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ABSTRACT. We study random towers that are suitable to analyse the statistics of slowly
mixing random systems. We obtain upper bounds on the rate of quenched correlation
decay in a general setting. We apply our results to the random family of Liverani-
Saussol-Vaienti maps with parameters in [α0, α1] ⊂ (0, 1) chosen independently with
respect to a distribution ν on [α0, α1] and show that the quenched decay of correlation
is governed by the fastest mixing map in the family. In particular, we prove that for
every δ > 0, for almost every ω ∈ [α0, α1]Z, the upper bound n1− 1

α0
+δ holds on

the rate of decay of correlation for Hölder observables on the fibre over ω. For three
different distributions ν on [α0, α1] (discrete, uniform, quadratic), we also derive sharp
asymptotics on the measure of return-time intervals for the quenched dynamics, ranging
from n−

1
α0 to (log n)

1
α0 · n−

1
α0 to (log n)

2
α0 · n−

1
α0 respectively.
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1. INTRODUCTION

In this paper we study statistical properties of systems that evolve according to deter-
ministic laws driven by a random process. Such systems are called random dynamical
systems and they are often studied via analysis of a related deterministic system, the
skew product map T : Ω×X → Ω×X given by:

T (ω, x) := (σω, fω(x)),

where {fω}ω∈Ω is a family of transformations that map X , the phase space, into itself,
and σ is a measure preserving map on Ω, the noise space. The fω’s are often referred
to as the fibre maps and σ is called the base map or the driving system. The fibre maps
are the deterministic components of the random system, while the base map invokes the
required randomness, or time dependence, or parameter drift in the system.

Recently there has been a remarkable interest in studying statistical limit theorems for
random dynamical systems [1, 4, 5, 9, 10, 12, 13, 15, 21]. Most of these results assume
some knowledge about the rate of correlation decay of the random system under con-
sideration. In this work, we develop random towers that are suitable to study quenched1

correlation decay for slowly mixing random systems. We obtain a general result on the
rate of quenched correlation decay. Moreover, we apply our results to answer the fol-
lowing questions: in what way does an individual map fω, or a group of fω’s, dictate the
rate of quenched2 correlation decay of the random system? A second question is: how
does the distribution on Ω (the measure preserved by σ) effect the quenched statistics
of the system? We answer the above two questions in the framework of the Pomeau-
Manneville family [23] using the version popularised by Liverani-Saussol-Vaienti [17].
Such systems have attracted the attention of both mathematicians and physicists (see
[16] for a recent work in this area). In particular, for Liverani-Saussol-Vaienti (LSV)
maps with parameters in [α0, α1] ⊂ (0, 1) and base dynamics ([α0, α1]Z, σ, νZ) we show

1Quenched results in random dynamical systems refer to pathwise results for almost every ω.
2In a simple model, yet important in the study of intermittent transition to turbulence [23], the first

question was answered in [6] only for the annealed dynamics; i.e., for the dynamics averaged over Ω, and
only for a specific distribution on Ω. Precisely [6] considered a system that has only two fibre maps and
with the base system being a Bernoulli shift.
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via a general random tower construction, that the quenched decay of correlation is gov-
erned by the fastest mixing map. Precisely, we prove that n1− 1

α0
+δ is an upper bound

on the rate of quenched decay of correlation, for all δ > 0. To illustrate the role that
δ > 0 plays in the quenched decay rate, and to address the second question above, we
also obtain sharp asymptotics on the position of return time intervals for the quenched
dynamics in the Liverani-Saussol-Vaienti family that depend on the randomising distri-
bution. In particular, we show how different distributions on [α0, α1] (discrete, uniform,
quadratic) change the sharp asymptotics on the position of return time intervals for the
quenched dynamics from n

− 1
α0 to (log n)

1
α0 · n−

1
α0 to (log n)

2
α0 · n−

1
α0 .

In Section 2 we recall standard definitions and notation from random dynamical sys-
tems and present various natural notions of correlation decay in this setting. In Section
3 we build random towers for our system and detail the dynamical hypotheses that are in
force throughout the paper. Our main general results are contained in Section 4 (Theo-
rems 4.1 and 4.2) where we prove existence and correlation decay estimates respectively
for the dynamics on the random towers. In Section 5 we present detailed computations
applying our general results to the case of random LSV maps on the interval. Three
different randomising distributions are investigated: discrete, uniform and quadratic. At
the end of Section 5 we also compute exact asymptotics for the measure of the return
sets on the base of the random towers. In Section 6 we prove Theorem 4.1. The ex-
pansion and distortion conditions and related estimates are the main tools used in this
section. In the next section, Section 7, we introduce random stopping times and derive
asymptotics on their distributions in preparation for a coupling argument. In Section 8
we obtain decay of correlation estimates (upper bounds) for observables on our random
towers. Both future and past decay estimates are derived. We conclude with Section 9
where we present some technical results that are used repeatedly in the paper. Notation:
We use a . b if there exists universal constant C such that a ≤ Cb; ∼, o, O will have
their usual meaning.

2. RANDOM DYNAMICAL SYSTEMS

Let (A,F, p) be a Borel probability space, let Ω = AZ be equipped with the product
measure P := pZ and let σ : Ω → Ω denote the P−preserving two-sided shift map.
Let (X,B) be a measurable space. Suppose that fu : X → X is a family of measurable
maps defined for p-almost every u ∈ A such that the skew product

T : Ω×X → Ω×X, T (ω, x) = (σ ω, fω0(x))

is measurable with respect to F×B were ωk ∈ A denotes the k-th coordinate of ω ∈ Ω.
In order to simplify notation, we will normally write fω := fω0 when there is no danger
of confusion. So, for example, fσω = fω1 . The resulting i.i.d. random map associated to
the family {fω} can be viewed as follows: letting Xω := {ω}×X denote the fiber over
ω and fnω = fσn−1ω ◦ · · · ◦ fω : Xω → Xσnω we have T n(ω, x) = (σn ω, fnω (x)). We
say that µ is a T -invariant measure if µ(T−1A) = µ(A) for any A ∈ B × F. Assume
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that {Xω}ω∈Ω forms a measurable partition3 of Ω×X . We are interested in T -invariant
probability measures, µ, such that π∗µ = P , where π is the projection onto Ω. Then
by Rokhlin’s disintegration theorem (see [22] or [24] ), for any such measure µ there
exists a (essentially unique) system of probability measures µω on Xω such that for any
A ∈ F ×B

(2.1) ω 7→ µω(A) is measurable and µ(A) =

∫
µω(A)dP (ω).

It is easy to check that µ is T -invariant if and only if (fω)∗µω = µσω for P - a.e. ω, a
property we naturally refer to as fω−equivariance (or simply equivarariance, when the
random map is understood) of the family {µω}.

In this paper we study statistical properties of the equivariant family of measures {µω}
for P -almost every ω ∈ Ω, when µω is absolutely continuous with respect to Lebesgue
measurem onX . More precisely we study future and past quenched correlations: given
ϕ, ψ : X × Ω→ R define future and past fibre-wise correlations

Cor(f)
n,ω(ϕ, ψ) =

∫
(ϕσnω ◦ fnω )ψωdµω −

∫
ϕσnωdµσnω

∫
ψωdµω,

Cor(p)
n,ω(ϕ, ψ) =

∫
(ϕω ◦ fnσ−nω)ψσ−nωdµσ−nω −

∫
ϕωdµω

∫
ψσ−nωdµσ−nω.

(2.2)

Definition 1. Let B1 and B2 be two Banach spaces on Ω × X and let {ρn}n∈N be a
sequence of positive numbers such that limn→∞ ρn = 0. We say that fω admits quenched
decay of correlations at rate ρn if for P -almost all ω and for any ϕ ∈ B1 and ψ ∈ B2

there are constants Cω and Cϕ,ψ such that

(2.3) |Cor(f)
n,ω(ϕ, ψ)| ≤ CωCϕ,ψρn, |Cor(p)

n,ω(ϕ, ψ)| ≤ CωCϕ,ψρn.

Remark 1. Note that if Cω is P -integrable, then this implies the same rate for the inte-
grated correlations; i.e.,

∫
Ω
Cor

(f)
n,ω(ϕ, ψ)dP ≤ Ĉϕ,ψρn. The importance of knowing the

rate of the integrated correlations is due to its relation to the annealed correlations of the
skew product. Indeed, setting ϕ̄ω :=

∫
X
ϕdµω and ψ̄ω :=

∫
X
ψdµω we have

Corn(T, ϕ, ψ) =

∫
Ω

Cor(f)
n,ω(ϕ, ψ)dP + Corn(σ, ϕ̄, ψ̄).

3. ABSTRACT TOWER SETTING

A main tool, in particular in the absence of spectral techniques, to study statistical
properties of dynamical systems is the so called Young Tower [26, 27]. Young Towers
have been used extensively to obtain rates of decay of correlations for nonuniformly
hyperbolic systems (see for example [2, 3, 11, 19] and references therein). In this sec-
tion we describe random towers which were first considered in [7] to study quenched
statistical properties of i.i.d. unimodal maps. Later the work of [7] was extended in
[8] to cover a wider class of i.i.d. unimodal maps. Building on ideas from [7, 8] we

3This is satisfied, for example, when A is Hausdorff so that {ω} is closed.



QUENCHED DECAY OF CORRELATIONS 5

study random towers with slowly decaying tails. Let Λ ⊂ X be a measurable set
with m(Λ) = 1. Consider a family of maps fω : X → X , where fω depends only
on the zeroth coordinate of ω. We say that fω admits a random tower on Λ ⊂ X if
for almost every ω ∈ Ω there exists a countable partition {Λj(ω)}j of Λ and a mea-
surable return time function Rω : Λ → N that is constant on each Λj(ω) such that
fRωω (x) = fσRω(x)−1ω ◦ · · · ◦ fσω ◦ fω(x) ∈ Λ for P -almost every ω ∈ Ω and m -almost
every x ∈ Λ. Given the above information we define a random tower for almost every
ω as

(3.1) ∆ω =
{

(x, `) ∈ Λ× Z+ | x ∈ ∪jΛj(σ
−`ω), j, ` ∈ Z+, 0 ≤ ` ≤ Rσ−`ω(x)− 1

}
and random tower map Fω : ∆ω → ∆σω by

(3.2) Fω(x, `) =

{
(x, `+ 1), if `+ 1 < Rσ−`ω(x)

(f `+1
σ−`ω

x, 0), if `+ 1 = Rσ−`ω(x).

Denote by ∆ω,` := {(x, `) ∈ ∆ω} the `th level of the tower, which is a copy of {x ∈
Λ | Rσ−`ω(x) > `}; for instance ∆ω,0 = Λ and FRω

ω |∆ω,0 = fRωω |Λ. Let ∆ = {∆ω}ω∈Ω.
Then F = {Fω}ω∈Ω is a fibered system on ∆; see Figure 1 for a pictorial representation.

σ2ω
σω

0

1

2

σRω−1ω

σRωω

F

F ω

Rω − 1

FIGURE 1. Dynamics on the tower

Notice that {Λj(ω)}j induces a countable partition Pω on each ∆ω:

Pω :=
{
F `
σ−`ω(Λj(σ

−`ω)) | Rω|Λj(σ
−`ω) ≥ `+ 1, ` ∈ Z+

}
.

For (x, `) ∈ ∆ω, let R̂ω denote the first return time to the base of the tower ∆σR̂ωω i.e.

(3.3) R̂ω(x, `) = Rσ−`ω(x)− `.
The reference measure m and the σ-algebra on Λ naturally lifts to ∆ω and by abuse of
notation we call it m. The lifted σ-algebra will be denoted by Bω. Let R1

ω(x) = Rω(x)
and for n ≥ 2, Rn

ω(x) = R
σR

n−1
ω ω

(F n−1
ω (x)) + Rn−1

ω (x).Next we define the separation
time s : ∆ ×∆ → Z+ ∪ {∞} for almost every ω by setting s(z1, z2) = 0 if z1 and z2

lie in different towers ∆ω and if z1, z2 ∈ ∆ω then

s(z1, z2) = min{n ≥ 0 | (FRω
ω )n(z1) and (FRω

ω )n(z2) lie in distinct elements of PσRnωω}.
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Below we refer to Λ as the zeroth level of the tower. We assume that the random tower
satisfies the following properties.

(P1) Markov: for each Λj(ω) the map FRω
ω |Λj(ω) : Λj(ω)→ Λ is a bijection;

(P2) Bounded distortion: There are constants D > 0 and 0 < γ < 1 such that for
all ω and each Λj(ω) the map FRω

ω |Λj(ω) and its inverse are non-singular with
respect to m with corresponding Jacobian JFRω

ω |Λj(ω) which is positive and
for each x, y ∈ Λj(ω) satisfies the following

(3.4)
∣∣∣∣JFRω

ω (x)

JFRω
ω (y)

− 1

∣∣∣∣ ≤ Dγs(F
Rω
ω (x,0),FRωω (y,0));

(P3) Weak expansion: Pω is a generating partition for Fω i.e. diameters of the parti-
tions ∨nj=0F

−j
ω Pσjω converge to zero as n tends to infinity;

(P4) Return time asymptotics: There are constants C > 0, a > 1, b ≥ 0, u > 0,
v > 0, a full measure subset Ω1 ⊂ Ω and a random variable n1 : Ω1 → N such
that

(3.5)

{
m{x ∈ Λ | Rω(x) > n} ≤ C (logn)b

na
, whenever n ≥ n1(ω),

P{n1(ω) > n} ≤ Ce−un
v
;

(P5) Aperiodicity: There are N ∈ N and {ti ∈ Z+ | i = 1, 2, ..., N} such that
g.c.d.{ti} = 1 and εi > 0 so that for almost every ω ∈ Ω and i = 1, 2, . . . N we
have m{x ∈ Λ | Rω(x) = ti} > εi.

(P6) Finiteness: There exists an M > 0 such that m(∆ω) ≤M for all ω ∈ Ω.
(P7) Annealed return time asymptotics: There are constants C > 0, b̂ ≥ 0 and

a > 1 such that
∫

Ω
m{x ∈ Λ|Rω = n}dP ≤ C (logn)b̂

na+1 .

3.1. Tower projections. For almost every ω ∈ Ω and (x, `) ∈ ∆ω we define tower
projections πω : ∆ω → Xω as πω(x, `) = f `

σ−`ω(x). Then πω is a semi-conjugacy i.e.
πσω ◦ Fω = fω ◦ πω. Indeed, for (x, `) ∈ ∆ω we have fω(πω(x, `)) = fω ◦ f `σ−`ω(x). On
the other hand, since F (x, `) ∈ ∆σω

πσω(Fω(x, `)) =

{
πσω(x, `+ 1) if Rσ−`ω(x) > `+ 1

πσω(f `+1
σ−`ω

(x), 0) otherwise
= f `+1

σ−`ω
(x).

