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“The subjectivity of consciousness is an irreducible feature of reality, and it must occupy
as fundamental a place in any credible world view as matter, energy, space, time and
numbers”.

Thomas Nagel, The View from Nowhere, 1986

“The measure of a man’s real character is what he would do if he knew he would never
be found out.”

1st Baron Thomas Macaulay, 1926



Abstract

A recent evaluation of medical error has shown it to be the third leading cause of death in the US,
following heart disease and cancer. Better reporting and decision making could tackle this, but
ultimately more accurate and precise measurement, with correct interpretation could make a
significant difference to this unnecessary statistic. Clinical pathology measurement platforms are
complex, requiring significant standardisation efforts to reduce false positives/negatives and the
impacts these have on patient safety. Cell and Gene Therapy (CGT) manufacturing processes
depend upon these platforms for measurement, with Flow Cytometry (FC) used for in-process and
release metrics. However, the highly subjective nature of FC data analysis requires investigation to

monitor impact on manufacturing and clinical decision making.

FC standardisation efforts have reduced variation from sample preparation and setup, however, no
efforts have purely focused on the final post-analytical stage, to quantify the effect of subjective
analysis of data files. This research has isolated this section of FC analysis, providing better
measurement precision to build up a realistic uncertainty budget for FC measurements. Through a
series of participant analysis studies that build in complexity, it has been shown that as FC data
becomes more complex, the uncertainty contributions from inter-operator data analysis increase
from 8 % to 34 %. This increase could mean the difference between a CGT treatment being provided
at the right time, being discarded when it was suitable for administration, or an unsuitable

treatment administered to the patient at an unsuitable time, having costly implications for all.

This variation does not correlate with operator experience or use frequency of the instrument, but
is influenced by data visualisation effects, requiring further investigation at a later date to reduce
this impact. Image parameters for other CGT measurement platforms are also impacted by
subjective data analysis, requiring harmonisation to ensure the subjectivity is quantifiable,
standardised and reduces manufacturing and hence medical error impacts to the patient and

therapeutic product.



Acknowledgements

| would firstly like to acknowledge and thank all participants who took part in these Flow Cytometry
analysis studies, without whom this research could not have been possible. A big thanks go to my
supervisors: Jon Petzing, Karen Coopman and Nick Medcalf, for their continued support and

guidance throughout this PhD, and for providing thorough feedback throughout the writing process.

| would like to thank all collaborators who have supported this work, from GSK: Bo Kara (formerly
GSK), Aileen Kirkpatrick, Sebastian Mayer and Sandro Gomes. A big thanks to Sandro for helping
to coordinate the participant studies at GSK and continued review of written work throughout the
PhD, as well as the design and generation of the .fcs files for the complex model. From LGC thanks
go to Julian Braybrook and Jonathan Campbell, for continued support and metrological insight into
this work, as well as providing feedback on all outputs produced. | would also like to thank Tamara
Lekishvili (formerly LGC) for Flow Cytometry training throughout this process, and to Richard Hughes

and Jenny Hincks (formerly LGC) for helping to coordinate the participant studies at LGC.

| would like to thank all who have supported me within the EPSRC and MRC Centre for Doctoral
Training in Regenerative Medicine (EP/L105072/1), especially Rob Thomas for providing access
to Flow Cytometry equipment and David Williams for mentoring and development opportunities, as
well as providing the cells for the basic model. Thanks to Jamie Holmes, for support running the
colour vision work for the basic model. Thank you to all at the Center for Biomedical Innovation at
MIT for providing an incredible secondment opportunity for the translational work, especially

Jacqueline Wolfrum, Stacy Springs, and Anthony Sinksey.

| would also like to thank the IMechE, for their continued support throughout my Postgraduate
Research Scholarship. Finally, | would like to thank my family and Loughborough friends who have
provided continued support and enthusiasm throughout the PhD. A special thanks go to Anna,

Emily, Laura, Karen, Jon and Jonathan, for looking out for me through the last stages of this journey.

iv



Contents

Abstract i
Acknowledgements iv
Contents v
List of Figures viii
List of Tables XV
Abbreviations XiX
List of Publications Xxiii
Journal ManuscCripts iN SUDMISSION ....cii i XXili
External Conference Presentations ...t XXiii
Prelude: Thesis Context 1
(0 o1 =T 0 g =T =0 0= o TSR 1
1070 01 1= 4 SR 1
RESEAICN FOCUS. ...eiiieieieeeei e e e ree e e e e e s e e e e e e s e e e s rne e s e e e e neesame e e e e e e snnesenneesneesannensnnesan 3
TRESIS SEIUCTUIE ...ttt sae e e e s e ae e s e e sae e s e e e neeeneeeneesnnenas 5
Proposed NOVElty Of RESEAICH ..o ettt e e s e e na e e s ne e e e e e nneeeean 6
Chapter 1: Background Knowledge 7
1.0 INtroduction tO the ChapEr .....eeiee e e s e e ee e e s e 7
1.1 A short overview of the Flow Cytometry tEChNIQUE ...eeveeieiiiceeee et 7
1.2 Standardisation of Flow Cytometry PractiCe.......uuuuimrieiiiicccee ettt s 16
1.3 External Quality Assessment for reproducCibility ........ceveecceereeiiier e e 20
1.4 Variability in Flow Cytometry Gating StUAIES .....ccvvcceieiiiiiieirciee e s 29
1.5 Variation impacts on CGT manufacturing and adoption of measurement uncertainty........ 32
Chapter 2: Relevant Theory 35
2.0 INtroduction t0 The Chapter ...t eeesrr e e e e s e e snns e e e e e s s ee e snnnneeeeessennnn 35
B I 01 g T o (=T N[ R 35
2.2 Measurement SYSTEMS ANAIYSIS ..uueiiecceiiiiriiiei e ae e s n e e nn s 36
2.3 Representative Metrics: BasiC StatiStiCS .....uuuiirviieiiriiiei sttt 44
2.4 MeasuremMeNt UNCEIAINTY ...ueuiiiiieer ittt e s s s s e e s e snn e e s s nn e e e s ennneas 56
Y O aT=T o) (=T G 010 T g o] LU =] (o) 01 RN 62
Chapter 3: Pre-Study Variation Investigation 63
3.0 INtroduction 10 the CRAPLET ....eiiiii et e s e e s s ene e e s nnes 63
G N 0 =T o) =T Y[ L PR 64
0 T2 |V =1 T To o] 0 =R 65
3.3 RESUILS & DISCUSSION ..eeerueiiiieieeee et st se e s e e s e e s e e e e e e neeeneesneesnnenas 69
TN 01 g =Y o (= g 0o o] 111 (o] o R 101
Chapter 4: Basic Uncertainty Model 106




4.0 Introduction 10 the ChapLer .....uiii it e s nne e s
N O = T 0 =T A [ 1 P
0 V] =1 4 o To [ 0] o =2
4.3 Validation of Gating Tools and Plot VisualiSationS.......cccceveeceeercciieer e ecceees e
4.4 RESUIS & DiSCUSSION ..eeiueeeiieeieieeesieeesaseesseeessseesseeassseesseessseesaneesssnessaneessnssssaseesansessnneesaneens
R O g =T o) =T 7o o [ 1= 1o 1 S
Chapter 5: Intermediate Uncertainty Model

5.0 INtroduction t0 The Chapter ...t e carr e e e e e e snr e e e e e e e s e snnnneeeeenaean
LR I O g T o (=T AN [
L TRZ Y/ = oo o] (o= PP
5.3 RESUITS & DISCUSSION ...eeeieiiiereeeeeeeeseeessseessseesssseessseessseesssseessseessseesaseessaseesaneessnsessannesanseesns
LI O b= Yo (] 0o e 1153 o o 1= SRR
Chapter 6: Complex Uncertainty Model

6.0 INtroduction t0 The ChaPLer ......ueeeiiiiiie e e e e e e e ssnr e e e e e e e e s snnnneeeeeneean
LT O =Y (5] g 10 SR
LS TRZ Y, =T T o o] (o= PP
0.3 RESUITS & DISCUSSION ...eeeieiiieeieieeeessee e s e e e seeessseessseessseeeseseesseeesaseesaneessaneesaneesansessansessnseesns
R 01 g T o) (=T G 00T g Te LU =] (o] o1
Chapter 7: Comparison of Models

7.0 INtroduction t0 the Chapter ... e
A g T=T o (=T Y 0 ST
2 1Y/ 114 ToTo o] o =2 SRR
7.3 COMPAriSON Of RESUIS....icccieeiieeee e ettt e e e s e e eecsnr e e e e s e e s sssreeeesseessssssseeesssessssssnseessesennnnnns
A O] e =T o (T g 0o T 4T [V 3 (o] 1= R
Chapter 8: Participant Surveys

8.0 Introduction 10 the ChapLEr .....uiii et e s nnn e s
L 0 O =T o) (= [ L P
LS 0220 1Y/ =1 d o To (0] o =2
8.3 SUINVEY RESUITS ..ttt e e et e e e e e e e e e se e e e e e sa e e e eesseeeeenneeesanneessennnnenan
S O g =T o) =T 7o o 111 (o 1
Chapter 9: Translational Outlook

9.0 Introduction 10 the ChaPLEr .....uiiiiiciiei et nne e s
L IR I 01 = o L= Y12 1=
£ 020 |V 11 d o To (0] o =2
0.3 SUINVEY RESUITS ..eeei ettt e e s e e e s se e e e s nne e s s nee e e e nnnessnnnnenan
L O o= T o) =T 7o o 11 1= [ 1 R
Chapter 10: Conclusion & Future Work

RO RO RTa)dgoTo 1 o3 uTo) ol (ol { g Lo R 02 F=] o] (=] SRR
O I R I =t o 00 g o] 11 ] o =S
10.2 TNESIS NOVEILY «.eeeiieeieiieetiee ettt s e s s e e s e se e e s e ase e e s e ann e e s e ann e e e e annes



O RC  STUTad a[=Y Y0 L 329

References 332
Appendix A |
Appendix B M
APPENGIX C...oorermmsessmesssessmsesssssssssessasssssmssssessasesssssesssessaseasseseaseseasesssssessas seasesssssessasessassas sessaseas essassessassasmsesssseasassassensens IX
Appendix D Xl

D.1 Initial QUESTIONNAITE QULHNE....eeieeeeeeeceeee et e e e e e e e e e e e e e e e e e e e e e e e e e e s ennannns Xl

D.2 Follow-up QUESLIONNAITE OULINE ..cceeecceetiiiee e e e e e e eeeere e e e s s e e ssssseeeeesssesssnnseeeesssennnnnns XV
Appendix E - XXl

Vii



List of Figures

Figure 1 Core thesis hypothesis: as complexity of FC data increases, inter-participant analysis

VariationN @lSO INCIEASES. ...uieiiieeieiieieter et e s s e e s ee e s s e e s e ae e e s e se e e s e se e e s e sse e e e s s seeesensseeesenannnes 3
Figure 2 FIow Cytometer SChEMEATIC .. .oui e s n e s emne s 9
Figure 3 Example of Flow Cytometry gating within post-analytical Flow Cytometry......ccccovevvennnnnes 10

Figure 4 Example of how FMO gates are applied, a) Fully stained sample with gates applied from
FMO controls, b) FMO control for the marker on the horizontal x axis, ¢) FMO control for the
MArker ON the VEITICAl Y @XIS...iiiiiiiciiiee i cciiie e ettt st e e s e e e e e e s e ae e e e s s as e e e s e ssseeeesanseeeseanseeesnnnns 11

Figure 5 t-SNE iterations of a single FC data file, analysed with different variation limits, for 1,000

algorithm iterations. The grey cell indicates commonly used variables. .......ccccooeeeriieccviieereeenn e 13
Figure 6 Flow Cytometry assays used within CAR-T manufacturing .......cccceceveeeciieeecccceeeeecceeee e 15
Figure 7 Traceability chains of ISO 17511 calibrators ......coccceeeiccciee e 23

Figure 8 ISO 13528 options for EQAS providers, a) Determination of the initial reference value, b)

Performance criteria, ¢) Calculation of performance statistics, d) Graphical methods to report

[T PSSP 27
FIiBUIE O DIMAIC CYCIE... et e et s e s e e e s e s se e e e e e s neenenne e sneesneennnnnennnis 36
Figure 10 PDCA CYClIE [134,130] ...ccieiiieiieeeieireesseiuteessessteessssseeessessseessssseesssssesssssssesssesssesssnsssesssasnne 37
Figure 11 lllustration of repeatability, reproducibility and product variation within a manufacturing
7= Lo 1 L1 41
Figure 12 Measures of Location and Central tendency within normal and non-parametric

L0 1T A1 0T 110 1 SRR 46
Figure 13 Measures of spread for normal and non-parametric distribution........ccccceveveeericccieenienns 48
Figure 14 Examples of positive and negative SKEWNESS. .......cccveciererin e 49
Figure 15 Examples of low and high kurtosis around a normal distribution.......ccccceeceericenecennnnen. 49

Figure 16 Fishbone diagram listing some sources of uncertainty within Flow Cytometry results..57
Figure 17 Images of histograms provided for participant gating studies........cccveveeerrivcieerieieennienns 66
Figure 18 Inter-participant rCV distributions when gating fcs files using their own judgement (red
lines represent mean rCV values for each file distribution). .......cccveverceeccerccee e 71
Figure 19 Inter-participant rCV distributions when gating fcs files following a protocol (red lines
represent mean rCV values for each file diStribution) ........cccccevecieieceiscie e 75

Figure 20 Comparison of inter-participant ranges when participants use their own judgement to

gate and when they fOlIOW @ ProtOCOI ......uiii it 78
Figure 21 Stain INAEX FCV CUIVE ..o e e se e s e e me e s e e s ne e s me e e ne e sneesnnneas 82
Figure 22 Application of difference control limits applied t0 data.......cccceveevceerircceeiieccees e 90
Figure 23 Application of difference control limits applied to log transformed data........................ 91
Figure 24 Participant CO4 histogram gate applied to middle peak......ccccecvceercccceeseccieeee e 94



Figure 25 Participant BO7 histogram gate applied to middle peak (representative median) ........ 94

Figure 26 Participant CO1 histogram gate applied to middle peak......cccccevrevieririieeeircciee e 95
Figure 27 Participant CO7 histogram gate applied to middle peak......cccccvreceerrrcieieiircieeee e 96
Figure 28 Participant AO3 histogram gate applied to middle peak........ccceeeerrverriieriieerrceee e 97
Figure 29 Participant B11 histogram gate applied to middle peaK......cccccvrcveeriicieeenincseeenssceeeeenans 98
Figure 30 Participant AO6 histogram gate applied to middle peaK......ccoccevccciericccieeiccciee e 99
Figure 31 Participant BO9 histogram gate applied to middle peaK......cccccveeceirreciiercccceeneeceeenn. 100
Figure 32 Diagram of Chapter position within the whole TheSiS ......ccccccviiireciir e, 107

Figure 33 Gating sequence participants were asked to follow, to identify the target single cell
population, with double positive expression for both Pluripotency markers.......cccocceveccveeveccnneenn. 112

Figure 34 Example of data extraction through to calculation of absolute results and uncertainty

............................................................................................................................................................ 113
Figure 35 Visualisations tested within pilot to see if data visuals affect participant gating variance
............................................................................................................................................................ 114
Figure 36 Gate tools tested to see if they have an impact on participant gating variance.......... 114
Figure 37 Visualisation pilot study structure diagram for comparison of gating tools and
visualisation between PartiCiPANTS ...t e e s s e e e s s nr e e e s 115
Figure 38 Farnsworth-Munsell D-15 Colour Vision Test; a) Random pieces for participants to
order, b) Correct order fOr COIOUN TaZS ..uuiiiiiiiiiiiiiir e e e ene e e e eane s 115
Figure 39 Ranges of inter-participant SD for each gate tool on each visualisation plot.............. 116

Figure 40 Absolute Results of Target Cell population, represented by each participant's average
= 10 = s 10 P 119
Figure 41 Participant average result deviations from overall group median. ....c..cccceecevevenriiennnne 120

Figure 42 Acceptance boundaries applied to the Basic model averages to show difference in

OULHEN ClaSSITICATION. ..eeiieieiie e s r e e r e s e e e s ne e s ne e e ne e e ne e e e ans 121
Figure 43 Participant BO8 Gating Strategy interpretation, close to median result. ........ccccueenn. 122
Figure 44 Participant BO9 Gating Strategy interpretation.......ccuoceveeericeersee e 122
Figure 45 Participant AO8 Gating Strategy interpretation ........ccveceeeiieveeenneceeee e 123
Figure 46 Participant BO5 Gating Strategy interpretation.......ccuocveeereceeeseeeseee e 123
Figure 47 Participant CO9 Gating Strategy interpretation........cccceeerieceeenieceeen e 123
Figure 48 CV Performance of Participant ADSOIUte reSUltS ........ccvvivrer e 126
Figure 49 Participant CO1 Base Model Study Gating interpretation ..........ccceeeeereeericeesecersseennns 126
Figure 50 Expanded Uncertainty of all Participant Gating within the Base Model Study............. 129
Figure 51 Histogram of Participant Uncertainty from repeats of Base Model Study........cccecueuv... 130
Figure 52 Final Cell Count Population Percentage versus Gating Uncertainty for participants... 131
Figure 53 Participant performance monitoring diagram .......cccevecceeereciieerecieeee e e e s nee e 131
Figure 54 Participant AO7 Base Model Study Gating interpretation .......cccecvevecceevccceenccceeenn, 133



Figure 55 Participant B16 Base Model Study Gating interpretation ......cccceecceeiveceeenncceeenssceeens 133
Figure 56 Participant B18 Base Model Study Gating interpretation .......ccceecceeveeceeenncceeenesceeen. 134
Figure 57 Diagram of Chapter position within the whole TheSIS ......cceccceirccieiiccceer e, 139
Figure 58 Gating sequence participants were asked to follow, to identify the target single live cell

population, with CD3+ CD4+ CDA45RA+ for naive T-CellS. ... 147

Figure 59 Diagrammatical protocol given to participants to copy gates instead of using personal

8o F==T 0 0= o 148
Figure 60 Example of data extraction through to calculation of absolute results and uncertainty
............................................................................................................................................................ 149
Figure 61 Absolute Results of Target Cell population, represented by each participant's average

=Y Lo B Y ) RSP YRRPR 152
Figure 62 Participant average result deviations from overall group median.......ccccccveceeeevecneenn. 153
Figure 63 Acceptance boundaries for permissible limits of variability of Intermediate model
[OL=T Yo Y= WU o F= (=T aaT=T a Lo = | v T 153
Figure 64 Participant BO9 Gating Strategy interpretation, close to median result. ..................... 154
Figure 65 Participant CO1 Gating Strategy interpretation ... ereceeeceeeeceee e 155
Figure 66 Participant AO2 Gating Strategy interpretation ........ccvecceerieceencccees e 155
Figure 67 Participant B10 Gating Strategy interpretation.......cuocveeceieceeecee e 156
Figure 68 CV Performance of Participant ADSOIULE rESUILS ......ccccerreeeiiiieeecee e 157
Figure 69 Participant BO8 Intermediate Model Study Gating interpretation.......cccccvecveeviccneen. 157
Figure 70 Participant BO6 Intermediate Model Study Gating interpretation.......ccccccvecveeveccneenn. 158
Figure 71 Participant B12 Intermediate Model Study Gating interpretation.......cccccvecveervccneenn. 158
Figure 72 Absolute Results of Target Cell population when following a protocol, represented by
each participant's average and £ SD.......ciei et s s 160
Figure 73 Participant average result deviations from overall group median. .......ccceveereverriennnne 161

Figure 74 Acceptance boundaries of personal judgement data applied to data when participants

Lo] | T 1Ty =T B> T 0] e oo | TP 162
Figure 75 Participant BO3 Gating Strategy interpretation........cccceeeieeveeeincceeenscceee e 162
Figure 76 CV Performance of Participant Absolute results when following a protocol................. 163
Figure 77 Participant BO4 Intermediate Model Study Gating interpretation.......ccccceccveenecieennnn. 164

Figure 78 Comparison of inter-participant absolute cell counts when gating using their own
judgement and when fOllOWINEG @ PrOTOCOL. ... uii e s 164
Figure 79 Comparison of participant absolute cell count CVs when gating using their own
judgement and when fOllOWINEG @ ProTOCOL....c . uii e s 166
Figure 80 Expanded Uncertainty of all Participant Gating within the Intermediate Model Study 168
Figure 81 Histogram of Participant Uncertainty from repeats of Intermediate Model Study ...... 169

Figure 82 Final Cell Count Population Percentage versus Gating Uncertainty for participants... 170



Figure 83 Participant Uncertainty performance monitoring diagram when using their own

8T F =T o' o TR 170
Figure 84 Participant B10 Intermediate Model Study Gating interpretation .......ccccccvvecceeveccneenn. 171
Figure 85 Participant BO4 Intermediate Model Study Gating interpretation .......cccccevvecceeniccenennn. 171

Figure 86 Expanded Uncertainty of all Participant Gating within the Intermediate Model Study
when participants fOllOWEd @ PrOtOCOL......uuuiiiiiii it e e e s s s e s assreeeesssessnsnnneeees 174
Figure 87 Histogram of Participant Uncertainty from repeats of Intermediate Model Study when
participants fOlIOWEA @ PrOTOCO .. ..uiiiiii e e e e e s e e asr e e e e s s s s ssnnreeeeeseeesssnnnneees 174

Figure 88 Participant Uncertainty performance monitoring diagram when following protocol ... 175

Figure 89 Enlargement of Participant BO7's first plot and gates applied in Phase 2 .................. 176
Figure 90 Visualisation of Intermediate Gating Study data in different Flow Cytometry Software

............................................................................................................................................................ 177
Figure 91 Enlargement of Participant BO4's first plot and gates applied in Phase 2 .................. 178
Figure 92 Enlargement of Participant BO2's first plot and gates applied in Phase 2 .................. 179
Figure 93 Enlargement of Participant BO8's first plot and gates applied in Phase 2 .................. 179
Figure 94 Overlaid histograms of participant uncertainties when gating the naive T-cell population
following their own judgment and then using @ ProtOCOL........cevreieriiericie e 181
Figure 95 Diagram of Chapter position within the whole TheSIS .......c.ccevererincieereceeeeeee, 188

Figure 96 Gating sequence participants were asked to follow, to identify the transduced
ENEINEEIEA T-CEIIS. .. e s e e s e e s e e e e e e e nn e e e s e mne e e s e nnneeeennnnas 193

Figure 97 Diagrammatical protocol given to participants to copy gates instead of using personal

86 F=2=T 0 0T o | PPN 195
Figure 98 Example of data extraction through to calculation of absolute results and uncertainty
[T o= U] oY= o | P PP 197
Figure 99 Absolute Results of Target Cell population, represented by each participant's average
=Y 0 1 T 199
Figure 100 Participant average result deviations from overall group median........cccccveveevrcieennns 200

Figure 101 Comparison of average engineered T-cell counts to additional error boundaries .... 201

Figure 102 Participant B12 Gating Strategy interpretation, close to median result. ................... 202
Figure 103 Participant B11 Gating Strategy interpretation ......c.ccccceveveeenncveeenncceees e 203
Figure 104 Participant AO1 Gating Strategy interpretation......cccccccceveeceeenicceeenscceees e 203
Figure 105 Participant CO3 Gating Strategy interpretation ... 204
Figure 106 Participant BO2 Gating Strategy Interpretation .....cccccccccveeveeeieccieenscceee e 205
Figure 107 Participant BO3 Gating Strategy Interpretation .....cc.ccccccveeveeeiecciienscceeeeeceee e 205
Figure 108 CV Performance of Participant absolute reSURS........cceeeveccieerccceie e 207
Figure 109 Participant B13 Complex Model Study Gating interpretation.......ccccccoeveciieeveccnennn. 208

Xi



Figure 110 Absolute Results of Target Cell population when following a protocol, represented by
each participant's average and & SD.......occiiccirccce e e e 210
Figure 111 Participant average result deviations from overall group median........ccoeccveeceerrieeene 212

Figure 112 Application of Phase 1 error boundaries to engineered T-cell counts when participants

L0T LotV T o] ) (o T P SRR 212
Figure 113 Participant B13 Gating Strategy interpretation when following a protocol................ 213
Figure 114 CV Performance of Participant Absolute results when following a protocol.............. 214
Figure 115 Participant BO7 Complex Model Study Gating interpretation........ccceccoeevecceeveccnneenn. 215

Figure 116 Comparison of Participant Absolute cell counts when gating using their own
judgement and when folloWing @ ProtOCOL........oi i e e e e e e ne e e e eans 216

Figure 117 Comparison of Participant averages to the benchmark protocol given to follow in

Figure 118 Comparison of participant absolute cell count CVs when gating using their own
judgement and when fOlloWing @ ProtOCOL.......cii i e e e e s nr e e e eans 219

Figure 119 Expanded Uncertainty of all Participant Gating within the Intermediate Model Study

............................................................................................................................................................ 221
Figure 120 Histogram of Participant Expanded Uncertainty from repeats of Intermediate Model
110 222
Figure 121 Final Cell Count Population Percentage CV versus Gating Uncertainty for participants
............................................................................................................................................................ 223
Figure 122 Participant Uncertainty performance monitoring diagram when using their own

86 £ 0 0T o | PPN 223
Figure 123 Standard Deviation of each gate applied in the sequence by each participant........ 224
Figure 124 Participant B10 Complex Model Study Gating interpretation........ccceccveveerecenncennnne 225
Figure 125 Participant BO4 Complex Model Study Gating interpretation.......ccccecceeeieenecenriennnne 225
Figure 126 Participant BO8 Complex Model Study Gating interpretation.......cccccccevecveenicineenn. 226

Figure 127 Expanded Uncertainty of all Participant Gating within the Complex Model Study when
o= gued o F=Y ) <3 {011 o 1VT7=To Je= TN o701 o Yoo 228
Figure 128 Histogram of Participant uncertainty from repeats of Intermediate Model Study when
o= g3 oF=Y ) <3 {0110 1VTZ=To Je= TN o701 (o Yoo 229

Figure 129 Participant uncertainty performance monitoring diagram when using their own

L8 L0 =T o a1 RS 230
Figure 130 Participant BO9 Complex Model Study Gating interpretation.......ccccceccvecceeensccnennn. 231
Figure 131 Participant B10 Complex Model Study Gating interpretation.......cccecccccveicieennccneenn. 231
Figure 132 Standard Deviation of each gate applied in the sequence by each participant........ 232
Figure 133 Participant AO1 Complex Model Study Gating interpretation .......ccceccccevecieeevecceennn. 233
Figure 134 Participant BO1 Complex Model Study Gating interpretation......ccccccceveeieeevecceenn. 233

Xii



Figure 135 Participant AO1 gate 3. a) Standard gates drawn with logarithmic scaling. b) Gates
drawn 10 bieXpONeNTial SCAIING.....cuu oo rireee e s ne e e e e s e e e ne e e ns 234

Figure 136 Participant BO1 gate 3. a) Original gates drawn with logarithmic scaling. b) Scale

extended to Show Shape Of 1€t @UZE .....uei e 234
Figure 137 Participant BO3 Complex Model Study Gating interpretation.......ccccecceeviiveennccceeennn. 235
Figure 138 Participant BO3 gate 3. a) Original gates drawn with logarithmic scaling. b) Scale
extended t0 SNOW L€t EUBE ....oei et e s e e s e ne e e e e ne e e e e ane s 236
Figure 139 Participant B13 gate 3. a) Original gates drawn with logarithmic scaling. b) Scale
extended t0 SNOW It EUBE ....oei e e e e e e n e e e s e ane e e e e ane s 236
Figure 140 Software visualisations of live cell gate (gate 3) to identify boundary effect ............ 237
Figure 141 Overlaid histograms of participant uncertainties when gating the engineered T-cell
population following their own judgment and then using a protocol........ccccceeveccieerecceeececeeeenn. 238
Figure 142 Absolute cell count distributions for each cell complexity model.........ccccccveevecunnenne. 248

Figure 143 IBM SPSS results for the Friedman test comparing absolute cell counts for complexity

FOr COMPIEXITY MOUEIS ..ttt e s s e e s eeae e e e sesss e e e senaeeesesaeeeannnneenan 250
Figure 145 Diagram of Inter-CV and Intra-CV for subjectivity comparison .......cccccccevvevveensccneennn. 252
Figure 146 Absolute cell count CV distributions for each cell complexity model .........ccccovruenee 252

Figure 147 IBM SPSS results for the Friedman test comparing absolute cell counts CVs for
COMPIEXITY MOUEIS...ceeeiiiieeeeee et e e s e e e e e s s s s e s s e e e e e e e ae s nnnneeeeeeas s snnnnneeeeeannn 253
Figure 148 IBM SPSS pairwise comparisons for the Friedman test comparing absolute cell count
CVs fOr COMPIEXITY MOUEIS .. ittt ne e s n e s ne e s e e e s neennns 253
Figure 149 Absolute cell count uncertainty distributions for each cell complexity model........... 256
Figure 150 IBM SPSS results for the Friedman test comparing absolute cell counts uncertainties
TOr COMPIEXITY MOUEIS ..ttt s s e s s s e e s s ne e e s s nne e e s nnnenean 257
Figure 151 IBM SPSS pairwise comparisons for the Friedman test comparing absolute cell count
uncertainties for COMPIEXItY MOUEIS ....cou i 257

Figure 152 Core hypothesis of thesis, showing an increased range of intra-participant CV with FC

o F= = I oo 0 0] 0] =3 (1 ST 259
Figure 153 Core hypothesis of thesis, showing increased range of inter-participant uncertainty

WITh FC data COMPIEXITY .uveeiiiiiieiiiiiiee ittt e s e e e s e e e s snn e e e s e nreeesenneeennanne 260
Figure 154 Questionnaire timescale in conjunction with analysis models......cc.ccccceveivieeiicceennn. 269

Figure 155, a) Common uses for Flow Cytometry, b) Common cell types analysed using Flow
037 (010 0= /2SS 277
Figure 156, a) Flow Cytometers used by participants, b) Flow Cytometry analysis platforms used

o)V 0T L ¥ [0 o= ) €= R 278

Xiii



Figure 157 Overlaid histograms of participant experience with Flow Cytometry.....cccccecevrecuneenn. 278

Figure 158 Comparison of participant experiences with a) Absolute cell counts, b) Reported CVs,

c) Reported expanded UNCEMAINTIES. ... .uui et 280
Figure 159 Use frequency compared to a-c) Absolute cell counts per model, d-f) Cell Count CVs, g-
) (o= Yale [=To UL g ot =T g 7= 1) A= 282
Figure 160 FIOW CytOmMETry TraiNing ....ccuccciieicecieeeccerie e cceeee s e e s e e e s s nn e e s na e e s e nn e e s s nn e e e e e nneenan 284
Figure 161, a) SOPs used to apply gates, b) Types of SOPS USEd .....cccccveereeeeerccceeereceeeeecneeean, 285
Figure 162 Preference for manual or automated gating within the two questionnaires............. 287

Figure 163 Preferential reasons for choosing manual or automated gating across both

Lo ST K TeY AT A= L= 288
Figure 164 Identified problems When Sating ... 290
Figure 165 Noise parameter issues identified by participants.......ccccvecceercccievccceeeccceee e, 291
Figure 166 Identified problems when interpreting FC gating from literature ........cccceeevveevecnnennn. 292
Figure 167 Process Flow Map for gPCR Viral Infectivity measurements ........cccccccceevecceeevecnneenn. 306
Figure 168 Process Flow Map for imager Viral Infectivity measurements.......ccccccceevecceeevecnneenn. 307
Figure 169 Process Flow Map for manual & imageJ Viral Infectivity measurements .................. 307
Figure 170 Process Flow Map for manual Viral Infectivity measurements......ccccccevvccceenvccneenn. 308
Figure 171 Stratified subjectivity issues within imaging platforms .......ccccveceenrcccenvccceen e, 309
Figure 172 Types of training provided on reSPeCtivVe @SSaYS ....cuucvurerieiereriiieeerieireessesseessessseesans 311

Figure 173 Core hypothesis of thesis, showing an increased range of intra-participant CV with FC
Lo F= 1= WotoT0 0] 011 (1 47 PSPPSR 320
Figure 174 Core hypothesis of thesis, showing increased range of inter-participant uncertainty
With FC data COMPIEXITY. cueeeeceieeeieeetee st s e e s e s e e s e e e s e e e enns 321
Figure 175 Example of the novel performance monitoring diagram, highlighting good, satisfactory

and revision regions based upon ICSH gUIAEIINES.......cocciiriiiiiiernee e 322

Xiv



List of Tables

Table 1 Summary of CD4+ EQAS ... ettt e e s et e e e e s e e nn e e e e e e s e e e e e e e e e e e annneeeeeas 25
Table 2 Example Gauge R&R Data ColleCtion SNEEt ......cuivcciiii et 43
Table 3 Descriptions and equations to calculate measures of Location .......ceccccceeeeereccccccneeeeenn. 46
Table 4 Descriptions and calculations for Measures of SPread ........cccccvvcceei e 47
Table 5 Descriptions and calculations of Skewness and KUrtosis .......cccceeeeveeccccceeeeeeeeccccceeeeeeen, 48
Table 6 Statistical Report Format used throughout this TheSIS......cccveeerrierrierecee e 55
Table 7 Coverage factors (k) and respective Confidence Intervals ......ccccccceeiecveeiiccciensccceeen e, 61
Table 8 Measures of Location for Phase 1 inter-participant rCV results (%).....ccccceeeeveenireveenieeeen. 69
Table 9 Measures of spread for Phase 1 inter-participant rCV reSults (%) c.cccceveeveeeveenicsceeenseenen. 70

Table 10 Measures of skew for Phase 1 inter-participant rCV results (%) (3dp used for resolution

LT LTS S 1) TR 70
Table 11 S-W test for normality for Phase 1 inter-participant rCV results (3dp used for resolution

LT LTS SIS R 70
Table 12 Measures of Location for Phase 2 inter-participant rCV results (%) ...cccoveeeeeireecicieveeeeenn. 73
Table 13 Measures of Spread for Phase 2 inter-participant rCV results (%) ....ccovvvereeeiieccicievneeeenen. 73

Table 14 Measures of skew for Phase 2 inter-participant rCV results (%) (3dp used for resolution

LT LTS ST T 74
Table 15 S-W test for normality for Phase 2 inter-participant rCV results (%) (3dp used for

FESOIULION FIOM SPSS) ... it e e et e e et e e e e e e e e e s e aseeeseasseeeeenneeesennseeesnnnns 74
Table 16 Results of Sign test to compare medians of two-phase test conditions........cc.ccccceveennneen. 80
Table 17 A Priori and Post Hoc Power analysis (3 dp used for resolution specified in SPSS)........ 81
Table 18 Error Boundary EStIMators. ...ttt eeee s s e e e 85
Table 19 Outlier estimators, respective calculations and control limits defined......cccccveeeccvneeeeennn. 89
Table 20 Control limits used t0 SPECITY OULHEIS .....cceiiciieii e e 93
Table 21 Measures of Location for the absolute results of the Base Gating Study (%)............... 118
Table 22 Measures of Spread for the absolute results of the Base Gating Study (%) ....cceeeeenn.e. 118

Table 23 Measures of Skew for the absolute results of the Base Gating Study (%) (3dp for better
LSTST0 ] LU {40 o ) PP 118

Table 24 Measures of Normality for the absolute results of the Base Gating Study (%) (3dp for

TS TU LT Q=TT ] LU 4] o) SRR 118
Table 25 Measures of Location for Uncertainty of the Base Gating Study (%) ..ccccevvevveerievvennins 127
Table 26 Measures of Spread for Uncertainty of the Base Gating Study (%) ...cccccevrevveeriecennnnnnns 128

Table 27 Measures of Skew for Uncertainty of the Base Gating Study (%) (3dp for resolution) . 128

XV



Table 28 S-W test for normality for Uncertainty of the Base Gating Study (%) (3dp for resolution)

............................................................................................................................................................ 128
Table 29 Staining volumes for Single Stain CONTIOIS......cciviiericeeeeee e 143
Table 30 Staining volumes fOr FIMO CONTIOIS.......cceiceeeeeeeeeeeeeeee e e s e e s e 144
Table 31 Staining volumes for ISOtype CONTIOIS......uiiiicieerieiiiie it sr e eans 144
Table 32 Staining volumes for Fully Stained SampPleS ......cccoerricccier e e 145

Table 33 Measures of Location for the absolute results of the Intermediate Gating Study using
[OL=T Yo Y= I 10 o F=(cT aa Ty a L 150
Table 34 Measures of Spread for the absolute results of the Intermediate Gating Study using
[OL=T Yo Yo=Y W10 o F=(=T aa T a L 150
Table 35 Measures of Skew for the absolute results of the Intermediate Gating Study using
personal judgement (%) (3dp for better reSOIULION)....cuceiiii e 150
Table 36 Measures of Normality for the absolute results of the Intermediate Gating Study using
personal judgement (%) (3dp for better reSOIULION)....cuceiiriccciie e 151
Table 37 Measures of Location for the absolute results of the Intermediate Gating Study using
diagrammatiCal PrOtOCOI (%6)..uuuriiiieerieiiiesieiiee s ctee s e e e e e s e e s e ae e e s e ne e e s s ene e e s e neeeeenanees 159
Table 38 Measures of Spread for the absolute results of the Intermediate Gating Study using
diagrammatiCal PrOtOCOI (%6)..uuuiiiiieerieiiieeccctee s ctee s e e e e e s e eae e e s s ne e e e s ane e e s e aneeeeenanees 159
Table 39 Measures of Skew for the absolute results of the Intermediate Gating Study using
diagrammatical protocol (%) (3dp for better reSOlUtion) ......coiccceeiccciee e 159

Table 40 Measures of Normality for the absolute results of the Intermediate Gating Study using

diagrammatical protocol (%) (3dp for better resSolution) ......coecccceerccciee s 159
Table 41 Sign test results for comparison of Intermediate Gating Study Stages.......ccccceveveeennee. 165
Table 42 A Priori and Post Hoc Power analysis for Intermediate Study absolute cell counts...... 165

Table 43 Measures of Location for Uncertainty of the Intermediate Gating Study using personal

QLU F =L g =T L ) T 167
Table 44 Measures of Spread for Uncertainty of the Intermediate Gating Study using personal

QLU o F=Ta e T=T oL U PSSR 167
Table 45 Measures of Skew for Uncertainty of the Intermediate Gating Study using personal
judgement (%) (3AP FOr rESOIUTION) .ueviiiceieei i s s e s s se e s s ene e e e s nreeenans 167
Table 46 Shapiro-Wilk test for normality for Uncertainty of the Intermediate Gating Study using
personal judgement (%) (3P TOr rESOIUTION).....iiiieceeiiieirrer e snee e 167
Table 47 Measures of Location for Uncertainty of the Intermediate Gating Study when following a
[T o Te 0 I R 172
Table 48 Measures of Spread for Uncertainty of the Intermediate Gating Study when following a

[T oY (o ToTo ] I T 172

XVi



Table 49 Measures of Skew for Uncertainty of the Intermediate Gating Study when following a

Protocol 1(%) (AP FOr FESOIULION).ccieeiiei it se e e e s nne e e s 172
Table 50 Shapiro-Wilk test for normality for Uncertainty of the Intermediate Gating Study when

following a protocol (%) (3dP fOr rESOIUTION)....ciii et e s e sre e eans 173
Table 51 Sign test for median difference between Phase 1 and Phase 2 uncertainties............. 182
Table 52 A Priori and Post Hoc Power for Phase 1 and 2 uncertainties ........ccccoceeverveerseerseennnens 182
Table 53 Staining volumes fOr FMO CONTIOIS......cccuiieicciiee s ccteee s cceee e s ecee e e e eree e e e e s e e e s esnneeeeeans 190
Table 54 Staining volumes for Fully Stained SampPleS ......cccoeiicccieeicciee e 191

Table 55 Measures of Location for the absolute results of the Complex Gating Study using
[OL=T Yo T = I 100 F=(=T a1y a Lo 198
Table 56 Measures of Spread for the absolute results of the Complex Gating Study using personal
U0 == o T=T o) A TS 198
Table 57 Measures of Skew for the absolute results of the Complex Gating Study using personal
judgement (%) (3dp for better reSOIULION) .....coiiceeee i e 198
Table 58 Measures of Normality for the absolute results of the Complex Gating Study using
personal judgement (%) (3dp for better reSOIULION)....uuceeieieciiee e 199
Table 59 Measures of Location for the absolute results of the Complex Gating Study using a
diagrammatiCal PrOtOCOI (%6)..uuuiiiiieerieiiieeccctee s ctee s e e e e e s e eae e e s s ne e e e s ane e e s e aneeeeenanees 209
Table 60 Measures of Spread for the absolute results of the Complex Gating Study using a
diagrammatiCal PrOtOCOI (%6)..uuuriciieerieiieeiieitee et e s e e e e e e e e s e ae e e s s e ne e e e eane e e s e aneeeeeasnees 209
Table 61 Measures of Skew for the absolute results of the Complex Gating Study using a
diagrammatical protocol (%) (3dp for better resSolution) ......coecccceerccciee s 209

Table 62 Measures of Normality for the absolute results of the Intermediate Gating Study using a

diagrammatical protocol (%) (3dp for better reSolution) ......coivcceeer e 209
Table 63 Sign test results for comparison of Intermediate Gating Study Stages.......c.cccveveeenee. 217
Table 64 A Priori and Post Hoc Power analysis for Complex Study absolute cell counts............. 218

Table 65 Measures of Location for Uncertainty of the Complex Gating Study using personal

QLU o F=Ta e T=T oL U PSSR 220
Table 66 Measures of Spread for Uncertainty of the Complex Gating Study using personal

QLU e T =TT oL PR 220
Table 67 Measures of Skew for Uncertainty of the Complex Gating Study using personal
judgement (%) (3AP TOr rESOIUTION) .ueviieeieeiieree et e st e e s e s ssse e s s ne e e e s ne e e s senneesnans 220
Table 68 Shapiro-Wilk test for normality for Uncertainty of the Complex Gating Study using
personal judgement (%) (3dP TOr rESOIULION).....iiiiiciiirieiier e snee e 220
Table 69 Measures of Location for Uncertainty of the Intermediate Gating Study when following a
[T oY (o ToTo ] I T 227

XVii



Table 70 Measures of Spread for Uncertainty of the Intermediate Gating Study when following a
[T oo I 227

Table 71 Measures of Skew for Uncertainty of the Intermediate Gating Study when following a

Protocol (%) (3AP fOr rESOIUTION)..eiiieieeieceieee ettt s s se e e e s se e e e e ennnen s 227
Table 72 S-W test for normality for Uncertainty of the Intermediate Gating Study when following a

Protocol (%) (3AP FOr rESOIULION)...uueiieiiiiiiiiirrriie e e cescrrr e e e e e esar e e e e e s e s e e sasr e e e e e s e s e ssnnrreeeessesnnsnnnneees 227
Table 73 Sign test for median difference between Phase 1 and Phase 2 uncertainties............. 239
Table 74 A Priori and Post Hoc Power for Phase 1 and 2 uncertainties ......c..cceeveverveeeseerseenneene 239
Table 75 Measures of Location for the absolute results of the complexity models (%)............... 247
Table 76 Measures of Spread for the absolute results of the complexity models (%)................. 247

Table 77 Measures of Skew for the absolute results of the complexity models (%) (3dp for better
LESYT0 ] 101 4[] o) R 248

Table 78 Measures of Normality for the absolute results of the complexity models (%) (3dp for

(oL ST L=t 0] [ Lo ) R 248
Table 79 Measures of Location for the uncertainty results of the complexity models (%) .......... 255
Table 80 Measures of Spread for the uncertainty results of the complexity models (%)............. 255

Table 81 Measures of Skew for the uncertainty results of the complexity models (%) (3dp for

oL AT (=10 [U LU Lo ) PP 255
Table 82 Measures of Normality for the uncertainty results of the complexity models (%) (3dp for
oL AT (=TS0 [V LU Lo o ) RPN 255
Table 83 Quantitative or Qualitative Nature Of @SSAYS ...cvvecccvereiere i e ne e 305

Table 84 Comparison of inter-participant CV and uncertainty ranges across the cell complexity

XViii



Abbreviations

ANCOVA: Analysis of Covariance

ANOVA: Analysis of Variance

APC: Allophycocyanin

BSC: Biological Safety Cabinet

CAR-T: Chimeric Antigen Receptor T cell

CCR7: C-C Chemokine Receptor

CD: Cluster of Differentiation

CDC: Center for Disease Control

CFR: Code of Federal Regulations

CGT: Cell and Gene Therapy

Cl: Continuous Improvement

CIP: Cancer ImmunoGuiding Program

CLL: Chronic Lymphocytic Leukaemia

COa2: Carbon dioxide

COUHES: Committee on the Use of Humans as Experimental Subjects
CPA: Clinical Pathology Accreditation

CPD: Continued Professional Development

CQA: Critical Quality Attributes

CS&T: Cytometer Setup & Tracking

CV: Coefficient of Variation

DMAIC: Design-Measure-Analyse-Improve-Control
DMEM: Dulbecco’s Modified Eagle Medium

DNA: Deoxyribose Nucleic Acid

DoE: Design of Experiments

EC 2102 Ep: Embryonal Carcinoma 2102 Ep Cell line

EDTA: Ethylenediamine Tetracetic Acid

XiX



EQAS: External Quality Assessment Schemes
EWMA: Exponentially Weighted Moving Average
FACS: Fluorescence Activated Cell Sorting

FBS: Fetal Bovine Serum

FC: Flow Cytometry

fcs: Flow Cytometry standard

FDA: Food & Drug Administration

FIRM: Future Investigators of Regenerative Medicine
FLOCK: Flow cytometry Clustering by K-means
FMH: Feto-Maternal Haemorrhage

FMO: Fluorescence Minus One

FSC: Forward Scatter

Gauge R&R: Gauge Repeatability & Reproducibility
GDPR: General Data Protection Regulation

GMP: Good Manufacturing Practice

GPG: Good Practice Guide

GSK: GlaxoSmithKline

GUM: Guide to the Expression of Uncertainty of Measurement
Ha: Alternative Hypothesis

Ho: Null Hypothesis

hESC: human Embryonic Stem Cell

HIV: Human Immunodeficiency Virus

HLA: Human Leukocyte Antigen

HPLC: High Performance Liquid Chromatography
HTA: Human Tissues Act

ICCS: International Clinical Cytometry Society

ICH: International Committee for Harmonization

ICS: Intracellular Cytokine Staining

XX



ICSH: International Council for Standardization of Haematology

IQR: Interquartile Range

ISHAGE: International Society for Hematotherapy and Graft Engineering

IVD: In Vitro Diagnostics

ISO: International Organisation for Standardization

JCTLM: Joint Committee for the Traceability of Laboratory Medicine
k: coverage factor

KPI: Key Performance Indicator

K-S: Kolmogorov-Smirnov

LGC: Laboratory of the Government Chemist

MAD: Median Absolute Deviation

MANOVA: Multivariate Analysis of Variance

MedFI: Median Fluorescent Intensity

MHC: Major Histocompatibility Complex

MIFlowCyt: Minimum Information on a Flow Cytometry experiment
MRC: Medical Research Council

MRD: Minimal Residual Disease

MSA: Measurement Systems Analysis

MSC: Mesenchymal Stromal Cell

NHS: National Health Service

NIBSC: National Institute for Biological Standards and Control
NIST: National Institute for Standards & Technology

NK: Natural Killer

PBMC: Peripheral Blood Mononuclear Cells

PBS: Phosphate Buffered Saline

PDCA: Plan Do Check Act

PDS: Product Design Specification

pU: permissible Uncertainty

XXi



QbD: Quality-by-Design

QC: Quality Control

qPCR: quantitative Polymerase Chain Reaction
rCV: robust Coefficient of Variation

rSD: robust Standard Deviation

SCYM: Specialist in Cytometry

SD: Standard Deviation

Sig: Significance

SPC: Statistical Process Control

SSC: Side Scatter

SSEA: Stage Specific Embryonic Antigen
SOP: Standard Operating Procedure

S-W: Shapiro-Wilk

TCR: T-cell Receptor

t-SNE: t-Stochastic Neighbour Embedding

U: Expanded Uncertainty

Uc: combined Uncertainty

UKAS: United Kingdom Accreditation Service
UK NEQAS: United Kingdom National External Quality Assessment Scheme
V: Volts

WHO: World Health Organisation

7-AAD: 7-Aminoactinomycin D

XXii



List of Publications

Journal Manuscripts in Submission
Grant, R., Coopman, K., Medcalf, N., Silva-Gomes, S., Kara, B., Campbell, J. J., Braybrook, J., &

Petzing, J. (2019). Understanding biometrology operator variability within Flow Cytometry data
analysis for Quality Control of Cell and Gene Therapy Manufacturing. Measurement. Accepted for

publication August 2019.

