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Abstract
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by Mohammed Alharthi

We discuss the phase space structure for the collinear hydrogen exchange system crosses

an energy barrier. Above the reaction threshold, the system must pass through a Sym-

metric Stretch Periodic Orbit (SSPO) where the dynamics are structuring a Dividing

Surface (DS), that separates reactants and products. At low energy, the SSPO can serve

as a dividing surface that satisfies the no-recrossing assumption of Transition State The-

ory (TST). As the energy increases, saddle-node bifurcations occur on both sides of the

SSPO. Above the bifurcation energy, trajectories appear that recross the central DS.

The region of recrossing trajectories is bounded by the stable manifolds of the addi-

tional Unstable Periodic Orbits (UPOs). We investigate the fractal structure of the

TST violating islands of the DS and how it is determined by the invariant manifolds of

the additional periodic orbits. We demonstrate that the various layers are all bounded

by the same stable manifold.

The second part is devoted to the study of the phase space structure in a region where

the stable manifold initiated. It appears that some of the ensemble trajectories do not

cross the DS. We demonstrate the area of those trajectories validating the boundary of

various layers from those trajectories that do not. Following this, we make use of the

symmetry and demonstrate that these various layers appeared on all versions of the DS

and are bounded by the symmetric invariant manifolds belonging to the UPOs, which

existed on both sides of the SSPO. Finally, we demonstrate those invariant manifolds

intersecting each other, before intersecting the DS, which leads to more complicated

behaviour.
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Chapter 1

Introduction

Shrink to the size of a hydrogen atom and journey with us to the core of the hydrogen

molecule exchange reaction. Using mathematical models and physical meaning, you can

travel where no one predicts before. Explore how the exchange happens in a Hamiltonian

system where the trajectories move inside tubes and the energy used to turn one atom

of the molecule by another one with similar structure and mass weight—producing new

molecule, but it is the only hydrogen.

The hydrogen exchange reaction leads us to study the phase-space structure behind

the exchange dynamics in a system inherited vibration. In this work, we investigate

the fractal structure of the dynamics, forming a phase space object in terms of trans-

formation between two distinct regions in phase space. As you might know with the

massless weight of the hydrogen a little goes unwell as higher energy needed to break

the existing bond and a new one is born. Despite the fact, the hydrogen is a quantum

atom, quantum effects (see, e.g. [1]and [2]) such as tunnelling and threshold behaviour

are put aside from classical points of view. Tunnelling along the reaction coordinates

makes the quantum reaction more complicated even in 1 dof system [3]. The classical

TST provides the conceptional idea of separability, which is the basis of all attempts to

produce the TST quantum version [4]. The realisation of classical TST also has conse-

quences in quantum progress which should reduce the problem to the classical limitation

in order to have all classical computational benefits. We study here a classical particle

1
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crossing an energetic barrier with enough energy above the reaction threshold. Again

if one widens the threshold barrier or increase the height beyond the barrier energy,

it will have no consequence in the classical sense because it is less likely for a particle

with just right enough energy to make a reaction. Moreover, if one tries to substitute a

hydrogen atom by a heavier atom such as deuteration [5, 6], the structure of the system

will then dramatically change to an asymmetric system that is not the key focus of this

research. Something is also to think about when a hydrogen atom perhaps meets with

the hydrogen molecule on a top of a potential energy barrier.

The hydrogen exchange reaction requires some knowledge on the potential energy sur-

face corresponding to the interaction of the hydrogen atoms. This surface has been

investigated and developed for both classical and quantum mechanics. In the past,

the rate’s calculation is based on the absolute rate theory[7], where the surface highly

needed in the neighbourhood of the activated complex in configuration space. A priori

treatment[8]–[9] provided limited detail for the Boys and Shavitt [10] configurations of

the hydrogen reaction in order to obtain a semi-empirical expression for the PES, which

was not accurate for application. The best approach is based on the London equa-

tion [11] and used by Eyring Polanyi and others for estimating the reaction rate. The

Eyring potential surface appeared to neither adequate enough nor agreed with all prior

approaches. Although, a vital modification proposed by Sato [12], The Eyring –Sato

potential is less accurate for nonlinear configurations as the central atom is neglected.

The refinement of the Eyring–Polanyi approach and Sato potential energy results in

the Porter–Karplus surface [13], which developed classically for especially symmetric

configuration of the hydrogen.

However, another analytical column approach developed from Truhlar and Horowitz

approach [14] in order to yield an accurate analytic formulation which was carried out

by Liu and Siegbahn [15]. On similar ab initio method, the Varanadas potential [16]

provided a less accurate rate for the hydrogen reaction. These surfaces were fitted

depending on the number of energies values conformation which have been used by

many research group( see, e.g. [17],[18])for both quantum and quasi-classical trajectory

calculations. New modification needed to extend the earlier results to more higher
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energies. Recent development and progress made to obtain the Boothroyd, Keogh,

Martin, and Peterson (BKMP) potential surface [19] which is in agreement with the

classical Porter–Karplus potential in terms of critical point’s position and energy value

in the collinear case. Recently, Iñarrea et al [20] used both surfaces in the bifurcation

of dividing surfaces study and found that their bifurcation diagrams differ.

The Transition State Theory (TST) [1, 21–26] provides an insightful guide to study the

dynamics of the chemical reaction by providing a fundamental picture of reactants and

products regions that are kept apart by a barrier. For that, the TST assumes to locate a

Dividing Surface (DS) in the neighbourhood of the barrier that could be a saddle point.

The system must pass the DS through a bottleneck which can be unstable periodic orbit

in a particular case. The existence of the unstable periodic orbit in the region around the

saddle point can be used to connect two chemical regions in configuration space where

the reaction occurs, and the rate is determined. Because crossing the saddle point is the

slowest step in the reaction process and for this reason, one can define the reaction rate

as the number of systems that cross the DS in unite time proportional to the population

of the reactant region. TST proves that surface can give an exact rate if it is recrossing

free, which means one reaction per time. As a result, the reaction rate is proportional

to the total flux of reactive trajectories on the DS. Something also is to think about,

what consequences to the rate if the DS is recrossed?

In the 1970s, the TST reached the peak of its revolution in practice, when the collinear

hydrogen exchange reaction and its evolution adopted ideas of the TST to calculate the

rate. Such developments perform vital tools including the Poincare Surface of Section

(PSS) which can be seen, for example, in [27, 28]. Due to the simplicity, the TST

provides an accurate reaction rate for the collinear case, up to specific energy. Beyond

that energy, when higher energy is applied, it becomes inaccurate rather quickly.

In 1973, Pechukas et al [29] found a simple standard for the collinear rate to be exact,

in terms of the TST, for a range of energies. It was observed that almost all trajecto-

ries crossed a DS only once, up to a particular energy value, where some trajectories,

associated near the potential barrier, recross the DS. This region is where all the atoms

collide into a complex, and the only possible explanation of the TST failure is called a
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“collision complex ”. The existence of the collision complex was not clearly explained,

including its cause and connection to the reaction rate. It was not until 1978, Pollak

and Pechukas found that the unstable periodic orbit vibrated between two equipotential

and thus explained how the collision complex came into existence. The projection of the

unstable periodic orbit determines the optimal Periodic Orbit Dividing Surface (PODS)

which solved the problem of recrossing in phase space as shown by Pechukas, Pollak

and McLafferty [30]. The new finding regarding the unstable periodic orbits is used to

construct the DS through which the flux passes the transition state (TS).

In contrast, the TST is based on a single TS, through which the rate is proportional to

the flux. However, when studying the hydrogen exchange reaction, multiple (unstable)

periodic orbits were considered by Pechukas et al [31] in 1978. By using this, a new

strategy was formed for a better transition state in connection with the best accuracy

rate calculated, called the Variational Transition State Theory (VTST) [32] such that

the transition state would not necessarily have to be at the saddle point. The new

VTST approach shows a more accurate rate and can be applied to higher energy values.

However, if there were more than one PODS, Pechukas et al [33] - [30] declared that

TST would break down. Therefore, the reaction rate will be proportional to that PODS

minimises the flux.

Unfortunately, All PODS can be recrossed at a range of higher energy values during the

reaction and also nonreactive trajectories start to appear in the DS, which overestimates

the reaction rate. In this work, we focus on the initial conditions structuring the DS

and address such a change in phase space structure would lead to a change in the DS

and pay attention to the dynamical effect due to recrossing in a system with two degrees

of freedom (dof). This system inherits a simple configuration such that their hydrogen

atoms are confined to move on a line. As you may know, if the dynamics transit from

regular to chaotic, the system will be subject to chaotic behaviour leading to a proper

challenge. Because propagating trajectories with slightest small deviation may yield to

a qualitatively different evolution, such information has raised many questions regarding

transport that have remained active. Does computing processing meet an advance theory

that has been already developed for studying even more chaotic systems?
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Since then, the original idea of the PODS was well explained in configuration space and

soon recognised that a proper DS must be defined in phase space. Using an advanced

dynamical theory, concerning the role of invariant manifolds of the PODS, Davis [34]

showed how to partition the phase space. Only later on the 1990s, the PODS is re-

placed by a Normally hyperbolic invariant manifold (NHIM) which represent a higher–

dimensional saddles associated with separatrices. Wiggins [35] has shown how to con-

struct the NHIM in phase space in the 1990s. This follows by normal form theory that

helps to obtain such a DS in the early 2000s [36]. However, even after these advances

in the theory, the optimal DS can be found in practice in a lower dimension than the

three-dimensional phase space. Therefore, the TST has to wait for further development

in multidimensional dynamical theory. In the past, neither the computer power was ad-

equate to meet theoretical understanding in order to explore the phase space structure

beyond two degrees of freedom [37].

For two degrees of freedom, the Symmetric Stretch Periodic Orbit (SSPO) living in the

vicinity of the saddle point is the best-suited candidate for the DS. Allahem et al [38]

have recently studied if the SSPO preserves its normally hyperbolic property, which

means the contraction and expansion rate transversed to it will persist under small

perturbations. They called it the central sphere due to the breakdown of the normal

hyperbolicity. They also stated that among several periodic orbits within region of the

saddle point, the SSPO is the only periodic orbit violate the normal form hyperbol-

icity conditions. These conditions have two main implications: first, the dynamical

structure of the periodic orbit will persist under perturbations, such as energy values

change. Secondly, the periodic orbit is attached to the stable and unstable invariant

manifolds. These manifolds distinguish between reactive and nonreactive trajectories in

phase space where trajectories are invariant in a sense no trajectory cross other ones.

They also channel the flux from the reactant through the DS and on into the product

side. Nevertheless, the symmetric stretch periodic orbit undergoes a sequence of bifurca-

tions in which loses and regains its stability. This kind of information allows a detailed

description to the reaction dynamic that goes well beyond reaction rate calculations

[39]–[40].



Chapter 1. Introduction 6

This study is an extension to recent work which provides pathways and insightful guide

to the current research. With the help of the previous study, we can figure out the

bifurcation where the system admits several periodic orbits. Of which we are looking for

the unstable periodic orbit held stationary flux and change the structure significantly

in phase space. There are few periodic orbits in the collinear reaction at higher energy

as found by Iñarrea et al [20]. These additional stable and unstable periodic orbits

occur symmetrically at the first bifurcation where the SSPO is dominant. Recently,

Allahem [41] hypothesised that nonreactive trajectories are separated from reactive tra-

jectories by invariant manifolds associated with the collinear unstable periodic orbit

(UPO).

In this thesis, we use the collinear H + H2 reaction as an example to confirm that the

UPO can change the standard transition structure. This periodic orbit shall have an

impact to destroy the TST rate calculation at a specific energy E above the bifurcation

energy. The emergence of nonreactive islands on the central PODS coincides with the

stable and unstable manifolds of the UPO intersect each other in the product side. Our

main goal is to determine these manifolds and explain in more detail their qualitatively

influence to the dynamics which are known to be chaotic at higher energy.

Knowledge of the previous works helps us to determine the manifolds mostly responsible

for the breakdown transition structure and to make use for comparison. We know

that the transition is simple in a small range of energies above the threshold for the

collinear reaction. As energy increases, nonreactive islands of the DS start to appear as

a sign to the complexity of the Hamiltonian dynamics. The TST rate for the collinear

hydrogen was calculated by Pechukas and McLaffery[21, 29] and then improved by Miller

et al [2, 42] who calculated the reaction rate for the collinear hydrogen and found that

the TST is exact up to higher energy. Most recently, Iñarrea [20] used the Porter-

Karplus potential energy [13] to find the TST fails at about 0.2 above the barrier. The

potential energy function is mainly calculated several times (e.g. [19]) and used for the

purpose of this thesis. Beyond that, Iñarrea et al [20] have studied the bifurcations of

the PODS, and the NHIM were discussed in [43, 44] for the collinear and full dynamics

as well. Allahem and Bartsch [38] found that the breakdown of the NHIM is not the
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reason for TST failure. Moreover, they state that the additional collinear periodic orbit

emerged from the bifurcation of the symmetric stretch periodic orbit causes complexity

in phase space.

The purpose of this thesis is divided into two main parts: we first confirm the previous

result demonstrated by Allahem [41]. He proves that the stable manifold of the UPO

bound the main nonreactive layer on the DS. He claimed that the stable manifold of the

UPO intersects the DS at the boundary of the first nonreactive islands at a specific high

energy value just above the bifurcation. Hereafter, we study his finding via an invariant

property that is the basis of any dynamical study. We also describe qualitatively how

the UPO with its separatrix branches cause these nonreactive droplets to open up in

the DS. In addition to that, we make use of the symmetry properties inherited in the

system to find that manifold related to the mirror image of the UPO in terms of the

boundary of nonreactive islands on the DS. In the second part, we study the chaotic

scattering near the UPO to determine the area associated with all the boundaries related

to those nonreactive layers on the DS. Our main aim is to find how these regions transit

to chaos in a system known to be regular at low energy. Our approach demonstrates the

stable and unstable manifolds of the UPO mainly to show their heteroclinic intersections

which cause the transition structure in the central PODS. These manifolds intersect the

DS from the product side where only the stable manifold bounds the nonreactive layers

projected in the forward hemisphere. Such chaotic behaviour is now understood when

the system undergoes homoclinic tangent bifurcation.

The contents of this thesis start with background material regarding the formation of

the TST explained in Chapter 2. There, we give a brief overview of the Hamiltonian

system and the TST reaction rate, which is not computed herein. We also describe how

the transition structure layout in phase space that is primarily centred in configuration

space. This includes some necessary information on how to construct the DS where

a periodic orbit gives a minimum flux through cylindrical manifolds existed in phase

space. We study the stability of periodic orbit that shall cause the breakdown of the DS

configuration. In chapter 3, the hydrogen exchange reaction is used as a practical model

to describe the Hamiltonian collinear system within the vicinity of the saddle point.
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We focus on the collinear case by giving extra details, including previous knowledge

that show gaps in the literature and motivate us to explain the breakdown in transition

structure at high energy. Armed with the most previous finding, we study the boundaries

of several nonreactive droplets appeared on the DS coincide with the emergence of

additional PODSs. This is done in Chapter 4 by evaluating an ode solver used along

with this research in order to meet our primary goals and purpose. This ode solver

is stored on Matlab and tested among others based on an invariant property which

is the cornerstone of any dynamical study. We build on the previous findings on both

symmetric sides of the SSPO and make sure the methods used are sufficient. This kind of

study raised some questions corresponding to how the dynamic transit regular behaviour

to chaotic in a system known to be regular at low energy. In Chapter 5, we shed light

to chaotic scattering, recrossing issues and those invariant manifolds connected to the

periodic orbit cause the bifurcation in the transition state structure. This includes the

trajectories behaviour near the stable manifolds of the UPO and the boundary between

those cross the DS and those reflected back is investigated. In addition to recrossing

phenomena is studied on PSS located at the DS for different energy values regime.

Finally, we demonstrate the stable and unstable manifold belong to the UPO in order

to show their heteroclinic intersections.



Chapter 2

Theoretical Background

2.1 Introduction

Transition State Theory (TST) [1, 22–26, 30] appears in many aspects of applications

such as cosmology [45], atomic physics [46, 47], celestial mechanics [48], solid diffusion

jumps [49] and cluster rearrangements[50]. However, TST plays an important role in

the chemical reaction rate theory in particular to determine the rate of the collinear

hydrogen exchange chemical reaction. The rate is calculated based on computing the

total flux of trajectories directed from reactant to product regions. These regions are

assumed to be separated by a surface calling “Dividing Surface”. The Dividing Surface

(DS) is assumed to be a surface of no return (trajectories that have already passed

through from reactant to product regions will not recross it back).

