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“The subjectivity of consciousness is an irreducible feature of reality, and it must occupy 

as fundamental a place in any credible world view as matter, energy, space, time and 

numbers”. 

Thomas Nagel, The View from Nowhere, 1986 

 

 

 

“The measure of a man’s real character is what he would do if he knew he would never 

be found out.” 

1st Baron Thomas Macaulay, 1926 
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Abstract 
 

A recent evaluation of medical error has shown it to be the third leading cause of death in the US, 

following heart disease and cancer. Better reporting and decision making could tackle this, but 

ultimately more accurate and precise measurement, with correct interpretation could make a 

significant difference to this unnecessary statistic. Clinical pathology measurement platforms are 

complex, requiring significant standardisation efforts to reduce false positives/negatives and the 

impacts these have on patient safety. Cell and Gene Therapy (CGT) manufacturing processes 

depend upon these platforms for measurement, with Flow Cytometry (FC) used for in-process and 

release metrics. However, the highly subjective nature of FC data analysis requires investigation to 

monitor impact on manufacturing and clinical decision making.  

 

FC standardisation efforts have reduced variation from sample preparation and setup, however, no 

efforts have purely focused on the final post-analytical stage, to quantify the effect of subjective 

analysis of data files. This research has isolated this section of FC analysis, providing better 

measurement precision to build up a realistic uncertainty budget for FC measurements. Through a 

series of participant analysis studies that build in complexity, it has been shown that as FC data 

becomes more complex, the uncertainty contributions from inter-operator data analysis increase 

from 8 % to 34 %. This increase could mean the difference between a CGT treatment being provided 

at the right time, being discarded when it was suitable for administration, or an unsuitable 

treatment administered to the patient at an unsuitable time, having costly implications for all. 

 

This variation does not correlate with operator experience or use frequency of the instrument, but 

is influenced by data visualisation effects, requiring further investigation at a later date to reduce 

this impact. Image parameters for other CGT measurement platforms are also impacted by 

subjective data analysis, requiring harmonisation to ensure the subjectivity is quantifiable, 

standardised and reduces manufacturing and hence medical error impacts to the patient and 

therapeutic product.  
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“The subjectivity of consciousness is an irreducible feature of reality, and it must occupy 

as fundamental a place in any credible world view as matter, energy, space, time and 

numbers”. 

Thomas Nagel, The View from Nowhere, 1986 

 

 

 

“The measure of a man’s real character is what he would do if he knew he would never 

be found out.” 

1st Baron Thomas Macaulay, 1926 

 



  Prelude 

1 
 

Prelude: Thesis Context 
Problem Statement 
 
Subjective operator assessment is a common although often silent element of quantitative 

measurements. Flow Cytometry (FC) is a commonly used instrument within biological and 

particulate measurement, which requires manual subjective intervention for quantification and 

interpretation [1]. This platform is heavily used within clinical diagnosis and Cell and Gene Therapy 

(CGT) manufacturing and Quality Control (QC), with various standardisation and harmonisation 

efforts reporting large measurement variance [1,2]. This causes medical confusion, misdiagnosis 

and treatment error [3]. When used within CGT manufacturing, this poorly quantified measurement 

variation may be the difference between life and death. False positives, false negatives, opinions 

and inspector education cause medical error, with experts calling for international consensus for 

repeatability and reproducibility across sites [4]. As well as the impact on the patient, CGTs have 

time-, resource- and money-intensive manufacturing processes, so poor measures have significant 

impacts on product quality and therapy variability within international healthcare systems. 

Context 
 
The CGT market has accelerated over recent years, with the first licensed treatments becoming 

available across international healthcare systems.  CGTs have been heralded as the fourth pillar of 

healthcare, supporting pharmaceuticals, biologics and medical devices. The opportunities for cure 

and treatment of many degenerative diseases such as cancer, diabetes and Parkinson’s disease 

show promise for a new wave of healthcare innovation [5]. Cancer immunotherapy is leading the 

way for CGTs, with recent efforts demonstrating treatment of solid tumours and haematological 

malignancies [6]. Chimeric Antigen Receptor (CAR-T) therapies have provided the first treatments 

for B-cell malignancies, with Kymriah (tisagenlecleucel, Novartis) and Yescarta (axicabtagene 

ciloleucel, Kite Pharma) leading the way for many more regenerative medicine products [7]. 

However, these treatments are not without complications. These live products bring new challenges 

to reproducible manufacture and control, with a distinct lack of traceable reference material to 
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ensure accuracy and precision of measurement, impacting the clinical decision-making process 

[8]. Lack of traceability can make measurement more challenging across decentralised 

manufacturing systems, where the variability across sites also becomes an issues, in comparison 

to centralised manufacture where the CGT is manufactured on one site, removing inter-site 

reproducibility concerns. 

 

The manufacture of CGTs is marking the turn of a new industrial revolution, however, to ensure 

future demand for these treatments needs to be met with 100 % efficacy and right-first-time 

delivery [9]. To ensure effective manufacture of the product, the measurement of the product must 

be to an appropriate level of accuracy and precision, to effectively monitor the product in all stages 

of in-process analysis and product release. This provides greater control of the product and a better 

understanding of the sources of variation. CGTs present a significant challenge to underpinning 

metrology, because there is a lack of traceable reference materials for live, biological products [10]. 

This is not only a difficulty when defining calibrations and higher reference, but also with core 

metrological definitions, such as accuracy and bias, because they require a ‘true value’ to be 

known. A true value is a traceable measurement up to primary SI units, that is not continually 

redefined due to finite reference materials. This is further complicated by measurement issues to 

detect rare cell populations or monitoring residual disease levels throughout the course of 

treatment, as they approach sensitivity limits of instruments. There have been unified efforts for 

volume traceability, with standards still being explored for individual cell counting. 

 

FC is a core measurement platform used within the release and in-process measurement of CGTs, 

but it requires ‘expert’ interpretation of the data files on top of process optimisation [11,12]. Better 

quantification of this interpretation variability is required for greater manufacturing process control. 

This could be achieved using measurement uncertainty principles, required to report for ISO 17025 

and ICH Q7 standards for laboratory accreditation and good competence monitoring and reporting 

[13,14]. 
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Research Focus  
 
This research attempts to quantify the variability contributed specifically from operator subjectivity 

within analysis of FC data. This complements other initiatives that focus on variation of other 

upstream factors such as instrumental setup or fluorescence calibration [15,16]. It provides more 

specificity to the variation contribution from FC gating, not just a measure of the whole process, 

which other gating and analysis studies have previously quantified [1,2]. These studies have 

focused on cytokine assays, whereas this novel research has a CGT focus, assessing inter-operator 

measurement variation across three models of complexity from three cell models that relate to CGT 

products. 

 

Core Hypothesis and Objectives: 

 

As the complexity of the cell models increase in the FC data for participants (as defined by 

increasing protocol sequences and FC dimensions), the between-participant ranges of Coefficient 

of Variation (CV) and measurement uncertainty will increase, indicating greater contributions of 

variation from the participant analysis as shown in Figure 1. 

 

Figure 1 Core thesis hypothesis: as complexity of FC data increases, inter-participant analysis variation also increases. 
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The objectives of this research are as follows: 
 

• Explore the integration of External Quality Assessment Schemes into CGT manufacture, to 

identify benefits already seen within clinical chemistry and clinical Flow Cytometry. 

• Understand how measurement uncertainty works, and how it can be used to quantify 

variability components. 

• Initially investigate how much variation is present between operators when they analyse 

the same univariate data. 

• Identify differences in outlier specifications when different manufacturing performance 

criteria and log transformations are applied, to discuss whether harmonised boundaries 

can be achieved. 

• Design human participant experimental studies to effectively capture measurement 

uncertainty across multiple complexity models, using a Gauge Repeatability & 

Reproducibility structure. 

• Generate standard sets of FC data files to use for each representative complexity model, 

which increase in the number of gating steps to complete, due to increased data 

dimensionality. 

• Quantify measurement uncertainty of participant FC gating across three models, with 

participants gating increasingly complex data as each model progresses. 

• Investigate whether the use of operational procedures as protocols reduce inter-participant 

variability when gating. 

• Compare the inter-participant ranges of variability between the three complexity models, 

defined as either inter- and intra-participant Coefficient of Variation (CV) or measurement 

uncertainty, and discuss the suitability of these measures. 

• Compare human factor variables gathered within survey exercises to variability data from 

the complexity models to understand how experience affects variation of data. 

• Identify other concerns of participants when gating FC data, and interpreting it from 

literature, to identify where future efforts for standardisation of measurement are needed. 
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• Identify other frequently used CGT measurement platform, to determine common 

operator variability and subjectivity within post-analytical phases, and demonstrate 

translational potential of this novel research 

 

Thesis Structure 
 

This thesis is broken into three core stages: a critical review of current work and theory, core 

experimentation to monitor changes in variance between FC participants, and a comparison of 

variances to human factor issues present in FC. 

• Chapter 1 presents a concise literature review of background knowledge and relevant 

research efforts around operator subjectivity and variation measures within FC.  

• Chapter 2 explains the relevant measurement statistics and measurement uncertainty 

principles used for data analysis in this research. 

• Chapter 3 presents an initial investigation of the magnitude of variation within operator 

subjectivity, by monitoring the inter-participant variance when gating univariate histograms. 

It also questions the use of different performance acceptance criteria in relation to outlier 

specification and transformation of data within CGT manufacturing scenarios. 

• Chapter 4 defines a basic data model to initially measure operator variance within FC 

analysis using a 3-step 2-colour FC exercise, gating a pluripotent Embryonal Carcinoma cell 

line population (2102 Ep).  

• Chapter 5 uses an intermediate model with a more complex 5-step, 3-colour FC panel, to 

stratify a naïve T-cell subset from a Peripheral Blood Mononuclear Cell (PBMC) population.  

• Chapter 6 presents the final complex model which uses an 8-step, 8-colour FC panel to 

identify the percentage of transduced engineered T-cells in the population.  

• Chapter 7 compares CV and measurement uncertainty results from Chapters 4 to 6. 

• Chapter 8 extends this comparison against participant questionnaire results, to identify any 

potential human factor correlations to variance measured.  
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• Chapter 9 presents a translational pilot study of the subjectivity issues identified within 

imaging platforms and qPCR, to show post-analytical subjectivity exists across CGT 

measurement platforms. 

• Chapter 10 concludes the thesis, discussing novelty met, and future work identified to 

progress these research efforts. 

Proposed Novelty of Research 
 

• A critical review of current External Quality Assessment Schemes (EQAS), to identify 

opportunities for integration into CGT manufacturing. 

• Relevance of application of manufacturing outlier definitions to define process control 

limits. 

• Application of Gauge Repeatability & Reproducibility techniques to Flow Cytometry post-

analytical variation. 

• Use of measurement uncertainty for Flow Cytometry post-analytical variation. 

• Use of measurement uncertainty for better measurement resolution and control through 

FC measurement which is representative of CGT analytical techniques. 

• Quantification of participant subjectivity as a function of cell model complexity. 

• Increased variability as a function of cell complexity. 

• Development of a new performance monitoring diagram to aid continuous 

improvement of variation. 

• Comparison of measurement variability metrics suitable for precision of FC measurements 

within CGT manufacturing contexts. 
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Chapter 1: Background Knowledge 
 

1.0 Introduction to the Chapter 

Chapter 1 presents a background and critical review of current FC standards and procedures in 

place to monitor participant variability in data analysis. It gives a short overview of the FC technique, 

and then reviews current efforts to standardise post-analytical data analysis and use of 

measurement uncertainty for the technique. Identification of sources of uncertainty within post-

analytical data analysis are reviewed, to align with the core thesis hypothesis of measuring 

participant subjectivity contributions to the final measurement. Error components have already 

been attributed to sample preparation and instrumental setup, which have been investigated 

thoroughly by different working groups and therefore will not be covered within this specific review 

[16–20]. Current regulations for participant variation are also discussed, which currently exist for 

clinical applications of FC, and how this could integrate into a Cell and Gene Therapy (CGT) 

manufacturing context. Automation of FC data analysis is reviewed in comparison to manual gating 

efforts, because many recent efforts have attempted to remove the operator from the analysis, with 

different levels of success. Indeed, the use of automation is a recurring theme throughout this 

research, because of growing interest (but also scepticism) within the industry [20,21].  

 

1.1 A short overview of the Flow Cytometry technique 
 

Flow Cytometry is an analytical process used extensively within different biological fields, and within 

cell therapy it is mostly used for phenotyping [22]. Flow Cytometry is a laser-based technique that 

facilitates identification and analysis of individual cells and populations based upon size, 

granularity and expression of certain fluorochrome-conjugated markers, known to be indicative of 

specific cellular identification or function. Flow Cytometry can be used for a wide variety of 

applications such as assessing cell viability, analyzing DNA, cell death, pH and cellular membrane 

microparticles, cell surface or intracellular antigens and markers, chromosomes and specific 
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proteins [23,24]. However, a lack of traceability and reference materials within In Vitro Diagnostic 

(IVD) Medical Devices such as Flow Cytometers makes it much more difficult to provide confidence 

to results obtained [25]. If the measurement is ultimately incorrect (through a combination of added 

uncertainties and misinterpretations) then it becomes more challenging to define true 

representative values. Within a clinical context this can have severe knock-on effects, because if 

the metrology is wrong, the quantification and therefore diagnosis may be incorrect, which could 

be dangerous for a patient undergoing treatment [25,26]. This is also the case for CGT 

manufacturing, where Flow Cytometry is used as a core measurement technique at various 

manufacturing process steps, cell sorting and final therapy product release [27]. 

 

Analytical cytology dates back to the 1950s (and even earlier through the use of 

microspectrophotometers) [28] and as technology advanced through the decades, more advanced 

apparatus and data analysis software became available due to evolution of modern computer 

processing methods [28]. Modern Flow Cytometers are often combined with Fluorescence-

Activated Cell Sorting (FACS) techniques, however, for the purpose of this review the main focus 

will be on Flow Cytometry without cell sorting, because this reduces the amount of variability in the 

result due to simplified processes. 

 

 

1.1.1 Flow Cytometry Instrumentation 
 

FC relies upon a laminar flow cell aligning cells through a laser pathway, depicted in Figure 2. Cell 

size is detected by forward scatter (FSC) of the beam, and granularity and fluorescence emission 

spectra of the cell-specific markers are detected by side scattered light (SSC), split through various 

optical filters [29]. This data can be used to generate a flow cytometry standard (fcs) file and plots 

of target populations, ready for identification and stratification by an operator [30]. Typically, a 

minimum of 30,000 cell events would be run through the Flow Cytometer, to ensure a valid data 

set was captured to conduct further analysis on. 
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Figure 2 Flow Cytometer schematic 

 
 
1.1.2 Flow Cytometry post-analytical data analysis 
 

An example of fcs file data is shown in Figure 3, where each cell that is processed through the Flow 

Cytometer is shown as a single dot on each of the sequential plots, which build up to high (red) and 

low (blue) density regions indicative of cell populations. The location of the dot (or cell event) is 

determined by the respective fluorescence emission detected through each channel sensor [29]. 

The fluorescence intensity is plotted as a histogram (for univariate data), or a scatter plot of data 

can be created with two or more optical channels used for measurement, such as those seen in 

Figure 3. To distinguish a specific target population from the total sample, filtering or threshold 

gates are then applied manually by an operatpr (different shaped areas defined by boxes, ellipses, 

quadrants or polygons, working left to right in Figure) to further stratify the population. By stratifying 

the data, ‘noise’ created by debris and non-specific binding (for example) is removed, allowing 

relevant spectra to be analysed [31].  
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The emission spectra are excited by laser interaction with specific fluorophores conjugated to 

antibody markers which bind to extra-cellular or intracellular markers on the cell [29,32]. Other 

stains can be excited by laser interaction but are not bound to antigen markers on the cell surface, 

for example a variety of methods to stain cell debris or nuclei can be used to discriminate dead 

cells from the live population. Antibody markers are chosen based on the cell type in question and 

what specific sub-populations are being targeted. If these markers fluoresce, it indicates the 

marker has bound to the cell, so the target cell population can be identified because of higher or 

lower fluorescence intensity regions of the plots [29].  

 

 
Figure 3 Example of Flow Cytometry gating within post-analytical Flow Cytometry 

 
1.1.3 Flow Cytometry post-analytical controls 
 
Control files can be created for each fluorescent marker, to help separate positive expressing 

populations from dim or negative expressing cells [33]. These controls are commonly referred to 

as Fluorescence Minus One (FMO) controls, because they contain a mix of all the markers being 

tested in a Flow Cytometry panel, except the respective marker for the optical channel in question. 

This gives a good indication of fluorescence spillover from markers in the panel when combined to 

the specific cell type in question, to set a threshold between positive and negative expression [34]. 

Examples of these controls are shown in Figure 4, with the fully stained sample shown with the final 
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gate applied in (a), and the FMO control files for each respective channel plotted on the axes shown 

in (b) and (c), demonstrating how the positive thresholds for the x and y axes are set.  However, 

FMO controls cannot account for any background staining from the antibody used within that 

channel during analysis which could skew results, and is why isotype controls have been popular 

for many years [34]. Isotypes account for nonspecific staining of an antibody of a particular isotype 

conjugated to the required fluorochrome, because different isotypes can have different levels of 

background staining within the channel [32,33]. However, because these do not account for any 

other markers used within the Flow Cytometry panel, they are not preferred if they exhibit a lower 

amount of background staining than spillover from other markers within the panel [34]. 

 
Figure 4 Example of how FMO gates are applied, a) Fully stained sample with gates applied from FMO controls, b) FMO 

control for the marker on the horizontal x axis, c) FMO control for the marker on the vertical y axis. 

 
Placement of gates is aided by the various controls available to operators, but the decision of where 

the final gates are placed is mainly subjective, relying on the operator’s perception of density, 

influenced by plot presentation, graphics, understanding of the cell type, use of controls and many 

other factors. This research aims to address and measure this subjectivity issue, to quantify the 

variability contributed from an operator’s analysis of data. It is recognised that there are many other 

potential sources of variation in a FC measurement, but these are out of scope of this thesis and 

have been controlled within the experimentation in Chapters 3 to 6. 
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1.1.4 Flow Cytometry automated analysis 
 
Many recent efforts to automate FC data analysis have shown the ability of machine learning 

algorithms to identify common cellular subsets, processing more data in less time than a manual 

operator [21]. This potential capability of processing large batches of highly-dimensional data still 

requires start and end manual screening processes, to ensure the algorithms can run effectively 

[35]. Downsampling (decimation) of data is required to reduce the computational time (by reducing 

the number of events processed) [36]. A percentage of the original data points are taken as a 

representative sample of the whole file population, if datasets exceed 20,000 events. t-Stochastic 

Neighbour Embedding (t-SNE) is a popular analysis algorithm, which ‘plugs in’ to various software 

platforms and will be used as an example here, plugged into Flowjo Version 10.0.8r1, because this 

platform has been used for subsequent FC studies [37,38]. 

 

There are different variables that still need to be defined by the user for clustering purposes; 

specifically, ‘Perplexity’, number of algorithm iterations and Eta. Perplexity essentially defines the 

distance between clusters using a sliding scale from 2 to 100. This requires optimisation to best 

represent the balance between local and global cluster populations using ‘nearest neighbours’ 

clustering. Algorithm iterations can be set between 300 to 3,000 iterations (the number of times 

the computation is applied), where higher iterations cause greater separations of final clusters. Eta 

(the learning rate of the algorithm) controls how much of the ‘nearest neighbours’ weightings are 

adjusted to obtain a minimum probability difference between data points [39]. Finally, when t-SNE 

has clustered the data, the user still has to manually gate to choose populations, which are 

unlabelled, increasing difficulty of validating subsets [39]. An example of different variable choices 

have been shown in Figure 5, to exemplify how different variable scales affect the shape of the t-

SNE output, which still require gating. The data input was EC 2102 Ep cell line data, stained with 2 

pluripotency markers, which are used in the basic uncertainty model in Chapter 4. 
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Figure 5 t-SNE iterations of a single FC data file, analysed with different variation limits, for 1,000 algorithm iterations. 
The grey cell indicates commonly used variables. 

 
The algorithm repeatability has been explored to identify effects of t-SNE variables on simple 

clusters [39], concluding that multiple runs will produce the sample global shape, but certain data 

sets produced different cluster shapes on repeats, and there are no fixed number of repeats to 

validate settings. In addition, the t-SNE cluster size does not necessarily represent the actual size 

of the cell population, due to adaptation of the algorithm to create even cluster sizes to identify any 

smaller or rare subsets [39]. 
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When considering the application of machine learning algorithms for cellular analysis within a 

Quality Control or Manufacturing scenario, the inverse relationship between quality/uncertainty 

and time needs to be addressed. Whilst t-SNE is a computationally powerful tool which enables 

users to analyse multiple samples made up of high dimensionality data, it still requires users to 

manually clean up the data and select the appropriate clusters within the analysis, exhibiting the 

same variation issues found within traditional manual gating, as well as inherent variation from the 

machine learning algorithm itself. Use of such a tool would require a high level of validation and 

optimisation, which could cost manufacturers in time and therefore money when quantifying 

uncertainty in the system, when pre-determined operator metrics may already be established over 

time. 

 

1.1.5 Flow Cytometry uses within Cell and Gene Therapy manufacturing 
 
Quality Control (QC) measurements are required for all stages of CGT manufacture, not just the 

final product release for patient infusion. The versatility of FC means it is heavily utilised for CGT 

product measurements at various points during the manufacture of a therapy for different factors. 

For example, a recent review highlights common considerations for CAR-T product release tests, 

due to their accelerating prominence within the CGT market [8]. The manufacturing process of an 

autologous CAR-T cell therapy follows the process in Figure 6, with sample measurements taken at 

defined QC points [40].  

 

Phenotyping will be specific to the therapy being manufactured, however, it will always be 

conducted at the start of sample preparation to initially measure the donor material and achieve 

an idea of biological starting variation, which can range considerably [12]. Along with cell counts, 

this gives manufacturers an indication of expansion times for the product, or whether more starting 

material needs to be taken from the patient.  
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Figure 6 Flow Cytometry assays used within CAR-T manufacturing 

 
When selecting T-cells, FACS is a Flow cytometry-based method used to sort a cell sample for CD3+ 

Lymphocytes if this configuration is available, although a common method for separation uses 

Dynabeads, because they are also used to activate the cells, to simplify processing stages. They 

have also been shown to have strongly correlated cell counts with Flow Cytometry, making them a 

comparable but cheaper alternative [41]. During expansion of the product, phenotyping will be 

conducted at regular intervals to monitor phenotypic changes to the CGT product. In addition to 

this, transduction efficiency is an important measure of viable cells expressing the CAR+ to 

measure transduction efficiency of the viral vector.  

 

Once these checks are complete, the final therapy product will be formulated for administration to 

the patient. Final product release criteria has been reviewed in [8], with Flow Cytometry being used 

to identify the purity of the product, by counting the % T-cells and the % CAR+ cells, with this latter 

measure also being used to define the identity of the product. This composition needs to be 

quantified in order to deliver the correct dose to the patient, based upon their bodyweight. For 

example, to treat B-cell Acute Lymphoblastic Leukaemia (ALL) in paediatric patients < 50 kg, a dose 

of 1 to 3 bags containing 0.2 x 106 to 5 x 106 CAR+ viable T-cells/kg of body weight are required, 

and for those > 50 kg, this dosage increases to 1 to 3 bags of 0.1 x 108 to 2.5 x 108 cells/kg 

bodyweight [42]. This indicates the needs for repeatable, standardised measurements to ensure 

the therapy can be delivered effectively to the patient, having been optimised throughout 

manufacture.  
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1.2 Standardisation of Flow Cytometry Practice 
 

1.2.1 Summary of efforts across FC measurement 
 

Many efforts have been and are currently being made to standardise Flow Cytometry as a 

measurement technique, to make results more comparable between instruments and sites, with a 

variety of commercially available standards being sold to users [16,43–45]. Examples of these are 

SPHERO™ Rainbow beads used for cross-platform calibration of fluorescence [46], and NIBSC 

reference materials [47] for flow cytometry cell counting. A lot of emphasis has been placed on 

fluorescence standardisation [16] and instrument standardisation protocols [17], however, 

standardisation and traceability of these elements does not guard against downstream variation of 

manual data analysis and reproducibility concerns. 

 

1.2.2 Acceptable variability of post-analytical FC data 
 

Once the biological sample has been processed, the data is exported and stored in fcs file format, 

to allow processing across different software platforms with no data manipulation. The file standard 

provides uniform storage of data, for fair processing and reporting [30]. Software used for analysis 

need to comply with Part 11 of the Food and Drug Administration (FDA) Code of Federal Regulations 

(CFR), to ensure correct storage of electronic records for cell product traceability [48]. If publicly 

reporting Flow Cytometry experiments, the Minimum Information about a FC experiment 

(MIFlowCyt) guidelines should be followed for good reproducibility of data [49,50]. The minimum 

information project, also has guidelines to support further assay development and reporting, 

specific to T-cell and NK-cell experiments [51]. Within FC, there have been significant efforts to 

harmonise panels for experimental design, reporting and analysis to optimise experiments within 

the community [52], as well as harmonisation between instruments [53,54]. 

 

It has been recently reported that there is a large reproducibility crisis across science [55,56], and 

this exemplifies similar concerns for the development, manufacture and control of Cell and Gene 
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Therapy production [40,57–61], as well as standard Flow Cytometry experiments [20,62]. 

Reproducibility of measurements and products require traceable measurements and processes, 

and these must be validated and shown as part of regulatory Market Authorisation for CGT products 

[4,63,64]. Without reproducibility, there is less confidence in the measurement process, 

manufacturing decisions and more concern when releasing the product for the patient treatment 

[65]. Different metrics are commonly used to monitor variability, but may require more resolution 

to improve traceability, repeatability, reproducibility and therefore confidence and quality. 

 

Repeatability of FC measurements are commonly reported as precision (standard deviation (SD) of 

repeats) or CV (%). CV is a combination of the mean and standard deviation of repeats and is often 

easier to monitor variability [29]), and these variation metrics are fully defined in Chapter 2, Section 

2.2.2. Different studies have monitored CV contributed from different FC measurement 

components, to potentially provide guidance on experimental variability throughout the 

development of FC [66–68], and discussed the implications of validating FC in a regulated 

environment [62]. Different levels of acceptable variance have been defined across Flow Cytometry 

literature, with different metrics and resolution to address and reduce it over time. The International 

Council for Standardization of Haematology (ICSH) and the International Clinical Cytometry Society 

(ICCS) published a 5-part series summarising FC variability issues through the entire FC process 

[45,69–71]. Part V provides guidance on acceptable limits for CV, where < 10 % CV is suitable for 

measurements, or < 20 % CV where rare cell events are concerned [71].  

 

Percent CV is preferred to SD as acceptance criteria by the ICCS, because it normalizes variations 

at lower levels of event detection. This imprecision metric should be taken from a minimum of five 

samples assayed in triplicate (at least) during the same analytical cycle. It has been noted that 

although the data is impacted by a subjective analysis, the technical assay performance is 

reproducible [71]. This gives better clinical assurity of assays requested, and it is easier for 

pathologists and clinicians to make decisions for the patient with more confidence in the 

measurement process. These references ranges would have been defined by clinical cases for 
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normal and specific disease states (typically 60 males and 60 females included in range analysis) 

to ensure clinical comparability for specific test results. Disease states are inherently more 

challenging to generate ranges for, however, patient cohorts in need of routine checks may be more 

readily available for tests, which could aid this data generation [71]. 

 

CV has been considered to quantify measurement uncertainty within the UK National Health 

Service (NHS), for example providing Key Performance Indicators (KPIs) of Feto-Maternal 

Haemorrhage (FMH) monitoring with Flow Cytometry. Measurement uncertainty is usually a 

combination of SDs, but in this instance the NHS have used CV, with KPIs of < 15 % for good 

uncertainty, 15 % to 20 % for satisfactory and > 20 % as unacceptable [72]. A recent international 

research review of Flow Cytometry CD4+ count measurements indicates that BD FACSCount beads 

used as reference standards show an inter- and intra-laboratory precision of <15 % [73]. A 

breakdown of uncertainty variation sources within phenotypic measurement gives further 

identification of contributing amounts of variation of the measurement [74].  

 

Poor reporting and control of FC results leads to false positive and false negative results of samples, 

facilitating poor decision making of diagnoses and treatments, seen in many other laboratory 

measurements. A recent review has identified many pre- and post-analytical errors in laboratory 

haematology [3], specifically in automated cell counting. Haematology laboratory errors can 

contribute as much as 62 % and 23 % of measurement variability from these pre- and post-

analytical errors respectively, which has not changed over 10 years [75]. If not caught, these issues 

cause incorrect or missed opportunity for diagnosis, but if they are caught before the result is 

issued, it causes delays in diagnosis which increase patient anxiety and it is a missed opportunity 

for diagnosis if a specimen cannot be retaken or accessed [76]. Diagnostic error is difficult to 

accurately estimate, but approximately 12 million USA citizens having suffered a diagnostic error, 

half of which were significant, and can impact patient safety [77].  
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Standardisation of measurement positivity thresholds is required across many platforms, 

exemplified by anaemia reporting across international bodies. The World Health Organisation 

(WHO) define lower limits of haemoglobin (Hb) concentration at 130 g/L in adult males, compared 

to the Centre for Disease Control (CDC) lower limit of 135 g/L [3]. Although the difference is small, 

it has a significant impact on referrals or missed treatments. Different External Quality Assessment 

Schemes (EQAS) have different performance criteria for CD4+ counts returned from participating 

laboratories, which can have a significant impact in patient safety, as discussed in the next section. 
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1.3 External Quality Assessment for reproducibility 
 
1.3.1 Relevant standards for analytical competency 
 
Both ISO 17025 and ICH Harmonised Tripartite Guideline Good Manufacturing Practice Guide for 

Active Pharmaceutical Ingredients Q7 have grounds for personnel hired to work in the test 

environment [13,14], stating that personnel hired should have adequate qualifications for the role, 

and training should be provided regularly for operations performed by the employee. ISO 17025 

provides more depth with regards to processes that require interpretation (such as Flow Cytometry), 

stating they should be performed by operators who are familiar with the technology, how it is used 

and possible defects that can occur, but there is no stated requirement to formally measure 

operator variability, which can impact results [13].  

 

ISO 17025 is a standard which manufacturing and test laboratories ideally need to achieve 

accreditation with, providing patients, clinicians, healthcare trusts and companies with confidence 

that procedures are in place to deal with deviations and the site can monitor and control the 

product effectively. Uncertainty plays a part in this analysis, with ISO 17025 stating that all 

equipment used requires an uncertainty estimation (ISO 17025 Section 5.4) and any opinions or 

interpretations around measures need to be stated in test reports, under the basis in which they 

have been made (ISO 17025 Section 5.10.5). Flow Cytometry is a process that requires 

interpretation to generate a result/diagnosis, so this must be factored into release criteria, and is 

the subject of this research. Measurement uncertainty is explained in greater detail in Chapter 2. 

 

Flow Cytometry operators can also obtain Cytometry Accreditation (Specialist in Cytometry, SCYM) 

[78], to ensure knowledge of data analysis such as understanding gating tools, statistical methods 

and assay validation methods, as well as standards and controls. Clinical Flow Cytometrists require 

experience and accreditation to correctly identify a variety of diseases and disease states from a 

sample. The manufacturing and QC scenario differ, because product conformance is required. 

Therefore, the FC will not necessarily be diagnostic, it will be used to assess a specification.  
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As the cell therapy manufacturing environment may not be clinical, FC operator certification 

requirements need to be scoped as well as potential participation in an External Quality 

Assessment Scheme (EQAS). This may be an established EQAS or an EQAS with different guidance. 

Comparability can therefore be assessed at different levels, but there may be inherent differences 

between sites and companies with regards to output results. 

 
1.3.2 External Quality Assessment and accreditation 
 

EQAS are used to verify correct implementation of protocols and measurements of particular 

targets across multiple centres, and are also known as External Quality Control, Interlaboratory 

Comparison Surveys or Proficiency Testing [79]. Proficiency testing exists to provide greater 

metrological traceability of measurements to primary SI units, to ensure that calibrators and 

instrumentation are not negatively affected by poor use [80]. 

 

EQAS addresses standardisation of practice in which measurement equipment is used (once a 

problem is identified), as well as commutability of the standardised measurand to enable 

comparison of these factors [25]. Clinically, centres that analyse patient material need to have 

validation through an EQAS, which are further traceable to ISO 17043 for conformity assessment 

[81]. This helps centres achieve ISO 15189 accreditation for quality and competence of medical 

laboratories [82], replacing Clinical Pathology Accreditation (CPA) in the NHS. In Vitro Diagnostic 

(IVD) medical devices, such as FC are also required to show metrological traceability of biological 

quantification to obtain CE marking [83]. This ISO 17511 compliance must conform to one of the 

defined traceability chains depending on the availability of different primary and secondary 

calibrators and procedures, illustrated in Figure 7. 

 

CGT manufacturing centres would not necessarily need ISO 15189 accreditation, because they are 

not performing clinical pathology, although this is something that may translate from the clinical 

environment, due to different manufacturing scales. However the site, processes and QC would 

need to be Good Manufacturing Practice (GMP) compliant when manufacturing a licensed product, 
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and would need to follow guidelines set out in ICH Q7 [14] and gain ISO 17025 accreditation for 

competence of testing and calibration laboratories [13]. 

 

As previously stated, QC operators would need accreditation to ensure they remain GMP compliant, 

however, this calls into question how much further up the product development pipeline this level 

of competency and reporting is required. To design in quality to the product, all compliance should 

be adhered to from the start of product and process development stages, to ensure good 

translation further down the pipeline and to better maintain integrity and compliance. However, 

Process Development Scientists involved in later studies in this thesis (Chapter 8: Questionnaire 

results) have highlighted that this level of accreditation is not known or understood well. A lot of 

validation would be completed before handing over processes to further operations, however, this 

does not account for personnel accreditation.  
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Figure 7 Traceability chains of ISO 17511 calibrators 
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Traceability of EQAS as part of the diagnostic measurement process has been more thoroughly 

investigated for clinical biochemistry. In recent years, this has qualified particular analytes and 

proteins [25,26,79,80], with the quantification of measurement uncertainty (required by ISO 

15189 accreditation [82]) provided to indicate variability contributions to the measurements [84]. 

Many traceable calibrators have enabled these small uncertainties to be specifically defined, giving 

more measurement integrity and confidence to the analytical decisions [80]. These are 

underpinned by international metrology efforts to continually improve traceability of laboratory 

medicine, by the Joint Committee for Traceability in Laboratory Medicine (JCTLM) [85]. 

 
1.3.3 Flow Cytometry EQAS for CD4+ measurement 
 

Currently there are many immune-related diseases that are looking to be addressed through a 

variety of different CGT treatments. From HIV treatment to various blood cancers, reliance on 

reproducible CD4+ T-Cell counts is necessary and will be used as an exemplar for EQAS here, 

because of CD4+ analysis undertaken within T-cell therapy measurement [86,87].  

 

To establish comparability of T-cell measurements various External Quality Assessment Schemes 

(EQAS), have been in existence globally since the late 1980’s [88]. These initially looked at cell 

quantification across dual platforms using various haematological analysers, but it was quickly 

concluded that a single platform measurement was desirable to reduce variability in CD4+ T-cell 

counting, with FC the preferred technique for quantification [89]. This correlates with the increase 

of HIV cases in 1980’s, demanding higher throughput of blood samples and therefore treatment of 

patients. It has also been shown through various other studies that using a single platform of 

instrumentation reduces variation and error in measurement and diagnoses [54,90,91].  

 

Various CD4+ FC EQAS are in clinical operation around the globe, with the most notable bodies and 

advancements in standards and teaching coming from the United Kingdom, central Europe and 

Canada, with output summarised in Table 1. These have developed over the last 20 to 30 years 
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with increasing laboratory participation and increased frequency correlating with a reduction in 

variation in participants [92]. Significant developments were made in EQAS in the 1990’s and at 

the turn of the millennium. The most significant scheme developed is UK NEQAS (with international 

outreach) [93], which offers a variety of FC EQAS accredited by the United Kingdom Accreditation 

Service (UKAS) that relate to different Clinical assays required for haematology [92]. These include 

CD34+ Stem Cell Enumeration, Immune Monitoring, Leukaemia Immunophenotyping and 

Diagnostic Interpretation and Low Level Leucocyte Enumeration amongst other schemes for 

specific disease states [93].  

 

Table 1 Summary of CD4+ EQAS 

EQAS Variability metric Acceptance limit Literature 
UK NEQAS CV 

Reduction in Absolute 
residuals 

Trimmed mean ± 2SD [91,92,94–98] 

SIHON Score Point system: majors 
and minors 

Discordant % positive 

Within personalised 
boundaries for 

acceptable errors 

[88,99] 
 
 

Benelux EQA Residuals Robust multivariate 
regression 

[100] 

Central European 
Quality Control Program 

(CEQUAL) 

CV Mean ± 2SD [101] 

Gruppo Italiano di 
Citometria (GIC) 

Resolution Index 95 % Confidence 
Intervals 

[102] 

Canadian QASI-QMS Absolute deviation from 
Inter-laboratory mean 

Linear regression [103,104] 

Thailand and South 
East Asia CD4+ EQA 

program 

Mean, Standard 
Deviation Index (SDI), 

CV 

CV< 15 %, 
-2 < SDI < 2, 95 % CI for 

PanLeucogating 
methods 

[105,106] 

EuroFlow Consortium Personalised score 
using Medium 

Fluorescent Intensity 
and CV 

95th Percentile [15,17,18,18,107] 

AFREQUAS Regional 
African EQAS 

CV Trimmed mean ± 2SD [108] 

 

Despite the excellent efforts made by various EQAS to harmonise measurement and procedures, 

the CD4+ monitoring schemes indicate how there can still be inconsistency, because although the 

different EQAS can monitor the same cell counts, their acceptance criteria differ. Some of these 

acceptance criteria differences were summarised by a review in which another way of defining 

acceptance (through linear regression) was suggested [109]. When this variance in processing is 
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extrapolated to cover the number of different types of EQAS scheme for just Flow Cytometry, the 

state of affairs becomes more confusing to navigate for EQAS participants. Furthermore, pathology 

centres often take part in more than one EQAS, where different scoring metrics and variation 

metrics are used, increasing confusion between reporting criteria. The statistical standard that 

governs EQAS procedures, ISO 13528, actually provides several different ways that variance can 

be quantified and monitored [110], as well as other monitoring factors, shown in Figure 8. It 

provides options for defining the reference value (a), performance criteria (b), calculation of 

performance criteria (c) and different graphics for reporting (d). 

 

To initially consider how this could translate into CGT manufacturing, a change in performance 

statistics is required to align with ISO 15189 and ISO 17025 documentation. Currently most clinical 

CD4+ EQAS calculate performance as an estimation of deviation, albeit using a variety of metrics 

such as CV, residuals and self-defined statistics. To gain accreditation, laboratories also need to 

measure uncertainty, so inclusion of this in an EQAS not only provides better resolution of inter-

laboratory processing to improve the community, it also allows participants to use those values as 

part of required uncertainty calculations. This provides more confidence in the measurement, and 

allows internal continuous improvement, to highlight the variation of operators in comparison to 

other instrumental and process components. 
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Figure 8 ISO 13528 options for EQAS providers, a) Determination of the initial reference value, b) Performance criteria, 
c) Calculation of performance statistics, d) Graphical methods to report results 

 
Currently CD4+ EQAS allow participants to report back results for the respective schemes (absolute 

cell count, and the percentage of this population with respect to the original count in the sample). 

UK NEQAS have a patented blood stabilisation method used for reference wet sample send-out for 

analysis, qualified to ensure an assigned value and variance of this reference sample are known 

for comparison [111]. This provides a quantitative comparison of the reported laboratory results 

against the reference value, to quickly identify non-conformance. When non-conformance is 

identified, EQA providers can help respective centres find the root cause, however, because only 
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the final results are reported, this can be a long effort due to the many sources of contributing 

variation.  

 

The EuroFlow Consortium took a different perspective for identification of haematological 

malignancies, by providing participants with detailed instructions to setup  equipment and perform 

compensations [17], as well as providing lyophilised antibody tubes, to standardise the reagents 

used for defined panel markers [18]. EuroFlow is not an EQAS, however, has been used as a 

complementary tool to highlight variation in other areas of the FC measurement. By standardising 

upstream reagents and protocols, it aimed to identify the variation in the system if local blood 

donations were used (instead of standardised samples) for inter-laboratory comparison, to highlight 

that standardisation of upstream elements could be achieved. 

 

It also noted how complex panels are very subjective, which can cause more variability in the 

downstream measurement [17,107], although new software efforts as part of the EuroFlow 

consortium aimed to standardise reporting for ‘normal’ cellular subsets in CD4+ and CD34+ FC 

panels. Both UK NEQAS and Euroflow schemes make assumptions about participants’ cell 

identification abilities, where UK NEQAS assume if a participant can correctly classify the QA 

sample, they could also classify a leukaemia sample. Euroflow assumes if a participant can execute 

the Standard Operating Procedure (SOP) correctly and accurately assess lineage markers on 

normal cells, the laboratory could also assess these markers accurately on malignant cells [107]. 

 

Although UK NEQAS is based on final metrics rather than further controlling upstream variables, 

they have conducted studies to identify variation against standard analysis processes for FC data, 

in particular the ISHAGE protocol for CD34+ stem cell enumeration [112]. This protocol was 

established in 1996 by the International Society of Hematotherapy and Graft Engineering (ISHAGE) 

because lack of standardisation had led to divergent reporting of CD34+ stem cells in peripheral 

blood, which are considered to be extremely rare (0.01 % to 0.1 %). This standard recommended 

antibodies, gating strategies, cell separation and lysis techniques to use as well as reporting 
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mathematics [113]. The 2012 review sent out two stabilised samples to 255 clinical participants 

and asked them to analyse and report the required CD34+ data. 196 laboratories returned results, 

and 103 of these also returned dot plots for EQAS clarification. 83 of these participants claimed to 

use the ISHAGE protocol, but after further investigation only 57 % of these gating strategies were 

correctly setup. It was further shown that those using this protocol incorrectly on a single platform 

were twice as likely to fail EQA exercises, and those also using it in a dual platform scenario had a 

further two-fold increase in failure rate [112]. This indicates that even when standard samples, 

recommended panels and gating strategies are used, they can still be interpreted or used 

incorrectly, as well as being influenced by the measurement platform available. EQA always aims 

for 5 % of returns to be out of consensus, to ensure continuous improvement over time, however 

in this instance there were 13 % out of acceptance when following the protocol correctly, despite 

the further 41% of all used applying the strategy incorrectly [112]. 

 

1.4 Variability in Flow Cytometry Gating Studies 
 
 
It has been noted through various EQAS publications documented that variation exists throughout 

the Flow Cytometry measurement process, with various efforts to standardise these elements for 

greater measurement precision. These efforts have isolated reagents, instrumental processes and 

between-instrument variation to understand contributions to measurement deviation. Little focus 

has been given on the post-analytical gating process within FC, despite being known to contribute 

a lot of subjectivity to final reported results [21]. 

 

The greatest efforts to measure subjectivity from gating have been through standardised cytokine 

FC assays, which monitored Intracellular Cytokine Staining (ICS) across cryopreserved Peripheral 

Blood Mononuclear Cells (PBMCs) and shipped whole blood material [114,115]. Inter-laboratory 

variability was reported as 28 % CV for cryopreserved PBMC material, which reduced to 23 % when 

data was analysed centrally rather than by the respective laboratories [115]. This reduction has 

also been reflected in standardisation efforts by the Human ImmunoPhenotyping Consortium [20]. 
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Two gating strategies were tested within the Cancer Immunoguiding Program (CIP) for detecting 

and enumerating HLA-multimer binding cells, with group CVs reported as 53 % and 87 % for each 

strategy respectively, as well as noting that participant variability increased with low frequency T-

cells (< 0.1 %) [2]. All of these studies do not completely isolate the gating process, because the 

process of staining and running the sample still had to be completed by participants, even though 

correct reagents and procedures were provided, similar to EuroFlow efforts, which returned an 

inter-laboratory CV below 30 % for Median Fluorescence Intensity (MedFI) of markers analysed 

[107]. 

 

In an attempt to standardise Minimal Residual Disease (MRD) Flow Cytometry assays for Chronic 

Lymphocytic Leukaemia (CLL), electronic data files were analysed by multiple experienced Flow 

Cytometry operators, to remove any upstream variation built into the fcs file and respective 

measurements [116]. 141 MRD files were generated with 40 files containing normal cells, 69 files 

containing 0.01 % to 0.1 % CLL cells and 32 files containing 0.0001 % to 0.01 % CLL cells, to 

represent MRD analysis scenarios and identify false-positive reporting scenarios. A pilot study with 

26 files showed only 11 equivalent results returned, and then when given a more detailed operating 

procedure to re-analyse the files, equivalence increased to 23 cases. The use of a procedure to 

apply gates gave a 19 % improvement in accuracy, and a 44 % improvement in specificity, 

suggesting adoption of a physical protocol could reduce false positive rates in FC analysis [116]. 

 

This study catalysed efforts for standardised FC data analysis, through the use of automated 

machine learning platforms to remove the subjectivity and inter-laboratory variation element [117]. 

Numerous studies and consortia have evaluated different computational methods for FC data 

analysis, to identify lower variance with the same target-cell identification ability as a human 

operator [20,21,118–120]. However, whilst these methods are able to replicate operator gating 

for well-established cellular subsets, results are not ideal for subsets that are rare or difficult to 

separate, often requiring manual intervention for training or final analysis stratification [121], as 
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well as increasing chances of reported false positives for smaller populations, close to a cut-off 

limit. 

 

Whilst automated platforms serve a clear purpose for FC data analysis as data moves to more 

complex, highly dimensional assays, there are still some usability issues that require refinement in 

order for these tools to become accessible and to be used correctly. Currently three core challenges 

need to be addressed for more successful adoption [122]. Firstly, few immunologists are aware of 

these tools because outreach of literature does not exceed bioinformatics or computational biology 

journals. 

 

This is also the case for standardisation effort of FC experiments (MIFlowCyt) not leaving FC’s inner 

circle and being presented in more cell-specific journals [50]. Secondly, although automation 

platforms are open source through a variety of platforms, these computation and software methods 

are not necessarily user friendly, and not easy to learn alongside full-time immunology roles. Third 

and finally, a lack of understanding of how the tools work can lead to scepticism or overconfidence 

in the methods, which can cause culture change issues, an oversight of quality control and issues 

with validation [122]. This issue will also be explored within the survey in Chapter 8.  

 

Efforts to tackle the user interface challenge have been made by algorithms such as FLOCK, 

allowing participants to upload and test their own data on the platform, although this still requires 

an open mind set for trial and adoption [122]. Other software platforms such as Flowjo have 

algorithm plugins such as t-SNE, to allow participants to trial algorithms in a familiar environment 

[123]. Automated algorithms are still at the mercy of users, with improved analysis of data 

dependent on suitable data pre-processing, to clean the data and remove noise, reduce 

dimensionality to reduce computational time and sample back to the original cell count number 

[124]. 
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A comparison study between individual participant gating, central gating and three automated 

platforms, listed different ways the data had to be ‘pregated’ or ‘postgated’ to ensure the data was 

appropriate for automated analysis or the correct cluster identification, therefore requiring manual 

intervention and subjectivity [1]. The data analysed here were Major Histocompatibility Complex 

(MHC) Dextramer ™ staining of T-cells recognising two different virus-derived epitopes (Epstein-Barr 

Virus and Influenza) in PBMCs from healthy donors. These are also markers analysed for 

engineered T-cell receptor (TCR) therapeutic products, providing significant affinity to this research 

within the CGT manufacturing industry. The highest CVs from gating individually and centrally were 

122 % and 86 % respectively for one of the influenza epitopes, with the remaining CVs for other 

virus strains < 30 % CV. Again, analysis of the files was not isolated, with participants conducting 

staining and analysis of the files according to their own procedures and reagents available, 

contributing to downstream variation [1].  

 

1.5 Variation impacts on CGT manufacturing and adoption of 
measurement uncertainty  
 
 

Variation and advancement of measurement platforms has been identified as a core issue 

requiring attention for the development of CGTs [59,63], to ensure the successful validation of 

therapies requiring authorisation. This will only become more challenging when greater demand 

and throughput require more inline integration of measurement processes, to reduce the need for 

sampling. This creates a greater need for big data analytics, to ensure analysis can be completed 

quickly and reliably, as the panels for FC grow. Advances in measurement capability and resolution 

provide further understanding of the product, increasing measurement precision and control of the 

manufactured product [8,125]. Whilst FC analysis algorithms still require refinement for low level 

detection, they are a step in the right direction for integration into FC measurement against a pre-

defined manufacturing specification. Comparison to the manual gating is still required for validation 

and more precise quantification of allowable variation, which this research addresses.  
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Whilst many publications address FC gating’s significant contributions to overall measurement 

variance, this phase has not been fully isolated to purely quantify the user subjectivity within the 

post-analytical phase, which is investigated through experimentation in Chapters 3 to 6 of this 

thesis. A focus on purely subjective analysis of pre-prepared fcs files is being adapted by UK NEQAS 

for the Leucocyte Immunophenotying Scheme (Personal Communication with UK NEQAS) for 

clinical participants, as well as a monitoring scheme for image analysis of blood film morphology 

for participant Continued Professional Development (CPD) [126]. 

 

Future training of the required workforce has been identified as a big risk and challenge for the 

adoption of CGT manufacturing in the UK [127]. Operator application and position within CGT 

manufacture requires comparable consistency across multiple manufacturing sites, as well as 

within each centre, laboratory and team [9]. This presents an opportunity for proficiency testing 

schemes to enable continued training and development of staff across all CGT manufacturing sites, 

empowering operators to maintain good practice.  

 

This is a timely issue for accreditation to ISO 15189 and ISO 17025, to ensure suitable levels of 

competency, as well as an opportunity to integrate education of measurement uncertainty. This not 

only satisfies the accreditation criteria for equipment, it provides greater resolution, precision and 

control of the measurement process, for training and continuous improvement. This in turn should 

improve quality and manufacturability of the CGT product, increasing the delivery of treatments to 

patients in a timely manner.  

 

Whilst traceability of measurement and procedures through EQAS is important for analytical 

precision, it is also imperative for ‘post-post-analytical’ interpretation (clinician measurement 

interpretation), where results are used by clinicians for diagnosis and treatment decisions. Greater 

education and harmonisation of permissible limits for tests is needed for clinicians, due to poor 

assumptions that different numbers can be compared, leading to misinterpretation and impact on 

patient safety [128]. Harmonisation of clinical chemistry efforts have been pioneered by the 
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Australian Pathology units, to ensure general acceptance limits for analytes are the same across 

clinical centres to address this misinterpretation by clinicians [129]. 

 

Monitoring of correct units can be enforced through EQAS for harmony, and misinterpretations of 

limits are important to note for the sign off therapeutic products to the clinician to minimise issues 

due to misunderstanding. Greater focus on medical control limits for medical student training has 

been met with great interest, providing definition of the term “total error” of a measurement, which 

previously had negative connotations for clinicians, rather than being informative [130]. 

Measurement uncertainty has been recommended to be reported to clinicians as a set of 

acceptance boundaries for the test, to include reference limits, and remove any further 

mathematical interpretation error [130,131]. It should be seen as a quality indicator instead of a 

box-ticking exercise for pathologists and those completing in-process and release tests [132]. The 

use of measurement uncertainty will be tested within this research, to indicate its use as a quality 

and improvement tool within healthcare and Flow Cytometry post-analysis operations. 
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Chapter 2: Relevant Theory 

2.0 Introduction to the Chapter 
 

Chapter 2 provides an overview of relevant theory used to create the operator measurements for 

an Uncertainty estimate within Flow Cytometry analysis. This builds upon a ‘Quality by Design’ 

approach recommended by regulatory authorities, and it is one way of quantifying variation within 

a biomanufacturing Quality Control and measurement system.  This continues to build upon the 

reviewed literature and FC background provided in Chapter 1, and describes the theory and 

methodology used for Gauge Repeatability & Reproducibility (Gauge R&R), and uncertainty 

methods, used within subsequent data Chapters.  

2.1 Chapter Aims 
 
This chapter provides an overview of the background theory for Uncertainty measurements, 

including process control structures for the measurements to be taken, underlying statistical 

reporting required and calculation of final Uncertainty values. This Chapter presents a structure 

that subsequent data chapters will follow for analysis.  

2.1.1 Chapter Objectives 
 

• Provide an overview of Gauge R&R from a Measurement Systems Analysis perspective. 

• Investigate the use of Gauge R&R hybrid structure to enable measurement Uncertainty to 

be calculated. 

• Present a statistical report format for use in subsequent chapters and definitions behind 

statistics used. 

• Provide a detailed explanation of measurement Uncertainty and how it is calculated.   
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2.2 Measurement Systems Analysis 
 
Measurement Systems Analysis (MSA) is the analysis of a “collection of instruments or gages, 

standards, operation, methods, fixtures, software, personnel, environment and assumptions used 

to quantify a unit of measure or fix assessment to the feature characteristic being measured; the 

complete process used to obtain measurements.” [133]. 

 

MSA falls under the ‘Measure’ category of the Design-Measure-Analyse-Improve-Control (DMAIC) 

Cycle, part of Six Sigma methodology frequently used to reduce variability and waste within a 

production system. An overview of the DMAIC cycle can be seen in Figure 9, along with different 

tools and methods that can be used within each stage of the Continuous Improvement (CI) cycle 

[134,135].  

 

 

• Data collection 
• Statistical Process Control 
• Measurement Systems Analysis 
• Observation 
• Y=f(x) process map 

Design

Measure

Analyse

Improve

Control

• Multi-variate 
• Design of Experiments (DoE) 
• Control Chart 
• ANOVA 
• FMEA 
• Measurement Uncertainty 

• Training 
• Design of 

Experiments 
(optimisation) 

  

Control Plans 
• Control Chart 
• Standard Operating 

Procedures 
• Action Plan 

Figure 9 DMAIC Cycle  
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DMAIC is very similar to the Plan-Do-Check-Act (PDCA) Cycle developed by Walter Shewhart and 

championed by W.Edwards Deming, Quality Gurus and pioneers of Quality Control approaches 

[136–138]. This can also be used as a Lean manufacturing method to reduce variance in a system 

and improve output quality and is described in Figure 10.  

 

 

Figure 10 PDCA Cycle [136,138] 

 

The DMAIC cycle tends to be prescriptive in its process, with clear tools that can be used at each 

point in the Continuous Improvement loop, so it is generally preferred within manufacturing control 

scenarios. Following this cycle helps CGT manufacturers to continually improve processes and 

quality, to comply with a ‘Quality-by-Design’ approach using risk analysis in line with Quality 

Management principles. This is a preferred strategy by major regulatory authorities such as the 

European Commission, placing more focus on front-end development to assure product quality 

[14,64,139]. 