Now, if νω is an absolutely continuous family of Fω-equivariant probability measures on
∆ω, then µω := (πω)∗νω is a family of fω- equivariant probability measures on Ω×X .
Since each fω is nonsingular, if A ⊂ X is such that m(A) = 0 then m(π−1

ω (A)) =
0, which implies νω(π−1

ω (A)) = 0, consequently µω(A) = 0. Therefore each µω is
absolutely continuous.

4. STATEMENT OF MAIN RESULTS

In this section we state general theorems concerning quenched correlation decay for
slowly mixing systems. We start this section by introducing some function spaces on ∆,
which are necessary to state the theorems. These spaces appeared in the present form in
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[7]. Below we let constants u > 0, v > 0, a > 1, b ≥ 0, 0 < γ < 1 be as in (P2) and
(P4) above and set

F+
γ = {ϕω : ∆ω → R |∃Cϕ > 0,∀Iω ∈ Pω, either ϕω|Iω ≡ 0

or ϕω|Iω > 0 and
∣∣∣∣log

ϕω(x)

ϕω(y)

∣∣∣∣ ≤ Cϕγ
s(x,y), ∀x, y ∈ Iω}.

Let Kω : Ω→ R+ be a random variable with infΩ Kω > 0 and

(4.1) P{ω | Kω > n} ≤ e−un
v

.

Define the space of random bounded functions as

LKω
∞ = {ϕω : ∆ω → R | ∃C ′ϕ > 0, sup

x∈∆ω

|ϕω(x)| ≤ C ′ϕKω}

and a space of random Lipschitz functions

FKωγ = {ϕω ∈ LKω
∞ | ∃Cϕ > 0, |ϕω(x)− ϕω(y)| ≤ CϕKωγ

s(x,y), ∀x, y ∈ ∆ω}.
Notice that the above spaces are defined for almost every ω ∈ Ω. By taking small-
est possible values of C ′ϕ and Cϕ the spaces LKω

∞ and FKωγ equipped with the norms
‖ϕ‖L∞ = C ′ϕ and ‖ϕ‖F = max{Cϕ, C ′ϕ} respectively are Banach spaces. Note that no
regularity assumption is made in the ω variable, in particular, these functions need not
be measurable in ω. Finally we let B be a σ-algebra on ∆ defined as follows: B ∈ B

if and only if for each ω the intersection Bω = B ∩ ∆ω ∈ Bω. Let {νω}ω∈Ω be a
fibered equivariant family of measures i.e. (Fω)∗νω = νσω. Let µω = (πω)∗νω and
µ(A) =

∫
Ω
µω(Aω)dP (ω). Then µ is T -invariant (for the skew product T on Ω × X).

We say that ν is exact/mixing for F if µ is exact/mixing for the skew product T . We can
formulate equivalent conditions as follows.

Definition 2.
(i) The fibered system (F, ν) = (Fω, νω)ω∈Ω is exact iff ∨∞n=0F

−nB is trivial; i.e.,
for any B ∈ ∨∞n=0F

−nB, either for almost all ω, νω(B) = 0 or for almost all ω,
νω(B) = 1.

(ii) The random skew product (F, ν) is mixing iff for all ϕ, ψ ∈ L2(ν),

lim
n→∞

∣∣∣∣∫
Ω

∫
∆ω

ϕσnω ◦ F n
ω · ψωdνωdP −

∫
Ω

∫
∆ω

ϕωdνωdP

∫
Ω

∫
∆ω

ψωdνωdP

∣∣∣∣ = 0.

We note that in our situation exactness implies mixing ([7], section 4). The first result
is the existence of absolutely continuous sample measures.

Theorem 4.1. For almost every ω ∈ Ω there is a family νσkω which is equivariant
and absolutely continuous with respect to m: (Fσkω)∗νσkω = νσk+1ω, with νω = hωm.
Moreover, there exists Kω satisfying (4.1) such that hω ∈ FKωγ ∩ F+

γ for almost every
ω ∈ Ω.

The next main result is about the decay of future and past quenched correlations.
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Theorem 4.2. Let δ > 0. Let Kω be the function given in Theorem 4.1. There exits a
full measure set Ω0 ⊂ Ω and a random variable Cω on Ω0 such that for every ϕ ∈ LKω

∞ ,
ψ ∈ FKωγ there exits a constant Cϕ,ψ such that for every ω ∈ Ω0

(i) “Future” operational correlations :∣∣∣∣∫ (ϕσnω ◦ F n
ω )ψωdm−

∫
ϕσnωdνσnω

∫
ψωdm

∣∣∣∣ ≤ CωCϕ,ψn
1+δ−a.

(ii) “Past” operational correlations :∣∣∣∣∫ (ϕω ◦ F n
σ−nω)ψσ−nωdm−

∫
ϕωdνω

∫
ψσ−nωdm

∣∣∣∣ ≤ CωCϕ,ψn
1+δ−a.

Moreover, there exist constants C > 0, u′ > 0, v′ ∈ (0, 1) such that

P{Cω > n} ≤ Ce−u
′nv
′

.

Remark 2. A quenched correlation decay rate of the form (logn)b

na−1 , which is analogous to
what one expects in the deterministic setting, cannot be achieved since we want to get
information on the integrability of the Cω in Theorem 4.2. The shift of the Lipschitz
constant Kω, and hence the dependence of that constant on n, in equation (8.7) and the
non-uniformity of the tail in (P4) are the main reasons for getting a rate at the order

1
na−1+δ , for any δ > 0. See Footnote 7 for more details.

Theorem 4.3. Let {νω} be as in Theorem 4.1. The map ω 7→ νω is measurable in ω.
The measure ν(·) =

∫
Ω
νω(·)dP is F -invariant, and the system (F, ν) is exact and hence

mixing.

Proof. By Proposition 8.6, for almost every ω, we have

|(F n
σ−nω)∗m− νω| =

∫ ∣∣∣∣d(F n
σ−nω)∗m

dm
− hω

∣∣∣∣ dm→ 0.

Since d(F n
σ−nω)∗m/dm is measurable in (ω, x), this implies that (ω, x) 7→ hω(x) is

measurable. The integrability of hω with respect to P follows from that of Kω. Thus,
{νω} is a measurable family of measures and ν(·) =

∫
Ω
νω(·)dP is F -invariant. Using

the same method as detailed in [7] we conclude that the system (F, ν) is exact and hence
mixing. �

5. APPLICATIONS TO RANDOM LSV MAPS

In this section we illustrate our results with applications to the family of intermittent
LSV maps as described in [17]. Let 0 < α < 1 and consider fα : I → I defined as

(5.1) fα(x) =

{
x(1 + 2αxα), x ∈

[
0, 1

2

]
,

2x− 1, x ∈
(

1
2
, 1
]
.

To define a random LSV map we fix two positive numbers 0 < α0 < α1 < 1 and let ν
be a probability measure on [α0, α1]. Set Ω = [α0, α1]Z and P = νZ. Then the shift map
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σ : Ω→ Ω preserves P . Let α : Ω→ [α0, α1] be the projection to the zeroth coordinate
and let fα(ω) = fω. We consider the skew product T : Ω× I → Ω× I defined by

T (ω, x) = (σ(ω), fω(x)).

Compositions of fω are given by fnω = fσn−1ω ◦ · · · ◦ fσω ◦ fω.
For each ω we define a sequence of pre-images of 1

2
as follows. Let x1(ω) = 1

2
, and

(5.2) xn(ω) =
(
fω|(0,1/2]

)−1
xn−1(σω) for n ≥ 2.

Further let

(5.3) x′0(ω) = 1, x′1(ω) =
3

4
, and x′n(ω) =

xn(σω) + 1

2
for n ≥ 2.

The sequences {xn(ω)} and {x′n(ω)} will allow us to define the random tower struc-
ture. First of all notice that from the definition of x′n(ω) we have fω(x′n(ω)) = xn(σω),
f 2
ω(x′n(ω)) = xn−1(σ2ω), ..., fnω (x′n(ω)) = x1(σnω) = 1

2
. Let Λ :=

(
1
2
, 1
]
. The se-

quence {x′n(ω)}n≥0 generates a partition Pω = {(x′n(ω), x′n−1(ω)] | n ≥ 0} on each
Λ× {ω} = ∆ω,0. Define the return time Rω : ∆ω,0 → N by setting

(5.4) Rω|(x′n(ω),x′n−1(ω)] = n.

A fibered system is obtained by defining a tower ∆ω over each ω ∈ Ω by

∆ω = ∪∞`=0 ∪∞i=`+1 (x′i(σ
−`ω), x′i−1(σ−`ω)]× `.

The fibered map F : (ω,∆ω) → (σω,∆σω) from equation (3.1) can be expressed in
this notation as follows: Let (x, `) ∈ ∆ω over ω, with x ∈ (x′i(σ

−`ω), x′i−1(σ−`ω)].
There are two cases. If i > ` + 1, then F (x, `) = (x, ` + 1) ∈ ∆σω since x ∈
(x′i(σ

−`ω), x′i−1(σ−`ω)] = (x′i(σ
−`−1σω), x′i−1(σ−`−1σω)]. On the other hand, if i =

`+ 1 then x ∈ (x′`+1(σ−`ω), x′`(σ
−`ω)], where Rσ−`ω ≡ `+ 1, so the interval is mapped

bijectively to (1
2
, 1] by f `+1

σ−`ω
. Therefore in this case we have F (x, `) = (f `+1

σ−`ω
(x), 0).

Proposition 5.1. The fibered system {∆ω}ω∈Ω with fibered map F defined above satis-
fies properties (P1)-(P3) and (P5). In particular, the distortion condition (P3) is satisfied
for any γ ∈ [1

2
, 1) and D <∞.

Proof. Since every map in the family fα expands by at least a factor of 2 on return to
the base interval (1

2
, 1], with full returns, we see that the Markov and weak expansion

properties are satisfied. Furthermore, for each ω, {x ∈ Λ | Rω(x) = 1} = (3
4
, 1], which

implies that the aperiodicity condition (P5) is satisfied. Since every fα has negative
Schwarzian derivative and this property is preserved under composition, we obtain the
bounded distortion condition (P3) using the Koebe principle. See Lemmas 4.8 and 4.10
in [6] for computations related to Schwarzian derivatives and [20] for more details about
the use of the Koebe principle. This completes the proof. �
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It remains to establish appropriate estimates on the return time asymptotics as in (P4)
and (P7) and the uniform bound in (P6). Observe, in view of the return-time formula
(5.4), that

(5.5) m{Rω > `} =
1

2
x`(σω).

We will estimate terms on the right hand side of this expression. Let α0 (respectively
α1) denote the special sequences of all ωk = α0 (respectively, all ωk = α1). Following
Lemma 4.4 in [6], we obtain coarse estimates on the location of the xn(ω). Translated
into our setting these estimates imply, for every `, n ∈ N,

(5.6) x`(α0) ≤ x`(ω) ≤ x`(α1).

It is well known (see [27] section 6, for example) that x`(α0) ∼ 1
2
α
− 1
α0

0 `
− 1
α0 so if we

define c`(α0) := x`(α0)`
1
α0 and write x`(α0) =

c`(α0)

`
1
α0

then lim` c`(α0) = 1
2
α
− 1
α0

0 :=

c(α0). We define c`(α1) and c(α1) analogously using x`(α1). Since, m{Rω > `} =
1
2
x`(σω) ≤ 1

2
x`(α1) ≤ C`

− 1
α1 this implies m(∆ω) ≤ M for some M > 0 independent

of ω. This proves (P6).
We now check that assumption (P4) is satisfied. Using definition (5.1) and the esti-

mate (1 + x)−α ≤ 1 − αx + α(1+α)
2

x2, valid for α > 0, x ≥ 0, and by substituting
x = [2xn(ω)]α(ω) we obtain

1

[xn(ω)]α0
− 1

[xn−1(σω)]α0
≥ α02α0 [2xn(ω)]α(ω)−α0

− α0(1 + α0)

2
2α0 [2xn(ω)]2α(ω)−α0 .

(5.7)

Iterating this one-step estimate along the sequence xk(σ`−kω), k = 1, 2, . . . ` we obtain

1

[x`(ω)]α0
≥ 2α0 + α02α0{

∑̀
k=2

[2xk(σ
`−kω)]α(σ`−kω)−α0

− 1 + α0

2

∑̀
k=2

[2xk(σ
`−kω)]2α(σ`−kω)−α0}.

(5.8)
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Combining equations (5.8) and (5.6) implies that, for any parameter q ≥ 0

(log `)q

`[x`(ω)]α0
≥ 2α0(log `)q

`
+ α02α0

{
(log `)q

`

∑̀
k=2

[
2ck(α0)

k
1
α0

]α(σ`−kω)−α0

− 1 + α0

2

(log `)q

`− 1

∑̀
k=2

[
2ck(α1)

k
1
α1

]2α(σ`−kω)−α0
}

≥ α02α0
(log `)q

`

{∑̀
k=2

[
2ck(α0)

k
1
α0

]α(σ`−kω)−α0

− 1 + α0

2

[
2ck(α1)

k
1
α1

]2α(σ`−kω)−α0
}

=
(log `)q

`

∑̀
k=1

Ak(ω),

(5.9)

where we have introduced notationAk(ω) for the sequence of independent random vari-
ables A1 ≡ 0 and for k = 2, 3, . . . `

(5.10) Ak(ω) := α02α0

[
2ck(α0)

k
1
α0

]α(σ`−kω)−α0

− 1 + α0

2
α02α0

[
2ck(α1)

k
1
α1

]2α(σ`−kω)−α0

.

From now on we write Ak := Ak(ω). Note that −α02α0 ≤ Ak ≤ α02α0 for every k.

Assumption (A1) (Asymptotics on expectations)
Assume4 there are constants q = q(ν) ≥ 0 and a constant c(ν) > 0 such that the fol-
lowing holds:

(5.11)
(log `)q

`

∑̀
k=1

EνAk → c(ν).

Fix any 0 < c < c(ν). Pick N1 so that for all ` > N1,

(log `)q

`

∑̀
k=1

EνAk ≥
c+ c(ν)

2
.

Note that, given expression (5.11), N1 depends only on the choice of c, and in particular
is independent of ω. Set r0 = α02α0 .

Lemma 5.2. For each t > 0 we have

(5.12) P

{
(log `)q

`

∣∣∣∣∣∑̀
k=1

Ak −
∑̀
k=1

EνAk

∣∣∣∣∣ ≥ t

}
≤ exp

[
− `t2

2r0(log `)2q

]
.

