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Abstract: The AquaCrop simulation model, modelling the dynamic change of crop growth status, is an important crop man-
agement tool for quantifying crop yield response to water. To effectively simulate the soil water balance and the crop growth
process, a number of system parameters and canopy state variables are inevitably adopted. As a result, certain key parameters
need to be calibrated so that the AquaCrop model can achieve a better performance of prediction for various scales of regions.
This paper aims to apply Bayesian technique to calibrate the AquaCrop model. In this approach, the prior information regarding
the system parameters is expressed in the form of a uniform probability distribution. Then with the advent of output variable
measurement (e.g. biomass) by remote sensing techniques, the parameter distributions are iteratively updated by using Bayesian
Markov Chain Monte Carlo (MCMC) method. The calibrated system parameters are expressed by the posterior distributions
and gained by distribution mean value. Finally, the Bayesian calibration is compared with the conventional optimisation based
calibration in terms of biomass and canopy cover, where simulated annealing is chosen as the optimisation approach, indicating
a better calibration performance can be achieved by using Bayesian methods. Consequently, it is recommended that Bayesian
calibration is one promising approach to the problem of crop model calibration.
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1 Introduction

Precision agriculture is increasingly developed to improve
the work efficiency and crop productivity due to the rapid
development of modern techniques, such as remote sensing,
machine learning and crop simulation model [1-2]. It is nec-
essary to pay more attention to national food security and
sustainable agricultural development with increased concern
for the improvement of agricultural predictive parameters
because the increasing population require huge food con-
sumption, and on the other hand, to reduce the waste of water
during planting process. Crop models are tools for explain-
ing and predicting crop physiological growth by adopting
mathematical formulations under different stresses [2].

Due to the characteristics that crop growth models are usu-
ally based on the crop photosynthesis, transpiration, respira-
tion, nutrition, there is a demand for an approach, applica-
ble to crop models that quantifies output uncertainties, iden-
tifies sensitive parameters and variables to improve model
prediction performance in various scale fields [3-4]. There-
fore, in most cases, crop growth model integrated with re-
motely sensed data from diverse remote sensing platforms
has been an effective method to calibrate model input param-
eters and predict processed variables (state variables change
with time e.g. biomass or canopy cover ) and final variables
(e.g. yield).

The Agricultural Model Intercomparison and Improve-
ment Project (AgMIP) indicated that poor prediction per-
formances may be obtained when one crop model applied
in different fields, due to uncertainties in the spatial distri-
bution of soil parameters, crop parameters and field man-
agement [4-5]. These uncertainties of crop growth model
can be reduced by using more information to improve model
parametrisation and calibration, and increase the final data
assimilation accuracy.

Data assimilation has been known as a mainstream ap-
proach for crop growth and yield prediction by integrating
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crop model and remote sensing data. optimisation based
calibration is one of the data assimilation methods where
some uncertain model parameters are optimised by minimis-
ing the processed variables differences between the model
based prediction and the observed data in recent years [6-
7]. For example, Jin adopted particle swarm optimisation
algorithm to calibrate input parameters to improve the yield
prediction accuracy combining AquaCrop model and multi-
sources remote sensing data [8-9]. Xing compared three
optimisation methods for AquaCrop model calibration and
concluded that shuffled complex evolution (SCE) algorithm
is better than particle swarm and simulated annealing algo-
rithm on this model for agricultural applications [10].

In comparison with optimisation based model calibration,
Bayesian model calibration method has been widely applied
in a number of areas due to its fine properties, such as pos-
terior distribution estimation and global solution. The main
purpose of Bayesian approach is to quantify the inputs and
outputs of models by probability distributions and adopts the
rules of probability theory to update the distributions when
observed data are available [11-12]. It is deeply related to
the analysis of prior data to select the probabilistic mod-
els. Whyte calibrated cancer natural history model by adopt-
ing Metropolis-Hastings algorithm from posterior distribu-
tion and obtained a good fit to all observed data [11]. Oijen
calibrated forest models and concluded that Bayesian cali-
bration methods can be applied to all types of process-based
forest models with a high efficiency [3]. Hinsbergen adopted
Bayesian theory to calibrate car-following model and proved
it is one promising tool for quantitatively analysing inter-
driver differences [12].

