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ARTICLE

Innovation landscape and challenges of smart technologies
and systems – a European perspective
Simon Micheler, Yee Mey Goh and Niels Lohse

Intelligent Automation Centre, Wolfson School of Mechanical, Electrical and Manufacturing Engineering,
Loughborough University, Loughborough, UK

ABSTRACT
Smart technologies with higher degrees of autonomy will be essen-
tial to achieve the next breakthrough in both agility and productiv-
ity in future manufacturing systems, often referred to as Industry
4.0. However, the technologies will also bring substantial design
and integration challenges and novelty risks to manufacturing
businesses. The aim of this paper is to analyse the current landscape
and to identify the challenges for introducing smart technologies
into manufacturing systems in Europe. Expert knowledge from both
industrial and academic practitioners in the field was extracted
using an online survey. A workshop was used to triangulate and
extend the survey results. The findings indicate three main chal-
lenges for the ubiquitous implementation of smart technologies in
manufacturing are: i) the perceived risk of novel technologies, ii) the
complexity of integration, and iii) the consideration of human
factors. Recommendations are made based on these findings to
transform the landscape for smart manufacturing.
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1. Introduction

In the global economy, the term Industry 4.0, also known as smart manufacturing,
has become a popular term to describe a paradigm within the manufacturing
environment. Fundamentally, every manufacturing industry has to optimise their
product quality and reduce lead time to deliver parts on time, at reasonable costs,
and to gain customer’s confidence (Younus, Hu, Yuqing, & Yong, 2009). A UK
Foresight report from the Government Office for Science identified a number of key
drivers for a faster and more responsive way of manufacturing closer to the
customer (Foresight, 2013). The idea behind those enabling smart technologies,
related to Industry 4.0, is the interconnection of industrial production systems
using digital communication and information technologies to enhance intelligence
and digital connected systems (Bauernhansl, Ten Hompel, & Vogel-heuser, 2014).
The interconnection of manufacturing systems is expected to enable optimisation
within the whole production and supply chain from cradle to grave (Zeller &
Achtenhagen, 2010).
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In order to achieve these transformations, sensors and smart components will need to be
integrated to form highly connected smart networks and systems also known as the
Internet-of-Things (IoT). This is expected to revolutionise manufacturing by enabling
a more resilient utilisation of resources due to self-checking, self-monitoring, and self-
diagnosing as well as the reduction of lead and changeover times (Dürkop, Wisniewski,
Heymann, Lücke, & Jasperneite, 2015). The Cyber-Physical Systems (CPS), as well as
Robotics and Autonomous Systems (RAS), are recognised as potential solutions to increase
competitiveness and productivity and address the growing skill shortage for manufacturing
in developed countries (The Manufacturer, 2015).

However, the integration of smart technology within manufacturing systems raises
a number of challenges (Ordoobadi, 2011; Van Der Velden, Bil, & Xu, 2012). These
challenges are mainly related to two key aspects: i) whether the technologies are sufficiently
mature and ii) whether the decision-makers know how to quantify/estimate the value/cost-
benefits of their manufacturing systems.

Figure 1illustrates how smart technology is removing the traditional hierarchical struc-
tures within enterprise architectures. The field-level and control level merges to what is
referred to as embedded sensor/actuator control. The higher level control hierarchy is
removed to create a logically connected flat IoT (Bettenhausen & Kowalewski, 2013).
Considering most of the current research and development in smart manufacturing
systems and CPS, the main system architecture can be broken down into four different
categories (Lee, Bagheri, & Kao, 2015; Wang, Wan, Zhang, Li, & Zhang, 2015):

● sensing,
● data storage/identity,
● decision-making/controlling,
● and networking and control.

Smart technologies are components that enable a decentralised architecture as shown in
Despite the emerging complexity challenge of smart systems is the definition of new

standards and reference architectures that govern the interactions of smart manufacturing

Figure 1. Decomposition of themanufacturing hierarchy trough CPS-based automation (Bettenhausen &
Kowalewski, 2013).
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technologies (Agyapong-Kodua, Lohse, Darlington, & Ratchev, 2013; Lohse, Hirani, &
Ratchev, 2006). At the same time, new smart technologies are pushing to steadily increase
the complexity beyond the capability of existing standards.

Anecdotal feedback from industry confirms that numerous key challenges remain that
prevent the implementation of smart technology within manufacturing businesses.
However, despite a wide discussion of Industry 4.0, there is currently a clear lack of
studies analysing the current readiness and barriers for the wider uptake of smart
technologies, especially from a practitioners’ perspective. This motivated the Co-
FACTOR project1 to investigate the current smart technology and smart manufacturing
systems landscape. Therefore, the research in this paper aims to appraise the current
readiness, anticipated impact and integration challenges for smart technologies and
systems in Europe.

The assumption is that smart systems are built through the combination of hetero-
geneous smart technologies. For further investigation, smart technologies and systems
were described according to the following definition as part of future manufacturing
systems. Smart technologies and systems are key enablers, building blocks and atomic
elements serving as the technical basis for future manufacturing systems. They will
provide manufacturing systems with properties such as the capability to sense, commu-
nicate, aggregate and analyse information and to act in an optimised, self-adapted and
self-aware way (Micheler, Lohse, & Goh, 2017). This definition of smart technologies and
systems is used throughout the research investigation, whenever they were subject to
discussion or question within the survey and the workshop.

First insights into smart technologies and current challenges are gained from research
areas that looked specifically into the detailed technologies. The developments within the
smart technologies’ areas can give an initial idea into which direction the current research
in this area. The key smart technologies associated with manufacturing sector are then
identified. A survey and a workshop were then carried out to elicit the opinions from
academic and industry experts from the European community.

