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Non-linear time-cost trade-off models of activity crashing:  

Application to construction scheduling and project compression with fast-tracking 

 

Highlights 

 

• Almost all time-cost trade-off models are wrongly assumed to be linear or discrete. 

• Two new non-linear theoretical models are proposed for construction projects.  

• They allow discrete/continuous, and deterministic/stochastic configurations. 

• Comparison of crashing and fast-tracking is mathematically analysed. 

  



Non-linear time-cost trade-off models of activity crashing: Application to construction 

scheduling and project compression with fast-tracking 

 

Abstract 

When shortening a project’s duration, activity crashing, fast-tracking and substitution are the 

three most commonly employed compression techniques. Crashing generally involves 

allocating extra resources to an activity with the intention of reducing its duration. To date, 

the activity time-cost relationship has for the most part been assumed to be linear, however, a 

few studies have suggested that this is not necessarily the case in practice. 

This paper proposes two non-linear theoretical models which assume either collaborative or 

non-collaborative resources. These models closely depict the two most common situations 

occurring during construction projects. The advantages of these models are that they allow 

for both discrete and continuous, as well as deterministic and stochastic configurations. 

Additionally, the quantity of resources required for crashing the activity can be quantified. 

Comparisons between the models and another recent fast-tracking model from the literature 

are discussed, and a Genetic Algorithm is implemented for a fictitious application example 

involving both compression techniques. 
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1. Introduction 

Compressing a schedule with the intention of shortening a construction project’s 

duration is sometimes necessary for meeting deadlines or mitigating delays [1]. Research in 

this area has remained very productive over the last 50 years within the disciplines of 

scheduling, project management, operational research and computer science. However, as 

will be seen later, most studies have incorporated schedule compression algorithms that take 

for granted certain pre-established relationships between activity durations and their costs [2]. 

The most common of these assumptions has been that the time-cost trade-off 

relationship is linear. This means that when an activity is compressed (shortened by adding 

resources) its cost increases linearly per unit of time compressed. 

Other assumptions incorporated in compression algorithms modelling crashing have 

included: assuming (often arbitrary) limits for by how much the activities can be crashed [3]; 

discretising the trade-off relationship into a series of points (sometimes referred to as 

‘crashing modes’) [4,5]; and neglecting the efficiency loss incurred as more resources work 

simultaneously on the same activity [2]. In particular, the latter simplification has been 

causing significant deviations between planned and actual durations in real construction 

projects, as recently analysed by Arashpour et al. [6–9] in off-site construction.  

Many of these simplifications were originally made in order to reduce the 

computational effort required to obtain optimal (or near optimal) compressed schedules. Even 

though computers are nowadays far more powerful than they were fifty years ago, many of 

these assumptions are still being used. To date, the original time-cost trade-off models, and in 

particular their underlying assumption of linearity, have remained unchallenged [10] even in 

light of a number of studies which have proven that many of these assumptions do not hold 

true in real contexts (e.g. [2,11,12]). 



Actually, the very earliest studies on crashing published in the early 1960s already 

recognised the non-linearity between time and cost at both project- and activity-level [13,14]. 

However, presenting hard empirical evidence was done sparsely and much later. Two of the 

most commendable efforts on this regard were made by Reda and Carr [2] in 1989 and 

Khosrowshahi [15] in 1997. Particularly, Reda and Carr [2] proved to what extent the 

variable number of resources allocated when crashing an activity was not linearly related to 

its time compression. They also illustrated how this made finding the project’s shortest 

duration and cheapest cost a quite challenging problem in the construction of two concrete 

piers for a bridge. Khosrowshahi [15] illustrated again, but in much more detail, the same 

phenomenon when a series of 12 similar housing buildings were built in Hong Kong. Other 

minor works providing additional empirical evidence have also been published since then. 

Some will be recounted later. 

This paper offers a new alternative to the well-established linear and discrete trade-off 

models developed in the past. The alternative consists of a model that represents much more 

realistically the activity duration and cost correlation. The correlation model proposed can 

adopt two configurations depending on whether or not resources work collaboratively. It also 

involves realistic variables and parameters that are usually known, or can be reasonably 

approximated, when executing construction projects. Finally, it also allows for calculation of 

the number of resources required for achieving different levels of compression.  

Hence, the proposed model offers a new, more accurate alternative for evaluating the 

subcomponents (activity times and costs) of the objective function (generally the project 

compression and/or total cost) in scheduling compression problems. Future optimisation 

algorithms that implement the models proposed here will thus be more representative. 

The paper will be structured as follows: the Literature review will provide an 

overview of the most relevant areas that previous research on schedule compression has both 



focused on and neglected. The Materials and methods section will describe the model 

proposed with its two variants. It will be used to calculate the costs associated with each of 

the cases and the results will be compared with a recently developed fast-tracking model 

from the literature. In the Application example section, the model will then be applied to a 

fictitious project in which the activity crashing and fast-tracking models will be employed 

both simultaneously and separately. Finally, a joint Discussion and Conclusions section will 

summarise the contributions of this research to the body of knowledge and their implications 

for the scientific and professional community. In addition, some areas for future research and 

development will be suggested. 