Transition state theory provides a simple approximation to the reaction rate based on

those trajectories passing through the dividing surface. The fundamental assumption for

the TST guarantees the rate to be exact if and only if no trajectory crosses the DS more

than once. However, classical mechanics in nature may yield recrossing effect, which is

a common reason leading to TST failure. Because recrossing violates the fundamental

assumption of TST, the projection of the SSPO solved the problem in configuration

space. Generalising the concept of the symmetric stretch (DS) in phase space taken by

9
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many authors solved the recrossing problem for a range of energies up to the bifurcation

threshold. However, above the first bifurcation energy, nonreactive trajectories invali-

date the TST calculation at higher energies. The new VTST approaches [29] consider

all possible dividing surfaces of which only one surface is preferred with minimum flux.

So the TST would provide an upper bound to the rate.

Above the energy barrier, the optimal dividing surface works like a bottleneck through

which only reactive trajectories can pass during a reaction. Hence, the nonreactive

trajectories do not cross it at all. As the energy increases, the bottleneck becomes wider

and nonreactive trajectories may recross the DS in their way back so one can construct

the DS at the saddle point. The bottleneck characterising the so-called “ Transition

State” or “ activated complex”is not just a point. Thus, what we need is a periodic

orbit serves as the DS.

The notion of Transition State (TS) is the cornerstone of the TST which can be traced

back to stand out in the work of Marcelin [25] and more precise by Eyring–Polanyi

[26] and Wigner [51] in their treatment to calculate the absolute reaction rate of the

collinear hydrogen exchange. Their remarkable work is the culmination of experimental

and theoretical investigations on a potential energy surface so that the TS is supposed

to be at the saddle point barrier. In the configuration space, they defined the TS as

the steepest ascent path from the barrier that connects two separated valleys associated

with reactants and products regions. Their contributions had survived criticism over

recrossing and provide a simple way to formulate the reaction rate. Pechukas et al [21, 52]

found the exact TST up to about 0.1 eV. One year later, Miller et al [53] discussed

whether the DS constructed in configuration space such that the TST becomes valid at

low energy. Their work provided an overview of the reaction rate within the reaction

region for both the collinear and three-dimensional configurations. Their calculations

neglected numerical error of the quantum effect, which led to the shortcoming at the

higher energy. Later developments were made by Evans, Farkas, Pelzer explained for

example in Ref [24, 54].

In phase space, a single periodic orbit serves as a DS with no return at a range of low

energies above the reaction threshold. As the energy increases, the collinear system
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accepts several periodic orbits undergone series of bifurcations led to complicated dy-

namics structuring recrossing dividing surfaces. These DSs lead to the variational TST

approach that investigates all involved periodic orbits and selects one from all possible

Periodic Orbits Dividing Surfaces( PODSs) as the dividing surface with minimum flux.

However, recrossing the PODS with small flux shed light back to reaction rate calcula-

tion and the DS breakdown. Puchukas and Pollak [29, 30, 55] realised that if a periodic

orbit projected into configuration space, it would have stationary flux and would solve

the problem of the VTST in a system with two degrees of freedom. The VTST principle

is remarkable and considerable only in configuration space which differs from the phase

space described in section 2.5. New formation to the VTST in phase space is essential,

and there is a chance to find a periodic orbit with zero derivatives to solve the problem

and extend the work. High computing process is essential, while an advance theory

encourages scientists to address the real dynamical system.

Until the 1970s, theoretical understanding and numerical investigations helped to im-

prove the problem beyond configuration space. Such development combined with vital

tools such as Poincaré surface of section shed light back to the dynamics of a reactive

system. This kind of progress can be seen in the work of Mackay, Perival and Meiss

[27, 28] who were interested in finding a space barrier in survival torus’ neighbourhood.

In the 1980s, the idea of invariant manifolds was used in studying several reactive systems

by Davis et al [34, 56, 57]. From the nonlinear dynamics, such as manifolds, attached

to PODS, divide phase space into different regions. In addition to that, Jaffé and

Tiyapen [58–60] developed this to form unimolecular complexes in order to describe

the structure of invariant fractal in phase space. Even though such new techniques are

applied to the system with two degrees of freedom, it is only concerned for classical

TST when single PODS partitions the phase space. This effort should extend a study

of reactive systems when multiple PODSs.

Recently, the normal form utilised to study the neighbourhood of the TS for the many-

body problem by Komatsuzaki et al [61–64]. The use of Lie transformation helps to

construct the DS for many dynamical systems. Even though, Li et al [43] have studied

the H + H2 reaction with three degrees of freedom using the so-called partial normal
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form, the problem in two degrees of freedom is still an active topic where the change

in the structure of the DS is not understood yet. Moreover, Allahem et al [38] have

computed the centre manifold of the saddle point to understanding the dynamics leading

to recrossing DS for the collinear hydrogen exchange reaction. Their efforts are extended

similarly but far away from the SSPO to figure out a phase space object responsible for

the recrossing problem at a specific (high) energy.

Knowledge of the recent work done by Allahem [41] helps us to test his hypothesis of

the existence of the phase space object that is carefully responsible for the shortcoming

of TST in the four-dimensional system. In comparison, Allahem’s work agreed with

others such as Iñarrea et al [20] who have found the TST breaks down at about 0.2 e.V.

above the potential energy barrier. Their finding that the TST is exact up to equivalent

energy to ours at E ≈ −4.14676 e.V. Whereas, the DS is filled up with reactive island

only down that energy value at which the saddle-node bifurcation takes first place.

It knows that the first nonreactive trajectories begin to occur in the DS at the first

bifurcation of the saddle-node type explained in Chapter 3.5.1. In the collinear case,

stable and unstable periodic orbits are created on both sides of the saddle point [20, 41,

43]. Recently, Allahem has assumed that nonreactive trajectories are separated from

reactive trajectories by invariant manifolds associated with the Unstable Periodic Orbit

(UPO). He was able to consider the stable manifolds of the UPO which intersects the DS

on the boundary of the main nonreactive layer (namely stable intersection due to him).

Nevertheless, to find such an invariant manifold, he used the linear approximation that

is broken far away from the UPO. This leads us to an interesting question to discuss

in the thesis is: What is the boundary between reactive and nonreactive trajectories at

specific high energy?

In what follows, a brief overview is given in section 2.2 about the definition of the

Hamiltonian system and the TST rate formation given in section 2.3. After that, we

give general formations to the phase space where the structure of the dividing surface is

explained as well as the NHIM construction in phase space. These geometrical structures

associated to a class of linear Hamiltonian systems close to a saddle point represented

in section 2.4. We move over to describe the structure of the transition state in phase
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space differed from the configuration space. That will follow by introducing the stability

of periodic orbit in general.

2.2 Hamiltonian Dynamical System

Goldstein [65] and Wiggins [66] provide a good portion of the literature review in Hamil-

tonian vector field. We shall give a brief definition to the Hamiltonian system that

describes such dynamical behaviour of the flow.

Let H(q, p) be a smooth real valued function of generalised coordinates qi’s and their

conjugate momenta pi’s. The Hamiltonian system is of the form

q̇i =
∂H

∂pi
ṗi = −∂H

∂qi
, (2.1)

for i = 1, 2, ....., n where q̇i and ṗi represent the equations of motion and H is the

Hamiltonian function. In fact, these equation are derived from the second Newton’s

Law in which the forces are potential function (F = −∇V ). This can be rewritten in

the Vector Space notation as

ẋ = J · ∇H, (2.2)

where

J =

 0n In

−In 0n

 ,
is the 2n Poisson matrix and

∇H =
(∂H
∂qi

, . . . ,
∂H

∂qn
,
∂H

∂pi
, . . .

∂H

∂pn

)
.

In many mechanical system H represents the total energy of the system and

H(q, p) = T (q, p) + V (q),

where T represents the kinetic energy and V (q) is the potential energy. Note that, if the

Hamiltonian H does not depend on time t explicitly, then the total energy is constant.
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By (2.1),

d

dt
H(q(t), p(t)) =

∂H

∂q

dq

dt
+
∂H

∂p

dp

dt
= 0,

Hence H(q(t), p(t)) = H(q(0), p(0)) = E which is called the conservation of energy.

However, if the Hamiltonian H(q, p, t) depend on time t, then the total energy is not

conserved.

Hamiltonian principle

A particle in phase space takes the true path (q(t), p(t)), t ∈ [t0, t1] which is a solution

to the Hamilton’s equations (2.1), if and only if it is an extremum of the functional:

δ

∫ t1

t0

n∑
i=1

pidqi −H(q(t), p(t))dt,

where the integrant is vanish only when the initial and final points of the boundary

conditions is fixed such that

(
δq(t0), δp(t0)

)
=
(
δq(t1), δp(t1)

)
.

2.2.1 Symplectic transformation

A symplectic (canonical) transformation transfers the old Hamiltonian H(q, p, t) to a

new Hamiltonian K(Q,P, t) by changing the old conjugate coordinates q and momenta

p to a new conjugate coordinates Q and new momenta P in phase space which satisfy

Hamilton’s equations of motion (2.1) .

However, if the system does not depend explicitly on time t, then the old Hamiltonian

is going to be the same as the new one because any region evolved in time preserves its

area.
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2.2.2 Symplectic Forms

A symplectic vector space is parallel to the vector space which is tangent to the path in

phase space. This space is equipped with a symplectic form that can be defined by the

standard inner product 〈·, ·〉 on the phase space R2n as follows

Ω(u, v) ≡ 〈u, Jv〉, u, v ∈ R2n. (2.3)

The Hamilton’s equations of motion can be derived from the symplectic structure Ω(·, ·)
using the following formula

Ω(XH(x), v) = 〈DH(x), v〉, x = (q, p) ∈ R2n , v ∈ R2n. (2.4)

Assume X = (q̇, ṗ) be an arbitrary vector field on the R2n phase space and DH =

(∂H∂q ,
∂H
∂p ). Therefore, the equation (2.4) becomes

Ω((q̇, ṗ), v) = 〈
(
∂H

∂q
,
∂H

∂p

)
, v〉.

Thus, using the inner products

L.H.S = 〈(q̇, ṗ), Jv〉 = 〈−J(q̇, ṗ), v〉 = 〈
(
∂H

∂q
,
∂H

∂p

)
, v〉, because JT = −J,

〈(−ṗ, q̇), v〉 = 〈
(
∂H

∂q
,
∂H

∂p

)
, v〉.

For fixed v ∈ R2n,

〈(−ṗ, q̇)−
(
∂H

∂q
,
∂H

∂p

)
, v〉 = 0.

Hence,

(−ṗ, q̇) =

(
∂H

∂q
,
∂H

∂p

)
,

which gives the Hamilton’s equations in ( 2.1).
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2.2.3 Eigenvalues of Symplectic Matrices

Assume the symplectic (canonical) transformation transformed the old Hamiltonian to

the new Hamiltonian (say g) as

g : (q, p) 7→ (Q(q, p), P (q, p)).

The Jacobian of g can be written as

A =

∂Q
∂q

∂Q
∂p

∂P
∂q

∂P
∂p

 , (2.5)

which is a 2n× 2n matrix (A). Let multiply this with the matrix ( 2.2) to get

ATJA = J, (JA)T = JA and A−1 = J−1ATJ,

which is the condition of the so-called symplectic matrix. Also, the Poisson matrix J

satisfies

J−1 = JT = −J and J2 = −I2n.

The eigenvalues of the symplectic matrix (A) can be found by solving the roots of the

characteristic polynomial

poly(λ) = det(A− λI2n),

The following proposition determines how the eigenvalues of the symplectic matrices will

look like

Proposition 2.1. Wiggins [66] Let A to be a symplectic matrix and λ ∈ C be an

eigenvalue of A. Then λ−1, λ̄ and λ̄−1 are also eigenvalues of A. If λ is an eigenvalue

of multiplicity k, then λ−1 is an eigenvalue of multiplicity k too. Also, the multiplicities

of the eigenvalues +1 and −1, if they occur, are even.

If the symplectic matrix A has real entries, then the eigenvalues of A will have the

following properties: if λ is a real eigenvalue then the inverse eigenvalue λ−1 is also real.
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Moreover, if λ is a complex eigenvalue, then the conjugate λ̄ is also a complex eigenvalue.

Therefore, if λ = 1 or λ = −1, then they must be repeated eigenvalues.

Note that the Poisson matrix represented the Hamiltonian system fixes one eigenvalue

to 1, and thus, the other eigenvalue is given by the symplectic condition to be equal to

one. Therefore, the remaining 2n − 2 eigenvalues need to calculate in order to see the

type of stability of n degrees of freedom Hamiltonian system.

2.3 Transition State Theory Rate

Transition state theory (TST) provides a good approximation to the rate of a chemical

reaction. The more reactive trajectories leave the transition state through the dividing

surface to the product side than those recross it leads to a more accurate rate. Because

the reaction rate can be overestimated if some trajectories return back to the reactant

side and encountered as reactive trajectories. This problem can be solved by choos-

ing a dividing surface of minimum flux with respect to the transition state’s location.

Therefore, the TST will provide an upper bound to the reaction rate because the TST

includes reactive events to the flux integral and exclude those trajectories with a nega-

tive contribution. The following integral gives the flux through the dividing surface for

computing the exact rate in phase space

Kexact =

∫
ds(p/m)δ(E −H(q, p))χa(q, p), (2.6)

where the characteristic function of the reactive trajectory is given by

χa =

 1 reactive trajectory

0 otherwise

and δ(E − H(q, p)) is the density function of phase point such that E is fixed energy.

H(q, p) is assumed to be the total energy of the system. p/m is the velocity motion of

the trajectories. In fact, following all trajectories in order to compute the exact rate is

a difficult task compared with the TST rate. For the TST rate, it is easy to distinguish
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whether the trajectory is reactive or not by looking at the sign of the momentum in

the initial condition. This idea gives an approximation to the rate by the characteristic

function

χb =

 1 p > 0

0 otherwise

and as a result, the flux integral in (2.6) can be written as

KTST =

∫
ds(p/m)δ(E −H(q, p))χb(q, p). (2.7)

So, if χb = χa, then the TST rate is exact and the determined dividing surface is

recrossing–free [29].

The choice of a dividing surface plays an important role in estimating the TST rate,

which is strictly based on the recrossing–free assumption. If a dividing surface has been

chosen, for example, in the reactant side, then most trajectories would have enough

energy to recross the surface as soon as they are reflected by the barrier, then many

recrossing would be noted. Also, the direction of a reaction can affect the approximated

rate if a dividing surface was located in the intersection area; some reactive trajectories

cross the dividing surface from the opposite side. As a result, these recrossing should

be denoted with a different sign in the flux integral [36]. In fact, many recrossing will

be noted in most dividing surfaces which lead to a loss in the accuracy of the reaction

rate. This problem is explained in Chapter 5.9.

2.4 Phase Space Geometrical Structure close to

the saddle point

In this section, the theory of phase space enables us to develop the structure of n dof

linear Hamiltonian system that is appropriate for reaction dynamics’ study [36]. We will

show some phase space objects in order to describe the transition dynamics, including the

energy surface, the normally Invariant Manifold (NHIM) which is a higher-dimensional

object of a saddle [35] (the symmetric stretch associated with its stable and unstable
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manifolds in collinear system) and the dividing surface that can be constructed by using

the symmetric stretch periodic orbit contains the saddle point [21].

The problem we may face regarding the dividing surface in phase space is that dividing

surface is defined originally in configuration space and proper treatment has to be ex-

tended to phase space. The recrossing free DS in phase space is not projected to that

analogue DS in the configuration space. Investigation for understanding the structure

of the phase space is based on the definition of the TST in the configuration space.

Recently, Uzer at al [36] and Komatsuzaki et al [62] have shown that the dividing

surface can be constructed in phase space for both non/linear Hamiltonian systems in

multi-degrees of freedom. A normally hyperbolic invariant manifold (NHIM) replaces

the periodic orbit dividing surface (PODS) in a system of many degrees of freedom.

Most the essential formation is regarding the NHIM, its stable and unstable manifolds

because the DS can be constructed with recrossing free trajectories in the area close to

the NHIM. This area can be determined by the symmetric stretch periodic orbit in two

dof.