Section 2 provides a review of the current smart technologies on different scales and
integrational issues of smart technologies for smart manufacturing systems. Section 3
describes the applied methodology, explains the core concepts of the technology survey
and how the workshop was designed and carried out. The results are presented in Section
4, which lead the authors to a discussion (Section 5) and conclusions (Section 6) about
challenges related to smart technologies integration in manufacturing businesses.

2. Smart technology and manufacturing integration

This section will discuss the literature on smart technology and the integration of smart
technology in manufacturing. Given the extensive nature of research on smart technol-
ogy, this literature review is limited to smart technologies and systems relevant to the
research presented in this paper only and relating to the manufacturing strategies,
information and communication and big data and cloud technology. Section 2.1 will
start with a presentation of research related to smart technologies. Section 2.2 will present
research related to the integration of smart technologies.
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2.1. Current research on smart technology

Smart technologies are key enabling technological parts of the architecture, but also the
interconnection of the architecture itself. Building a smart architecture implies that the
technology strategies must be aligned systematically to make the transition work. To
combine the overlapping topics, this paper simplifies the classification of smart technol-
ogy into three different categories. The related classification separates smart technology
into (i) strategic, (ii) information and communication, and (iii) big data and cloud
technology areas.

2.1.1. Smart strategies for manufacturing businesses
Latest smart technologies could enable production processes to adapt to market chal-
lenges through new production processes. The current assumption of new flexible
production systems is possible mitigation of demand uncertainty effects (Purvis,
Gosling, & Naim, 2014). Currently implemented paradigms like mass customisation
and other paradigms drive technological innovations. Examples of such innovations
with increased performance are additive manufacturing, mechanical micro-machining,
high-performance and quality-embedded manufacturing as well as emission reduction
technologies (Garetti & Taisch, 2012). Innovations, however, require platform manage-
ment for building up innovations.

The introduction of smart technology must be sustainable and empower future
technologies to build upon. Current platform decisions can be internal and external
in their nature. Internal platforms (company-specific) offer a strategic advantage by
reusing and redeploying assets of internally developed product families of the company
and close suppliers (Gawer & Cusumano, 2014). External platforms create a strategic
advantage by using industrial platforms for complementary innovations. Current
research suggests simultaneous management of both platform types (Gawer &
Cusumano, 2014). The interaction of smart technologies increases the communication
of technologies and the integrated smartness of a system but also identifies additional
challenges.

Research in self-organising and self-adapting shop floors, for example, is motivated by
the need for an increase of manufacturing systems’ responsiveness and for the reduction
of configuration and ramp-up time (Onori, Lohse, Barata, & Hanisch, 2012). Experts
define a set of enablers between machines and the shop floor. According to the profes-
sionals, the requirements include establishing a robust operation in real-time with dual-
way connectivity and interoperability (Zhang, Qian, Lv, & Liu, 2017) as well as easily
deployable and applicable concepts for an intelligent shop floor, corresponding with
current CPS concepts.

2.1.2. Information and communication technology
Information and Communication Technologies (ICT) enable model-based, knowledge-
based manufacturing as well as high accuracy modelling of processes. With regards to
standardisation for the enabling technologies, a need for standard efficiency measure-
ments, an extension of communication standards (for example, heterogeneous ad-hoc
networks (Qiu, Chen, Li, Qiao, & Fu, 2017)), as well as the standardisation of product
life-cycle data have been pointed out as crucial future developments. New technologies

506 S. MICHELER ET AL.



demand an increase in highly qualified workers and point out the importance of educa-
tion for smart technologies (The Manpower Group, 2013).

Application examples for commonly used technologies in terms of middleware types
are Wireless Sensor Networks (WSN) (Akerberg, Gidlund & Björkman, 2011), Radio
Frequency Identification (RFID) (Bartneck, Klaas, Schoenherr, & Siemens, 2009),
Machine-to-Machine (M2M) communication (Fang et al., 2014), and Supervisory
Control and Data Acquisition (SCADA) systems (Strasser, Ebenhofer, Sünder, &
Valentini, 0000). Middleware should aim to ease the development of new applications
and enable integration of heterogeneous computing and communication devices sup-
porting interoperability (Chelloug & El-Zawawy, 2017). Current challenges are driven by
functional requirements (for example, code management and event management), non-
functional requirements (for example, scalability, real-time, reliability, security and
privacy or ease of deployment) and architectural requirements (for example, program-
ming abstraction, interoperability, service-based, adaptive and context-awareness). Some
of those issues are currently addressed from a wireless sensor network’s perspective.

WSNs are defined by central components like, for example, wireless sensor nodes
enabling the connection of wireless sensors, a processor, etc. (Rawat, Singh, Chaouchi, &
Bonnin, 2014). Identified challenges for wireless sensor networks include resource con-
straints, dynamic and extreme environmental conditions affecting the connectivity, data
redundancy and reliability, a global ID for sensor nodes, liability to failures, as well as the
large-scale deployment of networks. Chances for the wireless sensor networks are
standards like, for example, the IEEE 802.11 (wireless local area network specification,
protocol).

2.1.3. Big data and cloud technologies
Data is the key output of smart technologies. For useful data processing, process
improving knowledge needs to be derived. Challenges relate to data security, overcoming
heterogeneous nature and storage, as well as methods to harness business value from the
data (Mashhadi, Kawsar, & Acer, 0000).

