

Semi-Automatic Assessment of

Students’ Graph-Based Diagrams

By

Firat Batmaz, BSc MSc

A Doctoral Thesis

Submitted in partial fulfillment of the requirements

for the award of

Doctor of Philosophy of Loughborough University

September 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288351887?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Diagrams are increasingly used in many design methods, and are being taught in a

variety of contexts in higher education such as database conceptual design or

software design in computer science. They are an important part of many

assessments. Currently computer aided assessments are widely used for multiple

choice questions. They lack the ability to assess a student’s knowledge in a more

comprehensive way, which is required for diagram-type student work. The aim of

this research is to develop a semi-automatic assessment framework, which enables

the use of computer to support the assessment process of diagrammatic solutions,

with the focus of ensuring the consistency of grades and feedback on solutions. A

novel trace model, that captures design traces of student solutions, was developed as

a part of the framework and was used to provide the matching criteria for grouping

the solutions. A new marking style, partial marking, was developed to mark these

solution groups manually. The Case-Based Reasoning method is utilised in the

framework to mark some of the groups automatically. A guideline for scenario

writing was proposed to increase the efficiency of automatic marking. A prototype

diagram editor, a marking tool and scenario writing environment were implemented

for the proposed framework in order to demonstrate proof of concept. The results of

experiments show that the framework is feasible to use in the formative assessment

and it provides consistent marking and personalised feedback to the students. The

framework also has the potential to significantly reduce the time and effort required

by the examiner to mark student diagrams. Although the constructed framework

was specifically used for the assessment of database diagrams, the framework is

generic enough to be used for other types of graph-based diagram.

Keywords: Computer Aided Assessment, Traceability, Self-Explanation Systems,

Case-Based Reasoning, Online Assessment, and Graph-Based Diagrams.

Dedication

 i

To My Mother, Samiha

My Father, Osman

My Mother in Law, Khairun Nisa

My Dear Wife, Salima

and My Son, Siraj

 ii

ACKNOWLEDGMENTS

I would like to express my full indebtedness to my supervisor Prof. Dr. Chris Hinde,

who accepted me as his PhD student. Without his care regarding every aspect of my

PhD studentship, the conversations that clarified my thinking, his friendship and

professional collaboration as well as his kind encouragement, this thesis would not

have been possible.

I am particularly grateful to Dr. Roger Stone, Prof. Dr. Paul Chung and Dr. Iain

Phillips for their invaluable help and contributions.

I wish to thank my dear friends Prof. Dr. Serpil Acar, Dr. Murat Ceren and Dr.

Volkan Esat gratefully for their never-ending support and fellowship. I would also

like to extend my sincere thanks to my friends and colleagues Prof. Ray Dawson, Dr.

Lin Guan , Dr. Mark Withall, Dr. Sinan Eroglu, Dr. Senay Mihcin, Dr. Ana Salagean, Dr

Eran Edirisinghe, Dr. Waad Yousif, Jeff Pitchers, Satish Bedi, Jo McOuat, Judith Poulton,

Patrick Holligan, Sherri Booth, Christine Bagley, Sussi Maguire and all other friends in

Loughborough.

I would also like to thank my dear friends Rauf Kasapoglu, Fatih Kahraman, Dr. Cem

Erbil, Dr. Sirri Demirsoy, Ali Riza Arslan and all other friends in London.

Last, but not least, I am utmost grateful to my wife, Salima, and my family, for their

invaluable understanding, endless support, patience, and love.

Table of Contents

 iii

TABLE OF CONTENTS

CHAPTER 1 OVERVIEW .. 1

1.1 INTRODUCTION ... 1

1.2 AIM AND OBJECTIVES .. 1

1.3 APPROACH .. 2

1.4 CONTRIBUTION ... 3

1.5 THESIS ORGANISATION .. 4

CHAPTER 2 LITERATURE REVIEW: AUTOMATIC ASSESSMENT FOR

DIAGRAMMATIC SOLUTIONS ... 7

2.1 INTRODUCTION ... 7

2.2 COMPUTER AIDED ASSESSMENT ... 8

2.2.1 AUTOMATED ASSESSMENT TYPES... 11

2.2.2 AUTOMATIC ASSESSMENT OF DIAGRAM-TYPE SOLUTIONS ... 15

2.2.3 SUMMARY OF AUTOMATIC ASSESSMENT .. 16

2.3 ENTITY RELATIONSHIP DIAGRAM .. 18

2.3.1 QUESTION TYPES... 19

2.3.2 EXTENSION OF ERDS .. 19

2.3.3 COMMON USAGE ... 19

2.3.4 DESIGN SKILLS .. 20

2.4 CURRENT AUTOMATIC ERD ASSESSMENT RESEARCH .. 20

2.4.1 DEAP .. 20

2.4.2 DATSYS .. 21

2.4.3 VLE-ERM .. 21

2.4.4 KERMIT ... 22

2.4.5 SUMMARY OF THE CURRENT RESEARCH ... 23

2.5 SUMMARY ... 24

CHAPTER 3 A NEW SEMI-AUTOMATIC DIAGRAM ASSESSMENT

FRAMEWORK ... 26

3.1 INTRODUCTION ... 26

3.2 MANUAL DIAGRAM ASSESSMENT PROCESS ... 26

Table of Contents

 iv

3.2.1 CHALLENGES IN EACH STAGE ... 28

3.3 SEMI-AUTOMATIC DIAGRAM ASSESSMENT ... 33

3.3.1 MARKING PROCESS ... 33

3.3.2 IDENTICAL SEGMENTS .. 37

3.3.3 AUTOMATION ... 41

3.3.4 SCENARIO AUTHORING PROCESS .. 44

3.4 SUMMARY ... 45

CHAPTER 4 DESIGN TRACE MODEL ... 46

4.1 INTRODUCTION ... 46

4.2 TRACE DEFINITION .. 46

4.2.1TRACE ENTITIES .. 47

4.2.2 RELATIONSHIPS TO BE TRACED .. 50

4.3 TRACE PRODUCTION .. 58

4.3.1 OFF-LINE PRODUCTION ... 58

4.3.2 SR RELATIONSHIPS PRODUCTION ... 59

4.3.3 E-RELATIONSHIPS PRODUCTION ... 60

4.3.4 ON-LINE PRODUCTION .. 62

4.3.5 SR RELATIONSHIPS PRODUCTION ... 62

4.3.6 ONLINE E-RELATIONSHIP PRODUCTION .. 65

4.3.7 SELF-EXPLANATIONS .. 67

4.4 DESIGN TRACE MODEL .. 67

4.5 SUMMARY ... 69

CHAPTER 5 MARKING PROCESS MODEL .. 70

5.1 INTRODUCTION ... 70

5.2 AUTOMATIC PARTIAL MARKING ... 70

5.2.1 BASIC CASE DEFINITION, CORRESPONDENCE LINKS AND REFERENCE DIAGRAMS 71

5.2.2 EXAMPLES OF AUTOMATIC MARKING ... 73

5.2.3 CASE CATEGORIES AND GENERIC CASE DEFINITION ... 76

5.2.4 GENERIC CASE GENERATION .. 78

5.3 SIMILAR SCENARIO TEXT .. 79

5.3.1 STATEMENT TYPES ... 79

5.3.2 WRITING STATEMENTS ... 83

5.3.3 SCENARIO SECTION .. 85

Table of Contents

 v

5.3.4 WRITING SIMILAR SCENARIO TEXT ... 87

5.4 A COMPLETE PROCESS MODEL FOR DIAGRAM MARKING .. 89

5.5 SUMMARY ... 91

CHAPTER 6 DESIGN AND IMPLEMENTATION ... 93

6.1 INTRODUCTION ... 93

6.2 DIAGRAM EDITOR .. 93

6.2.1 REQUIREMENTS .. 94

6.2.2 COMPONENTS OF THE EDITOR ... 95

6.2.3 A DIAGRAM DRAWING EXAMPLE .. 98

6.3 MARKING TOOL ... 101

6.3.1 REQUIREMENTS .. 101

6.3.2 COMPONENTS OF MARKING ENVIRONMENT ... 103

6.4 AUTHORING TOOL ... 105

6.4.1 REQUIREMENTS FOR THE TEACHER DIAGRAM EDITOR ... 106

6.4.2 REQUIREMENTS FOR THE SCENARIO TEXT WRITER ... 106

6.4.3 COMPONENTS OF THE SCENARIO TEXT WRITER .. 108

6.5 COMPLETE SYSTEM OVERVIEW .. 111

6.6 SUMMARY ... 113

CHAPTER 7 EMPIRICAL EVALUATION .. 115

7.1 INTRODUCTION ... 115

7.2 SCENARIO WRITING ENVIRONMENT .. 116

7.2.1 PROVISIONS OF THE EXPERIMENT ... 116

7.2.2 RESULTS OF THE EXPERIMENT .. 118

7.2.3 POSSIBLE IMPROVEMENTS FOR THE WRITING ENVIRONMENT 119

7.3 DIAGRAM EDITOR ... 119

7.3.1 PROVISIONS OF THE EXPERIMENTS ... 119

7.3.2 THE EXPERIMENTS .. 120

7.3.3 RESULTS OF THE EXPERIMENTS .. 121

7.3.4 ANALYSIS OF ENTITY NAMES IN THE EXPERIMENTS ... 125

7.4 MARKING TOOL ... 126

7.4.1 GROUPING STAGE AND INTERPRETING THE RESULTS ... 127

7.4.2 AUTOMATIC COMPONENT MARKING ... 131

7.4.3 PARTIAL MARKING .. 132

Table of Contents

 vi

7.4.4 PROVISIONS OF THE EXPERIMENT ... 137

7.4.5 RESULTS OF THE EXPERIMENT .. 137

7.4.5 FULL MARKING ... 138

7.4.6 NAMING AMBIGUITY ... 138

7.5 THE SEMI-AUTOMATIC ASSESSMENT TOOL. ... 140

7.5.1 USING THE TOOL AND RESULTS .. 142

7.6 SUMMARY ... 143

CHAPTER 8 CONCLUSIONS AND FUTURE WORK .. 146

8.1 INTRODUCTION ... 146

8.2 THESIS REVIEW .. 146

8.3 SUMMARY OF CONTRIBUTIONS ... 149

8.4 LIMITATIONS AND FUTURE DIRECTIONS .. 151

8.4.1 MARKING BASED ON DESIGN TRACES ... 151

8.4.2 HANDLING MULTIPLE GRAPH-BASED DIAGRAM TYPES .. 152

8.4.3 FEEDBACK GENERATION ... 152

8.4.4 USER INTERFACE DESIGN .. 152

8.4.5 DEEP-KNOWLEDGE ASSESSMENT TOOL .. 152

8.4.6 EXTENSIONS TO THE GUIDELINE OF WRITING SCENARIO TEXT 153

8.4.7 NEW APPLICATION AREAS OF THE PARTIAL MARKING STYLE 153

8.5 OVERALL CONCLUSION ... 153

REFERENCES .. 155

APPENDIX A .. 166

APPENDIX B ... 175

APPENDIX C .. 191

APPENDIX D .. 199

APPENDIX E ... 203

PUBLICATIONS ... 217

Table of Contents

 vii

List of Tables

 viii

LIST OF TABLES

TABLE 2.1 ASSESSMENT QUALITIES ACCORDING TO BROWN ET AL (2002) 10

TABLE 3.1 COMPONENTS FROM STUDENT DIAGRAMS 35

TABLE 5.1 CATEGORY OF GENERIC CASES 76

TABLE 7.1 NUMBER OF PARTICIPANTS IN EACH EXPERIMENT 121

TABLE 7.2 STUDENT ENTITY NAME FOR THE EXPERIMENT 1 OUT OF 20 DIAGRAMS 122

TABLE 7.3 STUDENT DIAGRAM COMPONENTS PRODUCED IN THE EXPERIMENT 2 123

TABLE 7.4 STUDENT ENTITY NAMES FOR THE EXPERIMENT 2 125

TABLE 7.5 COMPONENTS OF SOLUTION DIAGRAMS FOR SCENARIOS IN SECTION 2 128

TABLE 7.6 GROUPS OF STUDENT DIAGRAM COMPONENTS 128

TABLE 7.7 DIVERSITY IN STUDENT SOLUTIONS FOR EACH SCENARIO 130

TABLE 7.8 TEACHER DIAGRAM COMPONENTS 131

TABLE 7.9 AUTOMATICALLY MARKED COMPONENTS 132

TABLE 7.10 COMPONENT GROUPS FOR PARTIAL MARKING 133

TABLE 7.11 SUMMARY OF DIAGRAM MARKING FOR TWO SCENARIOS 142

TABLE B.1 THE LIST OF NOUN PHRASES FOR SCENARIO 1 176

TABLE B.2 THE LIST OF THE NOUN PHRASES FOR SCENARIO 2 180

TABLE B.3 THE LIST OF THE NOUN PHRASES FOR SCENARIO 3 184

TABLE B.4 THE LIST OF THE NOUN PHRASES FOR SCENARIO 4 188

TABLE C.1 DIAGRAM SOLUTIONS FOR SCENARIO 1 191

TABLE C.2 DIAGRAM SOLUTIONS FOR SCENARIO 2 193

TABLE C.3 DIAGRAM SOLUTIONS FOR SCENARIO 3 195

TABLE C.4 DIAGRAM SOLUTIONS FOR SCENARIO 4 197

 ix

LIST OF FIGURES

FIGURE 1.1 THE STRUCTURE OF THE THESIS ... 6

FIGURE 2.1 BLOOM’S TAXONOMY... 9

FIGURE 3.1 ASSESSMENT PROCESS CYCLE ... 27

FIGURE 3.2 DIRECT AND INDIRECT RELATIONSHIPS BETWEEN STAGES 32

FIGURE 3.3 SAMPLE SCENARIO TEXT FOR THE DATABASE DESIGN 34

FIGURE 3.4 PARTIAL MARKING PROCESS .. 36

FIGURE 3.5 ENTITY NAME AMBIGUITY .. 38

FIGURE 3.6 ENTITY MATCHING IN KERMIT .. 39

FIGURE 3.7 CONCEPTUAL DATABASE DESIGN IS AN ITERATIVE PROCESS 40

FIGURE 3.8 THE CBR CYCLE (ADAPTED FROM AAMODT & PLAZA, 1994) 42

FIGURE 3.9 THE PARTIAL MARKING CYCLE ... 43

FIGURE 4.1 GRANULARITY LEVEL EXAMPLES FOR DATABASE DIAGRAMS 48

FIGURE 4.2 DIFFERENT GRANULARITY MAPPING .. 49

FIGURE 4.3 REPRESENTATION RELATIONSHIPS IN REQUIREMENTS DOCUMENTS 51

FIGURE 4.4 SCENARIO REFERENCE LINK... 52

FIGURE 4.5 EVOLUTION AND SR LINKS FOR A COMPONENT .. 54

FIGURE 4.6 EVOLUTION AND SR LINKS FOR MULTIPLE COMPONENTS 55

FIGURE 4.7 EXTRACT ACTION FOR A COMPONENT. ... 56

FIGURE 4.8 TERMINOLOGICAL ITEMS (CERBAH AND EUZENAT, 2001) 60

FIGURE 4.9 SCENARIO REFERENCE AND COMPONENT CORRESPONDENCE LINK 61

FIGURE 4.10 COMPONENTS REFERENCE DIAGRAMS .. 65

FIGURE 4.11 DESIGN TRACE MODEL ... 68

FIGURE 5.1 ASSESSMENT CASE DEFINITION. .. 72

FIGURE 5.2 FINDING IDENTICAL REFERENCE DIAGRAMS .. 73

FIGURE 5.3 AUTOMATIC COMPONENT MARKING WITH AN IDEAL REFERENCE

DIAGRAM .. 74

FIGURE 5.4 PARTIAL SCENARIO REFERENCE MATCHING ... 75

FIGURE 5.5 USAGE OF GENERIC CASES .. 77

FIGURE 5.6 GENERIC CASE GENERATION .. 78

FIGURE 5.7 EXAMPLES OF STATEMENT TYPE .. 80

FIGURE 5.8 COMPONENT REFERENCE DIAGRAMS .. 81

FIGURE 5.9 LONG COMPONENT REFERENCE DIAGRAM .. 82

FIGURE 5.10 SENTENCE CONSTRUCT EXAMPLE .. 84

FIGURE 5.11 CONVERT ALTERATION EXAMPLE .. 84

FIGURE 5.12 TWO WRITTEN STYLE OF SCENARIO TEXT FOR THE SAME SYSTEM 86

 x

FIGURE 5.13 SCENARIO TEMPLATE EXAMPLE ... 88

FIGURE 5.14 STATEMENT TEMPLATES AND SENTENCE CONSTRUCTS 89

FIGURE 5.15 MARKING PROCESS MODEL .. 90

FIGURE 6.1 DIAGRAM EDITOR .. 96

FIGURE 6.2 SAMPLE SCENARIO TEXT ... 99

FIGURE 6.3 THE INITIAL DIAGRAM ... 100

FIGURE 6.4 "SPLIT" FUNCTION .. 100

FIGURE 6.5 THE USER INTERFACE OF THE FULL MARKING ... 103

FIGURE 6.6 THE USER INTERFACE OF THE PARTIAL MARKING .. 105

FIGURE 6.7 PLAN PAGE EXAMPLE ... 108

FIGURE 6.8 SECTION PAGE EXAMPLE ... 109

FIGURE 6.9 PRODUCTION PAGE EXAMPLE .. 110

FIGURE 6.10 SYSTEM VIEW OF SEMI-AUTOMATIC ASSESSMENT.. 112

FIGURE 7.1 SPLIT SCENARIO TEMPLATE ... 117

FIGURE 7.2 MAPPING A MERGED ENTITY TO AN ENTITY IN IDEAL DIAGRAM 136

FIGURE 7.3 MAPPING A SPLIT ENTITY TO AN ENTITY IN IDEAL DIAGRAM 136

FIGURE 7.4 INCONSISTENCY IN MARKING STYLES .. 138

FIGURE 7.5 THE USER INTERFACE OF THE DIAGRAM EDITOR ... 141

FIGURE 7.6 A STUDENT DIAGRAM WITH FEEDBACK (STONE ET AL. 2009) 141

FIGURE A.1 PLAN PAGE 1 ... 166

FIGURE A.2 SECTION PAGE 2 FOR “EVENT” ENTITY TYPE .. 167

FIGURE A.3 SECTION PAGE 3 FOR “MEMBER” ENTITY TYPE ... 167

FIGURE A.4 SECTION PAGE 4 FOR “HELP” RELATIONSHIP TYPE ... 168

FIGURE A.5 SECTION PAGE 5 FOR “DATE” ATTRIBUTE TYPE ... 168

FIGURE A.6 SECTION PAGE 6 FOR RELATIONSHIP AND ATTRIBUTE TYPES 169

FIGURE A.7 SECTION PAGE 7 FOR RELATIONSHIP TYPE.. 169

FIGURE A.8 SECTION PAGE 8 FOR “FEE” ATTRIBUTE TYPE .. 170

FIGURE A.9 SECTION PAGE 9 FOR THE WHOLE OF THE DIAGRAM 170

FIGURE A.10 PRODUCTION PAGE 10 .. 171

FIGURE B.1 THE SOLUTION OF SCENARIO 1 ... 177

FIGURE B.2 IDEAL REFERENCE DIAGRAMS FOR THE ENTITY COMPONENTS 178

FIGURE B.3 THE SOLUTION OF SCENARIO 2 ... 181

FIGURE B.4 IDEAL REFERENCE DIAGRAMS FOR THE ENTITY COMPONENTS 182

FIGURE B.5 THE SOLUTION OF SCENARIO 3 ... 185

FIGURE B.6 IDEAL REFERENCE DIAGRAMS FOR THE ENTITY COMPONENTS 186

FIGURE B.7 THE SOLUTION OF SCENARIO 4 ... 189

FIGURE B.8 IDEAL REFERENCE DIAGRAMS FOR THE ENTITY COMPONENTS 190

FIGURE D.1 THE RESULT OF QUESTION 1 .. 200

FIGURE D.2 THE RESULT OF QUESTION 2 .. 200

FIGURE D.3 THE RESULT OF QUESTION 3 .. 201

 xi

FIGURE D.4 THE RESULT OF QUESTION 4 .. 201

FIGURE D.5 THE RESULT OF QUESTION 5 .. 202

FIGURE D.6 THE RESULT OF QUESTION 6 .. 202

FIGURE E.1 ENTITY RELATIONSHIP DIAGRAM OF THE DEVELOPED SYSTEM’S

DATABASE .. 204

 xii

ABBREVIATIONS

A-condition : Alteration Condition

CAA : Computer Aided Assessment

CBA : Computer Based Assessment

CBR : Case-Based Reasoning

C-satisfier : Condition Satisfier

E-condition : Existence Condition

ERD : Entity Relationship Diagram/Database Conceptual diagram

E-Relationship : Evolution relationship

IRD : Ideal Reference Diagram

MCQ : Multiple Choice Questions

RD : Reference Diagram

RDG : Reference Diagram Group

SR : Scenario Reference

Chapter 1 Overview

 1

CHAPTER 1

Overview

1.1 Introduction

Diagrams are increasingly used in many design methods, and are being taught in a

variety of contexts in higher education such as database conceptual design or

software design in computer science. They are an important part of many

assessments. Currently computer aided assessments are widely used for multiple

choice questions. They lack the ability to assess a student’s knowledge in a more

comprehensive way, which is required for diagram-type student work. An

increasing number of student diagrammatic solutions require computer assistance in

order to increase the quality of the assessment process.

This chapter gives an introduction to the thesis. It is organised as follows: Section 2

identifies the problem addressed in the thesis and its objectives; Section 3 discusses

the approach adopted to meet these objectives; Section 4 outlines the contributions;

and the thesis organisation is given in Section 5.

1.2 Aim and Objectives

The research aims to develop a semi-automatic assessment framework which enables

the use of a computer to support the assessment process of diagrammatic solutions,

with the focus of ensuring consistency of feedback on the solutions.

Automatic assessment of student diagrammatic solutions is a relatively new field

with around ten years’ history (Thomas et al., 2008). Efforts have been made in

automation of marking student diagrams where different techniques are proposed.

However, the literature review in Chapter 2 shows that full automation of marking

student diagrams has not been successfully achieved yet. This research focuses on a

semi-automatic assessment environment which supports human markers. The

Chapter 1 Overview

 2

outcome of the research may be an intermediate stage for the future fully automatic

systems as well as having immediate practical uses.

During the diagram assessment process, much of the examiners’ time is occupied

with marking student diagrams. They check the student diagrams against ideal

diagram solutions. Computer support can ensure the quality of the diagram

marking. It may also shorten the assessment time and reduce the assessment cost.

Thus, any level of support to this process is useful.

The intention of this work is to provide computer assistance not only to the marking

phase but also to other phases of the current manual diagram assessment process.

The main objective is to reduce or remove as many of the repetitive tasks in any

phase of the process as possible. As the same tasks are performed less (possibly only

once) by the examiners, consistency of grades and feedback on the solutions are

achieved.

The objectives of this research are:

1. To identify the repetitive tasks in the assessment process.

2. To develop techniques to reduce the repetitive tasks or remove them

completely where possible.

3. To develop a novel framework that provides a platform where different

intelligent techniques work together to support the assessment process of

diagrammatic solutions.

1.3 Approach

In order to meet these objectives, the thesis explores three interrelated threads:

 The computer support that is required for diagram marking

 The specialised diagram drawing editor that is required for automation of

marking

 The guidelines that are required for writing questions (scenario text)

Insights achieved from understanding the assessment process of diagrammatic

solutions are used as a basis for the proposal of a new assessment framework. The

repetitive tasks found especially in the marking phase of the process are utilised for

Chapter 1 Overview

 3

the automation. The research employs various techniques in order to increase the

automation of the marking process.

The proposed solution ensures the consistency of the diagram grades and feedback

generated during the marking. It uses a design trace method to match components

of student diagrams with each other and against components of the ideal diagram.

The design trace method gives contextual information about each diagram

component. The usage of design traces for contextual information is studied and

discussed in Chapter 4. A special online trace capturing technique is developed for

the design trace model for use in the diagram assessment. The research also

develops a prototype diagram editor which implements functionalities required for

the trace model.

A new concept of partial marking style is proposed in order to mark student diagram

components, which are grouped by using the trace model. The shortcoming of the

partial marking style is identified and it has been integrated with the full marking

style to avoid the limitation. The partial marking enables the full automatic marking

of the same types of diagram components. Some automation rules are developed for

semi-automatic assessment. The research proposes a prototype marking

environment which implements the functionality required for both partial and full

marking styles.

The semi-automatic approach allows the addition of new rules to the system for the

further automation. The new rules could be gradually extracted from the previous

judgements of the examiner on the student diagrams for the similar problem

scenarios. To speed up the rule extraction, guidelines are suggested for writing

similar text. The similar scenarios also increase the automations since they can use

the existing rules during the marking. The guideline for scenario writing is optional

for the semi-automation approach but it is beneficial for the examiners since it

provides a way to classify the question type.

To assess the proposed approach, several evaluation studies are performed on the

implementation of a prototype diagram and marking editors.

1.4 Contribution

The contributions of this thesis are:

Chapter 1 Overview

 4

 Through the application of assessment in the diagrammatic solution

domain, it has contributed to an enhanced understanding of “semi-

automatic assessment”.

 The proposed framework gives a platform where a variety of

technologies can be used to increase automation of the assessment

process of diagrammatic solution.

 A novel trace model is developed, which captures design traces of

student solutions and enables construction of contextual information of

components.

 A new generic case concept is defined, which enables scalable adaptation

rules. It contributes to the case-based reasoning method by defining a

new way of indexing natural language text, which is a question text

describing the system requirement.

 The novel partial marking style of student diagrams creates a new

research direction in computer aided assessment community.

 A novel process model is developed, which integrates full and partial

marking styles.

 It contributes to the online assessment area by presenting requirements of

a new online diagram marking tool.

 A set of guidelines for writing question text is introduced for

diagrammatic solutions.

1.5 Thesis Organisation

The research mainly focuses on Entity Relationship Diagrams (ERD) out of the

common diagrams taught in Higher Education since it has all the generic properties

of graph-based diagrams, which are composed of nodes joined by edges. Wherever

student diagrams are mentioned in the thesis, they refer to ERD.

This thesis is organised into three parts. Part 1 introduces the problem and the

approach taken. Part 2 describes the development of models required for the semi-

Chapter 1 Overview

 5

automatic assessment framework. Part 3 describes the development and evaluation

of the system.

Part 1: introduction

Chapter 2 gives an introduction to computer aided assessment (CAA) technology,

the characteristics of students’ diagrammatic answers and a review of CAA

applications on diagram-type student works.

Chapter 3 studies the manual diagram assessment process. It identifies the

characteristics of the manual process and outlines the requirements of a CAA system

that is to succeed in supporting the assessment process. It introduces the proposed

framework to address the requirements identified. The components of the

framework are presented and discussed.

Part 2: Development of Models

Chapter 4 introduces a new trace model which is used during diagramming. The

model supports the proposed framework. The chapter discusses trace production

techniques. One of the techniques is adapted to the trace model.

Chapter 5 presents a marking process model which describes the process of the

partial and full marking style. It defines the cases used for automatic marking. It

also gives guidelines for writing similar scenario texts to support the automation.

Part 3: System Development and Evaluation

Chapter 6 describes the design and the implementation of the proposed framework.

The implementation architecture is presented. The new design trace model is used

for the diagramming editor and the marking process model is used for the marking

environment.

Chapter 7 evaluates the developed system. The system is used, first to write

questions, second to assess students online and third to mark students’ work.

Students’ design traces and assessor marks are studied. Marking consistency is

highlighted.

Finally, Chapter 8 concludes the thesis with a summary of contributions, limitations

and future directions.

Figure 1.1 shows the structure of the thesis.

Chapter 1 Overview

 6

Figure 1.1 The structure of the thesis

Chapter 1
Overview

Chapter 2
Literature Review

Chapter 3
A New Assessment

Framework

Chapter 4
Trace Model

Chapter 5
Process Model

Chapter 6
Implementation

Chapter 7
Evaluation

Chapter 8
Conclusions &
Future Work

Analysis of a
conventional diagram
assessment process

Part 1

Part 2

Computer aided
assessments types

Automatic ERD
assessments

Details of the
framework to capture
diagrammatic solutions

Part 3

Details of the
framework to mark the
solutions

Implementation of
three tools for the
framework

Introduction of a new
semi-automatic
assessment framework

Evaluation of the
three tools for the
framework

Chapter 2 Automatic Assessment for Diagrammatic Solutions

 7

CHAPTER 2

Literature Review: Automatic Assessment for

Diagrammatic Solutions

2.1 Introduction

Traditional methods of assessment become difficult to use to undertake effective

assessment and provide students with detailed, personalised and speedy feedback as

the student numbers in Higher Education increase. Additionally, Laurillard (2002)

states there is considerable pressure on higher education institutions to measure

learning outcomes more formally. The growing field of computer aided assessment

(CAA) is a widely acknowledged solution for these assessment issues. Bull and

McKenna (2004) recently defined CAA as ‘the use of computers for assessing

student learning’. CAA usually covers the use of computers in marking,

administering optical mark reading cards.

CAA is being superseded by Computer Based Assessment (CBA), which refers to the

use of computers for the entire assessment process including delivery of the

assessment, administration, and management of the assessment and the provisions

of feedback (King, 1994). Computer-based assessment involves a computer program

marking answers that were entered directly into a computer, whereas optical mark

reading uses a computer to mark scripts originally composed on paper (Conole and

Warburton, 2005). CBA is employed in various subjects for numerous types of

assessment in Higher Education. This chapter presents the background of CBA

usage for diagrammatic solutions, particularly database conceptual diagrams (ERD).

This chapter is the literature review of the thesis. It is dedicated to the basic

understanding of CAA and the available research applications to diagrammatic

solutions. The first section covers the background of CAA and its related issues and

discusses types of assessment. The second section focuses on the assessment of

diagram-type student work and describes the rationale of the research into automatic

Chapter 2 Automatic Assessment for Diagrammatic Solutions

 8

marking of graph diagrams, particularly ER Diagrams. The last section surveys

existing CBA systems for ERD, reporting on past and current research.

2.2 Computer Aided Assessment

Computer Aided Assessment has a history nearly as long as computing itself. The

earliest documented reference for using computers in assessment dates back to 1959

(Hollingsworth, 1960). Most of the initial systems were built for computer science

related subjects. Later on, systems were developed for different fields such as

physics, mathematics and chemistry. During the 1990s, automatic assessment was

used in academia to assess a wider variety of subjects. The studies in the use of CAA

(McKenna 2000; Stephens and Mascia, 1997) report that a significant number of

academics in UK HE employ some form of automatic assessment.

The CAA systems have been employed at various levels of assessment process.

Their use ranges from management of assessment information to capturing student

works and marking them. The marking level is one of the focused areas of the CAA

research. Three different approaches for the automation of the marking process have

been developed. Firstly there is the computer supported approach, where actual

marking is performed by the human and other parts of marking process are

automated (for example, Canup and Shackelford, 1998). Secondly there is a hybrid

approach, where only some part of the actual marking is done by a human (for

example, Mason and Woit, 1999). Lastly there is the fully automatic approach (for

example, Arnow and Barshay, 1999).

Deciding an approach for a CAA system depends on what has to be assessed.

Assessment activities relate to the learning outcomes. Bloom (1956) formulated a

taxonomy of learning outcomes (Figure 2.1). At the lower levels students engage the

subject at surface level. They memorise and recall without a deep understanding of

the material. At the higher level the students obtain and show a deeper

understanding of the material. They can use their knowledge; for example to

criticise, compare or evaluate.

Chapter 2 Automatic Assessment for Diagrammatic Solutions

 9

Figure 2.1 Bloom’s taxonomy

McAlpine (2002) states that assessment of the outcomes at the lower end of Bloom’s

taxonomy traditionally relies on only one ‘correct’ answer whereas, assessment of

higher-order outcomes relies on longer written answers or essays. The automatic

marking of the one ‘correct’ answer can be performed by simple matching algorithms

for any CAA systems. However, automatic assessment for other types of student

response remains a complex task for researchers to examine. Charman and Elmes

(1998) argue that assessment for all types of learning (specifically oral, presentation

and interpersonal skills) can’t be fully automated by using current technologies.

They suggest the employment of hybrid and assisted approaches for the higher

levels.

Brown and Race (1996) list the qualities of assessment in their work. Table 2.1 shows

these assessment qualities. Automating the assessment process potentially supports

most of these qualities. It increases reliability and fairness because the same marking

mechanism is employed to mark each piece of work. It removes the possibility of

discrimination. It forces both students and educators to respect deadlines when

online submission is used. An incremental style of assessment is enabled by

providing detailed feedback to the examiner. For example, the examiner can find out

averages of the student results for each question and they can improve the questions

or teaching methods based on those averages. A variety of methods are used to give

feedback to students. Feedback may state only the grade obtained, illustrate the

incorrect answers or highlight both the student’s strengths and weaknesses and

provide meaningful advice on how to improve upon this. The detailed feedback

enables students to learn from their mistakes and improve themselves.

Chapter 2 Automatic Assessment for Diagrammatic Solutions

 10

Table 2.1 Assessment qualities according to Brown et al (2002)

Valid Accurately assess the delivered material

Reliable Promote consistency between assessors

Fair Offer fair opportunity for success

Equitable Be indiscriminating between students

Formative Give many opportunities to learn through feedback

Well timed Provide learning stimulus and be fair

Incremental Increase reliability and consistency over a period of time

Redeemable Allow a series of opportunities

Demanding Challenge students and ensure high standards

Efficient Be manageable within the constraints of resources

Usage of CAA requires advance planning and some collaboration between teaching,

IT support and administration staff as well as the educational requirements. For

example IT supports deals with authentication and security issues. They need to be

informed and work together which may increase the workload of the examiner.

Additionally, authoring of teaching and assessment material for automatic

assessment takes more time than for traditional methods. However, once the

automatic assessment is set up and fully functioning, it reduces the human resources

required.

Assessment can be categorised as either summative or formative. CAA systems can

be used for both formative and summative purposes. Summative assessment

concentrates on measuring and quantifying the learner’s performance. Formative

assessment provides helpful feedback to the student to enhance learning and

supplies feedback to the educators to adjust the delivery of the material. It enables

personalised learning by selecting the material for assessment from an exercise

Chapter 2 Automatic Assessment for Diagrammatic Solutions

 11

database according to the student’s profile. It supports formulating an accurate

judgement about a student’s achievement.

The CAA research field focuses on the interests of educators from a wide range of

disciplines. Various publications with interdisciplinary topics have been produced.

Pedagogical and practical benefits are commonly perceived. The TLTP3 project

(Bull, 1999) summarises the opinion and finding of the research in this field by

stating that “Computer aided assessment can be used to enhance the student

learning experience, expand assessment processes and potentially provide efficiency

gains for academic and support staff”.

2.2.1 Automated assessment types

Educational assessments use objective or free-response question types. Objective

questions have a single correct answer whereas free-response questions have more

than one correct answer or more than one way of expressing the correct answer

(Brown et al., 1999). There are various types of objective and free-response

questions. Examples of objective question types include true/false, multiple choice,

multiple-response and matching questions. Free-response question types require

essay-type answers, diagrammatic solutions, and program code. This section

discusses these question types from an automatic assessment point of view.

2.2.1.1 Objective questions

The major advantage of objective questions is that the responses to the questions are

suitable for automatic marking. However, objective questions have been

traditionally viewed as a low-level question type, which lacks the ability to assess

higher levels within Bloom’s taxonomy (Pritchett, 1999; Davies, 2002). Simas and

McBeath (1992) argue that by designing appropriate questions, all the six levels of

the taxonomy can be sufficiently tested. Charman and Elmes (1998) support their

argument and found that objective assessment is sufficient to cover the main aspects

of evaluating student learning. Woodford and Bancroft (2005) address the problem

of how multiple choice questions (i.e. MCQ) of the objective assessment can test

higher levels of cognition. They provide a practical checklist to write MCQs for this

purpose.

Chapter 2 Automatic Assessment for Diagrammatic Solutions

 12

A national survey in 1999 into the use of CAA in the UK higher education sector

showed that 84% of computer based assessments use objective assessment (Bull and

Collins, 2002). Boyle et al (2002) states that multiple choice questions are the most

frequently used and the best known question types of objective assessment. The

students are required to select the correct answer or answers from several options.

Simple text and number matching of objective assessment involves completing a

sentence or free entry in response to a question. The response is marked using pre-

defined search strings or numbers. The hotspot graphical approach is to have a

graphic where the student has to select an area or item in response to a question. The

correct response area is defined by the question designer in advance. Bull and

McKenna (2004) states that this graphical interaction gives major advantages to CBA

over other forms of objective assessment since it gives the ability to assess different

levels within Bloom’s taxonomy.

Haladyna, (1997) argues that designing objective questions can be time-consuming

and requires skill and creativity. Duke-Williams and King (2001) suggests that

sufficient care in their construction should be taken. The development cost of

questions is justified by reusing them in the assessment and they are stored in item

banks for this purpose. Mills et al. (2002) and Sclater (2004) have looked at setting

up, maintaining and adapting item banks. Questions in the item banks are classified

according to their difficulty levels. Lilley and Barker (2003) developed an adaptive

assessment system, which uses the difficulty levels of the questions. The system

issues questions of a difficulty level that depends on the student’s previous

responses. If a question is answered correctly then expectation about the student

ability is increased and a more difficult question is given and vice versa.

Many commercial and researched tools have been developed so far, which support

varies types of objective questions. For example, Perception (Question Mark

Computing Ltd, 2004) supports 18 item types and TOIA (2004) supports nine types.

Sclater and Howie (2003) highlight the importance of fulfilment of institutional needs

as well as questions types the CBA systems should have. Boyle and O’Hare (2003)

argue that the lack of an overarching strategy or institutional IT infrastructure is

preventing the educators from more widespread usage of CBA systems.

Chapter 2 Automatic Assessment for Diagrammatic Solutions

 13

2.2.1.2 Free-response questions

Davies (2001) states that there is steady pressure for the use of ‘more sophisticated’

question types in automatic assessment. Free response questions are suitable when

the higher levels of Bloom’s taxonomy need to be assessed, specifically: the

application of knowledge, analysis, synthesis and evaluation. However, the

automation of marking the free responses requires new complex algorithms and

approaches which are much harder than the simple matching algorithm for the

objective questions. A variety of research has been done for automatic marking of

free response questions, such as the computer programs, essays, and diagram type

student works.

2.2.1.2.1 Computer Programs

Computer programming is an increasingly popular activity, not only for computer

science students but also across a large number of other disciplines. CBA systems for

assessment of computer programs are available and used in taught modules. Some

of the CBA systems are still in development stage and researchers are working on

them. Brusilovsky and Higgins (2005) states two categories of CBA systems for

programming: (1) to assess program-tracing skills; (2) to assess program-writing

skills. The first group of systems assess students’ knowledge of programming

language semantics. They present students with a program and students are asked

to trace the program and manually produce its output, such as QuizPACK

(Brusilovsky and Sosnovsky, 2006). The systems then automatically evaluate the

student solutions. They execute the program or the algorithm with the same data

and compare that result with the one entered by the student.

The second group of systems evaluates the student’s ability to write programs. The

systems execute student programs against a set of tests and compare their results

with the results of the teacher or model program. These systems form the majority of

work on automated assessment of programming assignments such as CourseMarker

(Higgins et al. 2003). The marking process of CourseMarker is based on regular

expression-matching of source code and test output, and returns a detailed feedback

breakdown of the success or failure of the student’s work. BOSS (Joy et al. 2005) is

another well-known example of a modern automated program evaluation system as

it performs automatic tests for correctness and quality, checking for plagiarism, and

providing an interface for marking and delivering feedback.

Chapter 2 Automatic Assessment for Diagrammatic Solutions

 14

Researchers have also looked into intelligent programming tutors as well as

automatic assessment tools. Intelligent tutoring systems analyze student answers by

using a range of knowledge-based approaches. They can generate a problem to

assess the student’s knowledge and they provide detailed feedback. The systems

proceed with the next problem that is most relevant to the demonstrated level of

knowledge. They diagnose student answers by using embedded knowledge about

the domain. An example is SQL-Tutor (Mitrovic, 2003), which diagnoses student

errors in solving SQL programming problems by using a set of domain constraints.

A knowledge-based analysis typically allows intelligent tutors to achieve a

significantly better “understanding” of student answers and to provide extensive

feedback for incorrect or suboptimal answers.

2.2.1.2.2 Essay-type work

CBA systems for assessments of essay-type works are not commonly used in real

educational environments, unlike programming assessment. The systems are still in

the research stage with few practical applications. Among free response assessment,

the automatic marking of essay-type solutions has attracted significant research

interest for the last forty years (Tsintsifas, 2002).

Williams (2001) states four conceptual models for automated essay grading described

in the literature. The first model mainly relied on linguistic features of the model

solution to return a mark (Page, 1966). Linguistic features include attributes such as

the number of words, the average sentence length, the amount of punctuation and

many other syntactical characteristics. It suggests that the features of an essay could

be used to predict the mark that a human examiner would assign to the essay.

