)2 ∂

2

∂x2
f(x(t))〉,

(8.47)

where x(t) has conditional probability, p(x, t|x0, t0), then:

d

dt
〈f(x(t))〉 =

∫
dxf(x)

∂

∂t
p(x, t|x0, t0)

=

∫
dx(a(x(t), t)

∂

∂x
f(x(t)) +

1

2
b(x(t), t)2 ∂

2

∂x2
f(x(t)))p(x, t|x0, t0).

(8.48)
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Integrating by parts and disregarding surface terms,

∫
dxf(x(t))

∂

∂t
p(x, t|x0, t0)

=

∫
dxf(x(t))(− ∂

∂x
(a(x(t), t)p(x, t|x0, t0)) +

1

2

∂2

∂x2
(b(x(t), t)2p(x, t|x0, t0)).

(8.49)

Then since f(x) is arbitrary, one obtains the standard Fokker-Planck equation. This is

equivalent to a diffusion process defined by drift coefficient a(x, t) and diffusion coefficient

b(x, t).

The solution of this Ito stochastic differential equation, x(t) is a Markov process. Given

the initial conditions x(t0), the future is uniquely determined. Then for all t ≥ t0, x(t) is

determined only from the sample path W (t) and its initial value x(t0). If the stochastic

differential equation depends continuously on a parameter, then the solution normally de-

pends continuously on that parameter hence the solution depends continuously on the initial

condition. This justifies the use of perturbation expansions.

This can be used to consider quantum noise. Furthermore, extending the Fokker-Planck

equation to multi-variable Ito-Langevin processes[58]. In the quantum setting this equation

is generalised by the Lindblad master equation, concerning the density matrix.

One can determine the statistics of a quantum system from its density matrix ρ contain-

ing all measurable information of a Hamiltonian system, where the diagonal terms describe

the occupation of the quantum states[13] and the off-diagonal terms correspond to the co-

herences.

One can describe random fluctuations using auto-correlation functions as described in

the previous section. Noise can also be studied using its spectral density[25], given by:

Sχ(t) = limT→∞
〈|χ(t; t0|2〉

T
. (8.50)

Under the Wiener-Khinchin theorem which states that 2πδ(t− t′)Sχ(t) = 〈χ(t)χ(t′〉, one

can describe the spectral density from the auto correlation function. This type of dynamics

is relevant to the development of adiabatic quantum computers faces the same fundamen-

tal problem of impossibility of their direct simulation by classical means[1, 2, 3, 4]. This

stimulates the search for alternative theoretical methods, which could provide some useful

figures-of-merit describing large quantum systems out of equilibrium. A common approach

to achieve quantum coherence in non-equilibrium many body dynamics is Keldysh Green

function theory[30], however this approximation is limited to short time intervals where its
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errors grow as a power of time[30].

8.7.3 Markov Processes

Consider a stochastic process continuously defined in time, χt; t ≥ 0 where χt is a one-

parameter family of random variables. Then χt is a Markov process if for all time t ≥ τ , the

distance between any χt against the family of variables χs∈[0,τ ] satisfies

Dist(χt|χs∈[0,τ ]) = Dist(χt|χτ ), (8.51)

suggesting that if the conditional distribution of χt is conditioned on the family of events χs

in times s ∈ [0, τ ] is the same as being conditioned only only on the event at time τ , then the

process is Markovian. This implies that the state of the system at time t, χt depends only

on the past between [0, τ ] via the state of the system at its last past interval of τ , such that

all the information of the past is condensed into the previous moment. The system carries

memory of its past instances, hence depends on the initial value of χ0.

The expectation of a Markov process is described through Ex(φ(χt)), where we let Ex

denote the expectation of a process starting from x ∈ Rd or Zd and φ be the state space of

the observables. Then,

Ex(φ(χt)) = E(φ(χt)|χ0 = x). (8.52)

Markov processes are described by their generators which are operators acting on observables

φ. Then a Markovian generator is defined as:

(Lφ)(x) =
d

dε
|ε=0Exφ(χε). (8.53)

In Rd, a Wiener process is Markovian, with generator L = 1
2
∆. This applies to white

noise models.

8.7.4 Wiener Processes

In order to define a Weiner process, it is first necessary to define both a continuous time

process and a stochastic Gaussian process.
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Continuous time process: A collection of uncountable many random variables where

the joint probability measure on such a big space cannot be determined by finite dimensional

projections.

Stochastic Gaussian process: given that any finite dimensional projection is a Gaus-

sian vector-valued random variable such that for all t1 < t2 < . . . tk, the vector χt1 , . . . χtn) ∈
Rd is a Gaussian random variable.

A continous stochastic Gaussian process Wt = (W 1
t , . . .W

d
t ) ∈ Rd, where t ≥ 0 is a

d-dimensional Weiner process if it satisfies the following properties[26]:

W (0) = 0,

E(Wt) = 0,

E(W a
sW

b
t ) = min(s, t)δab,

W (t)−W (s) =
√
t− sN(0, 1); 0 ≤ s < t ≤ T,

(8.54)

where N(0, 1) denotes a normal distribution and E(.) describes the expectation of a process.

This determines a Weiner process uniquely, where all higher moments of Wt can be deter-

mined by Wick’s theorem. Moreover, this enables extending the central limit theorem to

processes.

Consider the stochastic process χεT =
√
ε
∑T/ε

i=1. The distribution for this process con-

verges to the Weiner process; χεT → WT as ε→ 0. This type of process defines white noise,

formulating the requirements in the application of the central limit theorem as utilised in

the Brownian motion description of diffusion processes. Provided that damping effects dom-

inate the system such that internal forces can be considered negligible, Brownian motion is

a well suited model for noise. It is one of the simplest stochastic processes, arising as a limit

of multiple stochastic processes such that all other diffusion processes could be described

in terms of Brownian motion. Hence solutions of various mathematical problems could be

expressed in terms of Brownian motion. This concept is summarised in the central limit

theorem.

8.7.5 The Central Limit Theorem

Let vi be a sequence of independent, identically distributed random variables with zero

expectation; E(vi) = 0 and finite variance E(v2
i ) = σ2, where vi ∈ Rd or vi ∈ Zd, for d > 1

and the variance σ2 is a matrix, referred to as the covariance matrix such that σ2
ab = E(vavb)

where v = (v1 . . . v9).