The new water driven crop model, AquaCrop, with char-
acters of simplicity, robustness, accurateness, was proposed
in 2009 by Steduto showing better results in predicting crop
growth status, especially in irrigated regions [13]. Accord-
ing to the principle of AquaCrop model, Foster developed it
into an open-access called AquaCrop-OS which can avoid a
compiled software problem and be linked with other disci-
plinary models quickly to support yield estimation, water re-
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source management and intelligent irrigation program from
2016 [14]. AquaCrop-OS is one Matlab programmed soft-
ware and has been proved to be able to get a corresponding
performance with AquaCrop model experimenting on wheat,
cereals and potatoes by Foster [15].

Previous researches have been mainly focused on adopt-
ing optimisation based method to calibrate crop model
integrating crop model and remotely sensed information
so that a better prediction can be guaranteed (see [6-9]).
However, little has been done to calibrate AquaCrop model
by using Bayesian method. Consequently, AquaCrop-OS
parameters will be calibrated by using biomass measure-
ment data in this paper as a case study. And, state variable
canopy cover will also be adopted to show the prediction
performance. Our goal in this paper is to demonstrate how a
Bayesian approach provides a logical method for calibrating
AquaCrop model and compare the optimisation based
calibration results with Bayesian calibration results. The
remaining part of this paper is organised as follows. The
superiority of Bayesian calibration compared with optimisa-
tion based calibration is described in Section 2. Calibration
methodology is discussed in Section 3, including data
sources and calibration process. Bayesian calibration results
are presented and compared with optimisation calibration
results in Section 4. Finally, conclusions are drawn in
Section 5 with future work.

2 Bayesian calibration

Calibration is the process of inferring the model param-
eters from the data on the model outputs. However, output
variables may not be accurate and comprehensive to allow
exact inference of parameters values [3]. The optimisation
approach for crop model calibration aims to find a combi-
nation of parameters that minimises an objective function
J . Various types of objective functions have been consid-
ered in the literature, although most often it is defined by the
sum of the squared differences (SSE) or root-mean-square
error (RMSE) between model based prediction data and ob-
served data (remote sensing acquisitions). It is assumed that
the output state variables generated by parameters produc-
ing the minimal error is the optimal estimate of the param-
eters. Normally, optimisation methods employ an iterative
process, where the objective function is minimized by adopt-
ing various update rules, to find an optimal point [16]. In
crop model calibration area, several optimisation calibration
methods have been used in this research for a long time,
including simplex search algorithm, Least Squares Method
(LSM), Shuffled Complex Evolution (SCE), Very Fast Sim-
ulated Annealing (VFSA) and Particle Swarm Optimisation
Algorithm (PSO) [17-20]. These kinds of methods only pro-
vide a single point of estimate of parameters and may get
stuck in an incorrect local minima [16].

Bayesian approach for crop model calibration allows
probabilistic consideration accounting for uncertainties in
input data. In this approach, prior information on system
parameters can be easily accommodated, yielding a better
parameter estimate. Besides, the Bayesian approach is in
seeking not only for finding an optimal point but obtain-
ing the probability density function of the estimated param-
eters. For this reason, Bayesian calibration is one calibra-

tion process updating probability distributions of uncertain
parameters with the advent of output variable, which differs
from optimisation based parameters “tuning”(i.e. obtaining
the best parameter combinations maximising the fit between
model outputs and observed data).

3 Methodology

Our approach is to integrate the crop model AquaCrop-
OS and simulated observations (Gaussian noise added to
the model output groundtruth variable) to estimate most
sensitive parameters and output state variables (biomass)
through Bayesian theory based on Markov Chain Monte
Carlo (MCMC) techniques. After setting the prior prob-
ability distributions of sensitive parameters and the likeli-
hood functions for the output variable, the posterior distri-
butions of calibrated parameters can be generated by run-
ning AquaCrop-OS model repeatedly referenced by MCMC
scheme [11].

3.1 Bayesian calibration framework

Run AquaCrop-OS to obtain model 
data (Biomass):

Biomi =[Biom1, Biom2,…….. BiomN]

AquaCrop-OS wheat data:
Metrological parameters 

soil parameters 
crop parameters 

management parameters 
groundwater parameters

Biomass  output adding 
Gaussian noise as observed 

data:
Biooi =[Bioo1, Bioo2,…….. BiooN]

Choose suitable 
sensitive parameters

Assimilation processed 
variables: 

Biobi =[Biob1, Biob2,…….. BiobN]

Bayesian calibration 
Method
(MCMC )

Groundtruth data: 
Bioti =[Biot1, Biot2,…….. 