2.4.1 The Hamiltonian with n degrees of freedom

Now we will present the structure of n dof for linear Hamiltonian system near centre ×
centre ×...× saddle of rank one [36]. Not only is useful when we are concerned with the

behaviour of the linear dynamic state near a stationary point, but also for the further

study of the nonlinear system. Consider the following Hamiltonian of the quadratic form

H =
1

2

( n∑
j=1

p2j +

n−1∑
j=1

ω2
j q

2
j − λ2q2n

)
, (2.8)

where (qj , pj) ∈ R2n and the Hamiltonian system is given by

q̇j = ∂H
∂pj

= pj , ṗj = −∂H
∂qj

= −ω2
j qj

where j = 1, ..., n− 1

q̇n = ∂H
∂pn

= pn, ṗn = − ∂H
∂qn

= λ2qn.

(2.9)
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Figure 2.1: Phase portrait for the uncoupled systems. Adapted from that
taken from [36]

This system contains of n−1 uncoupled linear oscillators, with the remaining dof repre-

senting a parabolic barrier. Thus (qn, pn) are referred to the reaction coordinates while

the remaining coordinates showing the bath coordinates.

The phase portrait of n uncoupled systems are shown in Figure 2.1. It can be seen those

trajectories go from qn > 0 to qn < 0 ( or vice versa) are undergo reaction. This figure

shows that there are two types of reactive trajectories (En > 0). Those trajectories

with pn > 0 are called forward reactive trajectories which cross the DS in their future

evolution. The second type is the backward reactive trajectories with pn < 0 which do

cross the DS in their past evolution. Note that nonreactive trajectories (En < 0) do not

have enough energy to cross the DS as shown in Figure 2.1.

In phase space , the stability matrix evaluate the eigenvalues at the stationary point of

the flow is different from that used in the configuration space due to momenta. These

eigenvalues can be evaluated by the matrix at the stationary point as follow:

∂q̇
∂q

∂q̇
∂p

∂q̇
∂p

∂q̇
∂p

 =

 ∂2H
∂q∂p

∂2H
∂2p

−∂2H
∂2q

− ∂2H
∂q∂p

 . (2.10)

There are n pairs of eigenvalues which are either complex numbers with their conjugates

or real numbers with their inverses. The complex eigenvalues respond to a stable degree

of freedom while the real eigenvalues represent unstable degrees of freedom [54]. Readers

are referred to [67] for more details regarding when the eigenvalues are equal to zero,

which is a rare case.
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The Hamiltonian system of n−1 uncoupled equations has a stationary point at pj = qj =

0 at the zero energy. The linearisation around the saddle point gives the eigenvalues ±λ
to describe the hyperbolic direction and the complex eigenvalues ±i ωj which describe

the elliptic directions of the saddle point.

2.4.2 The energy surface

At fixed energy h > 0 above the reaction threshold, the dynamic occurs on (2n − 1)

dimensional energy surface defined by

1

2

n∑
j=1

p2j +
1

2

n−1∑
j=1

ω2
j q

2
j −

λ2

2
q2n = constant = h > 0. (2.11)

One can split the energy to describe each degrees of freedom seperately as follows

Assume that h > 0, ωj > 0 for j = 1, . . . , n− 1 and λ > 0.

1

2
(p2j + ω2

j q
2
j ) = Ej for j = 1, . . . , n− 1,

1

2
(p2n − λ2q2n) = En, (2.12)

where E1 + E2 + · · ·+ En = h.

For fixed qn, the geometry of energy surface can be seen through the section as a (2n−2)

sphere with radius
√

λ2

2 q
2
n + h if we rewrite the (2.11) as follows

1

2

n∑
j=1

p2j +
1

2

n−1∑
j=1

ω2
j q

2
j =

λ2

2
q2n + h. (2.13)

Thus, we can see the energy surface as a hyper-cylinder S2n−2 × R.
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2.4.3 The NHIM

Note that if we set pn = qn = 0 in (2.9), then ṗn = q̇n = 0. As a result, pn = qn = 0

is an invariant manifold, namely the centre manifold of the saddle point ( i.e. If you

start in you stay in for all time). This invariant manifold is of (2n− 2) dimension which

intersects with the energy surface such that for a fixed energy h > 0

1

2

n−1∑
j=1

p2j +
1

2

n−1∑
j=1

ω2
j q

2
j = h;

pn = qn = 0. (2.14)

is a (2n−3) dimensional sphere
(
S2n−3
h

)
. This is an example for the NHIM that forms the

bottleneck in phase space (called later the central sphere). The NHIM is a hypersphere

which means the dynamical expansion and contraction rate transverse to the sphere are

larger in directions than those tangent to it. This is clear since the dynamics to the sphere

are normal similar to that described in the qn − pn portrait correspond to the saddle

and thus the NHIM ((2n− 3) sphere) has stable and unstable manifolds attached to it.

These manifolds are of (2n− 2) dimension and denoted by W s(S2n−3
h ) and W u(S2n−3

h ),

respectively. Since these manifolds are of one less dimension than the energy surface,

they are separaticies by which reactive and nonreactive trajectories divided in phase

space. These manifolds are known to separate reactive from nonreactive trajectories

in phase space. The stable and unstable manifolds guide the system from the reactant

configuration towards the DS and into the product region.

The un/stable manifolds are given by

W u(S2n−3
h ) = {(q1, ..., qn, p1, ..., pn) | 1

2

n−1∑
j=1

p2j +
1

2

n−1∑
j=1

ω2
j q

2
j = h, pn = λqn}, (2.15)

W s(S2n−3
h ) = {(q1, ..., qn, p1, ..., pn) | 1

2

n−1∑
j=1

p2j +
1

2

n−1∑
j=1

ω2
j q

2
j = h, pn = −λqn}.

Clearly, the un/stable manifolds of the NHIM have the geometry of spherical cylinders



Chapter 2. Theoretical Background 23

(S2n−3×R) which are referred to as the reaction cylinders. Since they are of one dimen-

sion less than the NHIM, they will acts as boundaries between reactive and nonreactive

trajectories because the unstable and stable manifolds of the NHIM have the same en-

ergy as the two lines pn = λqn and qn = −λpn attached to the saddle. However, if

pn > 0, then un/stable cylinders are referred to the forward reactions. Similarly for

pn < 0 that is related to the backward reactions cylinders. These two kinds of reactions

in the stable and unstable cylinders are defined by the following.

The stable forward cylinder is

W s
f (S2n−3

h ) = {(q1, ..., qn, p1, ..., pn)|1
2

n−1∑
j=1

p2j +
1

2

n−1∑
j=1

ω2
j q

2
j = h, pn = −λqn > 0}.

The stable backward cylinders

W s
b (S2n−3

h ) = {(q1, ..., qn, p1, ..., pn)|1
2

n−1∑
j=1

p2j +
1

2

n−1∑
j=1

ω2
j q

2
j = h, pn = −λqn < 0}.

The unstable forward cylinder

W u
f (S2n−3

h ) = {(q1, ..., qn, p1, ..., pn)|1
2

n−1∑
j=1

p2j +
1

2

n−1∑
j=1

ω2
j q

2
j = h, pn = λqn > 0}.

The unstable backward cylinder

W u
b (S2n−3

h ) = {(q1, ..., qn, p1, ..., pn)|1
2

n−1∑
j=1

p2j +
1

2

n−1∑
j=1

ω2
j q

2
j = h, pn = λqn < 0}.

Note that one can verify easily that the stable and unstable manifolds of the saddle must

have zero energy value (i.e. h = 0) from (2.12). There the origin is a saddle point for

Hamiltonian system (2.9). It has (2n − 2) dimensional centre manifold (pn = qn = 0),

a stable manifold of one dimension that is given by qj = pj = 0, j = 1, ..., n − 1, pn =

−λqn, and unstable manifolds of the same dimension that is given by qj = pj = 0, j =

1, ..., n − 1, pn = λqn. The intersection of the centre manifolds of the origin with the

energy surface defines the NHIM which can be bounded by the symmetric stretch in two

degrees of freedom. Hence, the stable and unstable manifold of the NHIM belong to the
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symmetric stretch periodic orbit used to construct the DS. The centre manifold of the

origin contains a family of the SSPOs for each energy parameter h.

We move now to the construction of a dividing surface (DS).

2.4.4 The dividing surface (DS)

The dividing surface of recrossing–free property can be realised by setting qn = 0. This

dividing surface is of (2n − 2) dimensional sphere and defined by (2.4.3).The NHIM

acts as an equator splitting the DS into two hemispheres pn > 0 and pn < 0. All

trajectories, except those within the NHIM, pass once through the DS, undergo reaction

(reactive). Those trajectories with pn > 0, passing through the sphere are forward

reactive. The backward reactive trajectories are of opposite pn sign to the forward

reactive. All trajectories with pn = 0 within the NHIM will remain in the DS for all

times.

By the language of dimensions, if there exist n degrees of freedom, there will be a 2n

dimensional phase space. By fixing the energy h = constant, the phase space reduced

to (2n − 1) energy surface and (2n − 2) for the centre manifold section. The NHIM

is (2n − 3) dimensional sphere and has an unstable and stable manifold of (2n − 2)

dimensions. However, for two degrees of freedom, the NHIM is an unstable periodic

orbit in phase space. It is a three-dimensional sphere in three degrees of freedom.

In summary, the dividing surface will have several features. Firstly, it is a surface of no

return in a linear Hamiltonian system. All reactive trajectories pass through the dividing

surface once and only once. Secondly, in the (2n − 1) dimensional energy surface, the

forward and backward dividing surfaces have the structure of (2n− 2) dimensional balls

referred to B2n−2
f (h) and B2n−2

b (h), respectively . Finally, it is bounded by an invariant

(2n− 3) dimensional sphere, the (NHIM).

In reaction rate’s language, the flux through the dividing surface in the energy surface

plays a crucial role in finding the reaction rate. This is the cornerstone of reaction

dynamics.
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Now, let’s study the role of unstable spherical cylinders in determining the region of

reactive trajectories.

2.4.5 Cylindrical Manifolds of Phase Space

Uzer et al [36] stated that the un/stable spherical cylinders bound a region in the energy

surface that is divided into two disconnected components by the dividing surface. All

reactive trajectories start inside one connected component cross the dividing surface and

leave the dividing surface into the other connected components.

Rewrite the energy surface equation as

1

2

n−1∑
j=1

(p2j + ω2
j q

2
j ) +

1

2
(pn + λqn)(pn − λqn) = h. (2.16)

The reactive trajectories satisfy

0 <
1

2
p2j +

1

2
ω2
j q

2
j = Ej < h, j = 1, ..., n− 1,

1

2
(pn + λqn)(pn − λqn) = En > 0, (2.17)

such that
n∑
j=1

Ej = h.

So, from the equality (2.17 ) En > 0 if and only if

(pn + λqn) > 0, (pn − λqn) > 0 (i.e. pn > 0, (forward reactive area ) (2.18)

or

(pn + λqn) < 0, (pn − λqn) < 0 (i.e. pn < 0, (backward reactive area) . (2.19)
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Equation (2.18) defines the boundary of the forward reactive area such that

pn = λqn, pn = −λqn, pn > 0,

that is W u
f (S2n−3

h ) and W s
f (S2n−3

h ). Similarly for the boundary of the backward reactive

area given by

pn = λqn, pn = −λqn, pn < 0,

which is W u
b (S2n−3

h ) and W s
b (S2n−3

h ).

So far, we know that all reactive trajectories must pass through the TS (qn = 0) and

also, the forward reactive trajectories lie on the bounded region by W u
f (S2n−3

h ) and

W s
f (S2n−3

h ). Similarly for the backward reactive trajectories with En > 0 that lie on the

region bounded by the backward un/stable cylinders W u
b (S2n−3

h ) and W s
b (S2n−3

h ) that

have been already explained.

Now, we will describe the reactive trajectories already in the reactant and product

regions.

Consider the initial condition of the forward reactive trajectories with pn > 0 and qn < 0,

which referred to as reactant segment. The trajectory has been shown in Figure 2.2 as

a dashed curve and decaying in time until the qn reaches zero, where is the location of

the TS. Then, the trajectory is grown in the time when qn increased to be positive. The

product segment of trajectory is within qn > 0 (shown in Figure 2.2).

For energy (Etot > Esp), the reactive trajectories take place and pass through the divid-

ing surface. These trajectories will never return back at an energy above the threshold

up to Etot∗ . Therefore, a family of cylinders will exist for Esp < Etot < Etot∗ . Similarly,

for motion from products to reactants, a family of cylinders will exist. However, non-

reactive trajectories will stay in either reactants or products side laying on cylindrical

manifolds.
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Figure 2.2: (a) forward reactive in a dashed curves. (b) The reactants seg-
ment of the forward reactive trajectory.(c) The product segment of the forward
reactive trajectory. Adopted from that in [36]
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2.5 Phase and Configuration Space

In this section, we declare why the phase space is highly needed as a generalisation

space to the configuration space with some pros and cons. In chemistry literature, the

transition state (TS) notion brings such confusion in terms of terminology. TS sometimes

refers to the DS and on other times means the periodic orbit which is an invariant set

contained in the DS. This confusion leads us to be more precise about the space where

a trajectory crosses the DS.

In terms of dimensionality, the configuration space, where the potential energy surface

is defined, is n dimensions while the total energy is only defined in 2n dimensional

phase space. The DS is a phase space object which cannot be defined in configuration

space because the unstable periodic orbit (PODS) in phase space is used to construct

the DS and solves (locally) the recrossing problem in configuration space for 2 dof [21].

The intersection is only understood in configuration space where the periodic orbit is

projected as a line segment. In addition to that, the invariant manifolds associated with

the unstable periodic orbit which provide a qualitative description of the dynamics can

only exist in phase space.

PES is the basis for understanding the structure of molecules associated with the dy-

namics well beyond stationary points and barriers. In configuration space, that surface

represents only the position of the system while the minima are called potential wells.

Between these minima, saddle points may exist. So, the molecule has to pass over the

saddle in order to be transformed from one well to another. Therefore, these useful

assumptions can be taken further in two steps. First, the Hamiltonian has to be in the

form of kinetic energy function plus the potential. Secondly, the kinetic energy function

contains only positive definite and quadratic momenta. Thus, the stationary point of

the potential energy surface ( configuration space) coincide with the stationary point of

the total Hamiltonian in phase space. This only makes sense when the momenta are

equal to zero, and the extremum of the potential energy is balanced at this point, e.g.,

in configuration space. These saddle points act as barriers in phase space and are being
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ideal positions for the unstable periodic orbits. Their geometrical structure associated

with the invariant manifolds will partition reactive from nonreactive regions.

The basic idea of VTST is that small flux is much better and we realise that PODSs have

stationary flux (i.e. zero derivative means minimum flux). Pechukas and Pollak [21, 55]

show that if a DS is an unstable periodic orbit projected in configuration space, it will

have zero derivatives. Moreover, finding the stationary state and calculating the linear

stability of such a system is not a difficult task in phase space. In configuration space,

each point represents only the physical position of the system while in phase space, it

represents a unique state.

2.6 Stability of Periodic Orbits

The stability or instability of periodic orbits of a Hamiltonian system describes the

behaviour of the system near a periodic orbit. In particular, the behaviour of a non-

periodic orbit is similar to a nearby stable periodic orbit as they evolve in time, while

the system becomes in general chaotic in the neighbourhood of an unstable periodic

orbit [41].

Consider the Hamiltonian system with N + 1 degrees of freedom written in ( 2.2 )

Now, we assume x(t) is a periodic orbit with period T satisfying

x(t+ T ) = x(t).

Assume the deviation from the periodic orbit is

x̄ = x(t) + ξ(t),

where ξ is infinitesimally small. This is also a solution for the system (2.2) and then

satisfying

ẋ+ ξ̇ = f(x+ ξ),
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where f refers to the right hand side of (2.2). Using the Taylor expansion gives

ẋ+ ξ̇ = f(x) +
∂f

∂x
ξ + ...

Then,

ξ̇ =
∂f

∂x
ξ,

where ∂f
∂x =

∑
k Jik

∂2H
∂xk∂xj

= −(JP )ij ,where P is the Hessian matrix of the Hamilto-

nian (3.5) at the periodic orbit and ξ is the deviation from the periodic orbit in (2N+2)

dimensional phase space.