Grant, R., Coopman, K., Medcalf, N., Silva-Gomes, S., Kara, B., Campbell, J. J., Braybrook, J., &
Petzing, J. (2019). Quantifying operator subjectivity within Flow Cytometry data analysis as a source
of measurement uncertainty and the impact of experience on results. Cytotherapy. In Review.
External Conference Presentations

Grant, R., Coopman, K., Medcalf, N., Silva-Gomes, S., Kara, B., Campbell, J. J., Braybrook, J., &
Petzing, J. (2019). Quantifying operator measurement uncertainty contributions within post-
analytical Flow Cytometry data. 4t Parenteral Drug Association Europe Meeting, Amsterdam, the

Netherlands, 26/06/19.

Grant, R., Coopman, K., Mayer, S., Kara, B., Campbell, J. J., Braybrook, J., & Petzing, J. (2018).
Assessment of operator variation in flow cytometry measurements using gauge repeatability &
reproducibility techniques. Cytotherapy,20(5), S77.1SCT 2018 Annual Meeting, Montreal, Canada,

2-5/05/18.

Grant, R., Coopman, K., Mayer, S., Kara, B., Campbell, J. J., Braybrook, J., & Petzing, J. (2017). Flow
Cytometry Operator Variation Study. Future Investigators of Regenerative Medicine Symposium,

Girona, Spain, 28/09/17.

Grant, R., Coopman, K., Mayer, S., Kara, B., Campbell, J. J., Braybrook, J., & Petzing, J. (2017). Flow

Cytometry Operator Variation Study. Bioprocess UK, Cardiff, Wales, 28-30/11/17.

XXiii
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Thomas Nagel, The View from Nowhere, 1986

“The measure of a man’s real character is what he would do if he knew he would never
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Prelude

Prelude: Thesis Context

Problem Statement

Subjective operator assessment is a common although often silent element of quantitative
measurements. Flow Cytometry (FC) is a commonly used instrument within biological and
particulate measurement, which requires manual subjective intervention for quantification and
interpretation [1]. This platform is heavily used within clinical diagnosis and Cell and Gene Therapy
(CGT) manufacturing and Quality Control (QC), with various standardisation and harmonisation
efforts reporting large measurement variance [1,2]. This causes medical confusion, misdiagnosis
and treatment error [3]. When used within CGT manufacturing, this poorly quantified measurement
variation may be the difference between life and death. False positives, false negatives, opinions
and inspector education cause medical error, with experts calling for international consensus for
repeatability and reproducibility across sites [4]. As well as the impact on the patient, CGTs have
time-, resource- and money-intensive manufacturing processes, so poor measures have significant

impacts on product quality and therapy variability within international healthcare systems.

Context

The CGT market has accelerated over recent years, with the first licensed treatments becoming
available across international healthcare systems. CGTs have been heralded as the fourth pillar of
healthcare, supporting pharmaceuticals, biologics and medical devices. The opportunities for cure
and treatment of many degenerative diseases such as cancer, diabetes and Parkinson’s disease
show promise for a new wave of healthcare innovation [5]. Cancer immunotherapy is leading the
way for CGTs, with recent efforts demonstrating treatment of solid tumours and haematological
malignancies [6]. Chimeric Antigen Receptor (CAR-T) therapies have provided the first treatments
for B-cell malignancies, with Kymriah (tisagenlecleucel, Novartis) and Yescarta (axicabtagene
ciloleucel, Kite Pharma) leading the way for many more regenerative medicine products [7].
However, these treatments are not without complications. These live products bring new challenges

to reproducible manufacture and control, with a distinct lack of traceable reference material to
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ensure accuracy and precision of measurement, impacting the clinical decision-making process
[8]. Lack of traceability can make measurement more challenging across decentralised
manufacturing systems, where the variability across sites also becomes an issues, in comparison
to centralised manufacture where the CGT is manufactured on one site, removing inter-site

reproducibility concerns.

The manufacture of CGTs is marking the turn of a new industrial revolution, however, to ensure
future demand for these treatments needs to be met with 100 % efficacy and right-first-time
delivery [9]. To ensure effective manufacture of the product, the measurement of the product must
be to an appropriate level of accuracy and precision, to effectively monitor the product in all stages
of in-process analysis and product release. This provides greater control of the product and a better
understanding of the sources of variation. CGTs present a significant challenge to underpinning
metrology, because there is a lack of traceable reference materials for live, biological products [10].
This is not only a difficulty when defining calibrations and higher reference, but also with core
metrological definitions, such as accuracy and bias, because they require a ‘true value’ to be
known. A true value is a traceable measurement up to primary Sl units, that is not continually
redefined due to finite reference materials. This is further complicated by measurement issues to
detect rare cell populations or monitoring residual disease levels throughout the course of
treatment, as they approach sensitivity limits of instruments. There have been unified efforts for

volume traceability, with standards still being explored for individual cell counting.

FC is a core measurement platform used within the release and in-process measurement of CGTs,
but it requires ‘expert’ interpretation of the data files on top of process optimisation [11,12]. Better
quantification of this interpretation variability is required for greater manufacturing process control.
This could be achieved using measurement uncertainty principles, required to report for ISO 17025
and ICH Q7 standards for laboratory accreditation and good competence monitoring and reporting

[13,14].
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Research Focus

This research attempts to quantify the variability contributed specifically from operator subjectivity
within analysis of FC data. This complements other initiatives that focus on variation of other
upstream factors such as instrumental setup or fluorescence calibration [15,16]. It provides more
specificity to the variation contribution from FC gating, not just a measure of the whole process,
which other gating and analysis studies have previously quantified [1,2]. These studies have
focused on cytokine assays, whereas this novel research has a CGT focus, assessing inter-operator
measurement variation across three models of complexity from three cell models that relate to CGT

products.

Core Hypothesis and Objectives:

As the complexity of the cell models increase in the FC data for participants (as defined by
increasing protocol sequences and FC dimensions), the between-participant ranges of Coefficient
of Variation (CV) and measurement uncertainty will increase, indicating greater contributions of

variation from the participant analysis as shown in Figure 1.

Inter-Operator CV and
Measurement Uncertainty
Hypothesis

Increasing sequence complexity ————————

Complexity of Flow Cytometry data processing
measured in number of sequence steps to
obtain a target cell population

Figure 1 Core thesis hypothesis: as complexity of FC data increases, inter-participant analysis variation also increases.

3
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The objectives of this research are as follows:

e Explore the integration of External Quality Assessment Schemes into CGT manufacture, to
identify benefits already seen within clinical chemistry and clinical Flow Cytometry.

e Understand how measurement uncertainty works, and how it can be used to quantify
variability components.

e |Initially investigate how much variation is present between operators when they analyse
the same univariate data.

e |dentify differences in outlier specifications when different manufacturing performance
criteria and log transformations are applied, to discuss whether harmonised boundaries
can be achieved.

e Design human participant experimental studies to effectively capture measurement
uncertainty across multiple complexity models, using a Gauge Repeatability &
Reproducibility structure.

e Generate standard sets of FC data files to use for each representative complexity model,
which increase in the number of gating steps to complete, due to increased data
dimensionality.

e Quantify measurement uncertainty of participant FC gating across three models, with
participants gating increasingly complex data as each model progresses.

e Investigate whether the use of operational procedures as protocols reduce inter-participant
variability when gating.

e Compare the inter-participant ranges of variability between the three complexity models,
defined as either inter- and intra-participant Coefficient of Variation (CV) or measurement
uncertainty, and discuss the suitability of these measures.

e Compare human factor variables gathered within survey exercises to variability data from
the complexity models to understand how experience affects variation of data.

e Identify other concerns of participants when gating FC data, and interpreting it from

literature, to identify where future efforts for standardisation of measurement are needed.



Prelude

e |dentify other frequently used CGT measurement platform, to determine common
operator variability and subjectivity within post-analytical phases, and demonstrate

translational potential of this novel research

Thesis Structure

This thesis is broken into three core stages: a critical review of current work and theory, core
experimentation to monitor changes in variance between FC participants, and a comparison of
variances to human factor issues present in FC.

e Chapter 1 presents a concise literature review of background knowledge and relevant
research efforts around operator subjectivity and variation measures within FC.

e Chapter 2 explains the relevant measurement statistics and measurement uncertainty
principles used for data analysis in this research.

e Chapter 3 presents an initial investigation of the magnitude of variation within operator
subjectivity, by monitoring the inter-participant variance when gating univariate histograms.
It also questions the use of different performance acceptance criteria in relation to outlier
specification and transformation of data within CGT manufacturing scenarios.

e Chapter 4 defines a basic data model to initially measure operator variance within FC
analysis using a 3-step 2-colour FC exercise, gating a pluripotent Embryonal Carcinoma cell
line population (2102 Ep).

e Chapter 5 uses an intermediate model with a more complex 5-step, 3-colour FC panel, to
stratify a naive T-cell subset from a Peripheral Blood Mononuclear Cell (PBMC) population.

o Chapter 6 presents the final complex model which uses an 8-step, 8-colour FC panel to
identify the percentage of transduced engineered T-cells in the population.

e Chapter 7 compares CV and measurement uncertainty results from Chapters 4 to 6.

e Chapter 8 extends this comparison against participant questionnaire results, to identify any

potential human factor correlations to variance measured.
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Chapter 9 presents a translational pilot study of the subjectivity issues identified within
imaging platforms and gPCR, to show post-analytical subjectivity exists across CGT
measurement platforms.

Chapter 10 concludes the thesis, discussing novelty met, and future work identified to

progress these research efforts.

Proposed Novelty of Research

A critical review of current External Quality Assessment Schemes (EQAS), to identify

opportunities for integration into CGT manufacturing.

Relevance of application of manufacturing outlier definitions to define process control
limits.

Application of Gauge Repeatability & Reproducibility techniques to Flow Cytometry post-
analytical variation.

Use of measurement uncertainty for Flow Cytometry post-analytical variation.

Use of measurement uncertainty for better measurement resolution and control through
FC measurement which is representative of CGT analytical techniques.
Quantification of participant subjectivity as a function of cell model complexity.

Increased variability as a function of cell complexity.

Development of a new performance monitoring diagram to aid continuous
improvement of variation.

Comparison of measurement variability metrics suitable for precision of FC measurements

within CGT manufacturing contexts.
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1.0 Introduction to the Chapter

Chapter 1 presents a background and critical review of current FC standards and procedures in
place to monitor participant variability in data analysis. It gives a short overview of the FC technique,
and then reviews current efforts to standardise post-analytical data analysis and use of
measurement uncertainty for the technique. Identification of sources of uncertainty within post-
analytical data analysis are reviewed, to align with the core thesis hypothesis of measuring
participant subjectivity contributions to the final measurement. Error components have already
been attributed to sample preparation and instrumental setup, which have been investigated
thoroughly by different working groups and therefore will not be covered within this specific review
[16-20]. Current regulations for participant variation are also discussed, which currently exist for
clinical applications of FC, and how this could integrate into a Cell and Gene Therapy (CGT)
manufacturing context. Automation of FC data analysis is reviewed in comparison to manual gating
efforts, because many recent efforts have attempted to remove the operator from the analysis, with
different levels of success. Indeed, the use of automation is a recurring theme throughout this

research, because of growing interest (but also scepticism) within the industry [20,21].

1.1 A short overview of the Flow Cytometry technique

Flow Cytometry is an analytical process used extensively within different biological fields, and within
cell therapy it is mostly used for phenotyping [22]. Flow Cytometry is a laser-based technique that
facilitates identification and analysis of individual cells and populations based upon size,
granularity and expression of certain fluorochrome-conjugated markers, known to be indicative of
specific cellular identification or function. Flow Cytometry can be used for a wide variety of
applications such as assessing cell viability, analyzing DNA, cell death, pH and cellular membrane

microparticles, cell surface or intracellular antigens and markers, chromosomes and specific
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proteins [23,24]. However, a lack of traceability and reference materials within In Vitro Diagnostic
(IVD) Medical Devices such as Flow Cytometers makes it much more difficult to provide confidence
to results obtained [25]. If the measurement is ultimately incorrect (through a combination of added
uncertainties and misinterpretations) then it becomes more challenging to define true
representative values. Within a clinical context this can have severe knock-on effects, because if
the metrology is wrong, the quantification and therefore diagnosis may be incorrect, which could
be dangerous for a patient undergoing treatment [25,26]. This is also the case for CGT
manufacturing, where Flow Cytometry is used as a core measurement technique at various

manufacturing process steps, cell sorting and final therapy product release [27].

Analytical cytology dates back to the 1950s (and even earlier through the use of
microspectrophotometers) [28] and as technology advanced through the decades, more advanced
apparatus and data analysis software became available due to evolution of modern computer
processing methods [28]. Modern Flow Cytometers are often combined with Fluorescence-
Activated Cell Sorting (FACS) techniques, however, for the purpose of this review the main focus
will be on Flow Cytometry without cell sorting, because this reduces the amount of variability in the

result due to simplified processes.

1.1.1 Flow Cytometry Instrumentation

FC relies upon a laminar flow cell aligning cells through a laser pathway, depicted in Figure 2. Cell
size is detected by forward scatter (FSC) of the beam, and granularity and fluorescence emission
spectra of the cell-specific markers are detected by side scattered light (SSC), split through various
optical filters [29]. This data can be used to generate a flow cytometry standard (fcs) file and plots
of target populations, ready for identification and stratification by an operator [30]. Typically, a
minimum of 30,000 cell events would be run through the Flow Cytometer, to ensure a valid data

set was captured to conduct further analysis on.
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Figure 2 Flow Cytometer schematic

1.1.2 Flow Cytometry post-analytical data analysis

An example of fcs file data is shown in Figure 3, where each cell that is processed through the Flow
Cytometer is shown as a single dot on each of the sequential plots, which build up to high (red) and
low (blue) density regions indicative of cell populations. The location of the dot (or cell event) is
determined by the respective fluorescence emission detected through each channel sensor [29].
The fluorescence intensity is plotted as a histogram (for univariate data), or a scatter plot of data
can be created with two or more optical channels used for measurement, such as those seen in
Figure 3. To distinguish a specific target population from the total sample, filtering or threshold
gates are then applied manually by an operatpr (different shaped areas defined by boxes, ellipses,
quadrants or polygons, working left to right in Figure) to further stratify the population. By stratifying
the data, ‘noise’ created by debris and non-specific binding (for example) is removed, allowing

relevant spectra to be analysed [31].
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The emission spectra are excited by laser interaction with specific fluorophores conjugated to
antibody markers which bind to extra-cellular or intracellular markers on the cell [29,32]. Other
stains can be excited by laser interaction but are not bound to antigen markers on the cell surface,
for example a variety of methods to stain cell debris or nuclei can be used to discriminate dead
cells from the live population. Antibody markers are chosen based on the cell type in question and
what specific sub-populations are being targeted. If these markers fluoresce, it indicates the
marker has bound to the cell, so the target cell population can be identified because of higher or

lower fluorescence intensity regions of the plots [29].
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Figure 3 Example of Flow Cytometry gating within post-analytical Flow Cytometry

1.1.3 Flow Cytometry post-analytical controls

Control files can be created for each fluorescent marker, to help separate positive expressing
populations from dim or negative expressing cells [33]. These controls are commonly referred to
as Fluorescence Minus One (FMO) controls, because they contain a mix of all the markers being
tested in a Flow Cytometry panel, except the respective marker for the optical channel in question.
This gives a good indication of fluorescence spillover from markers in the panel when combined to
the specific cell type in question, to set a threshold between positive and negative expression [34].

Examples of these controls are shown in Figure 4, with the fully stained sample shown with the final

10



Chapter 1: Background knowledge

gate applied in (a), and the FMO control files for each respective channel plotted on the axes shown
in (b) and (c), demonstrating how the positive thresholds for the x and y axes are set. However,
FMO controls cannot account for any background staining from the antibody used within that
channel during analysis which could skew results, and is why isotype controls have been popular
for many years [34]. Isotypes account for nonspecific staining of an antibody of a particular isotype
conjugated to the required fluorochrome, because different isotypes can have different levels of
background staining within the channel [32,33]. However, because these do not account for any
other markers used within the Flow Cytometry panel, they are not preferred if they exhibit a lower

amount of background staining than spillover from other markers within the panel [34].
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Figure 4 Example of how FMO gates are applied, a) Fully stained sample with gates applied from FMO controls, b) FMO
control for the marker on the horizontal x axis, ¢c) FMO control for the marker on the vertical y axis.

Placement of gates is aided by the various controls available to operators, but the decision of where
the final gates are placed is mainly subjective, relying on the operator’s perception of density,
influenced by plot presentation, graphics, understanding of the cell type, use of controls and many
other factors. This research aims to address and measure this subjectivity issue, to quantify the
variability contributed from an operator’s analysis of data. It is recognised that there are many other
potential sources of variation in a FC measurement, but these are out of scope of this thesis and

have been controlled within the experimentation in Chapters 3 to 6.
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1.1.4 Flow Cytometry automated analysis

Many recent efforts to automate FC data analysis have shown the ability of machine learning
algorithms to identify common cellular subsets, processing more data in less time than a manual
operator [21]. This potential capability of processing large batches of highly-dimensional data still
requires start and end manual screening processes, to ensure the algorithms can run effectively
[35]. Downsampling (decimation) of data is required to reduce the computational time (by reducing
the number of events processed) [36]. A percentage of the original data points are taken as a
representative sample of the whole file population, if datasets exceed 20,000 events. t-Stochastic
Neighbour Embedding (t-SNE) is a popular analysis algorithm, which ‘plugs in’ to various software
platforms and will be used as an example here, plugged into Flowjo Version 10.0.8r1, because this

platform has been used for subsequent FC studies [37,38].

There are different variables that still need to be defined by the user for clustering purposes;
specifically, ‘Perplexity’, number of algorithm iterations and Eta. Perplexity essentially defines the
distance between clusters using a sliding scale from 2 to 100. This requires optimisation to best
represent the balance between local and global cluster populations using ‘nearest neighbours’
clustering. Algorithm iterations can be set between 300 to 3,000 iterations (the number of times
the computation is applied), where higher iterations cause greater separations of final clusters. Eta
(the learning rate of the algorithm) controls how much of the ‘nearest neighbours’ weightings are
adjusted to obtain a minimum probability difference between data points [39]. Finally, when t-SNE
has clustered the data, the user still has to manually gate to choose populations, which are
unlabelled, increasing difficulty of validating subsets [39]. An example of different variable choices
have been shown in Figure 5, to exemplify how different variable scales affect the shape of the t-
SNE output, which still require gating. The data input was EC 2102 Ep cell line data, stained with 2

pluripotency markers, which are used in the basic uncertainty model in Chapter 4.
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Figure 5 t-SNE iterations of a single FC data file, analysed with different variation limits, for 1,000 algorithm iterations.
The grey cell indicates commonly used variables.

The algorithm repeatability has been explored to identify effects of t-SNE variables on simple
clusters [39], concluding that multiple runs will produce the sample global shape, but certain data
sets produced different cluster shapes on repeats, and there are no fixed number of repeats to
validate settings. In addition, the t-SNE cluster size does not necessarily represent the actual size
of the cell population, due to adaptation of the algorithm to create even cluster sizes to identify any

smaller or rare subsets [39].
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When considering the application of machine learning algorithms for cellular analysis within a
Quality Control or Manufacturing scenario, the inverse relationship between quality/uncertainty
and time needs to be addressed. Whilst t-SNE is a computationally powerful tool which enables
users to analyse multiple samples made up of high dimensionality data, it still requires users to
manually clean up the data and select the appropriate clusters within the analysis, exhibiting the
same variation issues found within traditional manual gating, as well as inherent variation from the
machine learning algorithm itself. Use of such a tool would require a high level of validation and
optimisation, which could cost manufacturers in time and therefore money when quantifying
uncertainty in the system, when pre-determined operator metrics may already be established over

time.

1.1.5 Flow Cytometry uses within Cell and Gene Therapy manufacturing

Quality Control (QC) measurements are required for all stages of CGT manufacture, not just the
final product release for patient infusion. The versatility of FC means it is heavily utilised for CGT
product measurements at various points during the manufacture of a therapy for different factors.
For example, a recent review highlights common considerations for CAR-T product release tests,
due to their accelerating prominence within the CGT market [8]. The manufacturing process of an
autologous CAR-T cell therapy follows the process in Figure 6, with sample measurements taken at

defined QC points [40].

Phenotyping will be specific to the therapy being manufactured, however, it will always be
conducted at the start of sample preparation to initially measure the donor material and achieve
an idea of biological starting variation, which can range considerably [12]. Along with cell counts,
this gives manufacturers an indication of expansion times for the product, or whether more starting

material needs to be taken from the patient.
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Figure 6 Flow Cytometry assays used within CAR-T manufacturing

When selecting T-cells, FACS is a Flow cytometry-based method used to sort a cell sample for CD3+
Lymphocytes if this configuration is available, although a common method for separation uses
Dynabeads, because they are also used to activate the cells, to simplify processing stages. They
have also been shown to have strongly correlated cell counts with Flow Cytometry, making them a
comparable but cheaper alternative [41]. During expansion of the product, phenotyping will be
conducted at regular intervals to monitor phenotypic changes to the CGT product. In addition to
this, transduction efficiency is an important measure of viable cells expressing the CAR+ to

measure transduction efficiency of the viral vector.

Once these checks are complete, the final therapy product will be formulated for administration to
the patient. Final product release criteria has been reviewed in [8], with Flow Cytometry being used
to identify the purity of the product, by counting the % T-cells and the % CAR+ cells, with this latter
measure also being used to define the identity of the product. This composition needs to be
quantified in order to deliver the correct dose to the patient, based upon their bodyweight. For
example, to treat B-cell Acute Lymphoblastic Leukaemia (ALL) in paediatric patients < 50 kg, a dose
of 1 to 3 bags containing 0.2 x 108to 5 x 108 CAR+ viable T-cells/kg of body weight are required,
and for those > 50 kg, this dosage increases to 1 to 3 bags of 0.1 x 108 to 2.5 x 108 cells/kg
bodyweight [42]. This indicates the needs for repeatable, standardised measurements to ensure
the therapy can be delivered effectively to the patient, having been optimised throughout

manufacture.
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1.2 Standardisation of Flow Cytometry Practice

1.2.1 Summary of efforts across FC measurement

Many efforts have been and are currently being made to standardise Flow Cytometry as a
measurement technique, to make results more comparable between instruments and sites, with a
variety of commercially available standards being sold to users [16,43-45]. Examples of these are
SPHERO™ Rainbow beads used for cross-platform calibration of fluorescence [46], and NIBSC
reference materials [47] for flow cytometry cell counting. A lot of emphasis has been placed on
fluorescence standardisation [16] and instrument standardisation protocols [17], however,
standardisation and traceability of these elements does not guard against downstream variation of

manual data analysis and reproducibility concerns.

1.2.2 Acceptable variability of post-analytical FC data

Once the biological sample has been processed, the data is exported and stored in fcs file format,
to allow processing across different software platforms with no data manipulation. The file standard
provides uniform storage of data, for fair processing and reporting [30]. Software used for analysis
need to comply with Part 11 of the Food and Drug Administration (FDA) Code of Federal Regulations
(CFR), to ensure correct storage of electronic records for cell product traceability [48]. If publicly
reporting Flow Cytometry experiments, the Minimum Information about a FC experiment
(MIFlowCyt) guidelines should be followed for good reproducibility of data [49,50]. The minimum
information project, also has guidelines to support further assay development and reporting,
specific to T-cell and NK-cell experiments [51]. Within FC, there have been significant efforts to
harmonise panels for experimental design, reporting and analysis to optimise experiments within

the community [52], as well as harmonisation between instruments [53,54].

It has been recently reported that there is a large reproducibility crisis across science [55,56], and

this exemplifies similar concerns for the development, manufacture and control of Cell and Gene
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Therapy production [40,57-61], as well as standard Flow Cytometry experiments [20,62].
Reproducibility of measurements and products require traceable measurements and processes,
and these must be validated and shown as part of regulatory Market Authorisation for CGT products
[4,63,64]. Without reproducibility, there is less confidence in the measurement process,
manufacturing decisions and more concern when releasing the product for the patient treatment
[65]. Different metrics are commonly used to monitor variability, but may require more resolution

to improve traceability, repeatability, reproducibility and therefore confidence and quality.

Repeatability of FC measurements are commonly reported as precision (standard deviation (SD) of
repeats) or CV (%). CV is a combination of the mean and standard deviation of repeats and is often
easier to monitor variability [29]), and these variation metrics are fully defined in Chapter 2, Section
2.2.2. Different studies have monitored CV contributed from different FC measurement
components, to potentially provide guidance on experimental variability throughout the
development of FC [66-68], and discussed the implications of validating FC in a regulated
environment [62]. Different levels of acceptable variance have been defined across Flow Cytometry
literature, with different metrics and resolution to address and reduce it over time. The International
Council for Standardization of Haematology (ICSH) and the International Clinical Cytometry Society
(ICCS) published a 5-part series summarising FC variability issues through the entire FC process
[45,69-71]. Part V provides guidance on acceptable limits for CV, where < 10 % CV is suitable for

measurements, or < 20 % CV where rare cell events are concerned [71].

Percent CV is preferred to SD as acceptance criteria by the ICCS, because it normalizes variations
at lower levels of event detection. This imprecision metric should be taken from a minimum of five
samples assayed in triplicate (at least) during the same analytical cycle. It has been noted that
although the data is impacted by a subjective analysis, the technical assay performance is
reproducible [71]. This gives better clinical assurity of assays requested, and it is easier for
pathologists and clinicians to make decisions for the patient with more confidence in the

measurement process. These references ranges would have been defined by clinical cases for
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normal and specific disease states (typically 60 males and 60 females included in range analysis)
to ensure clinical comparability for specific test results. Disease states are inherently more
challenging to generate ranges for, however, patient cohorts in need of routine checks may be more

readily available for tests, which could aid this data generation [71].

CV has been considered to quantify measurement uncertainty within the UK National Health
Service (NHS), for example providing Key Performance Indicators (KPIs) of Feto-Maternal
Haemorrhage (FMH) monitoring with Flow Cytometry. Measurement uncertainty is usually a
combination of SDs, but in this instance the NHS have used CV, with KPIs of < 15 % for good
uncertainty, 15 % to 20 % for satisfactory and > 20 % as unacceptable [72]. A recent international
research review of Flow Cytometry CD4+ count measurements indicates that BD FACSCount beads
used as reference standards show an inter- and intra-laboratory precision of <15 % [73]. A
breakdown of uncertainty variation sources within phenotypic measurement gives further

identification of contributing amounts of variation of the measurement [74].

Poor reporting and control of FC results leads to false positive and false negative results of samples,
facilitating poor decision making of diagnoses and treatments, seen in many other laboratory
measurements. A recent review has identified many pre- and post-analytical errors in laboratory
haematology [3], specifically in automated cell counting. Haematology laboratory errors can
contribute as much as 62 % and 23 % of measurement variability from these pre- and post-
analytical errors respectively, which has not changed over 10 years [75]. If not caught, these issues
cause incorrect or missed opportunity for diagnosis, but if they are caught before the result is
issued, it causes delays in diagnosis which increase patient anxiety and it is a missed opportunity
for diagnosis if a specimen cannot be retaken or accessed [76]. Diagnostic error is difficult to
accurately estimate, but approximately 12 million USA citizens having suffered a diagnostic error,

half of which were significant, and can impact patient safety [77].
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Standardisation of measurement positivity thresholds is required across many platforms,
exemplified by anaemia reporting across international bodies. The World Health Organisation
(WHO) define lower limits of haemoglobin (Hb) concentration at 130 g/L in adult males, compared
to the Centre for Disease Control (CDC) lower limit of 135 g/L [3]. Although the difference is small,
it has a significant impact on referrals or missed treatments. Different External Quality Assessment
Schemes (EQAS) have different performance criteria for CD4+ counts returned from participating

laboratories, which can have a significant impact in patient safety, as discussed in the next section.
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1.3 External Quality Assessment for reproducibility

1.3.1 Relevant standards for analytical competency

Both ISO 17025 and ICH Harmonised Tripartite Guideline Good Manufacturing Practice Guide for
Active Pharmaceutical Ingredients Q7 have grounds for personnel hired to work in the test
environment [13,14], stating that personnel hired should have adequate qualifications for the role,
and training should be provided regularly for operations performed by the employee. ISO 17025
provides more depth with regards to processes that require interpretation (such as Flow Cytometry),
stating they should be performed by operators who are familiar with the technology, how it is used
and possible defects that can occur, but there is no stated requirement to formally measure

operator variability, which can impact results [13].

ISO 17025 is a standard which manufacturing and test laboratories ideally need to achieve
accreditation with, providing patients, clinicians, healthcare trusts and companies with confidence
that procedures are in place to deal with deviations and the site can monitor and control the
product effectively. Uncertainty plays a part in this analysis, with ISO 17025 stating that all
equipment used requires an uncertainty estimation (ISO 17025 Section 5.4) and any opinions or
interpretations around measures need to be stated in test reports, under the basis in which they
have been made (ISO 17025 Section 5.10.5). Flow Cytometry is a process that requires
interpretation to generate a result/diagnosis, so this must be factored into release criteria, and is

the subject of this research. Measurement uncertainty is explained in greater detail in Chapter 2.

Flow Cytometry operators can also obtain Cytometry Accreditation (Specialist in Cytometry, SCYM)
[78], to ensure knowledge of data analysis such as understanding gating tools, statistical methods
and assay validation methods, as well as standards and controls. Clinical Flow Cytometrists require
experience and accreditation to correctly identify a variety of diseases and disease states from a
sample. The manufacturing and QC scenario differ, because product conformance is required.

Therefore, the FC will not necessarily be diagnostic, it will be used to assess a specification.
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As the cell therapy manufacturing environment may not be clinical, FC operator certification
requirements need to be scoped as well as potential participation in an External Quality
Assessment Scheme (EQAS). This may be an established EQAS or an EQAS with different guidance.
Comparability can therefore be assessed at different levels, but there may be inherent differences

between sites and companies with regards to output results.

1.3.2 External Quality Assessment and accreditation

EQAS are used to verify correct implementation of protocols and measurements of particular
targets across multiple centres, and are also known as External Quality Control, Interlaboratory
Comparison Surveys or Proficiency Testing [79]. Proficiency testing exists to provide greater
metrological traceability of measurements to primary Sl units, to ensure that calibrators and

instrumentation are not negatively affected by poor use [80].

EQAS addresses standardisation of practice in which measurement equipment is used (once a
problem is identified), as well as commutability of the standardised measurand to enable
comparison of these factors [25]. Clinically, centres that analyse patient material need to have
validation through an EQAS, which are further traceable to ISO 17043 for conformity assessment
[81]. This helps centres achieve ISO 15189 accreditation for quality and competence of medical
laboratories [82], replacing Clinical Pathology Accreditation (CPA) in the NHS. In Vitro Diagnostic
(IVD) medical devices, such as FC are also required to show metrological traceability of biological
quantification to obtain CE marking [83]. This ISO 17511 compliance must conform to one of the
defined traceability chains depending on the availability of different primary and secondary

calibrators and procedures, illustrated in Figure 7.

CGT manufacturing centres would not necessarily need ISO 15189 accreditation, because they are
not performing clinical pathology, although this is something that may translate from the clinical
environment, due to different manufacturing scales. However the site, processes and QC would

need to be Good Manufacturing Practice (GMP) compliant when manufacturing a licensed product,
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and would need to follow guidelines set out in ICH Q7 [14] and gain ISO 17025 accreditation for

competence of testing and calibration laboratories [13].

As previously stated, QC operators would need accreditation to ensure they remain GMP compliant,
however, this calls into question how much further up the product development pipeline this level
of competency and reporting is required. To design in quality to the product, all compliance should
be adhered to from the start of product and process development stages, to ensure good
translation further down the pipeline and to better maintain integrity and compliance. However,
Process Development Scientists involved in later studies in this thesis (Chapter 8: Questionnaire
results) have highlighted that this level of accreditation is not known or understood well. A lot of
validation would be completed before handing over processes to further operations, however, this

does not account for personnel accreditation.
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Figure 7 Traceability chains of ISO 17511 calibrators
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Traceability of EQAS as part of the diagnostic measurement process has been more thoroughly
investigated for clinical biochemistry. In recent years, this has qualified particular analytes and
proteins [25,26,79,80], with the quantification of measurement uncertainty (required by I1SO
15189 accreditation [82]) provided to indicate variability contributions to the measurements [84].
Many traceable calibrators have enabled these small uncertainties to be specifically defined, giving
more measurement integrity and confidence to the analytical decisions [80]. These are
underpinned by international metrology efforts to continually improve traceability of laboratory

medicine, by the Joint Committee for Traceability in Laboratory Medicine (JCTLM) [85].

1.3.3 Flow Cytometry EQAS for CD4+ measurement

Currently there are many immune-related diseases that are looking to be addressed through a
variety of different CGT treatments. From HIV treatment to various blood cancers, reliance on
reproducible CD4+ T-Cell counts is necessary and will be used as an exemplar for EQAS here,

because of CD4+ analysis undertaken within T-cell therapy measurement [86,87].

To establish comparability of T-cell measurements various External Quality Assessment Schemes
(EQAS), have been in existence globally since the late 1980’s [88]. These initially looked at cell
quantification across dual platforms using various haematological analysers, but it was quickly
concluded that a single platform measurement was desirable to reduce variability in CD4+ T-cell
counting, with FC the preferred technique for quantification [89]. This correlates with the increase
of HIV cases in 1980’s, demanding higher throughput of blood samples and therefore treatment of
patients. It has also been shown through various other studies that using a single platform of

instrumentation reduces variation and error in measurement and diagnoses [54,90,91].

Various CD4+ FC EQAS are in clinical operation around the globe, with the most notable bodies and
advancements in standards and teaching coming from the United Kingdom, central Europe and

Canada, with output summarised in Table 1. These have developed over the last 20 to 30 years
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with increasing laboratory participation and increased frequency correlating with a reduction in
variation in participants [92]. Significant developments were made in EQAS in the 1990’s and at
the turn of the millennium. The most significant scheme developed is UK NEQAS (with international
outreach) [93], which offers a variety of FC EQAS accredited by the United Kingdom Accreditation
Service (UKAS) that relate to different Clinical assays required for haematology [92]. These include
CD34+ Stem Cell Enumeration, Immune Monitoring, Leukaemia Immunophenotyping and
Diagnostic Interpretation and Low Level Leucocyte Enumeration amongst other schemes for

specific disease states [93].

Table 1 Summary of CD4+ EQAS

EQAS Variability metric Acceptance limit Literature
UK NEQAS cv Trimmed mean + 2SD [91,92,94-98]
Reduction in Absolute
residuals
SIHON Score Point system: majors Within personalised [88,99]
and minors boundaries for
Discordant % positive acceptable errors
Benelux EQA Residuals Robust multivariate [100]
regression
Central European cv Mean + 2SD [101]
Quality Control Program
(CEQUAL)
Gruppo ltaliano di Resolution Index 95 % Confidence [102]
Citometria (GIC) Intervals
Canadian QASI-QMS Absolute deviation from Linear regression [103,104]
Inter-laboratory mean
Thailand and South Mean, Standard CV< 15 %, [105,106]
East Asia CD4+ EQA Deviation Index (SDI), -2<8DI < 2,95 % Cl for
program cv PanLeucogating
methods
EuroFlow Consortium Personalised score 95th Percentile [15,17,18,18,107]
using Medium
Fluorescent Intensity
and CV
AFREQUAS Regional cv Trimmed mean + 2SD [108]
African EQAS

Despite the excellent efforts made by various EQAS to harmonise measurement and procedures,
the CD4+ monitoring schemes indicate how there can still be inconsistency, because although the
different EQAS can monitor the same cell counts, their acceptance criteria differ. Some of these
acceptance criteria differences were summarised by a review in which another way of defining

acceptance (through linear regression) was suggested [109]. When this variance in processing is
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extrapolated to cover the number of different types of EQAS scheme for just Flow Cytometry, the
state of affairs becomes more confusing to navigate for EQAS participants. Furthermore, pathology
centres often take part in more than one EQAS, where different scoring metrics and variation
metrics are used, increasing confusion between reporting criteria. The statistical standard that
governs EQAS procedures, ISO 13528, actually provides several different ways that variance can
be quantified and monitored [110], as well as other monitoring factors, shown in Figure 8. It
provides options for defining the reference value (a), performance criteria (b), calculation of

performance criteria (c) and different graphics for reporting (d).

To initially consider how this could translate into CGT manufacturing, a change in performance
statistics is required to align with ISO 15189 and ISO 17025 documentation. Currently most clinical
CD4+ EQAS calculate performance as an estimation of deviation, albeit using a variety of metrics
such as CV, residuals and self-defined statistics. To gain accreditation, laboratories also need to
measure uncertainty, so inclusion of this in an EQAS not only provides better resolution of inter-
laboratory processing to improve the community, it also allows participants to use those values as
part of required uncertainty calculations. This provides more confidence in the measurement, and
allows internal continuous improvement, to highlight the variation of operators in comparison to

other instrumental and process components.
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Formulation
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Materials

Results from 1
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- maximum
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Figure 8 ISO 13528 options for EQAS providers, a) Determination of the initial reference value, b) Performance criteria,
c) Calculation of performance statistics, d) Graphical methods to report results

Currently CD4+ EQAS allow participants to report back results for the respective schemes (absolute

cell count, and the percentage of this population with respect to the original count in the sample).

UK NEQAS have a patented blood stabilisation method used for reference wet sample send-out for

analysis, qualified to ensure an assigned value and variance of this reference sample are known

for comparison [111]. This provides a quantitative comparison of the reported laboratory results

against the reference value, to quickly identify non-conformance. When non-conformance is

identified, EQA providers can help respective centres find the root cause, however, because only
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the final results are reported, this can be a long effort due to the many sources of contributing

variation.

The EuroFlow Consortium took a different perspective for identification of haematological
malignancies, by providing participants with detailed instructions to setup equipment and perform
compensations [17], as well as providing lyophilised antibody tubes, to standardise the reagents
used for defined panel markers [18]. EuroFlow is not an EQAS, however, has been used as a
complementary tool to highlight variation in other areas of the FC measurement. By standardising
upstream reagents and protocols, it aimed to identify the variation in the system if local blood
donations were used (instead of standardised samples) for inter-laboratory comparison, to highlight

that standardisation of upstream elements could be achieved.

It also noted how complex panels are very subjective, which can cause more variability in the
downstream measurement [17,107], although new software efforts as part of the EuroFlow
consortium aimed to standardise reporting for ‘normal’ cellular subsets in CD4+ and CD34+ FC
panels. Both UK NEQAS and Euroflow schemes make assumptions about participants’ cell
identification abilities, where UK NEQAS assume if a participant can correctly classify the QA
sample, they could also classify a leukaemia sample. Euroflow assumes if a participant can execute
the Standard Operating Procedure (SOP) correctly and accurately assess lineage markers on

normal cells, the laboratory could also assess these markers accurately on malignant cells [107].

Although UK NEQAS is based on final metrics rather than further controlling upstream variables,
they have conducted studies to identify variation against standard analysis processes for FC data,
in particular the ISHAGE protocol for CD34+ stem cell enumeration [112]. This protocol was
established in 1996 by the International Society of Hematotherapy and Graft Engineering (ISHAGE)
because lack of standardisation had led to divergent reporting of CD34+ stem cells in peripheral
blood, which are considered to be extremely rare (0.01 % to 0.1 %). This standard recommended

antibodies, gating strategies, cell separation and lysis techniques to use as well as reporting
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mathematics [113]. The 2012 review sent out two stabilised samples to 255 clinical participants
and asked them to analyse and report the required CD34+ data. 196 laboratories returned results,
and 103 of these also returned dot plots for EQAS clarification. 83 of these participants claimed to
use the ISHAGE protocol, but after further investigation only 57 % of these gating strategies were
correctly setup. It was further shown that those using this protocol incorrectly on a single platform
were twice as likely to fail EQA exercises, and those also using it in a dual platform scenario had a
further two-fold increase in failure rate [112]. This indicates that even when standard samples,
recommended panels and gating strategies are used, they can still be interpreted or used
incorrectly, as well as being influenced by the measurement platform available. EQA always aims
for 5 % of returns to be out of consensus, to ensure continuous improvement over time, however
in this instance there were 13 % out of acceptance when following the protocol correctly, despite

the further 41% of all used applying the strategy incorrectly [112].

1.4 Variability in Flow Cytometry Gating Studies

It has been noted through various EQAS publications documented that variation exists throughout
the Flow Cytometry measurement process, with various efforts to standardise these elements for
greater measurement precision. These efforts have isolated reagents, instrumental processes and
between-instrument variation to understand contributions to measurement deviation. Little focus
has been given on the post-analytical gating process within FC, despite being known to contribute

a lot of subjectivity to final reported results [21].

The greatest efforts to measure subjectivity from gating have been through standardised cytokine
FC assays, which monitored Intracellular Cytokine Staining (ICS) across cryopreserved Peripheral
Blood Mononuclear Cells (PBMCs) and shipped whole blood material [114,115]. Inter-laboratory
variability was reported as 28 % CV for cryopreserved PBMC material, which reduced to 23 % when
data was analysed centrally rather than by the respective laboratories [115]. This reduction has

also been reflected in standardisation efforts by the Human ImmunoPhenotyping Consortium [20].
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Two gating strategies were tested within the Cancer Immunoguiding Program (CIP) for detecting
and enumerating HLA-multimer binding cells, with group CVs reported as 53 % and 87 % for each
strategy respectively, as well as noting that participant variability increased with low frequency T-
cells (< 0.1 %) [2]. All of these studies do not completely isolate the gating process, because the
process of staining and running the sample still had to be completed by participants, even though
correct reagents and procedures were provided, similar to EuroFlow efforts, which returned an
inter-laboratory CV below 30 % for Median Fluorescence Intensity (MedFI) of markers analysed

[107].

In an attempt to standardise Minimal Residual Disease (MRD) Flow Cytometry assays for Chronic
Lymphocytic Leukaemia (CLL), electronic data files were analysed by multiple experienced Flow
Cytometry operators, to remove any upstream variation built into the fcs file and respective
measurements [116]. 141 MRD files were generated with 40 files containing normal cells, 69 files
containing 0.01 % to 0.1 % CLL cells and 32 files containing 0.0001 % to 0.01 % CLL cells, to
represent MRD analysis scenarios and identify false-positive reporting scenarios. A pilot study with
26 files showed only 11 equivalent results returned, and then when given a more detailed operating
procedure to re-analyse the files, equivalence increased to 23 cases. The use of a procedure to
apply gates gave a 19 % improvement in accuracy, and a 44 % improvement in specificity,

suggesting adoption of a physical protocol could reduce false positive rates in FC analysis [116].