BiotN]

Sum squared error 
(SSE):

G= ∑i=1N (Biobi − Bioti)2
Calibration 

Results Analysis

Fig. 1: Bayesian calibration framework

The Bayesian calibration framework is shown in Fig. 1.
The whole process consists of model data acquisitions, ob-
served data acquisitions, data assimilation (Bayesian cal-
ibration method) and results analysis part. Data acquisi-
tions are in preparation for data assimilation process, and
results analysis will present the Bayesian calibration results
with groundtruth. The AquaCrop-OS model run by default
crop parameters is described as the groundtruth. Model data
are generated by AquaCrop-OS using various crop parame-
ters and Gaussian noise is added to the output state variable
groundtruth data (biomass) as observed data. Sum squared



error (SSE) is set as an indicator to analysis calibration re-
sults by using calibrated biomass and groundtruth biomass,
given by:

G =

N∑
i=1

(Biobi −Bioti)2 (1)

where Biomi denotes the model biomass generated by wide
range of parameters, Biooi means observed biomass from
remote sensing platforms. Biobi is the Bayesian calibrated
biomass and Bioti represents groundtruth biomass.

3.2 AquaCrop model
Steuto proposed the water driven crop model with well-

properties (simplicity, robustness, accurateness) in 2009.
The relationship between crop yield and crop transpiration
under diverse stress can be simulated by AquaCrop model
[13]. The crop’s daily aboveground biomass was generated
by normalised crop water productivity (NCWP ) from the
AquaCrop model [8]. Biomass yield was determined by
NCWP and the ratio of crop transpiration (ET ) and ref-
erence evapotranspiration (ET0) via Eq. 2, and grain yield
(Y ) was obtained by multiplying the harvest index (HI) by
the biomass yield (B) (see Eq. 3).

B = NCWP ×
∑ ET

ET0
(2)

Y = B ×HI (3)

where NCWP is the normalised crop water productivity in
g/m2; ET is crop transpiration inmm; ET0 is the reference
evapotranspiration in mm; B is biomass yield in ton/ha;
HI is the harvest index; and Y is grain yield (ton/ha).

Foster developed it into AquaCrop-OS on the basis of
AquaCrop model [14, 15]. AquaCrop-OS has the same file
as AquaCrop, but is programmed by Matlab software. In-
put and output files are stored as text files in AquaCrop-OS
folder. Input folder consists of five main parts to be set:
metrological parameters, soil parameters, crop parameters,
management parameters, and groundwater. Output folder in-
cludes four parts: water contents, water fluxes, crop growth
and final output files. Input files are parameters and output
files are processed variables and final variables when time
changes, which means output state variables can be inserted
into data assimilation program. The uncertain parameters to
be calibrated in this paper are stored in crop parameters file.

3.3 Markov chain Monte Carlo (MCMC)
Bayesian calibration aims to derive the posterior proba-

bility distributions for parameters of interest conditional on
output variables, where the parameter posterior distribution
p(θ|D) is proportional to the prior parameter distribution
p(θ) and the measurement likelihood function p(D|θ), given
by:

p(θ|D) ∝ p(θ)× p(D|θ) (4)

where θ denotes the parameter vector to be calibrated and
D represents the observed data. The likelihood function
p(D|θ) evaluates each value for θ based on how well the
model with parameter θ is able to reproduce the data D.
In this work, the differences between the observed data and
model data are attributable to measure error in D and the

likelihood function is assumed to be a Gaussian distribution
with a proper covariance matrix with the following form:

p(D|θ) = p(E = D −M(θ)) (5)

where M(θ) represents the computed model output data
given a candidate value for parameter θ, and E denotes the
error between measurement outputs and process model out-
puts with parameter θ (i.e. measurement error for M(θ)).

To effectively estimate the posterior distribution, a
Markov Chain Monte Carlo (MCMC) algorithm entitled
Metropolis-Hastings algorithm is adopted. Metropolis-
Hastings algorithm is to obtain a sequence of random sam-
ples for a probability distribution for which direct sampling
is difficult. In this approach, a sequence of samples is itera-
tively generated to approximate the desired distribution. At
each iteration, the algorithm selects a candidate for the next
sample value based on the current sample value (forming a
Markov chain), where the candidate is either accepted or re-
jected with some probability.

Remark: The prior information p(θ) reflects our prior
knowledge on the parameters, which may come from past
experience or expert knowledge. If poor prior knowledge is
available, a distribution with a large covariance matrix can
be chosen and the posterior distribution will be dominated
by the data and vice versa [11-12, 16-18].