The second model uses a hybrid approach of combining linguistic features with

structural features of a document (Burstein, 1998). The third model ignores

document linguistic and structural features and uses Latent Semantic Analysis and

the "bag of words" approach (Landauer et al, 1998). It analyses the textual content to

understand the deep structure of each statement. The fourth model uses a

combination of modified key words and linguistic features. This model is based on

text categorisation techniques (Larkey, 1998). Human judges are needed to grade

samples of student essays before the computer systems complete the task.

Chapter 2 Automatic Assessment for Diagrammatic Solutions

 15

In contrast to essay-type student work, the automatic marking of diagram-type

student solutions has only recently attracted interest among CAA researchers. The

automatic marking of diagrammatic solutions is examined in a separate section due

to the importance for this thesis.

2.2.2 Automatic assessment of diagram-type solutions

There have been many investigations by researchers into the diagrammatic reasoning

areas. They have looked into precise diagrams, such as the use of diagrams in

mathematical proof (Jamnik, 1998). However, student diagrams are different from

the precise diagrams. Smith et al (2004) state that they are malformed, missing, or

have extraneous features. This section briefly gives information about research

exclusively into the automatic assessment of student diagrams.

The DEAP Project (Deap, 2007) uses statistical techniques to grade student exam

scripts. This work likens imprecise diagrams to free-form text. The associated

commercial intelligent free-form text assessor uses latent semantic analysis for

marking (Thomas, 2003). In this analysis, to perform a semantic matching between

student text and the ideal solution, the semantic of a word is determined from the

paragraph in which that word occurs. The DEAP Project looks for suitable keywords

in student answers to mark free-form text. It considered “association” in student

diagrams equivalent to a word in text and applied the same statistical technique to

grade the diagrams. Their initial results show that the automatic grading of simple

diagrams is feasible.

DATsys (Tsintsifas,2002) is part of the Ceilidh system and provides a customizable

environment to create various kind of diagrams. Model answers and student

diagrams are captured by DATsys and then another Ceilidh module marks the

diagrams. The Ceilidh system was originally designed for assessing programming.

The system marks, for instance, a student flowchart diagram by first converting the

diagram into a BASIC program and then checks the program against the test data.

The ABC Project (Tselonis, 2005) and the INFACT system (Fan and Tanimoto 2007)

aim to present student designs to the human marker after filtering out diagrams

which are identical so that the speed and quality of the marking process can be

improved. ABC uses graph isomorphism with some heuristics for local metrics of

matching diagrams. It is reported that the approach works well on large, artificial

Chapter 2 Automatic Assessment for Diagrammatic Solutions

 16

examples, but tests with real examination data produced some unexpected results.

The results have shown some matches which are not actually valid (over-match). In

their approach, matching is largely dependant on the component labels.

The automated student diagram assessment system (Hoggarth and Lockyer, 98)

provides feedback without specific staff or student attention but does not assess the

diagrams with any grading or marking. It compares two diagrams on their internal

processing, the processing order, and the connections between the processes. Before

submitting the solution diagram, students have to perform a symbol mapping

between the components of their diagram and an ideal diagram. Then the

differences between the two diagrams are found and guidance and feedback are

given to the student.

The DEAP and ABC projects compare visible similarities of student and ideal

diagrams. They don’t require any changes in the diagramming. Their methods are

successful in simple diagrams but need to be improved for complex diagrams.

DATsys and Hoggarth’s system require additional tasks for the student to do and

compare the internal processing. Their methods have been applied to more diagram

types successfully.

2.2.3 Summary of automatic assessment

Many parts of the assessment process have been automated in numerous disciplines

in higher education for both administration and pedagogical reasons since 1959.

Automated systems are employed for formative and summative assessments to mark

student fixed (e.g. MCQ) and free responses (e.g. essay). The majority of the

commercially available systems automatically mark student fixed responses and they

are used mainly for summative purposes. Automatic marking of student free

responses is much harder than for the fixed responses.

This research focuses on the semi-automatic assessment of diagrammatic solutions.

Instead of the semi-automatic approach, one of the objective question types for

diagram assessment could have been chosen to use in order to fully automate the

marking process. For example, MCQs can be used to assess the students’ design

knowledge. Diagrams can represent the design or structure of a system. In that case,

students are required to have designing skills. Davies, (2002) argues that objective

questions lack the ability to assess higher levels within Bloom’s taxonomy likesuch as

Chapter 2 Automatic Assessment for Diagrammatic Solutions

 17

designing skills. Although Woodford and Bancroft (2005) address the problem of

how the objective questions can test higher levels of cognition, Haladyna, (1997)

argues that designing objective questions can be time-consuming and requires skill

and creativity and Duke-Williams and King (2001) suggests that sufficient care in

their construction should be taken. Therefore, the research has chosen to focus on the

free response questions instead of objective questions for diagram assessment.

The developed systems for free responses generally use one of three different

approaches. The first approach changes the manual assessment so that the marking

process can be easily automated. The second approach automates some parts of the

manual marking and leaves the rest to the human marker. The last approach assists

the human marker during the process by providing a supportive environment.

Among assessment of the free responses, some systems for programming (e.g.

CourseMarker, Higgins et al., 2003; BOSS, Joy et al., 2005) are successfully developed

and practically employed at universities. The automation for assessment of essay-

type solutions has been researched for many years. New techniques have been

created but not many practical applications have been developed (Tsintsifas, 2002).

Some of the research into the assessment of the program and essay-type work has

already looked into adapting their techniques to the diagram assessment (e.g. the

DEAP project , 2007; DATsys, Tsintsifas, 2002).

Automating diagram assessment has recently started being researched. Like other

free response areas, the research already has three different approaches in its early

stage: full automatic (e.g. the DEAP project, 2007), semi-automatic (e.g. the ABC

project, Tselonis, 2005) and online assessment (e.g. the INFACT project, Fan and

Tanimoto, 2007). This thesis focuses on the semi-automatic approach since it could

use the findings of both full automatic and online assessment research as well as

contribute to them.

Research in Section 2.2.1.2.3 can be categorized into two types. The first type is like

the DEAP and ABC projects, which compare visible similarities of student and ideal

diagrams. They don’t require any changes in the student diagramming process. The

second type is like DATsys and Hoggarth’s system, which require additional tasks

for the student to do. These systems have been applied to many diagram types

successfully which make them attractive to the research in this thesis. During

development of the design trace model for this research in Section 4.4, an online trace

Chapter 2 Automatic Assessment for Diagrammatic Solutions

 18

production method is chosen, which requires some changes in the student

diagramming process.

The next section introduces the conceptual database diagram type and gives the

rationale of studying the automatic marking for this diagram type.

2.3 Entity Relationship Diagram

James Maxwell defines a diagram as a figure drawn in such a manner that the

geometrical relations between the parts of the figure illustrate relations between

other objects (Encyclopedia Brittanica, 11th edition). This definition is accepted as

general enough to subsume detailed definitions given by various fields. Diagrams

communicate information like text and pictures. They are used to represent

topological maps, geometrical concepts, philosophical ideas, engineering plans and

scientific abstractions amongst many other things. Most known types of diagrams

obey certain rules of notation.

Research about diagrams relates to numerous and broad areas of science, humanities

and the arts. For example, some research in applied psychology analyses how

diagrams relate to cognition (Cheng et al, 2001). In education, diagrams are explored

as tools that improve learning (Cheng et al, 2001). In computer science, significant

studies have been made in areas such as automatic layout and visualisation (Herman

et al, 2000), diagrammatic reasoning (Kulpa,94). Diagrams are used in the software

development process (e.g. UML) .

Diagrams are broadly used in computer science for visualisation, for solving

computational problems and for software specification. For solving theoretical

problems well known diagrams include state charts, petri nets and state transition

diagrams. There are hundreds of known diagram notations for software specification

such as data-flow diagrams, entity relationship diagrams (ERDs), structure diagrams,

process diagrams, use case diagrams and class diagrams. Many types of diagrams

exist to represent graphs and tree structures.

Among the many known diagram types in computer science, this thesis focuses on

graph-based diagrams, which are composed of nodes joined by edges. It particularly

looks into entity relationship diagrams (ERD) for automation. Assessment of ER

Chapter 2 Automatic Assessment for Diagrammatic Solutions

 19

diagrams has certain qualities, which attract the interest of automatic diagram

assessment research. The three important qualities are as follows:

2.3.1 Question types

The ERDs in the assessment context are very rich. They offer scope to investigate a

range of assessment issues. A wide range of question styles can be used in the

assessment for a basic ERD solution. Questions that require the production of an

ERD can have a single correct solution, which is identical to the teacher ideal

solution, or alternative equivalent solutions. Like any objective question type, the

marking student diagrams of a question with a single correct ERD requires a

marking scheme and simple pattern matching with little interpretation. On the other

hand, the marking process for a question with alternative correct ER diagrams can

require a great deal of domain knowledge and a different style of marking scheme

with complex pattern matching. Additionally, correct solutions of the questions can

range between small and large or simple and complex.

2.3.2 Extension of ERDs

ER diagrams (Chen, 1976) have a relatively simple notation. A basic ERD notation is

extendable to include things such as specialisation and generalisation to draw more

complex structure (Elmasri et al., 1985). This quality of ER diagrams allows the

research to be developed incrementally. The research later can investigate the way to

adapt the findings of the automatic assessment of ERDs to Extended ERDs and

various other graph diagrams (e.g. Class Diagrams).

2.3.3 Common usage

The entity relationship model, the product of which is ERDs, and its extensions is

widely used in industry. The model is used during database development, which is

one of the fastest growing areas of software applications during last decade since

databases play a vital role in e-commerce. Consequently, ERM is taught as a

component of many university courses with large student numbers. The widespread

use of ERM provides access to a wide range of experienced practitioners. The

practitioners in the teaching area mark the student solutions. Some of them set the

questions and marking schemes. Available questions, marking schemes and student

Chapter 2 Automatic Assessment for Diagrammatic Solutions

 20

solutions with feedback can be used in the development of marking algorithms and

validation of the research results.

2.3.4 Design skills

ER modelling is a complex task, involving the identification of relevant facts from

dissimilar information sources, many of which are text based. Batra and Davis (1992)

argue that novices find the ERM task difficult and exhibit systematic errors in their

models. Such errors are due both to the lack of understanding of the subject domain

and also to unfamiliarity with the task. Increasing the exposure to practical ER

modelling would improve students’ ability to design databases.

The need of extensive practise in order to gain database design skills and a

widespread usage of the ERM make the research into the automation of the ERM

assessment relevant and useful. The extendibility of the ERDs increases applicability

of the research since it enables the adaptation and generalisation of the research

findings to similar modelling areas. The next sections summarise the previous

studies made on ERDs exclusively.

2.4 Current automatic ERD assessment research

This section gives brief information about four recent studies, which research

exclusively into the automatic assessment of entity relationship diagrams.

Additionally, there have been many other studies on computer assisted database

design and database schema integration. These could be directed at automatic

assessment, but are not addressed here.

2.4.1 DEAP

The DEAP (2007) research is the only project which aims to automatically mark the

student ERDs purely based on type and names of components in their diagrams.

Like simple diagram marking previously studied, the approach uses latent semantic

analysis. The basic scheme is modified in two important ways to be able to apply to

ERD marking. First, the diagram comparisons use elements of natural language

processing (Manning & Schutze 2002) to identify synonyms and misspellings

(Thomas et al. 2005). Second, not only association (relationships in ER diagrams) but

also larger structures (namely patterns) are used to identify equivalent sub-structures

Chapter 2 Automatic Assessment for Diagrammatic Solutions

 21

in diagrams (Thomas et al. 2006). This new pattern concept is introduced to deal

with alternative equivalent solutions of the same question. The tool, called exerciser,

is developed to test a pattern for many to many relationships. It is reported that the

results are encouraging. The research currently focuses on the development of a

pattern library.

The researchers also reported one of the problems they experienced. Two small quite

different diagrams can be regarded as equivalent (Thomas, 2004). This problem is a

result of using latent semantic analysis. It is known that the analysis doesn’t work

properly in essay marking if the text size is small (Dessus et al. 2000). Like the essay

making, the diagram marking suffers from this behaviour of the analysis. The

researchers suggest using their tool (namely Exerciser) in formative assessment.

Students submit their solutions many times to improve their design with the help of

feedback given. The tools for free text marking are used in the same way in

formative assessment since the research has not reached the level where it can be

used in the summative assessment. DEAP research is an ongoing project.

2.4.2 DATsys

Bligh (2002) attempts to adapt DATsys for ER diagram marking and has done an

initial study. The problems are reported by Higgins and Bligh (2006). The method

used in DATsys provides all possible diagram elements as complete, uneditable

entities with incorrect entities also included as distracters. In the context of the

Entity Relationship diagrams, the report finds this method helps the students too

much to get the correct solutions. Another finding is that the method does not deal

with several equally valid model solutions with slightly differing, mutually exclusive

features. The report also mentions the importance of the diagram appearance during

marking and of feedback given. The research currently focuses on resolving the

shortcoming of DATsys but has not yet specified the approach followed.

2.4.3 VLE-ERM

The VLE-ERM (Hall and Gordon, 1998) project concentrates on the methodology of

ER modelling and provides immediate feedback to students about the quality of their

models. The project provides a virtual learning environment in which students

create their design. The environment forces the students to enter their design in a

methodological way. In order to create a component, the student has to use a phrase

Chapter 2 Automatic Assessment for Diagrammatic Solutions

 22

from the scenario which justifies the existence of that component. Unlike DATsys,

students are allowed to name their components freely. The approach is very useful

since an initial problem for the students was to correctly identify entities, attributes

and relationships from the problem description. The system has got only one correct

solution for each scenario and students are only allowed to produce that solution.

Any wrong attempt by students is trapped and immediate feedback given based on

the system solution. This makes the system inflexible for alternative solutions. The

research later focuses on collaborative features of the environment.

2.4.4 KERMIT

KERMIT (Suraweera and Mitrovic, 2002) is an intelligent tutoring system aimed at

university-level students learning conceptual database design. KERMIT contains a

set of problems and ideal solutions to them. Unlike traditional intelligent tutoring

systems, it hasn’t got a problem solver. The system compares the student solutions

to the ideal solution using domain knowledge represented in the form of constraints,

which are classified into syntactic and semantic ones. The semantic constraints

enable the system to deal with alternative student correct solutions. Like VLE-ERM,

correspondences between the components of the student and the ideal solution are

found by forcing the student to highlight the word or phrase in the text whenever a

new part is added to the diagram. These correspondences are used to fire the

appropriate production rule/s in the semantic constraints. In the case of violation of

any of these constraints, feedback is generated.

KERMIT is successfully implemented and commercialized. However, KERMIT’s

approach requires the problem text written in such a way that the references of all

the components must be in the text. This explicit referencing covers only basic types

of design issues. Traditional questions in the database module which require

application of complex design criteria need to be simplified and adapted to the

system. That makes the tool only useful for the initial stage of the learning database

design.

The other limitation of the system is that it allows students to predict the correct

solutions. The author enters all correct and possible wrong references in advance to

the system. Students are restricted to use those references in the text. That may

make students see that some of their references are not part of the solutions on which

Chapter 2 Automatic Assessment for Diagrammatic Solutions

 23

the system can give feedback. Therefore the question preparation must be done

carefully. It requires forward thinking like in multiple choice question preparations.

The author should have the experience of student solutions so that they can produce

good reference lists for the text.

The approach also allows naming ambiguity. The system depends on the references

for the problems in order to assess the diagram automatically. Like VLE-ERM,

students can freely name their components after being given their references. A

component’s name and reference should be matched. The system doesn’t check this

compatibility. That gives the possibility of marking a correct component wrongly.

Semantic constraints in the system’s knowledge base are very important. They are

used to deal with alternative correct solutions. Production of these constraints is a

difficult and knowledge intensive task. The constraints have to be complete and they

have to produce alternative solutions of a given ideal solution in order to have a

valid assessment. The research focuses on the production of the constraints in order

to apply the approach on various diagram areas.

2.4.5 Summary of the current research

All the research mentioned above addresses the problem of identifying components

in student diagrams and proposes various solutions. The DEAP project focuses on

marking the diagrams without getting any help from the students. The other

research needs student involvement in the identification process before submitting

their solution. VLE-ERM‘s approach justifies the student’s involvement

educationally. It forces the students to use the database design methodology whilst

entering their solution into the system.

Only two research projects address the problem of the alternative solutions. The

DEAP project proposes a concept called “pattern” in order to deal with the

alternative solutions. For example, a specific pattern is used to deal with different

representations of “many-to-many” relationships. KERMIT purposes semantic

constraints and produced a complete set of constraints to mark ER diagrams

automatically with student involvement.

All the research projects for ERD assessment in Section 2.4 focus on fully automatic

systems. These projects are ongoing research. They have developed some practical

applications with some restrictions so far. They achieved full automation of marking

Chapter 2 Automatic Assessment for Diagrammatic Solutions

 24

ER Diagrams by either over simplifying the questions or restricting the student

solutions. For example, the questions with one valid solution are asked and a limited

list of component names for student solutions is accepted. A new approach, which

covers more types of questions and applies fewer restrictions on student solutions,

will be educationally more acceptable.

Full automation requires embedding a complete set of rules and necessary

knowledge about the questions into the system. Although this is possible for an

individual question, it is only practical by increasing the author’s workload

unacceptably. For example, the author could be asked to enter all possible solutions

for a question. However, this is not practical for the author.

An automatic assessment system for the diagrammatic solutions must be

educationally acceptable and its assessment’s workload must be practical. In this

sense, full automation hasn’t been successfully achieved yet. This research focuses

on the semi-automatic assessment, which covers more types of ERD questions,

applies fewer restrictions on student solutions and has the practical assessment’s

workload.

KERMIT address the problem of the alternative solutions and marks ER diagrams

automatically with student involvement. However, it covers simple question types

as mentioned in Section 2.4.4. Like KERMIT, VLE-ERM‘s approach alters the

diagramming process. In addition, VLE-ERM justifies the alteration of the

diagramming process. The approach for this research will require student

involvement in the identification process, like the KERMIT and VLE-ERM approach.

The semi-automatic approach will mainly focus on the consistence of the marking

rather than increasing the automation.

2.5 Summary

This chapter gave a presentation of the computer based assessment area, focusing on

diagram-type solutions. It first introduced some important assessment terms,

concepts and types of automatic assessments. Particularly objective and free

response questions were looked into in an automatic assessment context. It has been

found that the CAA research community has taken the Bloom taxonomy as a

reference point for their discussion about effectiveness of question types. Very brief

Chapter 2 Automatic Assessment for Diagrammatic Solutions

 25

background about essay and computer programs among the free response questions

was given in Section 2.2.1.2. For both of the response types, the existing research

uses one of automatic, semi automatic or online marking approaches.

The chapter also specifically provided discussion on the assessment of diagram type

response, from which it was found that recent emerging research about diagram type

response has mainly used the fully automatic approach. The current research has

seen that the full automation of the assessment is a complex task. A semi-automatic

approach is an untouched area to be looked into for the assessment of diagram type

responses.

The chapter later proceeded to introduce the rational behind choosing the ERDs for

the thesis among all diagram types. Popular usage of ERD, and its extendable

notation are main qualities that attracted researchers. The automatic assessment

systems for ERDs have been briefly reviewed, and their approaches and limitations

are discussed in the context of the automation.

The approach of VLE-ERM and KERMIT systems were successfully implemented

and used in taught modules. Section 2.4 has identified the limitations of the

approach. Chapter 3 elaborates these limitations and proposes a new semi automatic

approach in order to overcome the shortcomings. The approach reduces the

repetitive tasks in the question preparation and marking stage of a conventional

diagram assessment process. The components of a framework, which use the

approach, are introduced in Chapter 3.

Chapter 3 Diagram Assessment Process

 26

CHAPTER 3

A New Semi-automatic Diagram Assessment

Framework

3.1 Introduction

All the research mentioned for the diagram assessment in Chapter 2 works on fully

automatic assessment systems. Automatic assessment for student entity relationship

diagrams and graph-based diagrams has not been achieved yet. In contrast to those

approaches, this research develops a new assessment tool, which mainly helps the

examiners during marking. The research analyses the existing manual assessment

process in order to computerise it as much as possible. This approach is seen as an

intermediate stage for the fully automated assessment and the research results have

some immediate practical uses.

This chapter introduces a novel framework for the semi-automatic assessment

approach and is organised as follows: The first section describes the manual diagram

assessment process. It highlights the problem areas which need to be improved. The

second section introduces the semi-automatic assessment concept. It presents the

novel framework and describes the functions of its components. It mentions the

advantage of this framework against the challenges identified in the first section.

3.2 Manual Diagram Assessment Process

The diagram assessment process consists of four stages like other assessment types.

Figure 3.1 shows these stages. The assessor has tasks to do in each stage, which are

described briefly in this section. Later, some tasks are focused and the areas of

improvement are identified. The relationships between the stages in terms of

workload are explained.

Chapter 3 Diagram Assessment Process

 27

Figure 3.1 Assessment process cycle

In the first stage, the examiner prepares a question, its solution and the marking

scheme. In database design context, they write scenario text which is the

requirements of a new database model. They prepare an entity relationship diagram

as a model solution for the requirements. The examiner uses the generic marking

scheme for database modelling questions. The marking scheme is coarse as a general

practise. The examiner may adjust the scheme during the marking. This may results

in inconsistency in the marking if the examiner doesn’t remark the previous marked

solutions.

In the second stage, the question is given to students and students produce their

solution. Traditionally, in diagram examinations, students draw their diagrams on

paper for the given requirements. However, there are also other types of

examinations (e.g. Bancroft et al, 2003 and Joy & Luck, 1998) that allow students to

produce their solutions and submit online rather than on paper. In both cases,

whatever technique is employed to take the students’ solutions, the examiner’s task

and workload is very limited at this stage. However the technique used significantly

affects the marking stage.

The third stage compares student solutions with the model solution and gives marks

to the student work. The marks on the works are graded by using the marking

scheme. The examiner’s workload in this stage depends on the number of the

student solutions. In the database assessment, if the student numbers are too high

Stage 1

Question Preparation

Stage 2

Examinatio

Stage 3

Marking & Grading

Stage 4

Feedback Generation

Chapter 3 Diagram Assessment Process

 28

then the scenario text may be prepared which requires a small diagrammatic solution

so that the examiner spends less time on each solution. The scenario text given as

coursework may require a much larger diagram. In this case, additional tutors may

help to mark the papers.

The last stage gives feedback about the student’s work alongside their grades. If

there are high student numbers, the tutor may prefer to give generic feedback. The

feedback mentions common mistakes that the student solutions have. Students are

sometimes allowed to see their solution papers with the marks on it. That gives them

personalised feedback on their work. In the diagram assessment, the examiner may

use cross or check signs to mark components in student diagrams. The examiner

sometimes writes a grade next to the signs. Students can see where they gain or lose

marks by comparing their solutions with the model solution. If the assessment is

formative, the feedback is more important than actual grades. It can be too time

consuming for the examiner to leave textual feedback for individual component for

the student diagram, in which case they may prefer to use the cross and check signs

on the diagram components instead.

Preparing general feedback about the student work helps the examiner to improve

the requirement scenario. They find out the possible reasons of common mistakes.

The reason could be how the requirements are written in the scenario text. If the

requirements are vaguely written then the students might have many alternative

solutions as well as common mistakes. In this case, the examiner needs to modify the

scenario text to reduce the misunderstanding of the requirements. If common

mistakes have been made because of wrong application of design criteria taught then

the teaching methods may be improved and the next time a similar scenario text is

prepared and asked on the exam. Figure 3.1 shows this relationship between the first

and the last stage in the assessment process as a dashed line since the examiner

sometimes uses general feedback.

3.2.1 Challenges in each stage

The stages in the diagram assessment process can be improved to increase the

quality of the overall assessment and to reduce the assessment load when the student

numbers are high. The manual diagram assessment process has been used without

any major changes for long time. The quality problems are ignored and not tackled

Chapter 3 Diagram Assessment Process

 29

since the minimum assessment requirements are satisfied. Some educational aspects

are sacrificed for the sake of reducing assessment load. This section mentions the

problems in the assessment process stage by stage.

3.2.1.1 Question Preparation

The main task in the question preparation stage is to write scenario text. The

scenario text covers some or all design criteria taught in the module. This means that

students have to apply the criteria whilst drawing for the scenario to be able to get

the correct diagram. Depending on the criteria, the scenarios can be of various types.

The way the scenario is written might make the design task simple or complex. No

research has been found which addresses the problem of producing scenario text of

various types. The research into text writing has focused on writing requirement

specifications of software systems aiming at concise and consistent statements

(Miriyala and Harandi, 1991).

Especially in the formative assessment, the scenario type is very important. The

assessment is a part of learning process. Students learn from their mistakes. They

can practise one type of scenario before moving on the next. If the students make

mistakes, a similar type of scenario is given in order to make the students improve

their design skills. No research or formal guideline has been found on producing the

various types of scenario text. The examiner may write the scenario text and

gradually may improve it when necessary and classify it over the years by analysing

the students’ results.

The tutorial sessions are usually used to make students practice their diagramming

skills. The diagrams are drawn interactively together with students in a tutorial

session. A small number of scenario texts are required in tutorials. The teacher can

adjust the complexity of the scenario by asking additional questions whenever it is

necessary. Therefore, the scenario type has not been a crucial problem in the

practical sessions. The problem in the tutorials is that some students may hesitate to

ask questions (Low et al, 2009). This prevents them from getting the personalised

feedback. If students solve problem separately, then the tutors can check their

solutions and give detailed feedback to students. The feedback is important for the

formative assessment. Students need to improve their skills by doing many

exercises. Exercise questions for formative purposes require classification of the

scenario text which doesn’t currently exist.

Chapter 3 Diagram Assessment Process

 30

3.2.1.2 Examination

The main task in this stage is to obtain student solutions. The student solutions can

be obtained on paper or in digital form. In a paper–based exam, student

diagrammatic solutions are malformed and in addition to the solutions, the papers

contain students draft works (Thomas, 2004). Student diagrams for coursework are

usually better formed and the papers contain only the final diagrams. This is mainly

because there is no time restriction and students often use a diagram editor to draw

their final diagrams.

Obtaining student work in digital form is straightforward task and can be used in

coursework assignments. However in the case of a test or an examination, the digital

form of submission requires additional facilities and help. This may make online

submission less preferable option for the examination. Many universities have

recently invested in online assessment tools. These tools accept student work in

digital format and mark the work or assist the examiner with their online marking.

However, no evidence has been found that mainstream tools (e.g. Moodle, Qmark)

support diagram assessment. This may cause the examiner to carry on doing paper

based assessment. The examiner may prefer the solutions in digital form to the

paper form since the solutions are better formed.

The examiners’ task is the same and independent from the form of the student

solutions obtained in this stage.

3.2.1.3 Marking and Grading

The examiner’s main task is to mark the student solutions in the marking and

grading stage. They match the components in the student diagrams with

components in the ideal diagram. The main challenge is the matching process. It is

not always straightforward. The components can not be matched directly all the

time. The matching could be between same (e.g. entity to entity) or different typed

components (e.g. entity to relation/attribute) and the components could be matched

in various cardinalities (e.g. one to many). The examiner may need to make the

matching approximately in order to simplify the marking process.

The examiner uses a generic marking scheme rather than a detailed one since the

marking process may not include all types of matching. That makes the diagram

marking subjective. In the case of more than one marker, achieving consistent

Chapter 3 Diagram Assessment Process

 31

marking is difficult. In the case of a high number of diagrams, the human marker’s

judgment may vary from the beginning to end of the marking process. The examiner

should be extra careful. The grades of the solution should not be very different on

average although there may be some inconsistency between marks given to student

solutions.

3.2.1.4 Feedback Generation

The examiner may write a general feedback about the student solutions. This

feedback may not be quantitative and may not include the evidence. After

completing the marking stage, the examiner has got the understanding of the student

work. They may give the reasons for the student mistakes and include their

comments in the feedback. They have student work with marks on them as a record.

If they don’t keep an additional record of the student work during marking, there is

an extra task for the examiner to go over all the work and use the marks to write

feedback. When the general feedback isn’t written straight after marking, only very

important mistakes can be remembered. This may make the feedback incomplete.

There isn’t any guideline for feedback generation. It is subjective and depends on

the assessor’s experience. When two or more tutors mark the papers, having

consistent feedback requires a very detailed marking scheme.

3.2.1.5 Relationships between the stages

All stages in the marking process are related to each other. Figure 3.2 illustrates

these relationships. The feedback stage depends on the marking stage. Marking

papers in detail increases the quality of the feedback. Keeping a record about the

marks separately eases the feedback preparation task. Storing this record in a digital

format enables personalised feedback.

Chapter 3 Diagram Assessment Process

 32

Figure 3.2 Direct and indirect relationships between stages

The marking stage depends on the examination stage. Better formed diagrammatic

solutions without any duplication ease the marking task. Digital copies of the

diagrams enable online marking. Raikes et al (2004) argue that online marking eases

the record keeping task. Raikes et al (2004) also highlight the positive impact on

learning in their paper. Heinrich and Lawn (2004) developed a tool to mark ER

diagrams online. They emphasize the potential benefits of the feedback quality.

The marking stage directly depends on the preparation stage as well. Well prepared

scenario text will have clear requirements. The student work will have the expected

right and wrong components. The marking scheme prepared in the first stage can be

easily used with minimum alteration during marking.

The quality of scenario text depends on the experience of the author. If they have

written similar scenarios and have exam feedback then next time they can improve

the scenario or write a better but similar type of scenario.

The assessor’s workload is different in each stage of the cycle. When the number of

students is increased, most of the assessment workload comes in the marking stage.

Therefore, most of the research in automatic diagram assessment focuses on the

marking stage exclusively as it is seen in Chapter 2. However, as described, the

stages aren’t independent from each other. The marking task can be eased to a

certain degree by improving other stages.

Stage 1

Question Preparation

Stage 2

Examinatio

Stage 3

Marking & Grading

Stage 4

Feedback Preparation

Chapter 3 Diagram Assessment Process

 33

3.3 Semi-Automatic Diagram Assessment

The literature review in Chapter 2 shows that available studies for the diagram

assessment work on fully automatic assessment systems and they are on-going

research. In contrast to those research approaches, this research focuses on a semi-

automatic approach so that the research results have some immediate practical uses.

This approach could form the foundation for fully automated assessment.

Semi-automation in this thesis means that humans do the novel tasks of a job and the

computer does the repetition of those tasks. Human and computer collaborate to

complete the overall job. Repetitive parts of a job are important for semi-automation.

The preparation and the marking stages of the assessment process have got many

repetitive tasks the examiner needs to do. This section focuses on these stages in

terms of semi-automation.

This section first identifies the repetitive tasks in the manual marking process and

introduces a concept of a new marking style. Then it gives the definition of an

identical diagram segment, which is the essential part of the semi-automatic

approach. Later it describes the components of the approach. Finally it mentions

how the preparation stage could be used to improve the efficiency of the approach.

3.3.1 Marking process

Marking exam scripts takes longer in the beginning than later on. During the

marking, the examiner recognizes correct sections as well as identifying wrong parts

of the student diagrams by comparing the model solution. They make decisions to

grade the sections of the student diagrams. The similarity of the student diagrams

reduces the time takes to mark since the examiner simply recalls the decision they

made previously. The diagram sections which are not identical to any of the marked

segments up to that moment take more time since they require understanding of the

diagram segments.

Student diagrammatic solutions for a scenario text are generally very similar but not

identical as a whole. However, it is possible to find identical segments among all

student diagrams for the same scenario. These identical segments correspond to

either the segment of the teacher’s ideal solution or previously marked diagrams.

The student diagrammatic solutions were analysed to find out the number of

Chapter 3 Diagram Assessment Process

 34

identical segments in 2008. 20 random samples were taken from the student

examination scripts of the first year university database module. Table 3.1 is the

analysis of the samples for scenario text in Figure 3.3. It shows that 43 percent of the

student diagram components are the same and correspond to the teacher’s ideal

solution, and 55 percent of them are the same as each other without directly

corresponding to ideal solutions.

This observation underlies the basics of the approach. The approach proposes to

save the diagram segments, which have been marked by the examiner, and recall the

marks whenever a new student diagram has the same segments as the saved

segments. If the student diagram has some segments which are not among the saved

ones then the examiner interprets the new diagram segment. In other words, the

examiner basically accepts or rejects the segment based on the ideal solution. The

judgement of the segment is saved for future use.

The approach considers a new diagram segment as a novel task. The human marker

needs to do this novel task. Each occurrence of the segment in different student

diagrams is seen as a repetition of that task. A Computer needs to do the repetitions.

Figure 3.3 Sample scenario text for the database design

“The Loughborough library lends books only to its members. On the application form, the

details required are name, address and telephone number. Each member is assigned a

unique number and issued with a ticket giving this number. Members may borrow many

book copies at a time. A record of all book copies borrowed is kept. When the loan is issued,

the loan date and due date are recorded. When a book copy is returned, the corresponding

loan is updated with the return date.

If a member wishes to borrow a book (book title) that is already on loan to another

member, that book may be reserved. Each reservation has a reservation date and is given a

unique reservation number.

The Librarian buys new books for the Library as necessary. Normally, several copies of a

particular book are bought. Each copy of each book title is assigned a unique book copy

number. A book (book title), on the other hand, is uniquely identified by an ISBN number.

The book title, author, date of purchase and price of each book are recorded. Different

copies of the same book title can be purchased on different dates at different prices.”

Chapter 3 Diagram Assessment Process

 35

The approach reduces the number of diagrams marked by the assessor. It also makes

the marking process consistent. The assessor doesn’t have to repeat their judgement

on the same segment for various student diagrams. This repetition may lead to

inconsistency in marking.

Table 3.1 Components from student diagrams

Student Diagram
component

Occurrence

(%)

Ideal Solution

Same type

One to one Matched

Member (e) 100 Member (e)

Book Copy (e) 39 Book Copy(e)

Book Title (e) 39 Book Title(e)

Reservation (e) 26 Reservation(e)

Loan (e) 30 Loan(e)

Has (r) 26 Has (r)

Same type

One to many
Matched

Book 61
(Book Copy

+ Book Title)

Different type

One to one

matched

Reservation(r)[B-M] 35
Reservation (e)

Reservation(r) [C-M] 9

Loan [B-M](r) 43
Loan (e)

Loan [C-M](r) 9

Non-matched

Rejected

Library 30 -

Application form 17 -

Non-matched

accepted

Librarian 17 -

The analysis of the student diagrams for the scenario text in Figure 3.3 also gives

evidence that the matching process is not always straightforward. Table 3.1

illustrates different types of matching. The matching could be between the same

Chapter 3 Diagram Assessment Process

 36

types. For example, all “Member” Entities in the student diagrams matched with

“Member” entity in the teacher’s ideal solution. The matching could be between

different typed components. For example 39 percent of student “reserve”

relationships matched with “Reservation” entity in the model solution. The

matching could be in various cardinalities (e.g. one to one or one to many). For

example 61 percent of student “Book” entity matched with the combination of “book

copy” and “book title” entities. The approach provides an additional benefit with

the complicated matching since it reduced the repetition of the harder task.

The approach may automatically mark the whole of some student diagrams. If they

consist of the segments which are the collection of the saved segments marked before

then the computer simply recalls the marks and uses them to mark the whole of a

new student diagram. The approach depends on the order in which the diagrams

are presented to the human marker. The order affects the number of the diagrams

marked without any human intervention.

The approach can be modified to make the marking process independent from the

order. In the modified version, the computer identifies identical segments in all

student diagrams and puts the different segments into separate groups. Then the

examiner marks a diagram fragment from each group independently. Later the

computer marks the student diagrams by using information in the groups. Since the

examiner marks the diagram pieces, human intervention in the marking process can

be reduced. Figure 3.4 shows the marking process.

Figure 3.4 Partial marking process

Student

Diagrams

Group identical

diagram segment

Diagram

Groups

Reassemble student

diagrams with marks

Mark

diagrams

Segments

Marked

Diagram

Segments

Marked Student

Diagrams

Chapter 3 Diagram Assessment Process

 37

The human marker sees diagram segments during the marking in the new approach.

This research calls this new style of marking “Partial Marking”. The principles of

partial marking will be given in the next section. Detailed discussion is in Chapter 4.

In partial marking, the examiner is involved in the marking process only for the

number of diagram groups rather than the total number of student diagrams. The

computer consistently grades the marked groups by using the marking scheme.

Therefore grouping correctly is the key part of the process. The correctness of the

grouping depends on the criteria used to match the diagram pieces. The next section

discusses these criteria.

3.3.2 Identical segments

The semi-automatic approach needs to identify identical segments among student

diagrams. Two diagram segments are identical if they have the same number of

components with the same properties. An Entity-Relationship diagram consists of

two basic components; an entity type and a relationship type. This section defines

properties for these types to match the diagram components.

Entities in different diagrams could be considered as matched exactly if they have

the same name and the same number of attributes with same name. This initial

definition is pretty tight and finding two identical entities among student diagrams

may be hard. This definition would increase the number of times the examiner is

involved in the marking process. In order to make the definition feasible, the same

question should be asked many times over the years in the practical sessions as a

formative assessment. This will increase the number of student diagrams for the

question. The likelihood of identical diagrams is increased.

The criteria for entity matching are not complete to use in the semi-automatic

approach. In some cases, components may be matched wrongly. The diagrams in

Figure 3.5 belong to two different students based on the scenario in Figure 3.3. The

“Book” entity in the first diagram clearly corresponds to “Book Title” with the

missing attributes in the teacher solution. However, the “Book” entity in the second

diagram corresponds to the “Book Copy” entity. The approach would not get the

examiner to mark the second “Book” entity since it matched with the previously

accepted “Book” entity by giving it the wrong meaning. Therefore, even the tight

Chapter 3 Diagram Assessment Process

 38

definition above is not sufficient for correct entity matching. The definition should

also include the contextual meaning of an entity.

Figure 3.5 Entity name ambiguity

The Kermit approach (Suraweera and Mitrovic, 2002) finds the contextual meaning

of an entity by using an additional input obtained from the students. The students

need to highlight the related text in the scenario text during diagramming. This

approach simplifies finding a semantic match of the two components automatically.

Figure 3.6 illustrates the process. Students highlight the “Book Copy” phrase in the

scenario text before they draw the “Book” Entity component in their diagram area.

The computer matches the student component with the “Book Copy” entity type in

the ideal diagram.

Teacher Diagram

Book Title Member

Book

Loan Has

ID

Book Member

Book Copy

Loan Has

ID

Book Title Member Reserve

Book Copy

Loan Has

ISBN

Author

Title

Copy No

Price

Purchase

Date

 Student 1 Diagram Student 2 Diagram

Chapter 3 Diagram Assessment Process

 39

Finding a related text to diagram components is not a straightforward task

(Suraweera, 2001) and also the direct correspondence sometimes doesn’t exist. The

main reason is that designing a conceptual database model is an iterative process.

Although the initial diagram can have a direct link to the scenario text, afterwards

that initial diagram is subject to modification by applying design rules and

constraints in the domain. The final diagram might have only implicit links to the

scenario text. It is not always possible to show those links explicitly without all the

intermediate steps between the initial and the final diagram.

Figure 3.7 shows the limitation of the KERMIT approach. The figure illustrates the

development of a student diagram. It shows an initial and a final student diagram.

The student initially has “head of department” and “Lecturer” entities. Later they

replace them with “staff” entity. It is hard to show the link explicitly between staff

component and the related scenario text without using the initial diagram. Their

approach needs to be improved to include these types of cases.

Figure 3.6 Entity matching in KERMIT

Scenario Text

--- --- ---- ----

Each book copy has got a unique copy number and their price and
purchase date is recorded.

Ideal Solution

Book Copy

Copy No

Price

Purchase

Student Solution

Book

No

P_Date

Chapter 3 Diagram Assessment Process

 40

This research proposes using not only the reference text but also the intermediate

diagrams in order to define the contextual meaning of a component. In partial

marking context, the examiners see the diagram segment with its design history.

They may understand the students’ reasoning from the design history. This enables

them to give accurate feedback to students. However extra caution should be taken.

The design history may overload the examiner with too much diagram information

during marking.

Some researchers in the requirements engineering field focus on the traceability of a

design requirements. Ramesh and Jarke (2001) developed a reference model for

requirements traceability. Chapter 4 of this thesis develops a new trace model for the

partial marking using their reference model. The model mainly deals with capturing

the design traces and the method of their representation.

The partial marking approach eliminates the repetitive marking task and enables

semi-automation. This section suggested using the student diagramming steps or

their design history to determine identical segments for the repetitive tasks. The next

section describes using the design history to automate the partial marking process

further.

Figure 3.7 Conceptual database design is an iterative process

Final Diagram

HOD Department
Has

Lecturer Has

Staff Department
Manages

Has

Initial Diagram

Chapter 3 Diagram Assessment Process

 41

3.3.3 Automation

KERMIT is a fully automated system and uses the scenario referencing technique for

diagram marking. The system keeps all possible references for a question scenario.

The examiner enters the references, which students might make during

diagramming, into the system for the automation purpose. The partial marking

approach also uses the scenario referencing. However, it extends the technique to

support wider question types. It uses the diagramming history of student diagrams.

This extension makes the full automation of the partial marking much harder and

impractical since all possible diagramming history cannot be foreseen and entered

into the system like the KERMIT approach.

