
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

I. INTRODUCTION
The reliability prediction of an engineering system/process is
one of the most important design considerations. Reliability
modelling should be applied at the earliest stages of the design
effort in order to be effective and by incorporating reliability
concepts from these initial stages, failures can be avoided and
mitigations put in place before they create greater financial
and logistical problems later in the lifecycle. A number of
mathematical reliability modelling techniques such as
Reliability Block Diagrams (RBDs), Fault Trees (FTs), Binary
Decision Diagrams (BDDs), Markov approaches, Petri Nets
(PNs), etc. exist to conduct a reliability assessment of a
system/process. However, certain limitations have been
identified in several of these techniques when they are applied
to large, complex systems with dependent events and loops.
For example, RBDs, BDDs and static FTs are unable to handle
systems/processes that include dynamic characteristics, i.e.
dependencies and spares. Additionally, the analysis of large
systems/processes using Markov approaches results in
cumbersome and error-prone models. However, PN models
have been found to be able to model complex
systems/processes with dynamic characteristics without
suffering the state-space explosion as happens in Markov
models [1].

The analysis of reliability models once constructed has been
the main focus of analysts over the years and this can now be
conducted systematically, using bespoke computer software,
providing advanced analysis results for a given system/process
[2]. However, the model generation still requires considerable
time and effort and needs the user to have experience and
understanding of the technique. Automating the generation of
the reliability model reduces the model construction time and
cost, and minimises human error. Due to these benefits past
work has been performed on automating the construction of
various reliability models. The automated generation of Fault
Trees and Failure Modes and Effects Analysis (FMEA) has
received the most attention based on literature findings.

However, many approaches proposed for these two methods
present some restrictions on their applications, i.e. difficulties
in handling complex systems/processes, inapplicability to a
wide spectrum of systems/processes, requirement of analysts’
intervention resulting in semi-automated methods, etc.
Additionally, although there are several attempts targeting the
generation of automated Petri Net modelling, they are lacking
with regard to the level of automation since most of them use
semi-automated methods and also the description diagram of
the system/process needs to be generated manually by the
user.

The aim of the work presented in this paper is the
development of a methodology for the automated generation
of Petri Nets for complex systems/processes, which takes as
its input a topology diagram with the system/process
description, as used in industrial sectors ranging from
aerospace and automotive engineering to finance, defence,
government, entertainment and telecommunications. The PN
formalism has been selected to be automatically generated due
to the flexibility of this model in handling complex real life
scenarios such as systems/processes with a large number of
components/activities, control loops, dependent events,
redundant and repairable components/activities. The proposed
methodology enables the detection of the most critical
components and design errors at an early design stage and
hence supports alternative designs.

The research focus of this paper is twofold:
• The development of an algorithm that can accept as

an input the description diagram of a given
system/process and generates automatically the
corresponding Petri Net, demonstrated by its
application to an IT asset recycling process.

• Simulation of the PN generated for the IT asset
process to demonstrate the capability of the
technique.

Hence, the contribution of this work is in the enhancement
from semi-automated to fully automated methods, using
directly the system representation from industry.

The remainder of this paper is organised as follows. Section
2 reviews past related work. A description of the Petri Net
modelling approach is described in Section 3. An overview of
the methodology for the automated PN generation is given in

A new methodology for automated Petri Net
generation: method application

Christina Latsou, Sarah, J. Dunnett and Lisa M. Jackson

Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough,
Leicestershire, LE11 3TU, UK

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288351835?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

Section 4, introducing the techniques and tools used for its
implementation. In section 5, the automated PN model is
generated for an IT recycling process and a simulation is
carried out identifying possible limitations of the existing
process. Some general conclusions are drawn in the final
section.

II. RELATED WORK
Automated reliability model generation requires accurate

and complete representation of system/process models,
realistic descriptions of local and global behaviours of system
components or process activities and attention to the
representation of components with dynamic characteristics
due to the high complexity they create [3].

A complete system/process representation derived from the
initial system/process description consists of the structural and
functional perspectives. The structural perspective refers to the
topology of the system including information about the input
and output ports to and from each component and the way in
which the components are connected with each other, whereas
the functional perspective corresponds to the role and
behaviour that each component plays in the entire system.

Over the last 40 years, there have been several attempts to
automate reliability techniques. In the case of Fault Trees two
main techniques have been introduced, that were considered as
pioneering concepts, namely, the digraph method [4] and the
decision table method [5]. An alternative to these methods is
the modified decision tables [6] which is an extension of the
decision table method. In addition, as the complexity of the
engineering systems/processes increased due to complex
structures such as circuits and loops, advanced automated
methods were developed with the help of programming
languages such as Java, C/C++ and others. Additional
proposed techniques that target automated FT construction are
Expert system methods [8], others such as HiP-HOPS [9] and
AltaRica 3.0 and more recent proposed methods that use the
basic concepts of the aforementioned methods incorporating
new aspects such as the state transition table to describe the
operational states of a component in [10], the use of System
Modelling Language (SysML) to specify the system models in
[11] and the generation of matrix-based models in [12]. Some
of the methods reviewed present difficulties in handling
complex systems/processes such as the decision table methods
that do not provide any facilities for the detection and
classification of control loops or circuits. In many cases such
as in the decision table methods, digraph methods and the
modified decision table method, there is not a software
package available but an algorithm, which is developed
manually. Additionally, some methods are applied to a few
types of systems without providing a generic applicability
such as the digraph methods and the modified decision table
method, which focus on circuit systems. The most frequent
shortcoming found during the literature review of the current
methods for automated FT modelling is that the input of the
system/process description is generated by the user such as in
AltaRica 3.0. Although this approach combines both the UML
object-oriented programming characteristics and reliability

modelling capabilities of Stochastic PN (SPN), it still requires
the user intervention to import system information, resulting in
the semi-automated generation of models.