 

Various tools can be used within MSA, most notably Statistical Process Control (SPC), Gauge 

Repeatability & Reproducibility (Gauge R&R), and Function (y=f(x)) Process Maps. SPC is a 

methodology used to monitor and continuously improve process performance and to reduce 

variability within important metrics. SPC is generally an on-line process that measures performance 

metrics in real time, so a better idea of measures and variability can be attained over time. Many 

Plan
•Determine goals and targets
•Determine methods to reach 

goals

Do
•Engage in education and 

training
•Implement work

Check
•Check the effects of 

implementation

Act
•Take appropriate action 
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types of chart are used within SPC, but the most commonly used tools are process control charts, 

histograms or stem-and-leaf plots, check sheets, Pareto diagrams, cause-and-effect diagrams and 

scatter diagrams [134]. These allow trends or variance causes to be picked up over time, however 

it can be more difficult to measure the exact error or variance of a process item at one point in 

time. SPC is often used to measure multiple process parameters, so it can be costly in terms of 

time and resource to ensure SPC is setup correctly to identify the correct measurands, but also in 

terms of training and labour over time [140]. It relies on process operators correctly inputting data 

(and doing it honestly) if an SPC system is not integrated into the process itself.  

 

Similar time and cost constraints are also found when using Function (y = f(x)) Process Maps. These 

are tools often used within Six Sigma methodology to identify a specific output measurand to 

quantify the process (y) and monitor this as a function of other process attributes (x) [135]. A good 

understanding of all attributes and measurands are required by operators, and honest input of 

results to ensure issues can be identified through trends in time. Operational definitions should be 

calculated when starting to use functional process maps, through analysis such as Gauge R&R 

measures to quantify isolated variances as a function of part or operator. This is a type of analysis 

session, run by an independent assessor that allows errors to be calculated at a point in time, for 

a process or application. This can then be repeated over time to check the alignment of tools such 

as SPC or Process Maps.  

 

An adaptation of the Gauge R&R process will be used throughout this research to quantify variance 

and therefore uncertainty of operator gating subjectivity. Gauge R&R has been used because it 

generates measurements that show a combined estimate of a system’s repeatability and 

reproducibility (sum of within-system and between-system variances). This can become part of an 

SPC log, because SPC often monitors a variety of control factors within a production environment 

such as mean and range of product measures and change over time to catch possible drift, whilst 

giving an accurate measure of a controlled variable without other system interactions to consider. 

However, Gauge R&R does not fully isolate variation components, often combining repeat 
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measures across a series of parts, which is not specific enough for combining in an uncertainty 

calculation. 

 

2.2.1 Gauge Repeatability & Reproducibility 
 

“Gauge R&R is the variance equal to the sum of within-system and between-system variances” 

[133]. Equation 1 depicts this, and in this instance, it is used to calculate intra- and inter-operator 

variation (Equation 2). 

 

𝜎𝜎𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑅𝑅&𝑅𝑅
2 = 𝜎𝜎𝑟𝑟𝐺𝐺𝑟𝑟𝐺𝐺𝐺𝐺𝑟𝑟𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 + 𝜎𝜎𝑟𝑟𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2  

Equation 1 Gauge R&R 

𝜎𝜎𝑂𝑂𝑟𝑟𝐺𝐺𝑟𝑟𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑅𝑅&𝑅𝑅
2 = 𝜎𝜎𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟𝐺𝐺−𝑟𝑟𝑟𝑟𝐺𝐺𝑟𝑟𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟2 + 𝜎𝜎𝑟𝑟𝑖𝑖𝑟𝑟𝐺𝐺𝑟𝑟−𝑟𝑟𝑟𝑟𝐺𝐺𝑟𝑟𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟2  

Equation 2 Operator Gauge R&R 

 

The role of Gauge R&R contributes to a broader Measurement System context in Equation 3 and 

Equation 4, for measurement capability and performance respectively.  

 

𝜎𝜎𝑟𝑟𝐺𝐺𝑟𝑟𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 = 𝜎𝜎𝑟𝑟𝑟𝑟𝐺𝐺𝑏𝑏 (𝑟𝑟𝑟𝑟𝑖𝑖𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
2 + 𝜎𝜎𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑅𝑅&𝑅𝑅

2  

Equation 3 System Capability 

𝜎𝜎𝑟𝑟𝐺𝐺𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝𝐺𝐺𝑖𝑖𝑟𝑟𝐺𝐺2 = 𝜎𝜎𝑟𝑟𝐺𝐺𝑟𝑟𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 + 𝜎𝜎𝑏𝑏𝑟𝑟𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 + 𝜎𝜎𝑟𝑟𝑟𝑟𝑖𝑖𝑏𝑏𝑟𝑟𝑏𝑏𝑟𝑟𝐺𝐺𝑖𝑖𝑟𝑟𝑟𝑟2  

Equation 4 System Performance 

 

Gauge R&R is a form of MSA that gives a combined estimate of Measurement System Repeatability 

and Reproducibility. Repeatability and Reproducibility are respectively defined as: 

 

“Measurement precision under a set of repeatability conditions … that includes the same 

measurement procedure, same operators, same measurement system, same operating conditions 
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and same location, and replicate measurements on the same or similar objects over a short period 

of time.” [141] 

 

“Measurement precision under reproducibility conditions of measurement … that includes 

different locations, operators, measuring systems, and replicate measurements on the same or 

similar objects.” [141] 

 

Repeatability measures precision within batches, whereas reproducibility measures precision 

between batches, operators, gauges etc. Figure 11 illustrates this difference within a 

manufacturing context. In a manufacturing facility, numerous replicate products are created every 

single day, by multiple operating staff on the shop floor. To calculate repeatability, n replicate 

measures would be taken at one time, by one operator on one product. According to the Guide to 

the expression of Uncertainty of Measurement (GUM), this should be between 3 and 10 replicates, 

with a higher number of repeats providing a better representation of the precision of the 

measurement [142]. However, within a CGT manufacturing scenario, this may not be economical 

or necessary. This measure of repeatability or variance is the SD of repeat measures taken at the 

same time.  
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Figure 11 Illustration of repeatability, reproducibility and product variation within a manufacturing facility 

Reproducibility compares these measures of precision across the different factors described 

earlier: - operators, environment, time etc. It can often show up the differences between operating 

shifts, operators or environments to understand the uncertainty or variance in a system when 

measures of a product fall out of specification and control. Comparing repeatability across different 

products, i.e. product variation, would require the same operator to perform the repeat measures 

on different products to ensure multiple sources of variance did not interact. Gauge R&R helps to 

generate an acceptable variation over the range of expected results. It can be used to support 

estimates of measurement system capability (random error over a short time period) by combining 

errors from linearity and uniformity of a system. It can also support estimates of measurement 

system performance, which is the effect of all variation sources over time [133]. 

 

Traditionally, there are three ways a Gauge R&R study can be conducted to populate a data 

collection template as seen in Table 2; the Range method, the Average and Range method, and 

the Analysis of Variance (ANOVA) method. The ANOVA method is usually preferred because it can 

measure operator-part interaction (in this instance ‘parts’ refers to .fcs files of the data for 

operators to analyse), whereas the other two options do not do this. However, for this thesis this 

interaction is not required because the part is kept uniform between participants, to create a Gauge 
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R&R-Uncertainty measurement hybrid. In addition, the ANOVA method assumes a normal 

distribution of measurements, so if the distribution of datasets used in this research are non-

parametric this method is not ideal. The Range method is used to provide a quick estimate of 

measurement variation and is generally used to ensure the Gauge R&R has not changed over time. 

Traditionally, this method compares two appraisers and 5 components to be measured, where each 

appraiser measures each part once [133]. The range between appraiser A and B is calculated and 

a total Range average is taken from these part ranges (𝑅𝑅�). Total variability is identified in Equation 

5, where 𝑑𝑑2∗  is looked up using a 𝑑𝑑2∗  table [133].  

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑣𝑣𝑇𝑇𝑣𝑣𝑣𝑣𝑇𝑇𝑣𝑣𝑣𝑣𝑇𝑇𝑣𝑣𝑇𝑇𝑣𝑣 =  𝑅𝑅� × 𝑑𝑑2∗  

Equation 5 Total Variability using the Range method  
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Table 2 Example Gauge R&R Data Collection Sheet 

Appraiser PART AVERAGE 

 1 2 3 4 5 6 7 8 9 10  

A                1            

2            

3            

Average           𝑋𝑋�𝐺𝐺 = 

Range           𝑅𝑅�𝐺𝐺 = 

B                1            

2            

3            

Average           𝑋𝑋�𝑟𝑟 = 

Range           𝑅𝑅�𝑟𝑟 = 

C                1            

2            

3            

Average           𝑋𝑋�𝑟𝑟 = 

Range           𝑅𝑅�𝑟𝑟 = 

Part Av           𝑋𝑋� = 

𝑅𝑅𝑟𝑟 = 

𝑅𝑅� =
[𝑅𝑅�𝐺𝐺 =    ] + [𝑅𝑅�𝑟𝑟 =    ] + [𝑅𝑅�𝑟𝑟 =    ]

[# 𝑇𝑇𝑜𝑜 𝑇𝑇𝑎𝑎𝑎𝑎𝑣𝑣𝑇𝑇𝑣𝑣𝑎𝑎𝑎𝑎𝑣𝑣𝑎𝑎] = 
𝑅𝑅� = 

𝑋𝑋�𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = �𝑀𝑀𝑇𝑇𝑀𝑀 𝑋𝑋� =    � − [𝑀𝑀𝑣𝑣𝑀𝑀𝑋𝑋� =    ]  

  

Notes  

 

The Average and Range method (𝑋𝑋� 𝑇𝑇𝑀𝑀𝑑𝑑 𝑅𝑅) provides estimates of both repeatability and 

reproducibility, splitting them into two measurements unlike the Range method’s single 

measurement. Numerous appraisers can be used for this method and ideally more than 10 parts 

are preferred for measurement. Each appraiser takes turns to measure the components in a blind 

order, which can be pre-determined by a Design of Experiments (DoE) style randomisation [133]. 
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 All measurement equipment must be calibrated before the analysis begins and results are entered 

into the appropriate cells of the data collection sheet in Table 2. Subsequent appraisers measure 

the same components in different random orders and the results are further tabulated. From this 

Gauge R&R information both averages and ranges can be calculated for each part, for overall part 

averages and ranges to be determined. Various SPC charts can be plotted from this information, 

such as Average and Range Charts, to monitor the overall trend of the data and variance of the 

measurements, if required in a process.  

 

This Gauge R&R process can be modified to enable uncertainty calculations to be taken for 

operators, which required multiple factors (including number of analysed parts) to be controlled. 

The framework of the Gauge R&R process will be used in subsequent participant studies, so 

participants are given multiple files to analyse, although only one of those will be used for 

uncertainty calculation.  

 

Participants will be required to analyse the same data multiple times, to ensure a repeatability 

measure can be taken as an exemplar. It is possible to include more parts for operators to measure, 

however, due to potential time constraints with human participant research, Display Screen 

Equipment usage, attention span and cost of operator time this may not be feasible because repeat 

measures are more important to build confidence in the uncertainty metric.  

2.3 Representative Metrics: Basic Statistics 

 

The following section outlines basic statistics used to describe results, samples and populations. 

These form the basis of uncertainty measurements calculated for the Gauge R&R studies 

conducted within this thesis.  IBM SPSS Statistical Software Version 24, supported by Microsoft 

Excel and Matlab R2019, will be used to calculate advanced statistical testing throughout this 

thesis, unless otherwise specified. 
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Many mathematical methods exist for the analysis and transformation of data sets and respective 

distributions. It is inefficient to provide full data sets to quantitatively describe a population, so 

measures of location, spread, skewness and normality have traditionally been used to represent 

distributions. These metrics enable processes and products to be measured over time to build 

confidence into Product Design Specifications (PDS), Process Performance Metrics or allowable 

tolerances for Critical Quality Attributes (CQAs). These basic statistics have been described in 

subsequent sections for their use in later statistical and uncertainty calculations.  

 

2.3.1 Measures of Location 
 
Measures of Location take one sample value to represent the outcome of an entire population or 

distribution. Measures of Location are absolute points and do not include judgement of spread or 

variance. Arithmetic mean and median are measures of central tendency, and all location values 

calculated are inclusive of all data points. Outliers can affect the final location metric but may not 

be excluded because they represent real analysis scenarios with patient data. They will, however, 

be investigated to understand the differences in technique.  

 

Figure 12 shows how measures of Location can change depending on the spread of data within 

the population. When a normal distribution can represent the population, the mean, median and 

mode should all be equal, or very similar. The non-parametric distribution in Figure 12 is positively 

skewed and can be assessed quantitatively if the central tendency Location measures are unequal. 

Table 3 provides definitions and calculations for measures of Location that are used in subsequent 

chapters.  
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Figure 12 Measures of Location and Central tendency within normal and non-parametric distributions. 

Table 3 Descriptions and equations to calculate measures of Location 

Arithmetic Mean 

(denoted µ) 

The total sum of results divided by the number of results present in the distribution. 

𝜇𝜇 =  
1
𝑀𝑀� 𝑇𝑇𝑟𝑟

𝑖𝑖

𝑟𝑟=1
=
𝑇𝑇1 + 𝑇𝑇2 + ⋯+ 𝑇𝑇𝑖𝑖

𝑀𝑀  

Equation 6 Arithmetic Mean 

 

Median The 50th percentile of ordered results within the distribution.  

Mode The most popular or recurring value in a data set. This is less common in continuous data sets 

where lots of analysis results in different values.  

Minimum The lowest value generated within the data set. 

Maximum The highest value generated within the data set. 

 
2.3.2 Measures of Spread 
 
Measures of Spread or Dispersion monitor the amount of variance within a data set. They are used 

in conjunction with a Measure of Location to provide a statistical description of a population which 

can then be used to compare against other populations or data sets. Spread can also be used to 

show how well location measures represent the data [143]. For example, when plotting the 

arithmetic mean and SD on a non-parametric distribution, the mean would not be on the peak 

maxima, indicative of the central point of the population. Therefore, the median and absolute 

deviation could be used.  

 

Table 4 provides definitions and calculations used to describe spread or variance of data 

throughout the remainder of the thesis. Figure 13 shows how these spread measures relate to 

normal or non-parametric distributions. Normal distributions are described by stating a location 
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measure of central tendency and a SD to represent the amount of variance. The normal distribution 

in Figure 13 details the percentage amount of data within the population that traditionally lie within 

standard deviation boundaries.  

 

CV is a commonly used statistic within FC measurements, because it provide a single measurement 

used to represent variability, that considers both the SD and mean [29]. Due to its common use, 

this will also be calculated through this research in comparison with uncertainty, to identify 

potential differences between the two variance metrics.  

  

Table 4 Descriptions and calculations for Measures of Spread 

Range The total width of the data set. 

𝑅𝑅 = 𝑀𝑀𝑇𝑇𝑀𝑀𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀 −𝑀𝑀𝑣𝑣𝑀𝑀𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀 

Equation 7 Range 

 

25th Percentile The 25th percentile of ordered results within the distribution. 

75th Percentile The 75th percentile of ordered results within the distribution. 

Interquartile range The range of data across the central quartiles of data. 

𝐼𝐼𝐼𝐼𝑅𝑅 = 75𝑇𝑇ℎ 𝑎𝑎𝑎𝑎𝑣𝑣𝑝𝑝𝑎𝑎𝑀𝑀𝑇𝑇𝑣𝑣𝑇𝑇𝑎𝑎 − 25𝑇𝑇ℎ 𝑎𝑎𝑎𝑎𝑣𝑣𝑝𝑝𝑎𝑎𝑀𝑀𝑇𝑇𝑣𝑣𝑇𝑇𝑎𝑎 

Equation 8 Interquartile Range 

 

Standard Deviation 

(denoted σ) 

The unit of dispersion across a data set, which can be used to measure variation from the 

central point of a normal distribution. It can also be used to estimate confidence limits with 1 

either side of the location metric representing 68%. 

𝜎𝜎 = �
∑(𝑋𝑋 − 𝜇𝜇)2

𝑀𝑀  

Equation 9 Standard Deviation 

 

Absolute Deviation This is an alternative unit of dispersion that is used for data spread that include both positive 

and negative values and controls for the signs cancelling each other out. 

𝑀𝑀𝑎𝑎𝑇𝑇𝑀𝑀 𝐴𝐴𝑣𝑣𝑎𝑎𝑇𝑇𝑇𝑇𝑀𝑀𝑇𝑇𝑎𝑎 𝐷𝐷𝑎𝑎𝑣𝑣𝑣𝑣𝑇𝑇𝑇𝑇𝑣𝑣𝑇𝑇𝑀𝑀 =  
∑|𝑋𝑋 − 𝜇𝜇|

𝑀𝑀  

Equation 10 Mean Absolute Deviation 

 

Coefficient of 

Variation 

This is a representative measure of variability, which considers both the mean and 

standard deviation of repeat measures, displayed as a percentage.  

 

𝐶𝐶𝐶𝐶 =  
𝜎𝜎
𝜇𝜇 × 100 

Equation 11 Coefficient of Variation 
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Figure 13 Measures of spread for normal and non-parametric distribution 

 
2.3.3 Skewness 
 
Skewness and kurtosis measurements are further characterisation metrics for a population 

distribution. They are often used as a quick judgement of normality of a distribution, because they 

are visual graphical representations of the data. However, whilst being good for a quick judgement, 

they are ill advised for small data sets as they may not represent a complete population. More 

detailed descriptions and calculations of skewness and kurtosis are listed in Table 5 and are used 

within statistical reporting throughout this thesis. 

 

Table 5 Descriptions and calculations of Skewness and Kurtosis 

Skewness The measure of symmetry, or lack thereof, of a distribution. A positive skew will show the maxima 

of the distribution move towards the left of the arithmetic mean or central tendency. The mean will 

be on the right of the median for positive skewness. Examples of skewness can be seen in Figure 

14. A negative skew will show the maxima of the distribution move towards the right of the 

arithmetic mean or central location point, with the median being to the right of the mean. SPSS 

provides a skewness metric and an associated standard error to calculate a skewness z-score. 

Using the following equation, a positive or negative result indicates a positive or negative skew 

respectively. If the z-score falls within ± 2.58 limits, as defined by SPSS, it is deemed as normally 

distributed. If greater than 2.58, the distribution has a strong positive skew and if less than -2.58 a 

strong negative skew [144].  

 
𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎 𝑧𝑧 − 𝑎𝑎𝑝𝑝𝑇𝑇𝑣𝑣𝑎𝑎 =  

𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎
𝑎𝑎𝑇𝑇𝑇𝑇𝑀𝑀𝑑𝑑𝑇𝑇𝑣𝑣𝑑𝑑 𝑎𝑎𝑣𝑣𝑣𝑣𝑇𝑇𝑣𝑣 

Equation 12 Skewness z-score 
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Kurtosis This is a measure of how heavy or light tailed the distributions are in comparison to a normal 

distribution which has a central tendency. It is also a measure of how the distribution is affected by 

outliers. Distributions with a heavy tail are more likely to be affected by outliers due to their 

frequency at one end of the data set. Low kurtosis would indicate small tails due to minimal effect 

from outliers. Examples of low and high kurtosis about a normal distribution are visualised in Figure 

15. As with skewness in SPSS, a z-score can be calculated for kurtosis using the standard error of 

the data set. If the z-score falls within ± 2.58 limits it is deemed as normally distributed [144]. If 

outside of these limits, the distribution is strongly kurtosed. 

𝑠𝑠𝑀𝑀𝑣𝑣𝑇𝑇𝑇𝑇𝑎𝑎𝑣𝑣𝑎𝑎 𝑧𝑧 − 𝑎𝑎𝑝𝑝𝑇𝑇𝑣𝑣𝑎𝑎 =  
𝑠𝑠𝑀𝑀𝑣𝑣𝑇𝑇𝑇𝑇𝑎𝑎𝑣𝑣𝑎𝑎

𝑎𝑎𝑇𝑇𝑇𝑇𝑀𝑀𝑑𝑑𝑇𝑇𝑣𝑣𝑑𝑑 𝑎𝑎𝑣𝑣𝑣𝑣𝑇𝑇𝑣𝑣 

Equation 13 Kurtosis z-score 

 

 

 

Figure 14 Examples of positive and negative skewness. 

 

Figure 15 Examples of low and high kurtosis around a normal distribution. 
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2.3.4 Test for Normality 
 
For a deeper statistical analysis of distribution shape, normality tests can be run within Statistical 

Software packages. 

 

The Kolmogorov-Smirnov (K-S) test and Shapiro-Wilk (S-W) test both present null hypotheses that 

the distribution of a data set will be normally distributed, with an alternative hypothesis of a non-

parametric distribution, requiring more investigation to understand its shape and parameters. A 

key difference between the K-S and S-W tests, is the K-W test has a much lower power, often leading 

to false results due to Type I error because it is more impacted by extreme values within datasets 

[145]. The S-W test has greater power when dealing with different distribution types, so may be the 

preferred normality test within this research, however this is dependent on the number of 

participants included in each study [146]. 

 

Type I errors (or α errors) are defined as:  

 

“The probability of assuming that there is a difference or association between two or more 

variables when there is none. It is usually set at 0.05 or 5 % level” [147].  

 

In contrast, a Type II error (or β error) is defined as: 

 

“The probability of assuming that there is no difference or association between two or more 

variables when there is one. This probability is generally unknown.” [147] 

 

2.3.5 Testing Statistical Power and required Sample Size 
 

Power and sample size are defined for statistical tests where two or more conditions are tested to 

identify significant differences between the groups. Power is defined as:  
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“The probability of a statistical test of finding a relationship between two variables when there is 

such a relationship. The maximum power a test can have is 1, and the minimum 0 with 0.80 

indicating an acceptable level of power. The power of a test is generally greater for one- than two-

tailed hypotheses, parametric than non-parametric tests, lower (e.g. 0.05) than higher (e.g. 0.001) 

significance levels and larger samples” [147].  

 

Sample size in the context of power analysis is defined as “the minimum number of samples 

needed to run a study to find a desired effect” [147]. 

 

Power is used when testing for a significant difference between two samples. Various parameters 

are considered when calculating power [148]: 

• One- or two-sided test 

• Level of significance, α 

• Sample Size 

• Effect Size relative to noise 

 

2.3.5.1 One- or two-sided tests 

One- or two-sided tests differ in their alternative hypotheses (HA).  Both tests have a null hypothesis 

(H0) as follows: 

H0 = there will be no difference between the sample means. 

H0 = HA 

Two-sided tests simply have an alternative hypothesis that tests for difference, with no further 

specificity: 

HA-2 = There will be a difference between the sample means 

H0 ≠ HA 

One-sided tests have an alternative hypothesis based upon size of the difference: 

H1-1 = One sample mean will be greater than the other. 

H0 < HA 
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It is more common to use a two-sided test, because this simply states that means will be different, 

without giving an indication of differences in size or location. One-sided tests are used throughout 

this research, because it investigates a difference in variance, with respect to increasing 

complexity. 

 

2.3.5.2 Errors and Significance Levels 

Two types of error can be made when testing hypotheses, as defined previously and simplified 

below: 

• Type I error (α): Null hypothesis is rejected when it is true 

• Type II error (β): Null hypothesis is not rejected when it is false  

 

α is also known as the level of significance chosen for a test, to specify a percentage confidence 

interval for the results. A 95 % (0.95) confidence interval is commonly chosen for tests and this 

carries a risk of 5% of cases where a Type I error may occur. This equates to α = 0.05 because 

there is a 5 % risk in the null hypothesis being rejected when it should be accepted. For greater 

confidence, lower the α value towards 0.00, although this will impact other factors such as sample 

size in a power calculation [134].  

 

2.3.5.3 Effect size 

The effect size for statistical power is the between-group difference divided by the within-group 

standard deviation. For all statistical tests, because the effect size increases, the power will 

increase, if the other variables are kept constant. The greater the between-group difference, the 

less likely a Type II error becomes. The effect size is inversely related to sample size (if all other 

variables are constant), because small effects can only be detected with larger samples due to 

increased information, and large effects can often be detected with smaller samples as there may 

be less noise present.  
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Cohen’s d statistic is a common calculation of effect size, computed using Equation 13 to show the 

difference in means (between two test groups, X1 and X2), divided by the SD (s, the error or ‘noise’) 

[149]. If two groups have different standard deviations, then the standard deviation used is often 

taken from the control group or it can be pooled.  

�̂�𝑑 =
𝑋𝑋�1 − 𝑋𝑋�2

𝑎𝑎
 

Equation 14 Cohen's d statistic 

General reference values for effect size can be used to compute other power statistics, based on 

whether a small, medium or large effect (respectively) is desired, but the context should always be 

considered when choosing an appropriate effect size [149]. 

 

2.3.5.4 Types of Power Analysis 

Statistical power is calculated as follows, as the complement of Type II errors: 

𝑃𝑃𝑇𝑇𝑠𝑠𝑎𝑎𝑣𝑣 = 1 − 𝛽𝛽 

Equation 15 Statistical Power 

 

G*Power 3 is a statistical power software that will be used to estimate desired Power and sample 

size throughout this thesis. It has been routinely used throughout social, behavioural and 

biomedical sciences to provide an easy way to determine the correct parameters for a study, 

ensuring conclusions are as significant as possible [150].  

 

The two common types of power analysis are A Priori and Post Hoc power analysis, relating to Power 

calculated before and after a data gathering exercise respectively. A Priori is completed before a 

study begins and it is the ideal choice because it provides users with options to control α and β 

[150,151]. It provides up-front calculation of how many participants to recruit to meet desired 

power and effect levels. Post Hoc analysis is performed after a study takes place, so the sample 

size can be used to calculate an observed power value. These are less desirable, because only α 

has been controlled, even though β has been assessed [150,151].  
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Throughout this research it is likely that A-Priori and Post Hoc Power Analysis will be computed for 

each study phase, where appropriate. To attain the appropriate power (0.80) [147], high sample 

sizes are often required (depending on effect size), which could be difficult to achieve considering 

constraints such as access to participants within the timeframe of the research. However, this 

research aims to quantify uncertainty, so Post Hoc Analysis can indicate the sample size needed 

for potential future studies to further confirm initial effects seen within this research, whilst giving 

a measure of current statistical power.  

 

To calculate statistical power using A Priori or Post Hoc analysis, different tests can be used 

depending on the variable being compared. The most common tests are T-tests, F-tests and 𝟀𝟀2 

tests and they often calculate power based on the following metrics [151]: 

• T-tests: Linear bivariate regression; difference in means between test groups 

• F-tests: Analysis of Covariance (ANCOVA); Analysis of Variance (ANOVA); Hotelling’s T2; 

Multivariate Analysis of Variance (MANOVA); Test of equality in variance 

• 𝟀𝟀2 tests: Goodness-of-fit tests: Contingency tables 

 

This research hypothesises an increase in variance is seen as increases in complexity (due to 

number of Flow Cytometry processing steps) are achieved through each study stage. It is most likely 

that F-tests will be used to assess statistical power in this case because this family of power tests 

are designed to measure variance rather than goodness-of-fit or a difference in mean location 

values. When looking at the cell population counts that operators achieve (absolute results rather 

than variance), it is most likely that a t-test will be used. The actual tests used are more likely to be 

applied Post Hoc, once an understanding of the population distribution has been attained, and a 

suitable test selected to represent this parameter. Where applicable, power analysis will be 

discussed after initial statistical reporting of results has been listed in each data Chapter.  
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2.3.6 Statistical Report Formats 
 
The statistical calculations detailed above have been used to create Statistical Reports for data 

distributions occurring throughout this thesis, shown in Table 6. These reports provide a brief 

summary of the Absolute data results, showing the variance of actual final data values operators 

have defined to represent a sample. These reporting tools will also be used to define the 

measurement uncertainty of how these absolute values were attained. This gives a reporting 

viewpoint on the variation of the data sets and how they were calculated, rather than a single 

representative value.  

 

Table 6 Statistical Report Format used throughout this Thesis 

Arithmetic Mean  

Median  

Mode  

Minimum  

Maximum  

 

Range  

25th Percentile  

75th Percentile  

Interquartile Range  

Standard Deviation  

Median Absolute Deviation  

 

Skewness  

Skewness standard Error  

Skewness z-score  

Kurtosis  

Kurtosis Standard Error  

Kurtosis z-score  

 

Shapiro-Wilk statistic  

Significance  

Normal/Non-parametric  
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2.4 Measurement Uncertainty 
 
Measurement uncertainty is defined as: 

 

“A non-negative parameter characterizing the dispersion of the quantity values being attributed to 

a measurand, based on the information used” [141] 

 

This measure of spread provides users with a range containing the true value of the measurand, 

which has taken into account contributions or sources of variation that can cause the result to vary. 

This can provide users with greater certainty and confidence in their measurement result [152].  

 

Within manufacturing, metrology and measurements are important to make key decisions, which 

are also true for many other scenarios. Within healthcare, clinicians make diagnosis or treatment 

decisions based upon the results they receive from pathology measurements. Therefore, an 

understanding of uncertainty of measurements is not only needed by metrologists and quality 

inspectors, it is also needed by those who can make influential decisions based upon the 

measurement reports they receive. This allows them to be more confident in their judgement of a 

situation, and an important trade-off with quality and cost of a product or service.  

 

Sources of measurement uncertainty can arise from a number of factors, which all impact the 

variance directly or indirectly. These sources include, but are not limited to equipment, operators, 

time intervals, place, environment, chemicals and reagents and biology [153]. Figure 16 shows a 

fishbone diagram listing potential sources of uncertainty affecting FC results. This thesis focuses 

on factors affecting the operator and later chapters look at effects listed such as visual perception 

and gating strategies used. 
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Figure 16 Fishbone diagram listing some sources of uncertainty within Flow Cytometry results [154] 
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2.4.1 Relationship between Error and Uncertainty 
 

Calculating uncertainty provides a better understanding of the measurement methodology and the 

impact of each component, than measurement error. This provides opportunity for improvements 

in quality by tackling the largest identified sources of uncertainty. This also provides opportunity to 

increase product quality, save costs and there is an increased acceptability of results due to better 

understanding of the measurement and its attainment.  

 

The true value of a product attribute cannot experimentally be known and be certain, therefore, 

there is always error associated with the observed value. Measurement error is defined as: 

 

“the result of a measurement minus the true value of a measurand” [153] 

 

A measurand is defined as: 

 

“A quantity intended to be measured” [141] 

 

Therefore, measurement error is a quantified difference, where a true value needs to be known. 

This differs from uncertainty because this is a defined range, calculated as a combination of 

variance from factors discussed above. Rather than being a stated number (like error), coverage 

factors are used to calculate the measurement tolerance, because these provide a range of 

confidence that the measured value will more certainly lie within. For example, a 95% confidence 

interval gives the user 95% confidence that the measurement lies within the ranges, defined by the 

combined and expanded measurement uncertainty calculation. That also means there is a 5% risk 

that the measurement does not fall within these stated boundaries. Due to this compilation of 

sources of variance and confidence, it provides a more realistic estimate of results than 

measurement error alone, because it is more representative of the true spread. 
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2.4.2 Quantifying Uncertainty 
 

Quantifying uncertainty has been well documented in official literature from national and 

international standards coordinating bodies [141,152]. These methodologies will be followed to 

calculate the uncertainty of the operator variance within FC gating and is detailed in this section as 

methodology for subsequent chapters.  

 

The process of quantifying uncertainty has been split into four sections to define the final 

uncertainty value: 

• Identify the measurand and the process of obtaining it 

• List sources of uncertainty for each stage of the measurement 

• Quantify uncertainty components identified 

• Combine values and calculate expanded uncertainty 

These steps will be defined here for general process, theory and calculation and discussed with 

more specificity in the subsequent data chapters.  

 

2.4.2.1 Measurand Identification and Methodology 
 

To quantify variation within FC gating, each study phase will have a target cellular subpopulation 

that participants need to reach. This target will be accompanied by a process for participants to 

follow: a series of parent and child gates in a prescribed order to ensure measurement accuracy 

and comparability within- and between-participants. This will provide enough control for the 

measurement procedure to ensure variance comes from the participant application of gates, and 

not a difference in gating sequence.  

 

To calculate variance, each absolute cell count representing each parent and child gate in the 

gating sequence will be used across a series of repeat measures. This structure has already been 
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described in Figure 11, depicting the repeat measures taken for each gate, and their combination 

to calculate a particular participant’s reproducibility. 

 

Within each gating stage, participants will repeat the gating process to define a measure of 

repeatability which can be used to compare against other operators. 3 repeats will be performed 

each time so that statistically a representative SD can be calculated, and session times do not 

exceed 1 hour with participants. This number of repeats were defined from a small pilot study with 

two operators (experienced and inexperienced) to monitor how long it took them to complete the 

gates. As only 3 repeats can be taken, SD will be used to compare variance, which assumes a 

normal distribution of data. Increased repeats may show a different distribution, but due to 

constraints of this experimental work a normal distribution is assumed, and SD is used to further 

calculate uncertainties. 

 

This is a calculation of Type A uncertainty, by definition, as it is focused on the aim at hand 

[142,152]. Type A uncertainties are always calculated from a series of repeat measures. Type B 

uncertainty uses pre-determined uncertainty statements from documentation such as calibration 

certificates, historical records, manufacturer specification of guidelines from a data book 

[142,152]. 

 

A SD is calculated from repeat measures of the different hierarchical levels of the gating strategy 

participants followed during the different experimental studies. These representative variances for 

each level are then combined according to the root sum of squares rule for standard deviations, 

otherwise known as Pythagoras’ theorem. Uncertainty sources cannot simply be added together, 

because this would be a misleading amount of variation, so it is combined in quadrature with the 

following equation: 
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𝑀𝑀𝑟𝑟 = �𝑀𝑀12 + 𝑀𝑀22 + ⋯+ 𝑀𝑀𝑖𝑖2  

Equation 16 combined Uncertainty 

 

 

The combined uncertainty (uc) provides an uncertainty range that reflects the variation from a 

specific measurement point. To give this measurement more confidence, it is then multiplied by a 

coverage factor (k) which represents confidence intervals of the normal distribution. Different 

coverage factors are noted in Table 7, but bespoke values can be calculated using the desired two-

tailed confidence interval with known degrees of freedom to find the right coverage of value in a T-

test table.  

 

Table 7 Coverage factors (k) and respective Confidence Intervals 

Coverage Factor (k) Confidence Interval (%) 
1 68 
2 95 

2.58 99 
3 99.73 

 

Expanded uncertainty (U) is calculated by multiplying the combined uncertainty with the chosen 

coverage factors according to Equation 16. 

 

𝑈𝑈 = 𝑠𝑠 × 𝑀𝑀𝑟𝑟  

Equation 17 Expanded Uncertainty 

 

 

This value gives the user greater certainty that the measured value lies within the specified 

uncertainty limits calculated. When reporting this, the final expanded uncertainty would be written 

as the value following the calculated average or measurement (often denoted after a sign, instead 

if just the SD of measurement repeats).  
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2.5 Chapter Conclusions 
 

This Chapter has provided a concise review of relevant measurement theory and how it will be 

applied to data analysis throughout this thesis. Gauge R&R is a form of MSA that can be used in a 

variety of methods to understand variance within a system. This becomes a core function of 

production SPC with various control charts that can be displayed to monitor quality over time. The 

Gauge R&R method will be abridged to ensure measurement uncertainty can be calculated for 

operators in multiple analysis scenarios, shown in subsequent chapters. This could then provide a 

basis to calculate a full Gauge R&R analysis in future. 

 

To open the results analysis a basic statistical report format has been generated, to provide an 

initial basis for further investigation and root-cause analysis. This will be applied to absolute 

reported results and measurement uncertainty results in each Chapter, to better define the 

distributions being dealt with. An initial understanding of the data-set populations and respective 

distributions are becoming more important within CGT manufacturing as many biometric 

populations are not-normally distributed, a model which has been used extensively through 

traditional manufacturing paradigms. This non-parametric distribution issue is explored in greater 

detail within Chapter 3, to highlight the effect of control limit choice and potential transformation 

of data.  

 

Finally, measurement uncertainty has been defined in detail here, but more specificity will be 

provided in subsequent chapters as the method is applied in each scenario. Measurement 

uncertainty is becoming more common to calculate, due to its inclusion within key regulatory 

documentation that manufacturers are required to follow. However, cell counts and reported data 

within the community still report measurement CV, which only focuses on the end of an analysis 

pipeline, whereas uncertainty can combine variances from the whole measurement process. Often 

this is calculated for measurement equipment, however, where subjective interpretation is 

concerned a combined uncertainty should be calculated to capture this variance.   
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Chapter 3: Pre-Study Variation Investigation 

3.0 Introduction to the Chapter 

Chapter 3 presents a preliminary study conducted before measurement uncertainty models were 

completed to investigate range in variance contributed by participants in a very uniform data 

analysis gating exercise. This was also an opportunity to define the structure of participant studies 

and ensure time parameters were correct, whilst confirming the procedures used were clear and 

repeatable to translate into future stages of work. The results of this Chapter were used to inform 

the structure of the uncertainty models used within Chapters 4 to 6. This Chapter compares the 

robust Coefficient of Variation (rCV) results of gates applied to a series of univariate histograms 

provided to participants for peak identification. This was conducted in a two-phase experimental 

study, to monitor the effect of participants applying gates based upon their own judgement, and 

when given a more prescriptive diagrammatical protocol to follow. This Chapter discusses the use 

of CV metrics which are heavily utilised within the FC industry. 

 

Non-normality of data is present within CGT manufacturing data, so the effect of log 

transformations (often used to obtain a normal distribution) and different outlier boundaries will 

also be tested here to observe effects on the data and optimise for future study analyses presented 

later in this thesis. 

 

A full data integrity check has been completed for all participant data used to create figures 

throughout this thesis. These have been independently verified by Loughborough University internal 

and collaborator external delegates and shows full traceability of data from the starting files, 

through participant analysis, to data extraction, interpretation and visualisation.  
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3.1 Chapter Aims 
 

This Chapter aims to provide an initial understanding of whether there is variability contributed 

from participants when they analyse the same data. This will be completed with a series of peak 

separation diagrams, where participants will have to draw an area across where they believe one 

of the peaks resides. The variability in the participant results will be compared because they are all 

gating the same data, which will be used to inform future studies, with how much potential variation 

could be seen from the analyst alone. This also aims to monitor the effect of log transformation 

and different outlier classifications on a set of exemplar data. 

 

3.1.1 Chapter Aims & Objectives 
 

The Aims and Objectives of this Chapter can be defined as follows: 

• Identify initial variation in data analysis contributed by operators when analysing the 

same data, on a simple univariate histogram example.  

• Identify if diagrammatical protocols can reduce between-participant variability when 

gating univariate data. 

• Identify if log transformations should be used in future analysis if results are non-normal. 

• Validate the use of different outlier boundary estimators when dealing with non-normal 

distributions of data. 
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3.2 Methodology 
 
The methodology for the development of this preliminary study and the respective developmental 

components are detailed in this section. An outline of the exemplar data set that participants 

analysed is provided, along with methodology on how this data was created, for reproducibility 

purposes. This expands upon how the studies were organised for participants and how the data 

was extracted and analysed.  

 
3.2.1 fcs File Generation 

 
A series of fcs 3.0 files were generated using a BD Bioscience FACSCanto II Flow Cytometer with 4-

2-2 optical configuration, by running a suspension of BD Bioscience Cytometer Setup and Tracking 

(CS&T) beads (1 drop of beads within 500 µl of Phosphate Buffered Saline (PBS)), once a daily 

calibration was completed (Lot: 74538, Successful calibration) [155]. These files were generated 

because they provide a steady shift in fluorescence peak spectra required for this phase. The CS&T 

beads were a mix of dim, medium and brightly fluorescing polystyrene beads and are used to 

monitor baseline and daily performance of FC instruments. The beads were selected for use due 

to their lesser variation compared to biological material. The beads were run through the 

allophycocyanin (APC) channel, excited by the red laser (633 nm) at a medium flow rate (60 

µL/min). The APC channel was used because it is a common channel across a wide variety of FC 

instruments.  

 

Voltages, and therefore fluorescence peaks, were adjusted to determine the optimal analysis 

parameters in line with instrument sensitivity. The gain was changed using the ‘voltage’ setting to 

alter the position of the fluorescence peaks seen through the APC channel on a univariate scale. 

Many methods have been developed to determine FC analysis parameters, but the most popular, 

referred to as the ‘Peak 2 method’ involves running a control sample at different voltage intervals 

[34], which has been used as the methodology here.  
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Figure 17 Images of histograms provided for participant gating studies [154] 
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The fcs files generated for this work (Figure 17) were gathered at ten different voltages from 250 

V to 700 V, in 50 V intervals, allowing for resolution differences to be seen whilst not over-exerting 

the concentration of operators involved in the study. 10,000 beads were used to acquire each fcs 

file, which is the minimum number of events required for gathering bead-based data [156]. The fcs 

figure elements show the progression of the three data peaks across the univariate scale, in 

relation to the gain increase of the APC channel of the Flow Cytometer. Figure 17 also shows the 

range gates (red circle) applied to the histograms, which participants were asked to copy. The range 

gates were applied by the study coordinator (thesis author), to act as an independent reference 

point, so no participants were familiar with the data before taking part in the sessions. The 

univariate scale was kept to bi-exponential, because this is the default scaling used within Flowjo 

Version 10.0.8r1, the analysis software, and provided resolution of the three peaks across all 

voltage files created. 

 

3.2.2 Flow Cytometry Study Organisation 
 

36 participants across 3 centres were enrolled in this study to analyse the histogram files; 10 from 

an academic institution, 19 from an industrial cell therapy process development team and 7 as 

part of a data gathering exercise at the 2017 Future Investigators of Regenerative Medicine (FIRM) 

Symposium [157]. Ethical and GDPR approval was obtained for this study by the local University 

Human Participant Ethics Sub-Committee, which can be seen in Appendix A and covers human 

participant research conducted throughout this thesis. Participants completed the study 

individually within a 30-minute time-slot and were asked to complete two phases of analysis within 

this session. The two phases aimed to monitor the effects of personal data interpretation, in 

comparison to following a pre-defined protocol, or interpretation thereof, with the hypothesis of 

reduced inter-operator variation for FC analysis when following the latter. It was not expected to 

find much variation throughout this exercise, but to provide an ‘observed effect’ as a starting point. 
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During Phase 1, participants were asked to apply range gates to the area of the plots where they 

estimated the medium fluorescing peak lay. Five of the plots were considered to have ‘poor’ peak 

separation (Figure 17 a-e), where there was difficulty in discerning peaks. The remaining five files 

were considered to have ‘good’ peak separation (Figure 17 f-j) and to be more representative of 

good FC data. Participants used the third-party software Flowjo to examine the .fcs files and apply 

gates, using default bi-exponential scaling and maintaining the histogram view setting to ensure 

inter-participant consistency.  

 

For Phase 2, participants were provided with printed images of range gates (highlighted by the red 

circles in Figure 17) that had been pre-applied to the series of files and asked to adjust their gates 

to try and match these ‘diagrammatical protocols’. These gates were applied to aid precision of 

application, not accuracy, because accuracy can be translated into different subject contexts. The 

‘poor’ gated files (Figure 17 a-e) were included to investigate the potential impact and worth of 

using diagrammatical protocols in difficult analysis conditions.  

 

3.2.3 Variation Calculation 
 

Range gates applied to histograms of one fluorescence channel show variation in spread and 

location parameters, chosen by perception of the operator. The robust Coefficient of Variation (rCV) 

(as defined in Equation 17) is used to compare variation amounts between operators within the 

two phases and is a common metric within FC data analysis [29]. It helps the operator to 

understand and monitor variation within a system, because it combines both location and spread 

parameters into one measure. rCV was used in this instance instead of CV (as previously defined 

in Chapter 2, Section 2.2.2), because fluorescence peak spectra often have a non-parametric 

shape, so using robust statistics was more representative of the FC data gathered. 

 

𝑣𝑣𝐶𝐶𝐶𝐶 (%) =  
𝑣𝑣𝑟𝑟𝐷𝐷

𝑀𝑀𝑎𝑎𝑑𝑑𝑣𝑣𝑇𝑇𝑀𝑀
× 100 

Equation 18 robust Coefficient of Variation (rCV) (%) 
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The rCV measures were exported from Flowjo and are the combination of the rSD and the median 

of the data within the gate they have applied. Robust SD is the SD of the data points, based around 

the median rather than the mean. These rCV measures have subsequently been used to calculate 

a total range of variation between participants, per histogram file, per phase. Range was used to 

monitor reduction and therefore improvement in between-participant variation attributed to the 

results, because it is an easily understood measure of spread and monitors the total range rather 

than an arbitrary measure of spread (such as SD). The difference in range between operators can 

be used to observe the effectiveness of protocol instigation, with percentage of variation reduction 

monitored alongside this. 

 

3.3 Results & Discussion 
 

3.3.1 Flow Cytometry Pre-study statistical reporting Phase 1 
 
The results reported here for each analysis file are taken from the inter-participant gates applied 

to each file using their own judgement (Phase 1). The rCV of the gate applied was extracted and 

tabulated per file (columns), per participant (rows). Table 8, Table 9, Table 10 and Table 11 provide 

a descriptive statistics overview of the inter-participant distributions for each file in the sequence 

and Figure 18 shows the inter-participant rCV distributions for each of these sets of file results. 

These descriptive statistics have been calculated following the statistical methods and definitions 

provided in Chapter 2, alongside the mean inter-participant rCV values for each file. 

 

Table 8 Measures of Location for Phase 1 inter-participant rCV results (%) 
 

250 V 300 V 350 V 400 V 450 V 500 V 550 V 600 V 650 V 700 V 

Average 207.9 134.2 68.9 34.5 20.2 15.6 15.1 15.2 15.2 15.0 

Median 122.0 64.7 42.8 32.6 21.0 16.3 15.9 15.9 16.1 15.9 

Min -650.0 0.0 4.0 3.3 15.4 8.7 6.4 8.7 6.4 5.7 

Max 1500.0 400.0 146.0 107.0 21.4 16.7 16.7 16.9 16.7 16.3 
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Table 9 Measures of spread for Phase 1 inter-participant rCV results (%) 
 

250 V 300 V 350 V 400 V 450 V 500 V 550 V 600 V 650 V 700 V 

Range 2150.0 400.0 142.0 103.7 6.0 8.0 10.3 8.2 10.3 10.6 

25%ile 50.1 29.1 35.1 28.5 19.8 15.5 15.2 14.9 15.4 15.0 

75%ile 304.0 283.0 137.8 38.4 21.4 16.6 16.4 16.8 16.5 16.1 

IQR 253.9 253.9 102.6 9.9 1.6 1.2 1.2 2.0 1.2 1.1 

SD 349.6 127.0 48.7 15.6 1.6 1.7 2.2 2.3 2.3 2.2 

CV (%) 168.2 94.6 70.7 45.1 7.9 11.1 14.3 15.3 15.3 14.9 

 

Table 10 Measures of skew for Phase 1 inter-participant rCV results (%) (3dp used for resolution from SPSS) 
 

250 V 300 V 350 V 400 V 450 V 500 V 550 V 600 V 650 V 700 V 

Skewness 1.300 0.646 0.683 2.791 -1.894 -2.821 -2.865 -2.008 -2.86 -3.134 

Skew std error 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.403 

Skew z-score 3.226 1.603 1.695 6.926 -4.700 -7.000 -7.109 -4.983 -7.097 -7.777 

Kurtosis 5.661 -1.271 -1.210 13.318 3.483 8.728 9.073 3.345 8.785 10.955 

Kurt std error 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 0.788 

Kurtosis z-
score 

7.184 -1.613 -1.536 16.901 4.420 11.076 11.514 4.245 11.148 13.902 

 

Table 11 S-W test for normality for Phase 1 inter-participant rCV results (3dp used for resolution from SPSS) 
 

250 V 300 V 350 V 400 V 450 V 500 V 550 V 600 V 650 V 700 V 

S-W statistic 0.833 0.788 0.805 0.731 0.747 0.624 0.635 0.705 0.613 0.584 

Significance 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Normal/Non-
Parametric 

Non-
parametric 

Non-
parametric 

Non-
parametric 

Non-
parametric 

Non-
parametric 

Non-
parametric 

Non-
parametric 

Non-
parametric 

Non-
parametric 

Non-
parametric 

 

Figure 18 x-axis limits are much wider for 250 V to 400 V files because of the large inter-participant 

range returned for these files. If all file histograms were plotted with the same axis limitations, 

resolution of distribution shape would be lost for 450 V to 700 V files. 
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Figure 18 Inter-participant rCV distributions when gating fcs files using their own judgement (red lines represent mean 
rCV values for each file distribution). 
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Both average and median results for inter-participant gates appear to stabilise as the file voltage 

increases past 450 V and therefore peak separation increases. Inter-participant rCV averages are 

much higher for lower voltages due to little or no separation of the middle peak from other data. 

This difficulty in gating has created a wider range of inter-participant results when gating ‘poor 

separation’ files (Table 9), which in turn creates higher average and median values to represent 

the distribution. 

 
The inter-participant ranges in Table 9 have a clear cluster of high and low ranges for low voltage 

and high voltage files respectively. This is also the case for interquartile ranges (IQR) for the set of 

files. Across all files, the IQR is small in comparison to the overall range, indicating a wide 

distribution of results, which suggests a location measure such as the mean or median could not 

confidently represent the datasets. The shape of the distributions further indicates this because 

the skewness and kurtosis z-scores fall out of the ± 2.58 limitations for normality for all file inter-

participant distributions (Table 10), aside from the 300 V and 350 V files. Upon visual inspection 

of these distributions in Figure 18, the distributions appear to be bimodal, indicating a potential 

split in how participants have applied these gates, causing some to have a higher result rCV and 

some to have a lower result rCV. The Shapiro-Wilk normality test results in Table 11 further confirms 

this non-normality, with all file distributions having a significance value p < 0.0005. This rejects a 

null hypothesis of a normal distribution, accepting an alternative, non-parametric distribution (as 

described in Chapter 2, Section 2.2.4). 

 

This data supports the use of correct upstream equipment and process validation because poor 

voltage choices can significantly affect downstream subjective judgement on where to place a 

histogram gate, with higher variability occurring when it is more difficult to separate required data 

from the noise or unnecessary populations at the limit of sensitivity. 

 

Files with better peak separation (450 V to 700 V) also qualitatively appear non-normal due to a 

strong negative skew as also indicated in the skewness z-scores in Table 10. Qualitative 



  Chapter 3: Pre-Study Variation Investigation 

73 
 

assessment of distributions adds significant value to this analysis because if basic statistics are 

used to represent data without considering distribution shape, mean values (shown in Figure 18 

sub-plots, denoted as a red line for the mean rCV for each file) do not fall within frequency maxima 

bins on any occasion. This supports the use of robust statistical assessment when analysing FC 

data with medians better representing distributions overall. This will therefore be considered 

throughout each statistical data set in this research, if the distributions are non-normal.  

 

3.3.2 Flow Cytometry Pre-study statistical reporting Phase 2 
 
The results reported here for each analysis file are taken from the inter-participant gates applied 

to each file following a diagrammatical protocol, which participants had to follow and copy, shown 

in Figure 17. Table 12 to Table 15 provide a descriptive statistics overview of the inter-participant 

distributions for each file in the sequence and Figure 19 shows these distributions for each set of 

file results with the mean rCV values identified in each case.  

Table 12 Measures of Location for Phase 2 inter-participant rCV results (%) 
 

250 V 300 V 350 V 400 V 450 V 500 V 550 V 600 V 650 V 700 V 

Average 163.5 118.2 83.7 35.4 21.0 16.5 16.3 16.6 16.4 15.9 

Median 207.0 96.2 76.8 31.9 21.1 16.6 16.4 16.7 16.5 16.1 

Minimum -1300.0 31.5 43.6 15.1 17.6 15.8 15.7 15.6 15.6 14.7 

Maximum 800.0 283.0 139.0 75.7 22.9 16.6 16.5 16.8 16.6 16.2 

 

Table 13 Measures of Spread for Phase 2 inter-participant rCV results (%) 
 

250 V 300 V 350 V 400 V 450 V 500 V 550 V 600 V 650 V 700 V 

Range 2100.0 251.5 95.4 60.6 5.3 0.8 0.8 1.2 1.0 1.5 

25%ile -93.8 71.1 61.9 29.0 20.8 16.4 16.3 16.6 16.4 15.9 

75%ile 488.0 150.0 109.0 37.8 21.4 16.6 16.5 16.7 16.5 16.1 

IQR 581.8 78.9 47.1 8.8 0.6 0.2 0.2 0.1 0.1 0.2 

SD 443.5 66.2 28.7 11.8 0.9 0.2 0.2 0.3 0.2 0.3 

CV (%) 271.2 56.0 34.3 33.2 4.2 1.2 1.2 1.8 1.3 2.0 
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Table 14 Measures of skew for Phase 2 inter-participant rCV results (%) (3dp used for resolution from SPSS) 
 

250 V 300 V 350 V 400 V 450 V 500 V 550 V 600 V 650 V 700 V 

Skewness -1.355 0.905 0.406 2.064 0.588 -1.559 -1.372 -2.104 -2.763 -2.762 

Skew std error 0.414 0.414 0.414 0.414 0.414 0.414 0.414 0.414 0.414 0.414 

Skew z-score -3.273 2.186 0.981 4.986 1.420 -3.766 -3.314 -5.082 -6.674 -6.671 

Kurtosis 2.630 -0.130 -1.074 6.077 1.618 3.151 1.108 3.815 8.895 8.076 

Kurt std error 0.809 0.809 0.809 0.809 0.809 0.809 0.809 0.809 0.809 0.809 

Kurtosis z-
score 

3.251 -0.161 -1.328 7.512 2.000 3.895 1.370 4.716 10.995 9.983 

 

Table 15 S-W test for normality for Phase 2 inter-participant rCV results (%) (3dp used for resolution from SPSS) 
 

250 V 300 V 350 V 400 V 450 V 500 V 550 V 600 V 650 V 700 V 

S-W statistic 0.901 0.909 0.933 0.821 0.925 0.700 0.792 0.673 0.594 0.623 

Significance 0.007 0.011 0.047 0 0.029 0 0 0 0 0 

Normal/Non-
Parametric 

Non-
parametric 

Non-
parametric 

Non-
parametric 

Non-
parametric 

Non-
parametric 

Non-
parametric 

Non-
parametric 

Non-
parametric 

Non-
parametric 

Non-
parametric 
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Figure 19 Inter-participant rCV distributions when gating fcs files following a protocol (red lines represent mean rCV 
values for each file distribution) 
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For files with notionally ‘good separation’ of peaks (Figure 17 f – j), following a protocol appears to 

converge the average and median rCV results for each file. Less difference between the average 

and median indicates central tendency and therefore a normal distribution. This can be seen by 

the red ‘average’ line markers plotted in Figure 19. Similar to the histograms in Figure 18, the red 

lines have been overlaid onto the inter-participant rCV distributions for each file. For each ‘good 

separation’ file, this average marker sits inside the peak maxima of the histogram in the centre of 

the distribution, because no bimodal distributions are present in this phase of analysis. It is difficult 

to qualitatively determine if the average better represents the distribution of the ‘poor separation’ 

files. However, the distributions for these files no longer appear to be bimodal (Figure 19), which 

could suggest using protocols to interpret data could aid conformance due to better inter-

participant reproducibility, as defined in Chapter 2.  

