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ABSTRACT

Impingement cooling is commonly employed in gas turbines to control the turbine tip clearance. During
the design phase, Computational Fluid Dynamics is an effective way of evaluating such systems but for
most Turbine Case Cooling (TCC) systems resolving the small scale and large number of cooling holes is
impractical at the preliminary design phase. This paper presents an alternative approach for predicting
aerodynamic performance of TCC systems using a “smart” porous media to replace regions of cooling
holes. Numerically (CFD) defined correlations have been developed, which account for geometry and local

flow field, to define the porous media loss coefficient. These are coded as a user defined function allowing
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the loss to vary, within the calculation, as a function of the predicted flow and hence produce a spatial
variation of mass flow matching that of the cooling holes. The methodology has been tested on various
geometrical configurations representative of current TCC systems and compared to full cooling hole
models. The method was shown to achieve good overall agreement whilst significantly reducing both the

mesh count and the computational time to a practical level.
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INTRODUCTION

In modern aero-engines, control of the over-tip leakage flow in turbines is crucial
in reducing secondary flow losses and hence improving specific fuel consumption.
Various tip or shroud geometries have been utilized in an attempt to minimize these
losses but in all cases the tip clearance varies notably through the flight cycle due to the
differential expansion of the rotor and the casing under the action of centrifugal and
thermal loads. Therefore, it is common practice to employ a Turbine Case Cooling (TCC)
system to control the thermal expansion of the casing and hence actively manage the
tip clearance. See, for example, Lattime and Steinetz [1, 2] and Melcher and Kypuros [3].
A typical TCC system, as shown in Fig. 1, consists of an off-take, an inlet duct, a butterfly
valve(s) and air transfer boxes connected to a set of circumferential manifolds. These
feed several arrays of impingement cooling holes which deliver the cooling air to the
surface of the turbine casing. However, design of TCC systems is, in practice,
challenging. TCC systems are complex and comprise of many interacting sub-systems all
with different aero thermal and mechanical constraints.

The aim of the TCC systems is to optimize tip clearance across different engine
operating conditions [4] and around the casing circumference. To achieve this a key
requirement is to provide a near-uniform delivery of cooling air to the turbine casing.
The cooling flow is commonly extracted from the bypass duct; directed towards the
turbine casing through an inlet duct; the mass flow rate of the cooling flow is controlled
by the valve and the cooling flow is then delivered to the turbine casing through the

manifold (Fig. 1). According to Miller [5], one of the main factors affecting the



uniformity of flow distribution of the impingement cooling holes in the manifold is the
loss ratio. This can be expressed as either (i) the ratio of the inlet dynamic pressure of
the manifold to the losses across the impingement cooling holes or (ii) the ratio of the
total impingement cooling hole area to the manifold cross-sectional area. Ideally at the
design stage the loss ratio should not be greater than 1 as this results in poor uniformity
of the flow distribution resulted as reported by Miller [5] and illustrated in Fig. 2.
Theoretically, the required flow distribution could be achieved by adjusting total
impingement cooling hole areas, manifold areas and loss coefficients. Another
parameter that affects the flow distribution of impingement cooling holes is the length
of the manifold. Miller [5] (Fig. 2) reported that with a low loss ratio, less than 0.5, the
uniformity of the flow distribution is fairly good regardless of the length of the manifold.
However, with a medium to high loss ratio the uniformity begins to vary notably.
Developing TCC systems through the use of an experimental campaign is time
consuming, expensive and yields limited data due to the difficulties of installing suitable
instrumentation. Use of existing correlations and in-house experience is limited by
different engine architectures and requirements leading to varying design styles being
employed. Furthermore, during engine development it is common to undertake several
iterations as, for example, cooling flow budgets change. To save development costs, or
due to space constraints, certain features, such as the manifold cross-sectional area, are
often fixed at an early stage. As other parameters change, this can often compromise
the final design. It is therefore attractive to employ Computational Fluid Dynamics (CFD)

to support the design process, particularly in the early phases. However, the complex



nature of the geometry and existence of multiple small features such as the
impingement cooling holes make generating and running a high fidelity CFD model too
computationally intensive to be of practical use. The major difficulty for CFD simulations
to investigate this type of problem is the large disparity in scales both in terms of the
geometry and the flow topology. The turbine case is of order one to two meters
diameter whilst the several thousand impingement cooling holes are typically of order
one millimeter in diameter. The challenge is how to capture the general flow within the
whole TCC system without the need to model the individual impingement cooling holes.