3.4 Data Sources
From reference [21, 22], crop and soil parameters in

AquaCrop model was researched by using a sensitive anal-
ysis adopting Extended Fourier Amplitude Sensitivity Test
(EFAST) under different environment and conditions for var-
ious crops and soil to determine the sensitive parameters dur-
ing the period of growth. Jin applied eight sensitive parame-
ters in his study to predict yield production [8, 9]. From lit-
erature, the normal procedure for calibration is to fix insensi-
tive parameters and adjust the sensitive parameters when the
model is localised. The range of six parameters to be cali-
brated in this paper with high sensitivity is shown in Table 1.

Table 1: Range and groundtruth of sensitive crop parameters
to be calibrated

Parameter Range Groundtruth
Canopy growth

0.05–0.07 0.065
coefficient (cgc)

Maximum canopy cover
0.82–0.99 0.94in fraction soil

cover (ccx)
Canopy decline

0.04–0.07 0.05
coefficient (cdc)

Growth degree day from
50–200 80

sowing to emergence (eme)
Shape factor for water

1.5–3.5 2.5stress coefficient for
stomatal control (pstoshp)
Growth degree day from

1300–1600 1400sowing to maximum
rooting depth (rootdep)

Groundtruth acquisition: Groundtruth is of high im-
portance during the process of crop model calibration.
AquaCrop-OS model has its default crop and soil parame-



ters stored in input files. Biomass is set as the state vari-
able output (see Fig. 2). In our case, the default crop pa-
rameters of AquaCrop-OS with high sensitivity are treated
as groundtruth parameters inputs (see Table 1).
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Fig. 2: Groundtruth and observation of biomass data over
time

Observed data and model data acquisitions: Gaussian
noise added to AquaCrop-OS model state variable output
biomass is to simulate an observed data from remote sensing
platforms. After adding the noise (mean=0; variance=100)
to the biomass in output file, an observed biomass with re-
spect to time can be obtained (see Fig. 2). Biomass of
model data are generated under various sensitive crop pa-
rameters with the range and compared with observed data
using Bayesian method to obtain calibrated parameters pos-
terior distributions.

3.5 Bayesian calibration process
Sensitive parameters to be calibrated have been listed in

Table 1. The AquaCrop-OS model can quickly be run to pro-
duce output of biomass data for a given range of parameters.
Our Bayesian based calibration used the Metroplis-Hasting
(MH) to generate multiple sets of parameters from the pos-
terior distribution.

In our case, our simulated days are set as 112, θ is de-
fined as: θ = [cgc, ccx, cdc, eme, pstoshp, rootdep] and
D includes the simulated observed data from remote sens-
ing platforms (see section 3.4). The flowchart of steps by
Metropolis-Hasting algorithm is shown in Fig. 3. At the be-
ginning of the crop model calibration, the independent uni-
form distributions with the upper and lower bounds of sensi-
tive parameters are adopted as prior information and the ini-
tial parameters are randomly chosen. From the current set of
parameters, a set of proposal parameters is obtained by tak-
ing a step randomly in the parameter space. The likelihood
of both the current set and the proposal set compared with
the given observation data is to determine whether the pro-

Initial parameter set
Calibration begins with an initial 

parameter set

New parameter set generation
A proposed new set of parameters are 

generated conditional on the current state 
of the chain

AquaCrop model 
run

Calibration Begins

Likelihood computation
Sum squared errors between model data 
and observed data are  to compute the 

likelihood of the parameters set and then 
the posterior probability at the new 

location in the parameter space

Accept/Reject parameter set
The decision to accept/reject the 

parameter set is based on considering the 
ratio of the posterior probability 

distribution at the
proposed location, to the previous 

location.

The maximum iteration 
number (3000 times)

Yes Outputs
Calibrated parameters

No

Fig. 3: Flowchart of steps by Metropolis-Hasting algorithm

posal set will be accepted or not [11]. The decision to accept
or reject the proposal parameter set is based on the consid-
eration of the ratio of the posterior probability distribution at
the proposed location, to the previous location. The current
parameter set will be replaced by the proposal parameter set
as a new current set once the proposal parameter set is ac-
cepted, otherwise, the current parameter set will be repeated
in the chain again. The aims of the whole process using MH
algorithm is to get a chain of parameters set after maximum
repeat times [11].