 

This would be true if the inter-participant rCV range reduced when following a protocol. This is the 

case for all voltage files, although, the 250 V file has only reduced slightly, but not significantly. 

However, this is negligible due to this voltage possibly being too low to run assays with confidence 

in this channel due to cellular autofluorescence [34,158], so participants would not face a triple-

peak cluster in optimal, validated scenarios. The rCV inter-participant range for ‘good separation’ 

peaks is between 0.8 % - 1.5 %, which is considerably lower than when participants gated using 

their own judgement (8.0 % - 10.6 %). This shows that a diagrammatical protocol can possibly help 

in instances when gating is difficult. 

 

The CV of measurements (as defined in Chapter 2, Section 2.3.2) is commonplace as a variance 

metric in FC and the CV of the inter-participant results ranges from 1.1 % to 2.0 % for ‘good 

separation’ files, far below the satisfactory criteria of < 10 % CV for a measurement, which is 

desirable [71]. Alongside the range of data, this supports using diagrammatical protocols to 

possibly reduce inter-participant variation within reported measurements.  
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The shift towards normality and a gaussian shape is not necessarily reflected in the skewness and 

kurtosis z-scores in Table 14. 300 V, 350 V and 450 V fall within the ± 2.58 boundaries for normality 

(defined in Chapter 2). However, all other files have a strong negative skew (aside from the 400 V 

file which has a strong positive skew). These files also have a high kurtosis, indicating a high peak 

within the data. Even though the ‘good separation’ files have a high kurtosis, in this instance that 

is desirable, because conformity of results that cause a centred spike shows better reproducibility 

between participants and less variation within the end result. The high skew and kurtosis results 

indicate a non-parametric distribution, confirmed by the Shapiro-Wilk tests results in Table 15. All 

distributions are significantly non-parametric. 

 

A comparison of Phase 2 results to Phase 1 results will be completed in the following section. By 

individually analysing the descriptive statistics of each phase of results, the type of desired 

distribution can be questioned. Most analysis statistics are designed to work with a normal 

distribution, and this is often an ‘ideal’ data shape that manufacturing communities work towards. 

Not only does it allow use of normal statistical tools, it can be used to drive continuous improvement 

efforts to refine the process which causes data extremes. Strong skewness and kurtosis measures 

are therefore traditionally not ideal, but when looking at variability of data, they could be core 

indicators that show reproducibility of data, due to convergence of results.  

 

3.3.3 Flow Cytometry Pre-study Outlier Discrimination Investigation 
 

The ranges of inter-participant data have been used for comparison of Phase 1 and 2 data. This 

metric includes all participants and excludes no-one as an ‘outlier’, because they have produced a 

result under the same test conditions as other participants. Instead, any extremes of data will be 

investigated to understand the potential root cause of variation. 
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Figure 20 Comparison of inter-participant ranges when participants use their own judgement to gate and when they 
follow a protocol [154] 

 

The range of inter-participant results when participants used a protocol is significantly smaller than 

when participants use their own judgement for all files analysed, as shown in Figure 20. The bar 

charts (b) show the percentage reduction of inter-participant range from Phase 1 to Phase 2. This 

was calculated using Equation 19 for each voltage file. 

 

𝑃𝑃𝑎𝑎𝑣𝑣𝑝𝑝𝑎𝑎𝑀𝑀𝑇𝑇𝑇𝑇𝑃𝑃𝑎𝑎 𝑣𝑣𝑎𝑎𝑑𝑑𝑀𝑀𝑝𝑝𝑇𝑇𝑣𝑣𝑇𝑇𝑀𝑀 (%) = 100 % − (�
𝑃𝑃ℎ𝑇𝑇𝑎𝑎𝑎𝑎 1 𝑣𝑣𝑀𝑀𝑇𝑇𝑎𝑎𝑣𝑣 − 𝑎𝑎𝑇𝑇𝑣𝑣𝑇𝑇𝑣𝑣𝑝𝑝𝑣𝑣𝑎𝑎𝑇𝑇𝑀𝑀𝑇𝑇 𝑣𝑣𝑇𝑇𝑀𝑀𝑃𝑃𝑎𝑎
𝑃𝑃ℎ𝑇𝑇𝑎𝑎𝑎𝑎 2 𝑣𝑣𝑀𝑀𝑇𝑇𝑎𝑎𝑣𝑣 − 𝑎𝑎𝑇𝑇𝑣𝑣𝑇𝑇𝑣𝑣𝑝𝑝𝑣𝑣𝑎𝑎𝑇𝑇𝑀𝑀𝑇𝑇 𝑣𝑣𝑇𝑇𝑀𝑀𝑃𝑃𝑎𝑎

� × 100) 

Equation 19 Percentage reduction from Phase 1 to Phase 2 results 

 

In addition, the rCV ranges for each voltage file have been plotted for Phase 1 (Figure 20a, 

Participant Interpretation of gate placement, blue line) and Phase 2 (Figure 20a, Gating Standard, 

orange line). These lines show the rCV ranges for each phase for each file, and are measured 

against a logarithmic y-axis, so all ranges and differences can be effectively seen. 

 

The ‘good separation’ files from 500 V to 700 V show a large percentage reduction when 

participants use a gating protocol, despite the peaks in these files having a very clear separation. 

This variation reduction shows that using a protocol can help participants to gate histograms 

accordingly, even when noise affects the data at the other extreme, due to high amplification. This 
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noise can be seen in higher voltage files in Figure 17 (g – j) as small shoulders and longer tails on 

the edges of the main peaks. Within the ‘good separation’ peaks, the percentage reduction is high, 

although it appears to get slightly smaller as the voltage increases (from 90 % for the 500 V file to 

86 % for the 700 V file). This could be because the higher the voltage, the more the noise is 

amplified, causing a bit more gating variability for the ‘good separation’ files as the voltage 

increases, due to increased visibility of peak shoulders and tails.  

 

Despite the poor separation making gate application difficult within the ‘poor separation’ files (250 

V to 450 V), this has shown to be aided by a diagrammatical image to copy and inform the correct 

scale points for gate placement. These files show poor separation and resolution of the middle 

peak, which should be identified in early upstream validation phases when using FC for analytical 

measurements. Therefore, these files are not representative of ‘good data’ that would be gated but 

do show difficulty when having to split clusters of beads or cells in analysis. Ultimately, thorough 

optimisation and validation of process steps and settings coupled with diagrammatical protocols 

can greatly influence and reduce the inter-participant range of reported results. This improves 

reproducibility of data between participants, converging to more confident results, analysis and 

interpretation. 

 

Sign tests have also been executed using IBM SPSS Statistics Version 24 to test the use of gating 

protocols in comparison to participants gating using their own judgement. This tests for a significant 

difference in medians of the two test conditions and is used when population distributions are non-

normal and subject to outliers. Sign tests have been used throughout this thesis when testing for 

differences between conditions. Table 16 summarises the results of Sign tests used for each 

voltage file, where the null hypothesis confirms no significant difference between the median inter-

participant rCV ranges, and the alternative hypothesis accepts a significant difference between the 

two test conditions. Red highlighted cells indicate that the alternative hypothesis of a significant 

difference between the medians of the two groups has been rejected, so the null hypothesis of no 
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difference between the medians is retained. Green highlighted cells indicate that the alternative 

hypothesis has been accepted because of a significant difference between the group medians. 

 

Table 16 Results of Sign test to compare medians of two-phase test conditions 

Voltage File Null Hypothesis Test Sig. Decision 

250 V Median difference of P1 & P2 250 V files = 0 Related-samples Sign test 1.000 Retain null hypothesis 

300 V Median difference of P1 & P2 300 V files = 0 Related-samples Sign test 0.735 Retain null hypothesis 

350 V Median difference of P1 & P2 350 V files = 0 Related-samples Sign test 0.043 Reject null hypothesis 

400 V Median difference of P1 & P2 400 V files = 0 Related-samples Sign test 1.000 Retain null hypothesis 

450 V Median difference of P1 & P2 450 V files = 0 Related-samples Sign test 0.100 Retain null hypothesis 

500 V Median difference of P1 & P2 500 V files = 0 Related-samples Sign test 0.021 Reject null hypothesis 

550 V Median difference of P1 & P2 550 V files = 0 Related-samples Sign test 0.003 Reject null hypothesis 

600 V Median difference of P1 & P2 600 V files = 0 Related-samples Sign test 0.072 Retain null hypothesis 

650 V Median difference of P1 & P2 650 V files = 0 Related-samples Sign test 0.011 Reject null hypothesis 

700 V Median difference of P1 & P2 700 V files = 0 Related-samples Sign test 0.248 Retain null hypothesis 

 

To accompany the Sign test to identify significant differences between the two testing conditions, 

the A Priori and Post Hoc power was calculated for each of the Voltage files. The variances for each 

file test condition calculated from SPSS were used, to test for equality of variance using an F-test 

within the G*Power software. Table 17 lists the variance for the inter-participant results for each 

test phase (Variance Phase 1 and Variance Phase 2), the ratio of which is used alongside effect 

size and significance level to define A Priori and Post Hoc power. The use of these Power analysis 

variables has been discussed within the methodology in Chapter 2, Section 2.2.5, and this structure 

is used in subsequent chapters. Even though this has been completed after data gathering, A Priori 

power calculated from the variances gives an indication of the sample size that would be required 

if access to more participants was available, to meet the desired power (0.80). The Post-Hoc power 

has also been calculated, which shows the ‘actual power’ calculated from the results. This is 1 – 

the probability of a Type II error being committed, which is when the null hypothesis fails to be 

rejected when it is false. 
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Table 17 A Priori and Post Hoc Power analysis (3 dp used for resolution specified in SPSS) 

File Variance Phase 1 Variance Phase 2 A-priori power Sample size required Actual power 

250 V 122227.401 200720.528 0.802 103 0.430 

300 V 15415.756 4699.454 0.813 20 0.969 

350 V 2246.926 801.856 0.813 26 0.920 

400 V 247.683 89.533 0.800 26 0.915 

450 V 2.291 0.455 0.825 12 0.999 

500 V 2.947 0.021 0.881 3 1.000 

550 V 4.579 0.029 0.893 3 1.000 

600 V 5.023 0.066 0.800 3 1.000 

650 V 4.796 0.031 0.891 3 1.000 

700 V 4.629 0.111 0.876 4 1.000 

 

All tests conducted and differences seen between test conditions are significant in line with the 

power calculated for all files except for the 250 V files, which had a low ‘actual power’ of 0.430. To 

see a significant difference between test conditions with statistical confidence, 103 participants 

would be required. Due to the difficulty of this gate, it is likely that a small difference would be seen 

between the two test conditions, which requires a large pool of people for valid results. For all 

remaining files, less participants are needed to produce the variance ratio seen from the current 

data, which had 37 participants take part in Phase 1 and 34 of those participants take part in 

Phase 2. The gating completed using a protocol has a very noticeable difference for the well 

separated files, with an actual power of 1.00 for all files and only requiring 3 to 4 participants to 

capture this effect if repeated.  

 

To actually use this data to choose an optimum voltage to run the APC channel, the 500 V file would 

be used, determined by the method described in [34]. This has been demonstrated in Figure 21, 

where the median inter-participant rCV values from each voltage file in Phase 1 were plotted to 

create a Stain Index rCV curve. A Stain Index curve is used to identify the optimum voltage for a 

specific channel, by plotting rCV values for the middle peak of each voltage file acquires with CS&T 

beads. Median inter-participant rCV values were plotted for each file due to non-parametric 

distributions of operator results for files across Phase 1 and 2 analysis. The inflection point that 

changes the curve to a plateau indicates the optimum voltage, minimising the effect of background 
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noise on the data, which can be seen as 500 V. This voltage file was selected to further investigate 

the distribution of an example data set, and the effects of different statistical methods of 

determining outliers and control limits.  

 

 
Figure 21 Stain Index rCV curve [154] 

 

Having this 500 V variable selected as the optimum voltage reduces potential variability within the 

measurement due to amplification of noise or poor detection because of closeness to the limit of 

detection of the instrument [34,158]. Even though this is a low amount of variation carried forwards 

in the file, this variability can be further controlled when gating univariate histograms according to 

a prescribed protocol. A significant difference in range has been shown between participants when 

using this protocol, improving reproducibility to converge results, reducing variation input by the 

operator during data analysis.  
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3.3.4 Flow Cytometry Pre-study Outlier Discrimination Investigation 
 
Normal distribution of data is commonplace to effectively use control limits within manufacturing 

and other product release criteria, however, in this instance all data is highly skewed, making 

normal control limit methods less robust to apply. These will be tested within this section to identify 

how well different methods identify potential outliers, and whether the log transformation process 

so commonly used shows equality to these.  

 

Outliers are common within distributions and can be identified and removed using a series of 

control limit methods. These methods have been used within national and international proficiency 

testing schemes for FC, to maintain continuous improvement [88,95,98,109]. Generally speaking, 

a 95% Confidence interval is applied to the data set, so the ‘out-of-specification’ 5 % can be 

continually reviewed to refine the processes and identify variables that cause participants to fall 

outside of acceptance boundaries. However, more recently robust methods for outlier 

determination (based in median statistics) have been utilised within these schemes, generating a 

set of acceptance criteria, rather than position on a normal distribution [159]. The data presented 

throughout this Chapter is not normally distributed, despite what initial basic statistical measures 

may indicate. Often when data is non-normal, a logarithmic transformation can be applied to shift 

the distribution towards normality so normal statistical tools can be used. However, when 

transformations are applied, the distribution of the original data is lost, which can cause difficulty 

in judgement of outliers.  

 

This can present a problem within CGT manufacturing, because if too much transformation of raw 

data occurs, it could lead to a loss of clarity of the data, potentially causing poor decisions and 

statistical tests to be applied to patient or product data. When undergoing a cell therapy transplant, 

there is limited amount of starting material that can be taken from the patient, so it is imperative 

that poor data analysis does not impact quality metrics of the final therapy product, because this 

could lead to dire consequences for the patient [160]. European and International regulations state 

that control limits for acceptance criteria should be set from validation runs of the product and 
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process [64,139]. However, there is limited validation that can be done on a patient-by-patient 

basis, due to the difficulties discussed.  

 

Dealing with the raw data distribution rather than transforming to fit traditional norms gives a better 

understanding of the quality of the cell therapy product, even if the distribution is more unfamiliar. 

There are also a variety of control limits that can be set for in- and out-of-specification results which 

will be discussed here. Many traditional methods are used to fit normal distributions, but robust 

alternatives will also be considered due to the nature of the data distributions in this Chapter. There 

are no defined criteria for control limit selection, this would be the decision of the manufacturing 

and QC unit. This section applied the 500 V distribution seen earlier to different control limits to 

identify differences between in- and out-of-scope data, as well as transforming it to confer between 

control limits when data is approximated to a more ‘normal’ shape. 

 

Outlier discrimination has been explored using the 500 V Phase 1 analysis data as an exemplar 

data set. Any extreme values can traditionally either be removed from analysis or the outliers are 

addressed to facilitate future improvement in process control.  

 

Table 18 summarizes different boundary specifications used within a variety of industries including 

biomedical and cell therapy manufacture [96,100,164–170,101–103,109,159,161–163]. There 

is no one correct choice for outlier determination, with the choice being based on commercial 

guidelines, quality standards and/or method validation exercises. These boundary estimators 

indicate whether the statistics used are based upon normal or Gaussian distributions or are more 

robust to non-parametric shape. The ‘Data Dimensionality’ indicates whether the boundary 

estimators are used from one set of data (1 parameter) or if multiple sets are required, often seen 

in multiparametric analysis such as regression where commonality between two variables is 

considered. Finally, Table 18 indicates whether the error boundaries calculated by each method 

are used as strict cut-off limits for specifying outliers, so they could be removed from further 
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analysis, or whether the method applies a correction to ‘out-of-specification’ limits and the data 

can then be accommodated within further analysis steps.  

Table 18 Error Boundary Estimators 

Error Boundary Estimator Normal/Robust Statistical 
Methods 

Data Dimensionality Outlier Limits/ 
Accommodates Data 

Shewhart’s Control Charts 
Mean ± 3SD 

Normal 1 parameter Outlier limits 

Mean ± 2SD 
Calculation from Type I errors 

Normal 
Normal 

1 parameter 
1 parameter 

Outlier limits 
Outlier limits 

Exponentially Weighted Moving 
Average (EWMA) charts 

Robust 1 parameter Outlier limits 

10% trimmed Mean ± 2SD Normal 1 parameter Outlier limits 

Median ± 2MAD Robust 1 parameter Outlier limits 

Paxton’s Criterion Robust 1 parameter Outlier limits 

Bootstrapping Normal, or log 
transformation of non-

normal data 

1 parameter Outlier limits 

Linear regression models Normal Minimum 2 
parameters 

Outlier limits 

Robust Multivariate regression Robust, but transforms 
data to normal 

Minimum 2 
parameters 

Outlier limits 

Longitudinal mixed effects 
models 

Robust Minimum 2 
parameters 

Outlier limits 

M-Estimators Robust 1 parameter Accommodates data 

Euroflow 
Personalised outlier estimator 

Robust, but transforms 
data to normal 

1 parameter Outlier limits 

 

Determining outliers is completed by calculation of location and spread values of a data set in 

question. Location parameters such as the mean, median or trimmed means are points used to 

represent a population and spread parameters such as SD or Absolute Deviation represent the 

amount of fluctuation around the defined location parameter. Historically, boundaries such as 

Mean ± 2SD have been used, because they approximately align to a 95% Confidence Interval, 

assuming normally distributed data. 

 

Table 18 is not an exhaustive list but the majority use univariate data to understand distributions. 

However, regression analysis requires two input variables to determine a 95% Confidence Interval. 

Mean ± 3SD are traditional bounds, originally championed in the use of control charts to monitor 
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process quality over time [161]. These have been amended for use in analytical chemistry Quality 

Control [162] but were refined to Mean ± 2SD in the 1990’s FC EQAS [101–103], alongside the 

use of 95% Confidence Intervals, defined by the Standard Error of the data set. 

 

The Exponentially-Weighted Moving Average (EWMA) Chart is a robust alternative to the Mean ± 

3SD method, that adjusts to the data set and is often preferred when detecting small shifts [134]. 

The use of EWMA charts to track data has been recommended more as an internal assessment for 

manufactured products [163], because it can be easily understood in a similar manner to a Levy-

Jennings plot, a traditional control chart format used. Trimmed means are another alternative 

location parameter, involving recalculation of new spread metrics from a refined data set. They 

remove a certain percentile of data from the extremes, making the distribution more centralised 

[163]. This was popular in previous cycles of the UK NEQAS FC Schemes [96,164], allowing 

pathology laboratories identified as extremes to improve over time. However, if used incorrectly it 

can remove extremes that require investigation into causality, and still represent probable events 

occurring. 

 

A robust alternative to Mean ± 2SD, is Median ± 2 Median Absolute Deviations (MAD) [165]. This 

uses the median value of residuals from the location median to estimate spread, which is more 

aligned to non-parametric distributions. Another traditional robust method was described for an 

early FC EQAS (Paxton’s Criterion), that uses parameters calculated to also define Box and Whisker 

plots, from 25th and 75th percentiles, and subtraction and addition of the Interquartile Range 

respectively [166]. Bootstrapping is a resampling method used as an alternative technique for 

validation [167,168] that derives confidence intervals, making assumptions on the data probability 

distribution, and assumes a normal distribution or uses a log-transform of non-normal data. This is 

a suitable way of defining bounds if it fits the raw data or if the transform sufficiently equates.  

 

Regression analysis is a common method for specifying data-fitness bounds. Linear regression 

analysis minimises the residual sum of squares and uses residual plots to detect outliers. Linear 
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regression has been used to compare FC EQAS approaches [109], with further developments 

building upon this by using robust multivariate regression [100], which is less sensitive to outliers 

due to transformation of non-normal data. 

 

Longitudinal mixed effects models have been employed more recently by UK NEQAS [98,169]. This 

uses a mixture of pass criteria based upon different residual and deviate values, allowing for 

multiple stratification levels of the data, based upon robust statistics. An alternative method uses 

M-estimators, that accounts for all the data, but weights extreme values to shift them to an optimal 

boundary, also known as winsorizing means [170]. This does not technically exclude any data 

points as previously described methods do, but still uses normal statistics to define initial boundary 

points. 

 

To demonstrate the effect that different estimators have on data, the Phase 1 500 V data set was 

used to calculate different outlier discrimination intervals, because this was defined as being the 

optimal voltage to run the APC channel from previous calculations. This data set was initially tested 

to describe the distribution, using IBM SPSS Statistics Version 24 software to calculate the 

descriptive statistics as discussed in previous sections. 

 

To apply different error boundaries to the data set, the outlier discrimination methods were 

screened to include those that could be applied to a univariate data set for parameters that do not 

just related to manufactured products and those that act as a set boundary and do not transform 

the extreme values. Both normal distribution and robust statistics have been included. EWMA 

charts have been discounted, because there are multiple ways to calculated these control charts, 

with ambiguous variables which are hard to tailor to the topic in hand [134]. The effect of 

logarithmic transformation on the data has also been investigated, because this is a common 

method used to transform data to make it more normally distributed, applicable to a wider range 

of Gaussian-based statistical analyses and conforming to more traditional manufacturing statistical 

process control paradigms. 
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The calculations used for both the raw and transformed data can be seen in Table 19. 

Bootstrapping relies upon a 95% Confidence Interval calculation, so these have been accounted 

for together, and Mean ± 3SD, 2SD and 10 % trimmed mean ± 2SD all use the same SD calculation 

to generate control limits. These calculations were completed using Microsoft Excel (Windows 10), 

however, Matlab R2019a was used to calculate the 10 % trimmed mean and trimmed SD, and the 

95 % Confidence Interval because it removed subjectivity from the population selection to define 

the extreme 10%. 

 

Figure 22 and Figure 23 show four plots representing these non-parametric and transformed 

results. Figure 22 (a) shows a histogram of operator rCV values for the 500 V file where operators 

were asked to apply gates based upon personal interpretation (Phase 1). The grey stepped bands 

represent the calculated outlier discrimination boundaries derived using the information in Table 

19. Any histogram column falling within these boundaries is determined as being in specification. 

Those falling outside of a boundary would then be classified as an outlier by that method.  

 

The majority of participants fall within all bounds, but this shows the importance of correct selection 

of discrimination for the process. If chosen control limits are too fine, then allowable variation could 

be cut out, causing a high defect rate and false negatives. Too wide, and the process is allowed to 

head towards a more out-of-control state and false positives could be included in analysis, which 

is undesirable and makes location of the source of the variation more difficult.  
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Table 19 Outlier estimators, respective calculations and control limits defined [154] 

Outlier 
estimator 

Location 
Calculation 

Spread 
calculation 

Location 
value 

Spread 
value 

Lower 
Control 
Limit 

Upper 
Control 
Limit 

Control 
Limit 

Distance 

Log 
transformed 

Lower 
Control 
Limit 

Log 
transformed 

Upper 
Control 
Limit 

Log 
transformed 

Control 
Limit 

Distance 

Shewhart 
Control 
Charts 

Mean ± 3SD 
 

For trimmed 
data, 10% 

of the 
ordered 
data are 
removed 
before 

calculation 

 
15.62 

5.19 10.43 20.81 10.37 1.02 1.36 0.35 

Mean ± 2SD 3.46 12.16 19.08 6.92 1.08 1.31 0.23 

10% trimmed 
mean ± 2SD 15.92 1.96 13.96 17.88 3.92 1.15 1.26 0.11 

95% 
Confidence 

Intervals  15.62 0.56 15.06 16.18 1.11 1.17 1.21 0.04 

Bootstrapping 

Med ± 2MAD 

 

 

16.30 

0.70 15.60 17.00 1.40 1.19 1.23 0.04 

IQR Metrics  

 

 

N/A 13.60 18.4 4.80 1.14 1.27 0.13 
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Figure 22 Application of difference control limits applied to data [154] 

 

As seen in Figure 22, all the boundaries scale inwards and outwards, so overlaps can be seen on 

both sides. The mean, 10% trimmed mean and median have all been plotted on top, to show shift 

due to the distribution. The median value of the data fits best to represent the skewed distribution 

because it sits within the histogram maxima.  

 



  Chapter 3: Pre-Study Variation Investigation 

91 
 

To show the impact of operators following use of a gating standard to obtain results, the Phase 2 

data was overlaid onto discriminatory bounds calculated from Phase 1 data, as seen in Figure 22 

(b). All participants fall within the tightest boundary, specified by the Median ± 2MAD. This confirms 

that causing operators to follow a visual protocol not only reduces inter-operator variation but also 

reduces the chance of ‘outlier’ results, regardless of how outliers are defined in this context. In the 

context of cell therapies and their manufacture, these outliers will represent key patient data 

metrics and cannot be excluded. 

 
 

 
Figure 23 Application of difference control limits applied to log transformed data [154] 
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The boundaries in Figure 22 were recalculated when the skewed data was normalised with a log 

transform and this transformed data and boundaries are shown in Figure 23. Data was transformed 

according to Equation 19. 

 

𝑇𝑇𝑣𝑣𝑇𝑇𝑀𝑀𝑎𝑎𝑜𝑜𝑇𝑇𝑣𝑣𝑀𝑀𝑎𝑎𝑑𝑑 𝑑𝑑𝑇𝑇𝑇𝑇𝑇𝑇 =  𝑇𝑇𝑇𝑇𝑃𝑃10(𝑣𝑣𝑇𝑇𝑠𝑠 𝑑𝑑𝑇𝑇𝑇𝑇𝑇𝑇) 

Equation 20 Log transformation 

 

The outer boundaries all fall within the same gradient pattern towards the centre, however the 95% 

confidence interval and the Median ± 2MAD bounds sit astride one another, discounting various 

operators as outliers. Application of Phase 2 (log transformed) data to these defined boundaries is 

shown again in Figure 23, with operators falling within the tightest boundaries when following a 

diagrammatical protocol to apply their gates. However, the shape of this distribution is not the same 

as the distribution when untransformed, potentially indicating a loss of participant traceability back 

to the raw data, which could cause data integrity difficulty if just using visual data. 

 

To monitor equality of outlier discrimination between the bounds specified for raw and transformed 

data, Table 20 shows the different bounds used, and what outliers are specifically discriminated 

against using this method (outliers identified using anonymous coding). Log transformation is 

deemed appropriate in the context here where the outliers are identical for each context and 

therefore labelled as ‘Equal’.  
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Table 20 Control limits used to specify outliers [154] 

 
Non-

parametric 
Outlier 

frequency 

Outlier code Log 
transformed 

outlier 
frequency 

Outlier Code Equal 
Outliers 

Reason for 
outlier 

Mean ± 3SD 1 C04 1 C04 EQUAL Range gate 
applied over 
smaller % of 

peak 

Mean ± 2SD 2 C01, C04 2 C01, C04 EQUAL Range gate 
applied over 
smaller % of 

peak 

Paxton’s 
Criterion 

3 C01, C04, C07 4 A03, C01, C04, 
C07 

UNEQUAL Additional 
outlier in log 

transform data 
(A03) 

10% trimmed 
mean ± 2SD 

3 A03, C01, C04, 
C07 

3 A03, B11, C01, 
C04, C07 

UNEQUAL Additional 
outlier in log 

transform data 
(B11) 

95% 
Confidence 

Interval 

29 A01-A10, B01-
B05, B07, B08, 
B10-B14, B16, 
B17, C01, C03-

C07 

28 A01- A05, A07-
A10, B01-B05, 
B07, B08, B10-
B14, B16, B17, 
C01, C04,-C07 

UNEQUAL Additional 
outlier in raw 

data (A06, 
C03) 

Median ± 
2MAD 

10 A03, A05, A06, 
B04, B09, B11, 
B15, C01, C04, 

C07 

10 A03, A05, A06, 
B04, B11, B15, 
C01, C04, C07 

UNEQUAL Additional 
outlier in raw 
data (B09) 

 

All outlier boundaries calculated up to Paxton’s Criterion are equal in the number of outliers 

specified when using either the raw data or log transformed data. As these boundaries become 

more refined, outliers are included due to the area of the peak gated by the specific operators. 

Mean ± 3SD has one outlier quantified by the gate applied (participant C04, Figure 24) covering a 

small section of the peak. This does not include all events collected within the peak and therefore 

has a skewed rCV value as a result.  This extreme can be compared to a median participant for this 

gate, because multiple people achieved the same rCV value (median = 16.3 %). This median is 

represented by participant B07, with their respective gate shown in Figure 25.  
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Figure 24 Participant C04 histogram gate applied to middle peak 

 

 

Figure 25 Participant B07 histogram gate applied to middle peak (representative median) 

 

Mean ± 2SD, 10% Trimmed Mean ± 2SD, and Paxton’s Criterion have all specified outliers due to 

gates not covering the entirety of the peak, and the gradual inclusion of these outliers through more 

refined control limits sees these outlier gates become wider to include more of the peak, 
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questioning the outliers have been defined due to differences in spread definition. Figure 26 shows 

the gate applied by participant C01, in addition to C04 they are out of specification for all boundary 

estimators except Mean ± 3SD. 

 

 

Figure 26 Participant C01 histogram gate applied to middle peak 

 

The 10% trimmed Mean ± 2SD and Paxton’s Criterion specify an additional outlier, participant C07, 

who falls outside of the Lower and Upper Control limits specified in Table 19. Figure 27 shows the 

gate applied by participant C07, which is slightly wider again than participant C04 and C01, but it 

still does not include the entirety of the peak.  
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Figure 27 Participant C07 histogram gate applied to middle peak 

 

Paxton’s criterion specifies an additional participant A03 when the data has been log transformed, 

who falls outside of the Lower and Upper Control limits specified for the criteria in Table 19. 

Participant A03’s gate can be seen in Figure 28 respectively, again with slightly wider boundaries 

applied to the peak, but not covering its entirety. The rCV value for this gate sits just outside of the 

rCV lower boundary, suggesting that there could be a difference to outlier definition when applying 

log transforms. Discrepancies can be seen between the raw and log transformed data for the 

different boundaries, due to data sitting very close to a raw or transformed boundary, causing it to 

become in- or out-of-specification. Some more examples have been visualised to identify this, 

because of the fact this data sits very close to the control limits. 
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Figure 28 Participant A03 histogram gate applied to middle peak 

 

Qualitatively, A03’s gate and previous participant gates have slightly smaller boundaries than the 

median participant of the group, supporting the trend seen here that as the boundaries calculated 

become more refined, ‘outliers’ are those who have smaller rCV values because they have not 

captured as much of the peak as the rest of the participant population. The rCV value appears to 

correlate with the percentage cell count captured within each gate the participants have applied. 

This percentage cell count can be seen in the Participant gating figures in this section. 

 

Participant B11 (Figure 29) has gated around a smaller section of the peak causing them to be a 

differential outlier in the log transformed control limits for the 10 % trimmed mean ± 2SD. B11 

applied gating knowledge from other measurement techniques because they had previous 

experience with High Performance Liquid Chromatography (HPLC) measurement techniques, where 

the rule of thumb is to try and capture 80% of the peak to increase measurement confidence and 

minimise spectral overlap. Compared to more experienced Flow Cytometrists, who try and capture 

the entire peak, some differences could be seen in training carried over or assumed from other 

measurement techniques. 
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Figure 29 Participant B11 histogram gate applied to middle peak 

 

Both highly refined control limits (95% Confidence Interval and Median ± 2MAD) have more outliers 

present when applying these boundaries to the data set. When calculating the 95% Confidence 

Interval the raw data contained one extra outlier, which may be expected due to this being a 

statistical test using normal metrics applied to a non-parametric data set. Both the raw and log-

transformed control limits for the 95% Confidence Interval contain a high number of outliers (29 

and 28 respectively), leaving only 7 and 8 respective ‘inliers’ to represent the distribution. Due to 

the distribution having a high kurtosis and skew, this could affect the calculation of this confidence 

interval, due to its dependence on the standard deviation that is not located at the peak maxima. 

Participants A06 and C03 applied a gate which is unequal as an outlier when assessed as raw data 

applied to the 95 % Confidence Interval boundary. They are defined as an outlier within the raw 

data set, not the log transformed data set. As an example, Figure 30 shows A06’s gating strategy, 

with the cell count and rCV following the same trend as the previous examples with wider 

acceptance boundaries. This cell count and rCV value are closer to the median value of the group, 

because this gate includes more of the peak than previous participants have included, but still not 

the full peak as the right tail of the middle peak has been excluded. 
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Figure 30 Participant A06 histogram gate applied to middle peak 

 

The robust Median ± 2MAD control limits are unequal when assessed with both raw and log 

transformed data sets, and they also contain more outliers due to the tighter control limits. 

Participant B09 is the differential outliers specified by this raw data set, in comparison to the log 

transformed data limits. This is the tightest acceptance boundary, so any ‘outliers’ that have just 

fallen outside of boundaries are likely to still look very similar to those results that lie within the 

boundaries.  

 

Qualitatively, the gate applied by B09 can be seen in Figure 31, and it looks as though the left side 

of the gate slightly crosses the trough between the dim peak (furthest left) and the middle peak. 

This could be listed as an outlier because of these other sections of the dim peak being picked up 

instead of the middle. It appears that this gate has shifted towards the left as the gate does not 

cover the right tail of the middle peak, like other participant gates have done.  
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Figure 31 Participant B09 histogram gate applied to middle peak 

 
To conclude, the raw untransformed data will be used for comparison in further studies, to  enable 

a better understanding of the population which is more directly traceable to the study data 

gathered. Even though there is a small difference between outliers defined in raw and log 

transformed distributions, in some instances where there is inequality of outliers, it has shown that 

log transformation may not always be suitable for skewed data. It is important to confirm and 

understand the shape of the data before applying tranforms and control limits to identify outliers. 

These boundaries will be applied to further data sets to show the difference in control limit 

definitions,however, this will not be to specify a perferred option for defining outliers, because it 

requires more manufacturing validation and regulatory or industrial guidelines. 
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3.4 Chapter Conclusions 
 

Chapter 3 shows the amount of variation seen between participants when applying histogram gates 

to the same data, indicating that this needs to be focused on and more specifically measured within 

future work. Across a range of different data histograms, the difference between participant 

analysis can vary greatly according to a number of factors which could depend upon the participant 

experience, how frequently they deal with histogram Flow Cytometry data and what they believe to 

be acceptable cut-off points for data inclusion. This can be used as evidence to formally measure 

baseline operator variability using measurement uncertainty methods when applying gates to data. 

 

Chapter 3 has tested the use of gating protocols for univariate histogram data, providing a basis to 

practice running studies, validating this study design (3 repeats within a 30 minute - 1 hour time 

frame) for future uncertainty analysis trials, which can build in complexity from this univariate 

experiment. 

 

Inter-participant variability was also present when participants had to apply gates following a 

diagrammatical ‘gating protocol’ instead. All the ranges of between-participant results dramatically 

reduced in cases where the peak separation was clear and an obvious split between the three 

peaks could be seen (percentage reductions ranging from 86 % to 92 % for 500 V to 700 V files). 

The gating images provided helped participants to align the gate to the selected upper and lower 

inclusion limits, although some participants expressed they would have applied the gate differently, 

using different tools or settings. However, this is all relative, because these factors were controlled 

to ensure comparability between participants.  

 

Even when gating the poor separation peaks the gating protocol aided participants, because it 

reduced the range across all voltage files, however some were better than others (reduction when 

using the protocol between 2 % to 42% for 250 V to 450 V files). Those files with lower ranges were 

very difficult for participants to gate because there was no visual separation of the peaks to discern 
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the correct one. These lower voltages should not be used when setting up and running a flow 

cytometer, because they are too close to the limit of detection of the channel. This greatly affects 

the ability to discern populations within the data set and is an effective example of showing how 

upstream setup and variables need to be correctly optimised and validated to ensure confidence 

in final interpreted results.  

 

This pre-study has also highlighted the importance of completing a thorough check on not only the 

basic statistics representing a population, but to check the distribution and more complex 

statistical tests because these give more information about departures from normality and 

potential clusters of data that can appear in bimodal instances. It has also called into question the 

need for a normal distribution, when trying to get reproducible data. If trying to get results within a 

certain boundary, measures such as skewness and kurtosis appear to be out-of-specification and 

extreme compared to SPSS boundaries (for normal distribution affinity), but they actually indicate 

a high convergence of results, because these specified limits indicate a normal distribution which 

may not be a necessary shape. 

 

Due to the non-parametric distributions and skewness present, log transformations were 

investigated to see whether the transform could make the distributions appear more normal, to 

then apply various outlier boundary estimators to the data. This was applied to data distributions 

when participants applied gates using their own judgement and then following a protocol. However, 

when following a protocol the distribution was very convergent and therefore highly kurtosed, so 

not much difference was seen when transforming the data, other than flattening the two histogram 

bins present. More of a distribution shape was seen when participants used their own judgement 

and this is more indicative of real-world scenarios.  

 

The power analysis completed on this data has shown that enough participants were recruited to 

identify the difference in variance for most of the files analysed. The one file which did not have 

enough participants, returning a power of 0.430, was the least optimal, so this generally would not 
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be used for FC analysis when setting up voltages for the APC channel. This power analysis structure 

will be used in further chapters where two different testing conditions are present, considering A 

Priori and Post Hoc power to ensure that the correct sample sizes and powers can be identified, 

even if they cannot necessarily be met. 

 

Various error boundary estimators are used throughout manufacturing scenarios and were applied 

to a set of data here to highlight the difference in how many outliers were produced. Boundary 

estimators would usually be selected internally by manufacturers based upon historical validation 

data. However, these are traditionally based upon normal distributions being required, so these 

were tested on a non-normal set of data, alongside robust statistics which are designed to deal 

with more non-normal distributions. In some instances there is equality between the raw and log-

transformed data when using error boundary estimators to identify outliers. However, instances 

where there was not equality between the two data representation methods has highlighted that 

differences could be due to using certain boundary methods such as 95 % Confidence interval. 

These differences are due to log transform boundaries being slightly different to those applied form 

the raw data, which could cause problems when trying to identify outliers in skewed distributions, 

depending on how the analyst interprets the results. Discrepancies between skewed raw and log 

transformed data has been discussed in other biomedical literature, showing that log transforms 

can cause discrepancies in data analysis and consideration from the raw data is perhaps more 

suitable [171,172]. This can give an appreciation of what the data looks like before trying to make 

it fit to a more traditional norm.  

 

This will influence further work presented in this thesis, by ensuring that no transformation of data 

will be made without strong evidence of its use and without understanding the underlying statistical 

distribution first. It also calls into question error boundaries used to define outliers and enforce 

continuous improvement. As baseline uncertainty is measured, these limitations will need to be 

defined by a reputable error boundary discrimination method, which will depend on the shape of 

the distributions to ensure it is robust.  
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Ultimately, this pre-study has shown that there is significant variation present from analyst 

subjectivity, as well as potentially being able to control this with protocols, which will be investigated 

within subsequent Chapters. The investigation of log transformation of data has shown differences 

to occur in outliers, showing that this method needs to be fully understood before applying 

transformations to raw data. This can have a significant impact on CGT manufacturing, because a 

lot of cell and gene measurement distributions are not normal [173,174], and their measurement 

analysis as well as the data distributions themselves need much more attention and understanding 

to make informed decisions.  

 
3.4.1 Consolidation of Objectives 

 
• There is considerable variation in between-participant data analysis when they apply 

gates to the same data. This is seen through all data files given to participants, which 

show variability when peak separation is good (range of 8.0 % rCV for 500 V file) and 

when it is poor (range of 400 % rCV for 300 V). This has been shown on simple univariate 

data and can provide a session structure for subsequent chapters which detail more 

complex data and analysis sequences. 

• In this instance, diagrammatical protocols provided to participants have reduced 

between-participant range of rCV results when copying the gates. This can be tested in 

future variation studies, but they will be more complex in visualisation and structure to 

monitor how the range in variation changes, so this must be taken into account.  When 

peak separation is ‘good’, this reduction is up to 92 %, and when peak separation is 

‘poor’, this reduction of variation is up to 42 %. 

• Log transformation of the raw data has been tested here, with the conclusion that future 

data sets will not be transformed if they are non-normal, because there can be inequality 

of outliers and error boundaries between the two data presentation types. Therefore, raw 

data distributions shall be used, because these present relatable data distributions to 

work with, unless evidence suggests otherwise. 
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• Different outlier boundaries have been tested with the chosen data set here, with normal 

and non-normal parameters. It has highlighted for future work that the distribution of the 

data needs to be thoroughly tested before outliers are determined with a particular 

method, to ensure the data is distributed appropriately. It is likely that even if future 

distributions are normal or non-normal, robust methods may be used as these can be 

used as representative statistics in both cases.  
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Chapter 4: Basic Uncertainty Model 

4.0 Introduction to the Chapter 

Chapter 4 introduces the first uncertainty Gating Exercise, as part of the sequence of studies which 

monitor participant variance in comparison to complexity of data. As discussed in the Prelude, this 

first uncertainty exercise is basic, to set a baseline for understanding variance in non-complex 

analysis scenarios. This sets the basis for further uncertainty gating studies described in Chapters 

5 and 6 with comparisons drawn in Chapter 7. The overall Gauge R&R study design as described 

in Chapter 2 has been followed to obtain statistics which can be taken forwards for uncertainty 

calculations. Further specificity for this basic study exercise is given in this Chapter. Previously in 

Chapter 3, only one variable had been considered, in histogram format, whereas this first 

uncertainty stage tackles FC data analysis in pseudocolour and bivariate formats using an 

immortalised pluripotent cell line (2102 EP Carcinoma line). This is much more prevalent within the 

community, therefore potentially providing a more relevant application of uncertainty to FC 

measurements.  

 

4.1 Chapter Aims 
 

This Chapter provides a basis for comparison of uncertainty in more complex FC analysis strategies 

found in future chapters. The fit of this Chapter to the thesis can be seen in Figure 32, specifically 

within the orange dashed box, providing a base for the core hypothesis: as complexity of FC data 

and processing increases, measurement uncertainty contributed from the participant will also 

increase. CGTs can have very complex analysis and quality control measures, so a better 

understanding of how the participant plays an influencing role in these results is essential for 

product release, continuous improvement and patient safety.  
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Figure 32 Diagram of Chapter position within the whole Thesis 

 
4.1.1 Chapter Aims & Objectives 
 

The Aims and Objectives of this Chapter can be defined as follows: 

• Design a baseline study using a Gauge R&R structure to measure CV and uncertainty of 

participants when gating simple Flow Cytometry data. 

• Identify what causes extreme values in absolute reported results and uncertainty 

measurements by reviewing extremes from this baseline study. 

• Provide easy monitoring tools for understanding uncertainty within a larger participant 

study or facility. 

• Investigate the impact on variance from data visualisation and different gating tools that 

can be used throughout Flow Cytometry Post-Analytical processing.  
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4.2 Methodology 
 

The Embryonal Carcinoma (EC) 2102Ep immortalized cell line used has been suggested as a ‘Ruler 

line’ or ‘Reference Standard’  for culture and research, because it has an antigen expression profile 

similar to conventional human Embryonic Stem Cells (hESCs) [175]. This antigen expression profile 

was unchanging over 10 passages, and this biological stability make the cells a good example for 

quantifying downstream experimental uncertainty, due to minimal biological variation [175]. As 

such, they were chosen as the simple starting model for these studies. 

 

4.2.1 Cell Selection and Culture 
 

A vial of GlobalStem® EC 2102Ep cells (Passage 48) (5 x 106 cells) was removed from a liquid 

Nitrogen Cryobank (See Appendix B for Certificate of Analysis) and was thawed in a water bath for 

3 minutes until a slither of frozen material remained. The material was topped up 1:1 with cell 

culture media, mixed slowly and seeded manually onto a T75 ThermoScientific™ Nunc™ Cell 

Culture Flask in 15 ml Gibco™ DMEM, high glucose, GlutaMAX™ supplement (Cat 61965, Lot 

1813259), fortified with 10 % v/v Fetal Bovine Serum (FBS). Cells were maintained in a humidified 

incubator with 5 % CO2 at 37˚C. 

 

100 % medium exchange was carried out every 2 days after seeding or passage, and once 

confluent after 3 days, the seeded flask was manually passaged into 2 daughter T75 flasks at a 

seeding density of 6.7 x 104 cells/cm2. This equated to a 1:3 split ratio, because cell counting was 

affected by the difficulty in dispersing cell clumps. To aid this dispersion, a 2-step disassociation 

process was used, cells were trypsinised with 1.5 mL Gibco™ Trypsin EDTA (0.25 %) (Cat 

25200072, Lot 1814171) for 5 minutes in a humidified incubator at 37˚C with 5% CO2, quenching 

with 3 mL of the fortified DMEM to stop the enzyme.  

 

Cells were centrifuged at 300g for 5 minutes, waste supernatant aspirated, and the remaining cell 

pellet resuspended in 1.5 mL 0.25 % Trypsin EDTA and incubated for a further 5 minutes. After 
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further quenching and removal of the supernatant, cells were resuspended in the fortified DMEM, 

with cell counts, and viability assessed using a Nucleo-Counter® NC-3000™ and ChemoMetec 

Via1-Cassettes™, to stain and measure cells with Acridine Orange and DAPI dyes. Three repeat 

measures were taken at each count to obtain a mean cell count and viability, before reseeding into 

the next passage. Cells were passaged through 5 successions, with an average cell viability of 87 

± 3 % over the culture period. 

 

4.2.2 . fcs File Generation 
 
A series of fcs files were generated using the EC 2102 Ep cell line in culture through 5 passages 

and harvested as previously described. The cells were fixed, permeabilized and stained using the 

BD Stemflow™ Human/Mouse Pluripotent Stem Cell Analysis Kit (Cat 560477, Lot 7004890), 

according to the included method [156]. Enough cells were harvested to generate the respective 

isotype and Fluorescence Minus One (FMO) controls, alongside the stained cells. 1 x 107 cells were 

harvested and fixed in 1 ml 4 % BD Cytofix™ Fixation Buffer (Cat 51-9006276, Lot 7004890), 

incubated in the dark for 20 minutes and washed twice with 1 ml PBS (no Calcium, no Magnesium).  

 

The cells were mixed slowly with 1 mL BD Perm/Wash Buffer (Cat 51-9006275, Lot 6232552) and 

incubated at room temperature in the dark for 10 minutes. After 2 washes, the cells were split into 

Eppendorf vials of 1 x 106 cells each, suspended in 100 µL Perm/Wash buffer and stained with the 

respective dyes: 15 µL BD Pharmingen™ PerCp-Cy5.5 Mouse Anti-Oct 3/4 (Cat 51-9006267, Lot 

6232550, 10 µL BD Pharmingen™ Alexa Fluor 647 Mouse Anti-SSEA-4 (Cat 51-9006265, Lot 

6316682) and 20 µL BD Pharmingen™ Mouse Anti-SSEA-1 (Cat 51-9006268, Lot 6316683). 

 

Oct 3/4 is a member of the POU (Pit-Oct-Unc) family of transcription factors, which functions in the 

early stages of a pluripotent cell within hESC and EC Cell Lines. Oct 3/4 is expressed in 

undifferentiated cells, but loses expression as cells start to differentiate towards specific cellular 

subsets [176]. SSEA-4 (Stage Specific Embryonic Antigen–4) markers are also identifiers of 

undifferentiated ESCs and ECs [177], with the difference from Oct 3/4 being that SSEA-4 is a cell 
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surface marker. 0ct 3/4 is intracellular, which requires the additional fixation and permeabilization 

step. SSEA-1 is a surface marker of differentiation for Stem cells, often used to compare with SSEA-

4 and other pluripotency markers [178].  

 

Once incubated for 30 minutes in the dark, cells were washed twice and transferred into BD 

Falcon™ Round Bottom 12 x 75 mm tubes (Cat 352063) and kept covered to minimise light 

exposure. Cells were run through a BD FACSCanto™ II Flow Cytometer, using the respective 

fluorescence channel and voltage: FSC 180 V, SSC 374 V, PerCp 420 V, APC (same detection range 

for Alexa Fluor 647) 450 V and PE 352 V, once a daily calibration was completed using Cytometer 

Setup & Tracking beads (Lot: 74538, Successful calibration). A viability stain was not included in 

the FC panel, due to viability being assessed with cell counts, and the need to keep the gating panel 

initially straightforward for participants, following the prescribed method in the Analysis Kit [156].  

 

Each tube and respective fcs file were generated using a medium flow rate (60 µL/min) and by 

acquiring 30,000 cellular events. Multiple stained sample fcs files were generated to build a library 

of repeats to use within the variation studies. These are representative of the product samples 

described in the manufacturing scenario used to describe Gauge Repeatability & Reproducibility in 

Section 2.3.1. Files were exported as fcs 3.0 version types for use in Flowjo Version 10.0.8r1 third 

party analysis software [123] and saved as a workspace. This was repeated twice for each 

participant, so they could analyse data across a total of three workspaces.  

 

4.2.3 Questionnaire Design & Ethical Approval for Study 
 
Ethical approval was obtained from Loughborough University Human Participants Ethics sub-

committee for the study and all participants were informed of the intentions of the study, as 

previously described in Section 3.2.2. Before the FC gating study commenced, participants 

completed an online questionnaire, to identify differences between participants and understand 

their experience background. This questionnaire was also given to participants to repeat at the end 
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of the FC complex gating exercises. Results comparing these two sections are discussed in Chapter 

8, to identify factors that attribute to measured variance.  

 

All participants and their respective data were anonymised at the point of data collection, and data 

stored in accordance to the ethical clearance obtained. All data analysis relating to questionnaire 

or gating results was completed anonymously, and participant coding was restructured from 

previous work to remove the possibility of analysis bias. Any questions requiring written text 

answers were analysed and qualitatively coded based upon prescribed manual coding methods 

[179]. These codes were counted to measure the frequency of issues reported, and more 

information on the qualitative coding can be found in Chapter 8. 

 

4.2.4 Flow Cytometry Study Organisation 
 
A total of 38 Participants from three separate centres (10 from an academic institution, 19 and 9 

participants from separate industrial institutions) were invited to complete the study in a quiet 

analysis space, to avoid distraction and the possibility of others seeing the study content and 

analysis. Study sessions had a one-hour maximum duration, and participants were shown three 

Flowjo workspaces, which contained a series of fully stained EC 2102 Ep fcs files. One identical file 

was included in each workspace, and participants were instructed to gate through a three-plot 

sequence to identify target cells (using Forward Scatter (FSC) plot against Side Scatter (SSC)), then 

the option to gate single cells, and finally to apply a quadrant gate to the double positive stem cell 

marker population to identify the final percentage cell count of respective pluripotent stem cells.  

Flowjo was the choice of platform due to access of the software across all three collaborator and 

participant sites, meaning a higher number of participants were likely to be familiar with the 

platform. 

 

Participants were also provided with isotype controls and FMO controls in each workspace to aid 

gate application and were allowed to use whatever manual gating tool on Flowjo they felt best to 

gate the population in hand. Due to the variety of ways in which people gate single cells, these axes 
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were left to the discretion of the participant and their preference. An overall schematic of the gating 

sequence they were asked to follow is shown in Figure 33, and participants gated each workspace 

of files separately to ensure a correct quantification of uncertainty through standard deviation 

calculation in accordance with Gauge R&R methodology principles described earlier. 

 

 

Figure 33 Gating sequence participants were asked to follow, to identify the target single cell population, with double 
positive expression for both Pluripotency markers 

 

This data exercise aims to identify if variance does exist when reporting results from the same data 

and that uncertainty values can be calculated for participants to contribute towards an overall 

uncertainty estimation. This was designed to estimate a general absolute result median and 

uncertainty. Calculating significant differences between certain groups or testing conditions was 

irrelevant, meaning that standard power calculations to determine appropriate sample size could 

not be used. In addition, a one-sample T-test cannot be used because it requires a hypothesised 

value for the sample to differ from. Because this data set was supposed to be exploratory, the initial 

results from this uncertainty study can be used for future comparison.  

 

When completing Gauge R&R studies it is recommended for repeats to exceed n ≥ 10 [133], so 

that there is a good number of participants for inter-participant comparison of results. To calculate 

uncertainty, it is recommended that a minimum number of measurement repeats to take is 

between 4 to 10 to try and best eliminate anomalies whilst being time efficient [142]. Participants 

made 3 repeat measures, because when trialled, 4 repeats could not be successfully conducted 

within a 1-hour time slot, whereas 3 repeats could be comfortably achieved and this still allows for 



  Chapter 4: Basic Uncertainty Model 

113 
 

SD to be calculated. A 1-hour slot was used because this was the maximum allowance given for 

each participant’s time, agreed across the three institutions.  

 

4.2.5 Uncertainty Calculation 
 
Once studies had been completed, target cell, single cell and final percentage positive cell 

population metrics were extracted from the data, using the results from the identical repeated file 

situated in each Flowjo workspace. These were then used to calculate a mean cell count, SD and 

CV for each gating stage, per participant using Microsoft Excel software. Finally, a combined 

uncertainty (uc) was calculated by combining these Type A uncertainties by summation in 

quadrature. The uc value was expanded with a coverage factor of k = 2, representing a 95 % 

Confidence Interval for the uncertainty statement, which gave each participant a representative 

expanded uncertainty (U) figure, to show individual variance. The mathematical methodology used 

to calculate uncertainty metrics has been previously discussed in Section 2.4. An example of the 

data extraction through to calculation of metrics and uncertainty can be seen below.  

 

 

Figure 34 Example of data extraction through to calculation of absolute results and uncertainty  

Total Starting Cell Events Repeated File Target Singlet Double Positive
30000 Repeat 1 Wsp1, File 1 6027 5981 5972

Repeat 2 Wsp2, File 2 6097 6041 6012
Repeat 3 Wsp3, File 3 6608 6562 6515

Target Singlet Double Positive
Wsp1, File 1 20.09 19.94 19.91
Wsp2, File 2 20.32 20.14 20.04
Wsp3, File 3 22.03 21.87 21.72

Target Singlet Double Positive
Average 20.81 20.65 20.55
STDEV 1.06 1.07 1.01
CV 5.08 5.16 4.91

k 2

uc 1.81

U 3.62

Respective Percentages of Cell Events in each gate as a 
function of total starting cell number

Total Cell Events within each gate in sequence
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4.3 Validation of Gating Tools and Plot Visualisations 
 
A small pilot study with 8 participants from 1 site was conducted to see if the gating tools or plot 

visualisations used had an impact on the range of variation seen within the analysis. This fed into 

the main study to possibly restrain visualisation and gating tool variables that participants used in 

the software. 

 

The repeated .fcs files used for repeats in Flowjo workspaces within the main study was analysed 

by the participants in a random order of repeats. Three visualisation methods were tested; a 

contour plot, a greyscale plot and a pseudocolour plot (Figure 35). The target cell population was 

gated using three different tool types: an ellipse, a manual polygon tool and an autogate tool (Figure 

36). For each gating tool and visualisation used, three randomised repeats were taken. 

