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Abstract 

Prior to commercialisation, all drugs and medical devices must undergo testing to ensure safety to the 

end user. Part of this process is the pre-clinical trials stage in which high-throughput testing of the 

product is performed on cells in monolayer followed by testing in animal models. Monolayer cultures 

are generally basic, containing one cell type, which leads to minimal testing parameters. The more 

complex animal tests are often misleading as they do not adequately represent the human physiology 

and their ethics are also often contested. 3D Tissue engineered models, an evolution of the monolayer 

model more accurately mimic the structure and biochemistry of specific native tissues. To observe 

effects on the musculoskeletal system, a model representing these tissues is necessary. This thesis 

focuses on attempting to create an in vitro myotendinous junction (MTJ) for such purposes. Firstly, 

the most suitable published process for making a 3D tissue engineered skeletal muscle model was 

identified based on an analysis of requirements. A model using the C2C12 cell line in a collagen hydrogel 

between two anchor points was chosen and the process was optimised using a Quality-by-Design 

framework. This was essential to make a system that would lend itself to high-throughput testing in 

the long run. Following this, a simple process for creating an MTJ, termed ‘segmentation’ of the gel, 

was tested and showed a reduction in surface area consistent with cell attachment as previously 

reported. This involved physically blocking regions of the gel during manufacture. Multiple design 

iterations were tested to enable reproducibility. Of the tested configurations, a 3D printed PLA mould 

adhered to a 6-well plate with sliding dividers for segmentation and posts for gel anchor points was 

found to be optimal. Finally, standardising the use of ice in the gel fabrication process to prevent 

premature polymerisation of the hydrogel led to the success rate of fabrication to increase to up to 

100%. Comparisons with the initial system showed multiple indicators of more consistent gels with 

reduced failure rates, a reduction in the resources required due to scaling down, and versatility in the 

design allowing for segmentation and simple adaptation to testing apparatus for future experiments. 

This system was then tested by only seeding the central region of a gel with C2C12 muscle-precursor 

cells to create “segmented gels”. Compared to homogenously seeded constructs, the ‘muscle’ region 

in segmented gels was found to have no difference in macroscopic behaviour and only a slight 

decrease in myotube width measurements, still within published parameters. These models exhibited 

a unique ‘bow-tie’ shape from the seeding discrepancies in the different regions. During the 14-day 

culture period, the cells became equally distributed throughout the gel, indicating that they may be 

migrating over the culture period. These regions also exhibited myotube formation and although less 

densely populated, a greater incidence of striated myotubes were found in these regions as 

demonstrated by staining with rhodamine phalloidin. Finally, the end regions were seeded with 
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human dermal fibroblasts (hDFs) to represent a tendon to create a tendon-muscle-tendon model. 

Immunostaining showed that the majority of cells in the resulting construct were desmin-positive, a 

muscle-specific marker.  This is in agreement with previous research that shows that dermal 

fibroblasts can be driven down a myogenic lineage by secreted factors in culture. However, 

transitional interdigitation between the two morphologically different cell types were observed in 

some models. This represents the first report of the successful formation of a myotendinous junction 

in a collagen-based potentially high-throughput system. 
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1 Literature Review 

1.1 Embryonic development of the musculoskeletal system 

The musculoskeletal system begins to form distinctly during the gastrulation stage of embryonic 

development, during which the implanted blastocyst forms into three germ layers: 

The ectoderm - the foundation for the epidermis and peripheral nervous system; the endoderm - the 

foundation for the epithelium of the digestive system, digestive organs and lungs; and the mesoderm 

- the foundation of blood vessels, blood, heart, kidneys, bones, muscles and connective tissues. This 

mesoderm then further divides into three regions: 

The intermediate mesoderm, lateral plate mesoderm and the paraxial mesoderm either side of the 

neural tube. The latter then segments into cellular agglomerates called somites1. The somites then, 

through the expression of the protein Noggin, become the dermomyotome and the sclerotome which 

finally develop into the tissues discussed in this thesis. 

1.2 Skeletal muscle  

1.2.1 Structure of skeletal muscle 

Skeletal muscle is highly aligned and organised hierarchically once mature. At the smallest level, it 

consists of  microfilaments of myosin (thick) fibres and actin (thin) fibres as well as titin (elastic) fibres 

in repeating units called sarcomeres1. Myosin and actin are helical compounds consisting of binding 

sites that lead to contraction. The ‘I-band’ and ‘A-band’ created by these filaments are what give 

muscle a striated appearance2. One set of these make up the contractile unit called a sarcomere which 

are joined end to end in a chain at their z-discs to create myofibrils which are in turn covered in t-

tubules to transfer signals from the central nervous system1. Bundles of myofibrils make up a single 

muscle fibre which is aligned parallel to the direction of the muscle action2. The muscle fibre is a 

terminally differentiated, multinucleated cell covered in a sarcolemma and divided from other muscle 

fibres by the endomysium. The nuclei, mitochondria and other cellular components are pushed to the 

periphery of the cell1. Muscle fibres are grouped together into fascicles, and a single muscle is made 

out of a collection of fascicles covered in an epimysium. All of the structures in a skeletal muscle are 

aligned in along a single axis for to work concurrently against tension3. 

The endomysium, perimysium and epimysium make up the extracellular matrix (ECM)4. There is some 

uncertainty as to how clear the boundaries are between these three types of ECM, but it is clear that 

they exist and are responsible for bearing much of the passive force in muscle. The main structural 
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protein in the ECM is collagen and accounts for 1-10% of the weight of muscle in bovine models5,6 of 

which the most prominent types are collagen I and III in mature adult muscle3,7. 

 

1.2.2 Formation of skeletal muscle 

Most skeletal muscle in the body is derived from the paraxial mesoderm when it begins to clump to 

create embryonic somite either side of the neural tube8.  The somite in the limb buds can be divided 

into the epaxial dermomyotome – which develops into the deep back muscles - and the hypaxial 

dermomyotome – which is responsible for the development for the other skeletal muscles in the body 

and limbs. The dermomyotome then divides into the dermatome and the myotome, the latter 

retaining the hypaxial and epaxial components. Opposite the limb buds, the progenitor cells for 

skeletal muscle then delaminate from the myotome and migrate where the muscle is to form, these 

mesenchymal cells are considered to be the origin of positional cues for migrating cells9. 

Figure 1.1: Schematic of the structure of skeletal muscle. Skeletal muscle is a hierarchical tissue 
where sarcomeres, made up of filaments, are organised into myofibrils. Groups of myofibrils make a 
single myofiber. Bundles of myofibres make a fascicle, which together make a muscle belly. Adapted 
with permission from Tajbakhsh et al. 2009. 
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It is well established myogenic regulatory factors (Mrfs) including myoD and Myf5 are important in 

the formation of skeletal muscle from the precursor cells into a myogenic lineage4,10–12, as well as pax3 

upstream. Cells only begin to express MyoD and Myf5 once they have migrated to the limb, indicating 

that they are yet to have been committed to myogenic lineage until then13. Somitic cells that to not 

express these factors are committed to other lineages14. After the activation of these two factors, the 

cells proliferate until expression of crucial differentiation factors, especially Myogenin, as well as 

Mef2, Mrf4 and MyoD. Here the cells begin to differentiate through the signalling of Pax3. While 

Myogenin is thought to be the primary driver of differentiation in vivo, in vitro, Myogenin null 

myoblasts have been found to also differentiate. The proposed mechanism is through the function of 

Myod and Mrf4. 

 

1.2.3 Function of skeletal muscle 

The primary function of skeletal muscle is to contract, thereby inducing movement in the body 

through the skeleton. According to the sliding filament theory, the aforementioned contractile unit 

(sarcomere) is instrumental in skeletal muscle contraction; when the muscle is relaxed, tropomyosin 

covers the binding sites on the myosin that could otherwise be bound onto by the actin filament15,16. 

The sarcoplasmic reticulum is the store of Ca2+ ions inside the muscle which releases and reabsorbs 

the Ca2+ ions to cause contraction and T-tubules are for transmitting the signal into the depths of the 

muscle fibres. Contraction is initiated by signalling from a nerve through the neuromuscular junction 

Figure 1.2: Embryonic development of skeletal muscle. Adapted with permissions from Buckingham et al. 
2003. 
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(NMJ) that, through a cascade, causes a rise in the level of Ca2+ ions through the transverse (T)- tubules 

found surrounding the muscle fibres, supplying each myofibril with simultaneous contraction signals1. 

These Ca2+ ions cause the troponin complex to translocate the tropomyosin, thereby allowing the 

binding sites to become available to the myosin on the actin protein chain17. An influx of ATP into the 

system then attracts the myosin to bind to the newly available sites in a cyclical fashion and move 

down the chain to bring the two z-discs together, shortening the sarcomere and ultimately causing 

the entire muscle to contract. ATP is then required to reduce the concentration of Ca2+ ions to allow 

for the relaxation of the sarcomeres.  

1.3 Tendon  

1.3.1  Structure and function of tendon tissue 

Tendons can be vastly structurally different depending on the location of the body; tendons 

connecting large and powerful muscles such as the quadriceps are much shorter and broader than 

tendons for the fingers for example (see Kannus et al. for review)18. Orientation is also generally 

adapted to the required uses depending on the direction of the potential forces. Tendons can be 

rounded chord, strap-like bands or ribbons19. Nonetheless, most structural properties beyond the 

baseline are different in different tendons. Tendons and ligaments have multiple times less oxygen 

consumption than skeletal muscle due to the low cell density in the tissue and are composed therefore 

predominantly of ECM19. Tendon fibres that are in good health are composed of (70% water) parallel 

type I collagen fibres constituting 65-80% of the dry mass, with elastin making up 1-2% of dry mass. 

The extracellular matrix around these fibres is composed of is proteoglycan at 1-5% and water19–21. 

Similarly to muscle, tendon is also hierarchically arranged. 

The basic structure in the tendon is the tropocollagen molecule that crosslinks into a triple helix18. 

These make up microfibrils which in turn make up the fibrils that are gathered together to make a 

single collagen fibre. Each fibre is then covered in the endotenon. The “primary fibre unit” is the name 

for a collection of fibres18. A group of primary fibres is a secondary fibre unit called a fascicle, which 

contains tendon fibroblast cells as well as the matrix, these are able to move over each other22. These 

then group to make a tertiary fibre, and finally a bundle of tertiary fibres are a tendon which is covered 

in the epitenon. The fibrils are orientated in multiple directions within each individual fibre to form 

spirals that allow it to have strength in multiple directions18. Fascicles and tertiary bundles form in a 

spiral across the tendon18. In many regions of the body, above this is the epitenon which exists to 

prevent the mechanical stress from damaging the surrounding tissues. This is a loose sheath that 

contains the vascular, lymphatic and nerve supply to the tendon19. Additionally, in some tendons there 

is a paratenon, which is a layer of collagen fibres covering the tissue as a whole19. The epitenon is 
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connected to both the paratennon and the endotenon, these are all collagenous and fibril-based 

envelopings. It is key to note that there is a lack of consistent, specific nomenclature for tendon 

subdivisions across the field of research. 

Tendon ECM is mostly composed of collagen and elastin fibres. Additionally, ground substance - a 

collection of molecules outside the fibres such as proteoglycans, glycosaminoglycans (GAGs) and 

glycoproteins which are also synthesised by the cells, facilitating rapid diffusion of water-soluble 

molecules and form a matrix into which the cells embed - and anorganic compounds also exist in very 

small quantities, totalling 0.2 % of the dry mass19,23,24.  The collagen fibres have a crimped or ‘wavy’ 

shape when in the resting state (no tension) and once under tension, these disappear by stretching 

the fibres in their specifically oriented directions. The elasticity of the fibres allow them to recover 

their wavy shape once no longer stretched25. However, this property is not often found in human 

tendon fibres18. The ability for these fibres to recover their crimping upon relaxation is limited to an 

elongation of 4% and an 8% elongation is likely to cause rupture in the tissue26–28. Both intra- and inter 

fascicular crimping can be observed albeit irregularly 27. 

The only known function of the tendon in physiology is to transfer force between the skeleton and 

skeletal muscles, facilitating movement. Due to their relatively acellular and avascular constitution, 

they are more of a passive tissue mostly consisting of ECM which provides the majority of the 

mechanical properties through the structure of the collagen fibres. 

1.3.2 Development of tissue tendon 

During embryogenesis, the tendons of the trunk and the limbs develop differently, this is due to the 

cellular and tissue interactions and behaviours in the differing regions29,30.  

1.3.2.1 Tendon tissue development in the trunk 

The trunk tendons develop from Mesenchymal Stem Cells (MSCs) in the dorsal sclerotome adjacent 

to the myotome31. The region they develop into is not morphologically discernible from the 

sclerotome and differs only in the expression of the sclerxasis (Scx) gene32. This region becomes known 

as the syndetome. The syndetome relies on signalling from other somites to regulate its growth and 

development; FGF upregulation through the ERK/MAP kinase pathway from the myotome induces the 

expression of Scx in mice and chicks and allows for the syndetome to come into existence32. In order 

to prevent the undesirable expansion of Scx into the sclerotome, Shh proteins synthesise SoxD group 

proteins in order to limit the transcription of Scx in regions other than the anteroposterior 

sclerotome32. Separating the tendon and cartilage progenitors is the role of Pax1, the overexpression 

of which inhibits Scx31. Brent et al. also postulated that this suggest the possibility of progenitors for 

both chondrocytes and tenocytes to be of the same origins and the differentiation of the resultant 



14 
 

cells is dependent on levels of Scx expression30,32. Therefore, Scx expression is a distinctive marker of 

tendon progenitors and the cells throughout their development. 

TGFβ has also been found as important in the induction on tendon markers including Scx and 

tenomodulin (TNMD)33–35. In mouse embryos TGFβ disruption results in absence of all tendon tissue, 

but only at E12.5 when the progenitors should be aligning between muscle and cartilage tissues30. It 

was also postulated that the connection of these tissue types is orchestrated by TGF signals from the 

muscle and cartilage progenitors to encourage a second wave of tendon progenitors3330. These 

tendons will therefore develop to intertwine with the muscle and bones either side of them as the 

body matures and the tissue types signal to each other. 

1.3.2.2 Tendon tissue development in the limbs 

As the limb bud begins to develop, the tendon precursors from the lateral plate mesoderm (expressing 

Scx) migrate to and are intermixed with the migrating myoblasts (muscle progenitors from the 

ventrolateral lip of the dermomyotome) in the dorsoventral limb regions36. At this point, the presence 

and signalling of other cells is not vital for the tendons to begin developing. The tendon precursors 

then separate and create the tendon primordia, this restricts muscle growth to prevent it growing 

directly into the bone31,37,38.  

Further into development (around E6 in mice), the presence of the muscle becomes more of an 

important factor. This interdependency for development is reciprocal as the two sets of cells undergo 

morphogenesis and the tendon contributes to muscle regionalisation while the muscle regulates the 

tendon progenitor distribution39. By E12.5 the tendon progenitors undergo organisation between the 

differentiating muscle and cartilage and at E13.5 the progenitors differentiate into tendons30. Unlike 

the induction and organisation phases, the later stages of tendon development beginning at the 

differentiation step require the presence of muscle, resulting in further TGFβ signalling to induce 

tendon markers and Fgf signalling such as Fgf4 and Fgf8 which are located in regions close to the 

tendons38–40.  

The ECM is deposited from tendon fibroblasts that are given the name tenocytes, they are aligned 

between the bone and the cartilage that will eventually form the long bones before collagen 

fibrillogenesis occurs in the tendon region. This is a three stage process involving the assembly of the 

collagen molecules in close association with the tendon fibroblasts to create fibrils which then 

organise themselves end to end to fuse into longer fibrils and then associate laterally to create thicker 

fibres22,41. Therefore, the tenocytes dictate the arrangement of the ECM. 
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1.4 Bone 

Bone has a number of functions in physiology:  

Firstly, it is there to provide mechanical support to the body, thereby allowing movement through 

providing levers for muscle, it is therefore as strong as possible whilst remaining light42. These 

mechanical properties also allow it to protect vital organs and the central nervous system through 

physical shielding43.  

Secondly, bone acts as an ionic reservoir to maintain homeostasis in the blood; due to its high mineral 

content such as calcium, sodium and phosphate, it can freely exchange ions to prevent drastic 

fluctuations of blood mineral levels44.  

Finally, bone is vital in haematopoiesis; it is a store of haematopoietic stem cells (HSCs) which are 

blood precursors, eventually differentiating into cells such as red blood cells and lymphocytes which 

are key to a functioning immune system45. 

Co-cultures of 3D tissue-engineered bone and muscle have been detailed elsewhere and are out of 

the scope of this thesis46. This thesis focuses on modelling the muscle-tendon region, which could then 

potentially be combined with the aforementioned studies as a step to creating a more complete model 

of the musculoskeletal system. 

1.5 Connective tissues 

Between the three main tissue types described above are transitional areas where one distinct tissue 

type is attached to the next. Either side of the tendon is the myotendinous junction (MTJ, muscle-

tendon interface) and the osteotendinous junction (OTJ, otherwise known as enthesis, bone-tendon 

interface). This thesis will focus primarily on the MTJ, although knowledge of the OTJ is useful to pave 

the way for future experiments. Separate tissue engineered OTJ models have been attempted 

elsewhere46. 

1.5.1 Myotendinous junction 

1.5.1.1  Structure of the myotendinous junction 

The myotendinous junction (MTJ) is a specialised region of connection between the muscle and the 

tendon and is the primary region of force transfer between the two tissue types (See Charvet et al. for 

review47). 

In the early stages of development, the large nuclei in the myotube fibres and the fibroblasts from the 

tendon are located near the junction, and therefore near each other. The muscle then forms in 
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corrugated texture to allow for the infiltration of tendon fibres which develop into heavy 

interdigitations with long extensions into each other and beyond the z-line in the muscle fibres where 

the sarcomeres terminate, there are also strands that extend into the subsarcolemmal membrane48. 

Actin filaments extend beyond the final z-line of the contractile unit of muscle and are bundled 

together by actin binding proteins to form protrusions out of the end of the repeating muscle chains 

(interdigitations). These are then linked to the sarcolemma by intracellular proteins and 

transmembrane protein complexes link the basement membrane components to the cytoskeletal 

elements. The basement membrane is then connected to the collagen-based ECM outside of itself by 

proteins, thereby connecting the final actin filaments to the ECM of the tendon. This interdigitation is 

a key feature of the MTJ. The ends of the myofibers are tapered to fit into the ECM of the tendon to 

form this. These increase the contact area between the two by more than tenfold49,50. 

The MTJ has protein complexes of the subsarcolemal, transmembraneous and extracellular types47. 

Two linkage systems exist in connecting the actin and ECM proteins, both work through laminin 211; 

dystrophin associated glycoprotein complex (DGC) otherwise known as (DAPC) and the α7β1 integrin. 

The key proteins on the tendon side of the junction are tenascin- care and collagen I 51. And on muscle 

side – laminins and collagen IV47. Data on what is found in the MTJ is scarce 52, although paxillin, 

vinculin and talin are expressed in the region53,54. These ECM proteins are localised in focal adhesions 

and are mechanically linked by integrins to actin filaments, creating a system for the longitudinal 

transmission of force54.   

With age, the structure of the myotendinous junction changes; in the neonatal stage of life, the 

junction has a dovetailing shape and towards adolescence it transitions into long extensions into the 

opposing tissues. Later stages of life lead to the MTJ exhibiting a more jagged structure where the 

tendon transitions further into the surface of the myofibres48. 

1.5.1.2 Function of the myotendinous junction 

Due to the location of the MTJ, it is the first region outside of muscle that needs to transfer the forces 

generated in muscular contraction further down the chain. Therefore, it is the primary site of force 

transmission as well as the first region where significant losses in force can be conceded47.  

1.5.2 Osteotendinous Junction (Enthesis) 

1.5.2.1 Development of the enthesis 

Enthesis is the region where the bone attaches to either a tendon, ligament or joint capsule55. It is in 

fact a collection of different tissues that reduce the stress concentration where hard and soft tissues 

interface56. As every muscle/tendon connection is different according to the specific requirements of 

the joint, selectively focussing on individual junctions allows to see similarities between different 
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instances, as well as giving an example to model. The achilles tendon is said to be archetypal for this 

type of model and is generally used to understand the enthesis better55.  

The order of development of the enthesis in humans is not yet fully understood. However, in rats it 

has been shown that the periosteal and sesamoid fibrocartilages develop after birth and similarly to 

tendon, lack of muscle activity leads to an inhibition of development of the enthesis57. Indian 

hedgehog (Ihh) has been linked to being critical in the fibrocartilage development of the enthesis. It is 

likely that this is related to the development to tendon as the enthesis develops from Sox9 and Scx 

expressive cells but are not tendon fibroblasts. Again, the TGF-β family influence these cells through 

regulation of the differentiation of these progenitors and specifically regulates the formation of the 

bone eminence58 and tendon33. Developing tendons then insert themselves into bone eminences 

during the formation of the bone and tendon, this interface usually inserts itself into a bone eminence, 

however the literature on the specific mechanisms of this is scarce as it has only recently become 

studied in depth59. The combination of both BMP4 and Scx pathways play an important role the initial 

formation of the bone eminence and the development of the tendon-bone unit, alongside a number 

of other BMPs and FGFs that are currently being researched 58,59. 

During the development of the limb skeleton, chondroprogenitors develop into cartilaginous 

templates for bone. In murine models, bone eminences develop afterwards and do not exist in the 

original template, suggesting that they develop separately, exhibiting both Sox9 and Scx individually, 

either side of the interface58,60. However, this separately developing module has been recently 

inspected and requires further research59. This new model of modularity has provided an updated 

outlook on the formation on the enthesis and has evolved the theory of the ‘segregation model’ where 

the tissues of the entire unit all stem from the same pool of progenitor cells. This theory is backed by 

the requirement of Scx – positive cells expressing Sox9 in order for an enthesis to exist and the gradual 

decrease of progenitors expressing both over the course of the development of the murine 

embryo58,60. There is much more research to be done, however on the specific mechanism. 

As for the mineralisation stage, in murine rotator cuffs mineralisation of the enthesis region occurs 

concurrently with the secondary ossification in the humeral head61. The mineral gradient moves into 

the tissue that is to become the enthesis as endochondral ossification occurs in the epiphyseal bone. 

Ihh and para-thyroid hormone-related peptide (PTHrP) are key in the chondrocyte differentiation as 

covered previously. PTHrP plays a role in regulating maturation and mineralisation of the enthesis 62. 

The development of the enthesis is a controlled by a combination of biological signalling and physical 

signals, which continues after birth. After formation, the growth of muscle eminences is closely related 

to the contraction force of the muscle63. This signalling from muscle is essential for tendon formation 
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and these tendons can be visible in models in the shoulder at E15.5, however the mineralised 

fibrocartilage in the enthesis cannot be seen until the neonatal stages61,64. Paralysis of the muscle leads 

to no discernible fibrocartilage after 8 weeks and results in the collagen fibres showing less alignment, 

indicating that musculoskeletal activity beyond birth is important for the development of the 

enthesis65,66.  

Due to the lack of research looking at the interactions between all tissue types in joints simultaneously, 

there is a lack of information on the development of the enthesis. There is a requirement for a deeper 

understanding of these mechanisms through further studies. 

1.5.2.2 Structure of the enthesis 

Over the last two decades, research into the enthesis categorises it into two types; either fibrous 

(otherwise termed periosteal-diaphyseal or indirect) or as found most commonly in the human body, 

fibrocartilaginous (otherwise termed chondroapophyseal or direct)56. Fibrous entheses attach directly 

onto either the bone or the periosteum via a fibrous tissue, whereas fibrocartilaginous entheses attach 

through a layer of fibrocartilage as an additional layer to make the transition between uncalcified 

tendon to calcified bone. It does this by grading between four distinct zones where the properties 

transition from one into another, making the transition much less abrupt and allowing for transmission 

of force while being able to withstand the stress concentrated in the interfaces56,67,68.  

Fibrous tissue (otherwise termed periosteal-diaphyseal or indirect tissue) in fibrous entheses is dense 

and frequently can be found in the diaphysis of long bones68. It is characterised by collagen fibres that 

are mineralised and break through67. The tendon can either attach to the bone in a ‘bony’ fibrous 

enthesis or it can attach to the periosteum to make a ‘periosteal’ enthesis. Little material on them as 

injuries generally occur in fibrocartilaginous entheses. 

Fibrocartilaginous entheses are the standard enthesis in epiphyses and apophyses of bone and are so 

named because of the fibrocartilage at the interface. It is generally divided into four different zones 

that slowly transition one into another:  

The first is of dense and fibrous connective tissue, very much like the main body of the tendon. The 

second region of uncalcified fibrocartilage is a region of cartilage without mineral that is avascular and 

consisting of aggrecan and collagen types I-III as well as fibrochondrocytes56,67–72. This region is 

generally found in tendons that have an insertion point on the diaphyses or metaphyses of bones. This 

is usually followed by a very straight mechanical boundary known as the tidemark, which is a 

basophilic line separating the soft tissue of the uncalcified fibrocartilage with the calcified 

fibrocartilage. The third zone is another region of avascular fibrocartilage but it is in a mineralised 
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state consisting mostly of type II collagen, so the collagen transitions from being mostly type I to type 

II in this region56,67,69,70,72–74. It is of an irregular geometry which contributes to the mechanical strength 

of the enthesis, likely due to the increase of surface area in contact between transitional tissues.  

The Achilles specifically also has a ‘sesamoid fibrocartilage and a ‘periosteal fibrocartilage’ which form 

a wall next to the retrocalcaneal bursa which has an adipose protrusion to aid in the movement of the 

tendon on the bone.  

These regions, altogether make up one ‘enthesis organ’55. Although what exactly constitutes this 

particular organ is up for debate as there are other anatomical regions in the vicinity that allow for 

stress dissipation such as the plantar fascia75,76. The final zone that follows is bone. As explained earlier 

in this Section, bone is a matrix of type I collagen with appetite mineral consisting of osteoclasts, 

osteoblasts and osteocytes. The full extent of the reason behind the existence of the enthesis organ 

including why there are barriers to vascularisation and direct cell-to-cell signalling is poorly 

understood55,68. However, it is postulated that this region allows for the efficient transfer of force 

whilst reducing the stress concentration and increasing force dissipation at the interface between hard 

and soft tissue55.  

1.6 Co-culture models 

Many of the tissues developing in utero require interactions with nearby cells to fully develop. This is 

also the case with regards to muscle and tendon. During development, the interactions of muscle and 

tendon lead to the development of the MTJ, with the force transduction between the two tissues 

being the main driver for the adult phenotype24. Another key point to note is that no muscular 

development can occur without the tendon’s existence, in utero no muscle would be able to generate 

force and develop without an attachment to another tissue as twitching is a key aspect of early 

muscular development. This highlights the importance of this specific tissue interface, however the 

development of this junction is poorly understood which has led to the development of in vitro 

models50. In long term monolayer cultures, the ability of tenocytes to deposit collagen I and 

differentiate is decreased77, indicating that the conditions may not be sustainably maintain the 

phenotype. Changing the conditions to more closely represent physiology may create a more 

sustained tenocytic characteristics. 

1.6.1 Types of models 

Co-cultures involve multiple different cell types being cultured in a single or connected system. They 

have been developed to emulate native tissues and the interfaces between those tissues more closely. 

In the musculoskeletal system for example, the interfaces between tissues (the MTJ and enthesis) are 
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important to allow for transfer of force resulting in locomotion. Due to this, these regions between 

the three tissue types are where the mechanical strain is concentrated and the enthesis is where the 

majority of injuries occur requiring orthopaedic surgeries for tendon repair, whilst the MTJ is a 

common point of damage for a variety of factors including non-direct trauma, wear and aging resulting 

in degenerative conditions under the umbrella term “tendinopathies” which can in the long term also 

lead to rupture19,78,79. These types of injuries occur most often in fibrocartilaginous tendons and 

research for treatments is mostly focussed on rotator cuff, achilles tendon and less commonly patellar 

tendon in accordance with the frequency at which these injuries arise23. Due to low vascularity and 

cellular activity in these regions, regenerative capability of the body without intervention is extremely 

limited21. Therefore, once these ruptures occur, surgical repairs are routinely undertaken and may 

yield reasonable repair. However, surgical repair in these instances often has the drawback of the new 

tissue that replaces the damaged being weaker in mechanical strength whilst also not replicating the 

biological properties which can often lead to repeat failure amongst other problems64,80–82.  

In order to overcome this and attempt to encourage a more complete repair through regeneration of 

the tissue, experimental surgical procedures have begun implementing materials in the form of 

scaffolds in animal models23,24,78,83. However, before materials are deemed safe, they are required to 

go through a standard clinical trial process usually involving a simple monolayer toxicology analysis84. 

While these pre-clinical steps reduce the number of toxic, or non-viable materials that make it through 

to the next stages of the trials, there are still a large number of products that are found out to be 

unusable in later stages, wasting the industry time and money85. Therefore, improving the relevance 

and effectiveness of this stage of the process will improve the efficiency of the entire process of 

developing a device or treatment for medical use by reducing the time wasted on options that are to 

be deemed unacceptable at later stages.  

One of the largest drawbacks of the pre-clinical stage is that the monolayer assessment is too simple 

to be able to assess the complexities of the body, introducing more complexity to the model can 

therefore lead to a more relevant result. One way of doing this is to increase the number of cell types 

in a monolayer culture to make it a co-culture system. This would allow the effects of inputs to be 

tested on multiple cell types whilst also considering how having different cell types within the system 

will have an impact on each other, as in vivo tissues will almost always involve multiple cell 

populations. The second option is to alter the monolayer setup to a 3D tissue-engineered cellular 

model. These 3D models introduce an ECM for the cells to interact with, as well as more directions to 

migrate, proliferate and signal towards and allow the cells an extra dimension of intra-cellular 

interactions. Relevant examples of such models include but are not limited to: 
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1.6.1.1 Bone engineered models 

Bose et al. review a variety of 3D printing methods have been used to create bone scaffolds from a 

large range of materials (see full review for details)86. It is identified that the pore size and 

interconnectedness of the pores in the printed material is key for the formation of bone to allow for 

mineralisation and the movement of nutrients and allow for vascularisation. Bone tissue engineering 

is rarely published in a 3D pre-clinical model, the majority of these models can be seen with some level 

of implantation either into a patient or an animal model to allow for the physiological adaptations 

required to develop bone in the scaffold. In fact, bone is extensively covered in the literature for 

regenerative medicine purposes, with a wide range of methods86. This is presumably due to the model 

requiring three different cell types (osteoblasts, osteoclasts and osteocytes) to work in coordination 

to constantly model the bone according to chemical and mechanical cues on the tissue, which would 

be very difficult to replicate in vitro.  

1.6.1.2 Skeletal Muscle engineered models 

A large variety of different models have been made (see review by Christ et al.87 for more detail). In 

summary, skeletal muscle tissue-engineered models can be divided into those with synthetic scaffolds 

and hydrogel models.  

Synthetic models include electrospun fibres, films, fibre meshes, sponges, microspheres88–96. The cells 

used in all these models are generally C2C12 murine myoblasts or primary MDCs (rat human and/or 

mouse muscle derived cells). However, these scaffolds are commonly beyond the ideal stiffness 

conditions for optimal fibre fusion and maturation which would be that of native muscle tissue97. 

These scaffolds are also not truly 3D and are therefore not biomimetic in that aspect. The final 

negative is that the architectural integrity of the model is dependent on the scaffold material, so if it 

degrades over time, it will have negative implications on the structure of the whole model98. 

Hydrogels try to better replicate the 3D architecture and have been used in 3D skeletal muscle models 

since they were first mentioned by Vandenburgh et al.99. They allow for longer cultures that result in 

better muscle maturity as identified through the myosin heavy chain quantification and imaging of 

architecture. Following this, based on the mechanics of fibroblast populated collagen lattices (FPCLs), 

Cheema et al. seeded C2C12 in a system that was in a collagen gel between two fixed points before 

testing seeding densities to discover that cell-cell contact was essential for the induction of 

differentiation100,101. These constructs structurally look much like in vivo muscle as well as having IGF-1, 

myosin heavy chain, calcium transients and contractile properties in common102 . 

An alternative to collagen is the fibrin model. This can also be cast between two points103–106 as 

demonstrated by Strohman et al.107 and developed by Dennis and Kosnik108 by seeding precursor cells 
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onto a fibrin layer with two suture points. The system “self assembles” into a cylindrical construct 

between the two sutures with a highly aligned architecture of myotubes with similar mechanical and 

biological properties with promising results although lacking the tensile strength of native tissue as of 

yet89. 

Finally, much research has been done recently with composite gels, combining Matrigel®, a protein 

mixture from BD secreted from mouse sarcoma cells consisting of mostly collagen IV and laminin,  with 

collagen or fibrin109. The factors in the Matrigel have shown potential for better differentiation, higher 

maturity and improved contractile properties.  

Skeletal muscle is currently less frequently researched with the goal of being directly implanted, 

although that is of interest for more serious injuries with a variety of methods (see Qazi et. Al for 

review)110. For smaller injuries, skeletal muscle has an inherent ability to regenerate itself to a certain 

extent through the action of satellite cells and therefore, these injuries are left to repair110. In vitro 

skeletal muscle models are also used to test tissue behaviour under stimuli such as overload111 and 

diseased states such as sarcopenia112. Recently, co-culture models with neurons to create a 

neuromuscular junction (NMJ)113 and with bone to create an MTJ46 have been attempted to make 

these models more relevant by including multiple tissue types to represent the musculoskeletal 

system more accurately, including tissue interactions and multiple cell types. For example, creating an 

NMJ allows for testing of toxins that effect the junction specifically such as neurotoxin-based venoms 

and botulinum toxin which would have not been detected in a simple skeletal muscle gel model114. 

Increasing the number of tissues represented allows for more powerful analysis by enhancing 

statistical significance. This thesis takes a step into attempting a new method for creating a simple 

method to create a multi-regional tissue engineered constructs for such purposes. 