Data mining or machine learning technologies have a tendency to develop towards
expert-based systems (Sayed & Lohse, 2014) but simultaneously lean towards specific
problems. These tendencies increase the available number of problem-specific solutions
but neglect the aspect of connecting available solutions. A future challenge is to increase
the understanding of data mining through the inclusion of qualitative, quantitative, and
scientific methods as well as the applications of specific machine learning technique
methodologies (Liao, Chu, & Hsiao, 2012).

One of the key challenges is in combining data (data fusion) from multiple sources to
achieve a higher density of information and simultaneously reduce redundancies within
the dataset (Haghighat, Abdel-mottaleb, & Alhalabi, 2016). Data fusion works with two
different kinds of data, soft data (for example, text from web pages or expert statements)
and hard data (for example, RFID, acoustic signals, etc.) as soft/hard data fusion (Nunez,
Samarakoo, Premaratne, & Murthi, 2013). Hard and soft data fusion is a complex
problem currently not focused on in research (Khaleghi, Khamis, Karray, & Razavi,
2013). Opportunistic data fusion considers a currently needed perspective for industrial
applications to reduce the number of sensors needed.
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Data fusion offers an extensive spectrum of opportunities, which might lead to
a dramatic increase in widespread adoption (Nunez et al., 2013). Supported by high-
performance hardware, current research considers an integration of machine learning
techniques in the cloud to optimise the calculation performance is still problematic.

To this end, cloud computing can be applied to three different layers of data relating to
the IoT in a workshop, in an enterprise environment, and among enterprises (Tao,
Cheng, Da Xu, Zhang, & Li, 2014). A conducted investigation to compare the potential
of cloud computing with the concept ‘IoT’ by Tao et al. (Tao et al., 2014) for addressing
bottlenecks of advanced manufacturing technology resulted in a proposal that suggested
a cloud computing- and IoT-based cloud manufacturing system.

2.2. Integration of smart technology in manufacturing systems

In this section, the integration issues in manufacturing systems relating to strategy,
information, and communication as well as big data and cloud technologies are discussed
in turns.

2.2.1. Integration of smart strategies for manufacturing businesses
The developments of smart technology have introduced significant technological com-
plexity, especially for Small- and Medium- Sized Enterprises (SMEs), which neither have
know-how nor capacity to handle such a project. Therefore, support for manufacturing
system integration is required. For example, Wieland et al. (Wieland et al., 2016)
introduce a manufacturing integration assistant for SMEs.

Industry 4.0 is among the most frequently mentioned strategic concepts superseding the
concept of lean manufacturing. Current research aims to merge lean manufacturing with
Industry 4.0 (Sanders, Elangeswaran, & Wulfsberg, 2016). Strategic planning issues drive
current research towards scenario planning for disruptive innovation in future factories
integrated into the business process management system (Rashid et al., 0000). Jung et al.
(Jung, Morris, Lyons, Leong, & Cho, 2015) present an approach to map strategic goals with
crucial components of manufacturing systems. The focus is on a systematic identification of
operational activities corresponding to strategic goals using multiple reference models.

In terms of Enterprise Resource Planning (ERP), attempts have been made to combine
current standards, namely, the Resource Event Agent (REA) and the ISA-95 standard. ISA-
95 is a process control model, which was invented by the International Society of
Automation (ISA) to describe different layers of a businessmanagement systems’ hierarchy.
Mazak andHuemer (Mazak &Huemer, 2015) show an ontology for horizontal and vertical
ERP integration through combination. Vertical process integration has experienced rising
importance satisfying recent trends to achieve more sustainable manufacturing through an
overlapping business-to-business and business-to-customer connection. Alternatively, the
vertical process integration of organisational control layers applies subject orientation as
design language (Neubauer, Krenn, Majoe, & Stary, 2017). The knowledge about business
management data within the area drives strategic design activities.

Jung et al. (Jung, Choi, Kulvatunyou, Cho, & Morris, 2016) report a reference activity
model to address the complexity of smart factory design and improvement, mainly designed
for themiddle and end stage of an existing or new factory. Invented as an extension of current
manufacturing models to enable a more informed smart design for manufacturing, recent
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research proposes to inform product design with information from the manufacturing
processes (Zawadzki & Zywicki, 2016). Similar research has been published by Hjertberg
et al. (Hjertberg, Stolt, Poorkiany, & Johansson, 2015). The authors found existing documen-
tation of knowledge derived from technology and product development but also a lack
of methods to handle implementation and management more effectively (Hjertberg et al.,
2015). The strategic knowledge about smart technology integration informs the lower-level
solutions.

2.2.2. Integration of information and communication technology
Connectivity and, therefore, communication technologies enable the concept of smart
manufacturing. Industrial agents are trending in the area to replace old PLC concepts as
they are held to cope with the requirements of modern systems in terms of manufactur-
ing process flexibility and reconfigurability (Ferreira, Doltsinis, Anagnostopoulos,
Pascoa, & Lohse, 2013). An investigation of the agent deployment within manufacturing
leads to the conclusion that particularly a combination of agents with physical devices
and an increased complexity builds up to a central issue for the deployment of agents
(Dias, Barbosa, & Leitão, 2015). Those challenges of Multi-Agent Systems (MAS) for
industrial applications have also been identified by others, who state that the integration
of physical automation equipment is currently limiting for MAS applications in terms of
effort and complexity (Pereira, Rodrigues, & Leitao, 2012). Solutions for semantic
integration of MAS have been recently presented using the OPC Unified Architecture
(OPC UA) information modelling approach (Hoffmann et al., 2016). Other efforts
towards standards for semantic integration of manufacturing systems are MTConnect
hosting relevant work (e.g. collaboration with ROS for the integration of robotics and
tools using standardized interfaces) as well as iFAB (Melkote, 2012), UFAB, and PARC
(Sobel, 2012). Mobile robots are an example of MAS and the integration has been
demonstrated by Culler et al. (Culler & Long, 2016).