This study catalysed efforts for standardised FC data analysis, through the use of automated
machine learning platforms to remove the subjectivity and inter-laboratory variation element [117].
Numerous studies and consortia have evaluated different computational methods for FC data
analysis, to identify lower variance with the same target-cell identification ability as a human
operator [20,21,118-120]. However, whilst these methods are able to replicate operator gating
for well-established cellular subsets, results are not ideal for subsets that are rare or difficult to

separate, often requiring manual intervention for training or final analysis stratification [121], as
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well as increasing chances of reported false positives for smaller populations, close to a cut-off

limit.

Whilst automated platforms serve a clear purpose for FC data analysis as data moves to more
complex, highly dimensional assays, there are still some usability issues that require refinement in
order for these tools to become accessible and to be used correctly. Currently three core challenges
need to be addressed for more successful adoption [122]. Firstly, few immunologists are aware of
these tools because outreach of literature does not exceed bioinformatics or computational biology

journals.

This is also the case for standardisation effort of FC experiments (MIFlowCyt) not leaving FC’s inner
circle and being presented in more cell-specific journals [50]. Secondly, although automation
platforms are open source through a variety of platforms, these computation and software methods
are not necessarily user friendly, and not easy to learn alongside full-time immunology roles. Third
and finally, a lack of understanding of how the tools work can lead to scepticism or overconfidence
in the methods, which can cause culture change issues, an oversight of quality control and issues

with validation [122]. This issue will also be explored within the survey in Chapter 8.

Efforts to tackle the user interface challenge have been made by algorithms such as FLOCK,
allowing participants to upload and test their own data on the platform, although this still requires
an open mind set for trial and adoption [122]. Other software platforms such as Flowjo have
algorithm plugins such as t-SNE, to allow participants to trial algorithms in a familiar environment
[123]. Automated algorithms are still at the mercy of users, with improved analysis of data
dependent on suitable data pre-processing, to clean the data and remove noise, reduce
dimensionality to reduce computational time and sample back to the original cell count number

[124].
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A comparison study between individual participant gating, central gating and three automated
platforms, listed different ways the data had to be ‘pregated’ or ‘postgated’ to ensure the data was
appropriate for automated analysis or the correct cluster identification, therefore requiring manual
intervention and subjectivity [1]. The data analysed here were Major Histocompatibility Complex
(MHC) Dextramer ™ staining of T-cells recognising two different virus-derived epitopes (Epstein-Barr
Virus and Influenza) in PBMCs from healthy donors. These are also markers analysed for
engineered T-cell receptor (TCR) therapeutic products, providing significant affinity to this research
within the CGT manufacturing industry. The highest CVs from gating individually and centrally were
122 % and 86 % respectively for one of the influenza epitopes, with the remaining CVs for other
virus strains < 30 % CV. Again, analysis of the files was not isolated, with participants conducting
staining and analysis of the files according to their own procedures and reagents available,

contributing to downstream variation [1].

1.5 Variation impacts on CGT manufacturing and adoption of
measurement uncertainty

Variation and advancement of measurement platforms has been identified as a core issue
requiring attention for the development of CGTs [59,63], to ensure the successful validation of
therapies requiring authorisation. This will only become more challenging when greater demand
and throughput require more inline integration of measurement processes, to reduce the need for
sampling. This creates a greater need for big data analytics, to ensure analysis can be completed
quickly and reliably, as the panels for FC grow. Advances in measurement capability and resolution
provide further understanding of the product, increasing measurement precision and control of the
manufactured product [8,125]. Whilst FC analysis algorithms still require refinement for low level
detection, they are a step in the right direction for integration into FC measurement against a pre-
defined manufacturing specification. Comparison to the manual gating is still required for validation

and more precise quantification of allowable variation, which this research addresses.
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Whilst many publications address FC gating’s significant contributions to overall measurement
variance, this phase has not been fully isolated to purely quantify the user subjectivity within the
post-analytical phase, which is investigated through experimentation in Chapters 3 to 6 of this
thesis. A focus on purely subjective analysis of pre-prepared fcs files is being adapted by UK NEQAS
for the Leucocyte Immunophenotying Scheme (Personal Communication with UK NEQAS) for
clinical participants, as well as a monitoring scheme for image analysis of blood film morphology

for participant Continued Professional Development (CPD) [126].

Future training of the required workforce has been identified as a big risk and challenge for the
adoption of CGT manufacturing in the UK [127]. Operator application and position within CGT
manufacture requires comparable consistency across multiple manufacturing sites, as well as
within each centre, laboratory and team [9]. This presents an opportunity for proficiency testing
schemes to enable continued training and development of staff across all CGT manufacturing sites,

empowering operators to maintain good practice.

This is a timely issue for accreditation to ISO 15189 and ISO 17025, to ensure suitable levels of
competency, as well as an opportunity to integrate education of measurement uncertainty. This not
only satisfies the accreditation criteria for equipment, it provides greater resolution, precision and
control of the measurement process, for training and continuous improvement. This in turn should
improve quality and manufacturability of the CGT product, increasing the delivery of treatments to

patients in a timely manner.

Whilst traceability of measurement and procedures through EQAS is important for analytical
precision, it is also imperative for ‘post-post-analytical’ interpretation (clinician measurement
interpretation), where results are used by clinicians for diagnosis and treatment decisions. Greater
education and harmonisation of permissible limits for tests is needed for clinicians, due to poor
assumptions that different numbers can be compared, leading to misinterpretation and impact on

patient safety [128]. Harmonisation of clinical chemistry efforts have been pioneered by the
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Australian Pathology units, to ensure general acceptance limits for analytes are the same across

clinical centres to address this misinterpretation by clinicians [129].

Monitoring of correct units can be enforced through EQAS for harmony, and misinterpretations of
limits are important to note for the sign off therapeutic products to the clinician to minimise issues
due to misunderstanding. Greater focus on medical control limits for medical student training has
been met with great interest, providing definition of the term “total error” of a measurement, which
previously had negative connotations for clinicians, rather than being informative [130].
Measurement uncertainty has been recommended to be reported to clinicians as a set of
acceptance boundaries for the test, to include reference limits, and remove any further
mathematical interpretation error [130,131]. It should be seen as a quality indicator instead of a
box-ticking exercise for pathologists and those completing in-process and release tests [132]. The
use of measurement uncertainty will be tested within this research, to indicate its use as a quality

and improvement tool within healthcare and Flow Cytometry post-analysis operations.
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Chapter 2: Relevant Theory

2.0 Introduction to the Chapter

Chapter 2 provides an overview of relevant theory used to create the operator measurements for
an Uncertainty estimate within Flow Cytometry analysis. This builds upon a ‘Quality by Design’
approach recommended by regulatory authorities, and it is one way of quantifying variation within
a biomanufacturing Quality Control and measurement system. This continues to build upon the
reviewed literature and FC background provided in Chapter 1, and describes the theory and
methodology used for Gauge Repeatability & Reproducibility (Gauge R&R), and uncertainty

methods, used within subsequent data Chapters.

2.1 Chapter Aims

This chapter provides an overview of the background theory for Uncertainty measurements,
including process control structures for the measurements to be taken, underlying statistical
reporting required and calculation of final Uncertainty values. This Chapter presents a structure

that subsequent data chapters will follow for analysis.

2.1.1 Chapter Objectives

Provide an overview of Gauge R&R from a Measurement Systems Analysis perspective.

e Investigate the use of Gauge R&R hybrid structure to enable measurement Uncertainty to

be calculated.

e Present a statistical report format for use in subsequent chapters and definitions behind

statistics used.

e Provide a detailed explanation of measurement Uncertainty and how it is calculated.
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2.2 Measurement Systems Analysis

Measurement Systems Analysis (MSA) is the analysis of a “collection of instruments or gages,
standards, operation, methods, fixtures, software, personnel, environment and assumptions used
to quantify a unit of measure or fix assessment to the feature characteristic being measured; the

complete process used to obtain measurements.” [133].

MSA falls under the ‘Measure’ category of the Design-Measure-Analyse-Improve-Control (DMAIC)
Cycle, part of Six Sigma methodology frequently used to reduce variability and waste within a
production system. An overview of the DMAIC cycle can be seen in Figure 9, along with different
tools and methods that can be used within each stage of the Continuous Improvement (Cl) cycle

[134,135].

Control Plans
. Control Chart

. Standard Operating
Procedures
. Action Plan

Control Design
Measure
I m prove . Data collection

Training . Statistical Process Control
Desig_n of . Measurement Systems Analysis
Expgnmeqts . Observation
(optimisation) e Y=f(x) process map

Analyse

Multi-variate

Design of Experiments (DoE)
Control Chart

ANOVA

FMEA

Measurement Uncertainty

Figure 9 DMAIC Cycle
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DMAIC is very similar to the Plan-Do-Check-Act (PDCA) Cycle developed by Walter Shewhart and
championed by W.Edwards Deming, Quality Gurus and pioneers of Quality Control approaches
[136-138]. This can also be used as a Lean manufacturing method to reduce variance in a system

and improve output quality and is described in Figure 10.

Plan

* Determine goals and targets
* Determine methods to reach
goals

Act Do
* Take appropriate action *Engage in education and
training
* Implement work

Check

¢ Check the effects of
implementation

Figure 10 PDCA Cycle [136,138]

The DMAIC cycle tends to be prescriptive in its process, with clear tools that can be used at each
point in the Continuous Improvement loop, so it is generally preferred within manufacturing control
scenarios. Following this cycle helps CGT manufacturers to continually improve processes and
quality, to comply with a ‘Quality-by-Design’ approach using risk analysis in line with Quality
Management principles. This is a preferred strategy by major regulatory authorities such as the
European Commission, placing more focus on front-end development to assure product quality

[14,64,139].

Various tools can be used within MSA, most notably Statistical Process Control (SPC), Gauge
Repeatability & Reproducibility (Gauge R&R), and Function (y=f(x)) Process Maps. SPC is a
methodology used to monitor and continuously improve process performance and to reduce
variability within important metrics. SPC is generally an on-line process that measures performance

metrics in real time, so a better idea of measures and variability can be attained over time. Many
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types of chart are used within SPC, but the most commonly used tools are process control charts,
histograms or stem-and-leaf plots, check sheets, Pareto diagrams, cause-and-effect diagrams and
scatter diagrams [134]. These allow trends or variance causes to be picked up over time, however
it can be more difficult to measure the exact error or variance of a process item at one point in
time. SPC is often used to measure multiple process parameters, so it can be costly in terms of
time and resource to ensure SPC is setup correctly to identify the correct measurands, but also in
terms of training and labour over time [140]. It relies on process operators correctly inputting data

(and doing it honestly) if an SPC system is not integrated into the process itself.

Similar time and cost constraints are also found when using Function (y = f(x)) Process Maps. These
are tools often used within Six Sigma methodology to identify a specific output measurand to
quantify the process (y) and monitor this as a function of other process attributes (x) [135]. A good
understanding of all attributes and measurands are required by operators, and honest input of
results to ensure issues can be identified through trends in time. Operational definitions should be
calculated when starting to use functional process maps, through analysis such as Gauge R&R
measures to quantify isolated variances as a function of part or operator. This is a type of analysis
session, run by an independent assessor that allows errors to be calculated at a point in time, for
a process or application. This can then be repeated over time to check the alignment of tools such

as SPC or Process Maps.

An adaptation of the Gauge R&R process will be used throughout this research to quantify variance
and therefore uncertainty of operator gating subjectivity. Gauge R&R has been used because it
generates measurements that show a combined estimate of a system’s repeatability and
reproducibility (sum of within-system and between-system variances). This can become part of an
SPC log, because SPC often monitors a variety of control factors within a production environment
such as mean and range of product measures and change over time to catch possible drift, whilst
giving an accurate measure of a controlled variable without other system interactions to consider.

However, Gauge R&R does not fully isolate variation components, often combining repeat
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measures across a series of parts, which is not specific enough for combining in an uncertainty

calculation.

2.2.1 Gauge Repeatability & Reproducibility

“Gauge R&R is the variance equal to the sum of within-system and between-system variances”
[133]. Equation 1 depicts this, and in this instance, it is used to calculate intra- and inter-operator

variation (Equation 2).

2 — 2 2
UGauge R&R — arepeatability + areproducibility

Equation 1 Gauge R&R

2 — 2 2
aOperator Gauge R&R — aintra—operator + ainter—operator

Equation 2 Operator Gauge R&R

The role of Gauge R&R contributes to a broader Measurement System context in Equation 3 and

Equation 4, for measurement capability and performance respectively.

2 I 2
acapability = Obpjas (linearity) + aGauge R&R
Equation 3 System Capability
= 0’2

2 2 2
Uperformance capability + Jstability + Jconsistency

Equation 4 System Performance

Gauge R&R is a form of MSA that gives a combined estimate of Measurement System Repeatability

and Reproducibility. Repeatability and Reproducibility are respectively defined as:

“Measurement precision under a set of repeatability conditions ... that includes the same

measurement procedure, same operators, same measurement system, same operating conditions
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and same location, and replicate measurements on the same or similar objects over a short period

of time.” [141]

“Measurement precision under reproducibility conditions of measurement ... that includes
different locations, operators, measuring systems, and replicate measurements on the same or

similar objects.” [141]

Repeatability measures precision within batches, whereas reproducibility measures precision
between batches, operators, gauges etc. Figure 11 illustrates this difference within a
manufacturing context. In a manufacturing facility, numerous replicate products are created every
single day, by multiple operating staff on the shop floor. To calculate repeatability, n replicate
measures would be taken at one time, by one operator on one product. According to the Guide to
the expression of Uncertainty of Measurement (GUM), this should be between 3 and 10 replicates,
with a higher number of repeats providing a better representation of the precision of the
measurement [142]. However, within a CGT manufacturing scenario, this may not be economical
or necessary. This measure of repeatability or variance is the SD of repeat measures taken at the

same time.
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Figure 11 lllustration of repeatability, reproducibility and product variation within a manufacturing facility

Reproducibility compares these measures of precision across the different factors described
earlier: - operators, environment, time etc. It can often show up the differences between operating
shifts, operators or environments to understand the uncertainty or variance in a system when
measures of a product fall out of specification and control. Comparing repeatability across different
products, i.e. product variation, would require the same operator to perform the repeat measures
on different products to ensure multiple sources of variance did not interact. Gauge R&R helps to
generate an acceptable variation over the range of expected results. It can be used to support
estimates of measurement system capability (random error over a short time period) by combining
errors from linearity and uniformity of a system. It can also support estimates of measurement

system performance, which is the effect of all variation sources over time [133].

Traditionally, there are three ways a Gauge R&R study can be conducted to populate a data
collection template as seen in Table 2; the Range method, the Average and Range method, and
the Analysis of Variance (ANOVA) method. The ANOVA method is usually preferred because it can
measure operator-part interaction (in this instance ‘parts’ refers to .fcs files of the data for
operators to analyse), whereas the other two options do not do this. However, for this thesis this

interaction is not required because the part is kept uniform between participants, to create a Gauge
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R&R-Uncertainty measurement hybrid. In addition, the ANOVA method assumes a normal
distribution of measurements, so if the distribution of datasets used in this research are non-
parametric this method is not ideal. The Range method is used to provide a quick estimate of
measurement variation and is generally used to ensure the Gauge R&R has not changed over time.
Traditionally, this method compares two appraisers and 5 components to be measured, where each
appraiser measures each part once [133]. The range between appraiser A and B is calculated and
a total Range average is taken from these part ranges (R). Total variability is identified in Equation
5, where d; is looked up using a d; table [133].
Total variability = R X d;

Equation 5 Total Variability using the Range method
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Table 2 Example Gauge R&R Data Collection Sheet

Appraiser PART AVERAGE
1 2 3 4 5 6 7 8 9 10
A 1
2
3
Average Xo=
Range R, =
B 1
2
3
Average X, =
Range R, =
C 1
2
3
Average X, =
Range R, =
Part Av X =
R, =
5_Ra= 1+Ry= 1+[R= | _ R=
[# of appraisers]
)TD,FF = [Max)? = ]— [Min)? = ]
Notes

The Average and Range method (X and R) provides estimates of both repeatability and
reproducibility, splitting them into two measurements unlike the Range method’s single
measurement. Numerous appraisers can be used for this method and ideally more than 10 parts
are preferred for measurement. Each appraiser takes turns to measure the components in a blind

order, which can be pre-determined by a Design of Experiments (DoE) style randomisation [133].
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All measurement equipment must be calibrated before the analysis begins and results are entered
into the appropriate cells of the data collection sheet in Table 2. Subsequent appraisers measure
the same components in different random orders and the results are further tabulated. From this
Gauge R&R information both averages and ranges can be calculated for each part, for overall part
averages and ranges to be determined. Various SPC charts can be plotted from this information,
such as Average and Range Charts, to monitor the overall trend of the data and variance of the

measurements, if required in a process.

This Gauge R&R process can be modified to enable uncertainty calculations to be taken for
operators, which required multiple factors (including number of analysed parts) to be controlled.
The framework of the Gauge R&R process will be used in subsequent participant studies, so
participants are given multiple files to analyse, although only one of those will be used for

uncertainty calculation.

Participants will be required to analyse the same data multiple times, to ensure a repeatability
measure can be taken as an exemplar. It is possible to include more parts for operators to measure,
however, due to potential time constraints with human participant research, Display Screen
Equipment usage, attention span and cost of operator time this may not be feasible because repeat

measures are more important to build confidence in the uncertainty metric.

2.3 Representative Metrics: Basic Statistics

The following section outlines basic statistics used to describe results, samples and populations.
These form the basis of uncertainty measurements calculated for the Gauge R&R studies
conducted within this thesis. IBM SPSS Statistical Software Version 24, supported by Microsoft
Excel and Matlab R2019, will be used to calculate advanced statistical testing throughout this

thesis, unless otherwise specified.
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Many mathematical methods exist for the analysis and transformation of data sets and respective
distributions. It is inefficient to provide full data sets to quantitatively describe a population, so
measures of location, spread, skewness and normality have traditionally been used to represent
distributions. These metrics enable processes and products to be measured over time to build
confidence into Product Design Specifications (PDS), Process Performance Metrics or allowable
tolerances for Critical Quality Attributes (CQAs). These basic statistics have been described in

subsequent sections for their use in later statistical and uncertainty calculations.

2.3.1 Measures of Location

Measures of Location take one sample value to represent the outcome of an entire population or
distribution. Measures of Location are absolute points and do not include judgement of spread or
variance. Arithmetic mean and median are measures of central tendency, and all location values
calculated are inclusive of all data points. Outliers can affect the final location metric but may not
be excluded because they represent real analysis scenarios with patient data. They will, however,

be investigated to understand the differences in technique.

Figure 12 shows how measures of Location can change depending on the spread of data within
the population. When a normal distribution can represent the population, the mean, median and
mode should all be equal, or very similar. The non-parametric distribution in Figure 12 is positively
skewed and can be assessed quantitatively if the central tendency Location measures are unequal.
Table 3 provides definitions and calculations for measures of Location that are used in subsequent

chapters.
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Normal Distribution Non-Parametric Distribution
Range Range
Minimum Mean = Median = Mode Maximum  Minimum Median Mean Maximum

Figure 12 Measures of Location and Central tendency within normal and non-parametric distributions.

Table 3 Descriptions and equations to calculate measures of Location

Arithmetic Mean The total sum of results divided by the number of results present in the distribution.
(denoted p) 1 a +a, + - +a,
n i=1 n

Equation 6 Arithmetic Mean

Median The 50t percentile of ordered results within the distribution.

Mode The most popular or recurring value in a data set. This is less common in continuous data sets

where lots of analysis results in different values.

Minimum The lowest value generated within the data set.

Maximum The highest value generated within the data set.

2.3.2 Measures of Spread

Measures of Spread or Dispersion monitor the amount of variance within a data set. They are used
in conjunction with a Measure of Location to provide a statistical description of a population which
can then be used to compare against other populations or data sets. Spread can also be used to
show how well location measures represent the data [143]. For example, when plotting the
arithmetic mean and SD on a non-parametric distribution, the mean would not be on the peak
maxima, indicative of the central point of the population. Therefore, the median and absolute

deviation could be used.

Table 4 provides definitions and calculations used to describe spread or variance of data
throughout the remainder of the thesis. Figure 13 shows how these spread measures relate to

normal or non-parametric distributions. Normal distributions are described by stating a location
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measure of central tendency and a SD to represent the amount of variance. The normal distribution
in Figure 13 details the percentage amount of data within the population that traditionally lie within

standard deviation boundaries.

CVis a commonly used statistic within FC measurements, because it provide a single measurement
used to represent variability, that considers both the SD and mean [29]. Due to its common use,
this will also be calculated through this research in comparison with uncertainty, to identify

potential differences between the two variance metrics.

Table 4 Descriptions and calculations for Measures of Spread

Range The total width of the data set.

R = Maximum — Minimum

Equation 7 Range

25th Percentile The 25t percentile of ordered results within the distribution.

75th Percentile The 75t percentile of ordered results within the distribution.

Interquartile range The range of data across the central quartiles of data.

IQR = 75th percentile — 25th percentile

Equation 8 Interquartile Range

Standard Deviation | The unit of dispersion across a data set, which can be used to measure variation from the
(denoted o) central point of a normal distribution. It can also be used to estimate confidence limits with 1

either side of the location metric representing 68%.

2 =)
o= /—
n

Equation 9 Standard Deviation

Absolute Deviation This is an alternative unit of dispersion that is used for data spread that include both positive
and negative values and controls for the signs cancelling each other out.
21X =yl

Mean Absolute Deviation =

Equation 10 Mean Absolute Deviation

Coefficient of This is a representative measure of variability, which considers both the mean and
Variation standard deviation of repeat measures, displayed as a percentage.
g
CV =—-—x100
u

Equation 11 Coefficient of Variation
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Normal Distribution Non-Parametric Distribution
99.7%
95%
68%
IQR
I T T T
Lower Median Upper
bound 25%th 75%th bound
/ \ percentile percentile

-30 20 1o Mean +1¢ +20 +30

Figure 13 Measures of spread for normal and non-parametric distribution

2.3.3 Skewness

Skewness and kurtosis measurements are further characterisation metrics for a population

distribution. They are often used as a quick judgement of normality of a distribution, because they

are visual graphical representations of the data. However, whilst being good for a quick judgement,

they are ill advised for small data sets as they may not represent a complete population. More

detailed descriptions and calculations of skewness and kurtosis are listed in Table 5 and are used

within statistical reporting throughout this thesis.

Table 5 Descriptions and calculations of Skewness and Kurtosis

Skewness

The measure of symmetry, or lack thereof, of a distribution. A positive skew will show the maxima
of the distribution move towards the left of the arithmetic mean or central tendency. The mean will
be on the right of the median for positive skewness. Examples of skewness can be seen in Figure
14. A negative skew will show the maxima of the distribution move towards the right of the
arithmetic mean or central location point, with the median being to the right of the mean. SPSS
provides a skewness metric and an associated standard error to calculate a skewness z-score.
Using the following equation, a positive or negative result indicates a positive or negative skew
respectively. If the z-score falls within + 2.58 limits, as defined by SPSS, it is deemed as normally
distributed. If greater than 2.58, the distribution has a strong positive skew and if less than -2.58 a

strong negative skew [144].

skewness
skewness z — score = —
standard error

Equation 12 Skewness z-score
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Kurtosis

This is a measure of how heavy or light tailed the distributions are in comparison to a normal
distribution which has a central tendency. It is also a measure of how the distribution is affected by
outliers. Distributions with a heavy tail are more likely to be affected by outliers due to their
frequency at one end of the data set. Low kurtosis would indicate small tails due to minimal effect
from outliers. Examples of low and high kurtosis about a normal distribution are visualised in Figure
15. As with skewness in SPSS, a z-score can be calculated for kurtosis using the standard error of
the data set. If the z-score falls within + 2.58 limits it is deemed as normally distributed [144]. If

outside of these limits, the distribution is strongly kurtosed.

. kurtosis
kurtosis z — score = ——
standard error

Equation 13 Kurtosis z-score

Positive Skewness Negative Skewness

N |

)

Median Mean Mean Median

Figure 14 Examples of positive and negative skewness.

Low Kurtosis High Kurtosis

\_/

Figure 15 Examples of low and high kurtosis around a normal distribution.
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2.3.4 Test for Normality

For a deeper statistical analysis of distribution shape, normality tests can be run within Statistical

Software packages.

The Kolmogorov-Smirnov (K-S) test and Shapiro-Wilk (S-W) test both present null hypotheses that
the distribution of a data set will be normally distributed, with an alternative hypothesis of a non-
parametric distribution, requiring more investigation to understand its shape and parameters. A
key difference between the K-S and S-W tests, is the K-W test has a much lower power, often leading
to false results due to Type | error because it is more impacted by extreme values within datasets
[145]. The S-W test has greater power when dealing with different distribution types, so may be the
preferred normality test within this research, however this is dependent on the number of

participants included in each study [146].

Type | errors (or o errors) are defined as:

“The probability of assuming that there is a difference or association between two or more

variables when there is none. It is usually set at 0.05 or 5 % level” [147].

In contrast, a Type Il error (or 3 error) is defined as:

“The probability of assuming that there is no difference or association between two or more

variables when there is one. This probability is generally unknown.” [147]

2.3.5 Testing Statistical Power and required Sample Size

Power and sample size are defined for statistical tests where two or more conditions are tested to

identify significant differences between the groups. Power is defined as:
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“The probability of a statistical test of finding a relationship between two variables when there is
such a relationship. The maximum power a test can have is 1, and the minimum O with 0.80
indicating an acceptable level of power. The power of a test is generally greater for one- than two-
tailed hypotheses, parametric than non-parametric tests, lower (e.g. 0.05) than higher (e.g. 0.001)

significance levels and larger samples” [147].

Sample size in the context of power analysis is defined as “the minimum number of samples

needed to run a study to find a desired effect” [147].

Power is used when testing for a significant difference between two samples. Various parameters
are considered when calculating power [148]:

e One- or two-sided test

e Level of significance, o

e Sample Size

e Effect Size relative to noise

2.3.5.1 One- or two-sided tests
One- or two-sided tests differ in their alternative hypotheses (Ha). Both tests have a null hypothesis
(Ho) as follows:
Ho = there will be no difference between the sample means.
Ho = Ha
Two-sided tests simply have an alternative hypothesis that tests for difference, with no further
specificity:
Ha2 = There will be a difference between the sample means
Ho # Ha
One-sided tests have an alternative hypothesis based upon size of the difference:
H11 = One sample mean will be greater than the other.

Ho < Ha
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It is more common to use a two-sided test, because this simply states that means will be different,
without giving an indication of differences in size or location. One-sided tests are used throughout
this research, because it investigates a difference in variance, with respect to increasing

complexity.

2.3.5.2 Errors and Significance Levels
Two types of error can be made when testing hypotheses, as defined previously and simplified
below:

o Type | error (a): Null hypothesis is rejected when it is true

e Type ll error (B): Null hypothesis is not rejected when it is false

« is also known as the level of significance chosen for a test, to specify a percentage confidence
interval for the results. A 95 % (0.95) confidence interval is commonly chosen for tests and this
carries a risk of 5% of cases where a Type | error may occur. This equates to o = 0.05 because
there is a 5 % risk in the null hypothesis being rejected when it should be accepted. For greater
confidence, lower the o value towards 0.00, although this will impact other factors such as sample

size in a power calculation [134].

2.3.5.3 Effect size

The effect size for statistical power is the between-group difference divided by the within-group
standard deviation. For all statistical tests, because the effect size increases, the power will
increase, if the other variables are kept constant. The greater the between-group difference, the
less likely a Type Il error becomes. The effect size is inversely related to sample size (if all other
variables are constant), because small effects can only be detected with larger samples due to
increased information, and large effects can often be detected with smaller samples as there may

be less noise present.
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Cohen'’s d statistic is a common calculation of effect size, computed using Equation 13 to show the
difference in means (between two test groups, Xz and X2), divided by the SD (s, the error or ‘noise’)
[149]. If two groups have different standard deviations, then the standard deviation used is often
taken from the control group or it can be pooled.

X1 — X,
S

d=

Equation 14 Cohen's d statistic

General reference values for effect size can be used to compute other power statistics, based on
whether a small, medium or large effect (respectively) is desired, but the context should always be

considered when choosing an appropriate effect size [149].

2.3.5.4 Types of Power Analysis
Statistical power is calculated as follows, as the complement of Type Il errors:
Power =1—-p

Equation 15 Statistical Power

G*Power 3 is a statistical power software that will be used to estimate desired Power and sample
size throughout this thesis. It has been routinely used throughout social, behavioural and
biomedical sciences to provide an easy way to determine the correct parameters for a study,

ensuring conclusions are as significant as possible [150].

The two common types of power analysis are A Priori and Post Hoc power analysis, relating to Power
calculated before and after a data gathering exercise respectively. A Priori is completed before a
study begins and it is the ideal choice because it provides users with options to control o and f3
[150,151]. It provides up-front calculation of how many participants to recruit to meet desired
power and effect levels. Post Hoc analysis is performed after a study takes place, so the sample
size can be used to calculate an observed power value. These are less desirable, because only o

has been controlled, even though B has been assessed [150,151].
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Throughout this research it is likely that A-Priori and Post Hoc Power Analysis will be computed for
each study phase, where appropriate. To attain the appropriate power (0.80) [147], high sample
sizes are often required (depending on effect size), which could be difficult to achieve considering
constraints such as access to participants within the timeframe of the research. However, this
research aims to quantify uncertainty, so Post Hoc Analysis can indicate the sample size needed
for potential future studies to further confirm initial effects seen within this research, whilst giving

a measure of current statistical power.

To calculate statistical power using A Priori or Post Hoc analysis, different tests can be used
depending on the variable being compared. The most common tests are T-tests, F-tests and x2
tests and they often calculate power based on the following metrics [151]:
e T-tests: Linear bivariate regression; difference in means between test groups
e F-tests: Analysis of Covariance (ANCOVA); Analysis of Variance (ANOVA); Hotelling’s T2
Multivariate Analysis of Variance (MANOVA); Test of equality in variance

e y2tests: Goodness-of-fit tests: Contingency tables

This research hypothesises an increase in variance is seen as increases in complexity (due to
number of Flow Cytometry processing steps) are achieved through each study stage. It is most likely
that F-tests will be used to assess statistical power in this case because this family of power tests
are designed to measure variance rather than goodness-of-fit or a difference in mean location
values. When looking at the cell population counts that operators achieve (absolute results rather
than variance), it is most likely that a t-test will be used. The actual tests used are more likely to be
applied Post Hoc, once an understanding of the population distribution has been attained, and a
suitable test selected to represent this parameter. Where applicable, power analysis will be

discussed after initial statistical reporting of results has been listed in each data Chapter.
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2.3.6 Statistical Report Formats

The statistical calculations detailed above have been used to create Statistical Reports for data
distributions occurring throughout this thesis, shown in Table 6. These reports provide a brief
summary of the Absolute data results, showing the variance of actual final data values operators
have defined to represent a sample. These reporting tools will also be used to define the
measurement uncertainty of how these absolute values were attained. This gives a reporting
viewpoint on the variation of the data sets and how they were calculated, rather than a single

representative value.

Table 6 Statistical Report Format used throughout this Thesis

Arithmetic Mean

Median

Mode

Minimum

Maximum

Range

25t Percentile

75t Percentile

Interquartile Range

Standard Deviation

Median Absolute Deviation

Skewness

Skewness standard Error

Skewness z-score

Kurtosis

Kurtosis Standard Error

Kurtosis z-score

Shapiro-Wilk statistic

Significance

Normal/Non-parametric
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2.4 Measurement Uncertainty

Measurement uncertainty is defined as:

“A non-negative parameter characterizing the dispersion of the quantity values being attributed to

a measurand, based on the information used” [141]

This measure of spread provides users with a range containing the true value of the measurand,
which has taken into account contributions or sources of variation that can cause the result to vary.

This can provide users with greater certainty and confidence in their measurement result [152].

Within manufacturing, metrology and measurements are important to make key decisions, which
are also true for many other scenarios. Within healthcare, clinicians make diagnosis or treatment
decisions based upon the results they receive from pathology measurements. Therefore, an
understanding of uncertainty of measurements is not only needed by metrologists and quality
inspectors, it is also needed by those who can make influential decisions based upon the
measurement reports they receive. This allows them to be more confident in their judgement of a

situation, and an important trade-off with quality and cost of a product or service.

Sources of measurement uncertainty can arise from a number of factors, which all impact the
variance directly or indirectly. These sources include, but are not limited to equipment, operators,
time intervals, place, environment, chemicals and reagents and biology [153]. Figure 16 shows a
fishbone diagram listing potential sources of uncertainty affecting FC results. This thesis focuses
on factors affecting the operator and later chapters look at effects listed such as visual perception

and gating strategies used.
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2.4.1 Relationship between Error and Uncertainty

Calculating uncertainty provides a better understanding of the measurement methodology and the
impact of each component, than measurement error. This provides opportunity for improvements
in quality by tackling the largest identified sources of uncertainty. This also provides opportunity to
increase product quality, save costs and there is an increased acceptability of results due to better

understanding of the measurement and its attainment.

The true value of a product attribute cannot experimentally be known and be certain, therefore,

there is always error associated with the observed value. Measurement error is defined as:

“the result of a measurement minus the true value of a measurand” [153]

A measurand is defined as:

“A quantity intended to be measured” [141]

Therefore, measurement error is a quantified difference, where a true value needs to be known.
This differs from uncertainty because this is a defined range, calculated as a combination of
variance from factors discussed above. Rather than being a stated number (like error), coverage
factors are used to calculate the measurement tolerance, because these provide a range of
confidence that the measured value will more certainly lie within. For example, a 95% confidence
interval gives the user 95% confidence that the measurement lies within the ranges, defined by the
combined and expanded measurement uncertainty calculation. That also means there is a 5% risk
that the measurement does not fall within these stated boundaries. Due to this compilation of
sources of variance and confidence, it provides a more realistic estimate of results than

measurement error alone, because it is more representative of the true spread.
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2.4.2 Quantifying Uncertainty

Quantifying uncertainty has been well documented in official literature from national and
international standards coordinating bodies [141,152]. These methodologies will be followed to
calculate the uncertainty of the operator variance within FC gating and is detailed in this section as

methodology for subsequent chapters.

The process of quantifying uncertainty has been split into four sections to define the final
uncertainty value:

e Identify the measurand and the process of obtaining it

e List sources of uncertainty for each stage of the measurement

e Quantify uncertainty components identified

e Combine values and calculate expanded uncertainty
These steps will be defined here for general process, theory and calculation and discussed with

more specificity in the subsequent data chapters.

2.4.2.1 Measurand Identification and Methodology

To quantify variation within FC gating, each study phase will have a target cellular subpopulation
that participants need to reach. This target will be accompanied by a process for participants to
follow: a series of parent and child gates in a prescribed order to ensure measurement accuracy
and comparability within- and between-participants. This will provide enough control for the
measurement procedure to ensure variance comes from the participant application of gates, and

not a difference in gating sequence.

To calculate variance, each absolute cell count representing each parent and child gate in the

gating sequence will be used across a series of repeat measures. This structure has already been
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described in Figure 11, depicting the repeat measures taken for each gate, and their combination

to calculate a particular participant’s reproducibility.

Within each gating stage, participants will repeat the gating process to define a measure of
repeatability which can be used to compare against other operators. 3 repeats will be performed
each time so that statistically a representative SD can be calculated, and session times do not
exceed 1 hour with participants. This number of repeats were defined from a small pilot study with
two operators (experienced and inexperienced) to monitor how long it took them to complete the
gates. As only 3 repeats can be taken, SD will be used to compare variance, which assumes a
normal distribution of data. Increased repeats may show a different distribution, but due to
constraints of this experimental work a normal distribution is assumed, and SD is used to further

calculate uncertainties.

This is a calculation of Type A uncertainty, by definition, as it is focused on the aim at hand
[142,152]. Type A uncertainties are always calculated from a series of repeat measures. Type B
uncertainty uses pre-determined uncertainty statements from documentation such as calibration
certificates, historical records, manufacturer specification of guidelines from a data book

[142,152].

A SD is calculated from repeat measures of the different hierarchical levels of the gating strategy
participants followed during the different experimental studies. These representative variances for
each level are then combined according to the root sum of squares rule for standard deviations,
otherwise known as Pythagoras’ theorem. Uncertainty sources cannot simply be added together,
because this would be a misleading amount of variation, so it is combined in quadrature with the

following equation:
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ucz\/uf+u§+---+u,zl

Equation 16 combined Uncertainty

The combined uncertainty (uc) provides an uncertainty range that reflects the variation from a
specific measurement point. To give this measurement more confidence, it is then multiplied by a
coverage factor (k) which represents confidence intervals of the normal distribution. Different
coverage factors are noted in Table 7, but bespoke values can be calculated using the desired two-
tailed confidence interval with known degrees of freedom to find the right coverage of value in a T-

test table.

Table 7 Coverage factors (k) and respective Confidence Intervals

Coverage Factor (k) Confidence Interval (%)
1 68
2 95
2.58 99
3 99.73

Expanded uncertainty (U) is calculated by multiplying the combined uncertainty with the chosen

coverage factors according to Equation 16.

U=kXu,

Equation 17 Expanded Uncertainty

This value gives the user greater certainty that the measured value lies within the specified
uncertainty limits calculated. When reporting this, the final expanded uncertainty would be written
as the value following the calculated average or measurement (often denoted after a sign, instead

if just the SD of measurement repeats).
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2.5 Chapter Conclusions

This Chapter has provided a concise review of relevant measurement theory and how it will be
applied to data analysis throughout this thesis. Gauge R&R is a form of MSA that can be used in a
variety of methods to understand variance within a system. This becomes a core function of
production SPC with various control charts that can be displayed to monitor quality over time. The
Gauge R&R method will be abridged to ensure measurement uncertainty can be calculated for
operators in multiple analysis scenarios, shown in subsequent chapters. This could then provide a

basis to calculate a full Gauge R&R analysis in future.

To open the results analysis a basic statistical report format has been generated, to provide an
initial basis for further investigation and root-cause analysis. This will be applied to absolute
reported results and measurement uncertainty results in each Chapter, to better define the
distributions being dealt with. An initial understanding of the data-set populations and respective
distributions are becoming more important within CGT manufacturing as many biometric
populations are not-normally distributed, a model which has been used extensively through
traditional manufacturing paradigms. This non-parametric distribution issue is explored in greater
detail within Chapter 3, to highlight the effect of control limit choice and potential transformation

of data.

Finally, measurement uncertainty has been defined in detail here, but more specificity will be
provided in subsequent chapters as the method is applied in each scenario. Measurement
uncertainty is becoming more common to calculate, due to its inclusion within key regulatory
documentation that manufacturers are required to follow. However, cell counts and reported data
within the community still report measurement CV, which only focuses on the end of an analysis
pipeline, whereas uncertainty can combine variances from the whole measurement process. Often
this is calculated for measurement equipment, however, where subjective interpretation is

concerned a combined uncertainty should be calculated to capture this variance.
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Chapter 3: Pre-Study Variation Investigation

3.0 Introduction to the Chapter

Chapter 3 presents a preliminary study conducted before measurement uncertainty models were
completed to investigate range in variance contributed by participants in a very uniform data
analysis gating exercise. This was also an opportunity to define the structure of participant studies
and ensure time parameters were correct, whilst confirming the procedures used were clear and
repeatable to translate into future stages of work. The results of this Chapter were used to inform
the structure of the uncertainty models used within Chapters 4 to 6. This Chapter compares the
robust Coefficient of Variation (rCV) results of gates applied to a series of univariate histograms
provided to participants for peak identification. This was conducted in a two-phase experimental
study, to monitor the effect of participants applying gates based upon their own judgement, and
when given a more prescriptive diagrammatical protocol to follow. This Chapter discusses the use

of CV metrics which are heavily utilised within the FC industry.

Non-normality of data is present within CGT manufacturing data, so the effect of log
transformations (often used to obtain a normal distribution) and different outlier boundaries will
also be tested here to observe effects on the data and optimise for future study analyses presented

later in this thesis.

A full data integrity check has been completed for all participant data used to create figures
throughout this thesis. These have been independently verified by Loughborough University internal
and collaborator external delegates and shows full traceability of data from the starting files,

through participant analysis, to data extraction, interpretation and visualisation.
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3.1 Chapter Aims

This Chapter aims to provide an initial understanding of whether there is variability contributed
from participants when they analyse the same data. This will be completed with a series of peak
separation diagrams, where participants will have to draw an area across where they believe one
of the peaks resides. The variability in the participant results will be compared because they are all
gating the same data, which will be used to inform future studies, with how much potential variation
could be seen from the analyst alone. This also aims to monitor the effect of log transformation

and different outlier classifications on a set of exemplar data.

3.1.1 Chapter Aims & Objectives

The Aims and Objectives of this Chapter can be defined as follows:

e Identify initial variation in data analysis contributed by operators when analysing the

same data, on a simple univariate histogram example.

o Identify if diagrammatical protocols can reduce between-participant variability when

gating univariate data.

e |dentify if log transformations should be used in future analysis if results are non-normal.

e Validate the use of different outlier boundary estimators when dealing with non-normal

distributions of data.
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3.2 Methodology

The methodology for the development of this preliminary study and the respective developmental
components are detailed in this section. An outline of the exemplar data set that participants
analysed is provided, along with methodology on how this data was created, for reproducibility
purposes. This expands upon how the studies were organised for participants and how the data

was extracted and analysed.

3.2.1 fes File Generation

A series of fcs 3.0 files were generated using a BD Bioscience FACSCanto Il Flow Cytometer with 4-
2-2 optical configuration, by running a suspension of BD Bioscience Cytometer Setup and Tracking
(CS&T) beads (1 drop of beads within 500 ul of Phosphate Buffered Saline (PBS)), once a daily
calibration was completed (Lot: 74538, Successful calibration) [155]. These files were generated
because they provide a steady shift in fluorescence peak spectra required for this phase. The CS&T
beads were a mix of dim, medium and brightly fluorescing polystyrene beads and are used to
monitor baseline and daily performance of FC instruments. The beads were selected for use due
to their lesser variation compared to biological material. The beads were run through the
allophycocyanin (APC) channel, excited by the red laser (633 nm) at a medium flow rate (60
puL/min). The APC channel was used because it is a common channel across a wide variety of FC

instruments.

Voltages, and therefore fluorescence peaks, were adjusted to determine the optimal analysis
parameters in line with instrument sensitivity. The gain was changed using the ‘voltage’ setting to
alter the position of the fluorescence peaks seen through the APC channel on a univariate scale.
Many methods have been developed to determine FC analysis parameters, but the most popular,
referred to as the ‘Peak 2 method’ involves running a control sample at different voltage intervals

[34], which has been used as the methodology here.
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Figure 17 Images of histograms provided for participant gating studies [154]
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The fcs files generated for this work (Figure 17) were gathered at ten different voltages from 250
Vto 700V, in 50 V intervals, allowing for resolution differences to be seen whilst not over-exerting
the concentration of operators involved in the study. 10,000 beads were used to acquire each fcs
file, which is the minimum number of events required for gathering bead-based data [156]. The fcs
figure elements show the progression of the three data peaks across the univariate scale, in
relation to the gain increase of the APC channel of the Flow Cytometer. Figure 17 also shows the
range gates (red circle) applied to the histograms, which participants were asked to copy. The range
gates were applied by the study coordinator (thesis author), to act as an independent reference
point, so no participants were familiar with the data before taking part in the sessions. The
univariate scale was kept to bi-exponential, because this is the default scaling used within Flowjo
Version 10.0.8r1, the analysis software, and provided resolution of the three peaks across all

voltage files created.

3.2.2 Flow Cytometry Study Organisation

36 participants across 3 centres were enrolled in this study to analyse the histogram files; 10 from
an academic institution, 19 from an industrial cell therapy process development team and 7 as
part of a data gathering exercise at the 2017 Future Investigators of Regenerative Medicine (FIRM)
Symposium [157]. Ethical and GDPR approval was obtained for this study by the local University
Human Participant Ethics Sub-Committee, which can be seen in Appendix A and covers human
participant research conducted throughout this thesis. Participants completed the study
individually within a 30-minute time-slot and were asked to complete two phases of analysis within
this session. The two phases aimed to monitor the effects of personal data interpretation, in
comparison to following a pre-defined protocol, or interpretation thereof, with the hypothesis of
reduced inter-operator variation for FC analysis when following the latter. It was not expected to

find much variation throughout this exercise, but to provide an ‘observed effect’ as a starting point.
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During Phase 1, participants were asked to apply range gates to the area of the plots where they
estimated the medium fluorescing peak lay. Five of the plots were considered to have ‘poor’ peak
separation (Figure 17 a-e), where there was difficulty in discerning peaks. The remaining five files
were considered to have ‘good’ peak separation (Figure 17 f-j) and to be more representative of
good FC data. Participants used the third-party software Flowjo to examine the .fcs files and apply
gates, using default bi-exponential scaling and maintaining the histogram view setting to ensure

inter-participant consistency.

For Phase 2, participants were provided with printed images of range gates (highlighted by the red
circles in Figure 17) that had been pre-applied to the series of files and asked to adjust their gates
to try and match these ‘diagrammatical protocols’. These gates were applied to aid precision of
application, not accuracy, because accuracy can be translated into different subject contexts. The
‘poor’ gated files (Figure 17 a-e) were included to investigate the potential impact and worth of

using diagrammatical protocols in difficult analysis conditions.