 

2. Literature review 

This paper is concerned with improving the representativeness of time-cost trade-off 

mathematical relationships so that construction schedules can be crashed in a more informed 

manner. The first reference to activity crashing and the network compression problem dates 

back to 1961, when Fulkerson proposed a linear programming approach for finding the least 

cost curve for a project composed of many individual ‘jobs’ [13]. In Fulkerson’s model, each 

job had associated crashed and normal completion times, and the cost of each job varied 

linearly between these limits of time. 

At a similar time, Kelley [14] applied the Critical Path Method to the compression 

problem proposing the mathematical basis for many future algorithmic implementations. He 

also employed linear programming within his research. 

Four years later, Meyer and Shaffer [16] applied integer linear programming to the 

crashing problem, and proposed three non-linear activity time-cost trade-off models. In 

particular, they proposed: (1) Non-increasing, bounded, piece-wise linear, continuous, and 



non-convex curves; (2) curves bounded and defined only at discrete points; and (3) bounded 

discontinuous curves. However, they did not provide any information about where these 

curves came from, the applicability of each type of curve, or how to estimate the curves from 

real project data. 

Since the publication of Meyer and Shaffer’s paper, the number of algorithmic 

implementations of the crashing problem has been steadily increasing. Surprisingly, hardly 

any of these later algorithms have considered crashing models which are not either linear or 

discrete. A few exceptions where non-linear models have been implemented include: Vrat 

and Kriengkrairut (1986) [11], Nonobe and Ibaraki (2006) [17], and Goh and Hall (2013) 

[18] who used convex piece-wise linear functions; Deckro et al. (1995) [10] and Liberatore 

and Pollack-Johnson (2006) [19] who employed quadratic models; Khosrowshahi (1997) [15] 

who used cubic polynomial curves; and Diaby et al. (2011) [12] who incorporated negative-

exponential curves. Unfortunately, little if any evidence has been provided as to why these 

alternatives are superior and/or more realistic than their linear or discrete counterparts. 

Although the underlying activity crashing model has remained unchallenged for many 

years, the number of optimisation algorithms published has continued to increase. 

Optimisation algorithms are designed to help find feasible combinations of activity durations 

and costs, so that (generally) a project’s total cost is minimised. An optimisation algorithm 

essentially tries to navigate efficiently through the space of feasible (as well as sometimes 

unfeasible) solutions. All optimisation algorithms thus need a model to evaluate the merit of 

each solution, which is the focus of this study.  

Examples of optimisation techniques being applied to the schedule crashing problem, 

implementing either linear or discrete models, are countless. The following is a representative 

list whose items have been approximately ordered in decreasing frequency order from the 

literature: 



• Heuristics 

• Linear programming 

• Genetic algorithms 

• Fuzzy programming 

• Mixed Integer programming 

• Non-linear (normally mixed integer) programming 

• Simulated annealing 

• Branch and bound algorithms 

• Dynamic programming 

• Ant colony optimisation 

• Particle swarm optimisation 

• Tabu search 

• Integer programming 

• Constraint programming 

• Harmony search 

• Imperialist competitive algorithms 

• Combinations of the above techniques. 

There have been many differences among these implementations. Some have 

considered limited resources (e.g. [17,20–23]) and some have allowed activities to split [24]. 

Most have incorporated continuous trade-off curves, although some have included discrete 

curves (e.g. [5,22,23,25]) or, less frequently, piecewise linear curves (e.g. [11,18,26,27]). In 

most cases, both upper and lower crashing boundaries have been included, however in some 

cases lower bounds have been excluded to allow non critical activity stretching (opposite of 

compressing) [3,28,29]. Moreover, a few have considered flexible activity predecessor 

relationships (e.g. [19,30]). Most algorithms have required input of perfect information, but 



some work with either fuzzy [31–33] or stochastic information [34,35]. Furthermore, some 

have included a correlation between activity durations [36] while most have not. Finally, 

although there have been some commercial computer applications developed from the 

algorithms proposed (e.g. [37,38]), in most cases, research has remained more theoretical. 

Many of these algorithmic implementations have also allowed for other primary 

and/or secondary objectives in addition to total project cost minimisation. Among the many 

alternative, sometimes complementary, objectives, are restraining the maximum total project 

duration [39], achieving a minimum project quality threshold [40,41], maximising the project 

net cash-flow [42,43], maximising the client’s satisfaction [44], and avoiding resource over-

allocations [45] and/or idle times [22]. 

However, to the best of our knowledge, a truly theoretically-based model that 

attempts to represent actual time-cost trade-off relationships has never been published in the 

scientific literature. This is particularly striking as many studies have discussed that the time-

cost relationship is certainly not linear (e.g. [2,4,10]). 

Conversely, application of crashing in real life construction projects has remained 

limited. Some examples where crashing has been used include references [2] and [15] 

provided in the Introduction. Other lesser examples are other works published on the 

construction of a highway in India [46], a high-rise building in Korea [47], as well as the 

production and distribution of batteries within a supply chain [48]. Furthermore, Ng et al. 