A recently published work from Berger et al. tackles the definition of the cyber-
physical sensor (Berger, Hees, Braunreuther, & Reinhart, 2016). The definitions are
made in the context of industrial applications requirements (Berger et al., 2016). The
integration of sensors and the reduction of sensor integration challenges are among the
recent topics. Especially, highly heterogenic sensor wireless sensor networks and field
devices and their lack of integration have been investigated lately resulting in new
wireless sensor architectures and architectures for plug and produce (Theorin et al.,
2017; Zhong, Xu, Chen, & Huang, 2017).

2.2.3. Integration of big data and cloud technologies
An increased interest in this area is indicated by significant publications around big data
and machine learning integration. Starting with the data usage aspects and development
of an event-based information system architecture (Theorin et al., 2017), the analysis of
big data from an IoT environment was resolved by the presentation of an RFID
architecture for big data analytics (Zhong et al., 2017). Additionally, the design of
a computational platform for integrating the data analytics paradigm with simulation-
based optimization facilitated the modelling of the manufacturing process (Li & Roy,
2017), and finally, the data distribution for multiple robots was used to perform the same
task simultaneously for two different scenarios (Essers & Vaneker, 2014). The attempt of
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using the data for cloud-based calculation would increase the capabilities of optimisation
calculations. Cloud-based data storage and computing are one of the most growing areas
connected to the Industry 4.0 paradigm.

Latest research dealing with the integration of cloud computing in manufacturing is
related to cloud computing for big data analytics. To analyse the problems of the industry,
a case study approach was used to identify integrational problems related to cloud-based
big data analytics. The result presented requirements from a real-world business scenario
perspective (Nino, Saenz, Blanco, & Illarramendi, 2017). The additional web-based research
presents an architecture, which increases the awareness of the whole supply chain for
interoperability reasons (Danila, Stegaru, Stanescu, & Serbanescu, 2016). Similarly,
Mourtzis, et al. (Mourtzis, Doukas, & Vandera, 2017) report research about the develop-
ment of mobile applications to integrate the product design and decision-making process
within the mass customization production process. Designing the processes with
Computer-Aided-X (CAx) software and sufficient communication with the connected
manufacturing systems enables more sustainable development and research environment
(Helu & Hedberg, 2015). Another approach suggested the use of web semantic models as
a concept to integrate information technology between IoT and PLM platforms using
semantic web technology and OSCL, which uses the HTTP protocol for data transfer
(Shariatzadeh, Lundholm, Lindberg, & Sivard, 2016).

2.3. Implementation of smart manufacturing

The transition to a smart manufacturing or Industry 4.0 paradigm will depend on
a successful adoption of many new technologies. Until recently, the realisation of the
smart factory remained elusive due to the limitations in digital technology capabilities
and the high costs associated with them amongst many (Sjödin, Parida, Leksell, &
Petrovic, 2018). According to information from OECD (Arntz, Gregory, & Zierahn,
2016), on average only 5% of all firm assets in Germany are described as ‘production
facilities 4.0’. This figure is likely to have increased since 2016, but it outlines that
majority of companies are still in a transition/development stage despite having some
digital technology already in place. Therefore, the visions of the future smart manufac-
turing assume these technologies will have developed to a state where they can fulfil their
potential in a smart factory.

Oesterreich and Teuteberg (Oesterreich & Teuteberg, 2016)suggest Industry 4.0 is
a multifaceted term that comprises of interdisciplinary concepts that lacks a definitive
clear distinction. According to industry wide interviews conducted by Schumacher et al.
(Schumacher, Erol, & Sihn, 2016) a series of problems are highlighted:

● Companies perceive Industry 4.0 as a highly complex concept that offers no strategic
guidance

● Companies lack a clear idea of the benefits and outcomes resulting from Industry 4.0
implementation. Thus, there is greater risk from investing since it is unclear whether
the benefits will outweigh the costs.

● Companies fail to assess their own capabilities in Industry 4.0, which restrains them
from taking any coordinated measures.
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The current research environment reflects a number of challenges associated with smart
technology and their integration. Many different approaches and perspectives have been
taken to respond to these challenges from strategic and technology integration perspec-
tives. Some of the research challenges are driven by the complexity of the technology
itself (for example machine learning), other research challenges like, for example, wire-
less sensor networks, are driven by the complexity introduced by the heterogeneous
integration of smart technology. From the lack of industry adoption and research
challenges, it can be inferred that smart technology is still immature, but how close are
they to delivering real business benefits to the manufacturing sector is still unclear. And
given the their potential development, what are the main barriers to overcome to realise
their promised impact? These gaps led the authors to conduct the research to consolidate
current experts’ views and opinions on the innovation landscape of smart technology and
systems and the challenges when integrating them into smart manufacturing systems.

