
Multicritical Fermi surface topological transitions

Dmitry V. Efremov,1, ∗ Alex Shtyk,2, ∗ Andreas W. Rost,3, † Claudio

Chamon,4 Andrew P. Mackenzie,3, 5 and Joseph J. Betouras1, ‡

1Department of Physics, Loughborough University, Loughborough LE11 3TU, UK.
2Department of Physics, Harvard University, Cambridge, MA 02138, USA.

3School of Physics and Astronomy, University of St Andrews, UK.
4Department of Physics, Boston University, Boston, MA, 02215, USA.

5Max Planck Institute for Chemical Physics of Solids,
Noethnitzer Strasse 40, 01187 Dresden, Germany.

(Dated: October 18, 2019)

A wide variety of complex phases in quantum materials are driven by electron-electron interac-
tions, which are enhanced through density of states peaks. A well known example occurs at van
Hove singularities where the Fermi surface undergoes a topological transition. Here we show that
higher order singularities, where multiple disconnected leaves of Fermi surface touch all at once,
naturally occur at points of high symmetry in the Brillouin zone. Such multicritical singularities
can lead to stronger divergences in the density of states than canonical van Hove singularities, and
critically boost the formation of complex quantum phases via interactions. As a concrete example
of the power of these Fermi surface topological transitions, we demonstrate how they can be used in
the analysis of experimental data on Sr3Ru2O7. Understanding the related mechanisms opens up
new avenues in material design of complex quantum phases.

Introduction. The properties of unconventional phases
in quantum materials are generally connected to features
of the electronic band structure. For example in den-
sity waves, characteristic wave vectors of emergent or-
der parameters can often be related to nesting-type fea-
tures of the underlying Fermi surface (FS) as discussed
for e.g. iron pnictides1, organics2, and transition metal
dichalcogenides3. Yet these nesting features in them-
selves usually cannot account for the observed thermo-
dynamic stability of such correlated quantum phases. In-
triguingly in a range of these materials the band structure
hosts energetically close-by singularities in the density of
states ν (DOS), which have been conjectured often to be
crucial ingredients stabilising the emergent phases.

Singularities in the DOS occur naturally at FS topo-
logical Lifshitz transitions (LT). A prominent example is
the van Hove singularity (vHs) formed at a saddle point
in the energy-momentum dispersion (see fig. 1a). A two-
dimensional (2D) vHs has a relatively weak logarithmic
divergence in the DOS but is known to lead to a wealth of
phenomena such as ferromagnetism driven by the Stoner
mechanism (see eg. Ref.4). An important point is that
the thermodynamic stability of the emergent phases de-
pends on the magnitude of the singularity as well as its
shape4 (i.e. gradient and curvature). As a consequence
stronger power law divergences can have a much more
dramatic impact on the formation of complex ordered
phases than the weaker vHs.

The identification of these singularities in correlated
quantum materials is an important first step to under-
stand their properties, given that many experimental
quantities, with puzzling dependencies on the external
probes, can be explained in a natural way. Here, we ex-
plore the consequences of a generalisation of these con-
cepts to multicritical topological transitions where mul-
tiple disjoint parts of a FS merge and demonstrate the

power of the singularities in explaining properties of the
correlated material Sr3Ru2O7.

Multicritical FS topological transitions naturally occur
at points of high crystal symmetry, where the number
n of FS components merging depends on the particular
symmetry. In fig. 1a-c we illustrate the symmetries asso-
ciated with the n = 2 (vHs), 3 and 4 cases in 2D. When
the singularity occurs at an edge of a Brillouin zone (BZ)
there are generically two pieces (n = 2) of the FS that
join at the singularity, as depicted in fig. 1a. At the criti-
cal energy (dotted line) there is a topology change in the
FS structure with n = 2 FSs touching and reconnect-
ing. At the corner of a hexagonal BZ, three FSs or leaves
(n = 3) can join at the singularity, as happens in e.g. bi-
ased bilayer graphene29, (fig. 1b). In the square lattice,
four leaves (n = 4) can meet at the X-point in the cor-
ner of the BZ (fig. 1c). At these high symmetry points
higher order terms in the dispersion can become relevant,
critically changing the divergence of the DOS, e.g. from
a logarithmic to a stronger power-law divergence in the
n=4 case discussed below.

An explicit illustration of the experimental effects of
these concepts is provided by examining the physics of
the layered perovskite Sr3Ru2O7, which has been in-
tensely studied because of its unusual magnetic and
transport properties6. We identify a strong power-law
singularity at a four-fold symmetric point in momentum
space (fig. 1f) and demonstrate how, in conjunction with
other features of the FS and electron interactions, this
multicritical feature is pivotal for the physical properties
of this material, explaining several previously perplexing
characteristics. This is the first tangible demonstration
in an existing layered material of the effects of such mul-
ticritical LTs (MLTs).

Effective dispersion relation and analysis for n=4. The
energy-momentum dispersion relation in the vicinity of a
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Figure 1: (a) The n=2 2D van Hove singularity in the form
of a saddle point. The DOS ν diverges as lnµ. Red lines
indicate FSs above and below the singularity. The critical FS
is shown by the dotted black line. (b) This singularity oc-
curs for example very close to the Fermi energy in the case
of Sr2RuO4 (green marker for the critical chemical potential)
(c) The n=3 singularity that can occur at 3-fold symmet-
ric points. (d) The band structure / FS of bilayer graphene
that is very close to such a n = 3 monkey saddle singularity.
(e) The n = 4 singularity at a 4-fold symmetric point. (f)
Schematic of the quasi-2D FS of Sr3Ru2O7 in the kz=0 plane
at the Fermi energy (left hand side) and at µC (right side).
The crucial bands that are close to the n = 4 multicritical
point are highlighted in red. The central pocket is a small
perturbation (see main text). In order to emphasise the char-
acteristic clover leaf FS we show an extended k-space picture
beyond the BZ boundaries.

n = 4 MLT can be approximated by the simple expres-
sion

ε(~k) =

{
ak2 + k4 cos 4ϕ− µ,
a(k2x + k2y) + (k4x − 6k2xk

2
y + k4y)− µ

(1)

where the first line is a representation in polar coordi-
nates (with ϕ being the azimuthal angle) and the second
being a representation in Cartesian coordinates.