3.2.3 Variation Calculation

Range gates applied to histograms of one fluorescence channel show variation in spread and
location parameters, chosen by perception of the operator. The robust Coefficient of Variation (rCV)
(as defined in Equation 17) is used to compare variation amounts between operators within the
two phases and is a common metric within FC data analysis [29]. It helps the operator to
understand and monitor variation within a system, because it combines both location and spread
parameters into one measure. rCV was used in this instance instead of CV (as previously defined
in Chapter 2, Section 2.2.2), because fluorescence peak spectra often have a non-parametric

shape, so using robust statistics was more representative of the FC data gathered.

rSD
rCV (%) = WX 100

Equation 18 robust Coefficient of Variation (rCV) (%)
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The rCV measures were exported from Flowjo and are the combination of the rSD and the median
of the data within the gate they have applied. Robust SD is the SD of the data points, based around
the median rather than the mean. These rCV measures have subsequently been used to calculate
a total range of variation between participants, per histogram file, per phase. Range was used to
monitor reduction and therefore improvement in between-participant variation attributed to the
results, because it is an easily understood measure of spread and monitors the total range rather
than an arbitrary measure of spread (such as SD). The difference in range between operators can
be used to observe the effectiveness of protocol instigation, with percentage of variation reduction

monitored alongside this.

3.3 Results & Discussion

3.3.1 Flow Cytometry Pre-study statistical reporting Phase 1
The results reported here for each analysis file are taken from the inter-participant gates applied
to each file using their own judgement (Phase 1). The rCV of the gate applied was extracted and
tabulated per file (columns), per participant (rows). Table 8, Table 9, Table 10 and Table 11 provide
a descriptive statistics overview of the inter-participant distributions for each file in the sequence
and Figure 18 shows the inter-participant rCV distributions for each of these sets of file results.
These descriptive statistics have been calculated following the statistical methods and definitions

provided in Chapter 2, alongside the mean inter-participant rCV values for each file.

Table 8 Measures of Location for Phase 1 inter-participant rCV results (%)

250V 300V 350V 400V 450V 500V 550V 600V 650V 700V
Average 207.9 134.2 68.9 34.5 20.2 15.6 15.1 15.2 15.2 15.0
Median 122.0 64.7 42.8 32.6 21.0 16.3 15.9 15.9 16.1 15.9
Min -650.0 0.0 4.0 3.3 15.4 8.7 6.4 8.7 6.4 5.7
Max 1500.0 400.0 146.0 107.0 21.4 16.7 16.7 16.9 16.7 16.3
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Table 9 Measures of spread for Phase 1 inter-participant rCV results (%)

250V 300V 350V 400V 450V 500V 550V 600V 650V 700V
Range 2150.0 400.0 142.0 103.7 6.0 8.0 10.3 8.2 10.3 10.6
25%ile 50.1 29.1 35.1 28.5 19.8 15.5 15.2 14.9 15.4 15.0
T5%ile 304.0 283.0 137.8 38.4 21.4 16.6 16.4 16.8 16.5 16.1
IQR 253.9 253.9 102.6 9.9 1.6 1.2 1.2 2.0 1.2 1.1
SD 349.6 127.0 48.7 15.6 1.6 1.7 2.2 2.3 2.3 2.2
CV (%) 168.2 94.6 70.7 45.1 7.9 111 14.3 15.3 15.3 14.9

Table 10 Measures of skew for Phase 1 inter-participant rCV results (%) (3dp used for resolution from SPSS)

250V 300V 350V 400V 450V 500V 550V 600V 650V 700V
Skewness 1.300 0.646 0.683 2.791 -1.894 -2.821 -2.865 -2.008 -2.86 -3.134
Skew std error 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403
Skew z-score 3.226 1.603 1.695 6.926 -4.700 -7.000 -7.109 -4.983 -7.097 S1.777
Kurtosis 5.661 -1.271 -1.210 13.318 3.483 8.728 9.073 3.345 8.785 10.955
Kurt std error 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788
Kurtosis z- 7.184 -1.613 -1.536 16.901 4.420 11.076 11.514 4.245 11.148 13.902
score

Table 11 S-W test for normality for Phase 1 inter-participant rCV results (3dp used for resolution from SPSS)

250V 300V 350V 400V 450V 500V 550V 600V 650V 700V
S-W statistic 0.833 0.788 0.805 0.731 0.747 0.624 0.635 0.705 0.613 0.584
Significance 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Normal/Non

Figure 18 x-axis limits are much wider for 250 V to 400 V files because of the large inter-participant
range returned for these files. If all file histograms were plotted with the same axis limitations,

resolution of distribution shape would be lost for 450 V to 700 V files.
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Figure 18 Inter-participant rCV distributions when gating fcs files using their own judgement (red lines represent mean

rCV values for each file distribution).
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Both average and median results for inter-participant gates appear to stabilise as the file voltage
increases past 450 V and therefore peak separation increases. Inter-participant rCV averages are
much higher for lower voltages due to little or no separation of the middle peak from other data.
This difficulty in gating has created a wider range of inter-participant results when gating ‘poor
separation’ files (Table 9), which in turn creates higher average and median values to represent

the distribution.

The inter-participant ranges in Table 9 have a clear cluster of high and low ranges for low voltage
and high voltage files respectively. This is also the case for interquartile ranges (IQR) for the set of
files. Across all files, the IQR is small in comparison to the overall range, indicating a wide
distribution of results, which suggests a location measure such as the mean or median could not
confidently represent the datasets. The shape of the distributions further indicates this because
the skewness and kurtosis z-scores fall out of the + 2.58 limitations for normality for all file inter-
participant distributions (Table 10), aside from the 300 V and 350 V files. Upon visual inspection
of these distributions in Figure 18, the distributions appear to be bimodal, indicating a potential
split in how participants have applied these gates, causing some to have a higher result rCV and
some to have a lower result rCV. The Shapiro-Wilk normality test results in Table 11 further confirms
this non-normality, with all file distributions having a significance value p < 0.0005. This rejects a
null hypothesis of a normal distribution, accepting an alternative, non-parametric distribution (as

described in Chapter 2, Section 2.2.4).

This data supports the use of correct upstream equipment and process validation because poor
voltage choices can significantly affect downstream subjective judgement on where to place a
histogram gate, with higher variability occurring when it is more difficult to separate required data

from the noise or unnecessary populations at the limit of sensitivity.

Files with better peak separation (450 V to 700 V) also qualitatively appear non-normal due to a

strong negative skew as also indicated in the skewness z-scores in Table 10. Qualitative
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assessment of distributions adds significant value to this analysis because if basic statistics are
used to represent data without considering distribution shape, mean values (shown in Figure 18
sub-plots, denoted as a red line for the mean rCV for each file) do not fall within frequency maxima
bins on any occasion. This supports the use of robust statistical assessment when analysing FC
data with medians better representing distributions overall. This will therefore be considered

throughout each statistical data set in this research, if the distributions are non-normal.

3.3.2 Flow Cytometry Pre-study statistical reporting Phase 2
The results reported here for each analysis file are taken from the inter-participant gates applied
to each file following a diagrammatical protocol, which participants had to follow and copy, shown
in Figure 17. Table 12 to Table 15 provide a descriptive statistics overview of the inter-participant
distributions for each file in the sequence and Figure 19 shows these distributions for each set of

file results with the mean rCV values identified in each case.

Table 12 Measures of Location for Phase 2 inter-participant rCV results (%)

250V 300V 350V 400V 450V 500V 550V 600V 650 V 700V
Average 163.5 118.2 83.7 35.4 21.0 16.5 16.3 16.6 16.4 15.9
Median 207.0 96.2 76.8 31.9 211 16.6 16.4 16.7 16.5 16.1
Minimum -1300.0 315 43.6 15.1 17.6 15.8 15.7 15.6 15.6 14.7
Maximum 800.0 283.0 139.0 75.7 22.9 16.6 16.5 16.8 16.6 16.2

Table 13 Measures of Spread for Phase 2 inter-participant rCV results (%)

250V 300V 350V 400V 450V 500V 550V 600V 650V 700V
Range 2100.0 251.5 95.4 60.6 5.3 0.8 0.8 1.2 1.0 1.5
25%ile -93.8 711 61.9 29.0 20.8 16.4 16.3 16.6 16.4 15.9
75%ile 488.0 150.0 109.0 37.8 21.4 16.6 16.5 16.7 16.5 16.1
IQR 581.8 78.9 471 8.8 0.6 0.2 0.2 0.1 0.1 0.2
SD 443.5 66.2 28.7 11.8 0.9 0.2 0.2 0.3 0.2 0.3
CV (%) 271.2 56.0 34.3 33.2 4.2 1.2 1.2 1.8 1.3 2.0
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Table 14 Measures of skew for Phase 2 inter-participant rCV results (%) (3dp used for resolution from SPSS)

250V 300V 350V 400V 450V 500V 550V 600V 650V 700V
Skewness -1.355 0.905 0.406 2.064 0.588 -1.559 -1.372 -2.104 -2.763 -2.762
Skew std error 0.414 0.414 0.414 0.414 0.414 0.414 0.414 0.414 0.414 0.414
Skew z-score -3.273 2.186 0.981 4.986 1.420 -3.766 -3.314 -5.082 -6.674 -6.671
Kurtosis 2.630 -0.130 -1.074 6.077 1.618 3.151 1.108 3.815 8.895 8.076
Kurt std error 0.809 0.809 0.809 0.809 0.809 0.809 0.809 0.809 0.809 0.809
Kurtosis z- 3.251 -0.161 -1.328 7.512 2.000 3.895 1.370 4.716 10.995 9.983

score

Table 15 S-W test for normality for Phase 2 inter-participant rCV results (%) (3dp used for resolution from SPSS)

250V 300V 350V 400V 450V 500V 550V 600V 650V 700V
S-W statistic 0.901 0.909 0.933 0.821 0.925 0.700 0.792 0.673 0.594 0.623
Significance 0.007 0.011 0.047 0 0.029 0 0 0 0 0
Normal/Non- Non- Non- Non- Non- Non- Non- Non- Non- Non- Non-
Parametric parametric parametric parametric parametric parametric parametric parametric parametric parametric parametric
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Figure 19 Inter-participant rCV distributions when gating fcs files following a protocol (red lines represent mean rCV
values for each file distribution)
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For files with notionally ‘good separation’ of peaks (Figure 17 f - j), following a protocol appears to
converge the average and median rCV results for each file. Less difference between the average
and median indicates central tendency and therefore a normal distribution. This can be seen by
the red ‘average’ line markers plotted in Figure 19. Similar to the histograms in Figure 18, the red
lines have been overlaid onto the inter-participant rCV distributions for each file. For each ‘good
separation’ file, this average marker sits inside the peak maxima of the histogram in the centre of
the distribution, because no bimodal distributions are present in this phase of analysis. It is difficult
to qualitatively determine if the average better represents the distribution of the ‘poor separation’
files. However, the distributions for these files no longer appear to be bimodal (Figure 19), which
could suggest using protocols to interpret data could aid conformance due to better inter-

participant reproducibility, as defined in Chapter 2.

This would be true if the inter-participant rCV range reduced when following a protocol. This is the
case for all voltage files, although, the 250 V file has only reduced slightly, but not significantly.
However, this is negligible due to this voltage possibly being too low to run assays with confidence
in this channel due to cellular autofluorescence [34,158], so participants would not face a triple-
peak cluster in optimal, validated scenarios. The rCV inter-participant range for ‘good separation’
peaks is between 0.8 % - 1.5 %, which is considerably lower than when participants gated using
their own judgement (8.0 % - 10.6 %). This shows that a diagrammatical protocol can possibly help

in instances when gating is difficult.

The CV of measurements (as defined in Chapter 2, Section 2.3.2) is commonplace as a variance
metric in FC and the CV of the inter-participant results ranges from 1.1 % to 2.0 % for ‘good
separation’ files, far below the satisfactory criteria of < 10 % CV for a measurement, which is
desirable [71]. Alongside the range of data, this supports using diagrammatical protocols to

possibly reduce inter-participant variation within reported measurements.
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The shift towards normality and a gaussian shape is not necessarily reflected in the skewness and
kurtosis z-scores in Table 14. 300V, 350 Vand 450 V fall within the + 2.58 boundaries for normality
(defined in Chapter 2). However, all other files have a strong negative skew (aside from the 400 V
file which has a strong positive skew). These files also have a high kurtosis, indicating a high peak
within the data. Even though the ‘good separation’ files have a high kurtosis, in this instance that
is desirable, because conformity of results that cause a centred spike shows better reproducibility
between participants and less variation within the end result. The high skew and kurtosis results
indicate a non-parametric distribution, confirmed by the Shapiro-Wilk tests results in Table 15. All

distributions are significantly non-parametric.

A comparison of Phase 2 results to Phase 1 results will be completed in the following section. By
individually analysing the descriptive statistics of each phase of results, the type of desired
distribution can be questioned. Most analysis statistics are designed to work with a normal
distribution, and this is often an ‘ideal’ data shape that manufacturing communities work towards.
Not only does it allow use of normal statistical tools, it can be used to drive continuous improvement
efforts to refine the process which causes data extremes. Strong skewness and kurtosis measures
are therefore traditionally not ideal, but when looking at variability of data, they could be core

indicators that show reproducibility of data, due to convergence of results.

3.3.3 Flow Cytometry Pre-study Outlier Discrimination Investigation

The ranges of inter-participant data have been used for comparison of Phase 1 and 2 data. This
metric includes all participants and excludes no-one as an ‘outlier’, because they have produced a
result under the same test conditions as other participants. Instead, any extremes of data will be

investigated to understand the potential root cause of variation.
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Figure 20 Comparison of inter-participant ranges when participants use their own judgement to gate and when they
follow a protocol [154]

The range of inter-participant results when participants used a protocol is significantly smaller than
when participants use their own judgement for all files analysed, as shown in Figure 20. The bar
charts (b) show the percentage reduction of inter-participant range from Phase 1 to Phase 2. This

was calculated using Equation 19 for each voltage file.

Phase 1 inter — participant range

Percentage reduction (%) = 100 % — (< ) %X 100)

Phase 2 inter — participant range

Equation 19 Percentage reduction from Phase 1 to Phase 2 results

In addition, the rCV ranges for each voltage file have been plotted for Phase 1 (Figure 20a,
Participant Interpretation of gate placement, blue line) and Phase 2 (Figure 20a, Gating Standard,
orange line). These lines show the rCV ranges for each phase for each file, and are measured

against a logarithmic y-axis, so all ranges and differences can be effectively seen.

The ‘good separation’ files from 500 V to 700 V show a large percentage reduction when
participants use a gating protocol, despite the peaks in these files having a very clear separation.
This variation reduction shows that using a protocol can help participants to gate histograms

accordingly, even when noise affects the data at the other extreme, due to high amplification. This
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noise can be seen in higher voltage files in Figure 17 (g - j) as small shoulders and longer tails on
the edges of the main peaks. Within the ‘good separation’ peaks, the percentage reduction is high,
although it appears to get slightly smaller as the voltage increases (from 90 % for the 500 V file to
86 % for the 700 V file). This could be because the higher the voltage, the more the noise is
amplified, causing a bit more gating variability for the ‘good separation’ files as the voltage

increases, due to increased visibility of peak shoulders and tails.

Despite the poor separation making gate application difficult within the ‘poor separation’ files (250
V to 450 V), this has shown to be aided by a diagrammatical image to copy and inform the correct
scale points for gate placement. These files show poor separation and resolution of the middle
peak, which should be identified in early upstream validation phases when using FC for analytical
measurements. Therefore, these files are not representative of ‘good data’ that would be gated but
do show difficulty when having to split clusters of beads or cells in analysis. Ultimately, thorough
optimisation and validation of process steps and settings coupled with diagrammatical protocols
can greatly influence and reduce the inter-participant range of reported results. This improves
reproducibility of data between participants, converging to more confident results, analysis and

interpretation.

Sign tests have also been executed using IBM SPSS Statistics Version 24 to test the use of gating
protocols in comparison to participants gating using their own judgement. This tests for a significant
difference in medians of the two test conditions and is used when population distributions are non-
normal and subject to outliers. Sign tests have been used throughout this thesis when testing for
differences between conditions. Table 16 summarises the results of Sign tests used for each
voltage file, where the null hypothesis confirms no significant difference between the median inter-
participant rCV ranges, and the alternative hypothesis accepts a significant difference between the
two test conditions. Red highlighted cells indicate that the alternative hypothesis of a significant

difference between the medians of the two groups has been rejected, so the null hypothesis of no
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difference between the medians is retained. Green highlighted cells indicate that the alternative

hypothesis has been accepted because of a significant difference between the group medians.

Table 16 Results of Sign test to compare medians of two-phase test conditions

Voltage File Null Hypothesis Test Sig. Decision
250V Median difference of P1 & P2 250 V files = 0 Related-samples Sign test 1.000 Retain null hypothesis
300V Median difference of P1 & P2 300 V files = 0 Related-samples Sign test 0.735 Retain null hypothesis
350V Median difference of P1 & P2 350 V files = 0 Related-samples Sign test
400V Median difference of P1 & P2 400 V files = 0 Related-samples Sign test 1.000 Retain null hypothesis
450V Median difference of P1 & P2 450 V files = 0 Related-samples Sign test 0.100 Retain null hypothesis
500V Median difference of P1 & P2 500 V files = 0 Related-samples Sign test Reject null hypothesis
550V Median difference of P1 & P2 550 V files = 0 Related-samples Sign test Reject null hypothesis
600V Median difference of P1 & P2 600 V files = 0 Related-samples Sign test 0.072 Retain null hypothesis

650V Median difference of P1 & P2 650 V files = 0 Related-samples Sign test 0.011 Reject null hypothesis

700V Median difference of P1 & P2 700 V files = 0 Related-samples Sign test 0.248 Retain null hypothesis

To accompany the Sign test to identify significant differences between the two testing conditions,
the A Priori and Post Hoc power was calculated for each of the Voltage files. The variances for each
file test condition calculated from SPSS were used, to test for equality of variance using an F-test
within the G*Power software. Table 17 lists the variance for the inter-participant results for each
test phase (Variance Phase 1 and Variance Phase 2), the ratio of which is used alongside effect
size and significance level to define A Priori and Post Hoc power. The use of these Power analysis
variables has been discussed within the methodology in Chapter 2, Section 2.2.5, and this structure
is used in subsequent chapters. Even though this has been completed after data gathering, A Priori
power calculated from the variances gives an indication of the sample size that would be required
if access to more participants was available, to meet the desired power (0.80). The Post-Hoc power
has also been calculated, which shows the ‘actual power’ calculated from the results. This is 1 -
the probability of a Type Il error being committed, which is when the null hypothesis fails to be

rejected when it is false.
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Table 17 A Priori and Post Hoc Power analysis (3 dp used for resolution specified in SPSS)

File Variance Phase 1 Variance Phase 2 A-priori power Sample size required Actual power
250V 122227.401 200720.528 0.802 103 0.430
300V 15415.756 4699.454 0.813 20 0.969
350V 2246.926 801.856 0.813 26 0.920
400V 247.683 89.533 0.800 26 0.915
450V 2.291 0.455 0.825 12 0.999
500V 2.947 0.021 0.881 & 1.000
550V 4.579 0.029 0.893 8 1.000
600V 5.023 0.066 0.800 8 1.000
650V 4.796 0.031 0.891 & 1.000
700V 4.629 0.111 0.876 4 1.000

All tests conducted and differences seen between test conditions are significant in line with the
power calculated for all files except for the 250 V files, which had a low ‘actual power’ of 0.430. To
see a significant difference between test conditions with statistical confidence, 103 participants
would be required. Due to the difficulty of this gate, it is likely that a small difference would be seen
between the two test conditions, which requires a large pool of people for valid results. For all
remaining files, less participants are needed to produce the variance ratio seen from the current
data, which had 37 participants take part in Phase 1 and 34 of those participants take part in
Phase 2. The gating completed using a protocol has a very noticeable difference for the well
separated files, with an actual power of 1.00 for all files and only requiring 3 to 4 participants to

capture this effect if repeated.

To actually use this data to choose an optimum voltage to run the APC channel, the 500 V file would
be used, determined by the method described in [34]. This has been demonstrated in Figure 21,
where the median inter-participant rCV values from each voltage file in Phase 1 were plotted to
create a Stain Index rCV curve. A Stain Index curve is used to identify the optimum voltage for a
specific channel, by plotting rCV values for the middle peak of each voltage file acquires with CS&T
beads. Median inter-participant rCV values were plotted for each file due to non-parametric
distributions of operator results for files across Phase 1 and 2 analysis. The inflection point that

changes the curve to a plateau indicates the optimum voltage, minimising the effect of background
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noise on the data, which can be seen as 500 V. This voltage file was selected to further investigate
the distribution of an example data set, and the effects of different statistical methods of

determining outliers and control limits.
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Figure 21 Stain Index rCV curve [154]

Having this 500 V variable selected as the optimum voltage reduces potential variability within the
measurement due to amplification of noise or poor detection because of closeness to the limit of
detection of the instrument [34,158]. Even though this is a low amount of variation carried forwards
in the file, this variability can be further controlled when gating univariate histograms according to
a prescribed protocol. A significant difference in range has been shown between participants when
using this protocol, improving reproducibility to converge results, reducing variation input by the

operator during data analysis.

82



Chapter 3: Pre-Study Variation Investigation

3.3.4 Flow Cytometry Pre-study Outlier Discrimination Investigation

Normal distribution of data is commonplace to effectively use control limits within manufacturing
and other product release criteria, however, in this instance all data is highly skewed, making
normal control limit methods less robust to apply. These will be tested within this section to identify
how well different methods identify potential outliers, and whether the log transformation process

so commonly used shows equality to these.

QOutliers are common within distributions and can be identified and removed using a series of
control limit methods. These methods have been used within national and international proficiency
testing schemes for FC, to maintain continuous improvement [88,95,98,109]. Generally speaking,
a 95% Confidence interval is applied to the data set, so the ‘out-of-specification’ 5 % can be
continually reviewed to refine the processes and identify variables that cause participants to fall
outside of acceptance boundaries. However, more recently robust methods for outlier
determination (based in median statistics) have been utilised within these schemes, generating a
set of acceptance criteria, rather than position on a hormal distribution [159]. The data presented
throughout this Chapter is not normally distributed, despite what initial basic statistical measures
may indicate. Often when data is non-normal, a logarithmic transformation can be applied to shift
the distribution towards normality so normal statistical tools can be used. However, when
transformations are applied, the distribution of the original data is lost, which can cause difficulty

in judgement of outliers.

This can present a problem within CGT manufacturing, because if too much transformation of raw
data occurs, it could lead to a loss of clarity of the data, potentially causing poor decisions and
statistical tests to be applied to patient or product data. When undergoing a cell therapy transplant,
there is limited amount of starting material that can be taken from the patient, so it is imperative
that poor data analysis does not impact quality metrics of the final therapy product, because this
could lead to dire consequences for the patient [160]. European and International regulations state

that control limits for acceptance criteria should be set from validation runs of the product and
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process [64,139]. However, there is limited validation that can be done on a patient-by-patient

basis, due to the difficulties discussed.

Dealing with the raw data distribution rather than transforming to fit traditional norms gives a better
understanding of the quality of the cell therapy product, even if the distribution is more unfamiliar.
There are also a variety of control limits that can be set for in- and out-of-specification results which
will be discussed here. Many traditional methods are used to fit normal distributions, but robust
alternatives will also be considered due to the nature of the data distributions in this Chapter. There
are no defined criteria for control limit selection, this would be the decision of the manufacturing
and QC unit. This section applied the 500 V distribution seen earlier to different control limits to
identify differences between in- and out-of-scope data, as well as transforming it to confer between

control limits when data is approximated to a more ‘normal’ shape.

Outlier discrimination has been explored using the 500 V Phase 1 analysis data as an exemplar
data set. Any extreme values can traditionally either be removed from analysis or the outliers are

addressed to facilitate future improvement in process control.

Table 18 summarizes different boundary specifications used within a variety of industries including
biomedical and cell therapy manufacture [96,100,164-170,101-103,109,159,161-163]. There
is no one correct choice for outlier determination, with the choice being based on commercial
guidelines, quality standards and/or method validation exercises. These boundary estimators
indicate whether the statistics used are based upon normal or Gaussian distributions or are more
robust to non-parametric shape. The ‘Data Dimensionality’ indicates whether the boundary
estimators are used from one set of data (1 parameter) or if multiple sets are required, often seen
in multiparametric analysis such as regression where commonality between two variables is
considered. Finally, Table 18 indicates whether the error boundaries calculated by each method

are used as strict cut-off limits for specifying outliers, so they could be removed from further
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analysis, or whether the method applies a correction to ‘out-of-specification’ limits and the data

can then be accommodated within further analysis steps.

Table 18 Error Boundary Estimators

Error Boundary Estimator Normal/Robust Statistical Data Dimensionality Outlier Limits/
Methods Accommodates Data
Shewhart’s Control Charts Normal 1 parameter Outlier limits
Mean + 3SD
Mean + 2SD Normal 1 parameter Outlier limits
Calculation from Type | errors Normal 1 parameter Outlier limits
Exponentially Weighted Moving Robust 1 parameter Outlier limits
Average (EWMA) charts
10% trimmed Mean + 2SD Normal 1 parameter Outlier limits
Median + 2MAD Robust 1 parameter Qutlier limits
Paxton’s Criterion Robust 1 parameter Outlier limits
Bootstrapping Normal, or log 1 parameter Outlier limits
transformation of non-
normal data
Linear regression models Normal Minimum 2 Outlier limits
parameters
Robust Multivariate regression Robust, but transforms Minimum 2 Outlier limits
data to normal parameters
Longitudinal mixed effects Robust Minimum 2 Outlier limits
models parameters
M-Estimators Robust 1 parameter Accommodates data
Euroflow Robust, but transforms 1 parameter Outlier limits
Personalised outlier estimator data to normal

Determining outliers is completed by calculation of location and spread values of a data set in
question. Location parameters such as the mean, median or trimmed means are points used to
represent a population and spread parameters such as SD or Absolute Deviation represent the
amount of fluctuation around the defined location parameter. Historically, boundaries such as
Mean + 2SD have been used, because they approximately align to a 95% Confidence Interval,

assuming normally distributed data.

Table 18 is not an exhaustive list but the majority use univariate data to understand distributions.
However, regression analysis requires two input variables to determine a 95% Confidence Interval.
Mean + 3SD are traditional bounds, originally championed in the use of control charts to monitor
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process quality over time [161]. These have been amended for use in analytical chemistry Quality
Control [162] but were refined to Mean + 2SD in the 1990’s FC EQAS [101-103], alongside the

use of 95% Confidence Intervals, defined by the Standard Error of the data set.

The Exponentially-Weighted Moving Average (EWMA) Chart is a robust alternative to the Mean *
3SD method, that adjusts to the data set and is often preferred when detecting small shifts [134].
The use of EWMA charts to track data has been recommended more as an internal assessment for
manufactured products [163], because it can be easily understood in a similar manner to a Levy-
Jennings plot, a traditional control chart format used. Trimmed means are another alternative
location parameter, involving recalculation of new spread metrics from a refined data set. They
remove a certain percentile of data from the extremes, making the distribution more centralised
[163]. This was popular in previous cycles of the UK NEQAS FC Schemes [96,164], allowing
pathology laboratories identified as extremes to improve over time. However, if used incorrectly it
can remove extremes that require investigation into causality, and still represent probable events

occurring.

A robust alternative to Mean *+ 2SD, is Median + 2 Median Absolute Deviations (MAD) [165]. This
uses the median value of residuals from the location median to estimate spread, which is more
aligned to non-parametric distributions. Another traditional robust method was described for an
early FC EQAS (Paxton’s Criterion), that uses parameters calculated to also define Box and Whisker
plots, from 25t and 75t percentiles, and subtraction and addition of the Interquartile Range
respectively [166]. Bootstrapping is a resampling method used as an alternative technique for
validation [167,168] that derives confidence intervals, making assumptions on the data probability
distribution, and assumes a normal distribution or uses a log-transform of non-normal data. This is

a suitable way of defining bounds if it fits the raw data or if the transform sufficiently equates.

Regression analysis is a common method for specifying data-fitness bounds. Linear regression

analysis minimises the residual sum of squares and uses residual plots to detect outliers. Linear
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regression has been used to compare FC EQAS approaches [109], with further developments
building upon this by using robust multivariate regression [100], which is less sensitive to outliers

due to transformation of non-normal data.

Longitudinal mixed effects models have been employed more recently by UK NEQAS [98,169]. This
uses a mixture of pass criteria based upon different residual and deviate values, allowing for
multiple stratification levels of the data, based upon robust statistics. An alternative method uses
M-estimators, that accounts for all the data, but weights extreme values to shift them to an optimal
boundary, also known as winsorizing means [170]. This does not technically exclude any data
points as previously described methods do, but still uses normal statistics to define initial boundary

points.

To demonstrate the effect that different estimators have on data, the Phase 1 500 V data set was
used to calculate different outlier discrimination intervals, because this was defined as being the
optimal voltage to run the APC channel from previous calculations. This data set was initially tested
to describe the distribution, using IBM SPSS Statistics Version 24 software to calculate the

descriptive statistics as discussed in previous sections.

To apply different error boundaries to the data set, the outlier discrimination methods were
screened to include those that could be applied to a univariate data set for parameters that do not
just related to manufactured products and those that act as a set boundary and do not transform
the extreme values. Both normal distribution and robust statistics have been included. EWMA
charts have been discounted, because there are multiple ways to calculated these control charts,
with ambiguous variables which are hard to tailor to the topic in hand [134]. The effect of
logarithmic transformation on the data has also been investigated, because this is a common
method used to transform data to make it more normally distributed, applicable to a wider range
of Gaussian-based statistical analyses and conforming to more traditional manufacturing statistical

process control paradigms.
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The calculations used for both the raw and transformed data can be seen in Table 109.
Bootstrapping relies upon a 95% Confidence Interval calculation, so these have been accounted
for together, and Mean + 3SD, 2SD and 10 % trimmed mean + 2SD all use the same SD calculation
to generate control limits. These calculations were completed using Microsoft Excel (Windows 10),
however, Matlab R2019a was used to calculate the 10 % trimmed mean and trimmed SD, and the
95 % Confidence Interval because it removed subjectivity from the population selection to define

the extreme 10%.

Figure 22 and Figure 23 show four plots representing these non-parametric and transformed
results. Figure 22 (a) shows a histogram of operator rCV values for the 500 V file where operators
were asked to apply gates based upon personal interpretation (Phase 1). The grey stepped bands
represent the calculated outlier discrimination boundaries derived using the information in Table
19. Any histogram column falling within these boundaries is determined as being in specification.

Those falling outside of a boundary would then be classified as an outlier by that method.

The majority of participants fall within all bounds, but this shows the importance of correct selection
of discrimination for the process. If chosen control limits are too fine, then allowable variation could
be cut out, causing a high defect rate and false negatives. Too wide, and the process is allowed to
head towards a more out-of-control state and false positives could be included in analysis, which

is undesirable and makes location of the source of the variation more difficult.
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Outlier Location Spread Location Spread Lower Upper Control Log Log Log
estimator Calculation calculation value value Control Control Limit transformed | transformed | transformed
Limit Limit Distance Lower Upper Control
Control Control Limit
Limit Limit Distance
Shewhart
Control
Charts 5.19 10.43 20.81 10.37 1.02 1.36 0.35
15.62
Mean + 3SD
For trimmed
Mean + 25D | data, 10% 3.46 12.16 19.08 6.92 1.08 1.31 0.23
of the
10% trimmed ordered
mean + 25D data are 15.92 1.96 13.96 17.88 3.92 1.15 1.26 0.11
removed
95% before
Confidence calculation
Intervals 15.62 0.56 15.06 16.18 1.11 1.17 1.21 0.04
Bootstrapping
Med + 2MAD 0.70 15.60 17.00 1.40 1.19 1.23 0.04
IQR Metrics
16.30
N/A 13.60 18.4 4.80 1.14 1.27 0.13
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a) Personal Interpretation: untransformed
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Figure 22 Application of difference control limits applied to data [154]

As seen in Figure 22, all the boundaries scale inwards and outwards, so overlaps can be seen on
both sides. The mean, 10% trimmed mean and median have all been plotted on top, to show shift
due to the distribution. The median value of the data fits best to represent the skewed distribution

because it sits within the histogram maxima.

90



Chapter 3: Pre-Study Variation Investigation

To show the impact of operators following use of a gating standard to obtain results, the Phase 2
data was overlaid onto discriminatory bounds calculated from Phase 1 data, as seen in Figure 22
(b). All participants fall within the tightest boundary, specified by the Median + 2MAD. This confirms
that causing operators to follow a visual protocol not only reduces inter-operator variation but also
reduces the chance of ‘outlier’ results, regardless of how outliers are defined in this context. In the
context of cell therapies and their manufacture, these outliers will represent key patient data

metrics and cannot be excluded.

a) Personal Interpretation: transformed
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b) Diagrammatical protocol: transformed
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Figure 23 Application of difference control limits applied to log transformed data [154]
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The boundaries in Figure 22 were recalculated when the skewed data was normalised with a log
transform and this transformed data and boundaries are shown in Figure 23. Data was transformed

according to Equation 19.

Transformed data = log,o(raw data)

Equation 20 Log transformation

The outer boundaries all fall within the same gradient pattern towards the centre, however the 95%
confidence interval and the Median + 2MAD bounds sit astride one another, discounting various
operators as outliers. Application of Phase 2 (log transformed) data to these defined boundaries is
shown again in Figure 23, with operators falling within the tightest boundaries when following a
diagrammatical protocol to apply their gates. However, the shape of this distribution is not the same
as the distribution when untransformed, potentially indicating a loss of participant traceability back

to the raw data, which could cause data integrity difficulty if just using visual data.

To monitor equality of outlier discrimination between the bounds specified for raw and transformed
data, Table 20 shows the different bounds used, and what outliers are specifically discriminated
against using this method (outliers identified using anonymous coding). Log transformation is
deemed appropriate in the context here where the outliers are identical for each context and

therefore labelled as ‘Equal’.
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Table 20 Control limits used to specify outliers [154]

Non- Outlier code Log Outlier Code Equal Reason for
parametric transformed Outliers outlier
Outlier outlier
frequency frequency
Mean + 35D 1 Cco4 1 Cco4 EQUAL Range gate
applied over
smaller % of
peak
Mean + 25D 2 C01, co4 2 C01, co4 EQUAL Range gate
applied over
smaller % of
peak
Paxton’s 3 C01, C04, co7 4 A03, C01, CO4, UNEQUAL Additional
Criterion Cco7 outlier in log
transform data
(AO3)
10% trimmed 3 A03, C0O1, CO4, 3 A03, B11, CO1, UNEQUAL Additional
mean + 25D Co7 C04, co7 outlier in log
transform data
(B11)
95% 29 A01-A10, BO1- 28 AO01- AO5, AO7- UNEQUAL Additional
Confidence BO5, BO7, BOS, A10, BO1-BO5, outlier in raw
Interval B10-B14, B16, BO7, BO8, B10- data (AOG,
B17, CO1, CO3- B14, B16, B17, C03)
Cco7 C01, C04,-c0o7
Median = 10 A03, AO5, AOGB, 10 A03, AO5, AOGB, UNEQUAL Additional
2MAD B04, B09, B11, B04, B11, B15, outlier in raw
B15, CO1, CO4, C01, C04, co7 data (B09)
Cco7

All outlier boundaries calculated up to Paxton’s Criterion are equal in the number of outliers

specified when using either the raw data or log transformed data. As these boundaries become

more refined, outliers are included due to the area of the peak gated by the specific operators.

Mean + 3SD has one outlier quantified by the gate applied (participant CO4, Figure 24) covering a

small section of the peak. This does not include all events collected within the peak and therefore

has a skewed rCV value as a result. This extreme can be compared to a median participant for this

gate, because multiple people achieved the same rCV value (median = 16.3 %). This median is

represented by participant BO7, with their respective gate shown in Figure 25.
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Figure 24 Participant CO4 histogram gate applied to middle peak
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Figure 25 Participant BO7 histogram gate applied to middle peak (representative median)

Mean + 25D, 10% Trimmed Mean + 2SD, and Paxton’s Criterion have all specified outliers due to
gates not covering the entirety of the peak, and the gradual inclusion of these outliers through more
refined control limits sees these outlier gates become wider to include more of the peak,
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questioning the outliers have been defined due to differences in spread definition. Figure 26 shows

the gate applied by participant CO1, in addition to CO4 they are out of specification for all boundary

estimators except Mean + 3SD.
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Figure 26 Participant CO1 histogram gate applied to middle peak

The 10% trimmed Mean + 25D and Paxton’s Criterion specify an additional outlier, participant CO7,
who falls outside of the Lower and Upper Control limits specified in Table 19. Figure 27 shows the

gate applied by participant CO7, which is slightly wider again than participant CO4 and CO1, but it

still does not include the entirety of the peak.
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Figure 27 Participant CO7 histogram gate applied to middle peak

Paxton’s criterion specifies an additional participant AO3 when the data has been log transformed,
who falls outside of the Lower and Upper Control limits specified for the criteria in Table 19.
Participant AO3’s gate can be seen in Figure 28 respectively, again with slightly wider boundaries
applied to the peak, but not covering its entirety. The rCV value for this gate sits just outside of the
rCV lower boundary, suggesting that there could be a difference to outlier definition when applying
log transforms. Discrepancies can be seen between the raw and log transformed data for the
different boundaries, due to data sitting very close to a raw or transformed boundary, causing it to
become in- or out-of-specification. Some more examples have been visualised to identify this,

because of the fact this data sits very close to the control limits.
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Figure 28 Participant AO3 histogram gate applied to middle peak

Qualitatively, AO3’s gate and previous participant gates have slightly smaller boundaries than the
median participant of the group, supporting the trend seen here that as the boundaries calculated
become more refined, ‘outliers’ are those who have smaller rCV values because they have not
captured as much of the peak as the rest of the participant population. The rCV value appears to
correlate with the percentage cell count captured within each gate the participants have applied.

This percentage cell count can be seen in the Participant gating figures in this section.

Participant B11 (Figure 29) has gated around a smaller section of the peak causing them to be a
differential outlier in the log transformed control limits for the 10 % trimmed mean + 2SD. B11
applied gating knowledge from other measurement techniques because they had previous
experience with High Performance Liquid Chromatography (HPLC) measurement techniques, where
the rule of thumb is to try and capture 80% of the peak to increase measurement confidence and
minimise spectral overlap. Compared to more experienced Flow Cytometrists, who try and capture
the entire peak, some differences could be seen in training carried over or assumed from other

measurement techniques.
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Figure 29 Participant B11 histogram gate applied to middle peak

Both highly refined control limits (95% Confidence Interval and Median + 2MAD) have more outliers
present when applying these boundaries to the data set. When calculating the 95% Confidence
Interval the raw data contained one extra outlier, which may be expected due to this being a
statistical test using normal metrics applied to a non-parametric data set. Both the raw and log-
transformed control limits for the 95% Confidence Interval contain a high number of outliers (29
and 28 respectively), leaving only 7 and 8 respective ‘inliers’ to represent the distribution. Due to
the distribution having a high kurtosis and skew, this could affect the calculation of this confidence
interval, due to its dependence on the standard deviation that is not located at the peak maxima.

Participants AO6 and CO3 applied a gate which is unequal as an outlier when assessed as raw data
applied to the 95 % Confidence Interval boundary. They are defined as an outlier within the raw
data set, not the log transformed data set. As an example, Figure 30 shows AOG’s gating strategy,
with the cell count and rCV following the same trend as the previous examples with wider
acceptance boundaries. This cell count and rCV value are closer to the median value of the group,
because this gate includes more of the peak than previous participants have included, but still not

the full peak as the right tail of the middle peak has been excluded.
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Figure 30 Participant AO6 histogram gate applied to middle peak

The robust Median + 2MAD control limits are unequal when assessed with both raw and log
transformed data sets, and they also contain more outliers due to the tighter control limits.
Participant BO9 is the differential outliers specified by this raw data set, in comparison to the log
transformed data limits. This is the tightest acceptance boundary, so any ‘outliers’ that have just
fallen outside of boundaries are likely to still look very similar to those results that lie within the

boundaries.

Qualitatively, the gate applied by BO9 can be seen in Figure 31, and it looks as though the left side
of the gate slightly crosses the trough between the dim peak (furthest left) and the middle peak.
This could be listed as an outlier because of these other sections of the dim peak being picked up
instead of the middle. It appears that this gate has shifted towards the left as the gate does not

cover the right tail of the middle peak, like other participant gates have done.
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Figure 31 Participant BO9 histogram gate applied to middle peak

To conclude, the raw untransformed data will be used for comparison in further studies, to enable
a better understanding of the population which is more directly traceable to the study data
gathered. Even though there is a small difference between outliers defined in raw and log
transformed distributions, in some instances where there is inequality of outliers, it has shown that
log transformation may not always be suitable for skewed data. It is important to confirm and
understand the shape of the data before applying tranforms and control limits to identify outliers.
These boundaries will be applied to further data sets to show the difference in control limit
definitions,however, this will not be to specify a perferred option for defining outliers, because it

requires more manufacturing validation and regulatory or industrial guidelines.
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3.4 Chapter Conclusions

Chapter 3 shows the amount of variation seen between participants when applying histogram gates
to the same data, indicating that this needs to be focused on and more specifically measured within
future work. Across a range of different data histograms, the difference between participant
analysis can vary greatly according to a number of factors which could depend upon the participant
experience, how frequently they deal with histogram Flow Cytometry data and what they believe to
be acceptable cut-off points for data inclusion. This can be used as evidence to formally measure

baseline operator variability using measurement uncertainty methods when applying gates to data.

Chapter 3 has tested the use of gating protocols for univariate histogram data, providing a basis to
practice running studies, validating this study design (3 repeats within a 30 minute - 1 hour time
frame) for future uncertainty analysis trials, which can build in complexity from this univariate

experiment.

Inter-participant variability was also present when participants had to apply gates following a
diagrammatical ‘gating protocol’ instead. All the ranges of between-participant results dramatically
reduced in cases where the peak separation was clear and an obvious split between the three
peaks could be seen (percentage reductions ranging from 86 % to 92 % for 500 V to 700 V files).
The gating images provided helped participants to align the gate to the selected upper and lower
inclusion limits, although some participants expressed they would have applied the gate differently,
using different tools or settings. However, this is all relative, because these factors were controlled

to ensure comparability between participants.

Even when gating the poor separation peaks the gating protocol aided participants, because it
reduced the range across all voltage files, however some were better than others (reduction when
using the protocol between 2 % to 42% for 250 V to 450 V files). Those files with lower ranges were

very difficult for participants to gate because there was no visual separation of the peaks to discern
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the correct one. These lower voltages should not be used when setting up and running a flow
cytometer, because they are too close to the limit of detection of the channel. This greatly affects
the ability to discern populations within the data set and is an effective example of showing how
upstream setup and variables need to be correctly optimised and validated to ensure confidence

in final interpreted results.

This pre-study has also highlighted the importance of completing a thorough check on not only the
basic statistics representing a population, but to check the distribution and more complex
statistical tests because these give more information about departures from normality and
potential clusters of data that can appear in bimodal instances. It has also called into question the
need for a normal distribution, when trying to get reproducible data. If trying to get results within a
certain boundary, measures such as skewness and kurtosis appear to be out-of-specification and
extreme compared to SPSS boundaries (for normal distribution affinity), but they actually indicate
a high convergence of results, because these specified limits indicate a normal distribution which

may not be a necessary shape.

Due to the non-parametric distributions and skewness present, log transformations were
investigated to see whether the transform could make the distributions appear more normal, to
then apply various outlier boundary estimators to the data. This was applied to data distributions
when participants applied gates using their own judgement and then following a protocol. However,
when following a protocol the distribution was very convergent and therefore highly kurtosed, so
not much difference was seen when transforming the data, other than flattening the two histogram
bins present. More of a distribution shape was seen when participants used their own judgement

and this is more indicative of real-world scenarios.

The power analysis completed on this data has shown that enough participants were recruited to
identify the difference in variance for most of the files analysed. The one file which did not have

enough participants, returning a power of 0.430, was the least optimal, so this generally would not
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be used for FC analysis when setting up voltages for the APC channel. This power analysis structure
will be used in further chapters where two different testing conditions are present, considering A
Priori and Post Hoc power to ensure that the correct sample sizes and powers can be identified,

even if they cannot necessarily be met.

Various error boundary estimators are used throughout manufacturing scenarios and were applied
to a set of data here to highlight the difference in how many outliers were produced. Boundary
estimators would usually be selected internally by manufacturers based upon historical validation
data. However, these are traditionally based upon normal distributions being required, so these
were tested on a non-normal set of data, alongside robust statistics which are designed to deal
with more non-normal distributions. In some instances there is equality between the raw and log-
transformed data when using error boundary estimators to identify outliers. However, instances
where there was not equality between the two data representation methods has highlighted that
differences could be due to using certain boundary methods such as 95 % Confidence interval.
These differences are due to log transform boundaries being slightly different to those applied form
the raw data, which could cause problems when trying to identify outliers in skewed distributions,
depending on how the analyst interprets the results. Discrepancies between skewed raw and log
transformed data has been discussed in other biomedical literature, showing that log transforms
can cause discrepancies in data analysis and consideration from the raw data is perhaps more
suitable [171,172]. This can give an appreciation of what the data looks like before trying to make

it fit to a more traditional norm.