3. Methodology

Technology evaluation is a strategic instrument enabling a determination of goals and the
estimation of new technologies’ potential. The main function is to evaluate the satisfac-
tion of market demands on the one side, and from a technological development per-
spective on the other side (Vishnevskiy, Karasev, & Meissner, 2016). Very rarely, this
technology is used to emphasise both simultaneously. In this case, we will focus on the
technology perspective for future technologies evaluation and integration. The use of
experts’ opinions within the conducted research dramatically influences the results and
quality of the survey and workshop. Therefore, the focus has been on choosing a suitable
group of respondents for the smart technology survey. The empirical analysis for the
survey, which has been conducted through the Co-Factor project (H2020-FoF-2014,
Project Number 637178), was funded by the European Commissions’ Research and
Innovation Program ‘Horizon 2020ʹ. Combining six prominent European projects
around smart industrial technologies and systems, the project aims to speed up the
industrial uptake of project results as well as to initialise a smart technology community
(Steinbeis-Europa-Zentrum, Harms, 2015). The following sub-sections describe the
evaluated technology before the experts and survey methodology are introduced.

3.1. Evaluated technology

Amanufacturing system can contain smart technology like smart proximity sensors as well
as force and torque sensors linked tomachine learning algorithms enabling a higher quality
than conventional solutions as part of smart manufacturing. The survey, as well as the
workshop, used this definition as a basis for the questions asked. The results show
a structured answer to where the different technologies are currently set in terms of their
implementation from a technologies expert’s perspective. Additionally, they describe the
difficulties of those technologies from a technical perspective and how these complications
can be translated into the challenges for the implementation of manufacturing systems.
Based on this investigation, different difficulties, related to implementing smart technology
and manufacturing systems, have been identified from a technical perspective. The eval-
uated technology is described in the research according to Table 1. The table gives a detailed
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definition of the technologies evaluated. All the technology used within the web survey has
been applied to the six European core projects mentioned before. The specific technology
was evaluated in many different aspects. This paper will not discuss all the questions asked
(Micheler et al., 2017) but focus on central questions according to the research questions
presented in this paper.

3.2. Survey

Both qualitative and quantitative approaches were adopted to provide insight into the
technical perspective of implementation issues for smart technology and manufacturing
systems. The quantitative approach is used for the survey to gain a wide range of opinions,
whereas the qualitative approach is used for triangulation and to gain in-depth knowledge
of the workshop. However, due to both the limited amount of information about technical
issues and the various customised nature of manufacturing systems containing different
smart technologies as well as a lack of information with regards to current challenges for
the integration, the authors proposed an investigation of the smart technology area and the
integration of smart technologies to form manufacturing systems. The web survey is
divided into two different parts. Firstly, the authors aimed to gain information about the
pool of experts to validate whether the right respondents had been selected (Q1–4) and
then their opinions were sought on smart technology (Q5–8), as shown in Table 2.

The responses for this survey have been collected using the commercial online survey
platform ‘SurveyMonkey’, which allows the users to create an online link. The web link
was circulated using email details of the expert database. The responses were collected
from twelve different countries. Ten of those countries are within the twenty technolo-
gically most developed countries in Europe (Florida et al., 2011). The experts are part of
current European projects related to smart technology and have, therefore, been listed as
experts in a European database. Reason for the second question of self-identification has
been created as validation of the existing expert-database. Possible reasons for occurring
negative responses might be due to the Dunning-Kruger-effect, which states that the
underestimation of capabilities rises with the expertise (‘Expert Bias’) (Kruger &
Dunning, 1999). Out of those identified 130 experts, 63 experts responded to the survey
request. 66 percent of the respondents claim to have a technical perspective while
32 percent have an economic/strategic one on manufacturing systems technology; 29
respondents were industrials, whereas 34 were academics; more than half of the experts
have been working within the specific area for more than 5 years (see Figure 2).

Table 2. Questions for expert evaluation.
Question Evaluating the experts

Q1 Is your current role industrial or academic?
Q2 Would you consider yourself an expert in smart technology?
Q3 Please indicate the number of years’ experience you have related to Smart Technology
Q4 What kind of perspective do you have on smart technologies?
Q5 At which innovation stage would you consider the following technologies to be related to smart

capabilities?
Q6 Have any of the technologies reached the limit of their development?
Q7 How significant do you expect the impact of the following smart technology to be for manufacturing?
Q8 What would you consider to be the main barriers to the development and introduction of smart

components and technologies?
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The responses show that the average respondent was either an industrial or academic
expert with more than 5 years of experience in smart technology related to the topic from
a technical perspective, who considers themselves an expert/more or less an expert in the
related area.

The second part of the survey focused on gaining information about the related
technologies and systems. The questions that were asked of the respondents were mainly
related to standard technology categorisations established in the area to rate the maturity
and development stage of technologies and systems, but also to standard measurements
like, for example, the importance of technologies. However, for the questions, the authors
did not differentiate between smart technologies and systems to avoid confusion and the
increase of questions complexity for the respondents. The innovation stage, the meaning
in the context of smartness, the development potential, the time to full market readiness,
a ranking of importance of the smart technologies and systems as well as the significance
were evaluated. A comprehensive review of the questions in an investment context can be
seen in a green paper by Micheler et al. (2017). A question was then posed about the
implementation barriers for smart technologies and systems.

3.3. Workshop

In addition to the distributed survey, an expert workshop triangulated the results using
experts for a workshop to investigate the integration of smart technologies in manufac-
turing system such as automation. The workshop was held on 13 October 2016, in
Brussels, Belgium. Four consultants, eight academics and five industrials participated
in the workshop (17 experts in total). In the first iteration, the experts were asked to note
down specific barriers, limitations, short- and long-term impacts of smart technologies.
The purpose of this task was to collect a wide range of suggestions for these categories
(barriers, limitations, short- and long-term impacts). The second iteration was used to

Figure 2. Expertise of respondents.
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weight the barriers, limitations, short- and long-term impacts of specific technologies.
The experts were confronted with the other respondents’ opinions and had the chance to
specifically give points to the statements made. The researchers have not given any rules
about how many points the experts have. However, only one point per expert could have
been given for one factor. The workshop distinguish between the technology and system
scale to identify factors important in each category (barriers, limitations, short- and long-
term impacts of smart technologies).