The linear stability of the periodic orbit with period T > 0 can be determined by solving

the linearised system of the form

ẋ
ξ̇

 =

f(x)

fx ξ

 ;

x(0) = x0

ξ(0) = I

 , (2.20)

where fx = J P. Then integrating this until t = T obtains the monodromy matrix A of

the periodic orbit which satisfies the symplectic condition

ATJA = J. (2.21)

The eigenvalues of the monodromy matrix determine the stability type of the periodic

orbit. These eigenvalues are called multipliers and obtained by finding the roots of the

characteristic polynomial

Poly(λ) = det(A− λI2n). (2.22)

Since the matrix A is symplectic and its coefficients are real, if λ ∈ C is an eigenvalues

of A, then 1
λ and their complex conjugates λ, λ−1 are also eigenvalues for A [66].

Since the Hamiltonian system is conservative, then the symplectic condition will guar-

antee two eigenvalues to be equal to one. Therefore, the remaining 2n − 2 eigenvalues

need to be computed in order to determine the stability type of the periodic orbit.
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Hydrogen Exchange Reaction

3.1 Introduction

Since the 1930s, Transition State Theory (TST) has enhanced dynamical study in chem-

ical reactions and provided a fundamental tool to compute the reaction rate. The bench-

mark reaction for the accuracy of the TST rate is the collinear hydrogen reaction

H2 +H → H +H2.

There are several reasons for this, including the fact that it is frequently referred to as

the most elementary reaction in the literature [68–72] and has three identical atoms, as

well as the symmetry of the molecule. These hydrogen atoms are confined to move on a

line and consist of three electrons and three protons. Due to its reaction simplicity, an

accurate potential energy surface has been already calculated in the Born–Oppenheimer

approximation [73]. The collinear hydrogen system is derived from a spatial system with

three degrees of freedom (dof) involved vibration.

A molecule is originally a complex quantum system. The complexity of molecule struc-

ture has been investigated in the past few decades and open new areas of research in

molecule physics[74]. Several techniques such as pulsed laser[75]–[76], hexapole state

31
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selection [77], brute force methods[78]–[79] and hybrid are proposed to control molecule

alignment and orientation [80]. The femtosecond two colour laser pulse was used to

orient and align the CO molecule in the free–field space. The experiment shows that

the physical mechanism can change the orientation of the molecule due to the rotational

wave function. In 2014, Marcus et al. [81] declared in the parallel and crossed field

configuration that it is possible to control the molecule alignment and orientation on

the ultralong–range Rydberg molecules even in electric and magnetic fields. However,

in the case of hydrogen, the coherence amplification technics to generate alignment and

angular momentum orientation can be achieved by Stark control [82]. However, the

collinear hydrogen atoms in our case are all confined to move on a straight line. Con-

vention has been employed in many previous studies [39, 54] to circumvent the ensuing

rotation, thus simplifying this. The phase space can be reduced to a plane where the

collinear complex has not been affected by rotation around its axis.

We are mainly interested in studying the dynamics in the phase space for the collinear

exchange reaction, known to be symmetric. This simple system, with two degrees of

freedom, is an invariant in the sense that collinear configuration has not singularities in

the phase space. The 2 dof system modelling the chemical reaction is most definitely

the simplest imaginable one in the chemistry literature. Due to its simplicity, Born

and Oppenheimer [73] calculated the potential energy surface, responding to atomics’

position and their interaction potential.

For essential development regarding the potential energy surface, readers interested in

quantum chemistry are referred to the literature in [68–72]. The Porter–Karplus poten-

tial energy function [13] has commonly been used as the standard potential function for

the hydrogen exchange reaction in various dynamical studies and meet the purpose of

this thesis. This function is explained and presented for the collinear configuration in

section 3.2.

The potential energy combined with the kinetic energy is modelling the exchange of

hydrogen reactions that can be expressed by the Hamiltonian function. The latter

is known to govern the motion on the top of the barrier, where the potential energy

approaches zero. In section 3.2, we discuss this configuration in more detail. This is
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followed by the hydrogen exchange system which describes the equations of motion.

After that, we are going to explain how to reduce the 3 dof full system to the collinear

system, which the latter emphasise the case of study in the whole thesis. At the end of

this chapter, known results combined with motivation are written to impress the purpose

of the research.

3.2 Potential Energy Function

In this section, we introduce the potential energy function, which is effectively interacted

with the collinear hydrogen atoms on a two-dimensional surface. We will then study the

dynamics of the compound, responding to that interaction potential on configuration

space.

The Porter–Karplus potential energy function [13] is given by:

V = (1/C1)
[
−C2 − (C2

2 − C1C3)
1/2
]
, (3.1)

where
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Figure 3.1: The potential surface for H +H2 exchange reaction.

C1 = (1− S1S2S3)2 −
1

2

[
(S2

1 − S2
2)2 + (S2

2 − S2
3)2 + (S2

1 − S2
3)2
]
,

C2 = −(Q− J123)(1− S1S2S3)

+
1

2
[(J1 − J2)(S2

1 − S2
2) + (J2 − J3)(S2

2 − S2
3) + (J1 − J3)(S2

1 − S2
3)],

C3 = (Q− J123)2 −
1

2

[
(J1 − J2)2 + (J2 − J3)2 + (J1 − J3)2

]
,

Q = Qd1 +Qd2 +Qd3,

Qdk =
1

2

[
1Ek + 3Ek + S2

k(1Ek − 3Ek)
]
,

Jk =
1

2
(1Ek − 3Ek) + S2

k{
1

2
(1Ek − 3Ek)

+δ[(1 +R−1l ) exp(−2Rl) + (1 +R−1m ) exp(−2Rm)]},

1Ek = D1{exp[−2α(Rk −Re)]− 2 exp[−α(Rk −Re)]},

3Ek = D3{exp[−2β(Rk −Re)] + 2 exp[−β(Rk −Re)]},

Sk = (1 + ζkRk +
1

3
ζ2kR

2
k) exp(−ζkRk),

ζk = 1 + κ exp(−λRk),

J123 = εS1S2S3,
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Table 3.1: Parameters characterising the potential energy function. Taken
from [13]

D1 = 4.7466 e.V. β = 28.2 e.V.
D3 =1.9668 e.V. ε = -17.5 e.V.
Re =1.40083 a.u. κ =0.60
α=1.04435 a.u. λ =0.65
β =1.000122 a.u.

where k, l,m = 1, 2, 3, with m 6= l 6= k. The potential energy expression depends on

three variables, namely R1, R2, R3 to describe distances between three atoms and con-

tains nine parameters that are D1, D3, Re, α, β, λ, κ, δ and ε. These parameters are

outlined in Table 3.1. All energies are above the minimum energy barrier of the system,

which is expressed in electron Volt (e.V.). Physical magnitudes like distances are given

in atomic units (a.u.) as used in some previous work. These unit measurements will be

used throughout this thesis.

The collinear chemical reaction is governed by three hydrogen atoms interacted on the

potential energy surface (PES) presented in Figure 3.1. Two atoms form a molecule

(R1 is small) while one is at a distance and isolated (R2 is large). The isolated one

approaches the molecule, and there exists possibly a reaction of some sort, where the

isolated atom then becomes part of the molecule (R2 close enough). Once the molecule

breaks a bond, one atom is naturally repelled (R2 small and R1 larger), as a result

of the reaction. The potential energy surface will then not depend on R1 in the new

configuration. Similarly to that region where the isolated atom does not react, the

potential describes atomic vibrational motion. These regions can be defined as before

(reactants), and after (product) the reaction has taken place.

The concept of configuration space identifies different chemical regions on the PES to

those represent reactants, and those identify products. These chemical features coincide

with the PES that has two minima and a saddle point marked in Figure 3.1, which exists

between the potential wells. The vicinity of the saddle attracts significant attention

from those interested in transition dynamics, primarily because the saddle point is part
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of the structure of transition, that coincides with the concept of the Transition State

Theory. For instance, the Transition state (TS) is the steepest descent paths along with

the decay in both directions on PES, defined by the eigenvectors associated with the

saddle connecting the two minima, which are combined to identify the so-called reaction

path. The joint structure termed the invariant manifolds, can only be recognised in

phase space. Fortunately, the location of the saddle point at R1 = R2 = 1.70083 a.u.

corresponding to the potential energy value of −4.3504 e.V. This coincides with those

values found recently by Iñarrea et al [20] and earlier. The optimal DS can be allocated in

this region where the reaction occurring coincides with the location of unstable periodic

orbit around the saddle point.

Inarguably, the system must pass over that potential barrier only once per time, per

reaction. During the reaction, those trajectories passing the DS are called reactive,

otherwise nonreactive. The conventional TST identifies those reactive trajectories with

one-time crossing during a reaction. However, the compound is symmetric collinear

at the saddle point, and the PODS is the symmetric stretch periodic orbit that obeys

the fundamental TST assumption for small energy intervals above the threshold, but

suddenly collapses to act as the optimal DS once energy increases. The re-crossing issue

is an apparent reason, in conjunction with the moving process of a trajectory that is

governed by the kinetic energy explained in the next section.

3.3 Kinetic Energy

In this section, kinetic energy exerted from the motion of the hydrogen complex is

explored.

The kinetic function is taken by Allahem [38], from that given by Waalkens et al [39],

as follows:

T =
1

mH

[
p2r +

3

4
p2R

]
, (3.2)

Where mH is the mass of the hydrogen atoms that are connected by Jacobi coordinates,

such that r and R are polar coordinates representing distances (shown in Figure 3.2).
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Figure 3.2: The coordinates for H +H2 exchange reaction.

Under Cartesian transformation, the polar coordinates are transformed to those Carte-

sian coordinate in r, x, y shown in Figure 3.2 and the hydrogen kinetic energy function

becomes in the form (3.2) as follows:

T =
1

mH

[
p2r +

3

4
(p2x

]
, (3.3)

The shape of the complex can be described by three coordinates r, x, y representing

distances between hydrogen atoms, as shown in Figure 3.2. These coordinates can be

transformed (r, x, y) to (r, x,−y) by a rotation around the horizontal axis. This is not of a

subtle matter because not all configurations are similar. To avoid rotation, configuration

with positive y and negative y are considered as different [38]. Restricting to the half-

plane (r, x, y ≥ 0), the configuration space can be bounded by the collinear configuration

with vanishing y at the x–axis where the system is reflected. Unfortunately, the collinear

configuration is symmetric at the saddle point where the optimal DS is reasonably

located. The Hamiltonian may be written as a sum of the kinetic and potential functions

and their equations of motion form a full spatial system with three degrees of freedom

given below.
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3.4 The Exchange Hydrogen Hamiltonian Sys-

tem

The Hamiltonian system is obtained by identifying all configurations that are restricted

to the half plane. These configurations express the full spatial system that can be

explained with the help of Figure 3.2. We can define the three coordinates r, x, and y,

where r describes the distance between H1 and H2, y represents the distance from H3

to the bond H1H2, x is the displacement between the centre of mass of H1 and H2 and

the intersection point with y at H1H2 bond. The triangular shape of the compound

has R1, R2 and R3 representing the distances between the atoms. Here, R1 = r and the

other interatomic distances R2 and R3 are given by

R2 =

√
y2 + (

r

2
+ x)2

R3 =

√
y2 + (

r

2
− x)2. (3.4)

The (r, x, y) coordinates with their conjugate momenta spanned the phase space of

vibrational motion [83, 84]. The Hamiltonian system of the hydrogen reaction is taken

from Allahem et al [38] which is given by

H =
1

mH

[
p2r +

3

4
(p2x + p2y) +

(xpy − ypx)2

r2

]
+ V (r, x, y), (3.5)

where mH represents the hydrogen mass (mH = 1.00794 a.m.u.). The potential energy

surface V (r, x, y) which is calculated by Porter–Karplus [13] and the remaining expres-

sion representing the kinetic energy that is modified by Allahem [38] through Cartesian

transformation to that taken from Waalkens et al [39].

The full system is given by
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ṗr = −∂H
∂r = 1

mH

[
2x
r3

(xpy − ypx)
]
−∑3

j=1
∂V
∂Rj

∂Rj

∂r

ṗx = −∂H
∂x = −1

mH

[
2py
r2

(xpy − ypx)
]
−∑3

j=1
∂V
∂Rj

∂Rj

∂x

ṗy = −∂H
∂y = −1

mH

[
2px
r2

(xpy − ypx)
]
−∑3

j=1
∂V
∂Rj

∂Rj

∂y

ẏ = ∂H
∂py

= 1
mH

[
3py
2 + 2x

r2
(xpy − ypx)

]
ẋ = ∂H

∂px
= 1

mH

[
3px
2 −

2y
r2

(xpy − ypx)
]

ṙ = ∂H
∂pr

= 2pr
mH

.

(3.6)

Because of the difficulties in visualising the geometry structure of the full system behind

the reaction transition, the reaction mechanism is not clear when, for example, the

entire DS is four dimensional section of the five dimensional energy surface. Due to

dimensionality prospective, it is still unknown how to deal with the TS and its invariant

manifolds for the system held six dimensions. The existence of reflection symmetries

led to reduce the full exchange hydrogen reaction to an invariant system with four

dimensions. The reflection : x → −x produces the collinear system under y = 0

assumption, for instance.

The reflection symmetries keep the potential energy function V (r, x, y) invariant which

can be seen clearly with the help of Figure 3.2. These reflection symmetries and their

composition led to extend the study to phase space as their canonical transformation

can be written as

Px : (pr, px, py, r, x, y) 7→ (pr,−px, py, r,−x, y)

Py : (pr, px, py, r, x, y) 7→ (pr, px,−py, r, x,−y)

Px ◦ Py : (pr, px, py, r, x, y) 7→ (pr,−px,−py, r,−x,−y).

(3.7)

These symmetries are inherited in the Hamiltonian 3.5 that represent the collinear in-

variant system, where all versions of configurations to the molecule are unchanged, as a

result of the hydrogen atoms were identical. This collinear system is explained in more

detail below, which forms the basis of my research and a topic of huge interest.
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Moreover, time-reversal invariance symmetry is also held in the Hamiltonian, that is

expressed as potentials plus kinetic. This means keeping the coordinate fixed and chang-

ing the sign of momenta will drive the trajectories back in their reversed time direction.

However, this kind of symmetry does not apply to any Hamiltonian. However, +x and

−x are related by the reflection symmetry in the collinear configuration. Time reversal

invariant symmetry plays a subtle role in directional flow proceeds from one side to the

other. Physically speaking, forward and backward reactions are different whenever signs

of the momenta are altered. This symmetry leaves the Hamiltonian invariant is clear.

Time reversal invariant symmetry T can be expressed as follows:

T :
px 7→ −px
pr 7→ −pr.

(3.8)

The reflection combined with the time-reversal symmetry leads us to address the forward

and backward reactions within this thesis. This combination of symmetries can be

applied to the collinear system and can be explained simply by changing the momentum

sign to indicate the past of the molecule and the future evolution. This can be expressed

as:

TPx : (pr, px, py, r, x, y) 7→ (−pr, px, py, r, x, y). (3.9)

3.5 Hamiltonian Collinear System

In this section, the shape of the hydrogen complex will be described where the full

spatial system is reduced to the invariant system, with two dof that is different in setup

but is thought of its contribution to reduce the phase space. The collinear system, the

key focus of this study, is explained in more detail in the next chapters 4 and 5. The

hydrogen exchange reaction H2 + H is given by the Hamiltonian function (3.5). An

assumption of y = 0 leads to the collinear case as (y, py) = (0, 0) as a result of the

following equations: Let

y = 0→ ṗy = 0

py = 0→ ẏ = 0.

(3.10)
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This means that the system is invariant collinear and can be given by

ṙ = ∂H
∂pr

= 2pr
mH

, ṗr = −∂H
∂r = −∑3

j=1
∂V
∂Rj

∂Rj

∂r

ẋ = ∂H
∂px

= 3px
2mH

, ṗx = −∂H
∂x = −∑3

j=1
∂V
∂Rj

∂Rj

∂x .
(3.11)

Now, we use x = 0 as the dividing surface, which is the right choice. Because it implies

to symmetric condition and it is transverse to the flow except at the boundary where

most trajectories are laying on for all times. The dividing surface plays a subtle role in

determining whether a trajectory is reactive or nonreactive.

The collinear system is a four-dimensional in phase space, and the dividing surface is

then a two-dimensional sphere. The boundary of the DS (SSPO) is S1 equator which

split the PODS into two hemispheres. Thus, the disjoint union of the PODS ( S1equator)

and two dimensional balls ( B2) form the dividing surface [85]. The SSPO then divide

the DS into two hemispheres Px > 0 and Px < 0. These hemispheres are similar because

the Hamiltonian flow behaves similarly in each hemisphere due to the symmetry of the

Hamiltonian function. As the TST determining the minimum flux through the PODS,

the appearance of many PODSs indicates that the reaction rate would be overestimated

[86].