 

Figure 35 Visualisations tested within pilot to see if data visuals affect participant gating variance 

 

Figure 36 Gate tools tested to see if they have an impact on participant gating variance 
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This data was captured over 3 separate 30-minute sessions, as shown in Figure 37. No participants 

were deemed colour blind (when tested using a Farnsworth-Munsell D-15 test (Figure 38)), which 

is a potential source of variance for a participant and could be investigated as part of future work. 

A Farnsworth-Munsell D15 test uses 15 coloured discs that range from the blue end of the colour 

spectrum to the red end. These discs are randomly mixed up and participants had to arrange them 

from what they considered to be blue to red. These were then analysed by the study coordinator, 

because the reverse of the discs has a numerical order. If the order of the numbers is not correct, 

this can indicate colour blindness.  

 

Figure 37 Visualisation pilot study structure diagram for comparison of gating tools and visualisation between 
participants 

 

Figure 38 Farnsworth-Munsell D-15 Colour Vision Test; a) Random pieces for participants to order, b) Correct order for 
colour tags 
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The orange dashed boundaries in Figure 37 separate the reproducibility boundaries for each tool 

and plot, from which an understanding of gating range was looked into. The cell count percentage 

as a function of the original file cell event number (30,000 events) was used for comparison. SDs 

of the three repeats were compared for each tool and plot, with total inter-participant SD ranges 

for each configuration shown in Figure 37 for tool types and plots used [180], generated using a 

combination of Microsoft Excel and Matlab R2019a for processing and visualisation respectively.  

, 

Figure 39 Ranges of inter-participant SD for each gate tool on each visualisation plot 

 

Figure 39 shows that using a greyscale plot will potentially contribute greater variance to the overall 

measurement, especially if using an autogate tool. Unlike using this tool on a contour plot or a 

pseudo colour plot, greyscale provides no other perception of density of the cell events, leaving 

participants to make less informed decisions, increasing variability in their measurements. The 

autogate tool also had significantly higher between participant range when using pseudocolour 

density plots. The autogate tool could not effectively separate the boundary between the target cell 

population and the dying cells. This software issue led to participants making variable decisions on 
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where to place the gate. During the sessions, participants commented on the autogate tool, often 

feeling they either cut out too much of the population or included irrelevant cells from another.  

 

Contour plots had the smallest difference between gate tool ranges, possibly because the contour 

lines provided guidance for participants to follow and place gates. Even though the ellipse gate 

fitted the target cell population very well, the manual polygon has consistently low variation range 

on each visual plot. This may be because the participant ultimately has more control over the shape 

of the gate and the placement of gate indices. Whilst the autogate tool allows adjustment once the 

gate has been placed, it produced so many indices that participants did not want to spend the time 

adjusting them all.  

 

Ultimately, the tool used will be based on a variety of factors including but not limited to the general 

shape of the cell population, density, scaling, personal preference and knowledge of other tools (or 

lack of knowledge). Overall the SD ranges shown here are very small so the choice of visual plot or 

gating tool chosen may not have a significant effect on the overall measurement, however, the 

pseudocolour plot will be used for the main study, because it shows generally low variance with the 

gating tools tested and it is also the default layout in the Flowjo software used. One should be aware 

of other factors that can influence these measurements such as colour vision and time taken to 

complete these studies. In high-pressure situations where participants may not have full colour 

vision, results could be skewed or greater in uncertainty.  

  



  Chapter 4: Basic Uncertainty Model 

118 
 

4.4 Results & Discussion 
 

4.4.1 Flow Cytometry Basic Gating Exercise absolute results 
 
The absolute results reported here are the targeted cell population that participants were asked to 

identify using the gating sequence defined in Figure 33. These are akin to what would be reported 

in literature for specific cell types, in this instance it is single, pluripotent stem cells. The uncertainty 

of the gating sequence will be discussed in the next section of this Chapter.  

 

Table 21 Measures of Location for the absolute results of the Base Gating Study (%) 

Arithmetic Mean 32.1 

Median 32.5 

Mode N/A 

Minimum 19.7 

Maximum 51.3 

 

Table 22 Measures of Spread for the absolute results of the Base Gating Study (%) 

Range 31.6 

25th Percentile 30.6 

75th Percentile 33.9 

Interquartile Range 3.3 

Standard Deviation 5.7 

CV 17.8 

Median Absolute Deviation 1.9 

 

Table 23 Measures of Skew for the absolute results of the Base Gating Study (%) (3dp for better resolution) 

Skewness 0.492 

Skewness standard Error 0.383 

Skewness z-score 1.280 

Kurtosis 3.271 

Kurtosis Standard Error 0.750 

Kurtosis z-score 4.560 

 

Table 24 Measures of Normality for the absolute results of the Base Gating Study (%) (3dp for better resolution) 

Shapiro-Wilk statistic 0.904 

Significance 0.003 

Normal/Non-parametric Non-Parametric 
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Using descriptive statistics to give a general report on the size and shape of the data, the 

distribution approximates to a normal shape because the mean and median are very close 

together, as quoted in Table 21. However, the Shapiro-Wilk statistical test for normality (Table 24) 

significantly concludes the distribution is not normal. This non-parametric definition is most 

probably indicated by the spread of the distribution, rather than any specific location parameters. 

Measures of spread (Table 22) show that there is a wide range between the highest and lowest 

participant averages, but the IQR of the participant data fell within a boundary of 3.3%, which is 

9.5 times smaller than the overall range.  

 

The measures of skew tests further confirm the non-normality due to data extremes (Table 23). The 

actual skewness measure indicates the distribution is normal, but the kurtosis of the data set 

confirms that the distribution is heavily affected by ‘outliers’ in the data. These extreme values can 

be seen in Figure 40. Most participant averages lie close to the median, and the error bars show ± 

1SD from each individual’s repeated measures.  

 
Figure 40 Absolute Results of Target Cell population, represented by each participant's average and ± SD. 
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Participant deviation from the median has been more clearly visualised in Figure 41, with bars 

depicting each participant’s average from the median group value. The SD limits have also been 

plotted, because these are most commonly used within traditional manufacturing to define out of 

control/out of specification limits. 76 % of participants are within 1SD of the median, showing good 

corroboration of final results. Of those who fell out of bounds, two participants had results above + 

1SD, one participant above + 2SD, one participant below - 1SD and three participants below - 2SD.  

 
Figure 41 Participant average result deviations from overall group median. 

 
The other control limits discussed in Chapter 3 have also been applied to this data, to further 

exemplify the difference between acceptance performance if different boundaries are specified by 

manufacturers. Figure 42 shows the control limits applied to this data set, cutting off different high 

and low extreme values, based on the mean and median of the data set. There is central tendency 

so there is no skewness of the data which could cause more outliers on one side of the distribution 

than the other. 
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Figure 42 Acceptance boundaries applied to the Basic model averages to show difference in outlier classification. 

 

To compare both positive and negative deviation data extremes, Figure 43 shows participant B08’s 

gating strategy, one of the participants very close to the group median value. The three images 

show the gating sequence steps used to define the final population cell count, with B08’s three 

repeats collated onto each sequence step image. This layout has been used for the remainder of 

qualitative participant analysis figures throughout this thesis. By comparing the extreme 

participants to a median participant, there are obvious differences between participants when 

identifying populations based on the visualised density. This is also coupled with personal 

preferences on inclusion or exclusion of data points to further refine the data set in search of a 

particular target. 
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Figure 43 Participant B08 Gating Strategy interpretation, close to median result. 

 

Focusing on those who fell outside of 2SD, participant B09 returned the highest population average 

(51.3%). Reviewing the participant’s gating strategy has shown that most of bias is due to their 

initial conclusion of a larger cell population, consisting of doublets, which should have been 

excluded if following the defined sequence. This gating strategy can be seen in Figure 44, also 

showing a high variance in how this initial gate was applied.  

 

Figure 44 Participant B09 Gating Strategy interpretation 

 

Participants A08, B05 and C09 also fell outside of this specification limit, with an average value 

significantly lower than the group median. Figure 45 to Figure 47 show their respective gating 

strategies, again noting that in each case, their first gate applied is situated within the target 

population, and therefore causing the low final result. 
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Figure 45 Participant A08 Gating Strategy interpretation 

 
Participant A08 did not gate a single cell population because this was not something they have 

previously experienced in their own FC processes. Participant A08’s final quadrant gates intersects 

the final population, because gates were applied against control files and not checked against the 

fully stained sample files. In this instance, poor gating ‘clean-up’ procedures and awareness of 

preliminary ‘data-cleaning’ processes have potentially caused this variance, alongside the 

participant perception of density.  

 

 
Figure 46 Participant B05 Gating Strategy interpretation 

 
Figure 47 Participant C09 Gating Strategy interpretation 

 
Participants B05 and C09 have applied their gates within the target cell population in the first 

instance. They all preferred to apply more refined gates to have better certainty of result to 
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removing any boundary outliers early on. These participants have all used different strategies to 

further clean the data to identify the single cell population. Participants were allowed to choose 

what axes they preferred to gate the single cell population, so even though each axis configuration 

does not have much noise, it will contribute a small amount of variation.  

 

This analysis of the absolute results used to represent cell populations shows a 31.8 % cell count 

range between participants when determining final single pluripotent cell population percentages.  

The further qualitative analysis of the extremes identifies 4 participants who fall outside of initial 

control limits. These extreme participants account for over half of the cell population percentage 

range. If these 4 extreme participant values were removed, the range would fall to 16.3% (a 

difference in cell count of 4,890 cells) between participants (minimum value of 26.0% and 

maximum value of 42.3%). 

 

Potential inclusion of more information of areas to gate would aid location of gate placement to 

improve general result conformity, although this may not necessarily improve intra-participant 

variability.  

 

Variability of absolute results is commonly assessed using the CV, which combines the average and 

standard deviation of final cell count measurand. The distribution histogram of participant CV of 

reported results can be seen in Figure 48, plotted on top of 3 specification limits derived from the 

ICSH boundaries. The ICSH and ICCS have set imprecision criteria for Cell-based fluorescence 

assays as a desirable target of < 10 % CV or when dealing with rare-cell cases or minimal residual 

disease detection < 20 % CV is acceptable [71]. In this study ‘Good Performance’ is represented at 

5 % CV, half of the ICSH guideline acceptance criteria. ‘Satisfactory Performance’ shows the amber 

region at 10 % CV and the ‘Revision Required’ limit is set to 20 % CV, because this basic model is 

not designed to detect rare cell events, it is designed to be easy for participants to complete with 

no questionable populations or events. Therefore, this amount of variance is not ideal in this 
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exemplar. These boundaries have been defined using the equation of a straight line in Equation 

20, where m is the gradient of the line and c is the y-axis intercept. 

 

𝑣𝑣 = 𝑀𝑀𝑀𝑀 + 𝑝𝑝 

Equation 21 Equation of a straight line 

 
The optimal scenario would have all 38 participants (n) with < 1 % CV, which sets the total height 

at y-intercept of the graph. Using the equation of a straight line, boundaries can be drawn from the 

optimal CV position, or y-intercept, to the uncertainty specification limits on the x-axis. A right-angle 

triangle shape shows progression towards the desired positive skew and optimal variation 

positions. Applying this to a traffic light style quality monitoring diagram would show performance 

levels within a facility and ideal variance which can be quickly and easily understood by all.  

 

In a similar manner, this schematic has also been used for uncertainty of measurements 

throughout this thesis, because this is a measure of variability that combines SDs from the 

additional gating steps in the sequence, not just the final gate which is used to calculate CV.  
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Figure 48 CV Performance of Participant Absolute results 

Using these guidelines as boundaries, two participants fall outside of the ‘good’ and ‘satisfactory’ 

performance regions. These extreme outliers had more variation within the final quadrant gate they 

drew when identifying the final positive pluripotent cell population. Participant A08 had the highest 

CV, and their final gate can be seen already illustrated in Figure 45. A08 intersects the final 

population more than the rest of the participants and has one of the three repeated gates 

significantly higher than the rest, causing greater variation between the repeated measures.   

 

 

Figure 49 Participant C01 Base Model Study Gating interpretation 

 



  Chapter 4: Basic Uncertainty Model 

127 
 

Participant C01 (Figure 49) also had a CV that fell within the ‘Revision Required’ region of the graph, 

and again the variation is caused in the final gate due to one of the repeats being placed 

significantly higher than the other two. It can be seen in the first two gates applied in participant 

C01’s sequence that they are also very variable throughout the gating sequence, however, this is 

not captured within the representative population CV measurement, because it is only calculated 

from the final population cell counts derived using the whole sequence. Separate CV values could 

be calculated individually for each gate applied in the sequence. However, this can become 

cumbersome to use because the amount of data to analyse has tripled. In more complex sequences 

this would be even more time consuming.  

 

Measurement uncertainty provides a way of combining variability measures (SDs) of each gate 

within the sequence, to provide a measurement that is more representative of the components of 

the gating sequence. When extremes in measurement uncertainty arise, uncertainty values can be 

easily deconstructed to identify which part of the gating sequence is responsible for causing 

variation within the measurement.  

 

4.4.2 Flow Cytometry Basic Gating Exercise uncertainty results 
 
The uncertainty results reported here are a combination of the three gating stages defined in Figure 

33. The uncertainty values have been quantified following the prescribed methodology in Chapter 

2 and Section 2.5. The uncertainty would better represent variance of measurements with greater 

confidence, because this combines variability from all gates applied in the sequence, not just the 

variance of the final gate applied.  

 

Table 25 Measures of Location for Uncertainty of the Base Gating Study (%) 

Arithmetic Mean 4.0 

Median 3.6 

Mode N/A  

Minimum 0.7 

Maximum 13.1 
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Table 26 Measures of Spread for Uncertainty of the Base Gating Study (%) 

Range 12.4 

25th Percentile 2.0 

75th Percentile 5.6 

Interquartile Range 3.6 

Standard Deviation 2.7 

Median Absolute Deviation 2.0 

 

Table 27 Measures of Skew for Uncertainty of the Base Gating Study (%) (3dp for resolution) 

Skewness 1.288 

Skewness standard Error 0.388 

Skewness z-score 3.320 

Kurtosis 2.311 

Kurtosis Standard Error 0.759 

Kurtosis z-score 3.045 

 

Table 28 S-W test for normality for Uncertainty of the Base Gating Study (%) (3dp for resolution) 

Shapiro-Wilk statistic 0.900 

Significance 0.003 

Normal/Non-parametric Non-parametric 

 

Similar to the descriptive statistics for absolute results for this study, the mean and the median are 

close together, indicating a normal distribution, as monitored in Table 25. The median is less than 

the mean, indicating a slight positive skew to the data. This is further supported by the Shapiro-

Wilk test for normality, shown in Table 28, indicating that the distribution is non-parametric in 

shape, indicating skewness. 

 

There is a wide range (12.4 %) between minimum and maximum participant uncertainties, which 

does not include Participant B19. Their Standard Deviation of zero (as seen in Figure 50), further 

showed that they had copied gates across the repetition workspaces, giving a comparable absolute 

result but no measure of precision, disqualifying them from this uncertainty analysis. Table 26 also 

shows the interquartile range as 3.6%, indicating a strong central tendency, because half of the 

data lies within 31% of the total distribution. 
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Figure 50 Expanded Uncertainty of all Participant Gating within the Base Model Study 

 

The measures of skew tests (Table 27) further confirms this non-normality, because the skewness 

z-score also falls outside of the 2.58 bandwidth of normality (as described in Chapter 2, Section 

2.2.2). The kurtosis z-score also falls positively outside of the 2.58 bandwidth (both skewness and 

kurtosis use the same scaling), although it is not as large as the skewness value, meaning the non-

normality is more likely due to the shape of the data than extreme data points, although these can 

still have a significant impact on the final distribution statistics. This distribution shape can be 

observed within Figure 51, showing the positive skew with 2 or 3 larger uncertainty extremes. 
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Figure 51 Histogram of Participant Uncertainty from repeats of Base Model Study 

 

Whilst deviation from a median can help to explain the distribution parameters, when analysing 

variance, a positively skewed distribution towards zero is preferred. Comparing uncertainty in its 

size order allows boundaries to be set for permissible specification limits for product 

release/laboratory quality that increase in value.  

 

The ICCH and ICS imprecision values described earlier for measurement CV have also been used 

here to define example specification limits if monitoring participant uncertainty. CV is a measure 

usually used to represent variability of a final metric because it considers both the mean and SD of 

a measurement. This only works for the final cell population count, whereas uncertainty combines 

in quadrature the SDs of all the gates applied in the sequence.  In this instance the CV specification 

limits have been substituted for uncertainty, because there is a positive correlation (using a line of 

best fit) between the result CV per participant and their respective uncertainty for this cell model 

(Figure 52), and no other uncertainty specifications have been defined in the public body of 

knowledge from research or industry. 
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Figure 52 Final Cell Count Population Percentage versus Gating Uncertainty for participants 

 

 

Figure 53 Participant performance monitoring diagram for uncertainty results of basic model 

 



  Chapter 4: Basic Uncertainty Model 

132 
 

Figure 53 shows the base model uncertainty histogram from Figure 51, plotted on top of 3 

specification limits derived from the ICSH boundaries. ‘Good Performance’ is represented at 5 %, 

half of the ICSH guideline acceptance criteria. ‘Satisfactory Performance’ shows the amber region 

at 10 % and the ‘Revision Required’ limit is set to 20 % once again. A permissible limit for 

uncertainty (pU) [181] has also been plotted as another variance discriminator, defined in Equation 

2, assuming a 95 % Confidence Interval to the data.  

 

𝑎𝑎𝑈𝑈 = 2.39 × 𝑟𝑟𝐷𝐷 

Equation 22 Permissible Uncertainty 

 

Participant C01 (Figure 49) had an uncertainty that fell within the ‘Revision Required’ region, with 

participants A07 and B16 being at the higher variation end of ‘Satisfactory Performance’. Figure 

49, Figure 54 and Figure 55 show their respective gating strategies, compared with Participant B18 

(Figure 56) who had the lowest uncertainty, exemplified as an ideal participant in this instance.  

 

Participant C01’s uncertainty can be attributed to the three gate phases drawn for target cells, 

single cells and the double positive pluripotent cells in a respective 40:33:27 % split. The SDs are 

the inter-participant group maximum for each gate applied in sequence. The target gate identifies 

the same population each time, but varies to capture smaller, possibly dying cells and varies again 

to make the ellipse more spherical. Consistency of gating shape could reduce this variability slightly, 

provided that the cell population boundary is well defined. Single cell gate variance is attributed to 

2 of the 3 gates being consistently smaller in size, with the third gate capturing the majority of the 

population. C01 applied smaller gates on this window with each repeat, suggesting potential 

refinement (from memory) for each session repeat. The final gate had understandably smaller 

variance in comparison, being produced by one offset quadrant refining the density of the 

population.  
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Figure 54 Participant A07 Base Model Study Gating interpretation 

 

Participant A07’s uncertainty is attributed to the target cells gate, single cells gate and double 

positive in the ratio of 44: 36: 20 % respectively. Most of the variance comes from the target cells, 

where differences can be seen in the gating at the boundary of dying cells, in a similar manner to 

Participant C01. The single cells gate is causing variance because of the gates being applied very 

closely to the corners of the dense cell population. A small fraction of the tip of the population has 

caused a significant difference in the number of cells captured in the gate each time. Finally, the 

quadrant gate has two repeatable gates applied, with one gate applied further out. Even though 

this captures more of the cell population this is still different from the other two gates drawn.   

 
Figure 55 Participant B16 Base Model Study Gating interpretation 

 

Both the target and single cell gates contribute 35% to B16’s gating uncertainty. The target cell 

variance is likely due to varied inclusion of the smaller, possibly dying cells which caused variance 

for C01 and A07, because this is a region of gating difference overlaying more dense regions of 

data. The single cell variance is likely to be due to one gate applied which cuts off the top-right 

underside ‘corner’ of the data. 
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Figure 56 Participant B18 Base Model Study Gating interpretation 

 

Participant B18 had the lowest uncertainty at 0.7 %, with their respective gating strategy shown in 

Figure 56. B18’s initial target gate was repeatable in shape, as well as having minimal distance 

between gates at the cut-off for dead or dying cells, which has shown to cause variance for other 

participants. Again, their single cell gates were very similar in shape, and they captured the whole 

of the population without cutting any edges. Finally, the quadrant gates were very precise, having 

minimal effect because they do not intersect any high-density areas due to good use of control files 

provided. Control files provided were isotypes, Fluorescence Minus-One (FMO) controls and a 

negative sample, which were used to set the position of the gates using a positive/negative split 

on respective axes.  

4.5 Chapter Conclusions 
 

The EC 2102 Ep Cell line used was a good model for the baseline study because it has been shown 

to not differentiate over time, providing a good starting point for analysis due to simplicity of marker 

discrimination and very limited biological variation. Hence there are very limited/negligible 

upstream effects on downstream analysis. The studies run with the 3-workspace configuration for 

repeats worked well within the time available for participants so this structure should be used going 

forwards. The three-step process that each participant had to work through was also straight-

forward to follow from the image, ensuring there was little deviance from the prescribed method.  

 

Initial validation of plots and tools used has provided an interesting insight into how different 

layouts can affect subjectivity and therefore results. Greyscale plots are currently uncommon as 
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technology has progressed to allow more data dimensions to be shown at once, but the initial pilot 

has shown they should not be used over colour plots due to increased variance in analysis 

reproduction. A greater number of participants in this study would strengthen results and 

conclusions, but generally manual polygon tools provide more control over gate placement and 

exhibit a smaller difference in range across different visual scenarios.  

 

The mean and median values (32.1 % and 32.5 % respectively) for the absolute cell count reported 

results are very similar, usually indicative of a normal distribution but upon further investigation the 

population is non-parametric, due to the distance of extreme values. These extremes appear to be 

attributed to variance in the first target cell gate applied. Due to the noise, debris and doublet 

populations present, more training should be given to Cytometrists when learning to gate, ensuring 

greater uniformity of results.  

 

Knowledge of correct populations and decisions made on cell cluster boundaries could aid 

reproducibility between participants. Similarly, decisions on population density boundaries should 

be determined within a ‘gating specification’ possibly through the validation of population 

percentage and use of tools such as Gating-ML to determine gate shape and size parameters. 

 

CV of measurements is a commonly used tool throughout Flow Cytometry to quickly monitor 

variation, however, this only accounts for repeat measures on the final gate of a sequence. 

International committees have defined acceptance criteria for Flow Cytometry CV measurements, 

which have been applied and adjusted to assess initial base model CV results here, although other 

variance criteria have been defined, as discussed in Chapter 1. Reviewing these extremes shows 

variability in the final gate applied, but it also highlights that other variability seen upstream of this 

gate is not taken into consideration, making measurement uncertainty a more suitable metric for 

accommodating variation throughout the whole gating sequence.  
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This base model with 3-step sequence has shown that calculating measurement uncertainty is 

possible for participants by using traditional measurement uncertainty methods. This was 

calculated successfully, by presenting participants with three repeated workspaces of data, 

informed by Gauge R&R testing layouts and extracting one repeated file located in each workspace 

randomisation. The Gauge R&R randomisation layout was useful to test but it caused some 

participants to exceed the 1-hour time limit due to the number of files used around the main 

analysis file. It also caused slightly more difficulty in traceability of the repeated file across each 

workspace. In subsequent Chapters this complexity of study design and randomisation will not be 

used, in order to have greater control over the data analysis variables which could affect the overall 

uncertainty contributed from participants. 

 

The uncertainty was also skewed with an absolute median of 3.6 %, although it is preferable to 

have as low an uncertainty as possible to reduce measurement variation passed on to the final 

reported result. The overall range of participant uncertainty was 12.37 %, which is outside of the 

‘satisfactory performance’ boundary assumed from the ICCH data, so revision of more extreme 

participants has been completed, showing that when data is more clustered and noisy at the start 

of the analysis sequence, this can have a knock on effect to their uncertainty contribution. 

 

Acceptance limits determined from the ICSH have enabled this uncertainty data to be compared 

and put into manufacturing quality control context using the diagram generated in Figure 53. 

Simple traffic-light visuals have been proposed here and help show the quality status of a 

product/service/facility quickly and can be easily updated and adapted to suit the number of 

participants/participants and continuous improvement quality levels. A better knowledge of 

uncertainty visualised in this way potentially improves quality by addressing gating that falls outside 

of satisfactory boundaries and a good working culture that does not attribute blame can help a 

facility grow to tighten overall measurement uncertainties.  
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4.5.1 Consolidation of Objectives 
 

• This study ran smoothly, acting as a good baseline for comparison of absolute reported 

results, CV and uncertainty measures. The session structures were suitable in time, and 

3 repeats was suitable for participants to understand study context, but not become 

tired.  

• A pilot study showed that different plot visualisations and gating tools contribute variance 

to a measurement, albeit a small amount. Grayscale plots are not recommended for use 

as they increase inter-participant variance, and they do not include as much information 

about density on the plot. 

• Extreme values in absolute reported results were due to participants either over 

constraining or under constraining the initial target cell population within the first gate. 

In some cases, lack of knowledge of using controls to set gates led to variance in final 

pluripotent population metrics. 

• Extreme values in uncertainty results were due to participant variability in applying a gate 

to separate the target cell population from the dead or dying cells. 

• The performance monitoring diagrams visualised in Figure 48 and Figure 53 provides a 

straight forward way to monitor uncertainty performance with respect to the number of 

people in the study and defined quality satisfaction limits. These will be used in 

subsequent chapters to monitor uncertainty performance in more complex gating 

scenarios. 

• This study defines participant uncertainty for a highly constrained, very stable 2 colour 

panel cell model, which can be used as a baseline for development into more complex 

cell models, to monitor potential growth of between participant uncertainty in more 

difficult analysis scenarios. 
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Chapter 5: Intermediate Uncertainty Model 

5.0 Introduction to the Chapter 

Chapter 5 introduces the second uncertainty gating exercise (intermediate model), as part of the 

sequence of studies which monitor participant variance in comparison to complexity of data. As 

discussed in the prelude, this second uncertainty exercise is intermediate, to further monitor 

uncertainty in a more complex analysis scenario. This is more representative of FC analysis and T-

cell lineage markers used to monitor cell therapy products. This continues to build the pathway for 

further uncertainty gating studies described in Chapter 6 with comparisons drawn between all three 

models in Chapter 7. Previously in Chapter 4, only three gating steps had been considered with an 

immortalised cell line (Basic model), whereas this second uncertainty stage tackles more complex 

FC data analysis using primary Peripheral Blood Mononuclear Cells (PBMCs) which are used as a 

basis for many autologous engineering cell therapies. This becomes more relevant for the CGT 

manufacturing community, therefore potentially providing a more translational application of 

uncertainty to FC measurements. This Chapter uses a five-step analysis sequence, and similar to 

Chapter 3, sees participants analyse this data across two sessions using their own judgement and 

then using a diagrammatical protocol respectively.  

 

5.1 Chapter Aims 
 

This Chapter develops comparison of uncertainty in more complex FC analysis strategies. The fit of 

this Chapter to the thesis can be seen in Figure 57, specifically within the orange dashed box, 

providing development for the core hypothesis: as complexity of FC data and processing increases, 

measurement uncertainty contributed from the participant will also increase.  
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Figure 57 Diagram of Chapter position within the whole Thesis 

 
5.1.1 Chapter Aims & Objectives 
 

The Aims and Objectives of this Chapter can be defined as follows: 

• Design an intermediate two-phase study structure to measure CV and uncertainty of 

participants when gating an intermediate complexity set of FC data. 

• Identify whether using diagrammatical protocols to apply gates reduces between 

participant absolute reported results and uncertainties. 

• Identify what causes extreme values in absolute reported results and uncertainty 

measurements by reviewing extremes from this intermediate study. 

• Further test monitoring tools for understanding uncertainty within a more complex 

participant study or facility. 
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5.2 Methodology 
 

Primary Peripheral Blood Mononuclear Cells (PBMCs) were acquired from LGC-ATCC cell banks for 

use within this phase of research (Cat Number: PCS-800-011, Lot number: 80628171).  

 

5.2.1 Cell Selection and Culture 
 

The vial of PBMC material acquired from LGC-ATCC cell banks was primary biological material, 

meaning this has been taken straight from the donor and separated to remove additional whole 

blood cell types. It has not been expanded in vitro before cryopreservation, so this material was 

handled in accordance to the Human Tissue Act (HTA) regulations [182]. Before acquiring this 

material, the Certificate of Analysis for the PBMC material was obtained, along with confirmation of 

donor consent from the supplier for this material to be used for research purposes. These 

documents can be found in Appendix C. Human Tissue Act training was also completed within the 

Centre for Biological Engineering, Loughborough University and through the Medical Research 

Council (MRC) online Research and Human Tissues legislation (Certificates in Appendix C), to 

ensure the correct handling, disposal and ethical treatment of the material was adhered to.  

 

A vial of ATCC PBMCs (25 x 106 cells, suspended in 1 mL of cryoprotective fluid) was removed from 

a liquid nitrogen Cryobank and was thawed in a water bath for 3 minutes until a slither of frozen 

material remained. The material was topped up 1:1 with RPMI 1640 cell culture media (Cat Number 

11875093, Lot Number: 1906058) (fortified with 10 % v/v Fetal Bovine Serum (FBS)), mixed slowly 

and transferred into a centrifuge tube. 1 mL of Flow Cytometry buffer fluid (Biolegend Cell Staining 

Buffer Cat Number 420201, Lot Number B228788) was used to wash the inside of the cryovial to 

remove any additional cells which remained after transfer. This 1 mL flow buffer suspension was 

also added to the centrifuge tube. The centrifuge tube was then topped up to 25 mL with an 

additional 22 mL of RPMI 1640 cell culture media, and a 250 µL sample was taken for an initial 

cell count. Three counts were completed using a Nucleo-Counter® NC-3000™ and ChemoMetec 
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Via1-Cassettes™, to stain and measure cells with Acridine Orange and DAPI dyes, calculating an 

average of 0.8 x 106 cells / mL, totalling approximately 20 x 106 cells within the resuspension. 

 

The remaining cell suspension was centrifuged at 300 g for 5 minutes, transferred into a Biological 

Safety Cabinet (BSC), and the supernatant removed from the cell pellet. 29 mL of RPMI 1640 

fortified media was added to a T75 flask, and the cell pellet was resuspended and slowly mixed 

with 1 mL of cell culture media, before being transferred into the T75 flask. This T75 flask was 

moved into a humidified incubator at 37˚C with 5% CO2, for 24 hours to allow the cells to proliferate. 

To comply with HTA good practice, a sign was placed on the incubator to notify other users of the 

contents, and the material location was updated on the biological material database, Procuro. 

 

After 24 hours had elapsed, cells were counted by taking a 250 µL sample from the mixed cell 

suspension. An average of 0.83 x 106 cells / mL was measured from the sample, totalling 

approximately 24.7 x 106 cells within the total resuspension, at an average viability of 94.8 %. The 

increase in cell count after 24 hours shows a successfully maintained cell population after being 

thawed, so the cells could be used for further analysis. In this instance, further cell culture or 

monitoring of certain cellular features was unnecessary because only ‘snapshot’ fcs files of the 

PBMC material were required. PBMCs are suspension cells, so no disassociation process was 

required to remove the cells from the surface of the tissue culture flask. The cell suspension was 

transferred into a 50 mL centrifuge tube and centrifuged for 5 minutes at 300 g to form a cell 

pellet.  

 

5.2.2 .fcs File Generation 
 
A series of fcs files were generated using the primary PBMCs kept in culture for the last 24 hours.  

Cells were resuspended in 2.5 mL of Cell Staining buffer and gently mixed, then recentrifuged to 

form a pellet and resuspended in 2.5 mL of Cell Staining buffer to wash the cells and remove any 

cell culture media remaining. 0.1 mL aliquots of the master cell suspension were placed into 

separate labelled microcentrifuge tubes so there were approximately 1 x 106 cells per tube (three 
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fully stained samples, one unstained sample, one live/dead stained sample, five single stain 

controls, five isotype controls, five FMO controls). The unstained sample was wrapped in foil and 

placed in a 4˚C fridge because this was not needed until the final analysis. 

 

1 µL of Biolegend Zombie Aqua Viability dye (Cat Number: 423101, Lot Number: B243783) was 

added to all tubes and gently mixed, except for the unstained sample. The Eppendorf tubes were 

covered in foil to minimise light exposure and left to incubate for 20 minutes. Amine-reactive dyes 

or Live/Dead fixable dead cell stains cross the cell membrane of dead cells and react with free 

amines in the cytoplasm. Live cells exclude these dyes when they are intact so free stain can be 

washed away after staining, allowing for discrimination of live and dead cells in the population 

[183]. Amine-reactive dyes were used because they could be compensated for within the Flow 

Cytometry panel using amine-reactive compensation beads. Once incubated, all cells were washed 

twice with 1 mL Cell Staining Buffer, centrifuged (300 g for 5 minutes) and supernatant removed. 

Cells were then resuspended in 100 µL Cell Staining Buffer. 

 

5 µL of Biolegend Human TruStain FcX™ Fc blocker (Cat Number: 422301, Lot Number: B235079) 

was added to all cell samples aside from the isotype controls and incubated covered in foil for a 

further 15 minutes. Human Fc receptors are expressed on a variety of cells and cells with Fc 

receptor expression can sometimes give false positives or false negative results within 

immunofluorescent staining because of Fc receptor non-specific binding. Human TruStain FcX™ is 

a blend of specialised IgG immunoglobulins that join to Fc receptors to stop non-specific binding 

occurring. Once incubated, all cells were washed twice with 1 mL Cell Staining Buffer, centrifuged 

(300 g for 5 minutes) and supernatant removed. Cells were then resuspended in 100 µL Cell 

Staining Buffer. 

 

The live/dead sample then kept alongside the unstained sample in the fridge and was removed 

when Flow Cytometry analysis was undertaken. The remaining cells were then stained according to 

the following stain protocols in Table 29, Table 30, Table 31 and Table 32. Isotype controls for each 
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marker were stained with the respective antibody isotype control, single stain controls were stained 

with just the antibody marker for that specific stain and the FMO controls were stained with all 

stains aside from the stain aligned to that specific channel. This is to monitor any fluorescence 

spillover into the required channels from other markers being used. 

 

The antigen markers used for the Single Stain controls (Table 29), FMO controls (Table 30) and 

Fully Stained Samples (Table 32) are Biolegend FITC anti-human CD3 antibody (Cat Number: 

300306, Lot Number: B218086), Biolegend APC anti-human CD4 antibody (Cat Number: 357405, 

Lot Number: B223335), APC/Cy7 anti-human CD8 antibody (Cat Number: 300926, Lot Number: 

B231191), Biolegend PE anti-human CD45RA antibody (Cat Number: 362552, Lot Number: 

B210221) and Biolegend BV421 anti-human CD56 antibody (Cat Number: 423101, Lot Number: 

B246952). 

 

Table 29 Staining volumes for Single Stain Controls 

Channel Antigen 
Marker 

FITC Single 
Stain 

APC Single 
Stain 

APC/Cy7 
Single Stain 

PE Single 
Stain 

BV421 
Single Stain 

633 nm 
laser, 

660/20 filter 

CD3 FITC 5 µL     

488 nm 
laser, 

530/30 filter 

CD4 APC  5 µL    

633 nm 
laser, 

780/60 filter 

CD8a 
APC/Cy7 

  5 µL   

488 nm 
laser, 

585/42 filter 

CD45RA PE    5 µL  

405 nm 
laser, 

450/50 filter 

CD56 BV421     5 µL 
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Table 30 Staining volumes for FMO Controls 

Channel Antigen 
Marker 

FITC FMO APC FMO APC/Cy7 
FMO 

PE FMO BV421 FMO 

633 nm 
laser, 

660/20 filter 

CD3 FITC  5 µL 5 µL 5 µL 5 µL 

488 nm 
laser, 

530/30 filter 

CD4 APC 5 µL  5 µL 5 µL 5 µL 

633 nm 
laser, 

780/60 filter 

CD8a 
APC/Cy7 

5 µL 5 µL  5 µL 5 µL 

488 nm 
laser, 

585/42 filter 

CD45RA PE 5 µL 5 µL 5 µL  5 µL 

405 nm 
laser, 

450/50 filter 

CD56 BV421 5 µL 5 µL 5 µL 5 µL  

 

The antigen markers used for the Isotype controls (Table 31) are Biolegend FITC Mouse IgG2a ĸ 

Isotype Control antibody (Cat Number: 400207, Lot Number: B235551), Biolegend APC Mouse 

IgG2b ĸ Isotype Control antibody (Cat Number: 400329), APC/Cy7 Mouse IgG1 ĸ Isotype Control 

antibody (Cat Number: 400127, Lot Number: B235070), PE Mouse IgG2b ĸ Isotype Control 

antibody (Cat Number: 400313, Lot Number: B246304) and Brilliant Violet 421 Mouse IgG1 ĸ 

Isotype Control antibody (Cat Number: 400157, Lot Number: B237449). 

 

Table 31 Staining volumes for Isotype Controls 

Channel Antigen 
Marker 

FITC Isotype APC Isotype APC Fire 750 
Isotype 

PE Isotype BV421 
Isotype 

633 nm 
laser, 

660/20 filter 

CD3 FITC 5 µL     

488 nm 
laser, 

530/30 filter 

CD4 APC  5 µL    

633 nm 
laser, 

780/60 filter 

CD8a 
APC/Cy7 

  5 µL   

488 nm 
laser, 

585/42 filter 

CD45RA PE    5 µL  

405 nm 
laser, 

450/50 filter 

CD56 BV421     5 µL 
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Table 32 Staining volumes for Fully Stained Samples 

Channel Antigen 
Marker 

Fully Stained 
Sample 1 

Fully Stained 
Sample 2 

Fully Stained 
Sample 3 

633 nm 
laser, 

660/20 filter 

CD3 FITC 5 µL 5 µL 5 µL 

488 nm 
laser, 

530/30 filter 

CD4 APC 5 µL 5 µL 5 µL 

633 nm 
laser, 

780/60 filter 

CD8a 
APC/Cy7 

5 µL 5 µL 5 µL 

488 nm 
laser, 

585/42 filter 

CD45RA PE 5 µL 5 µL 5 µL 

405 nm 
laser, 

450/50 filter 

CD56 BV421 5 µL 5 µL 5 µL 

 

CD3 (Cluster of differentiation 3) is a T-cell co-receptor that helps to identify lymphocyte subsets 

and activate cytotoxic and helper T-cells. It transduces the activating signals to the cytoplasm of 

the T-cell [184]. CD4 (Cluster of differentiation 4) is an extracellular protein marker found on the 

surface of immune cells, specifically T helper cells [185,186]. This white blood cell subset signals 

to other immune cells to destroy foreign bodies found. If patients have low CD4+ counts, they are 

susceptible to lots of infections which can become difficult for the immune system to fight. CD8 

(Cluster of differentiation 8) is a cell surface protein on cytotoxic T cells and also natural killer cells. 

These cells are able to kill virus-infected cells, cancer cells and can use cytokines to recruit other 

cells when mounting an immune response [187,188]. CD4:CD8 ratios are often used to measure 

the balance of the immune system [189]. 

 

CD45RA (Cluster of differentiation 45RA) is used to identify naïve T-cell subsets and is often 

compared with CD45RO which is used to monitor memory T-cells, because a cell cannot express 

both markers and this can be used to understand the population split of T-cells [190]. Finally, CD56 

(Cluster of differentiation 56) is used to identify natural killer cells and is a marker for cytotoxicity 

[191]. 

 

These antibody quantities for the single stain controls, FMO controls and Isotype controls were 

added according to the quantities listed and incubated in the dark at 4˚C for 30 minutes. Once 

incubated, the cells were washed twice and transferred to BD Falcon™ Round Bottom 12 x 75 mm 
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tubes (Cat 352063) and kept covered to minimise light exposure. Cells were run through a BD 

FACSCanto™ II Flow Cytometer, using the respective fluorescence channel and voltage: FSC 310 V, 

SSC 400 V, FITC 389 V, APC 420 V, APC/Cy7 472 V, PE 350 V, BV421 300 V and BV510 451 V for 

the live-dead stain, once a daily calibration was completed using CS&T beads (Lot: 74538, 

Successful calibration). 

 

Each tube and respective fcs file were generated using a medium flow rate (60 µL/min) and by 

acquiring 30,000 cellular events. 3 stained sample fcs files were generated to build a library of 

repeats to use within the variation studies, alongside the control files listed. Files were exported as 

fcs 3.0 version types for use in Flowjo Version 10.0.8r1 third party analysis software [123] and 

saved as a workspace. 

 

5.2.3 Flow Cytometry Study Organisation 
 
A total of 23 Participants from three separate centres (5 from an academic institution, 13 and 5 

participants from separate industrial institutions) were invited to complete the study in a quiet 

analysis space, to avoid distraction and the possibility of others seeing the study content and 

analysis. As in the previous uncertainty exercise, participants made 3 repeat measures within a 1-

hour slot, because this was the maximum allowance given for each participant’s time, agreed 

across the three institutions.  

 

Study sessions had a one-hour maximum duration, and participants were shown three Flowjo 

workspaces, which contained a series of fully stained PBMC .fcs files. Identical files were included 

in each workspace, and participants were instructed to gate through a five-plot sequence to identify 

target cells (using Forward Scatter (FSC) plot against Side Scatter (SSC)), single cells, live cells, 

CD3+ cells and finally to apply a quadrant gate to the double positive naïve T-cell CD4+ CD45RA+ 

population to identify final positive population cell counts. Flowjo was the choice of platform due to 

access of the software across all three collaborator and participant sites, meaning a higher number 

of participants were likely to be familiar with the platform. 
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Although an additional marker for CD56 was acquired, this was not used within the final analysis 

sessions for participants to identify natural killer subsets. To identify an additional population 

meant sessions would run over the allotted 1-hour time slot. The CD4+ CD45RA+ pipeline was kept, 

because of the suitability of this panel to current engineered T-cell product panels and to provide a 

good basis to increase complexity for the subsequent studies (Chapter 6, complex model) to more 

representative CGT T-cell product analysis. 

 

Participants were also provided with isotype controls and FMO controls in each workspace to aid 

gate application and were allowed to use whatever manual gating tool on Flowjo they felt best to 

gate the population in hand. An overall schematic of the gating sequence they were asked to follow 

is shown in Figure 58, and participants gated each workspace of files separately to ensure a correct 

quantification of uncertainty through standard deviation calculation in accordance with principles 

described earlier in Chapter 2. 

 

 

Figure 58 Gating sequence participants were asked to follow, to identify the target single live cell population, with CD3+ CD4+ 
CD45RA+ for naïve T-cells. 

 

In a similar manner to the pre-study completed in Chapter 3, participants took part in a second 

phase, where they repeated the same gating process for the CD3+ CD4+ CD45RA+ cell population 

but were asked to copy a diagrammatical protocol to apply gates instead of using their own 

judgement, shown in Figure 59. To remove additional variability when placing these gates, 

participants were only given the three fully stained samples to apply the gates in each workspace, 
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so no control files could influence gate placement once the images had been copied, and 

participants followed the same gating sequence provided in Figure 58.  

 

 

Figure 59 Diagrammatical protocol given to participants to copy gates instead of using personal judgement 

 

All participants and their respective data were anonymised at the point of data collection, and data 

stored in accordance to the ethical clearance obtained. Participant coding was restructured from 

previous work to remove the possibility of analysis bias.  

 

5.2.4 Uncertainty Calculation 
 
Once studies had been completed, target cell, single cell, live cell, CD3+ and CD4+ CD45RA+ cell 

population metrics were extracted from the data, using the results from the identical repeated file 

situated in each Flowjo workspace. These were then used to calculate a mean cell count, SD and 

coefficient of variation (CV) for each gating stage, per participant using Microsoft Excel software 

(Office 16). Finally, a combined uncertainty (uc) was calculated by combining these Type A 

uncertainties by summation in quadrature. The uc value was expanded with a coverage factor of k 

= 2, representing a 95 % Confidence Interval for the uncertainty statement, which gave each 

participant a representative expanded uncertainty (U) figure, to show individual variance. The 

mathematical methodology used to calculate uncertainty metrics has been previously discussed in 

Section 2.5. An example of the data extraction through to calculation of metrics and uncertainty 

can be seen in Figure 60 for this intermediate model.  
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Figure 60 Example of data extraction through to calculation of absolute results and uncertainty  

Total Cells Workspace 1 Workspace 2 Workspace 3
30000 Target Lymphocytes 16517 16754 16599

Single Cells 16384 16494 16390
Live Cells 14985 14779 14746
CD3+ 10675 10545 10475
CD4+ CD45RA+ 2072 2088 2074

Workspace 1 Workspace 2 Workspace 3 AVERAGE STDEV CV uc U
Target Lymphocytes 55.06 55.85 55.33 55.41 0.40 0.72 0.71 1.42
Single Cells 54.61 54.98 54.63 54.74 0.21 0.38
Live Cells 49.95 49.26 49.15 49.46 0.43 0.87
CD3+ 35.58 35.15 34.92 35.22 0.34 0.96
CD4+ CD45RA+ 6.91 6.96 6.91 6.93 0.03 0.42

Total Cells Workspace 1 Workspace 2 Workspace 3
30000 Target Lymphocytes 18936 18734 21639

Single Cells 14711 14685 14689
Live Cells 14255 14135 14270
CD3+ 10375 10238 10366
CD4+ CD45RA+ 1800 1832 1823

Workspace 1 Workspace 2 Workspace 3 AVERAGE STDEV CV uc U
Target Lymphocytes 63.12 62.45 72.13 65.90 5.41 8.20 5.42 10.84
Single Cells 49.04 48.95 48.96 48.98 0.05 0.10
Live Cells 47.52 47.12 47.57 47.40 0.25 0.52
CD3+ 34.58 34.13 34.55 34.42 0.26 0.74
CD4+ CD45RA+ 6.00 6.11 6.08 6.06 0.06 0.91

Percentages
CD4+CD45RA+

Percentages
CD4+CD45RA+

Stage 2
Absolute Values

Coverage 
factor

2

Coverage 
factor

2
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5.3 Results & Discussion 
 

5.3.1 Flow Cytometry Intermediate Gating Exercise absolute results – Phase 1 Personal 
judgement 
 
The absolute results reported here are the targeted cell population that participants were asked to 

identify using the gating sequence defined in Figure 58, during the first gating session where they 

used their own judgement to apply gates. These are akin to what would be reported in literature for 

specific cell types, in this instance it is naïve T-cells. The uncertainty of the gating sequence will be 

discussed in subsequent sections of this Chapter.  

 

Table 33 Measures of Location for the absolute results of the Intermediate Gating Study using personal judgement (%) 

Arithmetic Mean 6.28 

Median 6.01 

Mode N/A 

Minimum 3.46 

Maximum 7.99 

 

Table 34 Measures of Spread for the absolute results of the Intermediate Gating Study using personal judgement (%) 

Range 4.53 

25th Percentile 5.65 

75th Percentile 7.27 

Interquartile Range 1.62 

Standard Deviation 1.14 

CV 18.15 

Median Absolute Deviation 6.01 

 

Table 35 Measures of Skew for the absolute results of the Intermediate Gating Study using personal judgement (%) (3dp for better 
resolution) 

Skewness -0.351 

Skewness standard Error 0.481 

Skewness z-score -0.730 

Kurtosis 0.042 

Kurtosis Standard Error 0.935 

Kurtosis z-score 0.045 
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Table 36 Measures of Normality for the absolute results of the Intermediate Gating Study using personal judgement (%) (3dp for 
better resolution) 

Shapiro-Wilk statistic 0.945 

Significance 0.231 

Normal/Non-parametric Normal 

 

Using descriptive statistics to give a general report on the size and shape of the data, the 

distribution approximates to a normal shape because the mean and median are very close 

together, as quoted in Table 33. This is supported by the skewness and kurtosis z-scores (Table 

35) and the Shapiro-Wilk statistical test for normality (Table 36) significantly concludes the 

distribution is normal. This normality definition is most probably indicated by the spread of the 

distribution, rather than any specific location parameters. Measures of spread (Table 34) show that 

there is a small range (in comparison to the Base Model Study) between the highest and lowest 

participant averages and the IQR of the participant data was just over half the size of the range, 

again indicating normality. However, because this model is based upon a more specific sub-

population the ranges may not be as small as initially perceived, they may just be relative to the 

respective cell population. 

 

These participant average cell count values can be seen in Figure 61. With most participant 

averages lying close to the median, and the error bars show ± 1SD from each participant’s repeated 

measures.  
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Figure 61 Absolute Results of Target Cell population, represented by each participant's average and ± SD. 

 
Participant deviation from the median has been more clearly visualised in Figure 62, with bars 

depicting each participant’s average from the median group value, or residual value (calculated by 

subtracting participant averages from the group median). The SD of the total group has also been 

plotted, because these are most commonly used within traditional manufacturing boundaries to 

define out of control/out of specification limits. 70 % of participants are within 1SD of the median, 

showing good corroboration of final results. Of those who fell out of bounds one participant had a 

result above +2SD and six participants below -1SD.  

 

Figure 63 further shows this variability around the central location metrics to compare different 

outlier limits specified in Chapter 3, and further applied to the data in Chapter 4. The skew to the 

data shows how different boundaries would affect determination of outliers, however the data did 

fall within the most extreme boundary specified, which could indicate there is no real extreme in 

skewness or kurtosis of the data. This all depends on the acceptance criteria chosen for 

manufacturing distributions. 
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Figure 62 Participant average result deviations from overall group median. 

 

Figure 63 Acceptance boundaries for permissible limits of variability of Intermediate model personal judgement data 

 

To compare both positive and negative deviation data extremes, Figure 64 shows participant B09’s 

gating strategy, one of the participants very close to the group median value. By comparing the 
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extreme participants to a median participant, there are obvious differences between participants 

when identifying populations based on the visualised density. This is also coupled with personal 

preferences on inclusion or exclusion of data points to further refine the data set in search of a 

particular target. The count average comes from the final gate applied only, but further back in the 

gating sequence gates have been applied to capture most of the relevant populations. Variation in 

the vertical quadrant line does not impact the results because there is a very low cell count across 

this bandwidth. In contrast, the horizontal quadrant line shows less variance in the final cell count 

result because two of the repeats are identical in position. There appears to be a big difference in 

the CD3+ gate applied, because on one repeat B09 set the axes to bi-exponential instead of 

logarithmic, so when compiled, the gates appear different but actually capture similar data which 

has been transformed differently. 

 

 

Figure 64 Participant B09 Gating Strategy interpretation, close to median result. 

 

Focusing on those who fell outside of 2SD, only one participant (C01) had this much deviation from 

the median, with an overall percentage cell count of 3.5 %. Qualitatively reviewing the participant’s 

gating strategy has shown that most of this bias is due to the gate applied to the live cells (BV510+, 

gate 3) which has been applied to a restrained proportion of the population (shown in Figure 65). 

C01 has applied this gate to follow the green density boundary, although there are more cells that 

could fall within this population that are less dense This gating strategy shown in Figure 65, 

identifies how under-constraining the cell populations leads to an overall lower cell count than the 

median.  

 



  Chapter 5: Intermediate Uncertainty Model 

155 
 

Within a cell therapy manufacturing context, if a particular gate is under-constrained throughout 

the process, this will lead to an overall lower cell count population. Depending on the manufacturer-

specific acceptance limit for cell counts, this could cause a therapy to have a false-negative 

measurement, potentially rejecting a treatment that is suitable to be delivered to a patient. 

Alternatively, if the therapy is given longer to culture due to a perceived low cell count, this becomes 

an inefficient and expensive use of resources.  

 

 

Figure 65 Participant C01 Gating Strategy interpretation 

 

Participants A02, B01, B03, B10, B12 and C04 fall outside of the ± 1SD boundary, although all of 

these participants have average cell counts higher than the median value. Two examples have 

been selected to explore here; A02 has the smallest deviation (within this bandwidth) from the 

median and B10 has the greatest deviation (within this bandwidth). Figure 66 and Figure 67 show 

their respective gating strategies. 

 

Figure 66 Participant A02 Gating Strategy interpretation 

 
Participant A02 has a higher average result than the median inter-participant value because in the 

final step of their gating process (gate 5) they have included more cells than the median user. 

Whilst their final gate applied is very repeatable, the horizontal arm of the quadrant is lower than 

other median users, which has included a greater number of cells in the final count. In this instance, 
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A02 has applied gates very precisely, however they are potentially inaccurate, due to their use of 

control files to set the boundary limitations for the final fluorescence gates.  

 

 
Figure 67 Participant B10 Gating Strategy interpretation 

 

Participant B10 has again included additional cell populations which has caused the average cell 

count to be higher than the median. The doublets have not been excluded from the analysis in the 

first or second gates where they would usually be ‘cleaned up’ and they can be seen through the 

gating sequence as additional populations around the densest target population. They do appear 

to be gated out from the CD3+ gate (gate 4), however this is due to the compilation process of 

these images, with larger gates applied to the smaller one, so this population has been cut out.  

 

This analysis of the absolute results used to represent cell populations shows a 4.5 % cell count 

range between participants when determining final naïve T-cell population percentages.  The 

further quantitative analysis of the extremes identifies 1 participant (C01) who falls outside of initial 

control limits. This extreme participant accounts for one third of the cell population percentage 

range. If this extreme participant value was removed, the range would fall to 3.1 % between 

participants (minimum value of 4.9 % and maximum value of 8.0 %). 

 

The distribution histogram of participant CV of reported results can be seen in Figure 68, plotted 

on top of 3 specification limits derived from the ICSH boundaries used within Chapter 4. The optimal 

scenario would have all 23 participants (n) with < 1 % CV, which sets the total height at the y-

intercept of the graph.  

 



  Chapter 5: Intermediate Uncertainty Model 

157 
 

 

Figure 68 CV Performance of Participant Absolute results for personal judgement of intermediate model 

 

Using these guidelines as boundaries, three participants were outside of the ‘revision required’ 

region due to very high CV and an additional three participants were outside of the ‘good’ and 

‘satisfactory’ performance regions. These extreme outliers had more variation within the final 

quadrant gate when identifying the final naïve T-cell cell population. Participant B08 had the highest 

CV, and their final gate can be seen in Figure 69. B08 intersects the final population more than the 

rest of the participants with one gate significantly higher than the rest, causing this variation.  

 

Figure 69 Participant B08 Intermediate Model Study Gating interpretation 

 

Participants B06 and B12 (Figure 70 and Figure 71) also had CVs that fell outside the ‘Revision 

Required’ region of the graph, and again the variation is caused in the final gate due to one of the 
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quadrant repeats being placed significantly higher than the other two. Any gating variance observed 

throughout the gating sequence is not captured within the representative population CV 

measurement, because CV is only calculated from the final population cell counts derived using 

the whole sequence.  