4Below in the examples, we will show that the assumption is satisfied for different types of distribu-
tions. In particular, we will show how different measures ν lead to different tail asymptotics.
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Proof. We may apply the classical result of Hoeffding (see [14] Theorem 1, or [18]
Lemma 1.2) to the sequence of independent random variables Ak, noting that instead of
the bound 0 ≤ Ak ≤ 1 we have −r0 ≤ Ak ≤ r0, accounting for the extra factor in the
exponential. �

Next, we apply the previous lemma to obtain a large deviation estimate on the nor-
malized sums of Ak. For each ` > N1:

P

{
(log `)q

`

∑̀
k=1

Ak < c

}
= P

{
(log `)q

`
{
∑̀
k=1

Ak −
∑̀
k=1

EνAk} < c− (log `)q

`

∑̀
k=1

EνAk

}

≤ P

{
(log `)q

`

∣∣∣∣∣∑̀
k=1

Ak −
∑̀
k=1

EνAk

∣∣∣∣∣ > c(ν)− c
2

}

≤ exp

[
−`[c(ν)− c]2

8r0(log `)2q

]
,

(5.13)

where in the last line we have used equation (5.12). Now define

n1(ω) := inf{n > N1 | ∀` > n,
(log `)q

`

∑̀
k=1

Ak ≥ c}.

If ` > n1(ω) then equation (5.9) implies that

(5.14)
(log `)q

`[x`(ω)]α0
≥ c

and hence

(5.15) x`(ω) ≤
[

1

c

] 1
α0 [log `]

q
α0

`
1
α0

≤ 2c(ν)
− 1
α0

[log `]
q
α0

`
1
α0

,

provided c(ν)
2α0

< c < c(ν). We may take b := q
α0

and a := 1
α0

and C = c(ν)
− 1
α0 in (P4).

Note that the constant C is independent of n and ω. Finally, we estimate, for n > N1

and fixed 0 < v < 1

P {n1(ω) > n} ≤
∑
`>n

exp

[
−`[c(ν)− c]2

8r0(log `)2q

]
≤
∑
`>n

exp [−u`v] ≤ C exp [−unv]
(5.16)

for suitable constants u > 0 and C < ∞. We can remove the restriction n > N1 by
substitution of a larger constant C in the final expression

P {n1(ω) > n} ≤ Ce−un
v

,

completing the second condition in (P4). Finally we verify (P7).
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First, we have

(P ×m){x ∈ Λ|Rω = n} = (P ×m){x ∈ Λ|Rω > n− 1}
− (P ×m){x ∈ Λ|Rω > n}

=
1

2
Eν [xn−1(ω)]− 1

2
Eν [xn(ω)]

=
1

2
Eν [xn−1(σω)]− 1

2
Eν [xn(ω)]

=
1

2
Eν [xn−1(σω)− xn(ω)],

(5.17)

where we have used the fact that P is σ-invariant to writeEν [xn−1(ω)] = Eν [xn−1(σω)].
Now recall that fω(xn(ω)) = xn−1(σω) and fω(xn(ω)) = xn(ω) + 2α(ω)(xn(ω))α(ω)+1.
Using this fact, (5.17), (5.15) and 0 ≤ 2xn(ω) ≤ 1, we obtain

(P ×m){x ∈ Λ|Rω = n} =
1

2
Eν [2

α(ω)(xn(ω))α(ω)+1]

≤ 1

2
Eν [2

α0(xn(ω))α0+1] = 2α0−1Eν [xn(ω)]α0+1

≤ 2α0−1
(
Eν [1{n1(ω)≤n} · xn(ω)α0+1] + Eν [1{n1(ω)>n} · xn(ω)α0+1]

)
= 22α0c(ν)

−1− 1
α0

[log n]
q(α0+1)
α0

n
1
α0

+1
+ Ce−un

v ≤ Ĉ
[log n]

q(α0+1)
α0

n
1
α0

+1
.

(5.18)

Choosing b̂ = q(α0+1)
α0

and a = 1
α0

completes the verification of (P7).

Theorem 5.1. Let 0 < α0 < α1 < 1 be fixed and Ω = [α0, α1]Z equipped with the
product probability measure P := νZ and left shift σ. Let fω, ω ∈ Ω be a random
family of LSV maps with respect to the measure νZ. Assume condition (A1) holds for
the asymptotic expectations. Then there exists a family of absolutely continuous sample
stationary measures µω on [0, 1], for almost every ω ∈ Ω (i.e. fω∗µω = µσω). The map
ω → µω is measurable, µ =

∫
Ω
µωdP is T -invariant and (T, µ) is exact and hence

mixing.
Moreover, for every δ > 0 there exists a full measure subset Ω0 ⊂ Ω and a random

variable Cω : Ω0 → R+ so that for any ϕ ∈ L∞[0, 1], ψ ∈ Cη[0, 1], the class of η−
Hölder functions on [0, 1], we have

(i) “Future” correlations:∣∣∣∣∫ (ϕ ◦ fnω )ψ dµω −
∫
ϕdµσnω

∫
ψdµω

∣∣∣∣ ≤ CωCϕ,ψ
1

n
1
α0
−δ−1

.

(ii) “Past” correlations:∣∣∣∣∫ (ϕ ◦ fnσ−nω)ψ dµσ−nω −
∫
ϕdµω

∫
ψdµσ−nω

∣∣∣∣ ≤ CωCϕ,ψ
1

n
1
α0
−δ−1

.
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There exist constants C > 0, u′ > 0 and 0 < v′ < 1 such that the random variable Cω
satisfies the following tail estimates: for all n ∈ N

P{Cω > n} ≤ Ce−u
′nv
′

.

In particular, Cω is integrable. Finally, every η ∈ (0, 1] can be used by choosing5

γ ∈ [1
2
, 1) so that 2ηγ ≥ 1.

Proof. Proposition 5.1 establishes conditions (P1) - (P3) and (P5). Since we are as-
suming (A1), condition (P4) follows from equations (5.5) and (5.15) with constants
b = q

α0
, a = 1

α0
, C = c(ν)

− 1
α0 . The second condition in (P4) holds because of equation

(5.16). (P7) is verified in (5.18).
Theorem 4.1 and Corollary 4.3 therefore apply and give existence and mixing of the

sample stationary measures µω. Finally we apply Theorem 4.2 to obtain the decay of
correlations.

For ϕ ∈ L∞([0, 1]) and ψ ∈ Cη([0, 1]) define ψ̄ = ψ ◦ πω, ϕ̄ = ϕ ◦ πω : ∆ω → R.
Then we have

∫
(ϕ ◦ fnω )ψdµω =

∫
(ϕ̄ ◦ F n

ω )ψ̄hωdm. Now, to apply Theorem 4.2 it is
sufficient to show ψ̄hω ∈ FKωγ and ϕ̄ ∈ LKω

∞ . The latter is obvious, since the projection
πω is nonsingular and hence, for νω− a.e. (x, `) we have |ϕ̄(x, `)| ≤ ‖ϕ‖L∞ . For the
former one we first note that since |(fRωω )′| ≥ 2 we have |x− y| ≤ (1

2
)s(x,y). Hence, for

any (x, `), (y, `) ∈ ∆ω we have the inequality

(5.19) |ψ̄(x, `)− ψ̄(y, `)| ≤ ‖ψ‖η(
1

2
)η·s(x,y) ≤ ‖ψ‖η(

1

2ηγ
)s(x,y)γs(x,y).

Now since s((x, `), (y, `)) = s(x, y) the inequality (5.19) implies

|(ψ̄hω)(x, `)− (ψ̄hω)(y, `)| ≤ ‖ψ‖∞‖hω‖FKωγ γs((x,`),(y,`))

+ ‖hω‖L∞‖ψ‖ηγ
s((x,`),(y,`)).

�

5.1. Sharp asymptotics on the measure of return-time intervals. Although we will
not need lower bound estimates on the xn(ω) to prove the main results in this paper,
it is not difficult to identify conditions (see Assumption (A2) below) under which the
upper bounds from the previous section are sharp. This condition will hold for all of the
examples discussed in this paper.

Notice that from equation (5.15) and the summability derived in equation (5.16), an
application of Borel-Cantelli yields, for almost every ω,

lim inf
`

(log `)q

`[x`(ω)]α0
≥ c.

Keeping in mind that 0 < c < c(ν) was arbitrary (and working through a sequence
of choices c increasing to c(ν), applying Borel-Cantelli at each step) we obtain a set
Ω2 ⊆ Ω of full P−measure such that for every ω ∈ Ω2 we have

5Recall that γ is the regularity parameter in the distortion condition (P2).
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(5.20) lim sup
`

`
1
α0 x`(ω)

[log `]
q
α0

≤ 1

[c(ν)]
1
α0

.

Now we concentrate on deriving lower bounds. Using definition (5.1) and the esti-
mate (1 +x)−α ≥ 1−αx, valid for α > 0, x ≥ 0, and by substituting x = [2xn(ω)]α(ω)

we obtain
1

[xn(ω)]α0
− 1

[xn−1(σω)]α0
≤ α02α0 [2xn(ω)]α(ω)−α0 .(5.21)

Iterating (5.21) we obtain

(log `)q

`[x`(ω)]α0
≤ (log `)q

`
2α0 + α02α0

(log `)q

`

∑̀
k=2

[2xk(σ
`−kω)]α(σ`−kω)−α0

=
(log `)q

`
2α0 + α02α0

(log `)q

`

b
√
`c∑

k=2

[2xk(σ
`−kω)]α(σ`−kω)−α0

+α02α0
(log `)q(`− b

√
`c)

` log(`− b
√
`c)q

· log(`− b
√
`c)q

`− b
√
`c

∑̀
k=b
√
`c+1

[2xk(σ
`−kω)]α(σ`−kω)−α0

= (I) + (II) + (III).

(5.22)

Clearly (I) = o(1) and the same is true of (II) since

(II) ≤ α02α0
(log `)q

b
√
`c

.

In order to estimate (III) note that from equation (5.20), for all ` sufficiently large
(depending on ω), for b

√
`c+ 1 ≤ k ≤ `,

α02α0 [2xk(σ
`−kω)]α(σ`−kω)−α0 ≤ α02α0

[
3

(log k)
q
α0

[c(ν)]
1
α0 k

1
α0

]α(σ`−kω)−α0

=: A′k(ω).

From now on we write A′k := A′k(ω). In addition to Assumption (A1) we now as-
sume6 the following asymptotics on the Eν(A′k):

Assumption (A2) (Asymptotics on expectations revisited)

(5.23)
log(`− b

√
`c)q

`− b
√
`c

∑̀
k=b
√
`c+1

Eν(A
′
k)→ c(ν).

6We will see that for many examples, including the ones presented in the next section, Assumption
(A2) will hold.
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Another large deviations estimate as in the preceding section will give, for each
c(ν) < c an integerN2 = N2(c) so that for all ` > N2, log(`−b

√
`c)q

`−b
√
`c

∑`
k=b
√
`c+1Eν(A

′
k) ≤

c+c(ν)
2

and

P

 log(`− b
√
`c)q

`− b
√
`c

∑̀
k=b
√
`c+1

A′k > c

 ≤ exp

[
−(`− b

√
`c)[c− c(ν)]2

8r0(log(`− b
√
`c)2q

]
.

Once again, application of Borel-Cantelli implies there exists a random variable n2(ω),
finite almost everywhere, such that for all ` > n2(ω)

(5.24)
(log `)q

`[x`(ω)]α0
≤ c′

and for each 0 < v < 1 there are constants u > 0 and C <∞ so that

P {n2(ω) > n} ≤ Ce−un
v

.

The factor c′ > c in equation (5.24) is necessary to account for the two o(1) terms (I)
and (II) in equation (5.22). Returning to equation (5.24), another sequence of Borel-
Cantelli reductions over the parameter c′ decreasing to c(ν) gives a full measure set
Ω2 ⊆ Ω such that for every ω ∈ Ω2

(5.25) lim inf
`

`
1
α0 x`(ω)

[log `]
q
α0

≥ 1

[c(ν)]
1
α0

.

We have therefore established the following (fibre-wise, or quenched) exact asymp-
totics

Proposition 5.3. For random LSV maps as described in Theorem 5.1, assuming as-
ymptotic growth conditions (5.11) and (5.23), we have the following exact asymptotics:
There is a full measure subset Ω′ ⊆ Ω such that for all ω ∈ Ω′, for all n = 0, 1, 2, . . .
we have

x`(ω) ∼
[

(log `)q

c(ν)`

] 1
α0

.

5.2. Natural probability distributions on the parameter space. In this subsection
we verify assumptions (A1) and (A2) for some natural probability distributions ν on
[α0, α1].

5.2.1. Example: Discrete distribution. Here we assume ν is a discrete probability dis-
tribution; for concreteness, ν = p1δα0 + p2δα1 with pi > 0 and p1 + p2 = 1.

Lemma 5.4. 1
`

∑`
k=1 EνAk → α02α0p1. Therefore, in condition (5.11) we can take

q := 0 and c(ν) := α02α0p1 > 0.
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Proof. Write Ak(ω) = Xk(ω)− Yk(ω) where

Xk(ω) = α02α0

[
2ck(α0)

k
1
α0

]α(σn−kω)−α0

,

Yk(ω) =
1 + α0

2
α02α0

[
2ck(α1)

k
1
α1

]2α(σn−kω)−α0

.

(5.26)

Using σ-invariance of P , a direct calculation shows

Eν(Xk) = α02α0

{
p1 + p2

[
2ck(α0)

k
1
α0

]α1−α0
}
,

while

EνYk =
1 + α0

2
α02α0

{
p1

[
2ck(α1)

k
1
α1

]α0

+ p2

[
2ck(α1)

k
1
α1

]2α1−α0
}
.

Therefore,
1

`− 1

∑̀
k=2

EνXk = α02α0p1 +O(`
1−α1

α0 ),

whereas
1

`− 1

∑̀
k=2

EνYk = O(`−δ)

for δ = min{α0/α1, 2− α0/α1} > 0. It follows that

1

`

∑̀
k=1

EνAk =
`− 1

`
α02α0p1 +O(`−ζ),

where ζ := min{δ, 1 − α1

α0
} > 0. Therefore Assumption (5.11) is satisfied by taking

q := 0 and c(ν) := α02α0p1 > 0. �

We now show the upper bound on the x`(ω) obtained above is sharp.

Proposition 5.5 (Sharp asymptotics for the discrete probability distribution). For almost
every ω

x`(ω) ∼
[

1

c(ν)`

] 1
α0

,

where c(ν) = α02α0p1.

Proof. We only need to verify Assumption (A2) and apply Proposition 5.3.

1

`− b
√
`c

∑̀
k=b
√
`c+1

Eν(A
′
k) =

α02α0

`− b
√
`c

∑̀
k=b
√
`c+1

p1 + p2

[
1

c(ν)k

]α1
α0
−1

= α02α0p1 +O
(
`
α0−α1
2α0

)
.
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Since α02α0p1 = c(ν) we have verified Assumption (A2). �

5.2.2. Example: Uniform distribution. Here we assume ν is the uniform probability
distribution on [α0, α1], that is, for α0 < t < α1,

ν([α0, t]) =
1

α1 − α0

(t− α0).

We start with a lemma that will allow us to compute the appropriate expectations in
condition (5.11).

Lemma 5.6. Let c ≥ 1. Then, as u→∞

(5.27) Eν
[
e−(cα(ω)−α0)u

]
∼ 1

α1 − α0

· 1

cu
· e−(c−1)α0u.