This will influence further work presented in this thesis, by ensuring that no transformation of data
will be made without strong evidence of its use and without understanding the underlying statistical
distribution first. It also calls into question error boundaries used to define outliers and enforce
continuous improvement. As baseline uncertainty is measured, these limitations will need to be
defined by a reputable error boundary discrimination method, which will depend on the shape of

the distributions to ensure it is robust.
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Ultimately, this pre-study has shown that there is significant variation present from analyst
subjectivity, as well as potentially being able to control this with protocols, which will be investigated
within subsequent Chapters. The investigation of log transformation of data has shown differences
to occur in outliers, showing that this method needs to be fully understood before applying
transformations to raw data. This can have a significant impact on CGT manufacturing, because a
lot of cell and gene measurement distributions are not normal [173,174], and their measurement
analysis as well as the data distributions themselves need much more attention and understanding

to make informed decisions.

3.4.1 Consolidation of Objectives

e There is considerable variation in between-participant data analysis when they apply
gates to the same data. This is seen through all data files given to participants, which
show variability when peak separation is good (range of 8.0 % rCV for 500 V file) and
when itis poor (range of 400 % rCV for 300 V). This has been shown on simple univariate
data and can provide a session structure for subsequent chapters which detail more

complex data and analysis sequences.

e |n this instance, diagrammatical protocols provided to participants have reduced
between-participant range of rCV results when copying the gates. This can be tested in
future variation studies, but they will be more complex in visualisation and structure to
monitor how the range in variation changes, so this must be taken into account. When
peak separation is ‘good’, this reduction is up to 92 %, and when peak separation is

‘poor’, this reduction of variation is up to 42 %.

e Log transformation of the raw data has been tested here, with the conclusion that future
data sets will not be transformed if they are non-normal, because there can be inequality
of outliers and error boundaries between the two data presentation types. Therefore, raw
data distributions shall be used, because these present relatable data distributions to

work with, unless evidence suggests otherwise.
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Different outlier boundaries have been tested with the chosen data set here, with normal
and non-normal parameters. It has highlighted for future work that the distribution of the
data needs to be thoroughly tested before outliers are determined with a particular
method, to ensure the data is distributed appropriately. It is likely that even if future
distributions are normal or non-normal, robust methods may be used as these can be

used as representative statistics in both cases.
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Chapter 4. Basic Uncertainty Model

4.0 Introduction to the Chapter

Chapter 4 introduces the first uncertainty Gating Exercise, as part of the sequence of studies which
monitor participant variance in comparison to complexity of data. As discussed in the Prelude, this
first uncertainty exercise is basic, to set a baseline for understanding variance in non-complex
analysis scenarios. This sets the basis for further uncertainty gating studies described in Chapters
5 and 6 with comparisons drawn in Chapter 7. The overall Gauge R&R study design as described
in Chapter 2 has been followed to obtain statistics which can be taken forwards for uncertainty
calculations. Further specificity for this basic study exercise is given in this Chapter. Previously in
Chapter 3, only one variable had been considered, in histogram format, whereas this first
uncertainty stage tackles FC data analysis in pseudocolour and bivariate formats using an
immortalised pluripotent cell line (2102 EP Carcinoma line). This is much more prevalent within the
community, therefore potentially providing a more relevant application of uncertainty to FC

measurements.

4.1 Chapter Aims

This Chapter provides a basis for comparison of uncertainty in more complex FC analysis strategies
found in future chapters. The fit of this Chapter to the thesis can be seen in Figure 32, specifically
within the orange dashed box, providing a base for the core hypothesis: as complexity of FC data
and processing increases, measurement uncertainty contributed from the participant will also
increase. CGTs can have very complex analysis and quality control measures, so a better
understanding of how the participant plays an influencing role in these results is essential for

product release, continuous improvement and patient safety.
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Figure 32 Diagram of Chapter position within the whole Thesis

4.1.1 Chapter Aims & Objectives

The Aims and Objectives of this Chapter can be defined as follows:

o Design a baseline study using a Gauge R&R structure to measure CV and uncertainty of

participants when gating simple Flow Cytometry data.

o |dentify what causes extreme values in absolute reported results and uncertainty

measurements by reviewing extremes from this baseline study.

e Provide easy monitoring tools for understanding uncertainty within a larger participant

study or facility.

e Investigate the impact on variance from data visualisation and different gating tools that

can be used throughout Flow Cytometry Post-Analytical processing.
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4.2 Methodology

The Embryonal Carcinoma (EC) 2102Ep immortalized cell line used has been suggested as a ‘Ruler
line’ or ‘Reference Standard’ for culture and research, because it has an antigen expression profile
similar to conventional human Embryonic Stem Cells (hESCs) [175]. This antigen expression profile
was unchanging over 10 passages, and this biological stability make the cells a good example for
quantifying downstream experimental uncertainty, due to minimal biological variation [175]. As

such, they were chosen as the simple starting model for these studies.

4.2.1 Cell Selection and Culture

A vial of GlobalStem® EC 2102Ep cells (Passage 48) (5 x 108 cells) was removed from a liquid
Nitrogen Cryobank (See Appendix B for Certificate of Analysis) and was thawed in a water bath for
3 minutes until a slither of frozen material remained. The material was topped up 1:1 with cell
culture media, mixed slowly and seeded manually onto a T75 ThermoScientific™ Nunc™ Cell
Culture Flask in 15 ml Gibco™ DMEM, high glucose, GlutaMAX™ supplement (Cat 61965, Lot
1813259), fortified with 10 % v/v Fetal Bovine Serum (FBS). Cells were maintained in a humidified

incubator with 5 % CO2 at 37 °C.

100 % medium exchange was carried out every 2 days after seeding or passage, and once
confluent after 3 days, the seeded flask was manually passaged into 2 daughter T75 flasks at a
seeding density of 6.7 x 104 cells/cm2. This equated to a 1:3 split ratio, because cell counting was
affected by the difficulty in dispersing cell clumps. To aid this dispersion, a 2-step disassociation
process was used, cells were trypsinised with 1.5 mL Gibco™ Trypsin EDTA (0.25 %) (Cat
25200072, Lot 1814171) for 5 minutes in a humidified incubator at 37 °C with 5% CO2, quenching

with 3 mL of the fortified DMEM to stop the enzyme.

Cells were centrifuged at 300g for 5 minutes, waste supernatant aspirated, and the remaining cell

pellet resuspended in 1.5 mL 0.25 % Trypsin EDTA and incubated for a further 5 minutes. After
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further quenching and removal of the supernatant, cells were resuspended in the fortified DMEM,
with cell counts, and viability assessed using a Nucleo-Counter® NC-3000™ and ChemoMetec
Vial-Cassettes™, to stain and measure cells with Acridine Orange and DAPI dyes. Three repeat
measures were taken at each count to obtain a mean cell count and viability, before reseeding into
the next passage. Cells were passaged through 5 successions, with an average cell viability of 87

+ 3 % over the culture period.

4.2.2 . fcs File Generation
A series of fcs files were generated using the EC 2102 Ep cell line in culture through 5 passages
and harvested as previously described. The cells were fixed, permeabilized and stained using the
BD Stemflow™ Human/Mouse Pluripotent Stem Cell Analysis Kit (Cat 560477, Lot 7004890),
according to the included method [156]. Enough cells were harvested to generate the respective
isotype and Fluorescence Minus One (FMO) controls, alongside the stained cells. 1 x 107 cells were
harvested and fixed in 1 ml 4 % BD Cytofix™ Fixation Buffer (Cat 51-9006276, Lot 7004890),

incubated in the dark for 20 minutes and washed twice with 1 ml PBS (no Calcium, no Magnesium).

The cells were mixed slowly with 1 mL BD Perm/Wash Buffer (Cat 51-9006275, Lot 6232552) and
incubated at room temperature in the dark for 10 minutes. After 2 washes, the cells were split into
Eppendorf vials of 1 x 106 cells each, suspended in 100 uL Perm/Wash buffer and stained with the
respective dyes: 15 uL BD Pharmingen™ PerCp-Cy5.5 Mouse Anti-Oct 3/4 (Cat 51-9006267, Lot
6232550, 10 pyL BD Pharmingen™ Alexa Fluor 647 Mouse Anti-SSEA-4 (Cat 51-9006265, Lot

6316682) and 20 uL BD Pharmingen™ Mouse Anti-SSEA-1 (Cat 51-9006268, Lot 6316683).

Oct 3/4 is a member of the POU (Pit-Oct-Unc) family of transcription factors, which functions in the
early stages of a pluripotent cell within hESC and EC Cell Lines. Oct 3/4 is expressed in
undifferentiated cells, but loses expression as cells start to differentiate towards specific cellular
subsets [176]. SSEA-4 (Stage Specific Embryonic Antigen-4) markers are also identifiers of

undifferentiated ESCs and ECs [177], with the difference from Oct 3/4 being that SSEA-4 is a cell
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surface marker. Oct 3/4 is intracellular, which requires the additional fixation and permeabilization
step. SSEA-1 is a surface marker of differentiation for Stem cells, often used to compare with SSEA-

4 and other pluripotency markers [178].

Once incubated for 30 minutes in the dark, cells were washed twice and transferred into BD
Falcon™ Round Bottom 12 x 75 mm tubes (Cat 352063) and kept covered to minimise light
exposure. Cells were run through a BD FACSCanto™ Il Flow Cytometer, using the respective
fluorescence channel and voltage: FSC 180V, SSC 374V, PerCp 420 V, APC (same detection range
for Alexa Fluor 647) 450V and PE 352 V, once a daily calibration was completed using Cytometer
Setup & Tracking beads (Lot: 74538, Successful calibration). A viability stain was not included in
the FC panel, due to viability being assessed with cell counts, and the need to keep the gating panel

initially straightforward for participants, following the prescribed method in the Analysis Kit [156].

Each tube and respective fcs file were generated using a medium flow rate (60 uL/min) and by
acquiring 30,000 cellular events. Multiple stained sample fcs files were generated to build a library
of repeats to use within the variation studies. These are representative of the product samples
described in the manufacturing scenario used to describe Gauge Repeatability & Reproducibility in
Section 2.3.1. Files were exported as fcs 3.0 version types for use in Flowjo Version 10.0.8r1 third
party analysis software [123] and saved as a workspace. This was repeated twice for each

participant, so they could analyse data across a total of three workspaces.

4.2.3 Questionnaire Design & Ethical Approval for Study
Ethical approval was obtained from Loughborough University Human Participants Ethics sub-
committee for the study and all participants were informed of the intentions of the study, as
previously described in Section 3.2.2. Before the FC gating study commenced, participants
completed an online questionnaire, to identify differences between participants and understand

their experience background. This questionnaire was also given to participants to repeat at the end
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of the FC complex gating exercises. Results comparing these two sections are discussed in Chapter

8, to identify factors that attribute to measured variance.

All participants and their respective data were anonymised at the point of data collection, and data
stored in accordance to the ethical clearance obtained. All data analysis relating to questionnaire
or gating results was completed anonymously, and participant coding was restructured from
previous work to remove the possibility of analysis bias. Any questions requiring written text
answers were analysed and qualitatively coded based upon prescribed manual coding methods
[179]. These codes were counted to measure the frequency of issues reported, and more

information on the qualitative coding can be found in Chapter 8.

4.2.4 Flow Cytometry Study Organisation
A total of 38 Participants from three separate centres (10 from an academic institution, 19 and 9
participants from separate industrial institutions) were invited to complete the study in a quiet
analysis space, to avoid distraction and the possibility of others seeing the study content and
analysis. Study sessions had a one-hour maximum duration, and participants were shown three
Flowjo workspaces, which contained a series of fully stained EC 2102 Ep fcs files. One identical file
was included in each workspace, and participants were instructed to gate through a three-plot
sequence to identify target cells (using Forward Scatter (FSC) plot against Side Scatter (SSC)), then
the option to gate single cells, and finally to apply a quadrant gate to the double positive stem cell
marker population to identify the final percentage cell count of respective pluripotent stem cells.
Flowjo was the choice of platform due to access of the software across all three collaborator and
participant sites, meaning a higher number of participants were likely to be familiar with the

platform.

Participants were also provided with isotype controls and FMO controls in each workspace to aid
gate application and were allowed to use whatever manual gating tool on Flowjo they felt best to

gate the population in hand. Due to the variety of ways in which people gate single cells, these axes
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were left to the discretion of the participant and their preference. An overall schematic of the gating
sequence they were asked to follow is shown in Figure 33, and participants gated each workspace
of files separately to ensure a correct quantification of uncertainty through standard deviation

calculation in accordance with Gauge R&R methodology principles described earlier.

_ Quadrants
g Target Cell =% = Single & & | for double
o Population cell % positive
o events population
FSC-A PerCp +

Figure 33 Gating sequence participants were asked to follow, to identify the target single cell population, with double
positive expression for both Pluripotency markers

This data exercise aims to identify if variance does exist when reporting results from the same data
and that uncertainty values can be calculated for participants to contribute towards an overall
uncertainty estimation. This was designed to estimate a general absolute result median and
uncertainty. Calculating significant differences between certain groups or testing conditions was
irrelevant, meaning that standard power calculations to determine appropriate sample size could
not be used. In addition, a one-sample T-test cannot be used because it requires a hypothesised
value for the sample to differ from. Because this data set was supposed to be exploratory, the initial

results from this uncertainty study can be used for future comparison.

When completing Gauge R&R studies it is recommended for repeats to exceed n > 10 [133], so
that there is a good number of participants for inter-participant comparison of results. To calculate
uncertainty, it is recommended that a minimum number of measurement repeats to take is
between 4 to 10 to try and best eliminate anomalies whilst being time efficient [142]. Participants
made 3 repeat measures, because when trialled, 4 repeats could not be successfully conducted

within a 1-hour time slot, whereas 3 repeats could be comfortably achieved and this still allows for
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SD to be calculated. A 1-hour slot was used because this was the maximum allowance given for

each participant’s time, agreed across the three institutions.

4.2.5 Uncertainty Calculation

Once studies had been completed, target cell, single cell and final percentage positive cell

population metrics were extracted from the data, using the results from the identical repeated file

situated in each Flowjo workspace. These were then used to calculate a mean cell count, SD and

CV for each gating stage, per participant using Microsoft Excel software. Finally, a combined

uncertainty (uc) was calculated by combining these Type A uncertainties by summation in

quadrature. The uc value was expanded with a coverage factor of k = 2, representing a 95 %

Confidence Interval for the uncertainty statement, which gave each participant a representative

expanded uncertainty (U) figure, to show individual variance. The mathematical methodology used

to calculate uncertainty metrics has been previously discussed in Section 2.4. An example of the

data extraction through to calculation of metrics and uncertainty can be seen below.

Total Cell Events within each gate in sequence

Figure 34 Example of data extraction through to calculation of absolute results and uncertainty

Total Starting Cell Events Repeated Filg Target Singlet Double Positive
30000 Repeat 1 |Wsp1, File 1 6027 5981 5972
Repeat 2 [Wsp2, File 2 6097 6041 6012
Repeat 3 [Wsp3, File 3 6608 6562 6515
Respective Percentages of Cell Events in each gate as a
function of total starting cell number
Target Singlet Double Positive
Wsp1, File 1 20.09 19.94 19.91
Wsp2, File 2 20.32 20.14 20.04
Wsp3, File 3 22.03 21.87 21.72
Target Singlet Double Positive
Average 20.81 20.65 20.55
STDEV 1.06 1.07 1.01
CcV 5.08 5.16 4.91
[k I 2
[uc [ 1.81]
[u [ 3.62]
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4.3 Validation of Gating Tools and Plot Visualisations

A small pilot study with 8 participants from 1 site was conducted to see if the gating tools or plot

visualisations used had an impact on the range of variation seen within the analysis. This fed into

the main study to possibly restrain visualisation and gating tool variables that participants used in

the software.

The repeated .fcs files used for repeats in Flowjo workspaces within the main study was analysed

by the participants in a random order of repeats. Three visualisation methods were tested; a

contour plot, a greyscale plot and a pseudocolour plot (Figure 35). The target cell population was

gated using three different tool types: an ellipse, a manual polygon tool and an autogate tool (Figure

36). For each gating tool and visualisation used, three randomised repeats were taken.

a) Contour Plot

SSC-A

b) Grayscale Dot Plot
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Figure 35 Visualisations tested within pilot to see if data visuals affect participant gating variance
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Figure 36 Gate tools tested to see if they have an impact on participant gating variance
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This data was captured over 3 separate 30-minute sessions, as shown in Figure 37. No participants
were deemed colour blind (when tested using a Farnsworth-Munsell D-15 test (Figure 38)), which
is a potential source of variance for a participant and could be investigated as part of future work.
A Farnsworth-Munsell D15 test uses 15 coloured discs that range from the blue end of the colour
spectrum to the red end. These discs are randomly mixed up and participants had to arrange them
from what they considered to be blue to red. These were then analysed by the study coordinator,
because the reverse of the discs has a numerical order. If the order of the numbers is not correct,

this can indicate colour blindness.

| Session 1: Contour | | Session 2: Grayscale | | Session 3: Pseudocolour ‘
| Polygon |Autogate | Ellipse | Polygon jAutogate |
1
Participant 1
Participant 2
Participant 8

Figure 37 Visualisation pilot study structure diagram for comparison of gating tools and visualisation between
participants

@ W ._ =

Figure 38 Farnsworth-Munsell D-15 Colour Vision Test; a) Random pieces for participants to order, b) Correct order for
colour tags
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The orange dashed boundaries in Figure 37 separate the reproducibility boundaries for each tool
and plot, from which an understanding of gating range was looked into. The cell count percentage
as a function of the original file cell event number (30,000 events) was used for comparison. SDs
of the three repeats were compared for each tool and plot, with total inter-participant SD ranges
for each configuration shown in Figure 37 for tool types and plots used [180], generated using a

combination of Microsoft Excel and Matlab R2019a for processing and visualisation respectively.

Contour Flot Greyscale Plot Pseudocolour Plot
0.03 T T T 0.03 T T T 0.03 T T T
0.025 1 0.025 0.025 | 1
0.02 1 0.02 0.02

0.015 0.015 0.015

Range of inter-participant SD for plot visualisation (%)

0.01 0.01 0.01
0.005 0.005 0.005
] 0 0
s o Lo L == Lok L oo Lo
m\‘:’”‘*‘a @ ?@*q’o w@q”a o ?0“9’0 w@“”’a e ?@‘*q’o

Figure 39 Ranges of inter-participant SD for each gate tool on each visualisation plot

Figure 39 shows that using a greyscale plot will potentially contribute greater variance to the overall
measurement, especially if using an autogate tool. Unlike using this tool on a contour plot or a
pseudo colour plot, greyscale provides no other perception of density of the cell events, leaving
participants to make less informed decisions, increasing variability in their measurements. The
autogate tool also had significantly higher between participant range when using pseudocolour
density plots. The autogate tool could not effectively separate the boundary between the target cell

population and the dying cells. This software issue led to participants making variable decisions on
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where to place the gate. During the sessions, participants commented on the autogate tool, often

feeling they either cut out too much of the population or included irrelevant cells from another.

Contour plots had the smallest difference between gate tool ranges, possibly because the contour
lines provided guidance for participants to follow and place gates. Even though the ellipse gate
fitted the target cell population very well, the manual polygon has consistently low variation range
on each visual plot. This may be because the participant ultimately has more control over the shape
of the gate and the placement of gate indices. Whilst the autogate tool allows adjustment once the
gate has been placed, it produced so many indices that participants did not want to spend the time

adjusting them all.

Ultimately, the tool used will be based on a variety of factors including but not limited to the general
shape of the cell population, density, scaling, personal preference and knowledge of other tools (or
lack of knowledge). Overall the SD ranges shown here are very small so the choice of visual plot or
gating tool chosen may not have a significant effect on the overall measurement, however, the
pseudocolour plot will be used for the main study, because it shows generally low variance with the
gating tools tested and it is also the default layout in the Flowjo software used. One should be aware
of other factors that can influence these measurements such as colour vision and time taken to
complete these studies. In high-pressure situations where participants may not have full colour

vision, results could be skewed or greater in uncertainty.
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4.4 Results & Discussion

4.4.1 Flow Cytometry Basic Gating Exercise absolute results
The absolute results reported here are the targeted cell population that participants were asked to
identify using the gating sequence defined in Figure 33. These are akin to what would be reported
in literature for specific cell types, in this instance it is single, pluripotent stem cells. The uncertainty

of the gating sequence will be discussed in the next section of this Chapter.

Table 21 Measures of Location for the absolute results of the Base Gating Study (%)

Arithmetic Mean 32.1
Median 325
Mode N/A
Minimum 19.7
Maximum 51.3

Table 22 Measures of Spread for the absolute results of the Base Gating Study (%)

Range 31.6
25t Percentile 30.6

75t Percentile 33.9
Interquartile Range 3.3
Standard Deviation 5.7
cv 17.8

Median Absolute Deviation 1.9

Table 23 Measures of Skew for the absolute results of the Base Gating Study (%) (3dp for better resolution)

Skewness 0.492
Skewness standard Error 0.383
Skewness z-score 1.280
Kurtosis 3.271
Kurtosis Standard Error 0.750
Kurtosis z-score 4.560

Table 24 Measures of Normality for the absolute results of the Base Gating Study (%) (3dp for better resolution)

Shapiro-Wilk statistic 0.904
Significance 0.003
Normal/Non-parametric Non-Parametric
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Using descriptive statistics to give a general report on the size and shape of the data, the
distribution approximates to a normal shape because the mean and median are very close
together, as quoted in Table 21. However, the Shapiro-Wilk statistical test for normality (Table 24)
significantly concludes the distribution is not normal. This non-parametric definition is most
probably indicated by the spread of the distribution, rather than any specific location parameters.
Measures of spread (Table 22) show that there is a wide range between the highest and lowest
participant averages, but the IQR of the participant data fell within a boundary of 3.3%, which is

9.5 times smaller than the overall range.

The measures of skew tests further confirm the non-normality due to data extremes (Table 23). The
actual skewness measure indicates the distribution is normal, but the kurtosis of the data set
confirms that the distribution is heavily affected by ‘outliers’ in the data. These extreme values can
be seen in Figure 40. Most participant averages lie close to the median, and the error bars show +

1SD from each individual’'s repeated measures.
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Figure 40 Absolute Results of Target Cell population, represented by each participant's average and * SD.

119



Chapter 4: Basic Uncertainty Model

Participant deviation from the median has been more clearly visualised in Figure 41, with bars
depicting each participant’s average from the median group value. The SD limits have also been
plotted, because these are most commonly used within traditional manufacturing to define out of
control/out of specification limits. 76 % of participants are within 1SD of the median, showing good
corroboration of final results. Of those who fell out of bounds, two participants had results above +

1SD, one participant above + 2SD, one participant below - 1SD and three participants below - 2SD.

20
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10
Median + 15D I

-10 ' Median- 2

Deviation of Average User Result from Median (%)
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Figure 41 Participant average result deviations from overall group median.

The other control limits discussed in Chapter 3 have also been applied to this data, to further
exemplify the difference between acceptance performance if different boundaries are specified by
manufacturers. Figure 42 shows the control limits applied to this data set, cutting off different high
and low extreme values, based on the mean and median of the data set. There is central tendency
so there is no skewness of the data which could cause more outliers on one side of the distribution

than the other.
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Figure 42 Acceptance boundaries applied to the Basic model averages to show difference in outlier classification.

To compare both positive and negative deviation data extremes, Figure 43 shows participant BO8's
gating strategy, one of the participants very close to the group median value. The three images
show the gating sequence steps used to define the final population cell count, with BO8’s three
repeats collated onto each sequence step image. This layout has been used for the remainder of
qualitative participant analysis figures throughout this thesis. By comparing the extreme
participants to a median participant, there are obvious differences between participants when
identifying populations based on the visualised density. This is also coupled with personal
preferences on inclusion or exclusion of data points to further refine the data set in search of a

particular target.
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Figure 43 Participant BO8 Gating Strategy interpretation, close to median result.

Focusing on those who fell outside of 2SD, participant BO9 returned the highest population average
(51.3%). Reviewing the participant’s gating strategy has shown that most of bias is due to their
initial conclusion of a larger cell population, consisting of doublets, which should have been
excluded if following the defined sequence. This gating strategy can be seen in Figure 44, also

showing a high variance in how this initial gate was applied.
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Figure 44 Participant BO9 Gating Strategy interpretation

Participants AO8, BO5 and CO9 also fell outside of this specification limit, with an average value
significantly lower than the group median. Figure 45 to Figure 47 show their respective gating
strategies, again noting that in each case, their first gate applied is situated within the target

population, and therefore causing the low final result.
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Figure 45 Participant AO8 Gating Strategy interpretation

Participant AO8 did not gate a single cell population because this was not something they have
previously experienced in their own FC processes. Participant AO8’s final quadrant gates intersects
the final population, because gates were applied against control files and not checked against the
fully stained sample files. In this instance, poor gating ‘clean-up’ procedures and awareness of
preliminary ‘data-cleaning’ processes have potentially caused this variance, alongside the

participant perception of density.
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Figure 46 Participant BO5 Gating Strategy interpretation
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Figure 47 Participant CO9 Gating Strategy interpretation

Participants BO5 and CO9 have applied their gates within the target cell population in the first

instance. They all preferred to apply more refined gates to have better certainty of result to
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removing any boundary outliers early on. These participants have all used different strategies to
further clean the data to identify the single cell population. Participants were allowed to choose
what axes they preferred to gate the single cell population, so even though each axis configuration

does not have much noise, it will contribute a small amount of variation.

This analysis of the absolute results used to represent cell populations shows a 31.8 % cell count
range between participants when determining final single pluripotent cell population percentages.
The further qualitative analysis of the extremes identifies 4 participants who fall outside of initial
control limits. These extreme participants account for over half of the cell population percentage
range. If these 4 extreme participant values were removed, the range would fall to 16.3% (a
difference in cell count of 4,890 cells) between participants (minimum value of 26.0% and

maximum value of 42.3%).

Potential inclusion of more information of areas to gate would aid location of gate placement to
improve general result conformity, although this may not necessarily improve intra-participant

variability.

Variability of absolute results is commonly assessed using the CV, which combines the average and
standard deviation of final cell count measurand. The distribution histogram of participant CV of
reported results can be seen in Figure 48, plotted on top of 3 specification limits derived from the
ICSH boundaries. The ICSH and ICCS have set imprecision criteria for Cell-based fluorescence
assays as a desirable target of < 10 % CV or when dealing with rare-cell cases or minimal residual
disease detection < 20 % CV is acceptable [71]. In this study ‘Good Performance’ is represented at
5 % CV, half of the ICSH guideline acceptance criteria. ‘Satisfactory Performance’ shows the amber
region at 10 % CV and the ‘Revision Required’ limit is set to 20 % CV, because this basic model is
not designed to detect rare cell events, it is designed to be easy for participants to complete with

no questionable populations or events. Therefore, this amount of variance is not ideal in this
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exemplar. These boundaries have been defined using the equation of a straight line in Equation

20, where m is the gradient of the line and c is the y-axis intercept.

y=mx+c

Equation 21 Equation of a straight line

The optimal scenario would have all 38 participants (n) with < 1 % CV, which sets the total height
at y-intercept of the graph. Using the equation of a straight line, boundaries can be drawn from the
optimal CV position, or y-intercept, to the uncertainty specification limits on the x-axis. A right-angle
triangle shape shows progression towards the desired positive skew and optimal variation
positions. Applying this to a traffic light style quality monitoring diagram would show performance

levels within a facility and ideal variance which can be quickly and easily understood by all.

In a similar manner, this schematic has also been used for uncertainty of measurements

throughout this thesis, because this is a measure of variability that combines SDs from the

additional gating steps in the sequence, not just the final gate which is used to calculate CV.
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Figure 48 CV Performance of Participant Absolute results
Using these guidelines as boundaries, two participants fall outside of the ‘good’ and ‘satisfactory’
performance regions. These extreme outliers had more variation within the final quadrant gate they
drew when identifying the final positive pluripotent cell population. Participant AO8 had the highest
CV, and their final gate can be seen already illustrated in Figure 45. AO8 intersects the final
population more than the rest of the participants and has one of the three repeated gates

significantly higher than the rest, causing greater variation between the repeated measures.
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Figure 49 Participant CO1 Base Model Study Gating interpretation
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Participant CO1 (Figure 49) also had a CV that fell within the ‘Revision Required’ region of the graph,
and again the variation is caused in the final gate due to one of the repeats being placed
significantly higher than the other two. It can be seen in the first two gates applied in participant
CO1’s sequence that they are also very variable throughout the gating sequence, however, this is
not captured within the representative population CV measurement, because it is only calculated
from the final population cell counts derived using the whole sequence. Separate CV values could
be calculated individually for each gate applied in the sequence. However, this can become
cumbersome to use because the amount of data to analyse has tripled. In more complex sequences

this would be even more time consuming.

Measurement uncertainty provides a way of combining variability measures (SDs) of each gate
within the sequence, to provide a measurement that is more representative of the components of
the gating sequence. When extremes in measurement uncertainty arise, uncertainty values can be
easily deconstructed to identify which part of the gating sequence is responsible for causing

variation within the measurement.

4.4.2 Flow Cytometry Basic Gating Exercise uncertainty results
The uncertainty results reported here are a combination of the three gating stages defined in Figure
33. The uncertainty values have been quantified following the prescribed methodology in Chapter
2 and Section 2.5. The uncertainty would better represent variance of measurements with greater
confidence, because this combines variability from all gates applied in the sequence, not just the

variance of the final gate applied.

Table 25 Measures of Location for Uncertainty of the Base Gating Study (%)

Arithmetic Mean 4.0
Median 3.6
Mode N/A
Minimum 0.7
Maximum 13.1
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Table 26 Measures of Spread for Uncertainty of the Base Gating Study (%)

Range 12.4
25t Percentile 2.0

75t Percentile 5.6
Interquartile Range 3.6
Standard Deviation 2.7
Median Absolute Deviation 2.0

Table 27 Measures of Skew for Uncertainty of the Base Gating Study (%) (3dp for resolution)

Skewness 1.288
Skewness standard Error 0.388
Skewness z-score 3.320
Kurtosis 2.311
Kurtosis Standard Error 0.759
Kurtosis z-score 3.045

Table 28 S-W test for normality for Uncertainty of the Base Gating Study (%) (3dp for resolution)

Shapiro-Wilk statistic 0.900
Significance 0.003
Normal/Non-parametric Non-parametric

Similar to the descriptive statistics for absolute results for this study, the mean and the median are
close together, indicating a normal distribution, as monitored in Table 25. The median is less than
the mean, indicating a slight positive skew to the data. This is further supported by the Shapiro-
Wilk test for normality, shown in Table 28, indicating that the distribution is non-parametric in

shape, indicating skewness.

There is a wide range (12.4 %) between minimum and maximum participant uncertainties, which
does not include Participant B19. Their Standard Deviation of zero (as seen in Figure 50), further
showed that they had copied gates across the repetition workspaces, giving a comparable absolute
result but no measure of precision, disqualifying them from this uncertainty analysis. Table 26 also
shows the interquartile range as 3.6%, indicating a strong central tendency, because half of the

data lies within 31% of the total distribution.
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Figure 50 Expanded Uncertainty of all Participant Gating within the Base Model Study

The measures of skew tests (Table 27) further confirms this non-normality, because the skewness
z-score also falls outside of the 2.58 bandwidth of normality (as described in Chapter 2, Section
2.2.2). The kurtosis z-score also falls positively outside of the 2.58 bandwidth (both skewness and
kurtosis use the same scaling), although it is not as large as the skewness value, meaning the non-
normality is more likely due to the shape of the data than extreme data points, although these can
still have a significant impact on the final distribution statistics. This distribution shape can be

observed within Figure 51, showing the positive skew with 2 or 3 larger uncertainty extremes.
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Figure 51 Histogram of Participant Uncertainty from repeats of Base Model Study

Whilst deviation from a median can help to explain the distribution parameters, when analysing
variance, a positively skewed distribution towards zero is preferred. Comparing uncertainty in its
size order allows boundaries to be set for permissible specification limits for product

release/laboratory quality that increase in value.

The ICCH and ICS imprecision values described earlier for measurement CV have also been used
here to define example specification limits if monitoring participant uncertainty. CV is a measure
usually used to represent variability of a final metric because it considers both the mean and SD of
a measurement. This only works for the final cell population count, whereas uncertainty combines
in quadrature the SDs of all the gates applied in the sequence. In this instance the CV specification
limits have been substituted for uncertainty, because there is a positive correlation (using a line of
best fit) between the result CV per participant and their respective uncertainty for this cell model
(Figure 52), and no other uncertainty specifications have been defined in the public body of

knowledge from research or industry.
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Figure 52 Final Cell Count Population Percentage versus Gating Uncertainty for participants
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Figure 53 Participant performance monitoring diagram for uncertainty results of basic model
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Figure 53 shows the base model uncertainty histogram from Figure 51, plotted on top of 3
specification limits derived from the ICSH boundaries. ‘Good Performance’ is represented at 5 %,
half of the ICSH guideline acceptance criteria. ‘Satisfactory Performance’ shows the amber region
at 10 % and the ‘Revision Required’ limit is set to 20 % once again. A permissible limit for
uncertainty (pU) [181] has also been plotted as another variance discriminator, defined in Equation

2, assuming a 95 % Confidence Interval to the data.

pU = 2.39 x SD

Equation 22 Permissible Uncertainty

Participant CO1 (Figure 49) had an uncertainty that fell within the ‘Revision Required’ region, with
participants AO7 and B16 being at the higher variation end of ‘Satisfactory Performance’. Figure
49, Figure 54 and Figure 55 show their respective gating strategies, compared with Participant B18

(Figure 56) who had the lowest uncertainty, exemplified as an ideal participant in this instance.

Participant CO1’s uncertainty can be attributed to the three gate phases drawn for target cells,
single cells and the double positive pluripotent cells in a respective 40:33:27 % split. The SDs are
the inter-participant group maximum for each gate applied in sequence. The target gate identifies
the same population each time, but varies to capture smaller, possibly dying cells and varies again
to make the ellipse more spherical. Consistency of gating shape could reduce this variability slightly,
provided that the cell population boundary is well defined. Single cell gate variance is attributed to
2 of the 3 gates being consistently smaller in size, with the third gate capturing the majority of the
population. CO1 applied smaller gates on this window with each repeat, suggesting potential
refinement (from memory) for each session repeat. The final gate had understandably smaller
variance in comparison, being produced by one offset quadrant refining the density of the

population.
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Figure 54 Participant AO7 Base Model Study Gating interpretation

Participant AO7’s uncertainty is attributed to the target cells gate, single cells gate and double
positive in the ratio of 44: 36: 20 % respectively. Most of the variance comes from the target cells,
where differences can be seen in the gating at the boundary of dying cells, in a similar manner to
Participant CO1. The single cells gate is causing variance because of the gates being applied very
closely to the corners of the dense cell population. A small fraction of the tip of the population has
caused a significant difference in the number of cells captured in the gate each time. Finally, the
gquadrant gate has two repeatable gates applied, with one gate applied further out. Even though

this captures more of the cell population this is still different from the other two gates drawn.
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Figure 55 Participant B16 Base Model Study Gating interpretation

Both the target and single cell gates contribute 35% to B16’s gating uncertainty. The target cell
variance is likely due to varied inclusion of the smaller, possibly dying cells which caused variance
for CO1 and AO7, because this is a region of gating difference overlaying more dense regions of
data. The single cell variance is likely to be due to one gate applied which cuts off the top-right

underside ‘corner’ of the data.
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Figure 56 Participant B18 Base Model Study Gating interpretation

Participant B18 had the lowest uncertainty at 0.7 %, with their respective gating strategy shown in
Figure 56. B18’s initial target gate was repeatable in shape, as well as having minimal distance
between gates at the cut-off for dead or dying cells, which has shown to cause variance for other
participants. Again, their single cell gates were very similar in shape, and they captured the whole
of the population without cutting any edges. Finally, the quadrant gates were very precise, having
minimal effect because they do not intersect any high-density areas due to good use of control files
provided. Control files provided were isotypes, Fluorescence Minus-One (FMO) controls and a
negative sample, which were used to set the position of the gates using a positive/negative split

on respective axes.

4.5 Chapter Conclusions

The EC 2102 Ep Cell line used was a good model for the baseline study because it has been shown
to not differentiate over time, providing a good starting point for analysis due to simplicity of marker
discrimination and very limited biological variation. Hence there are very limited/negligible
upstream effects on downstream analysis. The studies run with the 3-workspace configuration for
repeats worked well within the time available for participants so this structure should be used going
forwards. The three-step process that each participant had to work through was also straight-

forward to follow from the image, ensuring there was little deviance from the prescribed method.

Initial validation of plots and tools used has provided an interesting insight into how different

layouts can affect subjectivity and therefore results. Greyscale plots are currently uncommon as

134



Chapter 4: Basic Uncertainty Model

technology has progressed to allow more data dimensions to be shown at once, but the initial pilot
has shown they should not be used over colour plots due to increased variance in analysis
reproduction. A greater number of participants in this study would strengthen results and
conclusions, but generally manual polygon tools provide more control over gate placement and

exhibit a smaller difference in range across different visual scenarios.

The mean and median values (32.1 % and 32.5 % respectively) for the absolute cell count reported
results are very similar, usually indicative of a normal distribution but upon further investigation the
population is non-parametric, due to the distance of extreme values. These extremes appear to be
attributed to variance in the first target cell gate applied. Due to the noise, debris and doublet
populations present, more training should be given to Cytometrists when learning to gate, ensuring

greater uniformity of results.

Knowledge of correct populations and decisions made on cell cluster boundaries could aid
reproducibility between participants. Similarly, decisions on population density boundaries should
be determined within a ‘gating specification’ possibly through the validation of population

percentage and use of tools such as Gating-ML to determine gate shape and size parameters.

CV of measurements is a commonly used tool throughout Flow Cytometry to quickly monitor
variation, however, this only accounts for repeat measures on the final gate of a sequence.
International committees have defined acceptance criteria for Flow Cytometry CV measurements,
which have been applied and adjusted to assess initial base model CV results here, although other
variance criteria have been defined, as discussed in Chapter 1. Reviewing these extremes shows
variability in the final gate applied, but it also highlights that other variability seen upstream of this
gate is not taken into consideration, making measurement uncertainty a more suitable metric for

accommodating variation throughout the whole gating sequence.
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This base model with 3-step sequence has shown that calculating measurement uncertainty is
possible for participants by using traditional measurement uncertainty methods. This was
calculated successfully, by presenting participants with three repeated workspaces of data,
informed by Gauge R&R testing layouts and extracting one repeated file located in each workspace
randomisation. The Gauge R&R randomisation layout was useful to test but it caused some
participants to exceed the 1-hour time limit due to the number of files used around the main
analysis file. It also caused slightly more difficulty in traceability of the repeated file across each
workspace. In subsequent Chapters this complexity of study design and randomisation will not be
used, in order to have greater control over the data analysis variables which could affect the overall

uncertainty contributed from participants.

The uncertainty was also skewed with an absolute median of 3.6 %, although it is preferable to
have as low an uncertainty as possible to reduce measurement variation passed on to the final
reported result. The overall range of participant uncertainty was 12.37 %, which is outside of the
‘satisfactory performance’ boundary assumed from the ICCH data, so revision of more extreme
participants has been completed, showing that when data is more clustered and noisy at the start

of the analysis sequence, this can have a knock on effect to their uncertainty contribution.

Acceptance limits determined from the ICSH have enabled this uncertainty data to be compared
and put into manufacturing quality control context using the diagram generated in Figure 53.
Simple traffic-light visuals have been proposed here and help show the quality status of a
product/service/facility quickly and can be easily updated and adapted to suit the number of
participants/participants and continuous improvement quality levels. A better knowledge of
uncertainty visualised in this way potentially improves quality by addressing gating that falls outside
of satisfactory boundaries and a good working culture that does not attribute blame can help a

facility grow to tighten overall measurement uncertainties.
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4.5.1 Consolidation of Objectives

This study ran smoothly, acting as a good baseline for comparison of absolute reported
results, CV and uncertainty measures. The session structures were suitable in time, and
3 repeats was suitable for participants to understand study context, but not become

tired.

A pilot study showed that different plot visualisations and gating tools contribute variance
to a measurement, albeit a small amount. Grayscale plots are not recommended for use
as they increase inter-participant variance, and they do not include as much information

about density on the plot.

Extreme values in absolute reported results were due to participants either over
constraining or under constraining the initial target cell population within the first gate.
In some cases, lack of knowledge of using controls to set gates led to variance in final
pluripotent population metrics.

Extreme values in uncertainty results were due to participant variability in applying a gate

to separate the target cell population from the dead or dying cells.

The performance monitoring diagrams visualised in Figure 48 and Figure 53 provides a
straight forward way to monitor uncertainty performance with respect to the number of
people in the study and defined quality satisfaction limits. These will be used in
subsequent chapters to monitor uncertainty performance in more complex gating

scenarios.

This study defines participant uncertainty for a highly constrained, very stable 2 colour
panel cell model, which can be used as a baseline for development into more complex
cell models, to monitor potential growth of between participant uncertainty in more

difficult analysis scenarios.
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Chapter 5: Intermediate Uncertainty Model

5.0 Introduction to the Chapter

Chapter 5 introduces the second uncertainty gating exercise (intermediate model), as part of the
sequence of studies which monitor participant variance in comparison to complexity of data. As
discussed in the prelude, this second uncertainty exercise is intermediate, to further monitor
uncertainty in a more complex analysis scenario. This is more representative of FC analysis and T-
cell lineage markers used to monitor cell therapy products. This continues to build the pathway for
further uncertainty gating studies described in Chapter 6 with comparisons drawn between all three
models in Chapter 7. Previously in Chapter 4, only three gating steps had been considered with an
immortalised cell line (Basic model), whereas this second uncertainty stage tackles more complex
FC data analysis using primary Peripheral Blood Mononuclear Cells (PBMCs) which are used as a
basis for many autologous engineering cell therapies. This becomes more relevant for the CGT
manufacturing community, therefore potentially providing a more translational application of
uncertainty to FC measurements. This Chapter uses a five-step analysis sequence, and similar to
Chapter 3, sees participants analyse this data across two sessions using their own judgement and

then using a diagrammatical protocol respectively.

5.1 Chapter Aims

This Chapter develops comparison of uncertainty in more complex FC analysis strategies. The fit of
this Chapter to the thesis can be seen in Figure 57, specifically within the orange dashed box,
providing development for the core hypothesis: as complexity of FC data and processing increases,

measurement uncertainty contributed from the participant will also increase.
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Figure 57 Diagram of Chapter position within the whole Thesis

5.1.1 Chapter Aims & Objectives

The Aims and Objectives of this Chapter can be defined as follows:

o Design an intermediate two-phase study structure to measure CV and uncertainty of

participants when gating an intermediate complexity set of FC data.

o Identify whether using diagrammatical protocols to apply gates reduces between

participant absolute reported results and uncertainties.

o |dentify what causes extreme values in absolute reported results and uncertainty

measurements by reviewing extremes from this intermediate study.

e Further test monitoring tools for understanding uncertainty within a more complex

participant study or facility.
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5.2 Methodology

Primary Peripheral Blood Mononuclear Cells (PBMCs) were acquired from LGC-ATCC cell banks for

use within this phase of research (Cat Number: PCS-800-011, Lot number: 80628171).

5.2.1 Cell Selection and Culture

The vial of PBMC material acquired from LGC-ATCC cell banks was primary biological material,
meaning this has been taken straight from the donor and separated to remove additional whole
blood cell types. It has not been expanded in vitro before cryopreservation, so this material was
handled in accordance to the Human Tissue Act (HTA) regulations [182]. Before acquiring this
material, the Certificate of Analysis for the PBMC material was obtained, along with confirmation of
donor consent from the supplier for this material to be used for research purposes. These
documents can be found in Appendix C. Human Tissue Act training was also completed within the
Centre for Biological Engineering, Loughborough University and through the Medical Research
Council (MRC) online Research and Human Tissues legislation (Certificates in Appendix C), to

ensure the correct handling, disposal and ethical treatment of the material was adhered to.

Avial of ATCC PBMCs (25 x 108 cells, suspended in 1 mL of cryoprotective fluid) was removed from
a liquid nitrogen Cryobank and was thawed in a water bath for 3 minutes until a slither of frozen
material remained. The material was topped up 1:1 with RPMI 1640 cell culture media (Cat Number
11875093, Lot Number: 1906058) (fortified with 10 % v/v Fetal Bovine Serum (FBS)), mixed slowly
and transferred into a centrifuge tube. 1 mL of Flow Cytometry buffer fluid (Biolegend Cell Staining
Buffer Cat Number 420201, Lot Number B228788) was used to wash the inside of the cryovial to
remove any additional cells which remained after transfer. This 1 mL flow buffer suspension was
also added to the centrifuge tube. The centrifuge tube was then topped up to 25 mL with an
additional 22 mL of RPMI 1640 cell culture media, and a 250 uL sample was taken for an initial

cell count. Three counts were completed using a Nucleo-Counter® NC-3000™ and ChemoMetec
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Vial-Cassettes™, to stain and measure cells with Acridine Orange and DAPI dyes, calculating an

average of 0.8 x 108 cells / mL, totalling approximately 20 x 106 cells within the resuspension.

The remaining cell suspension was centrifuged at 300 g for 5 minutes, transferred into a Biological
Safety Cabinet (BSC), and the supernatant removed from the cell pellet. 29 mL of RPMI 1640
fortified media was added to a T75 flask, and the cell pellet was resuspended and slowly mixed
with 1 mL of cell culture media, before being transferred into the T75 flask. This T75 flask was
moved into a humidified incubator at 37 ° C with 5% CO2, for 24 hours to allow the cells to proliferate.
To comply with HTA good practice, a sign was placed on the incubator to notify other users of the

contents, and the material location was updated on the biological material database, Procuro.