Relevant periodic orbits are introduced with their properties and propagations to the

collinear system carefully considered, which has the potential to aid the understanding

of the appearance of nonreactive trajectories on the DS.

3.5.1 Collinear Periodic Orbits

In this section, we introduce the properties of periodic orbits and why they are important

and discuss their connection to the phase space structure, in order to understand the

reaction mechanism.

The collinear hydrogen reaction is characterised by the Hamiltonian equation (3.11),

which admits several periodic orbits for energy just above the saddle point energy.
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These periodic orbits can change the structure in phase space, such as F1 in Figure

3.3. Combined with invariant manifolds, they can control the transport dynamics from

or toward the transition state. Each periodic orbit is associated with the stable and

unstable manifolds through which the flow is directed to or away from it.

However, their contributions to divide the phase space into regions can simplify the dy-

namical study that is already centred in configuration space. For instance, an interaction

region can be determined by different manifolds emanated from different periodic orbits

and cross each other, such that reactive trajectories do not enter.

In terms of the structure, the first known unstable periodic orbit (SSPO) was identified

by Pechukas et al [31] in the hydrogen exchange system with two dof that determines

the DS such that the TST rate is exact for energy up to E ≈ −4.14676 e.V. Iñarrea et

al [20] have calculated families of periodic orbits that exist through the energy region

of interest and are emerged by a sequence of bifurcation as a result of a change in the

energy parameter. He found the first bifurcation is of the saddle-node type which occurs

symmetrically at both sides of the saddle point. The unstable periodic orbit F1 and the

stable periodic orbit F2 arise by the bifurcations on both sides of the symmetric stretch

periodic orbit shown in Figure 3.3.

The PODS has been studied by Allahem [41] within the centre manifold of the saddle

point and described as the symmetric stretch, due to vibration mode. The Symmetric

Stretch Periodic Orbit (SSPO) can divide the DS into symmetric hemispheres through

which unidirectional flux pass through as a point of no return. These hemispheres can

be described as forward or backward in terms of the flux reaction direction. The SSPO

with its interior can be a suitable candidate to be a DS among others.

The SSPO lives in the collinear system, which undergoes a sequence of bifurcations as a

result of one parameter energy change. At every fixed energy, there are a few periodic

orbits of which mostly come in pairs because of the reflection symmetry inherited in the

system. In contrast, the family of SSPO live on the symmetry axis and exist at each

energy regime.
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Figure 3.3: Schematic the first saddle-node bifurcation diagram for the
collinear system where solid and dashed lines show stable and unstable respec-
tively. The vertical axis represents increasing energy, while the horizontal one
does not refer to any quantity. Esd refer to saddle point energy while Ebf
indicates the first bifurcation energy.

The saddle-node bifurcation creates the unstable periodic orbit F1 on both sides far away

from the SSPO and is not undergoing any further bifurcations. This is the collinear

periodic orbit that is apparently connected to breaking the TST at energy interval.

The saddle-node is the first bifurcation creates multiple PODSs and cause the TST to

overestimate the reaction rate. This is apparently connected to our case of study and

interested reader in more bifurcations referred to [20].

Most important periodic orbits created by the first bifurcation on both sides of the

SSPO, which can be seen in schematic Figure 3.3. It shows that due to the system held

reflection symmetry, F1 and F ′1 are unstable periodic orbits shall change the structure

on the DS. The periodic orbit F1 does not undergo further bifurcation and lives away

from the symmetric reflection axis where the SSPO undergoes several bifurcations as a

result of energy parameters change.



Chapter 3 Hydrogen Exchange Reaction 44

Other orbits, like the family F2, generated by the first bifurcation, undergo a period-

doubling bifurcation at E ≈ −4.146 e.V, resulting in a change to their stability. These

orbits are involved in between the first unstable periodic orbits (family F1) that are of

the most interest to transportation.

3.6 Motivation and Known Results

In 1979, it was well known that the TST rate is highly accurate related to lab calculation

in quantum chemistry for the collinear hydrogen reaction such that single periodic orbit

existed and bound the transition state. The recognition of this is attributed to Pechukas

and Pollak [87] for an energy interval above the saddle energy value. The authors claim

that a lower bound can be achieved under certain assumptions but depends on whether

those trajectories are reactive. Most recently, Krajnák et al [88] managed to decrease

reaction rate based on the Davis’ proposal and using the famous Monte Carlo method.

The lower bound for the hydrogen exchange reaction can be traced in [87] where the

authors used a stable periodic orbit to construct a DS through which reactive trajectories

cross all TSs once.

In 1987, the collinear hydrogen exchange reaction was studied in phase space by Davis

[34]. The transition structure is considered under the role of invariant manifolds. Inves-

tigation for understanding the structure over three energy regions was based on the TST

being exact, as a result of a single periodic orbit representing unique TS, while several

periodic orbits represent multiple TSs at higher energy. Like Pechukas and Pollak, he

elucidated the structure, that is invariant and relatively simple by means of invariant

manifolds techniques. There are four invariant manifolds which drive the system for-

ward and backwards to the symmetric stretch periodic orbit. These manifolds Davis

calls separatrices and terms adapted to stable and unstable manifolds.

When more periodic orbits occur at a range of higher energies, the structure becomes

complicated rather quickly and would not help in understanding the transport mecha-

nism. As mentioned by Davis, there are five periodic orbits in the collinear hydrogen

reaction. The symmetric stretch and (collinear) outermost periodic orbits (family F1)
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represent a TS each until the former one turns to be stable at high energy. There are also

secondary periodic orbits shown in Figure 3.3 at both sides of the symmetric stretch, in

between the two TSs. The symmetric stretch bounds the DS in our study, which lost

its normal hyperbolic before being restored to imply the TST structure in phase space.

Davis’ resolution is based on that an interaction region is bounded by stable and unstable

manifolds of different periodic orbits, which distinguish between reactive and nonreactive

trajectories for a range of energies interval. However, there is a particular energy value

of E = −4.141 e.V., where the interaction region can be constructed above the first

bifurcation energy, which is the point of interest. The symmetric stretch separatrix is

invariant since no other separatrix branches cross them. This means the flow volume is

separable by the separatrix, and no heteroclinic point is found. Davis’ hints of that there

exist many invariant curves between the two PODS which led us to find one of them and

explain its influence on transport in the collinear hydrogen system, as well as its effect

on the DS reactive islands. Most recently, Krajnák provides more details about the

interaction of invariant manifolds and their crucial role in understanding heteroclinic

existence. These heteroclinic tangles are known to be created between two different

periodic orbits, as a result of their manifolds intersect each other on a heteroclinic point

at a specific energy value. These tangles were studied by Davis, who found that their

size grew as a result of an increased energy value given to a portion of trajectories that

do not react. However, Allahem [41] found that the collinear periodic orbit (F1 ) causes

the TST failure but not in a precise manner. We explain this in more detail employing

the linear approximation techniques and reactive islands.

Recently, Allahem[41] hypothesised that nonreactive trajectories are separated from re-

active trajectories by invariant manifolds associated with a collinear (unstable) periodic

orbit (F1). Motivated mostly by a recent study launched by Allahem [41] leads us to

describe a phase space object thought of its relation to the breakdown of the TST. In

particular, collinear periodic orbit F1 is unstable over a particular energy region where

multiple PODSs violate the concept of TST in the collinear Hamiltonian dynamical

reaction system. Our main aim is to describe its relation to the phase space struc-

ture qualitatively via the invariant manifolds theory as well as the transport reaction
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mechanism via reactive islands.

Reactive islands can be defined as a projection into two-dimensional space to the central

sphere using Poincaré surface of sections. The central sphere is the symmetric stretch

(unstable) periodic orbit that vibrates between the equipotentials and that bounds the

bottleneck through which the system must pass during a reaction. The reaction can be

identified as forward or backwards based on the sign of momenta that is conjugated to

the reaction path. These identifications produce either forward or backward DS ( the

central sphere ). As the DS is filled with reactive and nonreactive initial conditions, the

reactive islands consist of layers that can be reactive or nonreactive, respectively.

Most recently, Allahem [41] studied these islands and found the boundary of the main

nonreactive islands by means of linearization to the stable manifold of the collinear

(unstable ) periodic orbit, denoted as F1, at prescribed energy value E = −4.141 e.V.

He found those trajectories launched nearby the F1 cross the DS and lying on the

boundary of the nonreactive islands which is called by the stable intersection. The

stable intersection curve bounds the main nonreactive layer of the reactive islands on

the forward DS, as presented in Figure 4.6. The recognition of this work is attributed

to Allahem [41], who used Mathematica, which is confirmed by Matlab simulations in

the next chapter 4.

Beyond Allahem’s achievement, our contribution gives more detail and new results about

the boundary of different nonreactive layers. Not only it confirms his result but also

drive our attention to find the mirror image of the nonreactive islands in the backward

DS where the unstable intersection is explained later. This gives new techniques to find

the symmetric stable intersection.
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Figure 3.4: Points (blue) on the stable intersection lies on the boundary of
the main nonreactive islands (red) at E = −4.141 e.V.



Chapter 4

The boundary of Reactive Islands

4.1 Introduction

A reactive island plot gives a simple projected picture to represent reactive and nonre-

active initial conditions (IC’s) in the DS for the collinear hydrogen reaction. De Leon

and Marston [89, 90] were firstly studied their geometrical shapes for the isomerisation

reaction model. In the collinear hydrogen exchange reaction, Pollak and Child described

the shapes which are called “droplets”by Davis [37]. Recently, Allahem [41] studied the

collinear hydrogen reaction using reactive islands plots and demonstrated the emergence

of nonreactive droplets in the DS because the collinear periodic orbit F1 interfered with

the role of the symmetric stretch periodic orbit explained in this thesis. We aim to

explain how such shapes appear in the DS located between reactants and products,

identifying them and their structure which is affected by the collinear periodic orbit F1

that is located off the saddle barrier site in the reactants side.

Molecular dynamics simulation has been employed for studying the collinear exchange

hydrogen system. In the collinear Hamiltonian, the potential energy is restricted to

be smaller than the total energy. In other words, if the potential energy was higher

than the total energy, the system will be complicated. Evaluation of how reliable a

48
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numerical solver is investigated based on the performance of a computer with finite-

precision routine and a topological dynamical property will be studied in section 4.2.

The purpose of this chapter is to study the boundary of reactive islands on the DS. This

study will be for the collinear system case. This would be useful when we establish the

invariant manifolds mediating the reaction dynamics in Chapter 5. Our main goal is to

find a boundary for each nonreactive droplet. This type of study has been carried out

further, as explained below.

In what follows, Matlab numerical solvers will be assessed, and the reactive islands plots

at different energy values have been demonstrated. We observe whether there are any

qualitative changes in the structure of the reactive islands and compare these to the first

bifurcation of the periodic orbits in the barrier region, as studied by Iñarrea and Salas

[20]. The stability analysis of F1 allows us to use the linear approximation, in order to

find the stable manifold of F1 described in section 4.4. The slightest small deviation is

used in propagating trajectories on the linear approximation of the stable manifold in

the back-time direction. The surface of section is located at the DS to find where the

un/stable manifolds are crossing the DS. This study is also essential to investigate the

dynamics in the vicinity of F1 explained in Chapter 5. After that, we will demonstrate

the intersection of the unstable manifold of F ′1 to the DS, relate it to the stable manifold

of F1 intersection studied by Allahem [41].

At this point, we can determine a phase space region that is related to this study,

regarding finding the boundary to several nonreactive layers in the DS.

4.1.1 Interaction Region

In this section, we determine a phase space region in phase space related mostly to the

bottleneck where the hydrogen atoms collide and perhaps exchange configuration. In

configuration space, this region contains the saddle point where the potential energy

barrier is located. Reactants and product asymptotes can be determined on both sides

of the region as far as one hydrogen goes to infinity and does not react. To dive into the

transition structure, we shall call the region in phase space which contains the SSPO
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and F1 periodic orbit as an interaction region. It is apparent that the collinear periodic

orbits F1 and its image F ′1 destroy the symmetric configuration of the natural transition

state at the saddle point. Due to its existence at the furthest side of the SSPO, the

interaction region is defined to be between the SSPO and F1, unless otherwise stated.

Advantages of this interaction region are immediate:

It includes all other periodic orbits such as F2 at higher energy values than the bifurca-

tion energy and is the most appropriate choice for our numerical evaluation, based on

Allahem’s claim [41].

This region is also defined on the product side of the configuration space that is symmet-

ric to its respective reactant side. These sides are carefully equivalent and have similar

dynamics in the collinear hydrogen reaction. When we compare between these regions in

order to determine the invariant manifolds, which substantially influence the appearance

of the nonreactive islands on the DS, as well as cause TST failure, it is reason enough

to choose the interaction region between SSPO and F1.

There are four manifolds branches emanated from different PODSs launched in the inter-

action region, and there must be among those branches which shall cause the nonreactive

islands to appear in the DS. Those are either the stable or the unstable manifolds of

the collinear unstable periodic orbits (family F1 ) since the SSPO and their separatrix

branches are invariant in the sense that no flux across them. Thus, we are looking for

invariant curves lying between and not across the SSPO’s separatrix branches, as stated

by Davis [34] at energy value equivalent to ours at −4.141 e.V.

Computer ode solvers will now be tested in order to establish which of these ode solvers

will be used in this thesis.

4.2 Evaluation of ODE solvers

Numerical computations play key roles in studying the Hamiltonian collinear system by

solving the equations of motion across several simulations. In this section, we will test

Matlab solvers based on the previous finding of the stable intersection against invariant
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property inherited in any trajectories. If we restrict a trajectory to be propagated in

the interaction region forward and backward evolution. For that, we need to define the

surface of section on the boundary of the interaction region. Before that, we will give

some useful information regarding our argument.

In particular, we will identify a numerical solver in Matlab for use throughout this

research. The evaluation is based on computer performance, to obey the invariance

condition that every trajectory starts within manifold will stay on that manifold for the

future as well as the past evolution. This invariant property facilitates our assessment

and understanding of the complicated behaviour of the trajectories that will be started

nearby the F1 and then propagated back to across the DS. Because of the stable inter-

section bounds the main nonreactive layer of the E = −4.141 e.V. reactive island on

the DS which is confirmed and agrees with previous studies [41]. Our approach is based

on the invariant property that every trajectory on the stable intersection is expected to

return back to the F1 when the time span is reversed.

In this section, we will test ordinary differential equation ( ode ) solvers that are provided

by Matlab such as ode23, ode45 and ode113. We will choose an appropriate solver to

use throughout this research. Our test is based on that all trajectories on the stable

intersection are expected to return back to their destinations in reverse direction. Every

trajectory is an invariant set that starts and remains within the set for future and past

evolution. First, we start at the stable intersection curve and propagate the involved

trajectories in forward time toward F1 direction. We expect all trajectories in this set

to return back to F1 side.

Therefore, the region of interest is located between the SSPO and the periodic orbit F1,

which contains all other periodic orbits of the collinear hydrogen system restricted to one

side of the symmetry axis. This is an excellent choice to delimit the symmetric “effect

”that may violate the test. As the stable intersection has been found by propagating

trajectories nearby F1 backwards, one may reverse the simulation forwards and observe

that all trajectories return back to their initial values is a proper challenge. This can be

seen by locating a suitable Poincaré Surface of Section (PSS) as close as enough to the

F1 location such that a suitable tolerance is used.
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This situation shows that not all trajectories on the set return back to their destinations

when the surface of section located at x∗ ∈ F1 for ode45 simulation. Therefore, the

correctness of the simulation is carried out by choosing a Matlab solver, such as ode23,

for crude tolerances, or modifying the tolerance over such solver. Matlab has underlying

solvers that compute numerical solutions for several types of dynamical systems. These

algorithms are stored as functions to determine the solution at a prescribed accuracy.

For example, ode23 estimates the step size required by comparing the second order with

third-order methods in order to obtain a prescribed accuracy. The numerical simulation

shows that not all trajectories on the stable intersection return back to their starting

points as the time direction is reversed.

One can use this technique in order to increase accuracy among simulation. Correctness

among such numerical relative errors control a computed answer with the correct number

of digits (RelTol). However, our goal is not to compute an approximated solution

that agrees with the desired accuracy but to obtain crossing points within a specified

tolerance. In order to detect such an intersection point, the tolerance has to be higher

than the solution component, and so generally the solver controls an approximated

solution automatically. For example, if the tolerances are increased, the accuracy of the

solution and the runtime are increased, and vice versa.