To overcome the problem, this paper describes the development of a numerical
methodology which allows the impingement cooling holes to be replaced by porous
media zones which mathematically simulate the same pressure drop (see Fig. 3). The
main advantage of this approach is that it simplifies the computational domain and
reduces computational cost to such a level that CFD can be used as a practical design
tool. This type of porous media approach has been used in several other fields including
the modelling of catalytic converters, heat exchangers, concrete flow and fuel injectors
(see [6—12]). There have also been multiple studies on impingement flows such as flow
through perforated plates [13], flow through impingement cooling holes employed as
film cooling in turbine blades [14-16], combustor liners [17-18] and TCC systems [4, 19].
However, these studies tend to look at the local performance of, for example, the
impingement cooling mechanism. Therefore, they modelled the local geometry in detail
but overlook the performance of the whole integrated system. This is particularly

important in TCC systems where upstream components (off-takes, valves, junctions etc.)



will play a major role in determining the quality of the flow delivered to the
impingement cooling holes. The current work aims to address this and develop a robust
methodology for replacing the small-scale impingement cooling holes with porous
media thus facilitating the modelling of the whole upstream TTC system. The paper
presents a theoretical derivation of this porous media approach followed by an
assessment of the effect of various global geometrical parameters. Throughout, where
feasible, the results are compared to, and validated against, cases with the

corresponding fully featured geometry which includes the impingement cooling holes.



POROUS MEDIA METHODOLOGY
Theoretical Derivation

In the current work, the commercial CFD code ANSYS Fluent has been used for all
predictions. All solutions were converged based on second order accuracy utilizing a
RANS approximation, a pressure-based solver with k-w SST turbulence closure which is
commonly used for predicting impingement cooling hole problems in the literature (e.g.
Andreini et al. [4]). Convergence was judged by monitoring the residuals within the
solutions and the flow parameters at the inlet of the domain. All cases with
impingement cooling hole features utilized a compressible solver as the flow in the
holes exceeds a Mach number of 0.3. However, in the porous media cases the flow
never reaches velocities associated with compressibility and as such those cases
employed an incompressible solver; the inlet Mach number is typically around 0.1. The
typical mesh density used had a node spacing in the order of 0.5-1.0 mm with
significantly increased resolution applied inside and near the impingement cooling hole
regions. The boundary conditions used were based on typical cruise conditions for a
large civil turbofan with uniform pressures applied at the inlet and outlet.
For simplicity in developing the porous media methodology all simulations were
assumed to be isothermal and heat transfer was not considered. It will be shown later
that this is a valid assumption and the effects of heat transfer are small, and arguably
negligible, when compared to the effects of geometry. However, the methodology can
be easily adapted to account for the effects heat transfer. Eq (1) shows that the porous

media source term accounts for changes in density and velocity resulting from heat



transfer. However, this would require prior knowledge of the heat loads on the turbine
casing which is generally not available at the preliminary design stage for which this
method is intended. Additionally, this would probably also require a conjugate heat
transfer solution to capture the two-way coupled heating-cooling effects between the
air and the metal casing. Although possible this would add significant numerical expense
which will somewhat negate the aim of this methodology providing a rapid, numerically
fast design tool.

Porous media is commonly modelled as a volume in many CFD codes by adding a
source term in the momentum equations which replicates the pressure loss across the
media [20]. The source term normally consists of a viscous loss term and an inertial term
which need to be defined by the user. According to the ANSYS Fluent User’s Guide [20],
for perforated plate problems (such as the impingement cooling holes in a TCC system)
only the inertial term typically needs to be considered. This is because that the viscous
term is commonly used for solving problems with laminar flows and it is negligible for
flow with high velocities. The benefit of omitting the viscous term is that it reduces the
mathematical complexity of the current model presented. The momentum source term,

S, can be now written as [20]:
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where S; is the source term for the ith (x, y, or z) momentum equation, C, is the

inertial resistance factor, p is the fluid density in the porous media, V is the magnitude



of the velocity, and v; is the velocity components in the x, y, and z directions
respectively.