Proof. We have

Eν
[
e−(cα(ω)−α0)u

]
=

1

α1 − α0

∫ α1

α0

e−(cx−α0)udx

=
1

α1 − α0

· 1

cu

[
e−(c−1)α0u − e−(cα1−α0)u

]
=

1

α1 − α0

· 1

cu
e−(c−1)α0u

[
1− e−c(α1−α0)u

]
.

�

As in the previous section, we decompose Ak(ω) := Xk(ω) − Yk(ω) according to
equation (5.26).

Using σ invariance of P and Lemma 5.6 with u = − log

(
2ck(α0)

k
1
α0

)
, c = 1 and

u = − log

(
2ck(α1)

k
1
α1

)
, c = 2, respectively, we obtain

Eν(Xk(ω)) ∼ α2
02α0

α1 − α0

1

log k
,

Eν(Yk(ω)) = o(log k).

(5.28)

It follows that log k·EνAk ∼ α2
02α0

α1−α0
. Now apply Lemma 9.2 of the Appendix to compute

the asymptotics for the sum:

log `

`

∑̀
k=1

EνAk →
α2

02α0

α1 − α0

.

Therefore we can take q = 1 and c(ν) =
α2
02α0

α1−α0
in Assumption (A1)
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Proposition 5.7 (Sharp asymptotics for the uniform probability distribution). For al-
most every ω

x`(ω) ∼
[

log `

c(ν)`

] 1
α0

,

where c(ν) =
α2
02α0

α1−α0
.

Proof. We verify Assumption (A2) and apply Proposition 5.3.

log(`− b
√
`c)

`− b
√
`c

∑̀
k=b
√
`c+1

Eν(A
′
k) = α02α0

log(`− b
√
`c)

`− b
√
`c

×
∑̀

k=b
√
`c+1

Eν

[3 log k

c(ν)k

]α(σn−kω)−α0
α0

 .

We can evaluate the individual expectations using Lemma 5.6 to obtain:

Eν

[3 log k

c(ν)k

]α(σn−kω)−α0
α0

 ∼ α0

α1 − α0

1

log k
.

Now, two applications of Lemma 9.2 from the Appendix shows

∑̀
k=b
√
`c+1

1

log k
=
∑̀
k=1

1

log k
−
b
√
`c∑

k=1

1

log k
∼ `− 2b

√
`c

log `
.

Applying this to the first estimate gives

log(`− b
√
`c)

`− b
√
`c

∑̀
k=b
√
`c+1

Eν(A
′
k) ∼

α2
02α0

α1 − α0

log(`− b
√
`c)

`− b
√
`c

`− 2b
√
`c

log `
→ α2

02α0

α1 − α0

.

Since α2
02α0

α1−α0
= c(ν) we have verified Assumption (A2). �

5.2.3. Example: Quadratic distribution. Here we assume ν is the quadratic probability
distribution on [α0, α1], given by

ν([α0, t]) =
1

(α1 − α0)2
(t− α0)2.

Again, we begin with a simple lemma that will allow us to estimate the expectations.

Lemma 5.8. Let c ≥ 1. Then, as u→∞

(5.29) Eν
[
e−(cα(ω)−α0)u

]
∼ 2

(α1 − α0)2
· 1

(cu)2
· e−(c−1)α0u.



20 WAEL BAHSOUN†, CHRISTOPHER BOSE∗, AND MARKS RUZIBOEV‡

Proof. We have

Eν
[
e−(cα(ω)−α0)u

]
=

2

(α1 − α0)2

∫ α1

α0

e−(cx−α0)u(x− α0)dx

=
2

(α1 − α0)2

{
−1

cu
e−(cα1−α0)u(α1 − α0)− 1

(cu)2
[e−(cα1−α0)u − e−(c−1)α0u]

}
=

2

(α1 − α0)2
· 1

(cu)2
e−(c−1)α0u

{
1− e−c(α1−α0)u[cu(α1 − α0) + 1]

}
.

�

Writing Ak = Xk − Yk as in equation (5.26), using invariance of P and Lemma 5.8
with we obtain

Eν(Xk(ω)) ∼ 2

(
α0

α1 − α0

)2
1

(log k)2
,

Eν(Yk(ω)) ∼ 2

(
α1

α1 − α0

)2
k
−α0
α1

(log k)2
= o

(
1

(log k)2

)
.

(5.30)

It follows that (log k)2 · EνAk ∼ 2
(

α0

α1−α0

)2

after which an application of Lemma 9.2
of the Appendix implies

(log `)2

`

∑̀
k=1

EνAk → 2

(
α0

α1 − α0

)2

.

We take q = 2 and c(ν) = 2
(

α0

α1−α0

)2

in the assumption (5.11). For this example, lower
bounds can also be obtained by essentially following the steps in the previous example
and using Lemma 5.8 in place of Lemma 5.6.

Proposition 5.9 (Sharp asymptotics for the quadratic probability distribution). For al-
most every ω

x`(ω) ∼
[

(log `)2

c(ν)`

] 1
α0

,

where c(ν) = 2
(

α0

α1−α0

)2

.

Proof. We verify Assumption (A2) and apply Proposition 5.3. The key estimates are

EνA
′
k ∼

2α2
0

(α1 − α0)2

1

(log k)2

and

log(`− b
√
`c)2

`− b
√
`c

∑̀
k=b
√
`c+1

Eν(A
′
k) ∼

2α2
0

(α1 − α0)2

(log(`− b
√
`c))2

`− b
√
`c

(`− 4b
√
`c)

(log `)2
∼ c(ν),
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where we have again used Lemma 9.2 in the Appendix to estimate the sum and verify
Assumption (A2) for this example. �

6. PROOF OF EXISTENCE OF ABSOLUTELY CONTINUOUS MIXING SAMPLE
MEASURES

6.1. Distortion estimates. Here we prove consequences of bounded distortion which
are key for many of the later computations. For any n ≥ 1

(6.1) P(n)
ω = ∨n−1

i=0 F
−i
ω Pσiω and A(n)

ω = {A ∈ P(n)
ω | F n

ωA = ∆σnω,0}.

Lemma 6.1. For any n ≥ 1, A ∈ A
(n)
ω and x, y ∈ A the following inequality holds∣∣∣∣JF n
ω (x)

JF n
ω (y)

− 1

∣∣∣∣ ≤ D,

for some D > 0.

Proof. The collection A
(n)
ω is a partition of F−nω ∆σnω,0 and for any x ∈ ∆σnω,0 each

A ∈ A
(n)
ω contains a single element of {F−nω x}. For x ∈ A let j(x) be the number of

visits of its orbit to ∆σkω,0 up to time n. Since the images ofA before time nwill remain
in an element of Pσkω, all the points in A have the same itineraries, up to time n and so
j(x) is constant on A. Therefore JF n

ω (x) = J(FRω
ω )j(x̃), for the projection x̃ of x onto

∆σnω,0 (i.e. if x = (z, `) then x̃ = (z, 0)). Thus for any x, y ∈ A from (3.4) we obtain

(6.2)
∣∣∣∣JF n

ω (x)

JF n
ω (y)

− 1

∣∣∣∣ =

∣∣∣∣J(FRω
ω )j(x̃)

J(FRω
ω )j(ỹ)

− 1

∣∣∣∣ ≤ D.

�

Corollary 6.2. For any A ∈ A
(n)
ω , F n

ω : A → ∆σnω,0 is a bijection and for each y ∈ A
we have

(6.3) JF n
ω (y) ≥ m(∆σnω,0)

m(A)(1 +D)
.

Proof. Lemma 6.1 implies JF n
ω (x) ≤ (1 + D)JF n

ω (y). Integrating both sides of this
inequality with respect to x over A gives

m(∆σnω,0) =

∫
A

JF n
ω (x)dm ≤ JF n

ω (y)(1 +D)m(A),

which finishes the proof. �

Lemma 6.3.
(i) There exists a constant M0 ≥ 1 such that for all n ∈ N and ω ∈ Ω,

d(F n
ω )∗m

dm
≤M0m(∆ω) ≤M0M.
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(ii) Let λω be a family of absolutely continuous probability measures on {∆ω} with
dλω
dm
∈ F+

γ . For every A ∈ A
(n)
ω let νσnω = (F n

ω )∗(λω|A) and ϕω = dνσnω
dm

. There
exists Cλ > 0 such that for each ω ∈ Ω, for all x, y ∈ ∆σnω,0 we have∣∣∣∣ϕω(x)

ϕω(y)
− 1

∣∣∣∣ ≤ D + [eCλ − 1](1 +D),

where D is as in (3.4).

Proof. To prove the item (i) we estimate the density d(F n
ω )∗m/dm at an arbitrary point

x ∈ ∆σnω and consider three different cases according to the position of x. First of all,
for any x ∈ ∆σnω,0, from Corollary 6.2 we have

d(F n
ω )∗m

dm
(x) =

∑
y∈F−nω x

1

JF n
ω (y)

≤ (D + 1)
∑
A∈An

m(A)

m(∆σnω,0)

≤ (D + 1)
m(∆ω)

m(∆σnω,0)
.

Since m(∆σnω,0) = m(Λ) = 1 choosing M0 = D + 1 finishes the proof for the case
x ∈ ∆σnω,0.

For x ∈ ∆σnω,` with ` ≥ n we have F−nω (x) = y ∈ ∆ω,`−n. Since JFω(y) = 1 for
any y ∈ ∆ω \∆ω,0,

d(F n
ω )∗m

dm
(x) =

1

JFω(y) · · · JFσn−1ω(F n−1
ω y)

= 1.

Finally, let x ∈ ∆σnω,`, for 0 < ` < n. Then for any y ∈ F−nω x the equality F n−`
ω y =

F−`
σn−`ω

x ∈ ∆σn−`ω,0 holds. Hence, JFσn−`+jω(F j
ωy) = 1 for all j = 0, . . . , ` − 1.

Therefore, by the chain rule we obtain JF n
ω (y) = JF n−`

ω (y). Hence the problem is
reduced to the first case since
d(F n

ω )∗m

dm
(x) =

∑
y∈F−nω x

1

JF n
ω y

=
∑

y∈F `−nω (F−`
σn−`ω

x)

1

JF n−`
ω y

=
d(F n−`

ω )∗m

dm
(F−`

σn−`ω
(x)).

This finishes the proof of item (i).
To prove item (ii) we first note that F n

ω : A → ∆σnω,0 is invertible. So for any
x ∈ ∆σnω,0 there is a unique x0 ∈ A such that F n

ω (x0) = x and

dνσnω
dm

(x) =
1

JF n
ω (x0)

dλω
dm

(x0).

Let ϕω = dνσnω
dm

then for x, y ∈ ∆σnω,0, using Lemma 6.1 and the assumption on dλω
dm

we
obtain ∣∣∣∣ϕω(x)

ϕω(y)
− 1

∣∣∣∣ =

∣∣∣∣∣JF n
ω (y0)

JF n
ω (x0)

dλω
dm

(x0)
dλω
dm

(y0)
− 1

∣∣∣∣∣ ≤ D + [eCλγ
s(x0,y0) − 1](1 +D).
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�

Remark 3. It is important to note that the constant Cλ does not depend on ω. Moreover,
if A and n are such that the orbits F j(x0), F j(y0), j = 1, 2, . . . n see sufficiently many
returns to the base, so that Cλγs(x0,y0) ≤ log 2, then the upper bound in (ii) becomes
2D+ 1. The elements A for which this holds are independent of the starting measure λ.

6.2. Proof of Theorem 4.1.

Proof of Existence. Recall that m(Λ) = 1. Recall the definitions of P(j)
ω and A

(j)
ω in

(6.1), and for A ∈ P
(j)

σ−jω|∆σ−jω,0 let

φωj,A =
d

dm

(
F j
σ−jω

)
∗ (mA),

where mA(B) = m(A ∩ B). Clearly, φωj,A is a density on ∆ω, such that φωj,A|∆ω,` ≡ 0

for ` > j. Below we consider two cases depending on A. First, notice that if A ∈ A
(j)

σ−jω

then F j
σ−jω : A → ∆ω,0 is a bijection. For x, y ∈ ∆ω,0, let x′, y′ ∈ A be such that

F j
σ−jω(x′) = x, and F j

σ−jω(y′) = y. By the choice of A there exists i such that F j
σ−jω =

(FRω
σ−jω)i. The bounded distortion condition implies that

∣∣∣∣∣log
φωj,A(y)

φωj,A(x)

∣∣∣∣∣ =

∣∣∣∣∣log
JF j

σ−jω(x′)

JF j
σ−jω(y′)

∣∣∣∣∣ ≤
i−1∑
`=0

Dγs(x,y)+(i−`)−1 ≤ D

1− γ
γs(x,y).(6.4)

Notice that the constant in equation (6.4) is independent of j, A and ω. Hence for all
x, y ∈ ∆ω letting D′ = e

D
1−γ we have

φωj,A(y) ≤ D′φωj,A(x).

Integrating both sides of the latter inequality over ∆ω,0 with respect to x implies

(6.5) φωj,A(y) ≤ D′
m(A)

m(Λ)
= D′m(A).

On the other hand, if A ∈ P
(j)

σ−jω|∆σ−jω,0 such that F j
σ−jω(A) ⊂ ∆ω,` for ` > 0 then

φωj,A(x) = φσ
−`ω
j−`,A(F−`

σ−`ω
(x)). Hence we can apply (6.5). Futher define

φωn =
d

dm

(
1

n

n−1∑
j=0

(F j
σ−jω)∗(m|∆σ−jω,0)

)
.

As above φωn|∆ω,` ≡ 0 for ` > j. For x ∈ ∆ω,`, ` ≤ j we write φn as a convex
combination of φωj,A and obtain

(6.6) φωn(x) ≤ D′.
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Notice that if φωn(x) = 0 and φωn(y) 6= 0 then s(x, y) = 0. Taking this into account for
all y ∈ ∆ω such that φωn(y) 6= 0 we have
(6.7)

|φωn(x)− φωn(y)| ≤ 1

n

n−1∑
j=0

∑
A∈P(j)

σ−jω
|∆
σ−jω,0

|φωj,A(y)|

∣∣∣∣∣φωj,A(x)

φωj,A(y)
− 1

∣∣∣∣∣
≤ D′

(1− γ)(D′ − 1)

D

1

n

n−1∑
j=0

∑
A∈P(j)

σ−jω
|∆
σ−jω,0

∣∣∣∣∣log
φωj,A(y)

φωj,A(x)

∣∣∣∣∣m(A) ≤ D′(D′ − 1)γs(x,y),

where we have used equation (6.4) in the last step.
Hence φωn ∈ F+

γ ∩F1
γ (i.e. Kω ≡ 1). Since, d(x, y) := γs(x,y) defines separable metric

space structure on ∆ω for each ω, by Arzela-Ascoli Theorem there exists a subsequence
of φωn → h̃ω ∈ F+

γ ∩ F1
γ . By a diagonal argument we construct along the sequence

{σkω}, for almost every ω ∈ Ω, a convergent subsequence {φσ`ωnk
dx} for every ` ∈ Z.

