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Abstract

Gaining information about an unknown gas source is a task of great importance with appli-

cations in several areas including: responding to gas leaks or suspicious smells, quantifying

sources of emissions, or in an emergency response to an industrial accident or act of ter-

rorism. In this paper, a method to estimate the source term of a gaseous release using

measurements of concentration obtained from an unmanned aerial vehicle (UAV) is de-

scribed. The source term parameters estimated include the three dimensional location of
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the release, its emission rate, and other important variables needed to forecast the spread

of the gas using an atmospheric transport and dispersion model. The parameters of the

source are estimated by fusing concentration observations from a gas detector on-board the

aircraft, with meteorological data and an appropriate model of dispersion. Two models are

compared in this paper, both derived from analytical solutions to the advection diffusion

equation. Bayes’ theorem, implemented using a sequential Monte Carlo algorithm, is used

to estimate the source parameters in order to take into account the large uncertainties in the

observations and formulated models. The system is verified with novel, outdoor, fully auto-

mated experiments, where observations from the UAV are used to estimate the parameters

of a diffusive source. The estimation performance of the algorithm is assessed subject to

various flight path configurations and wind speeds. Observations and lessons learned during

these unique experiments are discussed and areas for future research are identified.

1 Introduction

1.1 Motivation

Finding the source of a gas, knowing an estimate of its emission rate, forecasting the spatial extent of a gas,

or even simply confirming the presence or absence of hazardous airborne material in an area has immense

benefit in emergency response and several other applications. The gaseous release could be man-made or

naturally occurring, hazardous to the environment or to human health, or provide clues as to the location of

resources. Examples of well known naturally occurring releases include some sources of methane emissions

or volcanic eruptions [Mastin et al., 2009]. It is of great interest to identify and quantify these sources in

order to assess the environmental, social and commercial impact. Man-made releases are predominantly a

result of industrial emissions [He et al., 2011] and accidents such as chemical spills [Thanabalasingham et al.,

1991, Derezinski et al., 2003]. The accumulating effect on the environment and the increasing frequency of

accidents makes the ability to monitor these emissions, or respond effectively to these accidents, of utmost

importance. On the contrary, there is the rare event where a hazardous release could be deliberate, in the

case of an act of terrorism [Okumura et al., 1998] or war. In these circumstances it would be important to

perform a rapid, planned response to minimise casualties to the public and first response personnel.

Regardless of the specific application, estimating the source term of a release can provide important informa-

tion and improved situational awareness. The source term incorporates important details consisting of the



location of the release and the remaining parameters needed to model the spread of the material and forecast

the future harm using atmospheric transport and dispersion (ATD) models [Hutchinson et al., 2017b]. These

parameters include the release rate and potentially the start and stop times of the release which can provide

valuable knowledge about the environmental impact and post hazard assessment or forensics.

Source term estimation is most commonly performed using an array of static sensors on the ground. For-

mulated as an inverse problem, Bayesian inference or optimisation algorithms are used to fuse point-wise

concentration observations of the hazard with hypothesised predictions from a model [Hutchinson et al.,

2017b]. Although there are some benefits, such as early detection in areas of interest with an existing

network in place, static sensors have several drawbacks which are overcome by mobile deployment. These

include the cost of maintenance, the quantity required, and their manual positioning which can be slow and

provide less information than, for example, an intelligently guided unmanned aerial vehicle (UAV).

A UAV has the ability to sample from the most desirable locations to gather high quality spatial temporal

data. This can enable rapid estimation of the location of the hazardous release and the other parameters

of the source term. UAVs have the potential to monitor an area of interest, survey an area to confirm the

presence or absence of hazardous material and locate the hazardous sources; all whilst keeping emergency

responders out of the danger yet still provided with high quality information from the on-board sensors.

This present work focuses on the development and testing of an unmanned aerial system to perform source

term estimation in response to a release of hazardous material. In the future, it will be extended to conduct

a more efficient information based search, and the resulting system is envisioned to feature several other

capabilities to maximise situational awareness in an emergency scenario; such as a live video feed.

1.2 System overview

A reader unfamiliar with gas source localisation, atmospheric dispersion, or source term estimation research

could, at first glance, perceive the problem as rather trivial. Instinctively, to localise a gas source, one would

propose to trace the concentration gradient of the gas towards its origin. When in fact, it is an immensely

challenging problem due to the random nature of turbulence and gas dispersion which can cause erratic

fluctuations in concentration, resulting in sporadic, highly volatile readings from the gas detectors [Shraiman

and Siggia, 2000,Vergassola et al., 2007]. Indeed, from a biological point of view, living organisms that adopt a

gradient based, or “chemotaxis”, approach are of a microscopic scale such as Escherichia Coli bacteria [Adler,

1966]. On a larger scale the procedure is abandoned. For the readers comprehension, an example plume on

the scale of the experiments is shown in Fig 1. The coloured smoke was used to visualise the effect of the



Figure 1: Visualisation of a UAV flying in the plume of a point source of emissions.

UAV (seen in the centre of the figure) on the gas dispersion. In this example, despite a strongly emitting

source, gaps in the plume can be observed nonetheless.

To overcome this challenge, Bayes’ theorem is proposed to estimate the parameters of the source given the

noisy readings from the sensors, uncertainties in the meteorological conditions, and errors in the underlying

models and assumptions therein. The system executes a systematic sweep search pattern and estimates

the parameters of the hazardous release by fusing the information from a gas detector on-board the vehicle

with meteorological information and an appropriate model of gas dispersion. Two models are compared

using the data collected during the experimental trials conducted in this paper. The output of the system

is an estimate of the source term parameters of the hazardous release which includes all the information

required to forecast its dispersion from the source. Besides the ability to forecast the hazard, the estimated

parameters provide other valuable information such as the location of the source and its rate of emission.

The system primarily consists of a quadrotor UAV and a laptop as a base station. The quadrotor is equipped

with a Photoionisation Detector (PID) which is used to measure the concentrations of the hazardous gas.

Currently, the measured concentrations are sent to the ground station using a 5Ghz WiFi network. The

ground station will run the Bayesian estimation of the source parameters and send the next position demand

to the UAV. This set-up is chosen to facilitate the development of a more efficient on-line planning algorithm

in the future. Due to the very fast computational time of the algorithm the computation could potentially

be performed by the on-board computer of the UAV, however, during the experimental trials the laptop was

used for simplicity and to enable more seamless algorithm development [Ladosz et al., 2019]. Furthermore,



the data sent consisted only of a concentration measurement and 3D location coordinates. The Robot

Operating System (ROS) framework was used for all communications between the autopilot and the on

board computer, and likewise between the on-board computer and the ground-station.

1.3 Contributions

Gas source localisation has been an active area of academic research for some time. In spite of this, existing

experimental results have rarely been obtained in realistic environments or even outdoors. To the best of

the authors knowledge, gas source localisation using a UAV has only been achieved with a single system

[Neumann et al., 2013]. This was a significant step forward, simultaneously extending previous work to an

outdoor environment and utilising a UAV that could estimate the wind vector using its inertial measurement

unit [Neumann and Bartholmai, 2015]. The experimental results were impressive, however, there were still

some limitations at this stage: the search area was quite narrow and two dimensional, a fan at the source

was used to create a nice flow to help spread the gas, the UAVs altitude was held manually, it was initiated

from within the gas plume, and finally, the emission rate of the source was not estimated. All the former

points are addressed in this paper.

Source term estimation is another popular area of research, with significant experimental results obtained

using high quality datasets from experimental trials of tracer gas dispersion such as the Joint Urban 2003

study in Oklahoma [Allwine et al., 2004]. Contributions in this area typically focus on using a network

of static gas detectors [Rao, 2007, Hutchinson et al., 2017b]. In the present study, a UAV is guided fully

autonomously to collect the spatial temporal data required to estimate the parameters of a dispersive release.