For small non-zero positive a this dispersion exhibits
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Figure 2: Schematic phase diagram of the relevant hole-like
version of the effective dispersion relation (1). In Sr3Ru2O7

there is no control over the parameter a > 0, so that only red,
yellow and green phases are accessible. There are two lines of
LTs, a dashed-dotted line of a band edge type and a solid line
corresponding to the transition of the neck-narrowing type.
The X9 singularity is located at the crossing of these two lines.
The white line schematically shows the location of Sr3Ru2O7

within this phase diagram with the diamond marking the loca-
tion in zero field. (Right side) The three dimensional surfaces
above are electron dispersions ε = ε(kx, ky) in the vicinity
of the singularity. The grey horizontal plane represents the
critical energy of the singularity ε = 0.

two LTs as we change the chemical potential µ (see
Fig. 2). At smaller values of µ one large hole-like FS
exists. At the critical chemical potential four vHs ap-
pear at a FS topological transition where a new center
pocket is created. As the chemical potential is increased
further, the FS undergoes a second LT, of the band edge
type, with the vanishing of the centre pocket.

If the dispersion relation can be tuned closer to a = 0,
then the singularity is approached, the vHs merge with
the minimum of the central electron pocket to form a 4th
order saddle.

4× (k2x − k2y)︸ ︷︷ ︸
vH saddle

+1× k2︸︷︷︸
e/h pocket

←→ k4 cos 4ϕ︸ ︷︷ ︸
4th order saddle

, (2)

The singularity can be viewed as a Lifshitz multicritical
point, as it appears at the crossing of two LTs and sits at
the border of four different topological phases, see Fig. 2.
Such behavior can be described within the framework of
singularity theory7 by a symmetry-restricted unimodal

parabolic singularity X9 in the electron dispersion ε(~k).
The core of the singularity is the 4th order terms, gener-
alised to k4x+Kk2xk

2
y +k4y in Cartesian coordinates. This

term is the germ of the singularity, while the remaining
terms (a(k2x + k2y) − µ) represent the perturbation un-
folding the singularity. Unlike simpler singularities, X9

forms a whole family of singularities parametrized by the
modulus K. While a generic singularity from the X9

family has a co-dimension eight, one modulus and seven
control parameters, the presence of the lattice symmetry
greatly simplifies the situation leaving only the modulus
K and two control parameters a, µ. The consequences of
the singularity on physical properties are the same for the
whole range K < −2. The value of the modulus K = −6
is special as it corresponds to electron-like and hole-like
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sections of the same width, a property that is confirmed
in the DFT calculation. This implies existence of an ad-
ditional symmetry in the system, a superposition of the
particle-hole transformation ε ↔ −ε and rotation by an
angle π/4. If we increase the value to K = −2 the system
reaches a critical point and the saddle disappears, leav-
ing a singular ∝ k4 electronic pocket. All values of the
modulus K < −2 lead to the same topological features.

In the relevant parameter regime K < −2 the DOS of
this dispersion has a critical ∝ |µ|−1/2 scaling for a = 0
and can be summarized as

ν(µ) ∝

|µ− µc|
−1/2

, |µ| � µc

ln
µc

|µ− µc|
, |µ− µc| � µc,

(3)

where the critical value of the chemical potential µc =
a|a|/4 (more details in the SM).

Experimental consequences of the singularities in cor-
related systems: Sr3Ru2O7. There are profound con-
sequences of this singularity for Sr3Ru2O7, a material
of wide interest due to the observed phenomena in the
vicinity of a metamagnetic quantum critical end point
(QCEP) at Hc=8 T for fields parallel to the crystallo-
graphic c-axis8,9.

In Fig. 3 the emergent phase diagram is schematically
shown highlighting several features relevant for our dis-
cussion (for a review6). Approaching Hc as a function
of T , a logarithmic divergence in specific heat divided
by temperature C/T is observed10,11. The approach to
Hc as a function of magnetic field in the Fermi liquid
(FL) regime is characterised by a singular contribution
to C/T . Careful analysis5 reveals a power law divergence
of C/T as a function of reduced field h = (H −HC)/HC

with an unexpected exponent of (-1). It has been sug-
gested that the singularities in C/T as a function of field
or temperature are consistent with a 2D QCEP point
within the canonical description of quantum criticality13.
The expected exponent within this theoretical frame-
work is -1/3 and in general has to be fixed in any fit
of this model14. The observed exponent of (-1) in an
assumption-free power law fit to C/T therefore posed im-
portant theoretical questions.

Magnetic Field

H
QCP1

T
e
m

p
e
ra

tu
re

C/T h-1

A

B

C/T log(T)

C/T h-1

c

b

a

Figure 3: Schematic phase diagram of Sr3Ru2O7 together
with the crystal structure shown in the inset (Ref. 6 for more
details).

At low temperature, access to the QCEP is preempted
by an unusual set of emergent phases (labelled A, B
in Fig. 1d)3,19. Neutron scattering measurements19 re-
vealed an incommensurate magnetic order with a wave

vector ~QA = (±0.233, 0, 0)/(0,±0.233, 0) and ~QB =
(±0.218, 0, 0)/(0,±0.218, 0) respectively.