1.6.2 Current skeletal muscle hydrogel designs 

The development from 2D cell culture to 3D In vitro models of skeletal muscle was a necessary step 

to overcome the limitations of the simple monolayer model attempting to mimic complex living 

systems. Tissue engineered models have therefore been developed to recapitulate in vivo 

environments and have been covered in the literature over the past couple of decades using a number 

of different methods all attempting to create architecture similar to that found in physiological 

functional skeletal muscle. These 3D models have superior contraction and sarcomeric development 

compared to 2D models, presumably due to increased number of cell-cell contact in 3D conditions and 

mechanical stimulus on the model115. Fibrin and collagen I matrices are the most commonly matrices 

used in skeletal muscle models throughout the literature104. As described in the literature review 

Section, no current models exist that fully tissue engineer both the tendon and the bone together 
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using a simple, cheap setup. So, the focus of this thesis is to take a skeletal muscle model that meets 

these criteria as a starting point and then to begin to develop it into a muscle-tendon model. 

A summary of the main existing methods at the beginning of this project with their key components 

can be seen in Table 1.1, few of these methods are based solely on collagen, which is the most 

physiologically relevant and is also cheaper than other matrices like Matrigel® but none have 

attempted to create two tissue models in a single collagen construct. 

Amongst these methods are a number of iterations that differ slightly depending on the group 

conducting the study. The fundamental goals of all these systems are maturation, structure, survival 

in culture, contractile ability and regenerative properties115. Bian et al.116 highlighted that the systems 

need to therefore consider cell seeding densities, have cell attachment sites, allow for compaction 

and migration thereby allowing for alignment and finally have the required mechanical properties to 

allow contraction which is why many of these models share fundamental common themes matrices 

and attachment points. These then allow for unilateral alignment of the cells, which is a vital step in 

creating fused fibres replicating those of physiological skeletal muscle. 

Table 1.1: Table of systems currently used to 3D tissue engineered skeletal muscle 

Publication Matrix Cell type Containment system Gel attachment points Volume 

Vandenburgh et al., 

1996117 

Collagen + 

Matrigel® 

C2C12 murine 

myoblast 

Silicone rubber 

tubing (4mm) 

Velcro tabs or stainless-

steel screening 

400 µl 

Okano and Matsuda, 

1998 

Collagen C2C12 murine 

myoblast 

Custom capillary 

tubing (0.9mm) 

Fixed points Not specified 

Vandenburgh et al., 

2008118 

Collagen + 

Matrigel®+ 

Fibrin 

Primary 

murine 

myoblasts 

Custom built wells Silicone posts 100 µl 

Bian et al., 2009116 Fibrinogen + 

Collagen 

C2C12 murine 

myoblast 

PDMS cast against 

lithography/rapid 

photopatterning 

master moulds (1.8 x 

1.3 mm) 

PDMS (sub-millimetre 

lithography) 

100-600 µl 

Chiron et al., 2012103 Fibrin Primary 

HDMCs 

Suspended between 

two pins 

Silicone pins 150 µl 

Smith et al., 2012119 Collagen Primary rat 

DMCs 

Commercially 

available single well 

chamber slide 

Polyethylene meshwork 3200 µl 

Martin et al., 2015113 Fibrin/ 

Thrombin 

C2C12 murine 

myoblast/ 

HDMCs 

Custom built wells 

with pins 

Stainless steel pins 700 µl 

Wragg et al., 2016 Collagen C2C12 murine 

myoblast 

Commercially 

available 8-well 

plates 

Polyethylene meshwork 1500 µl 
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1.6.2.1 Tendon engineered models  

Tendon tissue engineering is also being researched but with more focus on repairing damage. Due to 

the high incidence of injuries that occur in the tendon and associated interfaces and the low cell 

density and vascularity of the tissue compared to muscle, bone and the majority of tissue types in the 

body, the regenerative capabilities are much more limited to where even small injuries may result in 

scar tissue formation. This usually leads to a weaker tissue with diminished capabilities compared to 

the initial tendon79,80.  

Much like tissue engineered skeletal muscle, tissue engineered tendons also need mechanical tensile 

cues in order to develop properly120. Most models are based on either Achilles tendon, hand flexors 

and extensors or rotator cuff tendons, as these are the tendons most often requiring repair clinically. 

With this basis, many tendon models are based on a system very similar to that of skeletal muscle 

where cells are seeded in collagen between two anchor points120,121, alternatively these gels could set 

in a mould without anchor points122. These are then implanted into animal models and have been seen 

to have positive results. Also like skeletal muscle, there is the possibility of using synthetic scaffolds, 

polylactic acid (PLA) and chitin/polycaprolactone (PCL) composites have been found to be good 

candidates123,124. 

As for the cell types used, a truly specific tenocyte marker is yet to be found120, although tenomodulin 

(TNMD), scleraxis (Scx) and collagen1-A1 (Col1A1)58 are found specifically in tendon fibroblasts and 

often used as markers. Cell types used in such models include epitenon tenocytes, tendon sheath 

fibroblasts, dermal fibroblasts, bone marrow or adipose derived mesenchymal stem cells (MSCs)and 

muscle derived cells (MDCs)120,122. However, MSCs have been found to cause spontaneous ectopic 

bone formation when healing in vitro once implanted at high concentrations69. As tendon cells are 

often referred to as fibroblasts, and are morphologically similar to most other fibroblast populations, 

dermal fibroblasts are also used in tissue engineered tendon models as well as MDCs and primary 

tenocytes122. 

Other examples of single-cell population tissue engineered models include tumors125–127 and liver128 

for disease modelling. 

As can be seen, many models that exist currently are produced with the intention of clinical 

application. Pre-clinical models as a final goal, while still researched, are not as commonly sought after 

but are seen as a means to achieving clinical applications. This thesis will focus on matching a suitable 

tendon model with a tissue engineered muscle model to be incorporated together for in vitro pre-

clinical modelling. 
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1.6.2.2 Rationale for combining skeletal muscle and tendon tissue engineered models 

During musculoskeletal development, skeletal muscle develops through twitching, it requires 

attachments to bone in order for this twitching to be productive to development, it also requires this 

throughout life in order to maintain stimulus and therefore adapt129. Lack of stimuli for skeletal muscle 

leads to degeneration and morbidity19. Tendon also requires the presence and the mechanical 

stimulus created by muscle to develop properly33,66. The two cell types require cross-talk to become 

fully developed47. Having a model of both together then gives the opportunity for two things; firstly, 

create a system with the correct cellular interactions as they would exist in vivo, which is essential for 

a system to accurately represent physiology; as mentioned above, certain outcomes are undetectable 

in models until more tissue or cell types are introduced. Secondly, it may allow for better maturation 

and development of the individual models66. 

1.6.3 Types of Monolayer Co-cultures 

The majority of cell-based research over the last four decades have been based in monolayer cell 

culture. The reason for this is the ability to isolate cellular responses and better understood for the 

specific cell populations of choice. Monolayer cell cultures are generally used to find the best 

conditions for optimisation of desired cellular behaviours such as proliferation, differentiation, fusion 

or cell-cell interactions, secreted factors, interactions with a substrate by either geometry or 

otherwise130 of specific markers through chemical or mechanical stimuli as well as understanding the 

mechanisms of these behaviours. A number of co-culture methods for monolayer systems have been 

identified. They can be divided into those that involve cell-cell contact between the different cell types 

and those that do not have this contact. The types are summarised in Table 1.2: 
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Table 1.2: Summary of types of co-culture in monolayer systems adapted from Bogdanowicz et al.130 

Type of 

coculture 

Name Method Schematic Positives Negatives 

Cell-cell 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mixed culture131,132 Two cell types are seeded 

and cultured in one vessel. 

 Very simple to set up and 

use. 

Difficult to discern 

which results belong 

to which cells. 

Micropatterned133 Cell types are seeded into 

one vessel that has had the 

surface changed to meet 

certain criteria, thereby 

separating cell types by 

encouraging attachment in 

certain regions. 

 Allows for precise placement 

and proliferation of specific 

cell populations. Thereby 

controlling the cell 

interaction levels. 

Need cell types that 

respond to different 

patterns. Takes much 

longer to prepare the 

vessel. 

Temporary divider132 An impermeable divider is 

placed between the two cell 

types until a determined 

time where it is removed 

and the cell types are 

cultured together. 

 

 
 
 
 
 
 
 
 
 
 
 

Allows control between 

heterotypic and homotypic 

cell interactions. 

Seal needs to be 

impermeable and the 

properties of the 

divider have a large 

influence on the 

system. 



27 
 

Table 1.2 Continued. 

Type of 

coculture 

Name Method Schematic Positives Negatives 

No cell-cell 

contact 

Separated co-culture The cell populations are cultured 

individually until a certain point 

where they are combined in a 

single vessel for the remainder of 

the culture period. 

 Allows for the individual 

reactions of the cells. 

The process is in two 

distinct, large steps 

meaning that the entire 

process can be quite 

arduous and time-

consuming. 

Conditioned media 134 Cell populations are cultured 

separately, the media from one is 

then transferred into the other cell 

population. 

 Allows to isolate the secreted 

factors of one cell population 

and measure the effects on 

the other cell population. 

 

Porous membrane135 Seed one cell population in the 

vessel and the other in a porous 

membrane. 

 Effects on each cell 

population can be measured 

individually. 

Soluble factors can only 

diffuse in one direction 

and some cells can 

block the pores in the 

membrane when 

proliferating or 

migrating. 
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These models evaluate the functions of a single cell population in a single matrix combined to make a 

model of a single tissue to understand its behaviour under certain stimuli. This is only limited to 

understanding how a single cell type can react within a system with no signalling or cross-talk with 

other cell types. This could include responses to cues such as temperature, gas concentrations, 

biochemical responses to certain compounds/factors and physical cues such as stretch or 

compression. However, as described earlier, musculoskeletal tissues are all part of systems and do not 

exist isolated in vivo. Therefore, to more accurately mimic and model these behaviours, it is important 

to move on from modelling tissues to modelling systems once the former has been established. As 

mentioned above, 3D tissue-engineered models allow for a more biomimetic system by introducing 

an ECM and new architecture allowing for seeding, growth, proliferation and signalling in an extra 

dimension. This has an impact on how the cells interact with each other and with the ECM, changing 

the outcomes and increased similarity to native tissue. The table above (Table 1.2) describes 

monolayer coculture types. These can all be implemented in 3D systems with similar outcomes, albeit 

with an additional element of difficulty in having to include a 3D ECM. 

1.6.4 Musculoskeletal co-cultures 

1.6.4.1 Monolayer systems 

Monolayer co-culture systems have been previously used to model skeletal muscle109. While the 

majority of myoblast experiments have been done in single cell populations, the cells’ interactions 

with many other cell types such as neurons136,137, bone marrow stem cells using the porous membrane 

method138, adipocytes using the porous membrane method139 and conditioned media method140, 

fibroblasts141 using surface patterning and a low barrier142 have all been used with good levels of 

success. However, these are mostly focussed on one specific interface or interaction between to tissue 

types and are rarely focussed on a larger scale of model such as an entire tissue or system.  

1.6.4.2 3D systems 

As described in earlier sections, the tissues of the musculoskeletal system have individual, unique 

properties that work in unison to allow for optimum function. Therefore, it is important for all tissues 

to be involved to maximally understand the behaviour of the system. 3D co-cultures have the same 

methods available to them as the monolayer methods in Table 1.2, including both cell-cell contact 

systems and those where different cell populations are separated, although some of the behaviours 

are likely vary compared to 2D systems due to the introduction of a fabricated ECM.  

1.6.4.3 Myotendinous junction tissue engineered models 

While the stages in the development of the MTJ are not yet completely understood, a number of 

attempts have been made to replicate the morphology by groups who have identified the importance 
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of the region. Larkin et al. investigated a method of pinning self-organised tendon constructs or 

adult/foetal rat tail segments into a monolayer of C2C12 cells with results indicating morphological 

similarities to tissue found in vivo24,50. These constructs were also found to have mechanical properties 

to match the morphological similarities. The results also showed some level of neonatal MTJ marker 

paxillin50. However, the preparation time for the equipment was minimum three weeks, which is 

considerably longer than many other 3D systems and presents difficulties when considering that these 

systems may find use in high-throughput testing. 

On the other hand, Merceron et al. went for a different approach, 3D printing polyurethane (PU) and 

PCL alongside C2C12 and NIH/3T3 cells respectively143. The more elastic material was used on the 

muscle side to provide the best conditions for myoblasts development and equally, a stiff material on 

the tendon side did the same for the tenocytes. This resulted in a very well controlled architecture, 

showing a clear interface between two areas of different cell populations in 3D. There was again an 

increase in MTJ markers such as paxillin. However, the culture period was shorter than many standard 

periods for skeletal muscle and therefore the full extent of the development of tissues could not be 

determined. This study was also conducted using materials that are not physiologically representative 

as the scaffold materials and not the ECM composed the majority of the non-cellular construct. 

Notably, although these models were mechanically tested, tendon in vivo is a less cellularly dense 

tissue, relying mostly on the strength of the ECM for tensile properties, however, in this study the 

tissue consisted of mostly tendon cells. Despite these approaches, no material has been published on 

constructs that have been created with both tissue types made simultaneously and allowed to develop 

together, as would occur in vivo solidifying the adult phenotype for the region as mentioned earlier. 

Additionally, what also has not been assessed is whether in these 3D models there is an effect on the 

individual tissues and their development. 

1.6.4.4 Enthesis (Osteotendinous junction) tissue engineered models 

There are four stages in the transition between tendon and bone and the two tissue types have vastly 

different properties; bone is more adapted for compressive strength and stiffness while tendon is 

solely reliant on tensile strength and elasticity. In research and clinical settings, the interface between 

these two tissues is generally categorised together with the bone/ligament interfaces due to the 

structural similarities between the two tissue gradients144.  

There has been a wealth of research on enthesis tissue engineering looking at the clinical applications 

in tissue repair. This is in contrast to the lack of pre-clinical models due to clinical research being 

directly applicable and the high incidence of injuries that occur in this region145. Nevertheless, clinical 

applications often still require preparation in in vitro stages and could therefore provide useful 
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information in research. The OTJ requires the engineering of four stages: unmineralized tissue, 

unmineralized cartilage, mineralised cartilage, mineralised tissue, without having clear boundaries 

that would lead to stress concentrations between the tendon/ligament and the bone144. In monolayer, 

it was found that when fibroblasts and osteoblasts were separated with a temporary divider there 

was some evidence for interactions between the cell populations, stimulating the production of 

cartilage specific factors132. Spalazzi et al. studied at this in a 3D model using a  triphasic scaffold graded 

into three regions with three cell populations seeded (fibroblasts, chondrocytes and osteoblasts) for 

reconstruction of the anterior cruciate ligament (ACL)146. This process may be viable for tissue repair, 

but as a pre-clinical method, the setup requires too much investment to be utilised in high throughput 

screening. Following this, Ma et al.147 attempted to do the same, but to simplify extraction of three 

cell types from a donor, MSCs were taken and cultured into cells similar to the three cell types, and 

folded them into three sheets on top of each other with two anchor points were created by pinning a 

single divided bone construct either end of the, no fibrocartilaginous region was observed, potentially 

due to incorrect mechanics of the system through lack of mechanical load during development144. 

Something to note is that there is speculation that the fibroblasts transdifferentiate in the region due 

to mechanical factors148 chondrocytic differentiation seems to be driven by compression while 

tenogenic differentiation seems to require tension. Finally, Paxton et al. developed a method involving 

a similar setup to Ma et al. where a fibrin ligament construct was anchored between hydroxyapatite-

incorporated polytheylene149 and brushite cement150 anchors, using the minerals that are commonly 

found in bone as anchors to allow for room to develop into a multi-tissue engineered model.   

1.7 Rationale for developing high-throughput, 3D tissue engineered systems for 

tissue interfaces 

Tissue-engineered 3D models of skeletal muscle have been researched for decades as models of basic 

biology of muscle tissue to understand differences between muscle types and states, understand 

factors determining health of the tissue and responses to stimuli or drugs. With respects to drug 

testing, 2D cellular models are widely used in the pre-clinical stages, but these do no replicate the 

natural cell environment and are generally concerned with looking at responses within single cell 

types. As animal models are then used in the following stage, it is important to note that that these 

are not accurate when determining outcomes in future clinical stages, with the overwhelming majority 

of drugs ruled as safe in animal models failing human trials151. Therefore, 3D tissue engineered models 

have been developed with a goal of reducing the disparity from the pre-clinical stage, with less 

intensive resource requirements. However, whilst in some fields these models have been used, such 

as in burn wound treatments, in other fields such as skeletal muscle research, they have mostly been 
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used in experimentation in the laboratory, with small experiments to determine specific responses to 

specific stimuli. Whilst larger scale assays are often limited to 2D models due to the increased 

simplicity with which they can be used, there has been a recent drive towards introducing higher-

throughput 3D testing systems to fulfil these requirements.  

Due to the architecturally complex regions that are seen in the interfaces between the three tissue 

types in the musculoskeletal system, the mechanical properties and therefore the functionality of the 

system are highly dependent on the maintenance of these interfacial structures. However, injuries to 

these regions are extremely common, resulting in these tissues recovering with less optimal 

properties, thereby risking repeat failures. Currently, many models are being used to attempt to repair 

the damaged interfaces with tissue-engineered constructs. However, the basic biological 

understanding of these regions is still lacking, as is their specific responses to stimuli leading to a need 

in representative models of the muscle-tendon-bone interfaces. These models would allow to gather 

additional understanding of the cellular constituents and mechanisms in the transitional regions as 

well as the stimuli required to maintain or regenerate healthy tissue.  

As both of the above needs are relevant within tissue engineering of the musculoskeletal system, there 

is a requirement for a model that can fulfil these requirements in order to overcome the current 

drawbacks of researched test systems. 

1.8 Conclusions 

Many of the systems above have received positive results, especially in regenerative medicine for the 

purposes they were designed for. A great deal can be learned from all the data gathered in all of these 

models. Many co-culture systems have shown to have potential in the sphere of musculoskeletal 

tissue engineering, showing that there are multiple ways to approach these issues. Monolayer systems 

have paved the way by allowing for testing of mixing of cells types and being the foundation for 

development of tissue engineered models.  

3D models are the current state of the art in terms of models, as they provide a more representative 

scenario for the cells to behave as they would in vivo. This is ideal for pre-clinical testing as it mimics 

the environment that toxicology test samples will end up in. 

Whilst there has been much research into developing the different tissues, with some looking into 

interfacial tissues, there is no model that is a complete muscle-tendon-bone model, including all the 

interactions between the multiple tissue and cell types and there is yet room for a method to create 

such a model. Also, as identified by Wragg et al.46, none of these current systems are optimal for high 
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throughput clinical testing due to either expensive setups or hard to acquire cell types. Based on the 

existing literature and the above observations, there are still steps remaining to developing a high-

throughput, 3D tissue-engineered model containing multiple tissues including the interface. 

1.9 Thesis Aims 

The aim of this thesis is to develop a simple 3D tissue engineered simulated system with the potential 

to be expanded for high throughput screening that represents two interconnected tissues. In this 

thesis, skeletal muscle, tendon and bone are the desired tissues as well as all of the associated 

interfacial regions/tissues between them. Such a model would help reduce wasted resources in pre-

clinical testing, by identifying unsuitable materials/ compounds and understanding more accurately 

the effects on cells and tissues before the need for testing in animal models and/or clinical trials, 

thereby reducing overall cost of developing treatments, as well as reducing the associated ethical 

burden of running such trials. 

This thesis has two main components: 

1. Develop a single existing tissue-engineered skeletal muscle process to be able to output large 

numbers of samples. 

2. Develop the same system to be able to create a single, simple, fully tissue-engineered model, 

consisting of multiple tissues containing individual cell types. Current models are unable to do 

this in a simple manner, without preparing substrates or having to create separate tissue 

engineered models that are then fused. To overcome this, the current process of fabricating 

gels needs to be developed to adapt to these new requirements. 

The specific issues involved with this will be expanded on in Chapter 3. 
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2 General materials and methods 

2.1 Mammalian cell culture 

All cell culture work was carried out under sterile conditions within a class II Heraues biological safety 

cabinet. All cell types were incubated at 37 °C and 5% CO2 in air in a Heracell 150i (Thermo Fisher) 

incubator when not being used. A master cell bank was created for the work described in this thesis 

and placed into liquid nitrogen for long term storage (as detailed in Section 2.7). Vials were thawed 

rapidly in a water bath set to 37°C as needed. 

2.2 C2C12 skeletal muscle cell line 

C2C12 murine myoblasts are a cell skeletal muscle line derived from satellite cells often used for 3D 

tissue engineered models due to their availability and ability to differentiate into myotubes upon 

decrease in serum112. C2C12 Murine skeletal myoblasts (ECACC), between passage numbers 6-10 

relative to the passage obtained, were cultured in a growth medium (GM) consisting of 20% foetal 

bovine serum (FBS, PAA Laboratory) and 1% (v/v) penicillin/streptomycin (Penstrep, Gibco) in a 4.5 g/L 

glucose Dulbecco’s Modified Eagle’s Medium (HG-DMEM) solution (Gibco). Cells were seeded 

immediately after thawing into T75 flasks for the first 48 hours before being transferred to larger T175 

flasks. Every 24 hours, the medium was renewed.  

After 4 days, GM was changed to differentiation media (DM) consisting of 2% horse serum (HS, Sigma), 

1% penstrep (Gibco) in HG-DMEM (Gibco). 3D skeletal muscle constructs were cultured for 10 days 

thereafter. 

2.3 hDF human dermal fibroblasts cells 

Dermal fibroblasts are used in tendon models due to their similarity in morphology and genetic 

expression to tendon fibroblasts122. Human dermal fibroblasts were received (CBE, Loughborough 

University) at passages 3-5 relative to received passage. These were then cultured in growth medium 

(GM) consisting of 10 % foetal bovine serum (FBS, PAA Laboratory) and 1 % 

(v/v) penicillin/streptomycin (Penstrep, Gibco) in an HG-DMEM solution (Gibco). 

2.4 Cell passage 

Cells were routinely passaged at 80% confluence. The GM was aspirated and the flask was washed by 

pipetting PBS and ensuring all areas that contained media were thoroughly coated before removing. 

This was done twice. Enough trypsin-EDTA (0.05 %) solution (Fisher Scientific) was then pipetted to 
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cover the surface of the flask with cells attached and the flask was incubated for 5 minutes, allowing 

for the complete detachment of cells. This was confirmed by visual examination through a light 

microscope. To prevent potential damage to the cells by the trypsin, its further action was inhibited 

with the addition of GM (double of the original volume of trypsin added).  

2.5  Centrifuging 

All contents of the flask were transferred with a pipette to a centrifuge tube and centrifuged at        

2000 RPM for 5 minutes, the supernatant was then pipetted to leave a cell pellet in the tube. This was 

resuspended in 1ml of GM before the cells were counted. 

2.6  Cell counting 

20µl of the cell suspension was mixed thoroughly with 180µl trypan blue solution (Sigma) in a 1 ml 

Eppendorf tube (1 in 10 solution). A single drop of this mix was deposited at the entrance to the 

counting chamber of a Neubauer haemocytometer beneath the cover slip and allowed to be drawn in 

through capillary action. Under a light microscope, the number of cells within each outer square of 

both half-chambers were summated. These were totalled up before being divided by 8 to give the 

average number in each quadrant. The 1 in 10 dilution with trypan blue meant that this number of 

cells needed to be multiplied by 10 (the dilution factor) to give an estimate of the number of cells in 

the cell suspension. The distance in between the chamber and the cover slide is 0.1 mm, so to convert 

this to the number of cells in 1 ml of suspension, it needed to be multiplied by 1x104. This was then 

multiplied by total volume of GM used in the suspension (1 ml as described earlier). 

2.7 Cryopreservation 

Once counting was completed, cells could be frozen for long term preservation. The cell suspension 

was centrifuged once again to get a pellet of cells. The cells were then resuspended to accommodate 

1 million cells per 900 µl (90%) of growth media, this was then mixed with 100 µl (10%) of dimethyl 

sulfoxide (DMSO) (Fisher Scientific). This was all thoroughly mixed before being pipetted into 1.5 ml 

cryovials (Corning) in 1 ml volumes and all vials were then placed in a ‘Mr. Frosty’ (Fisher Scientific) in 

a freezer at -80°C overnight. This allowed for a slow freezing cycle, as is required to preserve maximal 

numbers of cells, at -1 °C/minute. The next day, all vials were transferred to liquid nitrogen for long 

term storage. 
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2.8 Tissue engineering of cell seeded 3D constructs 

In skeletal muscle, where structure of the tissue influences dictates the function, tissue engineered 

models give more relevance through better representation of tissue architecture compared to 

monolayer models. The method used for fabricating cell seeded constructs was adapted from a 

previously published method112,152. 

2.8.1 Preparation of reagents and equipment 

All materials were washed with 70% ethanol, and subject to UV sterilisation for 20 minutes prior to 

experimentation. 

2.8.2 Fabrication of PDMS 

PDMS silicone elastomer (Sylgard 184, Dow Corning, UK) was provided as a two-part elastomer and 

curing agent. PDMS for experiments was fabricated by aspirating the elastomer into a container 

alongside (10% weight of elastomer) of curing agent, the mixture was then emptied into the mould of 

whichever vessel it was to be used in. These were then left at room temperature for 24 hours to 

complete curing. PDMS that need to be adjusted in shape was cut with a scalpel.  

2.8.3 Fabrication of constructs 

For collagen constructs of any size to be made, the ratios were as follows (10% of total volume) 

10x MEM (GIBCO) was added to (85% of total volume) type-1 rat tail collagen (First Link) in a 50 ml 

centrifuge tube to give a yellow colour indicating the low pH of the solution. Sodium hydroxide (Fisher) 

was added in both 5 M and 1 M concentrations sequentially in a dropwise manner, with the tube being 

agitated after each drop until the colour noticeably changed to pink for the observer. This indicated a 

change in pH, allowing for both the addition of cells and the polymerisation of the collagen. Cells were 

then counted in the earlier described method and 12 million cells (4 million/ total ml of gel) were 

suspended in (5% of total gel volume) of GM and mixed quickly with the collagen mixture before being 

pipetted into the prepared chambers. Care was taken to pipette as quickly as possible because the 

collagen began polymerisation as soon as the neutralisation stage was complete and could end up 

setting in the centrifuge tube or pipette.  

2.9 Construct culture  

The gels were then incubated in standard culture conditions until they had fully set, requiring 

approximately 10 minutes. A needle was then used to gently detach the gel from the edges and 

bottom of the chamber. Constructs were thereafter cultured under the standard cell culture 

conditions mentioned above for the full 14 day period. 
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2.9.1 Calculation of gel success rates 

Gel success rate was calculated as the percentage of gels that were successfully fabricated out of those 

that were attempted, i.e. no tears or breaks in the gel, attached to both anchor points. 

2.9.2 Calculation of gel survival rates 

Gel survival rate was calculated as a percentage of total gels fabricated that are considered evaluable 

at the end of the 14-day culture period. i.e. those that have no tears or breaks in the gel and are 

attached to both anchor points. 

2.10 Macroscopic imaging during culture 

The width decrease of the gel is a non-destructive method of identifying if a gel is likely to have fused 

myotubes at the end of culture. All gels were scanned from below in a desktop scanner (Epson) at 

regular time points (0, 1, 4, 7, 14 days) to allow for tracking of gel width and surface area as a function 

of time. Using a scanner ensured that the image was taken from the same distance and vantage point 

at every time point and therefore would yield a more accurate measurement. Images were analysed 

on ImageJ. 

2.11 Immunocytochemistry and microscopy 

2.11.1 Fixation, permeabilization and blocking 

Samples were fixed a 50% methanol/ 50% acetone fixative at -3°C to dehydrate the samples, whilst 

maintaining the cellular structure. Samples were first PBS washed and were then given a 

50% PBS/ 50% fixative solution for 15 minutes to prevent shock to the cells, afterwards samples were 

left in pure fixative for a further 15 minutes. The fixative was then removed and replaced with PBS, 

the samples could then be refrigerated until required for analysis. 

If further permeabilization of the cell membrane was deemed necessary, triton X-100 was used in the 

blocking step at a concentration of 0.2% in 1 x PBS for 15 minutes. 

2.11.2 Immunostaining 

Immunostaining can be performed with either monoclonal or polyclonal antibodies. The antibodies 

are extracted from animals as a response to antigens. Monoclonal are more specific due to the 

animal’s response only produced from a single isolated B-lymphocyte, producing only one antibody. 

These are then conjugates with a fluorophore and can be bound directly to the protein of interest 

(direct fluorescence) or bound to a primary antibody that is bound to the protein of interest (indirect 

fluorescence). Alternatively, conjugated dyes can be used which are incubated directly with the 
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samples without antibodies. In this thesis, both indirect fluorescence and conjugated dyes were used 

types were used. 

Blocking of the samples was done with goat serum (Sigma Aldrich) which was the same as species as 

the secondary antibody at 5% in PBS with 0.2% triton X-100 for one hour. 

A primary antibody solution of mouse monoclonal anti-desmin antibodies (Dako) (1:200) was made 

up in the aforementioned blocking solution and incubated overnight at room temperature. This was 

then followed by the secondary antibody of goat anti-mouse Alexa Fluor (Invitrogen) (1:500) in 

blocking solution for two hours at room temperature. Cell nuclei were counterstained with DAPI 

(Invitrogen) (1:1000) in PBS. Phalloidin (Invitrogen) (1:500) was used to stain cell cytoskeletons for        

2 hours at room temperature and was added to the secondary antibody. 

Between antibody stages, cells were washed 3 times for 2 minutes with PBS. After the final incubation, 

they were washed 5 times and then mounted on glass slides with fluorescent mounting medium 

(Dako) and covered with glass cover slips. 

Samples were imaged in a Leica DM2500 M fluorescent microscope to look at the surface or a Zeiss 

LSM880 confocal to image individual planes in the gel.  

2.12 Image analysis 

Both macroscopic and microscopic images were analysed with ImageJ. Gel centre width, gel surface 

area, myotubes per frame, myotube thickness, myotube length, number of nuclei per myotube and 

myotube angles were all recorded in myoblast containing models. The scale for these measurements 

was set according to the known frame dimensions.   

2.13 Gene expression  

2.13.1 RNA extraction  

After the culture period, gels were removed from their chambers and placed into 1.5 ml RNase free 

tube (Fisher) with 500 µl of TRI-Reagent (Fisher). A stainless-steel bead was then inserted into the 

tube, and the gels were homogenised using a TissueLyser II (Qiagen). 100 µl of chloroform was then 

added into the tubes, and the tubes were agitated by hand for 20 seconds before being left to incubate 

for 5 minutes at room temperature. The tubes were then centrifuged at 12000 g for 15 minutes. Only 

the clear aqueous phase that had risen to the top of the solution was then transferred into a new       

1.5 ml RNase free tube and 250 µl of isopropyl alcohol (Fisher) was pipetted onto it and left to incubate 

for 10 minutes at room temperature. The tubes were then centrifuged at 12000 x g for 10 minutes. A 

small pellet could then be visible at the bottom of the tube. The supernatant was removed, and the 
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pellet was vortexed with 500 µl of 75% ethanol (Fisher) and centrifuged at 7500 x g for 5 minutes. The 

ethanol was then removed as much as possible without disturbing the pellet, and the remainder was 

allowed to air dry for 20 minutes at room temperature. This pellet was then suspended in 50 µl of RNA 

storage solution (Sigma) and then stored at -80°C until required for PCR. 

For all samples, absorbance at 260 nm and the ratio of 260/280 nm (purity) were tested using the 

Nanodrop 3000 spectrophotometer (Fisher) prior to PCR. 

2.13.2 RT-PCR  

Real time quantitative polymerase chain reaction (RT-qPCR or qPCR) was used to measure expression 

of genes of interest through messenger RNA (mRNA). It is built on the principles of polymerase chain 

reaction (PCR) where the mRNA target sequences in the sample are reverse transcribed into 

complementary DNA (cDNA) which is then amplified for measurement of each. The PCR process works 

in the following steps for one cycle (Figure 2.1): 

Denaturation: The double strands of DNA separate at 90 °C 

Annealing: The temperature is decreased to allow for the primer to bind to the DNA target sequence 

Extension: A further increase in temperature allows for the DNA polymerase (enzymes that polymerise 

new DNA sequences) to work most efficiently, adding deoxynucleoside triphosphates (dNTPs) to the 

chain, completing the DNA reverse transcription. 

Cycles are then repeated 30-40 times to amplify enough DNA, this is detected through fluorescence 

of SYBR® green by measuring it once above background flouresence known as the threshold cycle (CT). 

The higher the threshold cycle, the lower the quantity of target gene. 
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Figure 2.1: Schematic of quantitative polymerase chain reaction showing the three steps per cycle: (A)Denaturation, 
where the DNA strands are separated, (B) Annealing, where the primer attaches to the target sequence and (C) 
extension, where the remainder of the DNA strand is synthesised using nucleotides.  
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2.13.3 Primers 

Primers were acquired that had been previously designed or used for the C2C12 cell line using melt 

curve analysis153. The two primers used were Myosin heavy chain isoforms MYH1 (fast IIx) and MYH3 

(embryonic). 

2.13.4 Analysis 

PCR was performed in a 7300 Real Time PCR System (Applied Biosystems) and ViiA™ 7 RUO software. 

Quantifast® SYBR® Green one step kits (Qiagen) were used. 

For each reaction, 4.7 µl of SYBR® Green was mixed with 0.1 µl forward and 0.1 µl of reverse primer 

alongside 0.1 µl of quantifast reverse transcriptase kit to create 5 µl of master mix. This was then 

combined with 5 µl (1:1 ratio) of de-ionised, purified water. Based on standard curves of known RNA 

concentrations, each primer was validated to ensure a reaction efficiency of 90-110% which found 

that each reaction required 20 ng of RNA. This dilution meant that each reaction contained 20 ng of 

RNA and was deposited into a 384-well plate (Applied biosystems). 