When using a static network, gas concentration samples are typically averaged over a period of a minute

or more. Given the short flight time of a UAV this is greatly decreased, resulting in significantly different

outputs from the sensor; characterised by greater intermittency, or non detections, and increased noise. A

new likelihood function is used to handle the intermittent detections and greater uncertainty incurred by the

shorter sampling periods. Furthermore, two simple, fast running dispersion models proposed in the literature

for source term estimation are compared using the unique experimental data collected by the UAV. To the

best of the authors knowledge, the experimental trials described in this paper mark the first occasion where

a UAV is used, in realistic conditions, to search for and estimate the source term parameters of a gaseous

release. This is a significant step towards an operational system.

The theoretical foundations of this paper were predominantly a result of earlier work that has been verified

in simple simulation studies, datasets collected in a turbulent water channel, or by using a ground robot



indoors [Hutchinson et al., 2018a]. In addition to the moderate adjustments to enable the algorithms practical

implementation with a UAV, such as a novel likelihood function, the main contributions of this work are of

a practical and experimental nature, as follows:

• A complete UAV based gas source estimation system has been developed consisting of gas sensors,

a UAV, a ground control station, and a source estimation algorithm.

• The trials mark the first experimental result of source term estimation performed using gas mea-

surements from an autonomous UAV.

• The source estimation performance is assessed with regards to the UAVs altitude, the distance

between gas measurements and the wind speed or atmospheric stability.

• The experiments in general are rare, where a gas source is localised in an outdoor environment rather

than in more controlled indoor arenas where fans are used to generate wind.

• Two well known models are compared using the unique experimental data.

Given such an immature area to obtain experimental results there were several observations and lessons

learned during the outdoor trials. This has lead to new insights and subsequently, new areas identified for

future research.

1.4 Outline

The remainder of the paper is outlined as follows. Firstly, to provide some background and to familiarise the

reader with the research area, related work are reviewed in Section 2. In Section 3, the setup of the system

is described in greater detail. A formal description of the problem is given in Section 4. In Section 5, the

Bayesian estimation of the source parameters is described, including formulations of the models used and the

computational implementation of the algorithm. Experimental trials are presented in Section 6, including

the setup, implementation remarks, an illustrative run and the results. Discussions and lessons learned are

provided in Section 7, and finally, conclusions and ideas for future research are given in Section 8.

2 Related work

Gas sensing using UAVs is a fairly new but rapidly growing area of research. It is quickly becoming more

popular as a result of the improvements and reductions in the cost and size of gas detectors and UAVs.



Applications of gas sensing UAVs, and research concerning the use and integration of gas detectors and

aerial platforms are briefly reviewed in this section, followed by other related work on source localisation

and source term estimation. The algorithms and system design taken forward in this paper are justified in

comparison to the alternative methods.

2.1 Gas sensing on UAVs

The ability to sense a gas from a UAV has numerous proposed applications including: detecting gas leaks

[Smith et al., 2016, Smith et al., 2017, Luo et al., 2018]; monitoring various sources of air pollution [Chang

et al., 2016, Villa et al., 2016, Aurell et al., 2017, Alvarado et al., 2017]; measuring important variables in

greenhouses [Roldán et al., 2015]; and exploring sources of methane emissions [Greatwood et al., 2017,

Neumann et al., 2017]. The UAVs used in aerial gas sensing research include both fixed wing and rotary

wing platforms [Alvarado et al., 2015]. Within the literature, research is typically focused on the application

of the gas sensing UAVs and the data they can gather, rather than the post processing of such information

which is the core of the present study.

One of the dominant factors to consider when measuring a gas using a UAV is the effect of the rotors on the

dispersion of the gas and the output from the sensor. This effect has been taken into consideration in the

past and research has been conducted to determine the optimal position of the gas detector and the effect

on the sensor measurement [Roldán et al., 2015,Chang et al., 2016,Smith et al., 2016]. Some of the potential

sensor positions proposed include: under the rotors of the UAV, in the centre of the platform raised above

or below it, in the space between the UAV rotors, and extended on an arm away from the platform and its

effect on the gas. Through computational fluid dynamics (CFD) studies, smoke visualisation experiments,

and pressure and airflow measurements around the UAV, some conclusions can be drawn, despite conflicting

results. The general consensus is that the effect of the rotors is to decrease the measurement from the gas

detector and increase its uncertainty [Villa et al., 2016]. The most accurate measurements would come from

a sensor outside of the disturbed region of airflow, however, this would be more likely to cause stability

issues whilst in flight. A pumped system could be implemented on the vehicle, where the inlet would be

away from the platform, still, this would add undesirable weight to the system. For these reasons, the

most common placement seen in the literature is in a raised position, in the centre of the platform [Roldán

et al., 2015, Alvarado et al., 2017]. The focus of the present work is on validating a source term estimation

algorithm using a UAV, consequently, the effect of the rotors has not been prioritised. Nevertheless, the effect

on the source estimates is discussed in the results. Given the huge increase in applications and experiments



involving gas sensing on UAVs, it is envisaged that bespoke new sensors, designed for UAVs will have a great

benefit and will be an important area for future research.

2.2 Source localisation

The goal of source localisation is closely aligned with this present work since the aim is to guide a sensor

equipped, mobile platform to the source of a gas or odour to establish its origin. The methods differ because

source localisation approaches typically do not estimate other parameters of the source term. Despite

providing less information about the release, an advantage of such an approach is the potential alleviation

of the requirement for a dispersion model fit for the scenario at hand. The methods therefore, can range

from simple rule based reactive approaches to more complex probabilistic methods [Voges et al., 2014].

Source localisation has received substantial interest lately with the development of several robotic platforms

and algorithms. A survey on odour source localisation using a mobile robot is given in [Kowadlo and

Russell, 2008] and a detailed review on chemical sensing robots with more focus on experimental studies

and practical application is given in [Ishida et al., 2012]. The majority of the experiments are performed in

indoor environments with artificial wind produced by fans. Some notable examples of outdoor experiments

include [Li et al., 2011] and [Neumann et al., 2013], where particle filter based algorithms are used to estimate

the source location using an unmanned ground or aerial vehicle.

An interesting approach to guide a robot to a gas source was suggested in [Vergassola et al., 2007], where

an information based reward was formulated. This new method received considerable interest in the area

and has lead numerous researchers to propose modifications and extensions to the algorithm [Moraud and

Martinez, 2010,Ristic et al., 2016,Masson, 2013]. Experimental studies of such an approach have so far been

limited to indoor areas with artificially generated wind [Voges et al., 2014].

An alternative approach to source localisation does not attempt to direct a robot, or searcher, to the source

of the emission. Rather, this technique capitalises on an interesting observation on sensing characteristics in

plumes; where variance and fluctuations in gas concentration tend to be greater nearer the source [Hernan-

dez Bennetts et al., 2012]. This feature has been used to simultaneously estimate the source position whilst

mapping the gas distribution. Methods proposed include the kernel DM+V algorithm, which uses in-situ

point measurements to map the concentration mean and variance [Lilienthal et al., 2009,Hernandez Bennetts

et al., 2012], and a gas tomography algorithm which uses integral measurements from a tunable diode laser

absorption spectroscopy (TDLAS) sensor to map the mean and fluctuations in concentration [Bennetts et al.,

2014]. The results of experimental trials conducted in different indoor and outdoor environments verified



the approach using data collected during sweep patterns performed using aerial and ground based robots

and various sources [Hernandez Bennetts et al., 2012].

2.3 Source term estimation

Contrary to source localisation, the goal of source term estimation (STE) is to estimate several parameters

of the source, including its location, in order to learn more about the origin of the release [Hutchinson

et al., 2017b]. This can provide more useful information, however, it can require more computational power

in order to run ATD models and optimisation or Bayesian inference algorithms than the more simple rule

based localisation methods. STE is most commonly performed using a network of static gas detectors and

meteorological stations [Rao, 2007, Redwood, 2011, Singh et al., 2015, Hutchinson et al., 2017b]. Accidents

such as the Fukushima nuclear disaster can benefit greatly from such a technique because a network of static

sensors are put in place around areas of high risk, such as a nuclear plant, to monitor for such an event [Chino

et al., 2011, Winiarek et al., 2014]. On the other hand, it is infeasible to cover all areas with a network of

static detectors.