The semi-automatic approach aims to decrease human involvement in the

assessment. The computer can mark some diagram segments during the partial

marking phase when the examiners provide their solutions to the system. They

prepare the ideal diagram for the scenario text in the preparation stage. The system

can have the examiner diagramming steps for the diagram solution. If any student

diagram segment has got the same diagramming history as the ideal solution, then

those segments can be marked by the computer. Although this is not enough for full

automation, it reduces the examiner involvement during the marking process. In the

case of two or more markers, they may enter their own diagramming steps for the

ideal solution into the system. This may increase the automation since there may be

more different design histories for the solution, which students might have.

The ideal solution for previously marked diagrams can be used to mark a similar

student diagram as well as the same student diagrams. Using previously marked

diagrams makes the approach very similar to Case-Based reasoning (CBR). CBR is

the process of solving new problems based on the solutions of similar past problems

(Kolodner,1993). CBR systems keep a library of past cases. Each case typically

contains a description of the problem, plus a solution and/or the outcome. To solve

a current problem: the problem is matched against the cases in the case base. The

current problem might be identical to a problem of some cases. Then the solution of

these cases is used for the current problem. Sometimes similar cases are retrieved.

The retrieved cases are used to suggest a solution which is reused and tested for

success. If necessary, the solution is then revised. Finally the current problem and

the final solution are retained as part of a new case. Figure 3.8 illustrates this cycle.

Chapter 3 Diagram Assessment Process

 42

Figure 3.8 The CBR cycle (adapted from Aamodt & Plaza, 1994)

The CBR method has been used when records of previously solved problems exist

and remembering previous experiences is useful (Watson, 1997). In the CBR context,

for the manual diagram assessment, the problems of cases are the student diagrams.

The solutions of the problems are the marks or feedback of the diagrams. Student

diagrams with marks for a question are the case-base and exist when the examiner

(i.e. specialists) has got the ideal solution or experience if the same question has been

used previously. The examiner remembers their previous judgment (i.e. the case)

during marking. They use the cases with or without any revision.

For the partial marking process, all student diagrammatic solutions for a scenario are

limited and available as a batch at the beginning, unlike other domains for which

CBR systems are used. The availability of all student solutions enables grouping the

diagrams before marking them. During grouping, identical segments from the

student solution are gathered into groups. In the CBR context, each group is a

problem and the examiner’s feedback is the solution. Human marked groups are the

cases. The CBR cycle is only observed when the examiner uses the same question

again in an assessment. The system can retrieve the identical cases from the case-

base and reuse these for marking. If there is not any identical case then the examiner

marks the diagram segment. Marked segments are retained in the case-base. The

revision stage in the CBR cycle is not in the marking process since it uses only the

identical cases.

Chapter 3 Diagram Assessment Process

 43

The CBR method retrieves the cases from the case-base to solve the current problem.

It adapts the existing cases to the problem and comes up with solutions. Likewise

the marking system could retrieve the previously marked segments which are

similar to the current diagram segment in the case where there aren’t any identical

cases. Then the system may adapt the marks to mark the current segment. The

partial marking process will have a revision stage when the similar diagram

segments are used to mark a new segment. The partial marking will become a cyclic

process like the CBR method.

Figure 3.9 illustrates the new partial marking cycle. The partial marking cycle is the

detail of the marking process in Figure 3.4. A new diagram in the figure is one from

each diagram group shown in Figure 3.4. Process B in Figure 3.9 represents the reuse

stage of the CBR Method. Process B marks the diagram segment by using adaptation

rules. If Process B couldn’t mark the segment then the examiner marks the segment

in Process C which represents the revise stage.

Figure 3.9 The partial marking cycle

The CBR method allows the case-base to be developed incrementally. Similarly, the

number of cases is increased gradually during the partial marking. The case-base for

the marking initially has some marked diagrams which have been entered by the

assessor in the preparation stage. During partial marking, human marked segments

New

Diagram

Segment

A) Retrieve Diagrams Similar segments &

the new segment

B) Mark the new

segment automatically

by using adaptation

rules

C) Human

marker revises

Diagram

Segments
D) Retain the

marked diagram

Chapter 3 Diagram Assessment Process

 44

are stored in the case library and the number of the cases is increased. Later domain

experts may analyse the case library and generate some adaptation rules. The

adaptation rules help the system mark the diagram segments automatically. Auto-

marked segments are also stored in the system to use next time. Process B in Figure

3.9 uses these rules. Using the rules increases the system efficiency.

The main issues of the partial marking cycle are defining cases for marking,

identifying similarities between segment groups and the adaptation rules. Chapter 5

deals with these issues. The next section focuses on the preparation stage. It

describes the link between the adaptation rules and the scenario text.

3.3.4 Scenario authoring process

Student diagrams for a question scenario text are normally similar to each other.

They have identical and similar diagram segments. This enables semi-automation.

The scenario texts used in the assessment can also be similar to each other. The

scenario text covers various design criteria taught in the module. The criteria used

and the way the scenario is written may make the scenarios similar. The examiner

may find writing similar scenarios straightforward when they have sufficient

experience. They recall the previous decisions they have made during writing.

Unlike the student diagrams, scenario text, which the examiner writes, rarely has

identical text segments. Semi-automation of the writing process is much harder than

the marking process. If the computer generates identical text segments to write

similar scenarios, they can be too mechanical to use in an assessment. However a

computer can support the author to write similar scenarios.

Computer assistance for the scenario preparation is very beneficial for formative

assessment. Many similar scenarios are used in formative assessment. If the author

has a guideline for writing similar scenarios then computer assistance can be

provided to the author to use the guideline. Many guidelines are suggested and

tested empirically to produce clear and accurate software system descriptions

(CREWS, 1999 and Phalp et al, 2007). However the research doesn’t focus on writing

similar questions. Therefore a special guideline is needed for the assessment. The

guideline can also help to produce various scenario types. The types can be

organised in complexity levels as it was mentioned in the first section.

Chapter 3 Diagram Assessment Process

 45

Similar scenarios are also important for the marking stage in the semi-automated

system. Student diagrams for similar scenarios may have common right and wrong

solutions. These common solutions are useful for the partial marking process cycle.

The solutions can be analysed to produce generic adaptation rules for the automatic

marking part. For example, if the author writes a new scenario by using guideline

text, then the text can be one of the known scenario types. Student diagrams for the

scenario may have known diagram segments. The system automatically marks those

segments with the rules.

The author may write scenario text without using the guideline. In this case, fewer

of the adaptation rules could be used during marking. The examiner marks those

segments which decreases the automation. Later on, the domain experts may see the

scenario text and create new scenario types.

This section has briefly mentioned the importance of the similar scenarios in terms of

semi-automation of the assessment process. A detailed discussion is in Chapter 5.

The chapter develops a guideline for writing similar scenarios.

3.4 Summary

This chapter proposed a new semi–automatic diagram assessment framework and

presented the basics of the framework. The new framework deals with the

challenges of the manual diagram assessment process. The details of the framework

are discussed in Chapters 4 and 5.

The chapter introduces a new partial marking process and describes the rationale

behind the new marking process. The marking process forms an essential part of the

proposed framework. It uses the student design traces to identify the identical

segments. The detailed discussion of the design traces is left to Chapter 4.

The partial marking cycle was proposed, which adapts the partial marking process to

the case-based reasoning method in order to increase the automation. The partial

marking cycle is the initial form of the marking process model described in Chapter

5. The details of the model’s components are covered in Section 5.4.

The relationship between the scenario preparation stage and the adaptation task of

the partial marking cycle was established in Section 3.3.4. The details are left to

Chapter 5 after the case definition for the marking cycle is given.

Chapter 4 Design Trace Model

 46

CHAPTER 4

Design Trace Model

 4.1 Introduction

The previous chapter discussed new semi-automatic diagram assessment approach.

The approach uses identical segments of student diagrams, which are identified by

using their contextual information. Design traces of the student diagrams are used

as their contextual information; Ramesh and Jarke (2001) developed a reference trace

model for requirements traceability. This chapter uses the reference model to

develop a new design trace model for the semi-automated model described in this

thesis. All stages of the diagram assessment process are considered during the

development of the design trace model. During model development, only ER

diagram examples are given, although the developed model is generic enough to be

adapted to support all graph diagrams. This chapter explains the development of

the model by discussing alternative approaches. It gives the rationale behind the

model.

The design trace model developed in this chapter consists of two main parts: trace

definition and trace production. The first section of the chapter explains the trace

definition of the model. It discusses alternative trace entities and traces for the

model. The second section is for the trace production part and discusses various

techniques for the production. It focuses on the student cognitive load and the

examiner’s workload for the production techniques. During model development,

first the production technique is decided among alternatives then the trace definition

is done, based on the chosen technique. The final section puts the chosen production

technique and defined traces together and gives a design trace model.

4.2 Trace Definition

The reference model (Ramesh and Jarke, 2001) defines what trace entities and traces

are and which traces should be captured. The model consists of two concepts

Chapter 4 Design Trace Model

 47

"entities" and "relationships". This section discusses the different properties of

entities and relationships which should be considered for the semi-automatic

assessment process.

4.2.1Trace Entities

The purpose of a trace model is important for the model development. It determines

entities that should be traced. A traced entity has got three aspects: The kind of the

entity, attributes of the entity and the granularity of the entity. The kind and the

attributes of the entity are straightforward to determine for assessment purposes.

Conversely the decision concerning the granularity aspect is a complicated task and

is significant for the semi-automation. It is discussed separately in the next

subsection.

The kind of entity in requirement traceability describes which software documents

(e.g. requirements, test cases, or design) should be involved. The assessment

process has two kinds of documents: the question text and student solutions. For the

assessment of a conceptual design model, the question text provides the database

requirements, which is given to students in the exam and the student solutions are

the student ER diagrams for the required database.

Each documentation entity in requirement traceability is enhanced by attributes,

such as the source of the entity or status (e.g., incomplete, complete, or verified). In

addition to supporting the planning of changes, some integrate an attribute, such as

change probability, which indicates the likelihood of the change occuring. The

attributes of document entities are optional for the semi-automatic approach.

However they can still be defined to record the overall quality of the assessment

process. For example, the complexity level of the scenario text, the feedback about

the student diagrams and scenario text are kept as the attributes.

4.2.1.1 Granularity of an entity

The granularity describes the granularity of the entities involved. The granularity is

also called "different levels of traceability" (Lindvall, 1994). For instance, classes or

attributes and methods of an object-oriented analysis are different levels of

traceability. Paragraphs or sentences are the different granularities of a textual

requirements document. The coarsest level is the ability to trace from one document

Chapter 4 Design Trace Model

 48

to another (Dellen, 1999). The most fine-grained level is to trace every single

statement. The semi-automatic approach uses traceability to find out the contextual

information of each design component. The approach prefers the most fine-grained

level where possible in order to get the design trace of each component.

Student diagrams are one of the document kinds to be traced for the assessment. For

a database exam, they consist of three main component types: entity, relationship

and attribute of entity or relationship types. The most fine-grained level is to trace

each component in a diagram. Other granularity levels could be to trace the sub-

diagrams made from the combination of the different component types. Figure 4.1

shows an example of granularity levels. Relationship X with participant entities A

and B, and Entity Y with its attributes are the granularity level of the student

diagram document to be traced in the figure. The granularity level will be coarser if

the attributes of Entity A and Entity B are included for Relationship X.

Figure 4.1 Granularity level examples for database diagrams

The coarser levels decrease the number of identical diagram fragments, which are

found in the student diagrams. The performance of the semi-automatic approach

directly depends on the identical diagram number as discussed in the chapter 3.

Therefore the coarse levels are not desirable for the contextual information.

However, in some cases, the coarser levels can be used. These cases are discussed in

Section 4.2.2.

The requirements text is the other document kind to be traced for the assessment.

The most fine-grained level for this document is to trace each noun or verb phrase in

the requirement text. Other granularity levels could be to trace each sentence clause,

Entity

Attribute

Relationship

Relationship X

Entity A Entity B

Entity Y

Attr 3

Attr 4

Attr 1

Attr 2
The finest level The coarser levels

Chapter 4 Design Trace Model

 49

sentence, statement, or paragraph in the text. The granularity level of the

requirements text and student diagrams are interrelated. The fine–grained level of

the diagram document requires the finest level of the requirement document.

Otherwise, the contextual information for each component would have ambiguity.

For example, if a component (i.e. finest level) in a diagram maps to a paragraph

(coarse level) in a text, this paragraph could correspond to many other components

in the diagram. The paragraph fails to identify each component separately but it can

identify all components together. So a diagram fragment, which consists of two or

more components, can map to a paragraph. The coarse level in one document is

correctly mapped to the coarse level of another. A component in a diagram can map

to a verb or noun phrase (fine level) in a text without any ambiguity. Kermit and

VLE-ERM use this level of granularity. Figure 4.2 illustrates various mappings

between two documents at different granularity levels.

Figure 4.2 Different granularity mapping

The granularity levels of the requirement text are noun phrase, verb phrase, sentence

and paragraph. The granularity levels of the database diagrams are component

(entity, relationship and attribute) and different diagram fragments, which are a

combination of the components. Figure 4.2 shows some granularity levels without

highlighting any of them in order to use in the trace model. The decision on

choosing the granularity depends on the relationship definition.

This section only discusses the boundary of the trace entities for assessment

purposes. The next section gives the definition of relationships in the traceability