The numerical methods implemented in Matlab estimate the absolute error between

the approximation solution x0 and the exact solution x in general. However, when

the approximated solution is near to zero, the relative error will be undefined, and the

solution has no correct significant digits. In this case, tolerance grows to infinity, and

absolute tolerance is used. This kind of limitation implies that the error at each step

of the solution component is growing. Observation shows that absolute error tolerance

controls the approximation solution when the surface of a section at x∗ ∈ F1 is detected

as follows.

The absolute error is written as

errabs = |x0(j)− x∗|.
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To improve accuracy, either relative tolerance or absolute tolerance is chosen, according

to which one is governing the integrator. Firstly, the code is executed within the default

relative tolerance and then checked:

if x0 > AbsTol 7→ relative tolerance is used,

or

if x0 ≤ AbsTol 7→ absolute tolerance is used.

In general, ode solvers use different methods for computing each component of the

solution when the local error inside the integrator is controlled. For those particularly

interested in this matter, refer to Matlab documentation and [91] from where most of

the above information about tolerance has been taken.

Now, the reliable ode solver will be identified, based on the performance of numerical

computations that feed into the topics of this thesis. We shall start by three types of

ode solvers such as ode113 , ode45 and ode23. The ode45 and ode23 are similar methods,

based on the different orders of the Runge-Kutta formula, compared with ode113. The

ode113 method evaluated the solution at variable orders of accuracy. This is known

as an efficient method when the computation is expensive. While the other methods

are considered as the higher orders, which takes larger time steps for each workload, we

applied these methods to the stable intersection sample and propagated their ensemble of

trajectories in forward time direction towards x∗ ∈ F1, where the initial points generated

for the stable intersection calculated by Matlab.

The expectation was for all trajectories to return back to their original initial points

by at least σs digit numbers tolerance. However, this is not always the case because

propagating trajectories toward unstable periodic orbit leads to complicated behaviour.

An ode23 requires longer running time than ode45 and ode113 but has given a solution

as accurate as ode45 which is shown in Figure 4.1. Also, if the tolerance is increased,

ode23 will take a long time to give an answer, in comparison with the other ode solvers.

Note that, the default setting for all solvers is 10−3 for relative tolerance and 10−6 for

absolute tolerance. Accordingly, ode113 return 95% trajectories while approximately a

third quarter of trajectories are preserved under the ode45 simulation. For achieving

the desired solution, these percentage will decrease, unless the tolerance is met.
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Figure 4.1: A trajectory propagated forward by ode45, ode23 and ode113 with
the same tolerance as the one used to propagate them in backward time toward
the DS.

Figure 4.2 shows a linearised trajectory propagated back and forward in time toward

F1 and the DS respectively, by ode113 and ode45 for comparison. The ode45 has the

same setting as the ode113. Our evaluation is based on several steps: firstly, we start

with zero-crossing and default relative tolerance in both directions until the trajectory

preserved. Then, we propagate the linearised trajectory backwards and forward in order

to cross the surface of the section, as shown in Figure 4.2. The ode113 trajectory go

forth and back with a relatively smaller error that is shown in the top panel related to

ode45 shown in the bottom panel of Figure 4.2.

Then, we changed the relative tolerance on both simulations and found that ode45

trajectory diverges from that in the middle on one side while the ode113 results diverge

in a different direction as shown in Figure 4.3. However, the ode45 was unable to meet

integration tolerance at 10−9 relative tolerance. However, in any simulation, the time

step size and tolerance can show if the simulation is stable. For example, if one changes

from relative tolerance 10−6 to 10−9 and quickly find that the two results are pretty

close as it can be seen on the first panel for ode113 in Figure 4.2. Also, as we increase

the number of time steps in the direction of one variable, the approximated solution

converges to the surface of the section. Although ode45 should be the first one to try in
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Figure 4.2: The trajectory propagated by ode113 on the top panel and ode45
below with the same tolerance for both simulations in the backwards and differ
in the forward as explained in text.

Figure 4.3: The trajectory propagated by ode113 on the top panel and ode45
below with various relative tolerance on both simulations. Note that the middle
trajectory is the same as the one presented on Figure 4.2.

any numerical simulation, ode113 can be the most efficient solver when accuracy differs.

As a result, ode113 is the reasonable choice to be used in this research.
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Figure 4.4: The reactive (red) and nonreactive(blue) islands on the dividing
surface for different energy values. Initial values have been chosen for energies
−4.15 e.V. (before the first saddle node bifurcation of PODS), and −4.0 e.V.
respectively.

4.3 Bifurcation Effect on Reactive Islands

In this section, we demonstrate reactive islands of the DS at different energy values

before and after the first bifurcation. We will explain how the structure is differed and

caused the nonreactive island to increase in size as energy value increases. How these

droplets appeared in the DS at a particular energy value will be the core of this research.

A numerical simulation has shown that all regions of the DS are covered by the only

reactive island and no appearance of nonreactive islands at energy value of E ≈ −4.15

e.V., which is less than the first bifurcation energy occurred at E ≈ −4.14676 e.V. Above

the threshold, nonreactive islands start to appear in the DS. These results are illustrated

in Figure 4.4.

These results are shown in Figure 4.4 where only single PODS governs the system at en-

ergy value E = −4.15 e.V. However, several PODSs exist at energy E = −4.0 e.V., which

is above the first bifurcation. In order to show how the nonreactive droplets increased in

size, we pick an energy value at E = −4.1 e.V. in between the previously selected energy

values. The size can be seen in Figure 4.5 where there are fewer nonreactive trajectories

than those observed at E = −4.0 e.V.

Having said that as energy increased, more trajectories can pass through F1 into a com-

plicated region where the stable manifold of F1 separates reactive trajectories from those
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Figure 4.5: The Reactive islands at E≈ −4.10 eV.

re-crossing the SSPO or even nonreactive ones. Thus, the new (collinear) PODSs gov-

ern the system passing through to the SSPO. Davis [34] observed that those trajectories

enter the homoclinic region and eventually re-cross the barrier while reactive ones miss

that region and cross the barrier only once. Therefore, widening the gate will lead to

more nonreactive trajectories projected on the DS. It is also important to note that the

outer PODSs are the outer doors for the SSPO. Locating surfaces of section far away

from the outer periodic orbit F1 would be reasonable but will not always be useful, as

each periodic orbit represents a TS itself.

However, when the outer periodic orbits come close to the symmetric stretch, the latter

lost its normal hyperbolicity before regaining it again as the former periodic orbits stay

away apart. At energy where the SSPO undergoes bifurcation, the reason explaining

how nonreactive islands appeared on the DS, is still unexplained very well. These is-

lands enclose nonreactive trajectories that are reflected back by F1 and F ′1 with equal

translational energy.

These periodic orbits can be seen as opposite wheels driving the system back and forth

towards the SSPO through their separatrix branches. Their connections to bound non-

reactive layers in the DS are explained below in more detail.
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The flux volume can be determined through the F1 and F ′1 along to the SSPO. These

periodic orbits can reduce the volume through to a minimum or maximise the flux leading

to the SSPO. For instance, the PODS still holds the leading role to determine the flux

volume direction through the F1. This is reasonable enough to persuade us to consider

the stable manifold of F1 in order to produce the stable intersection and similarly for

the unstable intersection that is approximated linearly from the unstable manifold of F ′1

described below.

Now, we shall start by introducing the linear approximation for E = −4.141 e.V. by

means of the monodromy matrix’s eigenvalues corresponding to their prospective stable

and unstable eigenvectors used to find the stable and unstable intersections.

4.4 Stability Analysis of the Collinear Periodic

Orbits

The appearance of the collinear periodic orbit F1 leads us to see if it is stable or unstable,

the monodromy matrix M(t) can measure its stability type with least period T . This

is in addition to checking whether a change in the initial condition leads to a change in

the solution.

Consider a periodic orbit Γ with γ(t) which is the parameterisation with period T , M(t)

is the monodromy matrix satisfying the variational equation.

Ṁ(t) = JD2H,

where J is the Poisson matrix, with the initial condition

M(0) = I.
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The monodromy matrix can be defined as M = M(T ). It measure how an initial

deviation ξ from γ(0) change after a period T . If ξ is infinitesimally small along the

periodic orbit Γ, then after a full period Mξ = ξ and hence ξ is preserved.

A study concerns the stability of the Hamiltonian system suggests that there are six

eigenvalues with non zero real part around the periodic orbit F1.

Those eigenvalues found by means of the monodromy matrix at the point x∗ ∈ F1.

Since two multipliers are always equal to one, because of their corresponding Floquet

exponents that are equal to zero, therefore, by deleting their columns and rows in the

monodromy matrix, we can determine which invariant manifolds associated to each

multiplier as follows :

If the multipliers λ such that

• |λ| < 1 corresponds to the stable manifold.

• |λ| > 1 corresponds to the unstable manifold.

• |λ| = 1 will corresponds to the centre manifold.

In terms of dimensionality, the full system is six dimensions which can be reduced

to a four-dimensional collinear system. According to the multipliers, there is a stable

manifold, unstable manifold and centre manifold. Since the remaining multipliers belong

to the derivative of the Poincaré map, then the system will be off one dimension. Thus,

the stable manifold of F1 is one dimension as the same as the unstable manifold while

the centre manifold is a plane (2D surface). These manifold are tangential to the linear

subspaces according to their multipliers.

The multipliers suggest that the stable manifold is spanned by the eigenvectors as-

sociated with modulus multiplier less than one, while the eigenvectors with modulus

multiplier more than one span the unstable manifold. These definitions can be extended

to the Hamiltonian system based on that used for the linear approximation.
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4.5 Stable Intersection

The stable intersection is the intersection of the stable manifold of the collinear periodic

orbit F1 with the DS. This notion is used by Allahem [41] who found that a set of

trajectories are crossing a PSS at the boundary of the main nonreactive islands. Building

on his finding, we confirm that, but in more detail, and extend the study in order to

fully understanding the creation of other nonreactive layers on the complicated phase

space region. We shall begin by introducing the stable manifold of F1 to the collinear

Hamiltonian system.

This is basically for sufficiently small enough variation σs ∈ R in the linear approximation

given by:

Sm = x∗ + σs vs , (4.1)

where Sm represents all initial conditions that create the stable manifold of F1 in forward

time direction. Let x∗ be a point belonging to the F1, which is located on the interaction

region. Therefore, any trajectory near the stable manifolds will move in forward time

toward x∗.

Note that, in a particular direction of time, only one manifold can be computed. In

other words, if we start a trajectory near some unstable periodic orbits and propagate

it forward for a long time, we are going to see the unstable manifolds because the stable

manifold will shrink toward the F1 before damping away. To create a stable manifold

of F1 that crosses the dividing surface at x = 0, we need to propagate trajectories

of (4.1) backwards in time. Varying σs has an essential impact in creating the stable

manifold. If the σs values are too small, this will lead to numerical errors increasing as

the computation takes long times (because the periodic orbit is unstable).

The stable manifold of F1 will eventually intersect the DS at the boundary of the various

reactive islands. The intersection points will be called a stable intersection. The stable

intersection is the boundary of the nonreactive main layer of the reactive islands, as

shown in Figure 4.6. However, some trajectories on the stable manifold of F1 would

not cross the DS while others could cross it as they are propagated backwards in time

toward the DS. Figure 4.6 shows points on the boundary of the nonreactive main island.
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Figure 4.6: Points (blue) on the stable intersection lies on the boundary of
the main nonreactive islands (red).

In fact, the simulation shows these trajectories generated by σs varies on the interval

(9× 10−6, 10× 10−6). New ideas and questions are raised in order to confirm Allahem’s

[41] finding in the reflection region. Does the stable intersection bound nonreactive

islands in the counterpart hemisphere or the unstable manifold of F ′1 does so? This leads

us to find the unstable intersection that is expected to cross the DS on the boundary of

the main nonreactive layers. The linearised trajectories propagated near F ′1 in forward

time direction shows that the backward time direction used for the stable intersection

is valid. The new finding has introduced a new technique in order to find a stable

intersection, by means of the unstable intersection. The whole picture must be seen in

order to understand the dynamical impacts of both collinear periodic orbits in directing

the flux to and away from the DS.

4.6 Unstable Intersection

Similarly to the stable intersection, it is easy to find the unstable intersection. We pick

initial values near the unstable manifold of the mirror image of the unstable collinear
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periodic orbit F ′1 and propagate them forward in time toward the dividing surface (DS).

Then, we look for the linearised trajectories that cross the DS at the boundary of different

nonreactive islands in the forward hemisphere.

In contrast to the stable manifold, all sets of trajectories moving forward in time are

directed toward the SSPO and represent the unstable manifold of F ′1 that can be created

by:

Um = x∗ + σu vu , (4.2)

where vu is the unstable eigenvector and the small variation σu ∈ R, along the unstable

manifold.

Moreover, time-reversal symmetry also holds in the collinear configuration. This means

that if we keep the coordinate fixed and change the sign of momenta, the trajectory will

be driven back in its reversed direction. This kind of symmetry can explain how the

unstable manifold of F ′1 bound the nonreactive droplets on the forward hemisphere.

Taking advantage of the combination of reflection and time-reversal symmetries, Figure

4.7 shows the unstable intersection points lying on the boundary of the nonreactive

island of the forward DS as expected.

The process shows how reactive trajectories evolve in time as these families of periodic

orbits approached. It turns out that some trajectories go around the F ′1 many times

before going back to their prospective reactant side while others cross the DS and have

another trip around the F1 before going either to the product side or returning back to

cross the DS again in their journey back to the reactant side. Therefore, not only the

unstable F1 but also its image F ′1 control the dynamics and are recognised to be the

reason for the TST failure.

Figure 4.8 shows reactive and nonreactive trajectories in their future and past evolutions.

Initial values have been chosen on the DS (x = 0) and their trajectories are propagated

forward and backwards in time in order to cross a surface of section ±x 6= 0. If a tra-

jectory crosses +x, then it is reactive. If not, it is nonreactive. Backward time direction
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Figure 4.7: Points (blue) on the unstable intersection lies on the boundary of
the mirror image of the main nonreactive islands (red). Green points refer to
the boundary of another layer.

Figure 4.8: Reactive and nonreactive trajectories under the dynamic con-
trolled by F1 and F ′1. Arrows indicate time direction, and the black dot refers
to the starting point. ( Details in the text).

is used to explore which side the trajectory departure. Notice that the nonreactive tra-

jectory has proper motion in the forward time direction, such as a cusp probably, and

changes its rotation direction as it flows close enough to F ′1.

The stable and unstable intersections represented in Figure 4.9 in order to show their
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Figure 4.9: The relationship of symmetry between the stable intersection
(above) and unstable intersections (down). Note that both of intersections lie
on the forward hemispheres.

connection. These intersections are connected by time-reversal invariant and reflection

symmetries. The inner boundaries can be generated using these symmetric properties

such as σs for the stable and σu for the unstable manifolds. This new technique helps us

to find the stable intersection by means of the unstable intersection and aid the study

of the transport mechanism to and away from the SSPO.

It is worthy to note that these nonreactive droplets are projected on the forward hemi-

sphere of the DS where they are expected to overlap each other in a region close to

the vicinity of pr = 0 as shown in Figure 4.9. These trajectories belong to that over-

lap region are expected to obey the TST such that they start on the reactant side and

propagate toward the DS in order to reach the product region. Also, if one follows

the ensemble of trajectories creating the upper nonreactive droplets, these trajectories

are corresponding to the reactant region in their past evolution and return back to the

reactant area as they are propagated in a forward time direction. In contrast to those

trajectories contained on the lower nonreactive droplets, if one follows these nonreactive

trajectories in their backward time direction, they are corresponding to the product side

on their past and future evolutions. By symmetry, the mirror image of the stable inter-

section will bound nonreactive droplets in the backward hemisphere on the DS while the
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symmetric unstable intersection will lie on the boundary of nonreactive droplets existed

on the backward hemisphere symmetric to that presented in the forward hemisphere.

These droplets cannot be shown on one figure due to the convention made on one side

of the symmetry axis.



Chapter 5

Chaotic Dynamics in the

Collinear System

5.1 Introduction

As addressed in the previous chapter 4, nonreactive droplets may open up in the DS of

the collinear Hamiltonian system. The emergence of these droplets is connected to the

stable or unstable manifold of the collinear periodic orbits launched from the product

or reactant side to across the barrier centred in the configuration space. Therefore, the

stable intersection bounds the various nonreactive layers on the forward DS while the

unstable intersections bound those layers projected on the DS on the backward time

direction.