A critical component of STE algorithms is the underlying ATD model. For applications that do not require

a rapid response, it would be reasonable to use more complex and potentially more accurate methods such as

CFD to model the expected observations from the detectors. When a rapid response is required, more simple

models may be more appropriate, which can be derived using analytical solutions to the advection diffusion

equations with various assumptions. In this work, two models are compared using the unique data collected

during the experimental trials: The Gaussian plume equation [Wang et al., 2017] and an Isotropic plume

equation [Vergassola et al., 2007]. The predominant difference between the models lies in the specification

of the diffusivity parameters.

The robots used to perform source localisation can similarly be used for STE by replacing the data collected

by the static network. This leads to the problem of how to guide the platform to collect enough useful

spatial temporal data to effectively estimate the parameters of the release. The most intuitive approaches

would be to continue the trajectory of a typical gas source localisation algorithm, or to perform a systematic

search pattern such as a parallel sweep or an Archimedean spiral [Champagne et al., 2003, Hutchinson

et al., 2017a]. Alternatively, information based guidance methods have been proposed to guide the robot

to the expected most informative locations to take measurements. These approaches have been proposed

to estimate the source terms of radiological releases [Ristic et al., 2010], a diffusive release [Ristic et al.,

2016,Hutchinson et al., 2018b] and to complement an existing static network of detectors [Šmı́dl and Hofman,



Figure 2: System overview: The measurements from the PID gas detector are read by an Arduino Uno.
The ground station and the on-board computer communicate over 5GHz WiFi. The Arduino and autopilot
communicate with the on-board computer via serial and UART connections. The transmitter is used to
switch between manual and autonomous flight. The DJI Guidance system is connected to the autopilot to
provide more accurate localisation in flight.

2013]. In [Hutchinson et al., 2018a], an information based STE method was implemented on a ground robot

and assessed in indoor experiments where fans were used to simulate a wind field. This result motivates

extension of the Bayesian estimation approach to handle real outdoor environments and deployment on

a aerial platform. The use of multiple robots has also been proposed, employing an uncertainty driven

exploration strategy to plan their path whilst estimating the locations and intensities of multiple sources

[Wiedemann et al., 2017]. The method was tested with real robots in hardware in the loop simulations using

simulated gas sensor data.

Despite several proposals to guide a mobile platform to estimate the source term of a release, real experimental

results of STE using a UAV, in outdoor conditions, have not previously been produced. The most closely

related experimental result used a manned aircraft equipped with a highly sensitive methane detector.

Observations during sweep search patterns were used to estimate the source terms of methane releases from

landfill sites using a reversible jump Markov chain Monte Carlo algorithm [Hirst et al., 2013]. Filling this

gap, by performing STE using an autonomous UAV, is a key contribution of the present study.

3 System overview

The main components of the system are a quadrotor UAV platform, an on-board computer, a ground station

laptop and the gas sensing payload. An overview of the system is outlined in Fig 2 and a photo of the

equipment prior to an experimental trial is shown in Fig 3. The remainder of this section shall further



Figure 3: System components: DJI Matrice 100 UAV, ground station laptop, WiFi equipment and radio
transmitter.

describe the system components and its set-up.

3.1 Aerial platform

The aerial platform is a DJI Matrice 100 as shown in Fig 3. Among other components, it is equipped with:

DJI’s guidance system, to support accurate localisation; an autopilot; a GPS; and DJI’s on-board computer

called the manifold. The manifold is a reasonably powerful computer based off an Nvidia Tegra. Although, in

the present study, the algorithms are run on the ground station laptop, in the future they could be deployed

to run on-board the UAV. This would have great benefits in large or cluttered scenarios, such as urban

areas, where wireless communication could become unstable. The on-board computer communicates with

the autopilot via UART and with the ground station via 5GHz WiFi. The WiFi communication is achieved

via a bridge between a Ubiquiti Rocket on-board the Matrice 100 and a Ubiquiti M5 Nanostation which

is connected to the laptop on the ground. A 5GHz link is selected over the longer range 2.4GHz to avoid

interference with the remote controller. The ROS1 software framework is used for communication among the

system components. The dji sdk2 package facilitates communication between the on-board computer and

the autopilot. Additionally, the data from the gas sensor is read by an Arduino Uno and input to the ROS

network using the rosserial arduino3 package. The ROS network allows the autopilot data, sensor data, and

1http://www.ros.org
2http://wiki.ros.org/dji sdk
3http://wiki.ros.org/rosserial arduino



Figure 4: PID gas sensors connected to an Arduino Uno on-board the UAV.

commands from the ground station to be shared among the connected components in the system.

The set-up of the system was motivated by the ability to quickly test algorithms developed in Matlab without

the requirement to compile the code on the UAV. This enabled rapid development and adjustments to the

algorithm whilst out in the field. During the experiments, the 3D position of the UAV and a sensor reading

are sent from the on-board computer to the ground station. The ground station updates its estimates of

the source term parameters using a sequential Bayesian algorithm, and sends a new position demand to the

aerial vehicles on-board computer. The dji sdk package performs the lower level control to manoeuvre the

UAV to the new position.

3.2 Gas sensing payload

The UAV is equipped with a PID gas detector to take measurements of the hazardous gas, as shown in Fig

4. The PID sensors were chosen as they are a reasonable price and highly sensitive to a large number of

chemicals. The output of the PID detector is a reading related to the concentration of a standard volatile

organic compound (VOC), isobutelene. A data sheet is provided with the sensors to approximate this to a

parts per billion (ppb) measurement of the target gas, which is subsequently converted to a concentration

measurement in g/m3. As shown in Fig 4, the sensor is wired to an Arduino Uno4, which communicates

with and draws power from the on-board computer via a serial connection.

As discussed in Section 2, the literature on the optimal placement of gas sensors on UAVs is conflicting.

Some researchers report that near to the propellers is better for sensing, whilst others observe the opposite

and suggest they should be kept out of the induced airflow. The most common suggestion is in an elevated

4https://www.arduino.cc/



position in the middle of the UAV, which is adopted in this work as shown in Fig 4. Although this is likely

to effect the reading from the sensor, it is structurally more favourable than extending it on an arm, more

lightweight than using a pumped system, and it will protect the sensor in the event of a hard landing. Sensor

placement, and possibly correction factors to account for the UAVs rotor effect are left as an area for future

research. However, the effect on the source estimation results are examined and discussed in Sections 6 and

7.

4 Problem description

After an event such as an earthquake or explosion, a large area of concern exists where there is the potential

for a hazardous release from damaged pipes or chemical facilities. In response to a suspicious smell, it could

be challenging to find the source or determine if it is hazardous. After an act of terrorism involving gas, it

would be of paramount importance to locate the source without endangering the lives of responders. During

an important event it may be desirable to monitor the surrounding area for signs of a dangerous release.

Given such an area of interest, the goal of this work is to provide an algorithm to autonomously search for

and estimate the parameters of a release, with a high degree of accuracy and in a short amount of time.

The zone of interest, parameterised by the three dimensional volume Ω ⊂ R3, will be used to initialise the

search area of the algorithm. This could be the region where a suspicious odour is reported, a region of

interest to survey, an area along a pipeline or the area around a chemical facility. The UAV, equipped with

the relevant gas detector payload, is to navigate within the area to estimate the release parameters otherwise

known as the source term. This shall provide responders with information about the location of the release,

as well as the necessary inputs to an ATD model to produce a forecast of the hazard.