[49] conducted a survey in 2004 to find out how both Hong Kong clients and contractors 

chose which activities to crash when expediting projects. Surprisingly, cost was regarded as 

one of the least important factors. 

Furthermore, there have been limited attempts to combine activity crashing 

algorithms with other compression techniques (i.e. activity overlapping or fast-tracking, and 



activity substitution) [50–52]. Examples of algorithms combining two or three of these 

techniques include: Liberatore and Pollack-Johnson’s [19] quadratic mixed integer 

programming algorithm; Dodin and Eliman’s [53] mixed integer linear program; Gerk and 

Qassim’s [54] mixed-integer nonlinear programming algorithm; Hazini et al.’s [50,55,56] 

genetic algorithms; Meier et al.’s [57,58] heuristic and evolutionary algorithms; and 

Abuwarda and Hegazy’s [59] flexible activity precedence relations for crashing and 

overlapping activities. 

In summary, most algorithmic implementations of crashing, whether combined or not 

with activity overlapping and/or substitution, have been incorporating ill-based models for 

evaluating sets of activity compressions and costs. This has not prevented the schedule 

compression problem from becoming a mathematical playground for many mathematicians, 

operational researchers, computer scientists and project managers. However, there is clearly 

an opportunity to improve the representativeness of past and future algorithms to improve 

applicability to practical situations. 

 

3. Materials and methods 

In this section, we will formulate two non-linear crashing models for the case of 

collaborative and non-collaborative resources. For that purpose, the next subsections will 

develop sequentially the mathematical expressions for calculating the activity crashed 

durations (in subsection 3.1), the efficiency loss as multiple resources are working together 

(in subsection 3.2), and the activity crashed costs (in subsection 3.3). Finally, all variables 

(activity durations, number of resources and costs) will be connected with each other in 

subsection 3.4. 



Most papers on shortening project schedules have been written for the construction 

sector, although a number of their findings and recommendations can easily be extrapolated 

to other industries [60]. That being said, this paper will also focus on construction projects.  

 

3.1. Activity crashing models 

To begin, we define activity i as a task or a set of relatively homogeneous tasks that 

can be performed by a single type or well-balanced team of renewable resources. The term 

‘renewable’ implies the resources are available on a period-by-period basis and their total use 

at any given time point may be constrained. Examples of renewable resources are manpower, 

machines, tools, equipment, and space [61]. By well-balanced team, we mean that a number 

of different resources contribute together towards the completion of the activity and that if 

the activity needs to be expedited, a multiple number of these resources will be necessary. 

We can thus define: 

di Initial duration of activity i when only one resource (team) is allocated to the activity. di 

can be stochastic and defined by μi and σi, or deterministic.  

isd  Crashed duration of activity i when the number of resources (teams) is ≥1 (when the 

number of resources equals 1, then 
is id d= ) 

ni Number of resources (or resource teams) allocated to the execution of activity i 

μi Average duration of activity i when ni=1 

σi Duration standard deviation of activity i when ni=1 

ηi Performance coefficient of activity i as more resources are allocated to it. This 

coefficient varies between [0,1] and is explained later in more detail. 

As shown at the top of Figure 1, and for the sake of simplicity, the duration di of an 

activity i will be modelled here by a Normal distribution. This assumption has been employed 



in many previous works and provides good approximations in most instances [62]. With 

regards the crashing of activity i, there are two possible options depending on whether or not 

the required resources collaborate. 

<Insert Figure 1 here> 

In the case of collaborative resources, there is shared and non-pre-allocated work. 

This means that all resources or teams work until all work is complete. Resource teams who 

have finished their share of work will help other teams who have not, until all work is done. 

As a result, there will be no idle resources at any point during the activity execution. In 

construction settings, this generally depicts a crashed activity executed by (resource) teams 

from the ‘same subcontractor’. It is depicted at the bottom left of Figure 1, where 
xi

d  

corresponds to the duration of each sub-activity on which a single resource (team) is working. 

In contrast, with non-collaborative resources, there is pre-allocated and non-shared 

work. This means that each resource team works on its own pre-allocated share of the work, 

and work is not shared with other teams. As a result, top-performing (quickest) resources will 

remain idle or move to another activity instead of helping another team complete their work 

for the original activity. This scenario corresponds to a crashed activity being carried out by 

resources from different subcontractors. It is obviously less efficient than the previous 

crashing option, where all resources remain collaborative. This case is shown at the bottom 

right in Figure 1. 

From the mathematical point of view, the two cases exhibit significant differences. In 

the case of collaborative resources, the total activity duration once crashed (
isd ) will 

correspond to the average of its sub-activities’ durations. However, as resources are 

collaborative, they all complete their work at the same time. This is defined mathematically 

as: 



{ }avg
i xs id d   with x=1, 2, …, ni resources   (1) 

Introducing the performance coefficient ηi (which reflects the resource efficiency loss 

as more resources work simultaneously) and considering that the sum of work (sub-activities 

xi
d ) undertaken by each resource is equal to the total original amount of work, gives: 

1, ,
x

i i i i
i

i i i ii i i

d N N
n nn n

µ σ µ σ
η ηη

   
=      

   
    (2) 

This is because if ηi=1 is assumed (no efficiency loss irrespective of the number of 

resources), the sum of all 
xi

d  would equal the original Normal distribution representing di. 