context. They will be adapted to the semi-automatic approach.


 ~~~~~~~ 

Noun phrases 

Verb phrases  

Sentences  

Paragraphs  

Mapping 

Diagram segments Scenario Text 



Chapter 4  Design Trace Model 

 50 

4.2.2 Relationships to be traced 

The proposed tracing approach needs a precise definition of the kinds of traceability 

relationships that must be captured and used for marking purposes.  The concept of 

"relationships" has five aspects: (1) kinds of relationships described, (2) direction, (3) 

attributes, (4) setting of relationships, and (5) representation.  This section discusses 

these aspects for the relationship definition of the new trace model. 

4.2.2.1 Kind of relationship 

The traceability identifies three general types of relationship.  The first type relates 

entities in the same type of software document.  For example, a requirement depends 

on another requirement.  The second type relates entities of different types of 

software document.  For instance, a set of design classes realizes a requirement.  The 

third type relates entities of different versions of the same document type.  Bohner 

(1991) calls the first type vertical relationships and the second type horizontal 

relationships.  The term used depends on how abstractions are arranged in a 

graphical representation.  The third type is called evolutionary relationships by Pohl 

(1996).  All three types of relationships are needed in the trace model for semi-

automation.  The usage of each type in the model is discussed in the following sub-

sections: 

4.2.2.2 Vertical relationship 

Knethen (2002) defines two types of vertical relationships: representation and 

dependency relationships.  Representation relationships are used for a relationship 

between documentation entities of different views that represent the same logical 

entity.  Dependency relationships are used for a relationship between two 

documentation entities that depend on each other and represent different logical 

entities in an abstraction.  A dependency relationship is used to find out the 

indirectly affected logical entities in the case of a requirement change.  In the 

assessment environment, the requirements document is prepared before the exam 

and unchanged during the examination.  Therefore the dependency relationship is 

not essential for the model so the research didn’t include this type of relationship in 

the model.  However the dependency relationships can be used to record the reason 

for the change when the requirements document is updated in the future.   



Chapter 4  Design Trace Model 

 51 

Representation relationships relate all text fragments which represent same logical 

entity from a requirements document.  Figure 4.3 shows two representation 

relationship examples.  The representation relationship in the figure between two 

noun phrases “lecturer“ and “staff” indicates that they refer to the same logical entity 

in the document A.  Figure 4.3 also shows a relationship between sentences in the 

document B.  The relationship indicates that the sentences have got the same logical 

meaning in the document. 

 

Figure 4.3 Representation relationships in requirements documents 

Representation relationships are desirable but not essential for the semi-automatic 

approach.  They can affect the performance of the approach.  They may reduce the 

horizontal relationships between two software documents.  Lindvall and Sandahl 

(1996) uses two-dimensional (vertical and horizontal) traceability to reduce the 

number of traceability associations.  Decreasing the number of horizontal 

relationships decreases the amount of human marker involvement in the approach.  

Discussion of the relation between horizontal and vertical links is left to the 

horizontal relationship part in the following sub-section. 

The examiner can establish representation relationships manually in the preparation 

stage.  A fine–grained level of the requirement text may increase the number of 

representation relationships.  Those relationships increase the examiner’s workload.  

The coarse level may decrease the number of the relationships and the workload of 

the examiner.  If the representation relationships are produced automatically, the 

workload will be independent of the document’s granularity level.  The fine–grained 

Requirements Text A  

------------------------------

Lecturer---------------------- 

-----------------   Staff-------- 

Head of department  

-------------------------- 

---------HoD---------- 

 

Requirements Text B  

--------------------------------   

(Sentence 10) --------------- 

----------------(Sentence 15) 

--------------------------------   

(Sentence 10) --------------- 

----------------(Sentence 15) 

 

Representation 

Relationships 

Fine–grained level Coarse–grained level 



Chapter 4  Design Trace Model 

 52 

level may enable the automatic production of representation relationships.  This 

issue is discussed in details in Section 4.3. 

4.2.2.3 Horizontal relationship 

Knethen (2002) defines two types of horizontal relationship.  The first type is a 

relationship between documentation entities at different abstractions on a certain 

abstraction level (e.g.  between two system use cases in UML).  Student diagrams 

and scenario text haven’t got any refinements.  This type relationship is not a 

requirement of the model.  The second is a relationship between documentation 

entities at different abstractions called “Between-level refinement relationships”.  The 

design trace model for the semi-automatic approach, this relationship is between the 

student diagram and the scenario text.  This type of relationship is called a scenario 

reference link. 

Scenario reference (SR) link uniquely identifies a diagram fragment.  The fragment 

contains one component at least.  A component could be identified by one or more 

SR links.  Figure 4.4 illustrates that four noun phrases in scenario text separately 

identify the “staff” entity in the diagram.  If all related noun phrases are connected 

together by the representation links then only one SR link is enough to represent the 

relationship between textual fragments and the components. 

 

Figure 4.4 Scenario reference link 

The number of SRs corresponds to  the number of times a human is needed during 

student diagram marking.  The reduction of this number increases the performance 

of the semi-automatic marking process.  The representation relationships can reduce 

the number of SR links for the same logical concept to one for a component or 

DB Scenario Text 

------------------------------

Lecturer---------------------- 

-----------------   Staff-------- 

Head of department  

-------------------------- 

---------HoD---------- 

 

Student Diagram 

Staff 

 

 

 

 

 

   



Chapter 4  Design Trace Model 

 53 

diagram segment.  This decreases the examiner’s workload in the marking stage.  

However, if the examiner produces the representation relationships manually, then 

this causes additional workload in the preparation stage.  The automation of the 

production or, at least using a computer assistant, will be very beneficial for the 

semi-automatic approach. 

4.2.2.4 Evolutionary Relationships 

In the traceability literature, evolutionary relationships trace all previous versions of 

a particular documentation entity to recover its development history.  Ramamoorthy 

et al (1990) called them historical links.  Evolution relationships are essential in the 

assessment system since SR links are not always sufficient to directly identify a 

diagram fragment as demonstrated in chapter 3.  Although the evolutionary links are 

to be used for this technical reason, they have an educational value as well.  The 

evolution and SR relationship together represents the design processes of the 

students.  The educational aspect of these relationships is discussed in Chapter 6.   

The design trace model has two document entities: the requirements text and the 

student diagrams.  In the assessment process, unlike in a software development 

process, the system requirements are not subject to change, whereas student 

diagrams are developed gradually with many alterations during the modelling.  

Evolutionary relationships represent some of these alterations in the student 

diagrams.   

The human marker reads SR and evolutionary links during marking.  Links should 

be represented in an easily readable form.  SR links points at components directly 

and are simple and easier to read than evolutionary links.  Evolutionary links 

represent the design process.  They can sometimes be complex and harder to read.  

Therefore SR links are preferable to evolutionary links where possible.  Figure 4.5 

shows the evolution and SR links together for a component.  In the first part of the 

figure, the noun phrase “staff” in the scenario text was firstly designated to be an 

attribute of an entity in a diagram and then changed into an entity.  This 

intermediate stage could be saved to represent exactly the design process by using an 

evolutionary link.  However, that might increase the cognitive load of the human 

marker.  Instead of using an evolutionary link, the intermediate stage can be ignored.  

Figure 4.5 represents the contextual information of the “staff” entity by using a SR 

link.  The SR link is used to uniquely identify the component.  Using the SR link only 



Chapter 4  Design Trace Model 

 54 

will decrease the cognitive load of the marking although it doesn’t give the full 

history of the student’s design.  

 

Figure 4.5 Evolution and  SR links for a component 

The coarse granularity level can enable the use of SR links instead of evolutionary 

links, but coarse granularity decreases the performance of the systems as discussed 

in Section 4.2.1.  For some cases, a SR link alone in the fine granularity level can not 

uniquely identify a component, it needs evolutionary links as well.  Figure 4.6 shows 

the use of the evolution and SR links together for multiple components.  The figure 

illustrates that the noun phrase “staff” in the scenario text was firstly designated to 

be a single entity in a diagram and then split into two entities.  The SR link in the 

figure identifies the initial “staff” entity and then the evolution link represents the 

logical link between the “staff”, “academic” and ”secretary” entities.  If only the SR 

link is used, then the SR link can only identify the sub-diagram which consists of 

“academic” and ”secretary” entities together.  The evolutionary links enables 

identification of  these entities individually.  The example shows that although using 

SR links alone are preferable, in some cases, a design history forces evolutionary 

links to be used. 

Attribute 

DB Scenario Text 

------------------------------

Lecturer---------------------- 

-----------------   Staff-------- 

Head of department  

-------------------------- 

---------HoD---------- 

 

Evolution link 

Staff 

Attribute 

Staff 

Entity 

Staff 

SR link only 



Chapter 4  Design Trace Model 

 55 

 

Figure 4.6 Evolution and SR links for multiple components 

The cardinality of the evolution relationships defines the number of participant 

entities on either end of the relationship line.  The cardinality could be “many to 

many” or “one to many”.  The evolutionary links don’t use “one to one” cardinality 

since SR links can be used instead.  Figure 4.5 depicts this case.  The “Many to many” 

cardinality for evolution links can be represented with two “one to many” 

relationships.  Since the trace production of “many to many” relationships is a 

complex task, only “one to many” cardinality is used for the evolutionary link.  The 

trace production section will discuss the “many to many” cardinality in detail. 

Each evolution relationship is needed as a result of a certain action during the 

design.  “Many to one” relationships are created after merging action and “One to 

many” evolution links are created after a splitting action.  Figure 4.6 depicts this case.  

The merging actions define the event of merging the same or different types of 

components.  Splitting action defines the event of splitting a component into two or 

more components.  Splitting actions can result in either the same or different types of 

components.  In both cases, each component should be uniquely identifiable for the 

semi-automatic approach. 

Components created after a split action can be distinguished by using their labels, 

and types.  For example, after a split action in Figure 4.6, an entity is replaced by two 

entities.  They can be distinguished by using their labels and attributes.  The semi-

automatic approach can use the labels during the grouping stage.  However, using 

DB Scenario Text 

------------------------------

Lecturer---------------------- 

-----------------   Staff-------- 

Head of department  

-------------------------- 

---------HoD---------- 

 

Evolution link 

Staff 

SR link only 

Academic AttrX 

Secretary AttrY 

Academic 

Secretary 



Chapter 4  Design Trace Model 

 56 

labels for distinguishing new entities may affect the system performance negatively.  

There might be too many different names for the entities.  To increase the 

performance, the split action for an entity can be redefined as an extract action.  

Figure 4.7 shows the extraction action.  The extraction creates one additional entity 

and keeps the existing entity.  The new entity will have some attributes of the 

existing entity. 

Figure 4.7 Extract action for a component. 

This section defined the evolutionary link for the design trace model and focused on 

the diagramming actions and cardinality of the evolutionary links.  The next section 

focuses on the general properties of the trace relationships. 

4.2.2.5 Direction 

The term traceability is commonly used for tracing requirements.  Gotel and 

Finkelstein (1994) stated that requirements traceability has two main parts: Pre- 

Requirement Specification (RS) and post-RS traceability.  Post-RS traceability is about 

tracing how each requirement is implemented.  Whereas pre-RS traceability is about 

tracing back from requirements to their underlying user needs.  The semi-automatic 

approach is only interested in the post-RS traceability.  For the assessment purpose, 

the scenario doesn’t need to be traced back to the user requirements.   

Post – RS traceability can be forward or backward.  Forward traceability is to trace 

documentation entities to realisation documentation entities on the next abstraction 

levels.  Backward traceability is to trace documentation entities to source 

documentation entities on previous abstraction levels.  Gotel and Finkelstein state 

that traceability should be in both directions.  For the assessment system, only 

DB Scenario Text 

------------------------------

Lecturer---------------------- 

-----------------   Staff-------- 

Head of department  

-------------------------- 

---------HoD---------- 

 
Evolution link 

Staff 

SR link 

Staff 

Secretary 



Chapter 4  Design Trace Model 

 57 

backward traceability is essential.  Students’ final designs are traced back to the 

requirement for contextual information of each component.  However, forward 

traceability can be implemented if the assessment tool is used as a learning tool.  

Students can follow the examiner’s rationale from the scenario text to the final 

diagram.   

4.2.2.6 Attributes of relationships 

Traceability approaches improve relationships by adding different attributes, for 

different purposes such as the weighting attribute for the impact of a required 

change.  Additional relationships’ attributes could be defined to describe the decision 

history as well.  Fischer et al (1995) define the decision history or the design rationale, 

as statements of reasoning underlying the design process that explain, derive, and 

justify a design decision.  In the requirement traceability context, Conklin (1989) 

claimed that the design rationale increases the system’s maintainability.  In the 

assessment context, it would enhance the teachers’ understandings about students’ 

work.  An approach to capture and to use design rationales for assessment purposes 

is discussed in the self-explanation section. 

4.2.2.7 Setting relationships 

The relationships between documentation entities are set implicitly or explicitly.  

Implicit relationships do not require manual setting, such as name tracing.  In name 

tracing, the same names and abbreviations denote the same concepts in two 

documents.  That allows tracing a documentation entity in one document to its 

correspondence in another document without the need for manual setting.  Implicit 

relationships are preferable in traceability since they can be automated. 

Explicit relationships need to be manually implemented and increase workload.  

Traceability approaches use explicit relationships where implicit relationships are 

not possible.  In the assessment context, both purely implicit and explicit 

relationships are possible.  However using only implicit relationships may cause too 

many restrictions on assessment environment.  For example, a student can be forced 

to use limited component names during the design process.  This will ensure the 

usage of the same names in different student diagrams.  Although that restriction 

allows using implicit relationships, it might not be suitable educationally.  Therefore 

the proposed design trace model uses explicit relationships where their use is 

educationally justified.   



Chapter 4  Design Trace Model 

 58 

4.2.2.8 Representation of relationships 

Both implicit and explicit relationships between documentation entities need to be 

represented to support different purposes of traceability.  During the marking 

process, the semi-automatic approach also requires the representation of the 

relationships.  Wieringa (1995) summarizes three ways used to represent links: 

matrices, graphical models, and cross references for requirements engineering.  The 

design trace model uses the graphical model so that design history can be 

represented flexibly.  Details of the representation are discussed in Chapter 5.   

4.3 Trace production 

Trace production is a process model that documents when the identified information 

should be captured and by whom (von Knethen and Paech, 2002).  Pinheiro (1996) 

describes two kinds of trace productions: Off-line and on-line.  The off-line 

production performs the capturing process after the act of activity.  For example, 

students submit their work and then the work is analysed automatically or manually 

by the human marker to produce relationships.  Whereas in online production, the 

relationships are captured as a result of performing the design activities, this section 

discusses usage of offline and online production in student diagram assessment. 

The traces to be produced are vertical or horizontal relationships.  Horizontal 

relationships are essential part of the assessment system.  The marking process can 

only be performed by using them.  They can be SR relationships or combination of 

SR and E-relationships.  The production of SR and E-relationships is investigated in 

the next sub-section.  As for vertical relationships, they are optional.  The system can 

work without them.  They improve the performance of the assessment system if their 

production is done automatically.  Automatic production of vertical relationships is 

also considered for each production type in the next section. 

4.3.1 Off-line production  

The thesis assumes that in off-line production for the semi-automatic approach, 

students use an available diagram editor to draw their diagrams.  An external 

program records the design activities.  The record consists of all components created 

and deleted during the design process.  The following two sections investigate the 



Chapter 4  Design Trace Model 

 59 

use of these design records for the automatic trace production of both SR and E 

relationships. 

4.3.2 SR relationships production 

SR relationships are links between phrases in scenario text and a component in a 

diagram if they are used at the most fine-grained level.  This section discusses briefly 

the possibility of using the information retrieval techniques to produce these 

relationships automatically for the design trace model. 

The goal of the information retrieval systems is to retrieve all documents which are 

relevant to user keywords whilst retrieving as few non-relevant documents as 

possible.  The systems extract semantic and syntactic information from the document 

text and use this information to match user information need (Yates and Neto, 1999).  

Incorporating the domain knowledge improves the success rate.  The success rate is 

affected by keywords which convey the semantics of information need and index 

terms which is a logical view of documents. 

Component names in student diagrams may be used as keywords and the 

information retrieval techniques can search the keywords in the scenario text for the 

trace productions.  In order to perform the production correctly, the techniques 

incorporate domain knowledge.  Domain knowledge consists of linguistic, scenario 

and subject domain and general world knowledge (Bohner, 1991).  All this 

knowledge should be complete for correctness of the trace production.  Preparing 

such domain knowledge could be expensive for assessment purposes.  It increases 

the set-up cost of the questions. 

Apart from the domain knowledge, the component names are also very important 

for the production.  Misnaming components decreases the success rate and could 

make the system unreliable.  Smith et al (2004) found student diagram solutions are 

imprecise where required features are either malformed or missing.  If the techniques 

are used for the production then the students should approve the traces or the 

examiner needs to filter and validate the traces.  This would increase marking 

workload much more than the traditional method. 

Information retrieval systems use information extraction techniques and 

automatically build index terms for the documents.  Cerbah and Euzenat (2001) 

employ the technical terms (terminologies) for a specific domain for the trace 



Chapter 4  Design Trace Model 

 60 

production.  They automatically extract terminologies and represents as term 

hierarchies.  These hierarchies (the taxonomy of classes) are at an intermediate level 

between the text in documents and the formal models.  Figure 4.8 illustrates the 

terminological items for the trace production.  In the technique, the users exclude 

some of links/terms or add more links/terms during the production if required. 

 

Figure 4.8 Terminological items (Cerbah and Euzenat, 2001) 

The technique may be applied to the diagram assessment.  The phrases in the 

scenario text can be extracted automatically and a reference phrase list can be built 

automatically.  Later, the examiner modifies the list by adding and deleting terms 

during the question preparation.  To automate the trace production, the students are 

only allowed to use the phrases in the list to name their components.  Wrong phrases 

should be added into the list in order to prevent students from predicting the 

answers. 

This section discussed that the information extraction techniques can be employed 

for the SR relationships production if the some restrictions are applied to the 

diagramming.  The next section will discuss the production of the evolution 

relationships. 

4.3.3 E-relationships production 

Evolution relationships are links between components in the design history.  They 

have got “one to many” cardinality.  This section discusses briefly the possibility of 

using the phrase list to produce the relationships automatically for the design trace 

model. 

 



Chapter 4  Design Trace Model 

 61 

E-relationships are needed after some design activities (e.g.  a split or merge action).  

Students may create new components to replace the existing components.  Figure 4.9 

shows an example action of merging two entities.  This action may consist of three 

events.  Students may do two “delete a component” events (e.g.  lecturer and HOD) 

and one “add an entity” (e.g.  Staff).  These three events are interrelated to each 

other.  They need to be interpreted to be able recognise the compound action.  

Recognised actions can be used to produce traces for the model. 

 

Figure 4.9 Scenario reference and component correspondence link 

Students may draw their diagrams in an irregular order.  Unrelated events in the 

design history may interleave one another.  For example, “delete a component” 

events may be about a correction of a drawing mistake rather than a part of a merge 

action.  This kind of event causes the misrecognition of actions.  As well as the event 

type, component names need to be used to correctly relate events of an action. 

Students need to use the phrase list to name their components for E-relationships 

production like SR relationships.  However the list consists of supplementary 

phrases as well as all phrases in the scenario text.  The list should be a taxonomy of 

phrases for the scenario text as in Figure 4.8.  For the scenario text in Figure 4.9, the 

list will include the “head of department” and “lecturer” phrases.  The list should 

also include the “staff” phrase even though it is not in the scenario text.  The staff 

term should be represented as a parent of other two terms in the taxonomy in order 

to be used for trace production. 

The list may also include wrong phrases to prevent students from predicting right 

answers.  Wrong answers are called distracters in multiple choice questions.  As in 

DB Scenario Text 

------------------------------

Lecturer-----------------------

----------------------------------

----------------------------------

-----------------------------

Head of department 

---------------------------

----------- 

Lecturer 

HOD 

Staff Scenario Component 

Initial Diagram Final Diagram 



Chapter 4  Design Trace Model 

 62 

multiple choice question types, the examiner has to foresee students’ reasoning in 

advance and add the possible wrong terms into the list.  Building such a phrase 

taxonomy may be an expensive task and may make the setting up of a question 

complicated and the subsequent assessment process infeasible. 

Students may use the terms in the list wrongly.  This causes an invalid production of 

traces.  For example, the “book” noun phrase in the list may have the meaning of 

“book title”.  Students may use the “book” noun phrase to name the “book copy” 

component.  During the trace production, the student’s component will have the 

meaning of “book title”.  For this reason, students need to see the interpretation of 

their diagram and approve it before they submit their solution.  As students see the 

interpretation, they may rename the component to correct it.  If not, students accept 

the grade and feedback for their work. 

The off-line trace production requires both the naming restriction and student 

approval of produced traces in order to be able to give a valid grade for the student 

work.  Conventional diagramming editors need additional features to implement 

these requirements.  Since off-line production uses student design activities without 

altering them, checking whether the offline production can be acceptable by student 

is not required.  

4.3.4 On-line production 

In on-line production, the relationships are produced as a result of performing 

design activities.  To automate online productions, the conventional design activities 

are changed and new activities are added.  These new design activities require 

educational justification.  Section 4.3.7 gives this justification by explaining the self-

explanation concept.  The following two sections discuss the online production of SR 

and E relationships. 

4.3.5 SR relationships production 

This section considers first the SR relationships in the finest granularity level, which 

are links from a phrase to a component, then later considers the SR relationships in 

the coarse granularity level for some component types.  It emphasizes the problems 

of KERMIT’s approach (Suraweera and Mitrovic, 2002) and proposes a new 

approach. 



Chapter 4  Design Trace Model 

 63 

KERMIT forces students to first highlight the phrase and then create a component to 

produce the SR Relationships.  Students name the components as they wish.  The 

examiner grades the student diagrams and gives feedback based on the SR 

relationships rather than the components’ names. 

This approach allows students to reference components wrongly.  For example, the 

“Student” entity can be referenced to the “department” noun phrase in the scenario.  

As a result of this, the “Student” entity is interpreted as department entity during 

marking.  The thesis calls this problem a “naming discrepancy”.  This potential 

problem may be solved if components are named by using the highlighted phrases 

as a label of the component. 

The highlighted phrases may cause a “naming discrepancy” as well.  For example, 

students might highlight the “worker” part of the “permanent worker” phrase to 

name a component.  The “worker” entity is interpreted as a “permanent worker” 

entity even if the entity has got a different meaning in the diagram context.  Students 

should be aware of this marking process.  They should be extra cautious during 

referencing components since incorrect references make the correct component 

wrong. 

Referencing components can be more reliable if component names are determined 

earlier and a phrase list is created.  Students use the lists instead of the free-

highlighting.  For example, a student can pick the “Permanent Worker” phrase from 

the list to name a component.  Then the phrase will be highlighted in the scenario.  

The picking technique prevents the phrase from partial selection.  This technique 

requires building the phrase list.  The phrase list can be automatically constructed by 

using information extraction techniques as discussed in the previous section.  The 

examiner reviews the list to correct the wrong items.  Then the list is made visible to 

students during the design process. 

The noun phrases in the scenario text are usually used to name attribute or entity 

types for database diagrams.  The verb phrases in the scenario text may name a 

relationship type.  The same verb phrases could occur in different sentences and 

refers to different relationship types in a diagram.  For example, the “has” verb 

phrase could be a reference for both a relationship between “Student” and “address” 

and between the “hospital” and “ward” entity types.  The “has” verb phrase needs to 

occur again in the verb phrase list each time it refers to different relationships.  This 



Chapter 4  Design Trace Model 

 64 

ambiguity between the “has” phrases can be resolved if scenario sentences, in which 

the phrases are used, are listed as references instead of phrases only.  Both noun 

phrases and sentences in the scenario text are used for diagram components.  This 

makes the granularity level coarse and fine at the same time for the requirements 

document. 

Some sentences in the sentence list might refer to a same relationship type in student 

diagrams.  Representation links show these related sentences.  Production of these 

relationships during the question set-up time improves the marking performance.  

Creating representation links automatically is a more complex task in sentence level 

granularity than in the phrase level.  The manual trace production can be preferred 

due to the small number of sentences.  Representation links in sentence level 

granularity can even be ignored to decrease the set-up cost. 

Some complex sentences may cause referencing ambiguity.  They may refer to two or 

more relationship components semantically at the same time.  This makes the 

cardinality of SR relationships “one to many” and prevents the components from 

being uniquely identified.  For example, the sentence, A, below can be a reference to 

a relationship between the “student” and “optional module” entity types.  The same 

sentence can also be a reference for another relationship between “programme” and 

“optional module” entity types.  This ambiguity may increase the cognitive load of 

marking since the examiner needs to understand what the student means from this 

reference. 

A) Students choose optional modules of their programme.   

B) Each programme has many optional modules. 

A solution to referencing ambiguity is to impose a restriction on sentence 

referencing.  Students can refer to a sentence for only one component and the 

component name should be the verb of the sentence.  In this case, the scenario writer 

should make sure that sentence B or a semantically similar sentence is written for the 

second meaning of the sentence A. 

This section discussed the student’s involvement of the SR relationships production.  

It suggested using noun phrases and sentences together.  The next section extends 

the student’s activities for E-relationship production.   



Chapter 4  Design Trace Model 

 65 

4.3.6 Online E-relationship production 

This section discusses the students’ involvement of E-relationship production.  It 

suggests using special functions for different design activates and focuses on 

diversity in student reasoning. 

Evolution relationships are needed after certain design activities.  Special functions 

are defined for each action in order to recognise them without interpreting low level 

events like delete and add component.  Students use the functions to perform an 

action and modify existing diagrams.  For example, for the merge action, the function 

gets Entity A and Entity B in a diagram and replaces them with a new Entity C with 

the attributes of both entities.  Figure 4.10 shows this action in diagrammatic form.  

For online trace production, these functions need to be implemented into a diagram 

editor and conventional diagramming process needs to be changed. 

 

Figure 4.10 Components reference diagrams 

Students use the provided functions in a special editor to draw their diagrams.  With 

these functions, the same diagrams can be drawn in the many different ways.  

Merge 

NP NP 

Entity(a) Entity(b) 

Entity(c) 

NP 

Extract 

Entity(a) Entity(b) 

Entity(a) 

 
 

a x 

a 

 

a 

z 

 

b 

Diagram B for an 
extract action  

Diagram A for a 
merge action  

Diagram C for 
multiple actions  



Chapter 4  Design Trace Model 

 66 

Diagram B in Figure 4.10 shows an application of the extract function.  This function 

extracts Entity B from Entity A.  Diagram C in the same figure shows different 

combination of merge and extract functions which produce the same Entity A and 

Entity B.  These functions allow students to create different design traces for the 

same component.  The different traces for a component give the different contextual 

information.  The examiner marks each context separately, therefore a high number 

of these traces decreases the system performances. 

A number of traces for a component shows the diversity of drawing the component.  

This diversity should be at an acceptable level.  It depends on the order in which 

students consider the requirements.  The order may be loosely controlled by the 

scenario scaffolding technique.  The scaffolding (Bunt et al, 2004) reveals the scenario 

text, section by section.  The assumption is that the students may consider the 

sections in the same order they are revealed.  However, students might still draw the 

diagram in a different order.  Effectiveness of scaffolding depends on the contents of 

each section.  How the sections should be written is discussed in Chapter 5.   

The usage of the functions may cause the “naming discrepancy” problem.  The 

functions create one or more new components and students name these components.  

The names of these components are not important in terms of the diagram marking 

since only traces are used for grading.  However the components’ names should be 

compatible with their traces.  For example, “temporary worker” and “permanent 

worker” are merged and students are allowed to name the new entity “department” 

instead of “worker”.  Students should see the reference of this component so that 

misnaming can be spotted before they submit their solutions.  Alternatively a 

naming convention can be prepared and checked by the system during 

diagramming.  Chapter 7 discusses this problem in detail. 

This section discussed that the online production of E relationships requires student 

supports.  They use the functions for their design activities.  The diversity in 

students’ activities is controlled by scaffolding techniques.  Students are responsible 

for solving the “naming discrepancy” of a component.  Online trace production alter 

conventional diagramming process.  The next section justifies this alteration.   



Chapter 4  Design Trace Model 

 67 

4.3.7 Self-explanations 

In industry, there are people with many years experience of trace production.  They 

create traces explicitly between requirement documents and their design or products 

(Ramesh,  1998).  In education, the people who produce traces are students and 

novices.  They are expected to create traces explicitly between the scenario text and 

their solutions for online trace production.  In other words, students are forced to 

explain their actions.  This is called self-explanation in the literature.  Psychological 

studies (Bunt et al 2004) show that self-explanation is a very effective learning 

strategy resulting in deep knowledge. 

Many self-explanation systems (Conati, VanLehn, 2000) have been developed to 

support students’ self-explanations.  Self-explanation systems may support students 

while they study solved examples or are asking for an explanation while solving a 

problem.  The main problem of self-explanation whilst solving the problem is the 

high cognitive load (Chi et al, 1989).  For online trace production, a new diagram 

editor needs to be designed.  The editor should support students’ self-explanation 

and reduce the cognitive load of the self-explanation.  Chapter 6 looks into the 

components of the required diagram editor. 

4.4 Design Trace Model  

Both offline and online production can be adapted to the new design trace model.  

Online trace production expects students’ self-explanation, whereas offline 

production applies some restriction on component naming during diagramming.  

This section first discusses both the production techniques and then adopts the 

online production technique.  It gives the details of the new model. 

The off-line trace production requires the examiner to do many additional tasks 

during the preparation stage and/or marking stages.  They need to build the detailed 

phrase list in the preparation stage and to validate the produced traces in the 

marking stage.  The benefit of the offline production is that there aren’t any changes 

in diagramming activities.  Additionally it is very close the full-automatic 

assessment.  On the other hand, the on-line production requires fewer additional 

tasks.  It shifts the load of the assessment to the students.  Students need to do the 



Chapter 4  Design Trace Model 

 68 

additional diagramming activities.  Although this load on the students has been 

justified educationally, students need to learn the new activities for diagramming. 

The on-line production requires less initial preparation and it can use incomplete 

knowledge.  The production technique can be used in formative assessment.  Later 

the student solutions may be analysed to build the complete knowledge required for 

the offline production.  Therefore this thesis adopts the online production to the 

design trace model.  Chapters 5 and 6 will discuss the implementation details of 

online trace production and the offline production is out of the thesis’s scope. 

Online trace production uses scenario text and student diagram documents.  Figure 

4.11 illustrates the trace model developed, based on the online production.  Scenario 

text in the figure consists of text fragments, which can be noun phrases or sentences.  

Each text fragment may link to another.  These links are representation relationships 

as discussed previously.  The student diagram in the figure consists of components 

which can be different types.  Component types are entity, relationship and attribute 

types for the database diagram.  Component types can be different depending on the 

diagram type.  There is a “one-to-one” scenario reference relationship between one of 

the related text fragments and a component.  Related components in a design history 

are connected by a “many-to-many” evolutionary relationship.  This relationship has 

an attribute which keeps the information about the function used for the design 

action.   

 

Figure 4.11 Design trace model 

Text fragment  Component   

Noun Phrase Sentence 

Representation 
Relationship   

Evaluation  
Relationship   

Scenario Reference 
Relationship   

Function   

Requirements Document 

(Scenario Text) 
Student Diagrams 



Chapter 4  Design Trace Model 

 69 

The design trace model in Figure 4.11 shows the entities and relationships to be 

traced for the diagram assessment.  The model is designed for online production but 

it doesn’t show the production process model.  This is discussed in Chapter 6. 

4.5 Summary  

This chapter presented the design trace model required for the semi-automatic 

diagram assessment.  It adapted vertical and horizontal relationships from the 

reference model.  Three relationships types are introduced for the model.  Two trace 

production approaches are discussed.  The online production techniques are adopted 

for the model.  For online production “function” concept is developed which eases 

the production of evolutionary relationships. 

The design trace model is developed for ER diagrams specifically.  However the 

model can be used for many similar graph diagrams as well.  The “Function” 

attribute of the model is generic.  For the new diagram type, new action functions 

can be defined.  The model currently has “noun phrase” and “sentence” entities.  For 

the diagram, a new entity can be added if it is required. 

This chapter explained the development of the design trace model.  Similar 

development steps can be followed to develop a new trace model for other graph 

diagrams. 

The next chapter develops a new marking process model, which uses the design 

traces during marking. The chapter focuses on the automation of the marking. It 

defines a new generic case concept and explains the use of the generic cases for the 

automation. The chapter also develops a set of guidelines for writing question text 

which contributes to the automation. 

 



Chapter 5  Marking Process Model 

 70 

CHAPTER 5 

Marking Process Model 

5.1 Introduction 

Semi-automatic diagram assessment aims to remove the repetitive tasks of the 

assessment as much as possible.  Chapter 3 developed the partial marking process 

for semi-automation and discussed automation of the partial marking process to 

increase the performance of the approach. 

The partial marking process groups the student diagrams based on their design 

history.  To save the design history, the design trace model is developed in chapter 4.  

The assessor marks one diagram segment from each group during partial marking.  

To increase the performance of the partial marking process, the case-based reasoning 

(CBR) method is adapted in chapter 3. 

This chapter presents the adaptation details of the CBR method for the semi–

automatic diagram marking process, focusing on partial marking.  The first section 

develops the case definition for automatic partial marking and establishes a 

relationship between the case definition and the writing style of a requirements 

document.  It also shows that scenarios with the same writing style increase the 

automation of partial marking.  The second section develops a guideline for writing 

similar scenarios.  The last section introduces the full diagram marking process.  It 

combines full and partial marking in order to have a new marking process model. 

5.2 Automatic partial marking 

This section first gives the basic definition of cases used for the partial marking.  

Then it exemplifies the usage of the cases to automatically mark some of the diagram 

components.  The examples only demonstrate the possibility of automation without 

providing the full coverage of the area, which is not within the scope of this research.  

A separate and extensive study will be planned in the future.  The section later 

enhances the first case definition in order to improve the automation and creates 



Chapter 5  Marking Process Model 

 71 

generic cases.  Lastly it focuses on the generation of generic cases and highlights the 

importance of the scenario writing. 

5.2.1 Basic case definition, correspondence links and reference 

diagrams 

The proposed marking process starts when student diagrammatic solutions are 

received and ends when feedback for the all solutions is produced.  The feedback 

consists of a grade and the examiner’s comment for each component in the diagrams.  

A component and its feedback together make up a case and are stored to be reused 

later for subsequent cases whenever it is possible.  Components are identified and 

indexed by their design traces.  Each trace for a component is represented as a 

diagram called the reference diagram.  The reference diagrams are read by the 

human marker.  The marker matches a component with the ideal diagram 

component based on the reference diagram.  The correspondence link is created 

between two components.  These links are very important.  They are used later for 

standard feedback generation.  Figure 5.1 illustrates two correspondence links.  The 

links show that two entities from a student solution are matched with two entities in 

the ideal solution.  Both links in the figure have a one-to-one cardinality.  The 

cardinality of correspondence links could be one-to-many in other cases.  Figure 5.1 

also shows an abstract type case, Case-1, which consists of a reference diagram(a) 

and its feedback. 



Chapter 5  Marking Process Model 

 72 

 

Figure 5.1 Assessment case definition. 

Correspondence links are also used for schema integration which is the activity of 

integrating the schemas of existing or proposed databases into a global, unified 

schema (Batini and Lenzerini, 1989).  Schema integration is a basic problem in many 

database application domains, such as data integration, E-business, data 

warehousing, and semantic query processing.  Schema matching is typically 

performed manually.  There are many different types of correspondence links 

defined for this purpose.  This research uses a basic type of correspondence link for 

database diagram.  The basic type could be extended for different graph based 

diagrams if it is needed. 

Reference diagrams represent student design activities for a component.  They are an 

instance of the design trace model.  A reference diagram can have three component 

types which are called Ref-components: (1) scenario references (SRs) which can be 

noun phrases or sentences, (2) design actions and (3) intermediate components.  

Figure 5.2 illustrates these three types of Ref-components.  In the figure, the scenario 

references are represented by hexagons which are noun phrases.  The intermediate 

components are represented by rectangles which are entity types in student 

diagrams.  The design actions are represented by trapeziums which are merge 

actions.  The figure shows the reference diagrams of Component A and Component 

B. 

Case-1=(Reference diagram(a), Feedback(grade, comment)) 

Component 

Reference Diagram 

Ideal Entity-Relationship 

Diagram 

Correspondence link for 

Feedback generation  (a) 



Chapter 5  Marking Process Model 

 73 

 

 

Figure 5.2 Finding identical reference diagrams 

The marking system groups reference diagrams based on their ref-components.  

During grouping, firstly, reference diagrams which have got the same scenario 

references are put together into temporary groups.  Next, within these groups,   

intermediate components and diagram actions are matched.  If all ref-components 

are completely matched in two reference diagrams, they become a member of the 

same group.  Figure 5.2 shows an example of grouping two reference diagrams.  In 

the figure, both reference diagrams have got common scenario references.  Later 

Entity X is matched with entity K and entity Y is matched with entity L.  Lastly, the 

merge design action of both reference diagrams are matched. Since all ref-

components are matched, Entity A and Entity B are placed in the same group.  This is 

called the reference diagram group.  The human marker marks only one reference 

diagram in each group. 

5.2.2 Examples of automatic marking 

Some of the reference diagram groups can be marked automatically.  This increases 

the efficiency of the marking process.  Basic automation can be done by using the 

RDs of correct components which is called the ideal reference diagram.  All ideal 

reference diagrams for an ideal solution can be entered into the system.  If a reference 

 

 

 

X 

Y  

A 

Scenario 

References  

Intermediate 

Components 

Design  

Action  

Final diagram 

 Component 

 
K 

L  

B 



Chapter 5  Marking Process Model 

 74 

diagram group contains an ideal reference diagram then the reference diagram 

group is marked correct and correspondence links for reference diagram are 

generated automatically.  For example, Entity A in Figure 5.2 is a component in an 

ideal solution.  The reference diagram of Entity A is an ideal reference diagram.  

Since the reference diagram of Entity B is matched with the reference diagram of 

Entity A, Entity B is automatically marked correct.  If there is more than one ideal 

reference diagram for a component, entering these reference diagrams into the 

system enables the marking of more diagrams automatically. 

Some reference diagrams are partially matched rather than complete matching, 

unlike the reference diagrams in Figure 5.2 during the grouping process.  The partial 

matching can be used to help further diagrams to be marked automatically.  Two 

reference diagrams could have the same scenario references but the rest of the 

diagrams’ parts wouldn’t match completely each others.  For example, Figure 5.3-B 

illustrates an entity and an attribute component, which have the same scenario 

reference.  If the entity component is correct, the attribute will be wrong.  Therefore 

standard feedback for this component is given to students without human 

intervention.  In the entity relationship diagram domain, the generic case in Figure 

5.3-B is stored to be used for the automatic marking. 

 

Figure 5.3 Automatic component marking with an ideal reference diagram 

 

  

  ? 

 

  

 

 

  

 

Diagram A 

Diagram B 

Diagram C Diagram D 

 

  

 

 

  

 

 

 



Chapter 5  Marking Process Model 

 75 

Another partial matching example is a subset of a correct reference diagram.  In this 

case, the final components are automatically marked based on the rest of the diagram 

by using rules.  Figure 5.3C shows this type of marking.  The shaded area in the 

figure shows the matched part of the diagrams.  The right diagram shows that a 

student converted a correct entity type to an attribute type which is represented by 

triangle shape in the diagram.  Figure 5.3D shows a slightly different version of 

Figure 5.3C.  The right diagram shows that the student created a new entity from the 

correct one by using an extract action.  As a result of this action, the new entity 

becomes wrong and the other entity remains correct.  This specific case can be 

generated and entered into the system so that more diagrams are marked without 

human intervention. 

A reference diagram could have scenario references which is the subset of scenario 

references of an ideal reference diagram.  Standard feedback for these diagrams can 

be generated automatically.  Figure 5.4A shows two wrong entity components with 

respect to an entity component in the ideal diagram.  When the system grades these 

components, half of the marks for the correct component can be given to them.  This 

kind of marking scheme distinguishes a completely wrong component from the half 

correct one.   

 

Figure 5.4 Partial scenario reference matching 

The combination of two correct reference diagrams can also be used to mark 

additional components automatically.  Figure 5.4B shows two correct reference 

 

  

 

 

  

 

  

Diagram B 

 

 

  

 

Diagram A 



Chapter 5  Marking Process Model 

 76 

diagrams with the tick signs.  The reference diagram in the middle of Figure 5.4B 

shares its scenario references with both of the correct ones.  In this case, this entity 

component will be marked wrong.  This type of complex generic case can be built 

and used for the marking until it is proved that is invalid for some situation.   

The examples given in this section is for the entity relationship diagram domain.  The 

same generic rules may not be applicable to other graph diagrams.  Student solutions 

and examiner comments can be analyzed for each diagram type separately to create 

special generic cases for them. 

5.2.3 Case categories and generic case definition  

Scenario references of the reference diagrams are the main components used for 

matching reference diagrams discussed in the previous section.  Generic diagram 

cases can be categorized based on the scenario reference matching.  Table 5.1 lists 

two main categories of generic cases.  The scenario references (SRs) of a reference 

diagram (RD) and an ideal reference diagram (IRD) can be completely or partially 

matched or they can be completely separate from each other, in which case the 

diagrams aren’t generalised for automation (see Figure 5.3A).  If SRIRD and SRRD are 

the same, the rest of the diagram parts could be the sub-diagram of another one or 

partially matched.  Only the sub-diagram situation is considered for automatic 

marking.  The latter situation is not suitable for generalisation.  If SRIRD and SRRD are 

partially matched then SRRD can be the subset of one SRIRD or many SRIRD.  This type 

of partial matching can be considered for automatic marking.  If SRIRD and SRRD are 

partially matched and the unmatched part of the SRRD is not the part of other SRIRD, 

then these reference diagrams aren’t considered for generic case generation.   

Table 5.1 Category of generic cases 

1. Complete matched (SRIRD = SRRD )  

a. IRD⊂ RD (e.g.  Figure 5.3C) 

b. RD⊂ IRD (e.g.Figure 5.3D) 

2. Partial matched (SRRD ⊂ SRIRDs) 

a. One IRD for a component (e.g.  Figure 5.4A) 

b. Many IRDs for a component (e.g.Figure 5.4B) 

 



Chapter 5  Marking Process Model 

 77 

There can be many generic cases in each category listed in Table 5.1.  These generic 

cases are used to produce feedback for components.  The generic case is the 

enhanced version of the basic case definition.  Each case consists of a reference 

diagram, a set of ideal reference diagrams and some feedback.  Figure 5.5 shows the 

usage of the generic cases.  It shows a formal function and its explanation.  The 

function F generates feedback for a reference diagram and takes x and y parameters 

as an input.  X is a reference diagram and y is a set of the suitable ideal reference 

diagrams for the reference diagram.  The suitable ideal reference diagrams are found 

based on categories in Table 5.1.  If there is no suitable ideal reference diagram then 

function F cannot be used.  The reference diagram  and the  ideal reference diagrams 

together are mapped to one of the generic cases.  If there is no generic case applicable 

for the input, then the human marker marks the reference diagrams. 

 

Figure 5.5 Usage of generic cases 

The generic cases should be used for any scenario text.  They are independent from 

the domain of the scenario text.  For example, scenario text can be database 

requirements of a rent-a-car system or a library system.  For both domains, the same 

generic case can be used.  Scenario text S in Table 5.1 indicates that S can be any 

scenario. 

The generic cases are desirable but not essential for semi-automatic marking.  The 

assessment system can work without the generic case-base library.  This allows 