The UAV is aware of its location pk =

[
xk yk zk

]T
∈ Ω within the domain. In this present study, this

is achieved via fusion of GPS, IMU, ultrasonic and stereo image data. The gas detector on-board the UAV

observes point-wise measurements of the gas concentration zk ∈ R+. The meteorological parameters are

provided by a local weather station. The location stamped measurements and meteorological observations

are used to estimate the parameters of the source Θk, which in this work, is given by:

• Cartesian coordinates of the source ps =

[
xs ys zs

]T
∈ Ω in meters (m).

• Emission rate/strength of the source qs ∈ R+ in grams per second (g/s).

• The wind speed us ∈ R+ in meters per second (m/s) and direction φs ∈ R in radians (rad).



• Model dependant diffusion parameters ζs =

[
ζs1 ζs2

]T
∈ R+ which relate to the spread of the gas

concentration from the source.

Hence, the parameter vector of the source term can be defined as:

Θk =

[
pT
s qs us φs ζs

]T
. (1)

The key parameters of the source term are its location and emission rate. The remaining parameters are

incorporated to add robustness to the system and account for uncertainties.

The UAV is to autonomously search the environment, collecting point observations z1:k = {z1, . . . , zk} from

the gas detector at discrete time steps k = 1, . . . , k and at known locations p1:k = {p1, . . . ,pk}. At each time

step k, the estimates of the source parameters Θk are updated by drawing the inference on the probabilistic

distribution p(Θk|z1:k). The next location to make an observation with the gas detector pk+1 is then selected,

and navigated towards, to begin the next iteration of the algorithm.

5 Source term estimation

In such a scenario where input variables, measurements and underlying models are fraught with uncertainty, a

probabilistic approach is preferable so that the errors can be accounted for by designing a likelihood function

to reflect such uncertain conditions. Under this approach, the uncertainty in the source term estimates can

be captured within a probability density function (pdf). Bayes’ theorem is used to update the estimates of

the source parameter vector Θk in a recursive manner given the measurements from the gas detector z1:k

and prior information.

Using the Bayesian framework, the current state of knowledge regarding the source parameters is represented

by a posterior probability distribution p(Θk|z1:k), where z1:k implies that the measurement data are collected

at locations p1:k, respectively. In response to new measurement data from the gas detector zk+1, the posterior

distribution is updated according to Bayes’ rule, such that

p(Θk+1|z1:k+1) =
p(zk+1|Θk+1)p(Θk+1|z1:k)

p(zk+1|z1:k)
(2)



where

p(zk+1|z1:k) =

∫
p(zk+1|Θk+1)p(Θk+1|z1:k) dΘk+1. (3)

The initial prior distributions π(Θ0) ≡ p(Θ0) of the source parameters are assumed to be provided to the

algorithm, these can be obtained autonomously through sensory data or by user input. If information

concerning the source term is available prior to the search, it can be exploited through an appropriate

distribution to represent the prior knowledge known about the release. In the absence of information, the

prior can be set to an uninformative distribution. For example, the prior distribution for the location of

the source is a uniform distribution that is bounded by the domain Ω. In subsequent iterations, the prior

distributions are replaced by the posteriors to reflect the information gained from the previous sequence. In

this Bayesian inferential framework, it is also assumed that the source term is constant, i.e. Θk+1 = Θk,

which implies p(Θk+1|z1:k) = p(Θk|z1:k).

5.1 The likelihood function

To construct the likelihood function p(zk+1|Θk+1) used in Eq. (2), there must be a method of linking sensor

measurements zk with the expected observations. To do this, a model of the dispersion from a source and a

model of the sensor response are required.

5.1.1 Dispersion models

The dispersion model will provide the expected concentration at position pk produced from a hypothesised

source with parameters Θk, given asM (pk,Θk). Any relevant model can be used; there exist highly complex

particle tracking models, CFD techniques, or equations derived from analytical solutions to the advection-

diffusion equations such as the Gaussian plume dispersion model. The model is interchangeable without

any other changes to the algorithm, and should be chosen to reflect the current scenario. For example, the

NAME dispersion model is used by the UK Met Office to forecast long range ash dispersion from a volcanic

eruption [Jones et al., 2007], whereas CFD based methods have been developed for complex geometries such

as urban environments [Keats et al., 2007, Efthimiou et al., 2017]. In this work, two models are compared,

both derived from analytical solutions to the advection diffusion equation with various assumptions: The

standard Gaussian plume (GP) model [Wang et al., 2017], and a more simplified model assuming isotropic

diffusion [Vergassola et al., 2007] which shall be referred to as the Isotropic plume (IP) model. Both models

are fast running and based on the assumption of a steady state plume with a consistent mean wind velocity,

source strength, and turbulent conditions. The principle difference among the methods is in the specification



of the diffusion parameters ζs = [ζs1, ζs2] and the assumptions therein.

Gaussian plume model The GP model approximates the spread of the gas from the source in the

crosswind, horizontal and vertical directions using measurements or approximations of atmospheric stability.

To account for uncertainties, the diffusion parameters are adopted from [Senocak et al., 2008], resulting in

[ζs1, ζs2] representing stochastic diffusion terms in the horizontal and vertical directions. Subsequently, the

expected concentration to be read by a detector at position pk from a source with parameters Θk using the

Gaussian plume model is given as

M (pk,Θk) =
qs

usσy,kσz,k2π
exp

(
−c2k
2σ2

y,k

)
×

[
exp

(
−(zk − zs)2

2σ2
z,k

)
+ exp

(
−(zk + zs)

2

2σ2
z,k

)]
, (4)

where ck is the crosswind distance from the source, and, given that the downwind distance from the source

is dk, the standard deviations of concentration in the crosswind and vertical directions are:

σy,k =
ζs1dk√

(1 + 0.0001dk)
and σz,k =

ζs2dk√
(1 + 0.0001dk)

. (5)

Isotropic plume model The Isotropic model assumes isotropic diffusion from the source. Following

[Vergassola et al., 2007], the diffusion terms [ζs1, ζs2] represent the diffusivity of the gas in the environment,

and the average lifetime of the gas. Given the model, the expected concentration to be read by a detector

at position pk from a source at position ps, releasing gas at a rate of qs with average lifetime ζs2 in an

environment with mean wind speed us, wind direction φs and diffusivity ζs1 is given by:

M (pk,Θk) =
qs

4πζs1||pk − ps||
exp

[
−||pk − ps||

λ

]
×

exp

[
−(xk − xs)us cosφs

2ζs1

]
exp

[
−(yk − ys)us sinφs

2ζs1

]
, (6)

where

λ =

√
ζs1ζs2

1 + (u2sζs2)/(4ζs1)
. (7)

An example plot from each of the models is shown in Fig 5, where the sensor model to be described in the

next section has been applied. The main difference in the outputs of the models is seen in the vicinity of the



(a) Gaussian plume model (b) Isometric plume model

Figure 5: Example plots of the expected observations zk of the UAV flying at a 2.5m altitude using: (a) the
GP model; and (b) the IP model. The source had parameters: xs = 4, ys = 20, zs = 1.5, qs = 1, us = 5, and
φs = 90◦.

source, particularly upwind. Upwind of the source, the GP model (Fig 5a) assumes zero mean concentration

from the source whereas the IP model (Fig 5b) does not. The GP model is more popular in the literature,

it is extensively studied, and even accepted commercially. However, the model is typically used on a larger

scale than the experiments conducted in this paper and as depicted in the example figures.

5.1.2 Gas sensing model

To form the likelihood function used in Eq. (2), the measurements from the gas detector must be related to

the expected observations deduced from the dispersion models. The measurement data z1:k features detection

events, where measurements from the gas detector picked up some concentrations from the source, and non

detection events, where the measurement did not surpass a pre-specified threshold zthr. The threshold is set

high enough to minimise false detections, whilst maintaining sufficient sensitivity. The observational data,

and subsequently the likelihood function, can be split among these detections zk and non detections zk [Yee,

2017] as:

p(zk|Θk) =

 p(zk|Θk) if zk > zthr

p(zk|Θk) if zk ≤ zthr
(8)

The observational model linking detection data zk with the source term parameters Θk is given as



zk =M(pk,Θk) + vk, (9)

where vk encapsulates the various errors between the measured and modelled concentration at a particular

position pk. The discrepancy can arise from measurement error, input error, model error and stochastic

uncertainty [Rao, 2005]. Given the limited knowledge of the errors between predicted and measured con-

centrations, application of the maximum entropy principle suggests the Gaussian distribution as the most

conservative choice for the likelihood function [Jaynes, 2003, Yee, 2017]. Thus the likelihood function for a

detection event is as follows:

p(zk|Θk) =
1

σk
√

2π
exp

[
− (zk −M(pk,Θk))2

2σ2
k

]
, (10)

where the variance σk is a function of the modelled concentration such that σk ∝M(pk,Θk).