 The reaction cycle was as follows:  

Temperature and time Number of cycles 

50°C for 10 minutes 1 

95°C for 5 minutes 1 

95°C for 10 seconds, 60°C for 30 seconds 40 

After this a melt curve analysis was run to exclude non-specific amplification. Relative gene expression 

was calculated using the equation by Livak & Schmittgen154 and given in the form of 2-ΔΔCT. 

2.14 Statistical methods  

Statistical analyses were performed on the GraphPad prism 6.0 software (GraphPad Software Inc). In 

short, group means were compared to determine whether there were differences between conditions 

and are denoted with asterisk(s) (*, **, ***, ****) representing P values of (≤0.05, 0.01, 0.001, 0.0001) 

respectively. A student’s t-test was used for the comparison of two means, and a one or two-way 

analysis of variance (ANOVA) was used to compare the means of more than two groups. The specific 

analyses and tests can be seen in the results of each chapter and in figure legends of data. All data is 

given in the form of Mean + Standard deviation unless otherwise stated. 
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3 Developing the gel-making process to allow for higher throughput 

and co-culture of multiple gel regions 

3D tissue engineered cellular models have been widely explored in the literature (Section 1.6.1.2). 

While the vast majority have focussed on single cell types within a single matrix, more recent research 

has focussed on attempting to advance this to replicate two heterogenous engineered tissues in a 

single system in an attempt to model multiple tissues as a system (Section 1.6.4.3). So far, these 

systems have not been adapted to be used in pre-clinical modelling, likely because they have not lent 

themselves to being able to create large numbers of samples in a single setup like arrays do for 

pharmaceutical testing. Additionally, the co-culture systems are generally complicated, require 

expensive specialist equipment and are time-consuming to prepare, sometimes requiring two 

separate tissue types, or a separate decellularized tissue as part of the model54,143. These factors, in 

turn, can lead to variability within between prepared samples as a result of the complex and labour-

intensive fabrication processes. The information in this Chapter focusses on the two thesis aims 

outlined in Section 1.8: 

1. Development of a 3D tissue-engineering method for skeletal muscle in collagen to make it 

easily reproducible enough for future use in large enough numbers for pre-clinical screening 

applications. 

2. Attempt to develop the above model into one that allows tissue-engineering of a 3D model, 

with a second, separate acellular/unseeded region in the same gel, whilst maintaining the 

above goal. This will then create two distinct regions within one single hydrogel. The acellular 

region could then be populated with a complementary cell type in future experiments. The 

benefit of this would be to allow a stronger mechanical formation of the interface between 

the two tissue types as it would be one single matrix, while also allowing the cells to interact 

between regions as they would in vivo. 

3.1  Specific Chapter aims 

• Develop methods and apparatus to allow for the creation of hydrogels created from a single 

ECM material that is separated into differently seeded regions. 

• Ensure this method is scalable to produce larger numbers of gels in one setup compared to 

preceding models. 

• Maintain or improve the macroscopic uniformity of the gels. 
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3.2 Introduction 

3.2.1 Process development methodology 

A review by Pisano et al.155 identified four key metrics for evaluating process performance that can be 

used to compare companies within the same industry. These are namely: quality, development speed, 

research productivity and manufacturing productivity. Evaluation of these individual metrics for any 

given process can identify opportunities for development and facilitate process improvement. This 

established approach can provide a logical structure for the evaluation of the processes in this thesis. 

The same review places emphasis for an organisation – specifically in the pharmaceutical industry to 

implement a ‘learn-before-doing’ approach alongside the normal ‘learn-by-doing’. The former 

approach involves refining and understanding a method by using research and simulations of different 

kinds prior to implementing the process, while the latter is more constitutes the refining of a process 

after it has been implemented onto the production line. Scientific research is mostly a ‘learn-before -

doing’ field, as it is the development of processes before they are used on a large scale and 

implemented in production. However, once a system is created and somewhat refined, it is then 

exposed to the wider scientific community in the form of publications where other researchers can 

use it. It can be argued that at this point, it is now treading on the line between the two learning styles 

as new researchers implement the system and refine it themselves after replicating the process i.e. 

‘by-doing’.  

It is not a realistic expectation to take a published method and manage a solution to the problems it 

is being utilised to address on the first attempt, this may be because the requirements of the product 

change since original publications or the scenarios, operators, equipment that are being used are 

different compared to those reported and instead, an iterative process is necessary to correct all the 

unforeseeable issues that arise in the development process. The International Conference on 

Harmonisation (ICH) guidelines – Q8 for pharmaceutical development also stress this by also 

emphasising the need for process improvement, validation and verification156. This was a guideline 

released through good manufacturing process (cGMP) when the Food and Drug Administration (FDA) 

was burdened with the volume of quality regulation required in pharmaceutical development. This 

was followed by the introduction of Quality by Design (QbD), in a way of progressing to a more holistic 

approach to developing pharmaceuticals and biotechnology products, adjusting the development 

using gathered knowledge to build quality into the product instead of testing for it at the end157. QbD 

is a developed form of learning-before-doing where a fully characterised process is built which then 

relies upon learning-by-doing to support continual process improvement. In QbD, Target Product 

Profiles (TPPs), and Target Product Quality Profiles (TPQP) are first defined, otherwise known as the 
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quality characteristics that ideally would be achieved to ensure the quality and efficacy of the product. 

Thereafter, critical quality attributes (CQAs) are decided and are set as an endpoint to move towards 

with a developing process. This process is incrementally adjusted by identifying the sources of error 

and understanding individual components and behaviours of the system, ensuring consistent outputs. 

A risk assessment is then carried out in order to identify the quality attributes that are most likely to 

impact TPQP. Then a design space is built through experiments to understand the range that exists 

within the individual parameters which allows the CQAs to remain within acceptable limits. 

Within manufacturing industries, the development is more results-oriented on a tight deadline where 

the process only matters if it attains what is required whilst meeting requirements for cost, time etc. 

The approach taken is typically a development of a functional process by conducting the minimal 

experiments required to gather the results. In academic settings, this is a little more process-oriented, 

as it usually is to ascertain results based on processes in an attempt to develop knowledge and acquire 

intellectual property that are then translatable and adopted by industry. Academic experiments are 

more exploratory in nature. In industries such as pharmaceuticals, a combination of internal and 

external knowledge is required by firms to develop products. 

In accordance with these concepts, a risk assessment approach was adopted for the initiation of this 

Capter. The design specification in Table 3.2 is foreseeing the potential problems with this thesis 

before any ‘doing’ occurs.  

 

The key elements in this thesis can be separated into two process variables: 

1. The components:  their production methods and their assembly, their composition, properties 

and their dimensions. i.e. raw materials. 

2. The gel fabrication process: While the ratios of the inputs are going to remain similar, the 

operating procedures, the method in which the components of the gel are treated including 

timing, temperature, equipment used in the fabrication can all be adjusted. i.e. the method. 

 

While these are presented as two distinct parts in this thesis, development of both must be carefully 

co-ordinated to ensure the most successful output. To draw another parallel from industrial process 

development outlined by Pisano et al.155, this thesis will use a type of integrated problem solving. This 

is a consideration in process development which merges considerations from different specialties, in 

this case the cellular biology associated with the tissue, the engineering of the apparatus and the 

process engineering of the entire system. This theory is corroborated by the International Conference 

on Harmonisation (ICH) Q8 guidelines on pharmaceutical development156 where it is explained that 

the critical formulation attributes in commercial production batches need to be considered alongside 
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the available manufacturing process options to select the required manufacturing process and to then 

find the most appropriate components. For example, here the chemical process of neutralising the 

collagen needs to be considered, alongside the mould designs to allow for maximal use of that collagen 

before it is no longer transferable. The technical choices between the different processes and the 

operating conditions need to be evaluated in unison to yield the best process. The ICH guidelines also 

highlight that manufacturing process development requires constant monitoring of the critical 

parameters to regulate the difference made to the quality of the product. These will be measurable 

outcomes in this project, including macroscopic outcomes, such as percentage of gels that are 

successfully fabricated, decrease in gel surface area over culture period and microscopic outcomes 

such as number of myotubes, width of myotubes, length of myotubes and number of nuclei per 

myotube per microscopic frame which dictate whether or not the model is showing consistent output. 

Although this is not an industrial process at this point, all experiments in this thesis are conducted with 

the goal of attaining high numbers of reliable models for the final product to facilitate this future 

translation. Therefore, the experiments conducted to understand the feedback between process and 

operating variables will allow for accurate feedback to ascertain if the new process is yielding the 

desirable results; this is not always the case in the industrial process where problems can arise from 

simple scaling up a system or handing the methodology from an operator to a machine that now needs 

to be optimised to perform the same function158. 

Since the conception of these models, the different groups experimenting (some of which can be seen 

in Table 1.1) have accumulated a lot of unpublished findings and knowledge gathered from experience 

specific to this model. As Pisano et al. state155, these kinds of ‘rules of thumb’ or ‘heuristics’ are an 

alternative way of narrowing down operating conditions in process development. This then reduces 

the amount of experimental data that needs to be gathered in future models. However, whilst this 

makes sense in a manufacturing setting where knowledge is shared by everyone working together for 

a company, in academic research, much of this can often be lost or never reported. 

3.2.2 Components and setup 

In order to achieve the first aim of this Chapter: “Develop the 3D tissue-engineering method for skeletal 

muscle in collagen to make it easily reproducible enough for large enough numbers for pre-clinical 

screening applications,” the process needs to meet the aforementioned criteria while also lending 

themselves to being cost effective, easily reproducible in large numbers and consistent. Of the models 

listed in Table 1.1, collagen models are preferable as it is the majority matrix constituent in both 

muscle and tendon while also being present in bone, therefore it is more representative of native 

tissue. Among the collagen models, the older methods are fabricated inside tubing, resulting in a 
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cylindrical structure. This has been recently forgone for bespoke chambers which allow for shaping of 

the model as desired – although an overall rectangular shape is the preferred geometry as the starting 

point for almost all current models; the increased distance across the axis of unilateral strain between 

the two anchor points allowing for the optimal passive mechanical forces to regulate the development 

of the model. In order to achieve the required dimensions of these moulds, they are usually made to 

specification depending on the specific parameters that are determined or used by the investigator. 

However, previously, a high cost and long production time was associated with bespoke chambers, 

especially those made from glass, which impacted the economy of testing large numbers of repeats. 

These models can also require expensive and time-consuming processes to set up on-site, such as 

photolithography, or – even for the less expensive methods- need to be produced by a third party off-

site, increasing cost and time further. 

To achieve the second aim of this Chapter: “Attempt to develop the above model into one that allows 

tissue-engineering of a 3D model, with a second, separate acellular region in the same gel, whilst 

maintaining the above goal.” The chosen method needs to have potential to be adjusted to allow for 

multiple cell/tissue types within a single model. 

Taking these two considerations into account, the cheapest methods with the simplest setup 

requirements were identified as those of Smith et al.152 and Wragg46. In fact, the method described by 

Wragg was an evolution of the Smith setup to begin progressing towards a high-throughput model. 

The key difference between the two is that Smith et al. used bespoke glass chambers/ chamber slides 

with specific dimensions, whereas Wragg used commercially available 8-well plates with PDMS 

boundaries to create the desired dimensions for a validated scaled down model. This led to a trade-

off between output and consistency, where the bespoke chambers would have more consistent 

dimensions whilst the 8-well plates allow for higher numbers of samples due to the availability of the 

plates and smaller gel sizes. The implications of this on the Chapter aims can be seen below in Table 

3.1. These two methods will be the starting point for this Chapter. Based on the above critique of the 

current relevant systems, a design specification can emerge to create a framework for the most 

suitable process to achieve both Chapter goals. Based on the models that are currently available for 

skeletal muscle in Table 1.1, desirable properties or methods can be combined to create a model that 

meets the needs for this Chapter. For example, smaller volume gels, resulting in less cells required per 

gel which can increase total number made and reduce the strain resources. Additionally, introducing 

posts or pins as anchor points to systems that have previously not used them could also be an 

option118. By critiquing all the preceding models, a specification can be produced for the new system.  

This can be seen in Table 3.2. 
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Table 3.1: Comparison of fabrication methods of Smith et al. and Wragg et al., benefits in line with the 

aim of this Chapter are highlighted in green and undesirable properties in red. 

 Smith et al.152 Wragg et al.46 

Vessel 
Bespoke glass chamber moderately expensive but 

easily acquired/premade 
8-well plate cheap and premade/easily purchased 

Anchor points 
Anchor points are handmade, each one is different 

dependent on the skill of the fabricator 

Anchor points are handmade, each one is different 

dependent on the skill of the fabricator 

Assembly Quick to assemble – hook anchor points 

Slower to assemble, but still quick and simple – 

close off required area with PDMS, then hook 

anchor points 

Consistency Variability between chambers low 

High variability between each mould due to 

difficulties in keeping PDMS dividers/blockers 

identical 

Disinfection pre-culture 

and infection prevention 

during culture 

Easy to sterilise – ethanol + UV, Lid on larger petri 

dish 
Easy to sterilise - ethanol + UV, lid directly on top 

Number of constructs 

from neutralisation 

process 

One gel – Each gel is neutralised separately. No 

repeat gels with the same collagen can be made.  

Two-Four gels – Maximum four gels could be 

fabricated using a single neutralisation before 

requiring new collagen to be neutralised.  

Cell number required 
3.2 ml gel seeded at 4 million cells/ml. Single gel 

requires 12.8 million cells 

1.5ml or 0.25ml gel seeded at 4 million cells/ml. 

Single gel requires 6 million cells 

Control of different cell 

populations 

No specific control of cell populations during 

seeding. One homogenous gel is pipetted into the 

mould, all regions throughout containing the same 

gel with the same cells with the same distribution. 

No specific control of cell populations during 

seeding. One homogenous gel is pipetted into the 

mould, all regions throughout containing the same 

gel with the same cells with the same distribution. 

Medium capacity 
Can only hold one chamber’s worth of media 

volume (minus volume of gel) 

Can hold much more media, as when PDMS is 

removed, opens another chamber’s worth of 

volume 

Visibility during culture 
Transparent vessel allows for easy imaging during 

culture 

Transparent vessel allows for easy imaging during 

culture 

Potential for mechanical 

stimulation 
Requires transferral to a longer chamber Requires transferral to a longer chamber 

Reusability – how many 

times the mould can be 

used for a full culture 

period 

Reusable 
Reusable – although less durable and less 

consistent 
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Table 3.2: Table evaluating the design specifications for the new system. 

Component Description 

Vessel Vessel should come either commercially available, cheaply, or be easy and cheap to fabricate. 

Needs to be able to act as the mould for the gel, but also contain the media after the gel has 

set. Material needs to be compatible with cell culture. 

Anchor points Anchor points should be either part of the vessel, or come prepared with a fast process and 

consistent dimensions 

Assembly Assembly should require minimal stages. One or two stages such as gluing and positioning 

after sterilisation is ideal. 

Consistency Dimensions of vessels, anchor points and assembly need to have minimal variability between 

them. 

Disinfection Disinfection must be simple, a soak in 70% ethanol followed by a predefined period in UV light 

would be optimal. This means the materials need to be compatible with this process 

Prevention of infection Infected samples need to be discarded immediately and are therefore costly. Preventing 

infection in samples is paramount. 

Volume of samples that can be made 

per single neutralisation 

Three minimum to simplify repeats. However, up to six, nine, twelve or more would allow for 

more accurate results from testing and experimentation. 

Cell number required 4 million cells/ml established standard. So decreased size of construct to 500 ul or smaller to 

maximise how many samples can be made within a single passage of cells. 

Control of different seeding 

populations 

Ability to be able to choose where to seed cells within the gel is necessary for multiple cell 

populations and tissue types. 

Media capacity Media capacity many times the volume of the gel is ideal, ensuring the cells have all of the 

nutrients they need to mature. 

Visibility during culture Being able to track the macroscopic changes during culture as well as checking for 

infection/tears is important to predict the microscopic outcomes of the final gel. A 

transparent system is therefore optimal. 

Reusability/ economy The system either has to be reusable, or at least produce a very high number of inexpensive 

repeats with minimal difficulty. It can also alternatively reduce the number of consumables 

used per experiment. 

Potential for adjustments Design versatile enough to easily be able to introduce new geometries, mechanical 

stimulation and any other future experiments without significant time delays. 

 

Ideally, if a technique to create the components can be created that is simple and yet highly versatile, 

a standard manufacturing process can be set up in which multiple different systems can all be 

fabricated using the same technique allowing for easy comparison between systems and setup using 

in-house equipment when alternating between them. 

3.2.3 Fabrication method breakdown 

Once the apparatus specification had been defined, the corresponding method in which the raw 

materials are used needed to be analysed. Based on preliminary trials with the equipment, a number 

of key areas were identified which impact the whole fabrication process heavily in terms of time and 

success rate: 
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It is important to note that the below table (Table 3.3) considers only a single homogenous gel 

population, i.e. a C2C12 only construct. Introducing more cell types increases the length of the process 

exponentially and also introduces the difficulty of needing to ensure they are formed together without 

individual Sections solidifying in isolation. It is clear from the above table that the biggest impact would 

be made if there was a way to be able to prepare one single batch of gel to make more samples 

required without having to rush the pipetting into the mould before returning back to the beginning 

of the whole process for every construct. 

Table 3.3: Breakdown of the method for fabricating a gel, the number of * represents the increase in 

time requirement of the stage when making multiple gels based on preliminary experiments 

Stage Explanation Impact on process Improvements Repeat required for 

multiple gels? 

1. Cell count and 

resuspension 

Counting the total number of 

cells cultured and resuspending 

them in media. 

Minimal impact in time and 

success rate. 

Automated cell 

counting would 

decrease the 

slightly. 

N 

2. Cell separation 

into batches* 

In order to save time once the 

collagen has been neutralised, 

cells are pre-pipetted into 

individual centrifuge tubes in the 

volume containing the required 

cell density so that they can be 

pipetted straight in without 

needing to change pipettes 

Increases linearly with the 

number of samples that are 

being produced. 

Being able to 

pipette more gels in 

a single batch 

reduces the need 

for multiple 

iterations of this 

step for each 

individual gel. 

Y 

3. Collagen 

measurement* 

Measuring the required amount 

of rat tail collagen for the gel 

being made. 

Increases linearly with the 

number of samples that are 

being produced. Due to 7B. 

Being able to only 

pipette one single 

larger batch. 

Y 

4. Addition of 

MEM* 

Combining the collagen with 

MEM to indicate for the next 

step. 

Increases linearly with the 

number of samples that are 

being produced. Due to 7B. 

Being able to only 

pipette one single 

larger batch. 

Y 

5. NaOH drop until 

indicator changes 

colour ** 

Neutralisation of the collagen 

through addition of sodium 

hydroxide to initiate the 

polymerisation. This begins a 

countdown until the 

polymerisation prevents the gel 

from being pipetted by 

becoming too viscous, meaning 

the following steps need to be 

done quickly. 

The rush to pipette following 

this step means that large 

numbers of cannot be 

neutralised in one single 

batch as the gel would set 

after one or two moulds 

were filled. This step is the 

largest cause for problems 

by increasing the time 

required at all previous steps 

as well as causing gels to set 

too soon or incorrectly. 

Extending the time 

until setting of the 

gels would make the 

process yield a 

much higher 

number of samples 

in a shorter amount 

of time. 

Y 
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Stage Explanation Impact on process Improvements Repeat required for 

multiple gels? 

6. Combine gel and 

cells 

7. Pipette into 

mould** 

Combine the prepared cell 

suspension with the just-

neutralised gel suspension. 

This needs to be done very 

quickly to prevent the setting 

of the gel in the centrifuge 

tube or pipette instead of 

the mould. 

As above. Y 

7b. Return to cell 

count stage (move 

onto stage 2 if cell 

count already 

done)** 

Once one or two gels were 

made, return to the beginning to 

make one or two more until all 

were made. 

The need to return to the 

start increases the time 

exponentially for each gel 

that is required 

Being able to make 

more gels using a 

single 

neutralisation. 

Y 

8. Incubate For any gels that had not set, 

incubate at culture conditions 

until no longer liquid. 

Impact can be large as some 

gels can take tens of minutes 

to set. 

Make all samples 

from a single gel 

suspension so they 

set simultaneously. 

N 

9. Add growth 

media and “float” 

gels 

Add culture media to the 

construct, remove any 

unnecessary components (such 

as PDMS mould components 

that are no longer needed) and 

ensure the construct is not 

adhered to the bottom of the 

vessel. 

Can increase linearly with 

samples if many components 

need to be removed and if 

constructs are particularly 

difficult to detach from 

bottom of vessel. 

Ensure components 

do not encourage 

adherence of the 

constructs to the 

surface. 

Y 

10. Culture Regular media changes, checks, 

and images. 

None – all culture conditions 

are standardised. Improving 

this process is outside of the 

scope of this project. 

None. N 

 

3.2.4 Key points moving forward 

The process development can be divided into two parts: 

1. Apparatus – all of the components required to make the constructs. These should be as simple 

to produce, set up and use as possible whilst adapting them to a multiple tissue system 

through development of the individual components. 

2. Fabrication method – including the neutralisation and pipetting. The aim of this thesis is to 

decrease the time required to make gels through developing the current method. 

Combining these two aspects, required for the development of the process, this Chapter aims to 

create a high volume, multiple tissue construct fabrication process. 
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3.3 Materials and methods 

3.3.1 Cell culture and gel fabrication 

C2C12 murine myoblasts were cultured and seeded into collagen hydrogels as described in the Chapter 

2, Section 2.2 unless otherwise specified. 

3.3.2 Initial fabrication method – Single glass bath 

3.3.2.1 Setup 

Glass chambers (45 x 20 x 7mm) were used as a mould for the gel before also being used as the 

container for the media throughout the entire culture period (Figure 3.1).  

 

Attached to each end of the mould were floatation bars known as “A-frames” These were made from 

cutting rectangles (15.0 x 6.0 x 1.5 mm) from a sheet of 10 holes inch-1 polyethylene mesh and then 

binding three rectangles together with 0.3 mm stainless steel orthodontic wire bent into a shape as 

can be seen Figure 3.2 before hooking them into the mesh. Before the start of the experiment, all 

setup equipment was sterilised with 70% IMS, then assembled (Figure 3.1A) and were then left in UV 

light for 20 minutes. 

 

 

A B 

Figure 3.1: A- Glass chamber setup, B- with PDMS blocker. Scale bar = 10mm 

A B C 

Figure 3.2 (A)- stainless steel orthodontic wire bent to shape a hook. (B) and (C)- hook in the mesh to 
create an “A-frame” (anchor point), scale bar = 10mm 
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The first attempts for segmenting gels were run in the original glass chamber arrangement as it was 

much simpler to fit a divider into the middle of a bespoke chamber than to adapt it to another system 

that already uses PDMS. A Section of PDMS (15 x 20 x 7mm) was cut using a scalpel and placed directly 

in the middle of the chamber to keep the two unseeded (acellular) regions in place Figure 3.1B. The 

idea was to create a cellular C2C12 region flanked by “acellular” regions that would be only collagen on 

either side that could then be seeded with other cell types (Figure 3.3). 

A smaller set of A-frames, one-third of the size were made for a set of miniature gels that were 

positioned width-ways across the same setup. 

3.3.2.2 Fabrication of gels and culture method 

Initial stages of gel fabrication followed the method described previously (Smith et al.)119, cells were 

cultured for the total 14 day protocol (Chapter 2, Section 2.9). Separate gels were made for different 

regions, each requiring a repeat of the gel neutralisation step (Chapter 2, Section 2.8.3). Segmented 

gels were created by first depositing the peripheral regions, waiting for the collagen to polymerise 

enough to no longer move when agitated, then the divider was removed and the cell-seeded region 

was deposited in the newly vacated central region (Figure 3.3). Every bath was put inside a large petri 

dish and covered with the lid to prevent infection. This process was used for all segmented gels unless 

stated otherwise. 

3.3.2.3 Time measurement of fabrication stages 

All time measurements were taken using a stopwatch which was started prior to conducting work in 

the biological safety cabinet and stopped once the stage in the process was completed. 

3.3.3 Gel success and survival rates 

Gel success and survival rates were calculated as described in Chapter 2, Section 2.9. 

 

 



52 
 

  

   

Figure 3.3: Diagram of the steps involved in created a segmented gel using blockers. The equipment 
was first set up (A) unseeded (acellular), neutralised collagen was deposited into the available regions 
and allowed to set before the blocker was removed (B) and C2C12-seeded collagen was deposited into 
the central region (C). 

3.3.4 Angle of components measurements 

Using ImageJ, the system was measured for angle differences between the inner wall of the mould, 

the angle created by the top of both A-frames and the angle created by the bottom two A-frames as 

shown in Figure 3.4. Angles were measured according to their orientation in the image. The difference 

between the wall and the tops of the A-frames was termed the “position” of anchor points in the 

mould, and the difference in angles between the top and bottom of the A-frames was the “A-frame 

matching”, these were calculated in absolute values as inaccuracies both ways are equally damaging 

to the system. 

Neutralisation cycle 2 

Unseeded C2C12- seeded 

Neutralisation cycle 1 
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3.4 Results 

3.4.1 Single bespoke chamber method – segmentation trial 

The first step in the project was to determine whether there was a way to adapt this established single 

tissue method into a multiple tissue method. A simple “blocking” method was used to separate the 

individual collagen gel parts, otherwise termed “segmentation” of the gel hereon. 

3.4.1.1 Segmented gels 

The neutralisation step now had to be done twice with two different sets of collagen. One for the 

cellular region and one for the acellular regions. These were neutralised and set into the mould 

separately. This presented some new difficulties; the gel had to be set enough to not flow out of the 

required region once the blocker was removed, but not so polymerised that it would prevent the 

following gel from merging with it. In these experiments, this did not hinder the successful fabrication, 

i.e. gels were whole and unbroken, making it through the 14-day culture period without breaking 

(Figure 3.5). This then led to the conclusion that this method, on the macroscopic scale had the 

potential to work for incorporating multiple gel populations. 

Figure 3.4: Measurement of angles in gel models. Black lines indicate chamber wall, top of A-frames 
and bottom of A-frames in order. More consistent, straight setups are less likely to change the 
mechanics of the system and reduce or interfere with the unilateral strain. Scale bar = 10mm 

Wall Wall 

Top Top 

Bottom 

Bottom 
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In terms of the neutralisation stage of the fabrication method, the small volume of collagen used (one 

third of the usual 1.5ml as it is divided into segments now) meant that a single drop of Sodium 

hydroxide (NaOH) could make an immediate jump from non-neutralised to over-neutralised, leaving 

residual liquid and extremely fast polymerisation times. Finding a way to increase the batch of the 

neutralisation would reduce error.  

Table 3.4: Summary table for the original attempt at segmented gels in a glass chamber 

Specifications addressed Control of different seeding populations 

Assembly 

Number of gels attempted 1 gel x 2 repeats 

Number of gels successfully fabricated (24 hours) 2 

Number of gels successfully cultured for 14 days 2 

Brief conclusions Potentially viable 

“Bow-tie” shape indicates higher remodelling rates in 

localised regions. 

 

3.4.1.2 Miniature gels 

A second experiment was conducted using smaller A-frames across the width of the chamber to 

determine if the model could be adapted with smaller seeded gels, requiring fewer cells per repeat. 

However, all gels experienced tearing during the culture period, perhaps because they were too small 

(which would be in contrast to a number of published examples of small gels), or because the A-frames 

were too large (Figure 3.6). Alternatively, the setup may not have been uniform enough leading to 

localised strain in certain regions that were then being exacerbated during movement over the culture 

period for media changes etc. Therefore, it was concluded that refinement of the system was difficult 

A B 

Figure 3.5: Macroscopic scans of bespoke chamber method for segmenting gels at (A) day 1 and (B) 
day 14. Arrows show interfaces between gel types. Scale bar = 10mm 
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at smaller gel sizes due to collagen and material issues, leading to the decision that progression of the 

system should be maintained with 1.5 ml gels. 

 

Table 3.5:Summary table for miniature (500 µl) gels arranged across the glass chambers 

Specifications addressed Cell number required 

Number of gels attempted 4 gels x 2 repeats 

Number of gels successfully fabricated (24 hours) 3 

Number of gels successfully cultured for 14 days 0 

Brief conclusions Not viable 

 

3.4.2 8-well plate method 

In order to address the volume of constructs that can be made with commonly available equipment, 

it was decided by Wragg et al. to transition from the bespoke chamber to the 8-well plate, despite the 

slightly longer setup time required is because 8-well plates are more readily available, produced in 

large quantities and relatively cheap. Mass produced vessels will be essential for a move to high 

volume production. This meant that more systems could be set up in a single experiment and will also 

require less room during fabrication and culture periods. The lid made specifically for the size of the 

plate also helps prevent infection, without needing to use a second container for sterility, unlike the 

chamber method which requires housing in a petri dish. 

The second reason for this transition was media volume; having enough media is key for development 

maturity of the cells in a skeletal muscle model. The amount of media that can be put into a glass 

chamber is severely limited by the construct itself taking up the majority of the room. However, once 

the PDMS blockers were removed in the 8-well system, more than half the well was now additionally 

available for media volume. 

A B 

Figure 3.6: The miniature (one-third, 500ul) gels with smaller A-frames at (A) day 1 and (B) day 14. 
Scale bar = 10mm 
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3.4.2.1 Components and setup 

Using a modified method from Wragg et al.46, a single piece of PDMS was placed in an 8-well plate to 

create a mould of the same dimensions as a glass chamber (Figure 3.7). A second piece of dimensions 

15 x 20 x 7 mm was placed just as previously in the glass chamber method to block the acellular 

regions. The same method was used to fabricate gels as in Section 3.3.2.Initial fabrication method – 

Single glass bath 

 

The experiment was then repeated to make segmented gels in this system (Figure 3.8). 

 

3.4.2.2 8-well plate outcomes 

The higher number of repeats in this experiment demonstrated the issues with this method of 

segmentation; from a total of 13 gels, 4 were unsuccessful during fabrication due to non-union 

between the samples (Figure 3.9A). Again, the process of having to quickly pipette the collagen 

contributed heavily to this, meaning that an entire batch of collagen needed to be neutralised once 

the peripheral regions had been set, but had to be done quickly to set the middle before risking a 

separation. After neutralising the gel, the PDMS blocker then had to be removed without damaging 

the gels which was also difficult, sometimes requiring equipment to go inside the well, risking 

Figure 3.7: Image of the adapted 8-well plate and PDMS setup to attempt segmented gels, (B)- how 
adjacent wells were set up due to A-frames hanging over edges. Scale bar= 10 mm 

A B 

Figure 3.8: Scanned macroscopic examples of the 8-well segmented method (A)- when the acellular 
regions are set before the cellular gel fills the central space, (B) Day 1 (C) Day 14 with control (right 
well). Scale bar = 10 mm 

A B C 
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infection. The two problems acted together to make this a process that was time sensitive and 

somewhat unpredictable and therefore, difficult to maintain consistency in. 

Table 3.6: Summary table for outcomes of segmented gels in the 8-well plate 

Key specifications addressed Vessel 

Control of different seeding populations 

Disinfection and infection prevention 

Media volume 

Number of gels attempted 2 gels x 6 repeats + 1 gel  

Number of gels successfully fabricated (24 hours) 9 – 4 not attached at interfaces 

Number of gels successfully cultured for 14 days 9 

Brief conclusions Potentially viable 

Same behaviour as glass chamber 

Blocking with PDMS prevented interfaces forming and 

resulted in separated gels. 

A blocking method that does not prevent seeding of the 

next gel should be the next development.  

 

A new variable was observed in this system which was not seen in the glass chamber method; sliding 

of A-frames (Figure 3.9B). The width of the glass chambers allowed very little room for movement of 

the A-frames, however in an 8-well plate, the A-frame has the width of an entire well to move. Reasons 

for this generally arise from the variability in the A-frames, causing them to sometimes sit at a slight 

angle on the wall of the well. When the lid is then put on, it presses on the protruding end causing the 

A-frame to rise up on one side, and then slide. Some A-frames are also not as tightly pressed against 

the wall, also leading to sliding, highlighting the need for refinement of anchor points.  

 The final observation was seeping of gel in between blockers, this meant that certain regions were 

not truly isolated as unwanted mixing could occur beyond the area designated as the interface. Making 

sure the blockers were more precise would prevent this by creating them more uniformly.  
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3.4.2.3 Premade PDMS 

 

To overcome the seeping that was observed in the 8-well plate experiments, a new set of blockers 

were made with PDMS, cut with a scalpel and paired together with the PDMS they were cut from, 

with a number labelled on the front (Figure 3.10). This allowed to ensure that required areas were 

sealed as they fit flush against each other, being cut from the same piece of PDMS to prevent any 

leaking of collagen, and made setting faster for the operator as everything was premeasured and only 

required slotting into place. Although this had no discernible impact on the success of the gels, it did 

save time during the setup and made an observable difference to the ease of the method (data not 

shown).  

 

A B 

Figure 3.9: Images illustrating issues with the method which included separated gels (A) and 
sliding of A-frames over the culture period (B). Scale bar = 10 mm 

Figure 3.10: Image of premade PDMS blockers which were paired 
together to provide a more precise seal between segments. Scale bar = 
10mm 
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3.4.3 PDMS mould from 3D printed negative with steel dividers 

3.4.3.1 Setup and components 

It was established that a method dividing a collagen hydrogel into separately seeded regions yielded 

macroscopically visible results. To overcome all of the variability with the geometries of the constructs 

from previous experiments; sliding of A-frames and the disparity between polymerisation of regions, 

it was decided to attempt to make a fully PDMS mould floor with stainless steel dividers, in a similar 

style to Shansky et al.117 who used a combination of silicone rubber moulds and aluminium brackets. 