In classical dynamics, chaotic scattering plays essential roles in numerous applications

in nonlinear physics which have been checked in many fields such as atomic and nuclear

physics, fluid and celestial mechanics and others [92]-[93]. The work provides an account

of the physical phenomenon of chaotic dynamics where our attention has been focused

on the most contribution related to the boundary of nonreactive islands. One of the

complicated examples is those nonreactive trajectories recross the DS and return to

their origin. Such motion is unpredictable in a periodic Hamiltonian system. These

66
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trajectories represent the particles’ path where the incident particles move on straight

line far enough from the outside of the scattering region and interact with the scatterer

(potential) [94] before leaving to either reactant or product regions.

Miller and Rankin [95] found that small changes in the initial conditions lead to different

evolutions result in different final states. So that, nonreactive trajectories may land in

the vicinity of reactive islands or vice versa. However, the unstable periodic orbit has

been emphasised in [31] resolves that for a certain amount of energy before collapsing to

do so at higher energy values. Later work [96] showed that there exist an infinity periodic

orbits bounding a nonattractive chaotic set. An interesting development regarding the

control of chaos using the unstable periodic orbit can be traced in the work of Ott,

Grebogi and Yorke [97, 98] and [99],[100]. Here, the motion is not chaotic and can be

stabilised by a sufficiently small deviation.

In our case of study, the scattering is nonchaotic because the total energy E is larger than

the potential energy of the particle at the peaks. However, the chaotic saddle contains

unstable periodic orbit which never leaves the scattering region. On the other hands, the

potential surface contains lots of unstable periodic orbits such as the collinear unstable

periodic orbits emerged by the first bifurcation. These periodic orbits constitute the

chaotic set formed by the intersection of their stable and unstable manifolds. These

manifolds are invariant set, and so their intersection is invariant, every orbit starting in

the chaotic set, never leaves the set.

In this chapter, we are going to study the difference between trajectories on the stable

manifold that cross the dividing surface and those that do not. We will obtain trajecto-

ries as close as possible to the boundary between crossing and non-crossing trajectories

and show their behaviour. We will document that inner layers of the nonreactive is-

lands are not produced by trajectories crossing the dividing surface repeatedly. After

that, we will display the number of intersection points for various trajectories on the

dividing surface and elucidate the relationship with the reactive island’s structure. Fi-

nally, we will study the invariant manifolds of the collinear model utilizing a Poincaré

surface of section transverse to the collinear periodic orbits and show their heteroclinic

intersection.
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5.2 Transport Dynamics

Transport dynamics enhance authors to find whether the optimal PODS (2 dof ) exist

or not. The geometrical structure in phase space is also well understood at low energy

values. However, the trajectories’ motion is affected by many invariant manifolds in

order to influence transport phenomena in nature. These invariant manifolds are the

three unstable periodic orbits in phase space at E = −4.141 e.V. Each periodic orbit

can be elected as a PODS through which the flux evolve in and out along or nearby

their respective stable and unstable branches. We shall call these branches as inner or

outer in respect to their expected evaluation toward the SSPO or away from F1 and F ′1.

Note that the outer branches are in the products or reactants asymptotes.

Davis et al [34], however, stated that the SSPO’s separatrix branches are invariant in a

sense no flux across them. Even though, they mentioned that there is at least four flux

in and similar flux out evolved from those four branches belonging to the SSPO, inner

branches emanate from the collinear periodic orbit crossed each other in a homoclinic

point at higher energy. These branches are not invariant if flux across them.

Davis’ resolution led us to understand how a trajectory behaves when TST is exact in

phase space. There is a single periodic orbit which guides the flux in and out through its

respective separatrix branches. Reactive trajectories start outside the separatrices will

stay outside in order to cross the barrier only once and never return. Those trajectories

start in between the separatrices will stay inside and do not react. However, when

there are multiple periodic orbits violated the single TS, Davis resolved an interaction

region where neither reactive trajectories enter nor nonreactive ones stay there forever.

This kind of trajectories can have the same total energy, but they may differ in their

partitioning and their initiated channels. Based on these criteria, new techniques are

developed via a surface of sections.

Armed with the previous knowledge that the PODS obey the concept of “points of no

return ”in the forward direction shown in Chapter 4, we shall elucidate a phase space

region in the backward time direction. The SSPO neighbourhood is adequately studied

by Davis, who concluded that their separatrices would be invariant even at slightly higher
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energy such that they are not intersected. Our goal is to follow the linearised trajectories

on the stable manifold emanating from F1 collinear periodic orbit in backwards. Note

that trajectories started nearby the periodic orbits are distorted off their orbital rotation.

The process is to follow an ensemble of trajectories very near the stable manifold of F1

until they cross a surface of section located at the DS. An advantage of this is that

when a trajectory starts on a stable manifold, it will stay within the stable manifold for

probably long backward time. The above discussion is strictly valid with area-preserving

maps of fixed points which could be a projected periodic orbit. Another benefit is that

an invariant stable manifold can separate reactive from nonreactive trajectories. This

is also unarguably true once the stable manifold does not be crossed by an unstable

manifold.

Allahem et al [41] found some trajectories that lay close enough to the boundary of the

main nonreactive layer of the DS which gave rise to periodic motions as they pass by

the periodic orbit F1 in the product side. As shown in Figure 5.1, many trajectories

generates the stable intersection appear to rotate around the F1 in backaward of time.

Rotation can make difference between trajectories landed on different layers as plotted

in Figure 5.2. It can be seen a trajectory starts on the boundary of inner layer has more

trips around F1 than ones start on the boundary of the main nonreactive layer.

The location of a trajectory and the time direction is taken to help us to see the whole

picture in phase space. Because there are unstable periodic orbits on both sides of

the SSPO (due to reflection symmetry) that drive the flow to the reaction zone where

complexity occurs.

Compared to chaotic scattering system where the potential energy of a particle more

magnificent than the total energy of the Hamiltonian system, our scattering region is

partly chaotic which is created by the intersection of the stable and unstable manifolds

of F1. This region is called the homoclinic region where an orbit interacted with the

scattering in the homoclinic tangle then leaves to an asymptote area. Hereafter, we

will discuss the relationship between inputs σ used to generates the initial conditions

used for the un/stable intersections with the time of intersections. Such a piece in

Figure 5.3 is called an icicle that shows how far trajectories located very near F1 and
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Figure 5.1: Trajectories chosen on the stable intersection emanated from the
F1. Time direction is backward and red sign is the DS. Direction of horizontal
axis is modified to show the periodic motion.

Figure 5.2: Trajectories chosen on the inner and outer layers as shown on the
left pannel.



Chapter 5. Chaotic Dynamics in the Collinear System 71

Figure 5.3: There are in most icicle plots σs refers to deviation from the stable
manifold where succeed trajectories cross the DS such that blue colour stand for
outer and green colour for inner boundary. Note that there are no more icicles
in the gaps.

cross the DS in particular backward time. The generation of icicles extends to negative

infinity from the central icicle, which creates the chattering region. These icicles are

smooth subdomain which separated by a region of more complicated behaviour [101].

An obvious explanation can be seen with the help of the Figure 5.3 where each blue

icicle represents those trajectories lie on the boundary of the main layer. However,

green icicles represent those trajectories creating the inner boundary which spend less

time than those creating the outer main boundary.

Now, we shall narrow the search to find out which of these fractal icicles shall be the

best in the sense that low distribution results in more points on the stable intersection

found in Chapter 4 or even in the previous study.

The central icicle is the best to represent the stable intersection which can be shown in

Figure 5.4. An important thing to consider is that as more σ used to generate more
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Figure 5.4: The best icicle create the stable intersection that lies on the
boundary of the main nonreactive island as shown in the top panel.

initial conditions on the central icicle, newly separated icicles start to appear on both

sides of the central icicle as shown in Figure 5.3. These additional new icicles are located

more closely to F1 than the central icicle and then have fewer rotations’ trips around

F1 before distorting from the periodic orbit in order to across the DS. Having said that

those icicles located significantly closer to the F1 should cross the DS at the boundary

of the inner layers which differ based on time-consuming during rotation. However, the

top right icicle of the central icicle shown in Figure 5.5 generate the stable intersection

but with more distributed points.

How about choosing σs between two icicles? Through the numerical experiment, it

shows no trajectory crosses the DS. Moreover, Figure 5.6 shows those trajectories lay

on the part of the stable intersection, which does not cover the whole boundary due to

low distribution.

Finding σs between either trajectory that succeeds to cross the DS or those trajectories

do not cross the DS is not an easy task. However, we found that at σs = 8.071201315×
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Figure 5.5: The top right icicle of the central icicle generates points in the
stable intersection that lies randomly on the boundary of the main nonreactive
island as shown in the top panel.

10−7 located between σs ∈ [8.07119978× 10−7, 8.071205647× 10−7] the trajectory is not

crossing the DS. As more σs is generated inside the icicle and trajectories propagated on

the linear approximation of the stable manifold backwards in time in which Figure 5.8

is shown. Most trajectories cross the Poincaré surface of the section (PSS) located at

SSPO at the boundary of the main nonreactive layer. While some of them cross the PSS

at different layers’ boundaries, moreover, repeating propagating succeed trajectories will

not provide an inner boundary for the inner layers.
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Figure 5.6: The region of complicated behaviour between the best icicle and
the top right icicle as shown in blue colour.

5.3 Recrossing Phenomena

In this section, we will shed light on the crossing phenomena and check if it is connected

to each layer on the reactive islands of the DS. Note that the reactive term is adapted

to a transmitted trajectory meaning product in the future evolution of reactant in the

past while the nonreactive term redefined to those trajectories react and recross the DS

before being reflected back to their reactants or products asymptote. This is useful when

we compare the DS in the past and in future propagation.

Before that, we shall give reviews of history and theory.

The appreciation of the work done by Pechukas et al [21] and [30] help us to understand

the dynamics near the saddle point and solved the recrossing problem for a range of en-

ergies in 2dof. Even though their work was remarkable in configuration space, extending

the VTST to phase space is essential to address the more dimensional severe problem.
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Figure 5.7: The inner boundaries are shown with the outer boundary on top
as well as their icicles down.

Most recently, Uzer and co-workers [36] provide an excellent piece of work to extend the

concept of a DS beyond the configuration space.

Our approach is based on the Poincaré surface of section. The surface of section can

be generated for the collinear system with two dof by initiating trajectories at x = 0

and propagating them in phase space and plotting r, and pr coordinates whenever the

x coordinate recrossed again such that px is positive.

Recrossing detection is apparently dependent on the numerical tolerance is chosen and

computer power used. When the TST is exact, trajectories are expected to cross the

PSS once and only once in forward time direction at low energy. One can predict if

a reflected trajectory started at the product side, it would return back in its future

evolution.

The phase space structure at E = −4.141 e.V. is firstly considered for many reasons.

There are five periodic orbits, including the symmetric stretch. Besides the symmetric
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Figure 5.8: Generating more data on the interval explain in text in more
detail.

stretch periodic orbit, other periodic orbits occur symmetrically at both sides of the

saddle point and have already reported by many authors. Such the complex behaviour

has been reported by Davis [57] and most recently, by Iñarrea et al [20].

Plot in Figure 5.9 shows an ensemble of 16161 trajectories that are generated on the

DS and propagated forward in time direction in order to recross the surface of section

(x = 0) before leaving to either reactant or product sides.

The ensemble of trajectories plot is based on their initial points and time direction evolu-

tion where the colour scheme is varied according to the number of the intersection points.

Blue colour indicates transmitted trajectories with more than two intersections. While

yellow colour shows transmitted trajectories with one intersection and green colour refers

to transmitted trajectories with two intersections. Note that transmitted trajectories

here refer to those trajectories that leave to the product side while reflected trajectories

return back to their reactant region. The similar indication would be shown for reflected

trajectories with one intersection (cyan) and two intersections in magenta colour, as well
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Figure 5.9: Part of the DS in forward time direction.Yellow shows crossing
once while magenta for two times crossing. Energy in e.V.

as red colour, refers to more than two intersections. In Figure 5.9, reflected trajectories

record two crossings for each trajectory. The maximum time for a trajectory to cross

the DS is about 9.45 a.u at E = −4.141 e.V.

The overall picture can be seen in plot Figure 5.10 where two different ensembles have

been chosen before and after first nonreactive trajectory appeared on the reactive islands.

The DS at E = −4.15 eV. is filled by only reactive trajectories. Another ensemble of

E = −4.0 eV. can be seen in Figure 5.10 where recrossing events occur with transmitted

trajectories shown in blue. A similar colour scheme is used as before to indicate the

number of intersecting points for reflected ensemble in the forwards.

Since the Hamiltonian system has time-reversal symmetry, it is worth to show how

trajectories propagated in the past evolution. This will be shown for energy value

E = −4.141 eV. with a similar colour scheme as before. The plot of the same ensemble

used in Figure 5.9 shows trajectories propagated backwards in the time direction. As

before similar colour scheme used and indicates that cyan represent reflected trajectories

and green refers to transmitted ones in Figure 5.11. The nonreactive droplets appear in
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Figure 5.10: The DS in forward time direction.Yellow shows crossing once
while blue for more than two in reactive islands. Magenta refers to two crossings
and red for more than two times crossing in the nonreactive islands. The text
has more descriptor detail.

Figure 5.11: The DS in backward time direction. Green shows transmitted
trajectories recross twice while cyan for reflected ones cross the DS only once
and red for more than two for reflected one.

the past DS where transmitted trajectories recross the PSS twice compared to reflected

trajectories with one time crossing.

The emergence of nonreactive droplets on the past DS are symmetric to those in forward

DS, as shown in Figure 5.11. These droplets are related to the forward DS in Figure 5.9
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Table 5.1: Crossing numbers. tb and tf refer to backward and forward time
direction respectively. tra refers to transmitted trajectories while ref. refers to
reflected trajectories.

E eV. Input
Max
tra.

Min
tra.

Max
ref.

Min
ref.

Max
time

Min
time

Output

-4.141
t b

16161 2 2 1 1 9.45 0 16168

-4.141
t f

16161 1 1 2 2 9.45 0 16168

-4.0
t f

16134 5 1 6 2 15.5 6.61 18410

-4.15
t f

15037 1 1 0 0 0 0 15037

by time-invariant reversal symmetry. Therefore, not only the collinear periodic orbit F1

causes the appearance of nonreactive droplets but also the mirror image of the F1 has

been involved. These droplets consist of an ensemble of trajectories that are reactive,

as stated by Davis for energy where the TST is exact. However, recrossing detection

shows that these droplets include those trajectories with many time crossing.

Table 5.1 displays the number of crossing for various computed trajectories on the DS

at different energy values. The table shows transmitted and reflected trajectories max-

imum and minimum crossing number and also maximum (minimum) time spent by a

trajectory to cross the dividing surface at each energy value declared. Also, the input

total of trajectories with the total output intersected points are declared. The table also

illustrates a single intersection point for each trajectory propagated forward at lower en-

ergy than the bifurcation threshold. Above that, each transmitted trajectory cross the

PSS once as they propagated forward at E = −4.141 e.V. Contrary to these transmitted

trajectories, reflected trajectories record even times crossing in their future evolution

while it shows either none recrossing at low energy or one time at higher energy when

they are propagated backwards in time. This means that the DS gives an exact TST at

low energy, and the numerical calculation cannot be a reason for the TST failure.
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5.4 Invariant Manifolds of the Collinear Periodic

Orbit

In this section, we will provide a review of theoretical and appreciating the structure

of the stable and unstable manifolds of the collinear periodic orbit F1. As described

in Chapter 4, these manifolds generate a stable intersection on the DS. This section is

self-contained and provides a detailed mathematical discussion and ideas developed by

many participants. However, emphasis focus on the contribution of Poincaré and Smale.

For more details, the reader refers to [102], [66] and Holmes [103] for an excellent review.

Of course, the greatest contribution can be seen in the texts of [104] and [105].

First, we will start by providing a theory developed by Poincaré for the restricted many

problems. His approach is based on geometric and qualitative ideas which were extended

in a topological way by Birkhoff and Smale.

The methods Poincaré used is used to reduce a two dof Hamiltonian system to a time-

dependent system with a single degree of freedom. The procedure contains two main

results, including the Hamiltonian integral and time replaced by timelike coordinate.