Fundamentally, the mass flow through the impingement cooling holes is set by
the pressure drop across them. Therefore, for a porous media to be representative of
the impingement cooling holes the pressure drop must be the same across both the
porous media and the impingement cooling holes, i.e.:

(AP)py = (AP)iy (2)
By expanding the equation and applying mass flow conservation the inertial resistance
factor, C,, can be written as:

¢, = lax @n,y

3)
Where K; is the loss coefficient and is defined as:

K, = AP/p,
K; is a function of the total pressure drop AP and the dynamic head p; across the
impingement cooling holes. (AR), is the area ratio between the porous media used and
all the impingement cooling holes, and t is the thickness of the impingement cooling
holes. Importantly, in this representation the resistance in the porous media becomes a
function of the flow field as well as the geometry of the TCC. It should be possible to
define the model in terms of the parameters discussed in Section 1 and the model
should also be able to react to variations in system mass flow (for example when cooling
demand changes across the engine operating cycle).

The resistance factor C, has to be defined in two directions for 2D problems or

three directions for 3D problems. For perforated plate problems the flow through the



plate is mainly influenced by the perpendicular velocity component (manifold cross flow
in Fig. 3); the velocity components in the other two directions (3D problems) are
negligible. Thus, much higher values of resistance C, in those two directions should be
defined to ensure that the flow through the porous media is perpendicular to the plate;
as it would be through actual impingement cooling holes. In practice, this can be
achieved by setting the value of C, in the other two directions to be ~100 times the

value in flow direction.

Influence Factors of the Porous Media Pressure Drop
As shown in equation (3) C, is a function of the loss coefficient K; and
geometrical parameters (the area ratio and thickness) of the TCC manifold. As K; is
unknown prior to the simulation it needs to be estimated through a sensitivity study of
the related parameters and it is only feasible to do this numerically. These parameters
include:
(i)  the area ratio of the manifold cross-section to the impingement cooling holes
(AR), as this sets the magnitude of the cross-flow ratio,
(ii)  thelength of the manifold, L,
(iii) the stand-off distance, h, between the impingement cooling holes and the turbine
casing surface,
(iv) the curvature of the manifold around the engine center-line,
(v) the flow topology generated by the upstream components i.e. the inlet flow angle

0.
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(vi) The temperature difference between the cooling air and the metal surface

containing the impingement cooling holes.

To develop a robust method for estimating K, these parameters were examined
using a simplified model comprising of a single row of impingement cooling holes. An
example model is shown in Fig. 4. Note that for a stand-off distance set to typical engine
size it was found that the actual impingement has negligible effect of the IH mass flow
and as such a pressure outlet was applied to the exit of the impingement cooling holes,
saving computation expense. The typical thickness (or length) to diameter ratio, t/d, of
the impingement cooling holes was 0.58 and the pitch (spacing) to diameter ratio, s/d,
was 8.33. The cross-sectional area of manifold was variable to alter the area ratio
between the manifold and the impingement cooling holes (with the latter being fixed in
the simplified model).

It was found that the area ratio of the manifold cross-section to the
impingement cooling holes, (AR),, and the flow topology generated by the upstream
components, 6, have the most significant influence on K; . Miller [5] also reported the
effect of length and area ratio as shown in Fig. 2. However, the lengths of the manifold
used in the current research did not have significant effect on the flow distribution of
the impingement cooling holes. The lengths chosen were based on the current engine
architecture and it was assumed that the lengths investigated were in the same

category (short length) as reported by Miller [5] (Fig. 2). Other lengths which are not
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employed in current engine architectures are not of interest to this study and therefore
not included in this research.

Close to the junction feeding of the TCC manifold the flow can be complex. The
flow impinges on the manifold, large regions of recirculating flow can exist and, in
general, there can be large variations in flow angle which affect the feed to the
impingement cooling holes, locally alter the discharge coefficient and the resultant mass
flow. To overcome this, it is beneficial to have a manifold with a relatively large cross-

section. Miller [5] recommends that

() <05 @

Hence, Miller [5] essentially recommends TCC systems should be designed with
(AR), = 1.4. However, the physical size of the TCC system is often set at the
preliminary design phase such that later changes in the required flow rate and area of
the cooling holes often results in the final design being close to or exceeding this
criterion. It is therefore important to take the configurations beyond the criterion in
determining an expression for estimating K; . Hence, several different area ratios were
examined in the current investigation; an area ratio of 1, which is below the critical
value of 1.4, and four other values from 2 to 5. To vary the area ratio the cross-sectional
area of the manifold was altered whilst maintaining the number and area of the
impingement cooling holes.