4. Results

This section presents the results gained from the appliedmethodology. The overall structure
of the investigation is chronological according to how the research has been conducted. The
survey results will be presented in detail firstly, before the results gained from the workshop.

4.1. Survey results

This section discusses the survey results, according to the questions (Q5–7) presented in
Table 3.

4.1.1. Innovation stage (Q5) and development potential (Q6)
For each of the evaluated technology, experts rate the innovation stages against the
‘Gartner’s Hype Cycle’ which describes the maturity and adoption of technologies and
applications (Linden & Fenn, 2003). At the beginning of a technology, no visibility of the
technology or system but a rising initial interest can be detected. This interest and visibility
grow over the maturity of the technology until the function reaches the tip of visibility ̶ the
peak of inflated expectations. The technology’s potential is overrated and the interest in this
technology is not increasing further but starts to decrease later. The degradation of visibility
takes place until the technology reaches the trough of disillusionment. At this specific point
in the maturity of a technology, the negative hype ends and the technology experiences
a slower but more sustainable rise of visibility again. This specific moment is referred to as
the slope of enlightenment. A clear vision of how this technology might be useful can be
seen, which inevitably leads to the plateau of productivity and the end of the technology
maturity cycle.

Table 3. Introduction barriers for smart technologies (Q8).
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As shown in Figure 3, the experts rate the technology innovation from 1 (= technology
trigger) to 5 (Plateau of Productivity). The bars show the average scores against each
technology evaluated. With the only exception of self-monitoring devices, all self* enabled
systems are expected at the earliest stage of all the investigated smart technologies and systems.
Those systems are especially considered to be at the peak of inflated expectations but already
experience a negative hype towards the through of disillusionment. Technologies at this stage
are not hyped, but the experts realised that the technologies are facing certain challenges
related to the technology.Other technologies and systems show a trend towards this valley, for
instance, human-robot collaboration and machine learning. This might be since those
technologies and systems start to suffer from rising problems within the area taking the
illusion from the applicants due to technological or economic barriers.

Software interfaces enabling plug and produce are nearly at the lowest point of
expectations, already facing a slightly positive expert tendency. Only the cloud technol-
ogies, as well as vision systems, seem to have overcome the negative hype trend of their
innovation stage and it appears to the respondents that they might be at the slope of
enlightenment, which means that the experts currently expect the technology or system
to be fully understood in the nearer future and soon to be applicable.

The most established systems with regards to the innovation stage are 2D/3D vision
systems showing a positive hype trend towards the ‘plateau of productivity’ indicating
a wider exploration and market introduction. A possible reason is an introduction of 2D/

Figure 3. Average innovation stage of smart technologies/systems (Q5).
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3D vision technology in many fields of automation (for example object identification,
recognition), which might leave the impression for experts that this technology will soon
be applicable in many different fields and introduced into different applications.

Further results on the development potential are discussed in section 5.1.

4.1.2. Impact on manufacturing (Q7)
The next question (Q7) was designed to address the potential impact of smart technology
in manufacturing. The scoring system gave the respondents 4 different options as an
answer. From impact factor 1 (= low impact) to impact factor 4 (= transformative
impact). The average impact results are presented in Figure 4.

The highest impact according to experts may come from self-adapting systems, which
would provide benefit from the maximum flexibility for production changes. However,
not all self* systems are rated equally important. Particularly, self- calibrating systems will
not make a transformative impact according to the average expert. In fact, the average
expert is closer to estimate the impact of moderate and high. The extension of standard
communication protocols was not rated to have a high impact on smart manufacturing
but, contrarily, software interfaces that enable plug- and produce are rated to almost have
a transformative impact on manufacturing. Another surprising result is the impact of
2D/3D vision systems in this context. Scoring the least importance as shown in the figure,
among virtual reality and virtual validation, the respondents seem unsure about the

Figure 4. Average impact of smart technologies on manufacturing (Q6).
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impact of 2D/3D vision systems. Current applications, however, show that the use of
sensor technology enables overcoming gaps of applications by using sensor technology
like 2D/3D vision systems.

The experts believe that none of the mentioned technologies will have a transformative
impact on manufacturing within this area. The impact of self*-technologies is distributed
equally in the first half of the presented results, being rated as important for manufactur-
ing. Only cloud storage, 2D/3D vision systems, virtual reality and virtual validation are
considered not to have a high impact on manufacturing but rather an impact between
moderate and high.

The results show that all technologies are estimated to have a moderate-to-high
impact on manufacturing. It is noticeable, however, that technologies which are at later
stages of the innovation circle are considered to have a smaller impact on manufacturing.
The rating of the impact seems to slightly correspond with the innovation stage. This
might be caused by the hype and expectations of the technologies with the highest impact
score, as they are currently on a peak of inflated expectations. The two exceptions are
machine learning and software-interfaces enabling plug and produce. Those concepts are
in the trough of disillusionment, but still, show good results for the impact of the
technology. After the impact results are presented, the next section displays the results
collected for the impact barriers of smart technologies and systems.