After 24 hours had elapsed, cells were counted by taking a 250 uL sample from the mixed cell
suspension. An average of 0.83 x 106 cells / mL was measured from the sample, totalling
approximately 24.7 x 106 cells within the total resuspension, at an average viability of 94.8 %. The
increase in cell count after 24 hours shows a successfully maintained cell population after being
thawed, so the cells could be used for further analysis. In this instance, further cell culture or
monitoring of certain cellular features was unnecessary because only ‘snapshot’ fcs files of the
PBMC material were required. PBMCs are suspension cells, so no disassociation process was
required to remove the cells from the surface of the tissue culture flask. The cell suspension was
transferred into a 50 mL centrifuge tube and centrifuged for 5 minutes at 300 g to form a cell

pellet.

5.2.2 .fcs File Generation
A series of fcs files were generated using the primary PBMCs kept in culture for the last 24 hours.
Cells were resuspended in 2.5 mL of Cell Staining buffer and gently mixed, then recentrifuged to
form a pellet and resuspended in 2.5 mL of Cell Staining buffer to wash the cells and remove any
cell culture media remaining. 0.1 mL aliquots of the master cell suspension were placed into

separate labelled microcentrifuge tubes so there were approximately 1 x 106 cells per tube (three
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fully stained samples, one unstained sample, one live/dead stained sample, five single stain
controls, five isotype controls, five FMO controls). The unstained sample was wrapped in foil and

placed in a 4°C fridge because this was not needed until the final analysis.

1 pL of Biolegend Zombie Aqua Viability dye (Cat Number: 423101, Lot Number: B243783) was
added to all tubes and gently mixed, except for the unstained sample. The Eppendorf tubes were
covered in foil to minimise light exposure and left to incubate for 20 minutes. Amine-reactive dyes
or Live/Dead fixable dead cell stains cross the cell membrane of dead cells and react with free
amines in the cytoplasm. Live cells exclude these dyes when they are intact so free stain can be
washed away after staining, allowing for discrimination of live and dead cells in the population
[183]. Amine-reactive dyes were used because they could be compensated for within the Flow
Cytometry panel using amine-reactive compensation beads. Once incubated, all cells were washed
twice with 1 mL Cell Staining Buffer, centrifuged (300 g for 5 minutes) and supernatant removed.

Cells were then resuspended in 100 pL Cell Staining Buffer.

5 uL of Biolegend Human TruStain FcX™ Fc blocker (Cat Number: 422301, Lot Number: B235079)
was added to all cell samples aside from the isotype controls and incubated covered in foil for a
further 15 minutes. Human Fc receptors are expressed on a variety of cells and cells with Fc
receptor expression can sometimes give false positives or false negative results within
immunofluorescent staining because of Fc receptor non-specific binding. Human TruStain FcX™ is
a blend of specialised IgG immunoglobulins that join to Fc receptors to stop non-specific binding
occurring. Once incubated, all cells were washed twice with 1 mL Cell Staining Buffer, centrifuged
(300 g for 5 minutes) and supernatant removed. Cells were then resuspended in 100 uL Cell

Staining Buffer.

The live/dead sample then kept alongside the unstained sample in the fridge and was removed
when Flow Cytometry analysis was undertaken. The remaining cells were then stained according to

the following stain protocols in Table 29, Table 30, Table 31 and Table 32. Isotype controls for each
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marker were stained with the respective antibody isotype control, single stain controls were stained
with just the antibody marker for that specific stain and the FMO controls were stained with all
stains aside from the stain aligned to that specific channel. This is to monitor any fluorescence

spillover into the required channels from other markers being used.

The antigen markers used for the Single Stain controls (Table 29), FMO controls (Table 30) and
Fully Stained Samples (Table 32) are Biolegend FITC anti-human CD3 antibody (Cat Number:
300306, Lot Number: B218086), Biolegend APC anti-human CD4 antibody (Cat Number: 357405,
Lot Number: B223335), APC/Cy7 anti-human CD8 antibody (Cat Number: 300926, Lot Number:
B231191), Biolegend PE anti-human CD45RA antibody (Cat Number: 362552, Lot Number:

B210221) and Biolegend BV421 anti-human CD56 antibody (Cat Number: 423101, Lot Number:

B246952).
Table 29 Staining volumes for Single Stain Controls
Channel Antigen FITC Single APC Single APC/Cy7 PE Single Bv421
Marker Stain Stain Single Stain Stain Single Stain
633 nm CD3 FITC 5uL
laser,
660/20 filter
488 nm CD4 APC 5 pL
laser,
530/30 filter
633 nm CD8a 5uL
laser, APC/Cy7
780/60 filter
488 nm CD45RA PE 5L
laser,
585/42 filter
405 nm CD56 Bv421 5L
laser,
450/50 filter
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Table 30 Staining volumes for FMO Controls

Channel Antigen FITC FMO APC FMO APC/Cy7 PE FMO BV421 FMO
Marker FMO
633 nm CD3 FITC 5uL 5uL 5uL 5L
laser,
660/20 filter
488 nm CD4 APC 5uL 5uL 5uL 5uL
laser,
530/30 filter
633 nm CD8a 5L 5uL 5uL 5L
laser, APC/Cy7
780/60 filter
488 nm CD45RA PE 5uL 5uL 5uL 5uL
laser,
585/42 filter
405 nm CD56 Bv421 5L 5uL 5uL 5uL
laser,
450/50 filter

The antigen markers used for the Isotype controls (Table 31) are Biolegend FITC Mouse IgG2a k
Isotype Control antibody (Cat Number: 400207, Lot Number: B235551), Biolegend APC Mouse
18G2b K Isotype Control antibody (Cat Number: 400329), APC/Cy7 Mouse 1gG1 K Isotype Control
antibody (Cat Number: 400127, Lot Number: B235070), PE Mouse 1gG2b Kk Isotype Control
antibody (Cat Number: 400313, Lot Number: B246304) and Brilliant Violet 421 Mouse 1gG1 K

Isotype Control antibody (Cat Number: 400157, Lot Number: B237449).

Table 31 Staining volumes for Isotype Controls

Channel Antigen FITC Isotype APC Isotype APC Fire 750 PE Isotype Bv421
Marker Isotype Isotype
633 nm CD3 FITC 5uL
laser,
660/20 filter
488 nm CD4 APC 5uL
laser,
530/30 filter
633 nm CD8a 5uL
laser, APC/Cy7
780/60 filter
488 nm CD45RA PE 5uL
laser,
585/42 filter
405 nm CD56 Bv421 5uL

laser,
450/50 filter
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Table 32 Staining volumes for Fully Stained Samples

Channel Antigen Fully Stained Fully Stained Fully Stained
Marker Sample 1 Sample 2 Sample 3
633 nm CD3 FITC 5uL 5uL 5uL
laser,
660/20 filter
488 nm CD4 APC 5uL 5uL 5uL
laser,
530/30 filter
633 nm CD8a 5uL 5uL 5uL
laser, APC/Cy7
780/60 filter
488 nm CD45RA PE 5uL 5uL 5uL

laser,
585/42 filter
405 nm CD56 Bv421 5uL 5uL 5uL

laser,
450/50 filter

CD3 (Cluster of differentiation 3) is a T-cell co-receptor that helps to identify lymphocyte subsets
and activate cytotoxic and helper T-cells. It transduces the activating signals to the cytoplasm of
the T-cell [184]. CD4 (Cluster of differentiation 4) is an extracellular protein marker found on the
surface of immune cells, specifically T helper cells [185,186]. This white blood cell subset signals
to other immune cells to destroy foreign bodies found. If patients have low CD4+ counts, they are
susceptible to lots of infections which can become difficult for the immune system to fight. CD8
(Cluster of differentiation 8) is a cell surface protein on cytotoxic T cells and also natural Killer cells.
These cells are able to kill virus-infected cells, cancer cells and can use cytokines to recruit other
cells when mounting an immune response [187,188]. CD4:CD8 ratios are often used to measure

the balance of the immune system [189].

CD45RA (Cluster of differentiation 45RA) is used to identify naive T-cell subsets and is often
compared with CD45R0 which is used to monitor memory T-cells, because a cell cannot express
both markers and this can be used to understand the population split of T-cells [190]. Finally, CD56
(Cluster of differentiation 56) is used to identify natural killer cells and is a marker for cytotoxicity

[191].

These antibody quantities for the single stain controls, FMO controls and Isotype controls were
added according to the quantities listed and incubated in the dark at 4°C for 30 minutes. Once

incubated, the cells were washed twice and transferred to BD Falcon™ Round Bottom 12 x 75 mm

145



Chapter 5: Intermediate Uncertainty Model

tubes (Cat 352063) and kept covered to minimise light exposure. Cells were run through a BD
FACSCanto™ Il Flow Cytometer, using the respective fluorescence channel and voltage: FSC 310V,
SSC 400V, FITC 389 V, APC 420V, APC/Cy7 472 V, PE 350 V, BVv421 300 V and BV510 451 V for
the live-dead stain, once a daily calibration was completed using CS&T beads (Lot: 74538,

Successful calibration).

Each tube and respective fcs file were generated using a medium flow rate (60 uL/min) and by
acquiring 30,000 cellular events. 3 stained sample fcs files were generated to build a library of
repeats to use within the variation studies, alongside the control files listed. Files were exported as
fcs 3.0 version types for use in Flowjo Version 10.0.8r1 third party analysis software [123] and

saved as a workspace.

5.2.3 Flow Cytometry Study Organisation
A total of 23 Participants from three separate centres (5 from an academic institution, 13 and 5
participants from separate industrial institutions) were invited to complete the study in a quiet
analysis space, to avoid distraction and the possibility of others seeing the study content and
analysis. As in the previous uncertainty exercise, participants made 3 repeat measures within a 1-
hour slot, because this was the maximum allowance given for each participant’s time, agreed

across the three institutions.

Study sessions had a one-hour maximum duration, and participants were shown three Flowjo
workspaces, which contained a series of fully stained PBMC .fcs files. Identical files were included
in each workspace, and participants were instructed to gate through a five-plot sequence to identify
target cells (using Forward Scatter (FSC) plot against Side Scatter (SSC)), single cells, live cells,
CD3+ cells and finally to apply a quadrant gate to the double positive naive T-cell CD4+ CD45RA+
population to identify final positive population cell counts. Flowjo was the choice of platform due to
access of the software across all three collaborator and participant sites, meaning a higher number

of participants were likely to be familiar with the platform.
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Although an additional marker for CD56 was acquired, this was not used within the final analysis
sessions for participants to identify natural killer subsets. To identify an additional population
meant sessions would run over the allotted 1-hour time slot. The CD4+ CD45RA+ pipeline was kept,
because of the suitability of this panel to current engineered T-cell product panels and to provide a
good basis to increase complexity for the subsequent studies (Chapter 6, complex model) to more

representative CGT T-cell product analysis.

Participants were also provided with isotype controls and FMO controls in each workspace to aid
gate application and were allowed to use whatever manual gating tool on Flowjo they felt best to
gate the population in hand. An overall schematic of the gating sequence they were asked to follow
is shown in Figure 58, and participants gated each workspace of files separately to ensure a correct
quantification of uncertainty through standard deviation calculation in accordance with principles

described earlier in Chapter 2.

. . < CD4+
+ 1
< Target Qell T Single C_eII o Live C§II o CcD3 Qell o CD45RA+
S Population & | Population ¢ Population O Population &
P @ & % = Cell
L o .
& | Population
FSC-A FSC-A Comp-BV510-A Comp-FITC-A Comp-APC-A

Figure 58 Gating sequence participants were asked to follow, to identify the target single live cell population, with CD3+ CD4+
CD45RA+ for naive T-cells.

In a similar manner to the pre-study completed in Chapter 3, participants took part in a second
phase, where they repeated the same gating process for the CD3+ CD4+ CD45RA+ cell population
but were asked to copy a diagrammatical protocol to apply gates instead of using their own
judgement, shown in Figure 59. To remove additional variability when placing these gates,

participants were only given the three fully stained samples to apply the gates in each workspace,
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so no control files could influence gate placement once the images had been copied, and

participants followed the same gating sequence provided in Figure 58.

Figure 59 Diagrammatical protocol given to participants to copy gates instead of using personal judgement

All participants and their respective data were anonymised at the point of data collection, and data
stored in accordance to the ethical clearance obtained. Participant coding was restructured from

previous work to remove the possibility of analysis bias.

5.2.4 Uncertainty Calculation
Once studies had been completed, target cell, single cell, live cell, CD3+ and CD4+ CD45RA+ cell
population metrics were extracted from the data, using the results from the identical repeated file
situated in each Flowjo workspace. These were then used to calculate a mean cell count, SD and
coefficient of variation (CV) for each gating stage, per participant using Microsoft Excel software
(Office 16). Finally, a combined uncertainty (uc) was calculated by combining these Type A
uncertainties by summation in quadrature. The uc value was expanded with a coverage factor of k
= 2, representing a 95 % Confidence Interval for the uncertainty statement, which gave each
participant a representative expanded uncertainty (U) figure, to show individual variance. The
mathematical methodology used to calculate uncertainty metrics has been previously discussed in
Section 2.5. An example of the data extraction through to calculation of metrics and uncertainty

can be seen in Figure 60 for this intermediate model.
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[ Total cells | Workspace 1 |Workspace 2 |Workspace 3
30000 | Target Lymphocytes 16517] 16754] 16599)
single Cells 16384 16494 16390
Live Cells 14985 14779 14746 factor
CD3+ 10675 10545 10475
CD4+ CD4SRA+ 2072 2088 2074
[ Percentages
CD4+CDASRA+
Workspace 1 _|Workspace 2_|Workspace 3 AVERAGE | STDEV v uc U
|Target Lymphocytes 55.06 55.85 55.33 5541 |@ 0.40 0.72 071 1.42)
|g\g|e Cells 54.61 54.98 54.63 5474 |0 021 0.38
ve Cells 49.95 49.26 49.15 4946 |@ 0.43 0.87
|cp3+ 35.58 35.15 34.92 3522 |© 034 0.96
|cDa+ cpasra+ 6.91 6.96 6.91 693 | 0.03 0.42
Stage 2 [ ‘Absolute Values
[ Total cells | Workspace 1 |Workspace 2| Workspace 3
| 30000 ] Target Lymphocytes 18936 18734 21639
Single Cells 14711 14685 14689
Live Cells 14255 14135 14270) factor
CD3+ 10375 10238 10366
CD4+ CDASRA+ 1800 15‘ E‘
[ Percentages
CD4+CDASRA+
[ Workspace 1 _|Workspace 2_|Workspace 3 AVERAGE | STDEV o Jue
|Target Lymphocytes 63.12 62.45 72.13 6590 |@ 541 8.20 542 10.84)
|§ng|e Cells 49.04 48.95 48.96 4898 |@ 0.05 0.10
Live Cells 47.52 47.12 47.57 4740 _|@ o025 0.52
|cp3+ 34.58 34.13 34.55 34.42 IQ 0.26 0.74
|cDa+ cpasra+ 6.00 6.11 6.08 606 | 0.06 0.91

Figure 60 Example of data extraction through to calculation of absolute results and uncertainty
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5.3 Results & Discussion

5.3.1 Flow Cytometry Intermediate Gating Exercise absolute results - Phase 1 Personal
judgement

The absolute results reported here are the targeted cell population that participants were asked to
identify using the gating sequence defined in Figure 58, during the first gating session where they
used their own judgement to apply gates. These are akin to what would be reported in literature for
specific cell types, in this instance it is naive T-cells. The uncertainty of the gating sequence will be

discussed in subsequent sections of this Chapter.

Table 33 Measures of Location for the absolute results of the Intermediate Gating Study using personal judgement (%)

Arithmetic Mean 6.28
Median 6.01
Mode N/A
Minimum 3.46
Maximum 7.99

Table 34 Measures of Spread for the absolute results of the Intermediate Gating Study using personal judgement (%)

Range 453
25t Percentile 5.65

75t Percentile 7.27
Interquartile Range 1.62
Standard Deviation 1.14
cv 18.15

Median Absolute Deviation 6.01

resolution)
Skewness -0.351
Skewness standard Error 0.481
Skewness z-score -0.730
Kurtosis 0.042
Kurtosis Standard Error 0.935
Kurtosis z-score 0.045

Table 35 Measures of Skew for the absolute results of the Intermediate Gating Study using personal judgement (%) (3dp for better
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Table 36 Measures of Normality for the absolute results of the Intermediate Gating Study using personal judgement (%) (3dp for
better resolution)

Shapiro-Wilk statistic 0.945
Significance 0.231
Normal/Non-parametric Normal

Using descriptive statistics to give a general report on the size and shape of the data, the
distribution approximates to a normal shape because the mean and median are very close
together, as quoted in Table 33. This is supported by the skewness and kurtosis z-scores (Table
35) and the Shapiro-Wilk statistical test for normality (Table 36) significantly concludes the
distribution is normal. This normality definition is most probably indicated by the spread of the
distribution, rather than any specific location parameters. Measures of spread (Table 34) show that
there is a small range (in comparison to the Base Model Study) between the highest and lowest
participant averages and the IQR of the participant data was just over half the size of the range,
again indicating normality. However, because this model is based upon a more specific sub-
population the ranges may not be as small as initially perceived, they may just be relative to the

respective cell population.

These participant average cell count values can be seen in Figure 61. With most participant

averages lying close to the median, and the error bars show + 1SD from each participant’s repeated

measures.
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Figure 61 Absolute Results of Target Cell population, represented by each participant's average and * SD.

Participant deviation from the median has been more clearly visualised in Figure 62, with bars
depicting each participant’s average from the median group value, or residual value (calculated by
subtracting participant averages from the group median). The SD of the total group has also been
plotted, because these are most commonly used within traditional manufacturing boundaries to
define out of control/out of specification limits. 70 % of participants are within 1SD of the median,
showing good corroboration of final results. Of those who fell out of bounds one participant had a

result above +2SD and six participants below -1SD.

Figure 63 further shows this variability around the central location metrics to compare different
outlier limits specified in Chapter 3, and further applied to the data in Chapter 4. The skew to the
data shows how different boundaries would affect determination of outliers, however the data did
fall within the most extreme boundary specified, which could indicate there is no real extreme in
skewness or kurtosis of the data. This all depends on the acceptance criteria chosen for

manufacturing distributions.
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Figure 62 Participant average result deviations from overall group median.
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Figure 63 Acceptance boundaries for permissible limits of variability of Intermediate model personal judgement data

To compare both positive and negative deviation data extremes, Figure 64 shows participant BO9's

gating strategy, one of the participants very close to the group median value. By comparing the
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extreme participants to a median participant, there are obvious differences between participants
when identifying populations based on the visualised density. This is also coupled with personal
preferences on inclusion or exclusion of data points to further refine the data set in search of a
particular target. The count average comes from the final gate applied only, but further back in the
gating sequence gates have been applied to capture most of the relevant populations. Variation in
the vertical quadrant line does not impact the results because there is a very low cell count across
this bandwidth. In contrast, the horizontal quadrant line shows less variance in the final cell count
result because two of the repeats are identical in position. There appears to be a big difference in
the CD3+ gate applied, because on one repeat BO9 set the axes to bi-exponential instead of
logarithmic, so when compiled, the gates appear different but actually capture similar data which

has been transformed differently.

:::::

nnnnn

FSC-
Comp-PE-A

FSC-A

Fsc-a Comp-BYE10-A Comp-FITC-A,

Figure 64 Participant BO9 Gating Strategy interpretation, close to median result.

Focusing on those who fell outside of 25D, only one participant (CO1) had this much deviation from
the median, with an overall percentage cell count of 3.5 %. Qualitatively reviewing the participant’'s
gating strategy has shown that most of this bias is due to the gate applied to the live cells (BV510+,
gate 3) which has been applied to a restrained proportion of the population (shown in Figure 65).
CO1 has applied this gate to follow the green density boundary, although there are more cells that
could fall within this population that are less dense This gating strategy shown in Figure 65,
identifies how under-constraining the cell populations leads to an overall lower cell count than the

median.
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Within a cell therapy manufacturing context, if a particular gate is under-constrained throughout
the process, this will lead to an overall lower cell count population. Depending on the manufacturer-
specific acceptance limit for cell counts, this could cause a therapy to have a false-negative
measurement, potentially rejecting a treatment that is suitable to be delivered to a patient.
Alternatively, if the therapy is given longer to culture due to a perceived low cell count, this becomes

an inefficient and expensive use of resources.
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Figure 65 Participant CO1 Gating Strategy interpretation

Participants AO2, BO1, BO3, B10, B12 and CO4 fall outside of the + 1SD boundary, although all of
these participants have average cell counts higher than the median value. Two examples have
been selected to explore here; AO2 has the smallest deviation (within this bandwidth) from the
median and B10 has the greatest deviation (within this bandwidth). Figure 66 and Figure 67 show

their respective gating strategies.
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Figure 66 Participant AO2 Gating Strategy interpretation

Participant AO2 has a higher average result than the median inter-participant value because in the
final step of their gating process (gate 5) they have included more cells than the median user.
Whilst their final gate applied is very repeatable, the horizontal arm of the quadrant is lower than

other median users, which has included a greater number of cells in the final count. In this instance,
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AO2 has applied gates very precisely, however they are potentially inaccurate, due to their use of

control files to set the boundary limitations for the final fluorescence gates.

FSCH
FC-A
CompPE-A

FSC-a Comp-BYS1D-A Comp-FITC-A Corp-APC-A

Figure 67 Participant B10 Gating Strategy interpretation

Participant B10 has again included additional cell populations which has caused the average cell
count to be higher than the median. The doublets have not been excluded from the analysis in the
first or second gates where they would usually be ‘cleaned up’ and they can be seen through the
gating sequence as additional populations around the densest target population. They do appear
to be gated out from the CD3+ gate (gate 4), however this is due to the compilation process of

these images, with larger gates applied to the smaller one, so this population has been cut out.

This analysis of the absolute results used to represent cell populations shows a 4.5 % cell count
range between participants when determining final naive T-cell population percentages. The
further quantitative analysis of the extremes identifies 1 participant (CO1) who falls outside of initial
control limits. This extreme participant accounts for one third of the cell population percentage
range. If this extreme participant value was removed, the range would fall to 3.1 % between

participants (minimum value of 4.9 % and maximum value of 8.0 %).

The distribution histogram of participant CV of reported results can be seen in Figure 68, plotted
on top of 3 specification limits derived from the ICSH boundaries used within Chapter 4. The optimal
scenario would have all 23 participants (n) with < 1 % CV, which sets the total height at the y-

intercept of the graph.
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Figure 68 CV Performance of Participant Absolute results for personal judgement of intermediate model

Using these guidelines as boundaries, three participants were outside of the ‘revision required’
region due to very high CV and an additional three participants were outside of the ‘good’ and
‘satisfactory’ performance regions. These extreme outliers had more variation within the final
gquadrant gate when identifying the final naive T-cell cell population. Participant BO8 had the highest
CV, and their final gate can be seen in Figure 69. BO8 intersects the final population more than the

rest of the participants with one gate significantly higher than the rest, causing this variation.
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Figure 69 Participant BO8 Intermediate Model Study Gating interpretation

Participants BO6 and B12 (Figure 70 and Figure 71) also had CVs that fell outside the ‘Revision

Required’ region of the graph, and again the variation is caused in the final gate due to one of the
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gquadrant repeats being placed significantly higher than the other two. Any gating variance observed
throughout the gating sequence is not captured within the representative population CV
measurement, because CV is only calculated from the final population cell counts derived using

the whole sequence.
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Figure 70 Participant BO6 Intermediate Model Study Gating interpretation
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Figure 71 Participant B12 Intermediate Model Study Gating interpretation

Measurement uncertainty provides a way of combining variability measures (SDs) of each gate
within the sequence, to provide a measure of variation that is more representative of the
components of the gating sequence. When extremes in measurement uncertainty arise,
uncertainty values can be easily deconstructed to identify which part of the gating sequence is
responsible for causing variation within the measurement. Measurement uncertainty results for
this phase are discussed in Section 5.3.4, once absolute results for phase 1 and 2 of this study

have been reviewed and compared.
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5.3.2 Flow Cytometry Intermediate Gating Exercise absolute results -
Phase 2 Following Protocol

The absolute results reported here are the targeted cell population that participants were asked to
identify using the gating sequence defined in Figure 58, during the second gating session where
they used the diagrammatical protocol in Figure 59 to apply gates. A comparison of these results

to Phase 1 and the uncertainty of the gating sequence is discussed in the subsequent section.

Table 37 Measures of Location for the absolute results of the Intermediate Gating Study using diagrammatical protocol (%)

Arithmetic Mean 6.17
Median 6.06
Mode N/A
Minimum 5.70
Maximum 7.64

Table 38 Measures of Spread for the absolute results of the Intermediate Gating Study using diagrammatical protocol (%)

Range 1.94

25t Percentile 5.97

75t Percentile 6.25
Interquartile Range 0.28
Standard Deviation 0.39
cv 6.38

Median Absolute Deviation 6.06

Table 39 Measures of Skew for the absolute results of the Intermediate Gating Study using diagrammatical protocol (%) (3dp for
better resolution)

Skewness 2.910
Skewness standard Error 0.512
Skewness z-score 5.684
Kurtosis 10.629
Kurtosis Standard Error 0.992
Kurtosis z-score 10.715

Table 40 Measures of Normality for the absolute results of the Intermediate Gating Study using diagrammatical protocol (%) (3dp for
better resolution)

Shapiro-Wilk statistic 0.688
Significance 0.000
Normal/Non-parametric Non-parametric
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Using descriptive statistics to give a general report on the size and shape of the data, the
distribution approximates to a normal shape because the mean and median are very close
together, as quoted in Table 37. However, this is hot supported by the skewness z-score (Table 39),
and the high kurtosis z-score indicate a more non-parametric distribution due to outliers. The
Shapiro-Wilk statistical test for normality (Table 40) also significantly indicates the distribution is
non-parametric. This non-parametric definition is most probably indicated by a few outliers and a
lot of uniform inliers, rather than any specific location parameters. Measures of spread (Table 38)
show that there is a small range between the highest and lowest participant averages when
participants followed a protocol and the IQR of the participant data was 86 % smaller than the total

range, again indicating non-normality due to outliers.

These values can be seen in Figure 72. Most participant averages lie close to the median, and the

error bars show + 1SD from each participant’s repeated measures.
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Figure 72 Absolute Results of Target Cell population when following a protocol, represented by each participant's average and * SD.
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Participant deviation from the median (residual values) has been more clearly visualised in Figure
73, with bars depicting each participant’s average from the median group value (calculated by
subtracting participant averages from the group median). The standard deviation limits have also
been plotted, because these are most commonly used within traditional manufacturing to define
out of control/out of specification limits. 95 % of participants are within 1SD of the median, showing
good corroboration of final results. Of those who fell out of bounds one participant (B0O3) had a

result outside of the - 25D specification limit listed in Figure 73.

=
o

Median + 25D

051 Median + 15D b

Deviation of Average Participant Result from Median (%)

0
M&&an - 15D
05 1
Median - 25D
1t i
15 1
_2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
N P PP YD Y P P
FEE LIS EES FEF LIPS

Participant ID
Figure 73 Participant average result deviations from overall group median.

The acceptance boundaries defined for the data collected when participants applied gates
according to their personal judgement has been applied to the ‘following protocol’ data set in Figure
74. This data has become more refined when participants use a protocol, with the distribution
falling within more of the acceptance limits. The 95 % Confidence Interval is very small, however
the mean + 2SD, trimmed mean + 2SD and median + 2MAD are all fairly similar in width, returning
the same number of inliers and outliers. In this instance, further testing on the shape of the
distribution should be complete before choosing the correct discrimination methods for extreme

values.
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Figure 74 Acceptance boundaries of personal judgement data applied to data when participants followed a protocol

Qualitatively reviewing the extreme participant gating strategy has shown that most of this bias is
due to the final gate applied to the CD4+ CD45RA+ cells (gate 5), because this gate includes more
of the CD45RA- cell population that smears below the desired double positive population, with no
clear density separation. This cuts across a dense region of this population, keeping a higher
proportion of cells within the gate boundary. This gating strategy can be seen in Figure 75, which
shows how over-constraining the final cell population leads to an overall higher cell count than the

median.
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Figure 75 Participant BO3 Gating Strategy interpretation
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The distribution histogram of participant CV of reported results can be seen in Figure 76, plotted
on top of 3 specification limits derived from the ICSH boundaries used throughout this thesis. Only
20 participants took part in this second gating session so the optimal scenario would have all 20

participants (n) with < 1 % CV, which sets the total height at the y-intercept of the graph.
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Figure 76 CV Performance of Participant Absolute results when following a protocol within intermediate model

Using these guidelines as boundaries, one participant fell outside of the ‘revision required’ region
due to very high CV and two participants fell just outside of the ‘good’ and ‘satisfactory’
performance regions. These extreme outliers had more variation within the final quadrant gate
(gate b) they drew when identifying the final naive T-cell cell population. Participant BO4 had the
highest CV when gating using the protocol, seen in Figure 77. BO4 intersects the final population
more and has one of the three repeated gates significantly higher than the rest, causing greater

variation, similar to the variation seen in extremes in absolute cell count results.
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Figure 77 Participant BO4 Intermediate Model Study Gating interpretation

5.3.3 Flow Cytometry Intermediate Gating Exercise absolute results - Comparison of
Phase 1 and Phase 2

The average cell counts for each participant when they gated following their own judgement and
then a protocol have been compiled into the histograms in Figure 78. Any dark orange areas are
overlap of the two respective histograms. The range of cell counts has reduced by 2.59 % when
participants followed the protocol, indicating that protocols could help participants conform to more
reproducible cell counts. This is also reflected in higher skewness and kurtosis z-scores for the
protocol data set. However, as discussed in Chapter 3, higher kurtosis could be a more suitable

metric of conformity than trying to achieve a normal distribution when aiming for reproducible data.
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Figure 78 Comparison of inter-participant absolute cell counts when gating using their own judgement and when
following a protocol (brown areas indicate overlap between the two distributions)
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Further comparison of inter-participant data when gating using their own judgement and following
a protocol has been completed with a Sign statistical test (Table 41), to compare equality of
medians between each test condition. Although the Sign test results reject the alternative
hypothesis of a difference in medians, this is potentially desirable when considering the cell count
values themselves. In this instance there is no ‘ideal correct’ cell count answer for the cell
population targeted for gating, so equality of the two testing conditions shows that protocols are
comparable when identifying the target population and remove the variability from participant

subjectivity around gating preferences to identify the population.

Table 41 Sign test results for comparison of Intermediate Gating Study Stages

Null Hypothesis Test Sig. Decision
Median difference of P1 & P2 cell counts = 0 Related-samples Sign test 0.824 Retain null hypothesis

To further compare these two testing conditions the A Priori and Post Hoc power were calculated
(Table 42) to identify whether a suitable number of participants had been gathered based upon the

difference in variance of absolute cell counts in each test condition.

Table 42 A Priori and Post Hoc Power analysis for Intermediate Study absolute cell counts

[ variance Phase 1 | Variance Phase2 | A-priori power | sample size required | Actual power |
[ 1.300 | 0.156 [ 0.840 | 8 [ 0.999 |

The A Priori and Post Hoc power analyses in Table 42 show that for the variances achieved between
the two test condition average cell counts, only 8 participants would have been required to show
this difference, to the required minimum power of 0.80. The actual power achieved through this
study is 0.999, showing that the differences in variance of absolute cell counts are due to the two

test conditions used and no other underlying factors.
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Figure 79 Comparison of participant absolute cell count CVs when gating using their own judgement and when
following a protocol (brown areas indicate overlap between the two distributions)

Aside from one extreme value, the protocol appeared to reduce the range of results CV between
participants when they followed this, but this only really considers the final gate applied within the
repeats. Figure 79 shows that the CV is much more positively skewed towards O when participants
followed a protocol, showing that following a protocol is more likely to reduce your final cell count

gating variability and improve reproducibility of results overall.
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5.3.4 Flow Cytometry Intermediate Gating Exercise uncertainty results - Phase 1.
Personal Judgement
The uncertainty results reported here are a combination of the five gating stages defined in Figure
33 for gates applied when participants use their own judgement. The uncertainty values have been
quantified following the prescribed methodology in Chapter 2, Section 2.5. The uncertainty would
better represent variance of measurements with greater confidence, because this combines

variability from all gates applied in the sequence, not just the variance of the final gate applied.

Table 43 Measures of Location for Uncertainty of the Intermediate Gating Study using personal judgement (%)

Arithmetic Mean 3.8
Median 21
Mode N/A
Minimum 0.4
Maximum 16.1

Table 44 Measures of Spread for Uncertainty of the Intermediate Gating Study using personal judgement (%)

Range 15.7

25t Percentile 1.4

75t Percentile 3.8
Interquartile Range 2.3
Standard Deviation 4.3
Median Absolute Deviation 0.8

Table 45 Measures of Skew for Uncertainty of the Intermediate Gating Study using personal judgement (%) (3dp for resolution)

Skewness 1.942
Skewness standard Error 0.481
Skewness z-score 4.037
Kurtosis 2.899
Kurtosis Standard Error 0.935
Kurtosis z-score 3.101

Table 46 Shapiro-Wilk test for normality for Uncertainty of the Intermediate Gating Study using personal judgement (%) (3dp for

resolution)
Shapiro-Wilk statistic 0.692
Significance 0.000
Normal/Non-parametric Non-parametric

167



Chapter 5: Intermediate Uncertainty Model

Unlike the descriptive statistics for absolute results for this study phase, the mean and the median
are not close together, indicating a more skewed distribution, as monitored in Table 43. The median
is less than the mean, indicating a slight positive skew to the data. This is further supported by the
Shapiro-Wilk test for normality, shown in Table 46, indicating that the distribution is non-parametric

in shape, indicating skewness.

There is a wide range (15.4 %) between minimum and maximum participant uncertainties. Table
44 also shows the interquartile range as 2.3 %, indicating a high kurtosis, because half of the data
lies within 15 % of the total distribution range. This is supported by the skewness and kurtosis
values in Table 45 with skewness and kurtosis z-scores falling outside of the £2.58 boundaries
specified for normality defined in Chapter 2. The raw data for each participant can be seen in Figure
80 with various extremes within the dataset. This distribution shape can be observed within Figure

81, showing the positive skew with a potential bimodal split and 4 larger uncertainty extremes.
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Figure 80 Expanded Uncertainty of all Participant Gating within the Intermediate Model Study
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median = 2.12 %
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Figure 81 Histogram of Participant Uncertainty from repeats of Intermediate Model Study

Whilst deviation from a median can help to explain the distribution parameters, when analysing
variance, a positively skewed distribution towards zero is preferred. Comparing uncertainty in its
size order allows boundaries to be set for permissible specification limits for product

release/laboratory quality that increase in value.

The ICCH and ICCS imprecision values have also been used here to define example specification
limits if monitoring participant uncertainty. Again, in this instance the CV specification limits have
been substituted for uncertainty (Figure 83), and no other uncertainty specifications have been
defined in the public body of knowledge from research or industry. However, unlike the previous
model, this correlation is not strong because of the four participants with extreme uncertainty
values, which will be explored within the extremes identified within Figure 82. Even if these 4
‘outliers’ were removed, the slope (indicating correlation) only increases slightly to 0.0699x.
Although this correlation was used to justify the use of CV boundaries for uncertainty

measurements in Chapter 4, this correlation is not present here. However, for continuity of
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reporting, the uncertainty distributions will still be binned according to these guidelines, to aid

comparison between the uncertainty exercises.
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Figure 82 Final Cell Count Population Percentage versus Gating Uncertainty for participants
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Figure 83 Participant Uncertainty performance monitoring diagram when using their own judgement during the intermediate model
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Participant B10 had the highest overall uncertainty that fell within the ‘revision required’ region of
the plot, followed by Participant BO4, and participants CO1 and CO5 sitting on the boundary of
‘satisfactory performance’ and ‘revision required’. A deeper review of B10’s gating in Figure 84
shows their greatest variance came from the third gate applied to discriminate live/dead cells. The
amine-reactive dye used stains dead or dying cells, so the live cells appear as the densest
population on the left side of the plot. Reviewing B10’s repeats has highlighted different ways this
live/dead boundary was selected. B10 used the unstained control file to set areas for negative
expression (live cells). The inclusion of the doublet cells and dying cells has caused confusion and
therefore variability when choosing this boundary because they had not been previously ‘cleaned

up’ from the data.
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Figure 84 Participant B10 Intermediate Model Study Gating interpretation

This gate also caused the most variability for participant BO4, who in one repeat also included this
doublet population within their gate (shown in Figure 85, gate 3), causing variation and a higher
population value as a result. BO4 has also used a bi-exponential scale instead of a logarithmic

scale, which could be an additional variable affecting their overall uncertainty.
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Figure 85 Participant BO4 Intermediate Model Study Gating interpretation

171



Chapter 5: Intermediate Uncertainty Model

The quadrant gates used to locate the final CD4+ CD45RA+ population were very precise, having
minimal effect because they do not intersect any high-density areas through good use of control
files provided. Control files provided were isotypes, FMO controls and a negative sample, which
were used to set the position of the gates using a positive/negative split on respective axes. Control
files were provided for other gates in the sequence but those who have extremes in their data
appear to not have used these in the same manner to apply gates reproducibly.
5.3.5 Flow Cytometry Intermediate Gating Exercise uncertainty results - Phase 2:

Following Protocol

The uncertainty results reported here (calculated as per Section 2.5 and Section 5.3.5) are a
combination of the five gating stages defined in Figure 58 using the gating protocol provided, shown

in Figure 59.

Table 47 Measures of Location for Uncertainty of the Intermediate Gating Study when following a protocol (%)

Arithmetic Mean 5.8
Median 2.2
Mode N/A
Minimum 0.5
Maximum 12.6

Table 48 Measures of Spread for Uncertainty of the Intermediate Gating Study when following a protocol (%)

Range 12.1
25t Percentile 1.4

75t Percentile 10.9
Interquartile Range 9.5
Standard Deviation 5.1
Median Absolute Deviation 2.2

Skewness 0.226
Skewness standard Error 0.512
Skewness z-score 0.441
Kurtosis -2.065
Kurtosis Standard Error 0.992
Kurtosis z-score -2.082

Table 49 Measures of Skew for Uncertainty of the Intermediate Gating Study when following a protocol I(%) (3dp for resolution)
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Table 50 Shapiro-Wilk test for normality for Uncertainty of the Intermediate Gating Study when following a protocol (%) (3dp for

resolution)
Shapiro-Wilk statistic 0.757
Significance 0.000
Normal/Non-parametric Non-parametric

Unlike the descriptive statistics for absolute results for this study, the mean and the median are
not close together, indicating a more skewed distribution, as monitored in Table 47. The median is
less than the mean, indicating a positive skew to the data. This is further supported by the Shapiro-
Wilk test for normality, shown in Table 50, indicating that the distribution is non-parametric in
shape, indicating skewness. There is a wide range (12.0 %) between minimum and maximum
participant uncertainties. Table 48 also shows the interquartile range as 9.5 %, however, unlike
previous distributions this supports a low kurtosis, because half of the data lies within 79 % of the
total distribution. This is supported by the skewness and kurtosis values in Table 49 with skewness
and kurtosis z-scores inside of the +2.58 boundaries specified for normality defined in Chapter 2.
The raw data for each participant can be seen in Figure 86 with various extremes within the dataset.
This ordered distribution shape can be observed within Figure 87, showing the positive skew with
a bimodal split and 9 larger uncertainty extremes. Qualitatively assessing the shape of the
distribution shows a different shape to the data than the descriptive statistics, because the mean
calculated does not reflect central tendency of the raw data as would be assumed. This bimodal
split will be investigated further to understand the difference between the high variance and low

variance clusters.
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Figure 86 Expanded Uncertainty of all Participant Gating within the Intermediate Model Study when participants
followed a protocol

median = 2.24 %
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Figure 87 Histogram of Participant Uncertainty from repeats of Intermediate Model Study when participants followed a
protocol
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Whilst deviation from a median can help to explain the distribution parameters, when analysing
variance, a positively skewed distribution towards zero is preferred. Comparing uncertainty in its
size order allows boundaries to be set for permissible specification limits for product

release/laboratory quality that increase in value.

The ICCH and ICS imprecision values described earlier for measurement CV and in previous
Chapters have also been used here to define example specification limits if monitoring participant
uncertainty. Again, in this instance the CV specification limits have been substituted for Uncertainty
from this gating phase (Figure 88), because no other uncertainty specifications have been defined

in the public body of knowledge from research or industry.
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Figure 88 Participant Uncertainty performance monitoring diagram when following protocol during the intermediate
model

Participants BO4 and BO7 had the highest overall uncertainty that fell within the ‘revision required’

region of the plot, followed by CO4, who is just under the limit of permissible uncertainty on the
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chartin Figure 88. However, there is a participant cluster of high variance which has its own maxima

at 11 % Uncertainty, populated by participants AO3, A05, BO1, BO5 and B10.

Participant BO7’s most variable gate was the on the first gate in the sequence. This has been
enlarged in Figure 89 to better identify the source of this variation. The repeats are qualitatively
very uniform in size and structure, with a repeatable cut-off separating the primary population from
the dead and dying cells. The quantitative variability appears to come from differences in the right
edge of the gate, where in one instance the gate applied includes a data spike that sits on the
boundary of the plot. The axes of the plot have been scaled down slightly so this spike can be clearly
seen. This data spike could be an amalgamation of all the data points that exceed the plot limits,
so they have been complied and added to the boundary, however, there is no information from

Flowjo on this visualisation effect.

Figure 89 Enlargement of Participant BO7's first plot and gates applied in Phase 2

Additionally, other Flow Cytometry data from other research teams using different cell models were

checked to see if a boundary effect was present, and it appears that any cell events that exceed
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the highest boundary scale point on the plots get concatenated in this way, making it seem to be a
function of the software data binning and visualisation process. This intermediate data set was
imported into two other Flow Cytometry Analysis Software packages, FlowLogic and FCS Express
and qualitatively compared to the FlowJo output, seen in Figure 90. Not only do the other two
software packages use different colour gradient scales to visualised cluster density, the boundary
effect has been removed by FlowLogic, but is present and even more noticeable in FCS Express.
This therefore falls to operator subjectivity, not only in which software they choose for analysis but
whether they are aware of this boundary effect and if they consciously include or exclude it from

their analysis.
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Figure 90 Visualisation of Intermediate Gating Study data in different Flow Cytometry Software

B0O4’s Phase 2 gate has already been featured as an extreme in this Chapter (Section 5.3.2) due
to high absolute cell count CV. Figure 77 depicts BO4’s gating strategy, with most of their gating
variability introduced from the first gate applied to start ‘cleaning’ the data, to remove dead cells
and debris. An enlargement of this plot has been provided in Figure 91. Although this plot has a lot
of different overlapping populations, the repeated gates are very similar in size shape and where
they intersect and cut off the dead and dying cells, because this area has a lot of clustering overlap,
making it difficult to identify the main area of variation on this plot. Similar to BO7’s plots, the right
edge sits along the boundary effect which could be causing some variability within the analysis. The

majority of variation in the overall uncertainty of BO7, CO4, AO3, AO5, BO1 and BO5’s gates were
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also from this first plot, strengthening the need for further investigation into this variation and its

cause.

Figure 91 Enlargement of Participant BO4's first plot and gates applied in Phase 2

To further investigate if the cause of this higher group cluster variability is a function of the first
gate in the sequence, a selection of participants with low uncertainties were looked at to see if
there was a difference or obvious understanding of this boundary effect, away from the data spike
during their analysis. Participants BO2 and BO8 had very low uncertainties from their total gating
process and both fall within the lower variance cluster. Their initial plots can be respectively seen
in Figure 92 and Figure 93. Participant BO2 has applied gates close to this boundary effect,
however none touch this edge and they are very repeatable in size and shape. Upon closer
inspection BO8 has clearly not included any of this boundary effect and there is a clear distance
from this edge and the right side of their gates. This initially shows that this difference in high and
low variance groups could be down to participant knowledge and awareness of this boundary effect,
however this was not something captured within the gating sessions themselves, nor could it be

something that the participants were consciously aware of.
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Figure 92 Enlargement of Participant BO2's first plot and gates applied in Phase 2

Figure 93 Enlargement of Participant BOS8's first plot and gates applied in Phase 2

A follow-up questionnaire was given to participants during the complex model (Chapter 6) to try and
identify knowledge of this effect without asking leading questions and the results are discussed in

more detail within Chapter 8.
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5.3.6 Flow Cytometry Intermediate Gating Exercise uncertainty results - Comparison of

Phase 1 and Phase 2

The uncertainties for each participant when they gated following their own judgement and then a
protocol have been compiled into the histograms in Figure 94. Any dark orange areas are overlap
of the two respective histograms. The range of cell counts has reduced by 3.4 %, indicating that
protocols could help participants conform to reproducible cell count, however a bimodal distribution
appeared so potentially more consideration needs to be applied to understanding how subjectivity
and interpretation of a protocol and visual images impact the final uncertainty calculated. The
skewness and kurtosis z-scores have reduced when participants use a protocol, however this is
showing a tendency towards normality, which the distribution shape does not support in this

instance.

When participants used their own judgement to apply gates, a split between higher and lower
uncertainty groups appears, but the shape of the overall distribution is positively skewed, with only
a few extremes exhibiting high variance, so it can be described as bimodal, similar to the protocol
uncertainty distribution. The protocol participants were asked to copy included the boundary effect
observed, which is potentially causing the difference in variance clusters, which is something that
requires further investigation, but has been used to aid the instructions for the complex model in

Chapter 6.
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Figure 94 Overlaid histograms of participant uncertainties when gating the naive T-cell population following their own
judgment and then using a protocol (brown areas indicate overlap between the two distributions)

Further comparison of participant data when gating using their own judgement and following a
protocol has been completed with a Sign statistical test, to compare equality of median
uncertainties between each test condition, shown in Table 51. The Sign test results reject the
alternative hypothesis, because the uncertainty medians of the two testing conditions are not
statistically different. This does not statistically show that the uncertainties are smaller when
participants use a protocol, however this only considered location values, so other measures of
variability should also be considered before deciding whether a protocol effectively reduces inter-

participant variability, or not.