Therefore, we will describe the method briefly in general Hamiltonian as follows:

Since the Hamiltonian is time-independent, the derivative with respect to time implies

the Hamiltonian is conservative energy. Therefore, one can solve the Hamiltonian for one

coordinate as a function of the constant energy h and the remaining three coordinates

as:

p1 = p1(q1, q2, p2;h). (5.1)

Then, one can replace the time by other coordinates say q1. So, the coordinate q1

becomes a time-like independent variable. In this way, time is eliminated in favour of

q1, but it can reproduce after solving the reduced system. Thus, we retain the geometry

of the solution, and the solution can be seen in terms of the dependent variables q2 and

p2, the constant energy and the independent variable q1.
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Now, we can write the reduced Hamiltonian system in terms of the new independent

variable and use p1 from 5.1 in order to have the reduced Hamiltonian system as follows:

dq2
dq1

= g(q2, p2; q1;h)

dp2
dq1

= f(q2, p2; q1;h). (5.2)

Clearly, the original Hamiltonian system is reduced to a q1-dependent , single degree of

freedom system. Since the new system is Hamiltonian,

Ĥ := −p1(q2, p2; q1;h),

one can solve the reduced Hamiltonian system in order to reproduce the full solution

back up through the definitions.

Now, we shall submit these definitions to our collinear Hamiltonian system and define a

proper crossing surface of section in order to use for the discovery of asymptote manifolds

associated with the periodic orbit F1.

5.4.1 The Un/Stable Manifolds

In this section, we will appreciate the structure formed by the manifolds of F1, which

help to understand the dynamic on the energy surface by means of a surface of section.

As explained in the literature, invariant manifolds are cylinders on the energy surface.

These cylinders are of codimension one of the energy surface, and if they intersect with

the surface of section, they will produce lines divided the energy surface into two disjoint

parts. However, if stable and unstable manifolds of F1 do intersect, they do not act as

separatrix or barrier because flux will flow across them from one cylinder to another

one. This situation is understood as nonreactive trajectories appeared on the DS while

some transmitted ones have to recross the DS many times at higher energy shown in

Chapter 4.
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In general, the linear approximation suggests how to approximate the stable intersection

generated by the stable manifold of F1 in equation (4.1). One may reverse the simulation

in order to determine the stable manifold. This can be followed by propagating trajec-

tories of the linearization of the hyperbolic point x∗ ∈ F1 in the forward time direction

in order to across a proper surface of section defined below.

Ultimately, we require to define a crossing sectional surface that is transverse to the flow

of the collinear system and then intersected by all trajectories such that the Hamiltonian

is smooth. Note that, an attempt to separate rotational from vibrational dof will result

in vibrational phase space as explained in Chapter —refChapter3. Therefore, single dof

Hamiltonian is not going to be efficient and may break the smoothness condition of the

map–P . As a result, we will solve the full system in order to retain the global manifolds

from the map at a fixed point.

Let us define the surface of section by pr = 0, ṗr > 0 and construct a return map P

associated with the first intersection in the following setting: every point (x, px) on the

map has been chosen such that r is a solution to the Hamiltonian function

H(0, px, r, x) = E

whereas the energy is conserved and x = x∗. These points can be counted as the first

intersection on the surface. By choosing pr > 0, every point (x, px) is mapped to the

next intersection with solution at T time step, (pr(T ), px(T ), r(T ), x(T )) in forward time

direction to determine the unstable manifold and vice versa for the stable manifold of

F1. These points are expected to intersect the surface of the section in orders because

the energy is fixed.

Figure 5.12 shows these (second) intersections are easy to observe in the forward time

direction. The backward time direction can be obtained by applying time-reversal in-

variance symmetry to the result obtained by the forwards or to the initial conditions

with negative momenta and then propagate them in backwards as the second iteration

counted. Clearly, that first intersection assumed to be on the return map constructed
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Figure 5.12: Phase space regions divided by the stable W s(x∗) and unstable
W u(x∗) manifolds of F1 as shown magenta for backwards and blue for forwards
calculations.

and the second intersection observed when the trajectories return by the map P in for-

ward time for the unstable manifold and backwards for the stable one. This Figure also

shows these intersection points on both manifolds asymptote to the fixed point.

If the Hamiltonian is autonomous and the flow is reversible, the return map P−1 can be

obtained.

If the system is periodic in p1, then the trajectory returns to the surface S at a point

say s after time 2π. In this way, the flow of the dynamical system can be studied under

the Hamiltonian Ĥ to a study of a discrete Poincaré map, P : S → S.

If the Hamiltonian Ĥ is smooth, then the map P will be orientation preserving. Because

the flow under Ĥ is Hamiltonian and preserve volume, the area is preserved by the mapP .

When aperiodic orbit returns to the surface, it will intersect the surface in a single point.

This is the fixed point of the map P such that P (p) = p. Determining the stability of P

is under the iteration of the map. Then, one can compute the linearization of the map

at a fixed point. Thus, the linearization is a linear map to itself under DP (p) which is
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the monodromy matrix. If their eigenvalues such that

|λs| < 1 > |λu|,

Then, the fixed point is hyperbolic. Assume we define the linear spaces, Es and Eu by

computing the eigenvectors associated with eigenvalues of the monodromy matrix of a

hyperbolic point. Thus, the linear spaces are invariant under the flow of the linearisa-

tion map, DP (p). The stable manifolds theorem for maps stats that, there exist local

invariant manifolds W s
loc and W u

loc, in a neighbourhood of p of the fully nonlinear map.

The local manifolds are tangential to the linear spaces at p and as smooth as the P–map.

Finally, iterating points on each of the local manifolds reveal the global unstable and

stable manifolds.

Clearly, these approximated manifold associated with the hyperbolic point, cannot self–

intersect, otherwise, the P–map will not be smooth. However, the two asymptotic

manifolds may intersect each other in the so-called homoclinic point. In this situation,

a single homoclinic point implies infinity many intersections because it lies on both

manifolds. Repeated iteration of the map reveals an infinite number of intersections.

Geometrically, we start to envision that the unstable manifold of F1 will intersect with

the stable manifold of F1 as the points of intersection asymptote toward the periodic

point. The resulting dynamics coincide with Smale’s horseshoe map [106] where the

unstable manifold have to extend back across the stable manifold which shrinks back

asymptote to the periodic points. Similarly, the stable manifold will have to double

back across the unstable manifold in the backward time since the map is orientation

preserving.

Another way is to linearise the full system by generating an ensemble of trajectories using

the identity given in (4.1) and propagate them backwards in time to across the surface

of section similar to that used for the P–map. Every point on the linear approximation

will be mapped to intersect the surface of the section in backward time direction for the

asymptotic stable manifold of the periodic point, similarly for the asymptotic unstable

manifold of F1. Figure 5.13 shows the stable and unstable manifolds of the linearization
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Figure 5.13: The un/stable manifolds of F1 are presented by the linear ap-
proximation where W s(x∗) represent the stable manifold of F1 and W u(x∗) refer
to the unstable manifold similar to what the return map does.

of the periodic point. The critical point is that the linearization preserves the structure

as the map P does.



Chapter 6

Conclusion

In this thesis, we have discussed the phase space structure of the collinear hydrogen

reaction. Though, the phase space structure is already investigated at low energy for

such reaction, that the system must pass through the symmetric stretch periodic or-

bit which represents the DS separating reactants from products region, the transition

structure remains unclear at higher energy where the dynamics transit to chaos. This

study is an extension to a recent work of Allahem [41] particularly because of the simple

configuration to the hydrogen reacted on the Porter–Karplus potential energy surface.

His approach is based on the stable manifold of the collinear periodic orbit F1 which

intersects the DS and bounds the main nonreactive layer emerged on the DS at a partic-

ularly high energy. It should also state that the present approach can generate a result

with much better agreement with reactive islands simulation and provide boundaries for

various nonreactive layers on all versions of the forward DS. These layers arise on the

backward DS and can be bounded by the symmetric stable and unstable intersections

easily as on all investigated versions of the forward hemispheres.

Though, the previous work provides an important pathway and insight guide to current

study, All attempts in here have employed similar techniques and ideas used also in

nonlinear dynamics. The present approach yields much better understanding than most

recent approaches centred in the DS. Neither the theory of manifold nor computer power

was adequate to explore the phase space structure cause the system to be more chaotic.

86
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It should also state that those are the manifolds associated with the additional periodic

orbit lie in the collinear system. With the help of previous work, we figure out those

manifolds associated with a couple of symmetric additional periodic orbits, which led

the nonreactive droplets opened up in the forward hemisphere of the DS. Those are

the stable manifold in the product side and the unstable manifold of the mirror image

periodic orbit in the reactant region.

In the collinear reaction, the methods require more effort and time to implement such

manifolds. Therefore, we make use of the symmetry inherited in the system to find one

by another. It should also state that the intersection of stable and unstable manifolds

of the collinear unstable orbit yields chaotic behaviour by means of chaotic scattering,

discussed in Chapter 5. Reactive islands and linear approximation methods are merged

to understanding and bounding such nonreactive droplets in the DS. All methods used

a proper Poincaré surface of sections based on our purpose and the location of the

symmetric stretch periodic orbit. Recrossing issues are recognised at the DS at higher

energies while at low energy shows one-time crossing. It shows numerical calculation

cannot be a reason for nonreactive IC’s appeared on the DS. It should state that it is

better to locate the surface of section far away from the region of complexity where those

involved collinear orbits invalidated the calculation.

In this thesis, we showed the stable and unstable manifolds of the additional periodic

orbit which must cause the TST to break in phase space. Our representation is based

on the latest knowledge that they are intersecting each other before even crossing the

DS and leading the system to be more chaotic. In fact, these results make it obvious

in order to explicit the long-sought structure for the 2 dof system inherited symmetry

property. It should state that only the stable manifold of the F1 change the structure

of the forward hemisphere while the unstable manifold of the mirror image F ′1 cause

the nonreactive droplets to appeared on another version of the forward hemisphere. It

should note that linear approximation is carefully agreed with P -map generating IC’s

in the vicinity of F1 and propagated forward or backwards to across a surface of section

for appreciating both manifolds.
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This research has raised interesting questions for both theoretical and applied reaction

disciplines. Some of them are anticipated and discussed in the last section 5.4 of Chapter

5 in order to present such manifolds. It would be extremely important to find a good

normal form approximation for representing the intersected manifolds in the case of

symmetric systems. Some useful information can be taken up in future work to extend

the present idea to even higher energies values in the current collinear hydrogen ex-

change reaction or the full system with three degrees of freedom. Naturally, it would be

reasonable to know whether our idea and attempts can be used to study other reactive

systems with asymmetric configuration.



Bibliography

[1] W. H. Miller. Spiers memorial lecture: Quantum and semiclassical theory of

chemical reaction rates. Faraday Discuss. Chem. Soc., 110:1–21, 1998. doi: 10.

1002/9780470141601.ch35. URL http://dx.doi.org/10.1002/9780470141601.

ch35.

[2] W. H. Miller. Beyond transition-state theory: a rigorous quantum theory of

chemical reaction rates. Acc. Chem. Res., 26(4):174–181, 1993. doi: 10.1021/

ar00028a007. URL http://pubs.acs.org/doi/abs/10.1021/ar00028a007.

[3] Holger Waalkens, Roman Schubert, and Stephen Wiggins. Wigner’s dynamical

transition state theory in phase space: classical and quantum. Nonlinearity, 2007.

[4] William H Miller. “direct” and “correct” calculation of canonical and microcanon-

ical rate constants for chemical reactions. The Journal of Physical Chemistry A,

1988.

[5] Gabor Jancso and W Alexander Van Hook. Condensed phase isotope effects.

Chemical Reviews, 74(6):689–750, 1974.

[6] AR Ubbelohde and KJ Gallagher. Acid-base effects in hydrogen bonds in crystals.

Acta Crystallographica, 8(2):71–83, 1955.

[7] Samuel Glasstone, Henry Eyring, and Keith J Laidler. The theory of rate processes.

McGraw-Hill, 1941.

[8] J Hirschfelder, Henry Eyring, and Nathan Rosen. I. calculation of energy of h3

molecule. The Journal of Chemical Physics, 1936.

89

http://dx.doi.org/10.1002/9780470141601.ch35
http://dx.doi.org/10.1002/9780470141601.ch35
http://pubs.acs.org/doi/abs/10.1021/ar00028a007


Bibliography 90

[9] George E Kimball and John G Trulio. Quantum mechanics of the h3 complex.

The Journal of Chemical Physics, 1958.

[10] SF Boys and I Shavitt. A fundamental calculation of the energy surface for the

system of three hydrogen atoms. NTIS, Springfield, VA, AD212985, 1959.

[11] F. London. Zur Theorie und Systematik der Molekularkräfte. Zeitschrift für
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[58] A. Tiyapan and C. Jaffé. Classical atom-diatom scattering: Self-similarity, scaling

laws, and renormalization. J. Chem. Phys., 99(4):2765–2780, August 1993. doi:

10.1063/1.465185. URL http://link.aip.org/link/JCP/99/2765/1.
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[88] Krajňák V. Phase Space Geometry and Invariant Manifolds Underlying Reaction

Dynamics. PhD thesis, University of Bristol, 2017.

[89] C. C. Marston and N. De Leon. Reactive islands as essential mediators of uni-

molecular conformational isomerization: A dynamical study of 3-phospholene.

http://dx.doi.org/10.1103/RevModPhys.69.213
http://dx.doi.org/10.1103/RevModPhys.69.213
http://link.aps.org/doi/10.1103/PhysRevA.58.3705
http://link.aps.org/doi/10.1103/PhysRevA.58.3705
http://dx.doi.org/10.1134/S1560354710010016
http://dx.doi.org/10.1134/S1560354710010016
http://link.aip.org/link/JCP/71/2062/1
http://link.aip.org/link/JCP/72/1669/1


Bibliography 99

J. Chem. Phys., 91(6):3392–3404, 1989. doi: 10.1063/1.456914. URL http:

//link.aip.org/link/JCP/91/3392/1.

[90] N. De Leon and C. C. Marston. Order in chaos and the dynamics and kinetics

of unimolecular conformational isomerization. J. Chem. Phys., 91(6):3405–3425,

1989. doi: 10.1063/1.456915. URL http://link.aip.org/link/JCP/91/3405/1.

[91] Cleve B Moler. Experiments with MATLAB. Society for Industrial and Applied

Mathematics, 2011.

[92] Ying-Cheng Lai and Tamás Tél. Transient chaos: complex dynamics on finite

time scales. Springer Science & Business Media, 2011.

[93] Edward Ott. Chaos in dynamical systems. Cambridge university press, 2002.

[94] Charles Jean Joachain. Quantum collision theory. 1975.

[95] CC Rankin and William H Miller. Classical s matrix for linear reactive collisions

of h+ cl 2. The Journal of Chemical Physics, 55(7):3150–3156, 1971.

[96] Kiyohiko Someda, Ramakrishna Ramaswamy, and Hirok Nakamura. Decoupling

surface analysis of classical irregular scattering and clarification of its icicle struc-

ture. The Journal of chemical physics,AIP, 1993.

[97] Siegfried Bleher, Celso Grebogi, and Edward Ott. Bifurcation to chaotic scattering.

Physica D: Nonlinear Phenomena, 1990.

[98] Christof Jung and Peter H Richter. Classical chaotic scattering-periodic orbits,

symmetries, multifractal invariant sets. Journal of Physics A: Mathematical and

General, 1990.

[99] David K Campbell. Chaos/xaoc. soviet-american perspectives on nonlinear sci-

ence. Chaos/XAOC. Soviet-American perspectives on nonlinear science., by

Campbell, DK. American Institute of Physics, New York, NY (USA), 1990, 512

p., ISBN 0-88318-778-7,, 1990.

[100] Ying-Cheng Lai, Tamás Tél, and Celso Grebogi. Stabilizing chaotic-scattering

trajectories using control. Physical Review E, 1993.

http://link.aip.org/link/JCP/91/3392/1
http://link.aip.org/link/JCP/91/3392/1
http://link.aip.org/link/JCP/91/3405/1


Bibliography 100

[101] R Guantes, F Borondo, and S Miret-Artés. Periodic orbits and the homoclinic

tangle in atom-surface chaotic scattering. Physical Review E, 56(1):378, 1997.

[102] John Guckenheimer and George Buzyna. Dimension measurements for geostrophic

turbulence. Phys. Rev. Lett., 51:1438–1441, 1983.

[103] John Guckenheimer and Philip Holmes. Nonlinear oscillations, dynamical systems,

and bifurcations of vector fields, volume 42. Springer Science & Business Media,

2013.
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