 

Figure 70 Participant B06 Intermediate Model Study Gating interpretation 

 

Figure 71 Participant B12 Intermediate Model Study Gating interpretation 

 

Measurement uncertainty provides a way of combining variability measures (SDs) of each gate 

within the sequence, to provide a measure of variation that is more representative of the 

components of the gating sequence. When extremes in measurement uncertainty arise, 

uncertainty values can be easily deconstructed to identify which part of the gating sequence is 

responsible for causing variation within the measurement. Measurement uncertainty results for 

this phase are discussed in Section 5.3.4, once absolute results for phase 1 and 2 of this study 

have been reviewed and compared. 
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5.3.2 Flow Cytometry Intermediate Gating Exercise absolute results –   
 Phase 2 Following Protocol 
 

The absolute results reported here are the targeted cell population that participants were asked to 

identify using the gating sequence defined in Figure 58, during the second gating session where 

they used the diagrammatical protocol in Figure 59 to apply gates. A comparison of these results 

to Phase 1 and the uncertainty of the gating sequence is discussed in the subsequent section.  

 

Table 37 Measures of Location for the absolute results of the Intermediate Gating Study using diagrammatical protocol (%) 

Arithmetic Mean 6.17 

Median 6.06 

Mode N/A 

Minimum 5.70 

Maximum 7.64 

 

Table 38 Measures of Spread for the absolute results of the Intermediate Gating Study using diagrammatical protocol (%) 

Range 1.94 

25th Percentile 5.97 

75th Percentile 6.25 

Interquartile Range 0.28 

Standard Deviation 0.39 

CV 6.38 

Median Absolute Deviation 6.06 

 

Table 39 Measures of Skew for the absolute results of the Intermediate Gating Study using diagrammatical protocol (%) (3dp for 
better resolution) 

Skewness 2.910 

Skewness standard Error 0.512 

Skewness z-score 5.684 

Kurtosis 10.629 

Kurtosis Standard Error 0.992 

Kurtosis z-score 10.715 

 

Table 40 Measures of Normality for the absolute results of the Intermediate Gating Study using diagrammatical protocol (%) (3dp for 
better resolution) 

Shapiro-Wilk statistic 0.688 

Significance 0.000 

Normal/Non-parametric Non-parametric 
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Using descriptive statistics to give a general report on the size and shape of the data, the 

distribution approximates to a normal shape because the mean and median are very close 

together, as quoted in Table 37. However, this is not supported by the skewness z-score (Table 39), 

and the high kurtosis z-score indicate a more non-parametric distribution due to outliers. The 

Shapiro-Wilk statistical test for normality (Table 40) also significantly indicates the distribution is 

non-parametric. This non-parametric definition is most probably indicated by a few outliers and a 

lot of uniform inliers, rather than any specific location parameters. Measures of spread (Table 38) 

show that there is a small range between the highest and lowest participant averages when 

participants followed a protocol and the IQR of the participant data was 86 % smaller than the total  

range, again indicating non-normality due to outliers.  

 

These values can be seen in Figure 72. Most participant averages lie close to the median, and the 

error bars show ± 1SD from each participant’s repeated measures.  

 

 
Figure 72 Absolute Results of Target Cell population when following a protocol, represented by each participant's average and ± SD. 
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Participant deviation from the median (residual values) has been more clearly visualised in Figure 

73, with bars depicting each participant’s average from the median group value (calculated by 

subtracting participant averages from the group median). The standard deviation limits have also 

been plotted, because these are most commonly used within traditional manufacturing to define 

out of control/out of specification limits. 95 % of participants are within 1SD of the median, showing 

good corroboration of final results. Of those who fell out of bounds one participant (B03) had a 

result outside of the  - 2SD specification limit listed in Figure 73.  

 
Figure 73 Participant average result deviations from overall group median. 

 

The acceptance boundaries defined for the data collected when participants applied gates 

according to their personal judgement has been applied to the ‘following protocol’ data set in Figure 

74. This data has become more refined when participants use a protocol, with the distribution 

falling within more of the acceptance limits. The 95 % Confidence Interval is very small, however 

the mean ± 2SD, trimmed mean ± 2SD and median ± 2MAD are all fairly similar in width, returning 

the same number of inliers and outliers. In this instance, further testing on the shape of the 

distribution should be complete before choosing the correct discrimination methods for extreme 

values. 
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Figure 74 Acceptance boundaries of personal judgement data applied to data when participants followed a protocol 

 

Qualitatively reviewing the extreme participant gating strategy has shown that most of this bias is 

due to the final gate applied to the CD4+ CD45RA+ cells (gate 5), because this gate includes more 

of the CD45RA- cell population that smears below the desired double positive population, with no 

clear density separation. This cuts across a dense region of this population, keeping a higher 

proportion of cells within the gate boundary. This gating strategy can be seen in Figure 75, which 

shows how over-constraining the final cell population leads to an overall higher cell count than the 

median.  

 

Figure 75 Participant B03 Gating Strategy interpretation 
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The distribution histogram of participant CV of reported results can be seen in Figure 76, plotted 

on top of 3 specification limits derived from the ICSH boundaries used throughout this thesis. Only 

20 participants took part in this second gating session so the optimal scenario would have all 20 

participants (n) with < 1 % CV, which sets the total height at the y-intercept of the graph.  

 

 

Figure 76 CV Performance of Participant Absolute results when following a protocol within intermediate model 

 

Using these guidelines as boundaries, one participant fell outside of the ‘revision required’ region 

due to very high CV and two participants fell just outside of the ‘good’ and ‘satisfactory’ 

performance regions. These extreme outliers had more variation within the final quadrant gate 

(gate 5) they drew when identifying the final naïve T-cell cell population. Participant B04 had the 

highest CV when gating using the protocol, seen in Figure 77. B04 intersects the final population 

more and has one of the three repeated gates significantly higher than the rest, causing greater 

variation, similar to the variation seen in extremes in absolute cell count results.  
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Figure 77 Participant B04 Intermediate Model Study Gating interpretation 

 
5.3.3 Flow Cytometry Intermediate Gating Exercise absolute results – Comparison of 

Phase 1 and Phase 2 
 
The average cell counts for each participant when they gated following their own judgement and 

then a protocol have been compiled into the histograms in Figure 78. Any dark orange areas are 

overlap of the two respective histograms. The range of cell counts has reduced by 2.59 % when 

participants followed the protocol, indicating that protocols could help participants conform to more 

reproducible cell counts. This is also reflected in higher skewness and kurtosis z-scores for the 

protocol data set. However, as discussed in Chapter 3, higher kurtosis could be a more suitable 

metric of conformity than trying to achieve a normal distribution when aiming for reproducible data. 

 

Figure 78 Comparison of inter-participant absolute cell counts when gating using their own judgement and when 
following a protocol (brown areas indicate overlap between the two distributions) 
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Further comparison of inter-participant data when gating using their own judgement and following 

a protocol has been completed with a Sign statistical test (Table 41), to compare equality of 

medians between each test condition. Although the Sign test results reject the alternative 

hypothesis of a difference in medians, this is potentially desirable when considering the cell count 

values themselves. In this instance there is no ‘ideal correct’ cell count answer for the cell 

population targeted for gating, so equality of the two testing conditions shows that protocols are 

comparable when identifying the target population and remove the variability from participant 

subjectivity around gating preferences to identify the population. 

 

Table 41 Sign test results for comparison of Intermediate Gating Study Stages 

Null Hypothesis Test Sig. Decision 
Median difference of P1 & P2 cell counts = 0 Related-samples Sign test 0.824 Retain null hypothesis 

 

To further compare these two testing conditions the A Priori and Post Hoc power were calculated 

(Table 42) to identify whether a suitable number of participants had been gathered based upon the 

difference in variance of absolute cell counts in each test condition.  

 

Table 42 A Priori and Post Hoc Power analysis for Intermediate Study absolute cell counts 

Variance Phase 1 Variance Phase 2 A-priori power Sample size required Actual power 
1.300 0.156 0.840 8 0.999 

 

The A Priori and Post Hoc power analyses in Table 42 show that for the variances achieved between 

the two test condition average cell counts, only 8 participants would have been required to show 

this difference, to the required minimum power of 0.80. The actual power achieved through this 

study is 0.999, showing that the differences in variance of absolute cell counts are due to the two 

test conditions used and no other underlying factors.  
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Figure 79 Comparison of participant absolute cell count CVs when gating using their own judgement and when 
following a protocol (brown areas indicate overlap between the two distributions) 

 

Aside from one extreme value, the protocol appeared to reduce the range of results CV between 

participants when they followed this, but this only really considers the final gate applied within the 

repeats. Figure 79 shows that the CV is much more positively skewed towards 0 when participants 

followed a protocol, showing that following a protocol is more likely to reduce your final cell count 

gating variability and improve reproducibility of results overall.  
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5.3.4 Flow Cytometry Intermediate Gating Exercise uncertainty results – Phase 1: 
Personal Judgement 
 
The uncertainty results reported here are a combination of the five gating stages defined in Figure 

33 for gates applied when participants use their own judgement. The uncertainty values have been 

quantified following the prescribed methodology in Chapter 2, Section 2.5. The uncertainty would 

better represent variance of measurements with greater confidence, because this combines 

variability from all gates applied in the sequence, not just the variance of the final gate applied.  

 

Table 43 Measures of Location for Uncertainty of the Intermediate Gating Study using personal judgement (%) 

Arithmetic Mean 3.8 

Median 2.1 

Mode N/A 

Minimum 0.4 

Maximum 16.1 

 

Table 44 Measures of Spread for Uncertainty of the Intermediate Gating Study using personal judgement (%) 

Range 15.7 

25th Percentile 1.4 

75th Percentile 3.8 

Interquartile Range 2.3 

Standard Deviation 4.3 

Median Absolute Deviation 0.8 

 

Table 45 Measures of Skew for Uncertainty of the Intermediate Gating Study using personal judgement (%) (3dp for resolution) 

Skewness 1.942 

Skewness standard Error 0.481 

Skewness z-score 4.037 

Kurtosis 2.899 

Kurtosis Standard Error 0.935 

Kurtosis z-score 3.101 

 

Table 46 Shapiro-Wilk test for normality for Uncertainty of the Intermediate Gating Study using personal judgement (%) (3dp for 
resolution) 

Shapiro-Wilk statistic 0.692 

Significance 0.000 

Normal/Non-parametric Non-parametric 
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Unlike the descriptive statistics for absolute results for this study phase, the mean and the median 

are not close together, indicating a more skewed distribution, as monitored in Table 43. The median 

is less than the mean, indicating a slight positive skew to the data. This is further supported by the 

Shapiro-Wilk test for normality, shown in Table 46, indicating that the distribution is non-parametric 

in shape, indicating skewness. 

 

There is a wide range (15.4 %) between minimum and maximum participant uncertainties. Table 

44 also shows the interquartile range as 2.3 %, indicating a high kurtosis, because half of the data 

lies within 15 % of the total distribution range.  This is supported by the skewness and kurtosis 

values in Table 45 with skewness and kurtosis z-scores falling outside of the ±2.58 boundaries 

specified for normality defined in Chapter 2. The raw data for each participant can be seen in Figure 

80 with various extremes within the dataset. This distribution shape can be observed within Figure 

81, showing the positive skew with a potential bimodal split and 4 larger uncertainty extremes. 

 

 

Figure 80 Expanded Uncertainty of all Participant Gating within the Intermediate Model Study 
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Figure 81 Histogram of Participant Uncertainty from repeats of Intermediate Model Study 

 

Whilst deviation from a median can help to explain the distribution parameters, when analysing 

variance, a positively skewed distribution towards zero is preferred. Comparing uncertainty in its 

size order allows boundaries to be set for permissible specification limits for product 

release/laboratory quality that increase in value.  

 

The ICCH and ICCS imprecision values have also been used here to define example specification 

limits if monitoring participant uncertainty. Again, in this instance the CV specification limits have 

been substituted for uncertainty (Figure 83), and no other uncertainty specifications have been 

defined in the public body of knowledge from research or industry. However, unlike the previous 

model, this correlation is not strong because of the four participants with extreme uncertainty 

values, which will be explored within the extremes identified within Figure 82. Even if these 4 

‘outliers’ were removed, the slope (indicating correlation) only increases slightly to 0.0699x. 

Although this correlation was used to justify the use of CV boundaries for uncertainty 

measurements in Chapter 4, this correlation is not present here. However, for continuity of 
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reporting, the uncertainty distributions will still be binned according to these guidelines, to aid 

comparison between the uncertainty exercises. 

 

Figure 82 Final Cell Count Population Percentage versus Gating Uncertainty for participants 

 

Figure 83 Participant Uncertainty performance monitoring diagram when using their own judgement during the intermediate model 
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Participant B10 had the highest overall uncertainty that fell within the ‘revision required’ region of 

the plot, followed by Participant B04, and participants C01 and C05 sitting on the boundary of 

‘satisfactory performance’ and ‘revision required’. A deeper review of B10’s gating in Figure 84 

shows their greatest variance came from the third gate applied to discriminate live/dead cells. The 

amine-reactive dye used stains dead or dying cells, so the live cells appear as the densest 

population on the left side of the plot. Reviewing B10’s repeats has highlighted different ways this 

live/dead boundary was selected. B10 used the unstained control file to set areas for negative 

expression (live cells). The inclusion of the doublet cells and dying cells has caused confusion and 

therefore variability when choosing this boundary because they had not been previously ‘cleaned 

up’ from the data.  

 

Figure 84 Participant B10 Intermediate Model Study Gating interpretation 

 

This gate also caused the most variability for participant B04, who in one repeat also included this 

doublet population within their gate (shown in Figure 85, gate 3), causing variation and a higher 

population value as a result. B04 has also used a bi-exponential scale instead of a logarithmic 

scale, which could be an additional variable affecting their overall uncertainty. 

 

 
Figure 85 Participant B04 Intermediate Model Study Gating interpretation 
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The quadrant gates used to locate the final CD4+ CD45RA+ population were very precise, having 

minimal effect because they do not intersect any high-density areas through good use of control 

files provided. Control files provided were isotypes, FMO controls and a negative sample, which 

were used to set the position of the gates using a positive/negative split on respective axes. Control 

files were provided for other gates in the sequence but those who have extremes in their data 

appear to not have used these in the same manner to apply gates reproducibly. 

 
5.3.5 Flow Cytometry Intermediate Gating Exercise uncertainty results – Phase 2: 

Following Protocol 
 
The uncertainty results reported here (calculated as per Section 2.5 and Section 5.3.5) are a 

combination of the five gating stages defined in Figure 58 using the gating protocol provided, shown 

in Figure 59.  

 

Table 47 Measures of Location for Uncertainty of the Intermediate Gating Study when following a protocol (%) 

Arithmetic Mean 5.8 

Median 2.2 

Mode N/A  

Minimum 0.5 

Maximum 12.6 

 

Table 48 Measures of Spread for Uncertainty of the Intermediate Gating Study when following a protocol (%) 

Range 12.1 

25th Percentile 1.4 

75th Percentile 10.9 

Interquartile Range 9.5 

Standard Deviation 5.1 

Median Absolute Deviation 2.2 

 

Table 49 Measures of Skew for Uncertainty of the Intermediate Gating Study when following a protocol l(%) (3dp for resolution) 

Skewness 0.226 

Skewness standard Error 0.512 

Skewness z-score 0.441 

Kurtosis -2.065 

Kurtosis Standard Error 0.992 

Kurtosis z-score -2.082 
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Table 50 Shapiro-Wilk test for normality for Uncertainty of the Intermediate Gating Study when following a protocol (%) (3dp for 
resolution) 

Shapiro-Wilk statistic 0.757 

Significance 0.000 

Normal/Non-parametric Non-parametric 

 

Unlike the descriptive statistics for absolute results for this study, the mean and the median are 

not close together, indicating a more skewed distribution, as monitored in Table 47. The median is 

less than the mean, indicating a positive skew to the data. This is further supported by the Shapiro-

Wilk test for normality, shown in Table 50, indicating that the distribution is non-parametric in 

shape, indicating skewness. There is a wide range (12.0 %) between minimum and maximum 

participant uncertainties. Table 48 also shows the interquartile range as 9.5 %, however, unlike 

previous distributions this supports a low kurtosis, because half of the data lies within 79 % of the 

total distribution.  This is supported by the skewness and kurtosis values in Table 49 with skewness 

and kurtosis z-scores inside of the ±2.58 boundaries specified for normality defined in Chapter 2. 

The raw data for each participant can be seen in Figure 86 with various extremes within the dataset. 

This ordered distribution shape can be observed within Figure 87, showing the positive skew with 

a bimodal split and 9 larger uncertainty extremes. Qualitatively assessing the shape of the 

distribution shows a different shape to the data than the descriptive statistics, because the mean 

calculated does not reflect central tendency of the raw data as would be assumed. This bimodal 

split will be investigated further to understand the difference between the high variance and low 

variance clusters. 
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Figure 86 Expanded Uncertainty of all Participant Gating within the Intermediate Model Study when participants 
followed a protocol 

 

 

Figure 87 Histogram of Participant Uncertainty from repeats of Intermediate Model Study when participants followed a 
protocol 
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Whilst deviation from a median can help to explain the distribution parameters, when analysing 

variance, a positively skewed distribution towards zero is preferred. Comparing uncertainty in its 

size order allows boundaries to be set for permissible specification limits for product 

release/laboratory quality that increase in value.  

 

The ICCH and ICS imprecision values described earlier for measurement CV and in previous 

Chapters have also been used here to define example specification limits if monitoring participant 

uncertainty. Again, in this instance the CV specification limits have been substituted for Uncertainty 

from this gating phase (Figure 88), because no other uncertainty specifications have been defined 

in the public body of knowledge from research or industry.  

 

 

Figure 88 Participant Uncertainty performance monitoring diagram when following protocol during the intermediate 
model 

 

Participants B04 and B07 had the highest overall uncertainty that fell within the ‘revision required’ 

region of the plot, followed by C04, who is just under the limit of permissible uncertainty on the 
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chart in Figure 88. However, there is a participant cluster of high variance which has its own maxima 

at 11 % Uncertainty, populated by participants A03, A05, B01, B05 and B10.  

 

Participant B07’s most variable gate was the on the first gate in the sequence. This has been 

enlarged in Figure 89 to better identify the source of this variation. The repeats are qualitatively 

very uniform in size and structure, with a repeatable cut-off separating the primary population from 

the dead and dying cells. The quantitative variability appears to come from differences in the right 

edge of the gate, where in one instance the gate applied includes a data spike that sits on the 

boundary of the plot. The axes of the plot have been scaled down slightly so this spike can be clearly 

seen. This data spike could be an amalgamation of all the data points that exceed the plot limits, 

so they have been complied and added to the boundary, however, there is no information from 

Flowjo on this visualisation effect. 

 

 

Figure 89 Enlargement of Participant B07's first plot and gates applied in Phase 2 

 

Additionally, other Flow Cytometry data from other research teams using different cell models were 

checked to see if a boundary effect was present, and it appears that any cell events that exceed 
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the highest boundary scale point on the plots get concatenated in this way, making it seem to be a 

function of the software data binning and visualisation process. This intermediate data set was 

imported into two other Flow Cytometry Analysis Software packages, FlowLogic and FCS Express 

and qualitatively compared to the FlowJo output, seen in Figure 90. Not only do the other two 

software packages use different colour gradient scales to visualised cluster density, the boundary 

effect has been removed by FlowLogic, but is present and even more noticeable in FCS Express. 

This therefore falls to operator subjectivity, not only in which software they choose for analysis but 

whether they are aware of this boundary effect and if they consciously include or exclude it from 

their analysis.  

 

 

Figure 90 Visualisation of Intermediate Gating Study data in different Flow Cytometry Software 

 

B04’s Phase 2 gate has already been featured as an extreme in this Chapter (Section 5.3.2) due 

to high absolute cell count CV. Figure 77 depicts B04’s gating strategy, with most of their gating 

variability introduced from the first gate applied to start ‘cleaning’ the data, to remove dead cells 

and debris. An enlargement of this plot has been provided in Figure 91. Although this plot has a lot 

of different overlapping populations, the repeated gates are very similar in size shape and where 

they intersect and cut off the dead and dying cells, because this area has a lot of clustering overlap, 

making it difficult to identify the main area of variation on this plot. Similar to B07’s plots, the right 

edge sits along the boundary effect which could be causing some variability within the analysis. The 

majority of variation in the overall uncertainty of B07, C04, A03, A05, B01 and B05’s gates were 
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also from this first plot, strengthening the need for further investigation into this variation and its 

cause. 

 

 

Figure 91 Enlargement of Participant B04's first plot and gates applied in Phase 2 

 

To further investigate if the cause of this higher group cluster variability is a function of the first 

gate in the sequence, a selection of participants with low uncertainties were looked at to see if 

there was a difference or obvious understanding of this boundary effect, away from the data spike 

during their analysis. Participants B02 and B08 had very low uncertainties from their total gating 

process and both fall within the lower variance cluster. Their initial plots can be respectively seen 

in Figure 92 and Figure 93. Participant B02 has applied gates close to this boundary effect, 

however none touch this edge and they are very repeatable in size and shape. Upon closer 

inspection B08 has clearly not included any of this boundary effect and there is a clear distance 

from this edge and the right side of their gates. This initially shows that this difference in high and 

low variance groups could be down to participant knowledge and awareness of this boundary effect, 

however this was not something captured within the gating sessions themselves, nor could it be 

something that the participants were consciously aware of.  
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Figure 92 Enlargement of Participant B02's first plot and gates applied in Phase 2 

 

Figure 93 Enlargement of Participant B08's first plot and gates applied in Phase 2 

 

A follow-up questionnaire was given to participants during the complex model (Chapter 6) to try and 

identify knowledge of this effect without asking leading questions and the results are discussed in 

more detail within Chapter 8.  
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5.3.6 Flow Cytometry Intermediate Gating Exercise uncertainty results – Comparison of 
Phase 1 and Phase 2 
 

The uncertainties for each participant when they gated following their own judgement and then a 

protocol have been compiled into the histograms in Figure 94. Any dark orange areas are overlap 

of the two respective histograms. The range of cell counts has reduced by 3.4 %, indicating that 

protocols could help participants conform to reproducible cell count, however a bimodal distribution 

appeared so potentially more consideration needs to be applied to understanding how subjectivity 

and interpretation of a protocol and visual images impact the final uncertainty calculated. The 

skewness and kurtosis z-scores have reduced when participants use a protocol, however this is 

showing a tendency towards normality, which the distribution shape does not support in this 

instance.  

 

When participants used their own judgement to apply gates, a split between higher and lower 

uncertainty groups appears, but the shape of the overall distribution is positively skewed, with only 

a few extremes exhibiting high variance, so it can be described as bimodal, similar to the protocol 

uncertainty distribution. The protocol participants were asked to copy included the boundary effect 

observed, which is potentially causing the difference in variance clusters, which is something that 

requires further investigation, but has been used to aid the instructions for the complex model in 

Chapter 6. 
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Figure 94 Overlaid histograms of participant uncertainties when gating the naïve T-cell population following their own 
judgment and then using a protocol (brown areas indicate overlap between the two distributions) 

 

Further comparison of participant data when gating using their own judgement and following a 

protocol has been completed with a Sign statistical test, to compare equality of median 

uncertainties between each test condition, shown in Table 51. The Sign test results reject the 

alternative hypothesis, because the uncertainty medians of the two testing conditions are not 

statistically different. This does not statistically show that the uncertainties are smaller when 

participants use a protocol, however this only considered location values, so other measures of 

variability should also be considered before deciding whether a protocol effectively reduces inter-

participant variability, or not.  

 

However, the reduction in overall range shows that the distribution can potentially be controlled to 

minimise extreme values occurring in the data set, although use of this protocol is causing 

subjective behaviour to divide the population into high and low variance clusters.  
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Table 51 Sign test for median difference between Phase 1 and Phase 2 uncertainties 

Null Hypothesis Test Sig. Decision 
Median difference of P1 & P2 uncertainties = 0 Related-samples Sign test 1.000 Retain null hypothesis 

 

To further compare these two testing conditions the A Priori and Post Hoc power were calculated 

(Table 52) to identify whether a suitable number of participants had been gathered based upon the 

difference in variance of absolute cell counts in each test condition.  

 

Table 52 A Priori and Post Hoc Power for Phase 1 and 2 uncertainties 

Variance Phase 1 Variance Phase 2 A-priori power Sample size required Actual power 
18.193 26.388 0.80 181 0.213 

 

The A Priori and Post Hoc power analyses in Table 52 show that for the variances achieved between 

the two test conditions uncertainties, 181 participants would have been required to show this 

difference, to the required minimum power of 0.80. The actual power achieved through this study 

is 0.213. This low power indicates that any differences seen from the data have a low probability 

of being just due to the two test conditions used and no other underlying factors present. Again, in 

a manner similar to the Sign test, this needs to be considered carefully. A greater number of 

participants in the study could always benefit and provide more confidence in the results, however, 

the distributions are not normally distributed, so the variance calculated assumes a distribution 

with central tendency (whether this is normally distributed or non-parametric). In this instance, the 

range of data becomes more important to consider, due to the distribution shape and clusters 

appearing within the uncertainty data. 
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5.4 Chapter Conclusions 
 
The primary PBMC material used was a good model for the intermediate study because it provided 

an appropriate step up in complexity of the analysis pipeline participants were required to 

complete, and it also provided affinity towards current cell therapy treatments which are T-cell 

based. The studies completed with the 3-workspace configuration in Flowjo for repeats continued 

to work well within the time available for participants so this structure has shown to be a good 

working model for these studies and also will be used for the final, most complex model. The five-

step gating process that each participant had to work through was also straight-forward to follow 

from the gating sequence protocol and the diagrammatical protocol, to help control additional 

variance within the study. 

 

When reporting the absolute cell count percentages for the results, the mean and median values 

for Phase 1 and Phase 2 were very similar (mean = 6.3 % and median = 6.0 % for Phase 1, mean 

= 6.2 % and median = 6.1 % for Phase 2). These results both indicate a normal distribution within 

both data sets, but it also shows that a protocol can achieve the same target cell counts compared 

to when participants used their own judgement. The difference when using a protocol is the 

reduction in between-participant cell count results. The protocol reduced the range of cell count 

results between-participants by 2.6 % of the overall cell count (777 cell events). This is a 57 % 

reduction in range from Phase 1 and Phase 2, indicating protocols can potentially aid reproducible 

cell counts between participants. The Sign test confirmed there was no significant difference 

between the medians of the two testing conditions, showing that protocols can produce similar 

results to the null testing condition, however, the power analysis completed indicated the variance 

of these two groups is different enough such that only 8 participants would have been required to 

attain the same distribution results. 

 

CV is a common variation metric used within cellular measurements within Flow Cytometry, 

however, when considering the use of protocols, the range of CV in reported results remained the 

same as when participants used their own judgement (up to 25 %). However, the use of the protocol 
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made the distribution much more positively skewed towards 0 %, which is desirable for variation 

metrics, indicating that more participants were less variable (in their final cell count) when using a 

protocol to apply gates. Reviewing the extremes in CV using the adjusted traffic light diagram shows 

variability in the final gate applied, but it also highlights that other variability seen upstream of this 

final gate can have an impact on cell count. However, gate variability across the five gating stages 

itself is not taken into consideration in the CV calculation, making measurement uncertainty a more 

suitable metric for accommodating variation throughout the whole gating sequence and increasing 

confidence in the results. 

 

This intermediate model with the 5-gate sequence has shown that calculating measurement 

uncertainty is possible for participants by using traditional measurement uncertainty methods. This 

was calculated successfully, by presenting participants with three repeated workspaces of data, 

and extracting one repeated file located in each workspace randomisation.  

 

The uncertainties calculated to accompany the cell counts are more non-parametric than the 

absolute cell counts. The mean and median uncertainties went from 3.8 % and 2.1 % respectively 

in Phase 1 to 5.8 % and 2.2 % respectively in Phase 2. The medians are very close together between 

the two sessions and is a more suitable metric due to the skewness present. The means are 

unsuitable metrics because they do not represent the peak maxima, especially in Phase 2, where 

the bimodal distribution causes the mean to sit between two peaks. However, the range of inter-

participant uncertainty reduced when using a protocol which shows this could possibly improve 

reproducibility of results between FC analysis. Whilst following a protocol reduced the range of 

uncertainty, the distribution shape separated into two peaks, indicating clusters of high and low 

variance participants.  

 

Further investigation has shown a high probability of this variation being caused by a boundary 

effect within the data visualisation software. Cells in the file that have a fluorescence signal higher 

than the visualisation axes are concatenated on the boundaries. Inclusion of these (either in a 
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consistent or inconsistent manner) in the repeated analysis can skew the cell counts and 

uncertainty significantly. Those in the lower variance cluster have not included these cells in their 

analysis, or repeatedly have so the overall variation would be lower between repeats (although they 

would have a higher average cell count). Revision of extreme participants using the uncertainty 

traffic light diagrams has shown most of the variation is contributed within this first gate applied, 

where the boundary effect is initially seen, increasing the possibility that the boundary effect causes 

this higher variation. 

 

Overall, the structure of these analysis sessions and data extraction processes works well, so this 

structure will be used to inform and run the subsequent complex model, which can increase in 

complexity due to the required cell population target and the number of gates required to obtain it. 

So far, this chapter has potentially shown affinity to the core hypothesis of this thesis. The overall 

range of uncertainty has increase from the basic model (Chapter 4, 12.37 %) to this intermediate 

model (Chapter 5, 15.7 %) showing that the range of uncertainty between-participants has increase 

as the data has become more complex. This needs to be further tested with a more complex model, 

presented in Chapter 6, and a diagrammatical protocol will also be tested in this instance, because 

it has shown to reduce the range of participant results within this intermediate model (12.1 %).  
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5.4.1 Consolidation of Objectives 
 

• This study ran smoothly, acting as a good intermediate model for comparison of absolute 

reported results, CV and uncertainty measures. The session structures were suitable in 

time, and 3 repeats was suitable for participants to understand study context, but not 

become tired. The randomised Gauge R&R structure used for the previous model 

(Chapter 4) was not used here, because of the extra time incurred during analysis.  

• Diagrammatical protocols used by participants during the second phase of this study 

have shown to reduce the range in absolute results reported and reduce the range of 

inter-participant uncertainties, showing promise for use in future analysis pipelines. This 

will be further tested in the subsequent complex model (Chapter 6). 

• Extreme values in absolute reported results were due to participants either over 

constraining or under constraining the live cell population within the third gate, or being 

variable with the final gate applied, over- or under-constraining the quadrant around the 

desired double positive population. In some cases, lack of knowledge of using controls 

to set gates led to variance in population metrics. 

• Extreme values in uncertainty results were due to participant variability in applying a gate 

to separate the target cell population from the dead or dying cells, alongside additional 

variation caused in this first gate by boundary effects on the edge of the visualisation 

plot, caused by concatenated data that would otherwise be outside the plot axes. 

• The performance monitoring diagrams visualised continue to provide a straightforward 

way to monitor uncertainty performance with respect to the number of people in the study 

and defined quality satisfaction limits. These will be used in the subsequent chapter 

(Chapter 6) to monitor uncertainty performance in a more complex gating scenario. 

• This study defines participant uncertainty for a highly constrained 5 colour panel cell 

model, which can be used as an intermediate model for development into more complex 

cell models, to monitor potential growth of participant uncertainty in more difficult 

analysis scenarios. 
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Chapter 6: Complex Uncertainty Model 

6.0 Introduction to the Chapter 

Chapter 6 introduces the third and final uncertainty gating exercise, as part of the sequence of 

studies which monitor participant variance in comparison to complexity of data. As discussed in the 

prelude, this final uncertainty exercise is more complex in panel design and therefore gating 

difficulty, to further monitor uncertainty in a more difficult analysis scenario. This is more 

representative of FC analysis pipelines and engineered T-cell markers used to monitor cell therapy 

products. This allows comparisons to be drawn between all three models in Chapter 7.  

 

Previously in Chapter 5, a five-step pipeline was used to monitor naïve T-cells within primary PBMC 

populations. This Complex model expands upon the FC panel used in the previous chapter to 

monitor additional markers for engineered-product specificities, such as programmed cell death 

and transduction efficiency. This is relevant and translational for the community, therefore 

potentially providing a more representative application of uncertainty to FC measurements. This 

Chapter uses an eight-step analysis sequence, and similar to Chapter 5, sees participants analyse 

this data across two sessions using their own judgement and then using a diagrammatical protocol 

respectively.  

6.1 Chapter Aims 
 

This Chapter develops comparison of uncertainty in complex FC analysis strategies. The fit of this 

Chapter to the thesis can be seen in Figure 95, specifically within the orange dashed box, providing 

development for the core hypothesis: as complexity of FC data and processing increases, 

measurement uncertainty contributed from the participant will also increase. This Chapter further 

investigates the influence of using measurement uncertainty to quantify subjectivity, and if 

diagrammatical protocols can aid this situation. 
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Figure 95 Diagram of Chapter position within the whole Thesis 

 
6.1.1 Chapter Aims & Objectives 
 

The Aims and Objectives of this Chapter can be defined as follows: 

• Design a complex two-phase study to measure CV and uncertainty of participants when 

gating complex FC data. 

• Identify whether using diagrammatical protocols to apply gates reduces inter-participant 

absolute reported results and uncertainties. 

• Identify what causes extreme values in absolute reported results and uncertainty 

measurements by reviewing extremes from this intermediate study. 

• Further test monitoring tools for understanding uncertainty within a more complex 

participant study or facility. 
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6.2 Methodology 
 

Engineered T-cells, derived from Peripheral Blood Mononuclear Cells (PBMCs) were provided by a 

collaborator, and all staining, file generation and analysis templates were completed by the 

collaborator, in line with the collaboration agreement. Due to commercial sensitivity, further details 

on the engineered T-cell vector or cell cannot be provided. Likewise, specific volumes for staining 

and process steps cannot be provided.  

 

Engineered T-cells have been used for this complex stage because they are representative of 

current and developing therapies on the market. Current treatments are based upon Chimeric 

Antigen Receptor (CAR-T) or engineered T-cell Receptor (TCR) treatment methods, using autologous 

T-cells, derived from patient PBMC material. By using a complex FC panel which develops upon the 

T-cell lineage panel in the previous model (Chapter 5), it has included more complexity (gating steps 

and difficulty) and more specificity to a Cell Therapy product. This shows an industrially relevant 

assay to define the population of transduced T-cells that exhibit appropriate markers for a TCR 

product. 

 

6.2.2 fcs File Generation 
 
A series of fcs files were generated using the engineered T-cell product created at the collaborator 

site. Genetically Modified Cells were washed with Cell Staining buffer to remove any cell culture 

media remaining. 0.1 mL aliquots of the master cell suspension were placed into separate labelled 

microcentrifuge tubes so there were approximately 1 x 106 cells per tube (3 fully stained samples, 

1 unstained sample, 7 FMO controls). The unstained sample was wrapped in foil and placed in a 

4˚C fridge because this was not needed until the final analysis. 

 

To detect expression of engineered TCR, a PE-conjugated dextramer reagent specific for the 

engineered TCR was utilized, according to the manufacturer recommended protocol (Immudex, 

Denmark). The cells were then stained for additional antigen markers, according to the following 
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stain protocols in Table 53 and Table 54. Staining was performed according to manufacturer 

recommendations and standard flow cytometry staining protocol. Isotype controls for each marker 

were not produced because these are no longer recommended for use, as FMO controls are more 

effective and economical. The FMO controls were stained with all stains aside from the stain aligned 

to that specific channel. This is to monitor any fluorescence spillover into the required channels 

from other markers being used. Fully stained samples were stained with collaborator-optimised 

volumes of all the antigen markers in use. 

 

The antigen markers used for the FMO controls (Table 1) and fully stained samples (Table 2) are: 

• Miltenyi CD197 (CCR7) – VioBlue, human (Cat Number: 130-117-353) 

• Miltenyi CD4 – VioGreen, Human (Cat Number: 130-113-221) 

• Miltenyi CD3 – FITC, Human (Cat Number: 130-113-128) 

• Miltenyi CD45RA – PE-Vio770, Human (Cat Number: 130-113-357) 

• Miltenyi CD95 (FAS) – APC, Human (Cat Number: 130-113-070) 

• Miltenyi CD8 – APC-Vio770, Human (Cat Number: 130-110-681)  

• Miltenyi 7AAD – PerCp-Vio770 Staining Solution (Cat Number: 130-111-568).  

Table 53 Staining volumes for FMO Controls 

Channel Antigen 
Marker 

VioBlue 
FMO 

VioGreen 
FMO 

FITC FMO PE FMO PE-Vio770 
FMO 

APC FMO APC-
Vio770 

FMO 
405 nm 

laser, 
450/50 

filter 

CCR7 
VioBlue 

X       

405 nm 
laser, 

525/50 
filter 

CD4 
VioGreen 

 X      

488 nm 
laser, 

525/50 
filter 

CD3 FITC   X     

488 nm 
laser, 

585/40 
filter 

Dextramer 
PE 

   X    

488 nm 
laser, 

750LP filter 

CD45RA PE-
Vio770 

    X   

635 nm 
laser, 655-
730 filter 

CD95 APC      X  

635 nm 
laser, 

750LP filter 

CD8 APC-
Vio770 

      X 
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Table 54 Staining volumes for Fully Stained Samples 

Channel Antigen 
Marker 

Fully Stained 
Sample 1 

Fully Stained 
Sample 2 

Fully Stained 
Sample 3 

405 nm 
laser, 

450/50 filter 

CCR7 
VioBlue 

X X X 

405 nm 
laser, 

525/50 filter 

CD4 
VioGreen 

X X X 

488 nm 
laser, 

525/50 filter 

CD3 FITC X X X 

488 nm 
laser, 

585/40 filter 

Dextramer 
PE 

X X X 

488 nm 
laser, 655-
730 filter 

7AAD PerCp-
Vio770 

X X X 

488 nm 
laser, 750LP 

filter 

CD45RA PE-
Vio770 

X X X 

635 nm 
laser, 655-
730 filter 

CD95 APC X X X 

635 nm 
laser, 750LP 

filter 

CD8 APC-
Vio770 

X X X 

 

Antigen markers CD3, CD4, CD8 and CD45RA have been previously described in Chapter 5. The 

naïve T-cell staining panel used has been built upon in this chapter to develop an 8-colour panel to 

identify engineered T-cells and monitor different product characteristics. C-C chemokine receptor 

type 7 (CCR7), also known as Cluster of Differentiation 197 (CD197), is expressed in lymphoid 

tissues and stem cell memory T-cells (derived from naïve T-cells) [192]. Cluster of Differentiation 

95 (CD95), or Fas-receptors are indicators of programmed cell death within engineered T-cell 

products [193,194].  Dextramer is the marker to monitor the transduction efficiency of the viral 

vector delivering the gene to the T-cell. This is a measure of how many cells will make the 

functioning protein required for this cell and gene therapy [195]. Finally, the viability stain used is 

7-aminoactinomycin D (7-AAD), a nucleic acid stain that emits fluorescent emission spectra when 

it binds with DNA. This indicates ruptured, dead cells that have exposed nuclei from live cells with 

intact cell membranes [196]. 

 

Cells were run through a Miltenyi MACSQuant Analyser 10 Flow Cytometer (3 lasers, 8 optical 

channels), once a daily calibration was completed. 
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Three fully stained sample files were acquired as 3 representative repeats, along with the FMO 

controls. Files were exported as fcs 3.0 version types for use in Flowjo version 10.0.8r1 third party 

analysis software [123] and saved as a workspace. 

 

6.2.3 Flow Cytometry Study Organisation 
 
A total of 22 participants from three separate centres (4 from an academic institution, 13 and 5 

participants from separate industrial institutions) were invited to complete the study in a quiet 

analysis space, to avoid distraction and the possibility of others seeing the study content and 

analysis. Study sessions had a one-hour maximum duration, and participants were shown three 

Flowjo workspaces, which contained a series of fully stained engineered T-cell .fcs files. Identical 

files were included in each workspace, and participants were instructed to gate through an eight-

plot sequence to identify single cells, target cells, live cells, CD3+ cells, CD4+ CD8- cells, CD45RA+ 

CCR7+ cells, CD95+ cells and finally to identify transduced engineered T-cells. Flowjo was the 

choice of platform due to access of the software across all three industrial and participant sites, 

meaning a higher number of participants were likely to be familiar with the platform. 

 

Participants were also provided with FMO controls in each workspace to aid gate application and 

were allowed to use whatever manual gating tool on Flowjo they felt best to gate the population in 

hand. An overall schematic of the gating sequence they were asked to follow is shown in Figure 96, 

and participants gated each workspace of files separately to ensure a correct quantification of 

uncertainty through standard deviation calculation. 
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Figure 96 Gating sequence participants were asked to follow, to identify the transduced engineered T-cells. 
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Similar to the pre-study completed in Chapter 3 and intermediate model in Chapter 5, participants 

took part in a second phase, where they repeated the same gating process for the transduced 

engineered T-cell population but were asked to copy a diagrammatical protocol to apply gates 

instead of using their own judgement, shown in Figure 97. Participants were given the same three 

fully stained samples along with the FMO controls to aid them in applying the gates in each 

workspace, alongside the images given in the diagrammatical protocol. Participants followed the 

same gating sequence provided in Figure 96.  
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Figure 97 Diagrammatical protocol given to participants to copy gates instead of using personal judgement 
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This data exercise aimed to build upon previous work in Chapter 4 and 5 to identify if inter-

participant variance does exist when reporting results from the same data and that uncertainty 

values can be calculated for participants to contribute towards an overall uncertainty estimation. It 

also aims to investigate if the participant range in uncertainty increases as the complexity of the 

gating exercise increases. This was designed to estimate a general absolute result median and 

uncertainty. Calculating significant differences between certain groups or testing conditions can be 

completed in this instance because participants took part in a two-phase analysis exercise, similar 

to the Pre-study in Chapter 3 and intermediate model in Chapter 5. Standard power calculations to 

determine appropriate sample size can be generated for future development reference, but also 

give an indication of current power from the number of participants that took part in the study.  

 

As in the previous uncertainty exercises, participants made 3 repeat measures, within a 1-hour slot, 

because this was the maximum allowance given for each participant’s time, agreed across the 

three institutions.  

 

6.2.4 Uncertainty Calculation 
 

Once studies had been completed the separate gated cell population metrics were extracted from 

the data, using the results from the identical repeated file situated in each Flowjo workspace, and 

were transformed into respective cell count percentages as a function of the original cell event 

number in the file. These were then used to calculate a mean cell count, SD and CV for each gating 

stage, per participant using Microsoft Excel software. Finally, a combined uncertainty (uc) was 

calculated by combining these Type A uncertainties by summation in quadrature. The uc value was 

expanded with a coverage factor of k = 2, representing a 95 % Confidence Interval for the 

uncertainty statement, which gave each participant a representative expanded uncertainty (U) 

figure, to show individual variance. The mathematical methodology used to calculate uncertainty 

metrics has been previously discussed in Section 2.5. An example of the data extraction through 

to calculation of metrics and uncertainty can be seen in Figure 98 for this complex model.  
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Figure 98 Example of data extraction through to calculation of absolute results and uncertainty per participant 

  

File 1 76012
File 2 72449
File 3 62475 COUNTS

File 1 File 2 File 3 File 1 File 2 File 3 File 1 File 2 File 3
Exclude Doublets 54360 50538 43035 55340 51449 43786 55186 51328 43690
Target Cells 28107 25725 21182 27805 25458 20929 27493 25117 20679
Live Cells 26750 24393 19945 26662 24374 19907 26272 23922 19554
CD3+ Cells 26725 24367 19930 26642 24354 19894 26247 23896 19538
CD4+ CD8- Cells 19558 17760 14534 19544 17825 14430 19244 17466 14261
CD45RA+ CCR7+ Cells 6348 6211 4931 8362 8032 6376 7485 7198 5742
CD95+ Cells 6348 6211 4930 8361 8032 6375 7484 7198 5741
Dextramer+ Cells 4475 4330 3437 5931 5595 4430 5099 4809 3875

PERCENTAGES
File 1 File 2 File 3 File 1 File 2 File 3 File 1 File 2 File 3

Exclude Doublets 71.52 69.76 68.88 72.80 71.01 70.09 72.60 70.85 69.93
Target Cells 36.98 35.51 33.90 36.58 35.14 33.50 36.17 34.67 33.10
Live Cells 35.19 33.67 31.92 35.08 33.64 31.86 34.56 33.02 31.30
CD3+ Cells 35.16 33.63 31.90 35.05 33.62 31.84 34.53 32.98 31.27
CD4+ CD8- Cells 25.73 24.51 23.26 25.71 24.60 23.10 25.32 24.11 22.83
CD45RA+ CCR7+ Cells 8.35 8.57 7.89 11.00 11.09 10.21 9.85 9.94 9.19
CD95+ Cells 8.35 8.57 7.89 11.00 11.09 10.20 9.85 9.94 9.19
Dextramer+ Cells 5.89 5.98 5.50 7.80 7.72 7.09 6.71 6.64 6.20

FILE 1 AVERAGE STDEV CV
Exclude Doublets 72.31 0.69 0.96
Target Cells 36.58 0.40 1.10
Live Cells 34.94 0.33 0.96
CD3+ Cells 34.91 0.34 0.96
CD4+ CD8- Cells 25.59 0.23 0.91
CD45RA+ CCR7+ Cells 9.73 1.33 13.65
CD95+ Cells 9.73 1.33 13.64
Dextramer+ Cells 6.80 0.96 14.13

uc 2.32
k 2 U 4.64

Coverage Factor

Total Cell Counts

Repeat 1 Repeat 2 Repeat 3

Repeat 1 Repeat 2 Repeat 3
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6.3 Results & Discussion 
 

6.3.1 Flow Cytometry Complex Gating Exercise absolute results –   
 Phase 1 Personal judgement 
 
The absolute results reported here are the targeted cell population that participants were asked to 

identify using the gating sequence defined in Figure 96, during the first gating session where they 

used their own judgement to apply gates. These are akin to what would be reported in literature for 

specific cell types, in this instance it is transduced engineered T-cells. The uncertainty of the gating 

sequence will be discussed in subsequent sections of this Chapter.  

 

Table 55 Measures of Location for the absolute results of the Complex Gating Study using personal judgement (%) 

Arithmetic Mean 5.81 

Median 5.45 

Mode N/A 

Minimum 1.18 

Maximum 10.50 

 

Table 56 Measures of Spread for the absolute results of the Complex Gating Study using personal judgement (%) 

Range 9.33 

25th Percentile 4.04 

75th Percentile 7.61 

Interquartile Range 3.56 

Standard Deviation 1.03 

CV 12.10 

Median Absolute Deviation 1.73 

 

Table 57 Measures of Skew for the absolute results of the Complex Gating Study using personal judgement (%) (3dp for better 
resolution) 

Skewness 0.168 

Skewness standard Error 0.491 

Skewness z-score 0.342 

Kurtosis -0.669 

Kurtosis Standard Error 0.953 

Kurtosis z-score -0.702 
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Table 58 Measures of Normality for the absolute results of the Complex Gating Study using personal judgement (%) (3dp for better 
resolution) 

Shapiro-Wilk statistic 0.980 

Significance 0.911 

Normal/Non-parametric Normal 

 

Using descriptive statistics to give a general report on the size and shape of the data, the 

distribution approximates to a normal shape because the mean and median are very close 

together, as identified in Table 55. This is supported by the skewness and kurtosis z-scores (0.342 

% and -0.702 % respectively, Table 57) and the Shapiro-Wilk statistical test for normality (p = 0.911 

%, Table 58) significantly concludes the distribution is normal. This normality definition is most 

probably indicated by the spread of the distribution, rather than any specific location parameters. 

Measures of spread (Table 56) show that the IQR of the participant data was approximately half 

the size of the range, again indicating normality. These participant average cell count values can 

be seen in Figure 99. Participant averages are more variable around the median than the previous 

model, and the error bars show ± 1SD from each participant’s repeated measures.  

 
Figure 99 Absolute Results of Target Cell population, represented by each participant's average and ± SD. 

 
Participant deviation from the median (residuals) has been more clearly visualised in Figure 100, 

with bars depicting each participant’s average from the median group value (calculated by 
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subtracting participant averages from the group median). The SD of the total group has also been 

plotted, because these are most commonly used within traditional manufacturing boundaries to 

define out of control/out of specification limits. 59 % of participants are within 1SD of the median, 

showing good corroboration of final results. Of those who fell out of bounds one participant had a 

result below -2SD, four participants below -1SD and two participants above +1SD.  

 

To compare the different types of error boundary estimator that can be used, the histogram of 

participant average cell counts has been plotted in Figure 101. This confirms that nearly all 

participants fall within Paxton’s Criterion, mean ± 3SD and mean ± 2SD. Almost all fall inside the 

trimmed mean ± 2SD. A further 3 participants fell outside of the Median ± 2MAD range, whereas 

only 7 participants were contained within the 95 % Confidence Interval applied to this data set.  

 
Figure 100 Participant average result deviations from overall group median. 
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Figure 101 Comparison of average engineered T-cell counts to additional error boundaries 

 

To compare both positive and negative deviation data extremes, Figure 102 shows participant 

B12’s gating strategy, one of the participants very close to the group median value. By comparing 

the extreme participants to a median participant, there are obvious differences between 

participants when identifying populations based on the visualised density. This is also coupled with 

personal preferences on inclusion or exclusion of data points to further refine the data set in search 

of a particular target. The count average comes from the final gate applied only, but further back 

in the gating sequence gates have been applied to capture most of the relevant populations. 

Variation in the transduced T-cell population does not impact the results because there is a very 

low cell count across this bandwidth (gate 8). The layouts used in this Chapter to visualise the 

gating strategies are all uniform, with the top row showing gates 1-4 (left to right) and the bottom 

row showing gates 5-8 (left to right), also shown in Figure 97. 
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Figure 102 Participant B12 Gating Strategy interpretation, close to median result. 

 

Focusing on those who fell outside of 2SD, only one participant (B11) had this much deviation from 

the median, with an overall percentage cell count of 10.00 %. This gating strategy shown in Figure 

103, identifies how over-constraining the cell populations leads to an overall higher cell count than 

the median. The eight images show the gating sequence steps used to define the final population 

cell count, with B11’s three repeats collated onto each sequence step image. Qualitatively 

reviewing the participant’s gating strategy has shown that most of this bias is due to the gate 

applied to the lymphocytes (gate 2) and live cells (PerCp-Vio700+, gate 3) which has been applied 

to a restrained proportion of the population. B11 has applied this gate closer around the main T-

cell population in the second gate and applied the separation boundary between the live and dead 

cells closer to the live cell population in the third gate, to not include the dying cells.  Additionally, 

within the CD45RA+ CCR7+ gate (gate 6) the quadrant includes slightly more of the population 

than the median user has, which has increased the average cell count overall. 
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Figure 103 Participant B11 Gating Strategy interpretation 

 

Participants A01, C03 and B09 fell outside of the ± 1SD boundary, because these participants 

have average cell counts lower than the median value. Figure 104 and Figure 105 show the 

respective gating strategies for the largest deviators, A01 and C03. 

 

Figure 104 Participant A01 Gating Strategy interpretation 
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Figure 105 Participant C03 Gating Strategy interpretation 

 

Participant A01 and C03 have lower average results than the median inter-participant value 

because throughout their gating process they have included less cells than the median user. This 

is specifically due to the second gate applied in the sequence, which has been more tightly 

constrained around the central lymphocyte population than the median user. In addition, the sixth 

gate applied to identify CCR7+ CD45RA+ cells, required participants to use FMO controls to 

intersect the dense cluster of cells to define those which had double positive expression. The 

vertical line placed by participants A01 and C03 have been placed to the right of the most dense 

region of this cluster, therefore selecting a smaller population that are expressing the desired 

markers, in comparison to the median user, who placed the gate more to the left of the most dense 

region. In this instance, different applications of gating ‘clean-up’ procedures and use of FMO 

controls has potentially caused this variance, alongside the participant perception of density.  

 

Participants B02, B03, B07 and C02 all had average cell counts that fell outside of the median – 

1SD boundary. To illustrate examples of these gating strategies, Participants B02 and B03 (who 
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had the highest cell counts within this boundary) can be seen in Figure 106 and Figure 107 

respectively. 

 

 

Figure 106 Participant B02 Gating Strategy Interpretation 

 

 

Figure 107 Participant B03 Gating Strategy Interpretation 

 

Participant B02 has a higher cell count than the median participant, which can be seen from their 

second gate applied, and the sixth gate. The second gate applied includes a second larger cell 
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population to the right of the cell population in question. The larger overall cell count is also due to 

the sixth gate applied to identify the double positive CCR7+ CD45RA+ cell population. In contrast 

to participant A01 and C03, the vertical line has been placed to the left of the densest region of 

the cell population, including the majority of the population within the final average cell count for 

engineered T-cells.  Participant B03 has also applied the sixth gate in this manner, to end up with 

the final average cell count population within this boundary, the only difference being they did not 

gate an additional population of cells within the second gate applied. The difference between these 

participants within the median +1SD boundary and participant B11 who fell outside of the median 

+2SD boundary is that B11 included a greater number of cells within gate 2. This carried forward 

through the rest of the gates applied, so the average cell count is greater as a result. 

 

This analysis of the absolute results used to represent cell populations shows a 9.32 % cell count 

range between participants when determining final engineered T-cell population percentages.  The 

further qualitative analysis of the extremes identifies 1 participant (B11) who falls outside of initial 

control limits. This extreme participant accounts for one third of the cell population percentage 

range. If this extreme participant value was removed, the range would fall to 7.60 % between 

participants (minimum value of 2.38 % and maximum value of 9.99 %). 

 

Variability of absolute results is commonly assessed using the CV, which combines the average and 

standard deviation of final cell count measurand (as defined in Chapter 2). The distribution 

histogram of participant CV of reported results can be seen in Figure 108, plotted on top of 3 

specification limits derived from the ICSH boundaries used within Chapter 4 and 5. Therefore, this 

amount of variance is not ideal in this exemplar. The optimal scenario would have all 22 participants 

(n) with < 1 % CV, which sets the total height at y-intercept of the graph.  
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Figure 108 CV Performance of Participant absolute results when using personal judgement to gate complex cell model 

 

Using these guidelines as boundaries, nine participants fell outside of the ‘revision required’ region 

due to very high CV and an additional two participants fall outside of the ‘good’ and ‘satisfactory’ 

performance regions. These extreme outliers had more variation within the final quadrant gate they 

drew when identifying the final naïve T-cell cell population. Participant B13 has been used as an 

example here, because they had the highest CV. Participant B04 had a CV of 36 %, and their final 

gates can be seen in Figure 109. B13 intersects the CCR7+ and CD45RA+ population much more 

on one of the gating repeats, creating a lower value for the final average cell count population of 

one repeat, carried forwards through the remaining gates. Therefore, there is more variation in the 

result, shown by the CV of the three repeats. This is the case for the other participants who fall 

outside of this region. 
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Figure 109 Participant B13 Complex Model Study Gating interpretation 

 

Participants A04, B01, B06, B07, B10, B13, C03 and C05 also had CV values that fell outside the 

‘Revision Required’ region of the graph. Similarly, the variability in the final result is caused by the 

placement of the sixth gate, separating the CCR7+ CD45RA+ population from the rest of the cluster. 