Then, determining the location of a particle under the influence of multiple sources of noise
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after n steps is described as,

Sn =
n∑
i=1

vi, (8.55)

where, E(Sn) = 0, E(S2
n) =

∑n
i=1E(v2

i ) = nσ2 and E(vivj) = 0.

Rescaling Sn,

χ =
Sn√
n

=

∑n
i=1 vi√
n

, (8.56)

preserving the structure such that E(χn) = 0 and E(χ2
n) = σ2 <∞. This defines a centred

Gaussian process; centered because E(χn) = 0. This has the property that all the moments

of moments are determined from the covariance matrix. Then, for a centred Gaussian vector-

valued random variable, higher moments can be computed via Wick’s theorem;

E(χ1 . . . χ2k) = Π(i,j)∈allpossiblepairingsE(χiχj). (8.57)

Remarkably, this distribution for the independent, identically distributed (iid) vi tends

to a Gaussian distribution χn → χ where χ N(0, σ2) as n → ∞, regardless of the initial

distribution of vi, defining the central limit theorem, a cornerstone of probability theory and

one of the fundamental theorems of nature.

The density of this normal distribution in R1 is given as follows,

f(x) =
1√
2πσ

e−
x2

2σ2 . (8.58)

This density follows the standard weak convergence of probability measures which states

that a sequence of random variables χn converges to a random variable χ which is normally

distributed, if the expectation satisfies E(G(χn)) → E(G(χ)) for any continuous bounded

function G, as such χn can be modelled via a white noise, justifying that random forces

are uncorrelated hence reducible to Markovian white noise processes. This definition holds

analogously for higher dimensions. It is under this theorem, that forms the foundations

of both Einsein’s and Langevin’s reasoning as given in Appendix C, complemented with a

summary of stochastic dynamics beyond white processes.
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8.8 Appendix E: Integrable Dynamics

Integrable systems are exactly solvable models, however such solutions are difficult to obtain.

One method to solve a problem is using quadratures which involves either solving a finite

number of algebraic equations or computing a finite number of integrals. Obtaining closed

form solutions however, remains a challenge.

Consider a Hamiltonian in R2n, the associated Hamilton’s equations are as follows:

ṗi = −∂H(pi, qi)

∂qi
,

q̇i =
∂H(pi, qi)

∂pi
,

(8.59)

where i ∈ [1, n] and ’.’ represents derivatives taken with respect to time. These can be

written in terms of Poisson brackets which can be defined by the following:

{F,G} =
n∑
i=1

∂F

∂pi

∂G

∂qi
− ∂F

∂qi

∂G

∂pi
. (8.60)

This description satisfies antisymmetric, linear and multiplicative product rule properties

as well as the Jacobi identity, hence it is a Lie algebra. Then Hamilton’s equations can be

written as,

ṗi = −{pi, H(pi, qi)},

q̇i = {qi, H(pi, qi)}.
(8.61)

Poisson algebras can be used to determine the integrals of a Hamiltonian system. A

function F (pi, qi) on the phase space, is an integral of the Hamiltonian H(pi, qi) if it is

preserved by the flow, Ḟ = {F (pi, qi), H(pi, qi)} = 0. Hence F is a conserved quantity, that

Poisson commutes with the Hamiltonian.

The Poisson theorem, further states that the Poisson bracket of 2 integrals is an inte-

gral of the same Hamiltonian. This description is used to identify integrals of motion in a

given system and determine its solvability. A Hamiltonian system, H(pi, qi) is completely

integrable in the Liouville sense if there are n independent functions that are mutually Pois-

son commuting, with H(piqi) being a function of these. The maximal number of Poisson

commuting independent functions is n, however it is possible to obtain further integrals of

motion of the Hamiltonian system under an algebra of integrals of motion. The harmonic
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oscillator and the Calogero-Moser models are examples of such integrable systems, the latter

shall be discussed further in this section.

The quadratures of complete integrable systems are often achieved through the separa-

tion of variables of the Hamilton-Jacobi equation. These can be used to investigate maxi-

mally superintegrable systems which are separable in more than one coordinate system, with

all bounded orbits being closed as well as giving rise to interesting Poisson algebras with

polynomial Poisson relations. Such superintegrable systems have various naturally occurring

applications in physics with additional hidden symmetries. Furthermore, these systems carry

interesting extensions to quantum integrable systems, however these concepts go beyond the

scope of our work.

8.8.1 Calogero-Sutherland-Moser

The Calegero-Sutherland model (CSM) has a great range in applications from quantum field

theory, condensed matter theory, statistical mechanics, collective field theory, dynamical

systems, pure mathematics and chaos. It describes a1D many-body integrable system, gen-

erating the dynamics of N particles interacting via a long-range potential. The corresponding

Hamiltonian is given by:

H =
1

2

N∑
i=1

v2
i +

∑
i<j

γ2

(xi − xj)2
. (8.62)

Taking unit mass and γ2 to denotes a positive coupling constant, describing the strengths of

the interparticle pairwise repulsions. As a consequence of the coupled interactions, the CSM

describes a strongly correlated system that offers insight of many-body interacting systems

that is both easy to formulate as well as explicitly solvable. This description maps spectral

properties to that of classical particles, which is an area of quantal systems; such that one

can regard quantum systems through its eigenvalue dynamics, statistically via a classical

integrable model.

Being a fully integrable model, the particles evolve in an ordered way with the following

equations of motion:

ẋm = vm,

v̇m = 2
∑
m 6=n

γ2

(xm − xn)3
.

(8.63)
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From these equations, one observes how the inverse-square potential acts as a borderline

between the presence of a phase transitions (when the potential is strong) and when there

are none (for weak potentials).

This allows for investigating the statistical mechanics of phase transitions which occurs

when levels approach each other, reaching a minimum separation before repelling. These

are known as avoided crossings or anti-crossings. At an avoided crossing, it may not be

possible to distinguish between the quantum states in the event of the occurrence of a phase

transition, thus is necessary to treat such events statistically. In considering large quantum

systems, the probability of level (avoided) crossings become more significant. These result in

transitions between states[3, 4, 24, 43]. Using the Landau-Zener model, one can approximate

the changes in the occupation numbers as a consequence of level (avoided) crossings. Avoided

crossings occur when levels come in the vicinity of each other with δm 6= 0 before they repel.

Landau-Zener probabilities at level (avoided) crossings describe the fundamental results of

nonstationary quantum mechanics. These describe the non-adiabatic population transfer at

a level (avoided) crossing for perturbed Hamiltonian systems[43, 53]. Since the discovery of

the Landau-Zener formula, there has been continuous efforts in its theoretical treatment[53].