Fermi surface as calculated by Density Functional The-
ory (DFT). To understand the origin of the singular-
ity in the DOS we performed DFT calculations9,10,17.
The calculated band structure for zero magnetization
agrees broadly with ARPES data6,18 (Fig. 4a). While
the chemical potential is slightly higher than observed
experimentally, this does not affect the main conclusions
drawn here. We therefore consider the evolution of the
DOS with increasing magnetic moment per unit cell (see
fig. 4), as a convenient way to model the effects of an
applied magnetic field. By increasing the magnetic mo-
ment a LT is observed at the X-point at a magnetization
of around 0.5 µB/Ru. This LT dominates the DOS and
the thermodynamic properties. In order to identify the
essential requirements generating the key FS features we
derive a quasi-2D tight binding model based on the Ru 4d
orbitals (see Supplemental Material (SM)17) relevant at
the Fermi energy12 and adjusted to accurately describe
the relevant part of the ARPES data. The resulting FS
is shown in fig. 1f. A careful study of the band structure
reveals that it is well described by an effective dispersion
given in eq. (1). The DFT calculations suggest a value
of K close to K = −6, implying an effective power law
divergence (eq. (3)).

Qualitatively similar conclusions can be drawn from
the tight binding model which unveils the microscopic
origin of the MLT point (see SM). In the aristotype struc-
ture without RuO2 octahedra rotations the band struc-
ture exhibits a n = 2 vHs at an M -point of the BZ.
Counterintuitively the rotations, while lowering the crys-
tal symmetry, reconstructs the BZ such that the singu-
larity is transformed into an n = 4 MLT point at an
X- point in the new BZ. This is an important guiding
principle how to stabilise such LT.

The characteristic clover leaf structure of the FSs in the
vicinity of the LT naturally gives rise to strong nesting of
the edges of the γ-bands which, in combination with the
MLT, helps generate the SDW. It is important to note
that the nested FS parts have a distinct orbital charac-
ter (dxz/yz) from those FS parts that create the MLT

(dxy). The value of the nesting vector ~Q = (±0.23, 0, 0)
or (0,±0.23, 0) is effectively that observed experimentally
in phase A. These nested parts of the FS determine the
wavelength of the observed SDW (see also19) within our
theoretical model.

Magnetic field approach to criticality. The MLT has
a profound effect on the specific heat Cv as a func-
tion of the magnetic field (Cv ∝ |H − Hc|−1). The
power-law divergence of the DOS as a function of en-
ergy leads to the divergence of Cv with the field5. Cv
is determined by the value ν(εF ) of the DOS at the
Fermi level: Cv = π

2 kBTν(εF ). Near the singular-
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Figure 4: Result of the DFT calculation. (a) Here we show
the schematic FS structure from Fig. 1e together with the kz-
projected DFT calculation to aid orientation. (b-f) Projected
FSs for values of magnetization µ=0.0, 0.2,0.4,0.5,0.55 µB

per unit cell as calculated by the DFT and centered at the X
point. The topological transitions are evident for the value
of magnetization close to 0.5 µB and 0.55 µB per unit cell.
The red arrow in (e,f) connects the two nested parts of the
characteristic clover leaf structure giving rise to the density
wave in the A-phase.

ity ν(ε) ∝ |ε− εc|−1/2, where εc is the location of the
singularity. Including magnetic field to lowest order,
the DOS is ν(ε,H) = 1

2 (ν(ε+ gµBH) + ν(ε− gµBH)).
Charge conservation requires the Fermi energy to shift
non-linearly with H:

[εF (H)− εc + gµBH]
1/2

+ [εF (H)− εc − gµBH]
1/2

= 2 [εF (H = 0)− εc]1/2 (4)

At Hc, εF (Hc) = εc + gµBHc as the singularity is within
the minority band. Then εF (0)−εc = 1

2gµBHc and for H

near Hc Eq.(4) reads εF (H) = εc + gµB
H2+H2

c

2Hc
. There-

fore, ν(εF (H)) ∝ 1/|H−Hc| and the specific heat as well
as the entropy is proportional to 1/|H − Hc|. This ex-
plains the experimental data and is a direct fingerprint
of the existence and the importance of the n = 4MLT in
Sr3Ru2O7.

Phase Formation. As explained, there is significant

nesting along ~QA in the γ band giving rise to a suscep-
tibility to SDW formation. As the SDW and the MLT
originate from different orbitally orthogonal parts of the
FS, at tree-level in a Renormalization Group (RG) sense
the two processes can be treated as decoupled, At higher
RG order this is no longer true and the DOS singularity
influences the thermodynamic stability of the SDW. The
mechanism of this particular LT as described above, in-
volves the creation of a pocket at the X-point. An effect
of interactions is that this pocket formation is a first or-
der transition with a jump to a higher total number of
fermions in the relevant bands23. This is consistent with
experimental observations upon entering the A-phase as
a function of field. The additional pocket, in combina-
tion with the MLT point, provides additional FS degrees

of freedom. This leads to the counterintuitive result of
the high-field A-phase having a higher entropy than the
low field FL phase, as is established experimentally5.

Temperature approach to criticality. The logarithmic
divergence Cv ∝ T log(1/T ) (Fig. 1d) as a function of
temperature is clearly an effect of interactions and a sign
of quantum criticality. As shown previously24, the forma-
tion of a small pocket in the middle of a larger FS leads
to the same result due to interactions. Alternatively,
it can be thought as a consequence of the scattering of
”light” electrons further from the singularity, off ”heavy”
electrons25. In addition, a correlated 2D system with self-
energy which is position-dependent (k-dependent) leads
to the same behavior26,27. In the case of SDW formation,

the self-energy correction is Σ(ω,~k) ∝ ω/k (with k = k||),
giving an effective mass m∗ = m[1−∂Σ/∂ω|ω→0]. There-
fore, given that Cv ∝ T

∫
m∗dk, then naturally Cv ∝

T log(1/T ). These conditions are fundamentally linked
to the MLT, leading to qualitatively similar behaviour.