The flow angle after the junction, 8, is another important factor in
determining K ; it is well known that the discharge coefficient of a plane hole is strongly

influenced by the angle at which the flow approaches. In a typical TCC system, the flow
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far away from the junction becomes fairly uniform whilst the average flow angle after
the junction can be as high as 68° according to previous fully featured investigation of a
TCC system (private communication with the industrial partner). This angle was
calculated on a cross-sectional plane in the manifold close to the junction. Thus, in the
initial simplified model, five different flow angles @ (for each area ratio) were
investigated by altering the flow angle applied to the pressure inlet which are 0°, 17°,
34°,51° and 68°.

The effect of area ratio (AR), and flow angle, 8, on the mass flow distribution
for the simplified cases with impingement cooling holes is shown in Fig. 5. The mass flow
through each impingement cooling hole, m, is made non-dimensional by the ideal mass
flow through each hole if the distribution was uniform, m;;.4;. With an area ratio (AR),
of 5 the mass flow distribution along the length of the manifold is nominally uniform, as
would be expected well beyond the critical area ratio ((AR), of 1.4). However, with
increasing inlet angle there is a localized reduction of mass flow in the first portion of
the manifold. This reaches a maximum deficit of around 5-6% of the mean at the highest
inlet angle. As the area ratio is reduced the general uniformity of the mass flow
decreases with a flow deficit seen again in the first portion of the manifold.

Importantly, Fig. 5 (5) shows that the temperature difference between the air
and the metal surface containing the impingement cooling holes has only a very small
difference on the mass flow distribution. Typically, the temperature difference in an
engine is of the order 100K and here differences up to 400K are examined by setting the

wall containing the impingement cooling holes to a raised temperature. Conjugate heat
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transfer and the cooling effect on the metal surface was not modelled and, as such, this
represents the largest heat pick-up, and density change, possible for the air. Even at the
highest temperature difference changes in the mass flow distribution are much smaller
than those caused by changes to the inlet flow angle or bulk geometric parameters. The
results shown in Fig. 5 (5), therefore, suitably justify the use of an isothermal approach.
Fig. 6 shows contours of normalized velocity magnitude (over the first 6 out of
the 20 holes) for different area ratios with an inlet flow angle of 68°. The velocity
magnitude is normalized using the averaged velocity magnitude at the inlet. The
contour plots illustrate the 6 impingement cooling holes close to the inlet where the
maximum deficit of the mass flow distribution occurs as shown in Fig. 5. The flow angle
boundary condition simulates the impingement effect of flow after the inlet junction. As
shown in Fig. 6, with an inclined angle at the inlet there is a separation and recirculation
zone on the upper wall. With an approaching angle to the cooling holes, the discharge
coefficient will normally decrease due to the reduction in effective area for the cooling
flow. For Fig. 6 (1) and (2) the first one or two holes also have a higher cross-hole
velocity. As (AR), decreases (Fig. 6 (3), (4) and (5)), it negatively influences the blockage
inside impingement cooling holes close to the inlet leading to reduced effective area
and thus lowers discharge coefficients. Thus, it causes the mass flow deficit in Fig. 5.
Towards the end wall of the manifold the system was losing mass flow through
impingement cooling holes and thus experienced reduced manifold velocity. With the
latter resulting in localized increased values of discharge coefficient and hence increased

mass flow through the impingement cooling holes towards the end of the manifold (Fig.
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5). Meanwhile the results also suggested that it followed the trend of flow distribution
reported by Miller (Fig. 2) [5].