The Landau-Zener model has been profficient in the analytical description of the occupation

numbers with regard to the presence of noise[43]. However, in order to gain insight on

coherences and the difference found between ground state coherences and intermediate state

transition probabilities, it is better to consider the description using density matrices. These

such transitions could be better described under the generalised Calogero-Sutherland model;

the Pechukas-Yukawa formalism, where the coupling strengths are no longer constants but

dynamic variables.

8.9 Appendix F: Method of Lax Pairs

For two matrices L(pi, qi),M(pi, qi) with their entries being functions on the phase space. If

the equations of motion can be described by:

L̇ = [L,M ], (8.64)

then, L and M are said to be Lax pairs for the system. One crucial importance in this

formalism, is that the equations of motion for L expressed in Lax pairs generates conserved

quantities, Fk;
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Fk = Tr(Lk) (8.65)

This follows from the equations of motion by cyclicity of the trace operator.

Ḟk = kTr(Lk−1[L,M ]) = 0. (8.66)

This demonstrates that the Lax matrix L is isospectral; its eigenvalues are constant. The

flow given by Eq. (8.64), preserves the spectrum of L. Then it is possible to solve the time

dependence in L explicitly, following directly from the Lax equation:

L(t) = g(t)L(0)g−1(t),

M = ġ(t)g1(t).
(8.67)

This states that any isospectral deformation on L(t) is described as in the above equation.

Then, for any matrix M ‘ such that [L,MM ‘] = 0, L,M ‘ also forms a Lax pair. This enables

generating all constants of motion in the system.

The integrals of motion are determined from the coeffiients of the characteristic polyno-

mial, determined from, det(L− λI) where I denotes the identity matrix in dimension n and

L is an n× n matrix, then the coefficients of the characteristic polynomial are given by:

det(L− λI) =
n∑
k=0

λkIk(p, q), (8.68)

where Ik represents the integrals of motion, used to determine the constants of motion.

Furthermore, any power matrix Lk also satisfies the Lax equation, hence one can determine

generate all constants of motion for the system in this way.

For Lax pairs evolving parametrically through a spectral parameter γ, such that L(γ) =∑a
i=1 Liγ

i and M(γ) =
∑b

i=1 Miγ
i, then one can construct matrices such that the generated

conserved quantities are determined from summing along the diagonals of the upper triangle

commutator. This suggests any γ-dependent Lax pair is equivalent to an ordinary Lax pair,

with greater number of conserved constants.

Moreover, using Lax formalism, it is possible to generate further integrable systems from

an existing Lax pair. Consider the generalised equation of motion for Lax pairs, L,M :
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L̇ = [L,M ] + γL, (8.69)

for some constant γ. The corresponding set of equations of motion define an integrable

system with first integrals Ik = Tr(Lk)ekγt. these relationships cannot be obtained naturally

from the Hamiltonian, hence the Lax formalism provides further insights on the constants

of motion in the system.

These concepts are explored further to investigate classical integrable models describing

quantum systems, as in the case for the Calogero-Moser system as well as in our works on

the Pechukas-Yukawa model.

8.10 Appendix G: Python Code

8.10.1 Investigating the Accuracy of the Factorisation Approxi-

mation

Probability Distribution Functions

Created on Sun Jun 5 12:04:46 2016

"""

import numpy as np

import time

from copy import copy

import pickle

from itertools import permutations as Perm

from math import factorial

start_time = time.time()

print("Setting up system parameters...")|

#System parameters

N = 4

Simulations = 100

dt = 0.1

timestep = np.arange(0,1,dt)

#uniformly divide interval (0,1) by increments of dt
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J = np.random.randn(Simulations,1)

#creates a matrix of standard Gaussian vars with N columns, Simulations rows

J = np.hstack((J,-J,-J,J))

#define Hamiltonian and perturb matrix

h1,h2=0.01,0.02

Hb=np.matrix([[0,h2,h1,0],

[h2,0,0,h1],

[h1,0,0,h2],

[0,h1,h2,0]])

XRange = ( -(3+h1+h2) , 3+h1+h2 )

VRange = ( -(h1+h2) , h1+h2)

LRange = ( -(3 + pow(h1,2) + pow(h2,2)) , (3 + pow(h1,2) + pow(h2,2)) )

print("Setting up system parameters completed", round(time.time()-start_time,2), "s\n")

print("Computing eigenvalues, velocities, momentums...")

# Creating a multi-dimensional matrix containing

# eigenvalues , X and velocities V and relative mom, L

#via a nested loop (nested so it is matrix-like)

# X entries to read as X[timestamp][Simulation][i’th eigenvalue]

x=[[np.linalg.eigvalsh(np.diag(J[Sim, : ]) + timestep[ti]*Hb)

for Sim in range(Simulations)] for ti in range(timestep.size)]

x = np.reshape(x,((timestep.size,Simulations,N)))

#reshaping for matrix entries, seperate lines to be easier on the eyes!

v=(x[1:]-x[:-1])/dt

print("Computing eigenvalues, velocities, momentums done",

round(time.time()-start_time,2), "s\n")

data = [x,v, Hb, J]

print("Saving data...", round(time.time()-start_time,2), "s")

pickle.dump(data,open(’data.pk’,’wb’))

print("Saving data...complete", round(time.time()-start_time,2), "s\n")
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del data

#==============================================================================

# build f1(t,x1,v1)

#==============================================================================

print("Building f1...")

f1=dict()

f1_normalisation_const = N*Simulations

All_x = np.reshape(x,((timestep.size,Simulations*N)))

All_v = (All_x[1:]-All_x[:-1])/dt

for ti in range(timestep.size-1):

data = np.vstack((All_x[ti],All_v[ti]))

hist, edges = np.histogramdd( data.transpose(), bins = 20, range = (XRange,VRange))

f1[ti] = hist/f1_normalisation_const

print("\tAt ti, f1 summed:" , f1[ti].sum().sum().sum().sum())

print("Building f1...complete", round(time.time()-start_time,2), "s\n")

print("Saving f1...", round(time.time()-start_time,2), "s")

pickle.dump(f1,open(’f1.pk’,’wb’))

print("Saving f1...complete", round(time.time()-start_time,2), "s\n")

del All_x, All_v, hist, edges, data

""" build f2(t,x1,v1,x2,v2)

#1) Group up data in the form Xi=[xi,Vi] and arranged in a matrix indexed as

#X[time][Sim][1]=(x1,v1)

#2) Pick up first simulation and permute it. Call this PermutedX so we have shape

#3) Pick up remaining simulations in loop and combine via stacking below.