We can thus conclude that: 

{ }
1,2,...

1avg ,
i x

i

i i i
s i
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dd d N
n n n
µ σ

η η=

 
≈ = 

 
    (3) 

On the other hand, in the case with non-collaborative resources, the total crashed 

activity duration will correspond to the time spent by the slowest resource (or team). It is 

possible to model this situation by: 

{ }max
i xs id d   with x=1, 2, …, ni resources   (4) 

The duration of each sub-activity 
xi

d  is also represented by equation (2) and, as 
isd cannot be 

simplified, it becomes: 

1,2,...

1max ,
i

i

i i
s x n

i i i

d N
n n
µ σ

η=

   
      

     (5) 

 
3.2. Resource performance coefficient 

Both crashing options described above include a performance coefficient ηi that 

reflects the reduction in efficiency which occurs as additional resources are allocated to an 

activity. This coefficient will always depend on the specific nature of the construction 



activity, but it is generically modelled here via the following expression as a function of ni 

(the number of resources) and a per-unit dimensionless coefficient αi: 

i

i i
i

i n
n

α
αη −==

1
  with αi  ∈ [0, 1]    (6) 

This relationship is shown graphically in Figure 2. 

<Insert Figure 2 here> 

In the limit of αi=1, as more resources are added, the productivity decrease is such 

that it negates the contributions of the added teams. In contrast, when αi=0, all resources 

remain 100% efficient irrespective of the number of resources (resources are perfectly 

coordinated). 

 
3.3. Cost of crashing 

Having modelled the possible duration of activity i once crashed (
isd ), it is necessary 

to quantify the cost of the crashed activity, taking into consideration ηi. This requires the 

following variables: 

ci Total cost of activity i 

fi Fixed cost of activity i 

vi Variable cost of activity i 

ri Cost of non-renewable resources (e.g. materials, energy) 

xi
m  Resource (team) mobilisation unit cost. By default it will be assumed that 

1 2
...

ni i i im m m m= = = =  unless explicitly stated otherwise. 

Hence: 

iiii vdfc +=       (7) 



Where: 

iiiiiii mnrmnrf
x

+=+=      (8) 
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1 α
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It is worth noting that both crashing alternatives (i.e. with collaborative and non-

collaborative resources) have exactly the same cost. This is because each resource contributes 

to the cost as long as it is working, and on average, the total work carried out by the resources 

is the same in both crashing alternatives. Instead, it is the final crashed duration which differs 

(non-collaborative resources are less efficient than collaborative ones, hence the duration of 

an activity carried out by collaborative resources will always be equal to or shorter than the 

duration of an activity carried out by non-collaborative resources). 

Hence, the cost of a crashed activity can be written using any of these three equivalent 

expressions that will be used indistinctively from now on: 

( )isiiiiiiiiiii
i

iiii vdmnrvdnmnrvdmnrc
i

i ++=++=++= α

η
1   (10) 

It may be useful on some occasions to understand the additional cost associated with 

crashing an activity. This cost increment can be easily calculated as detailed below for both 

crashing alternatives. More specifically, if 
fic  and 

oi
c  represent the final activity cost (after 

crashing with ni>1) and the initial activity cost (without crashing when ni=1), the difference 

Δci becomes: 
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In expression (11), the value of ni will be different depending on whether or not the 

resources are collaborative. 

 

3.4 Time-Cost trade-off curves 

Now that both the duration and costs of crashing an activity are known, the 

relationship between these two, i.e. the time-cost trade-off curve, can be calculated. 

Additionally, the number of resources ni will be related to both these variables for the two 

crashing alternatives. The relationship between these elements is depicted in Figure 3. 

<Insert Figure 3 here> 

To calculate ci as a function of 
isd  in the case of collaborative resources, we first need an 

explicit value for ni, which can be worked out from expression (3) as follows: 
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By combining (12) and (10), the total cost of a crashed activity with collaborative resources 

becomes: 

( ) ( ) i
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i
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dvdmrvdmnrc
α−











⋅++≈++=

1
1

   (13) 

Possible simplifications for this expression include: 

di = μi  → Deterministic approach (instead of the more general stochastic di=N(μi, σi)) 

mi = 0   → No resource mobilisation cost 

αi = 0   → No resource performance decrease with ni > 1 (i.e. ηi is always equal to 1)  



Under these conditions, the cost of crashing would be constant: 

iiii vrc µ+=       (14) 

However, assuming all these conditions are true simultaneously may be unrealistic. 

Hence, the probability of the cost remaining constant, or even linear as 
isd  varies, are very 

slim. This proves mathematically that the current models in the literature deviate significantly 

from reality. 