It appears that variability caused using FMOs at this phase has a knock-on effect for the final cell 

count, rather than being caused by the final gate applied in the sequence. In some instances, the 

variability between repeats is carried over from earlier in the gating sequence (typically the second 

or third gates). 

 

Measurement uncertainty provides a way of combining variability measures (SDs) of each gate 

within the sequence, to provide a measurement that is more representative of the components of 

the gating sequence. When extremes in measurement uncertainty arise, uncertainty values can be 

easily deconstructed to identify which part of the gating sequence is responsible for causing 

variation within the measurement. Measurement uncertainty results for this phase are discussed 

in Section 6.3.4, once absolute results for phase 1 and 2 of this study have been reviewed and 

compared. 
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6.3.2 Flow Cytometry Complex Gating Exercise absolute results – Phase 2 Following 
Protocol 
 

The absolute results reported here are the targeted cell population that participants were asked to 

identify using the gating sequence defined in Figure 96, during the second gating session where 

they used the diagrammatical protocol in Figure 97 and FMO controls to apply gates. A comparison 

of these results to Phase 1 and the uncertainty of the gating sequence will be discussed in the next 

section of this Chapter.  

Table 59 Measures of Location for the absolute results of the Complex Gating Study using a diagrammatical protocol (%) 

Arithmetic Mean 11.98 

Median 12.23 

Mode N/A 

Minimum 3.36 

Maximum 16.60 

 

Table 60 Measures of Spread for the absolute results of the Complex Gating Study using a diagrammatical protocol (%) 

Range 13.24 

25th Percentile 9.78 

75th Percentile 15.06 

Interquartile Range 5.28 

Standard Deviation 1.47 

CV 12.27 

Median Absolute Deviation 2.66 

 

Table 61 Measures of Skew for the absolute results of the Complex Gating Study using a diagrammatical protocol (%) (3dp for better 
resolution) 

Skewness -0.859 

Skewness standard Error 0.491 

Skewness z-score 1.749 

Kurtosis 0.626 

Kurtosis Standard Error 0.953 

Kurtosis z-score 0.657 

 

Table 62 Measures of Normality for the absolute results of the Intermediate Gating Study using a diagrammatical protocol (%) (3dp 
for better resolution) 

Shapiro-Wilk statistic 0.936 

Significance 0.165 

Normal/Non-parametric Normal 
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Using descriptive statistics to give a general report on the size and shape of the data, the 

distribution approximates to a normal shape because the mean and median fairly close together 

(11.98 % and 12.23 % respectively), as quoted in Table 59, however, these values are over double 

the mean and median for Phase 1. The skewness z-score (1.749 %,Table 61), and the low kurtosis 

z-score (0.657 %) also indicate a more normal distribution, supporting these measures of location. 

This is further supported by the Shapiro-Wilk statistical test for normality (Table 62) which indicates 

the distribution is normal. The measures of spread (Table 60) indicate that the IQR is approximately 

half the size of the total range of inter-participant results, which again alludes to a normal 

distribution shape of the data.  

 

Participant average cell counts and SDs when gating following the protocol can be seen in Figure 

110. Participant averages are more variable in Phase 2 of this complex study in comparison to the 

intermediate study, however, qualitatively, the inter-participant average results do appear to lie 

closer to the median, aside from a couple of extreme values.  

 
Figure 110 Absolute Results of Target Cell population when following a protocol, represented by each participant's average and ± SD. 
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Participant deviation from the median (residuals) has been more clearly visualised in Figure 111, 

with bars depicting each participant’s average from the median group value (calculated by 

subtracting participant averages from the group median). The standard deviation limits have also 

been plotted, because these are most commonly used within traditional manufacturing to define 

out of control/out of specification limits. 82 % of participants are within 1SD of the median, showing 

good corroboration of final results. Of those who fell out of bounds one participant had a result 

above +2SD, two participants are above +1SD and one participant below -1SD. 

 

The application of the Phase 1 error boundaries to the histogram of Phase 2 cell counts, created 

when participants followed the protocol can be seen in Figure 112. A shift in the whole population 

can be seen, with more participants returning a higher cell count when following the protocol. This 

is primarily due to a greater inclusion area specified in the second gate applied in the sequence, 

which overall has increased the cell count from what most participants highlighted when using their 

own judgement.  Whilst there is still some variability around the final cell count achieved using a 

protocol, it shows that protocols can be used to improve the assumed accuracy of a gating strategy, 

to ensure the target cell populations are reproducibly selected. In this instance we cannot have 

metrological accuracy because a true value is unknown, however, if a protocol is used as a 

benchmark, then a known value can be taken from the benchmark to aim towards, creating an 

‘experimental accuracy’ rather than a theoretical or traceable one.  
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Figure 111 Participant average result deviations from overall group median. 

 

Figure 112 Application of Phase 1 error boundaries to engineered T-cell counts when participants follow a protocol 

 

Qualitatively reviewing the extreme participant (B13) gating strategy outside of the Median ± 2SD, 

highlighted from the residual diagram in Figure 113, has shown that most of this bias could be due 
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to the fifth and sixth gates applied to the engineered T-cells, because these gates cut off a portion 

of the CD4+ CD8- cells in gate 5, and the quadrant placed on the sixth gate sits to the right of the 

densest region of the cell cluster. This cut across the dense region of this population, keeps a lower 

proportion of cells within the gate boundary. This gating strategy shows how over-constraining the 

cell population leads to an overall lower cell count than the median, with Participant B13 returning 

a final cell count of 3.56 % in comparison to the interparticipant median of 12.23 %.  

 

Figure 113 Participant B13 Gating Strategy interpretation when following a protocol 

 

The distribution histogram of participant CV of reported results can be seen in Figure 114, plotted 

on top of 3 specification limits derived from the ICSH boundaries used throughout this thesis. All 

22 participants took part in this second gating session so the optimal scenario would have all 22 

participants (n) with < 1 % CV, which sets the total height at y-intercept of the graph.  
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Figure 114 CV Performance of Participant Absolute results when following a protocol during the complex cell model 

 

Using these guidelines as boundaries, eight participants fell outside of the ‘revision required’ region 

due to very high CV and a further five participants fell just outside of the ‘good’ and ‘satisfactory’ 

performance regions. These extreme outliers had more variation within the final quadrant gate they 

drew when identifying the final naïve T-cell cell population. Participant B07 had the highest CV when 

gating using the protocol, and their final gate can be seen in Figure 115. This variation comes from 

gate 6 applied to separate the CCR7+ CD45RA+ population from the remainder of the cell 

population. The second repeat did not intersect this population in the same way as repeat one and 

three, because B07 did not include any of the positive population within this gate, causing the large 

CV. The small amount of remaining cells is passed onto the remaining two gates, resulting in a 

small overall cell count for repeat two, a skewed average cell count and a larger CV due to the large 

SD between repeats.  
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Figure 115 Participant B07 Complex Model Study Gating interpretation 

 

The most extreme participant has been included here as an example of outlying CV results. 

Participant B07 had a CV of 86 % due to disparity between the three repeated gates applied to the 

data. The bulk of this deviation comes from the quadrant gates applied to the data to identify CD4+ 

CD8- populations (gate 5) and CCR7+ CD45RA+ populations (gate 6).  One gate has been applied 

differently from the other two repeats. This is very noticeable in gate 6, where B07 has removed all 

of the same double positive population from one of the gates applied. This dramatically reduced 

the population count carried forward, causing the large CV result. The deviated gate was applied 

because B07 did not use both FMO controls to set the gate limits. One control was set for CCR7+ 

but B07 failed to cross-reference with the CD45RA+ control, causing the lower population count 

carried forward. 
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6.3.3 Flow Cytometry Complex Gating Exercise absolute results –   
 Comparison of Phase 1 and Phase 2 
 

The average cell counts for each participant when they gated following their own judgement and 

then a protocol have been compiled into the histograms in Figure 116. Any dark orange areas are 

overlap of the two respective histograms. The range of cell counts has increased by 6.18 % when 

participants followed the protocol, indicating that protocols may not be as helpful to participants 

when trying to conform to more reproducible cell counts, or the protocol specified gating areas that 

were wider than what participants would have personally drawn. Both phases of data have normally 

distributed populations, so in this instance the protocol has not made the population more kurtosed 

and repeatable to a specific cell count value.  

 

Figure 116 Comparison of Participant Absolute cell counts when gating using their own judgement and when following 
a protocol (brown areas indicate overlap between the two distributions) 

 

Further comparison of inter-participant data when gating using their own judgement and following 

a protocol has been completed with a Sign statistical test (Table 63), to compare equality of 

medians between each test condition. The Sign test results reject the null hypothesis of no 
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difference in medians, confirming the qualitative histogram conclusion that there is a significant 

difference between the two medians of the two phases.  

 

Table 63 Sign test results for comparison of Intermediate Gating Study Stages 

Null Hypothesis Test Sig. Decision 
Median difference of P1 & P2 cell counts = 0 Related-samples Sign test 0.000 Reject null hypothesis 

 

Comparison of these averages has been visualised in Figure 117, plotting the differences of 

participants average cell counts from the actual cell counts from the protocol gates they were 

provided to copy in Phase 2. Whilst this only considers the cell count values, not the size, shape or 

area of the gates, this potentially indicates that when participants copy the protocol, they are more 

likely to over constrain their gates, than when using their own judgement to place gates.  

 

When applied to a CGT context, this could become dangerous when releasing products due to 

potential false positives. If an operator includes more cells due to their interpretation of a protocol, 

this indicates more cells of interest have grown within the therapy product, meeting the required 

threshold for filtration and patient infusion. If the desired cell count is not met, the therapy would 

either need more time to sufficiently expand, or it should be rejected when analysed in QC. If not 

given this time, the product would be filtered and prepared for the patient, but not actually provide 

the correct therapeutic dose of treatment. This could lengthen the treatment time if more starting 

material needs to be taken from the patient, causing them more distress, and more inefficiencies 

within the manufacturing process which in turn increase the costs of cell therapy treatments.  
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Figure 117 Comparison of Participant averages to the benchmark protocol given to follow in Phase 2 

 

To further compare these two testing conditions the A Priori and Post Hoc power were calculated 

again (Table 64) to identify whether a suitable number of participants had been gathered based 

upon the difference in variance of absolute cell counts in each test condition. The use of these 

power analysis variables has been discussed within the methodology in Chapter 2.  

 

Table 64 A Priori and Post Hoc Power analysis for Complex Study absolute cell counts 

Variance Phase 1 Variance Phase 2 A-priori power Sample size required Actual power 
6.364 11.092 0.800 82 0.343 

 

The A Priori and Post Hoc power analyses in Table 64 show that for the variances achieved between 

the two test condition average cell counts, 82 participants would have been required to show this 

difference, to the required minimum desired power of 0.80. The actual power achieved through 

this study is 0.343, indicating a 34 % probability of the differences in variance of absolute cell 

counts being due to the two test conditions used and no other underlying factors.  
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Figure 118 Comparison of participant absolute cell count CVs when gating using their own judgement and when 
following a protocol (brown areas indicate overlap between the two distributions) 

 

The CV of cell counts is commonly reported alongside average cell counts within Flow Cytometry 

data and in this instance the range of participant CVs was greater when participants used the 

protocol to apply gates to the cell population, shown in Figure 118. The extreme value obtained 

here is due to FMO controls not being used properly during one repeat, causing a large overall CV. 

Aside from this extreme value the protocol appeared to then reduce the range of results CV between 

participants when they followed this, but this only really considers the final gate applied within the 

repeats. Measurement uncertainty provides a better way to compile and monitor variation over the 

whole gating process.  
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6.3.4 Flow Cytometry Complex Gating Exercise uncertainty results –   
 Phase 1: Personal Judgement 
 
The uncertainty results reported here are a combination of the eight gating stages defined in Figure 

96 for gates applied when participants use their own judgement. The uncertainty values have been 

quantified following the prescribed methodology in Chapter 2, Section 2.5. The uncertainty would 

better represent variance of measurements with greater confidence, because this combines 

variability from all gates applied in the sequence, not just the variance of the final gate applied.  

 

Table 65 Measures of Location for uncertainty of the Complex Gating Study using personal judgement (%) 

Arithmetic Mean 10.6 

Median 6.2 

Mode N/A  

Minimum 0.8 

Maximum 34.9 

 

Table 66 Measures of Spread for uncertainty of the Complex Gating Study using personal judgement (%) 

Range 34.0 

25th Percentile 4.0 

75th Percentile 13.2 

Interquartile Range 9.1 

Standard Deviation 10.8 

Median Absolute Deviation 3.0 

 

Table 67 Measures of Skew for uncertainty of the Complex Gating Study using personal judgement (%) (3dp for resolution) 

Skewness 1.375 

Skewness standard Error 0.491 

Skewness z-score 2.800 

Kurtosis 0.468 

Kurtosis Standard Error 0.953 

Kurtosis z-score 0.491 

 

Table 68 Shapiro-Wilk test for normality for uncertainty of the Complex Gating Study using personal judgement (%) (3dp for resolution) 

Shapiro-Wilk statistic 0.758 

Significance 0.000 

Normal/Non-parametric Non-parametric 
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Unlike the descriptive statistics for absolute results for this study phase, the mean and the median 

are not close together (10.6 % and 6.2 % respectively), indicating a more skewed distribution, as 

monitored in Table 65. The median is less than the mean, indicating a slight positive skew to the 

data. This is further supported by the Shapiro-Wilk test for normality (p < 0.0005 %), shown in Table 

68, indicating that the distribution is non-parametric in shape, indicating skewness. 

 

There is a wide range (34.0 %) between minimum and maximum participant uncertainties. Table 

66 also shows the interquartile range as 9.1 %, indicating a high kurtosis, because half of the data 

lies within 27 % of the total distribution range.  This is supported by the skewness value in Table 

67 (2.800 %) with skewness z-score falling outside of the ±2.58 boundaries specified for normality 

in Chapter 2. The raw data for each participant can be seen in Figure 119 with various extremes 

within the dataset. This distribution shape can be observed within Figure 120, showing the positive 

skew with a possible bimodal split and 4 larger uncertainty extremes. 

 

 

Figure 119 Expanded Uncertainty of all Participant Gating within the Intermediate Model Study 
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Figure 120 Histogram of Participant Expanded Uncertainty from repeats of Intermediate Model Study 

 

Whilst deviation from a median can help to explain the distribution parameters, when analysing 

variance, a positively skewed distribution towards zero is preferred. Comparing uncertainty in its 

size order allows boundaries to be set for permissible specification limits for product 

release/laboratory quality that increase in value.  

 

Again, in this instance the CV specification limits have been substituted for Uncertainty (Figure 

122), and no other uncertainty specifications have been defined in the public body of knowledge 

from research or industry. However, unlike the previous model, this correlation is not strong 

because of the six participants with extreme uncertainty values, which will be explored within the 

extremes identified within Figure 121. Even when these extremes are removed the gradient is still 

low (0.1457x). 
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Figure 121 Final Cell Count Population Percentage CV versus Gating Uncertainty for participants 

 

 

Figure 122 Participant Uncertainty performance monitoring diagram when using their own judgement during the 
complex model 
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Participants B04, B10, B07 and A04 had the highest overall uncertainties of the population, which 

fall outside of the ‘Revision required’ boundary, and are also above the limit of permissible 

uncertainty, shown as the black line on the graph in Figure 122.  

 

Figure 123 Standard Deviation of each gate applied in the sequence by each participant 

 

The distribution of all participant SDs from each gate applied in the sequence can be seen in Figure 

123. These standard deviations are combined in quadrature to create the total expanded 

uncertainty value, used to identify extreme participants. Participants B04, B10, B07 and A04, who 

are the uncertainty extremes in this instance can be identified as the top four lines of this standard 

deviation breakdown graph. Visualising the data in this way shows that all four participants had a 

large variation due the live cell gate (gate 3) applied in the sequence. This had a knock-on effect 

for the following two gates, which then lowered when gating the CCR7+ and CD45RA+ cells. 

Interestingly, this was not anticipated because of the difficulty of separation of the population, it 

was thought that there would be more variability here. However, because of the difficulty of 

separation, participants adhere to the FMO controls and instructions a lot more, causing the low 
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variation. As examples, the gating sequence for Participant B10 can be seen in Figure 124, in 

addition to Participant B04 (Figure 125), because these participants had the largest uncertainties.  

 

 

Figure 124  Participant B10 Complex Model Study Gating interpretation 

 

Figure 125 Participant B04 Complex Model Study Gating interpretation 

 

In all instances there is one repeated gate that is significantly larger or smaller than the remaining 

two. Upon closer inspection, the larger gates all sit against the right, lower edge of the vertical axis 

and another pseudocolour stripe can be seen running along the edge of the boundary. Inclusion or 
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exclusion of this boundary effect is causing this variability, which is then carried forward into the 

CD3+ gate due to the population count.  The remainder of the population had very small Standard 

Deviations, aside from Participants B08 and C03, who had mid-range variabilities. These 

variabilities are due to one gate being different from the rest, however there are differences 

between these two participants. Participant C03’s gates have already been visualised in Figure 

105, and Participant B08’s gate can be seen in Figure 126.  Participant C03 has variation due to 

the live gate (gate 3), with two repeats cutting through the population and one repeat placed around 

the entire population. This was due to the participant’s inexperience with using control files to place 

gates, and a lack of final checking at each level of the gating sequence.  

 

The difference with Participant B08, is that the largest gate applied to the live cell population cuts 

through the boundary effect seen on the left side, causing the higher cell population and larger 

standard deviation for that gate. This boundary effect has been investigated in further detail in 

Chapter 5, when additional cells were compiled together on the right edge of the plot. In this 

instance, smaller live cells that are not in the fluorescence range have been compiled on the left 

side. Where this has been cut through to including the lower density region, a spike in the 

population has been carried forward. 

 

Figure 126 Participant B08 Complex Model Study Gating interpretation 
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6.3.5 Flow Cytometry Complex Gating Exercise uncertainty results –   
 Phase 2: Following Protocol 
 
The uncertainty results reported here are a combination of the eight gating stages defined in Figure 

96 using the gating protocol provided, shown in Figure 97 and FMO controls. The uncertainty values 

have been quantified following the prescribed methodology in Chapter 2.5. The uncertainty would 

better represent variance of measurements with greater confidence, because this combines 

variability from all gates applied in the sequence, not just the variance of the final gate applied.  

 

Table 69 Measures of Location for uncertainty of the Intermediate Gating Study when following a protocol (%) 

Arithmetic Mean 22.0 

Median 19.3 

Mode N/A  

Minimum 2.1 

Maximum 43.9 

 

Table 70 Measures of Spread for uncertainty of the Intermediate Gating Study when following a protocol (%) 

Range 41.8 

25th Percentile 4.4 

75th Percentile 38.8 

Interquartile Range 34.4 

Standard Deviation 16.6 

Median Absolute Deviation 17.1 

 

Table 71 Measures of Skew for uncertainty of the Intermediate Gating Study when following a protocol (%) (3dp for resolution)  

Skewness 0.083 

Skewness standard Error 0.491 

Skewness z-score 0.169 

Kurtosis -1.800 

Kurtosis Standard Error 0.953 

Kurtosis z-score -1.889 

 

Table 72 S-W test for normality for uncertainty of the Intermediate Gating Study when following a protocol (%) (3dp for resolution) 

Shapiro-Wilk statistic 0.836 

Significance 0.002 

Normal/Non-parametric Non-parametric 
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Similar to the descriptive statistics for absolute results for this study, the mean and the median are 

close together (22.0 % and 19.3 % respectively), indicating a less skewed distribution, as monitored 

in Table 69. The median is less than the mean, indicating a slight positive skew to the data, which 

is preferable for uncertainty results. However, the Shapiro-Wilk test for normality, shown in Table 

72, indicating that the distribution is non-parametric in shape (p = 0.002 %), indicating more 

skewness than the mean-median difference shows. 

 

There is a wide range (41.8 %) between minimum and maximum participant uncertainties. Table 

70 also shows the interquartile range as 34.4 %, which indicates a low kurtosis, because half of 

the data lies within 83 % of the total distribution.  This is supported by the skewness and kurtosis 

values (0.169 % and -1.889 % respectively) in Table 71 with skewness and kurtosis z-scores inside 

of the ±2.58 boundaries specified for normality in Chapter 2. The raw data for each participant can 

be seen in Figure 127 with various extremes within the dataset. This ordered distribution shape 

can be observed within Figure 128, showing the positive skew with a bimodal split and 9 larger 

uncertainty extremes. Qualitatively assessing the shape of the distribution shows a different shape 

to the data than the descriptive statistics, because the mean calculated does not reflect central 

tendency of the raw data as would be assumed, which will be investigated further. 

 

Figure 127 Expanded Uncertainty of all Participant Gating within the Complex Model Study when participants followed a protocol 
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Figure 128 Histogram of Participant uncertainty from repeats of Intermediate Model Study when participants followed a protocol 

 

Whilst deviation from a median can help to explain the distribution parameters, when analysing 

variance, a positively skewed distribution towards zero is preferred. Comparing uncertainty in its 

size order allows boundaries to be set for permissible specification limits for product 

release/laboratory quality that increase in value.  

 

The ICCH and ICCS imprecision values described earlier for measurement CV and in previous 

Chapters have also been used here to define example specification limits if monitoring participant 

uncertainty. Again, in this instance the CV specification limits have been substituted for uncertainty 

from this gating phase (Figure 129), and no other uncertainty specifications have been defined in 

the public body of knowledge from research or industry.  
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Figure 129 Participant uncertainty performance monitoring diagram when using their own judgement during the 
complex cell model 

 

There were nine outliers that exceeded the higher control limits with five of these also exceeding 

the limit of permissible uncertainty. Participants B09 and B10 had the highest overall uncertainty, 

followed by Participants B07 and B02, who all exceeded the limit of permissible uncertainty, as 

well as exceeding the defined control limits. However, again there qualitatively appears to be a high 

variance participant cluster which has its own maxima at 39 % uncertainty. 
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Figure 130 Participant B09 Complex Model Study Gating interpretation 

 

Figure 131 Participant B10 Complex Model Study Gating interpretation 

 

Participant B09 (Figure 130) and B10’s (Figure 131) most variable gates were the on the third plot 

in the sequence. The repeats are very uniform in size and structure, with a repeatable cut-off 

separating the primary population from the dead and dying cells. The variability appears to come 

from differences in the left edge of the gate, where the gates applied cut through a data spike that 

sits on the boundary of the plot, as first discussed in Chapter 5. In this instance, the axes of the 

plot could not be scaled up to better see this spike, because this spike always sits on the left 
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boundary, at the lowest scale point of 10-3. This data spike could be an amalgamation of all the 

data points that exceed the plot limits, so they have been complied and added to the boundary, 

however, there is no information from Flowjo on this visualisation effect. 

 

Figure 132 Standard Deviation of each gate applied in the sequence by each participant 

 

The distribution of all participant standard deviations from each gate applied in the sequence can 

be seen in Figure 132. These standard deviations are combined in quadrature to create the total 

expanded uncertainty value, used to identify extreme participants. Participants B09, B10, B07, 

B05 and B02, who are the uncertainty extremes in this instance can be identified as the top lines 

of this standard deviation breakdown graph. Visualising the data in this way shows that these 

participants had a large variation due the live cell gate applied in the sequence, like the previous 

session where no protocol was used. This had a knock-on effect for the following two gates, which 

then lowered when gating the CCR7+ and CD45RA+ cells.  

 

In a manner similar to Phase 1 uncertainty, there is a mid-range uncertainty group, populated by 

Participants A01, B01, B06, B08 and C03. These participants had a mid-range standard deviation 
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when gating the live cell population in gate 3. Examples of these can be seen in Figure 133 and 

Figure 134 for participants A01 and B01. 

 

Figure 133 Participant A01 Complex Model Study Gating interpretation 

 

 

Figure 134  Participant B01 Complex Model Study Gating interpretation 

 

To further investigate this, gate 3 was investigated for A01 and B01 as representatives of this mid-

range group. Figure 135 and Figure 136 show the gates applied here for A01 and B01 respectively. 

The left images show the original scaling used for these gates, and the right images show the 

extended log scale to better see the left edge of the gates drawn. 
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a) 

 

b) 

 

Figure 135 Participant A01 gate 3. a) Standard gates drawn with logarithmic scaling. b) Gates drawn to biexponential 
scaling 

 

a) 

 

b) 

 

Figure 136 Participant B01 gate 3. a) Original gates drawn with logarithmic scaling. b) Scale extended to show shape 
of left edge 

 

It is possible from looking at the two examples here that the mid-range standard deviations for this 

gate is due to the location of where the left edge is dragged to past the original logarithmic axis 

limit, and what angle this ends up being at. A01 gates are not placed in line with the 100 mark that 

the scale was set to, at which the boundary effect would have been displayed. Upon review of their 
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session recording, Participant A01 changed the axis scaling to biexponential, which is causing this 

variation, shown in Figure 135 (b), in comparison to the correct logarithmic layout in Figure 135 

(a). However, B01 has a gate that is angled across this scale point, possibly causing the mid-range 

variability Both participants are consistent with the size and shape of the overall gates applied, and 

consistent with the cut off between the live, dead and dying cell populations. 

 

To further investigate if the cause of this cluster variability in the third plot in the sequence, a 

selection of participants with low uncertainties were examined to see if there is a difference or 

obvious understanding if this boundary effect has been avoided during their analysis. Participants 

B03 and B13 had very low uncertainties from their total gating process and both fall within the 

lower variance cluster. Their initial plots can be respectively seen in Figure 137 and Figure 113.  

Further detailed plots of gate 3 can be seen in Figure 138 and Figure 139. 

 

 

Figure 137 Participant B03 Complex Model Study Gating interpretation 

 

Participants B03 and B13 have applied gates close to this boundary effect, however they are very 

repeatable in size and shape. Upon closer inspection B03 has drawn gates to all include the 

boundary effect. These are repeatable so the standard deviation is low, although this causes the 
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overall cell count to be higher. Participant B13 has consistently gated just inside the boundary 

effect, causing a lower variance and lower cell count due to the consistency of this edge. 

 

a) 

 

b) 

 

Figure 138 Participant B03 gate 3. a) Original gates drawn with logarithmic scaling. b) Scale extended to show left 
edge 

a) 

 

b) 

 

Figure 139 Participant B13 gate 3. a) Original gates drawn with logarithmic scaling. b) Scale extended to show left 
edge 

 

Throughout this complex study, the variability has consistently arisen from a different gate in the 

series, not the first gate or quadrant gates which have been previously identified. This was due to 

the presence of a boundary effect appearing again as in Chapter 5, but in this instance it has 

appeared on the low fluorescence edge, due to the required cell population having low fluorescence 
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staining. This visual artefact has been considered again within different software platforms when 

it appears on a different edge. Figure 140 shows these outputs across different visualisation 

software, with FlowLogic removing this effect in the top and left edges of the plot, and Flowjo also 

removing it when figures are moved into the layout editor for exporting. Within the analysis window 

the boundary effect can still be seen, hence its effect on the data analysis, and the same can be 

said for FCS express, although the axes are defined and scaled differently to Flowjo and FlowLogic 

Logarithmic scaling. 

 

Figure 140 Software visualisations of live cell gate (gate 3) to identify boundary effect 

 
6.3.6 Flow Cytometry Complex Gating Exercise uncertainty results – Comparison of Phase 

1 and Phase 2 
 

The uncertainties for each participant when they gated following their own judgement and then a 

protocol have been compiled into the histograms in Figure 141. Any dark orange areas are overlap 

of the two respective histograms. The range of cell counts has increased by 7.8 %, indicating that 

protocols may not help participants conform to reproducible cell counts. However, a 

bimodal/trimodal distribution has appeared so more needs to be completed to understand how 

subjectivity and interpretation of a protocol and visual images impact the final uncertainty 

calculated. An improvement in training to highlight boundary effects discussed could have a 

positive impact when trying to reduce inter-participant uncertainty in Flow Cytometry analysis. The 

skewness and kurtosis z-scores have reduced when participants use a protocol, however this is 

showing a tendency towards normality, which the distribution shape does not support in either 

instance.  
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When participants used their own judgement to apply gates, a split between higher and lower 

uncertainty groups appears, but the shape of the overall distribution is positively skewed, with only 

a few extremes exhibiting high variance. Use of a protocol has created further clustering effects, 

seen in Chapter 5 for the intermediate model, potentially caused by boundary effects within the 

software. This requires future investigation to understand what contributions training and 

awareness can do to remove this source of variation, as well as finding ways to remove this from 

the data. In addition, some software platforms remove these data spikes from the data, which can 

change the values operators specify for cell counts across different programs. 

 

  

Figure 141 Overlaid histograms of participant uncertainties when gating the engineered T-cell population following 
their own judgment and then using a protocol (brown areas indicate overlap between the two distributions) 

 

Further comparison of inter-participant data when gating using their own judgement and following 

a protocol has been completed with a Sign statistical test, to compare equality of median 

uncertainties between each test condition, shown in Table 73. The Sign test results reject the 

alternative hypothesis, because the uncertainty medians of the two testing conditions are not 

statistically different. This does not statistically show that the uncertainties are smaller when 
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participants use a protocol, however this only considered location values, so other measures of 

variability should also be considered before deciding whether a protocol effectively reduces inter-

participant variability, or not. This is especially true in this instance due to the bimodal/trimodal 

nature of one of the populations, meaning a robust statistic such as the median is not a reliable 

location measure to represent the population. 

 

In this study, an increase in overall range has been seen, indicating that diagrammatical protocols 

alone are not enough to control inter-participant variability and uncertainty contributions to 

measurements. Future considerations would need to look at incorporating training of noise 

parameters around data sets to ensure participants are aware of this effect on the variability of 

their subjectivity and interpretation, especially when cleaning the data at the start of a gating 

sequence. The use of this protocol is causing subjective behaviour to divide the population into 

high, medium and low variance clusters, which requires further testing to confirm this effect, and 

the effect of identifying boundary effects to participants before they apply gates to data.  

 

Table 73 Sign test for median difference between Phase 1 and Phase 2 uncertainties 

Null Hypothesis Test Sig. Decision 
Median difference of P1 & P2 uncertainties = 0 Related-samples Sign test 0.520 Retain null hypothesis 

 

Table 74 A Priori and Post Hoc Power for Phase 1 and 2 uncertainties 

Variance Phase 1 Variance Phase 2 A-priori power Sample size required Actual power 
117.422 273.981 0.807 37 0.601 

 

The A Priori and Post Hoc power analyses in Table 74 show that for the variances achieved 

between the two test conditions uncertainties, 37 participants would have been required to show 

this difference, to the required minimum power of 0.80. The actual power achieved through this 

study is 0.601, so less participants would be required if only uncertainty was being considered, not 

absolute cell counts (actual power of 0.343). This low power indicates that any differences seen 

from the data have a low probability of being just due to the two test conditions used and no other 

underlying factors present. Again, like the Sign test, this needs to be considered carefully. A greater 

number of participants in the study could always benefit and provide more confidence in the 
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results, however, the distributions are not normally distributed, so the variance calculated assumes 

a distribution with central tendency. In this instance, the range of data becomes more important to 

consider, due to the distribution shape and clusters appearing within the uncertainty data. 

6.4 Chapter Conclusions 
 
The engineered T-cell material used was a good model for the complex study because it provided 

an increase in complexity of the analysis pipeline participants were required to complete, and it 

also provided affinity towards current cell therapy treatments which are T-cell based. The studies 

run with the 3-workspace configuration for repeats continued to work well within the time available 

for participants, so this structure has shown to be a good working model for all studies in this 

experimental work. The eight-step process that each participant had to work through was also 

straight-forward to follow from the gating sequence protocol and the diagrammatical protocol, 

ensuring there was little deviation from the prescribed method. 

 

When reporting the absolute cell count percentages for the results, the mean and median values 

for each Phase were very similar (mean = 5.8 % and median = 5.5 % for Phase 1, mean = 12.0 % 

and median = 12.2 % for Phase 2). These results both indicate a normal distribution within both 

data sets, however, the mean and median for Phase 2 is over double that of Phase 1. In this 

instance, there was an increase in the range of inter-participant cell counts when using a protocol. 

The protocol increased the absolute range of cell count results between-participants by 3.9 % of 

the overall cell count (2964 cell events) (which is a 42 % increase with respect to Phase 1 absolute 

range). This indicates protocols may not aid reproducible cell counts between participants in this 

instance, as initially identified in previous chapters.  

 

The Sign test confirmed there was a significant difference between the medians of the two testing 

conditions (average cell counts), showing that protocols can potentially aid gating accuracy of the 

desired cell population. However, the Sign test to compare the medians of the uncertainties was 

not significant, indicating that the two phases did not have significant variabilities. Whilst this is a 
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definitive statistical test, the qualitative shape of the distributions was considered, and the 

bimodal/trimodal nature of the Phase 2 uncertainties indicates that a single location measure 

should not be used for sole comparison.  The power analysis completed for both average cell counts 

and uncertainties indicated that more participants would be required to identify significant 

differences between the two testing conditions, requiring 82 and 38 participants for average cell 

counts and uncertainties respectively. 

 

The use of the protocol made the distribution more bimodal, similar to the uncertainty for this 

Phase. Participants using their own judgement were more positively skewed towards 0 %, which is 

desirable for variation metrics, indicating that more participants were less variable (in their final 

cell count) when using their own judgement to apply gates. Reviewing the extremes in CV using the 

adjusted traffic light diagram shows variability in the final gate applied, but it also highlights that 

other variability seen upstream of this gate can have an impact on cell count, but the gate variability 

itself is not taken into consideration in the CV calculation, making measurement uncertainty a more 

suitable metric for accommodating variation throughout the whole gating sequence. 

 

This complex model with an 8-step sequence has shown that calculating measurement uncertainty 

is possible for participants by using traditional measurement uncertainty methods. This was 

calculated successfully, by presenting participants with three repeated workspaces of data, and 

extracting one repeated file located in each workspace randomisation.  

 

The uncertainties calculated to accompany the cell counts are more non-parametric than the 

absolute cell counts. The absolute mean and median uncertainties went from 10.6 % and 6.2 % 

respectively in Phase 1 to 22.0 % and 19.3 % respectively in Phase 2.  The mean and medians in 

Phase 1 are not close together, indicating skewness. The mean and median in Phase 2 are closer 

together, indicating a normal distribution of uncertainty, although the central location measure has 

shifted to a higher uncertainty. The means are unsuitable metrics because they do not represent 

the peak maxima, especially in Phase 2, where the bimodal distribution causes the mean to sit 
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between two peaks. The range of participant uncertainty increased when using a protocol (absolute 

increase = 7.8 %, percentage increase with respect to Phase 1 = 23 %), indicating this may not 

reduce inter-participant uncertainty in the same way as observed for the basic and intermediate 

stages. Once more, the distribution shape of Phase 2 uncertainty separated into two bimodal 

peaks, indicating clusters of high and low variance participants, potentially due to understanding 

and bias when using the nominated software platform.  

 

Further investigation has shown a high probability of this variation split coming from a boundary 

effect within the data visualisation software. Cells in the file that have a fluorescence signal lower 

than the visualisation axes are compiled on the boundaries. Inclusion of these in the repeated 

analysis can skew the cell counts and uncertainty significantly. Consistent inclusion or exclusion of 

the fluorescence spike gives a low variance, with high or low absolute cell counts respectively. 

Inconsistent inclusion/exclusion of the data spike leads to high variance. Those in the lower 

variance cluster have not included these cells in their analysis, or repeatedly have so the overall 

variation would be lower between repeats. Revision of extreme participants using the uncertainty 

boundary diagrams has shown most of the variation is contributed within the third gate applied, 

where the boundary effect is initially seen on the lower axis, increasing the possibility that the 

boundary effect causes this higher variation. 

 

Overall, the structure of these analysis sessions and data extraction processes has worked well 

over the subsequent analysis phases, allowing for appropriate comparison between data in Chapter 

7.  

 
6.4.1 Consolidation of Objectives 

 
• This study ran smoothly, acting as a good complex model for comparison of absolute 

reported results, CV and uncertainty measures. The session structures were suitable in 

time, and 3 repeats was suitable for participants to understand study context, but not 

become tired.  
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• Diagrammatical protocols used by participants during the second phase of this study 

have shown to increase the range in absolute results (3.9 %) reported and increase the 

range of participant absolute uncertainties (7.8 %), which calculates as a 23 % increase 

with respect to to Phase 1 counts). This is different to subsequent chapters and could 

possibly be due to the higher dimensionality of the data causing additional difficulty for 

participants.  

• Extreme values in absolute reported results were due to participants either over 

constraining or under constraining the live cell population predominantly within the sixth 

gate, due to over- or under-constraining the quadrant around the desired double positive 

population. In some cases, lack of knowledge of using controls to set gates led to 

variance in population metrics. 

• Extreme values in uncertainty results were due to participant variability in applying a gate 

to separate the live cell population from the dead or dying cells, alongside additional 

variation caused in the third gate by boundary effects on the left edge of the visualisation 

plot, caused by concatenated data that would otherwise be outside the plot axes. In 

addition, separating the CD45RA+ CCR7+ (gate 6) population from the remaining cells 

has caused some extremes in absolute cell counts due to placement of these quadrant 

gates. This gate was thought to be more variable, however, because of the difficulty of 

the gate, participants have been more repeatable when using FMO controls to place 

gates. 

• The performance monitoring diagrams visualised continue to provide a straightforward 

way to monitor uncertainty performance with respect to the number of people in the study 

and defined quality satisfaction limits. These will be used in the subsequent chapter to 

monitor uncertainty performance in a more complex gating scenario. 

• This study defines participant uncertainty for a more complex, industrially relevant, 8-

colour panel cell model, which can be used as a complex model compare potential 

growth of inter-participant uncertainty through more difficult analysis scenarios. 
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Chapter 7: Comparison of Models 
7.0 Introduction to the Chapter 

Chapter 7 provides a comparison of key metrics monitored throughout the different complexity 

models discussed in Chapters 4 to 6. Basic statistics as well as more complex statistical tests such 

as the Friedman test have been used within this chapter to critically evaluate the different 

complexity models and their effect on cell counts and participant uncertainties. 

7.1 Chapter Aims 
 

This Chapter compares complexity models to identify whether the core hypothesis of this research 

has been met, showing an increase in range of CV and uncertainty with increased data complexity. 

This Chapter aims to compare the ranges of absolute cell counts, CVs and uncertainties, to identify 

a potential in case in between-participant variability. Only data from personal judgement has been 

compared, because a protocol phase was not conducted within the basic model (Chapter 4). 

7.1.1 Chapter Aims & Objectives 
 
The Aims and Objectives of this Chapter can be defined as follows: 

• Identify potential changes in the range of absolute cell counts with complexity of data. 

An increase in range of reported cell counts would indicate greater variability between 

participants when reporting Flow Cytometry results. 

• Identify potential changes in the range of absolute cell count CVs with complexity of data, 

because this is the most common variability reporting methods within the Flow Cytometry 

method so an indication of how this changes with data complexity could aid the 

community with a representative value for analyst contributions. 

• Identify potential changes in the range of uncertainties calculated with complexity of 

data. This is an alternative measure of variation explored within this research and will be 

compared to CV to identify its suitability within Flow Cytometry measurements.  
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7.2 Methodology 
 

To compare the three models across Chapter 4 to 6, basic statistical reporting has been 

considered, as well as more specific statistical tests to define differences between the models. This 

has been completed for all absolute cell counts and CVs reported, as well as respective 

uncertainties. This methodology section explains why these comparison methods have been 

chosen along with justification. Both IBM SPSS Statistics Version 24 and Matlab R2019a have 

been used to complete the more advanced statistical analysis and visualisation. 

 

7.2.1 Basic Statistical Reporting 
 

Basic statistical reports used within Chapter 4 to 6, with statistical definitions from Chapter 2, have 

been compared and discussed here. In addition to the compilation of these data sets, box plots 

have also been produced to visually compare the distributions of the separate data sets. A box plot 

shows the 25th, 50th (median) and 75th percentiles (%iles) to visualise the distribution of the 

Interquartile Range (IQR). Whiskers have also been added to the box plot to show the distance of 

1.5 x IQR. This is a common distribution marker for outliers. Anything within the whiskers is an inlier, 

or acceptable measurement. Any data point marked as a cross outside of the whiskers is defined 

as an outlier.  

 

7.2.2 Further statistical testing for differences 
 

Despite conclusions drawn from the basic statistics, more extensive statistical testing to confirm 

there are statistically significant differences between the three models has been completed for 

absolute cell counts and uncertainties. 

 

A Friedman test has been used in this instance, because the data is non-parametric in distribution 

shape and three different groups or testing conditions have been considered [197]. This is the 

robust alternative to a one-way repeated measures ANOVA, which required the data to be normally 
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distributed. A Friedman test has also been used in place of a Kruskal Wallis H test, because it 

compares related data. Mostly the same participants were present in each testing model, making 

the Friedman test more suitable for analysis, whereas a Kruskal Wallis H test requires 

independence between participants in the separate testing conditions.  

 

The Friedman test requires the same participants in each group, and each group represents 

repeated measures on the same dependent variable. In this instance there were not the same 

number of participants in each group, and some participants were not present in each group, which 

could compromise the power of the analysis. However, this was not in the control of the 

experimental studies. The Friedman test is an extension of the Sign test, which only compares two 

groups and has been used to compare test conditions within Chapters 5 and 6. The hypothesis of 

the Friedman test is as follows: 

 

HO = the distribution of results in each group are the same 

HA = at least two distributions differ 

 

If the null hypothesis is rejected because at least two distributions differ, Post Hoc tests (Pairwise 

comparisons) are used to identify similar distributions. These tests are like the Wilcoxon rank tests 

used to compare two non-parametric distributions [197].  
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7.3 Comparison of Results 
 

The results reported here are split between the absolute cell count results and the uncertainties 

calculated from the gating sequences, as previously defined within Chapter 4 to 6. The results 

reported within these chapters have been repeated here for easier comparison.  

 

7.3.1 Comparison of Absolute Cell Count Results 
 

The statistical report results from the absolute cell counts generated from personal judgement of 

each complexity model can be found in Table 75, Table 76, Table 77 and Table 78. Only personal 

judgement results have been compared because the basic model does not have a ‘protocol’ phase, 

so only judgement has been assessed. Box plots to compare distributions of each complexity model 

are shown in Figure 142. It should be noted that the absolute results have been compared for 

continuity of the thesis structure, although the difference in cell type between the stages cannot 

be compared fairly, so these results are purely an indication of possible differences. Further testing 

with the same cell type at different gating stages could better investigate this. 

 

Table 75 Measures of Location for the absolute results of the complexity models (%) 

 Basic (Chapter 4) Intermediate (Chapter 5) Complex (Chapter 6) 

Arithmetic Mean (%) 32.1 6.3 5.8 

Median (%) 32.5 6.0 5.5 

Mode (%) N/A N/A N/A 

Minimum (%) 19.7 3.5 1.2 

Maximum (%) 51.3 8.0 10.5 

 

Table 76 Measures of Spread for the absolute results of the complexity models (%) 

Range 31.6 4.5 9.3 

25th Percentile (%) 30.6 5.7 4.0 

75th Percentile (%) 33.9 7.3 7.6 

Interquartile Range (%) 3.3 1.6 3.6 

Standard Deviation (%) 5.7 1.1 1.0 

CV (%) 17.8 18.2 12.1 

Median Absolute Deviation (%) 1.9 6.0 1.7 
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Table 77 Measures of Skew for the absolute results of the complexity models (%) (3dp for better resolution) 

Skewness (%) 0.492 -0.351 0.168 

Skewness standard Error (%) 0.383 0.481 0.491 

Skewness z-score (%) 1.280 -0.730 0.342 

Kurtosis (%) 3.271 0.042 -0.669 

Kurtosis Standard Error (%) 0.750 0.935 0.953 

Kurtosis z-score (%) 4.560 0.045 -0.702 

 

Table 78 Measures of Normality for the absolute results of the complexity models (%) (3dp for better resolution) 

Shapiro-Wilk statistic 0.904 0.945 0.980 

Significance 0.003 0.231 0.911 

Normal/Non-parametric Non-Parametric Normal Normal 

 

 

Figure 142 Absolute cell count distributions for each cell complexity model 

 

The locations of the basic model distributions are qualitatively significantly different due to no 

overlap with distributions of the more complex models. This is quantified by the basic model median 

(32.5 %), compared to the medians of the intermediate and complex model (6.0 % and 5.5 % 

respectively). The shape of the distributions are significantly different according to the results of 
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the Friedman test, as shown in Figure 143 (Basic model = S1_Av, Intermediate model = S2_1_Av, 

Complex model = S3_1_Av). Absolute cell counts between models were statistically different, 

according to the related samples Friedman two-way analysis of variance by ranks, 𝟀𝟀2 (2) = 19.538, 

p < 0.0005, but this could be expected because of the difference in cell type.  

 

Pairwise comparisons were performed as Post Hoc tests to further identify whether the significant 

differences were between some or all the models, shown in  Figure 144. A Bonferroni correction 

was applied to adjust the significance levels [197,198]. Multiple comparisons increase the risk of 

a Type 1 error, which is why adjusted significance was used, and has been used for all subsequent 

Friedman tests in this Chapter. Absolute cell counts were statistically different between the basic 

and intermediate models (p = 0.001) and the basic and complex models (p < 0.0005). This 

statistical significance confirms the qualitative differences observed, but also because the basic 

model was based upon a different cell type (Embryonal Carcinoma cell line) in comparison to the 

intermediate and complex models which look at T-cell subsets. 

 
Figure 143 IBM SPSS results for the Friedman test comparing absolute cell counts for complexity models 
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Figure 144 IBM SPSS pairwise comparisons for the Friedman test comparing absolute cell counts for complexity models 

 
The range of absolute results is largest in the basic model, which possibly could be because of the 

lower level of stratification required for this dataset, potentially suggesting that the larger the cell 

population cluster, the greater the range of participant cell counts. However, this is a different cell 

type, so this could confound this analysis. The range of absolute cell count results decreased for 

the intermediate model (4.5 %) and then increased again for the complex model (9.3 %). This may 

possibly have been due to the cell event number in the final model, which contained 76,012 cell 

events in comparison to 30,000 cell events gathered in the previous two stages. All cell counts 

were compared as percentages of the original cell count number to have better comparison 

between the files, to try and remove the inconsistent cell event numbers.  

 

However, this would require further experimental clarification to formally design and test this 

possibility. For further comparison the ranges of the third gate applied in the intermediate and 

complex model have been considered, because these are both larger cell populations, comparable 

in size to the basic model as just shown. The range of results of the third gate applied in the 

intermediate and complex models are 25.8 % and 33.1 % respectively, which are similar to the 

basic model range (31.6 %). This potentially suggests that as further stratification of the data 

through gating steps occurs, there is a smaller range of inter-participant absolute cell counts, due 

to a smaller stratified cell population. 

 

Due to the nature of gating, smaller cell counts through each gating step are logical. However, the 

ranges reported across the three models contradict this because the range of the complex model 

results is greater than the intermediate model. This is also seen in the IQR, so it is not just extreme 
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values that have an effect. More cell events were acquired in the complex model file than the 

previous two models, however, percentages of cell count populations have always been reported 

to standardise this. Gate 5 in the complex model has a range of 23.1 %, so it could be that because 

this model is more complex it is causing more deviation throughout the sequence, which could be 

expected.  

 

This is not supported by other methods of variation measurement, such as the SD, which does 

decrease with every data set (5.7 %, 1.1 %, 1.0 %) respectively. However, consideration of the data 

shape is required before drawing these conclusions because the basic model is more skewed and 

kurtosed than the other model, shown by skewness and kurtosis z-scores and Shapiro Wilk test 

results for normality. This could suggest that SD values are not valid for use in this context, however 

they are still suitable to consider because of their use within general statistical reporting. 

 

A more robust measure to use instead of SD is Median Absolute Deviation (MAD), but this shows 

no obvious trend in the data, with MAD starting at 1.9 % for the basic model, increasing to 6.0 % 

for the intermediate model and decreasing to 1.7 % for the complex model. Finally, the most 

common metric of variation in the Flow Cytometry community, Coefficient of Variation (CV) is fairly 

constant between each test model, reporting 17.8 %, 18.2 % and 12.1 % for each model increase. 

This CV will be known as inter-participant CV, because it is the CV of the absolute cell counts 

reported by each participant. This shows that if CV is to be continually used in the field, an average 

inter-participant CV of 16 % could be considered as an operator analysis component, taken from 

inter-participant absolute cell counts reported. This falls within the allowable CV specified by the 

ICSH guidelines, and also NHS KPIs for uncertainty, for Flow Cytometry discussed in Chapter 1 [72].  

 

Intra-participant CV has also been investigated throughout this research and is defined as the CV 

across the repeated measures of the three repeats each participant completed. The difference 

between inter-CV and intra-CV has been depicted in Figure 145, re-imagined from the earlier Gauge 
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R&R explanations in Chapter 2. In this instance, intra-CV is the repeatability of each participant, 

and the inter-CV is CV of absolute cell counts between participants.  
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Figure 145 Diagram of Inter-CV and Intra-CV for subjectivity comparison 

 

Figure 146 shows boxplot distributions of intra-participant CV results, from their 3 repeats acquired 

in each cell complexity model. 

 

Figure 146 Absolute cell count CV distributions for each cell complexity model 
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It is clear that the range of intra-participant CVs increase with cell complexity, with gradual increase 

in the median of each group. A related-samples Friedman rank test was completed to further 

confirm a significant difference between the test conditions. Cell count CVs were statistically 

different through the different models, 𝟀𝟀2 (2) = 14.000, p < 0.001, shown in Figure 147. Post Hoc 

pairwise comparison tests were then conducted to identify which pairs were significant, 

summarised in Figure 148. These was a significant difference between the basic and intermediate 

models (p = 0.043) and the basic and complex model (p = 0.001), but not between the intermediate 

and complex model as their distribution shape was deemed similar.  

 

 

Figure 147 IBM SPSS results for the Friedman test comparing absolute cell counts CVs for complexity models 

 

Figure 148 IBM SPSS pairwise comparisons for the Friedman test comparing absolute cell count CVs for complexity 
models 
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All distributions have a positive skew, aligning with the traffic light diagrams in Chapter 4 to 6, used 

to monitor the individual CV distributions. Even though the distribution of the complex model is the 

largest, it contains no outliers specified by the whisker limitations (Figure 146). Therefore, the data 

is less likely to by kurtosed because it may have a more evenly distributed shape than the other 

two test conditions. 

 

Overall, this indicates that as the complexity increases, the CV of the participant is likely to increase, 

confirming the thesis hypothesis if intra-participant CV is the variation metric of choice. If a general 

CV of absolute cell counts of a population is used (inter-participant CV), an increase has not been 

observed as cell models become more complex. An average of 16 % CV was achieved across the 

three models, so this could possibly be used as a rule of thumb when considering general operator 

variation around a measurement. 

 

7.3.2 Comparison of Cell Count Uncertainty Results 
 

Currently CV is commonly used within Flow Cytometry communities as a measure of variability along 

with the absolute reported result. Uncertainty has been explored as a potential alternative to CV, 

because of the better resolution it provides when monitoring variability between participants 

through the gating sequences. Uncertainty has also been explored as an alternative to CV because 

uncertainties for equipment are required to be calculated for ISO 15189 to show competency of 

medical testing laboratories [82]. This replaced Clinical Pathology Accreditation (CPA) in the United 

Kingdom, where every pathology laboratory in the National Health Service (NHS) must be 

accredited to this new standard. If interpretation forms part of a measurement, this should also be 

monitored and included in the uncertainty budget, stated alongside the final measurement 

reported. 
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The statistical report for the uncertainty results across all three complexity models can be found in 

Table 79, Table 80, Table 81 and Table 82. These results have been taken from ‘personal 

judgement’ phases through each stage for comparison. Boxplots representing each of these 

populations has been visualised in Figure 149. 

 

Table 79 Measures of Location for the uncertainty results of the complexity models (%) 

 Basic (Chapter 4) Intermediate (Chapter 5) Complex (Chapter 6) 

Arithmetic Mean (%) 4.0 3.8 10.6 

Median (%) 3.6 2.1 6.2 

Mode (%) N/A  N/A N/A  

Minimum (%) 0.7 0.4 0.8 

Maximum (%) 13.1 16.1 34.9 

 

Table 80 Measures of Spread for the uncertainty results of the complexity models (%) 

Range (%) 12.4 15.7 34.0 

25th Percentile (%) 2.0 1.4 4.0 

75th Percentile (%) 5.6 3.8 13.2 

Interquartile Range (%) 3.6 2.3 9.1 

Standard Deviation (%) 2.7 4.3 10.8 

Median Absolute Deviation (%) 2.0 0.8 3.0 

 

Table 81 Measures of Skew for the uncertainty results of the complexity models (%) (3dp for better resolution) 

Skewness (%) 1.288 1.942 1.375 

Skewness standard Error (%) 0.388 0.481 0.491 

Skewness z-score (%) 3.320 4.037 2.800 

Kurtosis (%) 2.311 2.899 0.468 

Kurtosis Standard Error (%) 0.759 0.935 0.953 

Kurtosis z-score (%) 3.045 3.101 0.491 

 

Table 82 Measures of Normality for the uncertainty results of the complexity models (%) (3dp for better resolution) 

Shapiro-Wilk statistic 0.900 0.692 0.758 

Significance 0.003 0.000 0.000 

Normal/Non-parametric Non-parametric Non-parametric Non-parametric 
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Figure 149 Absolute cell count uncertainty distributions for each cell complexity model 

 

There is no steady increase of mean or median between the analysis stages because these location 

measures for the intermediate model are lower. However, as identified in Table 80 there is a steady 

increase in the range of participant uncertainties from basic model (12.4 %) through the 

intermediate model (15.7 %) to the complex model (34.0 %). This indicates more participant 

variability throughout the entire gating process as the data they analyse becomes more complex. 

Unlike CV, this combines variability from each gate applied, rather than just the final cell counts, 

giving better resolution and traceability to the variability. 

 

The shape of the distributions were significantly different according to the Friedman test, 𝟀𝟀2 (2) = 

6.167, p < 0.046, shown in Figure 150. However, when conducting a Post Hoc examination using 

pairwise comparisons, no significant differences between individual pairings were reported, shown 

in Figure 151. The Friedman test assesses the distribution shape, so the positively skewed nature 

of all three models may have caused this outcome. All models returned positive skewness z-scores 

(3.320 %, 4.037 %, 2.800 % respectively) for the increase in complexity. All are outside of the 2.58 
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boundary limits for normality, but some are more skewed than others. This could be why the 

Friedman test is initially significant and the pairwise comparisons show no significant differences.  

 

 

Figure 150 IBM SPSS results for the Friedman test comparing absolute cell counts uncertainties for complexity models 

 

 

Figure 151 IBM SPSS pairwise comparisons for the Friedman test comparing absolute cell count uncertainties for 
complexity models 

 

The kurtosis of the basic and intermediate models were also high (3.045 % and 3.101 % 

respectively), whereas the complex model has a much lower kurtosis z-score (0.491 %), indicating 

this distribution is less affected by outliers. This can be further supported by the boxplots in Figure 

149 showing outliers across a smaller range in the basic and intermediate models rather than in 

the complex model. 
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The comparison of variation between the stages again comes down to how the data is presented 

and what variation metrics are chosen to describe the data. In this instance, the SD shows a similar 

trajectory to the range, increasing in size as the complexity of data increases. However, the MAD 

score decreases from basic to intermediate models and then increases from intermediate to 

complex models again.  