The mould was made from a 3D printed negative made from PLA with a commercially available 

3D printer (Ultimaker 2+, Ultimaker, Netherlands). The 3D printing would allow for precise geometries 

of the dividers and gels moulds. PDMS was then set against it to create a mould with grooves 

specifically to allow for stainless steel metal dividers to fit precisely into them. Stainless steel dividers 

were then laser cut to specification, with an interlocking design so that the walls of the mould were 

inserted first, beneath the segment dividers, allowing for the mould to remain intact once the dividers 

were removed to allow the gel segments to form. Each segment was designed to be the same 

dimensions as the previous experiments in this Chapter. Additionally, this system was designed to be 

able to be retrofitted with mechanical stimulation apparatus, hence the space at the back of the mould 

(Figure 3.11). More grooves were also included along the floor of the mould so that a variety of sized 

gels could be created using a single mould, making it beyond the capabilities of previous models. This 

mould was placed inside a polymer container and the lid of an 8-well plate was used to attempt to 

prevent infection. 

 

Gels were then fabricated in the usual method used for systems with dividers (Figure 3.12). 

 

 

A B C 

Figure 3.11: Image showing the development of the PDMS mould system: (A) the CAD design of the 
negative (B) AM (3D printed) PLA negative (C) mould after removal from negative. Scale bar = 10 mm 
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Figure 3.12: Image showing the process cycle for creating segmented gels using the PDMS mould. (A) 
stainless steel dividers could be used to create a mould for gels of varying sizes, (B) once dividers were in 
place, unseeded and seeded gels could be added into the required regions, (C) the dividers were then 
immediately removed to create a multiple segmented gels (D). Scale bar = 10 mm 

A B 

C 
D 

Unseeded 

Collagen 
Cell-seeded 

Collagen 

Dividers 
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3.4.3.2 PDMS mould outcome 

Using the removable walls between segments reduced the number of interfacial separations between 

gel regions - only 2 of 15 failed at this stage, and simplified the process by removing the need to wait 

for a precise level of polymerisation.  

Two of the three repeats of this method resulted in severe infections in the container. The size of the 

surface area of the system, with the volume of media in it, no specific lid and the need to use the 

operator’s hand in the model to remove the dividers all may have contributed to this. If this were to 

be transferred to high-throughput testing systems, this would present a considerable drawback, a 

severe infection could cost a large number of experiments and could require Sections of the facility to 

be out of use for an extended period. Of the remaining repeat, contrary to previous experiments and 

to other groups who have used PDMS, there was very strong adhesion of the constructs to the mould, 

which prevented the contraction of the mould through remodelling of the matrix (Figure 3.13). 

However, remodelling is a key indicator of the success of a gel as it is strongly related to the maturity 

of the cells at the end of the culture period. This may have occurred due to the large surface areas of 

the gels in contact with the PDMS, or the amount of time they are in contact with no media while the 

gel sets. Normal, homogeneous gels would be resilient enough to allow for the physical separation of 

the two using a hypodermic needle, however the interfaces in the early stages of segmented gels are 

areas of mechanical weakness, and attempts to do so resulted in separation of gel segments. Finally, 

the containment unit for this system was not transparent, leading to difficulties imaging and 

measuring macroscopic results, thereby complicating the process for predicted microscopic outcomes 

of the model. These are not desirable properties for a high output system, therefore making this 

system unsuitable for this project. However, the new dividers can be taken forward alongside the 

Figure 3.13: Image showing PDMS mould method with segmented gels (unseeded-C2C12 – 
unseeded) at day 4. Gels showed little contraction with regions of adhesion between the gels and 
the mould. Scale bar = 10 mm 
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additive manufacturing system for further experiments. They allow for pipetting of both gel types 

(cellular and acellular) independently without having to wait for one to set before pipetting the other 

allowing all three segments to be cast within a short space of each other. This saves time in the method 

cycle, which is ultimately crucial for any system that is to be produced in large numbers, waiting for a 

gel to set in order to finish the setup would just not be viable.  

Table 3.7: Summary table for outcomes of segmented gels in the PDMS mould method 

Key specifications addressed Vessel 

Control of different seeding populations 

Disinfection and infection prevention# 

Media capacity 

Assembly 

Consistency 

Number of gels attempted 5 x 3 repeats 

Number of gels successfully fabricated (24 hours) 13 – 2 experienced tearing at interface, marked 

improvement on previous methods 

Number of gels successfully cultured for 14 days 0 – adherence to mould/ lack of contraction/ infection 

Brief conclusions System too unreliable in terms of success and preventing 

infection 

Sliding division inserts reduced the amount of tearing at 

fabrication* 

 

3.4.4 3D printed moulds 

To develop the model further based on results from the PDMS mould and to address the drawbacks 

of previous methods it was thought that the use of additive manufacturing to create a mould itself 

instead of just a negative may be the answer to creating a precise, high volume, versatile model    

(Table 1.1). Moulds were 3D printed and combined with sliding dividers, as previous experiments 

indicated that these resulted in fewer interfacial inconsistencies. 

3.4.4.1 Long model 

It was decided to make a segmented gel by attaching three standard sized gels together first to test 

3D printed moulds as larger moulds would allow for more room for error before optimisation can take 

place. Based on the previous iteration, creating a large mould created higher risk of infection. 

However, this was much smaller than the PDMS mould model and therefore no longer needed to be 

housed in such a large vessel; it could easily fit into a standard petri dish (Figure 3.14). 
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3.4.4.1.1 Components and setup 

A design of three standard 1.5 ml gels in a line end to end (90 x 20 x 10 mm) with two slots for thin, 

sliding dividers was made with CAD and printed using the Ultimaker 2+ as can be seen in Figure 3.14. 

Gel fabrication continued to be the same as before.  

 

The dividers were also 3D printed. Anchor points were hooked over the ends of each side and the 

segmented gel was fabricated in the usual manner, with the dividers removed as soon as all three 

segments were pipetted (Figure 3.15A). 

 

 

A 

B C 

Figure 3.14 : Images showing the long 3D printed model (A) CAD design (B) printed and (C) one 
sliding divider inserted. Scale bar = 10 mm 

Figure 3.15: Images after 24 hr of culture of the 3D printed long mould method (A) after fabrication 
of the gel (B) after 24 hours was unable to contain the media but showed that 3D printed structures 
are effective moulds and sliding dividers can make strong interfaces. Scale bar = 10 mm 

A 
B 
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3.4.4.1.2 Long model outcomes 

Two large gels were attempted using this method. Of these, all interfaces were successfully fabricated. 

However, both moulds had lost all media within 24 hours of culture (Figure 3.15B). The way in which 

the moulds are printed are layer by layer in lines the width of the nozzle. However, that means that 

there may be spaces between the lines of polymer, and it is postulated that these are the gaps that 

allow for the media to escape the mould. Increasing either the print resolution or the density of the 

material could overcome these. Additionally, this method was not in following with the previous 

methods which permitted larger media containment volumes outside of the original gel mould. This 

model was a step backwards in terms of media containment volume as it was a trial method, with the 

plan to adapt future models as required. This model did not meet the requirement for imaging due to 

the lack of transparency of the mould.  

Again, the thin sliding dividers proved their efficacy, no separation was discovered in the four 

interfaces that were made. Tearing occurred at these interfaces afterwards when being manipulated 

for pictures as in Figure 3.15, but maintained integrity through regular culture. Contraction over the 

very short time period was observed, some evidence of it can also be seen in Figure 3.15, meaning 

that there was no inhibition to the contraction of the gel, even with the loss of media in the system. 

The rate at which media was leaving the system or at which point the system had lost all media are 

unknown. Due to the nature of these failures, no further repeats were performed. 

Table 3.8: Summary table for outcomes making segmented gels in the long 3D printed model. 

Key specifications addressed Vessel 

Assembly 

Disinfection and prevention of infection 

Media capacity 

Reusability/ economy 

Potential for adjustments/ versatility 

Number of gels attempted 1 x 2 repeats 

Number of gels successfully fabricated (24 hours) 2 

Number of gels successfully cultured for 14 days 0 No media was held in the system 

Brief conclusions 3D printed PLA structures act as good moulds for 

constructs* 

System does not hold media 

Sliding dividers work very well* 
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3.4.4.2 Elevated reservoir model 

Whilst experiments evaluating the long PLA model indicated that 3D-printed PLA moulds could be 

used to overcome certain drawbacks of previous systems, the previous model was unable to contain 

media, as well as having relatively little for media to begin with. A second experiment was conducted 

to separate the mould and media-containing areas of the system by height in the design, thereby 

allowing media many times the volume of the gel to be held within the model. This was to be done 

with maximum print quality to prevent media loss. The depressed region was made with the 

dimensions of the usual 1.5 ml gel, and the elevated region was made to triple the additional volume 

of media. 

3.4.4.2.1 Components and setup 

The dimensions were for a single gel (30 x 20 x 10 mm) with divider slots at every third (10 mm) along 

the length. The reservoir was then raised (10 mm) above with surface dimensions of 30 x 60 x 10 mm 

(Figure 3.16). Like with the previous experiment, A-frames were placed at either end of the gel mould 

region. As for previous models, gels were cast, dividers removed as soon as possible and the whole 

mould was filled with media.  

 

Figure 3.16: Images showing design and finished product of the elevated reservoir model. The gels 
were to be seeded in the indented region and to be able to contain higher volumes of media in the 
elevated region. Scale bar =10mm. 
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3.4.4.2.2 Elevated reservoir model outcomes 

Table 3.9: Summary table for outcomes of making segmented gels in the elevated reservoir model. 

Key specifications addressed Vessel 

Assembly 

Disinfection and prevention of infection 

Media capacity 

Reusability/ economy 

Potential for adjustments/ versatility 

Number of gels attempted 1 x 2 repeats 

Number of gels successfully fabricated (24 hours) 2 

Number of gels successfully cultured for 14 days 0 No media was held in the system 

Brief conclusions 3D printed PLA structures act as good moulds for 

constructs* 

System does not hold media 

Sliding dividers work very well* 

As with previous 3D-printed models, gels in this experiment were well formed, but no media was 

contained by the system. Sliding dividers continued to allow for interface formation at a higher rate 

than observed with blockers. Again, due to the nature of the failures, no further repeats were 

conducted.  

3.4.5 Evaluation of design specifications met 

After multiple experiments were conducted to develop an understanding of implementation of 

specific model elements to achieve segmentation, the compiled results were evaluated against the 

design specifications outlined in Table 3.2. 

Based on the evaluation of the specifications in Table 3.10, the requirements were as follows: 

1. A model that maintains a 3D printed manufacturing method as the mould for the gel, within 

a media containment vessel that is elevated above the mould. This vessel needs to have some 

sort of readily available lid that fits well onto it. The mould itself needs a transparent bottom 

and will preferable be smaller than the current standard gel. The most obvious vessel with a 

transparent bottom, and a lid would be a well plate. Perhaps printing a mould without a 

bottom and adhering it to a well plate so that the bottom of the plate becomes the bottom of 

the mould while the inside of the 3D printed mould shapes the sides of the gel would meet 

this requirement. 

2. Based on other models available (Table 1.1), the mould can now include posts instead of 

needed additional A-frames, reducing the amount of variability and the time required to make 
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separate components. As discussed earlier, other systems use a variety of anchor points 

including pins and posts. Posts could be printed as part of the mould. 

Essentially, what was needed was a smaller bottomless elevated reservoir model with posts attached. 

 

Table 3.10: A checkpoint to see which specifications had been solved and which were still unmet after 

the results of the elevated reservoir model, green specifications are ones that have been achieved. 

Component Description 

Vessel A suitable vessel had not been found. 

Anchor points Anchor points were still variable and handmade. 3D printed anchor points were 

unsuccessful at making good constructs. Perhaps a post system similar to those 

published previously would be suitable. 

Assembly The level of assembly was minimal and simple. 

Consistency All moulds are now consistently made in a 3D printer. Anchor point dimensions 

and positioning were not yet consistent between constructs. 

Disinfection Disinfection with 3D printed moulds required a simple soak in 70% ethanol 

followed by UV radiation for 20 minutes. 

Prevention of infection Prevention of infection was best seen in well-plate systems. 

Volume of samples that can be 

made per single neutralisation 

Currently, only segments from two gels could be made with a single neutralisation 

– this is identified as a methodological issue rather than an apparatus issue. 

Cell number required 4 million cells/ml established standard. 1.5ml gels, but can be decreased simply by 

shrinking the design before printing. 

Control of different seeding 

populations 

Seeding cells in specific regions has become easy with sliding dividers and printed 

moulds. 

Media capacity Although the media was not held, media capacity by separating the mould and 

reservoir regions is multiple times the gel’s volume. 

Visibility during culture The bottom of the mould is blocked, meaning that scanning the constructs is 

difficult. A transparent bottom is still preferred. 

Reusability/ economy The moulds can be both reused after sterilisation, or can be cycled due to the 

extremely low cost of manufacture. 

Potential for adjustments Changing the system is as simple as changing the CAD and printing it, requires no 

new equipment. 

 

3.4.6 Insertable moulds method 

During this evaluation, another system was found to have the required parameters. This was a 

commercially available PEEK mould that was being used for another skeletal muscle project with 

similar requirements to those in this thesis. This would later be published in a paper by Jones et al. 
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using a design donated by Dr. James Phillips (University College London) comparing it to the 8-well 

method in standard homogeneous 3D skeletal muscle models159. This PEEK chamber was precision 

machined with a 500 µl volume and finished with etching for precise chamber dimensions, but was 

significantly more expensive - £99.60 versus the £4.37 for the 8-well plate method. However, the 

design was a suitable template for the progression of the elevated reservoir model.  

3.4.6.1 Components and setup 

The PEEK mould design was altered to allow for sliding dividers, and this was again 3D-printed as with 

previous models, alongside the dividers. Due to the requirement of a versatile system, the reservoir 

models were able to be adapted to mimic this system within a single day and were evaluated in the 

following experiment. These moulds were disinfected using the usual method and then glued one per 

well in a 6-well plate with aquarium glue (Figure 3.17). These could also be trimmed to fit into an 8-

well plate, or whichever commercially-bought culture vessel was available. They were then left under 

UV for 20 minutes. 

 

3.4.6.2 Insertable moulds outcomes 

The insertable moulds addressed all but one of the outstanding parameters from the specifications. 

They allowed for a segmented collagen hydrogen with discrete heterogeneous regions to be 

fabricated. They allowed for simple and quick production, fast assembly, easy disinfection, they used 

Figure 3.17: Image of six well-plate with all 3D printed moulds adhered using silicon. This was used to 
fabricate gels and for the entire following culture period. Scale bar = 10 mm 
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a commercially available vessel that has space for many times the volume of the gel in media and a lid 

to prevent airborne infection, they were one-third the size, thereby using less cells per construct, they 

were both reusable and economical enough to discard and are versatile enough to be able to adapt 

the system without any difficulty depending on the needs (Figure 3.18). The three gels that failed were 

due to the neutralisation and pipetting process, which will be addressed in Chapter 3, Section 3.4.8.  

 

Table 3.11: Summary table for outcomes making segmented gels with the insertable moulds method 

Key specifications addressed Vessel 

Anchor points 

Assembly 

Consistency 

Disinfection 

Prevention of infection 

Cell number required 

Control of different seeding populations 

Media capacity 

Visibility during culture 

Reusability/ economy 

Potential for adjustments 

Potential for adjustments/ versatility 

Number of gels attempted 3 gels x 4 repeats 

Number of gels successfully fabricated (24 hours) 9 – 3 gels failed due to fast polymerisation after 

neutralisation 

Number of gels successfully cultured for 14 days 9 

Brief conclusions All equipment-based specifications have been met 

 

Figure 3.18 (A) The original PEEK mould, image taken from Jones et al. (B) 3D printed PLA mould 
adapted for segmented gels showing the “bowtie” shape (left) with a control (right). Scale bar 
= 10mm. 

A B 
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3.4.7 Comparison of models’ success and survival rates 

In order for a construct to be useful, they need to firstly be made to specification and then make it 

through the entirety of the culture period without tearing, getting infected or becoming otherwise 

void. This is termed as the gel success (fabricating successfully) and survival rate (making it to a certain 

point in time, e.g. 14 days). The previous experiments focussed on finding a system that fulfils the 

design specification for the thesis, the insertable printed moulds being the forerunners as almost 

completely matching what was required of the components. It was then important to analyse the 

survival rates (summarised in the method summary tables at the beginning of each method) to 

understand if this new system matches with the established one (Figure 3.19). 

 

3.4.8 Gel neutralisation and associated polymerisation times 

To establish the inherent variability within this method, the time taken for neutralised collagen gels 

to fully polymerise was measured. Figure 3.20 shows the differences in time that the same process of 

gel neutralisation can take on different repeats. The time can range from 6 ± 2 minutes to 

20 ± 6 minutes for repeats, making this an unreliable part of the process for time. This is also the part 

that requires the judgement of an operator, meaning this part of the process needs to be utilised as 

well as possible to save the maximum amount of time on more repeatable processes.  

Figure 3.19: The percentage of total gels made using each method that survive to 24hr and then to 
14 days without becoming void. All numbers were taken as percentage of total gels made across all 
repeats. 
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3.4.9 Use of ice to slow polymerisation 

Ice was included in the methodology for creating gels as it was seen elsewhere to increase the time 

it took for neutralised collagen to polymerise (Julia Jones, personal communication, November, 

2016). Once ice was introduced into the fabrication method in this project, the gel could be pipetted 

for minutes at a time and kept on ice for tens of minutes meaning that many gels could be pipetted 

in one batch. This in turn meant that one single gel of a specific type (acellular etc.) needed to be 

neutralised only once per repeat. This had a number of implications: 

1. Everything could be neutralised at the start of the experiment 

2. One entire batch of acellular gel could be neutralised and then aliquoted and mixed with cells 

where needed 

3. The loop was no longer necessary where a new neutralisation step was necessary after every 

2 constructs made. Allowing for far larger quantities of gels to be made quickly (Figure 3.21). 

From a high-throughput perspective, this means one very large batch of collagen can be neutralised 

and then kept at cold temperatures once mixed with cells to create as many gels as necessary, 

Figure 3.20: Times required for a neutralised collagen gel to set on five different occasions, showing the 
variability of the neutralisation step. Significant differences were seen between batch 1 and 3 (p*=0.0171), 
1 and 4 (p**=0.0039), 1 and 5 (p*=0.0199), one-way ANOVA to evaluate the single variable of time to set. 
Variability in a single batch can be ± 6 minutes. Taken from n= 3 x 3 repeats. Error bars = + Standard 
deviation. 

* 
** 

* 
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minimising the requirement for a skilled operator to just one stage of the experiment, allowing the 

rest to be automated. 

 

3.4.9.1 Impact of the inclusion of ice on gel success rates 

The use of ice increased the number of successfully fabricated gels from 70% to 100% in 6 gels x 

2 repeats. Slowing down the polymerisation removed the majority of the remaining issues associated 

with the fabrication and maintenance of the model from an operational perspective. This likely 

occurred due to allowing the aqueous gel to form completely in the mould.  

3.4.10 Insertable moulds with ice compared to the standard methods 

With a new process adopted, it was important to compare it with the previous standards to firstly 

ensure that the system still produces constructs with the desired properties that were originally being 

made and secondly, to see whether it has made any improvements on the previous standard. 

3.4.10.1 Time required to fabricate 

Figure 3.22 Shows how the time required for the entire fabrication of a gel varies with gel number. A 

single gel requires 149 ± 2 seconds for the 8-well method and 97 ± 3 seconds for the inserts by 4 gels, 

the difference is 592 ± 12 vs 123 ± 2 seconds (Figure 3.22A) giving a time saved of 7.6 minutes by 4 gels 

when using the inserts instead (Figure 3.22B). The majority of this time is saved in not having to repeat 

neutralisation steps as that comprises ~80% of the entire fabrication method (Figure 3.23). Reducing 

Figure 3.21:  Flowchart of the standard for fabricating a gel, using ice to slow the polymerisation of 
neutralised collagen gels removed the need for step 7B. 

Neutralisation 
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time for fabricating will allow for more output in higher throughput systems, reducing a bottleneck 

effect that could be created from waiting times for fabrication. 

 

As can be seen in Figure 3.23, the neutralisation time with each gel made has the largest impact on 

time, while the pipette time (the time to pipette one extra gel into a well) only increases slightly, 

therefore neutralisation time linearly increases the time required with each gel fabricated. The 

insertable moulds are one-third the size, needing correspondingly reduced pipette times, but the 

majority of the time saved was through only needing to neutralise once for all gels in a batch. 

Comparitively, there was a very small difference when increasing gel number in the times required for 

pipetting, meaning the time increase was simply due to having to pipette more. This meant that for 

every extra gel made, even more time was saved with the new system, giving greater return. This, 

combined with the threefold decrease in model size led to the opportunity to make many more gels 

than before in a single experiment without risking large differences in cell conditions (for example, the 

first gels made being without media for longer than the last ones) or gel polymerisation.  

Figure 3.22: The times required to make constructs vs. number of constructs made after cell count 
stage (left) and the time saved using the insertable moulds method instead of the 8-well method 
(right). Taken from n= 3 x 2 repeats. Error bars = Standard deviation 
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3.4.10.2 Contraction comparison 

Gel contraction was compared to the established system for validation. Contraction of the gel during 

the culture period has been found to be a good indicator of the microscopic quality of the gels. It is 

mediated by the initial attachment and remodelling of the surrounding matrix by the cells and it is 

theorised that greater contraction of the gel decreases the distances between individual cells, 

increasing the chance of cell-cell contact which is a driver for fusion into myotubes. Width reduction 

has been correlated with myotube width in earlier projects46. While neither of these systems found 

their way to 50% of original width benchmark that is correlated with a “good” gel, the point of this 

experiment was to quantify the difference between the systems (Figure 3.24). Both reduced at the 

end of the 14-day period to 62 ± 4 % and 63 ± 1% for the 8-well plate and insertable moulds 

respectively. No statistical difference (P=0.7486, t-test, two tailed) was found between the two 

methods at 14 days indicating that they are similar for gel contraction results.  

 

Figure 3.23: A breakdown of the times to prepare and neutralise collagen and seed it with cells and 
the time to pipette the suspension into moulds for 1,2 and 4 gels total; a comparison of the main 
methods. Taken from n=3 x 3 repeats. Error bars = + Standard deviation. 
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3.4.10.3  Angle of components comparison 

Skeletal muscle systems like this one rely entirely on the passive unilateral force that is created around 

the anchor points to illicit strain within the system. Once the system is initially set up, the system is 

left alone to culture over the predefined period, highlighting that the setup is most important for 

giving the system the best conditions to allow for myotube fusion. Combining these two points, the 

system needs to be set up in a manner which will allow for unilateral strain through the entire system 

in a uniform way, meaning every component needs to remain as straight as possible to prevent 

changing the mechanics of the system.  

3.4.10.3.1 Position of the anchor points relative to the wall of the mould 

The difference between the angle of the chamber wall and the line created across the top of both 

anchor points was analysed across 9 samples (3 repeats of 3) for each method (Figure 3.25). This was 

to investigate how the mould was positioned in the chamber, as strain will be unevenly distributed, 

resulting in an angled gel. This also means that all of the cells come under different mechanical 

conditions in different gels. Figure 3.25 shows that the insertable moulds have a much smaller angle 

made by the mould and the wall at 0.4 ± 0.1 vs. the 8-well plate model at 6.5 ± 1.3 and a considerably 

smaller variability of angles also. A high throughput testing system needs reproducibility, so the 

Figure 3.24: Width reduction comparison between 8-well plate method and insertable 3D printed 
moulds. No statistical difference (p=0.7486) (unpaired t-test) between the two sets indicated that 
the two methods are similar in cell-mediated remodelling outcomes. Taken from n=3 x 3 repeats. 
Error bars = + Standard deviation. 
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decreased difference in angle and variance in overall angles of the insertable mould method indicated 

that it is better suited to applications that require models to be as similar to each other as possible.  

 

3.4.10.3.2 “Matching” of the anchor points 

The matching of the anchor points is dictated by the top and bottom angles and whether there is a 

disparity between the two. This would interfere with making a rectangular sample and with 

particularly large angle discrepancies, more of a trapezium is formed which can influence the 

mechanics of the system, having a tighter, smaller matrix on one size and a larger one with more room 

for cells in the other.  

The 3D printed moulds had an angle difference of 0.3 ± 0.1° while the 8-well plate had an angle 

difference of 1.4 ± 0.4 °. Again, the insertable moulds showed a more consistent setup with a smaller 

deviation for creating reproducible gels (Figure 3.26).  

Figure 3.25 : Comparison of angle created by the two anchor points and the wall of the chamber 
compared in both systems. A smaller difference in angle indicates that the components in the system 
are more aligned, allowing for a more direct unilateral strain with equal distribution throughout the 
entire model. A smaller range of angles indicates a more consistent system setup. Insertable moulds 
were significantly (p****<0.0001) (unpaired t-test, one-tail) less variable and less misaligned that the 
standard system. Taken from n= 3 x 3 repeats. Error bars = + Standard deviation. 

**** 
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3.4.10.3.3 Anchor point “drift”  

 

The distance of an A-frame was measured from the inner wall of the mould at three time points to 

understand the way it can vary over a culture period. This was then compared to the insertable moulds 

system, which should have no drift as the posts are constructed as part of it (Figure 3.27). The models’ 

distance from walls were: Day 1 0.9 ± 0.1 mm (insertable), 5 ± 0.7 mm (8-well), Day 4 1.0 ± 0.0 mm 

(insertable), 6.7 ± 1.6 mm (8-well), day 7 0.9 ± 0.0 mm (insertable), 7.9 ± 1.7 mm (8-well), day 14 1.0 

± 0.1 mm (insertable) 8.4 ± 1.8 mm (8-well). Whilst the means are significantly less for insertable 

moulds, that is not as important as the variance between repeated measures. It is key here to note 

that the error is considerably smaller also due to the decreased variance in the distances of the 

insertable method.  

Figure 3.26: Comparison of angle created between the two anchor points at both ends between 
insertable moulds and 8-well plate method. Less angle variation means a more aligned system with 
consistent A-frames. Insertable moulds were significantly (p*=0.0116) (unpaired t-test, one-tail) 
more consistent and aligned. Taken from n= 3 x 3 repeats. Error bars = +  Standard deviation. 

* 
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3.4.10.3.4 Comparison of inconsistencies in size of construct 

The size of the mould and therefore the initial gels created was compared by measuring the surface 

area of the gels at t= 0 (Figure 3.28). These were measured in absolute differences, as being smaller 

and larger is a deviation from what is necessary and the point is not try and average it at 0%, but to 

instead get the figure as close to 0 for all moulds to ensure it is true to the intended design and 

reproducible. 

Figure 3.27:  Comparison of how anchor points moved throughout the culture period between the 8-well 
plate method and the insertable moulds Taken from n=3 x 3 repeats. Error bars = + Standard deviation. 
(Top) Day 1 (P**= 0.0028), 7 (P***=0.0007) and 9 (P***=0.0007) were all significantly different (t-tests). 
The insertable moulds were significantly less variable. And the individual anchor points from the same 
experiment in the 8-well plate method and their distance from the chamber wall during the culture 
period (Bottom)each line represents a repeat. Taken from n=3 x 3 repeats. Error bars = + Standard 
deviation. 

**** 

** 

*** 

*** 
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The mean numbers for the deviation from required size of the models were 11 ± 1 % and 5 ± 1 % for 

the 8-well plate and insertable moulds respectively. The moulds were 2.5 times more accurate, 

although with a very similar error margin.  

3.4.10.4 Microstructural comparisons 

Brief comparisons were made between the two types of model to determine whether both produced 

aligned multinucleated myotubes. Experiments have previously determined that the system was 

scalable, and others have been since done to ensure that this system worked in the same way 

elsewhere. Based on the stained images (Figure 3.29) the insert moulds produced myotubes in the 

same way as were expected from the standard system, creating aligned, multinucleated myotubes. 

The system succeeded in producing the tissue engineered structure for which the original system was 

developed.  

Figure 3.28: Comparison of the imprecision in both methods for creating a mould. Percentage 
difference between the design and the actual mould was measured for both methods. The 
two methods were significantly different (P***=0.0004) (t-test, one-tail). Taken from n=3 x 3 
repeats. Error bars = + Standard deviation. 

*** 
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3.5 Discussion 

This Chapter describes the development of a small-scale system for creating skeletal muscle models 

in collagen gels by increasing the number of gels that can be created and introducing a new versatility 

in the setup of the system, primarily allowing for segments in the gel. This was an example of the 

“learning-before-doing” that can be found in the pharmaceutical process development field158. This 

can be seen where the profile of the system was first developed based on preliminary experiments, 

which led to a definition of the key attributes of the system, highlighting the need for process 

development surrounding collagen neutralisation and product development surrounding the moulds 

used. Each of these facets was then developed individually and brought together in order to generate 

an improved system in terms of the desirable parameters. new product or process is released into the 

commercial setting, by considering the pre-commercial development that allows for the release of the 

system for it to be tested through doing. In industry, the transition between the two learning methods 

presents problems as R & D pass a new system on manufacturing. Too early results in not enough 

knowledge and optimisation of the system which can lead to disastrous consequences on the 

production floor if a system has a glaring issue that was overlooked. On the other hand, too late of an 

introduction to manufacturing can lead to overrunning on both time and cost as the adaptation 

A B 

C D 

Figure 3.29: Comparisons of stained micrographs of the 3D printed inserts (A,B) to the 8-well model 
(C,D) showing very similar architectures; well organised, fused, aligned, multinucleated myotubes. 
DAPI (blue) - nuclei, desmin (Red) - myotubes. Scale bars = 20 µm 
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occurs155,158. Although both types of learning are generally covered by science as it treads the line 

frequently blue sky research and industry as a new method is researched tentatively (simulations and 

analyses), then brought into preliminary experiments (prototypes), before becoming accepted as 

standard practice or as a standard model to be used and tested by everyone (learn-by-doing) and 

experiences unique problems through this155.  

3.5.1 Sharing of knowledge for model development 

Science is very much at the stage of process development where the process design and product 

functionality are highly interlinked, a trait that is also seen in the pharmaceutical industry158. Scientific 

systems are generally not on a profit deadline although they are dependent on funding. They require 

no rush to be mass produced, allowing for more time for learning-before-doing to ensure that a new 

process is optimised and ready. Although not every individual experiment is geared towards creating 

a new product, funding is given out with hope for something in return which is usually a product that 

can eventually sell, or have a positive impact on society to reduce costs elsewhere. In this case, what 

can happen is that two different stages of learn-before doing can occur concurrently, where one group 

is optimising a system and another group takes it on and begins to use it as an early prototype test 

bed, if not taking it on as an actual test bed and begin ‘learn-by-doing’.  Inevitably, as the group 

improving the system moves forward, the latter group’s test bed will be an older version but has had 

a lot of time invested in it with results that are relative to each other so overhauling or updating the 

system may require a complete shift.  

Something akin to this can be seen in the 3D models used in this thesis. While one group moves on to 

develop a more complete model with a more representative microstructure, or experiments with 

varying different parts of the process, another picks one that fulfils its requirements to do the job it 

needs to do and uses it; a type of “doing”. This is where it is important to consider that innovation 

requires the collaboration of different departments within a single firm and external cooperation with 

other firms and knowledge providers to according Kaufmann et al.160, this is highly relevant to this 

Chapter as the collaboration with an external group involved in similar experiments allowed for the 

optimisation of the process with the knowledge that they had accumulated from their experiences. 

The combination of these knowledge bases created a regional innovation system where knowledge 

was transferred through individual face-to-face interactions as is in the theory behind innovation 

interactions160. This is critical in transferring information regarding processes that are deemed not 

novel enough to be published in academia. 
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3.5.2 Gel fabrication parameters 

Neither success, nor survival rates are often published in the literature when models are created, an 

observation shared by Wragg et al.46. Presumably, this has never been a point of interest for individual 

models that are being used for proof of concept, small experiments or regenerative purposes which 

may not require high volumes of experimental repeats. On the other hand, high-throughput systems 

rely heavily on efficiency with resources and high reproducibility numbers. Figure 3.19 shows the three 

systems that make it through the 14-day culture period. It is important to note that for some of the 

above systems, from a process development standpoint, seeing that a method is unable to contain 

media makes it unviable without the need to gather detailed numbers on it. If the failure is a 

fundamental part of the model, then the model is not viable in its current version. Additionally, a 

system that will fail two out of three times is not consistent enough to be in line with the aims of this 

thesis, even if the fundamentals of the system show some positive results; high throughput screening 

needs the rare few exceptions failing instead of the rare few exceptions succeeding, this needs to be 

a reliable, high volume segmentation system. Figure 3.19 is an illustration of which systems can work, 

and those ones that did have larger sample sizes in order to compare the effectiveness between them 

more accurately. As expected, the three systems that survive through the entire 14-day period were 

the chamber system (Smith et al.152) the 8-well plate system (Wragg et al.46) and the system developed 

in this thesis- 3D printed insertable moulds. Statistically, there was no significant difference between 

these three systems and their success rate, indicating that the insertable mould model is at least as 

reliable as the 8-well plate model for reaching 4 days with a majority of the gels able to generate 

meaningful results. This means that a system has been created that is equal to a standard method at 

culturing skeletal muscle hydrogels, whilst also fulfilling the specifications required to create high 

volumes of gels cheaply and also the versatility to also fabricate segmented hydrogels using the same 

base model; the standard has been built upon. Nevertheless, one point was still not addressed from 

the design specification: “Volume of samples that can be made per single neutralisation.” This was the 

single biggest hinderance when attempting to create large numbers of samples within a single batch 

and led to a vast decrease in the consistency of the gels in each repeat as many of the constructs 

would have been made from different gel suspensions, neutralised slightly differently. Once the 

equipment was developed, this was the remaining requirement. 
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3.5.3 Development process of the design of the model 

In this Chapter, it was identified that the system had been developed sufficiently to allow for scientific 

data to be gathered for a variety of different experiments and had been a successful model at doing 

so111,152,159. This model had undergone a slow, iterative improvement process to date– a process very 

similar to the continuous improvement component of Quality by Design (QbD)157. However, if the goal 

of this small-scale model was to eventually allow for high-throughput testing, then it would require a 

breakdown of the process variables and a refinement of the ones that inhibit reproducibility. If the 

second goal was to allow multiple gels to be set in a single construct, then the process variables and 

components would need to be changed to allow for this. This Chapter covered these two main points.  