A non detection event on the other hand, can be caused by three hypothesised scenarios: The concentration

measurement is only a result of background and instrument noise Eb; the non detection is a result of intermit-

tency caused by turbulence or a missed detection Em, typically exacerbated by the short sampling intervals

of the UAV; or, the concentration includes contributions from both the source and background, although it

did not amount to a value above the concentration threshold Es. Combining the three hypotheses results in

the following likelihood of a non detection:

p(zk|Θk) = p(Eb) · p(zk|Eb,Θk) + p(Em) · p(zk|Em,Θk) + p(Es) · p(zk|Es,Θk), (11)

where the probability of each event is given as p(Eb) = Pb, p(Em) = Pm and p(Es) = Ps and Pb+Pm+Ps = 1.

Assuming the background noise and contributions from the source can be modelled as normal distributions

the likelihood function for a non detection can be written as

p(zk|Θk) =

(
Pb ×

1

2

[
1 + erf

(
zthr − µb

σb
√

2

)])
+ Pm +

(
Ps ×

1

2

[
1 + erf

(
zthr − (µb +M(pk,Θk))

σk
√

2

)])
,

(12)

where µb and σb are the mean and variance of the background noise and erf() denotes the error function.

The values of Pb, Pm and Ps were set during the experiments.



Given the appropriate models and Bayesian formulations, the next section will describe a method to imple-

ment the probabilistic estimation of the source parameters.

5.2 Sequential Bayesian implementation

The Bayesian estimation of the source parameters is implemented in the sequential Monte Carlo frame-

work using a particle filter. The output is an approximation of the posterior distribution p(Θk|z1:k),

which represents the current state of knowledge about the source parameters. The posterior distribu-

tion from Eq. (2) is approximated by a set of weighted random samples {Θ(i)
k , w

(i)
k }Ni=1, where Θ

(i)
k =[

x
(i)
s,k y

(i)
s,k z

(i)
s,k q

(i)
s,k u

(i)
s,k φ

(i)
s,k ζ

(i)
s1,k ζ

(i)
s2,k

]T
is a sample representing a potential source term and

w
(i)
k is the corresponding normalised weighting such that

∑N
i=1 w

(i)
k = 1. Given the weighted samples, the

posterior distribution is approximated as:

p(Θk|z1:k) ≈
N∑
i=1

w
(i)
k δ(Θk −Θ

(i)
k ), (13)

where δ(·) is the Dirac delta function. The sample weights are updated in a recursive manner by sequential

importance sampling [Ristic et al., 2004]. At each time step, a set of new samples {Θ(i)
k+1}Ni=1 can be

drawn from a proposal distribution q(Θ
(i)
k+1), which should resemble the distribution p(Θk+1|z1:k+1). The

corresponding un-normalised weights are then updated according to:

w̄
(i)
k+1 ∝ w

(i)
k ·

p(zk+1|Θ(i)
k+1)p(Θ

(i)
k+1|Θ

(i)
k )

q(Θ
(i)
k+1|Θ

(i)
k , z1:k+1)

. (14)

The proposal distribution is typically used to update the samples to the next time step for estimating

dynamic states. By assuming a time-invariant source term (i.e. the source position is fixed and the release

rate is constant), the proposal distribution can be assumed to be identical to the posterior at time k. This

leads to a simple algorithm where Θ
(i)
k+1 = Θ

(i)
k for i = 1, ..., N [Ristic et al., 2016]. Due to cancellation

of terms in Eq. (14), the un-normalised particle weights are updated using the likelihood function and the

previous weight as follows:

w̄
(i)
k+1 = w

(i)
k · p(zk+1|Θ(i)

k+1). (15)

The sample weights are then normalised as w
(i)
k+1 = w̄

(i)
k+1/

∑N
i=1 w̄

(i)
k+1 to obtain the new approximation of

the posterior.

Importance sampling is carried out sequentially at each time step. This can eventually lead to only a few



particles with non-negligible weights, known as the degeneracy problem. To avoid sample degeneracy, the

number of effective samples are estimated by:

Neff =
1∑N

i=1(w
(i)
k )2

. (16)

When the number of effective point estimates Neff falls below a pre-specified threshold η the sample points

are re-sampled. This can lead to another problem where highly weighted particles will be multiplied many

times, leading to a lack of diversity. This problem is referred to as sample impoverishment. To improve the

diversity of the random samples, the re-sampled estimates are regularised by drawing new samples from a

Gaussian kernel. The new samples undergo an MCMC move step [Ristic et al., 2004], where they will be

accepted with a probability proportional to their likelihood.

6 Experimental trials

In this section the experiments used to verify the system are described and the results are presented and

discussed. Firstly, the experiment setup is outlined including information about the environment, the equip-

ment used, the inputs to the algorithm and remarks on its implementation. Given the setup, an illustrative

run of one of the trials is provided to further illustrate the experimental procedure and the capabilities

of the algorithm. The results of all the conducted experimental trials are then summarised. Finally, the

output estimates of the algorithm are assessed with regards to the measurement altitude of the UAV, the

step increment in the sweep pattern, and the wind speed or atmospheric stability.

6.1 Experiment setup

The experiments were conducted outdoors in an open field, in order to verify the algorithm for the first

time in real world atmospheric conditions, outside of simulation. Acetone was released into the atmosphere

using a source comprising of ultrasonic diffusers and an air pump, as depicted in Fig 6. The release rate of

the source was obtained by measuring directly, the change in weight at the beginning and the end of the

experiments and assuming that it was emitted at a constant rate. The release rate was typically 1.5g/s,

however, this would vary depending on atmospheric conditions such as temperature and pressure.

The field used during the experiments was located nearby Loughborough University, Leicestershire, UK. A

large square within the field, containing the release, would represent the domain Ω which forms a part of the



input to the algorithm. A photo of the environment is shown in Fig 7, featuring examples of the starting

location of the UAV, the wind direction and the position of the source.

(a) (b)

Figure 6: (a) Source set-up for the experiments comprising of acetone, diffusers and an air pump. (b) A
snapshot of the source and UAV during an experimental trial.

Figure 7: An example photo of the environment set-up for the experimental trials. The UAV begins the
search at the white square and perform a sweep search pattern within the red area, which represents the
prior distribution for the location of the diffusive source. The true position of the source is indicated by the
black circle and the wind direction is implied by the red arrow.

6.2 Implementation remarks

In this section, the details on the implementation of the source estimation algorithm from Section 5 are

outlined. This includes the specification of the prior distributions used to initialise the algorithm and the

control of the UAV to collect the observational data.



6.2.1 Prior distributions

Initial distributions must be set for all of the parameters in the source vector Θk. Where possible the

distributions are set based off sensory data, for example, the wind speed and direction distributions can be

assigned from meteorological measurements. The prior distributions should reflect information known about

the release, or lack thereof. For example, intelligence may exist as to the possible whereabouts of the source

location, or there may exist some known bounds on the rate of emission. To assess the algorithm in realistic

conditions, it is assumed, in the trials, that there is little information known about the release beforehand.

The prior distributions are summarised as follows:

• The prior distributions for the location of the source [p0(xs), p0(ys), p0(zs)] were set to uniform

within the domain Ω. The size of the domain is the key input of a user, essentially, it is the area

in which to search for the source. Multiple domain sizes were used during the experiments, ranging

from 42x42m to 15x15m.