Generic CASE ((IRDs,RD),FB) 

F (x,y) ={fb| case((K,L),fb) is member of generic case-base, (K,L)=(x,y)} 

1. K is a set of ideal reference diagrams. 

2. L is a reference diagram.  

3. fb is the feedback for the L.  

4. x is a set of  ideal diagrams for component A in scenario text S. 

5. y is a student reference diagram in scenario text  S. 

6. X and Y are one of the case in Table 5.1.  

7. If   K=x and L=y then  

fb is the feedback for  y 

Else  

A new feedback is generated by the marker for y  

 



Chapter 5  Marking Process Model 

 78 

adding new generic cases into system gradually.  The next section describes the 

process of generating new cases. 

5.2.4 Generic case generation  

Some of the generic cases in each category can be foreseen in advance and can be 

embedded into the generic case-base.  The unanticipated generic cases can be 

detected and added into the system later on.  Figure 5.6 shows the process of generic 

case generation.  The existing marked diagrams of all scenario text are analysed 

component by component.  Abstract IRDs, the related abstract RDs and feedback is 

detected.  Abstract RDs or IRD are the reference diagrams without any labels of 

components.  If the detected cases repeat in the solution set more than a certain 

number then the same cases are highlighted.  If the highlighted cases are approved 

by a human, a generic case is generated and added into the case library.   

 

Figure 5.6 Generic case generation 

Increasing the number of the same cases (e.g.  case ((IRDs,RD),F)) is desirable for 

generic case generation.  The number of the same cases mainly depends on cases that 

have the same ideal reference diagrams.  This is because the number of ideal 

reference diagrams is generally less than reference diagrams since ideal reference 

diagrams can only be the correct solutions whereas reference diagrams can be either 

correct or wrong student solutions. 

1. Abstracting the IRDs and RD 

2. Grouping the abstract IRDs  

3. Finding related abstract RDs     

4. If Case ((Ki,L),F)  and i> 3 then  

  If the cases are approved by a human then  

Generate a generic case for adaptation.  

Generic case = ((K,L),F)     

        Insert into generic case-base.  

 Component i is the member of ideal diagrams.   

 Ki is all IRDs for component i. 

 L is a RD.   

 F is the feedback generated by a human marker for L.  



Chapter 5  Marking Process Model 

 79 

Initial ideal reference diagrams are captured while the teachers are solving the 

problem.  They depend on how the scenario is written to explain the required 

diagram components and the written style is independent from the content of the 

scenarios.  If the requirements of two components are written in the same way, these 

requirement texts are defined as similar in this research. 

The numbers of same cases can be increased by given a same question every year to 

different students or similar questions to same students.  Similar questions are also 

desirable for pedagogical reasons as explained in Chapter 3.  The next section 

describes a guideline for writing similar questions. 

5.3 Similar Scenario Text 

This section is about the question part of the assessment process.  It focuses on the 

requirements text for the database conceptual model.  It explains how to write 

similar scenario texts. 

Similar scenarios help the production of generic cases as discussed in section 5.2.  

The scenarios also affect the students’ reasoning while modelling.  They may involve 

few or many student reasoning steps, which increases the number of reference 

diagram groups, which in turn will increase the number of reference diagrams to be 

marked.  The system efficiency can be improved if this number is reduced.  The 

scenario can be written in a way that the students reasoning diversity is controlled to 

a certain degree in order to improve the efficiency. 

The section first introduces the concept of scenario statements and defines statement 

types.  Then it explains the importance of the scenario sections and how it may affect 

the students’ reasoning process.  Lastly it describes how to use statement types and 

sections to write a scenario text. 

5.3.1 Statement Types 

The scenario text consists of statements.  Statements can be one or many sentences.  

They can provide the database system requirements a question in a database 

modelling exam.  They have an effect on the students reasoning.  It may change  the 

diagram students are developing.  This research classifies the statements into the 

three types based on their effect: extension, alteration and support types.  Statement 



Chapter 5  Marking Process Model 

 80 

types assume that students or readers understand the statements and act on them 

correctly or in the expected way.  Although this is not always the case, it could 

increase the number of students using the same reasoning.  It could even reduce the 

student reasoning diversity which is good for the semi-automatic assessment. 

An example of each statement type is given in Figure 5.7.  Example 1 is an extension 

statement type.  The statement mentions system requirements which require a new 

component in the existing diagram.  Students read the extension statement and 

create Entity X.  Example 2 is an alteration statement and requires a change in the 

diagram.  Students replace Attribute Y with Entity Y.  Example 3 is a support 

statement.  It makes no change to the diagram but provides additional support to the 

existing diagram components.  For example it mentions an existing relationship 

between two entities and therefore supports the existence of the relationship and the 

entities. 

 

Figure 5.7 Examples of statement type 

The statement types in Figure 5.7 can work if students consider them in an expected 

order.  For example, a support statement in the example 3 may have an alteration 

affect on one student diagram and extension effect on another one.  This is because 

students may have read the support statement first before reading any other related 

statements.  The research suggests that different statement types for the same 

concept are written in separate sections.  Then the scenarios are presented section by 

A B 

Scenario Text  Student Diagram  

Example 1  

Example 2  

Example 3 

Extension Statement  

Existing Diagram  After reading the statement 

A B X 

A 

Y 
Alteration Statement  

Support Statement  

Statement Type 

A Y 

A Z A Z 



Chapter 5  Marking Process Model 

 81 

section to students.  Only if students consider one section at a time during the design 

can the statement type have the required affect on the student diagrams. 

This segmentation of the scenario or scaffolding technique can’t force the students to 

follow scenario sections in the specified order during design.  Students may still read 

the whole scenario text and then create the required component in a diagram.  Figure 

5.8B shows a reference diagram of two components.  In this case the students read 

the expansion statement of “staff” entity in the first section and then read the 

alteration statement of the same entity in the second section, which requires “part 

time staff” and “full time staff” entities as a replacement of the staff entity.  The 

reference diagram shows that a student has created these entities by using the extract 

function on the “staff” entity.  However, some students may create two entities 

straight away.  Figure 5.8A shows this case.  The students didn’t create a “Staff” 

entity after reading the first statement.  They read the second statement and create 

the two components.  The statements may be read in a different order.  If more 

students follow the sections in order, it reduces the reasoning diversity. 

 

Figure 5.8 Component reference diagrams 

Alteration statements can be written in such a way that students have to consider the 

sections in an order.  In the previous example, if the alteration statement didn’t 

mention the part-time and full-time staff explicitly then the student would have to 

use the extract function.  Students would not be able to create components directly.  

 

A                         B 



Chapter 5  Marking Process Model 

 82 

As a result of this, the entities would have only one ideal reference diagram in Figure 

5.8.  The number of ideal reference diagrams for a component has an effect on the 

diversity of the students’ reasoning.  Controlling the number of ideal reference 

diagrams could help the semi-automatic approach deal with the reasoning diversity. 

The size of the ideal reference diagrams has an effect on the reasoning diversity as 

well as the number of the ideal reference diagrams.  The size depends on the number 

of the related alteration statements in the scenario text.  Each alteration statement 

causes creation of new component/s in the ideal reference diagrams.  The ideal 

reference diagram becomes longer to reflect these alterations.  Figure 5.9 shows a 

long reference diagram.  It shows that there are two alteration statements in the 

scenario text.  Students need to come up with the module entity first and then apply 

the two extract functions to the module in order to have the correct diagram.  If they 

miss any of the alteration, they may have potentially wrong diagrams.  A long 

reference diagram is a harder scenario than a short one and increases the reasoning 

diversity. 

 

Figure 5.9 Long component reference diagram 

Second year 

option 

Module 

Reference 

Core 

Module 

Option 

Final year 

option 



Chapter 5  Marking Process Model 

 83 

Alteration statements can be different types.  Each type corresponds to the action 

functions defined in chapter 4.  Students read the alteration statement and apply the 

related action function to their diagram.  For example, a merge type alteration 

statement requires the usage of the merge function.  The same type alteration should 

have the same affect on the student reasoning.  Scenario text can be written in 

various ways to get same alteration affect.  Section 5.3.2 mainly focuses on writing 

the same type of alteration statements. 

5.3.2 Writing statements 

This subsection introduces e-condition, a-condition and c-satisfier concepts.  They are 

used to create different statement types.  This section gives the example sentence 

construct for explicit c-satisfiers.  At the end it highlights the relationships between 

scenario sections and c-satisfiers. 

Students are taught to come up with their diagram components when certain 

conditions are satisfied for them.  The research calls these conditions “existence 

conditions” or, in short, e-conditions of a component.  Each component type has 

various e-conditions.  Some of them are common and some are different from each 

other.  For example, an entity type in ER diagrams has got four e-conditions: 

uniquely identifiable, many occurrences, minimum one attribute and interest of 

business.  Facts given in the scenario text and known as general knowledge about the 

system satisfy e-conditions of a component.  The research calls these facts “condition 

satisfiers” or, in short, c-satisfiers.  Students should know the e-conditions of each 

component type and find the c-satisfiers of all components to get the correct design. 

Some c-satisfiers of a component are mentioned explicitly in scenario text.  Others are 

assumed to be known by the student as subject domain knowledge (Fulford, 2001).  

If all c-satisfiers were explicit in the scenario text, it would make the design very 

predictable.  On the other hand, if too many c-satisfiers are implicit then students 

make assumptions about the system.  This causes different interpretations of the text 

and increases the reasoning diversity. 

C-satisfiers of a component can be written in various ways.  The c-satisfier can be a 

sentence or phrase in the scenario text.  If a sentence is a c-satisfier of a component, 

the same sentence can implicitly be a c-satisfier of another component.  For example, 

a sentence can mention a relationship between two entities.  This sentence supports 



Chapter 5  Marking Process Model 

 84 

the existence of the relationship explicitly and those entities implicitly.  An explicit 

c-satisfier should be written as a sentence with the consideration of implicit meaning 

so that the scenario text can be divided into sections easily.  Otherwise segmentation 

of the scenario text can cause unexpected effects. 

A c-satisfier can be written as a sentence in different ways.  For example; multiple 

instances is an e-condition of an entity type.  The first sentence in Figure 5.10 

mentions the existence of the instances generally.  The second sentence mentions all 

instances of an entity type specifically.  These sentences are different sentence 

constructs for the same c-satisfier.  Scenario text can be written naturally by using 

sentence constructs with no limited grammar and vocabulary.  Sentence constructs 

can be defined as guidelines for scenario writing. 

Sentence A: “Our company is divided into departments.” 

Sentence B: “The company has got accounting, sales and purchase departments.” 

Figure 5.10 Sentence construct example 

Some e–conditions of component types overlap.  This might cause a different 

interpretation of a c-satisfier.  For example; “multiple instances” is an e-condition of 

both an entity type and multi-valued attribute type.  A unique identifier is an 

e-condition of only the entity type.  If a c-satisfier of multiple instances for an entity 

is written in a section and a unique identifier of the entity is mentioned later on in the 

next section, then some students may create first a multi-valued attribute then 

convert it to an entity after reading the second section.  Figure 5.11 exemplifies this 

case.  After reading Section A in the figure, students may create a “programming 

language” attribute for a employee entity or a new entity with a relationship to 

“Employee” entity.  When the students read section B they all need to have a new 

“programming language” entity.  These same e-conditions of two component types 

make an alteration effect during design process.  Some students consider the 

alteration statement and some not.  This results in the reasoning diversity. 

Section A: “The manager wants to keep the record of which programming languages each employee 

knows.” 

Section B:  “Each programming language has been given a unique number.” 

Figure 5.11 Convert alteration example 



Chapter 5  Marking Process Model 

 85 

Students alter the diagram components as well as creating one during the design 

process when certain conditions are satisfied.  These are called the “alteration 

conditions” or, in short, a-conditions.  For example, merging two entities may be 

performed if three a-conditions are satisfied: (1) Two entities have got the same 

number of attributes and (2) the same types of attributes, (3) the usage of data from 

both the entities together.  The c-satisfiers of e-conditions can be used to satisfy first 

two a-conditions.  Students create the required two entities after reading the c-

satisfiers.  An explicit c-satisfier can be written in the next section for the last a-

condition.  Students, who consider this c-satisfier, should merge the existing entities. 

The c-satisfier for “the usage of entities together” condition can be kept implicit if 

this is general knowledge.  In this case, students need to merge the entities whenever 

they are present in their diagrams.  If each a-condition is satisfied in a different 

section, the c-satisfier in the last section will be an alteration statement. 

A statement consists of c-satisfiers.  Their size can be one sentence or several 

sentences.  The types of statements depend on their c-satisfiers and related 

c-satisfiers revealed in previous sections.  The scenario writer uses c-satisfiers to 

construct expand, alter or support statements by using sections.  The writers use all 

c-satisfiers of a component in one section to create an expansion statement.  

Alternatively, they could use c-satisfiers of a component in a different section to 

construct the support and alteration statements.  Section 5.3.3 discusses the usage of 

the sections for the statement types. 

5.3.3 Scenario Section 

This subsection suggests a guideline about the writing of scenario sections in order to 

get the required effect from the statement type. 

The scenario section is a part of the requirements text, which consists of one or 

several statements.  Statements in a section can be any type.  It is suggested that 

writers should only use one statement for a concept to avoid mixed typed statement.  

Thus the sections don’t have both expansion and alteration statements of a 

component.  Otherwise, students can consider these statements in the different order.  

Then statement types may affect the students’ reasoning unexpectedly. 

Section size is a number of the statements in the section.  Some statements in the 

same section can be logically related.  Related statements may cause implicit 



Chapter 5  Marking Process Model 

 86 

alterations of a diagram.  For example, a section contains three expansion statements 

for two entities and a relationship between them.  Deleting one of the entities causes 

the deletion of the relationship or modification of the relationship.  Related 

statements in a section may increase reasoning diversity.  Figure 5.12 shows two 

design histories for the same system.  Scenario Y mentions relationship C and E in 

section 2.  After merge action, these relationships are changed and linked to entity F.  

Scenario X mentions these relationships in section 3 after the merge action.  Some 

students may wrongly modify the relationships C and E after considering section 3 

of scenario Y.  The style of writing scenario Y has potentially two more wrong 

components than the style of scenario X has.  Sections 1 and 2 in scenario Y have two 

related statements, which mention components C and E.  It is suggested that sections 

shouldn’t have too many related statements.  The author can decide this number 

depending on the complexity of the scenario text. 

 

Figure 5.12 Two written style of scenario text for the same system 

The similarity of the scenario text is based on the reference diagrams.  The reference 

diagrams don’t represent the related statements.  The ideal reference diagrams of 

component F in both diagrams in Figure 5.12 are the same, although their design 

histories are different.  Related statements might have indirect effects on the 

reference diagrams.  Some students might have the same wrong or right reference 

diagrams for different scenarios if the scenarios have used related statements in the 

A B C 

D E 

A B C 

E 

F 
B 

C 

D A B 

F B 

E 

F 
B 

C 

Scenario X Scenario Y 

Section 1  

Section 2  

Section 3 



Chapter 5  Marking Process Model 

 87 

same way.  In this case, any association between ideal reference diagram, Students’ 

reference diagrams and related statements are investigated.  If there are any 

relationships, a generic case can be generated.  For example, feedback for 

relationship E between entity D and B can be automatically generated since the 

correct E relationship is between entities B and F.  Even if any generic case can’t be 

generated, the information about related statements can be used to determine the 

complexity of the scenario text.  For example, Scenario Y is more complex than 

Scenario X since it allows more reasoning diversity. 

5.3.4 Writing similar scenario text 

No research has been found which focuses on producing similar scenarios.  The 

research into text writing has focused on writing requirement specifications of 

software systems aiming at concise and consistent statements (Miriyala and Harandi, 

1991).  Examiners write scenarios based on their experience.  They may gradually 

improve the scenario after getting feedback from the student solutions.  Some of 

these scenarios can have common statement types and sentence constructs.  The 

similarity of scenarios can be detected during marking to prepare generic cases and 

improve the automation.  On the other hand, the assessor can also write the scenario 

by using predetermined statement types and sentence constructs which are 

mentioned in previous sections.  These scenarios naturally become similar to each 

other.  The assessment process is automated more when similar scenarios are written 

deliberately rather than detecting the similar scenarios.  However this increases the 

workload of the preparation stage of the assessment process.  The research adopts 

the latter method in this section.  The section introduces concepts of scenario 

template, statement template and sentence construct. 

The assessor can be provided with a template scenario to ease the preparation of 

scenario text, Figure 5.13 shows a scenario template.  The template consists of three 

sections.  Section 1 consists of three expansion statements.  The first two statements 

are for entity A and entity B.  The last one is for relationship C.  The right side of the 

figure shows the diagramming history of the template.  Section 2 consists of two 

expansion statements.  The diagram in section 2 has two additional components as a 

result of section 2 in the scenario template.  Section 3 has one alteration statement, 

which merges entity A and D, creating entity F. 



Chapter 5  Marking Process Model 

 88 

 

Figure 5.13 Scenario template example 

The scenario template also has the statement templates for each statement.  In Figure 

5.13, section 2 has two expansion statements for different entities.  Statement 

template 1 is used for entity A and statement template 2 is used for entity B. Figure 

5.14 shows these templates.  Template 1 consists of four sentences.  Each sentence is 

for one c-satisfier of an entity.  Template 2 consists of two sentences.  The second 

sentence is for two c-satisfiers of an entity.  Figure 5.14 also shows two sentence 

constructs for the “important” c-satisfier.  Template 1 uses construct 1 and template 2 

uses the construct 2.  However, the sentence construct is optional.  The assessor can 

consider the example sentence and write their own.  This can make the scenario text 

more natural. 

Section 1:  

E-S for A using T-1, E-S for B 
using T-2, E-S for C using T-3 

Section 2: 

E-S for D using T-1, E-S for E 
using T-3 

 

Section 3: 

A-S for A and D to F (F 
mentioned)  

A B C 

D E 

A B C 

E 

F 
B 

C 

Section 1 

Section 2 

Section 3 

Scenario Template 

E-S : Expansion statement , A-S : Alteration Statement, T : Statement Template  

Diagramming History  



Chapter 5  Marking Process Model 

 89 

 

Figure 5.14 Statement templates and sentence constructs 

The assessor is provided a procedure alongside the template to follow.  The assessor 

first decides a domain.  Then they enter a label for each component in the 

diagramming history for the scenario template.  After that sentences are written by 

using those labels.  Computer assistance can be given to the assessor for the writing 

process.  However, it is hard to check whether the scenario follows the template.  The 

scenario will be verified only after getting student feedback. 

5.4 A complete process model for diagram marking 

The partial marking method in Chapter 4 illustrates only the framework of the 

method.  The first sections in this chapter showed how to use reference diagrams to 

automate the marking more.  Figure 5.15 gives the details of the method by including 

new concepts seen in the first section.  The marking includes 6 processes.  The first 

process generates reference diagrams from the student and the ideal diagrams.  The 

second process automatically marks some of the reference diagrams by using generic 

cases.  Basically it creates correspondence links between student diagram 

components and the ideal diagram if it can.  The third process lets the assessor mark 

some of student diagram manually.  Finally the students diagrams are reconstructed 

with their marks.   

Statement Template (T) 

 

T- 1: Entity Expansion 

1. Important : S C -1 

2. Multiple –attribute  

3. Multiple-occurrence 

4. Uniquely identifiable   

T- 2: Entity Expansion 

1. Uniquely identifiable  

2. Important : S C -2 

Sentence Construct (S C) 

 

SC- 1:  

 <Subject> wants to keep track 
of <object> 

Example: 

A school wants to keep track 
of students 

SC- 2:  

It is important to know 

<object> 



Chapter 5  Marking Process Model 

 90 

 

Figure 5.15 Marking process model 

Generic cases in Figure 5.15 are generated by Process 6 on the diagram.  It uses the 

reference diagrams with correspondence links to ideal reference diagrams.  It uses 

student diagrams of all examinations which the system keeps.  The details of the 

process are discussed in the first section.  Process 6 is too much to be done by the 

assessor.  It is not part of the diagram marking process.  The process has to be carried 

out by experts.  Initially generic cases are prepared and built into the system.  The 

experts can add more cases later when the system has more reference diagrams in 

order to improve the performance or to tune the process. 

Manual partial marking is done after automatic partial marking in the model (see 

Figure 5.15).  If some reference diagrams can not be marked automatically then the 

assessor needs to mark them.  However marking some reference diagrams manually 

can be impractical.  They can be too big and time consuming to be understood and 

interpreted by the assessor.  In this research, these are called “ malformed reference 

Student & Ideal 

Diagrams  

(1) Generate  

Ref Diagram group  

Ref Diagram 

Groups  

(2) Generate 

Correspondence 

Links Automatically  

Generic cases  

(3) Generate 

Correspondence 

Links Manually  

Ref Diagram 

with c-links  

(6) Generate 

generic case 

manually   

(4) Reassemble 

Student diagrams   

Student 

Diagrams  

(5) Mark Student 

Diagrams Manually  

if needed 



Chapter 5  Marking Process Model 

 91 

diagrams”.  The marking of malformed reference diagrams is postponed until after 

process 4.  Process 4 reassembles the student diagrams.  As a result of this, some of 

the student diagrams will have unmarked components.  Those student diagrams are 

presented to the assessor one by one.  They mark the unmarked components in the 

student diagram.  This is referred to as the full marking style as opposed to a partial 

marking style.  Since the assessor doesn’t have to interpret the reference diagrams of 

components, marking the malformed reference diagram is avoided in the full 

marking style.  Full marking is placed in the model as a Process 5 in Figure 5.15. 

The components with malformed reference diagrams could be correct but have 

wrong reference diagrams since the assessor doesn’t verify those reference diagrams 

in the full marking style.  The case generation process (6) considers malformed 

reference diagrams separately from other type of reference diagrams.  The process 

needs to validate the reference diagrams of the marked components.  However it 

doesn’t need to do any validation of reference diagrams when partial marking is 

used since they have been seen by the assessor.  Detailed discussions of this are made 

in Chapter 7. 

5.5 Summary  

This chapter presented the marking process model, which is the extended version of 

the partial marking process in chapter 4.  Automatic partial marking is developed to 

improve the performance of the partial marking.  A new generic case definition is 

developed for the automation.  A manual full marking style is added to the model in 

order to overcome shortcomings of partial marking.  The model combines automatic 

and manual partial marking, and full marking together.  The model uses a generic 

case base, which eliminates the necessity of having complete rules.  The case base 

grows gradually when the number of examinations entered into the system is 

increased. 

This chapter made a definition of “similar scenarios”.  It highlighted the relationship 

between similar scenarios and the case base.  It also introduced statement type and 

sentence construct concepts in order to write similar scenarios.  A sample scenario 

template is prepared which uses a combination of different statement types.  The 

procedure of using the template is defined.  



Chapter 5  Marking Process Model 

 92 

The next chapter focuses on development of the components needed for the 

proposed framework in  Chapter 3.  It identifies the requirements for the components 

and gives the implementation details. Since the components are used to evaluate the 

framework, only the main parts of the components are implemented and user 

interface issues for components are not touched in the chapter. 



Chapter 6  Design and implementation 

 93 

CHAPTER 6 

Design and Implementation 

6.1 Introduction 

The proposed semi-automatic approach consists of two essential components: the 

diagram editor and the marking tool.  The main part in the marking environment is 

the partial marking.  To support partial marking, a design trace model is developed 

in Chapter 4.  Additionally, the marking process model is enriched by automatic 

partial marking and manual full marking to improve the performance of the process, 

as described in Chapter 5.  The scenario writing guideline is also introduced in 

Chapter 5 to increase the automation of partial marking. 

This chapter discusses the design and implementation details of the diagramming, 

the marking and authoring components of the semi-automatic assessment 

environment.  The developed prototype system in this chapter is used to evaluate the 

semi-automatic approach in Chapter 7.  The implementation details of the system are 

given in Appendix E.  

The first section discusses the requirements of a diagram editor, which captures the 

design history of the student diagrams.  It describes the components of the editor 

and how the design trace model is implemented.  The second section discusses the 

requirements of the marking environment in which the examiners mark the student 

diagrams captured by the diagram editor.  The section describes its components and 

explains how the marking process model is supported by the environment.  The 

third section introduces the components of the computer assisted authoring tool 

which enables the usage of scenario templates in order to prepare scenario text 

complied with the scenario writing guideline. 

6.2 Diagram Editor 

The design trace model which is developed in Chapter 4 uses the online trace 

production approach.  This approach requires additional activities from the students 



Chapter 6  Design and implementation 

 94 

during diagramming.  These activities are the students’ self-explanation about their 

actions.  The main problem of self-explanation whilst diagramming the problem is 

the high cognitive load.  A new diagram editor is designed to deal with the cognitive 

load of self-explanation.  This section looks at components of the diagram editor and 

examines how cognitive load may be reduced. 

6.2.1 Requirements  

Some of editor’s requirements have already been determined in Chapter 4.  The 

chapter suggests that the editor needs to support scaffolding, “reference listing”, and 

“special functions” techniques to be able to do the online production.  Additionally, 

the editor needs to have functionalities that conventional editors have, such as 

adding and deleting diagram components.  During the implementation of these 

functionalities, user interface issues need to be considered as well. 

Conventional commercial diagram editors use a simple drag-and-drop user interface 

(e.g.  MS Visio, IBM Rational rose, Visual paradigm) and some editors additionally 

provide commands to users in order to draw complex engineering diagrams (e.g.  

AutoCAD).  All research, except ERM-VLE mentioned in Chapter 2 only uses a drag-

and-drop interface for their editors.  ERM-VLE uses a simple command-based user 

interface.  The users can interact with the editor only via the commands.  It draws the 

diagram automatically based on the user commands.  It gives immediate feedback 

about the user actions. 

ERM-VLE’s diagram editor, which uses automatic diagram drawing may have some 

advantages over the conventional drawing tools in the assessment.  For example, the 

analysis of database exam scripts (Thomas, 2004) reveals that students often redraw 

their diagram during the design.  Moreover, some of them redraw their final 

diagram to have a better layout of their designs.  The automatic drawing could save 

the student’s time during the examination in this case since the editor can redraw the 

diagram instead.  The students can then focus more on designing than drawing the 

diagram. 

In the automatic diagram drawing environment, additional commands of the editor 

can be added to undertake some design tasks.  This can provide some higher level 

commands to modify the diagram.  These commands can enable the implementation 



Chapter 6  Design and implementation 

 95 

of the special functions defined in chapter 4 (e.g.  Merge and Split).  Therefore this 

research adapts the automatic diagram drawing for the diagram editor. 

A user interface for the commands can be developed in various ways.  The simplest 

implementation would be command buttons and input boxes for the parameters for 

the functions.  Alternatively, clickable diagram components can be used to eliminate 

input boxes.  Moreover, new technologies can be used to make commands user 

friendly.  For example multi-touch screen technology (Pennock & Tabrizi, 2008) can 

be used for special functions.  The user holds two entities by using their two hands 

and drag them together to merge them, or pull out some attributes of an entity with 

one hand whilst holding the entity in place in order to split the entity.  However, this 

thesis doesn’t focus on creating a best diagram editor for the semi-automation.  For 

the purpose of this research, the editor only needs to be good enough to test out the 

semi-automatic approach.  However, the user interface of a new editor shouldn’t 

create any additional difficulty, which prevents students from entering their design 

into the system. 

6.2.2 Components of the editor 

The prototype diagram editor is designed to fulfil the requirements of the 

diagramming for semi-automation.  The editor is based on automatic graph drawing 

(Ellson et al. 2002).  This section explains the components of the editor. 

The prototype editor consists of three panes (see Figure 6.1): a scenario text pane, a 

diagram pane and a command pane.  The scenario text pane is for displaying a 

scenario.  It displays the scenario section by section.  This method is called 

scaffolding in the self-explanation literature (Chi, 1989).  Chapter 4 discussed the 

reason for using scaffolding technique for the trace production.  It potentially 

reduces diversity in student reasoning.  Students are expected to consider the 

information in that section only.  The scenario text pane also has a feature, which is 

used to highlight the reference text.  Noun phrase or sentences are highlighted when 

a component from the reference list in the command pane is selected.  This feature is 

implemented to reduce the naming ambiguity and accountability purpose.  For 

example if the student selects the “name” noun phrase in the list, the phrase will be 

highlighted in the scenario text and the student will see that the “name” phrase 

refers to “Department name” not “Employee name” in the context.  The 



Chapter 6  Design and implementation 

 96 

misunderstanding will be prevented and students become accountable for their 

choices. 

 

Figure 6.1 Diagram editor 

The diagram pane displays the automatically drawn ER-diagram of the student 

design.  In this pane, the database diagram is drawn or refreshed after the “Draw” 

button is pressed.  This is a limitation of the current automatic diagram production 

rather than the satisfaction of a requirement.  The diagram is reshaped to have a best 

presentation after each modification command is entered into the system.  This 

sometimes makes a huge difference between the pre-modified diagram and the 

current one.  The students might find this unacceptable.  Therefore the “Draw” 

button is added into the pane to avoid any unwanted effect of automatic drawing.  

However, a new automatic drawing algorithm could be written which aims to 

minimise changes rather than achieve the best presentation.  The algorithm could be 

developed later as another research programme to improve the usability of the 

editor. 

The command pane is the main part of the editor.  In this pane, students can add new 

components or modify current diagram components.  The pane has one tab for each 

command needed for diagramming.  Each tab has some elements required by the 

commands.  Three tabs are created in the pane to add a new diagram component for 

an entity relationship diagram.  To create a new entity component the students 

choose the tab and pick a name for the entity from the list box.  The list box element 

has all different noun phrases or sentences appearing in the current section of the 

scenario text, which is called a “reference list” in this thesis.  In this way, a direct 

 

Diagram Pane 

Command Pane 

Scenario Pane 



Chapter 6  Design and implementation 

 97 

reference of the component is captured.  Unlike KERMIT, the editor does not allow 

the student to name the DR-component.  As discussed in Chapter 4, the explicit 

naming allows name ambiguity which allows inconsistencies between the label of 

the component and the reference phrase. 

The methodology of the entity relationship modelling requires creating entity 

components first.  The editor enforces the students to follow this method.  The 

relationship or attribute components can be added to the diagram only if the related 

entities exist on the diagram.  To create an attribute component, the students need to 

choose a name from the reference list and entity from entity list which holds entity 

names in the current diagram.  To create a relationship component, the students need 

to choose the participant entities from the entity list.  The reference list in this tab 

includes sentences in the current section.  Students need to choose a sentence as a 

reference for the relationship.  As, unlike the entities and attributes, students need to 

name the relationships.  This is because generating a list for relationships from the 

sentence is less obvious than a list for entities and attributes. 

The students can also modify their current diagram.  Three main commands are 

created for this purpose: Split, Merge and Convert.  The split command extracts a 

new entity from a current entity.  The merge command combines two entities into 

one.  The convert command creates a new entity out of many-to-many relationships.  

Each command is implemented with the use of buttons which are called “function 

buttons”.  The function buttons are applied on diagram components, for example, to 

split an entity into two entities, the students goes to the related tab, chooses an entity, 

fills the required fields and presses the “split function” button.  The diagram in the 

diagram pane is redrawn with the change as a result of split function.  The entity in 

the diagram is modified and a new entity is created out of some of the entity’s 

attributes.  The editor records the use of the function buttons.  The record gives the 

history of the modification.   

The function buttons are designed to reduce the cognitive load of self-explanation.  

The students implicitly explain their activities whilst modifying the diagram.  

Detailed discussion of implicit explanation can be found in Chapter 4.  Function 

buttons can be enhanced to make more self-explanation orientated assessment.  In 

this case, the students need to explicitly give a reason why the function button is 

used.  This could be a rule of the modelling and a reference from the scenario.  The 



Chapter 6  Design and implementation 

 98 

students get an additional mark according to the reason they give.  The current 

version of the editor supports only the implicit self explanation. 

The number of function buttons can be increased to modify the diagram in various 

ways.  For example an entity convert button is created to transform an entity to a 

composite attribute or an attribute convert button is created to transform a composite 

attribute to an entity.  These types of additional buttons aren’t a requirement of 

partial marking, although it may make the editor more user-friendly for specific 

scenarios.  On the other hand, there should not be too many function buttons since it 

may increase the cognitive load (Miller, 1956).  The editor only implements the main 

three commands. 

The delete command is a requirement of any diagramming tool.  Deleting an 

attribute of an entity and a relationship removes these components from the 

diagram.  The effect of deleting an entity is quite different in the proposed editor 

from a traditional editor.  A delete command not only removes an entity from the 

diagram but also remove the attributes of the entity and related relationships from 

the diagram.  This may increase the number of activities the students have to do.  

They may have to recreate all those attributes and relationships for a new entity 

again.  They may even have to recreate some entities if the entity is a merged or is an 

extracted entity.  The editor provides an undo command to avoid the use of the 

undesirable delete command.  Function buttons of an entity or attribute convert can 

reduce the use of the delete command for some cases. 

The implemented tool is a prototype editor, which fulfils the minimum requirement 

of the semi-automatic approach for testing purposes.  The scenario pane of the editor 

mainly satisfies the scaffolding requirement of the editor.  The diagram pane satisfies 

the automatic diagramming requirement.  The command pane satisfies the self-

explanation requirement.  All these panes can be improved and different 

diagramming approach could be developed to find the optimum user-interface for a 

semi-automatic interface.  However, this is outside of this thesis’s scope. 

6.2.3 A diagram drawing example 

This section gives a simple diagram drawing example of the use of the developed 

new editor in order to clarify the functionalities of the components described in the 

previous section.  The editor forces the students to design their database models 



Chapter 6  Design and implementation 

 99 

systematically and iteratively.  The students first produce an initial diagram which 

has the direct referenced components.  Then they apply the design rules and system 

constraints to build their final model which has indirect referenced components until 

it satisfies all the system’s requirements. 

Figure 6.2 shows a scenario text used for the diagram drawing example.  The 

scenario text has two sections, which are represented with bullets.  The editor 

displays each bulleted section in the scenario pane one at a time.  The students start 

drawing their initial diagrams by using the requirements in the first section.  Then 

they modify their initial diagram until it satisfies the system’s requirements in the 

second section. 

 

Figure 6.2 Sample scenario text 

The user sees the list of noun phrases in the current section of the scenario text.  They 

select one of them to create an entity or an attribute of an entity.  For example 

“Member” is a noun phrase which appears three times in the first section.  When the 

phrase is selected for an entity creation, the “member” text is highlighted with a red 

colour which is seen in Figure 6.2.  “Book” is another phrase in the reference list 

which appears four times in the section.  When this phrase is selected from the list, 

the “member” text is de-highlighted and the “book” text is highlighted.  The users 

select a sentence from the section when they create a relationship.  The first section 

consists of seven sentences.  When one of them is chosen, it is highlighted so that 

students can keep track of the reference.  Figure 6.2 shows the selected sentence in an 

italic font style.  Figure 6.3 shows the diagram pane which has an initial diagram of a 

user, created for first section.  Each component in the figure is directly referenced.  

For each directly referenced component there is a corresponding reference phrase in 

the scenario text. 

 The Lboro Library lends books only to its members. On the application form, the details required are 
name, address and telephone number. Each member is assigned a unique number and issued with a 

ticket giving this number. Members may borrow a maximum of six different books 
at a time. A record of all books borrowed is kept. When the loan is issued, the date of loan and due 
date are recorded. When a book is returned, the corresponding loan is updated with the return date. 

 
 The Librarian buys new books for the Library as necessary. Normally, several copies of a particular book 

are bought. Each copy of each book title is assigned a unique book copy number. A book title, on the 
other hand, is uniquely identified by an ISBN number. The title, author, date of purchase and price of 
each book are recorded .Different copies of the same book title can be purchased on different dates at 
different prices. 



Chapter 6  Design and implementation 

 100 

 

Figure 6.3 The initial diagram 

The scenario text requires using the “split” function button during the design for the 

second section.  Users, who consider the second section of the scenario after the first 

one, may modify their diagrams.  For example, they split the book entity and create a 

new entity called “copy”.  Figure 6.4A shows the split tab with input elements for the 

“split” command.  The users pick the entity from the list to split and move its 

attribute to the new entity’s attribute box.  The entity is named “copy” in the 

example.  There isn’t any restriction on naming.  Any name can be given to the 

entity.  Users can create a relationship between “book” and “copy” entities to get the 

final ER-Diagram. See Figure 6.4B. 

Figure 6.4 "Split" function 

The students may read the first and second section before drawing the initial 

diagram.  They might come up with the initial diagram, which is the same as the 

final diagram in this example.  They can see the “copy” noun phrase in the reference 

list in the second section and create a copy entity.  They later create the book entity.  

  

    
A                                                                    B 



Chapter 6  Design and implementation 

 101 

The example scenario doesn’t enforce the usage of the function button to allow the 

correct diagram to be drawn.  Depending on the given scenario text, some functions 

of the editor are more useful than others, as discussed in Chapter 5. 

6.3 Marking Tool 

The marking tool provides an online marking environment.  Online marking of 

assignments can lead to improved marking consistency and integrates well with on-

line feedback (Mason and Woit, 1999).  Online marking tools (Heinrich and Lawn, 

2004), (Heinrich and Wang, 2003) have been developed to mark student diagram and 

essay-type work.  The tools allow the teacher to leave some annotation and numeric 

marks on the electronic version of the student work.  Unlike this research marking 

tool, it doesn’t focus on removing the repetition of the marking task.  Nevertheless, 

Plimmer and Mason (2006) suggest that online marking is a viable alternative to both 

paper and existing paperless environments. 

The marking tool implements the main parts of the marking process model which is 

developed in Chapter 5.  It uses the design traces captured by the diagram editor.  

The manual marking part of the model requires a user interface so that the human 

marker can mark some of the student diagrams online.  The user interface consists of 

two interface types.  One is for partial marking and the other is for full marking.  The 

interface for full marking imitates the paper-based manual marking.  The partial 

marking is a new marking style.  It doesn’t resemble the manual marking.  The 

partial marking requires a very different interface to the full marking one.  A new 

marking environment is designed to combine these two interfaces.  This section 

examines the components of this marking environment and describes how the tool is 

used to do the main marking tasks. 

6.3.1 Requirements 

The two marking styles in the marking environment have some common 

requirements.  For both marking styles the teacher’s ideal solution and student work 

need to be presented to the examiner and the students’ diagrams’ components the 

can be selected to be matched to each other.  Matching the diagram components is 

the main functionality of the environment. 



Chapter 6  Design and implementation 

 102 

There are four types of matched and two types of unmatched cases.  The matched 

cases are “one-to-one”, “one-to-many”, “many-to-one” and “many-to-many” 

matches.  One command is used for all these cases.  The human marker selects 

components from both diagrams and uses the command to match them.  The 

unmatched cases are for rejected and accepted components.  Student diagrams might 

have some extra components which are not part of the ideal diagram.  These 

components might be accepted which means the human marker doesn’t give any 

marks to the components.  The components might be rejected, as they shouldn’t be in 

the solutions.  Unlike the accepted ones, the rejected components need feedback to be 

given to the students.  Even a negative mark can be given to the component.  Two 

separate commands need to be given for these unmatched cases. 

In the full marking style, student diagrams are represented as a whole.  The main 

problem in this marking style is the room needed on the screen to display the 

diagrams.  The environment needs to display the complete diagrams of both 

students and teachers.  If the diagram solutions are large, the tool needs to have an 

auto-scale function.  This function changes the size of the diagrams to fit them on the 

screen.  Another option is to increase the size of the screen by using a large screen or 

multiple screens. 

In the partial marking style, the student diagrams are displayed partially.  The 

human marker sees some components of the diagrams with the design traces of the 

components during matching.  Design traces are represented as a graph, called a 

reference diagram.  The scenario reference part of the graph needs to be highlighted 

in the scenario text.  This requires the scenario text to be displayed with the student 

diagrams in the environment.  To reduce the cognitive load of reading design traces 

the reference diagram can be drawn gradually from the scenario references to the 

final component.  The human marker can follow the student steps for that 

component while it is being redrawn.  However, this animating of design traces is 

not an essential requirement of the marking. 

The marker part of the environment is used to create a correspondence link between 

student and teacher diagrams.  Before the system starts being used actively the 

environment needs to also have grade and feedback generators which give numeric 

grades and textual feedback by using correspondence links.  The requirements of 



Chapter 6  Design and implementation 

 103 

these generators haven’t been identified in the thesis since to evaluate the partial 

marking style, only the user interface parts of the online marking tool are needed. 

6.3.2 Components of marking environment  

The prototype marking tool is designed to satisfy the requirements of the manual 

marking for the semi-automation.  The tool consists of four main components.  This 

section explains those components.  The section illustrates and explains user 

interfaces for both marking styles.  As an example, the user interfaces shows a 

sample student and teacher solutions for the scenario text in Figure 6.2. 

The marking tool has got an environment for matching diagram components.  It 

displays the pictures of the two diagrams simultaneously.  The pictures are clickable 

so that the marker can select the diagrams’ components during matching.  Figure 6.5 

shows the user interface of the full marking. 

The teacher pane has got the picture of the teacher’s ideal solution.  The diagram in 

the picture is dynamically drawn by the tool.  Any selected components are colour 

coded. 

The student pane of the interface has got a student solution.  The selected 

components of the student diagram are coloured the same as the components of the 

teacher diagram. 

 

Figure 6.5 The user interface of the full marking 

Teacher  
Pane  

Student  
Pane  

Scenario pane  Command pane  



Chapter 6  Design and implementation 

 104 

The student pane also has navigation buttons so that the human marker can move 

from one student solution to another in order to do the matching with the ideal 

diagram.  The user interface of the match commands are implemented as command 

buttons.  The human marker selects the components from both teacher and student 

diagrams and presses the match, reject or accept button.  To deselect the components, 

the selected components are clicked again.  To remove the correspondence created 

between the components, the remove button is used. 

The scenario pane displays the scenario text for the student solutions.  There is one 

scenario text and ideal diagram per marking session.  References in the scenario are 

highlighted for each selected components in the student pane.  This allows the 

human marker to check whether the component name and its reference are 

consistence.  However, this is not a requirement of the full marking since the 

correspondence is used only for the current student solution, but it is a requirement 

of partial marking style.  Further discussion about this can be found in Chapter 5. 

Figure 6.6 shows the user interface for partial marking.  The only difference to the 

user interface for full marking is the student pane.  The picture in the student pane 

has the reference diagram of a diagram component.  In the figure, the human marker 

sees that the book entity is composition of two entities and reference text of these 

entities is in the scenario text.  The reference diagram helps the human marker to 

find the corresponding components in the ideal diagrams.  In this case, the book 

entity matches with book title and book copy entities and a one-to-many link is 

created.  Navigation buttons in this interface are used to move from one reference 

diagram to another. 



Chapter 6  Design and implementation 

 105 

 

Figure 6.6 The user interface of the partial marking 

The partial marking interface first displays the reference diagram of the entity 

components and then the attributes of those entities.  Lastly, relationships between 

entities are displayed.  This order of the partial marking allows further automatic 

marking.  For example, the borrow relationship between book and member entities 

in a student diagram will be able marked automatically after book entity is marked. 

The marking process model describes the how these two interfaces are used during 

marking.  The marking tool firstly groups the submitted diagrams and marks some 

of the diagrams automatically.  Then it displays the partial marking interface.  This 

interface is used to mark the diagram components which couldn’t be marked 

automatically.  Finally the full marking interface is used to mark unresolved cases.  

That occurs when reference diagrams have become too long or they are malformed, 

which is described in Chapter 5.  In the full marking style, the diagram’s components 

that matched with the teacher’s ideal solution are colour coded automatically to save 

time.  The examiner can focus on only non-matched components.   

6.4 Authoring Tool 

The proposed semi-automatic system needs an authoring tool for the question 

preparation stage of the assessment process.  It consists of two separate applications: 

the teacher diagram editor and the scenario text writer.  The teacher diagram editor 

is very similar to the student diagram editor with some extra features.  The scenario 



Chapter 6  Design and implementation 

 106 

text writer is optional for the semi-automation since the approach can use either a 