Discussion The effects of simple LTs were explored in
several classes of quantum materials (e.g24,29,30,30,31). In
this work, we have demonstrated how a MLT is formed
at a high symmetry point in the BZ can lead to a wealth
of unusual physical phenomena. This was illustrated
concretely through the example of Sr3Ru2O7, in which
a MLT happens in the γ bands at the X-point of the
BZ, leading to a 4-leaf (n = 4) FS. This is accompanied
by a large peak in the DOS, describable by a divergent
as inverse square-root in energy singularity. We showed
how this power-law in combination with the emergent
central pocket and enhanced spin-/charge-susceptibilities
due to independent, orbitally orthogonal parts of the FS
are consistent with a wide range of previously puzzling
experimental data. The intriguing behavior of this well-
characterised material is explained within the framework
of higher singularities. For any n = 4 singularity in
quasi-2D materials the phase diagram presented in Fig.
2 is relevant and whenever K < −2 a regime of effective
power-law divergence should appear.

The example of Sr3Ru2O7 demonstrates one important
finding; the FL parameters at zero-field are extremely ro-
bust against tuning over a much wider range than previ-
ously believed. A direct implication would be that quan-
tum fluctuation corrections are not relevant over a wide
region of magnetic fields in the FL regime of the phase di-
agram. For example, significant further band renormali-
sation might not be expected. This is not only surprising
but should also lead to a careful reevaluation of other
materials. While the singularity dominates the thermo-
dynamics, the heavy quasiparticles only indirectly con-
tributes to transport through the scattering of electrons
from other parts of the FS off them. Therefore, there is a
subtle interplay of the importance of each part of the FS
to different experiments. We note that we only partially
discussed key aspects of the phase diagram of Sr3Ru2O7

where quantum fluctuations contribute significantly.

Sr3Ru2O7 serves as a model system and guide to a
whole range of material classes in which MLTs occur
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(see SM for a discussion on generic mechanisms in e.g.
ruthenates22, bilayer graphene28,29,29,34 and transition
metal dichalcogenides24). One key lesson is that the non-
trivial divergences in the DOS are a key driver in ther-
modynamically stabilising unconventional phases, origi-
nating from otherwise independent (orbitally orthogonal)
parts of the FS. The achievement of this work is to iden-
tify the importance of the MLT and thereby help to dis-
entangle the roles of the LT in the band structure on the
one hand and (quantum) fluctuations and interactions
on the other. In all quasi-2D materials with an n = 4
singularity the phase diagram presented in this work is
relevant and whenever K < −2 a regime of power-law
divergence should appear. The counterintuitive mecha-

nism that turns a trivial n = 2 vHs into a n = 4 MLT by
lowering the crystal symmetry, provides a new guiding
principle how to stabilise complex quantum phases.
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SUPPLEMENTAL MATERIAL

I. DENSITY OF STATES IN THE VICINITY OF THE MULTICRITICAL POINT

As we discuss in the main text, the physics of the multicritical Lifshitz point can be described by the dispersion

ε(~p) = ap2 + bp4 cos 4ϕ+ cp8 − µ. (S1)

Below we assume that a and µ take small values. In this case the p8 term is not crucial for the analysis, as it only
serves to close the Fermi surface away from the singularity, and it can be omitted safely,

ε(~p) ' ap2 + bp4 cos 4ϕ− µ. (S2)

For definiteness we assume a > 0 below. The symmetry of the dispersion (S2) implies the relation ν(−|a|, µ) =
ν(|a|,−µ).

The DoS of S2 is given by

ν(µ) =

∫
d2p

(2π)2
δ(ap2 + bp4 cos 4ϕ− µ) =

∫
dϕdt

8π2
δ(at+ bt2 cos 4ϕ− µ) =

1

4π2a
D

(
4bµ

a2

)
, (S3)

where we made a substitution t = p2 and the function D(x) is an elliptic integral

D(x) =

∫ 2π

0

dϕ

∫ ∞
0

dt δ(2t+ t2 cosϕ− x) = 2<
∫ ∞
0

dt
1√

t4 − (2t− x)2
. (S4)

The DoS obtained above has a natural energy scale

µc = a2/4b. (S5)

A. Critical scaling at |µ| � µc

The term ap2 breaks the multicriticality, so that at large values of the chemical potential |µ| � a2/4b, when the
quadratic term can be neglected, the dispersion reduces to the pure fourth-order saddle

ε(~p) = bp4 cos 4ϕ− µ (S6)

with the critical scaling of the DoS ν(µ) ∝ |µ|−1/2,

ν(µ) =

∫
d2p

(2π)2
δ(bp4 cos 4ϕ− µ) =

1

4π2
√
b|µ|

∫
d2k δ(k4 cos 4ϕ− 1) =

K(1/2)

4
√

2π2

1√
b|µ|
∝ |µ|−1/2, (S7)

where K(1/
√

2) ≈ 1.85 is a complete elliptic integral of the first kind.

B. Jump at µ = 0

As we approach the singularity from the region of negative chemical potential, the quadratic term leads to the
formation of an electron pocket at the center. The electron pocket forms at µ = 0 and leads to a jump in the density
of states,

ν(µ = +0)− ν(µ = −0) = lim
µ→+0

∫
d2p

(2π)2
δ(ap2 + bp4 cos 4ϕ− µ)− lim

µ→−0

∫
d2p

(2π)2
δ(ap2 + bp4 cos 4ϕ− µ)

= lim
µ→+0

∫
d2p

(2π)2
δ(ap2 − µ) =

1

4πa
.