• A gamma distribution was used as the prior for the emission rate p0(qs) = G(1, 5). This is a long

tailed distribution to account for a large amount of uncertainty in the emission rate of the source.

This prior was fixed during all of the experimental trials.

• The meteorological variables [p0(φs), p0(us)] were assigned Normal distributions N (µ, σ) upon ini-

tialisation of the algorithm. In the future, the meteorological variables should be measured in-situ,

on-board the UAV, in order to alleviate dependence on other data sources.

• The dispersion parameters [ζs1, ζs2] were given uniform distributions with an appropriate range.

6.2.2 UAV control

The UAV executes a systematic sweep search pattern to collect spatial temporal measurements of the gas

concentration. The search pattern can be generated using coverage path planning algorithms. As the flight

path is fixed, the flight could have been pre-planned and uploaded to the autopilot using some mission

planning software. However, in order to facilitate on-line, more informative planning in the future, the

position demands were sent directly from the laptop during flight. The control of the UAV was made fully

autonomous by utilising the dji sdk ROS package. This included take-off, landing and the uniform sweep

flight pattern. Upon take-off, the minimum altitude of the UAV was set to 1.2m above ground, measured

by ultrasonic sensors, to minimise the chance of a collision. Manual override was also possible throughout

the experiments.



At each time step, the UAV would hover to take an averaged measurement of the concentration. The sample

duration was set to 5 seconds. This was a short amount of time compared to source term estimation methods

incorporating static sensors, where it is more common to sample for a few minutes. This sampling time was

chosen as a trade-off between the measurement accuracy and search time.

After the sample is collected and the source parameter estimates are updated, the UAV would proceed to

the next measurement location defined by the uniform sweep pattern. The control of the UAV, to the next

position, was handled autonomously by the dji sdk ROS package. The incremental step size between each

measurement location was set to 3, 4, 5 or 6m.

6.3 Illustrative run

An illustrative run of an experiment, Trial 25, is given in Fig 8. Overlaid on a map of the experimental

field, the figure shows: the flight path of the UAV executing the sweep search pattern at various snapshots

in time; the measurements at each sampling location; the true position of the source; and an indication

of the wind direction. In this example the GP model was used as the underlying dispersion model in the

estimation algorithm. To begin the search, the system is initialised at discrete time step k = 0 as shown in

Fig 8a. The starting position of the UAV is indicated by the white square, the source is given by the black

circle, and the red arrow points in the direction of the wind. The large number of red dots represent the

random sample approximation used in the sequential Monte Carlo algorithm at the current time step, which

in this figure, approximates the prior distribution. Each dot represents a weighted source term realisation

{Θ(i)
k , w

(i)
k }, where only the marginalised position estimates are visualised in the figure. Figures 8b, 8c and

8d show the trajectory of the UAV, given by the white line, and the update of the Monte Carlo samples at

time steps, k = 6, 16 and 36. The white circles indicate the positions where the UAV hovered to collect an

averaged measurement from the gas detector; their size is representative of the measured value.

The illustrative run (Trial 25) was conducted in relatively high wind (8m/s) and neutrally stable atmospheric

conditions, characterised by Pasquill’s stability class D [Pasquill, 1961]. The search area was a 25x25m square

in which measurements were taken at 5m intervals at 1.2m altitude. The sub figures in Fig 8, show how the

estimate of the source location is narrowed down significantly in response to the gas measurements. Positive

detections had a larger effect on the posterior distribution as they were associated with less uncertainties than

zero sensor readings as had been reflected in the respective likelihood function in Eq. (10). The location of

the source was narrowed down more quickly in the crosswind direction than upwind, as seen in Fig 8c. This

is an expected attribute due to the concentration distributions and characteristics of both of the underlying



(a) Estimate at k=0 (b) Estimate at k=6

(c) Estimate at k=16 (d) Estimate at k=36

Figure 8: Example run of the algorithm at discrete time steps: (a) k=0, (b) k=6, (c) k=16 and (d) k=36.
The white line indicates the path of the UAV and the black circle represents the true position of the source.
The white square and quadrotor symbol indicate the starting and current location of the UAV. The red dots
represent the random sample approximation of the source parameter estimates at the current time step and
the red arrow indicates the wind direction.

dispersion models, where uncertainties and correlations in the wind speed and source strength incur a lot of

uncertainty in the upwind location of the source.

The result of the illustrative run is summarised in Fig 9, in a manner that is used for comparisons in

the results section. Figure 9a shows the resulting flight path (white line), wind direction (red arrow) and

marginalised posterior estimate of the source location (heat map). The Monte Carlo samples used in Fig 8d

are replaced by a heat map to display the posterior estimate more clearly. The starting and ending positions

of the UAV are given by the white square and diamond. The true position of the source is indicated by

the black circle filled with a white cross and the algorithms mean estimate is given by the hollow black



(a) (b)

Figure 9: Summary of the illustrative run (Trial 25). (a) The resulting UAV path (white line), gas sensor
measurements (white dots), wind direction (red arrow), true source position (white cross), mean source
estimate (black circle) and probability density (heat map). (b) Upper: Emission rate PDF (blue curve),
truth (red line), prior (dashed black curve), mean and standard deviation (dashed green lines). (b) Lower:
Sensor measurements at discrete time steps.

circle. Figure 9b shows the probability density estimate of the emission rate of the source, p(qs|z1:k), and the

measurement data during the flight, z1:k. The blue curve represents the PDF of the emission estimate with

mean and standard deviation indicated by the vertical dashed green lines. The black dashed curve shows

the prior distribution provided to the algorithm, and the true value is given by solid red line. Bars in the

lower figure of 9b indicate the measurement at the discrete time step. In this example the position estimate

of the source was very accurate, with only a 2.43m euclidean error. The emission estimate was also accurate,

but underestimated by 0.58grams/s.

6.4 Results

In total, 27 experimental trials were conducted to test the system in the fairly realistic setting described.

The experiments were conducted at various flight altitudes, wind speeds and scales. The results, using both

the IP and GP dispersion models, are summarised in Table 1. The table includes details on the scale of the

experiments, the step size or incremental distance between sensor measurements, the UAVs flight altitude,

the duration of an experiment and the wind speed. The output euclidean position error and the absolute

emission errors are shown, where the true values are compared with the means of the estimation algorithm.

Overall, the euclidean error was small considering the scale of the experiments, the severe amount of uncer-

tainty in the dispersion process, and some uncertainty in the localisation of the UAV itself. In the majority of



Table 1: Summary of results for the 27 experimental trials, using the GP and IP models, including the errors
in the source location and emission rate estimates, and flight pattern data.

Flight data Position error [m] Emission error [g/s]

ID
Scale
[m]

Step
size
[m]

Altitude
[m]

Time
[mm:ss]

Wind
speed
[m/s]