Similarly, the cost of crashing in the case of non-collaborative resources also requires 

determining a value for ni. However, this is not directly possible from expression (5). Indeed, 

a value for the variable ni cannot be extracted from the Normal distribution in (5), and a 

simplification is required for the computation of the maximum of the 
xi

d  durations which 

correspond to independent and identically-distributed (iid) Normal distributions. 

In this case, a problem arises as the Normal distribution is not a max-stable 

distribution; it is only sum-stable (the sum of normally-distributed variables is still normally-

distributed). This is in fact the reason why in the crashing alternative with collaborative 

resources, it was possible to work out the value of ni in (3). 

Therefore, the only suitable method for computing the maximum of expression (5) is 

to replace the Normal distribution representing the original activity duration di by a max-

stable distribution. There are only two max-stable distributions available for this purpose: the 

Gumbel and the Fréchet. Both distributions are used predominantly in natural sciences (most 

noticeably hydrology) and economics to model the statistical distribution of maxima of series 

of values. Besides, as highlighted above, both are max-stable which means that the maxima 

of Gumbel- or Fréchet-distributed values are still Gumbel- or Fréchet-distributed. As the 

Gumbel distribution is slightly simpler and its parameters have physical meaning, it is the 

preferred candidate in this case. 



The Gumbel distribution is defined as a function of two parameters: θ (location) and φ 

(scale), and will henceforth be referred to as G(θ, φ). Using the method of moments, the 

Gumbel distribution that represents the distribution of the duration of each sub-activity i  

(
xi

d ), is: 

( ) 0.45 0.781 1 1, , ,
x

i i i i i
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Knowing that the distribution of the maximum of a Gumbel distribution corresponds to 
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where LN ni represents the natural logarithm of ni, the Gumbel distribution representing the 

duration of the crashed activity 
isd  in the case of non-collaborative resources is: 
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As the intention here is to work out the value of ni, a reasonable estimate can be found 

using the expected value of the distribution above, i.e. (θ+0.57721φ), and thus: 
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78.078.0
1    (18) 

Unfortunately, it is still not possible to work out the value of ni unless additional 

simplifications (e.g. σi=0) are made. Therefore, there will be no better option than working 

with the implicit equation stated in (18). 



For the sake of simplicity, the remaining expressions relating 
isd  (the activity’s 

crashed duration), ni (the number of resources allocated to the activity) and ci (the cost of the 

crashed activity) will not be justified step by step for both alternatives here. Instead, they are 

summarised in Table 1.  

Table 1 shows how either 
isd , ni or ci can be obtained once the value of one of the 

other two is known for both collaborative resources (top) and non-collaborative resources 

(bottom). Namely, in each row one of these three variables is assumed to be the independent 

variable and one or several approximated explicit or implicit expressions are provided to 

calculate the value of the other two. Indication of whether these variables can be continuous 

or discrete, as well as deterministic, stochastic or both, have also been provided. Table 1 

contains the core expressions that future optimisation algorithms will require when playing 

with the values of activities crashed durations, crashed costs or number of resources when 

trying to find the optimum compressed schedule. 

<Insert Table 1 here> 

From Table 1 it is evident that for crashing problems with collaborative resources, if 

isd or ni are independent variables, the other two (dependent) variables can be obtained via 

explicit expressions. In contrast, when the cost is the independent variable, at least one of the 

other two dependent variables will have to be obtained via an implicit expression. 

Analogously, for the case of non-collaborative resources, the only independent 

decision variable that allows generating both stochastic and deterministic values of the other 

two is ni. When the decision variable is either 
isd or ci, the associated stochastic expressions 

are not straightforward and would necessarily be mere approximations. However, these are 

not paradoxically great limitations, as when resources work non-collaboratively, the number 

of resources ni should be considered as a discrete rather than continuous variable in most 



cases. Fortunately, it is easy to infer from the value of ni both the deterministic and stochastic 

values of the other two variables 
isd  and ci. It can thus be said that with the above analysis, 

the most common situation has been adequately represented, and the remaining scenarios will 

be left for future and more advanced mathematical studies. 

 

4. Crashing vs. Fast-tracking 

Fast-tracking a schedule involves partially overlapping critical activities and overriding 

their original precedence relationships to some extent, with the intention of shortening the 

overall project duration [52]. Both activity crashing and fast-tracking are schedule compression 

techniques, but, as seen earlier, few algorithms have considered the use of both in the same 

project [51]. 

One of the more advanced models on project fast-tracking was proposed by Ballesteros-

Pérez in 2017 [63]. Ballesteros-Pérez’s model allows fully stochastic analysis of activity 

overlaps which is an important feature allowing for a fair comparison to be made with the 

model(s) proposed here. Ballesteros-Pérez’s model and the one developed in this paper will 

also later be combined when proposing an algorithmic implementation for a fictitious project. 