(S8)
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C. Van Hove singularity at µ = µc

Finally, at the value of the chemical potential µ = µc = a2/4b the electron pocket formed at µ = 0 touches the four

outer leaves of the Fermi surface via the formation of four saddle points, located at pc =
√
a/2b, cos 4ϕc = −1:

ap2 + bp4 cos 4ϕ− µ ≈ a(pc + ∆p)2 − b(pc + ∆p)4
(

1− (4∆ϕ)2

2

)
− µ

= (ap2c − bp4c − µ) + (2apc − 4bp3c)∆p+ (a− 6bp2c)(∆p)
2 + 8bp4c(∆ϕ)2

= (µ− µc)− 2a(∆p)2 + 8µc(∆ϕ)2.

(S9)

The saddle point result in the logarithmic divergence in the DoS:

ν(µ) = 4

∫
d2p

(2π)2
δ((µ− µc)− 2a(∆p)2 + 8µc(∆ϕ)2)

=
1

2
√

2π2a

∫
dxdy δ

(
µ− µc
µc

− x2 + y2
)

' 1√
2π2a

log
µc

|µ− µc|
.

(S10)

These results can be confirmed by studying the limits of the general expression (S3).

D. General expression (S3)

Using a substitution z = (t− x)/t the elliptic integral D(x) can be rewritten as

D(x) = 2<
∫ ∞
−x

dz√
[(|x| − 1) + z2][(|x|+ 1)− z2]

. (S11)

Taking the real part of the integral above, it just reduces the integration to the region where the argument of the
square root is positive. Depending on the value of x, the true domain of integration is

x > 1 : z ∈ (−1,
√

1 + ‖x|),

0 < x < 1 : z ∈ (−1, −
√

1− |x|) ∪ (
√

1− |x|,
√

1 + |x|),

x < 0 : z ∈ (1,
√

1 + |x|).

(S12)

Transforming the variable as z =
√

(|x|+ 1) cos θ we bring the integral to the canonical form

D(x) =

√
2

|x|
×


F (π − ϕ1(x), k(x)), x > 1

2F (ϕ2(x), k(x))− F (ϕ1(x), k(x)) 0 < x < 1

F (ϕ1(x), k(x)), x < 0

(S13)

where modulus and angles are

k(x) =

√
1 + |x|

2|x|
, ϕ1 = arctan(

√
|x|), ϕ2 = arctan

√
2|x|

1− |x|
. (S14)

At large values of the argument the asymptotic behavior is

D(x) '

√
2

|x|
K

(
1√
2

)
, |x| � 1, (S15)
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Figure S1: DoS ν(µ) ≡ D(µ), with DoS and chemical potential in units (4π2a)−1 and µc = a2/4b respectively. The plot on
the right shows DoS at larger values of the chemical potential when the singularity breaking term ap2 can be neglected. The

dashed line shows the critical scaling of the density of states given by (S15), ν(µ) ∝ |µ|−1/2.

II. DETAILS OF THE MAIN FEATURES AND THE CALCULATIONS RELEVANT TO SR3RU2O7.

A. Details of the main features

The magnetic susceptibility is strongly enhanced (Wilson ratio of 10), consistent with Sr3Ru2O7 being on the
border of ferromagnetismS1, achievable by modest uniaxial pressureS2. Due to the observed anisotropic conductivities
these have been referred to as “electron nematics”S3. The observed Q-vectors of the SDW (first discussed inS4)
might be related to FS nesting including the γ band centered at the X-point, central to the theory developed below.
Surprisingly, the entropy of the magnetically ordered A phase is higher than that of the adjacent low field phaseS5.

The electronic band structure in the low field Fermi Liquid has been extensively studied experimentallyS6–S8. The
layered crystal structure gives rise to an effectively 2D FS. In Fig.1e of the main text, we show schematically the key
features both at the Fermi energy EF as well as at a slightly lower energy ELT . At the latter there is an n = 4 LT
point occurring at the X-point of the Brillouin zone as becomes apparent by the characteristic clover leave structure
in the extended zone (compare to Fig.1c of the main text).

B. Local (spin) density approximation.

Our calculations were carried out within the local (spin) density approximation [L(S)DA] using the Full Potential
Local Orbital band-structure package (FPLO)S9,S10 based on structural data published inS11. A mesh of 24 × 24
× 24 k-points in the whole Brillouin zone was employed. Due to the rather sizable spin-orbit interaction of the Ru
atoms, the full relativistic four-component Dirac scheme was used. To test the generality of the results, we used two
different functionals, local density approximation (LDA) and generalized gradient approximation (GGA). The results
are extremely similar for LDA and GGA, especially close to the Fermi energy.

C. Effective Hamiltonian

In the main text we showed the presence of multicritical Lifshitz point in Sr3Ru2O7 via DFT calculation. Here, we
show that it is also present within a tight-binding model as presented in Ref. S12, which reads:

H =
∑
~k,α

Ψ†~kα

(
A~k G
G∗ A~k+~Q

)
Ψ~kα, (S16)
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Figure S2: Fermi surface (left) and energy dispersion of the 4th band (right). The momentum is centered around γ bands,
where the Lifshitz multipoint resides. However, for given Hamiltonian parameters it is decomposed into four van Hove saddles

where α =↑↓ is a spin index, ~Q = (π/a, π/a) and

A~k =

 εyz~k
ε1D~k + iλ −λ

ε1D~k − iλ εxz~k iλ

−λ iλ εxy~k

 , G =

ḡ 0 0
0 ḡ 0
0 0 ḡ

 . (S17)

The matrix A describes the hopping between the three yz, xz, xy orbitals with the spin-orbital coupling λ included.
The dispersions of the three individual orbitals are

εyz~k
= −2t1 cos(kya)− 2t2 cos(kza),

εxz~k = −2t1 cos(kxa)− 2t2 cos(kza),

εxy~k
= −2t3(cos(kxa) + cos(kya)),

(S18)

while ε1D~k = −4t6 sin(kxa) sin(kya) describes the hopping between the two quasi-one-dimensional orbitals yz and xz.