4.1.3. Introduction barriers (Q8)
For the introduction barriers, the questions were designed to allow the experts choice of
all possible answers available. The results are presented in Table 3. In response to
question Q8,‘What would you consider being the main barriers to the development and
introduction of smart components and technologies?’, 54 percent of them claimed it would
be the ease of implementation of those technologies and 51 percent of the participants
stated that one of the highest barriers would be the insufficient introduction of industrial
standards for smart technology. In addition to that, it was pointed out by the experts that
the compatibility with existing machines (both ~46 percent) is a further barrier. At the
same time, approximately a fifth of the respondents claims that smart technologies do not
offer sufficient flexibility. The results, therefore, suggest integration barriers be most
crucial for the introduction of smart technologies in manufacturing. The results corre-
spond with the current research environment as platform strategies and industrial
standards are identified as important for the compatibility with existing machines and
increase the ease of implementation.

The next category found is related to the organisational perspective of a company.
Missing management leadership/prioritisation, as well as R&D funding and human
resources, are found to be barriers to the implementation of smart technologies. “

Management and leadership prioritisation have been frequently identified throughout
the body of literature as a possible introduction barrier for smart technologies.

From an ICT perspective, the insufficient integration of communication technologies
(~43 percent), the insufficient know-how (~40 percent), and a lack of data processing
technology integration (~37) were mentioned. Only a minority of experts stated that the
development of new sensors and actors or the data processing capacity is a barrier to the
introduction and development of smart technologies in a manufacturing environment.
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The results of the introduction barriers are further elaborated with the workshop
results in the next section. The workshop was conducted to triangulate the results from
the survey and explore the barriers and limitations as well as to identify long- and short-
term impacts of smart technologies on manufacturing.

4.2. Workshop results

As described in Section 3.3, in a first round the 17 experts were asked to note
down specific barriers, limitations, short- and long-term impacts of smart tech-
nologies. A second iteration gave the experts the opportunity to give points
(weight) to those specific factors. The numbers in Table 4 indicate how many
times the experts vote for the factor. A comparison of the results on smart
technology/component and system scales reveals some differences. On an indivi-
dual component scale, the barriers include proving the Return on Investment
(ROI), privacy issues, the legacy system, and data access. On a system scale, the
main barriers to introducing smart manufacturing are technical trust, skills, own-
ership data, semantics and the awareness of such technologies. Main limitations on
a systems scale are standards, cost structure and compensation schemes, intellec-
tual properties, and protocol translation. On the component scale, limitations are
connected to the quality of data, the technology change acceptance, the availability
of data and the heterogeneity (in hardware). The short-term impact include
increased reuse of production equipment, new business models, and a shift from
products to services (for smart industrial equipment) on a systems scale. The long-
term impact will, according to the experts, lead to increased flexibility, efficiency,
and sustainability as well as to a product service society, instead of a product
society. In the short-term, smart technology and components will increase value of
data, pointing towards a reduction of resource requirements and a reshoring of
manufacturing as well as the increase of small players on smart component
markets. The experts believe that smart technologies are key enabler of a self-
adaptative factory and will increase worker satisfaction in the long term.

Table 4. Technology barriers, limitations and impact.
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5. Discussions

5.1. Technology component vs system

Figure 5 shows the actual position of smart technologies in terms of their development
potential and innovation stage. The development potential is described from ‘hardly
explored’ to ‘no more potential’. Due to visibility reasons, Figure 5 shows only an abstract
of the whole categories. The same applies to the categorisation according to Gartner,
which can be found in section 4. A first analysis of the smart technologies in their
development potential reveals that almost all the investigated technologies are located
between ‘significant potential’ and ‘little potential’. The most development, meanwhile,
can be seen related to cloud technologies as well as hardware interfaces. Distributed
(network) control, vision technology, software interfaces, smart sensors (with embedded
processing) as well as machine learning and ad-hoc sensor networks show significant
development potential. Embedded intelligence is an exception to those smart technolo-
gies as it appears between ‘significant potential and ‘hardly explored’. Overall, the
impression is that the technologies have comparatively more progressed in their innova-
tion stage than they have with regards to their development potential.

On a smart system level (see Figure 6), the results look fundamentally different from
those of the smart technologies. The overall impression is that in terms of the develop-
ment as well as with regards to Gartner’s Hype Cycle, the systems are far less advanced in
their progress. All the systems display at least significant development potential. The least
advanced systems are self-healing and self-adapting systems. Slightly more advanced are
self-calibrating, self-diagnosing devices, and human-machine collaboration as well as
self-monitoring systems. Simultaneously, the systems show an almost linear relationship

Figure 5. Smart technology innovation stage vs. development potential.
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with their innovation stage. Generally, they are located between the peak of inflated
expectations and the trough of disillusionment and, consequently, appear to be less
mature in their innovation progress than the smart technologies. These findings illustrate
that from a systems perspective, smart technologies are far more advanced in their
maturity especially with regards to the innovation stage. With regards to the methodol-
ogy, every smart system is in the first quarter compared to the smart technologies, where
the main share of technologies is in the second quarter.

5.2. Integration risk

The research aims to investigate the current landscape and identify potential barriers and
limitations of integrating smart technology into manufacturing systems to inform future
research, development and innovation needs within the current environment. Based on
the combined results, several points can be discussed.

For a novel and complex project, several issues related to risk for a company to
implement smart technology in manufacturing systems can be pointed out. Once the
smart technology has been developed, the first problem is the justification of technology
integration and usage within a smart manufacturing system. For most of the new
technology as part of the manufacturing system, quantifying the ROI has been reported
a barrier to the implementation. Proving the ROI of smart technologies remains
a challenge, as the benefits can only be realised with successful system integration and
difficulty in evaluating value of data and worker satisfaction. Furthermore, given that
none of the technology were perceived to have reached productivity level or their full
development potential, there will not be a reference case to base or anchor the evaluation.