GP
model

IP model
GP
model

IP model

1 36x36 6 1.75 09:23 1.5 4.57 3.54 1.05 1.55

2 36x36 6 1.75 07:46 1.5 4.63 4.90 1.38 0.84

3 36x36 6 1.75 08:06 3 4.48 1.84 0.54 0.81

4 36x36 6 1.75 08:09 3 6.51 3.29 0.14 0.25

5 36x36 6 1.75 07:52 2 5.00 3.00 0.68 0.58

6 36x36 6 1.75 07:56 3 2.75 2.29 1.04 0.06

7 36x36 6 1.2 08:02 4 2.96 3.63 0.04 0.61

8 36x36 6 1.2 08:05 1 7.24 2.71 0.53 0.40

9 36x36 6 1.2 08:06 1 7.24 11.79 1.45 1.66

10 36x36 6 1.2 08:02 4 0.76 2.94 1.28 1.22

11 36x36 6 1.2 07:50 4 3.52 1.28 0.06 0.06

12 36x36 6 1.2 08:07 4 4.58 2.08 0.85 0.21

13 36x36 6 1.2 07:59 4 1.87 1.03 0.55 0.79

14 36x36 6 1.2 07:58 4 4.68 0.72 0.24 0.09

15 36x36 6 4 07:60 3 17.33 19.98 0.47 0.35

16 25x25 5 1.2 05:39 4 1.67 0.77 0.51 0.72

17 25x25 5 1.2 05:42 5 5.54 2.85 0.79 1.04

18 15x15 3 1.2 05:11 4 2.56 1.66 0.95 0.91

19 15x15 3 1.2 05:40 3 2.10 2.09 0.44 0.41

20 15x15 3 1.2 05:57 4 6.40 1.97 0.69 0.27

21 15x15 3 1.2 05:36 4 3.96 1.60 0.86 0.78

22 15x15 3 1.2 05:32 4 2.72 1.28 0.56 0.95

23 36x36 6 1.5 08:06 2 9.91 2.91 2.21 0.93

24 42x42 6 1.5 09:30 7 3.20 2.02 0.61 0.32

25 25x25 5 1.2 05:39 8 2.43 2.25 0.58 0.91

26 20x20 4 1.2 05:39 7 5.64 1.72 1.03 0.63

27 25x25 5 1.5 05:28 7 3.88 4.88 0.57 0.27

the experiments the error was noticeably within the step size used in the flight pattern. This was not always

the case, due to changing meteorology and the large amount of intermittency in the gas detections in the

vicinity of the source. The emission estimates from the algorithm using both models were encouraging, with

errors typically under 1g/s. Given the review on gas sensing using UAVs in Section 2, the release estimate

was expected to be under predicted due to decreased readings from the sensor caused by the rotor effect.

However, the outcomes of the trials were varied; featuring very accurate estimates in addition to under or

over predictions. Despite the reduced measurements, which may be responsible for the under predications of

the emission rates; the over predictions are expected to be a result of the shorter sampling times that were



adopted for data collection by the UAV. This lead to significantly more volatile measurements where there is

the potential to average over a period of intermittency or during a large spike in concentration; which, given

a larger sampling time, would typically be accompanied by smaller readings to smooth the average. This

averaging over a spike is expected to be the cause of the over prediction of the emission rate that occurred in

some of the trials. Other factors that had the most effect on the estimation accuracy were the flight altitude

of the UAV, the step size between taking measurements and the wind speed.

Flying at different altitudes affected the estimation performance of the system as it changed the concentration

observations made by the sensor onboard the UAV. Acetone is a dense material, so at high altitudes the

UAV would be outside of the plume, where it would detect nothing with the gas sensor. Example results

of flights conducted at 1.2m, 1.75m and 4m altitudes are shown in Fig 10, where the IP model was used in

the estimation. For reference, the height of the source during the experiments was 1.4m. It was found, due

to the density of the acetone, that at lower flight altitudes the sensor on-board the UAV picked up more

positive detections, with less intermittency, which resulted in more accurate estimates of the source term

with less spread, as observed in Fig 10. Note: in figure 10f, the scale of the sensor data axis is smaller for the

flight conducted at 4m altitude. At altitudes greater than 4m there would generally be zero detections made

by the gas sensor. All flights were of the same scale and step size and conducted in similar wind conditions.

The effect of the step size between measurements made by the gas sensor was as expected. The closer, more

dense measurements resulted in more accurate estimates with less spread. This is illustrated in Fig 11 which

shows example results of flights with samples taken at 3m, 5m, and 6m increments along the sweep path.

All flights were conducted at 1.2m altitude in similar wind conditions and the IP model was used in the

estimation.

The affects the wind speed has on the estimates made by the system are twofold: 1) In stronger winds more

acetone remained airborne, rather than falling to the ground, resulting in more positive detections from the

gas sensor and better matching between the observations and the dispersion models which did not account

for the buoyancy of the material; 2) Stronger winds are linked with greater atmospheric stability [Pasquill,

1961] which leads to more consistent meteorological conditions. Examples of experiments conducted in 1,

4 and 7m/s winds at similar scales and altitudes are shown in Fig 12, where the IP model was used in the

estimation. Studying the figures, it is clear how the sensing characteristics of the system are much better in

higher winds. Figures 12a and 12b show the results in 1m/s mean wind speed on a hot sunny day which is

associated with the most unstable atmospheric stability class (Pasquill’s stability Class A). During this trial,

the wind speed was negligible at times and the direction completely reversed. The poor sensing conditions,



(a) Trial 14, position estimate. (b) Trial 14, qs estimate and sensor data.

(c) Trial 4, position estimate. (d) Trial 4, qs estimate and sensor data.

(e) Trial 15, position estimate. (f) Trial 15, qs estimate and sensor data.

Figure 10: Results at altitudes (a-b) 1.2m: Trial 14, (c-d) 1.75m: Trial 4 and (e-f) 4m: Trial 15, using the
IP model. The search area was 36x36m, the step size was 6m and wind speed 3-4m/s.



(a) Trial 22, position estimate. (b) Trial 22, qs estimate and sensor data.

(c) Trial 16, position estimate. (d) Trial 16, qs estimate and sensor data.

(e) Trial 12, position estimate. (f) Trial 12, qs estimate and sensor data.

Figure 11: Results at step sizes (a-b) 3m: Trial 22, (c-d) 5m: Trial 16 and (e-f) 6m: Trial 12, using the IP
model. The UAV altitude was 1.2m, the step size was 6m and wind speed 4m/s.



(a) Trial 9, position estimate. (b) Trial 9, qs estimate and sensor data.

(c) Trial 7, position estimate. (d) Trial 7, qs estimate and sensor data.

(e) Trial 24, position estimate. (f) Trial 24, qs estimate and sensor data.

Figure 12: Results at wind speeds (a-b) 1m/s: Trial 9, (c-d) 4m/s: Trial 7 and (e-f) 7m/s: Trial 24, using
the IP model. The UAV altitude was 1.2-1.5m and the step size was 6m.



where acetone was detected only near the beginning of the flight, resulted in the inaccurate estimate of the

source location. In higher wind, as shown in figures 12e and 12f, the wind direction and speed was more

consistent producing a better defined plume. The corresponding source position and emission estimates were

very accurate with errors of 2.02m and 0.32grams/s.

The root mean squared errors (RMSE) and standard deviations (SD) of the position and emission estimates

for the GP and IP models are shown in Table 2. The RMSEs and SDs are split among all the trials

and subsets of the trials corresponding to different flight altitudes, step sizes and wind speeds. The IP

model outperformed the GP model in all conditions with regards to the position estimates and in the

majority of conditions for the emission estimates. The difference in performance is expected to be caused

by the characteristics of the models near the source, for which the IP model more closely matched the data

collected by the UAV in the particular experiments conducted in this paper. The limiting characteristic

of the GP model was its approximation of the width of the plume near the source, which was often wider

than anticipated by the model. The wind speed appeared to have the greatest effect on the RMSE and SD

of the estimates. In higher wind speeds the system produced consistently accurate estimates, resulting in

low values of RMSE and SD. Small wind speeds (≤ 3m/s), which correspond to significantly more unstable

atmospheric conditions, resulted in the most inaccurate and variable estimates. Considering Table 2, the

best results are obtained with a smaller step size. However, a larger step size did not impede the results to

the extent of weak wind speeds or flying at higher altitudes that are on the edge of the plume.

A common method to assess the performance of source localisation systems is the rate of successful localisa-

tions [Marques, 2011]. This metric introduces some ambiguity with regards to the definition of a successful

localisation, which is usually given as a certain distance between the estimated and true source positions.

Therefore, to provide a more explicit idea of the performance of the system, the success rate is plotted for

various values of success criteria in Fig 13, where the success criteria is given as a range of euclidean errors in

the source position estimate. The success rate is shown for estimations made using the IP and GP models.

Note: The result of Trial 15 (conducted at 4m altitude) was neglected as this was used to demonstrate the

adverse effect of high altitudes. The figure shows the results of the remaining 26 trials and the subset where

the wind speed was greater than 3m/s.