However, the reduction in overall range shows that the distribution can potentially be controlled to

minimise extreme values occurring in the data set, although use of this protocol is causing

subjective behaviour to divide the population into high and low variance clusters.
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Table 51 Sign test for median difference between Phase 1 and Phase 2 uncertainties

Null Hypothesis Test Sig. Decision
Median difference of P1 & P2 uncertainties = 0 Related-samples Sign test 1.000 ‘ Retain null hypothesis

To further compare these two testing conditions the A Priori and Post Hoc power were calculated
(Table 52) to identify whether a suitable number of participants had been gathered based upon the

difference in variance of absolute cell counts in each test condition.

Table 52 A Priori and Post Hoc Power for Phase 1 and 2 uncertainties

[ variancePhase1 | Variance Phase2 | A-priori power Sample size required Actual power
[ 18.193 | 26.388 [ 0.80

The A Priori and Post Hoc power analyses in Table 52 show that for the variances achieved between
the two test conditions uncertainties, 181 participants would have been required to show this
difference, to the required minimum power of 0.80. The actual power achieved through this study
is 0.213. This low power indicates that any differences seen from the data have a low probability
of being just due to the two test conditions used and no other underlying factors present. Again, in
a manner similar to the Sign test, this needs to be considered carefully. A greater number of
participants in the study could always benefit and provide more confidence in the results, however,
the distributions are not normally distributed, so the variance calculated assumes a distribution
with central tendency (whether this is normally distributed or non-parametric). In this instance, the
range of data becomes more important to consider, due to the distribution shape and clusters

appearing within the uncertainty data.
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5.4 Chapter Conclusions

The primary PBMC material used was a good model for the intermediate study because it provided
an appropriate step up in complexity of the analysis pipeline participants were required to
complete, and it also provided affinity towards current cell therapy treatments which are T-cell
based. The studies completed with the 3-workspace configuration in Flowjo for repeats continued
to work well within the time available for participants so this structure has shown to be a good
working model for these studies and also will be used for the final, most complex model. The five-
step gating process that each participant had to work through was also straight-forward to follow
from the gating sequence protocol and the diagrammatical protocol, to help control additional

variance within the study.

When reporting the absolute cell count percentages for the results, the mean and median values
for Phase 1 and Phase 2 were very similar (mean = 6.3 % and median = 6.0 % for Phase 1, mean
= 6.2 % and median = 6.1 % for Phase 2). These results both indicate a normal distribution within
both data sets, but it also shows that a protocol can achieve the same target cell counts compared
to when participants used their own judgement. The difference when using a protocol is the
reduction in between-participant cell count results. The protocol reduced the range of cell count
results between-participants by 2.6 % of the overall cell count (777 cell events). This is a 57 %
reduction in range from Phase 1 and Phase 2, indicating protocols can potentially aid reproducible
cell counts between participants. The Sign test confirmed there was no significant difference
between the medians of the two testing conditions, showing that protocols can produce similar
results to the null testing condition, however, the power analysis completed indicated the variance
of these two groups is different enough such that only 8 participants would have been required to

attain the same distribution results.

CV is a common variation metric used within cellular measurements within Flow Cytometry,
however, when considering the use of protocols, the range of CV in reported results remained the

same as when participants used their own judgement (up to 25 %). However, the use of the protocol
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made the distribution much more positively skewed towards O %, which is desirable for variation
metrics, indicating that more participants were less variable (in their final cell count) when using a
protocol to apply gates. Reviewing the extremes in CV using the adjusted traffic light diagram shows
variability in the final gate applied, but it also highlights that other variability seen upstream of this
final gate can have an impact on cell count. However, gate variability across the five gating stages
itself is not taken into consideration in the CV calculation, making measurement uncertainty a more
suitable metric for accommodating variation throughout the whole gating sequence and increasing

confidence in the results.

This intermediate model with the 5-gate sequence has shown that calculating measurement
uncertainty is possible for participants by using traditional measurement uncertainty methods. This
was calculated successfully, by presenting participants with three repeated workspaces of data,

and extracting one repeated file located in each workspace randomisation.

The uncertainties calculated to accompany the cell counts are more non-parametric than the
absolute cell counts. The mean and median uncertainties went from 3.8 % and 2.1 % respectively
in Phase 1t0 5.8 % and 2.2 % respectively in Phase 2. The medians are very close together between
the two sessions and is a more suitable metric due to the skewness present. The means are
unsuitable metrics because they do not represent the peak maxima, especially in Phase 2, where
the bimodal distribution causes the mean to sit between two peaks. However, the range of inter-
participant uncertainty reduced when using a protocol which shows this could possibly improve
reproducibility of results between FC analysis. Whilst following a protocol reduced the range of
uncertainty, the distribution shape separated into two peaks, indicating clusters of high and low

variance participants.

Further investigation has shown a high probability of this variation being caused by a boundary
effect within the data visualisation software. Cells in the file that have a fluorescence signal higher

than the visualisation axes are concatenated on the boundaries. Inclusion of these (either in a
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consistent or inconsistent manner) in the repeated analysis can skew the cell counts and
uncertainty significantly. Those in the lower variance cluster have not included these cells in their
analysis, or repeatedly have so the overall variation would be lower between repeats (although they
would have a higher average cell count). Revision of extreme participants using the uncertainty
traffic light diagrams has shown most of the variation is contributed within this first gate applied,
where the boundary effect is initially seen, increasing the possibility that the boundary effect causes

this higher variation.

Overall, the structure of these analysis sessions and data extraction processes works well, so this
structure will be used to inform and run the subsequent complex model, which can increase in
complexity due to the required cell population target and the number of gates required to obtain it.
So far, this chapter has potentially shown affinity to the core hypothesis of this thesis. The overall
range of uncertainty has increase from the basic model (Chapter 4, 12.37 %) to this intermediate
model (Chapter 5, 15.7 %) showing that the range of uncertainty between-participants has increase
as the data has become more complex. This needs to be further tested with a more complex model,
presented in Chapter 6, and a diagrammatical protocol will also be tested in this instance, because

it has shown to reduce the range of participant results within this intermediate model (12.1 %).
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5.4.1 Consolidation of Objectives

This study ran smoothly, acting as a good intermediate model for comparison of absolute
reported results, CV and uncertainty measures. The session structures were suitable in
time, and 3 repeats was suitable for participants to understand study context, but not
become tired. The randomised Gauge R&R structure used for the previous model

(Chapter 4) was not used here, because of the extra time incurred during analysis.

Diagrammatical protocols used by participants during the second phase of this study
have shown to reduce the range in absolute results reported and reduce the range of
inter-participant uncertainties, showing promise for use in future analysis pipelines. This

will be further tested in the subsequent complex model (Chapter 6).

Extreme values in absolute reported results were due to participants either over
constraining or under constraining the live cell population within the third gate, or being
variable with the final gate applied, over- or under-constraining the quadrant around the
desired double positive population. In some cases, lack of knowledge of using controls
to set gates led to variance in population metrics.

Extreme values in uncertainty results were due to participant variability in applying a gate
to separate the target cell population from the dead or dying cells, alongside additional
variation caused in this first gate by boundary effects on the edge of the visualisation

plot, caused by concatenated data that would otherwise be outside the plot axes.

The performance monitoring diagrams visualised continue to provide a straightforward
way to monitor uncertainty performance with respect to the number of people in the study
and defined quality satisfaction limits. These will be used in the subsequent chapter

(Chapter 6) to monitor uncertainty performance in a more complex gating scenario.

This study defines participant uncertainty for a highly constrained 5 colour panel cell
model, which can be used as an intermediate model for development into more complex
cell models, to monitor potential growth of participant uncertainty in more difficult

analysis scenarios.
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Chapter 6: Complex Uncertainty Model

6.0 Introduction to the Chapter

Chapter 6 introduces the third and final uncertainty gating exercise, as part of the sequence of
studies which monitor participant variance in comparison to complexity of data. As discussed in the
prelude, this final uncertainty exercise is more complex in panel design and therefore gating
difficulty, to further monitor uncertainty in a more difficult analysis scenario. This is more
representative of FC analysis pipelines and engineered T-cell markers used to monitor cell therapy

products. This allows comparisons to be drawn between all three models in Chapter 7.

Previously in Chapter 5, a five-step pipeline was used to monitor naive T-cells within primary PBMC
populations. This Complex model expands upon the FC panel used in the previous chapter to
monitor additional markers for engineered-product specificities, such as programmed cell death
and transduction efficiency. This is relevant and translational for the community, therefore
potentially providing a more representative application of uncertainty to FC measurements. This
Chapter uses an eight-step analysis sequence, and similar to Chapter 5, sees participants analyse
this data across two sessions using their own judgement and then using a diagrammatical protocol

respectively.

6.1 Chapter Aims

This Chapter develops comparison of uncertainty in complex FC analysis strategies. The fit of this
Chapter to the thesis can be seen in Figure 95, specifically within the orange dashed box, providing
development for the core hypothesis: as complexity of FC data and processing increases,
measurement uncertainty contributed from the participant will also increase. This Chapter further
investigates the influence of using measurement uncertainty to quantify subjectivity, and if

diagrammatical protocols can aid this situation.
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6.1.1 Chapter Aims & Objectives

The Aims and Objectives of this Chapter can be defined as follows:

o Design a complex two-phase study to measure CV and uncertainty of participants when

gating complex FC data.

o Identify whether using diagrammatical protocols to apply gates reduces inter-participant

absolute reported results and uncertainties.

o |dentify what causes extreme values in absolute reported results and uncertainty

measurements by reviewing extremes from this intermediate study.

e Further test monitoring tools for understanding uncertainty within a more complex

participant study or facility.
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6.2 Methodology

Engineered T-cells, derived from Peripheral Blood Mononuclear Cells (PBMCs) were provided by a
collaborator, and all staining, file generation and analysis templates were completed by the
collaborator, in line with the collaboration agreement. Due to commercial sensitivity, further details
on the engineered T-cell vector or cell cannot be provided. Likewise, specific volumes for staining

and process steps cannot be provided.

Engineered T-cells have been used for this complex stage because they are representative of
current and developing therapies on the market. Current treatments are based upon Chimeric
Antigen Receptor (CAR-T) or engineered T-cell Receptor (TCR) treatment methods, using autologous
T-cells, derived from patient PBMC material. By using a complex FC panel which develops upon the
T-cell lineage panel in the previous model (Chapter 5), it has included more complexity (gating steps
and difficulty) and more specificity to a Cell Therapy product. This shows an industrially relevant
assay to define the population of transduced T-cells that exhibit appropriate markers for a TCR

product.

6.2.2 fcs File Generation
A series of fcs files were generated using the engineered T-cell product created at the collaborator
site. Genetically Modified Cells were washed with Cell Staining buffer to remove any cell culture
media remaining. 0.1 mL aliquots of the master cell suspension were placed into separate labelled
microcentrifuge tubes so there were approximately 1 x 106 cells per tube (3 fully stained samples,
1 unstained sample, 7 FMO controls). The unstained sample was wrapped in foil and placed in a

4°C fridge because this was not needed until the final analysis.

To detect expression of engineered TCR, a PE-conjugated dextramer reagent specific for the
engineered TCR was utilized, according to the manufacturer recommended protocol (Immudex,

Denmark). The cells were then stained for additional antigen markers, according to the following
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stain protocols in Table 53 and Table 54. Staining was performed according to manufacturer

recommendations and standard flow cytometry staining protocol. Isotype controls for each marker

were not produced because these are no longer recommended for use, as FMO controls are more

effective and economical. The FMO controls were stained with all stains aside from the stain aligned

to that specific channel. This is to monitor any fluorescence spillover into the required channels

from other markers being used. Fully stained samples were stained with collaborator-optimised

volumes of all the antigen markers in use.

The antigen markers used for the FMO controls (Table 1) and fully stained samples (Table 2) are:

e Miltenyi CD197 (CCR7) - VioBlue, human (Cat Number: 130-117-353)

e Miltenyi CD4 - VioGreen, Human (Cat Number: 130-113-221)

e Miltenyi CD3 - FITC, Human (Cat Number: 130-113-128)

e Miltenyi CD45RA - PE-Vio770, Human (Cat Number: 130-113-357)

e Miltenyi CD95 (FAS) - APC, Human (Cat Number: 130-113-070)

e Miltenyi CD8 - APC-Vio770, Human (Cat Number: 130-110-681)

e Miltenyi 7AAD - PerCp-Vio770 Staining Solution (Cat Number: 130-111-568).

Table 53 Staining volumes for FMO Controls

Channel Antigen VioBlue VioGreen FITC FMO PE FMO PE-Vio770 APC FMO APC-
Marker FMO FMO FMO Vio770
FMO
405 nm CCR7 X
laser, VioBlue
450/50
filter
405 nm CcDh4 X
laser, VioGreen
525/50
filter
488 nm CD3 FITC X
laser,
525/50
filter
488 nm Dextramer X
laser, PE
585/40
filter
488 nm CD45RA PE- X
laser, Vio770
750LP filter
635 nm CD95 APC X
laser, 655-
730 filter
635 nm CD8 APC- X
laser, Vio770
750LP filter

190



Chapter 6: Complex Uncertainty Model

Table 54 Staining volumes for Fully Stained Samples

Channel Antigen Fully Stained Fully Stained Fully Stained
Marker Sample 1 Sample 2 Sample 3
405 nm CCR7 X X X
laser, VioBlue
450/50 filter
405 nm CcDh4 X X X
laser, VioGreen
525/50 filter
488 nm CD3 FITC X X X
laser,
525/50 filter
488 nm Dextramer X X X
laser, PE
585/40 filter
488 nm 7AAD PerCp- X X X
laser, 655- Vio770
730 filter
488 nm CD45RA PE- X X X
laser, 750LP Vio770
filter
635 nm CD95 APC X X X
laser, 655-
730 filter
635 nm CD8 APC- X X X
laser, 750LP Vio770
filter

Antigen markers CD3, CD4, CD8 and CD45RA have been previously described in Chapter 5. The
naive T-cell staining panel used has been built upon in this chapter to develop an 8-colour panel to
identify engineered T-cells and monitor different product characteristics. C-C chemokine receptor
type 7 (CCR7), also known as Cluster of Differentiation 197 (CD197), is expressed in lymphoid
tissues and stem cell memory T-cells (derived from naive T-cells) [192]. Cluster of Differentiation
95 (CD9b), or Fas-receptors are indicators of programmed cell death within engineered T-cell
products [193,194]. Dextramer is the marker to monitor the transduction efficiency of the viral
vector delivering the gene to the T-cell. This is a measure of how many cells will make the
functioning protein required for this cell and gene therapy [195]. Finally, the viability stain used is
7-aminoactinomycin D (7-AAD), a nucleic acid stain that emits fluorescent emission spectra when
it binds with DNA. This indicates ruptured, dead cells that have exposed nuclei from live cells with

intact cell membranes [196].

Cells were run through a Miltenyi MACSQuant Analyser 10 Flow Cytometer (3 lasers, 8 optical

channels), once a daily calibration was completed.
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Three fully stained sample files were acquired as 3 representative repeats, along with the FMO
controls. Files were exported as fcs 3.0 version types for use in Flowjo version 10.0.8r1 third party

analysis software [123] and saved as a workspace.

6.2.3 Flow Cytometry Study Organisation
A total of 22 participants from three separate centres (4 from an academic institution, 13 and 5
participants from separate industrial institutions) were invited to complete the study in a quiet
analysis space, to avoid distraction and the possibility of others seeing the study content and
analysis. Study sessions had a one-hour maximum duration, and participants were shown three
Flowjo workspaces, which contained a series of fully stained engineered T-cell .fcs files. Identical
files were included in each workspace, and participants were instructed to gate through an eight-
plot sequence to identify single cells, target cells, live cells, CD3+ cells, CD4+ CD8- cells, CD45RA+
CCR7+ cells, CD95+ cells and finally to identify transduced engineered T-cells. Flowjo was the
choice of platform due to access of the software across all three industrial and participant sites,

meaning a higher number of participants were likely to be familiar with the platform.

Participants were also provided with FMO controls in each workspace to aid gate application and
were allowed to use whatever manual gating tool on Flowjo they felt best to gate the population in
hand. An overall schematic of the gating sequence they were asked to follow is shown in Figure 96,
and participants gated each workspace of files separately to ensure a correct quantification of

uncertainty through standard deviation calculation.
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Figure 96 Gating sequence participants were asked to follow, to identify the transduced engineered T-cells.
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Similar to the pre-study completed in Chapter 3 and intermediate model in Chapter 5, participants
took part in a second phase, where they repeated the same gating process for the transduced
engineered T-cell population but were asked to copy a diagrammatical protocol to apply gates
instead of using their own judgement, shown in Figure 97. Participants were given the same three
fully stained samples along with the FMO controls to aid them in applying the gates in each
workspace, alongside the images given in the diagrammatical protocol. Participants followed the

same gating sequence provided in Figure 96.
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Figure 97 Diagrammatical protocol given to participants to copy gates instead of using personal judgement
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This data exercise aimed to build upon previous work in Chapter 4 and 5 to identify if inter-
participant variance does exist when reporting results from the same data and that uncertainty
values can be calculated for participants to contribute towards an overall uncertainty estimation. It
also aims to investigate if the participant range in uncertainty increases as the complexity of the
gating exercise increases. This was designed to estimate a general absolute result median and
uncertainty. Calculating significant differences between certain groups or testing conditions can be
completed in this instance because participants took part in a two-phase analysis exercise, similar
to the Pre-study in Chapter 3 and intermediate model in Chapter 5. Standard power calculations to
determine appropriate sample size can be generated for future development reference, but also

give an indication of current power from the number of participants that took part in the study.

As in the previous uncertainty exercises, participants made 3 repeat measures, within a 1-hour slot,
because this was the maximum allowance given for each participant’s time, agreed across the

three institutions.

6.2.4 Uncertainty Calculation

Once studies had been completed the separate gated cell population metrics were extracted from
the data, using the results from the identical repeated file situated in each Flowjo workspace, and
were transformed into respective cell count percentages as a function of the original cell event
number in the file. These were then used to calculate a mean cell count, SD and CV for each gating
stage, per participant using Microsoft Excel software. Finally, a combined uncertainty (uc) was
calculated by combining these Type A uncertainties by summation in quadrature. The uc value was
expanded with a coverage factor of k = 2, representing a 95 % Confidence Interval for the
uncertainty statement, which gave each participant a representative expanded uncertainty (U)
figure, to show individual variance. The mathematical methodology used to calculate uncertainty
metrics has been previously discussed in Section 2.5. An example of the data extraction through

to calculation of metrics and uncertainty can be seen in Figure 98 for this complex model.
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Total Cell Counts

File 1 76012

File 2 72449

File 3 62475 COUNTS Repeat 1 Repeat 2 Repeat 3

File 1 File 2 File 3 File 1 File 2 File 3 File 1 File 2 File 3
Exclude Doublets 54360 50538 43035 55340 51449 43786 55186 51328 43690
Target Cells 28107 25725 21182 27805 25458 20929 27493 25117 20679
Live Cells 26750 24393 19945 26662 24374 19907 26272 23922 19554
CD3+ Cells 26725 24367 19930 26642 24354 19894 26247 23896 19538
CD4+ CD8- Cells 19558 17760 14534 19544 17825 14430 19244 17466 14261
CD45RA+ CCR7+ Cells 6348 6211 4931 8362 8032 6376 7485 7198 5742]
CD95+ Cells 6348 6211 4930 8361 8032 6375 7484 7198 5741
Dextramer+ Cells 4475 4330 3437 5931 5595 4430 5099 4809 3875
PERCENTAGES Repeat 1 Repeat 2 Repeat 3
File 1 File 2 File 3 File 1 File 2 File 3 File 1 File 2 File 3
Exclude Doublets 71.52 69.76 68.88 72.80 71.01 70.09 72.60 70.85 69.93
Target Cells 36.98 35.51 33.90 36.58 35.14 33.50 36.17 34.67 33.10
Live Cells 35.19 33.67 31.92 35.08 33.64 31.86 34.56 33.02 31.30
CD3+ Cells 35.16 33.63 31.90 35.05 33.62 31.84 34.53 32.98 31.27
CD4+ CD8- Cells 25.73 24.51 23.26 25.71 24.60 23.10 25.32 24.11 22.83
CD45RA+ CCR7+ Cells 8.35 8.57 7.89 11.00 11.09 10.21] 9.85 9.94 9.19
CD95+ Cells 8.35 8.57 7.89 11.00 11.09 10.20 9.85 9.94 9.19
Dextramer+ Cells 5.89 5.98 5.50 7.80 7.72 7.09 6.71 6.64 6.20
FILE 1 AVERAGE STDEV CcV
Exclude Doublets 72.31 0.69 0.96
Target Cells 36.58 0.40 1.10
Live Cells 34.94 0.33 0.96]
CD3+ Cells 34.91 0.34 0.96]
CD4+ CD8- Cells 25.59 0.23 0.91
CD45RA+ CCR7+ Cells 9.73 1.33 13.65
CD95+ Cells 9.73 1.33 13.64
Dextramer+ Cells 6.80 0.96 14.13
Coverage Factor |uc | | 2.32|
lu | | a.64]

Figure 98 Example of data extraction through to calculation of absolute results and uncertainty per participant
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6.3 Results & Discussion

6.3.1 Flow Cytometry Complex Gating Exercise absolute results -
Phase 1 Personal judgement

The absolute results reported here are the targeted cell population that participants were asked to
identify using the gating sequence defined in Figure 96, during the first gating session where they
used their own judgement to apply gates. These are akin to what would be reported in literature for
specific cell types, in this instance it is transduced engineered T-cells. The uncertainty of the gating

sequence will be discussed in subsequent sections of this Chapter.

Table 55 Measures of Location for the absolute results of the Complex Gating Study using personal judgement (%)

Arithmetic Mean 5.81
Median 5.45
Mode N/A
Minimum 1.18

Maximum 10.50

Table 56 Measures of Spread for the absolute results of the Complex Gating Study using personal judgement (%)

Range 9.33
25t Percentile 4.04

75t Percentile 7.61
Interquartile Range 3.56
Standard Deviation 1.03
cv 12.10

Median Absolute Deviation 1.73

Table 57 Measures of Skew for the absolute results of the Complex Gating Study using personal judgement (%) (3dp for better

resolution)
Skewness 0.168
Skewness standard Error 0.491
Skewness z-score 0.342
Kurtosis -0.669
Kurtosis Standard Error 0.953
Kurtosis z-score -0.702
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Table 58 Measures of Normality for the absolute results of the Complex Gating Study using personal judgement (%) (3dp for better

resolution)
Shapiro-Wilk statistic 0.980
Significance 0.911
Normal/Non-parametric Normal

Using descriptive statistics to give a general report on the size and shape of the data, the
distribution approximates to a normal shape because the mean and median are very close
together, as identified in Table 55. This is supported by the skewness and kurtosis z-scores (0.342
% and -0.702 % respectively, Table 57) and the Shapiro-Wilk statistical test for normality (p =0.911
%, Table 58) significantly concludes the distribution is normal. This normality definition is most
probably indicated by the spread of the distribution, rather than any specific location parameters.
Measures of spread (Table 56) show that the IQR of the participant data was approximately half
the size of the range, again indicating normality. These participant average cell count values can
be seen in Figure 99. Participant averages are more variable around the median than the previous

model, and the error bars show + 1SD from each participant’s repeated measures.
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Figure 99 Absolute Results of Target Cell population, represented by each participant's average and + SD.

Participant deviation from the median (residuals) has been more clearly visualised in Figure 100,

with bars depicting each participant’s average from the median group value (calculated by
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subtracting participant averages from the group median). The SD of the total group has also been
plotted, because these are most commonly used within traditional manufacturing boundaries to
define out of control/out of specification limits. 59 % of participants are within 1SD of the median,
showing good corroboration of final results. Of those who fell out of bounds one participant had a

result below -2SD, four participants below -1SD and two participants above +1SD.

To compare the different types of error boundary estimator that can be used, the histogram of
participant average cell counts has been plotted in Figure 101. This confirms that nearly all
participants fall within Paxton’s Criterion, mean + 3SD and mean * 2SD. Almost all fall inside the
trimmed mean + 2SD. A further 3 participants fell outside of the Median + 2MAD range, whereas

only 7 participants were contained within the 95 % Confidence Interval applied to this data set.

Median + 25D

Median + 15D

2 Median - 1S R

Median - 25D

Deviation of Average Participant Result from Median (%)
(=]

_6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Participant 1D
Figure 100 Participant average result deviations from overall group median.
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Figure 101 Comparison of average engineered T-cell counts to additional error boundaries

To compare both positive and negative deviation data extremes, Figure 102 shows participant
B12’s gating strategy, one of the participants very close to the group median value. By comparing
the extreme participants to a median participant, there are obvious differences between
participants when identifying populations based on the visualised density. This is also coupled with
personal preferences on inclusion or exclusion of data points to further refine the data set in search
of a particular target. The count average comes from the final gate applied only, but further back
in the gating sequence gates have been applied to capture most of the relevant populations.
Variation in the transduced T-cell population does not impact the results because there is a very
low cell count across this bandwidth (gate 8). The layouts used in this Chapter to visualise the
gating strategies are all uniform, with the top row showing gates 1-4 (left to right) and the bottom

row showing gates 5-8 (left to right), also shown in Figure 97.
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Figure 102 Participant B12 Gating Strategy interpretation, close to median result.

Focusing on those who fell outside of 25D, only one participant (B11) had this much deviation from
the median, with an overall percentage cell count of 10.00 %. This gating strategy shown in Figure
103, identifies how over-constraining the cell populations leads to an overall higher cell count than
the median. The eight images show the gating sequence steps used to define the final population
cell count, with B11's three repeats collated onto each sequence step image. Qualitatively
reviewing the participant’s gating strategy has shown that most of this bias is due to the gate
applied to the lymphocytes (gate 2) and live cells (PerCp-Vio700+, gate 3) which has been applied
to a restrained proportion of the population. B11 has applied this gate closer around the main T-
cell population in the second gate and applied the separation boundary between the live and dead
cells closer to the live cell population in the third gate, to not include the dying cells. Additionally,
within the CD45RA+ CCR7+ gate (gate 6) the quadrant includes slightly more of the population

than the median user has, which has increased the average cell count overall.
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Figure 103 Participant B11 Gating Strategy interpretation

Participants AO1, CO3 and BO9 fell outside of the + 1SD boundary, because these participants

have average cell counts lower than the median value. Figure 104 and Figure 105 show the

respective gating strategies for the largest deviators, AO1 and CO3.
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Figure 105 Participant CO3 Gating Strategy interpretation

Participant AO1 and CO3 have lower average results than the median inter-participant value
because throughout their gating process they have included less cells than the median user. This
is specifically due to the second gate applied in the sequence, which has been more tightly
constrained around the central lymphocyte population than the median user. In addition, the sixth
gate applied to identify CCR7+ CD45RA+ cells, required participants to use FMO controls to
intersect the dense cluster of cells to define those which had double positive expression. The
vertical line placed by participants AO1 and C0O3 have been placed to the right of the most dense
region of this cluster, therefore selecting a smaller population that are expressing the desired
markers, in comparison to the median user, who placed the gate more to the left of the most dense
region. In this instance, different applications of gating ‘clean-up’ procedures and use of FMO

controls has potentially caused this variance, alongside the participant perception of density.

Participants BO2, BO3, BO7 and CO2 all had average cell counts that fell outside of the median -

1SD boundary. To illustrate examples of these gating strategies, Participants BO2 and BO3 (who
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had the highest cell counts within this boundary) can be seen in Figure 106 and Figure 107

respectively.
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Figure 107 Participant BO3 Gating Strategy Interpretation

Participant BO2 has a higher cell count than the median participant, which can be seen from their

second gate applied, and the sixth gate. The second gate applied includes a second larger cell
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population to the right of the cell population in question. The larger overall cell count is also due to
the sixth gate applied to identify the double positive CCR7+ CD45RA+ cell population. In contrast
to participant AO1 and CO3, the vertical line has been placed to the left of the densest region of
the cell population, including the majority of the population within the final average cell count for
engineered T-cells. Participant BO3 has also applied the sixth gate in this manner, to end up with
the final average cell count population within this boundary, the only difference being they did not
gate an additional population of cells within the second gate applied. The difference between these
participants within the median +1SD boundary and participant B11 who fell outside of the median
+2SD boundary is that B11 included a greater number of cells within gate 2. This carried forward

through the rest of the gates applied, so the average cell count is greater as a result.

This analysis of the absolute results used to represent cell populations shows a 9.32 % cell count
range between participants when determining final engineered T-cell population percentages. The
further qualitative analysis of the extremes identifies 1 participant (B11) who falls outside of initial
control limits. This extreme participant accounts for one third of the cell population percentage
range. If this extreme participant value was removed, the range would fall to 7.60 % between

participants (minimum value of 2.38 % and maximum value of 9.99 %).

Variability of absolute results is commonly assessed using the CV, which combines the average and
standard deviation of final cell count measurand (as defined in Chapter 2). The distribution
histogram of participant CV of reported results can be seen in Figure 108, plotted on top of 3
specification limits derived from the ICSH boundaries used within Chapter 4 and 5. Therefore, this
amount of variance is not ideal in this exemplar. The optimal scenario would have all 22 participants

(n) with < 1 % CV, which sets the total height at y-intercept of the graph.
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Figure 108 CV Performance of Participant absolute results when using personal judgement to gate complex cell model

Using these guidelines as boundaries, nine participants fell outside of the ‘revision required’ region
due to very high CV and an additional two participants fall outside of the ‘good’ and ‘satisfactory’
performance regions. These extreme outliers had more variation within the final quadrant gate they
drew when identifying the final naive T-cell cell population. Participant B13 has been used as an
example here, because they had the highest CV. Participant BO4 had a CV of 36 %, and their final
gates can be seen in Figure 109. B13 intersects the CCR7+ and CD45RA+ population much more
on one of the gating repeats, creating a lower value for the final average cell count population of
one repeat, carried forwards through the remaining gates. Therefore, there is more variation in the
result, shown by the CV of the three repeats. This is the case for the other participants who fall

outside of this region.

207



Chapter 6: Complex Uncertainty Model

260K =

200K =

150K =

FSC-H: FSCH
S5C-A 1 5504
SIC-A 1 SIC-A
SSC-A: TICA

100K -

sok -

T T T
180K 200K 260K

T T T T — T
0 sk WOK 180K 200K 250K H 50K 100K

FSC-A : FSC-4 FSC-A : FSC-A B34 PerCP-Vio?00-4 Bi-A: FITC-A

250K

200k o

160K =f

V28,1 VieGreen-A,

W14 VioBlue-a,

5504 S5C-A
524: LPEA

100K =f

50K =

T T T T
00K 1SDK 200K 250K

R2-A.22 BPC-NioTT0-A Bd-A 5 PE-ViOTT0-4 Ri1-8 1 APC-A 5504 55C-4

Figure 109 Participant B13 Complex Model Study Gating interpretation

Participants AO4, BO1, B06, BO7, B10, B13, CO3 and CO5 also had CV values that fell outside the
‘Revision Required’ region of the graph. Similarly, the variability in the final result is caused by the
placement of the sixth gate, separating the CCR7+ CD45RA+ population from the rest of the cluster.
It appears that variability caused using FMOs at this phase has a knock-on effect for the final cell
count, rather than being caused by the final gate applied in the sequence. In some instances, the
variability between repeats is carried over from earlier in the gating sequence (typically the second

or third gates).

Measurement uncertainty provides a way of combining variability measures (SDs) of each gate
within the sequence, to provide a measurement that is more representative of the components of
the gating sequence. When extremes in measurement uncertainty arise, uncertainty values can be
easily deconstructed to identify which part of the gating sequence is responsible for causing
variation within the measurement. Measurement uncertainty results for this phase are discussed
in Section 6.3.4, once absolute results for phase 1 and 2 of this study have been reviewed and

compared.
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6.3.2 Flow Cytometry Complex Gating Exercise absolute results - Phase 2 Following
Protocol

The absolute results reported here are the targeted cell population that participants were asked to
identify using the gating sequence defined in Figure 96, during the second gating session where
they used the diagrammatical protocol in Figure 97 and FMO controls to apply gates. A comparison
of these results to Phase 1 and the uncertainty of the gating sequence will be discussed in the next

section of this Chapter.

Table 59 Measures of Location for the absolute results of the Complex Gating Study using a diagrammatical protocol (%)

Arithmetic Mean 11.98

Median 12.23
Mode N/A
Minimum 3.36

Maximum 16.60

Table 60 Measures of Spread for the absolute results of the Complex Gating Study using a diagrammatical protocol (%)

Range 13.24
25t Percentile 9.78

75t Percentile 15.06
Interquartile Range 5.28
Standard Deviation 1.47
cv 12.27

Median Absolute Deviation 2.66

Table 61 Measures of Skew for the absolute results of the Complex Gating Study using a diagrammatical protocol (%) (3dp for better

resolution)
Skewness -0.859
Skewness standard Error 0.491
Skewness z-score 1.749
Kurtosis 0.626
Kurtosis Standard Error 0.953
Kurtosis z-score 0.657

Table 62 Measures of Normality for the absolute results of the Intermediate Gating Study using a diagrammatical protocol (%) (3dp
for better resolution)

Shapiro-Wilk statistic 0.936
Significance 0.165
Normal/Non-parametric Normal
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Using descriptive statistics to give a general report on the size and shape of the data, the
distribution approximates to a normal shape because the mean and median fairly close together
(11.98 % and 12.23 % respectively), as quoted in Table 59, however, these values are over double
the mean and median for Phase 1. The skewness z-score (1.749 %,Table 61), and the low kurtosis
z-score (0.657 %) also indicate a more normal distribution, supporting these measures of location.
This is further supported by the Shapiro-Wilk statistical test for normality (Table 62) which indicates
the distribution is normal. The measures of spread (Table 60) indicate that the IQR is approximately
half the size of the total range of inter-participant results, which again alludes to a normal

distribution shape of the data.

Participant average cell counts and SDs when gating following the protocol can be seen in Figure
110. Participant averages are more variable in Phase 2 of this complex study in comparison to the
intermediate study, however, qualitatively, the inter-participant average results do appear to lie

closer to the median, aside from a couple of extreme values.
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Figure 110 Absolute Results of Target Cell population when following a protocol, represented by each participant's average and + SD.
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Participant deviation from the median (residuals) has been more clearly visualised in Figure 111,
with bars depicting each participant’s average from the median group value (calculated by
subtracting participant averages from the group median). The standard deviation limits have also
been plotted, because these are most commonly used within traditional manufacturing to define
out of control/out of specification limits. 82 % of participants are within 1SD of the median, showing
good corroboration of final results. Of those who fell out of bounds one participant had a result

above +2SD, two participants are above +1SD and one participant below -1SD.

The application of the Phase 1 error boundaries to the histogram of Phase 2 cell counts, created
when participants followed the protocol can be seen in Figure 112. A shift in the whole population
can be seen, with more participants returning a higher cell count when following the protocol. This
is primarily due to a greater inclusion area specified in the second gate applied in the sequence,
which overall has increased the cell count from what most participants highlighted when using their
own judgement. Whilst there is still some variability around the final cell count achieved using a
protocol, it shows that protocols can be used to improve the assumed accuracy of a gating strategy,
to ensure the target cell populations are reproducibly selected. In this instance we cannot have
metrological accuracy because a true value is unknown, however, if a protocol is used as a
benchmark, then a known value can be taken from the benchmark to aim towards, creating an

‘experimental accuracy’ rather than a theoretical or traceable one.
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Figure 112 Application of Phase 1 error boundaries to engineered T-cell counts when participants follow a protocol

Qualitatively reviewing the extreme participant (B13) gating strategy outside of the Median + 2SD,

highlighted from the residual diagram in Figure 113, has shown that most of this bias could be due
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to the fifth and sixth gates applied to the engineered T-cells, because these gates cut off a portion
of the CD4+ CD8- cells in gate 5, and the quadrant placed on the sixth gate sits to the right of the
densest region of the cell cluster. This cut across the dense region of this population, keeps a lower
proportion of cells within the gate boundary. This gating strategy shows how over-constraining the
cell population leads to an overall lower cell count than the median, with Participant B13 returning

a final cell count of 3.56 % in comparison to the interparticipant median of 12.23 %.
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Figure 113 Participant B13 Gating Strategy interpretation when following a protocol

The distribution histogram of participant CV of reported results can be seen in Figure 114, plotted
on top of 3 specification limits derived from the ICSH boundaries used throughout this thesis. All
22 participants took part in this second gating session so the optimal scenario would have all 22

participants (n) with < 1 % CV, which sets the total height at y-intercept of the graph.
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Figure 114 CV Performance of Participant Absolute results when following a protocol during the complex cell model

Using these guidelines as boundaries, eight participants fell outside of the ‘revision required’ region
due to very high CV and a further five participants fell just outside of the ‘good’ and ‘satisfactory’
performance regions. These extreme outliers had more variation within the final quadrant gate they
drew when identifying the final naive T-cell cell population. Participant BO7 had the highest CV when
gating using the protocol, and their final gate can be seen in Figure 115. This variation comes from
gate 6 applied to separate the CCR7+ CD45RA+ population from the remainder of the cell
population. The second repeat did not intersect this population in the same way as repeat one and
three, because BO7 did not include any of the positive population within this gate, causing the large
CV. The small amount of remaining cells is passed onto the remaining two gates, resulting in a
small overall cell count for repeat two, a skewed average cell count and a larger CV due to the large

SD between repeats.
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Figure 115 Participant BO7 Complex Model Study Gating interpretation

The most extreme participant has been included here as an example of outlying CV results.
Participant BO7 had a CV of 86 % due to disparity between the three repeated gates applied to the
data. The bulk of this deviation comes from the quadrant gates applied to the data to identify CD4+
CDS8- populations (gate 5) and CCR7+ CD45RA+ populations (gate 6). One gate has been applied
differently from the other two repeats. This is very noticeable in gate 6, where BO7 has removed all
of the same double positive population from one of the gates applied. This dramatically reduced
the population count carried forward, causing the large CV result. The deviated gate was applied
because BO7 did not use both FMO controls to set the gate limits. One control was set for CCR7+
but BO7 failed to cross-reference with the CD45RA+ control, causing the lower population count

carried forward.
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6.3.3 Flow Cytometry Complex Gating Exercise absolute results -
Comparison of Phase 1 and Phase 2

The average cell counts for each participant when they gated following their own judgement and
then a protocol have been compiled into the histograms in Figure 116. Any dark orange areas are
overlap of the two respective histograms. The range of cell counts has increased by 6.18 % when
participants followed the protocol, indicating that protocols may not be as helpful to participants
when trying to conform to more reproducible cell counts, or the protocol specified gating areas that
were wider than what participants would have personally drawn. Both phases of data have normally
distributed populations, so in this instance the protocol has not made the population more kurtosed

and repeatable to a specific cell count value.
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Figure 116 Comparison of Participant Absolute cell counts when gating using their own judgement and when following
a protocol (brown areas indicate overlap between the two distributions)

Further comparison of inter-participant data when gating using their own judgement and following
a protocol has been completed with a Sign statistical test (Table 63), to compare equality of

medians between each test condition. The Sign test results reject the null hypothesis of no
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difference in medians, confirming the qualitative histogram conclusion that there is a significant

difference between the two medians of the two phases.

Table 63 Sign test results for comparison of Intermediate Gating Study Stages

Null Hypothesis Test Sig. Decision
Median difference of P1 & P2 cell counts = 0 Related-samples Sign test 0.000 Reject null hypothesis

Comparison of these averages has been visualised in Figure 117, plotting the differences of
participants average cell counts from the actual cell counts from the protocol gates they were
provided to copy in Phase 2. Whilst this only considers the cell count values, not the size, shape or
area of the gates, this potentially indicates that when participants copy the protocol, they are more

likely to over constrain their gates, than when using their own judgement to place gates.

When applied to a CGT context, this could become dangerous when releasing products due to
potential false positives. If an operator includes more cells due to their interpretation of a protocol,
this indicates more cells of interest have grown within the therapy product, meeting the required
threshold for filtration and patient infusion. If the desired cell count is not met, the therapy would
either need more time to sufficiently expand, or it should be rejected when analysed in QC. If not
given this time, the product would be filtered and prepared for the patient, but not actually provide
the correct therapeutic dose of treatment. This could lengthen the treatment time if more starting
material needs to be taken from the patient, causing them more distress, and more inefficiencies

within the manufacturing process which in turn increase the costs of cell therapy treatments.
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Figure 117 Comparison of Participant averages to the benchmark protocol given to follow in Phase 2

To further compare these two testing conditions the A Priori and Post Hoc power were calculated
again (Table 64) to identify whether a suitable number of participants had been gathered based
upon the difference in variance of absolute cell counts in each test condition. The use of these

power analysis variables has been discussed within the methodology in Chapter 2.

Table 64 A Priori and Post Hoc Power analysis for Complex Study absolute cell counts

[ variance Phase1 [ Variance Phase2 | A-priori power Sample size required Actual power
[ 6.364 | 11.092 [ 0.800 82 0.343

The A Priori and Post Hoc power analyses in Table 64 show that for the variances achieved between
the two test condition average cell counts, 82 participants would have been required to show this
difference, to the required minimum desired power of 0.80. The actual power achieved through
this study is 0.343, indicating a 34 % probability of the differences in variance of absolute cell

counts being due to the two test conditions used and no other underlying factors.
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Figure 118 Comparison of participant absolute cell count CVs when gating using their own judgement and when
following a protocol (brown areas indicate overlap between the two distributions)

The CV of cell counts is commonly reported alongside average cell counts within Flow Cytometry
data and in this instance the range of participant CVs was greater when participants used the
protocol to apply gates to the cell population, shown in Figure 118. The extreme value obtained
here is due to FMO controls not being used properly during one repeat, causing a large overall CV.
Aside from this extreme value the protocol appeared to then reduce the range of results CV between
participants when they followed this, but this only really considers the final gate applied within the
repeats. Measurement uncertainty provides a better way to compile and monitor variation over the

whole gating process.
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6.3.4 Flow Cytometry Complex Gating Exercise uncertainty results -
Phase 1: Personal Judgement
The uncertainty results reported here are a combination of the eight gating stages defined in Figure
96 for gates applied when participants use their own judgement. The uncertainty values have been
quantified following the prescribed methodology in Chapter 2, Section 2.5. The uncertainty would
better represent variance of measurements with greater confidence, because this combines

variability from all gates applied in the sequence, not just the variance of the final gate applied.

Table 65 Measures of Location for uncertainty of the Complex Gating Study using personal judgement (%)

Arithmetic Mean 10.6
Median 6.2
Mode N/A
Minimum 0.8

Maximum 34.9

Table 66 Measures of Spread for uncertainty of the Complex Gating Study using personal judgement (%)

Range 34.0

25t Percentile 4.0

75t Percentile 13.2
Interquartile Range 9.1
Standard Deviation 10.8
Median Absolute Deviation 3.0

Table 67 Measures of Skew for uncertainty of the Complex Gating Study using personal judgement (%) (3dp for resolution)

Skewness 1.375
Skewness standard Error 0.491
Skewness z-score 2.800
Kurtosis 0.468
Kurtosis Standard Error 0.953
Kurtosis z-score 0.491

Table 68 Shapiro-Wilk test for normality for uncertainty of the Complex Gating Study using personal judgement (%) (3dp for resolution)

Shapiro-Wilk statistic

0.758

Significance

0.000

Normal/Non-parametric

Non-parametric
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Unlike the descriptive statistics for absolute results for this study phase, the mean and the median
are not close together (10.6 % and 6.2 % respectively), indicating a more skewed distribution, as
monitored in Table 65. The median is less than the mean, indicating a slight positive skew to the
data. This is further supported by the Shapiro-Wilk test for normality (p < 0.0005 %), shown in Table

68, indicating that the distribution is non-parametric in shape, indicating skewness.

There is a wide range (34.0 %) between minimum and maximum participant uncertainties. Table
66 also shows the interquartile range as 9.1 %, indicating a high kurtosis, because half of the data
lies within 27 % of the total distribution range. This is supported by the skewness value in Table
67 (2.800 %) with skewness z-score falling outside of the +2.58 boundaries specified for normality
in Chapter 2. The raw data for each participant can be seen in Figure 119 with various extremes
within the dataset. This distribution shape can be observed within Figure 120, showing the positive

skew with a possible bimodal split and 4 larger uncertainty extremes.
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Figure 119 Expanded Uncertainty of all Participant Gating within the Intermediate Model Study
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Figure 120 Histogram of Participant Expanded Uncertainty from repeats of Intermediate Model Study

Whilst deviation from a median can help to explain the distribution parameters, when analysing
variance, a positively skewed distribution towards zero is preferred. Comparing uncertainty in its
size order allows boundaries to be set for permissible specification limits for product

release/laboratory quality that increase in value.

Again, in this instance the CV specification limits have been substituted for Uncertainty (Figure
122), and no other uncertainty specifications have been defined in the public body of knowledge
from research or industry. However, unlike the previous model, this correlation is not strong
because of the six participants with extreme uncertainty values, which will be explored within the
extremes identified within Figure 121. Even when these extremes are removed the gradient is still

low (0.1457x).
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Figure 121 Final Cell Count Population Percentage CV versus Gating Uncertainty for participants
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Figure 122 Participant Uncertainty performance monitoring diagram when using their own judgement during the
complex model
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Participants BO4, B10, BO7 and AO4 had the highest overall uncertainties of the population, which
fall outside of the ‘Revision required’ boundary, and are also above the limit of permissible

uncertainty, shown as the black line on the graph in Figure 122.