In order to compare and combine these models, it is first necessary to homogenise the 

notation. The adapted variables from Ballesteros-Pérez’s fast-tracking model are as follows: 

oi Duration overlap between the successor activity i and its predecessor 

ipd  (Crashed or not) duration of the predecessor(s) of activity i  

isd  (Crashed or not) duration of successor activity i (the one that will start earlier after an 

overlap with its predecessor(s)). 

li Time lag between a successor i and its predecessor 



csai Up-front cost of successor activity i (which is incurred immediately by simply starting 

the execution of activity i) 

csbi
 Time dependent cost of successor activity i (which is incurred as long as the activity i 

is ongoing) 

βi Parameter representing predecessor activity sensitivity (how quickly the risk of 

having to repeat the predecessor grows as the overlap increases) (0≤ βi ≤ + ∞) 

γi Parameter representing the successor activity’s evolution of cost expenditure (how 

quickly money is spent during the execution of the activity) (0≤ γi ≤ + ∞) 

It must be noted that, each activity i can be now crashed and/or overlapped with its 

predecessor(s). From the very beginning we referred to the crashed duration of an activity as 

isd  , precisely with the intention of matching the notation with Ballesteros-Pérez’s fast-

tracking model later. This way, an activity i is noted, at the same time, as the successor i. 

Later compression algorithms will be able to cover the whole range of n activities (i=1,2,…n) 

and check whether an activity i each time will just be crashed, brought forward (overlapped 

with its predecessor(s)) or both. 

Therefore, using these variables, the (extra) cost (Δci) due to fast-tracking 

(overlapping) an activity i with its predecessor can be obtained from the following 

expression: 
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where Δci ≤ ci and 0 ≤ oi ≤ MIN (dsi
 , dpi

 + li). For more details on the justification 

and development of this expression, including the multi-predecessor case, please refer to 

[63].  



However, according to Ballesteros-Pérez (2017), some of these variables can be 

simplified based on some minor conditions that hold for most construction projects: 

li = 0 Time lags tend to be zero or very close to zero, especially for critical activities 

csai = 0 No up-front cost as, in most occasions, even if materials have been purchased 

for the execution of activity i, their use will be proportional to the degree of 

progress of the activity (i.e., they will not be used up just by starting activity i) 

βi = γi = 1  On average, all Project activities increase their risks and cost, respectively, 

linearly as they increase the overlap with their predecessor(s) 

ci = csbi
 As csai = 0, ci (the cost of crashing activity i) will correspond to csbi

 now. 

Therefore, in this case, the cost increment due to fast-tracking can be reduced to: 

( )
ii sp

ii
ii dd

coofc
2

==∆      (20) 

where ci = ri + ni (mi + dsi·vi) from expression (10). 

Concerning the type of compression that is normally cheaper (crashing vs fast-

tracking), it can easily be seen that the cost of fast tracking is ( )2
i ii p so d d  times the crashed 

activity’s total cost ci. However, as Ballesteros-Pérez showed, an overlap oi bigger than the 

minimum of 
ipd  and 

isd  is illogical. Hence the maximum possible value of ( )2
i ii p so d d  is 1 

(when the length of the predecessor and successors coincide, that is, 
i ip sd d= ), and this will 

grow slowly for low values of oi. In short, the maximum cost due to fast-tracking (overlapping) 

will be equal to the activity cost ci, but it will remain much lower most of the time. 

The cost of crashing, on the other hand, does not have a ceiling and, as expression (10) 

shows, its growth is a function of: mi (resource unit mobilisation cost), vi (activity variable 



duration cost) and αi, (parameter modelling the efficiency decrease as more resources are 

added). These, as ri (the cost of non-renewable resources), remain constant when an activity is 

crashed. Hence, the only way an activity cost ci will not grow significantly as more teams are 

allocated to it will be when both mi and vi are very small compared to ri, and αi is close to zero. 

At this point, no clear boundaries can be identified, as there are many variables involved which 

can produce many different combinations. However, it seems unlikely that in most cases, mi, 

vi and αi will all remain sufficiently low that the cost increase is less than that caused by fast-

tracking.  

Therefore, a general conclusion is that, for lower levels of compression, fast-tracking 

will be a less expensive and thus a better option for most projects. However, with fast-

tracking, compression is very limited (indeed it is mathematically impossible for a project to 

be fast-tracked beyond 25%, and generally not beyond 10 to 20%, of its original duration 

[63]) . This means that, for significant levels of compression, activity crashing alone or in 

combination with fast-tracking will provide better (cheaper) configurations. This provides 

further justification for combining the two models. 

 

5. Application example 

The aim of this research was to build an improved model to more accurately evaluate 

the objective function for time-cost trade-off crashing optimisation algorithms. However, in 

order to show a first algorithmic application, a Genetic Algorithm (GA) implementing 

crashing and fast-tracking separately and jointly for a fictitious 10-activity project is 

discussed. Among common metaheuristics, GAs offer some of the quicker and simpler, but 

also effective, options. They are also usually available within commercial solvers included by 

default in spreadsheet software like Microsoft Excel ®. Moreover, GAs have successfully 



been used in crashing problems in the past (e.g. [47,55,56,64]). For all these reasons, we will 

use a GA for solving multiple instances of our fictitious project while finding quick and good 

(although maybe suboptimal) solutions. 