While QbD guidance documents focus almost exclusively on the customer in a pharmaceutical 

setting161, the approach taken here was to focus on the production of a quality model in itself. Many 

parallels can be seen between the steps taken in this Chapter and standard QbD practices in industry: 

Firstly, the Target Product Profile (TPP) was defined, after which the critical quality attributes (CQAs) 

were decided and highlighted in the form of Chapter aims, these were systematically worked towards 

using a specified process where sources of faults and individual components were identified and 

changed incrementally157. The Chapter followed a process development methodology, employing 

problem solving to reduce the gap between what the current process technology can achieve and 

what is required to succeed in the target market through iterative experiments, each one offering 

something to learn through technical solutions158. Each stage accumulated knowledge and allowed a 

construction of a process design space, showing the acceptable parameters in the process variables in 

which the quality of the final model was assured157. The aim of these stages was to reduce the 

“artisan”46 nature of the gel-making process as much as possible, to be able to represent something 

that is made on a large scale without the need for the judgement skilled, experienced operators. A 

system that is reliable based on the process and not on the testing of it. The technology developments 

in recent times with additive manufacturing allowed for developments that were not available in 

previous iterations of this model in the past159. Now, multiple moulds could be made with a single 

press of a button on a commercially available printer in significantly less time than it used to take to 

order custom made ones and for a small fraction of the price at 2.25p per construct compared to other 

methods. 

Firstly, a number of different prototypes were explored and the data on their ability to make a gel and 

take it through culture was gathered to pick the best systems for the goals of the thesis (Figure 3.19). 

The two previous standard systems46,119 and the insertable moulds system presented in this thesis had 

the highest success rates. The insertable moulds allowed for the easiest separation of the cell types in 

a single gel, which involved a much simpler method that was less invasive with the 3D printed sliding 
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dividers. They were also specifically designed for this purpose, easily made in the laboratory on-

demand and could be changed to any standard required. A design was thereby chosen. 

3.5.4 Collagen gel polymerisation times 

To increase the volume that can be made for use in high-throughput screening applications, the time 

taken to make multiple gels needs to be decreased. Time is a resource and resource efficiency is the 

second requirement of high-throughput systems alongside reproducibility. Like failure rates, no 

information has been published on the time required to make a single gel or any number of gels, likely 

due to the lack of relevance in that aspect when creating small numbers of models. Researchers would 

take however long they needed to make a construct and complete an experiment in order to gather 

the relevant data that they were interested in. In large-scale testing, this approach would not be 

viable; not calculating the time for a process would be a very large and potentially costly oversight for 

a process.  

Developing a process such as this with aims of high throughput is difficult due to the amount of 

variability inherent within the system. Apparatus variability can be overcome through redesign, as has 

been done with the insertable moulds system. Time taken for the gel to neutralise is an example of 

variability in the method. The same volume of rat tail collagen will take different amounts of NaOH to 

neutralised in any given attempt, so this part of the method cannot be standardised, making this a 

very time-consuming part of the process, especially when multiple repeats are needed. This may be 

because of inadequate mixing of the components before being used. However, mixing collagen 

uniformly is difficult due to the viscosity. Again, no mention of this aspect of engineering 3D hydrogel 

models is published in the literature, usually it is left up to the experimenter to acquire enough skill to 

fulfil this stage competently, hence the ‘artisan’ nature of the process46. As very little can be done with 

automating a stage that needs the judgment of the operator, the number of times this is performed 

needs to be minimised to streamline the process. Preferably, a single neutralisation stage for each cell 

population used (or acellular gel) would resolve this. Alternatively, many groups utilise commercially 

available products where the solutions come in specific volumes and neutralise reliably. 

Following on from this, it was highlighted that the gel polymerisation time was variable for each batch, 

the relevance of this is the unpredictability of the time and therefore an inability to standardise it 

especially when operating with multiple gels, as every gel, no matter how carefully measured will take 

a different time to neutralise. The reasons for this are not well understood, although unequal 

distribution of certain factors in either the collagen or the NaOH might lead to different outcomes as 

well as environmental factors such as the temperature of the room. Introducing ice based on 

recommendation from Jones et al.159 changed the dynamic of the process completely, giving a single 
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neutralisation stage enough time so that all the required gels could be made in one attempt before 

leaving them all to polymerise, allowing for extremely simple, yet effective scale-up for the process, a 

generally difficult thing to achieve with many systems158. This was an example of how one group 

adopts a method to use and standardises it for all experiments, whilst other continue optimising for 

longer period of time or for other purposes, as is paralleled in industry when firms have different levels 

of ability/knowledge that they develop through their own learning processes155. This is where 

innovation systems play a role in development160. The use of ice had not been discussed with this 

particular version of the collagen model in any publication until it was compared to the PEEK system159 

where a different institution had incorporated the use of it, which was then adopted as standard. 

However, a new scientific publication before that would not have been accepted written simply on 

the alteration of one process variable, and changing a method without a peer-reviewed article is risky, 

especially in  biotechnological fields158 as it could have negative effects on the system that nobody 

could predict. In industry, this would usually be kept as a competitive edge as it is in the interest of 

the company to keep specifics as quiet as possible155. This is not always the case in scientific research, 

as disclosing a new method allows one to be accredited for it by others using it, which saved a great 

deal of development in this Chapter. However, much like in process development in industry, where 

a process accumulates ‘rules-of-thumb’ or ‘heuristics’, this information being passed on to this project 

was through the gathering of a body of knowledge from those working on the model.  

The second benefit of keeping the neutralised solution cold with larger collagen volumes is that 

increasing the volume of collagen allows for more room for error when neutralising as the drops of 

MEM remain the same volume, therefore allowing for a more precisely controllable neutralisation 

stage. Thereafter, the new method of inserts with ice proceeded to show that the success rates of gel 

were increased by minimising the stage at which most problems occurred (Figure 3.23), the decrease 

in failure rates with 3D printed moulds of this shape is supported by Jones et al.159 

The number of gels producible in a short amount of time had not been a pressing concern before this 

project, hence the absence of published material looking at how to maximise the output of collagen 

skeletal muscle models by making the process as efficient as possible46. It has been more of interest 

to use what was a working model to find out the cellular behaviours, genetic expression and the 

impact certain stimuli have on the two. Compared to the time taken to produce multiple gels in one 

attempt, the new method was faster by many times (Figure 3.22). Much of this came down to the step 

that was previously changed and not having to neutralise a new volume of collagen for every gel or 

two, the other main source of time saved comes from scaling the constructs down to a third of their 

size.  
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3.5.5 Comparison of 3D-printed inserts to the 8-well plate model 

This new faster method was then compared to the standard 8-well plate method in contraction – a 

phenomenon characteristic of these models152. Matrix contraction is mediated by cell activity as they 

attach to the matrix and begin to pull in the surrounding matrix. In a free floating system the entire 

gel contracts, but anchor points prevent the gel from detaching to contract equally, therefore a 

bowing is observed in the middle of the gel152. The contraction level is generally considered to be 

indicative of the strength of the mechanical signal transferred to the cells, leading to reorganisation 

and alignment unidirectionally162. This requirement may differ between cell types. Here, both systems 

failed to reach 50% reduction in width over a 14-day culture period whereas later experiments in this 

thesis far exceed that with the same seeding densities and setups, showing some of the inherent 

variability that can exist in the system, possibly due to cell or collagen batches. Failure to reach 50% 

reduction in surface area was observed in the 8-well method by Jones et al.159 However, Jones et al. 

showed that the “50% rule” was not necessarily indicative of good myotube formation and genetic 

expression, as both systems had different contraction levels but exhibited no significant difference in 

these important characteristics. Taking this into account and looking specifically at the similarity in 

contraction in Figure 3.24, it can be concluded that the lack of significant difference shows that the 

two methods are interchangeable in this regard.  

Additional results that have not been analysed elsewhere are those generated from the positioning 

and consistency of the custom A-frames in the 8-well plate method. Although mentioned elsewhere 

briefly as a potential source of inconsistency in the system and therefore its output46,159, here it was 

measured and showed as postulated earlier that the A-frame placement was a source of much 

inconsistency (Figure 3.25), beginning from the positions they were in when the construct was set and 

the way they varied throughout the culture period, moving and potentially stimulating the model in 

ways that were not intended nor reproducible (Figure 3.27). Furthermore, difference in surface area 

of the mould compared to the design was found to have significantly improved with the 3D printed 

insert system (Figure 3.28).  

Brief qualitative comparisons of stained images of the two methods also showed similarity in the 

architecture of the construct, with aligned, fused, multinucleated myotubes visible in both (Figure 

3.29), concurring with the notion that the two models yield similar results159. Unbranched myotube 

formation is specific to 3D models and physiologically more similar to muscle tissue in vivo. These 

occur as cues are only given in one direction with fewer attachment points between cells than in 2D 

culture on a flat surface152. 
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As an additional point to consider, the system is supposed to be a fixed constant under which cellular 

mechanisms will dictate the results. The original system was not designed to exert any active stimuli 

on the constructs, although some designs have been adjusted to specifically test the effects of active 

tension on the system111. A-frames are sometimes subject to their undesired movement down the 

side of the well they are hooked over, leading to an uncontrolled, unquantified active strain on the 

system. As explained by Player et al.111, static loading can lead to upregulations of hypertrophic genes 

which may indeed be desirable for skeletal muscle models in general but require a model that does 

not add unmeasurable strain to reduce the reliability of results. The 3D-printed inserts showed 

difference in placement of the two methods and how the 3D moulds eliminate the variability in the 

drift of the A-frames. 

3.5.6 Segmentation of the model to create co-culture gels 

Alongside the development of the reliability of the system, a simple segmentation method with 

removable sliding dividers (Figure 3.17) was created which gave the gels a “bowtie” shape in gels that 

were acellular-C2C12-acellular setup due to the strong contraction in the middle (Figure 3.18), cell 

seeded region compared to the peripheral regions that were acellular. Macroscopically, this suggested 

that the cells were indeed kept within the seeded region, or were at least remodelling mostly in that 

region and very little in the peripheral regions. The proceeding Chapters will inspect the specific 

cellular behaviours more closely. 

3.6 Conclusions 

A Quality-By-Design (QbD) process was used in order to develop a collagen hydrogel fabrication 

system into one that was more consistent while also being adaptable to changes in design depending 

on testing requirements. Changing the mould from an 8-well plate/PDMS setup to a 6-well plate/3D 

printed PLA moulds allowed for a larger volume of experiments to be conducted whilst also increased 

consistency between individual repeats. Following this, borrowing from other methods involving 

collagen gels, ice was included into the system to allow for an even greater, large-scale version of the 

process with even greater consistency, as demonstrated by the decrease in variability of size of the 

constructs, decreased anchor point drift, increased anchor point matching and the same width 

reductions. 

Once developed to allow for larger-scale fabrication and greater consistency, the 3D-printed insert 

modification to include dividers from preliminary experiments led to the successful segmentation of 

the gels, with seeded regions separated from unseeded (acellular) regions within a single gel. Further 

experiments to understand the mechanics of these new gels would now be required.  
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4 Evaluating the new segmented hydrogel system by incorporating a 

skeletal muscle model between two unseeded regions 

As a new apparatus and methodology for the creation of hydrogels had been established, the cells in 

the segmented gels needed to be seen to behave and respond to the model in the same way as had 

occurred in the completely seeded hydrogels. This would indicate that the ‘muscle’ region was 

behaving in the same way as standard muscle models and would pave the way for the introduction of 

secondary tissue types into the model.   

4.1 Introduction 

In the previous Chapter, it was reported how a leading standardised method for creating 3D-tissue-

engineered skeletal muscle was developed to allow higher volumes of models with greater control of 

seeding regions through the introduction of physical dividers, in this case muscle and tendon. The 

segmented models with C2C12 cells seeded only in the central third of the gel were briefly found to 

work on a macroscopic scale and to form a “bowtie” shape from the difference in contraction created 

by the middle/seeded Section contracting to a greater extent than the acellular peripheral regions. It 

was also found that 3D printed inserts were equal in terms of gel contraction and visible myotube 

formation as the standard 8-well plate method, indicating that 3D-printed inserts could yield similar 

results to the currently published standard models. In order to further progress this model, it is 

important to compare 3D printed skeletal muscle models against segmented models to ascertain 

whether the segmentation process affects the cell-seeded region of the gel. Negative macroscopic and 

microscopic effects would indicate that the model requires a trade-off in quality of the model in the 

skeletal muscle region in terms of myotube parameters in order to allow for a multi-tissue model. If 

no depreciation in the quality of the model in the muscle region is observed, then the segmented 

model would be a direct development of the skeletal muscle model. 

A number of models have been developed for engineering of both tendon and skeletal muscle in vivo 

in both 2D and 3D as discussed in Chapter 2. However, in order to create a muscle-tendon model, a 

form of 3D co-culture will most likely be required. As discussed in Chapter 2, 3D tissue co-culture either 

comes in the form of a degradable hydrogel allowing cell-cell contact, or a permeable hydrogel 

divider130. In this Chapter, a hybrid of the two methods is proposed where a removable divider is used 

to initially separate the gel types before allowing them to fuse and culture together as a single gel. 

The justification for such a method is because it is vastly simpler in terms of resources and preparation 

and lower cost than current tissue engineered models for the muscle-tendon interface. Current 
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models can be divided into those engineered in vitro initially, then requiring implantation to complete 

the model using physiological cues and those that are independently tissue-engineered completely in 

vitro. Models requiring implantation have less uncertainty due to the availability of autologous tissues 

and cells, as well as the advantage of the physiological cues once implanted driving the tissue to 

achieve tissue repair and have been used with success in animal models163. These usually involve a 

scaffold that is cultured with a single population of autologous cells in vivo before being implanted as 

a replacement tissue, the scaffold then slowly degrades as the tissue grows using cues from the 

surrounding tissues with support from the scaffold145. 

Current tissue-engineered in vitro models trying to replicate these cues generally take one of two 

approaches; separation through materials and adhesion of two individually cultured tissues. 

Separation through the use of materials is usually  achieved through manipulating material properties 

such as using different electrospun scaffolds164 or it can be done by patterning or printing a material 

with desired properties in specific regions as Merceron et al. had great success with143 where materials 

of different stiffnesses were co-printed with corresponding cell types using a 3D organ printing system. 

Adhesion of two tissues will involve fully tissue-engineering a single tissue and then bonding it to 

either another tissue engineered construct of a different type, this could be another fully engineered 

construct or a non-engineered, isolated tissue. Both examples were used by Larkin et al. 54 where rat 

tails or tendon constructs were pinned onto self-assembling muscle constructs then co-cultured. 

Whilst this method yields positive results, it requires the use of physiological Sections from animals 

that are already developed, reducing the control over the size and geometry of the model and 

increasing the requirements for preparation of the model. Additionally, if these were to be used to 

model human muscle-tendon interfaces, there would be a requirement to use human tendon tissue 

which is associated with high donor-site morbidity and not feasible on large scales. 

All the above processes, while acquiring various levels of success in trying to replicate an interface, 

have the drawback of not quite being simple or cheap enough to be able to set up for high-throughput 

systems. The method proposed by Larkin et al.54 requires an entire culture period for the tendon 

constructs first. Merceron et al.143 required a complicated 3D organ bioprinting system for each gel 

made. Electrospun scaffolds have an impact on tissue mechanics in in vitro systems, these are 

extremely useful when implanted and they can degrade, but if the system is exclusively in vitro then 

this is sub-optimal. A single model using one matrix representative of the tissues would be more 

representative and simpler to fabricate, in this case, using collagen for the entire model. Therefore, 

there is a requirement for a simple, mass producible method that requires minimal setup with a single 

matrix throughout. In this Chapter, it is reported how segmented hydrogels were evaluated as a 
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potential method to meet these requirements. Firstly, the method was to be tested against the control 

hydrogels to better understand the mechanisms in the myoblast cell population to the variation in the 

method. 

4.1.1 Chapter aims 

• Compare the change in gel surface area, gel width, myotube length, myotube width, 

myotube alignment, in central regions of fully-seeded gels to centrally-seeded segmented 

gels to understand whether the myoblasts in both systems result in  

• Ascertain whether the unseeded (peripheral) regions remain absent of cells throughout the 

culture period. 

4.2 Materials and Methods 

4.2.1 Cell culture  

C2C12 murine myoblasts were cultured as described in Chapter 2, Section 2.1 unless otherwise 

specified.  

4.2.2 Tissue engineering of 3D constructs 

Collagen hydrogels were fabricated using the method developed in the previous Chapter as follows: 

3D printed moulds and dividers were printed using PLA with an Ultimaker 2+ printer (Ultimaker, 

Netherlands), disinfected in 70% ethanol and left to dry in UV light. They were then bonded to the 

bottom of a 6-well plate using silicon sealant (King British, UK). Dividers were inserted into the slots 

for three of the moulds that will be segmented and left out of the three control gels. Cells were 

passaged and counted. A 3 ml volume of rat-tail collagen was neutralised and then divided into two 

centrifuge tubes (1ml and 2ml) and kept on ice. The 2ml gel was then mixed with the counted cell 

population, seeded at the standard 4 million cells/ml whilst the other remained acellular. Segmented, 

centrally seeded gels had 167 µl cellular gel pipetted into the middle segment and 167 µl acellular gel 

in each of the peripheral segments while controls had 500 µl of cellular gel pipetted into the mould. 

Dividers were then quickly removed whilst Sections had not reached a high enough temperature to 

polymerise to allow Sections to create a single gel. This left a gel as shown in the schematic below 

(Figure 4.1). These were then cultured under the normal conditions outlined in Chapter 2, Section 2.2 

for 14 days.  
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4.2.3 Macroscopic imaging 

Macroscopic imaging during culture was conducted as described in Chapter 2, Section 2.10. 

Unseeded Unseeded 
C2C12 

Peripheral 

Region 

Peripheral 

Region 

Central 

Region 

Interface/Divider Interface/ Divider 

Figure 4.1: Schematic for the fabrication and layout of the segmented gels and controls with key areas 
labelled that will maintain nomenclature for the remainder of the Chapter. 
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4.2.4 Macroscopic image analysis 

Gel width and surface area were measured using ImageJ as described in Chapter 2, Section 2.12. 

4.2.5 Immunoflourescence imaging 

Immunohistochemistry was used to assess cell morphologies. Samples to be analysed were fixed, 

stained and imaged as described in Chapter 2, Section 2.11. 

4.2.6 Image stitching 

Images of DAPI stained nuclei were taken by individual frames and the platform of the microscope 

was then moved along the length of the gel. These individual frames were then stitched together using 

the “stitching” plugin in ImageJ based on a publication from Preibisch et al.165 (Figure 4.2). These were 

stitched together end-to-end with the same nuclei on the edge of each image being overlapped to 

create an end-to-end image of one single strip along the surface of the gel. This is similar to a method 

used by Wragg et al. previously to construct larger immunostained microscopic images of skeletal 

muscle constructs from smaller individual images.  

 

4.2.7 Microscopic analysis of myotube measurements 

Numerical analysis of the microscopic images involved measuring individual features of the 

microscopic images in ImageJ as in Figure 4.3 of both segmented and control gels. 

Figure 4.2: Example of how the stitch function was used on ImageJ to combine microscopic images. 
Using the stitch function on ImageJ to combine individual frames together to create a tiled image of 
the entire length of the gel for DAPI (nuclei) staining. Scale bar = 100 µm 
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These images were analysed using the previously published method for parameters that are 

standardly compared in publications including myotube length, width, number of nuclei per tube and 

number of tubes per frame46,159. These have in previous publications been limited to a single frame 

and are therefore not always true representations of these measurements, therefore certain 

parameters are usually given arbitrary units as published by Jones et al.159. Frame size is also 

dependent on the equipment being used to take images so is not standardised to a threshold between 

different studies. 

Myotube alignment was also measured. This was conducted by measuring the individual angles 

created by every myotube to the horizontal of the frame and evaluating the difference between them 

and the total frame average as has been shown in previous publications46. Angles were measured from 

the line created by the top of the tube at intersections to the frame, and by the bottom and averaged 

for each myotube. Alignment is a relative measure and myotube alignment is a comparison of the 

angle of one myotube compared to the rest within an image. Comparing them frame by frame would 

not allow for a sufficient relative measure as each sample is likely to be mounted at a slightly different 

angle and the myotubes may also be aligned slightly differently, leading to an inconsistency between 

images.  Therefore, an average was taken of each frame, this would represent how an ideally aligned 

myotube in this system would be orientated. Each individual angle had the average then subtracted 

from it to compute a ‘deviation from alignment’ value. This would show how far each individual 

Figure 4.3: Example of how myotube lengths and widths were measured (white lines) and how 
myotube angles were measured (average of yellow lines against horizontal green line). Actin 
filaments were stained with rhodamine phalloidin (Red) whilst nuclei were stained with DAPI (blue).  
Scale bar = 50 µm. 
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myotube across each frame was away from being aligned perfectly. The closer to zero, the more 

aligned each cell can be considered to be compared to the others. 

4.2.8 RT-PCR measurements  

RNA extraction and quantification, and RT-qPCR were conducted as described in Chapter 2,           

Section 2.13. 

4.2.9 Gel success and survival rates 

Gel success and survival rates were calculated as described in Chapter 2, Section 2.9. 

4.3 Results 

4.3.1 Gel contraction 

In order to ascertain whether there were macroscopic differences in the behaviours of segmented 

gels compared to the standard model over the 14-day culture period, the gels were imaged at 

0 hr, 24 hr, 7, 14 days. Figure 4.4 shows an example of these scans and the differences observed in the 

gels over the culture period, showing n=3 of both segmented and control gels in a single repeat.  
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4.3.1.1 Macroscopic imaging of gel size over 14-day culture period 

To determine whether the segmented gels behaved in a similar fashion to the standard system, 

measurements from scans of each plate were taken at key time points; 0 h, 24 h, 4 days and 14 days 

and the results were compared (Figure 4.5).  

Day 0 Day 1 

Day 7 Day 14 

Figure 4.4: Contraction of control gels (left of each well) and segmented gels (right of each well) at key time 
points over the 14-day culture period. This figure represents n=3 (3 controls seeded throughout and 3 
segmented, seeded centrally only). All moulds were printed using the same method and equipment. Scale 
bar =  10 mm. 

Controls Segmented 
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4.3.1.2 Gel contraction comparisons 

Gel contraction was measured in the same way as the previous Chapter to determine the extent of 

cellular remodelling of the construct. All gels contracted over the 14-day culture period. In terms of 

width, the only significant difference seen was at day 4 where the controls had 44 ± 7 % while the 

segmented gels were 55 ± 12 % of their original width in the centre of the gel (mean ± deviation) 

Figure 4.5: Contraction of the segmented gels compared to the contraction of skeletal muscle 
contracts based on width of central region (A) and total surface area of gel measured using imageJ 
(B). Taken from n= 9 x 3 repeats (excluding 2 gel failures in C2C12). The width of the gels were only 
significantly less on the segmented gels on day 4 (p=0.0031) (t-test) while the surface areas were 
significantly less for the segmented gels over all three time points after the initial, day 1 (p=0.0161), 
day 4 (p<0.0001) and day 14 (p<0.0001). 

* 

* 
**** 

**** 

A 

B 
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(Figure 4.5A). Day 0 and 14 had no significant difference. At the end of the culture period, segmented 

gels and controls had a width of 38 ± 10 % and 36 ± 8 % respectively.  

As anticipated, a larger difference was seen in the overall surface area of the gel where all four time 

points saw significant differences (Figure 4.5B). At 24 hours, 78 ± 12 % was seen in controls and a 

significantly larger (p*=0.0161) 87.8 ± 9 % in segmented gels (t-test). At 4 days, these figures were at 

52 ± 6 % and 78 ± 1 % (p****<0.0001) at 14 days 48 ± 6 % and 62 ± 6 % (p****<0.0001) where control 

gels were significant smaller in surface area.  

As no difference in central gel width was observed, to better understand the difference in overall gel 

surface areas between control gels and segmented gels, the surface area of peripheral regions were 

also measured and compared (Figure 4.6). The peripheral regions in the control gels were found to be 

39 ± 1 % of their original surface area, whilst the segmented gels were less reduced at 59 ± 4% of 

original surface area.  

 

  

4.3.2 Microscopic analysis of cellular regions in segmented gels and controls 

Based on the contraction comparisons, the observable cellular remodelling results were seen to be 

similar in both models despite the change in methodology. As macroscopic contraction analysis is used 

as a non-destructive method to predict if the microscopic architecture will attain fused and aligned 

Figure 4.6: Comparison of the percentage of the original surface area in the peripheral regions of 
both the control and segmented gels. Taken from n =3 x 2 repeats. Error bars show standard 
deviation. 
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myotubes once immunostained and imaged, it was important to next analyse the microscopic 

structure of both gels in their central regions (Figure 4.7). 

 

4.3.2.1 Immunostained image comparisons 

The central regions of both gel types showed aligned, multinucleated myotubes in both with even 

some highly mature, sarcomeric organisation also visible (Figure 4.8). Few nuclei can be seen to not 

be sharing a cell body with another nucleus, indicating high fusion efficiency. The central portion of 

the segmented were found to show similar cellular architecture and development the C2C12 skeletal 

muscle models, but to determine to what extent these results were comparable, more precise 

measurements of these features were required. 

C2C12 

Acellular Acellular C2C12 

Figure 4.7: The central (cell-seeded for seg) regions were analysed and compared between the 
two gel types initially for microscopic and macroscopic measurements. 
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Figure 4.8: Immunostained images for C2C12 control gels (Left) and segmented gels (Right) with rhodamine 
phalloidin for actin filaments (red) and DAPI for nuclei (blue). Both conditions showed high levels of fusion 
and alignment based on these images. Scale bar = 50 µm. White arrows indicate areas with organised 
sarcomeric structures (striations). 
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4.3.2.2 Myotube measurement comparisons 

To make the models studied in this experiment comparable to published models in musculoskeletal 

tissue engineering, a number of standard parameters for microscopic quantification were used, 

measuring myotube length, width, number of nuclei per tube and number of tubes per frame as well 

as myotube alignment. However, the information provided by these measurements can be limited in 

their usefulness, this is commonly due to the length of myotubes being longer than the length of the 

frame they are being measured in, thereby limiting the results to measurable within the frame or 

simply larger than the frame with no accurate quantification. Nonetheless, these have been often 

used as indicators of whether a model is succeeding in forming multinucleated myotubes and can be 

found for this experiment in Figure 4.9 and Figure 4.10. 

Figure 4.9 shows comparisons of the quantified myotubes per frame, 11.2 ± 1 for segmented gels and 

10.3 ± 1 for controls with no observable difference. No difference was also seen in myotube length 

166.7 ± 4 µm (segmented) and 171.9 ± 4 µm (controls) and nuclei per myotube per frame 

6.5 ± 0.3 (segmented) and 6.9 ± 0.3 (controls) (Figure 4.10A). Likewise, no observable disparity 

between the setups was seen in myotube width (Figure 4.10B) 12.6 ± 0.5 µm for segmented gels and 

14.2 ± 0.4 µm of the controls. 
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A 

B 

Figure 4.9: Comparison of data gathered from immunostained images between C2C12 control gels and 
segmented gels for myotubes per microscope frame visible (A) and length of myotubes in each frame 
(B). Note that myotube length is limited to length of the frame as many go from one edge to the other, 
and is therefore not a true indicator of the length of each tube. No difference could be observed 
between the two systems. Error bars = standard deviation. Taken from n=2 x 2 repeats. 
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Figure 4.10: Comparison of data gathered from immunostained images between C2C12 control gels and 
segmented gels for myotubes width (A) and number of nuclei per myotube (B). No observable difference 
could be seen between the two setups. Error bars = standard deviation. Taken from n=2 x 2 repeats. 

A 

B 



103 
 

4.3.2.3 Myotube alignment 

Figure 4.11 shows the deviations of the myotubes from the average of each frame. What can be seen 

is that the majority of tubes are within 10° of being in alignment with the average alignment from the 

frame. As these are deviations from an average in the positive and negative range, calculating a mean 

of all the values would equate to zero. Therefore, to understand the average magnitude of the 

deviation, a mean of the absolute figures can be taken for both the controls and segmented gels and 

compared (Figure 4.12). No observable difference was seen in the alignment of the myotubes in either 

setup with the means equating to 4.3 ± 0.4 and 4.4 ± 0.4 for the cellular and acellular regions 

respectively. 

 

A 

Figure 4.11: The difference between the measured myotube angles and the average for the frame it 
is in for the control gels (A) and the segmented gels (B), indicating how far the tubes are from perfect 
alignment with each other. Taken from n=3 x 3 repeats. 

B 
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4.3.2.4 Genetic expression of skeletal muscle markers 

In addition to the microscopic measurements taken, RT-QPCR was conducted to ascertain the 

expression of two myosin heavy chain isoforms; MYH1 and MYH3. MYH3 is a marker for contractile, 

adult cells, whilst MYH1 is a marker for neonatal cells. MYH1 is downregulated in physiology and is 

replaced by MYH3 as the body matures into adulthood. Figure 4.13 Shows the differences in 

expression of these markers between the two systems. 

Figure 4.12 Difference in the deviation from alignment between the segmented gels and 
the controls. No observable difference could be found. Taken from n= 2 x 2 repeats. Error 
bars = + Standard deviation. 
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4.3.3 Peripheral region observations 

Despite no cells being seeded in the peripheral regions of the gels, it was noticed that there were 

phalloidin and DAPI positive regions (Figure 4.14), including multinucleated cells (Figure 4.15) beyond 

the initial interfaces created by the dividers during the fabrication stage leaving a macroscopic line 

visible with the naked eye (Figure 4.16). This indicated myoblasts and myotubes potentially several 

millimetres from the central, seeded region.  
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Figure 4.13: Genetic markers for muscle maturity comparisons between the control and segmented gels. 
Taken from n = 2 x 2. Error bars = standard deviation.  

Unseeded Unseeded C2C12 

Figure 4.14: Schematic demonstrating the regions that were analysed in this Section. The unseeded 
regions were analysed next to understand the behaviour of the cells that were seeded only in the 
centre of segmented gels. 
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Based on the previous macroscopic analyses either the cells were migrating across the interface, the 

cell number was not constant throughout the gel or the cell number was not directly related to 

contraction. Further to this, it was observed in the immunostained samples that there were myotubes 

located in the peripheral (acellular) regions of the gels (Figure 4.15). It was observed that the acellular 

regions that had a higher incidence of highly developed, fused myotubes alongside visible striations 

(Figure 4.15A). These were found intermittently amongst mostly unfused and low-density cells (Figure 

4.15B).  

The unexpected observation of the acellular regions led to another experiment to understand the 

behaviour and positioning of gels over the culture period.  

 

4.3.3.1 Migration of cells experiment 

To better understand whether the cells were moved into the peripheral regions through mechanical 

means when the dividers were removed, or if this was caused by cell migration into an acellular space, 

or if there was a sudden increase in nuclei in certain areas, an experiment was conducted where cells 

were seeded in the central region only and then fixed and stained at 24 hr, 4 days and 14 days (Figure 

4.16). This would allow for an understanding of the cellular positioning in the gel over the different 

time periods. A 14-day control was set up to compare the density of the cells visible at the end of the 

culture period. 

A B 

Figure 4.15: Immunostained images of the acellular regions which were observed to show areas of 
highly striated, aligned myotubes (A) within large areas of sparse, undifferentiated myoblasts(B). Actin 
filaments were stained with rhodamine phalloidin (red) whilst nuclei were stained with DAPI (blue). 
Scale bar = 50 µm  
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4.3.3.1.1 Nuclei placement in segmented gels 

Gels at each time point were imaged across their length and the images were stitched end-to-end. As 

can be seen in Figure 4.17, cells are observed to be more densely concentrated in the central regions 

at 24 h, but by 14 days they are more evenly distributed throughout with what is assumed to be an 

increase in the number in the peripheral regions and a decrease in the centre. The microscopic 

interface, therefore was no longer matched to the macroscopically visible interface (Figure 4.16, black 

arrows). 

The decrease in the central region may indicate that the cells are moving out into the matrix available 

to them and not that they are simply proliferating into the acellular regions. However, it is important 

to note that these images are taken in a single plane and do not necessarily represent nuclei density 

throughout the gel. 

Figure 4.16: Comparison of segmented gels with C2C12 gels and how the interfaces look at 
different time points. A clear difference can be seen in the coloration of the regions in the 
segmented gels (A, B, C) when compared to the uniform coloration of the C2C12 gels (D, E, F). 
The notches in the mould are where the dividers are placed and therefore are the points at 
which interfaces should initially be formed in the segmented gels. The black arrows show these 
regions. Scale bar = 10 mm. Image represents n=1. 
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24 hours 

4 days 

14 days 

Control 

Unseeded Unseeded C2C12 

Figure 4.17: Stitched images of the length of the centre of the gel displaying the nuclei distribution at three points in the culture period and the control at 
14 days. Black arrow indicates difference in focus between individual images that are stitched together due to gel surface variability. 

5mm 
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4.3.3.1.2  Comparisons of microscopic cellular parameters between segmented gel regions 

Based on the presence of cells in the unseeded regions at the end of the culture period, it was then of 

interest to compare the peripheral regions of both gels. The aim of this thesis was to create discrete 

regions within a collagen gel with different cell populations. Therefore, the next analysis was to 

ascertain if the cells in the peripheral (unseeded) regions were responding to their environment 

differently to those in the central (seeded) regions within segmented gels. The same, standardly 

published parameters of the immunostained images were compared in Figure 4.18.. The smallest 

difference was seen in myotube length per frame 166.7 ± 4.3 (cellular) which was less than 189.2 ± 

6.0 (acellular). These measurements are, as explained earlier, limited by the microscope frame. A 

further discussion of the drawbacks of these measurements can be found in Section 4.4.3. 

Observable differences were seen in the other measurements where acellular gels were wider on 

average 31.8 ± 6.5 µm compared to the cellular gels 12.56 ± 0.5 µm. However, the error for the 

acellular gels were also over twelve times larger.  