12

Participant Standard Deviations of individual gate repeats (%)

Gating steps

Figure 123 Standard Deviation of each gate applied in the sequence by each participant

The distribution of all participant SDs from each gate applied in the sequence can be seen in Figure
123. These standard deviations are combined in quadrature to create the total expanded
uncertainty value, used to identify extreme participants. Participants BO4, B10, BO7 and A04, who
are the uncertainty extremes in this instance can be identified as the top four lines of this standard
deviation breakdown graph. Visualising the data in this way shows that all four participants had a
large variation due the live cell gate (gate 3) applied in the sequence. This had a knock-on effect
for the following two gates, which then lowered when gating the CCR7+ and CD45RA+ cells.
Interestingly, this was not anticipated because of the difficulty of separation of the population, it
was thought that there would be more variability here. However, because of the difficulty of

separation, participants adhere to the FMO controls and instructions a lot more, causing the low
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variation. As examples, the gating sequence for Participant B10 can be seen in Figure 124, in

addition to Participant BO4 (Figure 125), because these participants had the largest uncertainties.
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In all instances there is one repeated gate that is significantly larger or smaller than the remaining

two. Upon closer inspection, the larger gates all sit against the right, lower edge of the vertical axis

and another pseudocolour stripe can be seen running along the edge of the boundary. Inclusion or
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exclusion of this boundary effect is causing this variability, which is then carried forward into the
CD3+ gate due to the population count. The remainder of the population had very small Standard
Deviations, aside from Participants BO8 and CO03, who had mid-range variabilities. These
variabilities are due to one gate being different from the rest, however there are differences
between these two participants. Participant CO3’s gates have already been visualised in Figure
105, and Participant BO8'’s gate can be seen in Figure 126. Participant CO3 has variation due to
the live gate (gate 3), with two repeats cutting through the population and one repeat placed around
the entire population. This was due to the participant’s inexperience with using control files to place

gates, and a lack of final checking at each level of the gating sequence.

The difference with Participant BOS, is that the largest gate applied to the live cell population cuts
through the boundary effect seen on the left side, causing the higher cell population and larger
standard deviation for that gate. This boundary effect has been investigated in further detail in
Chapter 5, when additional cells were compiled together on the right edge of the plot. In this
instance, smaller live cells that are not in the fluorescence range have been compiled on the left
side. Where this has been cut through to including the lower density region, a spike in the

population has been carried forward.
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Figure 126 Participant BO8 Complex Model Study Gating interpretation
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6.3.5 Flow Cytometry Complex Gating Exercise uncertainty results -
Phase 2: Following Protocol

The uncertainty results reported here are a combination of the eight gating stages defined in Figure
96 using the gating protocol provided, shown in Figure 97 and FMO controls. The uncertainty values
have been quantified following the prescribed methodology in Chapter 2.5. The uncertainty would
better represent variance of measurements with greater confidence, because this combines

variability from all gates applied in the sequence, not just the variance of the final gate applied.

Table 69 Measures of Location for uncertainty of the Intermediate Gating Study when following a protocol (%)

Arithmetic Mean 22.0
Median 19.3
Mode N/A
Minimum 2.1
Maximum 43.9

Table 70 Measures of Spread for uncertainty of the Intermediate Gating Study when following a protocol (%)

Range 41.8
25t Percentile 4.4

75t Percentile 38.8
Interquartile Range 34.4
Standard Deviation 16.6
Median Absolute Deviation 17.1

Table 71 Measures of Skew for uncertainty of the Intermediate Gating Study when following a protocol (%) (3dp for resolution)

Skewness 0.083
Skewness standard Error 0.491
Skewness z-score 0.169
Kurtosis -1.800
Kurtosis Standard Error 0.953
Kurtosis z-score -1.889

Table 72 S-W test for normality for uncertainty of the Intermediate Gating Study when following a protocol (%) (3dp for resolution)

Shapiro-Wilk statistic 0.836
Significance 0.002
Normal/Non-parametric Non-parametric
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Similar to the descriptive statistics for absolute results for this study, the mean and the median are
close together (22.0 % and 19.3 % respectively), indicating a less skewed distribution, as monitored
in Table 69. The median is less than the mean, indicating a slight positive skew to the data, which
is preferable for uncertainty results. However, the Shapiro-Wilk test for normality, shown in Table
72, indicating that the distribution is non-parametric in shape (p = 0.002 %), indicating more

skewness than the mean-median difference shows.

There is a wide range (41.8 %) between minimum and maximum participant uncertainties. Table
70 also shows the interquartile range as 34.4 %, which indicates a low kurtosis, because half of
the data lies within 83 % of the total distribution. This is supported by the skewness and kurtosis
values (0.169 % and -1.889 % respectively) in Table 71 with skewness and kurtosis z-scores inside
of the +2.58 boundaries specified for normality in Chapter 2. The raw data for each participant can
be seen in Figure 127 with various extremes within the dataset. This ordered distribution shape
can be observed within Figure 128, showing the positive skew with a bimodal split and 9 larger
uncertainty extremes. Qualitatively assessing the shape of the distribution shows a different shape
to the data than the descriptive statistics, because the mean calculated does not reflect central

tendency of the raw data as would be assumed, which will be investigated further.
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Figure 127 Expanded Uncertainty of all Participant Gating within the Complex Model Study when participants followed a protocol
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median = 19.3 %
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Figure 128 Histogram of Participant uncertainty from repeats of Intermediate Model Study when participants followed a protocol

Whilst deviation from a median can help to explain the distribution parameters, when analysing
variance, a positively skewed distribution towards zero is preferred. Comparing uncertainty in its
size order allows boundaries to be set for permissible specification limits for product

release/laboratory quality that increase in value.

The ICCH and ICCS imprecision values described earlier for measurement CV and in previous
Chapters have also been used here to define example specification limits if monitoring participant
uncertainty. Again, in this instance the CV specification limits have been substituted for uncertainty
from this gating phase (Figure 129), and no other uncertainty specifications have been defined in

the public body of knowledge from research or industry.
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Figure 129 Participant uncertainty performance monitoring diagram when using their own judgement during the
complex cell model

There were nine outliers that exceeded the higher control limits with five of these also exceeding
the limit of permissible uncertainty. Participants BO9 and B10 had the highest overall uncertainty,
followed by Participants BO7 and BO2, who all exceeded the limit of permissible uncertainty, as
well as exceeding the defined control limits. However, again there qualitatively appears to be a high

variance participant cluster which has its own maxima at 39 % uncertainty.
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Figure 131 Participant B10 Complex Model Study Gating interpretation

Participant BO9 (Figure 130) and B10’s (Figure 131) most variable gates were the on the third plot
in the sequence. The repeats are very uniform in size and structure, with a repeatable cut-off
separating the primary population from the dead and dying cells. The variability appears to come
from differences in the left edge of the gate, where the gates applied cut through a data spike that
sits on the boundary of the plot, as first discussed in Chapter 5. In this instance, the axes of the

plot could not be scaled up to better see this spike, because this spike always sits on the left
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boundary, at the lowest scale point of 10-3. This data spike could be an amalgamation of all the
data points that exceed the plot limits, so they have been complied and added to the boundary,

however, there is no information from Flowjo on this visualisation effect.
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Figure 132 Standard Deviation of each gate applied in the sequence by each participant

The distribution of all participant standard deviations from each gate applied in the sequence can
be seen in Figure 132. These standard deviations are combined in quadrature to create the total
expanded uncertainty value, used to identify extreme participants. Participants BO9, B10, BO7,
BO5 and BO2, who are the uncertainty extremes in this instance can be identified as the top lines
of this standard deviation breakdown graph. Visualising the data in this way shows that these
participants had a large variation due the live cell gate applied in the sequence, like the previous
session where no protocol was used. This had a knock-on effect for the following two gates, which

then lowered when gating the CCR7+ and CD45RA+ cells.

In a manner similar to Phase 1 uncertainty, there is a mid-range uncertainty group, populated by

Participants A0O1, BO1, BO6, BO8 and CO3. These participants had a mid-range standard deviation

232



Chapter 6: Complex Uncertainty Model

when gating the live cell population in gate 3. Examples of these can be seen in Figure 133 and

Figure 134 for participants AO1 and BO1.
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Figure 134 Participant BO1 Complex Model Study Gating interpretation

To further investigate this, gate 3 was investigated for AO1 and BO1 as representatives of this mid-

range group. Figure 135 and Figure 136 show the gates applied here for AO1 and BO1 respectively.

The left images show the original scaling used for these gates, and the right images show the

extended log scale to better see the left edge of the gates drawn.
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Figure 135 Participant AO1 gate 3. a) Standard gates drawn with logarithmic scaling. b) Gates drawn to biexponential
scaling
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Figure 136 Participant BO1 gate 3. a) Original gates drawn with logarithmic scaling. b) Scale extended to show shape
of left edge

It is possible from looking at the two examples here that the mid-range standard deviations for this
gate is due to the location of where the left edge is dragged to past the original logarithmic axis
limit, and what angle this ends up being at. AO1 gates are not placed in line with the 10° mark that
the scale was set to, at which the boundary effect would have been displayed. Upon review of their
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session recording, Participant AO1 changed the axis scaling to biexponential, which is causing this
variation, shown in Figure 135 (b), in comparison to the correct logarithmic layout in Figure 135
(a). However, BO1 has a gate that is angled across this scale point, possibly causing the mid-range
variability Both participants are consistent with the size and shape of the overall gates applied, and

consistent with the cut off between the live, dead and dying cell populations.

To further investigate if the cause of this cluster variability in the third plot in the sequence, a
selection of participants with low uncertainties were examined to see if there is a difference or
obvious understanding if this boundary effect has been avoided during their analysis. Participants
BO3 and B13 had very low uncertainties from their total gating process and both fall within the
lower variance cluster. Their initial plots can be respectively seen in Figure 137 and Figure 113.

Further detailed plots of gate 3 can be seen in Figure 138 and Figure 139.
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Figure 137 Participant BO3 Complex Model Study Gating interpretation

Participants BO3 and B13 have applied gates close to this boundary effect, however they are very
repeatable in size and shape. Upon closer inspection BO3 has drawn gates to all include the

boundary effect. These are repeatable so the standard deviation is low, although this causes the
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overall cell count to be higher. Participant B13 has consistently gated just inside the boundary

effect, causing a lower variance and lower cell count due to the consistency of this edge.
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Figure 138 Participant BO3 gate 3. a) Original gates drawn with logarithmic scaling. b) Scale extended to show left
edge
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Figure 139 Participant B13 gate 3. a) Original gates drawn with logarithmic scaling. b) Scale extended to show left
edge

Throughout this complex study, the variability has consistently arisen from a different gate in the
series, not the first gate or quadrant gates which have been previously identified. This was due to
the presence of a boundary effect appearing again as in Chapter 5, but in this instance it has

appeared on the low fluorescence edge, due to the required cell population having low fluorescence
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staining. This visual artefact has been considered again within different software platforms when
it appears on a different edge. Figure 140 shows these outputs across different visualisation
software, with FlowLogic removing this effect in the top and left edges of the plot, and Flowjo also
removing it when figures are moved into the layout editor for exporting. Within the analysis window
the boundary effect can still be seen, hence its effect on the data analysis, and the same can be
said for FCS express, although the axes are defined and scaled differently to Flowjo and FlowLogic

Logarithmic scaling.
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Figure 140 Software visualisations of live cell gate (gate 3) to identify boundary effect

6.3.6 Flow Cytometry Complex Gating Exercise uncertainty results - Comparison of Phase
1 and Phase 2
The uncertainties for each participant when they gated following their own judgement and then a
protocol have been compiled into the histograms in Figure 141. Any dark orange areas are overlap
of the two respective histograms. The range of cell counts has increased by 7.8 %, indicating that
protocols may not help participants conform to reproducible cell counts. However, a
bimodal/trimodal distribution has appeared so more needs to be completed to understand how
subjectivity and interpretation of a protocol and visual images impact the final uncertainty
calculated. An improvement in training to highlight boundary effects discussed could have a
positive impact when trying to reduce inter-participant uncertainty in Flow Cytometry analysis. The
skewness and kurtosis z-scores have reduced when participants use a protocol, however this is
showing a tendency towards normality, which the distribution shape does not support in either

instance.
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When participants used their own judgement to apply gates, a split between higher and lower
uncertainty groups appears, but the shape of the overall distribution is positively skewed, with only
a few extremes exhibiting high variance. Use of a protocol has created further clustering effects,
seen in Chapter 5 for the intermediate model, potentially caused by boundary effects within the
software. This requires future investigation to understand what contributions training and
awareness can do to remove this source of variation, as well as finding ways to remove this from
the data. In addition, some software platforms remove these data spikes from the data, which can

change the values operators specify for cell counts across different programs.
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Figure 141 Overlaid histograms of participant uncertainties when gating the engineered T-cell population following
their own judgment and then using a protocol (brown areas indicate overlap between the two distributions)

Further comparison of inter-participant data when gating using their own judgement and following
a protocol has been completed with a Sign statistical test, to compare equality of median
uncertainties between each test condition, shown in Table 73. The Sign test results reject the
alternative hypothesis, because the uncertainty medians of the two testing conditions are not

statistically different. This does not statistically show that the uncertainties are smaller when
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participants use a protocol, however this only considered location values, so other measures of
variability should also be considered before deciding whether a protocol effectively reduces inter-
participant variability, or not. This is especially true in this instance due to the bimodal/trimodal
nature of one of the populations, meaning a robust statistic such as the median is not a reliable

location measure to represent the population.

In this study, an increase in overall range has been seen, indicating that diagrammatical protocols
alone are not enough to control inter-participant variability and uncertainty contributions to
measurements. Future considerations would need to look at incorporating training of noise
parameters around data sets to ensure participants are aware of this effect on the variability of
their subjectivity and interpretation, especially when cleaning the data at the start of a gating
sequence. The use of this protocol is causing subjective behaviour to divide the population into
high, medium and low variance clusters, which requires further testing to confirm this effect, and

the effect of identifying boundary effects to participants before they apply gates to data.

Table 73 Sign test for median difference between Phase 1 and Phase 2 uncertainties

Null Hypothesis Test Sig. Decision
Median difference of P1 & P2 uncertainties = 0 Related-samples Sign test 0.520 ‘ Retain null hypothesis

Table 74 A Priori and Post Hoc Power for Phase 1 and 2 uncertainties

[ variancePhase1 | Variance Phase2 | A-priori power Sample size required Actual power
[ 117.422 | 273.981 [ 0.807

The A Priori and Post Hoc power analyses in Table 74 show that for the variances achieved
between the two test conditions uncertainties, 37 participants would have been required to show
this difference, to the required minimum power of 0.80. The actual power achieved through this
study is 0.601, so less participants would be required if only uncertainty was being considered, not
absolute cell counts (actual power of 0.343). This low power indicates that any differences seen
from the data have a low probability of being just due to the two test conditions used and no other
underlying factors present. Again, like the Sign test, this needs to be considered carefully. A greater

number of participants in the study could always benefit and provide more confidence in the
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results, however, the distributions are not normally distributed, so the variance calculated assumes
a distribution with central tendency. In this instance, the range of data becomes more important to

consider, due to the distribution shape and clusters appearing within the uncertainty data.

6.4 Chapter Conclusions

The engineered T-cell material used was a good model for the complex study because it provided
an increase in complexity of the analysis pipeline participants were required to complete, and it
also provided affinity towards current cell therapy treatments which are T-cell based. The studies
run with the 3-workspace configuration for repeats continued to work well within the time available
for participants, so this structure has shown to be a good working model for all studies in this
experimental work. The eight-step process that each participant had to work through was also
straight-forward to follow from the gating sequence protocol and the diagrammatical protocol,

ensuring there was little deviation from the prescribed method.

When reporting the absolute cell count percentages for the results, the mean and median values
for each Phase were very similar (mean = 5.8 % and median = 5.5 % for Phase 1, mean = 12.0 %
and median = 12.2 % for Phase 2). These results both indicate a normal distribution within both
data sets, however, the mean and median for Phase 2 is over double that of Phase 1. In this
instance, there was an increase in the range of inter-participant cell counts when using a protocol.
The protocol increased the absolute range of cell count results between-participants by 3.9 % of
the overall cell count (2964 cell events) (which is a 42 % increase with respect to Phase 1 absolute
range). This indicates protocols may not aid reproducible cell counts between participants in this

instance, as initially identified in previous chapters.

The Sign test confirmed there was a significant difference between the medians of the two testing
conditions (average cell counts), showing that protocols can potentially aid gating accuracy of the
desired cell population. However, the Sign test to compare the medians of the uncertainties was

not significant, indicating that the two phases did not have significant variabilities. Whilst this is a
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definitive statistical test, the qualitative shape of the distributions was considered, and the
bimodal/trimodal nature of the Phase 2 uncertainties indicates that a single location measure
should not be used for sole comparison. The power analysis completed for both average cell counts
and uncertainties indicated that more participants would be required to identify significant
differences between the two testing conditions, requiring 82 and 38 participants for average cell

counts and uncertainties respectively.

The use of the protocol made the distribution more bimodal, similar to the uncertainty for this
Phase. Participants using their own judgement were more positively skewed towards O %, which is
desirable for variation metrics, indicating that more participants were less variable (in their final
cell count) when using their own judgement to apply gates. Reviewing the extremes in CV using the
adjusted traffic light diagram shows variability in the final gate applied, but it also highlights that
other variability seen upstream of this gate can have an impact on cell count, but the gate variability
itself is not taken into consideration in the CV calculation, making measurement uncertainty a more

suitable metric for accommodating variation throughout the whole gating sequence.

This complex model with an 8-step sequence has shown that calculating measurement uncertainty
is possible for participants by using traditional measurement uncertainty methods. This was
calculated successfully, by presenting participants with three repeated workspaces of data, and

extracting one repeated file located in each workspace randomisation.

The uncertainties calculated to accompany the cell counts are more non-parametric than the
absolute cell counts. The absolute mean and median uncertainties went from 10.6 % and 6.2 %
respectively in Phase 1 to 22.0 % and 19.3 % respectively in Phase 2. The mean and medians in
Phase 1 are not close together, indicating skewness. The mean and median in Phase 2 are closer
together, indicating a normal distribution of uncertainty, although the central location measure has
shifted to a higher uncertainty. The means are unsuitable metrics because they do not represent

the peak maxima, especially in Phase 2, where the bimodal distribution causes the mean to sit
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between two peaks. The range of participant uncertainty increased when using a protocol (absolute
increase = 7.8 %, percentage increase with respect to Phase 1 = 23 %), indicating this may not
reduce inter-participant uncertainty in the same way as observed for the basic and intermediate
stages. Once more, the distribution shape of Phase 2 uncertainty separated into two bimodal
peaks, indicating clusters of high and low variance participants, potentially due to understanding

and bias when using the nominated software platform.

Further investigation has shown a high probability of this variation split coming from a boundary
effect within the data visualisation software. Cells in the file that have a fluorescence signal lower
than the visualisation axes are compiled on the boundaries. Inclusion of these in the repeated
analysis can skew the cell counts and uncertainty significantly. Consistent inclusion or exclusion of
the fluorescence spike gives a low variance, with high or low absolute cell counts respectively.
Inconsistent inclusion/exclusion of the data spike leads to high variance. Those in the lower
variance cluster have not included these cells in their analysis, or repeatedly have so the overall
variation would be lower between repeats. Revision of extreme participants using the uncertainty
boundary diagrams has shown most of the variation is contributed within the third gate applied,
where the boundary effect is initially seen on the lower axis, increasing the possibility that the

boundary effect causes this higher variation.

Overall, the structure of these analysis sessions and data extraction processes has worked well
over the subsequent analysis phases, allowing for appropriate comparison between data in Chapter

7.

6.4.1 Consolidation of Objectives

e This study ran smoothly, acting as a good complex model for comparison of absolute
reported results, CV and uncertainty measures. The session structures were suitable in
time, and 3 repeats was suitable for participants to understand study context, but not

become tired.
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Diagrammatical protocols used by participants during the second phase of this study
have shown to increase the range in absolute results (3.9 %) reported and increase the
range of participant absolute uncertainties (7.8 %), which calculates as a 23 % increase
with respect to to Phase 1 counts). This is different to subsequent chapters and could
possibly be due to the higher dimensionality of the data causing additional difficulty for

participants.

Extreme values in absolute reported results were due to participants either over
constraining or under constraining the live cell population predominantly within the sixth
gate, due to over- or under-constraining the quadrant around the desired double positive
population. In some cases, lack of knowledge of using controls to set gates led to

variance in population metrics.

Extreme values in uncertainty results were due to participant variability in applying a gate
to separate the live cell population from the dead or dying cells, alongside additional
variation caused in the third gate by boundary effects on the left edge of the visualisation
plot, caused by concatenated data that would otherwise be outside the plot axes. In
addition, separating the CD45RA+ CCR7+ (gate 6) population from the remaining cells
has caused some extremes in absolute cell counts due to placement of these quadrant
gates. This gate was thought to be more variable, however, because of the difficulty of
the gate, participants have been more repeatable when using FMO controls to place

gates.

The performance monitoring diagrams visualised continue to provide a straightforward
way to monitor uncertainty performance with respect to the number of people in the study
and defined quality satisfaction limits. These will be used in the subsequent chapter to

monitor uncertainty performance in a more complex gating scenario.

This study defines participant uncertainty for a more complex, industrially relevant, 8-
colour panel cell model, which can be used as a complex model compare potential

growth of inter-participant uncertainty through more difficult analysis scenarios.
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Chapter 7: Comparison of Models

7.0 Introduction to the Chapter

Chapter 7 provides a comparison of key metrics monitored throughout the different complexity
models discussed in Chapters 4 to 6. Basic statistics as well as more complex statistical tests such
as the Friedman test have been used within this chapter to critically evaluate the different

complexity models and their effect on cell counts and participant uncertainties.

7.1 Chapter Aims

This Chapter compares complexity models to identify whether the core hypothesis of this research
has been met, showing an increase in range of CV and uncertainty with increased data complexity.
This Chapter aims to compare the ranges of absolute cell counts, CVs and uncertainties, to identify
a potential in case in between-participant variability. Only data from personal judgement has been

compared, because a protocol phase was not conducted within the basic model (Chapter 4).
7.1.1 Chapter Aims & Objectives

The Aims and Objectives of this Chapter can be defined as follows:

o Identify potential changes in the range of absolute cell counts with complexity of data.
An increase in range of reported cell counts would indicate greater variability between

participants when reporting Flow Cytometry results.

o Identify potential changes in the range of absolute cell count CVs with complexity of data,
because this is the most common variability reporting methods within the Flow Cytometry
method so an indication of how this changes with data complexity could aid the

community with a representative value for analyst contributions.

e Identify potential changes in the range of uncertainties calculated with complexity of
data. This is an alternative measure of variation explored within this research and will be

compared to CV to identify its suitability within Flow Cytometry measurements.
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7.2 Methodology

To compare the three models across Chapter 4 to 6, basic statistical reporting has been
considered, as well as more specific statistical tests to define differences between the models. This
has been completed for all absolute cell counts and CVs reported, as well as respective
uncertainties. This methodology section explains why these comparison methods have been
chosen along with justification. Both IBM SPSS Statistics Version 24 and Matlab R2019a have

been used to complete the more advanced statistical analysis and visualisation.

7.2.1 Basic Statistical Reporting

Basic statistical reports used within Chapter 4 to 6, with statistical definitions from Chapter 2, have
been compared and discussed here. In addition to the compilation of these data sets, box plots
have also been produced to visually compare the distributions of the separate data sets. A box plot
shows the 25t, 50t (median) and 75t percentiles (%iles) to visualise the distribution of the
Interquartile Range (IQR). Whiskers have also been added to the box plot to show the distance of
1.5 x1QR. This is a common distribution marker for outliers. Anything within the whiskers is an inlier,
or acceptable measurement. Any data point marked as a cross outside of the whiskers is defined

as an outlier.

7.2.2 Further statistical testing for differences

Despite conclusions drawn from the basic statistics, more extensive statistical testing to confirm
there are statistically significant differences between the three models has been completed for

absolute cell counts and uncertainties.

A Friedman test has been used in this instance, because the data is non-parametric in distribution
shape and three different groups or testing conditions have been considered [197]. This is the

robust alternative to a one-way repeated measures ANOVA, which required the data to be normally

245



Chapter 7: Comparison of Models

distributed. A Friedman test has also been used in place of a Kruskal Wallis H test, because it
compares related data. Mostly the same participants were present in each testing model, making
the Friedman test more suitable for analysis, whereas a WKruskal Wallis H test requires

independence between participants in the separate testing conditions.

The Friedman test requires the same participants in each group, and each group represents
repeated measures on the same dependent variable. In this instance there were not the same
number of participants in each group, and some participants were not present in each group, which
could compromise the power of the analysis. However, this was not in the control of the
experimental studies. The Friedman test is an extension of the Sign test, which only compares two
groups and has been used to compare test conditions within Chapters 5 and 6. The hypothesis of

the Friedman test is as follows:

Ho = the distribution of results in each group are the same

Ha = at least two distributions differ

If the null hypothesis is rejected because at least two distributions differ, Post Hoc tests (Pairwise

comparisons) are used to identify similar distributions. These tests are like the Wilcoxon rank tests

used to compare two non-parametric distributions [197].
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7.3 Comparison of Results

The results reported here are split between the absolute cell count results and the uncertainties
calculated from the gating sequences, as previously defined within Chapter 4 to 6. The results

reported within these chapters have been repeated here for easier comparison.

7.3.1 Comparison of Absolute Cell Count Results

The statistical report results from the absolute cell counts generated from personal judgement of
each complexity model can be found in Table 75, Table 76, Table 77 and Table 78. Only personal
judgement results have been compared because the basic model does not have a ‘protocol’ phase,
so only judgement has been assessed. Box plots to compare distributions of each complexity model
are shown in Figure 142. It should be noted that the absolute results have been compared for
continuity of the thesis structure, although the difference in cell type between the stages cannot
be compared fairly, so these results are purely an indication of possible differences. Further testing

with the same cell type at different gating stages could better investigate this.

Table 75 Measures of Location for the absolute results of the complexity models (%)

Basic (Chapter 4) Intermediate (Chapter 5) Complex (Chapter 6)
Arithmetic Mean (%) 321 6.3 5.8
Median (%) 325 6.0 5.5
Mode (%) N/A N/A N/A
Minimum (%) 19.7 35 1.2
Maximum (%) 51.3 8.0 10.5

Table 76 Measures of Spread for the absolute results of the complexity models (%)

Range 31.6 4.5 9.3

25t Percentile (%) 30.6 5.7 4.0

75t Percentile (%) 33.9 7.3 7.6
Interquartile Range (%) 3.3 1.6 3.6
Standard Deviation (%) 5.7 1.1 1.0

CV (%) 17.8 18.2 12.1

Median Absolute Deviation (%) 1.9 6.0 1.7
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Table 77 Measures of Skew for the absolute results of the complexity models (%) (3dp for better resolution)

Skewness (%) 0.492 -0.351 0.168
Skewness standard Error (%) 0.383 0.481 0.491
Skewness z-score (%) 1.280 -0.730 0.342
Kurtosis (%) 3.271 0.042 -0.669
Kurtosis Standard Error (%) 0.750 0.935 0.953
Kurtosis z-score (%) 4.560 0.045 -0.702

Table 78 Measures of Normality for the absolute results of the complexity models (%) (3dp for better resolution)

Shapiro-Wilk statistic 0.904 0.945 0.980
Significance 0.003 0.231 0.911
Normal/Non-parametric Non-Parametric Normal Normal
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Figure 142 Absolute cell count distributions for each cell complexity model

The locations of the basic model distributions are qualitatively significantly different due to no
overlap with distributions of the more complex models. This is quantified by the basic model median
(32.5 %), compared to the medians of the intermediate and complex model (6.0 % and 5.5 %

respectively). The shape of the distributions are significantly different according to the results of
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the Friedman test, as shown in Figure 143 (Basic model = S1_Av, Intermediate model = S2_1_Av,
Complex model = S3_1_Av). Absolute cell counts between models were statistically different,
according to the related samples Friedman two-way analysis of variance by ranks, Y2 (2) = 19.538,

p < 0.0005, but this could be expected because of the difference in cell type.

Pairwise comparisons were performed as Post Hoc tests to further identify whether the significant
differences were between some or all the models, shown in Figure 144. A Bonferroni correction
was applied to adjust the significance levels [197,198]. Multiple comparisons increase the risk of
a Type 1 error, which is why adjusted significance was used, and has been used for all subsequent
Friedman tests in this Chapter. Absolute cell counts were statistically different between the basic
and intermediate models (p = 0.001) and the basic and complex models (p < 0.0005). This
statistical significance confirms the qualitative differences observed, but also because the basic
model was based upon a different cell type (Embryonal Carcinoma cell line) in comparison to the

intermediate and complex models which look at T-cell subsets.

Related-Samples Friedman's Two-Way Analysis of Variance by Ranks

S1_av S2_1_Av S3_1_Av

N = Mean Rank = 1.54 Mean Rank=1.46 ™

3 3
£ g
£ 2 g

1 1

f T T T T T T T
[uly] a0 100 100 180 50 100 150
Frequency Frequency Frequency

Total N

13

Test Statistic

19.538

Degrees of Freedom

Asymptotic Sig. (2sided test)

.000

Figure 143 IBM SPSS results for the Friedman test comparing absolute cell counts for complexity models
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Samplel-Sample2 g Jest. St .Sstfét;teii; Sig.  Adj.Sig.

S3.1 Av-S2 1 Av 077 382 186 845 1.000
S3 1 Av-S1 Av 1838 382 1822 000 000
$2_1_Av-S1 Av 1462 382 3726 .000 001

Figure 144 IBM SPSS pairwise comparisons for the Friedman test comparing absolute cell counts for complexity models

The range of absolute results is largest in the basic model, which possibly could be because of the
lower level of stratification required for this dataset, potentially suggesting that the larger the cell
population cluster, the greater the range of participant cell counts. However, this is a different cell
type, so this could confound this analysis. The range of absolute cell count results decreased for
the intermediate model (4.5 %) and then increased again for the complex model (9.3 %). This may
possibly have been due to the cell event number in the final model, which contained 76,012 cell
events in comparison to 30,000 cell events gathered in the previous two stages. All cell counts
were compared as percentages of the original cell count number to have better comparison

between the files, to try and remove the inconsistent cell event numbers.

However, this would require further experimental clarification to formally design and test this
possibility. For further comparison the ranges of the third gate applied in the intermediate and
complex model have been considered, because these are both larger cell populations, comparable
in size to the basic model as just shown. The range of results of the third gate applied in the
intermediate and complex models are 25.8 % and 33.1 % respectively, which are similar to the
basic model range (31.6 %). This potentially suggests that as further stratification of the data
through gating steps occurs, there is a smaller range of inter-participant absolute cell counts, due

to a smaller stratified cell population.

Due to the nature of gating, smaller cell counts through each gating step are logical. However, the
ranges reported across the three models contradict this because the range of the complex model

results is greater than the intermediate model. This is also seen in the IQR, so it is not just extreme
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values that have an effect. More cell events were acquired in the complex model file than the
previous two models, however, percentages of cell count populations have always been reported
to standardise this. Gate 5 in the complex model has a range of 23.1 %, so it could be that because
this model is more complex it is causing more deviation throughout the sequence, which could be

expected.

This is not supported by other methods of variation measurement, such as the SD, which does
decrease with every data set (5.7 %, 1.1 %, 1.0 %) respectively. However, consideration of the data
shape is required before drawing these conclusions because the basic model is more skewed and
kurtosed than the other model, shown by skewness and kurtosis z-scores and Shapiro Wilk test
results for normality. This could suggest that SD values are not valid for use in this context, however

they are still suitable to consider because of their use within general statistical reporting.

A more robust measure to use instead of SD is Median Absolute Deviation (MAD), but this shows
no obvious trend in the data, with MAD starting at 1.9 % for the basic model, increasing to 6.0 %
for the intermediate model and decreasing to 1.7 % for the complex model. Finally, the most
common metric of variation in the Flow Cytometry community, Coefficient of Variation (CV) is fairly
constant between each test model, reporting 17.8 %, 18.2 % and 12.1 % for each model increase.
This CV will be known as inter-participant CV, because it is the CV of the absolute cell counts
reported by each participant. This shows that if CV is to be continually used in the field, an average
inter-participant CV of 16 % could be considered as an operator analysis component, taken from
inter-participant absolute cell counts reported. This falls within the allowable CV specified by the

ICSH guidelines, and also NHS KPIs for uncertainty, for Flow Cytometry discussed in Chapter 1 [72].

Intra-participant CV has also been investigated throughout this research and is defined as the CV

across the repeated measures of the three repeats each participant completed. The difference

between inter-CV and intra-CV has been depicted in Figure 145, re-imagined from the earlier Gauge
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R&R explanations in Chapter 2. In this instance, intra-CV is the repeatability of each participant,

and the inter-CV is CV of absolute cell counts between participants.

Process Metrics

Absolute Cell CV of Cell
Counts Counts

Intra-CV
Repeatability

Inter-CV
Reproducibility

Operators

s

Figure 145 Diagram of Inter-CV and Intra-CV for subjectivity comparison

Figure 146 shows boxplot distributions of intra-participant CV results, from their 3 repeats acquired

in each cell complexity model.
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Figure 146 Absolute cell count CV distributions for each cell complexity model
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Itis clear that the range of intra-participant CVs increase with cell complexity, with gradual increase
in the median of each group. A related-samples Friedman rank test was completed to further
confirm a significant difference between the test conditions. Cell count CVs were statistically
different through the different models, x2(2) = 14.000, p < 0.001, shown in Figure 147. Post Hoc
pairwise comparison tests were then conducted to identify which pairs were significant,
summarised in Figure 148. These was a significant difference between the basic and intermediate
models (p = 0.043) and the basic and complex model (p = 0.001), but not between the intermediate

and complex model as their distribution shape was deemed similar.

Related-Samples Friedman's Two-Way Analysis of Variance by Ranks
s1_cv $2_1_cv S3_1_cV

Mean Rank=1.17 nk=217 Mean Rank=2 67

il - o

I T T T
20 40 60 a0 10000 20 40 6.0 a0 100

15 4 L
yuey

oo 20 40 60 80

Frequency Frequency Frequency
Total N 12
Test Statistic 14.000
Degrees of Freedom 2
Asymptotic Sig. 2-sided test) .001

Figure 147 IBM SPSS results for the Friedman test comparing absolute cell counts CVs for complexity models

Sampletl-Sample2 g ost. St S Test gy agjsig.

S1_CV-S2_1_CV A000 408 2448 014 043
S1_CVS3 1 CV 1,500 408 3,674 000 001
S2 1 CVS3 1 CV -500 408 -1.228 221 662

Figure 148 IBM SPSS pairwise comparisons for the Friedman test comparing absolute cell count CVs for complexity
models
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All distributions have a positive skew, aligning with the traffic light diagrams in Chapter 4 to 6, used
to monitor the individual CV distributions. Even though the distribution of the complex model is the
largest, it contains no outliers specified by the whisker limitations (Figure 146). Therefore, the data
is less likely to by kurtosed because it may have a more evenly distributed shape than the other

two test conditions.

Overall, this indicates that as the complexity increases, the CV of the participant is likely to increase,
confirming the thesis hypothesis if intra-participant CV is the variation metric of choice. If a general
CV of absolute cell counts of a population is used (inter-participant CV), an increase has not been
observed as cell models become more complex. An average of 16 % CV was achieved across the
three models, so this could possibly be used as a rule of thumb when considering general operator

variation around a measurement.

7.3.2 Comparison of Cell Count Uncertainty Results

Currently CVis commonly used within Flow Cytometry communities as a measure of variability along
with the absolute reported result. Uncertainty has been explored as a potential alternative to CV,
because of the better resolution it provides when monitoring variability between participants
through the gating sequences. Uncertainty has also been explored as an alternative to CV because
uncertainties for equipment are required to be calculated for ISO 15189 to show competency of
medical testing laboratories [82]. This replaced Clinical Pathology Accreditation (CPA) in the United
Kingdom, where every pathology laboratory in the National Health Service (NHS) must be
accredited to this new standard. If interpretation forms part of a measurement, this should also be
monitored and included in the uncertainty budget, stated alongside the final measurement

reported.
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The statistical report for the uncertainty results across all three complexity models can be found in
Table 79, Table 80, Table 81 and Table 82. These results have been taken from ‘personal
judgement’ phases through each stage for comparison. Boxplots representing each of these

populations has been visualised in Figure 149.

Table 79 Measures of Location for the uncertainty results of the complexity models (%)

Basic (Chapter 4) Intermediate (Chapter 5) Complex (Chapter 6)
Arithmetic Mean (%) 4.0 3.8 10.6
Median (%) 3.6 2.1 6.2
Mode (%) N/A N/A N/A
Minimum (%) 0.7 0.4 0.8
Maximum (%) 13.1 16.1 34.9

Table 80 Measures of Spread for the uncertainty results of the complexity models (%)

Range (%) 12.4 15.7 34.0

25th Percentile (%) 2.0 1.4 4.0

75t Percentile (%) 5.6 3.8 13.2
Interquartile Range (%) 3.6 2.3 9.1
Standard Deviation (%) 2.7 4.3 10.8
Median Absolute Deviation (%) 2.0 0.8 3.0

Table 81 Measures of Skew for the uncertainty results of the complexity models (%) (3dp for better resolution)

Skewness (%) 1.288 1.942 1.375
Skewness standard Error (%) 0.388 0.481 0.491
Skewness z-score (%) 3.320 4.037 2.800
Kurtosis (%) 2.311 2.899 0.468
Kurtosis Standard Error (%) 0.759 0.935 0.953
Kurtosis z-score (%) 3.045 3.101 0.491

Table 82 Measures of Normality for the uncertainty results of the complexity models (%) (3dp for better resolution)

Shapiro-Wilk statistic 0.900 0.692 0.758
Significance 0.003 0.000 0.000
Normal/Non-parametric Non-parametric Non-parametric Non-parametric
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Figure 149 Absolute cell count uncertainty distributions for each cell complexity model

There is no steady increase of mean or median between the analysis stages because these location
measures for the intermediate model are lower. However, as identified in Table 80 there is a steady
increase in the range of participant uncertainties from basic model (12.4 %) through the
intermediate model (15.7 %) to the complex model (34.0 %). This indicates more participant
variability throughout the entire gating process as the data they analyse becomes more complex.
Unlike CV, this combines variability from each gate applied, rather than just the final cell counts,

giving better resolution and traceability to the variability.

The shape of the distributions were significantly different according to the Friedman test, Y2 (2) =
6.167, p < 0.046, shown in Figure 150. However, when conducting a Post Hoc examination using
pairwise comparisons, no significant differences between individual pairings were reported, shown
in Figure 151. The Friedman test assesses the distribution shape, so the positively skewed nature
of all three models may have caused this outcome. All models returned positive skewness z-scores

(3.320 %, 4.037 %, 2.800 % respectively) for the increase in complexity. All are outside of the 2.58
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boundary limits for normality, but some are more skewed than others. This could be why the

Friedman test is initially significant and the pairwise comparisons show no significant differences.

Related-Samples Friedman's Two-Way Analysis of Variance by Ranks
s1_U s2_1.U s3_1_U

Rank=1.67 Rank=1.75 | Mean Rank= 2 58 ™
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& o =
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T T 1 T T T T T T T
0.0 20 40 6.0 8.0 00 2.0 40 6.0 8.0 0.0 20 40 6.0 8.0
Frequency Frequency Frequency
Total N 12
Test Statistic 6167
Degrees of Freedom 2
Asymptotic Sig. (2sided test) 048

Figure 150 IBM SPSS results for the Friedman test comparing absolute cell counts uncertainties for complexity models

Sample1Sample2 Jest. Sl JudTest g pgisig.

S1_US2_1.U -.083 408 -204 838 1.000
S1US3 10U 917 408 2,245 025 074
$21US31U -.833 408 -2.041 041 124

Figure 151 IBM SPSS pairwise comparisons for the Friedman test comparing absolute cell count uncertainties for
complexity models

The kurtosis of the basic and intermediate models were also high (3.045 % and 3.101 %
respectively), whereas the complex model has a much lower kurtosis z-score (0.491 %), indicating
this distribution is less affected by outliers. This can be further supported by the boxplots in Figure
149 showing outliers across a smaller range in the basic and intermediate models rather than in

the complex model.
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The comparison of variation between the stages again comes down to how the data is presented
and what variation metrics are chosen to describe the data. In this instance, the SD shows a similar
trajectory to the range, increasing in size as the complexity of data increases. However, the MAD
score decreases from basic to intermediate models and then increases from intermediate to

complex models again.

7.3.3 Comparison of CVand Uncertainty Results as variation metrics

Although uncertainty was not significantly different with regards to the distribution shapes of the
separate models, the range of the intra-participant uncertainty increased with complexity,
comparable to CV in this instance, because CV also increased in range as the complexity of the

data increased, although the range is larger for CV than uncertainty.

Rather than replacing CV with uncertainty because it is more specific, both metrics could be used
when training and reporting FC measurements. Uncertainty gives much more resolution to the
variability within data, shown when analysing uncertainty components throughout Chapters 4 to 6.
The method shown to obtain participant uncertainties can be used to combine other sources of
uncertainty within the FC measurement, to obtain a representative combined and expanded

uncertainty value that meets required standards.

CV can also be used to obtain a quick point-in-time measure of variability used alongside
uncertainty which is a lot more specific and takes longer to achieve. It can be used within training
and refresher exercises to quickly monitor an analyst’s variation on a specific instrument or analysis
pipeline. Ultimately, both variation measures can be used, however, it cannot be assumed that an
analyst’s uncertainty could be judged from their CV or vice versa, so one should not be used to
provide an indication or estimation of other metrics and variability. The ‘CV versus uncertainty’

scatter graphs created in Chapter 4 to 6 show very poor correlations, so CV should not be used to
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assume a participant’s uncertainty. If an analyst’s CVis high, their uncertainty may not also be high.
Uncertainty requires much more structured methodology and analysis in order to calculate a

combined uncertainty figure.

Overall, the core thesis hypothesis has been proven for both CV and uncertainty of participant Flow
Cytometry results. As the complexity of Flow Cytometry data increases, the range of participant CV

of results will also increase (Figure 152), as well as the range of participant measurement

uncertainty (Figure 153).

Intra-ParticipantCV
Measurement Range
34%
ComplexModel: Chapter 6
Transduced T-Cells
22%

Intermediate Model: Chapter 5
Peripheral Blood Mononuclear Cells

6%
Basic Model: Chapter 4

Embryonal Carcinoma CellLine

3 steps 5 steps 8 steps

Complexity of Flow Cytometry data processing
measured in number of sequence steps to
obtain a target cell population

Figure 152 Core hypothesis of thesis, showing an increased range of intra-participant CV with FC data complexity
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Between-Participant
Measurement Uncertainty
Range
34 %
Complex Model: Chapter 6
Transduced T-Cells
16 %

Intermediate Model: Chapter5
Peripheral Blood Mononuclear Cells

12%
Basic Model: Chapter4

Embryonal Carcinoma Cell Line

3 steps 5 steps 8 steps

Complexity of Flow Cytometry data processing
measured in number of sequence steps to
obtain a target cell population

Figure 153 Core hypothesis of thesis, showing increased range of inter-participant uncertainty with FC data complexity
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7.4 Chapter Conclusions

When considering reporting of absolute cell counts (means and medians), the lower cell counts
reported as the complexity increased could be a function of the number of analysis steps used
within the gating analysis sequence. If so, this could mean rare cell events are lost through gating,
or the true cell count of populations is skewed. However, this is a comparison across different cell
types, so this could confound results. The more sequence steps completed, the lower the mean or
median cell count could be due to increased stratification of the cell populations. This could
intensify when 18 colour panels are used to consider specific markers, although all 18 markers
would not necessarily all be used to investigate or monitor one specific function, they may monitor

three or four targets at a time, requiring less processing steps for each target.

Although the location metrics reduces as the complexity of the models increased, this cannot be
assumed for the range or inter-participant absolute results reported for each model. As the
complexity increased, the range of results between participants did not decrease. As the target
becomes smaller and perhaps more specific, this does not necessarily mean that the range of

results reported by participants will become smaller or more focused.

The absolute range of results for the basic model was the largest (31.6 %) when three gating steps
were completed, which reduced to 4.5 % for the intermediate model (5 steps), however, this
increased again when 8 steps were completed in the complex model, giving an inter-participant
range of 9.3 %. All cell counts were compared as percentages of the original cell count number to
have better comparison between the files, to try and remove the inconsistent cell event numbers

between files used in each model.

All cell model distributions were deemed to be statistically different from each other using the
related-measures Friedman test, and when investigated further using Post Hoc pairwise

comparisons between each pair of models, it was found that the intermediate and complex models
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were statistically different from the basic model, but not different from each other. These
differences may be due to the lower number of gating steps used in the basic model, but also that
the exemplar used in the basic model was an immortalised cell line, where pluripotent stem cell
markers were identified. However, in the intermediate and complex model, T-cell lineages were
investigated, so this change in cell type could have impacted the results because of different sized
sub-populations. This was investigated by looking at the ranges for the third gate applied within the
intermediate and complex models, returning absolute ranges of 25.8 % and 33.1 % respectively
between participants. These values are comparable to the range reported for the basic model,