To conclude the results, the parameters of a gaseous release into the atmosphere have been estimated using

point measurements of concentration from an autonomous UAV equipped with a gas detector. The results

in Table 1 show accurate estimates for the source location and its emission rate obtained using the Bayesian

inference method described in Section 5. Both dispersion models performed well but the IP model was more



Table 2: RMSE and SD in the position and emission rate estimates using the GP and IP dispersion models.

Position RMSE (SD) [m] Emission RMSE (SD) [g/s]

Data subset
GP
model

IP model
GP
model

IP model

All data 4.75 (3.24) 3.35 (3.93) 0.75 (0.47) 0.65 (0.43)

Step size = 6m 5.37 (3.79) 4.08 (4.78) 0.77 (0.58) 0.63 (0.50)

Step size = 5m 3.38 (1.71) 2.69 (1.70) 0.61 (0.12) 0.73 (0.34)

Step size = 3m 3.55 (1.74) 1.72 (0.32) 0.70 (0.21) 0.66 (0.31)

Height >1.5m 5.22 (2.17) 3.33 (1.10) 0.95 (0.64) 0.66 (0.48)

Height <1.5m 3.88 (2.00) 2.45 (2.51) 0.67 (0.39) 0.69 (0.42)

Wind speed 63m/s 6.45 (4.43) 4.65 (5.45) 0.85 (0.60) 0.62 (0.43)

Wind speed >3m/s 3.86 (1.76) 2.63 (2.58) 0.69 (0.38) 0.66 (0.43)

Figure 13: Success rates of the system.

accurate in the experimental conditions described in this paper. The overall accuracy of the source estimates

was dependant on the measurements taken from the UAV, and how they matched the chosen ATD model

featured in the likelihood function. The measurement data was affected by the meteorology, the altitude of

the UAV, and the size of the increments between sampling the gas concentration.

7 Discussions and lessons learned

The results of the experimental trials presented are, to the best of the authors knowledge, the first time

an autonomous UAV has been used to collect gas concentration measurements to estimate the source term

(location and strength) of a release. Given such an immature area of work, there are valuable observations

and lessons learned during the experiments that will be described in this section. These are related to the



position of the UAV, gas sensing with an aerial vehicle, and the local meteorology.

7.1 UAV altitude

Given the chosen method to estimate the parameters of the release, it is important to know the location of

the gas concentration measurements accurately, so that they can be related to the predictions from a model.

In the horizontal directions, this was achieved through fusion of GPS data, IMU data and the guidance

system on-board the aircraft. The altitude of the UAV was more challenging. When relying on barometric

data, the UAV altitude could drift by a couple of meters. Although this is not very large, on the small scale

of the experiments it would have an adverse effect on the results, especially given the low altitude of the UAV

and the small size of the acetone plume. Down facing ultrasonic sensors of the guidance system provided an

accurate estimate of the height above ground, however, this source of information was only suitable for level

terrain. Consequently, this assumption was made during the experiments.

7.2 Gas sensing with a UAV

The rotors of the UAV did reduce the concentration readings of the gas detector. This was visible when

the UAV was stationary on the ground and the rotors would turn off and on. Despite this, the results of

the experiments were extremely positive, with the source emission rate only slightly underestimated. As

discussed in Section 2.1, the sensor inlet could be moved outside the region of influence of the rotors or, in

future research, a new model for the sensor response could be formulated. In addition, during visualisation

experiments performed using coloured smoke, it was found that the UAV seemed to split the plume; as

captured in Fig 14. This is a feature that may become important in path planning research in the future or

when cooperating multiple vehicles.

7.3 Gas Buoyancy

The diffused acetone is dense, reducing how the gas would rise from the source. This results in low altitudes

required by the UAV in order to make contact with the plume, and it causes the gas dispersion to be less

buoyant than modelled by the simple transport equations considered in this paper. Adding the effect of

buoyancy to the model could improve the accuracy of the estimation. This could be included as a parameter

with uncertainty, and inferred as part of an extension of the source vector Θk.



Figure 14: Visualisation of the UAVs effect on the gas dispersion using coloured smoke. A gap in the plume
can be seen directly downwind of the platform, highlighted by the red lines.

7.4 Changing meteorology

In this work, and commonly in the literature, source term estimation algorithms for atmospheric releases

assumed steady state conditions in the underlying dispersion model. This assumption holds in simulations

and in wind tunnel datasets. Outside of simulation the condition is often not fulfilled, particularly on highly

unstable, low wind speed conditions, where the direction of the wind is much more random. This incurs a

large error on the estimation of the source location. This may be overcome by employing a different model,

such as a Gaussian Puff, which does not make a steady state assumption. However, some assumptions on

the wind field would still be required, and the model would be more computationally expensive.

7.5 Sampling time and step size

The sampling time, or how long the UAV hovers to take an averaged measurement of concentration, had been

set to a fixed value based on a trade-off between search time and performance. The step size, or movement

distance between each sample, was selected in a similar manner. Given a larger area to search, it may be

necessary to reduce the sampling time or increase the movement distance so that the UAV can search the

area in less time. In future work, these parameters of the planning algorithm should be selected adaptively

based on the current information available, or even removed altogether by considering observations from a



continuously moving platform.

8 Conclusions

A system has been described to enable estimation of the parameters of a dispersive atmospheric release using

a UAV. Given an area to search, which could potentially be drawn over a map on a tablet, the system is

able to estimate the parameters of the source term within the area including the origin of the release and its

emission rate. Bayes’ theorem was used in order to account for the large amount of uncertainty concerning the

concentration observations from the gas detector, the meteorological parameters, and the representativeness

of the underlying dispersion models. The set-up of a UAV has been described to enable the experimental

validation of the algorithm in an outdoor open field. To the best of the authors knowledge, this has been

the first experimental testing of a source term estimation algorithm using an autonomous UAV, where a

static network of gas detectors has been used in the past. Extensive experiments were conducted in various

meteorological conditions and with different sweeping flight path configurations. Using the data generated

from a total of 27 experiments, the effect of the UAVs attitude, the incremental step size between taking

measurements, and the wind speed was assessed. It was found, in the experiments conducted, which used

a relatively dense material as a source, that the system performed better, in terms of estimation accuracy,

flying at lower altitudes and in higher wind speeds (stronger atmospheric stability [Pasquill, 1961]). The

wind speed, and hence the atmospheric stability, was found to have a significant effect on the accuracy

of the algorithm and the SD of the estimation errors. As expected, the smaller incremental step sizes

between gas measurements, resulted in more accurate source estimates with less spread. However, this

would incur significant penalties on the size of the area covered over time. Additionally, two simple, fast

running dispersion models were compared using the data from the unique experiments conducted in the

paper. Overall, the Isotropic plume model noticeably outperformed the standard Gaussian model. This is

expected to be due to the characteristics of the models in the vicinity of the source, suggesting the IP model

is more appropriate for estimation on a smaller scale. Overall, the experimental results demonstrated strong

performance of the system making it closer to use in real scenarios.

There are several areas for future research that could improve the performance of the system or expand its

capabilities. Besides the development and testing of a more informative flight pattern that capitalised on the

information gained during flight; the search time and potentially the accuracy of the source term estimate

could be improved by removing the requirement to stop, or hover, to take an averaged sample of the hazard.

This may be achieved by taking a sensor average whilst moving, or by using the instantaneous observations of



the sensor. This will introduce new problems due to the dynamics of the sensor, and designing an appropriate

likelihood function to account for the new sampling technique. The source term estimation methods in the

past, which used static sensors, had much longer sampling times which resulted in less intermittency and

spread in the measurements. Finally, the experiments in this paper were restricted to an open area without

obstacles or clutter, and a continuously emitting source. The system should be extended to handle more

challenging environments such as urban or industrial areas, a source or sources of finite duration, and changes

in atmospheric conditions.
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