specially written scenario text for the semi-automation or the ordinary one.  The 

scenario writer is designed to help semi-automation process in the diagram marking.  

This section describes the essential requirement of both applications and explains the 

user interface components of the scenario writer. 

6.4.1 Requirements for the teacher diagram editor 

The teacher diagram editor of the authoring tool is used once the scenario text is 

available.  The editor helps the examiner prepare the reference list for the scenario 

editor and enter the ideal solution for the scenario text.  There are two types of 

reference lists used in the diagram editor: a sentence and a noun phrase.  A complete 

sentence reference list can be automatically generated without human involvement.  

However, only part of the noun phrase reference list can be automatically generated.  

Noun phrase reference lists need to be edited by the examiner after they are 

generated.  The examiner adds a new item to or removes an item from the list in 

order to have the complete noun phrase list. 

The examiner enters an ideal diagram solution by drawing the diagram in the same 

way as the students do.  This part of the teacher editor is the same as the student 

editor.  The examiner could enter many solutions since each alternative solution 

increases the semi-automation.  The detailed discussion about the ideal solution and 

automation are given in Chapter 5.  In the student editor, each student can enter only 

one solution for each scenario. 

6.4.2 Requirements for the scenario text writer 

The teacher diagram editor is easy to implement with the minor modification of the 

student editor.  However, the scenario text writer of the authoring tool is complex 

system to implement.  A complete solution for the automatic or semi-automatic 

scenario writer is out of this research scope, as this research focuses on the computer 

environment, which helps the examiner follow the guidelines given in Chapter 5.  

The environment will be used to write similar scenarios for different domains. 

The CREWS (Achour, 1998) and The CP (Cox and Phalp, 2000) projects provide a set 

of guidelines for writing requirements text.  Part of the guidelines suggests the 

language to use, including present tense subject-verb-object like sentences with no 



Chapter 6  Design and implementation 

 107 

adverb or adjectives.  Christiansen and Have (2007) adapted the language guideline 

and developed a tool, which accepts the subset of natural English and represents 

them in the formal design diagrams.  The guidelines for the scenario text writer are 

different to the CREWS (Achour, 1998) and CP (Cox and Phalp, 2000) guidelines.  

However, the research might use their suggested language to generate the sample 

sentence for the sentence construct described in Chapter 5. 

In the environment, the examiner decides a domain for the scenario text (e.g.  cinema 

ticket booking system) and a scenario template before they start writing the text.  The 

examiner follows the template to write the scenario text.  The representation of the 

template is important.  It should be intuitive for the author to follow.  For this reason, 

a diagrammatic representation is chosen.  The teacher can follow the diagrammatic 

representation of the template to write a scenario, as opposed to students, who 

follow the scenario text to draw the diagrammatic solution.  Diagram components 

can be labelled by using the ontology in the domain chosen by the examiner. 

The environment can write initial mechanical text for the template in the chosen 

domain to give an example usage of the template for the domain.  Additionally it 

displays the example text previously written by a human in a different domain for 

the same template.  This natural language text provides extra help to the examiner 

when writing the scenario. 

The scenario text writing in the environment described above requires scenario 

template preparation, labelling components in the template diagrams for the chosen 

domain and writing sample formal text for the template diagram.  It is possible to 

design a computer assistant tool for the template preparation, component labelling 

and short text writing.  This tool will reduce the workload of scenario preparation 

and they will increase the acceptability of the new system.  However, implementing 

the tool is not essential to test the scenario writing environment.  Implementing only 

a user interface for the environment is adequate for testing purposes.  The user 

interface for the prototype tool displays the information needed for the scenario 

writing, which has been manually entered rather than being prepared by another 

tool. 



Chapter 6  Design and implementation 

 108 

6.4.3 Components of the scenario text writer  

The writing environment consists of three types of pages: Plan, Section and 

Production pages.  The plan page is used to select a domain and a scenario template.  

Section pages are used to get the input text from the examiner.  The production page 

is used to generate a complete scenario text by using the input text.  This section 

explains the user interfaces of these pages.   

6.4.3.1 The Plan Page 

The plan page is the first page of the environment.  It is used to select a scenario type 

and a domain for the new scenario.  Depending on the selected scenario type, the 

page displays a sample scenario text and the related ideal diagram.  The page also 

shows a whole diagram template.  Components in the diagram template are labelled 

by using the chosen domain.  Figure 6.7 shows an example of this page type.  In the 

example, the examiner decided to use an “event organiser” domain and chose the 

“split” scenario type.  The diagram template uses “event” and “member” names in 

the event domain.  A related example scenario text and its diagram in the “computer 

training school” domain are displayed in the page. 

Figure 6.7 Plan page example 

Many possible diagram templates may exist for the same domain.  One of them can 

be used for the chosen scenario type.  For example, one of the diagrams can have a 

“sponsor” entity and other can have a “Member” entity instead.  This enables the 

examiner to write a structurally similar but different scenario text in Figure 6.7.  The 

plan page provides options to choose a different diagram. 

 



Chapter 6  Design and implementation 

 109 

Some components in the diagram template might not have a label in the chosen 

scenario type.  In that case, components are named as X ,Y, Z etc.  These names 

indicate that the examiner doesn’t need to mention a component’s name explicitly in 

the scenario text.  As a result of this, students need to use their own names to label 

components.  The diagram template in Figure 6.7 uses the “Entity-X” label as a 

component name for this reason. 

The diagram template in the plan page is the final diagram or ideal solution for a 

system, which the examiner is going to write about.  The diagram templates in the 

section pages are the intermediate diagrams based on which the examiner writes the 

scenario sections.  Seeing the final diagram initially provides the examiner the 

overview of the required system. 

6.4.3.2 The Section Page 

Section pages are the main part of the environment.  There is one page for each 

section of a scenario template.  For example, if there are three sections in the 

template, the environment will have three section pages.  Figure 6.8 shows an 

example section page.  The section page consists of four areas: the diagram template, 

example diagram, and example natural text and new text.  The diagram template 

area displays a part of a diagram template.  Components of the diagram are labelled 

if the examiner has chosen a domain in the plan page.  The example diagram area is 

similar to the diagram template area and shows the diagram previously used by a 

user to write a scenario.  The components of this diagram fragment are labelled.  

These labels are different from the labels in the diagram template when the example 

scenario is written in a different domain. 

  

Figure 6.8 Section page example 

 



Chapter 6  Design and implementation 

 110 

An example natural text area in the section page is used to display the text 

previously written for the sample diagram.  The sample diagram and the natural text 

are not an essential requirement of the environment.  They are implemented to help 

the novice user follow the scenario template.  A new text area is the main part of the 

page.  It is used by the examiner to input their scenario text for the given diagram 

template.  This area also displays computer generated text for the diagram.  The text 

is automatically generated by using a predefined sentence construct.  The examiner 

may choose a construct from the list and rewrite the mechanical text in order to make 

the text more natural.  It is optional for the examiner to use the sentence constructs.  

If the constructs are used, it increases the similarities between scenario texts.  That 

may improve the performance of the semi-automation. 

6.4.3.3 The Production Page 

The final page type of the scenario writer is the production page.  This page 

combines the scenario sections written by the examiner in the section pages and 

displays them together as a new scenario text.  The examiner edits the new scenario 

in order to make it more like natural text.  Like the plan page, it displays the final 

diagram template.  The examiner checks the compatibility of the scenario text with 

the diagram.  The environment also displays the sample scenario text and its related 

diagram to the examiner.  After editing, the scenario text is submitted to the teacher 

diagram editor.  Figure 6.9 shows the production page with an example scenario. 

 

Figure 6.9 Production page example 

 



Chapter 6  Design and implementation 

 111 

The environment doesn’t validate the new scenario text to see whether the examiner 

follows the scenario template during the writing.  It only facilitates the scenario 

writing process.  However, teaching assistants can be used to produce a diagram for 

this scenario and their diagrams can be analysed as an initial validation.  In the long 

run, students’ diagrams can be analysed to validate the text each time it is used in the 

exam and improved before it is used again. 

6.5 Complete system overview 

The experimental semi-automatic assessment system has been implemented as three 

components: the authoring tool, the diagram editor and the marking tool.  If all three 

components are used in the assessment process, they enable the semi-automation of 

the assessment process. 

Figure 6.10 illustrates the complete system view.  The examiner uses the authoring 

tool to prepare the scenario texts and enter their diagrammatic solutions.  These 

semantically controlled scenarios and their solutions are import for the automation 

as discussed in Chapter 5.  Students choose one of the scenario texts in the system 

and use the diagram editor to enter their solutions.  The editor doesn’t only get the 

student solution but also captures the design histories of the students, which enable 

partial marking.  After all students submit their solutions, the marking tool 

automatically marks the student work as much as possible by using the case-based 

reasoning method.  The examiner uses the marking tool to mark unmarked 

components partially and can comment on the individual components.  Finally, 

student diagrams with long reference diagrams may be marked by using a full 

marking style as discussed in Chapter 5.   



Chapter 6  Design and implementation 

 112 

 

Figure 6.10 System view of semi-automatic assessment 

The marker tool produces the personalised detailed feedback by using the examiner 

marks and comments after the marking completes.  Students can analyse their 

feedback and may seek further clarification from the examiner.  If students choose a 

scenario that the examiner has already marked then the student may get immediate 

feedback from the system.  In this case, some components may be unmarked if they 

are different from the available marked components.  Later, the examiner can 

comment on these unmarked components.  For example, students get immediate 

feedback for their common mistakes during a tutorial session.  The examiner marks 

the rarer mistakes in the student diagrams and then the fully marked diagrams can 

be made available the next tutorial sessions to discuss.  This thesis calls this examiner 

feedback, “incremental feedback”.  Separate, pedagogical research is needed to 

investigate the benefits of the incremental feedback concept for formative 

assessment. 

Feedback is an important part of formative assessment.  It makes learners aware of 

any gaps that exist between their desired goal and their current knowledge, 

understanding, or skill (Sadler, 1989).  Feedback on tests and homework is most 

useful when it provides specific suggestions for improvement (Elawar and Corno, 

1985).  Nicol and Macfarlane in their paper (2004) presented a conceptual model of 

 



Chapter 6  Design and implementation 

 113 

formative assessment, feedback and the seven principles of good feedback practice.  

Although feedback is widely accepted as a crucial part in the learning for assessment, 

in higher education, Gibbs and Simpson (2004) argue that feedback to individual 

students in a class must have declined significantly as class sizes have increased.  

However, the semi-automatic assessment approach is independent of the class size, 

as discussed in Chapter 3. 

Each component of the experimental assessment system can be used separately as 

well as all together for the conventional assessment process.  The authoring tool 

assists the examiner to write scenario text for various domains by providing sample 

scenarios.  The full marking style of the marking tool enables the examiner to mark 

diagrams online, even if the student diagrams haven’t been captured by the diagram 

editor.  The diagram editor assists students to follow the design methodology. 

The marking tool can be potentially used in peer assessment as well.  Students can 

mark student diagrams and the tool will highlight the marking inconsistencies 

between students.  The examiner can resolve the inconsistency.  The marking tool 

can also be used as an e-learning tool.  In this case, students remark the marked 

components.  Students’ marks can be compared with the examiner’s marks.  The 

marking discrepancies are shown to students. 

The feedback generated for the previous year student diagrams for a scenario can be 

used as a teaching tool.  Students can explore this feedback.  A toolset (Cooper and 

Macrae, 2003) has been developed to support the teaching of databases.  It permits 

the student to select components of an ER diagram and to see the equivalent set of 

relational tables highlighted.  The paper by Cooper and Macrae (2003) argues that 

allowing the student to observe the transformations being made facilitates 

understanding of those transformations.  The feedback generated from the marking 

tool could show the link between the scenario text and the diagram components.  

Students could see the process of transforming scenario text into an ER diagram.  

They can learn from other students’ mistakes. 

6.6 Summary  

This chapter describes the requirements of the semi-automatic assessment system 

and its components.  It has mainly discussed the user-interface of the main system 



Chapter 6  Design and implementation 

 114 

components.  Finding out the best user interface design is out of this thesis scope.  

The suggested user interfaces of the components are implemented in order to be able 

to test the semi-automatic approach.  Chapter 7 explains how the components are 

used in the experiments.  It summarises the findings. 

All three components need to be improved and extended in order to increase the 

acceptability of the system by universities so they would adopt the system in a 

taught module.  For example, the student diagram editor should be improved to be 

used as the teacher diagram editor so that the examiners can prepare the noun 

phrase list for the scenarios.  At the moment, the noun phrase lists are hard coded 

into the scenarios.  

A light version of the system has been implemented and used in taught modules as a 

part of funded project (Hinde et al., 2008).  The light version supports only direct 

reference components.  This version has a feedback mechanism.  It gives colour 

coded feedback to students in the student diagram editor.  The findings about the 

use of the tool in a class are in Chapter 7. 

 



Chapter 7  Evaluation 

 115 

CHAPTER 7 

Empirical Evaluation 

7.1 Introduction 

This chapter argues that the proposed semi-automatic assessment system of 

diagrammatic solutions is feasible, can be practically used in a taught module, and is 

useful.  Following the introduction of the system’s main components in the previous 

chapter, this chapter provides an evaluation of these components.  Experiments are 

performed for each component independently and each result is discussed in a 

separate section. 

The authoring tool is an important component for the system but it is not essential 

for the evaluation of the semi-automatic approach.  It is included in this research in 

order to increase the automation of diagram marking.  Writing similar scenario texts 

is the part of the authoring tool, which helps the automation.  Section 7.2 provides 

the details of the required experiment and interpretation of the results.  To evaluate 

the feasibility of the tool, this research measures the number of the volunteer teachers 

who successfully managed to use the tool to produce the scenario text. 

The essential part of the system is the specialised diagramming editor.  The system’s 

reliability depends on this editor.  Students should be able to use the editor correctly 

and enter their solutions into the system.  Section 7.3 summarises the provisions that 

have been made for the experiments.  In the experiments, students enter their 

diagrammatic solutions for the various scenario texts by using the editor.  The 

student solutions are analysed and the findings are given in the same section.  To 

evaluate the feasibility of the diagram editor, the research measured the number of 

the students who successfully used the editor to produce their solutions.  

The other part of the system is the marking tool.  It supports the semi-automatic 

marking process.  The marking tool for the system can be fully functional if the 

student solutions are entered by the diagrammatic editor.  Otherwise, the tool is used 

only as an online marking tool without any automatic feature.  Semi-automation of 



Chapter 7  Evaluation 

 116 

diagram marking relies on the human’s ability to undertake partial-marking.  Section 

7.4 discusses the experiments performed for partial-marking.  To evaluate the 

feasibility of the marking tool, the research measured the number of the users who 

successfully used the tool to mark diagrammatic solutions.  To evaluate the 

usefulness of the tool, the research measured the number of components marked. 

The last section of this chapter introduces the basic implementation of the semi-

automatic assessment system, focusing on the feedback mechanism of the system 

and summarising the findings of the tool usage in a taught module. 

7.2 Scenario Writing Environment  

The scenario writing environment is introduced in Chapter 6.  In the environment, 

the examiner uses scenario templates to write scenario text.  Scenario texts written 

with the same template are semantically similar to each other and the use of these 

scenarios potentially increases the automation.  How similar scenarios help the 

automation of the marking process is discussed in Chapter 5.  This section provides 

the details of the experiment performed for the scenario writing environment. 

Writing scenarios with a scenario template needs to be intuitive for the examiners.  

The developed tool aims to reduce the cognitive load on the examiner due to the 

template usage.  The usability of its interface is not the prime concern of the research 

and is not explored in this experiment, however, an initial experiment is performed 

to see whether the examiners can use the tool with a brief introduction. 

7.2.1 Provisions of the experiment 

The participants chosen for the experiment were three lecturers who have taught the 

database design module in the past at university level.  They had some experience of 

writing scenario text, but the experiment only needed to introduce the environment 

to the lecturer rather than going over the whole scenario writing process. 

They were given an example scenario text about a “course registration system” 

written with a split scenario template.  The template is used to write complex 

scenarios, which require the use of function buttons to get the correct diagram.  If the 

examiner can write complex scenarios then they can also write simple scenarios.  

Thus only one of complex scenario templates (i.e.  the split scenario template) was 



Chapter 7  Evaluation 

 117 

used in the experiment.  Since the experiment was designed as a proof of concept, 

not all types of complex scenario templates were tried out. 

The participants were asked to write scenario text about an “event management 

system” with the same split template used for the “course registration system”.  

Figure 7.1 illustrates diagrams for each step of the split scenario template.  The 

participants were expected to write a section for each step.  Step 1 and Step 2 in the 

figure need text entry about the “Event” and “Member” entities.  Step 3 then needs a 

text description about the relationship between these two entities.  Step 4 and Step 5 

expect a text entry about the “Date” multi-valued attribute from the participants.  

Step 6 expects the entered text to cause creation of a relationship between the 

unnamed entity and “Member” entity and deletion of a relationship between 

“Event” and “Member” entities.  Step 7 expects a description about the “Fee” 

attribute of the unnamed entity.  Step 8 shows the complete diagram.  The diagram 

shows the unnamed entity as an entity X as well as all other named components so 

that the author can revise their scenario texts. 

 

Figure 7.1 Split scenario template 

The type of scenario template and the kind of participants used in the experiment 

were the main decisions made before the experiment.  The experiment could be 

 



Chapter 7  Evaluation 

 118 

repeated with different template types and with different kinds of participant, but 

this is unnecessary for the proof of concept.  For example, the merge scenario 

template can be used instead of the split type and participants can then be asked to 

write the scenario text with the new template.  Their feedback about the usability of 

the tool in slightly different circumstances could then be used to improve the 

presentation of the templates. 

7.2.2 Results of the experiment 

The participants in the experiment followed diagrammatic representation of the 

scenario template by using the tool and they wrote scenario text for each diagram in 

Figure 7.1.  The text entry for each diagram is gathered and displayed as the whole 

scenario text to the participants at the end of the experiment so that they can modify 

their text. 

All the participants wrote appropriate texts in each section page.  At the end of the 

text entry, they all modified their complete scenario text in the production page, 

which is introduced in Chapter 6 alongside with the structure of the scenario editor.  

The tool allows this modification so that the authors can write more natural scenario 

text since separately written text pieces may be disjoint when they are put together.  

Although the tool doesn’t have compliance check mechanism after modification, the 

participants’ final texts are still compliant with the template and are natural text as 

opposed to text which is produced automatically. 

The given scenario template expects the authors to implicitly mention one of the 

entities which is shown in Figure 7.1 as an entity x.  The students who read the 

scenario text written with the template are expected to produce the entity x with 

their own label.  All the participants successfully wrote the required text segment for 

entity x. 

Only one of the participants’ scenario texts, which complied with the template, is 

enough to prove that the use of the tool is possible.  The experiment has shown that 

all the scenario texts are appropriate for the template.  A paper by the author , 

(Batmaz and Hinde, 2008) briefly describes this finding as well as the scenario 

writing method and writing environment.  The details of the scenario writing 

environment used for this experiment and the actual scenario text produced by the 

participant can be found in Appendix A. 



Chapter 7  Evaluation 

 119 

7.2.3 Possible improvements for the writing environment    

The scenario texts produced by the help of the tool may not be compliant with the 

template used since the users can modify the text freely at the end of the scenario 

writing process.  However the scenario texts can still be used in the semi-automatic 

assessment.  They neither contribute to nor detract from the automation process.  

After these scenario texts are used in the real assessment, students’ results can be 

analysed to modify the text.  The author tool could be developed further to help the 

author analyse these results during editing of the scenario text which has been used 

previously. 

The user interface of the scenario writing environment can be improved in order to 

decrease workload of the question preparation task and increase the quality of the 

scenario text.  New experiments can be designed to evaluate the alternative user 

interfaces for this purpose.  The thesis only shows the new research field of the 

computer aided assessment area.  Computer aided assessment researchers may look 

into the requirements of the authoring tools for free response questions. 

7.3 Diagram editor 

The diagram editor has two aspects.  The first aspect is to capture contextual 

meaning of diagram components, which helps the examiner during marking.  The 

second aspect is to provide an environment for the students to enter their design.  To 

be able to implement these aspects, the editor has a very different environment from 

those of traditional diagram drawing tools.  Experiments are designed to see whether 

the users can produce their design solutions by using the editor without being 

negatively affected. 

7.3.1 Provisions of the experiments 

This section briefly explains the decisions made about the type of scenario text and 

the kind of participants used in the experiment. 

The design solution can be affected by the user’s poor design knowledge and skills as 

well as the editor’s environment.  In order to eliminate these negative effects, the 

experiments are designed to separate student design abilities and the editor usage 

skills.  Two types of users are identified for the experiments: novice and non-novice 



Chapter 7  Evaluation 

 120 

users.  Novice users are students who are studying a database module at university 

level.  They have basic design knowledge and very few design skills.  Non-novice 

users are PhD students who have a computer science degree and took the database 

design module during their study.  They have good design knowledge and sufficient 

design skills. 

The scenario texts used in the experiments requires the use of the function buttons in 

order to get the correct diagrams.  The function buttons in the environment are 

important for the approach.  They make the diagramming process different from the 

traditional editor.  Correct diagrams can be drawn for some scenarios without using 

any function buttons.  This type of scenario is called a simple scenario and a scenario 

that requires the use of the function buttons is called a complex scenario in this 

section.  The editors for KERMIT (Suraweera and Mitrovic, 2002) and VLE-ERM 

(Hall and Gordon, 1998) are designed for simple scenarios.  Their editors are 

successfully used by novice users.  Since simple scenarios are used in the 

experiments of their research, this establishes that simple scenarios are tractable, only 

complex scenarios are used in the experiments of this research. 

7.3.2 The experiments 

The complex scenarios could be hard for some novice users initially.  They might 

need to practice more in order to gain the required design skills for the scenarios.  

The effect of the editor usage is measured by checking the user solutions.  The 

number of wrong solutions is counted as the negative influence of the editor.  If the 

user cannot get the solution correct because of the complex scenario, the 

environment of the editor will be seen as the reason.  To separate the practical design 

skills of the novice users from the usage of the editor, two experiments were 

conducted.  Since non-novice users are more comfortable with the complex scenarios, 

only one experiment was carried out with them. 

7.3.2.1 Experiment 1 for novice users  

Firstly, twenty participants were given introduction sessions and shown how to use 

the editor on two example database scenarios.  The given scenarios required the use 

of the split and merge function buttons in order to get a correct diagram.  They were 

then asked to reproduce the solution for the same scenarios.  Since the participants 



Chapter 7  Evaluation 

 121 

know the correct solutions and their design process, they just needed to enter a 

design by using the editor.  This experiment evaluates the use of the editor only. 

7.3.2.2 Experiment 2 for novice users 

The same novice users in the first experiment participated in the second experiment.  

This time they were given two new scenarios, which were similar to the ones used in 

the first experiment.  The new scenarios required the same functions buttons used in 

the previous experiment to produce correct solutions.  However, the new scenarios 

were written in different domains.  This experiment was used to discover how 

practical design skills affect the editor usage. 

7.3.2.3 Experiment 3 for non-novice users 

Only the non-novice users participated in the third experiment.  The experiment was 

similar to the first experiment.  The participants were given a brief introduction 

session and shown how to use the editor using example database scenarios.  Then 

the participants are asked to design two conceptual database diagrams for the 

scenarios used in the first experiment.  Unlike experiment 1, participants weren’t 

given the solutions for the scenarios.  This experiment evaluated the use of the editor 

identically to the first experiment with novice users but with the assumption that the 

subjects have got good practical design skills. 

7.3.3 Results of the experiments 

Four database scenarios were used in the experiments.  They are named as scenario 

1, scenario 2, scenario 3 and scenario 4 in this section.  The actual scenario text and 

their teacher solutions can be found in Appendix B. 

Table 7.1 shows the number of participants in each experiments.  Twenty people 

participated in experiment 1 and 2.  Seven people participated in experiment 3.  This 

section first interprets the result of experiment 1 and experiment 3 since they use the 

same scenarios.  Then the section explains the results of experiment 2.  All diagrams 

produced by the participants in experiment 1 and 2 can be found in Appendix C. 

Table 7.1 Number of participants in each experiment 

Experiment 1  20 Participants 

Experiment 2  20 Participants  

Experiment 3  7  Participants  



Chapter 7  Evaluation 

 122 

 

7.3.3.1 Experiment 1 and 3 

Experiment 3 was conducted before Experiment 1.  In the experiment, the solutions 

for scenarios 3 and 4 weren’t given to the non-novice users.  All managed to draw the 

appropriate diagrams for both Scenario 1 and 2.  Since the result was successful, the 

experiment was repeated with the novice users in Experiment 1.  All the novice users 

also managed to produce acceptable diagrams for the same scenarios.  They 

successfully used the editor to redraw the solution diagrams given to them.   

The produced diagrams are not identical to the teacher solution for the scenarios.  

The diagrams have some missing or additional components.  However, all the 

participants used the required functions buttons appropriately.  They managed to 

apply both “split” and “merge” buttons to modify the initial diagram to get the 

correct components during the design.  This result shows that the use of the editor’s 

unique environments and the function buttons is possible. 

In both experiments 1 and 3, the participants have to enter an entity name for the 

resulting entities after applying the required function buttons for the scenarios.  

Table 7.2 shows the results for the Experiment 1.  Scenario 1 in the experiment 

requires split button usage.  Scenario 2 requires the use of the merge button.  Ninety 

percent of the participants gave the same entity name for scenario 1 as the entity 

name in the teacher solution, which this research called the “ideal names”.  Seventy 

percent gave the ideal entity name for scenario 2.  Some participants gave different 

names to their resulting entity for both scenarios as expected. 

Table 7.2 Student entity name for the experiment 1 out of 20 diagrams  

Scenario 1 requiring the split 

function button 

Scenario 2 requiring the 

merge function button  

Entity name  Frequency Entity name  Frequency 

course offerings  90% staff 70% 

offerings  5% acsupport 5% 

coff  5% staffmember 5% 

  merge attributes 5% 

  member of staff 5% 

  people 10% 



Chapter 7  Evaluation 

 123 

Entity names, which are different to the ideal names, are not a problem for the 

proposed approach since contextual information about the component is the main 

criterion for the entity match and this context is provided by the use of the function 

button.  As the participants use the function buttons correctly, entities listed in Table 

7.2 are accepted for marking.  However, in some cases, names become important for 

the consistent marking purpose, which is discussed in section 7.4.6 on naming 

ambiguity. 

7.3.3.2 Experiment 2 

The participants in Experiment 1 also participated in Experiment 2.  Although they 

didn’t know the solutions for scenarios 3 and 4, the majority of them managed to 

draw the main part of the diagrams correctly. Table 7.3 shows the frequency of the 

correct and wrong diagram components for the scenarios.  The table only focuses on 

entity and relationship components for simplicity.  The teacher solution for scenario 

3 has three entities and two relationships.  One of the entities is a split entity created 

after using of the split button.  95 percent of the participants managed to have all 

three entities, implying that they decided to have a split entity and managed to use 

the function button correctly.  5 percent failed to have the split entity. 

Table 7.3 Student diagram components produced in the experiment 2 

Marking results  Frequency 

Scenario 3 requiring split function button

All three correct entities 

& both correct relationships   
35% 

All three correct entities  

& one correct relationship   
55% 

All three correct entities  

& no correct relationship   
5% 

two correct entities  

& no correct relationship   
5% 

Scenario 4 requiring merge function button 

Both correct entities  

&  one correct relationship   
90% 

One correct entity 

 & no correct relationship 
10% 

As for Scenario 4 in Table 7.3 the teacher solution has two entities and one 

relationship.  One of the entities is a merge entity created after the use of the merge 



Chapter 7  Evaluation 

 124 

button.  90 percent were successful and 10 percent were unsuccessful in creating the 

merge entity. 

Participants, who failed to have the required entities for both scenarios, commented 

that they failed to design the system rather than failing to use function buttons.  They 

did not wish to split or merge any entity.  Therefore they didn’t have any cognitive 

stress due to being unable to use the function buttons.  In addition to the student 

comments, a paired t-test was performed to determine if the difference between the 

results of Experiment 1 and Experiment 2 is significant.  In experiment 1, all students 

manage to have correct entities, whereas, in Experiment 2, 19 students for scenario 3 

and 18 students for scenario 4 have correct entities.  One-tail p is 0.102 at  =0.05.  

Therefore, there isn’t enough evidence to support the claim that the use of function 

buttons prevents students from producing the correct diagrams. 

For scenario 3, one of the relationships needs to be created between the split entity 

and the other entity in the solution.  Table 7.3 shows that only 35 percent of 

participants had this relationship in their solutions.  However, 90 percent managed 

to create other relationships between two entities for both scenario 3 and scenario 4.  

These results show that the participants know how to draw a relationship and the 

editor environment didn’t stop them having the required relationship in their results.  

So the environment is not responsible for poor results, it seems that the scenario texts 

and the problems embodied in them are the reason.  From this we can deduce that 

the participants found scenario 3 harder than scenario 4 for relationship creation. 

7.3.3.3 The issue about the participants 

Participants in the experiments were student volunteers from the Databases module 

at Loughborough University.  They are a self-selected group.  After the module 

examination, the results were analysed to check how well the participant students 

represent all students in the module.  The mean of students’ exam results in 

experiments is 71 and the standard deviation is 14.  The mean of all students’ exam 

results is 51 and the standard deviation is 18.  This shows that the student volunteers 

represent those near the top end of the class.  This may have affected the results of 

the experiments since it doesn’t represent the lower end of the class. 



Chapter 7  Evaluation 

 125 

7.3.4 Analysis of entity names in the experiments 

Like experiments 1 and 3, in experiment 2, the participants had to name a split entity 

for scenario 3 and a merge entity for scenario 4.  Table 7.4 shows the names used in 

percentages for both split and merge entities.  75 percent of participants named the 

split entity differently from the others which means 15 different names since 20 

students participated (i.e.  15=0.75*20).  The rest of the participants gave two 

different names to the entity.  Therefore scenario 3 has 17 different names all 

together.  17/20 gives a naming diversity percentage of the split entity which is 85%.   

Table 7.4 Student entity names for the experiment 2 

Scenario 3 requiring split 
function button 

Scenario 4 requiring merge 
function button  

Entity name  Frequency Entity name  Frequency 

Event offerings  15% Module 40% 
Event repeats 10% Option 10% 
All different 75% All different 50% 

Diversity 85% Diversity 60% 

Table 7.4 shows that 50 percent of the participants (10 students) named the merge 

entity differently from each other.  Scenario 4 has 12 different names for the entity.  

The naming diversity is 12/20 which is 60%.  The average of the diversity for the 

experiment 2 is 72.5%.  The average of the first experiment’s diversity is 22.5% (i.e.  

the average of [3 different names for scenario 1]/20+ [6 different names for scenario 

2]/20).  The naming diversity in the second experiment is much higher than in the 

first experiment. 

There are many reasons for naming diversity.  Some of the diversity can be 

controlled by the scenario text.  For example scenario 4 mentions an optional module 

and a core module.  The examiner uses the “option” noun phrase instead of 

“optional module” in the text.  It is easier to see that the new entity is called 

“module” after merging the entities “optional module” and “core module”.  

However, it is much harder to name the entity if the “option” noun phrase is used 

rather than “optional module”.  If the examiner uses compound noun phrases with a 

common noun in them, the user may find naming a merge entity easier.  The 

proposed environment can be used for experiments in the future to check how 

compound noun phrases affect the students’ results.  Findings can be used to 

improve the guidelines for scenario writing. 



Chapter 7  Evaluation 

 126 

Scenario 1 mentions that some of the courses are offered more than once.  The split 

entity is named “course offering”.  This name was suggested by the examiner during 

experiment 1.  Scenario 3 mentions that some of the popular events are repeated.  

Some of the users named the split entity “event offering” and some of them “event 

repeat”.  This shows that the users may have carried their previous experience into 

experiment 2.  Students can improve their naming skills by doing exercises which 

use the same type of scenarios.  Naming convention can be developed and students 

can be taught the conventions. 

The percentage of the split entity and the merge entity names are also important in 

Table 7.4.  It shows that 40 percent of the names chosen by the participants 

corresponded to the ideal name for the merge entity and 15 percent matched the 

ideal name for the split entity.  This may suggest that the user found naming the split 

entity harder than the merge entity.  More experiments for the use of functions 

buttons could reveal more interesting results.  In particular the findings could be 

used to discover difficulty levels of scenario texts. 

All the experiments were successful.  The results of both experiment 1 and 

experiment 3 show that the users can produce design solutions using the proposed 

editor without being negatively affected.  The results of experiment 2 show that a 

few users haven’t the design skills required for the given scenarios.  Additionally, 

student solutions were analysed to see how the users name the entities.  The analysis 

discovered that students have some difficulties in naming the entities when there 

aren’t any directly related noun phrases in the scenario text.  The discovery 

suggested that scenario text can be categorised depending on the naming 

requirements and naming entities can be taught to students.  Student design 

solutions from experiment 3 will be used in the next section for the marking tool 

experiments.  More research is required on the difficulties of naming entities.  Jayal 

and Shepperd (2008) have recently started looking into this area in order to use their 

findings in automatic diagram assessment. 

7.4 Marking Tool 

This section gives the details of the experiments done for the marking tool and the 

analysis of their results.  Experiments were carried out to see whether the examiners 

can manage to use the tool for marking student diagrams.  The environment of the 



Chapter 7  Evaluation 

 127 

marking tool is used for two styles of marking: partial and complete marking.  The 

complete marking is the online version of the manual marking process.  The 

examiners are familiar with this marking style.  Therefore an experiment for 

complete marking is not significant for the evaluation of the semi-automatic 

approach.  However the usability test of its interface can be beneficial before it is 

used actively in a taught module.  Since the usability of the system’s user interface is 

out of the scope of the research, there were no experiments carried out for complete 

marking. 

Partial marking is a new marking style and requires a very different interface from 

the complete marking one.  It doesn’t resemble manual marking.  Experiments for 

partial marking are essential for the evaluation of the approach.   

The section first explains the steps in detail, which the marking tool takes before the 

partial marking on the example data collected from the experiments in the previous 

section.  Then it describes the experiments for the partial marking. 

7.4.1 Grouping stage and interpreting the results 

The semi-automation processes the student diagram before an examiner partially 

marks the diagrams.  It groups the diagrams as described in Chapter 5.  Table 7.5 

shows the total number of components in both student and teacher diagrams 

produced for each scenario in Section 3.  The main components of these student 

diagrams can be found in Appendix C.  There are three component types and four 

scenarios in the table: entity type, relationship type and attribute type.  Total entity 

numbers in each scenario are determined and shown as directly referenced and 

indirectly referenced entities.  The table shows that teacher diagrams have one 

indirect referenced entity for each scenario and student diagrams together have 

twenty indirect components.  Since twenty students participated in experiment 1 and 

2, there aren’t any redundant indirect referenced entities.  The direct referenced 

entity column of the table illustrates that the student solutions have redundant 

entities.  In the same way, the number of redundant attributes and relationships can 

be predicted in the early stages of the marking process.  The later stages examine the 

acceptability of these redundant entities. 



Chapter 7  Evaluation 

 128 

Table 7.5  Components of solution diagrams for scenarios in section 2 

Scenario 
no 

Total # 
of 

Comps  

Entity Attribute Relationship 

Indirect Direct 

Student Diagrams 

1 312 20 42 209 41 

2 337 20 47 226 44 

3 260 20 20 199 21 

4 265 20 35 180 30 

Teacher Diagrams 

1 16 1 2 11 2 

2 15 1 2 10 2 

3 12 1 1 9 1 

4 12 1 1 9 1 

 

The marking tool groups the student diagrams first by using their scenario 

references.  Table 7.6 shows numbers of groups for the example data.  The total 

column in the table shows the total number of component groups.  For example, for 

scenario 1, there are 28 groups and for scenario 2 there are 55 groups.  The group 

numbers shows how many components the examiner needs to mark using the tool. 

Table 7.6 Groups of student diagram components 

Scenario 
no 

Total Entity Attribute Relationship 

Indirect Direct Indirect Direct D-to-D D-to-I 

1 28 1 4 2 18 1 2 

2 55 2 8 10 23 4 8 

3 60 4 3 38 9 6 0 

4 107 5 7 42 34 13 6 

 

The marking tool presents each type of diagram component to the examiner 

differently.  First, it displays the entity type with their scenario reference and the 



Chapter 7  Evaluation 

 129 

examiner marks them.  Next the attribute type is shown.  Attributes are shown with 

their entities, which have already been identified by the examiner.  Since attribute 

marking requires displaying their entities, attributes are grouped by using their 

entities as well as their scenario references.  The attribute column in Table 7.6 shows 

the number of attribute groups for each scenario.  There are two types of attribute 

grouping depending on their entity types.  If the attributes’ entities are indirect 

referenced entities, then the numbers of groups are written under the “indirect” 

column heading.  The attributes of direct referenced entities are written under the 

“direct” column heading. 

The relationship groups for each scenario in Table 7.6 have been shown in two 

columns like the attribute groups.  If the relationship groups are between two 

directly referenced entities then the numbers of groups are written under the “D-to-

D” column.  Relationship groups between direct and indirect referenced entities are 

written under the “D-to-I” column.  Like the attribute type components, 

relationships are represented to the examiner with their participant entities after 

entities have been identified. 

Table 7.7 shows the “total number of components” column in Table 7.5 and the “total 

number of component groups” in Table 7.6 together.  These columns can be 

compared with each other to find out how effective the grouping is during the 

marking.  For example, for scenario 1, the examiner would have marked 312 

components during the manual marking whereas they will mark a maximum of 28 

components by using the tool.  A paired t-test was performed to determine if the 

difference between these columns is significantly high.  One-tail p = 0.003 shows that 

the grouping can significantly reduce the number of components marked by the 

examiner. 



Chapter 7  Evaluation 

 130 

Table 7.7 Diversity in student solutions for each scenario 

Scenario 

no  

Number of 

components in the 

student solutions    

Number of 

different 

components  

Diversity in 

student 

solutions (%) 

1 312 28 9 

2 337 55 16 

3 260 60 23 

4 265 107 40 

The diversity column in Table 7.7 shows how much the student solutions are 

different from each other for a particular scenario.  The values in the diversity 

column are the number of components divided by the number of different 

components in the student solutions for each scenario.  For example, for scenario 1, 

the number of components “312” is divided by the number of different components 

28 in the table.  The diversity is 9 percent for scenario 1.  The diversity is 40 percent 

for scenario 4 which is highest among all the other scenarios in the table. 

Detailed analysis of the teacher and student solutions reveals the reasons for the 

diversity.  Table 7.8 shows the components of the teacher solution for the example 

scenarios.  The teacher solution has 2, 2, 6 and 6 attributes of an indirect referenced 

entity for scenario 1, 2, 3 and 4.  Table 7.6 shows that the student solutions have 2, 10, 

38 and 42 different “indirect” attributes for the same scenarios.  The value of the 

correlation coefficient for these data is 0.983.  This suggests that there is a strong 

relationship between “indirect” attributes of the teacher solution and “indirect” 

attributes of the student solutions.  Therefore the number of “indirect” attributes in 

the teacher solution is one of the reasons for the diversity. 



Chapter 7  Evaluation 

 131 

Table 7.8 Teacher diagram components 

Scenario 
no 

Entity Attribute Relationship 

Indirect Direct Indirect Direct D-to-D D-to-I 

1 1 2 2 9 0 2 

2 1 2 2 8 0 2 

3 1 1 6 3 0 1 

4 1 1 6 3 0 1 

The “indirect- attribute” column of Table 7.8 and Table 7.6 could be compared for 

two types of scenarios and the result may yield another reason for the diversity.  For 

example, scenario 1 and 3 are “split” type scenarios and scenario 2 and 4 are “merge” 

type scenarios.  The average ratio for the “merge” type is 4:20 (i.e.  (2+6:2+38)/2).  

The average ratio for the “split” type is 4:26 (i.e.  (2+6:10+42)/2).  The comparison of 

these ratios shows the split action caused more reasoning diversity than the merge 

action.  More student solutions for similar scenarios could be analysed in the future 

in order to check whether this finding can be generalised.  The diversity ratios of the 

columns in Table 7.7 can be compared to assess the scenario text.  According to the 

finding of that comparison, the scenario text can be altered in order to control the 

diversity. 

7.4.2 Automatic component marking  

Component matching operation follows after component grouping.  The marking 

tool matches the component groups of students with the teacher components.  

Matched groups are considered to be automatically marked.  At this stage, the 

number of automatically marked components is usually the same as the number of 

available teacher components in the system.  Table 7.9 shows the numbers of 

matching components for each scenario.  The system has only one teacher solution 

for each question.  More teacher solutions in the system increase the numbers in 

“Total auto marked” column of the table. 



Chapter 7  Evaluation 

 132 

Table 7.9 Automatically marked components 

Scenario 
no 

Student 
Comp 

Groups 

Total 
Auto 

marked  

Entity Attribute Relationship

Indirect Direct Indirect Direct 

1 28 15 1 2 1 9 2 

2 55 15 1 2 2 8 2 

3 60 11 1 1 6 3 0 

4 107 12 1 1 6 3 1 

Interpreting data in Table 7.9 may highlight the areas, which should be checked to 

improve the quality of the examination process.  In the table, if the number of each 

component type is less than the number of the same teacher component type, it 

indicates that none of the students reasoned in the way the teacher did.  For example, 

the indirect part of attribute column in Table 7.9 for scenario 1 shows only one 

attribute matched with the teacher’s one in Table 7.8.  However the teacher diagram 

has got two attributes, so the teacher needs to look into two areas.  The examiner 

might revise their solutions.  Although theoretically the teacher solution is ideal and 

correct, in practice it may not be correct.  The other area at fault could be the scenario 

text.  Some part of the text could have an ambiguous meaning which the scenario 

author didn’t intend.  In this case, the scenario should be modified. 

Full automatic marking assumes that questions and their solution are prepared well 

and marking rules are complete, whereas the semi-automatic marking does not make 

these assumptions.  The marking tool still works with the imperfect scenario and 

solution.  The tool enables the examiners to improve their examination process. 

7.4.3 Partial marking 

The system could include more automation rules apart from the rule for the first 

matching operation at this stage.  Chapter 5 discusses some rules and the possibility 

of generating new rules for automation.  After this automatic marking stage or 

component matching stage, the system moves to a partial marking stage.  In this 

stage, all unmarked component groups are presented to the examiner.  Table 7.10 

shows the number of these component groups to be marked partially by the human 

marker. 



Chapter 7  Evaluation 

 133 

Table 7.10 Component groups for partial marking 

Component groups are presented to the human marker with their reference 

diagrams.  Reference diagrams are either short or long.  Short diagrams are for the 

direct referenced components.  Long ones are for the components with indirect 

references.  If the reference diagrams have got only one diagram action, then this 

research calls them well-formed reference diagram otherwise it calls them 

malformed reference diagrams.  Malformed reference diagrams can have two or 

more diagram actions.  Table 7.10 shows the total number of short and well-formed 

reference diagrams for each scenario.  The table hasn’t got any data for the 

malformed reference diagram.  This means that all participants use, at most, one 

diagram action to get their components.   

The marking process model developed in Chapter 5 marks the components with the 

malformed reference diagrams by using the complete marking interface since 

reading and interpreting malformed reference diagrams could be impractical and 

time-consuming.  The model marks components with short or well-formed reference 

diagrams in the partial marking environment of the tool.  The human marker should 

be able to mark short and well-formed reference diagrams partially in order to make 

the proposed system acceptable.  The process of marking a reference diagram is 

slightly different for each component type. 

7.4.3.1 Marking a simple entity type  

Marking short reference diagrams for the entity type is a straightforward process.  

The reference diagrams have only one noun phrase reference.  The examiner has 

three options for these short reference diagrams: reject, accept and map.  The options 

are the same as in traditional marking.  In the reject case, the noun phrase wasn’t 

supposed to be an entity.  For example students wrongly identified an attribute as an 

Scenario 
no 

Total Entity Attribute Relationship 

Short Well-
form 

Indirect Direct Indirect Direct D-to-D D-to-I 

1 13 0 0 2 1 9 1 0 

2 50 1 1 6 8 26 4 6 

3 46 3 3 2 32 6 6 0 

4 91 4 4 6 36 31 13 5 



Chapter 7  Evaluation 

 134 

entity.  In the accept case, the noun phrase is an entity but it is not significant for the 

solution.  In the last case, students had found a new reference for an entity of the 

solution.  During marking, the examiner first decides whether the phrase is an entity 

or not.  If it is an entity type then they check whether an entity is mapped to an entity 

of the teacher solution.  In traditional marking, the examiner makes the decisions 