 

7.3.3 Comparison of CV and Uncertainty Results as variation metrics 
 

Although uncertainty was not significantly different with regards to the distribution shapes of the 

separate models, the range of the intra-participant uncertainty increased with complexity, 

comparable to CV in this instance, because CV also increased in range as the complexity of the 

data increased, although the range is larger for CV than uncertainty.  

 

Rather than replacing CV with uncertainty because it is more specific, both metrics could be used 

when training and reporting FC measurements. Uncertainty gives much more resolution to the 

variability within data, shown when analysing uncertainty components throughout Chapters 4 to 6. 

The method shown to obtain participant uncertainties can be used to combine other sources of 

uncertainty within the FC measurement, to obtain a representative combined and expanded 

uncertainty value that meets required standards. 

 

CV can also be used to obtain a quick point-in-time measure of variability used alongside 

uncertainty which is a lot more specific and takes longer to achieve. It can be used within training 

and refresher exercises to quickly monitor an analyst’s variation on a specific instrument or analysis 

pipeline. Ultimately, both variation measures can be used, however, it cannot be assumed that an 

analyst’s uncertainty could be judged from their CV or vice versa, so one should not be used to 

provide an indication or estimation of other metrics and variability. The ‘CV versus uncertainty’ 

scatter graphs created in Chapter 4 to 6 show very poor correlations, so CV should not be used to 
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assume a participant’s uncertainty. If an analyst’s CV is high, their uncertainty may not also be high. 

Uncertainty requires much more structured methodology and analysis in order to calculate a 

combined uncertainty figure.  

 

Overall, the core thesis hypothesis has been proven for both CV and uncertainty of participant Flow 

Cytometry results. As the complexity of Flow Cytometry data increases, the range of participant CV 

of results will also increase (Figure 152), as well as the range of participant measurement 

uncertainty (Figure 153). 

 

Figure 152 Core hypothesis of thesis, showing an increased range of intra-participant CV with FC data complexity 

 



  Chapter 7: Comparison of Models 

260 
 

 

Figure 153 Core hypothesis of thesis, showing increased range of inter-participant uncertainty with FC data complexity  
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7.4 Chapter Conclusions 
 

When considering reporting of absolute cell counts (means and medians), the lower cell counts 

reported as the complexity increased could be a function of the number of analysis steps used 

within the gating analysis sequence. If so, this could mean rare cell events are lost through gating, 

or the true cell count of populations is skewed. However, this is a comparison across different cell 

types, so this could confound results. The more sequence steps completed, the lower the mean or 

median cell count could be due to increased stratification of the cell populations. This could 

intensify when 18 colour panels are used to consider specific markers, although all 18 markers 

would not necessarily all be used to investigate or monitor one specific function, they may monitor 

three or four targets at a time, requiring less processing steps for each target.  

 

Although the location metrics reduces as the complexity of the models increased, this cannot be 

assumed for the range or inter-participant absolute results reported for each model. As the 

complexity increased, the range of results between participants did not decrease. As the target 

becomes smaller and perhaps more specific, this does not necessarily mean that the range of 

results reported by participants will become smaller or more focused.  

 

The absolute range of results for the basic model was the largest (31.6 %) when three gating steps 

were completed, which reduced to 4.5 % for the intermediate model (5 steps), however, this 

increased again when 8 steps were completed in the complex model, giving an inter-participant 

range of 9.3 %. All cell counts were compared as percentages of the original cell count number to 

have better comparison between the files, to try and remove the inconsistent cell event numbers 

between files used in each model.  

 

All cell model distributions were deemed to be statistically different from each other using the 

related-measures Friedman test, and when investigated further using Post Hoc pairwise 

comparisons between each pair of models, it was found that the intermediate and complex models 



  Chapter 7: Comparison of Models 

262 
 

were statistically different from the basic model, but not different from each other. These 

differences may be due to the lower number of gating steps used in the basic model, but also that 

the exemplar used in the basic model was an immortalised cell line, where pluripotent stem cell 

markers were identified. However, in the intermediate and complex model, T-cell lineages were 

investigated, so this change in cell type could have impacted the results because of different sized 

sub-populations. This was investigated by looking at the ranges for the third gate applied within the 

intermediate and complex models, returning absolute ranges of 25.8 % and 33.1 % respectively 

between participants. These values are comparable to the range reported for the basic model, so 

this higher range is more likely due to the lower number of stratification steps to identify the target 

cells, at this point.  

 

Using the basic statistical reports to compare the three models has shown further inconsistency 

between different statistical variability metrics, building upon the findings in Chapter 3, where 

different boundary estimators were tested. When considering the variability of the absolute cell 

counts, there were inconsistencies in trend between the total range, Standard Deviation and 

Median Absolute Deviation of all three cell models. This further supports the conclusion that the 

data distributions need to be properly understood before choosing the most appropriate metric to 

define and monitor variance.  

 

Inter-participant CV was stable across all three models (17.8 %, 18.2 % and 12.1 %, with an average 

of 16.0 % respectively), however, it does not concur with other manual gating analyses conducted 

on Flow Cytometry data which show higher CVs for individual gating or centralised gating [1,2]. This 

CV metric is indicative of what is normally reported in FC literature, as a calculation from repeated 

absolute cell counts reported. Therefore, the stability across the three models of this inter-

participant CV, could suggest that an overall value for participant CV contributions is 16.0 %. This 

could be used when considering variations of measurements as well as within quality control 

documentation and training purposes. However, if this were to be considered alongside the ICSH 

guidelines, this indicates that participants do not fall within satisfactory variation limits, because 
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having < 10 % CV is highlighted as being satisfactory, and the cell types and populations used 

within this research were not rare [71]. This satisfactory value was quoted for the overall 

measurement, but it could also be used for individual measurement components such as analyst 

variation or biological variation. 

 

When considering the intra-participant CVs, the absolute range of results increased each time with 

an increase in complexity (6 %, 22 %, 34 % respectively with each complexity model), showing that 

as the data becomes more difficult to analyse, the range in reported CVs increases, showing more 

variability as a result. If CV is used as a variance metric, it was confirmed using the Friedman test 

that there is a significant difference between the stages, showing that there is a difference in 

variance between the complexity stages. When considering using CV these ranges can be used 

effectively within training exercises and when considering repeatability of analysts on the same 

test. The greater range of variability reported for more complex models indicates that a wider range 

of CVs should perhaps be anticipated when running FC assays with larger panels, although they 

may not be initially acceptable.  

 

Continuous improvement efforts to reduce variability can potentially be monitored using CV as the 

dependent variable measured, to identify how these small changes impact the variability of 

analysts and therefore data over time. This has been effectively shown through many proficiency 

testing schemes, using CV as the comparable measure between participating laboratories to 

indicate good and poor performance [94,95]. 

 

A similar trend in range was also observed for uncertainty across each of the complexity phases. 

An increase in range was seen as the complexity of the model increased (12 % to 16 % to 34 % 

respectively with each complexity model), which was further confirmed as a significant difference 

by the Friedman test, to show differences in shape. However, when further investigated, there were 

no significant differences between the pairs of models, possibly due to the smaller ranges. 
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The mean and median uncertainties did not go up continually compared to the range, there was a 

decrease from the basic model (mean = 4.0 %, median = 3.6 %) to the intermediate model (mean 

= 3.8 %, median = 2.1 %) and an increase from the intermediate model to the complex model 

(mean = 10.6 %, 6.2 %). This shows that if location metrics were only used to describe each 

population, the increase in the whole population would not be seen. Although the mean and median 

values have been considered throughout the whole research, the core hypothesis of the thesis 

investigates the variability and spread of the uncertainty of the data, rather than location metrics, 

so range is considered as a more important marker of comparison at this stage.  

 

The core thesis hypothesis has been confirmed, because the range of inter-participant 

uncertainties has increased with more complex data. This further consolidates using uncertainty 

as a variance metric within FC, specifically in a manufacturing and quality control environment, not 

just a clinical one. This can also benefit research and development communities, because a full 

understanding of uncertainty can provide more specific root cause analysis when high variance is 

detected. This can then help deliver better training and continuous improvement as a result. 

 

Uncertainties reported alongside measurements gives a much more informed judgement on the 

cell therapy product through all stages of manufacture, sorting and release. If an uncertainty 

reported alongside a cell count result is high, it enables the manufacturer, inspector or clinician to 

really question the product, measurement equipment, process and reagents involved, before 

making a more conclusive decision. Uncertainty reporting provides better resolution to the whole 

measurement, with quantitative traceability back through the components, to identify significant 

contributions of variance. This overall provides better awareness and control to all products and 

processes contributing to the measurement. If a measurement is close to acceptance limits for 

signing off the product or approval for the next manufacturing phase and the uncertainty boundary 

causes concern for a specific batch, this could provide more solid grounds to ask for further testing 

of the product. This would be preferred over potentially providing a false positive or negative result, 

which when passed onto the patient could have costly impacts.   
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7.4.1 Consolidation of Objectives 
 

• There was no increase in range of absolute cell counts reported as the complexity of the 

data increased. The target population medians got smaller as the complexity increased, 

due to further stratification of the data, however, the range of participant reported cell 

counts did not decrease in line with this.  

• Inter-participant CV, calculated from all the participant cell counts across each 

complexity phase was very stable, with an average of 16 % CV. This could possibly be 

used as an indication of variation within the Flow Cytometry community, to highlight the 

significant impact analysts can have on the analysis and conclusion of results. 

• Intra-participant CV range increased significantly with each complexity model (6 %, 22 %, 

34 % respectively), showing that as the complexity of the data increases, a greater range 

of CV results can be expected between participants.  

• There was a significant difference in range between the cell complexity models when 

measurement uncertainty was calculated. As the complexity of the data increased, the 

range of uncertainties between participants also increased (12 %, 16 %, 34 % 

respectively). This confirms the core hypothesis of this thesis, that as the complexity of 

the data models increases, the uncertainty contributed from participants also increases. 

• The use of CV is common within Flow Cytometry communities, and it still has significant 

strengths as a reporting and training tool when looking at FC data. It shows that as 

operators are trained to analyse more complex data, initially larger ranges of results are 

to be expected from more difficult analysis panels. This is also the case for uncertainty, 

which allows laboratories to better conform to ISO 15189 requirements for competency 

within medical testing laboratories, by showing more specificity of uncertainty 

calculations by including quantified subjective elements. 
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Chapter 8: Participant Surveys 
8.0 Introduction to the Chapter 

Chapter 8 introduces the participant experience surveys, which participants completed at the start 

and end of the study period (2 years apart) to capture training state and issues observed over time. 

This gave a better understanding of the participants and allowed certain experience metrics to be 

investigated in relation to uncertainty study outcomes. This provides some human factor context to 

the quantitative data explored in Chapters 4 - 6. This also stratified common issues participants 

faced when gating their own Flow Cytometry data, or when interpreting it from another source, to 

identify areas for improvement within protocols and standardisation. 

8.1 Chapter Aims 
 

This Chapter aims to give a better understanding of the participants (and their training background) 

who were involved in some or all stages of this research. Not only will this identify dichotomous 

indicators of preference and experience, but ordinal metrics such as use frequency are investigated 

alongside uncertainty results from previous Chapters. This indicates whether correlations can be 

drawn between use frequency metrics, experience and the results achieved as well as the 

measurement uncertainty, which were so commonly assumed by participants. 

8.1.1 Chapter Aims & Objectives 
 

The Aims and Objectives of this Chapter can be defined as follows: 

• Stratify the results of the initial and end surveys, to compare key dichotomous markers 

that define the population for various personal, experience and motivational factors. 

• Investigate the preferences for manual or automated gating over time, stratifying the key 

reasons why, to see if these can be addressed with data analysis, software or cultural 

changes. 



  Chapter 8: Participant Questionnaires 

267 
 

• Investigate problems encountered by participants when they gate manually, and if these 

stratified issues change through the course of the research studies.  

• Investigate problems encountered by participants when interpreting Flow Cytometry 

gating data from literature, and what issue this may cause for reproducibility. 

• Investigate possible correlations between continuous participant experience metrics and 

the range of results from the previous uncertainty studies (Chapter 4-6), focusing on the 

range of absolute cell counts, CV and expanded uncertainty results obtained. 
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8.2 Methodology 
 

A total of 43 participants provided answers to the initial questionnaire. These participants took part 

in either one or all of the uncertainty studies, and if they joined part way through the total 

experimental phase, they were given this initial questionnaire to complete before starting the 

respective study. Sixteen participants provided answers to the follow-up questionnaire. This 

difference between participant involvement is due to a staffing change at one of the centres just 

before the intermediate uncertainty model. Once these new participants had completed the first 

questionnaire, it was deemed too close in time to send the follow-up questionnaire, so they were 

excluded from this final survey exercise. 

 

The timescale and delivery of the starting and ending questionnaire will be defined throughout this 

section, moving on to provide further detail on the structure of each questionnaire provided to 

participants. 

 

8.2.1 Questionnaire timescales and delivery 
 

To ensure background information of Flow Cytometry participants could be captured, participants 

answered an initial questionnaire. This was hosted electronically using Google Forms to minimise 

disruption to participants and provide automatic stratification into Microsoft Excel file formats (.xls). 

Once participants had provided consent to take part in the research (as discussed in Chapter 3) 

and 24 hours had elapsed (cooling off period, to ensure all participants were happy to take part), 

the questionnaire was sent to participants, with instructions to complete it before their first analysis 

session took place. This progression is shown in Figure 154, depicting the sequence of 

questionnaires and the main analysis models. The pre-study analysis discussed in Chapter 3 has 

not been included, because the results obtained from this study are not comparable with the 

absolute cell counts, CVs and uncertainties investigated in Chapters 4 to 6.  
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Figure 154 Questionnaire timescale in conjunction with analysis models 

 

Following the Intermediate Uncertainty model (Chapter 5) and the investigation of the boundary 

effects present in the software visualisation, a follow-up questionnaire was introduced to identify 

additional participant understanding of Flow Cytometry. This was given to participants before the 

complex uncertainty model (Chapter 6) took place, to ensure a good rate of response. Online 

Surveys (previously Bristol Online Surveys) was utilised for this questionnaire [199], due to 

institutional access and migration away from Google platforms, as well as the ability to download 

the data into different analysis platforms previously used, such as Microsoft Excel (.xls) and IBM 

SPSS Statistics (.sav), for more streamlined analysis. A series of questions were repeated from the 

initial questionnaire, to monitor experience gained over time, for example, to see whether 

collectively the experience distribution changed, or whether specific participant experiences 

affected results. New questions were introduced to ask participants about what noise parameters 

they identified and how there were dealt with. This was to identify underlying understanding about 

the boundary effects, without asking a leading question.  

 
8.2.2 Initial Questionnaire Outline 

 

A series of dichotomous, scalar and ordinal questions were asked to participants throughout this 

survey, stratified into groups to identify personal Flow Cytometry qualifications, experience with FC, 

any visual impairment that could affect their judgement during the studies and motivations factors 

to identify enjoyment. Each of these sessions will be discussed throughout the methodology, with 

results discussed later in this chapter. A full template of the initial questionnaire given can be found 

in Appendix D. 
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8.2.2.1 Personal Questions 
 

These questions were simple identifiers, to log who the participants were (name) and their 

responsible manager or Principal Investigator. This was to group people into teams, with the 

understanding that they had all received similar training, and potentially may have similar biases, 

if splits appeared in the data. Upon analysis participants were all anonymised and given 

alphabetical codes for further analysis. 

 

Participants were also asked if they had any formal Flow Cytometry Qualifications. This refers to 

being a Chartered Cytometrist (C.Cy), recently updated to Specialist in Cytometry (SCYM). This is a 

qualification required for clinical pathologists using Flow Cytometry to perform diagnostic assays, 

so this question aimed to investigate whether anyone in a research, manufacturing or process 

development setting in the 3 centres used in this study had this level of externally approved 

qualification.  

 

8.2.2.1 Experience Questions 
 

The experience questions covered personal experience with Flow Cytometry, with respect to the 

length of time they have used Flow Cytometry for, and how often they use the equipment. This was 

to avoid situations where participants may have completed an FC experiment 5 years ago, but not 

completed any analytical work since. This section also asked participants to highlight what they 

predominantly use FC for; Cell counting, Immunophenotyping, Cell Sorting (FACS) or other assays. 

This was also coupled with what cell types participants were most familiar with when running FC 

assays, to identify what cells types were most common across the three centres.  

 

Training was also investigated, to identify whether participants had been taught to gate internally, 

externally (by training courses or manufacturers) or were self-taught using text/online resources. 

To expand on the training questions, participants were also asked if they used protocols to apply 
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gates to their data and whether these were listed within internal Standard Operating Procedures 

(SOPs) or from external publications.  

 

Participants were asked to identify their preference between manual and automated gating. In this 

instance, manual gating refers to software platforms that allow users to manually draw or identify 

cell populations of interest, whilst also giving more flexibility over the scaling and axes used. 

Automated gating platforms refer to machine learning algorithms and statistical tools that cluster 

data to find common sub-groups due to different dimensionality factors. Populations are then 

selected by the user, and no multi-step sequence of gates is required as found in manual gating. 

Participants were also asked to identify why they chose their preferred gating style (manual or 

automated), which was given as a written text answer. These text answers were further coded and 

analysed (Section 8.2.4.5). 

 

Finally, participants were asked to identify whether they had experience using the Flowjo software 

platform, or not, to identify additional training that may be required to complete the studies. 

Participants were also asked if they had taken part in any External Quality Assessment Schemes 

(EQAS) throughout their career, or likewise, submitted data files for central processing.  

 

8.2.2.1 Vision Questions 
 

Participants were asked if they had any visual impairment that could affect their ability to 

participant in the study or use a laptop computer for a maximum duration of one hour. If 

participants had issues such as colour blindness or mentioned other visual impairments that could 

affect their perception of shape or density, they were not able to take part in the further studies, 

due to known differences in observation of the data that could skew results [200,201]. In Chapter 

3, this was explored with a small number of participants, however, no participants had colour 

blindness according to the test used, so this is something that could be investigated in future with 

two distinctive test groups to quantify potential differences. 
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8.2.2.1 Motivational Factors Questions 
 

Motivational Factors focused on identifying situations that were preferential for participants to 

complete FC gating during their day-to-day tasks, and what problems were caused through their 

own experience of gating data or interpreting data.  

 

Participants were asked to list problems they encountered when they manually gated, and what 

solutions they have to rectify or deal with these issues. They were also asked to identify problems 

that occur when trying to interpret published Flow Cytometry data from another source, to 

investigate whether better reporting standards may be required throughout the community. Both 

questions required written text responses, which were coded manually, as detailed in section 

8.2.4.5.  

 

Participants were then asked to provide an ordinal response, to specify how much they enjoyed 

gating (scale of 1- to 5, 1 = strongly dislike, 5 = strongly like) and dichotomous results (yes/no) to 

identify whether they had to be in a certain mood to gate, a certain environment to complete the 

analysis, and whether they preferred to complete their analysis at a certain time of day. If 

participants responded ‘yes’ to preferring to gate at a certain time of day, they were then asked to 

specify further and results were stratified into morning or afternoon bins.  

 

8.2.3 Follow-up Questionnaire Outline 
 

A further series of dichotomous and scalar questions were asked to participants throughout the 

follow up questionnaire, to follow-up on factors from the previous questionnaire, and to ask new 

questions that arose during Chapter 4 and 5 data analysis. This questionnaire was divided into 

sections to cover FC usage and FC gating preferences. Each of these sessions will be discussed 

throughout the methodology, with results discussed later in this chapter. A full template of the 

follow-up questionnaire given can be found in Appendix D. 
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8.2.3.1 FC Usage Questions 
 

In a similar manner to the personal questions, FC usage questions were simple identifiers, to log 

who the participants were (name) and their responsible manager or Principal Investigator. Again, 

this was to group people into teams, with the understanding that they had all received similar 

training, and potentially may have similar biases, if splits appeared in the data. Also, over time 

participants may have left the company or changed reporting roles, so this change in participant 

number was also captured. 

 

More specificity was asked about what Flow Cytometers and analysis software packages 

participants had the most experience with. Further to stratifying into research groups, it became 

apparent through the different analysis models that different teams/centres used different brands 

of Flow Cytometer and different software. These biases could also cause bias in results analysis so 

this information was captured for reference if necessary. 

 

The experience questions covered personal experience with Flow Cytometry, with respect to the 

length of time they have used Flow Cytometry for, and how often they use the equipment. 

Participants were also asked to identify whether their usage was consistent over time, or on and 

off with a project, and to highlight if they were currently working on a project that required FC. To 

further diversify FC usage, participants were also asked to identify how often they analyse FC data, 

as well as use the equipment. 

 

8.2.3.1 FC Gating Preferences Questions 
 

Participants were again asked to identify whether they preferred manual or automated gating 

platforms, and to list why. This was to monitor changes over time with usage, hence the staggered 

questionnaires, because automated gating software and plug-ins are becoming more apparent 

throughout FC literature.  
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Similarly, participants were asked to identify problems they had when gating FC data and when 

interpreting it from other sources, to monitor whether the initial issues identified from the first 

questionnaire were addressed over time, or whether they are still an issue in the community.  

 

Participants were asked to identify (on a scale) how much they actively read or research FC gating 

techniques to stay aware of current findings, to possibly indicate motivation around completing 

‘good’ analysis. This could possibly suggest that those who do more self-directed reading may have 

lower variation because they are more aware of the different controls and variables to aid their 

analysis. Finally, participants were asked to list what noise parameters they consider affecting FC 

gating and how these are dealt with when analysing data. This new question was determined by 

the boundary effect observed within Chapter 5, to see if participants are aware of this issue, without 

being asked a leading question.  

 

8.2.4 Questionnaire Analysis and Coding 
 

After both questionnaires were completed by participants, the results were downloaded and coded 

where necessary. Data was stored in accordance with GDPR requirements, although no sensitive 

personal information was gathered through these surveys. This section will address how each type 

of question was coded (where necessary) for further analysis. Questions could be stratified into five 

types: Dichotomous (Yes/No), Continuous (numerical measures), Nominal (pick from a selection of 

options), Ordinal (choose an option from a scale of answers), and written text responses. Three 

software platforms were used to store, analyse and visualise the data: Microsoft Excel 2016, 

Matlab R2018a and IBM SPSS Statistics Version 24. 

 

8.2.4.1 Dichotomous Questions 
 

Questions where participants had to select from two options, for example either a ‘Yes’ or ‘No’ were 

coded within the respective platforms, and then visualised using either pie or bar charts to 

represent the data split of the population.  
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 8.2.4.2 Continuous Questions 

 

Continuous questions were questions where participants had to list a numerical measurement 

factor. For example, total experience duration with FC were formatted to ensure all results were 

displayed in terms of months of use (standard unit). Some participants had specified their answers 

in years, so for further stratification, this data was transformed to the same time scale.  

 

8.2.4.3 Nominal Questions 
 

Nominal questions were questions where participants had to select one of a series of different 

options that nearest matched their personal experience. For example, when asked how often they 

used FC, they were asked to choose from: ‘Everyday’, ‘More than once a week’, ‘Once a week’, 

‘Once a month’ or ‘Less than once a month’. This data could then be easily visualised in the form 

of a bar chart to compare the population. 

 

8.2.4.4 Ordinal Questions 
 

Ordinal questions were questions where participants had to select one of a series of scalar options 

that nearest matched their personal opinion of a particular topic. For example, when asked how 

much they enjoyed gating on a scale of 1 to 5, they were asked to choose from: ‘1 – Strong Dislike’, 

‘2 – Dislike’, ‘3 – Neutral’, ‘4 – Like’ and ‘5 – Strong Like’. These are commonly used to monitor 

satisfaction levels and hence were used in the Motivational Factors section of the initial 

questionnaire. 

 

8.2.4.5 Written Text Responses 
 

These were questions where participants had to expand on choices made or identify particular 

problems they encountered, by providing a written text answer. This did not limit them to 

preconceived options that could potentially display bias from the questionnaire author. These 
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responses were qualitatively coded using manual analysis protocols [179]. Comments were added 

to stratify responses into one- or two-word answers to represent the problem identified. These 

results were tallied, and a second round of coding was completed to further align and stratify the 

responses into similar bins. For example, if a participant mentioned ‘fluorescence spill over into 

different channels’ and ‘accounting for fluorescence of the data set’ were mentioned, these would 

be coded into a ‘Compensation’ tally, which then logged how many times particular issues were 

mentioned to build up a picture of the landscape. Full definitions for the stratified text responses 

for all questions, along with examples of inclusion and exclusion criteria can be found in Appendix 

D. 

8.3 Survey Results 
 

8.3.1 Experience Results 
 
Participants surveyed predominantly used Flow Cytometry for immunophenotyping purposes, 

followed by Cell counting. In this instance participants were able to select multiple options, because 

of the diverse assays that can be run with a Flow Cytometer. Most participants were focused on 

development of immune therapies, shown by the high use of Hematopoietic lineage cells defined 

within the survey, shown in Figure 155. Use of pluripotent stem cells for other cell therapy research 

was common, as well as the use of HEK293 cells which are used within the development of viral 

vectors for autologous treatments.  
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Figure 155, a) Common uses for Flow Cytometry, b) Common cell types analysed using Flow Cytometry 

 

Participants were asked about what they most commonly used, indicating current usage for both 

Flow Cytometry equipment and software (Figure 156). The most common Flow Cytometry 

equipment used was a MACSQuant Analyser 10 [202], followed by BD instruments [203,204]. This 

is a core piece of equipment for participants located at the cell therapy product development 

centre, hence the popular results. Flow Cytometry software used was a lot more variable and based 

on user preference. Flowjo [123] was the most popular software because participants found it easy 

to use and it gave them more control to complete more complex analysis. However, MACSQuantify 

[205] was popular due to use in cell therapy process development at one site. It is not as flexible 

for the user; however, it was mentioned on multiple occasions that the automated sample gating it 

provided was beneficial. 
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Figure 156, a) Flow Cytometers used by participants, b) Flow Cytometry analysis platforms used by participants 

 

Participant experience (total time using a FC) for the initial and follow-up questionnaire has been 

overlaid using the histograms in Figure 157. More participants took part in the initial survey, hence 

the wider range of results. Experience was captured alongside use frequency of a Flow Cytometer.  

 
Figure 157 Overlaid histograms of participant experience with Flow Cytometry 

 

The initial survey experience values have been plotted against results from all three uncertainty 

studies to show the range of absolute cell counts (Figure 158a), CVs (Figure 158b) and 
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uncertainties (Figure 158c) in comparison to the experience of the operator. These results, as well 

as results for Figure 159, have been taken from the ‘personal judgement’ phases of the uncertainty 

models, because this was the only phase tested for the basic model and is thus comparable. This 

was to identify if there was a potential convergence of results as the experience of an operator 

increased.  

 

Experience of operators has been considered in different contexts throughout Flow Cytometry 

literature. Often for comparison studies, a selection of ‘experienced users’ are chosen to complete 

analysis, to ensure participants are all familiar with analysis pipelines [1,206], because it has been 

noted that differences between operators can cause variance in final data analysis, among other 

steps [19]. 

 

Correlations between analyst experience and variation has not been conducted within Flow 

Cytometry literature, so a formal, wide-range study could aid this information. However, many 

comparisons have been made in other healthcare and screening fields. For instance, variability of 

dentin adhesion and resin cements have been explored between students and fully qualified 

dentists [207,208], with one study identifying qualified dentists having a lower CV, however, the 

other study found no difference in adhesive cement performance between student and dentist 

application. The impact of training and practice has been monitored for carotid artery procedures 

between students and registrars, highlighting the improvements simulation training can provide to 

aid novices [209]. Comparisons between human and automated, novice and expert judgement of 

luggage screening has also been investigated, with monitoring of advice given how much this is 

subjectively trusted. ‘Novice’ automation showed more reliability than novice humans, however, 

‘expert’ automation had lower compliance relative to expert humans. Perhaps stratified experience 

or particular job roles are a more suitable way to consider experience going forwards, however the 

distribution of experience with results was required here, so stratification has not taken place 

[210]. 
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Figure 158 Comparison of participant experiences with a) Absolute cell counts, b) Reported CVs, c) Reported expanded 

uncertainties 
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There is no apparent correlation between participant experience and the absolute cell count 

achieved in any of the cell complexity models (Figure 158 scatter diagrams shown on log scales for 

clearer identification of population shapes). This is the same for CV and uncertainties for all three 

cell complexity models. The absolute cell count median for the basic model was higher than the 

remaining models, however this model required less stratified analysis than the others and a 

different cell type, so cell counts are higher because of these reasons.  

 

Experienced operators are more knowledgeable on the topic having spent longer using equipment 

(assuming constant use). However, these results have shown that knowledge should not be 

confused with result accuracy or repeatability. More ‘experienced’ users are not necessarily more 

accurate, shown by the scatter plot in Figure 158a, because experienced users are not more 

convergent towards the median value, assuming this to be the ‘most true’ cell count. If the true 

value of a cell count was known, and more experienced users were more accurate, there would be 

a higher probability of achieving this result. 

 

This is also the case for precision, whether it is represented by CV or uncertainty. There appears to 

be no convergence of CV or uncertainty results for any of the gating models, as shown by Figure 

158b and Figure 158c respectively. Again, it should be noted that more ‘experience’ does not 

necessarily mean operators are more repeatable, although they may be more knowledgeable of 

the sources of variation. Continuous improvement efforts for reducing variation within FC gating 

are required, to constantly identify sources of variation that impact inter-operator reproducibility. 

Throughout this research, boundary effects have been identified to be potential influencers on both 

the accuracy and precision of data, depending on the software platform in use. A new training 

session or information provided to participants within future studies should identify this issue, to 

ensure it is a variable removed from analysis. Software platforms could also make a unified effort 

to align visualisation methods.  
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The use frequencies that participants specified in the initial questionnaire have also been plotted 

against the absolute cell counts, CVs and expanded uncertainties for each model, visualised in 

Figure 159 (y axis scales are linear to ensure easy comparability across different plots). The use 

frequencies have been coded as follows: 1 = Use every day, 2 = Mode than once a week, 3 = Once 

a week, 4 = Once a month, 5 = Less than once a month. 

 

Figure 159 Use frequency compared to a-c) Absolute cell counts per model, d-f) Cell Count CVs, g-i) Expanded 
Uncertainties 

 

There is no significant difference between the different use frequencies with respect to absolute 

cell counts across any of the cell models (Figure 159a-c). However, in the basic model (a) there is 

a greater range in those who use a Flow Cytometer the least (5). Those who used a FC less than 
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once a month also have the greatest interquartile range (IQR) of inter-participant CV in each model, 

however, this is not the case for uncertainties. Those who use a Flow Cytometer more than once a 

week have the largest IQR within the base and intermediate model, and the second largest IQR in 

the complex model, after those who use FC most infrequently.  

 

In a similar manner to the experience data, there is no significant evidence to suggest that those 

who use a flow cytometer more frequently are more accurate or more precise. This is especially the 

case with the uncertainty data (g-i), because those who use it the most frequently and the most 

infrequently have the greatest ranges of uncertainties. This could be due to under- and over-

familiarity with the process. However, further studies to achieve statistical power would be required 

to confirm this. Those who are using FC regularly will probably commit protocols to memory and 

over time possibly find shortcuts or ways to speed up the process. This could cause deviations in 

measurement, impacting accuracy and repeatability. Those who are unfamiliar with the process 

will probably take longer to identify the necessary populations and may not be aware of all the 

factors that could affect their subjectivity of the final population.  

 

Further work could investigate these factors in relation to the range of cell counts and variability 

between participants, gathering a wider range of experience and use frequency of participants. In 

addition, covariance between the experience of a participant and their use frequency could also be 

explored, to identify whether a combination of total experience with FC and how often it is used 

could better identify sub-populations of participants who contribute to greater inter-participant 

variation.  

 

This could help within Cell and Gene Therapy manufacturing scenarios, to better inform training 

protocols, and also identify suitable intervals for ‘refresher’ or ‘retraining’ periods for operators. 

These would have to be carefully integrated into the work environment, with an emphasis on 

fostering a good working culture, to ensure participants see it as an opportunity to improve 
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themselves and the quality of their product, rather than it being seen as a test or reprimand if they 

are not within the manufacturer-defined control limits.  

 

8.3.2 Training and Proficiency Results 
 
 
Participants were predominantly trained internally by another member of staff when they were 

required to use Flow Cytometry (Figure 160). Some had attended training courses instead, but the 

courses listed were operational Flow Cytometry training, ensuring all participants could turn on, 

calibrate and run FC experiments with correct compensation, but none covered how to gate. 

Arguably, there are so many different cell types to gate that there is no ‘one size fits all’ policy for 

applying gates to data, hence why internal supervision or learning was more popular. Some 

participants supported their training with self-led activities such as watching online tutorials or 

videos to show how others applied gates to similar data or cellular subpopulations. This highlights 

the need for some uniform gating templates or a good practice guide to possibly be created for 

particular cell types, which gives a cheap and effective point for users to tailor to their needs.  

 

Figure 160 Flow Cytometry training 
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Participants were also asked if they used Standard Operating Procedures (SOPs) to apply gates to 

their data, as well as using protocols to gather the data, with the analysis shown in Figure 161. 

Most participants did not use a protocol to apply gates to their data, however, of those who did the 

majority used an internal SOP to apply gates. When asked about this in the gating sessions, most 

indicated they had a rule of thumb when applying gates to control files. For example, they would 

get as close as possible to 1 % positive cells in the FMO control, rather than use features of the 

visualisation such as axis scale points or images of protocols. This highlighted that individuals 

completed analysis separate of one another, so a general rule worked better for alignment of 

protocols, because there was no guarantee that the compensation, voltages used, or scaling would 

be the same between participants running the same assay.  

 

 

Figure 161, a) SOPs used to apply gates, b) Types of SOPs used 

 

In addition, no participants had taken part in an External Quality Assessment Scheme (EQAS) or 

submitted files for central processing. These schemes or file transfers are common within clinical 

cytometry to monitor laboratory proficiency and reduce inter-participant variation. It remains to be 
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seen whether these are schemes that the wider manufacturing community could also benefit from, 

to reduce subjectivity, and continually identify sources of variations contributed within analysis. 

This questionnaire was only given to the three collaborator sites, so if this were to be repeated it 

could be sent to participants across a diversity of centre and job roles. No participants had formal 

FC qualifications unlike their clinical counterparts, so this could be something that may be required 

in future for operators within manufacturing environments.  

 

8.3.3 Manual and Automated Gating 
 

Participants were asked in both the initial and follow-up questionnaires to identify their preference 

for manual or automated gating platforms. Manual gating allowed the user to completely identify 

where they want to place the gates, and automated uses a machine learning algorithm to create 

separate population clusters. Figure 162 shows the split between participant preference for 

manual or automated gating, within the initial questionnaire and the follow-up questionnaire. The 

results are shown as response frequency percentages, because the follow-up questionnaire 

contained less responses. The follow-up questionnaire asked this question to identify whether the 

increased prevalence of automation algorithms within analysis software were becoming more 

popular to use than manual gating. In both instances, manual gating was greatly preferred to 

automated gating, with stratified reasons presented in Figure 163. 
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Figure 162 Preference for manual or automated gating within the two questionnaires 

 

From the initial questionnaire responses, the only beneficial reason given for using automated 

platforms was due to the speed of analysis, with more dimensional data being more cumbersome 

for an analyst to review. Even though manual gating was preferred within both questionnaires, a 

greater amount of reasoning for using automated platforms was identified within the follow-up 

questionnaire, suggesting that the benefits of automation are starting to make traction within the 

community.  

 

To further monitor this, the results from one site were compared between the two questionnaires. 

This site had the least changeover of staff, for better consistency and tracking of automation 

popularity. 3/20 participants preferred automation to start with, however two of these operators 

did not take part in the follow-up survey. The remaining participant still felt automation was better 

in the second survey, with a total of 5/13 participants preferring automated algorithms at the time 

of the follow-up survey. Only one of these participants was a new member of staff, so there had 

been a few preferences changed to automated gating platforms over the course of the research. It 

was expressed that algorithms can be trained to identify particular subsets, hence can potentially 
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be accurate, but cannot identify or deal with biological variation as well as a manual analyst, so it 

lacks precision and reproducibility.  

 

Both questionnaires identified users wanting much more analytical control, for visualisation 

purposes as well as double-checking findings. This, as well as legacy of use (‘I prefer manual gating 

because it’s what I’ve always known’), identify a potential resistance to change to new techniques, 

especially where removal of specialist human analysis is concerned. Many participants identify that 

they don’t trust automated platforms, and they would have less control with exploration of the data 

once it had been clustered using a machine-learning algorithm. 

 

Figure 163 Preferential reasons for choosing manual or automated gating across both questionnaires. 

 

Automated platforms need to improve in accuracy, precision and handling of biological variation to 

allow participants to move away from manual analysis. Equally, an awareness of a participants own 

variation when gating would give them a personal benchmark when testing and potentially 

validating new algorithms for use in population identification, which is partially what this research 

aims to show.   
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Consideration of automated gating requires a user to be working with Flow Cytometry very 

frequently, due to the time taken for the algorithms to learn from historical data or training sets, 

which is suitable for those in process development or manufacturing, but not those in a research 

environment, who may use bespoke panels at infrequent time points, making manual analysis 

more convenient. At all developmental stages of a cell therapy product, from research through to 

approved manufacture, an analyst should have an awareness of their variability, to ensure false 

positives or false negatives are not declared, which could become more costly to patients, research 

groups and manufacturers if carried forwards. 

 

8.3.4 Problems identified when gating 
 

Participants were asked to identify what problems they encountered when gating FC data. This was 

asked in both questionnaires to see if the same issues were prevalent after two years had passed, 

in case more had been done in the community to resolve well-known issues. Figure 164 identifies 

the stratified results from both questionnaires, with the biggest issue being reliable cell cluster 

separation. The ability to separate clusters was a key issue for many participants, even when proper 

titration and voltage setup had taken place, and it was still the main problem identified within the 

follow-up questionnaire. More cell separation and clustering algorithms are present for the Flow 

Cytometry community, however, they often require knowledge of an additional software package 

such as R or Matlab to process the data, which many analysts may find difficult if this is not a main 

component of their job role [1].  

 

Participants were asked to detail general problems they deal with when gating, outside of the 

constraints of the studies they took part in. Analyst variation was noted as much more of a problem 

in the initial questionnaire, however, inclusion in these experimental studies could have potentially 

skewed the follow-up analysis because this is the focus of the research, so they listed other issues. 

Dealing with biological variation was also noted as a difficulty when analysing lots of donor 
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information together, calling into question the validity of the gates, and where definitive cut-offs 

should be places for positive and negative discrimination. Staining quality can potentially help here, 

if all the upstream process steps have been followed to minimise fluorescence spillover, however, 

differences between analysts could cause these differences to have knock on effects within the 

final analysis. The introduction of automation could be a good way to potentially alleviate these 

issues to remove differences in staining times and temperatures, due to standardised, repeatable 

processing.  

 

 

Figure 164 Identified problems when gating 

 

After observing boundary effects during the participant analysis for the intermediate model, an 

additional question was added to the follow-up questionnaire, to identify whether participants were 

already aware of this effect, without asking leading questions. This boundary effect was not listed 

among the noise parameters specified by participants, stratified in the bar chart in Figure 165. The 

noise parameters identified mostly concerned upstream analysis of the sample itself, either due to 

the sample preparation or instrumental variables during file generation and acquisition of data. 

Fluorescence spillover can affect the noise within a file and subsequent gating of the data, however, 



  Chapter 8: Participant Questionnaires 

291 
 

participants always discussed this issue as a feature of poor compensation, which occurs before 

the file generation, rather than the post-analytical gating itself.   

 

Cell debris and doublets were the only noise issues that occur at the post-analytical gating phase. 

Removal of these is usually completed during the first two gates, where the desired population 

must be separated from the smaller broken pieces of dead cells (debris) and the cells which stick 

together through the laser interaction point during sample acquisition (doublets). During the basic 

and intermediate models, the cell debris and doublet gates were the gates which caused the most 

variation within the uncertainty budget, so there is a need to focus on these to reduce variation. In 

addition to this, FC has many uses outside of cellular measurement, once of which is bacterial 

measurement. Bacteria are much smaller than cells, which would cause the cut-off for debris to be 

even closer to the required population, making subjectivity of gate application more important 

[211]. 

 

Figure 165 Noise parameter issues identified by participants 
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8.3.5 Interpretation problems from literature 
 

Participants were asked in both the initial and follow-up questionnaire to identify what issues they 

encountered when they interpreted FC data or gating methods from published literature. This gave 

an indication of the initial problems faced, and whether standardisation in the community had 

improved between the questionnaires or whether the sample problems were still being faced.  

 

Gating standardisation was the most common problem faced within both questionnaires (Figure 

166), officially defined in the codebook located in Appendix D. Participants identified that more 

information on the gating hierarchy completed and standardised gating sequences for well-known 

marker panels were required for reproducibility. This was followed (in both questionnaires) by a 

lack of control file images provided by authors, to show the reader how the gates were applied to 

the fully stained sample. This can guide the reader to show what percentage positive to work to if 

not specified, to aid reproducibility of FC data. Better reporting of reagents (and staining 

methodology) was also a common issue, as well as poor visualisation of the Flow Cytometry data 

itself.  

 

Figure 166 Identified problems when interpreting FC gating from literature 
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Minimum Information for a Flow Cytometry experiment (MIFlowCyt), is a reporting standard 

generated by the International Society for Advancement of Cytometry (ISAC), which lists the 

minimum requirements for a Flow Cytometry experiment, from sample preparation information 

through to how the sample has to be acquired and gated [49]. Despite these excellent efforts in 

the right direction by ISAC, many participants were not aware of these sorts of standard reporting 

formats, because they do not follow the Flow Cytometry community journals (such as Cytometry A 

& B) and relevant publications from ISAC. When asked if they undertook self-driven reading to stay 

up-to-date on current methods, most participants were only familiar with what was listed in the 

training protocols provided at their institution/company. Any additional reading completed (if a 

participant wanted to) was mostly focused around specific cell types they worked with, rather than 

Flow Cytometry as a technique. Therefore, if this information is not provided to wider communities, 

or they do not actively seek it, it will always be an achievable unknown, hence the need for Good 

Practice Guides (GPGs) that can be universally accessed to address general issues or training tips. 

 

8.4 Chapter Conclusions 
 

Providing two questionnaires throughout the process of the experimental research, has delivered 

potential correlations between experience metrics and study results to be investigated. In addition, 

key issues participants have identified as problems when gating are consistent over time, indicating 

key areas of work for the Flow Cytometry community. 

 

The structure of both questionnaires has been successful and sending the surveys as online links 

for participants to complete was the most convenient way to gather the data for participants as 

well as providing secure storage of the results for quick download and analysis. Manual coding of 

written text responses was completed by the author, following manual coding protocols, with two 

analysis cycles for effective stratification and codebooks written to ensure complete definitions of 

the code were provided for all.  
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Most participants used Flow Cytometry for immunophenotyping haematopoietic lineages or 

pluripotent stem cells. This relates to the three centres that took part, which are all focused on the 

research, development and manufacture of cell therapies, most of which are currently 

haematopoietic-based and relevant to the wider Cell and Gene Therapy community. 

Immunophenotyping allows participants to build panels to monitor the progress of cell-based 

treatment for different antigen markers that are features of cells or engineered additions. A 

MACSQuant Analyser 10 Flow Cytometer was the most popular piece of equipment, due to most 

participants involved being located at the centre where these are the validated FCs for research 

and development. These participants therefore were all trained to use the MACSQuantify analysis 

software that comes with the instrument, as well as most participants using Flowjo to complete 

their analysis.  

 

Flowjo was the chosen platform for the uncertainty studies, due to all participants and centres 

being familiar with the software, requiring less pre-participation training, and it was straight forward 

to transport as a plug-in dongle.  Participants preferred this platform due to easy of use and the 

amount of control it gave them, further identified when asked about preference of manual or 

automated gating platforms. Most participants preferred to use manual gating rather than 

automation within both questionnaires 85 % and 70 % respectively for the initial and follow-up 

questionnaire), because of the control it gave them to investigate and explore the data with 

different visualisation methods. Legacy was also a prominent factor, with participants resistant to 

change because they are familiar with this style of analysis, and sceptical of more automated 

methods being introduced to try and help more highly dimensional datasets. Possible culture 

changes are needed to help address this ‘I’ve always done it this way’ attitude, by empowering 

employees with training opportunities and easy access to validated software (if proven to be 

suitable for use). 

 

Most participants within the initial questionnaire had less than 12 months experience with FC, 

hence why this was followed-up in the second questionnaire. Experience was continually identified 
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by participants through their training experiences because they had been trained internally by 

someone who had worked on the equipment longer (suggesting they were better because they had 

done it for longer), in addition to also attending just a few external training courses delivered by 

instrument manufacturers. This training mostly covers ‘operational’ FC, so participants are signed 

off to show competency when turning the machine on and off, running calibrations and 

compensation for experiments. These training courses generally do not include gating principles 

because of the diversity of FC application, but there is an opportunity for training to include this for 

client specificity. Therefore, this gating training is completed internally by observing others, reading 

protocols or a combination of both. Most participants did not use SOPs to apply their gates, but 

those who did used an internal SOP to complete this rather than using external references or a self-

made protocol.  

 

No obvious correlations were identified between the amount of experience or use frequency of a 

participant in relation to the range of absolute cell counts reported, CVs from cell counts or 

respective expanded uncertainties across any of the cell models investigated. The amount of 

experience a participant has does not mean they are more precise or accurate than a participant 

with no experience at all. Further research is required into this to ensure a wide range of 

participants are gathered to represent the complete diversity of experience and use frequency for 

statistically significant, powered experimental design. Experience can indicate the number of 

variables a participant is aware of that can affect the final outcome of the data, due to greater 

repeats of the experiments.  

 

In addition, participants were made aware of the aims of the study to meet ethical requirements, 

but this informed them that their data would be subsequently investigated to anonymously quantify 

their variability through uncertainty calculations. Because this was not completely blind, this could 

have inferred Hawthorne’s effect because participants knew they were being reviewed, so changed 

their behaviour and gating accordingly during the experimental studies. Some participants 

mentioned this during their study session, making remarks such as ‘I’ll gate this properly for you, 
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not how I usually do it’, indicating they would have done things a different way to how they want a 

third-party observer to see. This could indicate that the results identified throughout the studies 

could be conservative, not just because they were tightly controlled but because participants knew 

the data would be reviewed, so tried to be as uniform as possible, defeating the objectives of the 

research. To address this over time, routine analysis could be taken form participants, but it would 

be difficult to do blindly due to ethical consent and how the reporting and feedback will be handled. 

 

EQAS can be used to monitor proficiency of the laboratory and its participants, but it requires the 

right culture and participant behaviour to support its introduction and integration, to ensure that all 

behave professionally and use it as an opportunity to learn rather than becoming a big brother 

environment, fostering blame culture in the workplace. Employees need to be empowered through 

training and given the opportunity to speak openly and safely about the problems they have faced 

to ensure a team-led dynamic can enable effective solutions to improve the quality of a product. 

Equally, management also needs to handle the data responsibly, to deliver continuous 

improvement professionally and anonymously, identifying potential issues that can affect 

employees without making those involved feel responsible for issues which brought these 

opportunities to their attention. 

 

This is a community wide issue, not just one that could reside within one company or site. 

Participants identified many problems when they gate data which could cause variation, with key 

difficulties being cell separation of multiple populations and biological variation of samples. This 

was identified at the start and end of the research, indicating these issues are still prevalent within 

the community. Many separate initiatives have tried to address cell separation issues using 

automation platforms, especially where high-dimensionality data is concerned [1,118,212]. 

However, these are all still research-focused and not validated for mass manufactured products. 

As well as this validation requirement for use in CGT manufacturing, this questionnaire has 

highlighted a resistance to using these tools, indicating that providers need to demonstrate 
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usability of the platforms as well as very good accuracy and precision, and the ability to handle 

biological variation between donors.  

 

There also needs to be a community moves towards gating standardisation and better identification 

of the use of controls used to set gates, according to these questionnaires. When interpreting data 

from literature, many participants struggled to identify key factors from the text of figures that 

enabled good reproducibility of the data. Participants also failed to mention key efforts that have 

taken place in the FC field to standardise FC experimental reporting. Better cross-over between 

assay-focused and cell-based journals is needed to enforce effective reporting standards to the 

wider community. Additionally, within teams or departments, nominated employees could be 

responsible for staying abreast of the latest updates in certain development journals and 

disseminating this information within the team, to ensure all are aware of current methods to 

improve reproducibility and good practice. 

 

8.4.1 Consolidation of Objectives 
 

• These questionnaires were implemented and managed well, allowing effective analysis 

of a series of dichotomous, ordinal, nominal and written text responses for personal, 

experience and motivational factors.   

• No observed correlations between participant experience and FC use frequency was 

seen with respect to the range of absolute cell counts, CVs or uncertainties. It could be 

possible that experience, or overall knowledge on the topic infers that people are better 

at gating if they are more knowledgeable about FC. However, more knowledge on the 

topic does not necessarily mean they are more repeatable and precise in their analysis. 

• Both questionnaires showed a majority of participants preferring manual analysis of data 

(85 % and 70 % respectively) using platforms such as Flowjo, because of the amount of 

control they had of the data, as well as a resistance to change to new methods and 

platforms being addressed in the literature and from companies. However, those 
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preferring automated methods indicated it is much quicker than manual analysis of large 

data sets, setting a precedent for future development. 

• Problems identified from manual gating were the same at both time points, with Cell 

separation and Biological variation being the biggest issues participants faced when 

analysing lots of data. These were also things that automated platforms struggled with, 

suggesting a focused effort is needed in this area. 

• Reproducibility of data from literature is a big concern for participants, with key issues 

for improvement in the community being standard experimental and visual gate reporting 

as well as including images of the control files used to help others repeat the analysis 

when potentially using different instrumentation. Wider knowledge of standards such as 

ISAC MIFlowCyt reporting is needed across different cell-based communities, to 

maximise the standardisation of reported data. 
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Chapter 9: Translational Outlook 
 

9.0 Introduction to the Chapter 

 

Chapter 9 investigates whether subjective issues seen within Flow Cytometry processing and post-

analytical data analysis, such as cell population area selection are also present within other assays 

and platforms used by Cell and Gene Therapy Process Development teams. 8 interviews were 

conducted with industrial contacts who work with the Center for Biomedical Innovation at MIT, 

during a 6-week secondment, hosted by Jacqueline Wolfrum and Anthony Sinksey. The platforms 

investigated as part of this translation analysis were Flow Cytometry, Imaging Platforms and 

quantitative Polymerase Chain Reaction (qPCR) assays. Therefore, this Chapter captures some 

subjectivity issues already addressed and discussed from the main uncertainty models in Chapter 

3-7, and from the questionnaire results in Chapter 8. This Chapter aims to give a high-level review 

of translational similarities to human factor variables seen within Flow Cytometry but does not aim 

to deep-dive into specific factors at this stage. 

 

Imaging platforms were considered for the interviews because of the prevalence of imaging-based 

technology within CGT manufacturing. qPCR was also considered in one case where a participant 

had qualified this assay against a viral plaque imaging assay. This was considered across a range 

of exemplar CGT products, such as viral vectors, CAR-T suspension culture and Mesenchymal 

Stromal Cell (MSC) adherent cell culture, so was suitable for a wide range of potential interviewees. 

 

Operator subjectivity has been investigated across a wide variety of applications within medical 

imaging [213–215], however, with the recent use of imaging platforms to monitor to progress of 

cell therapy growth [216], differentiation and quality of products [217], the variability of analysts 

needs to be understood. A lot has been done to develop automated analysis for cell imaging 

platforms, to monitor cell morphology in relation to cell therapy development [218–220], because 
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it has the potential to be used as an in-line measurement tool. This is an attractive alternative to 

current invasive or off-line sampling methods to monitor CGT expansion. The interviews conducted 

here aim to identify how imaging platforms can be enhanced to make them more standardised 

measurement tools for monitoring CGT products throughout manufacture and release 

measurements. This translational outlook also investigated whether there was a possibility to 

quantify subjectivity across other platforms, using measurement uncertainty principles exemplified 

throughout this thesis. This would show a broad applicability of the technique within 

biomanufacturing, to improve measurement variation, resolution and control in manufacturing.  

9.1 Chapter Aims 
 

This Chapter aims to highlight subjective and cultural issues when analysing data across other 

instrumental platforms used within Cell and Gene Therapy Process Development teams, that are 

similar to subjectivity seen within FC assays.  This focuses on the measurement process, to identify 

subjective human factor influences within measurements. The second half of the interviews 

focused on training to identify what training processes are followed and what cultural differences 

could affect the variability of results between analysts. 

 

9.1.1 Chapter Aims & Objectives 
 

The Aims and Objectives of this Chapter can be defined as follows: 

• Interview a selection of industrialists who use cell imaging platforms within CGT process 

development and research teams to identify subjectivity within the measurement 

process. 

• Identify common causes for subjectivity across these imaging platforms and assays, for 

future work to address process improvements. 

• Identify similarities and differences between training, and attitude to training and using 

Standard Operating Procedures to remove variation between analysts.  

  



  Chapter 9: Translational Outlook 

301 
 

9.2 Methodology 
 

These imaging exemplars were chosen in collaboration with MIT hosts through a review of core 

measurement techniques used across different CGT products. A lot of optical spectroscopy 

techniques are used (Flow Cytometry falls into this category), but because of the heavily automated 

nature of these instruments, it was decided that there was only small scope for application here. 

Imaging platforms were identified as being heavily used, along with qPCR, so it was decided these 

techniques would be the core focus. The MIT Center for Biomedical Innovation host a network of 

international CGT industrial and academic contacts, so this provided a suitable base for this six-

week long translational study, ensuring all relevant contacts could be accessed. 

 

9.2.1 Interviewee selection 
 

Relevant industrial contacts known to be working with one of the three exemplars were contacted 

through the MIT Centre for Biomedical Innovation. An additional conference call with each 

individual contact was made after verbal acceptance of the initial interview scope to further explain 

the scope and boundaries of the exercise, to confirm the most suitable interviewees could be 

contacted and the imaging platform they used was discussed in more detail. This ensured the 

interview would be suitable for their assay application and if they wanted to discuss a different 

platform, which they felt had subjectivity issues (other than Optical Spectrometry methods, because 

this has been largely standardised for Spectrophotometers, and Flow Cytometry has been 

previously investigated within this research), this was identified and confirmed with the research 

team. Interviews were held with 8 delegates from across 7 large USA biomanufacturing and 

standards companies.  