#4) Make historam and store in dictionary

"""

print("Building f2...")

s=2

f2=dict()

PermutedXList=list()
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X = dict([ (ti, [[[x[ti+1][Sim][i],v[ti][Sim][i]] for i in range(N)]

for Sim in range(Simulations)]) for ti in range(timestep.size-1)])

for ti in range(timestep.size-1):

PermutedX = np.vstack( np.array(list(Perm(X[ti][Sim])))

for Sim in range(Simulations))

PermutedX = PermutedX[:,:s,:].reshape((Simulations*factorial(N),2*s))

PermutedXList.append(PermutedX) #added for building F2

Hist,edges=np.histogramdd(PermutedX,bins = 20, range= (XRange,VRange,XRange,VRange) )

f2[ti]=Hist/(Simulations*factorial(N)),edges

print("...completed ",str(ti+1), " out of " , timestep.size-1, "timesteps",

round(time.time()-start_time,2), "s")

print("\tAt ti, f2 summed:" , f2[ti][0].sum().sum().sum().sum())

del PermutedX, Hist

print("Building f2...complete", round(time.time()-start_time,2), "s\n")

print("Saving f2...", round(time.time()-start_time,2), "s")

pickle.dump(f2,open(’f2.pk’,’wb’))

print("Saving f2...complete", round(time.time()-start_time,2), "s\n")

del f2

"""

build h2(t,lmn,lnm)

h2[time] := h2(lmn,lnm)

Lmn[time] = [lmn of all simulations at t=time]

"""

#Getting the L matrix as a list of numbers

print("Building h2...", round(time.time()-start_time,2), "s")

h2=dict()

L=dict([ (ti,[[(x[ti][Sim][m]-x[ti][Sim][n])*Hb[m,n]

for n in range(N) for m in range(N)]
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for Sim in range(Simulations)]) for ti in range(timestep.size)])

#L[time][simulation] = [12 lmn values]

[L[ti][Sim].pop(pow(N-i,2)-1) for i in range(N)

for Sim in range(Simulations) for ti in range(timestep.size)]

#removing diagonal entries [zero based recall] and

#going backwards due to the nature of "pop" (for each time and simulation)

PermutedLList = list() #using for F2

for ti in range(timestep.size):

L12List = list()

L21List = list()

for Sim in range(Simulations):

for l12 in L[ti][Sim]:

TempList = copy(L[ti][Sim])

TempList.pop(TempList.index(l12))

for l21 in TempList:

L12List.append(l12)

L21List.append(l21)

L12 = np.array(L12List).reshape(132*Simulations,1)

#132 = 12*11 = (N^2 - N)!/(N^2 - N-s)!

L21 = np.array(L21List).reshape(132*Simulations,1)

L12_L21 = np.hstack((L12,L21))

hist,edges = np.histogramdd(L12_L21, bins = 20, range = (LRange,LRange) )

h2[ti] = hist/(132*Simulations),edges

print("\tAt ti, h2 summed:" , h2[ti][0].sum().sum().sum().sum())

PermutedLList.append(L12_L21)

del hist, L12_L21, L12, L21, L12List, L21List, TempList

print("Building h2...completed", round(time.time()-start_time,2), "s\n")

print("Saving h2...", round(time.time()-start_time,2), "s")

pickle.dump(h2,open(’h2.pk’,’wb’))

print("Saving h2...complete", round(time.time()-start_time,2), "s\n")
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del h2

"""

build F2(t,x1,v2,x2,v2,l12,l21)

-Will need PermutedXList!

-Idea: for each existing line of (X1,V1,X2,V2) "attach" on each 2-permutation of L’s

"""

print("Building F2...")

F2=dict()

F2_Normalising_Const = Simulations * factorial(N) * 12 * 11

for ti in range(timestep.size-1):

print("Processing timestep " , str(ti+1) , "...")

H = np.empty((20,20,20,20,20,20))

for Sim in range(Simulations):

XVL = np.empty((0,6)) # 6 because 2 x’s, 2 v’s and 2 ’ls

for Xline in PermutedXList[ti][Sim*24:(Sim+1)*24]:

XVL_part = [np.hstack((Xline,Lline)) for Lline in PermutedLList[ti]

[Sim*132:(Sim+1)*132]]

XVL = np.vstack((XVL,XVL_part))

hist , edges = np.histogramdd(XVL, bins = 20,

range= (XRange,VRange,XRange,VRange,LRange,LRange) )

H += hist

if ((Sim+1)%25) == 0:

print("\tProcessed " , str(Sim+1) , " simulations out of ",

Simulations,"at", round(time.time()-start_time,2), "s")

F2[ti] = H/F2_Normalising_Const , edges

print("\tAt ti, F2 summed = ",

H.sum().sum().sum().sum().sum().sum()/F2_Normalising_Const)

del H, hist
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print("completed ",str(ti+1), " out of " ,

timestep.size-1 , "timesteps", round(time.time()-start_time,2), "s")

del XVL, XVL_part, Xline, ti,

print("Building F2...completed", round(time.time()-start_time,2), "s\n")

print("Saving F2...", round(time.time()-start_time,2), "s")

for key in F2.keys():

pickle.dump(F2[key],open(’F2_’+str(key)+’.pk’,’wb’))

del F2

print("Saving F2...complete", round(time.time()-start_time,2), "s\n")

end_time = time.time()

TotalDuration = end_time - start_time

print("Total duration: " , str(TotalDuration))

print("Average runtime per simulation : " , str(TotalDuration/Simulations))

Factorisation Error

Created on Thu Jun 9 13:43:23 2016

import time

import pickle

import numpy as np

start_time = time.time()

#System parameters

N = 4

Simulations = 100

dt = 0.1

timestep = np.arange(0,1,dt) #uniformly divide interval (0,1) by increments of dt

#==============================================================================

# Check factorisation
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#==============================================================================

Error = dict()

F2 = dict()

def ComputeError():

f1 = pickle.load( open( "f1.pk", "rb" ) )

h2 = pickle.load( open( "h2.pk", "rb" ) )

for ti in range(timestep.size-1):

nonzero_terms = 0

try:

F2[ti] = pickle.load( open( "F2_"+str(ti)+".pk", "rb" ) )

print("Loaded F2 for timestep"+str(ti))

except:

print("Unable to load F2 for timestep"+str(ti))

print("Processing timestep ", str(ti+1),

round(time.time()-start_time,2), "s")

error_ti = np.zeros((20,20,20,20,20,20))

for x1 in range(20):

# print("Processing x1 = ", x1, "...at" ,

round(time.time()-start_time,2), "s")

for x2 in range(20):

for v1 in range(20):

for v2 in range(20):

for l12 in range(20):

for l21 in range(20):

F2_point = F2[ti][0][x1][x2][v1][v2][l12][l21]

factorisation = f1[ti][x1][v1]*f1[ti][x2][v2]

*h2[ti][0][l12][l21]

if F2_point and factorisation:

nonzero_terms += 1

# print("x1,x2,v1,v2,l12,l21 = " ,

x1,x2,v1,v2,l12,l21)

# print("F2 = ", F2_point)
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# print("Factorisation = ",

f1[ti][x1][v1]*f1[ti][x2][v2]*h2[ti][0][l12][l21])

# print("\tf1[ti][x1][v1]= ", f1[ti][x1][v1])

# print("\tf1[ti][x2][v2]= ", f1[ti][x2][v2])

# print("\th2[ti][0][l12][l21]= ",

h2[ti][0][l12][l21])

error_ti[x1,x2,v1,v2,l12,l21] =

(F2_point- factorisation)/F2_point

# print("RE = ", error_ti[x1,x2,v1,v2,l12,l21],"\n")

else:

error_ti[x1,x2,v1,v2,l12,l21] = 0

# Error[ti] = error_ti #store error at time ti into memory

# print("Saving error at time", ti ,round(time.time()-start_time,2), "s")

# pickle.dump(error_ti,open(’error_’+str(ti)+’.pk’,’wb’))

# print("Saving error at time"+str(ti)+"_complete",

round(time.time()-start_time,2), "s\n")

SumOfError = error_ti.sum().sum().sum().sum().sum().sum()

print("Average error for timestep " + str(ti) +" " +

str(SumOfError/nonzero_terms))

print("Standard dev for timestep " + str(ti) +" " + str(error_ti.std()) + "\n")

#def ComputeAverageError():

# NC = pow(20,6)

# for ti in range(timestep.size-1):

# error = pickle.load( open( "error_"+str(ti)+".pk", "rb" ) )

# print("Loading up error #" + str(ti) + " computing total error")

# SumOfError = error.sum().sum().sum().sum().sum().sum()

# print("Average error for timestep " + str(ti) +" " + str(SumOfError/NC))

# print("Standard dev for timestep " + str(ti) +" " + str(error.std()) + "\n")
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8.10.2 Investigating Numerical Solutions for the Evolution of the

Eigenstate Expansion Coefficients

Set up for Pechukas Functions

import numpy as np

"""PECHUKAS FUNCTIONS"""

"""Matrix and other generic maths functions"""

def MatrixExpList(ListofMatrices):

def MExp2(matrix):

#Exponentiate a matrix by change of basis

eigenvalues, eigenvectors = np.linalg.eig(matrix)

ExpD = np.diag(np.exp(eigenvalues))

BasisChange = np.matrix(eigenvectors)

return BasisChange*ExpD*BasisChange.I

return map(MExp2, ListofMatrices)

def Comm(A,B):

A , B = np.matrix(A), np.matrix(B)

return (A*B - B*A)

def MinDist(ListofNumbers):

#Gives the minimum distance between two numbers in a list

return np.min(np.ediff1d(np.sort(ListofNumbers)))

"""Integration functions"""

def CumulativeTrapezium(A, ds):

# A(s) being a list of matrix say along s. ds can be a list

or a (uniform) scalar for integration

#Suppose we discrete integration space s0 < s1 < ... < sn then, CumulativeTrapz

#Then Trapezium integration to s0 is zero is zero

then adding incrementing via trapeziums
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if type(ds) == ’float’:

ds = len(A)*[ds] #if sclar, treat uniform ds along the axis

CumTrapList = [ 0*A[0] ] #integral upto time 0 is zero (matrix)

for ti in range( len(A) -1 ):

CumTrapList.append( CumTrapList[-1] + 0.5*ds*( A[ti] + A[ti+1]) )

return CumTrapList

"""Statistical functions"""

def RelError(MatrixPair): #or vectors

RealMatrix , FakeMatrix = MatrixPair[0], MatrixPair[1]

return np.linalg.norm( np.matrix(RealMatrix) - np.matrix(FakeMatrix) )

/ np.linalg.norm(RealMatrix)

#Fake = Approximation

def RelErrorList(RealMatrixList, FakeMatrixList):

return np.array( map(RelError, zip(RealMatrixList, FakeMatrixList)) )

def RelErrorList_base10Log(RealMatrixList, FakeMatrixList):

return np.array( map(np.log10, RelErrorList(RealMatrixList,FakeMatrixList) ) )

logresult = np.vectorize(np.log10)

"""Functions for initial conditions"""

def GenerateRandomInitialConditions(low = 0, high = 1, N = 5):

while True:

vector = np.random.uniform(low, high , N)

s = set( entry for entry in vector )

if s.__len__() == N : #unique only if same number of entries!

return(vector)

def GenerateGaussianVector(mean = 0, sigma = 1, N = 5):

#This part generates a N-dimensional Guassian vector

with unique entries (as precaution!) distributed N(mean,sigma)

#we use a set as this is quickest to check uniqueness.