Table 2: Bayesian and optimisation calibrated parameters
with the observation of biomass

Parameter Optimal result Bayesian result
Canopy growth

0.0500 0.0506
coefficient (cgc)

Maximum canopy
0.9026 0.9284cover in fraction

soil cover (ccx)
Canopy decline

0.0509 0.0481
coefficient (cdc)

Growth degree day
67 66from sowing to

emergence (eme)
Shape factor for water

1.6496 2.1113stress coefficient for
stomatal control (pstoshp)
Growth degree day from

1358 1422sowing to maximum
rooting depth (rootdep)

4 Results

Calibrated sensitive parameters are in the form of poste-
rior distribution after adopting Bayesian theory and the fi-



nal parameters are obtained by distribution mean value. The
simulated annealing optimisation calibration method is com-
pared with Bayesian calibration method on parameters in Ta-
ble 2.

For a real experiment, it is inconvenient to compare the
calibrated parameters with the groundtruth parameters, thus,
the evaluation of calibrated parameters will be conducted by
state variable output: biomass. Groundtruth biomass and
calibrated biomass is calculated by using sum squared er-
ror (SSE). Moreover, calibrated canopy cover by Bayesian
method will also be compared with optimisation method.
The error of the calibrated biomass and canopy cover by
optimisation and Bayesian methods in comparison with the
groundtruth can be described from Eq. (6) to Eq. (9).

Ebo =

N∑
i=1

(Bioopt −Biotruth)2 (6)

Ebb =

N∑
i=1

(BioBay −Biotruth)2 (7)

Eco =

N∑
i=1

(CCopt − CCtruth)
2 (8)

Ecb =

N∑
i=1

(CCBay − CCtruth)
2 (9)

where Bioopt and BioBay indicates calibrated parameters
applying to biomass by optimisation method and Bayesian
method, respectively. CCopt means state variable canopy
cover generated by AquaCrop-OS model using optimisa-
tion calibrated parameters and CCBay means state variable
canopy cover generated by AquaCrop-OS model adopting
Bayesian calibrated parameters. Biotruth and CCtruth rep-
resents the default groundtruth of biomass and canopy cover.
N is the simulated days.

Table 3: Sum squared error of calibrated canopy cover
and biomass by using optimisation based calibration and
Bayesian based calibration

State variable Optimisation error Bayesian error
Canopy cover (CC) 0.2238 0.0658

Biomass (Bio) 4573.1 163.5

The error of Bayesian calibrated biomass and the
groundtruth is 163.5 and the error of optimization based cal-
ibration is 4573.1, much larger than Bayesian calibration er-
ror (see Table 3). The error of Bayesian calibrated canopy
cover and the groundtruth is 0.0658 and the error of op-
timization calibrated canopy cover and the groundtruth is
0.2238, which shows calibrated canopy cover also obtains
a corresponding result as calibrated biomass.

Additionally, from Fig. 4 and Fig. 5, it is obvious that
biomass or canopy cover employing Bayesian calibrated pa-
rameters (pink line) outperform optimisation based calibra-
tion results (green line) as Bayesian line is much closer to
the groundtruth (blue line).
5 Conclusion

In this study, we conducted Bayesian calibration method
applying to AquaCrop crop model and compared this

0 20 40 60 80 100 120

Time (day)

0

500

1000

1500

2000

2500

3000

B
io

m
a

s
s

(t
o

n
/h

a
)

Biomass over time

Truth
Optimized
Bayesian

78 78.2 78.4

1875

1880

1885

Fig. 4: Optimisation and Bayesian calibration results with
the measurement of biomass
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method with conventional optimisation based calibration
where simulated annealing is chosen. As can be seen from
this simulation, the parameter distributions are iteratively
updated by using Bayesian Markov Chain Monte Carlo
(MCMC). The calibrated system parameters are expressed
by the posterior distributions rather than a point estima-
tion. Results showed that Bayesian calibration outperforms
the simulated annealing optimisation based calibration ap-
proach on model output biomass, and canopy cover results
is along great agreement with biomass results avoiding over-



fitting problems. Therefore, Bayesian method provides one
promising approach on crop model calibration reducing the
uncertainties. In the future, the combination of multiple pro-
cessed variables calibration will be considered rather than
only one single variable like biomass or canopy cover. Fur-
thermore, our work will also move to a field experiment and
the observed data will be collected from UAVs and satellite
remote sensing platforms. By integrating various sources ob-
served data and the AquaCrop model, the Bayesian calibra-
tion results will improve further.
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