In terms of developing a suitable expression for a porous media loss coefficient,
K;, it can be seen in Fig. 5 that, for inlet angles of up to 34°, the variation in mass flow
through impingement cooling holes along the manifold has a reasonably linear
characteristic with the gradient linked to the area ratio. This would suggest a simple
linearly varying loss coefficient would suffice. For example, at low flow angles a
normalized profile of the loss coefficient, K, profile can be treated as linear and written
in the form:

K, =a;L+ by (5)
However, above 34° the mass flow variation becomes non-linear with this non-linearity
also dependent on the area ratio. Hence a more complex specification of the normalized
profile of the loss coefficient, K;,,, is needed which can be written in the form:
Kip = a,Lb? (6)
Where K, is the normalised profile of K,
K, = Kpave X Kip

K} 4vc is the average value of the loss coefficient of all the impingement cooling
holes in the system, L is the non-dimensional length of the manifold, a,, b;, a, and b,
are coefficients.
Thus equation (3) for the inertial resistance factor, C,, required by the CFD model now

becomes:
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AR),)?
C, = (KLAVG X KLp) X M

(7)

Importantly this equation incorporates terms defined or altered by both the system

geometry and the resultant flow field. For example, the average loss coefficient, K 4y,

sets the bulk pressure drop and hence the bulk mass flow. The profile term, K;,,, then
sets the distribution along the manifold in terms of a non-dimensional length; the
profile itself is set by the coefficients a,, and b,, and overall the resistance coefficient,

C,, is factored by area ratio (AR), and the thickness t (or thickness-to-diameter ratio

t/d) of the impingement cooling hole.

In order to implement the model two things are now required:

1. A numerical look-up table for the values of the coefficients a,, b;, a, and b,. This
has been generated from the results of the parametric study of the simple cases
with impingement cooling holes. i.e. equations (5) and (6) have been fitted to the
data shown in Fig. 5.

2. Aninitial guess is needed for the average value of the loss coefficient K; 4, to set
the bulk mass flow. An initial estimate of K; 4, was chosen to be 2 for all cases
with porous media. This can then be iterated numerically until a target TCC mass

flow (obtained here from the corresponding predictions with impingement cooling

holes) is achieved.

PROOF OF CONCEPT
In this section verification of the porous media methodology is presented by

applying it to several different configurations broadly representative, non-
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dimensionally, of typical engine geometries. By keeping the model as simple as possible
results from these proof-of-concept predictions can be directly compared to cases
which still include the impingement cooling holes. Hence the validity of the porous
media representation can be demonstrated over a range of geometrical and
aerodynamic parameters. These includes varying the manifold cross-section to
impingement hole area ratio (AR),, the manifold length, and the hole thickness-to-
diameter ratio t/d. The change was made to one parameter at a time with the rest of
parameters kept the same. These were all varied in line with typical values seen in
current TCC systems. Additionally, better assess the effect of inlet flow angle a generic
junction (or feed pipe) was added to generate a more realistic distribution of flow angles
instead of imposing a single artificial inlet angle. For simplicity, from herein, IH will be
used to refer to cases with impingement cooling hole features whilst PM will be used to

refer to cases where these are replaced by porous media.

Computational Domains and Boundary Conditions

The computational domains are illustrated in Fig. 7 and 8. Each incorporate a
single row of 20 impingement cooling holes (or the porous media representation) with a
thickness-to-diameter ratio, t/d, of 0.58 and a pitch-to-diameter ratio s/d of 6.67 and
8.33 in the x and y directions with periodic side-walls in the x direction. Four different
manifold cross-sections to I|H area ratios were modelled, (AR), of 1 to 4, and these
were again achieved by altering the manifold cross-sectional area. A T-shaped inlet was

modelled with using only half of the geometry and a symmetry boundary condition (Fig.
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7). This essentially represents the same length of the manifold on each side of the T-
shaped inlet. This was also modelled without the symmetry condition enabling different
lengths of manifold to be incorporated either side of the inlet (Fig. 8). A short length was
included upstream of the junction with a length twice that of the hydraulic diameter.
This was done to ensure the fixed inlet boundary condition did not constrain the flow in
the junction. Several inlet lengths were examined, and it was found that two hydraulic
diameters were sufficient. Finally, another model was also generated which included
circumferential curvature close to that expected in the TCC system of a large civil

turbofan.