The matrix G describes the unit-cell doubling via an effective lattice potential. The parameters of the Hamiltonian
are

t1 = 0.5, t2 = 0.05, t3 = 0.5, t4 = 0.1, t5 = −0.03, t6 = 0.05, λ = 0.1375, ḡ = 0.1. (S19)

The chemical potential can be determined self-consistently via the DoS that follows from (S18) and is µ = 0.575.
Fermi surface is shown in the Fig. S2 (left), which is centered around γ bands. For given parameters Hamiltonian is
only in the vicinity of the topological multiple point and the singularity is decomposed into four van Hove saddles.
The multicritical LT effectively originates from (i) 2D hopping terms on a square lattice (predominantly within the
dxy orbitals) in combination with (ii) the doubling of the unit cell due to RuO-octahedra rotation (which also mixes
in eg orbitals as a secondary effect) and (iii) bilayer splitting.

Finally, even in this simple model there is a nesting between the parts of the γ bands, that leads to the formation
of the spin density wave. Examining eigenvalues of the Hamiltonian, we find that it is the 4th band that is involved
in the formation of the multiple point around the Fermi energy. Given the C4 rotational symmetry of the system, to
show the presence of nesting, it is enough to calculate the curvature of this 4th band,

κ (kx, ky) =
2ExEyExy − E2

xEyy − E2
yExx

(E2
x + E2

y)3/2
(S20)

where E ≡ E(kx, ky) is the dispersion of the 4th band and Ei ≡ ∂E/∂ki and Eij ≡ ∂2E/∂ki∂kj are partial derivatives.
Using symmetry arguments again, it is enough to find whether the following condition can be satisfied:

κ

(
~Q

2
, 0

)
∝ ∂2E

∂k2y

(
~Q

2
, 0

)
= 0. (S21)
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We calculate numerically the second derivative Eyy of the electron dispersion of the 4th band and show that it turns

to zero at the nesting vector ~Q = (±0.29, 0, 0)(2π/a) (See Fig. S3). In this way we confirm the presence of the nesting

in the system. The value we find is slightly different from the experimental finding of ~Qexp = (±0.233, 0, 0)(2π/a). It
is important to stress that

• it is a simple tight-binding model without interactions.

• there is no fine-tuning of the effective Hamiltonian, as exactly the same parameters as in Ref. S12 has been
used.

As a result, here we confirm the presence of the nesting using the tight binding Hamiltonian, while the actual
quantitative features are reproduced with the ab initio approach of LDA calculation presented in the main text.

Figure S3: Surfaces (left) of constant energy for the 4th band and the second derivative Eyy along the y-axis (right). The

second derivative Eyy turns to zero at ~Q/2 = (0.29, 0, 0)(π/a) indicating a flat Fermi surface at this energy and the presence of
the nesting.

D. Confirmation of the dispersion with ARPES data

In this subsection we present the best possible analysis based on available high resolution ARPES data in combi-
nation with the band structure topology known from DFT/tight binding models. In order to determine the regime of
parameters for Sr3Ru2O7 where the expansion provides accurate results, we start from a tight binding model based
on the DFT calculation and carry out a minimal orbital dependent renormalisation of the band width and chemical
potential (Ref. (S18)), matching the available high resolution experimental (ARPES) data of the band structure (with
sufficient energy resolution this data has only been published along the Γ-X direction in Ref. (S18). In Fig. S4 we
show the data from Ref. (S18) digitised by us together with the adjusted band structure of the tight binding model
(dotted lines). In red we emphasise the relevant dxy bands in the crucial range of momentum space with the saddle
point location marked by an arrow. We would like to point out that in our tight binding model only a limited number
of hopping terms can be included accounting for some of the remaining discrepancies. We fitted the expansion of Eq.
(1) of the manuscript (incl. higher order) terms to the relevant band of the tight binding model (uppermost red band
in panel (A)) and find the crucial parameter K to be -2.8(1) with the band structure being given by (terms in bracket
give uncertainty)

E(eV ) = 0.131(2)
[
−0.033(1)− 0.088(1)(k2x + k2y)− 2.8(1)k2xk

2
y + (k4x + k4y)

]
+O(k6x, k

6
y) (S22)

In panel (B) and (C) we present the density of states of this part of the band structure both on a linear scale as
well as on a log-log scale (∆E is measured relative to µc and an offset added to account for the background density
of states). In particular in panel (C) we show the total density of states in grey. We highlight in black the energy
regime over which the density of states is well described by a power law with critical exponent -1/2 (as is shown by
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Figure S4: Divergence in density of states based on ARPES dispersion. For Details see text.

the parallel red dotted line). Most crucially the power-law like divergence covers both the Fermi energy as well as the
experimentally relevant energy scales.

Given the experimental uncertainties this is the most accurate possible description of the band structure in the
vicinity of the multicritical Lifshitz point and implies that the density of states is well described by a power-law
divergences over several meV around the singularity.