In this section the contents will be structured as follows. First, the fictitious project 

and its characteristics will be described in subsection 5.1. Next, compression results and its 

interpretation will be addressed in subsection 5.2. All information from this application 

example has been appended as Supplemental online material. 

 

5.1 The fictitious project 

The Activity-on-Node network of the 10-activity fictitious project is represented in 

Figure 4. This figure represents a set of generic tasks (activities) connected with some 

precedence (finish-start) relationships, along with all the information required to crash and 

overlap these activities. For this example, the (average) total project duration is assumed to 

be 200 days and the direct cost is 5,000 monetary units (m.u.). In addition, there is an indirect 

cost of 25 m.u. per day. Hence, the default (initial) total cost of the project is 10,000 m.u. 

<Insert Figure 4 here> 

To discuss how the input information required for these models could be gathered 

from real contexts, we can differentiate between duration- and cost-related information. 

Regarding duration-related information (variables μi, σi, αi): μi corresponds to the 

deterministic (average) duration of each activity which is presented in most construction 

project Gantt charts, and σi could, for example, be approximated from PERT three-point 

estimates. However, αi has been proposed in this research for the first time, hence it has not 

as yet been formally analysed. As explained previously, this parameter can only vary between 

αi=0 (when multiple resources working simultaneously do not affect each other’s 



performance) and αi=1 (when the efficiency loss is so high that with the addition of a new 

team, the final duration of the activity will be unaffected). A project manager, therefore, 

should be able to approximate the value of αi between 0 and 1 in practice. Values of: 

αi=0.333, 0.500 and 0.666 have been proposed here to reflect activities where extra resource 

allocation would cause a low, medium or high impact (respectively) on resource 

performance. 

Regarding the cost-related parameters, most construction managers should arguably 

be aware of the values of ri, mi and vi for their projects, or at least be able to make reasonable 

estimates (as a fraction of total cost ci for example). Here, an arbitrary set of values has been 

proposed. 

With all these data, we use our GA to evaluate the objective function (total project 

cost) combining both crashing and fast-tracking for each activity. More specifically, the 

algorithm will be used to minimise the average total project cost while determining the 

schedule compression achieved 

 

5.2 Crashing and fast-tracking results 

 The optimal compression results after applying the two crashing models and 

Ballesteros-Pérez’s fast-tracking model (jointly and separately) are shown in Figures 5 and 6. 

Both implementations can be found as supplemental online material under tabs Case study a) 

(corresponding to Figure 5) and Case study b) (Figure 6). 

<Insert Figure 5 here> 

The first set of solutions corresponds to crashing scenarios in which all activities are 

completed by collaborative resources; the duration 
isd  and/or the overlap oi of each activity 

are the decision variables. The number of resources ni and the activity costs ci are both 



stochastic, and average values are displayed in the figures. Both 
isd  and oi are taken as 

continuous variables. Furthermore, it is convenient to point out that variable ni admits 

fractional values, as not all resource teams have to be working full-time on the relevant task. 

The second set of solutions (Figure 6) assumes non-collaborative resources. In this 

occasion, the number of resources ni and/or the overlap oi of each activity are the decision 

variables. Activity durations 
isd  and costs ci are considered as deterministic, ni as a discrete 

variable, and oi as a continuous variable. Variable ni in this case is assumed to be an integer, 

as work has been distributed among multiple teams and fractions of a team are not physically 

possible. 

<Insert Figure 6 here> 

Many interpretations can be extracted from these results; only the most relevant will 

be included here and they focus on the lower tables of Figures 5 and 6. Firstly, with the 

crashing-only scenarios, the levels of compression achieved are significantly lower when 

resources are non-collaborative (14.8%) versus collaborative (26.9%). Similarly, the 

minimised project total cost achieved is significantly lower with collaborative resources 

(9,365 vs 9,722 m.u.). 

Secondly, the fast-tracking-only solution is the same for both sets of analyses as only 

a single fast-tracking model has been applied. Nevertheless, it is interesting to see how the 

overall level of compression achieved is lower with fast-tracking than with crashing (13.8% 

vs 26.9% and 14.8%), although the compression in which is achieved is at a substantially 

lower cost (215 m.u. vs 709 and 462 m.u.). These results are in line with the theoretical 

discussion in the previous section. 

Finally, combining both techniques (crashing and fast-tracking) gives optimal results. 

For instance, in Figure 5, although the schedule compression is lower with both techniques 



than with crashing only (23.2% vs 26.9%), the total cost is reduced from 9,365 to 9,271 m.u. 

Of potentially more interest is the case in Figure 6 where the crashing-only option has been 

partially limited due to the discrete nature of ni. In this case, with a marginal cost contribution 

from fast-tracking of only 25 m.u., the schedule compression increases from 14.8% 

(crashing-only) to 21.2% (crashing and fast-tracking). In addition, the project total cost 

decreases significantly from 9,722 to 9,427 m.u.. 

This is aligned with what had been stated mathematically: fast-tracking is only 

capable of short compressions but it is highly cost-effective, and by combining both 

compression techniques, higher schedule compressions and/or cost improvements can be 

achieved. 