Results and Discussions
Sensitivity to Area Ratio, (AR),

Fig. 9 shows the normalized mass flow distribution for the cases with the same
length of manifold on each side of the T-shaped junction for four different area
ratios (AR),. The mass flow through each impingement cooling hole or equivalent
porous media, m, is made non-dimensional by the ideal mass flow through each hole (or
equivalent) if the distribution was uniform, m;z.q;-

It was shown in Fig. 5 that the heating effect on the air caused by the manifold
has only a negligibly small effect on the mass flow distribution when compared to
changes in the area ratio or inlet flow angle. This is also confirmed here in Fig. 9 (4)

which shows little difference in the overall mass flow distribution for temperature
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differences of up to 400K. Again, this justifies the use of an isothermal model to reduce
model complexity and calculation time.

With an area ratio of 4 the results from the PM case show good agreement to
the IH case with the differences within 5% of the average mass flow rate. However, as
the area ratio is reduced the porous media methodology does not correctly predict the
region under inlet feed pipe. The resistance profiles applied are based on data collected
from models without a junction and it is clear that this simplification becomes
somewhat invalid at low area ratios. With reference to the mass flow distributions
plotted in Fig. 5 this approach yields the highest resistance at the beginning of the
porous media. However, with a junction included in the model the impingement cooling
hole(s) under the junction have a total feed (Fig. 10) which results in the higher mass
flow seen in the first impingement cooling hole in Fig. 9. Additionally, as the PM predicts
a lower mass flow over the first 5-10% this results in a slightly higher flow in the rest of
the porous media to compensate and maintain the total mass flow. Yet, the PM model
predicted the flow feature very well inside the manifold for all four different (AR),.
Inclusion of some IH or some other special treatment under the junction is required to
accurately capture the mass flow distribution. Nevertheless, the current model still does
a good job away from the junction.

To investigate the flow features inside the manifold, Fig. 10 shows contours of
normalized velocity magnitude for different area ratios. Note that the plot shows only
the first 7 out 20 IH and that the CFD only simulated half of the T-shaped inlet (using a

symmetry boundary condition). Each subfigure shows the comparison between the IH
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and PM cases with the same area ratio, (AR),. Note that to alter the area ratio (AR),,
by altering the manifold area, it is somewhat difficult to keep all the other parameters
consistent. For example, the area ratio between the junction and the manifold was kept
the same as was the I|H area and spacing. The position of the first IH was maintained at
the same non-dimensional location with respect to inlet which unfortunately changes
the initial IH spacing. However, regarding a direct comparison with the performance of
the PM model this is not a major issue. In general, the PM method correctly predicts the
flow in the manifold with (AR), from 1 to 4. The PM method does not predict the mass
flow distribution well close to the inlet (Fig. 9). Here the flow is close to a total feed
which has (as yet) not been incorporated into the PM model. However, it should be
possible to construct a PM treatment to account for this or perhaps keep a small

number of IH in this region is the final model.

Sensitivity to t/d Ratio

In practical TCC systems it is often necessary to have regions of holes with
different diameters to control local cooling flows. As mentioned previously the thickness
of the manifold casing is often defined early in the design process which then fixes the
length of the impingement cooling holes. If a change in flow rate is then desired, it is
achieved by varying the hole diameter. In some other cases, the manifold configurations
are designed different with different casing thickness for different engine configurations
while cooling hole diameters may be fixed by tooling specification. Hence these

constraints lead to variations in the thickness-to-diameter ratio, t/d, and it is important
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that a robust PM methodology should have the capability to model this. To investigate
the effect of varying t/d ratio several IH models were generated varying both the hole
diameter and the manifold thickness. With the initial thickness of the holes fixed the
diameter was varied to achieve t/d ratios of 0.23, 0.35 and 0.70. Similarly, with the hole
diameter fixed the thickness was varied to achieve t/d ratios of 0.42, 0.83 and 1.25. See
Table 1. Note that the pitch, s, remained constant. Two different area ratios (AR),,
were modelled: (AR), of 2 which is above the critical value (1.41) and (AR), of 1 which
is below that value.