The limiting measure is Fω-equivariant i.e. (Fσkω)∗νσkω = νσk+1ω. Moreover, hω :=
dνω
dm
∈ F+

γ ∩ FKγ and hω ≤ e−4C′

m(∆ω)
by construction. �

7. RANDOM COUPLING

7.1. Estimates on the random recurrence times for the base. For a single map, the
recurrence time gives a key construction parameter for coupling arguments. In the set-
ting of random maps, this recurrence time is ω dependent. Our first task is to obtain a
suitable version of the recurrence time (see `0 below, and its use in the following Lemma
7.2). At this stage, it is useful for the reader to recall from section 3 our assumptions
(P1)-P(7); in particular that a > 1 in (P4). Moreover, recall the regularity class of the
equivariant densities defined by the random variable Kω from Theorem 4.1.

Lemma 7.1. Let N and ti be from the aperiodicity condition (P5). There is an `0 ∈ N
so that for every ` > `0 there are nonnegative integers ci such that

` =
N∑
i=1

citi.

Proof. See Lemma A2 [25]. �

For ` ∈ N define a random variable V ` : Ω→ R by

V `
ω = m(∆ω,0 ∩ F−`ω (∆σ`ω,0)).

Recall that every base ∆ω,0 = Λ.

Lemma 7.2. For each ` > `0 there is a constant V (`) > 0 so that for almost every
ω ∈ Ω,

V `
ω ≥ V (`).
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Proof. The result follows from the aperiodicity condition (P5) and bounded distortion
(P2). First, suppose F1 = F j1

ω : Λ→ ∆σj1ω and F2 = F j2
σj1ω

: Λ→ ∆σj1+j2ω, satisfying

m(F−1
i Λ ∩ Λ)

m(Λ)
≥ εi > 0, i = 1, 2.

Then, since F−1
i are bijections when restricted to Λ, using bounded distortion, we get

m((F2 ◦ F1)−1Λ ∩ Λ)

m(Λ)
≥ m(F−1

1 (F−1
2 Λ ∩ Λ) ∩ Λ)

m(F−1
1 Λ ∩ Λ)

· m(F−1
1 Λ ∩ Λ)

m(Λ)

≥ 1

D

m(F−1
2 Λ ∩ Λ)

m(Λ)
· m(F−1

1 Λ ∩ Λ)

m(Λ)

≥ 1

D
ε2 · ε1.

Now, for ` > `0, Lemma 7.1 implies F `
ω can be written as a composition of F ti

ωi
(with

at most ` terms). Iterating the above estimate and using the lower bounds given in
condition (P5) implies the existence of the required lower bound V (`) > 0. �

Remark 4. From the proof of the previous lemma, it is clear that one should not expect
a lower bound on the V (`), uniform over all `.

7.2. Random stopping times. Let ∆ = {(ω, x)|ω ∈ Ω, x ∈ ∆ω}. Denote by ∆⊗ω ∆
the relative product over Ω, that is ∆ ⊗ω ∆ = {(ω, x, x′)|ω ∈ Ω, x, x′ ∈ ∆ω}. These
are measurable subsets of the appropriate product spaces (Ω × Λ × N in the case of
∆, for example), and naturally carry the measures P × m and P := P × m × m
respectively. We can lift the tower map F to a product action on ∆ ⊗ω ∆ with the
property Fω × Fω : ∆ω × ∆ω → ∆σω × ∆σω by applying F in each of the x, x′

coordinates.
With respect to this map, we define auxiliary stopping times τω1 < τω2 < ... to the

base as follows:
Let `0 be the constant given in Lemma 7.1. For (ω, x, x′) ∈ ∆⊗ω ∆ set

τω1 (x, x′) = inf{n ≥ `0 | F n
ω x ∈ ∆σnω,0};

τω2 (x, x′) = inf{n ≥ τω1 (x, x′) + `0 | F n
ω x
′ ∈ ∆σnω,0};

τω3 (x, x′) = inf{n ≥ τω2 (x, x′) + `0 | F n
ω x ∈ ∆σnω,0};

τω4 (x, x′) = inf{n ≥ τω3 (x, x′) + `0 | F n
ω x
′ ∈ ∆σnω,0};

and so on, with the action alternating between x and x′. Notice that for odd i’s the
first (resp. for even i’s the second) coordinate of (Fω × Fω)τ

ω
i (x, x′) makes a return to

∆
στ
ω
i ω,0

.
Let i ≥ 2 be the smallest integer such that (Fω × Fω)τ

ω
i (x, x′) ∈ ∆

στ
ω
i ω,0
×∆

στ
ω
i ω,0

.
Then we define the stopping time Tω by

Tω(x, x′) := τωi (x, x′).
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Next define a sequence of partitions ξω1 ≺ ξω2 ≺ ξω3 ≺ ... of ∆ω × ∆ω so that τωi is
constant on the elements of ξωj for all i ≤ j, i, j ∈ N. Given a partition Q of ∆ω we
write Q(x) to denote the element of Q containing x. With this convention, we let

ξω1 (x, x′) =

τω1 −1∨
k=0

F−kω Pσkω

 (x)×∆ω.

Letting π : ∆ω ×∆ω → ∆ω be the projection to the first coordinate, we define

ξω2 (x, x′) = πξω1 (x, x′)×

τω2 −1∨
k=0

F−kω Pσkω

 (x′).

Let π′ be the projection onto the second coordinate. We define ξω3 by refining the parti-
tion on the first coordinate, and so on. If ξω2i is defined then we define ξω2i+1 by refining
each element of ξω2i in the first coordinate so that τω2i+1 is constant on each element of
ξω2i+1. Similarly ξω2i+2 is defined by refining each element of ξω2i+1 in the second coordi-
nate so that τω2i+2 is constant on each new partition element. Now we define a partition
P̂ω of ∆ω ×∆ω such that Tω is constant on its element. For definiteness suppose that i
is even and choose Γ ∈ ξωi such that Tω|Γ > τωi−1. By construction Γ = A×B such that
F τωi (B) = ∆

στ
ω
i ,0

and F τωi A is spread around ∆
στ
ω
i ω

. We refine A into countably many
pieces and choose those parts which are mapped onto the corresponding base at time
τωi . Note that {Tω = τωi } may not be measurable with respect to ξωi . However, since
τωi+1 ≥ `0 + τωi and ξωi+1 is defined by dividing A into pieces where τωi+1 is constant,
{Tω = τωi } is measurable with respect to ξωi+1.

7.3. Tail of the simultaneous return times. In this section we estimate the tail of the
simultaneous return time Tω. We start this section with the lower bound on the measure
of the set that made return at time τωi .

Lemma 7.3. Let λω and λ′ω be two probability measures on {∆ω}with densitiesϕω, ϕ′ω ∈
F+
γ ∩LKω

∞ . Let λ̃ = λω×λ′ω. For each ω, for each i ≥ 2 and Γ ∈ ξωi such that Tω|Γ > τωi−1

we have
λ̃{Tω = τωi |Γ} ≥ Cλ̃V

τωi −τωi−1

σ
τω
i−1ω

.

where 0 < Cλ̃ < 1. We can fix Cλ̃ = 2D+1
2(D+1)2

, independent of λ̃, for all i sufficiently

large, i.e. i ≥ i0(λ̃).

Proof. In the proof we write λ for a measure on ∆ω since the dependence on ω is clear
from the context. For definiteness assume i is even. Then Γ ∈ ξωi has the property
F
τωi−1
ω (πΓ) = ∆

σ
τω
i−1ω,0

and F τωi
ω (π′Γ) = ∆

στ
ω
i ω,0

. Together with the definition of Tω

this implies π′{Tω = τωi |Γ} ∩ Γ = π′Γ. Therefore, letting ν
σ
τω
i−1ω

:= (F
τωi−1
ω )∗(λ|πΓ)
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we have

λ̃{Tω = τωi |Γ} =
λ(π{Tω = τωi } ∩ πΓ)

λ(πΓ)
=
λ(F

−τωi
ω ∆

στ
ω
i ω,0
∩ F−τ

ω
i−1

ω ∆
σ
τω
i−1ω,0

∩ πΓ)

λ(πΓ)

= (F
τωi−1
ω )∗(λ|πΓ)(F

τωi−1−τωi
σ
τω
i−1ω

∆
στ
ω
i ω,0
∩∆

σ
τω
i−1ω,0

) = ν
σ
τω
i−1ω

(F
τωi−1−τωi
σ
τω
i−1ω

∆
στ
ω
i ω,0
∩∆

σ
τω
i−1ω,0

).

Finally, item (ii) of Lemma 6.3 applied to ν
σ
τω
i−1ω

implies that

λ̃{Tω = τωi |Γ} ≥
1

1 +D + Cλ(D + 1)
m(F

τωi−1−τωi
σ
τω
i−1ω

∆
στ
ω
i ω,0
∩∆

σ
τω
i−1ω,0

).

Now, the lemma holds with Cλ̃ = min{ 1
(1+Cλ)(D+1)

, 1
(1+Cλ′ )(D+1)

}. In view of Remark
3 we can use Cλ̃ = 2D+1

2(D+1)2
for all i sufficiently large. �

The next lemma estimates the distribution of τωi ’s on ∆ω ×∆ω by the measure of the
tail of the random tower.

Lemma 7.4. Let Cλ̃ be as in Lemma 7.3. For each ω, for each i and Γ ∈ ξωi
λ̃{τωi+1 − τωi > `0 + n|Γ} ≤M0MC−1

λ̃
·m{R̂

στ
ω
i

+`0ω
> n}.

Proof. Suppose that i is even. Since τωi is constant on the elements of ξωi for every
Γ ∈ ξωi we have

π
(
{(x, x′)|R̂ω ◦ F

τωi +`0
ω (x) > n} ∩ Γ

)
= {x|R̂ω ◦ F

τωi +`0
ω (x) > n} ∩ πΓ.

Letting ν
σ
τω
i−1ω

= (F
τωi−1
ω )∗(λ|πΓ), we have

λ̃{τωi+1 − τωi − `0 > n|Γ} = λ̃{R̂
στ
ω
i

+`0ω
◦ F τωi +`0

ω > n|Γ}

=
λ(π{R̂

στ
ω
i

+`0ω
◦ F τωi +`0

ω > n} ∩ πΓ)

λ(πΓ)
= (λ|πΓ){R̂

στ
ω
i

+`0ω
◦ F τωi +`0

ω > n}

= (F
τωi−1
ω )∗(λ|πΓ){R̂

στ
ω
i

+`0ω
◦ F τωi −τωi−1+`0

σ
τω
i−1ω

> n} = ν
σ
τω
i−1ω
{R̂

στ
ω
i

+`0ω
◦ F τωi −τωi−1+`0

σ
τω
i−1ω

> n}.

Applying item (ii) of Lemma 6.3 we obtain

λ̃{τωi+1 − τωi − `0 > n|Γ} ≤ (1 +D + Cλ(1 +D))m{R̂
στ
ω
i

+`0ω
◦ F τωi −τωi−1+`0

σ
τω
i−1ω

> n}.

Finally, since the density of (F
τωi −τωi−1+`0

σ
τω
i−1ω

)∗m is bounded above by the first item of
Lemma 6.3 we have

λ̃{τωi+1 − τωi > `0 + n|Γ} ≤M0M(1 +D + Cλ(1 +D))m{R̂
στ
ω
i

+`0ω
> n}.

For i odd the calculation is analogous and we obtain for all i

λ̃{τωi+1 − τωi > `0 + n|Γ} ≤M0MC−1

λ̃
m{R̂

στ
ω
i

+`0ω
> n}.

�
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Suppose we are given a sequence of positive integers `0 ≤ τ1 < τ2 < · · · < τn < . . .
with τi − τi−1 ≥ `0 for all i ≥ 2, denoted ~τ , and a positive integer q > 0. Define
associated subsets of ∆⊗ω ∆

Gq(~τ) = {(ω, x, x′)|τωi (x, x′) = τi, i = 1, 2, . . . q}.
This is a partition into sets where a specified sequence of hitting times up to q is attained:

∪~τGq(~τ) = ∪τ1<τ2<...τqGq(~τ) = ∆⊗ω ∆.

For fixed ω denote Gω
q (~τ) = Gq(~τ) ∩ (∆ω ×∆ω), the cross section of Gq(~τ) at ω. Let

Gω
q = {(x, x′) ∈ ∆ω ×∆ω | τωj (x, x′) = τj, j = 1, . . . , q}. The following lemma gives

a useful estimate on the size of the elements Gq(~τ).

Lemma 7.5. There exists a C > 0 such that for each fixed ~τ , q > 0

P(Gq(~τ)) ≤ CqP{τω1 (x, x′) = τ1}
q∏
j=2

γ(τj − τj−1).

where
γ(τi+1 − τi) =

∫
Ω

m{x ∈ ∆ω| R̂ω = τi+1 − τi − `0}dP (ω).

Proof. Assume first that q is even and let Gω
q be as above. Let kj = τj − τj−1 − `0,

j = 1, . . . , q. We first show that

m×m(Gω
q ) ≤ Dm×m(Gω

q−1)m×m{R̂στq−1+`0ω ◦ F
τq−1−τq−2+`0
στq−2ω

= kq}.
Indeed, for any Γωq−1 ∈ ξωq−1 with τωj |Γωq−1

= τj we have

m×m(Gω
q ∩ Γωq−1)

m×m(Γωq−1)
=
m×m({τωq = τq} ∩ Γωq−1)

m×m(Γωq−1)

=
m(π′{τωq = τq} ∩ Γωq−1)

m(π′Γωq−1)
≤ D

m(F
τq−2
ω (π′{τωq = τq} ∩ Γωq−1))

m(Λ)

≤ Dm(∆στq−2ω,0 ∩ F τq−2
ω {R̂στq−1+`0ω ◦ F

τq−1+`0
ω = kq})

= Dm{∆στq−2ω,0 ∩ R̂στq−1+`0ω ◦ F
τq−1−τq−2+`0
στq−2ω

= kq}

≤ Dm{R̂στq−1+`0ω ◦ F
τq−1−τq−2+`0
στq−2ω

= kq}.
Hence we have

m×m(Gω
q ∩ Γωq−1)

m×m(Γωq−1)
≤ Dm{R̂στq−1+`0ω ◦ F

τq−1−τq−2+`0
στq−2ω

= kq}.

Therefore,

m×m(Gω
q ) =

∑
Γωq−1∈ξωq−1

m×m(Γωq−1)
m×m(Gω

q ∩ Γωq−1)

m×m(Γωq−1)

≤ Dm×m(Gω
q−1)m{R̂στq−1+`0ω ◦ F

τq−1−τq−2+`0
στq−2ω

= kq}.
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By induction, for any q > 2, we have

m×m(Gω
q ) ≤ Dq−2m×m(Gω

1 )

q∏
j=2

m{R̂στj−1+`0ω ◦ F
τj−1−τj−2+`0
στj−2ω

= kj}.