III. ENTROPY NEAR Hc FOR AN SDW INSTABILITY

According to scaling theory, for the SDW transitionS13, if the critical part of the free energy is separated, then

FSDWcrit = −ρ0( TT0
)
d+z
z f((H −Hc)/(T/T0)

1
νz ) + logarithmic corrections as T0(H−Hc)

THc
→ 0. T0 and ρ0 and c are non-

universal constants, d = 2 is the dimensionality of the system, z = 2 the dynamical exponent, ν = 1/2 the exponent
that shows the divergence of the coherence length ξ close to the transition ξ ∝ |H−HcHc

|−ν and f(x) is a regular

function, which can be expanded close to x = 0. Therefore in the limit T0(H−Hc)
THc

→ 0

FSDWcrit = −ρ0

[(
T

T0

)2

f(0) +
H −Hc

Hc

T0
T
f ′(0) + clog

(
Hc

|H −Hc|

)]
(S23)

leading to an increase in entropy close to Hc due to the logarithmic divergence.
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IV. HIGHER ORDER SINGULARITIES IN OTHER MATERIALS

The pivotal concept controlling the wealth of phenomena observed in Sr3Ru2O7 is the existence of a multicritical
Lifshitz point interacting with an incipient nesting feature. Naturally a key question is the generality of this concept
and its suitability as a guiding principle in material design.

The aim of this section is to show that there are indeed generic mechanisms generating such multicritical Lifshitz
points in a wide range of material classes making them an extremely valuable ’material design guide’. A detailed
analysis of all materials discussed here along the lines of the one presented for Sr3Ru2O7 would certainly go beyond
the scope of this paper. However, we believe that the existence of multicritical Lifshitz points in the material classes
identified below play an important role in the boosting and stabilising the observed physical phenomena and should
be taken into consideration in the analysis of effective low energy hamiltonians of these systems.

A. Direct generalisation of Sr3Ru2O7

In order to appreciate the generality of the multicritical Lifshitz point in Sr3Ru2O7 it is instructive to scrutinize
the details of a low energy tight binding model based on the relevant Ru 4d orbitals. In figure S7a we show the DFT
band structure calculation described in the main text along the relevant high symmetry directions in the kz = 0 plane
of the 3D Brillouin zone of this quasi-2D material. In red we emphasise the part of the band structure giving rise to
the multicritical Lifshitz point. Following previous workS14–S17 we developed an effective 2D tight binding model of
a bilayer of RuO octahedra constrained to the relevant Ru 4d orbitals. In figure S7b we show the dispersion of this
tight binding model along the equivalent high symmetry directions of figure S7a with an overall good agreement.

In this energy regime the orbital character of the band structure is predominantly that of the t2g submanifold
containing dxy, dyz and dzx orbitals.One of the advantages of the tight binding model is the possibility of selectively
removing orbitals and / or in order to study the impact on the relevant band structure features. In figure S7c we have
for example removed the dyz and dzx orbitals. As can be seen this effectively leaves the dispersion giving rise to the
multicritical Lifshitz point unchanged. This of course is equivalent to the observation that in the DFT calculation
the relevant part of the band structure has effectively no 4dyz/zx character and is predominantly dxy with a small

contribution of the eg orbitalsS17.
At this point it is important to briefly discuss in how far the DFT band structure is relevant to the experimentally

observed band structure of this strongly correlated material. Direct observation of the Fermi surface and the determi-
nation of effective masses and Fermi velocities has been achieved by ARPESS6,S18, STMS7 and quantum oscillationS8

measurements. Crucially in particular the ARPES work has demonstrated that the band structure in the vicinity of
the X-point is well described by an overall renormalised band structure and is qualitatively well described by LDA. We
have verified that the tight binding model described below is fully consistent with the van Hove singularity observed
in ARPESS6 confirming the arguments for generality presented here.
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Figure S5: (a) Result of the DFT calculation along relevant high symmetry directions of the Brillouin zone. The part of the
band structure giving rise to the multicritical Lifshitz point is emphasised in red. (b) Dispersion of an effective 2D tight binding
model of a bilayer of RuO octahedra based on Ru 4d orbitals. (c) Same tight binding model as in (b) but with the Ru 4dyz/zx
orbitals removed from the model.
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(A) (B) (C)

Γ

X

M

Figure S6: (a) Schematic of Fermi surface of Sr3Ru2O7 (based on a figure inS8). The red parts of the Fermi surface are
those relevant to the multicritical Lifshitz point. they are generally referred to as γ2 pockets in the literature. The overlay
centred on the top right X-point is showing the location of the contour plots in the subsequent panels. (b) Contour plot of the
minimal model generating multicritical Lifshitz points (red crosses). (c) Upon including the dyz/zx orbitals the γ2 pockets are
reproduced. This results in nested Fermi surface features (blue arrow) originating from different bands than the multicritical
Lifshitz point (red cross).

The two copies of the band structure apparent in S7c are the result of a bilayer split. Otherwise the tight binding
model is that of a 2D square lattice with equivalent hopping along x and y axis including the following features:

1. A
√

2 x
√

2 reconstruction of the Brillouin zone. In the case of Sr3Ru2O7 this is achieved by a counterrotation
of neighbouring octahedra but could also be due to e.g. antiferromagnetic ordering or charge disproportionation
or the momentum space picture of (π, π) charge-/spin-density-waves.

2. a small hybridisation gap opening at the zone boundary and in particular at the high-symmetry X point between
the original and backfolded bands.