Figure 6. Smart systems innovation stage vs. development potential.
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If smart technologies are integrated to an existing system, the industry will face addi-
tional compatibility challenges. Those challenges, however, seem to play a role in the
current research as technology strategies and platform issues have been recently presented
in publications related to different smart technologies. However, the experts still recognise
this as a limit for technology introduction, which effectively means that there must be
a transition of knowledge in this regard from universities to the industries. This corre-
sponds to another identified barrier from the experts, which was named awareness of smart
technologies. In this regard, it is interesting to compare academic and industrial experts’
perspectives as shown in Figure 7. It can be seen from the right-hand side that academic
experts consider cloud storage and virtual validation almost one rating point more
advanced than industrial experts. On the left-hand side, self-diagnosing machines and
embedded intelligence appear to be more advanced from industrial perspective.

The ease of implementation is rated as one of the key challenges for the integration of
smart technologies. Not much research has been presented over the last 5 years to ease the
implementation of smart technologies on all different levels from a holistic systems per-
spective. Current research eases the integration of heterogeneous sensors; however, a wider
manufacturing systems’ perspective has not yet been taken and addressed. Research is still
working on a holistic definition of industrial sensors on a systems integration level (Berger
et al., 2016).Sensors are just one of many different additional components a manufacturing

Figure 7. Innovation stage difference between academic and industrial experts (average scores).

522 S. MICHELER ET AL.



system is usually equipped with. Additional tool components such as, for example, welding
tools or fastening tools exist, which must be controlled using different controllers and data
exchange protocols. Therefore, a need for increased harmonisation topics is pointed out, for
example, an extension of standard communication protocols and hardware interfaces or
technologies such as distributed network controls. Comparing the high-level questions of
the survey and the workshop results with regards to harmonisation topics, the responses
seem to be consistent to a certain degree.

It is clear that the challenges and barriers as perceived by experts related to smart
technology and systems are centred around i) the perceived risk of novel technologies, ii)
the complexity of integration, and iii) the consideration of human and organisational factors.

6. Conclusions

This paper has presented and analysed the responses from a survey of 63 experts working
around smart components and systems across Europe. The responses were collected via
a survey and triangulated by a workshop, which was attended by 17 experts.

In the current market, European companies compete less in quantity/price but rather
in the quality of their products. Maintaining a high standard of manufacturing equip-
ment is therefore crucial. However, despite significant research effort over years regard-
ing smart technology in Europe, some findings raise the awareness that in a global
competition a number of identified issues have to be overcome to maintain technology
leadership positions.

In summary, the analysis of expert opinions indicates that the maturity of smart
technologies is significantly more advanced compared with their integration to form
smart systems. The results suggest that the complexity and capability of smart systems
are increasing, which corresponds well with indicators from recent publications. While
some smart systems challenges are currently being investigated (for example, compat-
ibility issues are being addressed via technology platforms and technology strategies),
other challenges remain largely unsolved (for example, smart technology implementa-
tion support and harmonisation). For the implementation of smart systems, the
research findings clearly indicate that a systems’ complexity is a main driver for the
difficulty to integrate smart technologies. At the early stage of those decisions, ROI
calculations and estimations might not be feasible as there is a lack of cost information
for new technologies. Companies report problems with a clear identification of
benefits and costs due to the novelty of smart technologies. Therefore, new ways to
introduce sophisticated risk and cost management for high-technology companies
must be examined. In combination with the also occurring problems of standardisa-
tion, main barriers for smart technologies are created opposing the creation of
a strategic advantage. If a company introduces technology without underlying stan-
dards, for example in terms of communication protocols or control, sooner or later
a mix of smart technologies leads to a higher effort integrating the technologies into
smart systems.

Further underpinning challenges appear to be an lack of reliable means to establish
emerging specific smart technology readiness, capabilities and their benefits as well as
a lack of systematic knowledge transfer instruments from academia towards the
industry. Perhaps expectedly, the impression suggests main challenges is in progressing
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technologies from their earliest stage of technology introduction (i.e. overcoming the
valley of death). The respondents highlight a lack of sufficient funding instruments for
early technology development. Despite research efforts towards smart technologies and
systems, the experts indicate that it is difficult to introduce this technology into
industry due to a lack of financial support and sufficient knowledge exchange. The
answers also prove it difficult to quantify the benefits and costs of specific technologies,
and that there is a lack of decision support to support both the early assessment and
introduction of smart technology in manufacturing businesses from a more managerial
perspective.

Based on the finding from the expert feedback, three key recommendations can be
concluded on how the wider and faster uptake and implementation of smart technologies
can be supported in the future: (1) need to improve knowledge transfer from academia to
industry; (2) the decision makers within the industry require a more sophisticated
decision support framework of whether to introduce newly available smart technology
in their manufacturing businesses or not; and (3) an instant improvement could be
achieved via funding mechanisms to increase the amount of harmonisation and integra-
tion topics in a manufacturing area. Addressing these three challenges might strengthen
the confidence in smart technologies, help decision makers to understand related risks,
and support sustainable innovation. In the longer term, there is a high degree of
confidence that smart technologies of systems will increase the overall competitiveness
of companies. Dramatically reducing their reaction time to changing environmental
market conditions, companies become more efficient through increased awareness and
more productive through increased automation of repetitive decision tasks and ensures
manufacturing on a globally competitive level.

Note

1. http://www.cofactor-eu-project.org/.
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