The effect of t /d ratio on the mass flow distribution of the impingement cooling
holes with a T-shaped inlet is shown in Fig. 11. These cases were also predicted using a
symmetry boundary condition at the center of the T-shaped inlet junction. The mass
flow distribution is comparatively flat except when the t/d ratio is lower than 0.4.
However, even with t/d ratio higher than 0.4 the maximum deficit of mass flow rate is
around 17% difference from the average value. As shown in Fig. 12 (normalized velocity
magnitude contours over the first 7 out of 20 IH) with lower t/d ratios (0.23 and 0.35),
the discharge coefficients of the cooling holes (thus the mass flow rate) are much more
sensitive to the local flow feed. In the region close to the inlet, the total feed and low
t/d ratio (larger diameter) together will result in higher mass flow rates. With fed by the
cross flow in high velocity just after the junction, the discharge coefficient is low due to
the blockage in the cooling holes and reduction in the effective area of the vena
contracta. As the manifold flow velocity decreases from losing flow through cooling

holes, both the discharge coefficient and mass flow rates increase. The cases with (AR),
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of 1 have similar results as shown in Fig. 12 but the t/d ratio effect is worse. This
phenomenon observed after the junction is the same as seen in the IH cases without the
junction.

Based on previously experience (from the industrial partner) it is unlikely that a
t/d ratio will be lower than 0.35 in the current engine architectures. Therefore, for the
porous media methodology it is important to verify its validity at this lower limit of t /d
=0.35. Hence, Fig. 13 shows a comparison between the IH and PM case with a t/d ratio
of 0.35 at two different area ratios (AR),. Although the porous media methodology
does not predict the exact flow behavior close to the junction region there is still
reasonable agreement in the trend of the mass flow distribution as for the IH cases for
(AR), of 2 (Fig. 13). However, the porous media methodology meets its limit with

(AR), of 1 together with a low t/d ratio of 0.35.

Sensitivity to T-Shaped Inlet with Different Length of Manifold on Each Side

Previous sections have discussed the sensitivity of the porous media
methodology to several parameters. All those parameters have been investigated on
computational domains with the same length of manifold on both sides of the T
junction. In some TCC systems the T-shaped inlet may feed manifolds of differing
lengths and having different arrangement of cooling holes and thus different mass flow
(Fig. 8). Additionally, TCC systems will have curvature which is also thus far been
omitted. This section also aims to address how the porous media approach copes with

this by examining the models shown in Fig. 8; both with impingement cooling holes and
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porous media. Predictions were made for cases with different area ratios, (AR), of 1
and 2 and for various levels of curvature. In addition to the no curvature cases two
levels of curvature were examined which were broadly representative of those seen in
the HP and LP turbines in a large civil turbofan. The level curvature is defined, non-
dimensionally [23], as the ratio of the hydraulic diameter, D , of the manifold passage to

its radius of curvature, R, about the engine center line:

== (9

Where D is the hydraulic diameter of manifold passage and R is the radius of the
manifold about the engine center-line. For a typical HP turbine the higher level of
curvature gives rise to § ~ 0.02 whilst for the LP turbine the increased radius reduces 6
to ~0.01.

There are 77 impingement cooling holes in the computational domain (Fig. 8).
The porous zone was divided into two parts from the middle of the junction and the PM
method was applied to each part separately to match the mass flow split after the
junction.

Fig. 14 (1) compares the predicted mass flow distributions for the IH cases
with/without curvature and, as seen in the figure, the curvature does not have any
significant effect on the mass flow distribution through the impingement cooling holes
Subsequently, Fig. 14 (2) compares the mass flow distribution for both IH and PM cases
for a fixed curvature (6 = 0.01) for two different area ratios, (AR),. The plot highlights a

significant variation in the mass flow beneath the inlet pipe which is magnified by the
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reduction in (AR),. The mismatch along the manifold was due to the combination of
the poor prediction of the junction region and mass flow conservation law.

Contours of normalized velocity magnitude for the cases shown in Fig. 14 are
presented in Figs. 15 and 16 (note the whole domain is not shown, just the area local to
the T junction — refer to Fig. 8). The velocity contours are not symmetric about the T
junction which is due to the different flow splits defined by different length of manifold.
A longer manifold has a more IH, more cooling flow and hence a smaller (AR),. The
higher velocities shown in Figs. 15 and 16 are caused by the combination of more mass
flow and smaller (AR),. Fig. 15 illustrates that the levels of curvature investigated did
not have a significant effect on the flow for both (AR),. Consequently, for brevity Fig.
16 shows the PM cases for a single (AR), = 2. For both levels of curvature, the PM
method adequately predicts the bulk flow in the manifold. However, as shown in Fig. 14
and discussed above, it does not correctly capture the mass the mass flow distribution
through the IH directly under the inlet. The impingement from the inlet flow and total
feed to the porous zone beneath increases the discharge coefficient and thus the mass
flow rate. This isn’t captured by the PM which applies a (too) high resistance in the
porous zone. It is recommended that the impingement cooling hole features should be
kept under the inlet pipe and porous media then could be employed in the regions after