Similarly, the average number of nuclei per myotube per frame was greater for acellular regions 

12.02 ± 1 nuclei compared to 6.5 ± 0.3 nuclei in the cell-seeded regions whilst the average number of 

myotubes per frame was higher in the cellular region 11.2 ± 1 tubes than the 4.3 ± 0.7 tubes acellular.  

Interestingly, alignment of myotubes was not found to differ in the two regions. The average absolute 

deviation from alignment was found to be 4.3 ± 0.4 ° cellular region, 4.4 ± 0.4 ° in the acellular region 

(Figure 4.19). 
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A B 

C D 

Figure 4.18: Comparison of the acellular region to the cell seeded region in segmented gels. Width of 
myotubes (A) (C) the number of nuclei per tube (B) the length of myotubes (p**=0.0040) while the (D) 
number of myotubes per frame were significantly. Taken from n = 2 x 2 repeats. Error bars = + Standard 
deviation 
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A 

B 

Figure 4.19: Myotube deviation from average frame alignment in the acellular regions of the 
segmented gels (A), and the comparison of the average deviation in absolute terms to the cellular 
regions(B). No significant difference was found in deviation from alignment (p=0.9102)(t-test). Taken 
from n=3 x 3 repeats. Error bars = +  standard deviation. 
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Finally, as there were many limitations seen with measure cellular parameters in single-frame images, 

this measurement method was compared to tile-scans of control gels. Significant differences were 

seen in myotube length and nuclei per tube even when measuring the same myotubes.  

 

4.4 Discussion 

4.4.1 Gel comparisons 

In the previous Chapter, a method was developed through a QbD framework where a gel could be 

seen to be partitioned into individual Sections. The aim of this Chapter was to ascertain if segmenting 

a gel would have an impact on the development and success of the cellular components of the model. 

Therefore, it was paramount to compare the two gel types and assess their differences 

macroscopically and microscopically. 

 

**** 
*** 

A B 

C 

Figure 4.20: Comparison of the standard frame-by-frame analysis of stained images to the tile scan 
analysis. Tile scans allow for a more meaningful measurement of myotube length(A) (p****<0.0001), 
and therefore number of nuclei per myotube(B) (p***=0.0002) (t-test). No difference was seen in 
moytube width (C). Taken from n=3 x 3. Error bars = + Standard deviation 
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4.4.1.1 Comparison of the size reduction in gels 

As explained in the previous Chapter, contraction of the gel is the primary non-destructive method 

used to approximately predict whether it is to be successful in producing a fused cellular architecture. 

The reduction in gel size is a product of the cell-matrix interactions as the cells attach and remodel the 

matrix, a process the cells undergo before they begin to fuse112,152,166. Generally, it is noticed that the 

centre contracts more than the peripheral regions of a uniformly-seeded gel in standard rectangular 

configurations and the smaller gels or gel regions become over the culture period, the higher the 

density of cells and therefore the higher the likelihood larger or more densely distributed myotubes46.  

Both segmented and control gels were seen to contract more in the first four days compared to the 

rest of their culture period, this agrees with results previously published46,152.  The faster size reduction 

in early culture is likely linked to two factors: Firstly, in order to induce fusion at day 4, the serum 

content of media is reduced to begin the cell fusion phase in the myoblasts. Secondly, once the cell 

volume is reduced to a certain extent, the cells are more likely to fuse. This is because cell-cell contact 

is essential for fusion and the reduction in the size of a gel increases the probability for cells to come 

in contact with each other. However, the control gels had a much larger decrease in contraction after 

the initial four days (Figure 4.5). The smaller decrease in volume reduction rate in the segmented gels 

indicated that there were differences in these parameters between the two gel types. Both sets of 

gels had equal seeding densities in their cell-seeded regions. Controls were seeded throughout the gel 

whilst segmented gels were seeded in only the central third of the total gel volume. As seeding 

densities in seeded regions were equal, cell-cell contact and differentiation should begin 

simultaneously for both gel types, meaning contraction of the gel should reduce at the same rate. The 

higher rate of continued volume reduction of the segmented gels indicated that the centrally-seeded 

cells possibly did not remain localised in that region of the gel. If that were the case, it would suggest 

that cells were migrating in the gel. As cells were only seeded centrally in the segmented gels, cells 

distributing themselves across the sample would equate to an evenly-seeded control sample with 

one-third the seeding density of the controls, which would have a strong reduction on the amount of 

cell-mediated remodelling as a whole167.   

To analyse this more closely, the measurements of gel dimensions were studied. As the central regions 

of both gels were seeded with the same cell density, it was not unexpected that the widths of both 

gel types were not different. However, it was assumed that then there would be a corresponding 

difference in total surface area between the two models; if the central regions contracted the same 

amount in both gels due to the same seeding density, then the overall contraction of the whole 

segmented gel, it follows, should be diminished as the model contains fewer total cells. The control 
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gels were found to have a final surface area of 48 ± 6 % of the original, which was a reduction of 52%. 

As the segmented gels had a third of the number of cells, a linear relationship would anticipate a 

reduction of 18 %, leading to a total surface area of 82 % at day 14. However, the reduction seen was 

62 ± 6 %, a 38 % reduction and over double what would be expected under a linear relationship. 

Incidentally, this level of reduction is comparable to those seen in standard gels seeded uniformly with 

primary cells, which generally yield better results than cell lines119. Mudera et al. have previously also 

demonstrated that seeding densities may not have linear relationship with the contraction of a gel 

and that “optimal” densities exist for specific gel volumes168. However, it is key to note that the 

mechanics of the segmented model is likely to be different if cells migrate across the gel, as there 

would initially be a greater cell volume in the central region that would then decrease as the cells 

migrated outwards. Comparisons of equal total gel seeding densities of segmented gels and control 

gels are an area that could be further studied and may yield new understanding of the mechanics of 

these systems. 

To further investigate this, separate analysis of the peripheral regions alone showed that the reduction 

in the segmented gels (unseeded regions) was approximately two-thirds of the controls. Considering 

no gels at all were seeded in these regions, two-thirds of the cell-mediated contractions could be 

considered high for just the peripheral regions being “pulled in” with the central region contracting. 

This again suggested that the cells were not remaining in their seeded region in the segmented gels.  

In normal, uniformly-seeded gels, the contraction is caused by the cellular interaction with the matrix 

as they reposition themselves, and in vivo muscle regeneration occurs through the migration of 

satellite cells, it is not then unreasonable to think that the cells in the central region of a gel can migrate 

across into other regions within a 14-day period. This is likely the reason for why multiple approaches 

have been taken to make certain regions preferable or viable for a specific single cell type in other 

experiments attempting a muscle-tendon interface in an effort to keep the cells localised143.  

No models identical to the segmented model have been published before so it is difficult to compare 

how far C2C12 myoblasts can migrate from a cellular gel into an acellular gel, although it is known that 

migration is not unusual in primary cell cultures that may contain more than one cell type169.  

4.4.1.2 Myotube comparisons 

The interest of this experiment was to discover whether the centrally-seeded (muscle) region of the 

segmented gels performed as the entire gel is expected to in a standard, uniformly-seeded 3D tissue-

engineered skeletal muscle collagen model. Therefore, comparisons were made between the seeded 

central region in a segmented gel and the central region of a standard model (control gel).  
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As stated by Smith et al.119, “function follows form” when relating to skeletal muscle constructs; 

aligned myotubes allow for the unidirectional functional contraction of the whole muscle construct 

when tested, recreating the main feature of skeletal muscle102. Aligned myotubes are formed as a 

result of tension in the system, but have also been found to be influenced by the cell density and 

original surface area of the matrix46,166. Alignment is generally seen to be highest in the centre of the 

construct where the gel contraction is highest46,119,162. This pattern was also seen in this experiment. 

However, as only the centres of these constructs were being compared, it stands to reason that 

potentially these results may be slightly skewed when compared to those analysing an entire gel, 

especially as the regions immediately adjacent to anchor points tend to have poor alignment due to 

stress-shielding “delta-zones”167.   

The function of in vivo muscle is directly related to the size of the fibres and their density within the 

tissue. Larger myotubes are generally seen in vivo than those modelled in vitro. Therefore, microscopic 

measurements are indicative of the potential functionality of the final model and are used as an 

analogue in tissue engineered models. Both groups of gels had no significant difference in myotube 

number per frame, length per frame, and number of nuclei per tube per frame. There was a difference 

observed in the myotube width between the two models, where the control gels were found to be 

wider. However, the measurement taken for segmented gels of 13 ± 1 µm was within previously 

published error margins for tube width. This may potentially have been caused by overall cell density 

of the gel being lower at the end of the 14-day period if cell migration was occurring. This indicated 

that there were no observable differences in the central, seeded region of segmented gels and the 

central region of control gels.  

There was, however, an observable difference in the cellular measurements in the peripheral 

(unseeded) region of the segmented models compared to the central (seeded) regions of the same 

model and the entirety of control models. Previously published models have shown little variation in 

cellular architecture within single gels, other than stress-shielded “delta-zones” near anchor points167. 

In contrast to this, the peripheral (unseeded) regions in this experiment showed varied architecture 

in between samples, varying from regions of very low or no visible cells or fusion to certain highly 

mature, organised regions. Potentially, this is caused by the fact that the central region has uniform 

seeding, but the peripheral regions are not in any way controlled in the distribution of cells, causing 

the distribution to be facilitated completely by where the cells migrate to and fuse. This was the first 

microscopic evidence that there were cells located in the unseeded regions at the end of the culture 

period, if they arrived there through migration, this could have showed that the cells that migrate the 

furthest were either completely unable to fuse-either due to low levels of cell-cell contact, or were 

highly myogenic. However, no clear correlation of their myogenicity and distance migrated could be 
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established as there was no way of discerning if the remaining cells had not fused because of low cell-

cell contact or low myogenicity. 

The final observation from this experiment was that the macroscopic interface created by the dividers 

and difference in gel seeding in segmented gels was not able to be matched with any microscopic 

interfaces. Many of the results in both macroscopic and microscopic measurements indicated cell 

migration, therefore an experiment was conducted to deduce if this was occurring. 

4.4.1.3 Cell distribution across the samples during the culture period 

The distribution of cells within the sample throughout the culture period is likely to play a key role in 

the outcomes of segmented gels. Based on previous studies, it would seem that the seeding density 

plays the largest role in terms of the outcome of the construct in relation to cell number and any 

proliferation that may or may not occur does not have a noticeable impact on the system167,168. Any 

variations to this parameter through repositioning of the cells into less densely populated areas is 

likely to affect the mechanics of the system. 

Microscopic analysis of the surface of the gels illustrated that the C2C12 cells begin at a high 

concentration in the seeded, central region in segmented gels, before being more evenly distributed 

throughout the model by the end of the culture period. As the earliest time point was 24 hr, it is not 

determined whether the small number of nuclei visible in the peripheral regions are there from the 

fabrication stage, where very miniscule differences in the volumes of the gels pipetted into the regions 

may have led to one region flowing over the top, or whether the removal of the dividers agitated the 

system enough to cause some mixing. Nevertheless, this experiment demonstrated that the cell 

distribution over the 14-day culture period changed within samples and provided evidence that cells 

may be migrating large distances throughout the gel. These results present opportunities for further 

studying the mechanisms of cell locomotion through collagen hydrogels using this model.  

Additionally, these results corroborate with the observations made that the myotubes in the acellular 

regions were more sporadic and less consistent, but seemed to have been formed through the fusion 

of more cells and were larger on average than those in the cellular region. Perhaps those cells that are 

able to migrate further have greater potential to fuse into larger myotubes, this would also be a line 

of research that could be undertaken using this model. 

Whether or not proliferation also played a part in this alteration of the cell distribution, or was the 

main driver, could not be determined based on these results. Metabolic testing or proliferation assays 

of the systems would shed some light on this topic. 
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4.4.2 Gene expression 

The gene expression at different stages of skeletal muscle constructs have been well documented in 

the literature previously119,153,167. Many genes of interest are routinely analysed for 2D and 3D skeletal 

muscle models such as myogenin, MyoD and MYH isoforms. When deciding which genes are relevant, 

it is important to remember the aim of this Chapter. This Chapter was not an evaluation on whether 

or not the 3D tissue engineered model is a viable model for recapitulation of skeletal muscle, that has 

been done multiple times elsewhere and those publication analysed whether the genetic expression 

was found to be representative111,119,159,167. The aim here was to take that established and studied 

model, and try to replicate it in the central region of a segmented gel consistently, allowing space for 

development into a co-culture system.  

No significant difference was observed in the expression of myosin heavy isoforms in either the 

immature (MYH3) or the mature (MYH1) isoforms between gels, indicating that the segmented gels 

were not observably different in stages of development. The established model and the segmented 

gels performed similarly. It is important to note that the entire gels were taken to assess these genetic 

markers, meaning that it is not exclusively the central regions that were being analysed. It could be 

the case that the peripheral regions were influencing the outcomes here with either higher or lower 

of expression of certain markers which could have skewed the results. This may be compounded by 

the aforementioned distribution of contraction and cell migration. For a better understanding, 

experiments could be conducted to separate each segment in both gel types to draw more accurate 

comparisons of genetic expression in gel regions.  

4.4.3 Evaluation of current measuring techniques 

Current published measuring techniques for these models usually involve measuring what is visible in 

a single microscope frame. These have been very useful for determining things such as whether long 

myotubes are formed, how many nuclei they contain, the myotube density visible, and the width of 

myotubes. Many of these measurements are referred to in arbitrary units159 due to the limitations of 

extrapolating data for a whole gel from a single microscope frame. This constrains the results for a 

number of reasons. Firstly, the orientation of the cells in the frame can then have an impact on the 

measurements. For example, in Figure 4.21A, in a perfectly square frame, tubes that are aligned 

parallel to the top and bottom edges will be measured as shorter than those that are orientated at a 

closer to 45° angle due to Pythagoras’ theorem, even if this is not representative of the reality. 
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Secondly, on a similar note, as the tubes cannot fit into the frame, the amount of each tube that is 

measured is completely undetermined, meaning that the 200 µm measurement that does not fit into 

the frame could be from a myotube of any greater length, therefore not discriminating between 

myotubes being only slightly larger than the frame, or double the size. An example of this can be seen 

in Figure 4.22. Due to advances in technology and its accessibility, it is perhaps better to take tiled 

scans of as large of an area of the gel as possible on confocal microscopes (Figure 4.22B) to get more 

accurate representations of cellular architecture and therefore put definitive units on these 

measurements. Comparison of the two methods, showed that a more accurate measure of the 

architecture can be found through the measurement using a tiled scan. This is because the entire 

length of a myotube is visible, giving the measurement and removing the chance of it being counted 

twice. Additionally, alignment is likely to be better measured this way as the error is removed from 

having to average the angles of myotubes in each frame. The alignment can be looked at as an average 

of the whole system, or entire areas can be chosen for analysis. An example of the impact this can 

have can be seen in the comparative results of the two measuring methods.  

For comparative purposes to published literature, single frame analysis gives enough information by 

analysing whether myotubes are fusing, their width and if they are long enough to span across a large 

part of the frame. But now that the capabilities are there, more accurate analysis of the entire model 

can be conducted instead of taking small representative measurement samples in future projects. 

Confocal microscopy would also allow overcoming the other current limitation of microscopic 

techniques; all measurements are done in a single focal plane. Due to the nature of a 3D tissue, much 

of the light required for imaging through the gel is blocked by the matrix, this is an important reason 

for using confocal microscopes to take images in 3D samples. Additionally, they can be used to create 

a 3-dimensional stack, termed a ‘z-stack’ to create a virtual model of the entire gel. For large gels this 

is time consuming but as the model decreases in size to become more resource-efficient, it will be 

Figure 4.21: Measuring different orientations of myotubes in a limited frame size can 
have an impact on measurements even if they are the same length. Myotubes 
aligned with the edges of the frame are more limited in their measurement that 
those at an angle. 

x 
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more manageable to create z-stacks for all gels in their entirety and get a complete picture of their 

structure for analysis. 

  

4.5 Conclusions 

In this Chapter, the experiments comparing fully seeded collagen gels with centrally-seeded 

(segmented) gels indicate that the cellular part of the new segmented gels result in morphologically 

and genetically similar system to that of the central part of the standard collagen skeletal muscle 

model. This suggests that the central “muscle” region is unaffected in terms of cellular mechanics by 

being fabricated in between two unseeded (acellular) segments. This in turn, indicates that the 

segmented model can lend itself to being a skeletal muscle model with other cell types in the 

periphery, giving opportunity for a co-culture interface model. 

The experiments in this Chapter also suggest that the cells seeded in the centre of segmented gels are 

able to migrate across the interfaces with a range of many millimetres to then continue culture in the 

unseeded regions. Analysis of peripheral regions suggest that these migrating cells result in either very 

highly developed myotubes, or completely unfused cells, presumably because of the inconsistency of 

the cell-cell contact in the peripheral regions. If this is the case, in essence, by day 14 the model 

effectively becomes a less dense standard gel with a very well-developed centre and undeveloped 

peripheral regions with some sparse mature myotubes. This does not detract from the central region, 

but does present an issue for modelling interfaces using this method, as this could mean that 

interfaces created through segmentation do not keep cell populations localised. Further experiments 

of interest would involve introducing cells into the peripheral regions to see whether both cell types 

remain within their regions. 

Figure 4.22: Comparison of the standard measurement in a single frame (A) and the 
measurement of a fused myotube in a tile scan (B). The former would give a 162 µm 
measurement while the tile scan would give a more accurate measurement of 530 µm. 

A B 
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Finally, it was noted that the current standard “per frame” measure immunostained hydrogels shows 

unrepresentative quantifications, and suggested that expanding to tile scans of gels may overcome 

this drawback.  
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5 Developing the segmented system by incorporating a “tendon” 

region to create a tendon-muscle-tendon construct 

As the muscle regions in segmented gels were found to have similar outcomes to those in standard 

skeletal muscle constructs, it was key to attempt to seed the peripheral regions with different cell 

types with the intention of creating a muscle-tendon interface and thereby a model of the tissue 

interface. The different cell types could then be analysed to understand their interaction and whether 

or not they are physiologically representative. 

5.1 Introduction 

In the previous Chapter, the newly adapted segmented method for creating multiple gel types in a 

single model was compared to the standard, published method of creating a 3D tissue engineered 

skeletal muscle collagen model. The results concluded that all microscopic parameters pertaining to 

myotubes were the same in both models, except for myotube width which was still within published 

ranges. This led to the conclusion that including a central “muscle” region in a segmented gel does not 

change the desired properties for which these models are generally made. The next step in the 

development to meet the aims of this thesis was to take this central muscle region and attempt to 

combine it with an adjacent cellular region by seeding cells into the peripheral regions that were 

previously unseeded. The previously discovered myoblast migration may then be limited by another 

cell population occupying the space through greater numbers of cell-cell contact through saturation 

of the matrix.  

In order to achieve this, a model of tendon would be needed to combine to the aforementioned 

skeletal muscle model. Tendon tissue models are widely researched due to the prevalence of injuries 

in both athletes and the general population and their notoriously limited regenerative ability due to 

low cell number and vascularity of the tissue145. Most injuries that occur in the tendon tissues are in 

the interfaces due to stress concentration in these regions from a transition in tissue dimensions and 

mechanical properties between tissue types. The natural regenerative process usually replaces the 

injured tendon with less functional scar tissue meaning that surgical suturing or grafts are often 

required for more adequate repair or more sever injures,  leading to a less functional repaired tissue 

and donor site morbidity 144,170. For this reason, the majority of tendon research has been done with 

the intent to repair damaged tendon as part of the entire tissue system within physiological 

conditions120,163. This is in slight contrast to skeletal muscle, which has a good blood supply, is densely 

cellular as a tissue and is a very rare site for serious injury to occur, with excellent regenerative 



122 
 

capabilities for non-severe injuries, therefore the research is more focussed on in vitro models due to 

the less pressing demand in clinical applications87,94,115.  

Many animal models are used for tissue-engineered tendon repair78,124,144. Much like skeletal muscle, 

this is generally achieved using a scaffold or a matrix with a cell type seeded onto it. Due to the 

similarity in structure, tendons and ligaments in tissue engineering are addressed together83,171. 

Primary models using human tendon cells are avoided due to donor site morbidity caused by the 

aforementioned regenerative limitations of the tissue172. The main matrix component of tendon 

in vivo is collagen145, much like skeletal muscle and is therefore very suitable for creating a segmented 

tissue using the same matrix for both tissue types, although as stated before, both tissue types have 

multiple materials used as the ECM in in vitro models. Many other features are shared between the 

two, including the hierarchical nature of the substructure and 3D models being more representative 

of the spatial organisation of the system145 giving further reason for why the two would work 

concurrently in a model such as the one developed in this thesis. Additionally, it is postulated that 

muscle and tendon require interactions between the two cell types for correct development for 

tendon122 while the reciprocal was also postulated for the development of muscle46. 

Although predominantly acellular, especially when compared to the other tissues in the system, 

tendon tissue does have a cellular component. The primary cell type that exists in tendon is not fully 

characterised, it is thought to be a type of fibroblast named a tenocyte, although the specific markers 

separating this from other fibroblasts is not commonly agreed upon145. Whilst there is a very low 

number of cells compared to other tissues, the main role of these tendon cells is the maintenance of 

the ECM110,173. Nonetheless the best cell source for engineered tendons has been researched and 

multiple cell types have been used to model tendons including muscle-derived cells, mesenchymal 

stem cells and fibroblasts being the most researched due to their similarity to tenocytes174. It is 

important to note that even the sizes and shapes vary between specific tendons18 and therefore 

success criteria for each specific tissue-engineered tendon may be different. 

Looking at the scope of this thesis, a high-throughput testing system would need easily accessible cell 

types. From the above cells, fibroblasts have commonly been studied because of the efficiency with 

which they can be extracted without causing secondary donor site morbidity and the ease with which 

they can be expanded122. This makes them an ideal candidate cell type for this Chapter. 

Beyond tissue engineering of single tissue-types, a small number of attempts to make a muscle-tendon 

unit in vitro model from scratch have been made54,164. Most recently, Merceron et al.143 used a 3D 

integrated organ printing system which laid down a layer of polyurethane coprinted with a layer of 

C2C12 in one region with poly ε-caprolactone and 3T3 on the other, with a transition in the middle of 
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the two. The two materials had different properties, ensuring the model was elastic on the muscle 

side and stiff on the tendon side to overcome the difficulty in spatially distributing the cell types and 

keeping them in their specific region for the culture period. This also provided optimal properties for 

culturing the specific cell type.  

Therefore, the aim of this Chapter is to compare uniformly-seeded skeletal muscle constructs and 

fibroblast tendon constructs to segmented gels with acellular peripheral regions, and also segmented 

gels with fibroblast-seeded peripheral regions. 

5.2 Materials and methods 

5.2.1 Cell culture  

C2C12 murine myoblasts and human dermal fibroblasts (hDFs) were cultured and seeded into collagen 

hydrogels as described in Chapter 2, Section 2.1 and Section 2.3 respectively as described.  

5.2.2 Gel fabrication 

Gels were fabricated set using the method developed previously in Chapter 3 and outlined in Chapter 

4, Section 4.2.2. These were adapted to the configurations below (Figure 5.1), both cell types were 

seeded in the gels at a concentration of 4x106 cells/ml of gel to maintain consistency in comparisons 

between samples and experiments. These were then cultured in normal skeletal muscle culture 

conditions as described in Chapter 2, Section 2.9 with 4 days in GM and 10 days in DM.  

In addition to the C2C12 (muscle) controls and the hDF (tendon) controls, the segmented gels were also 

used as a control for the peripheral regions as the behaviour of cells and therefore the microscopic 

and macroscopic results in centrally-seeded gels were different to that of uniformly-seeded gels, as 

demonstrated in the previous Chapter. 
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5.2.3 Gel survival rate  

Gel survival rate was calculated as described in Chapter 2, Section 2.9. 

5.2.4 Immunostaining of gels and microscopy 

Gels were immunostained as described in Chapter 2, Section 2.11 with the addition of desmin staining 

with the intention of differentiating between desmin positive (muscle) cells and fibroblasts as 

described in Chapter 2, Section 2.11.2. Confocal microscopy was conducted as in Section 2.11.  

5.3 Results 

5.3.1 Gel survival rate 

Of the gels made, the success rate for an unbroken gel that made it through the entire culture period 

was measured. The survival rate was found to be 87.5% minimum (C2C12 controls) and higher for all 

other gels. A large improvement from the initial model and in line with the previous Chapter’s results 

(Figure 5.2).  

C2C12 

hDF 

Acellular Acellular C2C12 

hDF hDF C2C12 

Figure 5.1: Schematics of all the experimental models that were tested in this Chapter in regards 
to the seeding of each region of the gel. 

“C2C12 control” “Segmented” 

“hDF control” “Muscle-tendon” 
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5.3.2 Gel contraction 

5.3.2.1 Macroscopic imaging 

The macroscopic decrease in gel size over the culture period was again measured at key intervals to 

understand the level of cell-mediated remodelling of the gel. The gels all contracted over the 14-day 

period in a similar fashion to previous experiments as can be seen in Figure 5.3. These gels were 

measured at each time point to find if there were any differences in the behaviour of the cells 

depending on cell type and location within the gel.  

In the peripheral regions, all gels except for the segmented controls decreased to below 50% of initial 

surface area with no significant differences between them, this indicated that the muscle-tendon 

models were macroscopically behaving similarly to the standard C2C12 system, as were the hDF 

(tendon) controls (Figure 5.4A). The segmented system only decreased to 70.8 ± 6 % of original surface 

area which is approximately half of the decrease of the other models.  

At 14 days, no observable difference was seen in the contraction of the central region of any of the 

gels (Figure 5.4). All gels but the segmented controls contracted to below 50% of original total surface 

area. The segmented controls decreased to 55.4 ± 3 % which agrees with the previous Chapter while 

enforcing the previous point further (Figure 5.5A).  The width at the centre was found to be below 

40% of original width for all gels at day 14 and there were no observable differences between them 

(Figure 5.5B). 

Figure 5.2: Comparison of the number of the percentage of gels attempted that make it through 
the entire culture period. Taken from n=3 x 3 repeats. Error bars = + Standard deviation. 
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C2C12 controls 

hDF controls 

Segmented controls 

Muscle-Tendon 

24 hr Day 1  Day 4  Day 14  

Figure 5.3: Images of gel types at each macroscopic measurement time point. Image shows n=1. 
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5.3.2.2 Gel contraction comparisons 

 

 

 

Figure 5.4: Comparisons of contraction in peripheral regions (A) and central regions (B) of the gels. 
Taken from n=2 x 3 repeats. Error bars = + Standard deviation 

A 

B 
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Figure 5.5 Comparisons of total gel surface area reduction (A), and final width in the central region at 14 days 
(B). Taken from n=2 x 3 repeats. Error bars = + Standard deviation. 

A 

B 
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5.3.3 Microscopic analysis of cellular regions 

5.3.3.1 Comparison of uniformly-seeded control gels 

Control gels for both C2C12 and hDFs were first looked at to ascertain the morphologies of the two cell 

types in these models. Figure 5.6 shows that a clear difference can be seen between the 

multinucleated, fused myotubes (A) and the spindle shape fibroblasts that are in contact in a 3D 

network (B). It should be noted that the desmin resulted in non-specific binding as can be seen in the 

image (B). 

 

A 

B 

Figure 5.6: Examples of control gels for C2C12 cells (A) and hDF (B). These can be seen to have very 
different morphologies. Actin filaments were stained with phalloidin (red)for actin filaments, desmin 
(green) to identify muscle-specific proteins and nuclei were stained with DAPI (blue) Scale bar = 50 
µm. 
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5.3.3.2 Analysis of cellular architecture in muscle-tendon gels 

The central and peripheral regions in muscle-tendon models were individually examined, showing the 

difference between the morphologies of the cells. It should be noted that desmin was visible in both 

types of cells, it was also seen in very few of the hDF controls (Figure 5.7), therefore desmin does not 

necessarily act as the indicator that it was intended to be used as to identify the location of myoblasts.  

 

Cells in the central region of the gels (Figure 5.8 left) had visibly fused multinucleated, aligned cells 

whereas the peripheral region (Figure 5.8B), whilst still somewhat aligned, were morphologically 

different. Where these two cell types transition could be seen in Figure 5.9. Areas of thick myotubes 

come to a halt where non-fused cells begin to be more commonly seen. These are the interfaces 

between the two engineered tissue models, but interestingly, they were found to be in a different 

location to where the visible interfaces were created when the gels were fabricated similarly to the 

results seen in previous Chapters.  

 

Figure 5.7: Example of hDF-only  control demonstrating desmin positivity in some regions. Actin filaments 
were stained with phalloidin for actin filaments (red), desmin for muscle-specific protein (green) and 
nuclei were stained with DAPI (blue). Scale bar= 50 µm.  
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Figure 5.8: Examples of central regions in the Muscle-Tendon model (left) and the peripheral region 
(right). Myotubes can be seen in the central region and are absent in the peripheral regions, where 
only unfused cells are visible. Actin filaments were stained with phalloidin for actin filaments (red), 
desmin for muscle-specific protein (green) and nuclei were stained with DAPI (blue). Scale bar= 50 
µm. 
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Figure 5.9: Examples of images of cellular interfaces in muscle-tendon gels. These differed from the 
visible interface that is created in the gel fabrication in terms of position, nonetheless they were seen to 
be present in a small number of samples. Scale bar = 100 µm. White arrows indicate examples of how 
myotubes transition into areas of unfused cells. Actin filaments were stained with phalloidin for actin 
filaments (red), desmin for muscle-specific protein (green) and nuclei were stained with DAPI (blue). 
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However, not all gels exhibited the clear differences in cell types (Figure 5.10). In fact, the majority of 

gels showed a mixture of cell types in all regions, where it was not easily discernible which cell type 

was present. This, in part was due to the presence in desmin detected in regions of the hDF controls, 

preventing the identification of muscle and fibroblast cells. This could be overcome somewhat with 

an identification of the morphology of each cell type in these models, however it is a sub-optimal 

method of identifying the two, especially when cell types are distributed homogenously throughout 

the gel by the end of the culture period. Nonetheless, the immunostained confocal images indicated 

that the segmentation did not work in the majority of the samples.  

 

 

Figure 5.10: Many gels showed no clear difference between two cell regions throughout the 
entirety of the gel. Many looked homogenously mixed throughout. Actin filaments were 
stained with phalloidin for actin filaments (red), desmin for muscle-specific protein (green) and 
nuclei were stained with DAPI (blue). Scale bars = 100 µm 
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5.3.4 Myotube comparisons in central regions 

The myotube data between the central regions of the gel types containing C2C12s were then compared 

to see if there was any difference caused by the introduction of a second cell type. An observable 

difference was seen in myotube length (Figure 5.11A), where the muscle-tendon model was 

167.8 ± 45 µm against the 189.8 ± 37 µm for the C2C12 controls. However, as mentioned in previous 

Chapters, this was measured per visible frame and therefore not necessarily indicative of an effect of 

construct type. No difference was seen in myotube width (Figure 5.11B) where the measurements 

were 13.4 ± 6 µm, 13 ± 5 µm and 14.7 ± 5 µm for the muscle-tendon, C2C12 control and segmented 

control respectively. 

Observable differences were seen in number of nuclei per tube per frame between all three of the 

muscle-tendon, C2C12 controls, segmented controls and the models (Figure 5.12A) the means of which 

were 7.14 ± 3, 5.57 ± 2, 9.9 ± 4 nuclei respectively. While myotubes per frame were not affected by 

gel type at 6.44 ± 1, 6.89 ± 2 and 7.89 ± 2 myotubes respectively (Figure 5.12B). 

Figure 5.13 and Figure 5.14 show the distribution of the individual myotube angles in relation to the 

mean of the frame they were measured in. Figure 5.14B summarises these distributions by showing 

the absolute deviation of the myotubes in each model. Absolute measurements were used as averages 

of measurements could hide deviations by deviating either side of zero equally. Observable 

differences could be seen between controls at 2.6 ± 3 ° and the other gels, with segmented at 3.8 ± 3 ° 

and muscle-tendon at 4.4 ± 3 °. 
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Figure 5.11:Comparison of myotube length and width between the muscle-tendon, C2C12 controls and 
segmented controls. Muscle-tendon was shorter than C2C12 control. As explained, these measurements 
are limited by frame size, therefore a slight difference does not necessarily indicate a large difference 
in the outcomes of these gels. No differences were seen in the myotube width between all models. 
Taken from n=2 x 2 repeats. Error bars = + Standard deviation  

A 

B 
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A 

B 

Figure 5.12: Comparison of microscopic parameters between the muscle-tendon, C2C12 controls and 
segmented controls. (A)Number of nuclei were different between all models. (B) Small observable 
differences were also seen in number of myotubes per frame. Taken from n=2 x 2 repeats. Error 
bars + Standard deviation 
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A 

B 

Figure 5.13: The difference between the measured myotube angles and the average for the 
containing frame in (A) the muscle-tendon gels and (B) the muscle control gels. Taken from 
n=2 x 2 repeats. Error bars = + Standard deviation 
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A 

B 

Figure 5.14: (A) The difference between the measured myotube angles and the average for the 
frame in segmented gels (B) the absolute differences in average alignment for all gels. Absolute 
values were calculated as any deviation is undesirable so simply averaging at zero is not what is 
required. Taken from n=2 x 2 repeats. Error bars show standard deviation. Error bars = + Standard 
deviation 



139 
 

5.3.5 Gene expression 

Whilst the majority of the focus of this Chapter was to create a model that was morphologically more 

similar to native tissues and much can be determined from the morphology of muscle tissue, it was 

also of interest to analyse whether the addition of a second cell type to the model would impact the 

genetic expression of the muscle model, whether or not it would impact the maturation or influence 

the development as other co-culture studies have shown with 3D skeletal muscle. The same genes -

MYH1 and MYH3- were looked at as in the previous Chapter using RT-qPCR. 