A similar argument applies to obtain the same formula when q is odd. Now by (i) of
Lemma 6.3, we get

(7.1) m×m(Gω
q ) ≤ (DM0M)q−2m×m(Gω

1 )

q∏
j=2

m{R̂στj−1+`0ω = kj}.

Notice that, m{R̂στj−1+`0ω = kj} depends only on ωτj−1+`0 , . . . , ωτj−1+`0+kj−1 while
m{R̂στj+`0ω = kj+1} depends only on ωτj+`0 , . . . , ωτj+`0+kj+1−1. By definition of kj , we
have τj−1 + `0 +kj−1 = τj−1 < τj + `0. Therefore, the product on the right hand side
of (7.1) is formed of independent random variables. Moreover, observe thatm×m(Gω

1 )
depends only on ω`0 , . . . ωτ1−1 and τ1 − 1 < τ1 + `0. Thus,

∫
Ω

m×m(Gω
q )dP ≤ (DM0M)q−2

∫
Ω

m×m(Gω
1 )dP

q∏
j=2

∫
Ω

m{R̂στj−1+`0ω = kj}dP.

Since σ is P invariant, taking Cq := (DM0M)q−2 gives the desired estimate. �

We now present two lemmas that will be invoked in the proof of Proposition 7.8
below.

Lemma 7.6. We have
∑∞

τj+1−τj=K γ(τj+1 − τj) ≤ C(K) <∞. Moreover, C(K)→ 0

as K →∞.

Proof. Using assumption (P7) and Lemma 9.1 in the appendix, we have

∞∑
τj+1−τj=K

γ(τj+1 − τj) ≤
∞∑

τj+1−τj=K

C
log(τj+1 − τj − `0)b̂

(τj+1 − τj − `0)a
≤ C ′ log(K)b̂

(K − `0)a−1
:= C(K).

(7.2)

Moreover; C(K)→ 0 as K →∞. �

Lemma 7.7. We have
∑∞

k≥`0 P{τω1 (x, x′) = k} <∞.
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Proof. Recall that τω1 (x, x′) = `0 + R̂σ`0ω ◦ F `0
ω (x); i.e., τω1 (x, x′) does not depend on

x′. Therefore,
∞∑
k≥`0

P{τω1 (x, x′) = k} =
∞∑
k≥0

P ×m{R̂σ`0ω ◦ F `0
ω (x) = k} ×m(∆ω)

≤M
∞∑
k≥0

P ×m{R̂σ`0ω ◦ F `0
ω (x) = k} ≤M2M0

∞∑
k≥0

P ×m{R̂ω = k}

≤M2M0C
∑
k≥0

(log k)b̂

ka
<∞,

where we have used the first item of Lemma 6.3 and (P7). �

We can now present the main result of this section.

Proposition 7.8. Let δ > 0 be given. Let λω and λ′ω be two two families of probability
measures on {∆ω} with densities ϕ, ϕ′ ∈ F+

γ ∩ LKω
∞ . Let λ̃ := λω × λ′ω. Then there

exists a constant Ĉλ̃ and a subset Ω5 ⊂ Ω of full measure and a random variable n5 on
Ω5 such that for any n(ω) > n5(ω) the following holds

λ̃{Tω > n} ≤ Ĉλ̃
(log n)b

na−1−δ .

Moreover, there exist C > 0, u′ > 0, 0 < v′ < 1 such that for any n

P{ω | n5(ω) > n} ≤ Ce−u
′nv
′

.

Proof. Let c := min{ δ
a+1

, 1/2}. For a.e. ω ∈ Ω we have7

(7.3)

λ̃{Tω > n} ≤
∑
i<bncc

λ̃{Tω > n; τωi−1 ≤ n < τωi }+ λ̃{Tω > n; τωbncc ≤ n}

≤
∑
i<bncc

λ̃{τωi−1 ≤ n < τωi }+ λ̃{Tω > n; τωbncc ≤ n}

=: Y1 + Y2.

We will show that the term Y1 decays at the indicated log-polynomial rate (in n) while
the term Y2 decays as stretched exponential, which implies the result. First, for the term

7 Notice that we have chosen q = nc to keep the proof and the estimates of Y1, Y2 and Cω as simple
as possible. One may try q = (log n)d for sufficiently large d so that Y2 decays faster than Y1 and Cω
remains integrable and get a quenched decay rate of the form (logn)b+d

′

na−1 , for some d′ ≥ d, in Theorem
4.2. However, no matter how we choose q = g(n), with g(n) → ∞ as n → ∞, a quenched correlation
decay rate of the form (logn)b

na−1 , which is analogous to what one expects in the deterministic setting, cannot
be achieved since we want to get information on the integrability of the Cω in Theorem 4.2. The shift
of the Lipschitz constant Kω , and hence the dependence of that constant on n, in equation (8.7) and the
non-uniformity of the tail in (P4) are the main reasons for getting a rate at the order 1

na−1+δ , for any δ > 0.
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Y1 we have:∑
i<bncc

λ̃{τωi−1 ≤ n < τωi } =
∑
i<bncc

∑
Γ∈ξωi−1

λ̃{τωi−1 ≤ n < τωi | Γ}λ̃(Γ)

=
∑
i<bncc

∑
Γ∈ξωi−1

τωi−1|Γ≤n

λ̃{τωi−1 ≤ n < τωi | Γ}λ̃(Γ)

≤
∑
i<bncc

∑
Γ∈ξωi−1

τωi−1|Γ≤n

i∑
j=1

λ̃{τωj − τωj−1 ≥
n

i
| Γ}λ̃(Γ).

(7.4)

For each term in the sum (7.4), using Lemma 7.4 we obtain,

λ̃{τωj − τωj−1 ≥
n

i
| Γ}λ̃(Γ) = λ̃{τωj − τωj−1 ≥ (

n

i
− `0) + `0|Γ}λ̃(Γ)

≤MM0C
−1

λ̃
m{R̂

σ
τω
j−1

+`0ω
>
n

i
− `0}λ̃(Γ)

≤MM0C
−1

λ̃
λ̃(Γ)

∑
k>n

i
−`0

m{x ∈ Λ|R
σ
τω
j−1

+`0−kω
> k}.

(7.5)

For each ω ∈ ∩n∈Z σ
−n(Ω1), where Ω1 is the full measure subset from condition (P4),

we want to define a random variable n4(ω) such that for any n ≥ n4(ω) we have
n1(στ

ω
j−1+`0−kω) ≤ bn1−cc for any k ≥ n

i
− `0, i = 1, . . . , bn1−cc, so that we can

apply the uniform decay rates from (P4). Below the constraint τωi−1|Γ ≤ n is crucial.

n4(ω) = inf{m|∀n > m, ∀N ∈ {1, 2, . . . n+ `0},∀k > bn1−cc − `0, n1(σN−kω) < k}.

We claim that n4 has a stretched exponential tail.

P{n4(ω) > m} ≤
∑
n>m

n+`0∑
N=1

∑
k≥bn1−cc−`0

P{n1(σN−kω) > k}

=
∑
n>m

n+`0∑
N=1

∑
k≥bn1−cc−`0

P{n1(ω) > k}

≤
∑
n>m

(n+ `0)e−u
′nv
′

≤ e−u
′′mv

′′

,

for an appropriate choice of u′′ > 0, 0 < v′′ < 1. Now, for n > n4 using the fact that
τωj−1 ≤ n and Lemma 9.1 we can further upper bound the sum in the equation (7.5) by

(7.6)
∑

k≥n
i
−`0

m{x ∈ Λ|R
σ
τω
j−1

+`0−kω
> k} ≤ C

[log(n
i
− `0)]b

[n
i
− `0]a−1

≤ C ′ia
[log n]b

na−1
.
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Now, inserting the estimate (7.6) back into equation (7.5) and substituting that result
into (7.4) we obtain the final estimate on Y1:

Y1 ≤M2M0C
−1

λ̃
KĈ

∑
i<bncc

ia
[log n]b

na−1
≤ C ′nc(a+1) [log n]b

na−1
≤ C ′

[log n]b

na−1−δ .

Now we tackle the term Y2 by decomposing ∆ ⊗ω ∆ into two pieces. First for pa-
rameters K > 0 and 0 < ρ < 1, and integer q > 0 define

Bq(K, ρ) = {(ω, x, x′)|#{i|2 ≤ i ≤ q, τωi − τωi−1 > K} > ρq}.

We are going to pick the parameters K, and ρ ∼ 1 later, but the idea is that for points
in Bq(K, ρ) the first q return times have many (at least ρq) large (bigger than K) gaps.
Our decomposition will be according to this Bq(K, ρ) for q = bncc:

Y2 = λ̃{Tω > n, τωq < n} = λ̃({Tω > n} ∩Bq(K, ρ))

+ λ̃({Tω > n} ∩ [Bq(K, ρ)]c) ≤ λ̃(Bq(K, ρ)) + λ̃({Tω > n} ∩ [Bq(K, ρ)]c).
(7.7)

In order to estimate the first term in this expression, fix a sequence of integers 2 ≤ t1 <
t2 < · · · < ts for ρq ≤ s ≤ q − 1 and define

Bq(K, {ti}) = {(ω, x, x′)|τωti − τ
ω
ti−1 > K, i = 1, 2, . . . s}.

Then Bq(K, ρ) = ∪q−1
s=ρq ∪t1<···<ts Bq(K, {ti}) and by Lemma 7.5 we can estimate mea-

sures of the terms on the right by

P(Bq(K, {ti})) =
∑

τ1<τ2<...τq

P(Bq(K, {ti}) ∩Gq(~τ))

≤
∑

τ1<τ2<...τq
τti−τti−1>K
i=1,2,...s

P(Gq(~τ)) ≤ Cq
∑
τ1

P{τω1 (x, x′) = τ1}
∑

τ2<τ3<...τq
τti−τti−1>K
i=1,2,...s

q∏
j=2

γ(τj − τj−1)

= Cq
∑
τ1

P{τω1 (x, x′) = τ1}
s∏
i=1

∑
τti−τti−1

γ(τti − τti−1)
∏
j 6=ti

∑
τj−τj−1

γ(τj − τj−1)

≤ Cq
∑
m≥`0

P{τω1 (x, x′) = m}

(∑
m>K

γ(m)

)s(∑
m≥`0

γ(m)

)q−s

.

(7.8)

Now applying Lemmas 7.7 and 7.6 we obtain, assuming ρ > 1
2
,

P(Bq(K, ρ)) =

q−1∑
s=ρq

∑
t1<···<ts

P(Bq(K, {ti})) ≤
q−1∑
s=ρq

[2Ĉ[C(K)]ρ]q < [2eĈ[C(K)]ρ]q.

(7.9)
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We pick K large enough so that

2eĈ[C(K)]ρ := κ1 < 1.

This shows P(Bq(K, ρ)) ≤ κq1. Since we want estimates over individual fibres ∆ω×∆ω

we finally observe the above estimate shows m×m(Bω
q (K, ρ)) ≤ κ

q/2
1 except on a set

of ω of measure at most κq/21 . Once again, an application of Borel-Cantelli shows there
is a full measure set Ω5 ⊆ Ω and n5(ω) ≥ n4(ω) with stretched exponential tails (there
exists u > 0 and 0 < v < 1 so that P{n5 > n} ≤ e−un

v and such that, for every ω ∈ Ω5

and n > n5(ω), m×m(Bω
q (K, ρ)) ≤ κ

q/2
1 .

We now turn our attention to the complement of Bq(K, ρ). Note that for each ω, ~τ =
(τ1, . . . τq) either Gω

q (~τ) ⊆ Bω
q (K, ρ) or Gω

q (~τ) ∩ Bω
q (K, ρ) = ∅. Let us call those ~τ in

the former class ω, q− good. The others we will call ω, q− bad. Therefore, for ω fixed

λ̃({Tω > n; τωq < n} ∩ [Bω
q (K, ρ)]c) ≤ λ̃({Tω > τωq } ∩ [Bω

q (K, ρ)]c)

=
∑

~τ : ω,q− bad

λ̃({Tω > τωq } ∩Gω
q (~τ)).(7.10)

We move now to estimate the individual terms in the sum over ω, q − bad terms. Note
that each Gω

q (~τ) is ξωq measurable. Therefore we can write

Gω
q (~τ) = ∪Γq∈ξωq ,Γq⊆Gωq (~τ)Γq

as a disjoint union. Recall that {Tω > τq−1} is measurable with respect to ξωq . Therefore,
for each Γq in the above decomposition, either Γq ∩ {Tω > τq−1} = Γq or Γq ∩ {Tω >
τq−1} = ∅. Call the former ω, q − good and the latter ω, q − bad. Finally, note that if
Γq is ω, q − bad then Γq ∩ {Tω > τq} = ∅. Now we estimate:

λ̃({Tω > τq} ∩Gω
q (~τ)) =

∑
Γq : ω,q− good

λ̃({Tω > τq} ∩ Γq)

=
∑

Γq : ω,q− good

λ̃({Tω > τq}|{Tω > τq−1} ∩ Γq)λ̃({Tω > τq−1} ∩ Γq)

≤
∑

Γq : ω,q− good

(1− Cλ̃V
τq−τq−1

στq−1ω
)λ̃({Tω > τq−1}|{Tω > τq−2} ∩ Γq)λ̃({Tω > τq−2} ∩ Γq)

. . .

≤
∑

Γq : ω,q− good

Πq
j=2(1− Cλ̃V

τj−τj−1

στj−1ω )λ̃({Tω > τ1} ∩ Γq).

Now, since each good Γq in the above sum is a subset of Gω
q (~τ) that is ω, q − bad we

know that #{i|2 ≤ i ≤ q, τi − τi−1 ≤ K} > (1− ρ)q. Therefore, in the above product,
considering only those factors in the product, and keeping in mind the lower bound
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given by Lemma 7.2 we get

λ̃({Tω > τq} ∩Gω
q (~τ)) ≤ (1− Cλ̃V (K))(1−ρ)q

∑
Γq : ω,q− good

λ̃({Tω > τ1} ∩ Γq)

≤ (1− Cλ̃V (K))(1−ρ)q
∑

Γq : ω,q− good

λ̃(Γq).

Finally, summing first over all the good Γq and then over all Gω
q (~τ) for ω, q− bad ~τ we

obtain

λ̃({Tω > τq} ∩ [Bω
q (K, ρ)]c) ≤ (1− Cλ̃V (K))(1−ρ)q.

Set κ = max{κ1, (1− Cλ̃V (K))(1−ρ)} < 1 and obtain

Y2 ≤ C ′′κq = C ′′κbn
cc

for all n > n5(ω), giving the claimed stretched exponential decay. This completes the
proof of the lemma. �

7.4. Coupling. Here we consider F̂ω = (Fω × Fω)Tω which is a mapping from ∆̂ω =

∆ω × ∆ω into ∆̂σTωω. Let ξ̂ω1 be the partition of ∆̂ω on which Tω is constant. Let
T1,ω < T2,ω . . . be stopping times on ∆̂ω defined as

T1,ω = Tω, Tn,ω = Tn−1,ω + TσTn−1,ωω ◦ F̂
n−1
ω .