If unique, break. Else, repeat.

if sigma == 0: sigma = 1e-5 #to avoid zero variance
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while True:

vector = np.random.normal(mean,sigma,N)

s = set(entry for entry in vector)

if s.__len__() == N : #unique only if same number of entries!

return(vector)

def GenerateRandomL0(low = 0, high = 1, N = 5, imaginary = "y"):

R = np.random.uniform(low, high, N**2).reshape(N,N)

if imaginary == "y":

I = np.random.uniform(low,high,N**2).reshape(N,N)

I = I - np.diag(np.diag(I)) #zero-out the diagonal entries!

return (R-R.T) + 0.5*(I+I.T)*1j

else:

return (R-R.T)

#Denote the following space of matrices BoldL

(although need not be normal distributed)

def GenerateGaussianHermitianMatrixZeroDiagonal(mean = 0 ,

sigma = 1, imaginary="y", N = 5):

#Idea: create 2 Gaussian distribted N(mean,sigma) matrices for real matrix R

and imaginary matrix I

#Using property that R+R.T is symmetric while I-I.T is conjugate symmetrix

then adding them yields a scaled complex-valued Hermitian matrix

if sigma == 0: sigma = 1e-5 #to avoid zero variance

R = np.random.normal(mean,sigma,N**2).reshape(N,N)

if imaginary=="y":

I = np.random.normal(mean,sigma,N**2).reshape(N,N)

I = I - np.diag(np.diag(I)) #zero-out the diagonal entries!

return((R-R.T)+0.5*(I+I.T)*1j)

else:

return(R-R.T)

def GenerateRandomPointInBall(radius = 1, N = 5, centre = 0 ): #uniform sampling!
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#Idea: generate uniform distribution ON a sphere then scale by a uniform radius

#See http://mathworld.wolfram.com/SpherePointPicking.html eqn (16) for ON

#Centre can be an number or a vector

x = GenerateGaussianVector(0,1,N)

x = x / np.linalg.norm(x)

SampleRadius = np.random.uniform(low = 0, high = radius) #sample radius uniformly

return SampleRadius*x + centre

def GenerateBoldLMatrixInBall(radius = 1, N = 5, centre = 0 ):

#may not be uniform in this space!

L = GenerateGaussianHermitianMatrixZeroDiagonal(N = N)

L = L / np.linalg.norm(L)

SampleRadius = np.random.uniform(low = 0, high = radius) #sample radius uniformly

return SampleRadius*L + centre

def GenerateInitialXConditions(x_radius,N, epsilon = 0.05):

counter = 0

while True:

counter += 1

X0 = GenerateRandomPointInBall(x_radius,N)

dist = [abs(X0[i] - X0[j]) for j in range(N) for i in range(j)]

if min(dist) > epsilon:

return X0

if counter > 500:

print("Computer says no, the epsilon is too big, innit")

break

def GeneratePechukasInitialConditions(N = 5,

x_radius = 1, v_radius = 1, l_radius = 1, epsilon = 0.05 ):

if epsilon:

return GenerateInitialXConditions(x_radius,N, epsilon) ,

GenerateRandomPointInBall(v_radius,N), GenerateBoldLMatrixInBall(l_radius,N)

else:

return GenerateRandomPointInBall(x_radius,N) ,
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GenerateRandomPointInBall(v_radius,N), GenerateBoldLMatrixInBall(l_radius,N)

"""Pechukas Eqns and Euler Method"""

def EulerRoutine(X0 ,V0 ,L0 , dLambda, N = 5):

N = X0.size

X, V, L = [X0], [V0] ,[L0]

def Vdot(i): #Computes Vdot for each time t_i, returning Vdot as a vector

def Vdot_component(m): #function to calculuate the m’th component of Vdot

vdot_m = 0

for n in range(N):

if n != m:

vdot_m += (pow(abs(L[i][m,n]),2)/pow(X[i][m]-X[i][n],3))

return(vdot_m)

#returns the vector gluing all the components together, returning a vector

return(2*np.array([Vdot_component(m) for m in range(N)]))

def Ldot(i): #Computes Ldot for each time t_i, returning Ldot as a matrix

def Ldot_component(m,n):

#function to calculate the (m,n)’th matrix entry of Ldot

ldot_lmn = 0

for k in range(N):

if (k != m and k != n):

ldot_lmn += L[i][m,k]*L[0][k,n]*(pow(X[i][m]-X[i][k],-2)

- pow(X[i][k]-X[i][n],-2))

return(ldot_lmn)

def Ldot_row(m): #for each fixed m, compute Ldot_m,n and combine into a row

return(np.array([Ldot_component(m,n) for n in range(N)]))

#glue up each row to produce the required matrix

return(np.array([Ldot_row(m) for m in range(N)]))

#Euler routine here

for i in range(len(dLambda)-1):

X.append(X[i] + dLambda[i]*V[i])
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V.append(V[i] + dLambda[i]*Vdot(i))

L.append(L[i] + dLambda[i]*Ldot(i))

return X, V , L

"""Building XMatrix and PMatrix for solving differential eqn for C"""

def BuildXMatix( X ): return map(np.diag, X )

# return [np.diag(X[i]) for i in range(len(X))]

def BuildPMatrix(X ,L):

N = len(X[0])

PMatrices = []

for ti in range(len(X)):

P = np.zeros((N,N)) + 1j*np.zeros((N,N))

for i in range(N):

for j in range(i):

P[i][j] = L[ti][i][j] / ((X[ti][i] - X[ti][j]) ** 2)

PMatrices.append(P - (P.conj()).T)

return PMatrices

"""Piecewise routine"""

def PWC_Propagator(A,dt):

IntAdt = CumulativeTrapezium(A,dt)

PropagatorList = MatrixExpList(IntAdt)

return PropagatorList

"""Integrating Xdt with no P terms"""

def NoLambdaPropagator(XMatrix,dt): #Ignoring P terms essentially, adibatic theorem

IntXdt = CumulativeTrapezium(XMatrix,dt)

iIntXdt = [-1j*intxdt for intxdt in IntXdt]

PropagatorList = MatrixExpList(iIntXdt)

return PropagatorList #gibb returning IntXdt

"""Magnus to the second order routine"""

def Magnus_SecondOrder(A,dt):
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Omega1 = CumulativeTrapezium(A,dt)

#left hand side approx (partly by nature of commutator)

Omega2_InnerInteg = [ sum([Comm(A[tj],A[ti])*dt for tj in range(ti)])

for ti in range(1,len(A))]

Omega2 = [np.zeros(A[0].shape)] + CumulativeTrapezium(Omega2_InnerInteg,dt)

OmegaTotal = [ Omega1[i] + 0.5*Omega2[i] for i in range(len(Omega1)) ]

return MatrixExpList(OmegaTotal)

"""Iterative method"""

def CIterative(C0 , NoLambdaPropagator , LambdaDotP , dt, power = 10):

#Build CIterative for one initial conditions

C_0 = [NLProp*C0 for NLProp in NoLambdaPropagator]

#solving the homogeneous solution via propagator

C_All = [C_0]

C_i = C_0 #starting with initial homogeneous solution

for dummy in range(1,power):

integrand = [LambdaDotP[ti]*C_i[ti] for ti in range(len(LambdaDotP))]

#add zero vector as same with adding zero matrix in above methods

C_i = CumulativeTrapezium(integrand,dt)