based on the whole student diagram.  In the partial marking approach, the decisions 

are made, based on noun phrase references in the scenario text. 

7.4.3.2 Marking a simple attribute type 

Short reference diagrams for attribute components refer to only one noun phrase 

reference, like entity types.  They are represented with the related entity to the 

human marker.  The examiner not only uses the reference but also uses the related 

entity whilst marking.  The human marker rejects the attribute if the noun phrase 

should be a different component type other than an attribute type or if the noun 

phrase should not be used at all.  The human marker accepts the attribute if it is part 

of the teacher solution.  Then they map the attribute to the attribute in the teacher 

solution.  If related entities of both attributes are the same, the attribute is completely 

accepted.  Otherwise, the attribute is partially accepted.  Feedback is generated in 

this case.  The human marker may accept the attribute even if it is not mentioned in 

the teacher solution.  This could be the case if the examiner had forgotten to include 

the attribute in the solution or the attribute is insignificant for the solution.  In both 

cases, Feedback is given to the examiner and students. 

7.4.3.3 Marking a simple relationship type 

Short reference diagrams for the relationship component have a sentence reference.  

Like attribute components, it is presented to the examiner with related entities.  

Relationships can have one or many participant entities.  The examiner maps each 

relationship from the component group to a relationship in the teacher solution 

based on the sentence reference.  After manual mapping, the related entities of the 

relationships are compared.  If all are matched, the relationship is completely 

accepted.  Otherwise it is partially accepted.  If the human marker cannot map the 

relationship to any component in the solution, the relationship is rejected.  However 

the relationship might be an unpredicted but acceptable one.  Then the human 

marker adds the relationship into the solution.  In both cases, feedback is given to the 

students and the examiner, as it is in the attribute marking process. 



Chapter 7  Evaluation 

 135 

 

7.4.3.4 Marking a relationship type 

Relationship components may have well formed diagrams.  Marking their diagrams 

is similar to marking the relationships with short reference diagrams.  The only 

addition is that a relationship could be mapped to an entity which is created out of a 

many to many relationship.  Both the entity and the relationship have sentence 

references.  The examiner uses these references for mapping.  Then participant 

entities of the relationship are automatically matched to the entities which have 

relationships to the entity.  If the matching cannot be done, appropriate feedback is 

produced for this case. 

7.4.3.5 Marking an entity type with the well-formed reference diagram 

Marking well-formed diagrams for entity type is an unusual marking process for the 

examiners.  During the process, the examiners map an entity with the reference 

diagram to an entity of the ideal diagram.  The mapping approves the references and 

it is added to the system as an alternative diagram.  If the mapping cannot be done, 

then depending on the reference diagram, the examiners do different actions.  Figure 

7.2 shows possible mapping cases for a merged entity.  Case 1 in the figure shows an 

ideal teacher solution.  The examiner maps teacher entity A to student entity A.  The 

entity A in the ideal solution may have a short or well-formed reference diagram.  

The examiner doesn’t see the reference diagram of the teacher entity A.  The 

examiner makes their decision based on the ideal solution. 

Case 2 and Case 3 show that Student entity A doesn’t have a corresponding entity in 

the ideal solution but the entity X and the entity Y of the reference diagram have 

corresponding entities in the diagram solution.  This happens when the students 

wrongly merge the entity X and Y which are supposed to be separate entities. 

 Case 4 shows that none of the entities X, Y and A in the reference diagram is 

mapped to an entity in the ideal solution.  This case happens when students have 

found new entities.  The examiner accepts them or rejects them without doing any 

mapping.  Feedback is prepared for the results of this mapping. 



Chapter 7  Evaluation 

 136 

 

Figure 7.2 Mapping a merged entity to an entity in ideal diagram 

A well-formed reference diagram for a split entity is shown in Figure 7.3.  Case 1 

shows that students correctly extracted the entity X from entity A.  Case 2 shows that 

entity X isn’t part of the solution.  The examiner accepts entity X if it doesn’t violate 

any requirements, otherwise Entity X is rejected.  In case 2, Entity A is valid and 

mapped to Entity A in the solution.  Attributes of Entity A are handled during 

attribute mapping. 

 

Figure 7.3 Mapping a split entity to an entity in ideal diagram 

 

A X 

A 

NP X B 

A B 

K B 

Ideal solution  Reference diagram for a 
merged entity  

Case 3 

Case 2 

Case 1 

A 

Y X 

NP NP 
A B 

X B 

Y B 

K B 

Ideal solution  
Reference diagram for a 
merged entity  

Case 4 

Case 3 

Case 2 

Case 1 



Chapter 7  Evaluation 

 137 

Case 3 happens when neither Entity A nor Entity X are part of the solution.  Then the 

examiner decides first on the acceptance of entity A and later on entity X.  If Entity A 

is rejected then Entity X is rejected automatically. 

7.4.4 Provisions of the experiment 

Both split entities and merged entities require an unusual mapping process.  Apart 

from these entity types, the mapping processes of other components, which have 

short reference diagrams, is straightforward and similar to traditional marking.  

However in the traditional case, examiners are familiar with only the mapping 

components without using any references.  This difference is not significant for 

components with a short reference diagram.  Therefore the experiment was carried 

out for components with well-formed reference diagrams only. 

The seven participants chosen for the experiment were people who have studied 

database design at university level rather than people who have some experience of 

marking.  They were given an introduction session and shown how to mark 

components partially.  The given components have indirect scenario references 

which cannot be automatically marked.  Then the participants are asked to mark 

components with similar references. 

7.4.5 Results of the experiment 

All the participants but one managed to mark all components correctly.  The failed 

person used a component label rather than the component reference to mark one of 

components.  Although some components are purposely labelled indistinctly, which 

is the case in student diagrams, the participants managed to distinguish them 

without seeing the whole diagram. 

The system cannot prevent the examiner from marking wrongly.  However, wrong 

marks can be spotted easily by students for correction since the system can provide 

mark-ups to students for their diagrams.  The web-based environment enables more 

than one examiner to mark the same diagrams.  Where there are many examiners, 

the system could detect any inconsistency between markers.  This feature allows the 

marker tool to be used in collaborative assessment also. 



Chapter 7  Evaluation 

 138 

7.4.5 Full marking  

Diagram components, which have malformed reference diagrams, are marked 

during the full marking process straight after partial marking.  Although the 

malformed references could be marked partially, examiners might find interpreting 

the references too complex and this negatively affects the acceptability of the semi-

automatic marking system.  No experiment was carried out for full marking of 

student diagrams since complete marking is an online version of traditional marking.  

The examiners are familiar with this type of marking.  The experiment may be 

required for usability of the interface, however, designing the best user interface is 

beyond the scope of this research.  Alternative user interfaces may be designed and 

tested in the future. 

7.4.6 Naming ambiguity 

The semi automatic approach requires two marking styles used together.  This usage 

may occasionally cause some marking inconsistency in student marks because of the 

naming ambiguity discussed in chapter 4.  There aren’t any examples for this in the 

student solutions collected during the experiments.  Figure 7.4 shows artificial 

examples.  A student gets a correct reference but a wrong label for Component A and 

wrong reference but correct label for Component B. 

 

Figure 7.4 Inconsistency in marking styles 

During partial marking, the examiner marks student components based on the 

components’ references.  In Case 1, Component A is given a full mark and 

Component B is given no mark.  During full marking, the examiner marks student 

A 

Malfo

rmed 

B 

Malfo

rmed 

A 

Well-
formed Ref 

B 

Well-
formed Ref 

Label A is wrong   

Ref is right 

Label B is right  

Ref is wrong 

Case 1: Partial Marking Case 2:  Full Marking 

Label A is wrong   

Ref is right 

Label B is right  

Ref is wrong 

√ X 
√X 



Chapter 7  Evaluation 

 139 

components without considering the references.  This case makes Component A 

wrong and Component B right.  These two marking styles give opposite marks for 

the same components. 

There are two strategies to solve the marking inconsistency.  The first strategy is that 

student feedback is given based on the partial marking.  This implies that students’ 

reasoning is more important than their final diagrams.  According to partial marking, 

component A and B in Case 2 of Figure 7.4 are wrongly marked.  Wrong marking of 

Component B is ignored since the mark favours the students.  If it is necessary, the 

problem can be solved.  The examiner is able to see the malformed references during 

full marking.  However, this solution isn’t adopted since it may increase the 

cognitive load of the marking.  The wrong marking of Component B is corrected 

with the help of student feedback.  After marking, the system gives personalised 

detailed feedback to students.  Students see the malformed reference of Component 

B.  If they spot their reference is correct then they can ask the examiner to mark this 

component manually again.  The same solution is applicable to marking of 

component B in Case 1.  Although Component B is marked correctly based on partial 

marking, students will consider the mark of component B to be wrong.  Students are 

allowed to request their component to be marked again. 

The second strategy to solve the marking inconsistency is that student feedback is 

given based on the full marking which is same as in traditional marking.  Correctness 

of a student solution depends on their final diagrams.  Hence Component A and B in 

Case 2 of Figure 7.4 are marked correctly.  However Component B is marked 

wrongly.  In this case, students will request that their components are marked again.  

Component A is marked wrong in the favour of students.  This can be ignored since 

the student reasoning is correct.  However student feedback may be confusing since 

they will see their diagram wrongly marked.  To avoid this confusion, Component A 

can be relabelled by the system and given a matching name.  This strategy requires 

less human involvement than the first one.  Both strategies can be implemented in 

the system and the examiner can choose the first strategy to assess students 

reasoning ability or the second one to assess their final diagram only. 

Semi-automatic marking focuses on the common, correct and wrong components in 

the solutions.  The approach does not deal with the odd cases.  Odd cases are marked 

by a human marker.  Marking of some odd components can be time consuming for 



Chapter 7  Evaluation 

 140 

the human marker and in this case, the system lets the students handle their own 

case by giving an opportunity to object, based on their feedback.  This section 

explained how student solutions are marked with a real data example.  It also 

described the experiments done for partial marking of two reference diagram type. 

7.5 The semi-automatic assessment tool. 

The semi-automatic assessment research, reported by the author in a paper (Batmaz 

et. al., (2009) has developed a new complete assessment tool.  The tool is the light 

version of the prototype tool described in the thesis.  This section briefly explains the 

new tool and then gives the findings of the tool’s use in a taught module. 

The assessment tool has a new feedback component as well as the marking and the 

diagramming components.  The feedback component is integrated with the diagram 

editor so that the students can see and analysis their feedback by using the diagram 

editor. 

The diagram editor supports only simple scenarios.  Students can only create a 

diagram component which has a direct reference.  Students are allowed to name the 

component by using only noun or verb phrases in the scenario text.  This prevents 

any naming ambiguity as discussed in section 5.  The diagram editor has a robust, 

simple, drag-and-drop user interface.  Figure 7.5 shows a snapshot of the user 

interface. 



Chapter 7  Evaluation 

 141 

 

Figure 7.5 The user interface of the diagram editor 

Students draw diagrams without using the keyboard since they don’t type the 

component names.  This feature allows the editor to be used on a touch screen easily 

without changing the user interface.  Further discussion of the interface can be found 

in the paper by Stone et al (2009). 

The editor additionally shows the colour coded feedback about their diagrams if the 

student diagrams are marked.  Figure 7.6 shows screenshots of a student diagram 

before and after marking.  Students can also read textual comments given by the 

examiner on each component in their diagram. 

 

Figure 7.6 A student diagram with feedback (Stone et  al.  2009)  

The marking environment of the assessment tool supports only the partial marking 

style.  The full marking style is not supported since the components of the student 

diagrams can only have direct references. 



Chapter 7  Evaluation 

 142 

7.5.1 Using the tool and results  

The diagram editor has been used with two scenarios by a first year class of 200 

students in 2009.  This represents 4 separate sessions since the first year class had to 

be split into four groups of 50 students.  At the beginning of each 50min practical 

session a short demonstration of the system was given showing how to make one 

entity, one attribute and one relationship.  The students were then asked to create ER 

diagrams for the first scenario (hitherto unseen) and, if possible, go on to do the same 

for the second scenario.  By the end of the session most students had finished the first 

scenario and some had finished both. 

Table 7.11 Summary of diagram marking for two scenarios 

Scenario 
No 

Total 
Component 

# 

Component 
Group # 

Diversity 
Rate % 

Auto 
marked 
Group # 

Manual 
marked 
Group # 

Efficiency 
Rate % 

1 5356 708 13 468 240 96 

2 3707 607 16 317 290 92 

The examiner marked the student diagrams using the marking tool in less than two 

hours.  Table 7.11 shows a summary of the marking task.  The tutor marked 240 

components out of 5356.  That makes the efficiency of the tool for the first scenario 

approximately 96 percent.  The efficiency for the second scenario is 92 percent.  The 

difference between 96% and 92% could be due to noise or this could be interpreted 

such that the system’s efficiency increases when more students draw ER diagrams 

for the same scenario.  However, to draw the conclusion about the relationship 

between the system efficiency and the number of students, more experiments are 

needed. 

The table also shows the diversity rate.  This rate is calculated by using both 

component group and total component numbers.  If student diagrams are similar to 

each other then the diversity rate decreases, otherwise it increases.  The diversity rate 

could be used as feedback for the scenarios.  Student solutions for the similar 

scenarios should have the same rate.  If they are very different, the tutor may analyse 

and revise the scenario text to find out the reason for the diversity. 

The marking tool produces a detailed report for any chosen scenario.  The report has 

a list of every distinct element, how it was marked and the number of students 



Chapter 7  Evaluation 

 143 

whose diagrams included that element.  This reveals, for example, how many 

students made the 'same mistake'.  So, for example, it was clear that something in the 

way the first scenario was worded caused 50 students to wrongly identify 

"Consultant Name" as an entity and go on to make related mistakes with attributes.  

The report contains aggregate marks e.g.  entities (green 82%, amber 7%, red 11%) 

attributes (green 82%, amber 10%, red 8%) and relationships (green 34%, amber 59%, 

red 7%) showing that it is the precise identification of relationships (amber 59%) that 

caused the most problems. 

In feedback sessions, the students were able to see their marked diagrams.  The 

colour coding of tutor comments was extremely well received by the students and 

led to lively, positive discussion of the principles involved with interpreting the 

scenarios which was very beneficial.  A simple questionnaire about the editor and 

the associated marking feedback was given to the students at end of the term.  The 

results from 67 returns show that the students were favourably disposed to the 

editor and they liked the coloured feedback.  The questionnaire given and the result 

can be found in Appendix D. 

Students have accepted the concept of using the editor as a way of submitting their 

work.  They receive more detailed personalised feedback than the feedback from 

traditional methods.  The marking tool has decreased the number of diagram 

components the examiner needs to mark. 

The current tool is a basic system where the components of the diagram are directly 

referenced to the scenario.  The next stage is to improve the interface so that the user 

can create indirect referenced components by splitting and merging existing 

elements. 

7.6 Summary 

This chapter discussed the evaluation of the proposed semi-automatic system in the 

thesis.  Three components of the system were investigated separately.  The first 

component of the system is for scenario writing.  It was used by lecturers and they 

produced natural scenarios based on a given template.  It has verified that the use of 

the scenario writing environment is possible.  The second component of the system is 

for diagram drawing.  It was used by students.  The students produced their 



Chapter 7  Evaluation 

 144 

solutions based on question scenarios.  The scenarios are specially written by using 

templates in order to increase the automatic marking.  The student solutions have 

shown that the diagram editor can be used properly in order to produce appropriate 

solutions for the scenario.  The last component is for marking diagrams.  Experiment 

results have shown that the participants managed to mark complex student solutions 

partially.  It demonstrated that the new partial marking style does not cause any 

major difficulties. 

Each component needs to be improved in order to be used in a real assessment 

situation in the future.  Some parts of scenario writing environment should be 

automated.  It could suggest some sentences based on a chosen template and 

components in the template can be labelled automatically.  This will increase the 

acceptability of the tool.  The environment will also enable the author to modify 

current templates or to create their own templates after getting feedback from the 

marking editor. 

The diagram editor has been shown to be usable by students.  However, experiments 

revealed that the automatic diagramming section of the editor needs to be improved.  

The algorithm used in the editor automatically draws student diagrams in order to 

give the best layout for the diagrams.  This sometimes makes significant changes to 

the layout of diagram and makes students confused.  A suitable algorithm needs to 

be developed which automatically draws diagrams with the minimum changes in 

their layout each time students add new components. 

The naming ambiguity problem is highlighted in section 3.  A naming convention is 

suggested as a solution in order to improve the quality of the student diagrams.  The 

same problem is revisited in the section 4 since it may cause some inconsistency in 

marking.  Two different solutions are suggested in that section. 

A basic implementation of the semi-automatic system uses an additional component 

for giving appropriate feedback to students and the teacher.  The feedback 

component should be improved so that it can use the examiner marks from the 

marking editor and grade them based on marking schemes.  It should also explain 

how their marks are given. 



Chapter 7  Evaluation 

 145 

The experiments with the tool have not focused on the “ease of use” aspect of either 

the drawing or the marking tool, so the interfaces need to be made more user-

friendly before the system starts being used in a taught module. 

The next chapter gives the conclusion of the thesis. It summaries the research 

contributions and provides the future directions of the research. 

 



Chapter 8  Conclusions and Future Work 

 146 

CHAPTER 8  

Conclusions and Future Work 

8.1 Introduction 

Diagrams are increasingly used in many design methods, and are being taught in a 

variety of contexts in higher education such as database conceptual design or 

software design in computer science.  They are the key part of many assessments.  

Personalised and detailed feedback to students is very important for the formative 

assessment.  The increasing number of students in HE increases the assessment load 

of lecturers.  This thesis proposed an advanced solution to the process of assessing 

student diagrams.  The solution uses human-computer collaboration by providing a 

semi-automatic assessment environment. 

This chapter gives a brief review of the thesis, summaries the achievements and 

points out some directions for future work.  It is organised as: 8.2 gives a review of 

the thesis, 8.3 summarises the major contributions and 8.4 outlines the limitations of 

the thesis with some future directions. 

8.2 Thesis Review 

The research aims to develop a semi-automatic assessment framework which enables 

the use of a computer to support the assessment process of diagrammatic solutions, 

with the focus of ensuring consistency of feedback on the solutions. 

To achieve the research aim, the following three objectives were set in Chapter 1: 

Objective 1: To identify the repetitive tasks in the assessment process. 

Objective 2: To develop techniques to reduce the repetitive tasks or remove 

them completely where possible. 

Objective 3: To develop a novel framework that provides a platform where 

different intelligent techniques work together to support the assessment 

process of diagrammatic solutions. 



Chapter 8  Conclusions and Future Work 

 147 

The underlying framework of existing computer aided assessment research was 

identified in Chapter 2. Available technologies in computer aided assessment area 

were studied, which included marking students’ essay-type work and software code 

as well as diagrammatic solutions.  Some fully automatic diagram marking research 

(Hall and Gordon, 1998) (Suraweera, 2001), which uses a constraint based reasoning 

technique (Freuder and Mackworth 1994), was discussed in detail.  A semi-automatic 

approach for assessment of diagrammatic solutions was decided for this research to 

deal with complex question types and to improve the consistence of the marking and 

feedback. 

A conventional, manual diagram-assessment process was studied and the problems 

of the process were identified in Section 3.2 in Chapter 3. The repetitive tasks were 

identified in Section 3.3.1 and Section 3.3.4 to achieve Objective 1 of this research. A 

substantial amount of lecturers’ time in higher education is occupied with preparing 

questions for diagram-type work and marking student solutions when the number of 

students increases.  In the assessment context, the process of marking a diagram 

means that components of the teacher and student solutions are matched against 

each other.  If some computer support is provided to the diagram matching process, 

then it has the potential to shorten the assessment time and improve the consistency 

of the human markers’ grading and feedback.  Thus, the thesis focused on computer 

assisted diagram matching.  The thesis also proposed to modify the authoring of the 

questions in order to improve the marking stage of the process. 

The limitations of automatic marking research for the assessment were identified in 

Section 2.4 in Chapter 2. Case-based reasoning (Kolodner, 1993) was proposed as a 

replacement of constraint based reasoning in order to overcome the shortcomings in 

Section 3.3.3 in Chapter 3.  Case-based reasoning was employed to achieve Objective 

2, which reduces the repetitive marking task of the assessment process. The 

requirements of the proposed approach were identified and discussed in Section 

3.3.2, including (1) contextual attributes of diagram components, (2) controlling the 

reasoning diversity, (3) manual partial marking and (4) automatic partial marking.  

The contextual attribute was the most important requirement for the 

semi-automation while developing the ability for partial marking became the major 

challenge of the thesis.  A novel framework was proposed for the approach in 

Section 3.3.3 to achieve Objective 3.  The framework provided a platform to enable 



Chapter 8  Conclusions and Future Work 

 148 

the integration of a number of the technologies for the assessment of student 

solutions for various types of scenario texts.  Detail of the framework was developed 

in Chapter 4 and Chapter 5.   

To support this framework, the research area of requirements traceability (Ramesh 

and Jarke, 2001) was studied and a novel trace model was proposed which defines 

the design traces and production of student design traces for the contextual attribute 

of diagram components in Chapter 4.  The concept of an action function was 

developed for automatic online trace capturing.  The use of action functions was 

designed to enable users to modify their diagrams at a higher level during design 

and enable the examiner to capture the students’ reasoning and self-explanations. 

A novel marking process model was proposed in Chapter 5 for the developed design 

trace model.  The model prescribes five important sages: (1) the segmentation of 

student diagrams, (2) segment grouping, (3) automatic marking of the possible 

segments, (4) manual marking of the remaining segments, and (5) assembling the 

marked segments.  The problems of manual partial marking were identified and 

tackled successfully by introducing manual full marking alongside the partial 

marking.  A case definition was created for automatic marking.  The concept of 

generic case was developed for the case adaptation phase of the CBR cycle.  The 

requirements of generic case production were discussed.  A set of guidelines was 

suggested for writing scenario texts in order to increase the use of  generic cases in 

Section 5.3. 

Components of scenario templates for writing similar problem scenarios were 

identified and discussed, which include (1) scenario sections, (2) statement types, (3) 

existing and alteration conditions, (4) condition satisfiers, and (5) sentence structure.  

Some scenario templates for scenario text writing were developed and demonstrated, 

which required action functions to be used to reach the correct design solution.  

Using scenario templates was proposed to also control the difficulty level of scenario 

based questions. 

A rudimentary scenario writing editor was developed for proof of concept testing in 

Section 6.4 in Chapter 6.  Three volunteer examiners used the editor to write scenario 

text which was compatible with the given scenario template.  The results showed 

that the examiners could follow the guideline which enables the writing similar 

scenario texts. 



Chapter 8  Conclusions and Future Work 

 149 

A prototype diagram editor, which is based on automatic graph drawing (Tamassia, 

et al, 1988), was developed Section 6.2 in Chapter 6 to evaluate the proposed design 

trace model.  Three case studies were performed in Section 7.3 in Chapter 7.  

Students were given a different scenario text for each case.  The first and second 

scenario texts were written in such a way that the student had to use one of action 

functions to express their design and the third scenario makes the uses of action 

functions optional.  The first two cases were designed to see whether the cognitive 

load of the editor was acceptable.  The third case was designed to find out the 

diversity in students’ reasoning.  The first two case studies showed the cognitive 

load of the editor is not high since they all managed to get the correct solutions.  The 

study of student solutions in the third case showed that the variety of student 

reasoning is limited and there is common reasoning among student solutions.  

Student solutions were successfully segmented and grouped, based on their 

reasoning, by using the proposed case definition. 

A prototype marking editor was developed Section 6.3 in Chapter 6 to evaluate the 

proposed partial marking technique.  Three case studies were performed in Section 

7.4 in Chapter 7.  The human markers were given three reference diagrams as a 

contextual attribute of the components.  Each reference diagram contained one action 

function.  The cases were designed to see whether the representation of design traces 

is understandable and correctly used by human markers and that the cognitive load 

of it is acceptable.  The results showed that partial marking is possible and the 

cognitive load is not too high.  The partial marking enables consistency of grades and 

feedback, a fair application of the marking scheme, and integration of intelligent 

support in the assessment process.  These three features are critical in the manual 

assessment process in the absence of a full automatic assessment system. 

8.3 Summary of Contributions 

This section reiterates the contributions of the thesis mentioned in Chapter 1.  

Additionally, references to the related chapters are given for each contribution. 

 Through the application of assessment in the diagrammatic solution 

domain, it has contributed to an enhanced understanding of “semi-

automatic assessment”.  The concept of reducing repetitive tasks in the 

question preparation and marking stage of the assessment process is 



Chapter 8  Conclusions and Future Work 

 150 

introduced to the semi-automatic assessment research of diagrammatic 

solutions, which is necessary to increase the quality and consistence of 

feedback given to students.  The discussion about the semi-automatic 

approach can be found in Section 2.4 and Section 3.3. 

 The new assessment framework is proposed, which gives a platform 

where a variety of technologies can be used to increase automation of the 

assessment of diagrammatic solutions.  Increasing the automation is 

desirable in order to make the framework more acceptable in the 

assessment community.  The automation part of the framework achieves 

Objective 3 identified in Chapter 1.  The framework adds a new 

automation approach to the list of current computer aided assessment 

research discussed in the Section 2.2.2.  The detail of the framework can 

be found in Chapter 6.  The complete system view of the framework is 

given in Section 6.5. 

 A novel trace model is developed, which is a part of the proposed 

framework and necessary for the semi-automation..  The model captures 

design traces of student solutions and enables construction of contextual 

information of components. The model contributes the achievement of 

Objective 3. The trace model is developed in Chapter 4. 

 A new generic case concept is defined, which enables scalable adaptation 

rules.  It contributes to the case-based reasoning method by defining a 

new way of indexing natural language text, which is a question text 

describing the system requirements.  The generic case concept is used as 

a part of the proposed framework in order to achieve Objective 3. The 

generic case concept is introduced in Section 5.2. 

 The novel partial marking style of student diagrams creates a new 

research direction in the computer aided assessment community and 

adds a new type into the list of computer aided assessment types 

mentioned in Section 2.2.1.  The partial marking style is essential for the 

marking process model used in the proposed framework.  The partial 

marking style is explained in Section 3.3.3. 



Chapter 8  Conclusions and Future Work 

 151 

 A novel marking process model is developed, which integrates full and 

partial marking styles.  The process model describes all steps needed to 

follow during the marking in the proposed framework.  The process 

model ensures the consistency of the feedback given to students which is 

the part of the thesis’s aim.  The model can be seen in Section 5.4. 

 The thesis contributes to the online assessment area by presenting the 

requirements of a new online diagram marking tool.  The tool allows 

component-based marking as well as diagram-based marking, which is 

necessary for the marking process model. The requirements can be found 

in Section 6.3  

 A set of guidelines for writing question text is introduced for 

diagrammatic solutions.  The use of the guidelines is not mandatory for 

the proposed framework. However they increase the automation. Besides 

the use of question text written based on the guidelines enables formative 

assessment.  Section 3.2.1 highlighted the importance of the feedback in 

formative assessment.  Section 3.3.2 underlined the benefit of the 

proposed framework for formative assessment.  Section 5.3 gives the 

details of the guidelines. 

8.4 Limitations and Future Directions 

The following issues are currently being addressed, or should be addressed in future 

work: 

8.4.1 Marking based on design traces 

The manual partial marking uses students’ design traces.  The design traces allow 

naming discrepancy as discussed in Chapter 7.  The proposed framework should 

include a name checking mechanism to be able to use in summative assessment.  

When students name any component wrongly, the editor sends a message alert.  One 

possible solution is to use an ontology for each question.  To avoid increasing 

question setup cost, the ontology could be automatically created.  If the questions 

previously used in the formative assessment are asked in the summative assessment, 

the ontology for the questions could be generated automatically from the names used 

in the student solutions. 



Chapter 8  Conclusions and Future Work 

 152 

8.4.2 Handling multiple graph-based diagram types  

This thesis focused on the entity-relationship diagram type.  It used ER diagrams to 

evaluate the proposed framework.  The framework can be applicable to other graph 

based diagram types (e.g.  DFD, Class Diagrams).  Action functions for the proposed 

design trace model should be checked to see whether they are sufficient for the new 

diagram types.  New action functions may be defined when it is necessary or 

suggested. 

A meta-process model can be developed for the adaptation process of the design 

trace model to the new diagram type. 

8.4.3 Feedback generation  

Partial marking made the use of a detailed marking scheme possible.  However, the 

marking scheme and standard feedback have been left for the examiners to prepare.  

A simple feedback presentation has been used in the prototype editor.  An 

alternative feedback presentation could be developed to use the full potential of 

design traces.  The feedback could be interactive so that students may enquire about 

their design actions.  This feedback can even be used as a teaching tool.  Students 

may learn from their own or other student’s mistakes. 

8.4.4 User interface design  

A prototype diagram editor was developed for the online production of design 

traces.  The editor is based on automatic graph drawing to reduce the cognitive load 

of action functions.  A prototype marking environment uses mouse and screen 

instead of pen and paper.  The project has not focused on the “ease of use” aspect of 

either the drawing or the marking tool.  Separate research (Stone et al., 2009) has 

already started to develop a more user friendly interface to the editor.  The use of 

single touch and multi touch screens has been under investigation to track students’ 

design activity more naturally. 

8.4.5 Deep-knowledge assessment tool 

Action functions are used to record the design activities.  They are sufficient to give 

the contextual information about the components.  The action function can also be 

used to obtain detailed self-explanations explicitly from the students.  The self-



Chapter 8  Conclusions and Future Work 

 153 

explanation can be used for the assessment of students’ deep-knowledge.  The action 

function can be extended to identify the causes of actions and the decision rationale.  

When the action button is used, an appropriate explanation list could be displayed 

and students could select one of them. 

8.4.6 Extensions to the guideline of writing scenario text 

The scenario writing guideline is proposed to ensure having a number of similar 

scenario texts in order to produce generic cases, which increase the automation.  The 

guideline could be extended to create more scenario templates.  Student solutions for 

scenario texts used previously could be analysed to find out more factors which 

affect student reasoning.  The analysis could also reveal the difficulty levels of 

question text and the templates.  The students could be given scenario texts ranging 

from easy to hard as a formative assessment. 

8.4.7 New application areas of the partial marking style 

The partial marking style could be investigated in its application to other assessment 

domains (e.g essay, program code).  For example, students could be asked to first 

produce a mind map diagram and then write their short essays which link to 

components of the mind map.  For assessment of program code, they could be asked 

to first draw a flowchart or activity diagram and then write a small program which 

links to components of the diagram.  Later on, student solutions (essays or program 

code) could be grouped, based on the corresponding diagram components.  The 

examiner would mark solution segments from each group.  For each solution type, a 

new question authoring, solution editor and marking tool needs to be designed.  If 

the diagram type for the assessment domain doesn’t exist then a new diagram 

notation could be developed.  For example, a problem solving diagram for algebra 

questions could be developed to assess the student solution steps instead of just 

assessing the final answers. 

8.5 Overall Conclusion 

This thesis has proposed an advanced solution to the assessment process of 

diagrammatic solutions.  The semi-automatic assessment system required for the 

solution was developed and evaluated.  The evolution results of the proposed system 



Chapter 8  Conclusions and Future Work 

 154 

in Chapter 7 showed that the research achieved all its objectives and successfully met 

its aim.  The system successfully tackled the main problem areas of semi-automatic 

assessment.  The developed manual partial marking style creates a new research 

direction in the assessment community, and its application in diagrammatic 

solutions indicates the importance of contextual information about the diagram 

components. 

 



References 

 155 

REFERENCES 

Aamodt, A & Plaza, E 1994, ‘Case-Based Reasoning: Foundational Issues, 

Methodological Variations, and System Approaches’.  AI Communications, IOS Press, 

vol.  7, no.1, pp 39-59. 

Achour, CB 1998, ‘Writing and Correcting Textual Scenarios for System Design’, 

Proceedings of the Natural Language and Information Systems (NLIS’98) Workshop, 

Vienna, Austria, pp.166-170. 

Arnow D, Barshay O 1999, ‘On-line programming examinations using Web to teach’, 

Proc. of the 4th annual SIGCSE/SIGCUE on Innovation and Technology in Computer 

Science Education, ACM press, krakow, poland, pp.  21–24. 

Bancroft, P, Hynd, J, Reye, J & Dal Santo, F 2003, ‘Web-based assignment submission 

and electronic marking’. Proc. of the HERDSA Annual Conference, Christchurch, New 

Zealand, pp.41-52. 

Batini, C & Lenzerini, M 1989, ‘A Comparative Analysis of Methodologies for 

Database Schema Integration’, ACM Computing Surveys, Vol.  18, No.  4, pp.323-364. 

Batmaz, F & Hinde, CJ 2008, ‘A Method For Controlling The Scenario Writing For 

The Assessment Of Conceptual Database Model’, Proc. of Computers and Advanced 

Technology in Education, ACTA press, Calgary, Canada, pp.614-804. 

Batmaz, F, Stone, R, & Hinde, C 2009,  ‘Personalised Feedback With Semi-Automatic 

Assessment Tool For Conceptual Database Model’, Proc.  of the 10th Annual Conference 

of Information and Computer Sciences.  Higher Education Academy Subject Centre, 

University of Ulster, UK, pp.115-120. 

Batra, D, & Davis, J 1992, ‘Conceptual data modelling in database design: similarities 

and differences between expert and novice designers’, Int.  Jour.  Man-machine’ 

Studies, vol.37, no.3, pp.395-417. 

Bligh B 2002, Automatic Assessment of Diagrams: Feasibility Report, University of 

Nottingham, Nottingham, UK. 



References 

 156 

Bloom, B 1956, Taxonomy of Educational Objectives, David McKay Company, New 

York, USA. 

Bohner, SA 1991, ‘Software Change Impact Analysis for Design Evolution’, 8th 

International Conference on Software Maintenance and Re-engineering, IEEE CS Press, Los 

Alamitos, CA, pp.  292-301. 

Boyle, A & O’Hare, D 2003, ‘Assuring quality computer-based assessment 

development in UK higher education’, 7th International CAA Conference, 

Loughborough University, Loughborough, UK. 

Boyle, A, Hutchison, D, O’Hare, D & Patterson, A 2002, ‘Item selection and 

application in higher education’, Proc. of 6th International CAA Conference, 

Loughborough University, Loughborough, UK, pp.269-281. 

Brown, S & Race, P 1996, 500 Tips on assessment, Cogan Page, London, UK. 

Brown, S, Race, P & Bull, J 1999, Computer Assisted Assessment in Higher Education, 

Kogan Page, London, UK. 

Brusilovsky, P & Higgins, C 2005, ‘Preface to the Special Issue on Automated 

Assessment of Programming Assignments’, Journal of Educational Resources in 

Computing, vol.5, no.3.  pp.1-3. 

Brusilovsky, P & Sosnovsky, S 2006, ‘Individualized exercises for self-assessment of 

programming knowledge: An evaluation of QuizPACK’, Journal of Educational.  

Resources Computing, vol.5, no.3, Article no.6. 

Bull J 1999, ‘Update on the National TLTP3 Project: The implementation and 

evaluation of computer-assisted assessment’, Keynote, Proc. of 3th International CAA 

Conference, Loughborough University, Loughborough, UK, viewed on 15th septemper 

2006,  <http: // www.lboro.ac.uk /service / ltd/ flicaa /conf99/ pdf/ keynote.pdf>. 

Bull, J & Collins, C 2002, ‘The use of computer-assisted assessment in engineering: 

some results from the CAA national survey conducted in 1999’, International Journal 

Of Electrical Engineering Education, vol.39; no.2, pp.91-99. 

Bull, J & McKenna, C 2004, Blueprint for computer-assisted assessment, Routledge 

Falmer, London, UK. 



References 

 157 

Bunt, A, Conati, C & Muldner, K 2004, ‘Scaffolding self-explanation to improve 

learning In exploratory learning environments’, Proc. 7th ITS, LNCS 3220, Springer-

Verlag, Heidelberg, Berlin, Germany, pp.656-667. 

Burstein, J, Kukich, K, Wolff, S, Lu, C, & Chodorow, M 1998.  ‘Enriching automated 

essay scoring using discourse marking’.  Proc.  of the Workshop on Discourse Relations 

and Discourse Markers, Annual Meeting of the Association of Computational 

Linguistics, Montreal, Canada, pp.90-97. 

Canup, MJ & Shackelford, RL 1998, ‘Using software to solve problems in large 

computing courses’, SIGCSE Bull, vol.30, no.1, pp.135-139. 

Cerbah, F & Euzenat, J 2001, ‘Using terminology extraction to improve traceability 

from formal models to textual requirements’, Lecture notes in Computer Science 

no.1959, Springer-Verlag, Germany. 

Charman, D & Elmes, A 1998, Computer Based Assessment: A guide to good practice- 

Volume I, SEED Publications, Plymouth, UK. 

Chen, PP 1976, ‘The Entity-Relationship Model - Toward a Unified View of Data’, 

ACM Transactions on Database Systems, vol.1, no.1, pp.  9-36. 

Cheng, P, & Lowe, R,& Scaife, M, 2001, ‘Cognitive Science Approaches To 

Understanding Diagrammatic Representations’, Artificial Intelligence Review, Vol.15, 

no.1, pp. 79-94. 

Chi, MTH, Bassok, M, Lewis, M, Reinmann, P & Glaser, R 1989, ‘Self-Explanations: 

How students study and use examples in learning to solve problems’, Cognitive 

Science, vol.13, no.2, pp.145-182. 

Christiansen, H & Have, CT 2007, ‘From use cases to UML class diagrams using logic 

grammars and constraints’.  RANLP '07: Proc.  Intl.  Conf.  Recent Adv.  Nat.  Lang., 

Borovets, Bulgaria, pp.128-132. 

Conati, C & VanLehn, K 2000, ‘Toward Computer-based Support of Meta-cognitive 

Skills: A Computational Framework to Coach Self-Explanation’, International Journal 

of Artificial Intelligence in Education, vol.11, no.4, pp.  389-415. 

Conklin, J 1989, ‘Design rationale and maintainability’, Proc.  22nd International 

Conference on System Science, IEEE Computer Society, Kailna-Kona, Hawaii, pp.  533-

539. 



References 

 158 

Conole, G & Warburton, B 2005, ‘A review of computer-assisted assessment’, ALT-J, 

Research in Learning Technology, vol.13, no.1, pp.  17–31. 

Cooper, RL & Macrae, J 2003, ‘Software Systems to Support the Teaching of the Use 

of Relational Database Systems’, Proceedings of Teaching, Learning and Assessment of 

Databases (TLAD), Coventry Techno Centre, Coventry, UK, pp.  4-12. 

Cox, K & Phalp, K 2000, ‘Replicating the CREWS use case authoring guidelines 

experiment’, Empirical Software Engineering, vol 5, no.3 pp.245-267. 

CREWS 1999, ‘Co-operative Requirements Engineering With Scenarios’, EU funded 

ESPRIT project, no.21903. 

Davies, P 2001, ‘CAA must be more than multiple-choice tests for it to be 

academically credible?’, Proc.  of 5th International CAA Conference, Loughborough 

University, Loughborough, UK, pp.145-154.   

Davies, P 2002, ‘There’s no confidence in multiple-choice testing’, Proc.  of  6th 

International CAA Conference, Loughborough University, Loughborough, UK, pp.  

119-130. 

DEAP Project 2007 , Diagram interpretation research, viewed 30th October 2007,  

<http://mcs.open.ac.uk/Diagrams/>. 

Dellen, B 1999, ‘Change Impact Analysis Support for Software Development Processes’. 

PhD thesis, University of Kaiserslautern, Germany. 

Dessus, P, Lemaire, B & Vernier, A 2000, ‘Free Text Assessment in a Virtual Campus,, 

Proc. of the 3rd International Conference on Human System Learning, Paris, France, pp.61-

75. 

Duke-Williams, E & King, T 2001, ‘Using computer-aided assessment to test higher 

level learning outcomes’, Proc. of 5th International CAA Conference, Loughborough 

University, Loughborough, UK.  pp.181-191.   

Elawar, MC, & Corno, L 1985, ‘A factorial experiment in teachers' written feedback 

on student homework: Changing teacher behaviour a little rather than a lot’, Journal 

of Educational Psychology, vol.77, no.2, pp.162-173. 

Ellson, J, Gansner, E, Koutsofios,L , North, SC & Woodhull, G 2002, ‘Graphviz — 

open source graph drawing tools’,  Mutzel, P, Jünger, M & Leipert, S.  (eds.), Graph 

Drawing LNCS vol.2265, Springer, Heidelberg , Germany, pp.483–484. 



References 

 159 

Elmasri, R, Weeldreyer, J & Hevner, A, 1985, ‘An extension to the entity-relationship 

model’, Data Knowledge Eng.  ,vol.1, no.  1, pp.  75-116. 

Encyclopedia Britannica 1911, 11th edition, University Press, Cambridge, UK.   

Fan, S & Tanimoto S 2007, ‘A Framework for Automated Diagram Assessment in 

Online Learning’, Proc.  of 7th IEEE International Conference on Advanced Learning 

Technologies (ICALT 2007), IEEE Computer Society,Niigata, Japan, pp.51-53. 

Fischer, G, Lemke, A, McCall, R & Morch, A 1995 ‘Making Argumentation Serve 

Design’, in T Moran & J Carroll (ed.), Design Rationale Concepts, Techniques, and Use, 

Lawrence Erlbaum Associates, New Jersey,pp.  267-294.   

Freuder, E & Mackworth, A 1994, Constraint-based reasoning.  MIT Press, Cambridge, 

MA. 

Fulford, H.  2001.  ‘Developing Document Analysis and Data Extraction Tools for 

Entity Modelling’.  Proc.  of the 5th international Conference on Applications of Natural 

Language To information Systems-Revised Papers, LNCS, vol.  1959, Springer-Verlag, 

London, pp.265-275. 

Gibbs, G & Simpson, C 2004, ‘Conditions under which assessment supports students' 

learning’, Learning and Teaching in Higher Education, vol.1, pp.3-31. 

Gotel OCZ & Finkelstein, A 1994, ‘An Analysis of the Requirements Traceability 

Problem’, Proc.  International Conference on Requirements Engineering (ICRE), IEEE CS 

Press, Colorado Springs, Colorado,USA,pp.  94-101. 

Haladyna, T 1997, Writing Test Items to Evaluate Higher Order Thinking, Allyn and 

Bacon, Boston. 

Hall, L & Gordon, A 1998, ‘A virtual learning environment for entity relationship 

modelling’, Proc.  of the 29th SIGCSE Technical Symposium on Computer Science 

Education, SIGCSE '98, ACM Press, New York, NY, pp.345-349.   

Heinrich, E & Lawn, A 2004 ‘Onscreen marking support for formative assessment’, 

Proc.  Ed-Media (2004), Association for the Advancement of Computing in Education, 

Chesapeake, USA, pp.1985-1992. 

Heinrich, E, Wang, Y 2003, ‘Online Marking of Essay-type Assignments’, Proc.  of Ed-

Media2003, Association for the Advancement of Computing in Education, Norfolk, 

USA, pp.  768-772. 



References 

 160 

Herman I, Melancon, G & Marshall, M 2000, ‘Graph visualization and navigation in 

information visualization: A survey’, IEEE Transactions on Visualization and Computer 

Graphics, vol.6, no.1,pp.  24-43. 

Higgins, C, Hegazy, T, Symeonidis, P, & Tsintsifas, A 2003, ‘The CourseMaster CBA 

system: Improvements over Ceilidh’, J.  Edu.  Inf.Technol, vol.8, no.3, pp.287-304. 

Higgins, CA & Bligh, B 2006, ‘Formative computer based assessment in diagram 

based domains’, Proc.  of the 11th Annual SIGCSE Conference on innovation and 

Technology in Computer Science Education, ITICSE '06.  ACM Press, New York, NY, 

pp.98-102. 

Hinde, CJ, Batmaz, F & Stone, R  2008, ‘A Web-Based Semi-Automatic Assessment 

Tool For Conceptual Database Model’, HEA development fund 2008/09, viewed on 10th  

March 2009 http://www.ics.heacademy.ac.uk/ projects/ development-fund/ 

fund_details.php ?  id = 125. 

Hoggarth, G & Lockyer, M 1998 ‘An automated student diagram assessment system’, 

SIGCSE Bull, vol.30 , no.3, pp.122–124. 

Hollingsworth, J 1960, ’Automatic graders for programming classes’, Commun.  ACM 

, vol.3, no.10, pp.528-529. 

Jamnik,  M 1998, ‘Automatic diagrammatic proofs of arithmetic arguments’, PhD thesis, 

University of Edinburgh, UK. 

Jayal, A & Shepperd, M 2008, ‘The Problem of Labels in e-Assessment of Diagrams’, 

ACM J.  of Educational Resources in Computing, vol.8, no.4, article.12. 

Joy, M & Luck, M 1995, ‘On-line submission and testing of programming 

assignments’, Innovations in Computing Teaching, J.  Hart (Ed.), SEDA, London, UK. 

Joy, M, Griffiths, N, Boyatt, R 2005, ‘The boss online submission and assessment 

system’, Journal on Educational Resources in Computing (JERIC), vol.5 no.3, pp.2-5,  

King, G 1994, ‘Developing adaptive tests for school children’, in Drasgow, F & Olson-

Buchanam, j (eds), Innovations in Computerised Assessment.  Lawrence Erlbaum 

Associates inc, New jersey, pp.93-116. 

Knethen, A & Paech, B 2002, A Survey on Tracing Approaches in Practice and Research, 

IESE-Report No.  095.01/E, Fraunhofer, Germany. 



References 

 161 

Knethen, A.  2002, ‘Change-Oriented Requirements Traceability.  Support for Evolution of 

Embedded Systems’, PhD Thesis in Experimental Software Engineering, Fraunhofer 

IRB, Germany. 

Kolodner, J 1993, Case-based reasoning, Morgan Kaufmann Publishers Inc., San 

Francisco, CA. 

Kulpa, Z 1994, ‘Diagrammatic Representation and Reasoning’, Machine Graphics & 

Vision, vol.3, no.1, pp.77-103. 

Landauer, TK, Foltz, PW & Laham, D 1998.  ‘An introduction to latent semantic 

analysis’, Discourse Processes, vol25, no.2, pp.259-284. 

Larkey, LS 1998, ‘Automated essay grading using text categorization techniques’, 

Proc. of the 21st  Annual International ACM SIGIR Conference on Research and 

Development in Information Retrieval, CIIR publications, Melbourne, Australia, pp.90-

95. 

Laurillard, D 2002, Rethinking University Teaching A Conversational Framework For The 

Effective Use Of Learning Technologies, 2nd edn, Routledge Falmer, London, UK. 

Lilley & Barker 2003, ‘An Evaluation of a Computer Adaptive test in a UK University 

Context’, Proc. of the 7th CAA Conference, Loughborough University Loughborough, 

UK, pp.171-182. 

Lindvall, M & Sandahl, K 1996, ‘Practical  Implications of Traceability’, Software 

Practice and Experience, vol.  26, No.  10, pp.  1161-1180. 

Lindvall, M 1994, ‘A Study of Traceability in Object-Oriented Systems Development’, PhD 

thesis, Linköping University, Sweden. 

Low, A, Hatch , A & Burd, L 2009, ‘Technologically Enhanced Demonstrator Support 

or Tools for Support Demonstrators in First Year Programming Lab Classes’, Proc.  of 

the 10th Annual Conference of Information and Computer Sciences.  Higher Education 

Academy Subject Centre, University of Ulster, UK, pp.30-35. 

Manning, CD & Schutze, H 2002, Foundations of Statistical Natural Language Processing, 

The MIT Press, Cambridge, Massachusetts.   

Mason D & Woit D 1998, ‘Integrating technology into computer science 

examinations’, Proc. of the 29th SIGCSE Technical Symposium on Computer Science 

Education, ACM press, atlanta, GA USA, pp.140-144. 



References 

 162 

Mason, DV & Woit, DM 1999, ‘Providing mark-up and feedback to students with 

online marking’.  The Proc.  of the 30th SIGCSE Technical Symposium on Computer 

Science Education ,SIGCSE '99, ACM Press, New York, NY, pp.3-6.   

McAlpine, M 2002, Principles of Assessment, CAA Centre, Luton, UK. 

McKenna, C 2000, ‘Using computers to assess humanities: some results from the 

national survey into the use of computer-assisted assessment’, Computers and Texts, 

vol18, no.19, pp.  6-7. 

Miller, GA 1956, ‘The magic number seven plus or minus two: some limits on our 

capacity to process information’.  Psychological Review, vol.63, no.2 ,pp.81–97.   

Mills, C, Potenza, M, Fremer, J & Ward, C 2002, Computer-based testing—building the 

foundation for future assessment, Lawrence Erlbaum Associates, New York,NY. 

Miriyala, K & Harandi, MT 1991, ‘Automatic derivation of formal software 

specifications from informal descriptions’, IEEE Trans.  Soft.  Eng., vol.17, no.10, 

pp.1126-1142. 

Mitrovic, A 2003, ‘An intellignet SQL tutor on the Web’, Int.  J.  AI Edu.  vol.13, no.2, 

pp.173-197. 

Nicol, D & Macfarlane-Dick, D 2004, ‘Rethinking Formative Assessment in HE: a 

theoretical model and seven principles of good feedback practice’, in C Bryan & K 

Clegg (ed.), Innovative assessment in higher education, Routledge, Abingdon,New York, 

pp.64-77. 

Page, EB 1966, ‘The imminence of grading essays by computer’, Phi Delta Kappan, 

vol.48, no.1, pp.238-243. 

Pennock, J & Tabrizi, MHN 2008, ‘A Survey of Input Sensing and Processing 

Techniques for Multi-Touch Systems’, Proc. of The 2008 International Conference on 

Computer Design, IEEE CS Press ,Las Vegas, Nevada, USA, pp.10-16. 

Phalp, KT, Vincent, J, & Cox, K 2007, ‘Improving the quality of use case descriptions: 

empirical assessment of writing guidelines’, Software Quality Control, vol.15, no.4, 

pp.383-399. 

Pinheiro, F 1996, ‘Design of a Hyper-Environment for Tracing Object-Oriented 

Requirements’, PhD thesis, University of Oxford, UK. 



References 

 163 

Plimmer, B & Mason, P 2006, ‘A pen-based paperless environment for annotating 