Finally, for the interested reader a spreadsheet has been provided as supplemental 

online material. This spreadsheet compares the performance (in terms of compression 

achieved when minimising the total project cost) between the ubiquitous linear crashing 

models and the non-linear models proposed here. No fast-tracking is included in this 

spreadsheet, as linear models, due to their deterministic nature, are not compatible with 

stochastic fast-tracking models like the one presented earlier.  

No detailed interpretations of the comparison presented in the spreadsheet will be 

provided here, as a thorough comparison between linear and non-linear models exceeds the 

aim of this paper. However, direct comparisons evidence that, both in the example of Figure 

5 (with collaborative resources) and Figure 6 (with non-collaborative resources), the results 

obtained with linear approximations do not resemble the costs or compressions obtained by 

non-linear models. This is to be expected, as previous models were not formulated using the 

same variables. More experiments, however, will be required to generalise these preliminary 

conclusions. 



 
6. Discussion and conclusions 

In 1961 the scheduling crashing problem was mathematically formulated for the first 

time. Since then, a predominant part of the scientific literature has proposed a wide range of 

optimisation techniques. However, most research has assumed that the activity time-cost 

trade-off relationship, upon which overall project compression and cost depend, is linear 

and/or discrete even though a number of authors have provided strong empirical evidence 

indicating that many of the original model assumptions do not hold in real life construction 

projects. 

In this paper, a new non-linear model for time-cost trade-off activity crashing has 

therefore been proposed. The primary variables of this model are the activity crashed 

durations, crashed costs and number of resources involved in the activity compression. 

Mathematical formulae expressing two of these variables as a function of a third have been 

proposed. Straightforward expressions have also been provided for situations covering 

resources working collaboratively and non-collaboratively. The former represents the 

situation where resources are from the same subcontractor, whereas the latter represents the 

situation where resources are from different subcontractors. Both variants have been almost 

fully developed mathematically by means of explicit or implicit expressions, and brief 

guidance about their implementation in real contexts has been provided through a worked 

example. Although the mathematical formulation of these models is relatively simple, it 

allows for discrete and/or continuous decision variables, as well as deterministic and 

stochastic analyses. These features, along with a set of parameters with a physical meaning in 

most cases, confers the model high levels of flexibility and applicability. 

Comparisons highlighting the advantages and disadvantages of activity crashing and 

fast-tracking have also been mathematically analysed and discussed, and a fictitious 



application example involving a small project employing the two compression techniques 

jointly and separately has been developed. All scenarios of the example have been solved 

with Genetic Algorithms, a popular optimisation technique which has been employed by 

many researchers for addressing scheduling problems in the past. Despite further and more 

extensive validation is required, results from both the theoretical and example analyses seem 

to suggest that activity crashing is preferable, although more expensive, when higher 

schedule compressions are required. In contrast, fast-tracking is limited to lower 

compressions but is more cost-efficient. A combination of both techniques can thus result in 

the best overall outcome. 

Finally, concerning future research, it is obvious that although the proposed model 

could still be refined, the most relevant gains would be expected from the model being 

integrated into optimisation algorithms. Since the combination of crashing and fast-tracking 

constitutes an NP-hard problem in the strong sense, future algorithms aimed at obtaining 

faster and more efficient solutions would be of great value. As an example, the polynomial 

time repeated cuts algorithm recently proposed by Hochbaum [65] for problems with convex 

time-cost trade-offs may provide a potential application of the work developed here. 

The proposed models are still resorting, in some cases, to implicit expressions. It is of 

great interest to keep working on their mathematical formulation so as to develop expressions 

that, despite being slightly less accurate, are explicit and can be more efficient from the 

computational point of view. 

Finally, a next step to be taken is to combine the non-linear and fast-tracking models 

described with the third scheduling compression technique not mentioned in this paper: 

activity substitution. Despite its being more qualitative in nature, by combining the three 

schedule compression techniques construction project managers will have a fully-featured 

framework for effective schedule compression. 
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Crashing option b): Non collaborative resources (Pre-allocated non-shared work) 
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Table 1: Summary of the mathematical relationships between the crashed activity duration 
(dsi), the number of resources required (ni) and the crashed activity cost (ci) in the case of 

both collaborative (top) and non collaborative (bottom) resources activity crashing 



 
Figure 1: Two alternative crashing scenarios 
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Figure 2: Relationship between resource performance coefficient (ηi) and number of resources (ni) 
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Figure 3: Activity time-cost trade-off curves for both crashing alternatives 
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Figure 4: Activity on Node (AoN) network for the fictitious case study with all required activity information 
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Figure 5: First set of solutions for the case study: Collaborative resources. 
Independent (decision) variables: dsi (continuous) and/or oi (continuous).  

Dependent variables: ni  and ci (both continuous and stochastic) 
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Figure 6: Second set of solutions for the case study: Non-collaborative resources. 

Independent (decision) variables: ni (discrete) and/or oi (continuous).  
Dependent variables: dsi and ci (both discrete and deterministic) 
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