C_All.append(C_i)

#Conversion to array allowing us to sum up C_i to give required perturbation

C_Series = [ np.array(C_All[0]) ]

for i in range(1,len(C_All)):

C_Series.append( C_Series[-1] + np.array(C_All[i]) )

return C_Series

def SimulateCIt(PiecewiseProp, NoLambdaProp, LambdaDotP, dt, C_Simulations = 1000 ,

N = 5, power = 10): #Ran many sims

#Simulate CIt and get error average over simulations

RelErrorC, PWCC = [] , []

n = N
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for csim in range(C_Simulations):

C0 = GenerateGaussianVector(N = n)

C0 = np.matrix(C0.reshape((n,1))) / np.linalg.norm(C0)

#turn into unit vector/matrix

CIter = CIterative(C0 , NoLambdaProp , LambdaDotP, dt , power = 10)

#CIter[n][t] = C_n(t) = n’th iterate at time t

"""Collecting up results"""

PWCC = [PiecewiseProp[ti]*C0 for ti in range(len(PiecewiseProp))]

RelErrorC.append( RelErrorList( PWCC, CIter[-1]) )

AvgRelErrorC = np.average(RelErrorC, axis = 0)

return AvgRelErrorC

Set Up for Pechukas Objects

import numpy as np

import PechukasFunctions as PF

import matplotlib.pyplot as plt

class PechukasTrajectory(object):

def __init__(self, x0 = np.array([-0.2,0.3]) , v0 = np.array([-0.6,0.8]) ,

l0 = np.array( [[0,1.5],[1.5,0]] ), t_0 = 0, t_end = 1, steps = 100,

Lambda = lambda ti: 0.01*ti, c_simulations = 10):

#initial conditions

self.x0 = x0

self.v0 = v0

self.l0 = l0

self.N = x0.size

#Euler paramters

self.t_0 = t_0

self.t_end = t_end

self.steps = steps

self.t = np.linspace(t_0 ,t_end ,steps+1)

self.dt = float((t_end - t_0))/steps

# self.Lambda = Lambda
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### Uncommenting this line will break the multiprocessing!###

self.dLambda = np.append( np.diff(np.vectorize(Lambda)(self.t)) ,

Lambda(self.t[-1]+self.dt) - Lambda(self.t[-1]))

#Trajectory and data

self.X, self.V, self.L = PF.EulerRoutine(self.x0 ,self.v0 , self.l0,

self.dLambda)

self.XMatrix , self.PMatrix = PF.BuildXMatix(self.X) ,

PF.BuildPMatrix(self.X,self.L)

self.A = [-1 *(1j * self.XMatrix[ti] + (self.dLambda[ti]/self.dt)

* self.PMatrix[ti]) for ti in range(len(self.dLambda))]

#note that this has one less entry than X (say)

because we took len(dlambda) is one less.

Given N points, there are (N-1) spacings...

# #Build Propagators

self.PiecewiseProp = np.array( PF.PWC_Propagator(self.A,self.dt) )

self.NoLambdaProp = PF.NoLambdaPropagator(self.XMatrix,self.dt)

self.MagnusProp = PF.Magnus_SecondOrder(self.A,self.dt)

#

# #Cit

self.c_simulations = c_simulations

self.LambdaDotP = [self.dLambda[i]*self.PMatrix[i]

for i in range(len(self.PMatrix))]

#

# #Results/Errors

self.Errors = {}

self.Errors[’Magnus’] = PF.RelErrorList(self.PiecewiseProp, self.MagnusProp)

self.Errors[’NoLambdaProp’] = PF.RelErrorList(self.PiecewiseProp,

self.NoLambdaProp)

self.Errors[’CIT’] = PF.SimulateCIt(self.PiecewiseProp, self.NoLambdaProp,
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self.LambdaDotP, self.dt, self.c_simulations, self.N, power = 2)

#

self.LogErrors = {}

self.LogErrors[’Magnus’] = PF.logresult(self.Errors[’Magnus’])

self.LogErrors[’NoLambdaProp’] = PF.logresult(self.Errors[’NoLambdaProp’])

self.LogErrors[’CIT’] = PF.logresult( self.Errors[’CIT’] )

#Level-crosings...

class PechukasEnsemble(object):

def __init__(self, Ensemble):

self.EnsembleData = Ensemble

#System/Simulation parameters

self.functions = Ensemble.keys()

self.t = Ensemble[Ensemble.keys()[0]][0].t #pick out the time space

self.methods = Ensemble[Ensemble.keys()[0]][0].Errors.keys()

self.Simulations = len(Ensemble[Ensemble.keys()[0]])

self.N = Ensemble[Ensemble.keys()[0]][0].N

self.LoggedErrors = self.GenerateErrors() #LoggedErrors[method][function]

def GenerateErrors(self):

LoggedErrors = dict()

for method in self.methods:

LoggedErrors[method] = {}

for function in self.functions:

LoggedErrors[method][function] =

PF.logresult( self.AverageErrorsOverSimulations(method,

self.EnsembleData[function]) )

return LoggedErrors

def AverageErrorsOverSimulations(self, method, ListofTrajectories):
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return (1./self.Simulations)*np.sum( ListofTrajectories[i].Errors[method]

for i in range(len(ListofTrajectories)))

def Plot_Method(self, method):

plt.figure()

for function in self.functions:

plt.plot(self.t, self.LoggedErrors[method][function], label = function)

plt.xlabel(r’$t$’)

plt.ylabel("Log Rel Error(t)")

plt.title(method)

plt.legend()

plt.show()

savename = " ".join([method, "N=", str(self.N), str(self.Simulations),

"simulations"])

plt.savefig( savename + ’.jpeg’)

def Plot_AllMethods(self):

for method in self.methods:

self.Plot_Method(method)

def Plot_Function(self, function):

method_crisscross = {’Magnus’: ’b--’, ’CIT’: ’rx’, ’NoLambdaProp’: ’k’}

plt.figure()

for method in self.methods:

plt.plot(self.t, self.LoggedErrors[method][function],

method_crisscross[method] , label = method)

plt.xlabel(r’$t$’)

plt.ylabel("Log Rel Error(t)")

plt.title(function)

#plt.legend()

plt.show()

savename = " ".join([function, "N=", str(self.N), str(self.Simulations),

"simulations"])
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plt.savefig( savename + ’.jpeg’)

def Plot_AllFunction(self):

for function in self.functions:

self.Plot_Function(function)

Comparing approximation Schemes

Multiprocessing Pechkuas Trajectories

"""

import time

import multiprocessing

import PechukasObject

import PechukasFunctions as PF

import numpy as np

def worker(parameters, CPUi ,OutQueue):

""" This is a mulitprocessing "worker" function

Define a set of Lambda functions, creates a dictionary that’s pushed to a queue.