While there was no significant difference between the expression of either isoform, there was a large 

variability between the models the means of which were MYH1: 0.4 ± 0.4 for muscle-tendon and 

0.7 ± 0.5 for segmented controls and MYH3: 0.9 ± 0.4 for muscle-tendon and 0.8 ± 0.2 for segmented 

controls.  

5.4 Discussion 

The aim of this Chapter was to ascertain whether adding a second cell type allowed for the creation 

of an interfacial model between a skeletal muscle and tendon model. To achieve this, the cells needed 

to be kept in the regions that they were seeded in and allowed to be in contact to create a gradual 

transition from one tissue into another. This had to be done whilst maintaining the integrity and the 

2
Δ

Δ
C

T  

Figure 5.15: RT-qPCR results for the two myosin heavy chain isoforms MYH1 (adult) and MYH3 
(embryonic) in segmented and muscle-tendon gels. No significant difference was seen between the 
two. Values for MYH1 were 0.4 ± 0.4 and 0.7 ± 0.5, values for MYH3 were 0.9 ± 0.4 and 0.8± 0.2 for 
muscle-tendon models and segmented controls respectively. Taken from n=2 x 2 repeats. Error bars 
show standard deviation. 
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function of each of the individual tissues. For this reason, the analysis in this Chapter was twofold: did 

the muscle region remain the same as a standard skeletal muscle model and were two distinct tissue 

regions created? 

5.4.1 Comparison of macroscopic behaviour 

Building on the previous Chapter and the conclusion that seeded regions of segmented gels behaved 

much in the same way with the same outcomes as the standard gels, it was time to incorporate a 

second “tissue” in the peripheral regions to attempt to create a muscle-tendon model. The cell type 

identified in tendon tissues are fibroblast-like cells, called tenocytes163. Whilst these are hard to come 

by in the form of primary cells due to donor site morbidity, other fibroblasts are not, especially dermal 

fibroblasts which are more readily available122. Human dermal fibroblasts were seeded in the 

peripheral region with C2C12 cells in the central region to create a tendon-muscle-tendon model.  

The total survival rate of all gels in these experiments was 87.5% or higher, indicating a high output 

from the methodology developed in this thesis. The majority of the ones that failed were due to 

failures at the interface. This, like previous samples in Chapter 1, could have been due to incorrect 

setting at the interface, perhaps due to a gel setting too quickly or dividers being left in too late. 

Alternatively, the inherent variability in the collagen neutralisation and the system as a whole may 

have a percentage of models such as this which do not work. Optimisation of these shortcomings are 

important for future development towards high throughput systems. 

The macroscopic results indicate that C2C12s and fibroblasts behaved similarly in terms of cell-

mediated gel remodelling, as regardless of the combination of the cells in the three regions, as long 

as there were cells present, the contraction of the collagen had no significant difference. This was 

highlighted when even the segmented gel, which was the only one to be significantly different in 

surface area of peripheral regions, had the same width and surface area of the central region, the only 

place it was seeded with cells. This shows that as long as either cell type was in a particular region of 

the gel, the outcome in terms of cell-mediated remodelling would likely be the equal. 

The contraction of fibroblasts in a model such as this have been previously shown and is therefore 

unsurprising in this model. The system used in this thesis originates in fibroblast populated collagen 

lattice (FPCL) (first introduced by Bell et al.)175 which was later adapted to not be free-floating by 

introducing anchor points and was then used in skeletal muscle models162. FPCLs are most commonly 

used to model wound healing, therefore contraction is a key element of the model, the specific 

mechanisms of which are documented elsewhere176.  
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5.4.2 Comparisons of cellular properties 

Comparing the skeletal muscle regions of the C2C12 controls, segmented (unseeded-C2C12-unseeded) 

controls and the (tendon)-muscle-tendon gels showed many similarities in their cellular architecture. 

Myotube width and number of tubes per frame were not affected between model types, presumably 

this is due to the seeding density being the same for the same volume of gel in each of the seeded 

regions. The myotube length also saw no measured difference between all three model types. The key 

thing to note is that whilst width is relatively well represented in a frame, the length is severely limited 

by the size of the frame and the relative angle of the cells as mentioned in the previous Chapter. So, a 

significant difference, if it is larger than the width of the frame, is not necessarily indicative of a real 

difference. This can also somewhat apply to the number of nuclei per tube per frame and number of 

tubes per frame. However, according to previously published measurements, these were 

representative of current model measurements46,159 and should be expanded to using larger image 

scans when possible, however this demonstrates that there is a minimum threshold at which all the 

myotubes in the samples are fusing.  

On the other hand, myotube width and number of tubes per frame were no different between models, 

indicating that the density of fused cells and their resulting width were the same no matter what the 

setup. Pairing this with the similarity in lengths and understanding that the number of nuclei in a frame 

may not be representative, it can be concluded that the resulting myotubes from all the setups are 

similar in morphology.  

As explained in the previous Chapter, myotube alignment is indicative of mature muscle cell 

development and representative of native tissue. In contrast with what was discovered by Rao et al.177 

the presence of fibroblasts in contact with the a C2C12 model showed no clear improvement of the 

alignment of the myotubes in the model.  

Looking at the gene expression of the myosin heavy chain isoforms MYH1 and MYH3, no difference 

could be found between the two gel types. However, the errors on these data were very large, 

indicating that although the gel types seemed no different on average, they were both very variable 

in their outcomes in terms of gene expression. For segmented control gels, this may be due to what 

was discovered in the previous Chapter with regards to cell migration and how some myotubes were 

found to be very mature. Further work with larger repeats are required.  

5.4.3 Cellular interaction observations 

To find out whether or not the two regions created a distinct interface and were kept in their 

respective regions, immunostained images were compared. Desmin was used as a muscle-specific 
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filament stain whilst rhodamine phalloidin was used for actin staining to show the filaments of all cells, 

DAPI was used for the identification of nuclei. This type of counterstaining, using desmin to stain for 

specifically for muscle with a different stain for the other cell types such as fibroblasts is a method 

that can be commonly used to distinguish between cell types178. This assumes that non-muscle cell 

lineages are not myogenic and will therefore not be desmin positive. However, in this Chapter, using 

this method reduced the distinction between cell types: the muscle-tendon co-cultures had a majority 

of desmin positive cells within them meaning that almost all cells in the model were stained with both 

desmin and rhodamine phalloidin.  

Fibroblasts themselves are not desmin positive as desmin is a muscle-specific filament protein. 

However, some experiments have managed to drive them down a myogenic lineage. For example, 

MyoD1 has been used to induce desmin positivity in dermal fibroblasts through transdifferentiation179. 

More similarly to the experiments in this Chapter is the work of Goldring et al. who introduced dermal 

fibroblasts into the muscle of the mdx (Duchenne’s muscular dystrophy) mouse model and found that 

the dermal fibroblasts participated in new myotube formation180. Building on this, it was discovered 

that dermal fibroblasts grown in medium conditioned by muscle cells would convert to a myogenic 

lineage due to the factor Galectin-1 which is secreted in myogenic cultures. Using transfected COS-1 

cells to increase secretion of Galectin-1, this conversion can reach 100% of cloned dermal fibroblasts 

in conditioned media, but this secretion also occurs at a lower level with C2C12 cultures. Therefore, 

C2C12 secretions of Galectin-1 into media have been shown to cause dermal fibroblasts to become 

desmin positive when cultured in said media. Further work also found that the same results are 

mirrored in human cells, stating that human dermal fibroblasts can also become desmin positive when 

cultured in muscle cell conditioned media181. The potential mechanisms postulated for this are either 

direct transdifferentiation into a different cell type of the fibroblasts, or a sub-population from the 

dermis with characteristics of stem cells exist in the culture. As these fibroblasts were cultured from 

primary cells, either mechanism could explain the expression of desmin in these experiments.  

In this experiment, the images of the immunostained gels showed desmin positivity throughout the 

samples, with a few occasional exceptions. This meant that the fibroblasts, if they were still in the gel 

regions at the end of the culture period, were mostly desmin positive. Desmin positivity was almost 

completely absent from hDF control gels, apart from a small number of exceptions observed where 

no more than a few were positive in an entire gel (data not shown). Although further repeats are 

needed, a small number of desmin-expressing cells could indicate that there is indeed a sub-

population of cells within the culture. 
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As all cells were cultured in the same media within the same models, it could be assumed that the 

media acted as ‘conditioned’ in a way by the present C2C12 cells and this could have led to the 

aforementioned conversion of fibroblast cell type to a myogenic lineage. Interestingly, the literature 

states that this does not occur in all fibroblast types, for example, myofibroblasts do not convert under 

these conditions and are also do not express desmin normally. This would explain why some 

experiments using desmin in co-cultures would be able to distinguish between myogenic and non-

myogenic cell types without inducing a change182. The scarce research on the mechanisms of change 

of expression has been focussed on the dermal fibroblast cell population. 

Due to the lack of availability on information of similar models, this could be an explanation as to why 

there were so few non desmin-positive cells visible in the confocal images despite the careful seeding 

of the different cell types in specific regions. It is important to note that whilst the hDFs were primary 

cells used in this experiment, after high numbers of passages, they may have potentially lost their 

original fibroblastic characteristics. Nevertheless, the muscle-specific immunostain was unreliable in 

the analysis of the images for the purposes of this Chapter, requiring an analysis of the morphology of 

the cells instead to judge whether the requirements had been met. 

5.4.4 Comparison of cellular architecture 

In order to answer whether or not two distinct tissue regions were created, the cell morphology 

needed to be objectively analysed for changes in cellular architecture. The images in Figure 5.9 showed 

that there were regions where thick myotubes came to a sudden halt and areas with other cell 

morphologies began. These were often found to not accurately correspond to the interface created 

between gel regions during fabrication. Therefore, these could be termed as secondary interfaces. 

This type of architecture is similar to that visible in experiments by Rao et al.177 in a co-culture of C2C12 

and 3T3 fibroblasts, where large, thick tubes suddenly transition into areas of thinner, less aligned 

cellular networks. This is also somewhat similar to what was observed by Merceron et al.143 who also 

used the same cell types. However, in contrast to these publications, this Chapter showed thicker, 

more developed tubes at the interfaces with a much less defined interface, which is reflective of the 

focus of each respective study.  

The interfaces in this Chapter were often not very defined or uniform and were not visible in all gels, 

but they could be in a total of 4 interfaces out of a total 18 (9 gels). This again highlights the variability 

of the gels, echoing results of their genetic expression. The initial system for creating gels before this 

thesis had inherent variability in and of itself, some models would not yield the same results as others, 

even within a single repeat and the reasons are generally unexplained. This would commonly occur 

when there was only a single cell type within a single gel. The variability becomes compounded as the 
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number of gels and cell types increase, giving rise to higher unpredictability of the model. One likely 

reason for this variability could come from lack of specific control of removal of the dividers. In other 

words, they are removed whenever the pipetting is finished, regardless of how long that takes, 

resulting in some gels being left with the dividers in for a longer period which may lead to certain 

segments polymerising first, creating more of a semi-barrier between the two cell types, preventing 

as much movement between the two. Alternatively, it may be related to the migration of the cells and 

the interactions between the two, for example, Rao et al. demonstrated that myoblasts and fibroblasts 

that are within short range of each other can lead to a decrease in myoblast differentiation due to 

cross talk177. Similar effects may have limited the development of the myoblasts in the cultures in this 

Chapter and led to models with a mixture of unfused myoblasts, fibroblasts and myotubes which could 

only be discerned by the morphology as desmin was detected in most cell filaments, preventing a 

simple distinction between cell types. 

At the time of this thesis, few similar models exist as identified by Rao et al.177 to be compared to, 

leading to a lack of good information to use as a benchmark for these models. Out of the current 

attempts to create such a model, this Chapter found a much simpler model with much more variable 

results and would require more optimisation and analysis for a clearer outlook on the system. 

5.5 Conclusions 

The experimental results in this Chapter suggested that human dermal fibroblasts and C2C12 myoblasts 

perform similar extents of matrix remodelling when seeded in the same densities in collagen gels. 

Using the segmentation method, tendon-muscle gels were fabricated with some evidence of 

transitions between cell types once immunostained, with regions of multinucleated myotubes 

adjacent to regions of single-nuclei cells, similar to those seen in other experiments attempting to 

replicate these interfaces. These indicated that it may be possible to create models with muscle-

tendon interfaces using this system. However, the transitions were observed inconsistently suggesting 

that the parameters in the system were not optimised to allow for uniformity between or even within 

samples. Additional experiments with regards to times at which dividers are removed, environmental 

temperature, and seeding densities would allow for better understanding of the creation of interfaces. 

Additionally, desmin staining for myofilaments was found to not be an effective differentiator 

between cell types, this may have been due transdifferentiation of dermal fibroblasts in the presence 

of Galectin-1 from the co-culture of C2C12 cells. Further experiments with different sources of 

fibroblasts as a tendon model could yield more clear differences between the two cell types, allowing 

for a clearer understanding of the microstructure of the models. 
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5.6 Key findings 

The data gathered in this thesis takes steps towards a potential method for creating a single in vitro 

tissue engineered collagen model consisting of multiple regions of different cell populations using a 

simple method that could be adapted for high throughput testing. Firstly, current models of in vitro 

3D skeletal muscle were evaluated and the simplest in regards to preparation and equipment was 

identified, a collagen model between two anchor points. This was then developed into a method that 

was more consistent by optimising the individual steps and the use of resources, before it was adapted 

to being able to allow for multiple gel populations to be made in a single gel; termed segmentation of 

the gel. Secondly, the standard C2C12 murine myoblast models were tested against segmented gels 

with unseeded peripheral regions to ascertain if the introduction such regions would change the 

output of the skeletal muscle regions of the gels, resulting in the muscle regions of the new gels being 

almost identical to the standard. Finally, the originally unseeded peripheral regions were seeded with 

a tendon-like cell types (hDFs) in an attempt to create a muscle-tendon model, leading to a model 

with some evidence of ability to create such an interface, but not yet reliably indicating a need for 

further research and optimisation 

Much of the focus of this thesis has not been previously studied or published due to lack of relevance 

at the experimental level in academia. For example, no detailed breakdown of the process 

components and the variability of the chosen collagen system has been published elsewhere. The aim 

of this system is for testing, simulating conditions to study the reaction of the tissues to certain stimuli, 

therefore tissue engineered models need to be as uniform as possible between samples with large 

output numbers. Hence, it is vital to look at the inherent variability in the system and minimise it, as 

was done in the first experiments of this thesis. Once steps were taken towards creating a more 

reliable process, the model could be adapted to try and separate regions within the tissue. 

Again, very few models exist at the time of writing this thesis which tissue engineer a muscle and 

tendon region inside a single collagen model without the use of additional biological components such 

as decellularized tissue making comparable data very limited. Merceron et al.143 used 3D organ 

printing to lay down two adjacent substrates layer-by-layer with cell/hydrogel mix in layers in between 

substrate layers, creating a ‘muscle’ region conjoined with a ‘tendon’ and a clear interface where the 

two merge. The technique found good success and control of regions, but the ECM composed of 

hyaluronic acid, gelatin and fibrinogen was not necessarily representative of physiological tissue and 

required specialised equipment in the form of an organ printer, which at this point in time would limit 

the volume of output of the system. Ladd et al.164 seeded C2C12 myoblasts and 3T3 fibroblasts on 

electrospun PLA and PCL scaffolds for a similar effect but with no ECM present. Larkin et al. created 
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an MTJ with self-organised collagen constructs involving laminin, also with good outcomes54. 

However, the experiments took considerable preparation with sylgard for the wells being left three 

weeks to cure and the laminin requiring a week before use. Lastly, Rao et al.177 created a co-culture of 

tendon and muscle collagen gels, but these were not intended as a muscle-tendon model and were 

not in unilateral tension to cause alignment. Based on the existing models, no simple, cheap, quick to 

assemble model exists for the fabrication of a muscle-tendon interface, neither does one exist 

completely using a tissue-engineered collagen gel. The main constituent of physiological muscle and 

tendon is collagen, therefore the model optimised and used in this thesis was a collagen model. 

In this thesis, the individual components of the entire process of creating a standardised gel were 

initially analysed, which despite being very widely and successfully used as an experimental model, 

had specific stages identified that were causing the difficulty in making it a higher output system by 

making it more of an artisan process46,159. Firstly, much of the setup was made by hand, creating 

differences in every model that was made and limiting the number of samples made to the number 

of setups that can be handmade by the operator. Secondly, the non-handmade chambers were 

bespoke and expensive, requiring long periods of waiting times to be made and delivered. Also, the 

gels required high numbers of cultured cells due to their volumes, there was no accurate way to 

separate parts of the gel for different cell populations to create multiple tissue systems, there was 

little versatility in the setup to allow for new prototypes or for easy follow-up experiments such as 

mechanical stimulation. The fabrication process was held back heavily by having to repeat the entire 

neutralisation of collagen cycle every one or two gels made as the neutralised collagen would set too 

quickly to give time to fabricate more gels. 

Preliminary attempts to separate gel regions found that, if made quickly enough a single gel can be 

made out of three smaller collagen regions with their own seeding, this gel would then contract much 

more in seeded regions than in unseeded regions. However, these were difficult to produce due to 

the aforementioned limitation with neutralised collagen. 

Multiple different additive manufactured well systems were attempted, learning that 3D printed 

shapes worked well as moulds and that sliding “dividers” with slots in the side of the moulds were the 

best for separating a single gel. The final prototype resembled one that was published at the time159 

and was then adapted to match the published geometries with the sliding dividers incorporated. Now 

very large numbers of moulds could be made with the use of a commercially available 3D printer with 

only hour-long wait times and be used on the very same day once adhered into a standard 6-well 

plate. Other prototypes were made, altering the geometries of the system to create different test 

samples and another model was developed where the mould form a moveable miniature joint where 
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muscle constructs could be cast either side and the tension in their inherent systems could affect each 

other’s development. These pave the way for new experiments that could be conducted to find 

optimal parameters for such systems. The first experiment in the new system compared how a 

segmented unseeded (acellular)-C2C12-unseeded gel would perform against a homogenously seeded 

C2C12 gel. Interestingly, the middle ‘muscle’ regions of both gels were not observably different in terms 

of macroscopic or microscopic measurements, indicating that there was little effect on the ability of 

these gels to create the desired architecture when set up in this manner. 

The locomotion of cells is a key part in the creation of many collagen-based tissue engineered 

constructs due to the contraction of the gel it results in. Additionally, to the previous finding, this 

thesis observed that the C2C12 cell nuclei, whilst concentrated in the region they were seeded initially, 

were more homogenously spread throughout the gel by the end of the 14-day culture period. It can 

be deduced that these cells may have migrated many millimetres. Cell locomotion is a large part of 

how collagen matrices are contracted in these models and therefore may explain why the difference 

in contraction between the two gel types were not as large as expected; the cells were migrating 

further in relative terms and mediating greater contraction. These unseeded regions saw a lower 

incidence of fused myotubes, but the ones that did fuse were more often thicker, larger in nuclei 

number and striated. 

However, this migration was not optimal in terms of creating multiple gel regions with clear interfaces 

within a single gel. Ideally, the cells would halt their migration once they made contact with a second 

cell type. With the goal of creating a muscle-tendon tissue, human dermal fibroblasts- a cell type used 

in tendon modelling- were introduced into the peripheral regions of the gel to make a tendon-muscle-

tendon construct. The macroscopic behaviour of this gel was found to be the same as all other 

homogenous gel controls, regardless of the cell type seeded, indicating that the fibroblast and 

myoblast locomotive behaviour is the same within a collagen gel. Immunostained comparisons 

showed that the majority of cells in the gel were desmin expressive, even those in the tendon regions. 

Some studies have shown that Galectin-1, a factor released by myoblasts in culture can cause dermal 

fibroblasts in both humans and mice to become desmin positive, indicating that this may have 

occurred in the co-culture here180,181. However, morphological differences could be seen between the 

two cell types in some constructs and although only few gels showed it, there were regions with 

interfaces between the two cell types in an approximation to interdigitation somewhat similar to what 

Rao et al observed in their experiments177. 

Whilst the initial muscle-only model that this thesis began on was adapted to be more acceptable for 

a reliable, high-throughput system and a method was developed for segmenting a gel to make a 
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muscle-tendon model, the two were not reached in unison. The segmentation model as it stands is 

not yet consistent enough in creating muscle-tendon models successful, clear interfaces. The current 

rate of visible microscopic interfaces is at 22% of total interfaces made and therefore is a proof-of-

concept that needs further development and optimisation to be used in high-throughput testing. 
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6 Future work 

6.1 Future work on previous Chapter outcomes 

6.1.1 Segmentation improvements 

The major drawback of the system investigates is that few interfaces showed a muscle-tendon 

transition, leaving small repeat numbers for gathering data. The process of segmenting is still variable, 

leading to some interfaces showing a transition whilst others do not stop the gel from merging into 

one co-culture. Further experiments can be conducted investigating the neutralisation process and 

how to standardise it with specific amounts of solvents, the time required before dividers should be 

removed, ways of designing dividers to cause less of a disturbance during removal. Also new studies 

should be conducted looking into how seeding densities affect the migration and interfacial 

behaviours of the system. This will allow for a more robust model with higher statistically successful 

output. Ultimately, a model where all three regions are deposited simultaneously would prevent 

discrepancies. 

Tendon models can be made from a range of different tenocyte-like fibroblasts. With the desmin 

positivity of the dermal fibroblasts found in this thesis, a different cell type for the tendon could be 

used for a clearer understanding of the microscopic structure of the model. Additionally, the cell types 

used should be single species in order to minimise cross-species models and variability as they will not 

be representative of final uses.  

As mentioned previously46, myotube analysis from microscopic data is too time consuming for high-

throughput systems and can also be inconsistent due to the sample size limit of a frame. However, 

most are destructive methods. RT-qPCR could be utilised to measure gene expression, but no specific 

markers for skeletal muscle maturation currently exist, so myogenin and MyoD1 are often used to 

measure regulation profiles over time111,152,166. Alternatively, collagen markers could be used. With 

tendon tenomodulin can be used as a specific marker of tendon maturation and Col-1 is also often 

used although is not specific to tendon122. However, collagen marker results will be affected by the 

matrix of the model and would therefore not be reliably measurable. Wragg46 also identified the 

enzyme-linked immunosorbent assay (ELISA) as another potential method due to the increased 

sensitivity of protein detection. All of these methods require destruction of the model and are also 

measures that indicate whether a model might be successful, none are primary determinations of a 

skeletal muscle model’s success. Skeletal muscle function is dependent on the structure of the cell, 

therefore the only measure for whether a model has formed successful, mature myotubes is through 

the identification of mature myotubes through microscopic assessment. Hence, a method of real-time 
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measurement of the system would allow for good comparisons of structural formation and final 

morphology such as live tagging of proteins with in-incubator microscopes46.Alternatively, assessment 

of the function by stimulating contraction would indicate if the structure is functional, usually 

performed in self-assembling models89,113. However, these are more difficult to perform in collagen 

gels due to the dense matrix that has been further remodelled46.  

Genetic expression of each individual region could be analysed for certain markers instead of the gel 

as a whole to understand how the separate tissue regions respond to being in the coculture model, 

although the fabricated and secondary interface are not located in the same region, making isolations 

of regions difficult. 

Many published models are cultured for longer than two weeks to allow time for the full development 

of cells and some of the cultures had not fused properly over the given period which is in line with 

other findings longer culture times can be tested with this co-culture model. 

To verify whether this model is useful for the intended purpose, it can be tested with discovered 

compounds and effects compared to those in vivo and current testing methods as well as mechanical 

stimulation experiments. 

Finally, this can be combine with previous muscle-bone 3D co-cultures to create a complete muscle-

tendon-bone model. 

6.1.2 Versatility in geometry of 3D printed moulds 

Because 3D printing has opened up so many opportunities, there are a large number of mould designs 

that can now be attempted to make different kinds of models.  

So far, most models have focussed on one small organoid. 3D printed systems can be designed to 

include multiple organoids into a miniature system. For example, a skeletal muscle construct is a group 

of myotubes in a matrix, making an analogue of a fascicle. To more accurately represent the full organ, 

multiple fascicles can be created in a single model, although this requires more complex designing, 

and can involve making use of all three axis in designs. 

Traditionally, models are usually designed in the XY plane and then extended through the Z axis. For 

example, a rectangle is created as a mould, and then extended upwards in the Z plane to make a 

cuboid, and that is a standard shaped mould. For the tube-shaped moulds, they are circles that are 

then extended upwards. But now, new intricate shapes can be created with variances in the Z axis 

with more complex shaped moulds for different tissue systems. For example, muscle begins with a 

small cross-Sectional area at the MTJ, then increases in size towards the middle of the muscle belly, 
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this can be recreated in a multifascicular model with certain fascicles angling outwards more than 

others between the two MTJs. 

Finally, moving parts in a model are now easily made with precision on a large scale, leading to 

consistent models that can involve articulating joints allowing for different types of stimulations with 

multiple tissue models. 

As Bian et al.116 demonstrated, varying the design of the moulds when making skeletal muscle collagen 

gels can yield interesting results in the way the cells align and fuse and can influence the architecture 

of the model by guiding the fibres in certain directions. Some additional prototype moulds were tested 

during the term of this project but were deemed not in the scope: 

6.1.3 “Skinny” gels 

The leading stimulus of these systems is the mechanical strain created inherently by cellular 

remodelling in the gel whilst being held by the anchor points. Strain mechanics are changed by the 

geometry of the sample though, thereby changing the way in which the cells align and fuse.  

It was observed that many of the gels that were being fabricated had dense, well-aligned myotubes 

on the edge of the gel. This may be because it is an area of strain concentration as there is nowhere 

outside to dissipate to, also cells are not able to migrate out at the edges so may accumulate more 

there than elsewhere in the gel. The question was, then, what if the entire gel was made as an edge? 

Would that improve the density of the entire gel? A new design was made with a very thin (2mm) 

opening for the gel in the middle with the normal sized mould on either end. This shaped the sample 

like a standard engineering tensile test sample, which concentrates the tension in the thin region. 
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The preliminary attempts using a new geometry seemed to have some successful results. At the very 

least they were successful gels, with highly dense, aligned myotubes. This seems to echo what was 

discovered by Bian et al.116 But will require more experimental repeats to determine whether useful. 

Nonetheless some potential can be seen.  

A B C 

D E F 

Figure 6.1: Examples of "Skinny" gel geometry, macro images and day 0 (A) and day 14 (B), Phalloidin (Red) 
and DAPI (blue) stained images at 10x (C), and 20x (D,E,F). From 2 gels over 2 repeats.  
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6.2 Miniature Joint models 

 

Developmentally, skeletal muscles are connected to the skeleton and twitching is an essential part of 

embryonic musculoskeletal development. Muscles often come in agonist and antagonist pairs, the 

two alternating between contraction and stretch. Therefore, these models can be developed to work 

in antagonistic pairs, exhibiting opposing forces on each other. A prototype for this was developed 

during this project. This had potential to be attached to a motor and stimulate two models at the same 

time, perhaps one in compression and the other stretched, released factors could then be measured.  

Figure 6.2: Demonstration of how the mini-joint model could use two constructs in a single mould 
(A). The resulting (B) gels could exert force on each other during development which may have 
positive effects as it occurs in vivo. 



154 
 

7 References 

1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Robers, K. & Walter, P., Molecular Biology of the 

Cell. (Garland Science, 2007). 

2. Bell, G. H., Emslie-Smith, D. & Paterson, C. R. Textbook of physiology. (Churchill Livingstone, 

1980). 

3. Gillies, A.R., Lieber, R. L. Structure and function of the skeletal extacellular matrix. Muscle 

Nerve 44, 318–331 (2012). 

4. Tajbakhsh, S. Skeletal muscle stem cells in developmental versus regenerative myogenesis. J. 

Intern. Med. 266, 372–389 (2009). 

5. Bendall, J. R. The elastin content of various muscles of beef animals. J. Sci. Food Agric. 18, 

553–558 (1967). 

6. Dransfield, E. Intramuscular composition and texture of beef muscles. J. Sci. Food Agric. 28, 

833–842 (1977). 

7. Light, N. & Champion,  A. E. Characterization of muscle epimysium, perimysium and 

endomysium collagens. Biochem. J. 219, 1017–1026 (1984). 

8. Buckingham, M., Bajard, L., Chang, T., Daubas, P., Hadchouel, J., Meilhac, S., Montarras, D., 

Rocancourt, D & Relaix, F., The formation of skeletal muscle: From somite to limb. J. Anat. 

202, 59–68 (2003). 

9. Christ, B. & Ordahl, C. P. Early stages of chick somite development. Anat. Embryol. (Berl). 191, 

381–396 (1995). 

10. Tajbakhsh, S., Rocancourt, D., Cossu, G. & Buckingham, M. Redefining the genetic hierarchies 

controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 89, 127–138 

(1997). 

11. Gilbert, S. F. Osteogenesis: The development of bones. Developmental Biology (2000). 

Available at: http://www.ncbi.nlm.nih.gov/books/NBK10056/. Accessed 10 October 2018. 

12. Rudnicki, M.A., Schnegelsberg, P.N., Stead, R.H., Braun, T., Arnold, H.H & Jaenisch, R., MyoD 

or Myf-5 is required for the formation of skeletal muscle. Cell (1993). doi:10.1016/0092-

8674(93)90621-V 

13. Tajbakhsh, S., Rocancourt, D. & Buckingham, M. Muscle progenitor cells failing to respond to 



155 
 

positional cues adopt non- myogenic fates in myf-5 null mice. Nature 384, 266–270 (1996). 

14. Kablar, B.. Krastel, K., Ying, C., Tapscott, S.J., Goldhamer, D.J. & Rudnicki MA. Myogenic 

Determination Occurs Independently in Somites and Limb Buds. Dev. Biol. 206, 219–231 

(1999). 

15. Huxley, A. F. Muscular contraction. J Physiol 243, 1–43 (1974). 

16. Tregear, R. & Marston, S. The cross-bridge theory. Physiol. Rev. 63, 1049–1113 (1983). 

17. Gomes, A. V, Potter, J. D. & Szczesna-Cordary, D. The role of troponins in muscle contraction. 

IUBMB Life 54, 323–333 (2002). 

18. Kannus, P. Structure of the tendon connective tissue. Scand. J. Med. Sci. Sports 10, 312–320 

(2000). 

19. Sharma, P. & Maffulli, N. Biology of tendon injury: Healing, modeling and remodeling. J. 

Musculoskelet. Neuronal Interact. 6, 181–190 (2006). 

20. O’Brien, M. Structure and metabolism of tendons. Scand. J. Med. Sci. Sports 7, 55–61 (1997). 

21. Williams, J. G. Achilles tendon lesions in sport. Sports Med. 3, 114–135 (1986). 

22. Zhang, G., Young, B.B., Ezura, Y., Favata, M., Soslowsky, L.J., Chakravarti, S.& Birk D.E. 

Development of tendon structure and function: Regulation of collagen fibrillogenesis. Journal 

of Musculoskeletal Neuronal Interactions 5, 5–21 (2005). 

23. Apostolakos, J. Durant, T.J., Dwyer, C.R., Russell, R.P., Weinreb, J.H., Alaee, F., Beitzel, K., 

McCarthy, M.B., Cote, M.P. & Mazzocca A.D. The enthesis: a review of the tendon-to-bone 

insertion. Muscles. Ligaments Tendons J. 4, 333–342 (2014). 

24. Zerhouni, E. A. Ultrastructure of myotendinous junctions in tendon-skeletal muscle constructs 

engineered in vitro Tatiana. Science (80-. ). 306, 1895 (2004). 

25. Butler, D. L., Grood, E. S., Noyes, F. R. & Zernicke, R. F. Biomechanics of ligaments and 

tendons. Exerc. Sport Sci. Rev. 6, 125–181 (1978). 

26. Elliott, D. H. Sructure and function of mammalian tendon. Biol. Rev. 40, 392–421 (1965). 

27. Rowe, R. W. The structure of rat tail tendon fascicles. Connect. Tissue Res. 14, 21–30 (1985). 

28. Hess, G. P., Cappiello, W. L., Poole, R. M. & Hunter, S. C. Prevention and treatment of overuse 

tendon injuries. Sports Med. 8, 371–384 (1989). 



156 
 

29. Tozer, S. & Duprez, D. Tendon and ligament: Development, repair and disease. Birth Defects 

Res. Part C - Embryo Today Rev. 75, 226–236 (2005). 

30. Schweitzer, R., Zelzer, E. & Volk, T. Connecting muscles to tendons: tendons and 

musculoskeletal development in flies and vertebrates. Development 137, 2807–2817 (2010). 

31. Brent, A. E., Schweitzer, R. & Tabin, C. J. A somitic compartment of tendon progenitors. Cell 

113, 235–248 (2003). 

32. Brent, A. E., Braun, T. & Tabin, C. J. Genetic analysis of interactions between the somitic 

muscle, cartilage and tendon cell lineages during mouse development. Development 132, 

515–528 (2005). 

33. Pryce, B. a et al. Recruitment and maintenance of tendon progenitors by TGFbeta signaling 

are essential for tendon formation. Development 136, 1351–1361 (2009). 

34. Lorda-Diez, C. I., Montero, J. A., Martinez-Cue, C., Garcia-Porrero, J. A. & Hurle, J. M. 

Transforming growth factors β coordinate cartilage and tendon differentiation in the 

developing limb mesenchyme. J. Biol. Chem. 284, 29988–29996 (2009). 

35. Pryce, B. A., Brent, A. E., Murchison, N. D., Tabin, C. J. & Schweitzer, R. Generation of 

transgenic tendon reporters, ScxGFP and ScxAP, using regulatory elements of the scleraxis 

gene. Dev. Dyn. 236, 1677–1682 (2007). 

36. Chevallier, A., Kieny, M. & Mauger, A. Limb-somite relationship: origin of the limb 

musculature. J. Embryol. Exp. Morphol. 41, 245–258 (1977). 

37. Chen, J. W. & Galloway, J. L. The development of zebrafish tendon and ligament progenitors. 

Development 141, 2035–45 (2014). 