For u, z ∈ ∆̂ω we define a separation time ŝ(u, z) associated with F̂ω as the smallest
n ≥ 0 such that F̂ n

ω (u) and F̂ n
ω (z) lie in distinct elements of ξ̂σ

Tn,ωω
1

8.
Let λω and λ′ω be two probability measures on {∆ω}with densities ϕ, ϕ′ ∈ F+

γ ∩LKω
∞ .

Let λ̃ = λω × λ′ω and Φ = dλ̃/d(m×m), then Φ(x, x′) = ϕ(x)ϕ′(x′). The next lemma
establishes the regularity of F̂ω and Φ.

Lemma 7.9. (1) For any n > 0, u, z ∈ ∆̂ω with ŝ(u, z) ≥ n∣∣∣∣∣log
JF̂ n

ω (u)

JF̂ n
ω (z)

∣∣∣∣∣ ≤ D̂γ ŝ(F̂
n
ω u,F̂

n
ω z),

where D̂ ≥ 2D is a constant.
(2) For any n > 0, u, z ∈ ∆̂ω∣∣∣∣log

Φ(u)

Φ(z)

∣∣∣∣ ≤ CΦγ
ŝ(u,z),

where CΦ = Cϕ + Cϕ′ .

8Notice that, for any u = (x, x′), z = (y, y′) ∈ ∆ω if ŝ(u, z) > n then s(x, x′) > n and s(y, y′) > n.
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Proof. Let u = (x, x′), z = (y, y′). For n > 0 choose k so that F̂ n
ω (u) = (Fω×Fω)k(u).

Then ∣∣∣∣∣log
JF̂ n

ω (x, x′)

JF̂ n
ω (y, y′)

∣∣∣∣∣ ≤
∣∣∣∣log

JF k
ω (x)

JF k
ω (y)

∣∣∣∣+

∣∣∣∣log
JF k

ω (x′)

JF k
ω (y′)

∣∣∣∣
≤ Dγs(F

k
ωx,F

k
ωy) +Dγs(F

k
ωx
′,Fkωy

′) ≤ D̂γ ŝ(F̂
n
ω u,F̂

n
ω z),

where we have used ŝ(u, z) ≤ min{s(x, x′), s(y, y′)}. Similarly for the second item we
have ∣∣∣∣log

Φ(x, x′)

Φ(y, y′)

∣∣∣∣ ≤ ∣∣∣∣log
ϕ(x)

ϕ(y)

∣∣∣∣+

∣∣∣∣log
ϕ′(x′)

ϕ′(y′)

∣∣∣∣ ≤ CΦγ
ŝ(u,z).

�

Let ξ̂ωi be the partition of ∆̂ω on which T1,ω, . . . , Ti,ω are constant. For z ∈ ∆̂ω let
ξ̂ωi (z) be the element containing z. Given Φ(x, x′) = ϕ(x)ϕ(x′) let i1(Φ) be such that
CΦγ

i1 < D̂. For i < i1 let Φ̂i ≡ Φ. For i ≥ i1, let

(7.11) Φ̂i(z) =

[
Φ̂i−1(z)

JF̂ i
ω(z)

− ε min
u∈ξ̂ωi (z)

Φ̂i−1(u)

JF̂ i
ω(u)

]
JF̂ i

ω(z),

where ε is a small number that will be defined below. Since (Φ̂i−Φ̂i−1)/JF̂ i
ω is constant

on every Γ ∈ ξ̂ωi , we have

π∗(F̂
i
ω)∗((Φ̂i−1 − Φ̂i)(m×m)|Γ) = π′∗(F̂

i
ω)∗((Φ̂i−1 − Φ̂i)(m×m)|Γ).

Note that, Φ̂i is the density of the part of λ̃ which has not been matched up to time Ti,ω.

Lemma 7.10. For all sufficiently small ε > 0 in (7.11), there exists 0 < ε1 < 1
independent of Φ such that for almost every ω and for all i ≥ i1

Φ̂i ≤ (1− ε1)Φ̂i−1 on ∆̂ω.

We will introduce the following densities in order to prove Lemma 7.10. For z ∈ ∆̂ω

let

Ψ̃i1−1(z) =
Φ(z)

JF̂ i1−1
ω (z)

and for i ≥ i1, let

Ψi(z) =
Ψ̃i−1(z)

JF̂σTi−1,ωω(F̂ i−1
ω (z))

, εi,z = ε · min
u∈ξ̂i(z)

Ψi(u), Ψ̃i(z) = Ψi(z)− εi,z.

Lemma 7.10 then follows from the following lemma:

Lemma 7.11. There exists Ĉ such that for all sufficiently small ε the following holds:
for any z ∈ ∆̂ω with u ∈ ξ̂ωi (z) and i ≥ i1∣∣∣∣∣log

Ψ̃i(u)

Ψ̃i(z)

∣∣∣∣∣ ≤ Ĉγ ŝ(F̂
i
ωu,F̂

i
ωz).
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Proof. By definition of Ψi and item (1) Lemma 7.9 of we have

(7.12)
∣∣∣∣log

Ψi(u)

Ψi(z)

∣∣∣∣ ≤
∣∣∣∣∣log

Ψ̃i−1(u)

Ψ̃i−1(z)

∣∣∣∣∣+ D̂γ ŝ(F̂
i
ωz,F̂

i
ωu).

Since εi,z is constant on ξ̂ωi (z) we let εi = εi,z. We have∣∣∣∣∣log
Ψ̃i(u)

Ψ̃i(z)
− log

Ψi(u)

Ψi(z)

∣∣∣∣∣ =

∣∣∣∣log
Ψi(u)− εi

Ψi(u)

Ψi(z)

Ψi(z)− εi

∣∣∣∣ ≤
∣∣∣∣∣

εi
Ψi(z)

− εi
Ψi(u)

1− εi
Ψi(z)

∣∣∣∣∣
≤ εi

Ψi(z)

∣∣∣∣Ψi(u)

Ψi(z)
− 1

∣∣∣∣ 1

1− ε
≤ ε

1− ε
C

∣∣∣∣log
Ψi(u)

Ψi(z)

∣∣∣∣ .
Notice that C in the latter inequality increases as Ψi(u)

Ψi(z)
increases. Allowing ε to depend

on i, z, u and ω,9 for a given 0 < ε′ < γ−1 − 1 we can choose ε small enough so that

(7.13)
ε

1− ε
C < ε′

we obtain

(7.14)

∣∣∣∣∣log
Ψ̃i(u)

Ψ̃i(z)

∣∣∣∣∣ ≤ (1 + ε′)

∣∣∣∣log
Ψi(u)

Ψi(z)

∣∣∣∣ .
By (7.12) and (7.14) we obtain

(7.15)

∣∣∣∣∣log
Ψ̃i(u)

Ψ̃i(z)

∣∣∣∣∣ ≤ (1 + ε′)

(∣∣∣∣∣log
Ψ̃i−1(u)

Ψ̃i−1(z)

∣∣∣∣∣+ D̂γ ŝ(F̂
i
ωu,F̂

i
ωz)

)
.

Moreover, for i = i1 we have∣∣∣∣∣log
Ψ̃i1(u)

Ψ̃i1(z)

∣∣∣∣∣ ≤ (1 + ε′)

(∣∣∣∣log
Φ(u)

Φ(z)

∣∣∣∣+ D̂γ ŝ(F̂
i
ωu,F̂

i
ωz)

)
≤ (1 + ε′)(CΦγ

ŝ(u,z) + D̂γ ŝ(F̂
i1
ω u,F̂

i1
ω z))

≤ (1 + ε′)2D̂γ ŝ(F̂
i1
ω u,F̂

i1
ω z).

Note that in the last inequality we have used CΦγ
ŝ(u,z) ≤ D̂γ ŝ(F̂

i1
ω u,F̂

i1
ω z). Finally, using

the relation ŝ(F̂ i−j
ω u, F̂ i−j

ω z) = ŝ(F̂ i
ωu, F̂

i
ωz) + j we have

(7.16)

∣∣∣∣∣log
Ψ̃i(u)

Ψ̃i(z)

∣∣∣∣∣ ≤ Ĉγs(F̂
i
ωu,F̂

i
ωz)),

where Ĉ = 2(1 + ε′)D̂
∑∞

j=0[(1 + ε′)γ]j .

9Notice that when i = i1 we can choose ε uniform for all u and z, allowing dependence only on D̂
and CΦ.
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Now, we show by an inductive argument that ε in (7.13) can be chosen independent
of i, u, z, ω. First of all notice that we can choose ε independent of u, z for i = i1
because

Ψi1(u)

Ψi1(z)
=

Φ(u)

Φ(z)

JF̂ i1
ω (z)

JF̂ i1
ω (u)

≤ (1 + D̂)2.

Let j > i1 and suppose that ε is small enough so that (7.16) holds for all i < j and
u ∈ ξ̂ωi (z). Then by (7.12) we have∣∣∣∣log

Ψi(u)

Ψi(z)

∣∣∣∣ ≤ Ĉ + D̂,

which implies that Ψi(u)
Ψi(z)

∈ [e−(Ĉ+D̂), eĈ+D̂]. Therefore C in (7.13) is bounded by eĈ+D̂.

Hence by choosing ε < ε′e−(Ĉ+D̂) we conclude that the estimate in (7.15) holds for
i = j. �

Lemma 7.12. Let 0 < ε1 < 1 be as in Lemma 7.10. For almost every ω and all n ∈ N

|(F n
ω )∗(λω)− (F n

ω )∗(λ
′
ω)| ≤ 2λ̃{Ti1,ω > n}+2

∞∑
i=i1

(1−ε1)i−i1+1λ̃{Ti,ω ≤ n < Ti+1,ω},

where λ̃ = λω × λ′ω.

Proof. In Lemma 7.10 the estimates for the mass of λ̃ after the ith iterate matching was
given. Now we will relate that estimate to the iterates of Fω. Define Φ0, Φ1, . . . as
follows: for z ∈ ∆ω ×∆ω let

Φn(z) = Φ̂i(z) when Ti,ω(z) ≤ n < Ti+1,ω(z),

where Φ̂i(z) is as in (7.11). We first prove that |(F n
ω )∗(λ)− (F n

ω )∗(λ
′)| ≤ 2

∫
Φnd(m×

m). Below we use the notation Φ(m × m) to denote a measure whose density with
respect to m×m is Φ. First of all recall that Φ0 = Φ and write Φ = Φn+

∑n
k=1(Φk−1−

Φk). We have

(7.17)

|(F n
ω )∗(λ)− (F n

ω )∗(λ
′)|

= |π∗(Fω × Fω)n∗ (Φ(m×m))− π′∗(Fω × Fω)n∗ (Φ(m×m))|
≤ |π∗(Fω × Fω)n∗ (Φn(m×m))− π′∗(Fω × Fω)n∗ (Φn(m×m))|

+
n∑
k=1

|(π∗ − π′∗)(Fω × Fω)n∗ ((Φk−1 − Φk)(m×m))|.

Since, for any A ⊂ ∆σnω we have

π∗(Fω × Fω)n∗ (Φn(m×m))(A) =

∫
F−nω (A)×∆ω

Φnd(m×m),

the first term in the final sum in (7.17) is bounded by 2
∫

Φnd(m×m). Now, we claim
that all other terms in (7.17) vanish. Let Ak = ∪Ak,i ⊂ ∆̂ω be such that Ak,i = {z ∈
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∆̂ω | k = Ti,ω(z)}. By constructionAi,k is a union of elements of ξ̂ωi andAk,i∩Ak,j = ∅
for i 6= j (because Ti,ω < Tj,ω for i < j ). For Γ ∈ ξ̂ωi |Ak,i by definition of the Φi’s we
have Φk−1 − Φk = Φ̂i−1 − Φ̂i. On the other hand, Φk−1 ≡ Φk on ∆̂ω \ Ak. Hence for
each k and for every Γ ⊂ Ak,i we have

(F n−k
σkω

)∗π∗(Fω × Fω)
Ti,ω
∗ (Φk(m×m)|Γ) = (F n−k

σkω
)∗π
′
∗(Fω × Fω)

Ti,ω
∗ (Φk(m×m)|Γ)

which finishes the proof of claim.
It remains to estimate

∫
Φnd(m×m). We have∫

Φnd(m×m) =

∫
{Ti1,ω>n}

Φnd(m×m) +
∞∑
i=i1

∫
{Ti,ω≤n<Ti+1,ω}

Φnd(m×m).

Note that Φn = Φ on {Ti1,ω > n}. Hence we have∫
{Ti1,ω>n}

Φnd(m×m) =

∫
{Ti1,ω>n}

Φd(m×m) = λ̃{Ti1,ω > n}.

Let n be such that Ti,ω ≤ n < Ti+1,ω. By Lemma 7.10 we have Φn = Φ̂i ≤ (1 −
ε1)i−i1+1Φ. Hence∫

{Ti,ω≤n<Ti+1,ω}
Φnd(m×m) ≤

∫
{Ti,ω≤n<Ti+1,ω}

(1− ε1)i−i1+1Φd(m×m)

= (1− ε1)i−i1+1λ̃{Ti,ω ≤ n < Ti+1,ω}.
�

8. DECAY OF CORRELATIONS

The main result of this section is the following proposition.

Proposition 8.1. For every δ > 0 there is a full measure set Ω6 ⊂ Ω and a random
variable n6(ω) such that for all probability measures λω, λ′ω on {∆ω} with dλω

dm
, dλ

′
ω

dm
∈

FKωγ ∩ F+
γ , there is C so that for any n > n6, we have

|(F n
ω )∗(λω)− (F n

ω )∗(λ
′
ω)| ≤ C

(log n)b+a

na−1−δ .

Moreover, there exist C ′ > 0, such that

P{n6 > n} ≤ C ′e−u
′nv
′

,

for some u′ > 0 and 0 < v′ < 1.

Notice that the constant C in Proposition 8.1 depends on λ and λ′ through the Lips-
chitz constants of their densities, which belong FKωγ ∩ F+

γ and hence C is independent
of ω. Before proving the proposition, we prove the following auxiliary lemma.

Lemma 8.2. There exists Cλ̃ such that for all i ≥ 1 and for any Γ ∈ ξ̂ωi
λ̃{Ti+1,ω − Ti,ω > n|Γ} ≤ Cλ̃(m×m){TσTi,ωω > n}.



QUENCHED DECAY OF CORRELATIONS 39

Proof. By definition we have

λ̃{Ti+1,ω − Ti,ω > n|Γ} = λ̃{TσTi,ωω ◦ F̂
i
ω > n}.