The following creates dictionary keyed by function name

to a list of simulations/trajectory

"""

Lambdas = {’Linear’: lambda ti: 0.001*ti,\

’Cubic’: lambda ti: 0.001*(ti**3 + ti**2 + ti),\

’Exp’: lambda ti: 0.001*np.exp(-ti)}

batchsize = int(parameters[’Simulations’]/parameters[’nprocs’])

TrajectoryDict = {function: [] for function in Lambdas.keys()}

for sim in range(batchsize):

output = "CPU " + str(CPUi) + ": I am still Running " + str(sim) +

" simulation of batch size " + str(batchsize) + " @" + str(time.ctime())

print(output)

x0, v0, l0 = PF.GeneratePechukasInitialConditions(N = parameters[’N’],

x_radius = parameters[’xradius’], v_radius = parameters[’vradius’],
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l_radius = parameters[’lradius’], epsilon = 0.01)

for function in Lambdas.keys():

TrajectoryDict[function].append( PechkuasObject.PechukasTrajectory

(x0, v0, l0, t_0 = parameters[’t_0’], t_end = parameters[’t_end’],

steps = parameters[’steps’], Lambda = Lambdas[function],

c_simulations = parameters[’c_simulations’]) )

OutQueue.put(TrajectoryDict)

def RandomPechkuasEnsemble(parameters):

OutQueue = multiprocessing.Queue() #create the multiprocessing queue

procs = []

for i in range(parameters[’nprocs’]):

p = multiprocessing.Process(target=worker, args=(parameters, i , OutQueue) )

procs.append(p)

p.start()

# Collect eacb batch of ensemble into one big ensemble

EnsembleList = list()

for i in range(parameters[’nprocs’]):

EnsembleList.append( OutQueue.get()) #"peeling off" results from OutQueue

#Merging into one (dictionary) big ensemble (keyed by function),

probably memory-exhaustive

EnsembleDict = EnsembleList[0]

for ensemble in EnsembleList[1:]:

for function in EnsembleDict.keys():

EnsembleDict[function] += ensemble[function]

# Wait for all worker processes to finish

for p in procs:

p.join()

return EnsembleDict
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if __name__ == ’__main__’:

print("I is actually started and running")

start_time = time.time()

parameters = {’Simulations’: 8*125, \

’N’: 3, \

’t_0’: 0, \

’t_end’: 100, \

’steps’: 1000, \

’xradius’: np.pi/6, \

’vradius’: np.pi/6, \

’lradius’: np.pi/6, \

’c_simulations’: 10,\

’nprocs’: 8}

EnsembleDict = RandomPechkuasEnsemble(parameters)

Ensemble = PechkuasObject.PechukasEnsemble(EnsembleDict)

elapsed_time = round(time.time() - start_time,2)

print("Finished in ", elapsed_time)

# Ensemble.Plot_AllMethods()

Ensemble.Plot_AllFunction()

3 Sat Occupation Dynamics

import numpy as np

from numpy import linalg as la

import matplotlib.pyplot as plt

import time

import math

import PechkuasObject

import PechkuasFunctions as PF

print("Running")

start = time.time()

f = lambda ti: 0.01*math.exp(-ti)

t0, t_end, steps = 0 , 1, 100
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t = np. linspace (t0 ,t_end ,steps+1)

dt = float((t_end - t0))/steps

I = np.matrix([[1, 0], [0, 1]])

SigX = np.matrix([[0, 1], [1, 0]])

SigY = np.matrix([[0, -1j], [1j, 0]])

SigZ = np.matrix([[1, 0], [0, -1]])

Count=2

A=Count*(np.kron(I,I)-np.kron(I,SigZ)-np.kron(SigZ,I)+np.kron(SigZ,SigZ))

B=(np.kron(I,I)-0.5*np.kron(I,SigX)-0.5*np.kron(SigX,I))-

Count*(np.kron(I,I)-np.kron(I,SigZ)-np.kron(SigZ,I)+np.kron(SigZ,SigZ))

i = 0

Lambda1 = []

Lambda2 = []

Lambda = []

H = []

X = []

V = []

L = np.zeros((4, 4))

#print(t0)

while i < t_end+dt:

Lambda.append(f(i))

H.append(A+Lambda[-1]*B)

X.append( np.linalg.eigvals(H[-1]))

i = i + dt

def BuildL(X,B):

L = np.zeros(B.shape)

for i in range(4):

for j in range(4):

L[i,j] = (X[i] - X[j])*B[i,j]

return L

k = 0
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j = 0

L = []

Density = []

while k < t_end+dt:

if(j < 100):

V.append((X[j+1]-X[j])/(Lambda[j+1]-Lambda[j]))

j = j + 1

L.append( BuildL(X[j],B) )

# Density.append(np.kron(c0*P.MagnusProp[-1], c0*P.MagnusProp[-1]))

#L.append(X[j][m]-X[j][n])B[m][n]

k = k + dt

P = PechkuasObject.PechukasTrajectory(X[0], V[0], L[0], t_0 = 0, t_end = 1, steps = 100, Lambda = f)

Methods = {’Magnus’:’b--’, ’CIT’:’k’, ’NoLambdaProp’:’rx’}

for method in Methods.keys():

plt.plot(P.t, P.LogErrors[method], Methods[method])

plt.xlabel(r’$t$’)

plt.ylabel("Log Rel Error(t)")

c0 = PF.GenerateGaussianVector(N=4)

c0 = np.matrix(c0)/np.linalg.norm(c0) #unit 1xN vector (i.e. covector)

Ct = [P.MagnusProp[z]*c0.T for z in range(len(P.MagnusProp))]

Density = [np.kron(c,c.H) for c in Ct]

Density_diagonal = [d.diagonal() for d in Density]

plt.figure()

for x in range(Density_diagonal[0].size):

den =[Density_diagonal[z][0,x] for z in range(len(Density_diagonal))]

plt.plot(P.t, den, label = str(x+1))

plt.xlabel(r’$t$’)

plt.ylabel(’Occupation Number’)

plt.legend()
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