the junction.
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CONCLUSIONS

A porous media methodology has been developed for the CFD modelling of
turbine case cooling (TCC) systems used in aero style gas turbines. In this approach, the
impingement cooling holes were replaced by porous media zones in the computational
domain. Importantly this leads to a significant reduction in mesh size and computational
time making the approach suitable for use as a design tool. The porous media
methodology employed numerically defined correlations linked to the system geometry
and the local flow field to specify a porous media loss coefficient. Included as a user
defined function this allows the loss coefficient to vary as a function of the predicted
flow and hence produce a spatial variation of mass flow which matches that of the
impingement cooling holes. The methodology was shown to be valid by applying it to
various simplified geometrical configurations representative of current TCC systems and
comparing the results to configurations including impingement cooling holes. The
overall flow field was good agreement with the impingement cooling hole
configurations whilst achieving a significantly reduction the mesh count and reducing

the computational time to a practical level.
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NOMENCLATURE

(AR),

(AR),

an, b,

CFD

area ratio between the porous media used and the impingement cooling

holes

area ratio between the cross-section of the TCC manifold and the

impingement cooling holes (on one side of the junction)

coefficients of the loss coefficient profile, n is the number notation

Computational Fluid Dynamics

the inertial resistance factor in the porous media

diameter of impingement cooling holes

diameter or hydraulic diameter of the manifold passage

standoff height; distance between IH and turbine casing

impingement cooling holes

co-ordinates of (x, y, or z) directions

loss coefficient

average value of the loss coefficient

loss coefficient profile

non-dimensional length of the TCC manifold

local mass flow (e.g. through an impingement cooling hole or equivalent

porous media)
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Mideall

PM

Pa

AP

TCC

Vinlet

Ideal mass flow through each impingement cooling hole (or equivalent

porous media) for a uniform distribution

porous media

dynamic pressure

total pressure drop

radius of the manifold

momentum source term

spacing between impingement cooling holes in the same array

momentum source term for the ith (x, y, or z) momentum equation

sheet thickness of TCC manifold

Turbine Case Cooling

velocity magnitude

fluid velocity

velocity magnitude at the inlet of the computational domain

non-dimensional curvature

flow angle in the manifold after the junction

fluid density in the porous media
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Table 1 Geometrical Variations for t/d ratio

t/d 0.23 0.35 0.58 0.7
t (mm) 0.7
d (mm) 3.0 2.0 1.2 1.0
s/d 33 5.0 83 10

(1) Constant thickness, t = 0.7mm

t/d 0.42 0.58 0.83 1.25
t(mm) | 05 0.7 1.0 1.5
d (mm) 1.2

s/d 8.3

(2) Constant IH diameter, d = 1.2mm
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Fig. 1 Typical TCC System
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Fig. 3 Porous media representation of impingement cooling holes
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Fig. 5 Effect of flow angle and area ratio on mass flow distribution
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Fig. 6 Normalized velocity magnitude contour plots with & = 68°(showing 6 out of 20

IH)
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Fig. 7 Computational domains with T-Shaped inlet (t/d = 0.58, s/d = 8.33)
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Fig. 9 Mass flow distributions for cases with T-shaped inlet
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Fig. 10 Normalized velocity magnitude contour pots (left: IH case; right: PM case,

showing first 7 out of 20 IH)
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Fig. 11 Effect of t/d on normalised mass flow distribution
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Fig. 12 Normalized velocity magnitude contour plots with (AR), = 2 (showing 7 out of

20 IH)
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Fig. 13 Mass flow distribution for cases with t/d ratio of 0.35
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Fig. 14 Mass flow distribution with T-Shaped inlet
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Fig. 15 Normalized velocity magnitude contour plots for T-shaped inlet cases (IH)
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Fig. 16 Normalized velocity magnitude contour plots for T-shaped inlet cases (PM)
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