38. Schweitzer, R. Chyung, J.H., Murtaugh, L.C., Brent, A.E., Rosen, V., Olson, E.N., Lassar, A. & 

Tabin CJ. Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and 

ligaments. Development 128, 3855–3866 (2001). 

39. Kardon, G. Muscle and tendon morphogenesis in the avian hind limb. Development 125, 

4019–4032 (1998). 

40. Edom-Vovard, F., Schuler, B., Bonnin, M.-A., Teillet, M.-A. & Duprez, D. Fgf4 positively 

regulates scleraxis and tenascin expression in chick limb tendons. Dev. Biol. 247, 351–366 

(2002). 

41. Yurchenco, P. D., Mecham, R. P. & Birk, D. E. Extracellular matrix assembly and structure. 



157 
 

General Pharmacology: The Vascular System 26, (Elsevier Science, 1995). 

42. Rho, J. Y., Kuhn-Spearing, L. & Zioupos, P. Mechanical properties and the hierarchical 

structure of bone. Med. Eng. Phys. 20, 92–102 (1998). 

43. Rodan, G. A. Bone homeostasis. Proc. Natl. Acad. Sci. U. S. A. 95, 13361–13362 (1998). 

44. Copp, D. H. & Shim, S. S. The homeostatic function of bone as a mineral reservoir. Oral 

Surgery, Oral Med. Oral Pathol. 16, 738–744 (1963). 

45. Orkin, S. H. & Zon, L. I. Hematopoiesis: An Evolving Paradigm for Stem Cell Biology. Cell 132, 

631–644 (2008). 

46. Wragg, N. Development of a 3D Tissue Engineered Skeletal Muscle and Bone Pre-Clinical Co-

Culture Platform. Thesis, Loughborough University (2016),. 

47. Charvet, B., Ruggiero, F. & Le Guellec, D. The development of the myotendinous junction. A 

review. Muscles. Ligaments Tendons J. 2, 53–63 (2012). 

48. Ovalle, W. K. Anatomy and Embryology The human muscle-tendon junction A morphological 

study during normal growth and at maturity. 1, 281–294 (1987). 

49. Tidball, J. G. & Lin, C. Structural changes at the myogenic cell surface during the formation of 

myotendinous junctions. Cell Tissue Res. 257, 77–84 (1989). 

50. Larkin, L. M., Calve, S., Kostrominova, T. Y. & Arruda, E. M.  Structure and Functional 

Evaluation of Tendon–Skeletal Muscle Constructs Engineered in Vitro . Tissue Eng. 12, 3149–

3158 (2006). 

51. Chiquet, M. & Fambrough, D. M. Chick myotendinous antigen. I. A monoclonal antibody as a 

marker for tendon and muscle morphogenesis. J. Cell Biol. 98, 1926–1936 (1984). 

52. Koch, M., Schulze, J., Hansen, U., Ashwodt, T., Keene, D.R., Brunken, W.J., Burgeson, R.E., 

Bruckner, P. & Bruckner-Tuderman L. A Novel Marker of Tissue Junctions, Collagen XXII. The 

Journal of biological chemistry 279, 22514–22521 (2004). 

53. Katsumi, A., Orr,  a W., Tzima, E. & Schwartz, M. A. Integrins in mechanotransduction. J. Biol. 

Chem. 279, 12001–4 (2004). 

54. Larkin, L. M., Calve, S., Kostrominova, T. Y. & Arruda, E. M.  Structure and Functional 

Evaluation of Tendon–Skeletal Muscle Constructs Engineered in Vitro . Tissue Eng. 12, 3149–

3158 (2006). 



158 
 

55. Shaw, H. M., Vázquez, O.T., McGonagle, D., Bydder, G., Santer, R.M. & Benjamin M.  

Development of the human Achilles tendon enthesis organ. J. Anat. 213, 718–724 (2008). 

56. Benjamin, M. & Ralphs, J. R. Entheses--the bony attachments of tendons and ligaments. Ital. 

J. Anat. Embryol. 106, 151–157 (2001). 

57. Rufai, A., Benjamin, M. & Ralphs, J. R. Development and ageing of phenotypically distinct 

fibrocartilages associated with the rat Achilles tendon. Anat. Embryol. (Berl). 186, 611–618 

(1992). 

58. Blitz, E., Sharir, A., Akiyama, H. & Zelzer, E. Tendon-bone attachment unit is formed 

modularly by a distinct pool of Scx- and Sox9-positive progenitors. Development 140, 2680–

90 (2013). 

59. Zelzer, E., Blitz, E., Killian, M. L. & Thomopoulos, S. Tendon-to-bone attachment: From 

development to maturity. Birth Defects Res. Part C - Embryo Today Rev. 102, 101–112 (2014). 

60. Sugimoto, Y. Takimoto, A., Akiyama, H., Kist, R., Scherer, G., Nakamura, T., Hiraki, Y. & 

Shukunami C. Scx+/Sox9+ progenitors contribute to the establishment of the junction 

between cartilage and tendon/ligament. Development 140, 2280–8 (2013). 

61. Schwartz, A. G., Pasteris, J. D., Genin, G. M., Daulton, T. L. & Thomopoulos, S. Mineral 

Distributions at the Developing Tendon Enthesis. PLoS One 7, (2012). 

62. Provot, S. & Schipani, E. Molecular mechanisms of endochondral bone development. 

Biochem. Biophys. Res. Commun. 328, 658–665 (2005). 

63. Kahn, J., Shwartz, Y., Blitz, E., Krief, S., Sharir, A., Breitel, D.A., Rattenbach, R., Relaix, F., 

Maire, P., Rountree, R.B., Kingsley, D.M. & Zelzer, E. Muscle Contraction Is Necessary to 

Maintain Joint Progenitor Cell Fate. Dev. Cell 16, 734–743 (2009). 

64. Galatz, L. M., Ball, C. M., Teefey, S. A., Middleton, W. D. & Yamaguchi, K. The outcome and 

repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J. 

Bone Joint Surg. Am. 86-A, 219–224 (2004). 

65. Thomopoulos, S. Kim, H.M., Rothermich, S.Y., Biederstadt, C., Das, R. & Galatz LM. Decreased 

muscle loading delays maturation of the tendon enthesis during postnatal development. J. 

Orthop. Res. 25, 1154–1163 (2007). 

66. Schwartz,  A. G., Lipner, J. H., Pasteris, J. D., Genin, G. M. & Thomopoulos, S. Muscle loading is 

necessary for the formation of a functional tendon enthesis. Bone 55, 44–51 (2013). 



159 
 

67. Lu, H. H. & Thomopoulos, S. Functional Attachment of Soft Tissues to Bone: Development, 

Healing, and Tissue Engineering. Annual review of biomedical engineering 15, 201–226 

(2013). 

68. Benjamin, M. Kumai, T., Milz, S., Boszczyk, B.M., Boszczyk, A.A. & Ralphs J.R. The skeletal 

attachment of tendons--tendon ‘entheses’. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 

133, 931–945 (2002). 

69. Gulotta, L. V & Rodeo, S. A. Growth factors for rotator cuff repair. Clin. Sports Med. 28, 13–23 

(2009). 

70. Wrana, J. L., Attisano, L., Wieser, R., Ventura, F. & Massague, J. Mechanism of activation of 

the TGF-β receptor. Nature 370, 341–347 (1994). 

71. Scott, A. Cook, J.L., Hart, D.A., Walker, D.C., Duronio, V. & Khan, K.M. Tenocyte responses to 

mechanical loading in vivo: a role for local insulin-like growth factor 1 signaling in early 

tendinosis in rats. Arthritis Rheum. 56, 871–881 (2007). 

72. Juneja, S. C. & Veillette, C. Defects in tendon, ligament, and enthesis in response to genetic 

alterations in key proteoglycans and glycoproteins: a review. Arthritis 2013, 154812 (2013). 

73. Padulo, J., Oliva, F., Frizziero, A., Maffulli, N. & Padulo, J. principles and recommendations in 

clinical and field science research Corresponding author : 3, 250–252 (2013). 

74. Angeline, M. E. & Rodeo, S. A. Biologics in the Management of Rotator Cuff Surgery. Clin. 

Sports Med. 31, 645–663 (2012). 

75. Snow, S. W., Bohne, W. H., DiCarlo, E. & Chang, V. K. Anatomy of the Achilles tendon and 

plantar fascia in relation to the calcaneus in various age groups. Foot ankle Int. 16, 418–421 

(1995). 

76. Milz, S., Rufai, A., Buettner, A., Putz, R., Ralphs, J.R. & Benjamin, M. Three-dimensional 

reconstructions of the Achilles tendon insertion in man. J. Anat. 200, 145–152 (2002). 

77. Eliseev, R., Schwarz, E.M., Zuscik, M.J., O'Keefe, R.J., Drissi, H. & Rosier, R.N. a et al. Smad7 

mediates inhibition of Saos2 osteosarcoma cell differentiation by NFkappaB. Exp. Cell Res. 

312, 40–50 (2006). 

78. Novakova, S. S. Mahalingam, V.D., Florida, S.E., Mendias, C.L., Allen, A., Arruda, E.M., Bedi, A. 

& Larkin L.M. Tissue-engineered tendon constructs for rotator cuff repair in sheep. J. Orthop. 

Res. 36, 289–299 (2018). 



160 
 

79. Platt, M. A. Tendon Repair and Healing. Clin. Podiatr. Med. Surg. 22, 553–560 (2005). 

80. Baldino, L., Cardea, S., Maffulli, N. & Reverchon, E. Regeneration techniques for bone-To-

Tendon and muscle-To-Tendon interfaces reconstruction. Br. Med. Bull. 117, 25–37 (2016). 

81. Corry, I. S., Webb, J. M., Clingeleffer, A. J. & Pinczewski, L. A. Arthroscopic Reconstruction of 

the Anterior Cruciate Ligament. Am. J. Sports Med. 27, 444–454 (1999). 

82. Robertson, D. B., Daniel, D. M. & Biden, E. Soft tissue fixation to bone. Am. J. Sports Med. 14, 

398–403 (1986). 

83. Dourte, L. A. M., Kuntz, A. F. & Soslowsky, L. J. Twenty-five years of tendon and ligament 

research. J. Orthop. Res. 26, 1297–1305 (2008). 

84. Mak, I. W., Evaniew, N. & Ghert, M. Lost in translation: animal models and clinical trials in 

cancer treatment. Am. J. Transl. Res. 6, 114–8 (2014). 

85. Ledford, B. Y. H. 4 Ways to fix the clincal trial. Nature 477, 7–9 (2011). 

86. Bose, S., Roy, M. & Bandyopadhyay, A. Recent advances in bone tissue engineering scaffolds. 

Trends Biotechnol. 30, 546–554 (2012). 

87. Christ, G. J. Soft Tissue Reconstruction : Skeletal Muscle Engineering. Stem Cell Biol. Tissue 

Eng. Dent. Sci. 1–27 (2014). 

88. Aviss, K. J., Gough, J. E. & Downes, S. Aligned electrospun polymer fibres for skeletal muscle 

regeneration. Eur. Cells Mater. 19, 193–204 (2010). 

89. Huang, Y.C., Dennis, R. G., Larkin, L. & Baar, K. Rapid formation of functional muscle in vitro 

using fibrin gels. J. Appl. Physiol. 98, 706–713 (2004). 

90. McKeon-Fischer K.D. & Freeman, J.W. Characterization of electrospun poly(L-lactide) and gold 

nanoparticle composite scaffolds for skeletal muscle tissue engineering. J. Tissue Eng. Regen. 

Med. 5, 560–568 

91. Zatti, S., Zoso, A., Serena, E., Luni, C., Cimetta, E. & Elvassore N. Micropatterning Topology on 

Soft Substrates Affects Myoblast Proliferation and Differentiation. Langmuir 28, 2718–2726 

(2012). 

92. Saxena, A. K., Jennifer, M., Benvenuto, M., Willital, G. H. & Vacanti, J. P. Skeletal Muscle 

Tissue Engineering Using Isolated Myoblasts on Synthetic Biodegradable Polymers: 

Preliminary Studies. Tissue Eng. 5, 525–531 (1999). 



161 
 

93. Saxena, A. K., Willital, G. H. & Vacanti, J. P. Vascularized three-dimensional skeletal muscle 

tissue-engineering. Biomed. Mater. Eng. 11, 275–281 (2001). 

94. Levenberg, S. Rouwkema, J., Macdonald, M., Garfein, E.S., Kohane, D.S. & Darland D.C. 

Engineering vascularized skeletal muscle tissue. Nat. Biotechnol. 23, 879–884 (2005). 

95. October, R. Thoughts on the microstructure of polycrystalline thin film CuInSe2 and its impact 

on material and device performance. 30, 21–38 (1991). 

96. Thorrez, L., Shansky, J., Wang, L., Fast, L., VandenDriessche, T., Chuah, M., Mooney, D. & 

Vandenburgh H. Growth, differentiation, transplantation and survival of human skeletal 

myofibers on biodegradable scaffolds. Biomaterials 29, 75–84 (2008). 

97. Engler, A. J., Griffin, M.A., Sen, S., Bönnemann, C.G., Sweeney, H.L. & Discher, D.E. Myotubes 

differentiate optimally on substrates with tissue-like stiffness: Pathological implications for 

soft or stiff microenvironments. J. Cell Biol. 166, 877–887 (2004). 

98. Bian, W., Liau, B., Badie, N. & Bursac, N. Mesoscopic hydrogel molding to control the 3d 

geometry of bioartificial muscle tissues. Nat. Protoc. 4, 1522–1534 (2009). 

99. Vandenburgh, H. H., Karlisch, P. & Farr, L. Maintenance of highlr contractile tissue - cultured 

avian skeletal myotubes in collages gel. 24, 166–174 (1988). 

100. Eastwood, M., McGrouther, D. A. & Brown, R. A. A culture force monitor for measurement of 

contraction forces generated in human dermal fibroblast cultures: evidence for cell-matrix 

mechanical signalling. Biochim. Biophys. Acta - Gen. Subj. 1201, 186–192 (1994). 

101. Eastwood, M. Effect of precise mechanical loading on fibroblast populated collagen lattices: 

morphological changes. Cell Motil. … 40, 13–21 (1998). 

102. Passey, S., Martin, N., Player, D. & Lewis, M. P. Stretching skeletal muscle in vitro: Does it 

replicate in vivo physiology? Biotechnol. Lett. 33, 1513–1521 (2011). 

103. Chiron, S. Complex interactions between human myoblasts and the surrounding 3D fibrin-

based matrix. PLoS One 7, 2–9 (2012). 

104. Hinds, S., Bian, W., Dennis, R. G. & Bursac, N. The role of extracellular matrix composition in 

structure and function of bioengineered skeletal muscle. Biomaterials 32, 3575–3583 (2011). 

105. Matsumoto, T., Sasaki, J., Alsberg, E., Egusa, H., Yatani, H & Somura, T. Three-dimensional cell 

and tissue patterning in a strained fibrin gel system. PLoS One 2, 1–6 (2007). 



162 
 

106. Boonen, K. J. M. Langelaan, M.L., Polak, R.B., van der Schaft, D.W., Baaijens, F.P. & Post, M.J. 

Effects of a combined mechanical stimulation protocol: Value for skeletal muscle tissue 

engineering. J. Biomech. 43, 1514–1521 (2010). 

107. Strohman, R. C., Bayne, E., Spector, D. & Obinata, T. Myogenesis and histogenesis of skeletal 

muscle on flexible membranes in vitro. 201–208 (2000). 

108. Dennis, R. & Kosnik, P. I. Excitability and isometric contractile properties of mammalian 

skeletal muscle constructs engineered in vitro. Vitr. Cell. Dev. Biol. … 327–335 (2000). 

109. Shansky, J., Del Tatto, M., Chromiak, J. & Vandenburgh, H. A simplified method for tissue 

engineering skeletal muscle organoids in vitro. In Vitro Cell. Dev. Biol. Anim. 33, 659–661 

(1997). 

110. Qazi, T. H., Mooney, D. J., Pumberger, M., Geißler, S. & Duda, G. N. Biomaterials based 

strategies for skeletal muscle tissue engineering: Existing technologies and future trends. 

Biomaterials 53, 502–521 (2015). 

111. Player, D. J. Martin, N.R., Passey, S.L., Sharples, A.P., Mudera, V. & Lewis M.P. Acute 

mechanical overload increases IGF-I and MMP-9 mRNA in 3D tissue-engineered skeletal 

muscle. Biotechnol. Lett. 36, 1113–1124 (2014). 

112. Sharples, A. P. Player, D. J. Martin, Mudera, V., Stewart, C.E. & Lewis M.P Modelling in vivo 

skeletal muscle ageing in vitro using three-dimensional bioengineered constructs. Aging Cell 

11, 986–995 (2012). 

113. Martin, N. R. W., Passey, S.L., Player, D.J., Mudera, V., Baar, K., Greensmith, L. & Lewis M.P. 

Neuromuscular junction formation in tissue engineered skeletal muscle augments contractile 

function and improves cytoskeletal organisation. Tissue Eng. Part A 21, (2015). 

114. Lewis, R. L. & Gutmann, L. Snake Venoms and the Neuromuscular Junction. Semin Neurol 24, 

175–179 (2004). 

115. Juhas, M., Ye, J. & Bursac, N. Design, evaluation, and application of engineered skeletal 

muscle. Methods 99, 81–90 (2016). 

116. Bian, W. & Bursac, N. Engineered skeletal muscle tissue networks with controllable 

architecture. Biomaterials 30, 1401–1412 (2009). 

117. Vandenburgh, H., Del Tatto, M., Shansky, J., Lemaire, J., Chang, A., Payumo, F., Lee. P., 

Goodyear, A. & Raven L. Brief Report Tissue-Engineered Skeletal Muscle Organoids for 



163 
 

Reversible Gene Therapy Hum. Gene Ther. Nov 10;7(17):2195-200 (1996). 

118. Chromiak, J.A., Shansky, J., Perrone, C. & Vandenburgh H.H. Bioreactor perfusion system for 

the long-term maintenance of tissue-engineered skeletal muscle organoids In Vitro Cell Dev 

Biol Anim. Oct;34(9):694-703 (1998). 

119. Smith, A. S. T., Passey, S., Greensmith, L., Mudera, V. & Lewis, M. P. Characterization and 

optimization of a simple, repeatable system for the long term in vitro culture of aligned 

myotubes in 3D. J. Cell. Biochem. 113, 1044–1053 (2012). 

120. Shearn, J. T., Kinneberg, K.R., Dyment, N.A., Galloway, M.T., Kenter, K., Wylie, C. & Butler, D.L. 

Tendon tissue engineering: Progress, challenges, and translation to the clinic. J. 

Musculoskelet. Neuronal Interact. 11, 163–173 (2011). 

121. Juncosa-Melvin, N., Boivin, G.P., Galloway, M.T., Gooch, C., West, J.R., Sklenka, A.M. & Butler, 

D.L. Effects of Cell-to-Collagen Ratio in Mesenchymal Stem Cell-Seeded Implants on Tendon 

Repair Biomechanics and Histology. Tissue Eng. 11, 448–457 (2005). 

122. Chen, B., Ding, J., Zhang, W., Zhou, G., Cao, Y., Liu, W. & Wang, B. Tissue Engineering of 

Tendons: A Comparison of Muscle-Derived Cells, Tenocytes, and Dermal Fibroblasts as Cell 

Sources. Plast. Reconstr. Surg. 137, 536e-544e (2016). 

123. Ouyang, H., C.H. Goh, J., Thambyah, A., Teoh, H. & Hin Lee, E. Knitted Poly-lactide-co-

glycolide Scaffold Loaded with Bone Marrow Stromal Cells in Repair and Regeneration of 

Rabbit Achilles Tendon. Tissue Eng. 9, 431–439 (2003). 

124. Sato, M., Maeda, M., Kurosawa, H., Inoue, Y., Yamauchi, Y. & Iwase H. Reconstruction of 

rabbit Achilles tendon with three bioabsorbable materials: histological and biomechanical 

studies. J. Orthop. Sci. 5, 256–267 (2000). 

125. Fischbach, C., Chen, R., Matsumoto, T., Schmelzle, T., Brugge, J.S., Polverini, P.J. & Mooney 

DJ. Engineering tumors with 3D scaffolds. Nat. Methods 4, 855–860 (2007). 

126. Hutmacher, D. W., Loessner, D., Rizzi, S., Kaplan, D.L., Mooney, D.J. & Clements J.A. Can tissue 

engineering concepts advance tumor biology research? Trends Biotechnol. 28, 125–133 

(2010). 

127. Villasante, A. & Vunjak-Novakovic, G. Tissue-engineered models of human tumors for cancer 

research. Expert Opin. Drug Discov. 10, 257–268 (2015). 

128. Lin, C., Ballinger, K. R. & Khetani, S. R. The application of engineered liver tissues for novel 



164 
 

drug discovery. Expert Opin. Drug Discov. 10, 519–540 (2015). 

129. MacIntosh, B. R., Gardiner, P. F. & McComas, A. J. Skeletal muscle: form and function. (Human 

kinetics, 2006). 

130. Bogdanowicz, D. R. & Lu, H. H. Studying cell-cell communication in co-culture. Biotechnol. J. 8, 

395–396 (2013). 

131. Proffen, B. L., Haslauer, C. M., Harris, C. E. & Murray, M. M. Mesenchymal Stem Cells from 

the Retropatellar Fat Pad and Peripheral Blood Stimulate ACL Fibroblast Migration, 

Proliferation, and Collagen Gene Expression. Connective tissue research 54, (2013). 

132. Wang, I. E., Shan, J., Choi, R., Oh, S., Kepler, C.K., Chen, F.H. & Lu, H.H. Role of osteoblast–

fibroblast interactions in the formation of the ligament-to-bone interface. J. Orthop. Res. 25, 

1609–1620 (2007). 

133. Khademhosseini, A., Suh, K.Y., Yang, J.M., Eng, G., Yeh, J., Levenberg, S.& Langer R. Layer-by-

layer deposition of hyaluronic acid and poly-L-lysine for patterned cell co-cultures. 

Biomaterials 25, 3583–3592 (2004). 

134. Jiang, J., Leong, N. L., Mung, J. C., Hidaka, C. & Lu, H. H. Interaction between zonal 

populations of articular chondrocytes suppresses chondrocyte mineralization and this 

process is mediated by PTHrP. Osteoarthr. Cartil. 16, 70–82 (2008). 

135. Marshall, J. Transwell® Invasion Assays. in Cell Migration: Developmental Methods and 

Protocols (eds. Wells, C. M. & Parsons, M.) 97–110 (Humana Press, 2011). doi:10.1007/978-1-

61779-207-6_8 

136. Guo, X., Gonzalez, M., Stancescu, M., Vandenburgh, H. H. & Hickman, J. J. Neuromuscular 

junction formation between human stem cell-derived motoneurons and human skeletal 

muscle in a defined system. Biomaterials 32, 9602–9611 (2011). 

137. Demestre, M. Formation and characterisation of neuromuscular junctions between hiPSC 

derived motoneurons and myotubes. Stem Cell Res. 15, 328–336 (2015). 

138. Gunetti, M. Tomasi, S., Giammò, A., Boido, M., Rustichelli, D., Mareschi, K., Errichiello, E., 

Parola, M., Ferrero, I., Fagioli, F., Vercelli, A. & Carone, R. Myogenic Potential of Whole Bone 

Marrow Mesenchymal Stem Cells In Vitro and In Vivo for Usage in Urinary Incontinence. PLoS 

One 7, (2012). 

139. Choi, S. H. Chung, K.Y., Johnson, B.J., Go, G.W., Kim, K.H., Choi, C.W. & Smith, S.B. Co-culture 



165 
 

of bovine muscle satellite cells with preadipocytes increasesPPARγ and C/EBPβ gene 

expression in differentiated myoblasts and increases GPR43 gene expression in adipocytes. J. 

Nutr. Biochem. 24, 539–543 (2013). 

140. Takegahara, Y., Yamanouchi, K., Nakamura, K., Nakano, S. ichi & Nishihara, M. Myotube 

formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent 

manner. Exp. Cell Res. 324, 105–114 (2014). 

141. Hicks, M. R., Cao, T. V. & Standley, P. R. Biomechanical strain vehicles for fibroblast-directed 

skeletal myoblast differentiation and myotube functionality in a novel coculture. AJP Cell 

Physiol. 307, C671–C683 (2014). 

142. Goetsch, K. P., Snyman, C., Myburgh, K. H. & Niesler, C. U. Simultaneous isolation of enriched 

myoblasts and fibroblasts for migration analysis within a novel co-culture assay. 

Biotechniques 58, 25–32 (2015). 

143. Merceron, T. K., Burt, M., Seol, Y.J., Kang, H.W., Lee, S.J., Yoo, J.J. & Atala A.A.3D bioprinted 

complex structure for engineering the muscle-tendon unit. Biofabrication 7, (2015). 

144. Smith, L., Xia, Y., Galatz, L. M., Genin, G. M. & Thomopoulos, S. Tissue-engineering strategies 

for the tendon/ligament-to-bone insertion. Connect. Tissue Res. 53, 95–105 (2012). 

145. Doroski, D. M., Brink, K. S. & Temenoff, J. S. Techniques for biological characterization of 

tissue-engineered tendon and ligament. Biomaterials 28, 187–202 (2007). 

146. P. Spalazzi, J., Doty, S., L. Moffat, K., Levine, W. & H. Lu, H. Development of Controlled Matrix 

Heterogeneity on a Triphasic Scaffold for Orthopedic Interface Tissue Engineering. Tissue Eng. 

12(12):3497-508. (2006). 

147. Ma, J., Goble. K., Smietana, M., Kostrominova, T., Larkin, L. & Arruda, E.M. Morphological and 

Functional Characteristics of Three-Dimensional Engineered Bone-Ligament-Bone Constructs 

Following Implantation. J. Biomech. Eng. 131, 101017–101019 (2009). 

148. Matyas, J. R., Anton, M. G., Shrive, N. G. & Frank, C. B. Stress governs tissue phenotype at the 

femoral insertion of the rabbit MCL. J. Biomech. 28, (1995). 

149. Paxton, J. Z., Donnelly, K., Keatch, R. P. & Baar, K. Engineering the Bone–Ligament Interface 

Using Polyethylene Glycol Diacrylate Incorporated with Hydroxyapatite. Tissue Eng. Part A 15, 

1201–1209 (2009). 

150. Paxton, J. Z., Grover, L. M. & Baar, K. Engineering an In Vitro Model of a Functional Ligament 



166 
 

from Bone to Bone. Tissue Eng. Part A 16, 3515–3525 (2010). 

151. Gholobova, D., Gerard, M., Decroix, L., Desender, L., Callewaert, N., Annaert, P. & Thorrez, L. 

Human tissue-engineered skeletal muscle: a novel 3D in vitro model for drug disposition and 

toxicity after intramuscular injection. Sci. Rep. 8, 1–14 (2018). 

152. Smith, A. S. T., Passey, S., Greensmith, L., Mudera, V. & Lewis, M. P. Characterization and 

optimization of a simple, repeatable system for the long term in vitro culture of aligned 

myotubes in 3D. J. Cell. Biochem. 113, 1044–53 (2012). 

153. Martin, N. R. W. Passey, S.L., Player, D.J., Khodabukus, A., Ferguson, R.A., Sharples, A.P., 

Mudera, V., Baar, K. & Lewis M.P. Factors affecting the structure and maturation of human 

tissue engineered skeletal muscle. Biomaterials 34, 5759–65 (2013). 

154. Livak, K. J. & Schmittgen, T. D. Analysis of Relative Gene Expression Data Using Real-Time 

Quantitative PCR and the 2−ΔΔCT Method. Methods 25, 402–408 (2001). 

155. Pisano, G. Learning : An Empirical Analysis of Process. Strateg. Manag. J. 15, 85–100 (1994). 

156. Ich. International Conference on Harmonisation (ICH) of Technical Requirement for 

Registration of Pharmaceuticals for Human Use, Pharmaceutical Development, Q8 (R2), ICH, 

August 2009. ICH Harmon. Tripart. Guidel. 8, 1–28 (2009). 

157. Rathore, A. S. & Winkle, H. Quality by design for biopharmaceuticals. Nat. Biotechnol. 27, 26–

34 (2009). 

158. Pisano, G. P. Learning-before-doing in the development of new process technology. Res. 

Policy 25, 1097–1119 (1996). 

159. Jones, J. M. Player, D.J., Martin, N.R.W., Capel, A.J., Lewis, M.P. & Mudera V. An assessment 

of myotube morphology, matrix deformation, and myogenic mRNA expression in custom-

built and commercially available engineered muscle chamber configurations. Front. Physiol. 9, 

1–9 (2018). 

160. Kaufmann, A. & Tödtling, F. Science-industry interaction in the process of innovation: The 

importance of boundary-crossing between systems. Res. Policy 30, 791–804 (2001). 

161. Yu, L. X. Pharmaceutical quality by design: product and process development, understanding, 

and control. Pharm. Res. 25, 781–91 (2008). 

162. Eastwood, M., Porter, R., Khan, U., McGrouther, G. & Brown, R. Quantitative analysis of 

collagen gel contractile forces generated by dermal fibroblasts and the relationship to cell 



167 
 

morphology. J. Cell. Physiol. 166, 33–42 (1996). 

163. Liu, W., Chen, B., Deng, D., Xu, F., Cui, L. & Cao Y. Repair of Tendon Defect with Dermal 

Fibroblast Engineered Tendon in a Porcine Model. Tissue Eng. 12, 775–778 (2006). 

164. Ladd, M. R., Lee, S. J., Stitzel, J. D., Atala, A. & Yoo, J. J. Co-electrospun dual scaffolding system 

with potential for muscle-tendon junction tissue engineering. Biomaterials 32, 1549–1559 

(2011). 

165. Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D microscopic 

image acquisitions. Bioinformatics 25, 1463–1465 (2009). 

166. Mudera, V., Smith, A. S. T., Brady, M. A. & Lewis, M. P. The effect of cell density on the 

maturation and contractile ability of muscle derived cells in a 3D tissue-engineered skeletal 

muscle model and determination of the cellular and mechanical stimuli required for the 

synthesis of a postural phenotype. J. Cell. Physiol. 225, 646–653 (2010). 

167. Cheema, U., Yang, S. Y., Mudera, V., Goldspink, G. G. & Brown, R. A. 3-D in vitro model of 

early skeletal muscle development. Cell Motil. Cytoskeleton 54, 226–236 (2003). 

168. Mudera, V., Smith,  a S. T., Brady, M. a & Lewis, M. P. The effect of cell density on the 

maturation and contractile ability of muscle derived cells in a 3D tissue-engineered skeletal 

muscle model and determination of the cellular and mechanical stimuli required for the 

synthesis of a postural phenotype. J. Cell. Physiol. 225, 646–53 (2010). 

169. Griffin, C. A., Apponi, L. H., Long, K. K. & Pavlath, G. K. Chemokine expression and control of 

muscle cell migration during myogenesis. Journal of Cell Science 123, 3052–3060 (2010). 

170. Wang, Z. et al. In vitro investigation of a tissue-engineered cell-tendon complex mimicking 

the transitional architecture at the ligament-bone interface. 29, 1180–1192 (2015). 

171. Benjamin, M. & Ralphs, J. R. Fibrocartilage in tendons and ligaments — an adaptation to 

compressive load. J. Anat. 193, 481–494 (1998). 

172. Shah, R., Knowles, J. C., Hunt, N. P. & Lewis, M. P. Development of a novel smart scaffold for 

human skeletal muscle regeneration. (2013). doi:10.1002/term 

173. Liu, Z. (Cindy) & Geisbrecht, E. R. Moleskin is essential for the formation of the myotendinous 

junction in Drosophila. Dev Biol. 359, 176–189 (2011). 

174. Kryger, G. S., Chong, A.K., Costa, M., Pham, H., Bates, S.J. & Chang J. A Comparison of 

Tenocytes and Mesenchymal Stem Cells for Use in Flexor Tendon Tissue Engineering. J. Hand 



168 
 

Surg. Am. 32, 597–605 (2007). 

175. Bell, E., Ivarsson, B. & Merrill, C. Production of a tissue-like structure by contraction of 

collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc. Natl. 

Acad. Sci. U. S. A. 76, 1274–8 (1979). 

176. Dallon, J. C. & Ehrlich, H. P. A review of fibroblast-populated collagen lattices. Wound Repair 

Regen. 16, 472–479 (2008). 

177. Zelis, R. Nussberger, J., Clemson, B., Waeber, B., Grouzmann, E. & Brunner H.R. Neuropeptide 

Y Infusion Decreases Plasma Renin Activity in Postmyocardial Infarction Rats. J. Cardiovasc. 

Pharmacol. 24, 896–899 (1994). 

178. Takase, S., Leo, M. A., Nouchi, T. & Lieber, C. S. Desmin distinguishes cultured fat-storing cells 

from myofibroblasts, smooth muscle cells and fibroblasts in the rat. J. Hepatol. 6, 267–276 

(1988). 

179. Boularaoui, S. M., Abdel-Raouf, K.M.A., Alwahab, N.S.A., Kondash, M.E., Truskey, G.A., Teo 

J.C.M. & Christoforou N. Efficient transdifferentiation of human dermal fibroblasts into 

skeletal muscle. J. Tissue Eng. Regen. Med. 12, e918–e936 (2018). 

180. Barondes, S. H. & Haywood-Reid, P. L. Externalization of an endogenous chicken muscle lectin 

with in vivo development. J. Cell Biol. 91, 568–572 (1981). 

181. Goldring, K., Jones, G. E., Sewry, C. A. & Watt, D. J. The muscle-specific marker desmin is 

expressed in a proportion of human dermal fibroblasts after their exposure to galectin-1. 

Neuromuscul. Disord. 12, 183–186 (2002). 

182. Isikli, C., Hasirci, V. & Hasirci, N. Co-culture in cartilage tissue engineering. J. Tissue Eng. 

Regen. Med. 6, 135–143 (2012). 

 

 