Therefore, it remains to bound the density d(F̂ i
ω)∗λ̃/d(m × m). Let Γ ∈ ξ̂ωi . Any

z′, u′ ∈ ∆̂0,σTi,ωω have unique pre-images u, z ∈ Γ. By definition we have∣∣∣∣∣log

(
d(F̂ i

ω)∗λ̃

d(m×m)
(u′)

/
d(F̂ i

ω)∗λ̃

d(m×m)
(z′)

)∣∣∣∣∣ =

∣∣∣∣∣log
JF̂ i

ω(z)

JF̂ i
ω(u)

+ log
Φ(u)

Φ(z)

∣∣∣∣∣
≤ D̂γ ŝ(F̂

i
ωu,F̂

i
ωz) + CΦγ

ŝ(u,z) ≤ D̂ + CΦ =: logCλ̃.

Since D̂ is independent of Γ this implies d(F̂ i
ω)∗λ̃/d(m×m) < Cλ̃. �

Proof of Proposition 8.1. Note that, by taking T0,ω ≡ 0 Lemma 7.12 implies

(8.1) |(F n
ω )∗(λ)− (F n

ω )∗(λ
′)| ≤ 2(1− ε1)1−i1

∞∑
i=0

(1− ε1)iλ̃{Ti,ω ≤ n < Ti+1,ω}.

By choosing A(n) ∈ N so that (1− ε1)A(n) ≤ n−2a, for any i ≥ A(n) we have

(8.2)
∞∑

i=A(n)

(1− ε1)iλ̃{Ti,ω ≤ n < Ti+1,ω} ≤
∞∑

i=A(n)

(1− ε1)i ≤ 1

ε1n2a
.

Now we estimate λ̃{Ti−1,ω ≤ n < Ti,ω} for i ≤ A(n). Let m̃ = m×m
m(∆ω)2

. We proceed as
in equation (7.4) in the estimate of Y1. For every i we write

(8.3)

λ̃{Ti−1,ω ≤ n < Ti,ω} ≤
∑

Γ∈ξ̂ωi−1

Ti−1,ω |Γ≤n

i−1∑
j=0

λ̃{Tj+1,ω − Tj,ω >
n

i
| Γ}λ̃(Γ)

(by Lemma 8.2) ≤ Cλ̃
∑

Γ∈ξ̂ωi−1

Ti−1,ω |Γ≤n

λ̃(Γ)
i−1∑
j=0

(m×m){TσTj,ωω >
n

i
}

≤ Cλ̃M
2

∑
Γ∈ξ̂ωi−1

Ti−1,ω |Γ≤n

λ̃(Γ)
i−1∑
j=0

m̃{TσTj,ωω >
n

i
}.

Recall that there is a full measure set Ω5 and a random variable n5 which is finite on Ω5,
and P{n5 > n} ≤ Ce−un

v . Now define

n6(ω) = inf{n|∀k ≥ n,∀N ∈ [1, k] ∩ N, n5(σNω) ≤ k}.
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We now show that n6 has a stretched exponential tail. Indeed,

P{n6(ω) > n} ≤
∑
k>n

k∑
N=1

P{n5(σNω) > k}

=
∑
k>n

k∑
N=1

P{n5(ω) > k} ≤ C ′e−u
′nv
′

,

for an appropriate choice of u′ > 0, v′ ∈ (0, 1). Since A(n) ∼ log n, for any ε > 0 we
have

P{n6(ω) >
n

A(n)
} ≤ P{n6(ω) > n1−ε} . eu

′n(1−ε)v′

.

Therefore, by Proposition 7.8 and the definition of A(n), for any n
A(n)

> n6 we can
estimate (8.3) as follows:

λ̃{Ti−1,ω ≤ n < Ti,ω} ≤ Cλ̃M
2C

i−1∑
j=0

(log n)b

na−1−δ i
a−1 = Cλ̃M

2C
(log n)b

na−1−δ i
a

. (log n)a
(log n)b

na−1−δ .
(log n)b+a

na−1−δ .

(8.4)

Finally, using (8.4)

(8.5)
A(n)∑
i=1

(1− ε1)iλ̃{Ti,ω ≤ n < Ti+1,ω} .
(log n)b+a

na−1−δ

∞∑
i=1

(1− ε1)i .
(log n)b+a

na−1−δ .

Thus, combining (8.2) and (8.5) finishes the proof. �

8.1. Decay of future correlations (Proof of Theorem 4.2 item (i)). Let ψ ∈ FKωγ and
ϕ ∈ LKω

∞ . Also, let Cψ, C ′ψ and C ′ϕ be the constants given in the definitions of FKωω
and LKω

∞ respectively. Let ψ̃ = Aω(ψ + (C ′ψ + 1)Kω + 1), where Aω = (
∫
ψdm +

m(∆ω)[(C ′ψ + 1)Kω + 1])−1. Then ψ̃ ∈ F+
γ ∩FKωγ ,

∫
ψ̃dm = 1 and |ψ̃(x)| ≤ 2(C ′ψ + 1)

for all x ∈ ∆ω. The second assertion is obvious by the choice of Aω. For the third one
we use the inequality Aω ≤ m(∆ω)−1(1 +Kω)−1 ≤ 1. For the first claim we have∣∣∣∣∣ ψ̃(x)

ψ̃(y)
− 1

∣∣∣∣∣ ≤ 1

Kω + 1
|ψ(x)− ψ(y)| ≤ Cψγ

s(x,y).

For the correlations we have the following relation

(8.6) C(f)
n,ω(ϕ, ψ) =

1

Aω
C(f)
n,ω(ϕ, ψ̃)−m(∆ω)[Kω(C ′ψ + 1) + 1]C(f)

n,ω(ϕ,
1

m(∆ω)
).
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Let λ be a probability with density dλ
dm

= ψ̃. Then by Proposition 8.1 for every n > n6

we have

(8.7)

∣∣∣C(f)
n,ω(ϕ, ψ̃)

∣∣∣ =

∣∣∣∣∫ (ϕσnω ◦ F n
ω )ψ̃ωdm−

∫
ϕσnωdνσnω

∫
ψ̃ωdm

∣∣∣∣
≤
∣∣∣∣∫ (ϕσnω ◦ F n

ω )dλω −
∫
ϕσnωdνσnω

∣∣∣∣
≤ sup

x∈∆σnω

ϕσnω(x) · |(F n
ω )∗λω − (F n

ω )∗νω|

≤ C ′ϕKσnωCλ,ν
(log n)b+a

na−1−δ .

Similarly, for the probability measure λ′ with the constant density m(∆ω)−1 we have

(8.8)
∣∣∣∣C(f)

n,ω(ϕ,
1

m(∆ω)
)

∣∣∣∣ ≤ C ′ϕKσnωCλ′,ν
(log n)b+a

na−1−δ .

Define Cλ,λ′ := max{Cλ,ν , Cλ′,ν}. Substituting (8.7) and (8.8) into (8.6), and using the
inequality A−1

ω ≤ m(∆ω)[1 + (2C ′ψ + 1))Kω] we have

(8.9)
∣∣C(f)

n,ω(ϕ, ψ)
∣∣ ≤ Cλ,λ′C

′
ϕm(∆ω)[2 +Kω(2 + 3C ′ψ)]Kσnω

(log n)b+a

na−1−δ .

Let n7(ω) = inf{k ≥ n6(ω) | ∀` > k, Kσ`ω ≤ `δ}. Then

P{n7 > n} ≤ P{n6 > n}+
∑
k≥n

P{Kσkω > kδ} . e−u
′nv
′

+
∑
k≥n

e−uk
v′

. Ce−u
′nv
′

.

Now, if n > n7 then∣∣C(f)
n,ω(ϕ, ψ)

∣∣ ≤ Cλ,λ′C
′
ϕM [2 +Kω(2 + 3C ′ψ)]

(log n)b+a

na−1−2δ
.

If n ≤ n7 then we let
Cω = n7(ω)aKω sup

n≤n7

Kσnω.

Hence, for all n ∈ N we have obtained∣∣∣∣∫ (ϕσnω ◦ F n
ω )ψωdm−

∫
ϕσnωdνσnω

∫
ψωdm

∣∣∣∣ ≤ Cψ,ϕCω
(log n)b+a

na−1−2δ
.

It remains to show P{Cω > n} has the desired decay rate. We write

P{Cω > k} ≤ P{Kω > k1/3}+ P{ sup
n≤n7(ω)

Kσnω > k1/3}+ P{n7(ω) > k1/(3a)}.

Notice that by the definition of n7 we have

P{ sup
n≤n7(ω)

Kσnω > k1/3} ≤ P{n7(ω) > k}+
k∑

n=1

P{Kσnω > k1/3}.
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Hence, we have

P{Cω > k} . (k + 1)e−uk
v/3

+ e−u
′kδv + e−u

′kδv/(3a) . e−u
′kv
′/(3a)

.

Then the conclusion of the theorem holds with u′ and v′ := v′

3a
.

8.2. Decay of past correlations. To obtain decay of past correlations we need to prove
the results of Sections 7 and 8.1 with the corresponding shift on ω. Below we use the
notation ω = σ−nω′ for ω′ ∈ Ω.

Lemma 8.3. Let λω′ and λ′ω′ be two probability measures on {∆ω′} with densities
ϕ, ϕ′ ∈ F+

γ ∩ L
Kω′∞ . Let λ̃ = λω′ × λ′ω′ . For each ω′ ∈ Ω let ω = σ−nω′. Then

for any i ≥ 2 and Γ ∈ ξωi , where such that Tω|Γ > τωi−1 we have

λ̃{Tω > τωi |Γ} ≥ 1− Cλ̃V
τωi −τωi−1

σ
τω
i−1ω

.

where 0 < Cλ̃ < 1. Dependence of Cλ̃ on λ̃ on can be removed if we only consider
i ≥ i0(λ̃).

Lemma 8.4. Let Cλ̃ be as in Lemma 7.3. For each ω′ ∈ Ω, let ω = σ−nω′. For every i
and Γ ∈ ξωi

λ̃{τωi+1 − τωi > `0 + n|Γ} ≤M0MC−1

λ̃
·m{R̂

στ
ω
i

+`0ω
> n}.

Proposition 8.5. Let δ > 0 be given. Let λω′ and λ′ω′ be two probability measures on
{∆ω′} with densities ϕ, ϕ′ ∈ F+

γ ∩ F
Kω′∞ . Then there exists a constant Ĉλ̃ and a subset

Ω5 ⊂ Ω full measure and a random variable n5(ω′) which is finite on Ω5 such that for
any n > n5 letting ω = σ−nω′ we have

λ̃{Tω > n} ≤ Ĉλ̃
(log n)b

na−1−δ .

Moreover, there exist u′ > 0, 0 < v < 1 such that for any n

P{ω | n5(ω) > n} ≤ Ce−u
′nv .

Proposition 8.6. For every δ > 0 there is a full measure set Ω6 ⊂ Ω and a random
variable n6(ω′), which is finite on Ω6 such that for all probability measures λω′ , λ′ω′ on
{∆ω′} with dλω′

dm
,
dλ′
ω′

dm
∈ F

Kω′
γ ∩ F+

γ , there is Cλ,λ′ so that for any n > n6(ω′) letting
ω = σ−nω′ we have

|(F n
ω )∗(λω′)− (F n

ω )∗(λ
′
ω′)| ≤ Cλ,λ′

(log n)b+a

na−1−δ .

Moreover, there exist C > 0, u′ > 0 and 0 < v′ < 1 such that

P{n6 > n} ≤ Ce−u
′nv
′

.

Using the above statements and following the same strategy as in the proof of future
correlations we conclude decay of past correlations.



QUENCHED DECAY OF CORRELATIONS 43

9. APPENDIX

9.1. Sub-polynomial tail estimates.

Lemma 9.1. Let a > 1 and b > 0. Then∑
k>n

(log k)b

ka
∼ 1

a− 1

(log n)b

na−1
.

Proof. The proof is based on integration by parts. Since (log x)b

xa
is monotonically de-

creasing on (C,+∞) for C big enough, we have∑
k>n

(log k)b

ka
≤
∫ ∞
n

(log x)b

xa
.

Let K = [b] + 1. Then first making change of variables y = log x and the integrating
by parts K times we obtain

(9.1)
∫ ∞
n

(log x)b

xa
=

1

a− 1
(log n)bn1−a +

K−1∑
i=2

(a− 1)−i
i−1∏
j=0

(b− j) + Ik(a, b),

where Ik(a, b) = (a − 1)−K
∏K−1

j=0 (b − j)
∫∞

logn
yb−Ke(1−a)ydy. Since b − K < 0 we

conclude that Ik(a) ≤ (a − 1)−K−1
∏K−1

j=0 (a − j)n1−a, This shows that the dominant
term in (9.1) is 1

a−1
(log n)bn1−a. �

Lemma 9.2. Suppose a > 0 and ak ∼ 1
(log k)a

. Then
∑n

k=2 ak ∼
n

(logn)a
.

Proof. A straightforward estimate, using the fact that
∑n

k=2
1

(log k)a
→ ∞ shows that∑n

k=2 ak →∞ and
∑n

k=2 ak ∼
∑n

k=2
1

(log k)a
. We work with the latter sum. An elemen-

tary estimate shows∫ n+1

2

dx

(log x)a
≤

n∑
k=2

1

(log k)a
≤ 1

(log 2)a
+

∫ n

2

dx

(log x)a
.

Therefore
∑n

k=2
1

(log k)a
∼
∫ n

2
dx

(log x)a
. We now estimate the integral.∫ n

2

dx

(log x)a
=

n

(log n)a
− 2

(log 2)a
+ a

∫ n

2

dx

(log x)a+1
,(9.2)

using integration by parts. The first term above is the claimed rate, and the second term
is clearly o

(
n

(logn)a

)
. We will show the same is true for the third, integral term. We first

upper-bound as follows:

a
(log n)a

n

∫ n

2

dx

(log x)a+1
≤ a

n

∫ n

2

dx

log x
.
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Now simply estimate the right hand side by

a

n

∫ n

2

dx

log x
=
a

n

∫ √n
2

dx

log x
+
a

n

∫ n

√
n

dx

log x

≤ a

log 2

√
n− 2

n
+

a

log
√
n

n−
√
n

n
.

Since both terms are o(1) in n we are done. �
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3. J.F. Alves, V. Pinheiro, Slow rates of mixing for dynamical systems with hyperbolic structures. J. Stat.
Phys. 131 (2008), no. 3, 505–534

4. A. Ayyer, C. Liverani, M. Stenlund, Quenched CLT for random toral automorphisms. Discrete Con-
tin. Dyn. Syst. 24, no. 2 (2009), 331–348.

5. W. Bahsoun, C. Bose, Mixing rates and limit theorems for random intermittent maps. Nonlinearity.
Vol. 29 (2016), no. 4, 1417–1433.

6. W. Bahsoun, C. Bose, Y. Duan, Decay of correlation for random intermittent maps. Nonlinearity.
Vol. 27 (2014), no. 7, 1543–1554.

7. V. Baladi, M. Benedicks, V. Maume-Deschamps, Almost sure rates of mixing for i.i.d. unimodal
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