 
9.2.2 Ethical Approval 

 

Ethical Approval was granted from the Loughborough University Human Participants Ethical Sub-

committee and the MIT Committee on the Use of Humans as Experimental Subjects (COUHES). All 

approval documents and consent templates can be found in Appendix E. Participants were required 
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to consent to the interview at least 24 hours before it was scheduled to take place and forms were 

stored securely throughout the duration of the project according to UK GDPR regulations. 

Participants were all anonymised at the point of transcription, so any further analysis was 

completed blindly by the author. 

 

9.2.3 Interview Questions 
 

Interview questions were split into sections, detailed in the following subsections. An interview 

template of all the questions asked can be found in Appendix E. One hour was allocated for these 

interviews, so that all questions could be answered. The interview questions were a mix of 

continuous, nominal, scalar, and text response questions, as defined and coded previously in 

Chapter 8. Throughout these interviews, various questions aimed to identify where subjectivity was 

present in the measurement processes, to identify where translational subjective variation could 

also be measured, as shown throughout this thesis using measurement uncertainty within FC. 

 

9.2.3.1 Technique Use Questions 
 

In a manner similar to the questionnaires described in Chapter 8, participants identified how 

frequently they used the respective measurement platform, what the specific measurand used was 

and whether it was used for quantitative or qualitative analysis. This aimed to identify whether 

participants used imaging platforms for purely qualitative analysis, or if quantitative analysis was 

used (viral plaque counting, for example), and what level of automation was used for quantification. 

 

9.2.3.2 Process mapping exercise 
 

Participants detailed the full measurement process for the respective assay, going through pre-

process, in-process and post-process sections, described as follows: 
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• Pre-Process: Any sample preparation required to tag or label the biological product for 

analysis, as well as preparing substrates or master mixes for analysis. 

• In-Process: Instrumental preparation required to run the sample, such as instrumental 

calibration and background measurements if participants conducted these steps. 

• Post-Process: Once the analysis file or exported measurand has been obtained, any further 

image processing, selection or calculation steps that were required for final reporting. 

 

Once these process steps were defined, participants went through each specified step and 

identified what human contact time was required, and what elements of each step could be 

affected by operator subjectivity. Once all interviews were completed, results for similar processes 

were compiled and transcripts were coded for further stratification, using coding methods 

previously described [179]. These stratified variables were then tallied for the three process 

sections to identify subjectivity issues prevalent across the measurement processes. This identified 

similarities and differences to FC post-analytical variation specifically, to further identify other 

biomanufacturing platforms that could benefit from harmonisation and subjective variation 

quantification. 

 

9.2.3.4 Training and Standard Operating Procedure (SOP) Questions 
 

Participants were asked whether they were responsible for training new users on the respective 

platforms and if so, whether this was purely operational or whether theoretical training was also 

provided. Participants also identified whether they felt there was a difference between new and 

experienced users, and why. Finally, participants indicated whether additional reference materials 

were used for the platform and whether SOPs for data analysis were provided. If yes, they described 

whether these were internal or from external literature sources. 
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9.3 Survey Results 
 

Fifty percent of interviewees spoke about their experiences with viral infectivity assays, used in the 

production and release of viral vector products used in other therapies, so this has been used as 

an exemplar throughout this results section. Only 8 interviews could be conducted within the 

secondment time-frame (due to preparation time, geography and interviewee availability), which is 

a limitation of this study, but it was only designed to be an initial pilot investigation to highlight 

issues for future clarification with more structured experimental work. This will provide a translation 

of the FC variation analysis techniques and evidence for application of measurement uncertainty 

techniques to further quantify operator subjectivity within other biometrology platforms. 

 

9.3.1 Training and Proficiency Results 
 
In a manner similar to the questionnaires in Chapter 8, interviewees were asked how often they 

actually completed the respective assay themselves. Most participants aimed to complete assays 

at least once a week, to ensure they stayed familiar with the technology and processes. Those who 

did not use the assays as regularly were in more managerial positions. Within the CGT space there 

is a lot to explore with respect to experience and use frequency, however, it is difficult to complete 

within this research, because participants are based across different companies. Different 

company structures can possibly indicate different levels of interaction with equipment, which are 

perhaps better understood from an internal perspective before comparing between different sites 

and structures.  

 

Table 83 indicates whether these assays were used for quantitative or qualitative purposes by 

interviewees (or both). It shows results for all interviews, not just those focused on Viral Infectivity. 

If participants stated it was a qualitative test, they explained what they used as a ‘determination of 

success’ to satisfy a decision on the product. Only one process stated was purely qualitative, where 

Fluorescence Microscopy was used to monitor cell growth over time by a visual increase in 

fluorescence. Other imaging platforms have been used for qualitative analysis as well as 
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quantitative analysis. In these instances, the qualitative is used to support the quantitative results 

if further clarity is required. A qPCR experiment had been validated for viral plaque counting against 

an imaging platform, so this quantitative method was discussed by the relevant interviewee. 

 

Table 83 Quantitative or Qualitative nature of assays 

Assay Measurement Quantitative/Qualitative Qualitative: Determination of 
Success 

Quantitative: Final 
Metric 

Numeric
? 

Cell Count/Viability Both Images to match control Cell Count Yes 

Viability Yes 

Cell Size (µm) Yes 

Cell Growth Qualitative Visual increase in 
fluorescence 

    

Viral Infectivity Both Images for sanity checking Transducing Units / 
mL 

Yes 

Viral Infectivity Quantitative   Transducing Units / 
mL 

Yes 

Viral Infectivity Both Manual subjective counting of 
plaques 

Transducing Units / 
mL 

Yes 

Viral Infectivity Quantitative   Transducing Units / 
mL 

Yes 

Cell Count/Viability Quantitative   Viability Yes 

Cell Shape 
Quantification 

Quantitative   Differentiation 
score 

Yes 

Immunophenotyping Quantitative   Cell Count Yes 

 

Any interviewee who stated a quantitative metric was used was asked to describe the final reported 

metric. This identified whether different metrics could be reported from the same assay or platform. 

Viral Infectivity assays all produced a Transducing Units / mL measure, from counts of viral plaques 

or through qPCR. Despite the methods of achieving these results being different (described in the 

subsequent process mapping exercise results section), the reported result is the same. This 

requires further quantitative experimentation, because differences between platforms and 

methods could return consistently different measures. Counts were provided for any cell counting 

method for MSC or CAR-T exemplars as well as novel scoring methods being created to monitor cell 

shape with respect to differentiation. 
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9.3.3 Process mapping exercise results 
 

Each interviewee gave a detailed process breakdown of their respective assay, from the start of 

pre-processing to the final measurement and/or decision. Viral infectivity maps have been 

exemplified here because they were most commonly discussed, have the same reported metric 

(Transducing Units / mL), yet all methods of obtaining this metric were different between 

interviewees, as shown in process maps in Figure 167 to Figure 170. 

 

 

Figure 167 Process Flow Map for qPCR Viral Infectivity measurements 
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Figure 168 Process Flow Map for imager Viral Infectivity measurements 

 

 

Figure 169 Process Flow Map for manual & imageJ Viral Infectivity measurements 

 



  Chapter 9: Translational Outlook 

308 
 

 

Figure 170 Process Flow Map for manual Viral Infectivity measurements 

 

The four Viral Infectivity process maps have been organised into the pre-process, in-process and 

post-process columns defined in Section 9.2.3.2. Participants were also asked to identify human 

factor or subjectivity issues that arose at each step in the process, listed in italics next to the 

respective step. Some participants also gave an indication of contact time for each step. Where 

possible, this is listed next to the respective step in bold. These maps have been listed in reverse 

order of measurement automation, i.e., the more automated procedures are first, with the most 

manual procedures last. The qPCR method has been included although it is not a cell imaging 

method, because the relevant company and interviewee had validated this against a cell imaging 

assay and used qPCR as a more robust method. 

 

It became evident that the presence and use of automation made operators believe any human 

subjectivity is removed from the process. In Figure 168, where a Cytation-1 cell analyser imaging 

platform was used, the addition of an automated plate loading machine also made the interviewee 

strongly believe there were no subjective components, because the operator had been replaced 

with robotics. However, when discussing the setup of imaging platforms, there was significant 
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operator involvement to obtain good image for further use. Imaging platforms can be affected by 

many factors such as digital image parameters (brightness and contrast), as well as spatial issues 

such as selecting quadrants of wells for imaging or choosing a specific population by eye. 

Interviewees did not identify these as potential variables, however, human factor or subjectivity 

variables they initially provided were all concerned with sample preparation, mainly pipetting error, 

speed of work and operator confidence. 

 

All subjectivity variables listed through the interview process were stratified into core themes, listed 

in the bar charts in Figure 171. Full definitions of these bins can be found in Appendix E.  This bar 

chart is stacked to show how variables featured across the three process sections. The responses 

are frequency of results as a function of the total number of subjectivities listed across all three 

sections for all assay types.  

 

 

Figure 171 Stratified subjectivity issues within imaging platforms 

 



  Chapter 9: Translational Outlook 

310 
 

Protocol Optimisation and Spatial Image parameters were the most frequent variables identified 

as subjectivity concerns for imaging platform. Both are defined, but protocol optimisation 

concerned parameters that would have been investigated before the actual measurement process, 

during previous validation experiments, so are discounted here. Therefore, Spatial Image 

Parameters were the most prevalent subjectivity factor, followed by Copy Errors and Digital Image 

Parameters. These variables contrasted with interviewee conception of subjectivity only being 

present during sample preparation, because this is where there was a lot of human contact with 

the physical sample. Statements like ‘pipetting error’ have been stratified under ‘Haptic Variables’ 

because they were all physical interactions between analyst and sample. ‘Haptic Variables’ are 

affected by the operator completing a physical task or manual manipulation of the product, 

whereas ‘Non-Haptic Variables’ are affected by the operator but are not physical in completion. 

These often involve software-based tasks where the operator is using a computer to select and test 

a variety of parameters. Full coding definitions are located in Appendix E. 

 

Most of the subjectivity variables physically listed by participants were located within in-process 

and post-process sections, contrary to initial verbal interviewee opinions. Although Spatial Image 

Parameters may be difficult to standardise to image plaques or cells, participants did also discuss 

ways they have achieved this. One participant used Haematocytometer grids to select imaging 

areas, to remove subjectivity of camera placement. Further validation runs with camera 

magnifications, fields of view and other digital image parameters can all be standardised for 

uniform image quality. This can also aim to standardise process parameters upstream, such as the 

thickness of viral plaque substrates, to ensure imaging, depth and focus can be uniform each time. 

There are many subjectivity variables listed across these process stages which can be categorised 

accordingly, but these cannot begin to be addressed or standardised if the entire process is not 

uniform. It may be acceptable to have different processes to achieve the same metric, but 

validation is first required to ensure there are no significant differences of results obtained.  
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9.3.4 Training and SOP results 
 

Interviewees were asked whether training provided for the respective assay was operational, 

theoretical or a combination of both. Figure 172 shows that no one delivered purely theoretical 

training because this was not industrially pragmatic. However, 45 % delivered theoretical 

understanding where relevant alongside operational training. The remaining 55 % provided purely 

operational training in how to run the assay and equipment. If employees wanted further 

information, it was up to the individual to research it. 

 

Figure 172 Types of training provided on respective assays 

 

All training discussed was very front-end in an employees’ use of the equipment. Employees would 

have to read relevant risk assessments, SOPs and documentation, then some employees also 

calculated CV of training repeats, so they were only signed off when their CV was below a certain 

level of acceptance. In the case of manual plaque counting, this was ≤ 40 % CV. This supports the 

use of intra-participant CV calculated as a training tool, as discussed in Chapter 7. No mention of 

measurement uncertainty or combined errors was made amongst the interviewees, indicating a 

significant opportunity for uncertainty quantification across other biometrology platforms to 

monitor subjectivity.  Interviewees discussed variability predominantly in terms of CV indicating an 
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awareness of precision, which is very similar to the FC community who also heavily use CV as a key 

variation metric, as discussed previously in Chapter 1 and throughout Chapters 4 to 6. 

 

All participants stored training documents appropriately to meet auditing requirements, so 

documents were always accessible. Despite the general training processes being similar, there 

were differences observed that could affect subjectivity at the learning and training stage.  A 

cultural attitude needs addressing once training has been completed, as many interviewees felt it 

was inappropriate to tell others what they did was incorrect and why, if they returned abnormal 

results. Rather than addressing employee differences in cell culture or image acquisition, 

employees were often asked to repeat the assay and learn from their own mistakes. Whilst this is 

a good way to learn, differences between operators should be able to be confidently and 

confidentially addressed in the workplace, to minimise variance on the CGT product.  

 

One participant explained how they tackled this issue in the workplace, by going back and 

addressing training from SOPs. For each step in an SOP, images and written content was provided 

to define good and bad process steps, consequences and further actions. Using this in future 

training enabled new employees to better understand why they completed certain tasks, giving 

them ownership and confidence in their work. Consequently, they had a very open team culture, so 

whenever a problem arose, it was comfortable to address and inform the wider team to work 

together to find the root cause and develop a robust solution, rather than foster a blame culture. 

 

88 % of interviewees used SOPs for post-process data analysis and when questioned further, these 

were mostly internal documents. SOPs for data analysis mostly provided images of endpoints or 

good data for relevant steps. Most did not include examples of bad data or consequences of poor 

variable selections but mentioned it would be good to include in future SOP versions. 

 

Overall, a culture change to the whole measurement process is required, in order for other process 

changes to have maximum benefit. Standardisation of processes can be achieved, if there is an 
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open culture to allow employees and managers to discuss continuous improvement efforts, without 

people feeling subjected to blame or ‘big brother’ ideology. This has been identified as a function 

of the broader remit of the interviews here, which could also be further investigated within Flow 

Cytometry, because the core research within this thesis does not address work culture effects. 

 

9.4 Chapter Conclusions 
 

This translational exercise has shown that human subjectivity issues exist within other 

measurement platforms used across a variety of CGT products, not just in Flow Cytometry. Imaging 

and qPCR are highly utilised techniques across many CGT processing stages, so a better 

understanding of operator subjectivity may have a significant impact on standardisation efforts. 

 

The interviewees have further demonstrated the diversity of processes to obtain ‘comparable’ 

results, with many levels of autonomy used to achieve a quantifiable result. Even though only 8 

interviewees were included, it still demonstrates diversity of results, which could be investigated 

more rigorously in future analysis. It became evident that most interviewees believe operator 

subjectivity issues were found only in pre-processing steps. However, from the actual variables the 

interviewees listed, most subjectivity was identified as being in the later processing stages. This 

reflects the variability seen within the Flow Cytometry uncertainty models in Chapters 4 to 6. The 

comparison in Chapter 7 has shown that variation exists in operator analysis in the post-analytical 

phase also.  Whilst regulatory frameworks exist for the use of validation of software within medical 

measurement, more needs to be done to ensure user variability is reduced as a function of the 

platform, or to ensure that its use by different operators does not induce more uncertainty into the 

measurement.  

 

The lack of participant recognition on the subjective spatial and digital image parameters indicates 

that further education is required on this topic, especially when the general perception is that 

automation removes operators and therefore any subjectivity. Automation only transforms the 
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subjectivity, from manual handling, to manual selection and determination of manufacturing and 

measurement parameters. When combined with the additional issues of maintenance and 

accreditation, there are a large number of subjective elements that an operator must understand 

to make an informed, confident decision when manufacturing a CGT product using automated 

platforms, especially if measures are close to defined performance limits, which currently causes 

issues for automation, as  discussed in Chapter 1. There is significant subjectivity that resides 

within the post-analytical processing for imaging platforms, which could greatly benefit from similar 

measurement uncertainty application that has been successfully demonstrated throughout this 

thesis. Well defined imaging assays could use the subjectivity breakdowns within this thesis to 

isolate specific processes for quantification of manual and automated analysis uncertainty where 

relevant, showing translation of this research across a wide application of biometrology CGT assays. 

 

Whilst considerable effort is put towards training to ensure all new employees receive it and the 

documentation is stored correctly, a cultural change may be needed to empower employees to 

foster a more open working culture to speak openly about issues and problem solving. Interviewees 

stated that additions to SOPs and training to teach more about good and bad data, consequences 

and root causes could foster a healthier attitude to problem solving when differences arise. In a 

similar manner to Flow Cytometry, all imaging users will use platforms for diverse measurements, 

so it could be difficult to deliver standardised training in analytical image processing. However, 

more internal validation could be used to ensure better standardisation and therefore quality of 

images used for qualification of CGT products.  

 

9.4.1 Consolidation of Objectives 
 

• 8 participants were interviewed around imaging platforms they used to monitor CGT 

products they worked with their respective research and process development roles. 

Throughout the process mapping exercise and other elements of the interview, they 
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identified various subjectivity elements affecting imaging of CGT products, throughout 

pre-process, in-process and post-process phases. 

• Common causes for subjectivity were spatial image parameters, that occur during in-

process and post-process analysis phases. These are variables used to select areas of a 

well or plate to image, as well as Z-height where three dimensions are required. 

• Most interviewees believed subjectivity was only based in the pre-process phase during 

sample preparation, however, most of the subjectivity elements listed were later in the 

analysis process. 

• All interviewees identified that there was a procedure in place for training and 

documentation, however, participants agreed this could be enhanced by a protocol that 

contained more information on good and bad data for each step. 

• A cultural change is possibly needed in some instances to ensure employees and 

managers can speak openly about issues that need addressing, or problems they 

identify, to ensure continuous improvement can be instigated.  

• This high-level review of alternative CGT analysis techniques has identified the potential 

of translation of the novel uncertainty-based analysis methods developed for FC, within 

this thesis. 
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Chapter 10: Conclusion & Future Work 
 

10.0 Introduction to the Chapter 

 

The aim of this thesis was to investigate the following research hypothesis as defined in the Prelude 

(along with the key objectives): 

 

“As the complexity of Flow Cytometry data increases, the variability contributed to the 

measurement (either CV or measurement uncertainty) from operator subjective analysis also 

increases.”  

10.1 Thesis Conclusions 
 

With reference to the aims of this thesis key conclusions based upon the results of this research 

are identified and discussed as follows: 

• A succinct review of External Quality Assessment Schemes (EQAS) (Chapter 1) has shown 

that there are opportunities for translation from the clinical environment into Cell and Gene 

Therapy manufacturing environments. Current and relevant schemes in clinical Flow 

Cytometry (FC) have direct application to CGT manufacturers, to ensure measurement 

quality is passed onto the patient in the form of a correct decision and appropriate 

treatment. Clinical Chemistry EQAS have also shown how integration of measurement 

uncertainty into EQAS is achievable, providing further measurement resolution, control and 

potential alignment to ISO 17025 and ICH Q7 standards for CGT manufacture. 

 

• Measurement uncertainty principles (described in Chapter 2 and applied in Chapters 4 to 

6) have been shown to be very applicable to FC inter-participant data, giving an indication 

of overall participant variation, but also identify specific gates that cause issues. This shows 
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its’ worth as a continuous improvement tool within CGT measurement and manufacturing. 

One drawback of using measurement uncertainty is the number of repeats recommended 

for SD calculations (between 4 to 10 according to the GUM). No more than 3 repeats could 

be taken for this data (due to participant fatigue), which could affect the results, but the 

benefits of using measurement uncertainty outweigh this. Further repeats could be 

conducted in future work, because it was not practical as part of this experimentation, to 

indicate an optimum number of repeats for human participant variation quantification. 

 
• To model an increase in complexity throughout the uncertainty models, three cellular 

profiles were chosen for fcs file generation. The Embryonal Carcinoma 2102 Ep 

immortalised cell line was used for the basic model (Chapter 3) because it had been shown 

to remain pluripotent over 10 passages, contributing less biological variation to the 

analysis. This ensured the basic model could be used as a baseline. The intermediate 

model files were created from Peripheral Blood Mononuclear Cells (PBMCs) because this 

population contained further sub-populations which provided greater depth and complexity. 

The 2102 Ep line did not have this capability, and the PBMC material was more comparable 

to current autologous therapies available to patients, that collaborators were also focused 

on. This PBMC model enabled further complexity enhancement for the final model, which 

used engineered T-cells derived from PBMCs to measure transduction efficiency. This is 

representative of assays used in current CGT expansion, and was provided by one of the 

collaborators, giving affinity to relevant therapies and their manufacture. 

 
• Throughout the complexity models in Chapters 4 to 6, a standard reporting structure of 

metrics has been used to report; the absolute results obtained by participants, respective 

Coefficients of Variation (CV) and measurement uncertainty. Only CV and measurement 

uncertainty are considered within these overall conclusions, because the absolute results 

were not stated within the initial hypothesis to monitor variability, and they are not 

comparable to a metrologically ‘true value’ due to lack of traceability through Flow 

Cytometry standards. 



  Chapter 10: Conclusions 

318 
 

 
• It is possible that Hawthorne’s effect could have impacted the results of this human 

participant research. This effect can be attributed when participants are aware they are 

being watched, monitored or evaluated within their work. Participants were aware of their 

work being analysed due to the information and consent provided to take part in the 

research. It is also very difficult to conduct Gauge R&R and measurement uncertainty 

analysis session without this impact, because of the experimental specificity required for 

calculation, which informs measurement participants.  

 

• During the pre-study investigation in Chapter 3 (in which participants applied gates to 

histograms), there was a range of 8 % rCV (for optimal 500 V file) between participants 

when analysing a data file that had the correct instrument setup. The range increased up 

to 400 % rCV (250 V– 450 V) when the instrument was poorly setup, clarifying the need for 

appropriate instrument optimisation to reduce downstream measurement variance 

between analysts. 

 
• Throughout this research, many non-parametric distributions are identified when 

participants gate with or without the use of protocols. Many of the basic statistical tools 

such as skewness and kurtosis define non-parametric distributions by their discordance 

with normal distribution metrics. The in-built assumption of desirable normal distribution 

shape is challenged here. When trying to reduce variation, conformance to specific 

performance criteria is required, which can mean distributions should become more 

kurtosed or concentrated within a smaller distribution range. This questions how data is 

processed, to identify core metrics of success to ensure that all statistics used are relevant. 

 

• Chapter 3 has also highlighted the differences between performance criteria (as explained 

in Chapters 1 and 2) used across various industries and respective outliers of the data set. 

There is no harmonisation between these methods, although the correct choice should be 

informed from thorough normality assessment of the distribution, and data should not 
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necessarily be log transformed, due to discrepancies between outlier definitions. The 

analysis reported here has therefore been kept closer to the raw data, making analysis and 

decisions easier to interpret for manufacturers and regulators. 

 

• Experimental studies were well designed (as discussed in Chapter 2) because the relevant 

amount of data was captured within the allotted participant time frames for each complexity 

model (Chapters 4 to 6). Data was stored in accordance to ethical guidelines, once 

participant consent was obtained. These have provided a suitable methodology for future 

uncertainty calculations where subjectivity estimations are required, to obtain at least three 

repeats within 1 hour of participant processing time.  

 
• Measurement uncertainty was quantified successfully across all three complexity models, 

by calculating the SD of three repeats of each gate applied in the gating sequences. These 

were successfully combined in quadrature using the GUM principles to create combined 

uncertainties and expanded uncertainties to show a 95 % Confidence Interval of data (k=2). 

Median uncertainties of the basic to complex model were 3.6 %, 2.1 % and 6.2 % 

respectively, indicating location parameters do not show any relation to increase variation. 

 
• Inter- and intra-CV have been defined as; CV of a participant population of results, and CV, 

of a participant’s individual repeats, respectively. An inter-CV mean of 16 % has been found 

across all three complexity models for participant judgement when gating data. Inter-CVs 

across the three complexity models were 17.8 %, 18.2 % and 12.1 % respectively as 

complexity increased. 16 % could be used as a rule of thumb for participant variability, 

although it falls outside of ICSH satisfactory criteria of < 10 % CV. 

 
• An increase in the intra-participant range of CV and measurement uncertainty was seen as 

the complexity increased, shown in Table 84, and illustrated in Figure 173 and Figure 174 

(rounded to the nearest integer). This is the primary novel result that confirms the 

hypothesis of the thesis, showing more variability is contributed to the measurement from 
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the operator conducting the data analysis. This has significant implications within CGT, 

because FC panels can increase in dimensionality to 18 colours in some instances, 

contributing more variation to the final measurement and interpretation. This becomes 

more complicated when monitoring rare cell events and minimal residual diseases, 

although these elements were not a feature of the study. As cell emission spectra get closer 

to the limit of sensitivity of the instrument, it can increase the probability of false positives 

/ false negatives as a function of operator subjectivity and thresholds, causing a therapy to 

be inappropriately given, or a product discarded when it could have provided a patient a 

treatment. 

 
Table 84 Comparison of intra-participant CV and uncertainty ranges across the cell complexity models 

 Basic Intermediate Complex 
CV (%) 6 22 34 

Uncertainty (%) 12 16 34 
 

 
Figure 173 Core hypothesis of thesis, showing an increased range of intra-participant CV with FC data complexity. 
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Figure 174 Core hypothesis of thesis, showing increased range of inter-participant uncertainty with FC data complexity. 

 
• CV is a commonly used variability metric within FC and other biological assays. Throughout 

these analyses, it has shown it is more difficult to identify sources of variance from CV 

extremes, because this metric only accounts for variation from repeats of the final gate 

measurements. Measurement uncertainty calculated variability using a bottom-up 

approach, combining uncertainties from individual gates applied within the FC analysis 

sequence (in this instance). It facilitates easier root cause analysis of variation, to better 

identify process elements or operators that are more variable. This continuous 

improvement loop provides opportunity for appropriate optimisation of the process, and 

appropriate training of staff. On this note, CV is a useful measure of initial competency, 

because it is quick to calculate, whereas uncertainty requires well controlled experiments 

for quantification that are more time-consuming. Throughout each model (Chapters 4 to 6) 

it has been shown there is no strong correlation between CV and uncertainty, so these 

metrics should not be used to estimate each other.  

 

• Using the ICSH guideline criteria for acceptable CV, a performance diagram was created by 

adapting these guidelines, exemplified here in Figure 175. The satisfactory limit (10 %) was 
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halved to 5 % to show ‘good’ performance and doubled to 20% to show where revision is 

required, with actual histogram data overlaid. This was used effectively to monitor intra-

participant CV throughout Chapters 4 to 6, as well as substituting these values to monitor 

uncertainty. No defined limits for uncertainty have been provided in the Flow Cytometry 

literature, so these were used alongside permissible uncertainty defined for clinical 

chemistry values. This diagram was effective at monitoring extreme data and showed how 

it could be used as an indication within a manufacturing facility to easily monitor quality 

towards a common goal of lower variance.  

 

Figure 175 Example of the novel performance monitoring diagram, highlighting good, satisfactory and revision regions 
based upon ICSH guidelines 

 
• The use of a protocol showed initial promise within the pre-study, reducing operator 

variability (CV) when copying histogram gates by up to 90 % in optimal conditions (Chapter 

3). There was also a 57 % reduction in range seen during the intermediate model when 

participants used the protocol to identify naïve T-cells (Chapter 5). However, there was an 

increase in range of count results (42 % increase) and uncertainties (23 % increase) when 

participants used the protocol in the complex model (Chapter 6), indicating that copying a 
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protocol in lengthy gating sequences may not be optimal to reduce variation between 

participants, or it requires redesigning and investigating protocol usage sensitivities. 

 
• Bimodal distributions were observed within Chapters 5 and 6, although only through visual 

observation. Basic statistics used did not identify this shape, often placing mean values 

where no data maxima were present. This highlights the importance of visual 

representation of the data, to further identify extreme or unexpected deviances. These high 

and low distributions were due to boundary effects identified on the edges of plots, and 

how participant gates were affected by these. 

 
• Throughout the complexity models, it was noticed that the same gates in each sequence 

were causing high variability between participants. Upon further investigation, participants 

with higher uncertainties due to these gates were mostly affected by the boundary effect 

on the respective edges of the high variance gates. Improper use of controls was the other 

main cause of variance between participants. 

 

• A difference in high and low uncertainty clusters has been identified during the intermediate 

and complex model, due to the boundary effects observed on the axes limits during these 

respective studies. Repeatable inclusion or exclusion of this data gives a low uncertainty, 

but low or high respective cell counts. Inconsistent gating on edges where repeats do not 

all contain this effect have a high uncertainty. This has shown that these boundary artefacts 

require future investigation to identify the impact they have on measurement variability 

when removed. Boundary effects were also observed when the data was visualised in some 

software platforms, but not others, highlighting a significant issue for reproducibility of data 

and analysis across Flow Cytometry measurements. 

 
• Power analysis was conducted for all analysis studies where two test conditions were 

evaluated (Chapters 3, 5, 6), although these studies were conducted without initial sample 

size limitations to ensure an initial variance could be quantified. Power was used to define 
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the appropriate number of participants across the models, to identify whether a suitable 

number of participants were acquired to determine differences between test conditions. A-

Priori and Post Hoc power indicated ideal sample sizes from variances gathered from data 

and the actual power of the models respectively. Power analysis could not be conducted 

for singular test conditions (Chapter 4), because there was no comparison to another test 

condition or a hypothesised ideal value. Whilst some power analysis indicated further 

participants were required, this could not have been determined before the studies took 

place, because initial variation was unknown. These values can now be used to inform 

further validation studies. 

 

• The results of this questionnaire (Chapter 8) indicated that there was no correlation 

between experience of a participant and their respective uncertainty, in any of the gating 

models. This was also true of use frequency of a Flow Cytometer, with no correlation to 

measurement uncertainty as the equipment is used more regularly. This potentially 

requires more investigation; however, it indicates that more knowledge of Flow Cytometry 

does not identify if participants are going to be more precise when applying their gates. 

Further work on how training is implemented could further expand upon this. 

 

• The questionnaires also showed the majority of participants prefer manual gating to 

automated algorithms for cluster identification, due to scepticism of the automated 

methods (relating to literature in Chapter 1). This indicates a cultural barrier needs to be 

addressed in order for these methods to be fully adopted, in addition to better 

quantification and validation of automation precision. Participants also indicated that cell 

cluster separation was the biggest issue facing FC data analysis, despite many automation 

efforts in this area. Many participants identified the need for better reporting standards of 

FC experiments, although typically did not note the MIFlowCyt standard, suggesting that 

these reporting standards (discussed in Chapter 1) need to cross boundaries into different 

cell-based communities. 
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• It was evident from the FC questionnaires for gating (Chapter 8) and the translational work 

for imaging and qPCR (Chapter 9), that the training provided for assay specificity is all 

internally driven. Further focus on gating training or uniform guidelines that could aid 

general analysis are required to ensure internal training is reproducible. 

 

• Chapter 9 has shown the range of subjectivity issues prevalent across imaging and qPCR 

platforms used within CGT process development and manufacturing, with many people not 

realising that subjectivity also appears within data analysis, not just sample handling and 

upstream pipetting error. This translation exercise has identified a possible need for 

training across multiple platforms, to highlight further sources of variation that can impact 

a measurement during post-analytical analysis of images and assays. Even when 

automation is used to aid manufacture, this does not necessarily remove the operator 

subjectivity, it translates it to other areas, such as validation and setup options, as well as 

the additional issues of maintenance and calibration. 

 
• This identification of subjectivity in downstream measurement across other platforms 

demonstrates the applicability to quantify subjectivity in other measurement techniques, 

where quantitative measurements are derived from interpreted images, plots or qualitative 

data. 
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10.2 Thesis Novelty 
 

The perceived novelty of this research was originally identified in the Prelude of this thesis. Table 

85 identifies how well these objectives have been met, and the perceived novelty of each element 

of the work, as well as other novel contributions that have developed during the research. 

Table 85 Comparison of Novelty 

Perceived Novelty Relevant Chapter Novelty 

This thesis provides a critical 

review of current External 

Quality Assessment Schemes 

(EQAS), to identify 

opportunities for integration 

into CGT manufacturing.  

1 Low/ Medium 

This review has shown current EQAS 

that are used for clinical FC, and also 

current EQAS for clinical chemistry 

that have quantified measurement 

uncertainty. This highlights a potential 

for CGT manufacturing, to learn and 

adapt these principles to a new focus 

but is not novel in terms of uncertainty 

consideration into EQAS. 

Relevance of application of 

manufacturing outlier 

definitions to define process 

control limits. 

3 Low/Medium 

A review of different performance 

criteria definitions across various 

industries has shown that there are 

many different control limits that can 

be applied, but a lot of these require 

normal data, so are unsuitable for 

skewed data. More robust methods 

should be used for non-parametric 

data, with various suggestions made 

in this research. 

Application of Gauge 

Repeatability & Reproducibility 

techniques to Flow Cytometry 

post-analytical variation. 

4 High 

This is a novel approach to 

determining post-analytical FC 

variation, purely isolating the gating 

from the rest of the FC measurement 

process. Gauge R&R is an effective 

way to quantify variation using 
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electronic data files, making the 

application of this easy to implement 

across different scenarios. 

Use of measurement 

uncertainty for Flow Cytometry 

post-analytical variation. 

4, 5, 6 High 

Measurement uncertainty has for the 

first time been demonstrated and 

used to quantify purely the post-

analytical variation stage of FC, and 

importantly for the first time within a 

CGT manufacturing context. 

Use of measurement 

uncertainty for better 

measurement resolution and 

control with CGT 

manufacturing.  

4, 5, 6 High 

The bottom-up uncertainty calculated 

for each respective gate provides 

better root cause analysis for extreme 

values and shows how this can be 

utilised for precision, accreditation 

and continuous improvement. 

Quantification of participant 

subjectivity as a function of 

cell model complexity. 

4, 5, 6 High 

This is the first-time intra-participant 

and inter-participant subjectivity from 

the gating process has been 

quantified within a FC context and 

within CGT analysis scenarios. This 

can be used in conjunction with other 

uncertainty estimates to create a more 

confident uncertainty budget for FC 

measurements and their 

interpretation. 

Increased variability as a 

function of cell complexity. 

4, 5, 6 High 

This is the first time that increase 

variation has been shown with respect 

to cell complexity, using intra-

participant CV or uncertainty. 

Development of a new 

performance monitoring 

4, 5, 6 High 

This diagram and respective code was 

developed to allow centres to define 

their own performance limits in 
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diagram to aid continuous 

improvement of variation. 

relation to the number of people in the 

facility, to easily monitor conformance 

and performance to highlight extreme 

data and subsequent learning 

opportunities. This challenges the 

central tendency seen as ‘ideal’ for 

normal distributions, because 

variation always aims to be as low as 

possible, indicating a strong positive 

skew, which used equation of a 

straight line to inform this shape from 

the input performance parameters. 

This has been a very significant tool to 

identify extremes in this research and 

shows applicability in many other 

quality and monitoring situations. 

Comparison of measurement 

variability metrics suitable for 

precision of FC measurements 

within CGT manufacturing 

contexts.  

7 Medium/ High 

CV and measurement uncertainty 

represent different levels of controlled 

and quantified variation, with 

uncertainty giving more resolution, but 

CV being more pragmatic. These have 

been combined for KPIs for the NHS 

(Chapter 1), showing how they could 

be utilised within CGT manufacture for 

better manufacturing control. 
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10.3 Further work 
 

This research has already successfully shown there is an increase in variability input to Flow 

Cytometry measurements, when data being analysed becomes more complex. However, further 

time and effort are still needed to expand and investigate areas of this work. Further work has been 

stratified into ‘general’ and ‘detailed’ further work, to identify larger experimental studies and 

focused validation efforts in relation to this work respectively. 

 

10.3.1 General Further work 
 

• A top priority for this work, is translation of the precision of human operators in comparison 

to machine learning algorithms for cluster definition. This work can be used as a benchmark 

for automated analysis of the same files, to compare variability of clustering methods. Even 

though this complex model precision is high, it can be used to identify performance criteria 

for automation: for example, automation precision to be 10 % of the human counterpart. 

 

• Further measurement uncertainty calculations of other FC variation sources could be 

completed to estimate expanded uncertainty for a particular FC assay. This can indicate 

the amount of variation present for the whole assay, as well as identifying sources of 

variation to reduce. 

 

• Further experimental repeats could be taken, to strengthen the validity of this work. This 

would require significant experimental design to choose suitable repeats and obtain them 

without causing participant fatigue or enabling them to learn the sequence. However, this 

would need to be well defined due to Hawthorne’s effect and recognition of the data. 

 

• Further human participant work would focus on measurement/identification of rare cell 

events and residual disease, because these measurements will be needed to monitor 
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participant treatment and progression, so measurement uncertainty becomes of utmost 

importance to ensure results are not reported or interpreted incorrectly.  

 

• Development of EQAS for CGT FC measurements is required, to ensure standardised 

instrumental setup and analysis between sites and manufacturers, to improve 

reproducibility of data. 

 

• Application of the novel performance monitoring diagram created in this research to other 

biomanufacturing environments. 

 

• Extension of the complexity versus measurement uncertainty research to capture more 

complex panels, such as 12- and 18-colour panels, because these are becoming more 

common within Flow Cytometry analysis. 

 
10.3.2 Detailed Further work 
 

• Further benchmarking of the Intermediate Model (Chapter 5) could be completed, to 

monitor participant results in relation to the cell count values extracted from the 

diagrammatical protocol provided to participants in Phase 2, similar to benchmarking for 

the Complex model (Chapter 6). 

 

• Comparison of machine learning parameter repeatability (similar to t-SNE parameters 

discussed in Chapter 1) needs to be completed for each analysis file used for the Basic, 

Intermediate and Complex model. This would provide a comparable precision measure 

against the participant results calculated in this research, to define where improvements 

in precision are required. 
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• Conduct similar uncertainty studies for alternate cell types that are common within CGTs, 

such as Mesenchymal Stromal Cells (MSCs) to build a database of uncertainty ranges of 

post-analytical variation. 

 
• Recruit more participants to take part in further studies, to provide more confidence in the 

results, and possibly repeat some of the current models that had bimodal distributions due 

to boundary effects within the files. Educating participants about this issue before the study 

(or identifying how to remove this effect from the data), could potentially remove the 

difference in variance seen, to get a better understanding of gating the data with or without 

a protocol. 

 
• Detailed analysis of the prevalence and influence of boundary effects in different software 

platforms. 

 
• Further studies to test the use of a protocol need to be conducted, to identify how these 

can be useful and provide training, without negatively impacting variance of results. A focus 

on culture change to ensure operators speak openly about their analysis and difference 

would help harmonisation efforts. 

 
• Protocol design sensitivity exercise to develop protocols that helps at the higher 

dimensional analysis stages, to identify where higher or lower variance between 

participants is introduced as a function of interpretation. 
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Appendix D 
D.1 Initial Questionnaire Outline 
 

D.1.1 Personal Questions 

1) What is your name? 

2) Who is your Principal Investigator/ Team Leader (if applicable)? 

3) Do you hold any Flow Cytometry qualifications (e.g. C.Cy)? 

If you answered yes, please list what these qualifications are and when you attained 

them. 

D.1.2 Experience Questions 

4) Please tick what you have experience using Flow Cytometry for. 

5) How much experience (in years and months) do you have with Flow Cytometry? 

6) On average, how frequently do you use a Flow Cytometer? 

7) How were you originally taught to apply gates? 

8) Have you attended any Flow Cytometry Training courses? If so, when? 

9) What cell types do you most commonly work with when using a Flow Cytometer? 

10) Do you use a written/diagrammatical protocol to apply gates to your data? 

10a) If yes, is this a protocol you have written, an internal SOP or an external publication? 

11) Do you prefer to use automated or manual gating? 

11a) Why do you prefer to use automated or manual gating? If you use automated gating, 

please list the software package used. 

12) Do you have experience using Flowjo Software? 

13) Have you ever participated in an External Quality Assessment Scheme (EQAS) for 

Flow Cytometry? 

14) Have you ever submitted your files for central processing (e.g. quality scheme)? 
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D.1.3 Vision Questions 

Do you have colour blindness, or any other visual impairment that can affect your 

judgement of colour and shape on a computer screen? 

D.1.4 Motivational Factors Questions 

15) What problems do you encounter when gating manually? How do you deal with 

these? 

16) What problems do you encounter when interpreting published Flow Cytometry data 

from another source? 

17) How much do you enjoy gating? 

18) Do you feel you have to be in a certain mood to gate? 

19) Do you have to be in a certain environment to gate? 

20) Do you prefer to analyse your data by applying gates at a certain time of day? If so, 

when do you like to apply your gates? 

 

D.2 Follow-up Questionnaire Outline 

D.2.1 Usage Questions 

1) What is your Forename? 

2) What is your Surname? 

3) Who is your Principal Investigator/Team leader (if applicable)? 

4) What Flow Cytometer do you most commonly have experience with? 

5) Which analysis software package(s) do you most commonly use to analyse Flow 

Cytometry data? If you use multiple software packages, please indicate why and what 

benefit each package brings. 

6) How long have you been working with Flow Cytometry? Please indicate length of time 

in years and months. 
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7) Has your Flow Cytometry usage been consistent over time, or on and off with projects? 

8) How often do you currently use a Flow Cytometer? 

9) How often do you analyse Flow Cytometry data? 

D.2.2. Gating Preferences 

10) Do you prefer manual/automated gating? 

11) What problems or frustrations do you encounter when gating flow data? 

12) What problems or frustrations do you have when interpreting flow data from literature 

sources? 

13) Do you actively read/research into Flow Cytometry gating techniques to stay aware of 

up to date literature and findings? 

14) Please indicate what noise parameters you consider affecting Flow Cytometry gating 

and analysis and how you deal with these when analysing data. 
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Short Description Inclusion criteria Exclusion criteria

Fluorescence spillover
Compensation'; 
Fluorescence spillover'

No mention of the 
antigen itself of the 
biological conjugate, this 
is purely focused on the 
fluorophore.

Reagents
Antibody lot variaitons'; 
Staining processes and 
repeatability'

Does not include the 
actual fluorescence 
spillover that occures 
due to the 
fluoreochromes, this has 
more concern with the 
impact on biological 
variation.

Voltage setup
Setting up PMTs'; 'gain'; 
'voltage setup'

Does not include the 
upstream staining and 
fluorochromes used, or 
spillover of the 
fluorochromes into 
different channels.

Non-specific binding
Non-specific staining'; 
'Fc blockers'; 'Non-
specific binding

Does not inclue the 
fluorochromes 
themselves or anythign 
to do with Fluorescence 
spillover

Instrument to 
instrument variation

Discussino of 
instrumental 
differences or specific 
manufacturer setting

Does not relate to laser 
lines used or voltages 
used for specific setup, 
nor reagents

S/N ratio

Limit of detection; 
Sensitivity; Signal to 
Noise; Small particle 
amplification

Does not include 
fluorescence particle 
signals or spillover, not 
specific voltages used for 
setup.

Cell Debris & Doublets
Cell debris; Dead cells' 
Dying cells';  Doublets

Does not include control 
files or specific methods 
for defining gating 
boundaries.

This relates to variability in the use of reagents upstream of the gating process. 
Antigen markers and fluoreochromes as well as staining buffers used can cause 
noise due to fluorescene spillover but also if the process of using this varies there 

can be differences in fluorescence measures.

This relates to setting the PMTs or PDs for the the acquision of data within each 
channel being used. The voltages allow suitable amplification of the fluorecence 

in order to see the required populations and discern from overalpping 
populations by using controls.

The Signal to Noise ratio relats to the limit of detection of the instrument and 
how this is defined with smaller cell types that are harder to detect doe to 

smaller size and potentially weaker signals, This can be difficult to separate from 
instrumental noise which could be over-amplified when looking for small or weak 

particles. 

This relates to dead or dying cell populations and doublet cell populations that 
would normally be cut out of analysis in early 'clean up' gates applied/. These 
cells can often overlap required populations so their removal can be difficult 

when trying to fully etract  the population.

This relates to non-specific binding that occurs due to FC receptors wtthin 
immune cells and certain antigen markers that can bind to incorrect surface 

markers due to this.

This relates to difference between different FC instruments made by different 
manufacturers or located at different sites.

Long description

This relates to any fluorescence spillover that can occur between optical 
channels in the FC. Any mention or correction or compensation to rectify this 

issue is included. 

Noise parameters Codebook
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Short Description Inclusion criteriaExclusion criteria

Gating 
standardisation

Gating 
standards'; 
'Ambiguous 
analysis'; 'Poor 
conclusions'; 'No 
gating hierarchy'

Does not include 
upstream 
standardisation 
such as reagent 
panels or voltage 
setup.

Cell population 
definition

Know what you 
are looking for'; 
Understanding 
of markers for 
populations

Does not include 
how markers 
bind to cells or 
gating standards 
used to define 
certain target 
populations.

Visualisation 
quality

Colour of plots'; 
Ability to 
visualise with 

Nothing 
upstream of the 
gating that could 

Poor reagent 
information

Lack of 
information on 
concentrations'; 
'Lack of 
information on 
titrations used'

This does not 
relate to the cell 
number or event 
count within the 
file itself. Not 
does it relate to 
spillover with 
regards to the 
conjugated 
fluorophore.

Lack of controls

FMOs'; 'Isotypes'; 
'Live/dead 
stains'; 'Negative 
markers'

Does not include 
replicates of the 
sample itself or 
upstream 
optimisation 
such as titration.

Fluorescence 
spillover

Compensation'; 
Fluorescence 
spillover'

No mention of 
the antigen itself 
of the biological 
conjugate, this is 
purely focused on 
the fluorophore.

Lack of control files used to place the gates shown in the fully stained sample. These provide information on how the 
gate was placed, and how much separation can be seen between positive and negative populations.

This relates to any fluorescence spillover that can occur between optica channels in the FC. Any mention or correction or 
compensation to rectify this issue is included. 

This refers to any way the data can be visualised and the resolution of the data points that are used for the analysis. 
This can include colour of plots, density mapping and aspet ratios, for example.

Lack of information surrounding reagents used, with respect to quantities and concentrations of each reagent, 
incubation times and titrations completed.

Long description

This includes the use of well defined and populat gating strategies,validated through the FC community, which also 
includes information provided on hwo the gating was completed, such as the hierarchy and process of gating steps to 

crate the gating images.This also includes difficulty to understand the analysis from descriptions given, along with 
understanding the conclusions drawn from the results in the literature.

This relates to the ability to understand how the target cell population is defined, but in  attached descriptions. This also 
relates to the wider body of knowledge on how well certain sub-populations re determined and defined by specific 

markers and techniques.

Interpretation problems
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ORGANISATION 
Introductory stage 

• Basic information about the purpose of the interview and the research project of which it is a 
part 

• Clear idea of why they have been asked 
• Idea of probably length of the interview; and that I would like to record it and why 
• A clear idea of where and when the interview will take place 

 
You are participating in a research project which aims to identify sources of variation within cell and 
gene therapy manufacturing & measurement platforms, attributed by human factors involved. This will 
have a specific focus on operator subjectivity within data analysis and processing, whilst also 
encompassing differences between operator experience and training.  
 
Your input helps us identify new areas for research and focus, to reduce variation within cell and gene 
therapy manufacturing processes by understanding where human factors play a key role in 
determination of final measures and decisions. This will ultimately improve the consistency and quality 
of the final product manufactured, and therefore a better quality of treatment for the recipient.  
 
You were selected as a possible participating this study because of your expertise and experience in 
carrying out analytical evaluations for the purpose of manufacturing cell or gene therapy products or in 
performing analytical testing in support of those manufacturers.  This interview is voluntary, you have 
the right not to answer any question, and to stop the interview at any time or for any reason. We expect 
that the interview will take one hour.  
 
INTERVIEWEE PROFILE 
 

1. What are your roles/responsibilities and what techniques do you work with most commonly? 
• Create a profile for interviewees career/technique history to aid this question. 
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2. How much experience have you had with cellular imaging for viability/confluency (in years & 
months)? 

 
 
 
 
TECHNIQUE USE 
 

3. How frequently do you use the cell imaging platform? 
 
 
 

4. What do you use these techniques to measure?  
• (Cell measurement, organic compounds, metabolites etc) 

 
 
 
EXERCISE 

5. Could you outline the process of obtaining a measurement with the respective technique, and 
identify the relevant tasks within the sample preparation and optimisation, instrument setup 
and data acquisition and analysis stages of the measurement process? (Example provided, 
interviewee to talk through process to confirm what they do, along with the next question). 

 
 
 

6. From the process stages you have identified, could you highlight which of these are affected by 
the operator’s judgement and their respective variability, and how much human contact time 
they take? 

 
DATA ANALYSIS 

7. Focusing on the data analysis elements, do they require human or machine learning 
interpretation to provide a quantitative result? 

 
 
 

8. Are you familiar with how the software computes to obtain a final answer? What does it look for 
to determine differences between cells? Do different analysis packages use different 
methods/algorithms? 

 
 
 

9. Could you go through this data analysis process in detail and explain variables that can be 
optimised/changed/altered to obtain the image (or analyse it) and how significant the variation 
could be? (Yes/No/detailed answer) 

 
 
TRAINING 

10. Are you responsible for training new users on this instrumentation? 
 
 

11. Do you see differences between new and experienced users when they interpret data from this 
technique? 

 
 
 

12. How are users trained in your facility (process)? Are there recognised training courses/material 
that are encouraged to use as reference material/information to help with 
quantification/diagnosis? 
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STANDARD OPERATION 
13. Do you use Standard Operating Procedures for analysis of data? Is this internal/external? 

(Yes/No; Internal/External) 
 

14. Do you use proprietary software for data processing (i.e. comes with the instrument), or do you 
use 3rd party software? If the latter, why? 

 
CLOSURE 

• Give interviewee a verbal summary of what you feel you have gained from the interview and 
thank them for their time and contribution. 

• State time of interview end and interview duration. 
 

 

Short Description Detailed Description Inclusion Criteria Exclusion Criteria 

Sample 
Preparation First 

Cycle Code 

defined as liquid handling and sample 
handling required for an analytical 
measurement. This does not include any 
instrumental setup for measurement 
platforms or data processing. It also does not 
include ant cell culture required for 
expansion. 

    

        

Product 
interations 

Refers to matrix effects of additional 
materials used within culture that can affect 
the final measurement, or effects of reagents 
used in the measurement process.  

Matrix effects, mAb 
conjugation, buffers and 
reagents 

Instrumental 
setup or protocol 
specifications. 

        

Protocol 
Optimisation 

Refers to optimised steps of the protocol, 
which contribute variability due to time, 
volume, concentration or other 
environmental factors. 

Longitudinal effects, 
volume, concentration 
environment 

Instrumental 
setup, product 
interactions and 
biological variation 

     

Process 
Familiarity 

Refers to operator human factors when 
repeating process steps. This includes factors 
such as experience, use frequency, 
competence, confidence and speed of work 
that impact how an operator completes a 
process and impacts variability 

Experience, 
troubleshooting, use 
frequency, competence, 
confidence, speed of 
work 

Protocol steps and 
detail, training 

     

Copy Errors 

Processing errors that are introduced when 
an operator is required to intervene and 
transfer information manually from one 
platform to another. 

Copying values from 
instruments to excel 
docs, further manual 
calculation, file naming 
and overwriting 

Does not include 
creating macros or 
automated file 
name generation/ 
information 
transfer 
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Haptic Variables 
Variables affected by the operator completing 
a physical task or manual manipulation of the 
product. 

Pipetting error, removal of 
superanatant 

Does not include 
software based 
variables that 
require users to 
understand 
workings of 
parameters and 
adjustment 
thereof 

        

Non-Haptic 
Variables 

Variables affected by the operator which are 
not seen as physical in completion. These 
often involve software-based tasks where the 
operator is using a computer to select and 
test a variety of parameters. 

Manual size gating of 
images 

Pipetting error, 
removal of 
superanatant 

     

In-Process First 
Cycle Code 

In-process is defined as an instrumental 
setup required to facilitate the measurement. 
It does not include any prior sample handling, 
or post-processing of data if required. It 
related to setup parameters required to be 
tuned in order to take the measurement. 

    

     

Protocol 
Optimisation 

These are parameters that have been set in a 
protocol, defined by prior testing and 
validation. It does not include parameters 
that need adaptive tuning for each 
measurand. 

Cell line selection, 
concentrations, volumes, 
doubling times, cycle 
times, temperatures. 

Variables tuned 
for each 
measurement, e.g. 
focus/ autofocus 
on cells. 

     

Digital Image 
Parameters 

These are variables which can be adjusted to 
improve the visual image of the product, 
often relating to camera variables. It does not 
include the spatial positioning of the camera 
or dynamic ranges thereof. 

Brightness, contrast, 
masking, image stitching 

Dynamic range of 
image, cell 
focusing, size 
thresholds 

        

Spatial Image 
Parameters 

These are area parameters reating to the 
chosen area for imaging in the x, y and z 
planes of focus and measurement. It also 
relates to the frequency of image capture and 
size thresholds if captured in real time. 

Centering on well, size 
thresholds, z-scan height. 

Brightness, Gain, 
Contrast. 

        

Process Setup 

These are human factor decisions and 
actions that are required to be made during 
the process of instrumental setup. They 
require the user to know the correct 
decisions have been made and 
troubleshooting if not. It does not include any 
digital or spatial parameters that can be 
adjusted.  

Choosing correct optical 
channel, focusing, correct 
objective. 

Brightness, gain, 
choosing area for 
image. 
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Copy Errors 

Processing errors that are introduced when 
an operator is required to intervene and 
transfer information manually from one 
platform to another. 

Copying values from 
instruments to excel 
docs, further manual 
calculation, file naming 
and overwriting 

Does not include 
creating macros or 
automated file 
name generation/ 
information 
transfer 

        

Post-Process 
Cycle Code 

Post-processing is defined as any processing 
completed on the image/data once the 
measurement/ image has been taken. This 
includes any thresholding for background 
and cell/pixel size. It does not include any 
image setup parameters used to take the 
image.  

    

        

Copy Errors 

Processing errors that are introduced when 
an operator is required to intervene and 
transfer information manually from one 
platform to another. 

Copying values from 
instruments to excel 
docs, further manual 
calculation, file naming 
and overwriting 

Does not include 
creating macros or 
automated file 
name generation/ 
information 
transfer 

        

Spatial Image 
Parameters 

These are area parameters reating to the 
chosen area for imaging in the x, y and z 
planes of focus and measurement. It also 
relates to the frequency of image capture and 
size thresholds if captured in real time. 

Centering on well, size 
thresholds, z-scan height. 

Brightness, Gain, 
Contrast. 

        

Digital Image 
Parameters 

These are variables which can be adjusted to 
improve the visual image of the product, 
often relating to camera variables. It does not 
include the spatial positioning of the camera 
or dynamic ranges thereof. 

Brightness, contrast, 
masking, image stitching 

Dynamic range of 
image, cell 
focusing, size 
thresholds 

        

Non-Haptic 
Variables 

Variables affected by the operator which are 
not seen as physical in completion. These 
often involve software-based tasks where the 
operator is using a computer to select and 
test a variety of parameters. 

Manual size gating of 
images 

Pipetting error, 
removal of 
superanatant 

        

Protocol 
Optimisation 

These are parameters that have been set in a 
protocol, defined by prior testing and 
validation. It does not include parameters 
that need adaptive tuning for each 
measurand. 

Cell line selection, 
concentrations, volumes, 
doubling times, cycle 
times, temperatures. 

Variables tuned 
for each 
measurement, e.g. 
focus/ autofocus 
on cells. 
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