and marking student assignments’, Proc.  of the 7th Australasian User interface 

Conference, vol.  169, ACM International Conference Proceeding Series, Darlinghurst, 

Australia, pp.37-44. 

Pohl, K 1996, Process-Centered Requirements Engineering, 2nd Edition, John Wiley & 

Sons, New York, NY, USA. 

Pritchett, N 1999, ‘Effective question design’, In S.  Brown, P.  Race & J.  Bull (Eds), 

Computer assisted assessment in higher education, Kogan Page, London, UK, pp.29-37. 

Question Mark Computing Ltd 2004, ‘Perception: Windows based authoring’, viewed 29 

August 2004 <http://www.questionmark.com /uk/perception/ 

authoring_windows.htm>. 

Raikes, N, Greatorex, J & Shaw, S 2004, ‘From Paper to Screen: some issues on the 

way’, International Association of Educational Assessment Conference, viewed 2 August  

2007 <http://www.cambridgeassessment.org.uk/ ca/ Our_Services/ Research/ 

Conference_Papers> 

Ramamoorthy, CV, Usuda, Y, Prakash, A & Tsai, WT 1990, ‘The evolution support 

environment system’, IEEE Transactions on Software Engineering, Vol.  16., No.  11, pp.  

1225-1234. 

Ramesh, B & Jarke, M 2001, ‘Towards Reference Models for Requirements 

Traceability’, IEEE Transactions on Software Engineering, vol.  27, No.  1, pp.  58-92. 

Ramesh, B 1998, ‘Factors influencing requirements traceability’, Communications of the 

ACM, vol.  41, no.  12, pp.  37-44. 

Sadler, DR 1989, ‘Formative assessment and the design of instructional systems’, 

Instructional Science, vol.18, no.2, pp.119-144. 

Sclater, N & Howie, K 2003, ‘User requirements of the ultimate online assessment 

engine’, Computers and Education, vol.40, no.3, pp.285–306. 

Sclater, N 2004, Final report for the Item Banks Infrastructure Study, IBIS, JISC, Bristol. 

Simas R & McBeath R 1992, Constructing Multiple Choice Items, In Instructing and 

Evaluating in Higher Education, Educational Technology Publications, Englewood 

Cliffs, New Jersey. 



References 

 164 

Smith, N, Thomas, PG & Waugh, K 2004, ‘Interpreting Imprecise Diagrams’, 

Diagrams 2004 - Third International Conference on the Theory and Application of Diagrams, 

Springer ,University of Cambridge, UK, pp.239-241. 

Stephens, D & Mascia, J 1997, Results of a Survey into the Use of Computer-Assisted 

Assessment in Institutions of Higher Education in the UK, Loughborough University.  

Loughborough, UK.   

Stone, R, Batmaz, F & Hinde, C 2009, ‘Drawing and Marking Graph Diagrams’, 

Italics, vol.8, no.2, pp.45-53. 

Suraweera, P & Mitrovic, A 2002, ‘KERMIT: a Constraint-based tutor for database 

modelling’, Proc ITS’2002, LCNS 2363, Springer, Biarritz, France, pp.377-387. 

Suraweera, P 2001, ‘An intelligent teaching system for database modelling’, MSc Thesis,  

University of Canterbury, New Zeland. 

Tamassia ,R, Di Battista, G & Batini, C 1988, ‘Automatic graph drawing and 

readability of diagrams’, IEEE Transactions on Systems, Man and Cybernetics, vol.18, 

no.1, pp.61-79. 

Thomas, P 2003, ‘Evaluation of Electronic Marking of Examinations’, Proc. of the 8th 

Annual Conference on Innovation and Technology in Computer Science Education (ITiCSE 

2003), ACM press, New York, NY, pp.50-54. 

Thomas, P 2004, Drawing Diagrams in Online Examinations, Technical Report, 

TR2004/14, Computing Department, Open University, UK.   

Thomas, P 2004, Grading Diagrams Automatically, Technical Report, TR2004/01, 

Computing Department, Open University, UK. 

Thomas, PG, Smith, N, & Waugh, K. 2008, 'Automatically assessing graph-based 

diagrams.' 'Learning, Media and Technology, Volume 33 Issue 3' pp 249-267 

Thomas, P, Waugh, K, & Smith, N 2005, ‘Experiments in the Automatic marking of E-

R Diagrams’, Proc. of the 10th Annual Conference on Innovation and Technology in 

Computer Science Education (ITiCSE 2005), ACM press, New York, NY, pp.158-162. 

Thomas, PG, Waugh, K, & Smith, N 2006, ‘Using Patterns in the Automatic Marking 

of ER-Diagrams’, Proc. of the 11th Annual Conference on Innovation and Technology in 

Computer Science Education (ITiCSE 2006), ACM press, New York, NY, pp.403-413. 



References 

 165 

TOIA 2004, ‘Technologies for Online Interoperable Assessment (TOIA)’, JISC funded 

Project ,viewed 31August 2004 <http://www.toia.ac.uk>. 

Tselonis C, Sargeant J, McGee Wood M 2005, ‘Diagram Matching for Human-

Computer Collaborative Assessment’, Proc.  of the 9th CAA Conference, Loughborough 

University, Loughborough, UK, pp.  441-456.   

Tsintsifas A 2002, ‘A framework for the computer-based assessment of diagram-based 

coursework’, PhD thesis, University of Nottingham, UK. 

Watson, I 1997, Applying Case-Based Reasoning: Techniques for Enterprise Systems, 

Morgan Kaufmann, San Francisco, USA. 

Wieringa, RJ 1995, An introduction to requirements traceability, Technical Report IR-389, 

Faculty of Mathematics and Computer Science, Vrije Universiteit, Amsterdam. 

Williams R 2001, ‘Automated essay grading: An evaluation of four conceptual 

models', In A Herrmann & M Kulski (Eds), Expanding Horizons in Teaching and 

Learning, Curtin University of Technology, Perth, Australia,  pp.139-140. 

Woodford, K & Bancroft, P 2005, ‘Multiple choice questions not considered harmful’.  

Proc.  of  the 7th Australasian Conference on Computing Education ACE 2005, Australian 

Computer Society, New South Wales, Australia, pp.109-116. 

Yates, RB & Neto, BR 1999, Modern Information Retrieval, 1st edn, ACM Press 

Series/Addison Wesley, New York. 



Appendix A 

 166 

Appendix A 

1.  The scenario writing tool 

This section shows the environment of the scenario writing tool which is used in the 

experiment in Section 7.2.  It is used to produce scenario text for an event 

management system.  It consists of ten pages.  They are one plan, eight section and 

one production pages.  In the experiment, the tool uses a split template.  The 

template consists of eight diagram templates.  They are used to write each section for 

a scenario. 

Plan page: 

A domain, a scenario template and a diagram type are chosen in this page.  The page 

displays the related diagram template, an example scenario and its diagram.  Figure 

A.1 shows the screenshot of the page.  No text entry is required in this page.  The 

diagram template has three entities: “Event”, “Member” and “Entity X”.  Entity 

names are given manually for the experiment. 

Figure A.1 Plan page 1 

 



Appendix A 

 167 

 

The related scenario text and its diagram are placed in the environment manually for 

this proof of concept tool.   

Section Pages:  

Figure A.2 shows the diagram template for the “Event “entity.  The user needs to 

enter text into the system which describes the entity.  The example diagram and 

sample text are given to help the user for text writing on Page 2. 

Figure A.3 shows the diagram template for the “Member “ entity.  The user needs to 

enter text into the system which describes the entity.  The example diagram and 

sample text are given to help the user for text writing on Page 3. 

 

Figure A.2 Section page 2 for “Event” entity type 

Figure A.3 Section page 3 for “Member”  entity type 

 

 



Appendix A 

 168 

Figure A.4 shows the diagram template for the relationship between the “Member 

“and “Event” entities.  The user needs to enter text into the system which describes 

the relationship.  The example diagram and sample text are given to help the user for 

text writing on Page 4. 

 

 Figure A.5 shows the diagram template for the “Date” attribute of the “Event” 

Entity, which is a multi value attribute.  The user needs to enter text into the system 

which describes the attribute.  The example diagram and sample text are given to 

help the user for text writing on Page 5. 

Figure A.4 Section page 4 for “Help” relationship type 

Figure A.5 Section page 5 for “Date” attribute type 

 

 



Appendix A 

 169 

Figure A.6 shows the diagram template for the “Date” attribute of no named entity 

X, which is a single value attribute.  The template also shows the relationship 

between the entity X and “Event” entity.  The diagram template on this page is an 

alternative representation of the diagram on Figure A.5.   

 

Figure A.7 shows the diagram template for the relationship between the entity X and 

“Member” entity.  User needs to enter text into the system which describes the 

relationship.  The example diagram and sample text are given to help the user for 

text writing on Figure A.7. 

 

Figure A.6 Section page 6 for relationship and attribute types 

Figure A.7 Section page 7 for relationship type 

 

 



Appendix A 

 170 

The following picture shows the diagram template for the “Fee” attribute of the 

entity X.  User needs to enter text into the system which describes the attribute.  The 

example diagram and sample text are given to help the user for text writing on 

Figure A.8. 

 

Figure A.9 shows the diagram template which includes all the components.  The user 

needs to write an introduction about the system.  The text entered into this page will 

be the first paragraph of the scenario text.   

 

Figure A.8 Section page 8 for “Fee” attribute type 

Figure A.9 Section page 9 for the whole of the diagram 

 

 



Appendix A 

 171 

Production Page:  

Figure A.10 shows a production page.  All the text entered in each section pages are 

put together as a scenario text on the production page.  The scenario text is 

represented to the user.  When the separately written text parts come together, they 

may be disjoint and not natural.  Therefore the production page allows the user to 

modify the text. 

The scenario text on the production page is the composition of the section pages in 

the following order: 

The user text on Page 9 on Figure A.9 makes up the first paragraph of the 

scenario.  It is the introduction of the scenario. 

The user text on Page 2 on Figure A.2, on Page 3 on Figure A.3 and on Page 4 

on Figure A.4 are the paragraph 2, 3 and 4 of the scenario. 

The user text on Page 5 on Figure A.5, on Page 6 on Figure A.6 , on Page 7 on  

Figure A.7 and on Page 8 on Figure A.8 make up the last paragraph of the 

scenario. 

Figure A.10 Production page 10 

 



Appendix A 

 172 

2.  Scenario Writing 

This section shows three scenarios produced in the experiment in Section 7.2.  The 

scenario writing environment in the previous section is used.   

 Scenario X 

This scenario text was produced by Lecturer X.  It has five sections.  The scenario 

requires the use of “Split” function.  Text in Section 5 of the scenario shows that the 

name (or the ideal name) for the “split” entity is not mentioned in the scenario text as 

required for the experiment.   

Section 1: 

Members are involved in a range of events, each of which can be held a 

number of times.  These are recorded by the event manager. 

Section 2: 

The details are recorded for an event.  These show the date of the event, the 

purpose, the name of the event and the fee charged.  An ID number is given 

and a description of the event is held. 

Section 3:  

Each member's ID number, name, telephone number and address are 

recorded.   

Section 4: 

A member can be involved in one or more events and each event can have 

one or more members involved in it. 

Section 5: 

The event can take place on a number of dates and the event can cost 

different amounts on different occasions.  When a member is involved in an 

event, the date he or she is involved and the fee paid is recorded (by the 

events manager)  

 



Appendix A 

 173 

Scenario Y 

This scenario text was produced by Lecturer Y.  It has five sections.  The scenario 

requires the use of the “Split” function.  The text in Section 5 of the scenario shows 

that the name (or the ideal name) for the “split” entity is not mentioned in the 

scenario text as required for the experiment.   

Section 1: 

Blue Sky Events (BSE) runs events for their members.  A manager of BSE has 

given the following description of her company's operation: 

Section 2: 

An event has the following attributes: a unique ID number (No), a 

description, purpose, name, start date and fee. 

Section 3: 

The details of each member are kept.  Users need to know the member's 

address, name and telephone number.  Each member is assigned a unique ID 

number.   

Section 4: 

A member may take part in several events and an event can be attended by 

several members. 

Section 5: 

An event can be offered on several different dates.  Members choose a 

particular date they wish to attend the event on.  The fee of the event is 

adjusted whenever it is offered. 

 



Appendix A 

 174 

Scenario Z 

This scenario text was produced by Lecturer Z.  It has five sections.  The scenario 

requires the use of the “Split” function.  The Text in Section 5 of the scenario shows 

that the name (or the ideal name) for the “split” entity is not mentioned in the 

scenario text as required for the experiment.   

Section 1: 

True Colour (TC) is a charitable trust.  It organises events to increase the 

awareness of animal abuse for children.  TC’s manager gives you the 

following description of the business:  

Section 2: 

Events are planned by the trusties.  They decide the details like: event name, 

description, purpose, date.  The executive management board (EMB) 

calculates the cost and set the fee of the event.  The charity secretary records 

event information with a unique event number to the event file. 

Section 3:  

TC keeps the record of its members.  A member’s name, address and phone 

number are taken on the membership form.  At the end of the membership 

process, each member is given a member number. 

Section 4: 

The charity gets the members’ help for each event.  The members who 

contribute to an event are recorded.  A special “thank you” card is sent to 

their addresses. 

Section 5: 

Popular events are repeated several times a year.  If necessary, the fee of an 

event is adjusted whenever it repeats. 

 



Appendix B 

 175 

Appendix B 

Scenario 1  

This scenario text is used for Experiments 1 and 3 in Chapter 7.  It consists of 6 

sections and 15 noun phrases.  The scenario requires the use of “Split” function.  The 

name (or the ideal name) for the “split” entity is “course offering” in the teacher 

solution. 

Title: Computer Training 

Section 1: 

The Blue Computer Training School (BCTS) provides a wide range of 

computer training short courses.  BCTS s manager gives you the following 

description of the business: 

Section 2:  

The administrator records the details of any new course: course code, course 

name, description, level, tuition fee, and starting date. 

Section 3: 

The details of new students are kept into the student file.  The school needs to 

know their name, address and qualification.  Each student is assigned a 

unique student id. 

Section 4: 

A student may enroll on several courses.  At the end of a course, the student 

is assessed and the grade achieved is recorded. 

Section 5: 

Same course is offered several times a year.  Students select a suitable starting 

date of the course during the enrolment. 

Section 6: 



Appendix B 

 176 

If necessary, the tuition fee of the same course is adjusted whenever it is 

offered. 

Noun phrases: 

Table B.1 shows the list of the noun phrases in each section for Scenario 1.  The total 

number of noun phrases is given at the end of each section.  Noun phrases in the lists 

are used to create direct components.   

Table B.1 The list of noun phrases for Scenario 1 

Section No  Noun Phrase  Section No  Noun Phrase 

2 

 

 

 

 

 

 

 

Total number 

of Phrases =8  

Administrator  4 

 

Total number 

of Phrases =3 

Student  

Course   Course  

Course Code  
 

Grade  

Course Name   5 

Total number 

of Phrases =3 

Course  

Description   Student  

level   Starting Date  

Tuition Fee   6 

Total number 

of Phrases =3 

Tuition Fee  

Starting Date  
 

Course  

3 

 

 

 

Total number 

of Phrases =7 

Student  

Student File  

School  

Name  

Address  

Qualification  Student ID 



Appendix B 

 177 

Solution: 

Figure B.1 is an entity relationship diagram showing the solution of Scenario 1.  It 

has three entities, two relationships and eleven attributes.  The Names of the 

attributes and two entities are picked from the list given by the scenario.  The 

“Course offering” was typed by the examiner. 

 

Figure B.1 The solution of Scenario 1 

 



Appendix B 

 178 

 

Reference Diagrams: 

Figure B.2 shows two ideal reference diagrams for the entity components in the 

teacher solution of Scenario 1.  The first diagram shows that “Student” entity has a 

direct reference to the scenario text in section 3.  The second one shows that “Course 

Offering” entity has an indirect reference with a “split” action to the text in section 2. 

 

 

 

 

 

 

 

 

 

Figure B.2 Ideal reference diagrams for the entity components 

 

Student 

 

Course 

Split 

Course Course Offering 



Appendix B 

 179 

 

Scenario 2 

This scenario text is used for Experiments 1 and 3 in Chapter 7.  It consists of 4 

sections and 14 noun phrases.  The scenario requires the use of the “Merge” function.  

The name (or the ideal name) for the “Merge” entity is “staff” in the teacher solution. 

Title: Loughborough University 

Section 1: 

Loughborough University wants to keep the information about support staff 

and academics for each department. 

Section 2: 

Academics are given a unique number by the university.  Their name, 

address, gender and date of birth are stored. 

Section 3: 

Support staff and academics can work in only one department.  Support 

staff’s id number, name, address should be kept in the database.  Their job 

title and age are also important to store. 

Section 4: 

Each department has got a unique name, address and main office phone 

number. 



Appendix B 

 180 

Noun phrases: 

Table B.2 shows the list of the noun phrases in each section for Scenario 2.  The total 

number of noun phrases is given at the end of each section.  Noun phrases in the lists 

are used to create direct components. 

Table B.2 The list of the noun phrases for Scenario 2 

Section No  Noun Phrases  Section No Noun Phrases 

1 

 

 

Total number 

of Phrases =4 

Lboro University   3 

 

 

 

 

 

 

 

Total number 

of Phrases =8 

Support Staff  

Support Staff   Academic  

Academic   Department  

Department   ID number  

2  

 

 

 

 

 

Total number 

of Phrases =7 

Academic   Name  

University   Job Title  

Number   Age  

Name   Address  

Address   4 

 

 

Total number 

of Phrases =4 

Department  

Gender   Name  

Date Of Birth   Address  

   Phone Number  

 



Appendix B 

 181 

Solution: 

Figure B.3 is an entity relationship diagram showing the solution of Scenario 2.  It 

has two entities, one relationship and nine attributes.  The names of the attributes 

and “department” entity are picked from the list given by the scenario.  The “Staff” 

name was typed by the examiner.   

 

 

 

 

Figure B.3 The solution of Scenario 2 

 



Appendix B 

 182 

Reference Diagrams: 

Figure B.4 shows two ideal reference diagrams for the entity components in the 

teacher solution of Scenario 2.  The first diagram shows that “Department” entity has 

a direct reference to the scenario text in section 4.  The second one shows that 

“Module” entity has an indirect reference with a “merge” action to the text in section 

2 and 3. 

Figure B.4 Ideal reference diagrams for the entity components 

 

Department 

 

Academic 

Merge 

Support Staff 

Staff 

 



Appendix B 

 183 

Scenario 3 

This scenario text is used for Experiment 2 in Chapter 7.  It consists of 5 sections and 

23 noun phrases.  The scenario requires the use of the “Split” function.  The name (or 

the ideal name) for the “Split” entity is “popular event” in the teacher solution. 

Title: Event Organiser  

Section 1: 

True Colour (TC) is a charitable trust.  It organises events to increase the 

awareness of animal abuse for children.  TC’s manager gives you the 

following description of the business:  

Section 2: 

Events are planned by the trusties.  They decide the details like: event name, 

description, purpose, date.  Executive management board (EMB) calculates 

the cost and set the fee of the event.  The charity secretary records event 

information with a unique event number to the event file. 

Section 3:  

TC keeps the record of its members.  A member’s name, address and phone 

number are taken on the membership form.  At the end of the membership 

process, each member is given a member number. 

Section 4: 

The charity gets the members’ help for each event.  The members who 

contribute an event are recorded.  A special “thank you” card is sent to their 

addresses. 

Section 5: 

Popular events are repeated several times a year.  If necessary, the fee of an 

event is adjusted whenever it repeats. 



Appendix B 

 184 

Noun phrases: 

Table B.3 shows the list of the noun phrases in each section for Scenario 3.  The total 

number of noun phrases is given at the end of each section.  Noun phrases in the lists 

are used to create direct components.   

Table B.3 The list of the noun phrases for Scenario 3 

Section No Noun Phrases  Section No Noun Phrases 

2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total number of 

Phrases =13 

Event   3 

 

 

 

 

 

 

Total number 

of Phrases =7 

TC  

Trusty   Member  

Event Name   Name  

Description   Address  

Purpose   Phone No  

Date   Form  

EMB   Member No  

Cost   4 

 

 

 

Total number 

of Phrases =5 

Charity  

Fee   Member  

Secretary   Card  

Information   Address  

Event Number   Event  

Event File   5 

Total number 

of Phrases =2 

Event  

  
 

Fee  

 



Appendix B 

 185 

Solution: 

Figure B.5 is an entity relationship diagram showing the solution of Scenario 3.  It 

has three entities, two relationships and ten attributes.  Names of the attributes and 

two entities are picked from the list given by the scenario.  The “Repeated event” 

name was typed by the examiner.   

Figure B.5 The solution of Scenario 3 



Appendix B 

 186 

Reference Diagrams: 

 Figure B.6 shows two ideal reference diagrams for the entity components in the 

teacher solution of Scenario 3.  The first diagram shows that the “Member” entity has 

a direct reference to the scenario text in section 3.  The second one shows that the 

“Repeated Event” entity has an indirect reference with a “split” action to the text in 

section 2. 

Figure B.6 Ideal reference diagrams for the entity components 

Member 

 

Event 

Split 

Event Repeated Event 



Appendix B 

 187 

 

Scenario 4 

This scenario text is used for Experiment 2 in Chapter 7.  It consists of 4 sections and 

15 noun phrases.  The scenario requires the use of “Merge” function.  The name (or 

the ideal name) for the “Merge” entity is “module” in the teacher solution. 

Title: Computer Science Department 

Section 1: 

The computer science department wants to keep the information about core 

modules and options of each postgraduate programme. 

Section 2: 

Core modules are given a unique code by the programme manager.  Their 

title, credit, assessment style are stored. 

Section 3: 

Core modules and options can be given in more than one programme.  The 

code, name and type of each option need to be stored.  The option’s credit 

and evaluation method are kept together with its other information. 

Section 4: 

The name, content and brief information of each programme are prepared by 

the programme organiser 

 



Appendix B 

 188 

Noun phrases: 

Table B.4 shows the list of the noun phrases in each section for Scenario 4.  The total 

number of noun phrases is given at the end of each section.  Noun phrases in the lists 

are used to create direct components 

Table B.4 The list of the noun phrases for Scenario 4 

Section No Noun Phrases  Section No Noun Phrases 

1 

 

 

Total number 

of Phrases =4 

Department   3 

 

 

 

Total number 

of Phrases =8 

Code  

Core Module   Name  

Option   Type  

Programme   Credit  

2 

 

 

 

 

 

Total number 

of Phrases =6 

Core Module   Evaluation  

Code   4 

 

 

 

Total number 

of Phrases =5 

Name  

Manager   Content  

Title   Information  

Credit   Programme  

Assessment   Organiser  

3 CoreModule   

Option   

Programme   

 



Appendix B 

 189 

Solution: 

Figure B.7 is an entity relationship diagram showing the solution of Scenario 4.  It 

has two entities, one relationship and nine attributes.  The attribute names and name 

of one entity are picked from the list given by the scenario.  The “Module” name was 

typed by the examiner.   

 

 

 

 

 

Figure B.7 The solution of Scenario 4 

 



Appendix B 

 190 

Reference Diagrams: 

Figure B.8 shows two ideal reference diagrams for the entity components in the 

teacher solution of Scenario 4.  The first diagram shows that the “Member” entity has 

a direct reference to the scenario text in section 3.  The second one shows that the 

“Repeated Event” entity has an indirect reference with a “split” action to the text in 

section 2. 

 

 

 

Figure B.8 Ideal reference diagrams for the entity components 

 

Programme 

 

Core Module 

Merge 

Option 

Module 

 



Appendix C 

 191 

Appendix C 

This appendix is for entity relationship diagrams produced by the participants in 

Experiments 1 and 2 in Chapter 2.  The diagram components are shown in tabular 

format.  Attributes of the diagram components are omitted in the table for simplicity. 

Diagram Solutions for Scenario 1  

Table C.1 shows the diagram components of the participants’ solutions for Scenario 1 

in the experiment 1 in Section 7.3.  Entity 1 and Entity 2 are the direct referenced 

components and Entity 3 is the indirect referenced components.  Relationship 1 is the 

relationship between Entity 1 and Entity 3.  Relationship 2 is the relationship 

between Entity 2 and Entity 3.   

Table C.1 Diagram solutions for Scenario 1 

Participant 

No 

Entity1 Entity 2 Entity 3 Relationship 1 

(E1-E3) 

Relationship 2 

(E2-E3) 

1 student  course cOff enroll has 

2 student  course courseofferings can has 

3 student  course courseofferings has has 

4 student  course courseofferings enrols has 

5 student  course courseofferings enrols may have 

6 student  course courseofferings enrols has 

7 student  course courseofferings enrols on  has 

8 student  course courseofferings has is_in 



Appendix C 

 192 

Participant 

No 

Entity1 Entity 2 Entity 3 Relationship 1 

(E1-E3) 

Relationship 2 

(E2-E3) 

9 student  course courseofferings enrols has 

10 student  course courseofferings enrolls on has 

11 student  course courseofferings enrol offered 

12 student  course courseofferings enrols has 

13 student  course courseofferings enrol have 

14 student  course offerings enrols related to 

15 student  course courseofferings enroll has 

16 student  course courseofferings enrol has 

17 student  course courseofferings enrols has 

18 student  course courseofferings can be on can be offered 

19 student  course courseofferings enrols_in has 

20 student  course courseofferings enrol has 

 



Appendix C 

 193 

 

Diagram Solutions for Scenario 2  

Table C.2 shows the diagram components of the participants’ solutions for Scenario 2 

in Experiment 1 in Section 7.3.  Entity 1 is the direct referenced components and 

Entity2 is the indirect referenced components.  Relationship is the relationship 

between Entity 1 and Entity 2. 

Table C.2 Diagram solutions for Scenario 2 

Participant No Entity 1 Entity 2  Relationship (E1-E2) 

1 department staff works 

2 department acsupport workin 

3 department  staff works 

4 department staff works 

5 department  mergeattributes works 

6 department staff works 

7 department staffmember works 

8 department staff work_in 

9 department staff works 

10 department staff works 

11 department staff worksin 

12 department staff worksin 

13 department staff works_within 

14 department people work 



Appendix C 

 194 

Participant No  Entity 1 Entity 2  Relationship(E1-E2) 

15 department  people worksfor 

16 department member of staff works_in 

17 department  staff works_in 

18 department  staff works_in 

19 department  staff works_in 

20 department staff work_in 

 



Appendix C 

 195 

Diagram Solutions for Scenario 3  

Table C.3 shows the main diagram components of the participants’ solutions for 

Scenario 3 in Experiment 2 in Section 7.3.  Entity 1 and Entity 2 are the direct 

referenced components and Entity 3 is the indirect referenced components.  

Relationship 1 is the relationship between Entity 1 and Entity 3.  Relationship 2 is the 

relationship between Entity 2 and Entity 3.  Some students have come up with new 

components, which are not in the teacher solutions.  The table doesn’t show these 

components for simplicity. 

Table C.3 Diagram solutions for Scenario 3 

Participant 

No 

Entity 1 Entity2 Entity 3 Relationship1 

(E1-E3) 

Relationship2 

(E2:E3) 

1 member event eventde helps has 

2 member event  event offerings    

3 member event event offerings   

4 member event eventfee  has 

5 member event event offerings  has 

6 member event fee  has 

7 member event eventfile  recorded_in 

8 member event setevent  has 

9 member event eventhas contributes has details 

10 member event eventoffer contribute have 

11 member event scheduled_event helps with  has 

12 member event events taken have has been 

13 member event repeats  can 



Appendix C 

 196 

Participant 

No 

Entity 1 Entity2 Entity 3 Relationship1 

(E1-E3) 

Relationship2 

(E2:E3) 

14 member event repeat helps can 

15 member event event fee  set for 

16 member event eventcost  expenditure 

17 member event event offerings  for 

18 member event cost  can have 

19 member event event repeats  has 

20 member event popularevent   repeated 

 



Appendix C 

 197 

Diagram Solutions for Scenario 4  

Table C.4 shows the main diagram components of the participants’ solutions for 

Scenario 4 in Experiment 2 in Section 7.3.  Entity 1 is the direct referenced 

components and Entity2 is the indirect referenced components.  Relationship is the 

relationship between Entity 1 and Entity 2.  Some students have come up with new 

components, which are not in the teacher solutions.  The table doesn’t show these 

components for simplicity. 

Table C.4 Diagram solutions for Scenario 4 

Participant 

No 

Entity1 Entity 2 Relationship 

(E1-E2) 

1 programme  module Given  

2 programme  coreoption GivenIn 

3 course Coremodule given 

4 programme  Modules part of 

5 programme  merged entity given in 

6 programme  option has 

7 programme  programmeitem  includes 

8 programme  modules given_in 

9 programme  options has 

10 programme  module has 

11 programme  modules belongs_to 

12 programme  module has 

13 programme  subject module taught 



Appendix C 

 198 

Participant 

No 

Entity1 Entity 2 Relationship 

(E1-E2) 

14 programme  choice have 

15 programme  program_part part of  

16  deptoptions  

17 programme  module given_to 

18 programme  course can be part of  

19 programme  op_core given_in 

20 programme  module given 

 

 



Appendix D 

 199 

Appendix D 

This appendix is for the questionnaire given to the students in order to get feedback 

about the semi-automatic assessment tool used in Chapter 7.   

Questionnaire 

There are six questions on the questionnaire form.  The form was based on a five 

item Likert scale, giving the user options on how much they would agree with the 

statements given.  The first three questions are about the usability about the editor 

and the last three questions are about the personalised feedback they received about 

their works.   

Following are the questions on the form. 

A) The editor: 

1.  The diagram editor is easy to use.   

[Strongly agree]  [Agree]  [Neutral]  [Disagree]  [Strongly disagree]  

2.  I like the drag and drop feature for diagramming.   

[Strongly agree]  [Agree]  [Neutral]  [Disagree]  [Strongly disagree]  

3.  I like the auto diagramming. 

[Strongly agree]  [Agree]  [Neutral]  [Disagree]  [Strongly disagree]  

B) The feedback: 

4.  The feedback given for my diagram is clear to understand.   

[Strongly agree]  [Agree]  [Neutral]  [Disagree]  [Strongly disagree]  

5.  The feedback is sufficient.   

[Strongly agree]  [Agree]  [Neutral]  [Disagree]  [Strongly disagree]  

6.  I like the colour coded feedback.   

[Strongly agree]  [Agree]  [Neutral]  [Disagree]  [Strongly disagree]  

  



Appendix D 

 200 

The results 

The questionnaire was given to students at end of the term.  67 of them returned the 

form.  The following diagrams give the results for each question on the form.   

Question 1: Figure D.1 shows the result of Question 1.  The average of the result is 

2.33 and the standard deviation is 0.87.  The research doesn’t deal with the usability 

issue.  Many alternative editors could be designed to get student diagrams.  

Nevertheless, students are generally happy with the editor.  They didn’t find it to be 

a difficult to use the editor. 

0

5

10

15

20

25

30

35

40

1 2 3 4 5

 

Figure D.1 The result of Question 1 

 Question 2: Figure D.2 shows the result of Question 2.  The average of the result is 

2.09 and the standard deviation is 0.86.  The editor enables students drag noun 

phrases from the scenario text and drop them on the tool box in order to create 

diagram components.  The result shows that students are happy with the drag and 

drop feature. 

0

5

10

15

20

25

30

35

40

1 2 3 4 5

 

Figure D.2 The result of Question 2 



Appendix D 

 201 

 

Question 3: Figure D.3 shows the result of Question 3.  The average of the result is 

2.37 and the standard deviation is 0.84.  The editor has an auto diagramming feature.  

The editor changes the diagram layout too much each time new component is added.  

Some students didn’t like this part of the editor.   

 

0

5

10

15

20

25

30

1 2 3 4 5

 

Figure D.3 The result of Question 3 

Question 4: Figure D.4 shows the result of Question 4.  The average of the result is 

2.35 and the standard deviation is 0.81.  The editor shows the colour coded feedback 

about student diagrams when they are marked.  Most of the students find the 

feedback clear to understand.  The result also shows that the presentation of the 

feedback needs to be improved. 

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5

 

Figure D.4 The result of Question 4 

 



Appendix D 

 202 

Question 5: Figure D.5 shows the result of Question 5.  The average of the result is 

2.43 and the standard deviation is 0.78.  Students can read textual comments given 

by the examiner on each component in their diagram as well as colour code.  The 

examiner didn’t give detailed comments on the student work for these tutorial 

questions although the editor supports for this.  The result shows that the editor 

should have an automatic commenting feature in order to increase the student 

satisfaction and the editor should not rely on only the examiner comments. 

0

5

10

15

20

25

30

35

1 2 3 4 5

 

Figure D.5 The result of Question 5 

Question 6:  Figure D.6 shows the result of Question 6.  The average of the result is 

2.15 and the standard deviation is 0.74.  The editor uses a colour code for 

presentation of feedback about student diagrams.  Most of the students like the 

coloured feedback. 

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5

 

Figure D.6 The result of Question 6 



Appendix E 

 203 

Appendix E 

This appendix is for the significant code from the system developed for the proposed 

framework in the thesis.  The system’s details are discussed in Chapter 6 and used to 

evaluate the framework.  The evaluation’s results are given in Chapter 7. 

The system mainly consists of a diagram editor and a marking environment.  The 

important parts of the diagram editor are the function buttons and the automatic 

diagram drawing components.  The important parts of the marking environment are 

grouping diagram components, matching components and the displaying reference 

diagrams.  A prototype tool for the authoring part of the proposed framework was 

developed using the Microsoft PowerPoint tool without using any program code and 

algorithm.  The detail of the tool’s interface is discussed in Chapter 6.  There is not 

any additional information provided about the authoring tool in this appendix. 

The following section is for the conceptual database diagram of the developed 

system. The diagram helps the understanding of the SQL statements provided in the 

subsequent sections of this appendix. 

Conceptual database diagram of the developed system 

The diagram editor of the developed assessment system for this thesis keeps the 

student diagrams and the scenarios in a relational database.  The editor records all 

the design activities into this database during the diagramming.  Figure E.1 shows 

the entity relationship diagram of the developed system’s database.  The marking 

environment of the system uses the same database during marking.  



Appendix E 

 204 

 

Figure E.1 Entity relationship diagram of the developed system’s database 

Following gives a brief explanation of each entity in Figure E.1: 

“User” entity keeps the user information of the system (e.g. user name and 

password). A user can be either the examiner or student type.   

“Diagram” entity keeps the general information about the about diagrammatic 

slotuons (e.g. user , scenario and submit date). 

“Component” entity keeps all the components the users produce. Components can 

be intermediate or final types. The final component is the one the user sees on the 

diagram canvas of the editor. The intermediate component is the one which is 

removed from the canvas after the “merge” or “split” operations.  The editor keeps 

the intermediate components and uses during the grouping in order to find the 

contextual information of the component. The concept of the contextual information 

concept is explained in Chapter 3.  

“Action” entity keeps link data to combine the intermediate components. Its pro-

action and pre-action attributes keep the identities of the intermediate components. 

Diagram 

Component 

Reference 

Scenario 

Attribute Relationship Entity 

Action 

Noun 

User  

Sentence 

M 

M 

M M 

M 

M 

M M 



Appendix E 

 205 

The action type attribute of the entity is used during generating of the reference 

diagram of a component.  

“Reference”, “Entity”, “Attribute” and “Relationship” entity types keeps some 

additional information about the entries in the “component” entity depending on the 

type of the diagram component.  For example, if the component is an attribute, it 

keeps the identity of its entity. 

“Sentence” entity keeps the sentence references of all scenarios used in the 

assessments and “noun” entity keeps the noun phrase references of all the scenarios. 

The entries in “Reference” entity have a link to either the “sentence” or “noun” 

entities. 

“Scenario” entity keeps all the scenario text used in the system. The text of the 

chosen scenario is displayed on the diagram editor during the diagramming. 



Appendix E 

 206 

The diagram editor  

The diagram editor uses the Graphviz engine, open source graph drawing tool, 

(Ellson et al. 2002).  When a new component is entered into the system, the editor 

generates a code (namely dot-file) and sends to the Graphviz engine.  The engine 

reads the dot-file and creates a diagram picture file and sends the picture to the 

editor.  The editor displays the picture on the diagram canvas. 

Generation of a dot-file: 

The editor reads the components of the user diagram from the system database in 

order to produce a dot-file for the Graphviz engine.  The following PHP program is 

for the generation of the dot-file for the entities and their attributes of a diagram. 

<to create a file to write the code into> 

 

<to write all entities of the diagram to the file> 

 

<to write all attributes of the diagram to the file> 

 



Appendix E 

 207 

 

<to create links between attributes and entities> 

 

<to write the code into the file and send the the Graphviz engine > 

 



Appendix E 

 208 

“Merge” and “Split” actions 

A new component is entered by using one of the command buttons into the system.   

Later, these components can be merged or split by using function buttons.  Following 

PHP code is the main implementation for these function buttons 

<to merge two entities> 

 

 

<to split an  entity> 



Appendix E 

 209 

 

 

The next section focuses on the marking environment of the system.  The Dot-file 

generation part of the diagram editor is reused in the marking editor to draw the 

reference diagram of a component. Each reference diagram is presented to the 

examiner during the manual partial marking. 



Appendix E 

 210 

Marking Environment 

The marking environment component of the system consists of two parts.  The first 

part processes the student diagrams. It groups the diagram components and match 

them each other.  The second part presents the reference diagrams of the unmatched 

components to the examiner.   

Grouping and matching of the diagram components are implemented by SQL 

statements.  Generation of the reference diagrams are implemented by the PHP code 

Grouping diagram components  

The flowing SQL statements find the reference groups of the direct components.  The 

database diagram in Figure E.1 may clarify the SQL statements. 

 

<Grouping direct entities>  

Select count(b) as ent, refid as entity_ref from Reference, 

(Select R.id as a ,E.id as b from Component as E, Component as R  

Where E.preaction=R.postaction 

and R.type="ref" 

and E.type="entity" 

and E.postaction is null 

and Diagram.sid=scenarioid ) 

) as M 

where a=userrefid 

group by entity_ref; 

 

<Grouping attributes of direct entities> 

Select refid as attr_ref,count(a) as numattrgrp, from Reference, 

(Select R.id as r ,A.id as a from Component as A, Component as R     

Where A.preaction=R.postaction 

and R.type="ref" 

and A.type="attr" 

and A.postaction is null 

and Diagram.sid=scenarioid) 

) as M 



Appendix E 

 211 

where r=userrefid 

group by attr_ref 

order by numattrgrp; 

 

The flowing SQL statements find the reference groups for indirect components.  

<Grouping indirect entities (Merge)> 

 Select C1.refid, C2.refid from  

  (Select postaction, refid from Reference  

,(Select R.id as a ,E.postaction as postaction   

from Component as E, Component as R  

Where E.preaction=R.postaction 

and R.type="ref" 

and E.type="entity" 

and E.postaction is not null) as M 

where a=userrefid) C2,  

  (Select postaction, refid   from Reference  

, (Select R.id as a ,E.postaction as postaction   

from Component as E, Component as R  

Where E.preaction=R.postaction 

and R.type="ref" 

and E.type="entity" 

and E.postaction is not null) as M 

where a=userrefid) C1 

where C1.postaction=C2.postaction  

and C1.refid <> C2.refid 

and C1.postaction in   

(Select actionid From Component, Action  

Where Component.preaction=Action.actionid 

And Component.postaction is null 

and Action.type=”merge”  

and Component.type="entity" 

and Component.did in (Select Diagram.did from User, Diagram    
Where User.uid=Diagram.uid  and Diagram.sid=scenarioid)) 

group by C1.refid,C2.refid; 

 



Appendix E 

 212 

<Grouping indirect entities (Split)> 

Select C1.refid from  

(Select postaction, refid   from Reference  

,(Select R.id as a ,E.postaction as postaction   

from Component as E, Component as R     

Where E.preaction=R.postaction 

and R.type="ref" 

and E.type="entity" 

and E.postaction is not null) as M 

where a=userrefid) C1 

where  C1.postaction in   

(Select actionid From Component, Action  

Where Component.preaction=Action.actionid 

And Component.postaction is null 

and Action.type=”split” 

and Component.type="entity" 

and Component.did in  

(Select Diagram.did from User, Diagram Where 
User.uid=Diagram.uid and Diagram.sid=scenarioid )) 

group by C1.refid; 

 

<Grouping relationships> 

Select refid as entity_ref, count(b), from Reference, 

(Select R.id as a ,E.id as b from Component as E, Component as R     

Where E.preaction=R.postaction 

and R.type="ref" 

and E.type="relation" 

and E.postaction is null 

and E.did in (Select Diagram.did from User, Diagram Where 
User.uid=Diagram.uid and Diagram.sid=scenarioid) 

 



Appendix E 

 213 

Matching diagram components  

The flowing SQL statements are used to match entity components of the diagrams.  

Each component, which is matched with any component in teacher solution is 

accepted as a correct component.  They use the scenario references of the 

components.  The database diagram in Figure E.1 may clarifies the SQL statements 

<Matching Direct entity> 

Select * from  

(select a.refid,d.sid from directentref a , Diagram d 

where d.did=a.did 

group by d.sid, a.refid) S, 

(select a.refid, d.sid from directentref a , Diagram d 

where d.did=a.did 

and d.uid  =idealsolution# 

group by d.sid, a.refid) T 

where S.refid=T.refid 

 

<Matching merged  entity> 

Select * from  

(Select ref1, ref2, sid from Diagram, mergeentbrefs 

Where Diagram.did= mergeentbrefs.did 

group by sid, ref1,ref2) S,   

(Select ref1, ref2, sid from Diagram, mergeentbrefs 

Where Diagram.did= mergeentbrefs.did 

and Diagram.uid  = idealsolution# 

group by sid, ref1,ref2) T 

Where S.ref1=T.ref1 and S.ref2=T.ref2   

 

<Matching split  entity> 

Select * from  

  (Select refid, sid from Diagram, splitentrefs 

Where Diagram.did= splitentrefs.did 

group by sid,refid) S, 

(Select refid, sid from Diagram, splitentrefs 



Appendix E 

 214 

Where Diagram.did= splitentrefs.did 

and Diagram.uid  = idealsolution# 

group by sid,refid) T 

Where S.refid=T.refid 

The similar SQL statement are written to use for matching the attribute and 

relationship  components in  the systems 

Generation of the reference diagrams 

This part of the system creates the reference diagrams of the components, which is 

not match with any components of the teacher solutions.  The reference diagrams are 

presented to the examiner for manual marking.  The examiner may accept or reject 

these components.  

The following PHP code is used to generate the reference diagrams of the 

components. 

 

The main function of the code is “makepic” . The following is an extract from the 

function. 

<Initialisation> 



Appendix E 

 215 

 

<creating the component picture> 

 

<creating the actiont picture [1 for merge and 2 for split action]  > 

 



Appendix E 

 216 

<creating links between the action shape and the component shapes> 

 

This part of the “makepic” function is recursive. Since the reference diagrams can be 

malformed.   

This developed system was used to evaluate the framework.  The light version of the 

system was also developed and used in a taught module. However its sample code is 

not provided here since the approach is the similar to the system presented here. 



Publications 

 217 

PUBLICATIONS 

This section gives the details of the publications produced as a result of this research.  

The abstract of each publication are also included and the links to the thesis is made. 

Peer Reviewed Conference  

Paper 1: A Diagram Drawing Tool for the Semi-automatic Assessment of 

Conceptual Database Diagrams 

This is the first paper published.  The paper introduces a tool which is a standalone 

diagram editor.  It is a proof of concept tool.  It is used in the experiment 3 in Section 

7.3.  Google Scholar shows that the paper has been cited 12 times since 2006. 

Abstract 

The increased number of diagram based questions in higher education has recently 

attracted researchers to look into marking diagrams automatically.  Student 

diagrammatic solutions are naturally very dissimilar to each others.  However, it has 

been observed that there are a number of identical diagram components.  This 

observation forms the basis of our semi–automatic assessment.  Identifying identical 

diagram components in student diagrams needs contextual information about each 

component.  This paper proposes a diagram tool which obtains the contextual 

information of each component in a conceptual database diagram.   

Reference 

Batmaz, F & Hinde, CJ 2006, ‘A diagram drawing tool for semi–automatic assessment 

of conceptual database diagrams’, Proc. of the 10th CAA Conference, Loughborough 

University.  Loughborough, UK  pp.71-84. 

Paper 2: A_Web-Based Semi-Automatic Assessment Tool for Conceptual 

Database Diagram 

An online version of the previous diagram editor in the first paper is developed.  The 

tool is used in the experiment 1 and 2 in section 7.3.  The paper covers the initial 

findings of the experiments and also introduces the marking part of the semi-



Publications 

 218 

automatic approach mentioned in Chapter 6.  Google Scholar shows that the paper 

has been cited 4 times since 2007. 

Abstract 

The increased number of diagram-type student work in higher education has 

recently attracted researchers to look into the automation of diagram marking.  This 

paper proposes a new (semi-automatic) marking approach to reduce number of the 

diagram component marked by the human marker.  We believe this approach 

improves the marking consistency and has potential to provide individualised and 

detailed feedback to students with mark-ups.  We have developed a prototype web-

based diagram drawing and marking tools for the approach.  The initial experiment 

and findings for the tools are described in the paper. 

Reference 

Batmaz, F & Hinde, CJ 2007, ‘A_Web-Based Semi-Automatic Assessment Tool for 

Conceptual Database Diagram’, Proc.  of the 6th  Web-Based Education conference, 

ACTA Press, Anaheim, CA, USA, pp.427-432. 

Paper 3: A Method For Controlling The Scenario Writing For The 

Assessment Of Conceptual Database Model 

The paper covers some parts of the scenario writing in section 5.3.  It introduces the 

scenario writing environment in Chapter 6.  It gives the initial findings of the 

experiment in Section 7.2.  Google Scholar shows that the paper has been cited 1 time 

since 2008. 

Abstract 

This paper proposes a method for semantically controlling scenario text writing in 

natural language.  The scenario text is used for semi-automatic assessment of student 

translation of those scenarios into database diagrams.  These scenarios increase the 

automation of the marking process and enable the scenario texts to be categorised in 

difficulty levels.  An experimental tool has been implemented for this method.  The 

initial experiments and findings for the interface are described in the paper. 



Publications 

 219 

Reference 

Batmaz, F & Hinde, CJ 2007, ‘A Method For Controlling The Scenario Writing For 

The Assessment Of Conceptual Database Model’, Proc. of Computers and Advanced 

Technology in Education.  ACTA press, Calgary, Canada, pp.614-804. 

Paper 4: Personalised Feedback With Semi-Automatic Assessment Tool For 

Conceptual Database Model 

A new version of the web-based semi-automatic assessment tool in the paper 2 has 

been developed.  The tool is for simple scenario typed questions.  It gives colored 

feedback to students.  The paper highlights the feedback features of the tool which is 

briefly mentioned in section 7.5.  It also gives the initial findings of the experiment in 

section 7.5.1. 

Abstract 

The increased presence of diagram-type student work in higher education has 

recently attracted researchers to look into the automation of diagram marking.  This 

paper introduces web-based diagram drawing and marking tools for a new (semi-

automatic) assessment approach.  The approach reduces the number of diagram 

components marked by the human marker and provides individualised and detailed 

feedback to students.  The tools which have been used in tutorials of a first year 

database module in the Computer Science department at Loughborough University 

are described together with findings from the usage of the tools. 

Reference 

Batmaz, F, Stone, R & Hinde, CJ 2009,  ‘Personalised Feedback With Semi-Automatic 

Assessment Tool For Conceptual Database Model’, Proc.  of the 10th Annual Conference 

of the Higher Education Academy Subject Centre for Information and Computer Sciences, 

University of Ulster, UK, pp.115-120. 

Paper 5: A Multi-Touch ER Diagram Editor to Capture Students’ Design 

Rationale 

A new user interface is developed for the diagram editor in Paper 4.  The interface is 

outside of the main research in the thesis.  It has been mentioned in 8.4 Future 

Directions section.  The interface uses multi touch technology.  The paper introduces 

this new interface and gives the results of the initial experiments.   



Publications 

 220 

Abstract 

The increased presence of diagram-type student work in higher education has 

recently attracted researchers to look into the automation of diagram marking.  

Research into the semi-automatic diagram assessment at Loughborough University 

has identified the requirements of a diagram editor in order to capture the students’ 

design rationale.  To fulfil these requirements, several experimental diagram editors 

have been developed.  This paper introduces an ER diagram editor which uses multi 

touch technology.  The initial experiments and findings for the editor are described 

in the paper. 

Reference 

Stone, R, Batmaz, F & Rickards, T 2010, ‘A Multi-Touch ER Diagram Editor to 

Capture Students’ Design Rationale’, Proc.  of International Conference on Education and 

Information Technology. 

Peer-Reviewed Journal  

Paper 6: Drawing and Marking Graph Diagrams 

A new version of the web-based semi-automatic assessment tool in Paper 2 has been 

developed.  The tool is for simple scenario typed questions.  It gives coloured 

feedback to students.  The paper highlights the user interface part of the tool which is 

briefly mentioned in section 7.5.  It also gives the initial findings of the experiment in 

section 7.5.1. 

Abstract 

The marking of graph diagrams (that is to say diagrams that are composed of nodes, 

possibly joined by edges) is tedious if the diagrams are presented on paper.  If the 

key content of the diagrams is available in electronic form then the marking can be 

much more efficient.  This is achieved because the tutor only has to mark each 

different diagram element once and this mark is transmitted to all diagrams that 

contain the element.  This benefit to the tutor is obtained by requiring the students to 

use a diagram drawing program of some kind.  However using such an editor can 

simplify the process for the students by allowing them to concentrate more on the 

problem and less on its graphical representation.  The students can also be rewarded 

for going to this extra effort by receiving a much more detailed, personalised 



Publications 

 221 

commentary on their work than would have been possible before, given the same 

amount of tutor time. 

Keywords: Marking, diagrams, ER diagrams, graphs, UML, drag-and-drop 

Reference 

Stone, R, Batmaz, F & Hinde, C 2009, ‘Drawing and Marking Graph Diagrams’, 

Italics, vol.8, no.2, pp.45-53. 

Paper 7: Personalised Feedback With Semi-Automatic Assessment Tool For 

Conceptual Database Model 

Paper 4 was awarded best paper at the 10th annual conference of the ICS HE 

academy and published in the Italics journal.   

Reference 

Batmaz, F, Stone, R & Hinde, CJ 2009,  ‘Personalised Feedback With Semi-Automatic 

Assessment Tool For Conceptual Database Model’, Italics, vol.9, no.1, pp.105-110. 

Grant awarded  

The semi-automatic assessment of student diagrams developed in the research helps 

the consistency of feedback on the solutions.  A HEA development fund grant has 

been given to this research to develop a web assessment tool.  The tool is available to 

all university students in the UK.  The findings of using the tool in the class are 

published in Paper 4 and Paper 6. 

Project Brief 

The intention of this work is to provide computer assistance not only to the marking 

phase but also to other phases of the current manual diagram assessment process.  

The aim is to reduce or remove as many of the repetitive tasks in any phase of the 

process as possible.  As the same tasks are performed less (possibly only once) by the 

examiners, consistency of grades and feedback on the solutions are achieved. 

Reference 

Hinde, C.J., Batmaz, F, Stone, R,  2008, A Web-Based Semi-Automatic Assessment 

Tool For Conceptual Database Model, HEA development fund, 2008/09, 

http://www.ics.heacademy.ac.uk/projects/development-fund/ fund_details.php ?  

id = 125. 