These ingredients are fully sufficient to generate the multicritical Lifshitz point. The resulting band structure
(constrained by ARPESS6) in the vicinity of the X-point retaining these minimal ingredients is shown in figure S6. In
panel (a) we reproduce a schematic of the Fermi surface of Sr3Ru2O7 for orientation (based onS8). The multicritical
Lifshitz point is located close to the X-point. In red we highlight the same parts of the band structure as in figure
S7. The inset in the top-right corner shows the location and orientation of the contour plots shown in panel (b) and
(c). In the former we present the tight binding model excluding the 4dyz/zx. The location of the Lifshitz points is
indicate by the red crossed. Intriguingly the Fermi surface of this model does not produce the small closed pockets
highlighted in panel (a). These are only recovered if the much more strongly dispersing bands originating from 4dyz/zx
are reintroduced as shown in panel (c)S31. Remarkably it is the resulting flat parts that give rise to a nesting vector
(blue) consistent with the spin density wave observed in neutron scatteringS19. It is this feature that drives the density
wave phase within the theoretical model discussed in the main text. Within our model it is merely coincidence that
the nested part of the band structure determining the density wave vector is part of the same Fermi surface giving
rise to the multicritical Lifshitz point - these two components originate from completely separate, weakly hybridising
bands with very different orbital character. From a material design point of view this is extremely important in that
a multicritical Lifshitz point can boost / thermodynamically stabilise incipient order driven by otherwise unrelated
parts of the Fermi surface.

As a side note we would like to remark that a fit of equation (3) in the main text to this low energy band structure
results in K being of the order of -3 consistent with our analysis. Indeed it can be shown that a hamiltonian of form
(B1) in ref.S4 will generally result in K ≤ −2 as required for the validity of our theoretical analysis.

Irrespective of the detailed parameters for Sr3Ru2O7 it is remarkable that such few ingredients are required for the
stabilisation of the multicritical Lifshitz point for a tight binding model on a square lattice. Consequently one would
expect these to be e.g. ubiquitous across the whole family of ruthenates. Indeed further examples in this family are:

Ruthenates - Surface layer of Sr2RuO4 The most straight forward realisation of a multicritical Lifshitz point as
described above is occurring in the surface layer of Sr2RuO4. All key ingredients exist: (i) a vHs at the M point of the
ideal band structure, (ii) backfolding due to rotation of RuO2 octahedra changing the C2 symmetric singularity into
a C4 symmetric one at the X-point of the new surface Brillouin zone and finally (iii) hybridisation of the backfolded
bands due to higher order hopping terms. Indeed ARPES measurements reveal a band structure consistent with this
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model located just 10meV below the Fermi energyS17. It would be interesting to study the evolution of the surface
electronic structure in spectroscopic studies under magnetic field by e.g. STM.

Ruthenates - Ca3Ru2O7 In the case of Ca3Ru2O7 the relevant physics originates not from a dxy band but from
two dxz/yz bands with next nearest neighbour hoppingS21. An alternating c-axis tilt of the RuO octahedra then
generates a backfolding of the band structure. At this point there is no singularity in the density of states at half
filling. However, the combination of bilayer splitting and hybridisation generate singularities in the density of states
located at the X-points of the Brillouin zone. Most interestingly this system subsequently undergoes a density wave
order transition at app. 40 KS22.

Cuprates The nature of charge- and spin-excitations as well as (short range) density wave formation in cuprates
is of course a subject of ongoing discussions. However an often used starting point for theoretical calculations that
is well motivated by experimental observations by ARPES and quantum oscillations is a band structure originating
from the close-to-half filled dxy band on a square lattice. This of course is exactly the situation as encountered in

Sr3Ru2O7. Consequently any
√

2 x
√

2 reconstruction of the unit cell (by e.g. (short range) magnetic order) in
combination with a hybridisation gap opening between the original and back-folded bands will therefore generate
exactly the same type of multicritical Lifshitz point as discussed for the example of Sr3Ru2O7. This by no means is
intended to be an explanation for the wealth of strong-coupling phenomena observed in cuprates but is merely to be
seen as an exemplification of the generality of the concepts discussed in this paper and should potentially be taken
carefully into account when discussing effective weak coupling hamiltonians.

B. Further materials

In this final section we would like to highlight the breadth of materials across many different ’families’ in which
multicritical Lifshitz points occur close or at the Fermi energy with potentially crucial impact on the stabilisation of
incipient ordered phases. We would like to emphasise that neither is this an exhaustive list nor are we giving a review
over the literature on these materials but merely intend to provide the interested reader with starting points to the
extensive experimental literature.

BaFe2As2-Iron based superconductors In figure S7a we show schematically the Fermi surface of BaFe2As2
based superconductors (see e.g.S23 for a more recent paper and citations therein). The typical ’clover leaf’ structure
of a Fermi surface close to a multicritical Lifshitz point can be clearly identified close to the X-Point. Recently it
has been shown that this part of the band structure gives rise to a singular Fermi surface in the related compound
SmFe0.92Co0.08AsOS23.

Transition metal dichalcogenides - 1T-VSe2 In figure S7b we show the evolution of the band structure with
energy of a monolayer of the transition metal dichalcogenide VSe2 recently studied by ARPESS24. This is an example
of an n = 6 multicritical Lifshitz point close to the Γ-point of the Brillouin zone. The singularity is located within
20m̃eV of the Fermi surface. Intriguingly a charge density wave order setting in at TC=140K̃ has been observed in
the same study. Similar physics has been seen in the related 3D band structure / phase diagram of bulk VSe2

S25,S26

and other transition metal dichalcogenides (see e.g. references in the introduction ofS24).
Twisted Bilayer Graphene Recently twisted bilayer graphene has come to the fore of condensed matter research

by the experimental discovery of interaction driven insulating behaviour and the development of unconventional
superconductivityS27,S28. The band structure of these materials gives naturally rise to n = 3 multicritical points at
the K/K’ points of the 2D Brillouin zone (see figure S7b) and it can be shown that these play a potentially crucial
role in the stabilisation of the observed electron-correlation driven phasesS29,S30.
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