Several approaches have been presented for the automated
construction of other reliability models such as FMEA [13],
Hazard and Operability [14] and Petri Nets [15]-[19]. The
work in [15] focuses on the High Level Petri Net (HLPN)
generation using the UML Sequence Diagram (SD) and Class
diagram to represent the structural and behavioural aspects of
a given system/process. The Object Constraint Language
(OCL) is also used to provide structural specifications. A
HLPN model is generated by the user based on the topology
information stored in the Nodes Relationship Table (NRT)
that is obtained from the UML SD. The proposed
methodology is not fully automated since the system
information cannot be obtained automatically from the UML
diagrams. Similarly, the method described in [16] is semi-
automated. In this work, decision and operational mode tables
are used for the component description, whereas the system
description corresponds to a topology diagram that shows how
the components link together. Additional input information is
the failure modes and repair data. A library is also used
providing reusability in the future. An algorithm developed in
C++ has been proposed generating PNs. The shortcoming of
this work is that the user is required to generate as input to the
software a system structure file, i.e. a file that includes the
structural and behavioural information of the system/process,
which is an error-prone and time-consuming process. The
method described in [17] focuses on the development of a
platform that generates automatically models for multi-agent
systems using Coloured Petri Net (CPN) models. The
proposed methodology combines the Multi-Agent System
Description Language (MASDL) with the Petri Net
Description Language (PNDL), which is an XML based
declarative language used to specify PNs. This work consists
of two steps: the system/process is described by the user using
MASDL and then following an algorithm a set of
transformation rules are applied to the system description to
obtain the CPNs. The main drawback of this method is that the
user needs to develop the MASDL code so as to import the
system/process information into the algorithm. In [18] a UML
State Machine Diagram (SMD) is used as the starting point to
generate CPN models. This method is based on the model-to-
text (M2T) transformation techniques being carried out using
the Acceleo tool, easily integrated into Eclipse environment.
Hence, once the SMD for a given system/process is developed
following the modelling frame, rules and constraints defined
as they defined by the Object Management Group (OMG)
SMD metamodel, the Acceleo template in which the user
defines the transformation rules between the SMD metamodel,
the SMD model and the final CPN model, is developed. Each
rule developed in the template maps an element from the
metamodel and model to the text that is generated and
corresponds to the desired CPN model. Once the
transformation rules are applied to the model and metamodel
the desired CPN is generated in XML format, which can be
imported into a CPN tool and provide the graphical model

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

visualization. Although the UML SMD aids the user to import
automatically the system/process data/information, the
Acceleo tool used for the model transformation and the CPN
development presents some limitations regarding its weakness
to provide advanced features i.e. functions, global variables
and data structures, leading to the development of complicated
codes. An additional shortcoming of this method is that the
rules that define the SMD transformation into CPNs should
change in case the CPN tool syntax changes in order to ensure
compatibility among tools. The methodology in [19] proposes
the translation of Architecture Analysis and Design Language
(AADL) models into Petri Net models. The main
shortcomings of this work are the manual effort and
knowledge required by the user to generate the AADL text
model for a given system/process and the weakness of the
method to handle complex systems/processes.

Hence, the research motivations drawn from the literature
review for the automated Petri Net model generation are as
follows:

• A simple and direct representation of the
system/process should be chosen. The system/process
topology should provide a well-defined structure and
hierarchical representation in order to facilitate the
representation of the flow and sequence from one
activity to another capturing the dynamic behaviour
of the various cases. A standard notation readily
understandable by all business stakeholders should be
provided.

• The input graphical diagram of the system/process
description and data should be performed
automatically without the user intervention, whereas
the aforementioned diagram should be executed in a
textual format in order to be manipulated further to
obtain the Petri Net incidence matrix i.e. the
mathematical form of a Petri Net model.

• The methodology should be fully automated, able to
deal with various systems/processes and provide a
generic applicability.

III. PETRI NET MODEL
Petri Net (PN) models, which have their origins in the thesis

of C.A. Petri in 1962 [20] and for which an international
standard IEC 62551 has been published (Analysis techniques
for dependability – Petri net techniques) [21], are a versatile
and useful tool applied to a wide spectrum of modelling
systems/processes. PN can be represented graphically and
mathematically. The graphical representation includes both
structural and behavioural aspects, which are responsible for
the static and dynamic representation of the process or system,
respectively. Once, the bipartite graph, i.e. the PN structure,
and the marking, i.e. the PN behaviour, are defined the user
can obtain information about the behaviour of the given
system/process. Additionally, a PN model can be expressed
by means of mathematical equations and other mathematical
models that can describe the system/process behaviour, i.e.
how the system/process changes over time tracking the

removal/addition of tokens through the PN places. PNs can be
used as a visual communication aid to model the
system/process behaviour.

The formal definition of a PN is taken from Schneeweiss
[22]:

A PN, GPN, is a graph with markings of nodes and edges as
shown in Equation 1:

𝐺𝐺𝑃𝑃𝑃𝑃 = �𝑉𝑉𝑝𝑝,𝑉𝑉𝑡𝑡,𝐸𝐸;𝑀𝑀(0),𝐷𝐷,𝑊𝑊�𝐸𝐸 ⊆ �𝑉𝑉𝑝𝑝 × 𝑉𝑉𝑡𝑡� ∪ �𝑉𝑉𝑡𝑡 × 𝑉𝑉𝑝𝑝� (1)

Where: GPN corresponds to the Petri Net Graph; Vp represents
the set of places; Vt is the set of transitions; E corresponds to
the set of edges (ordered pairs of nodes), M(0) is the initial
marking vector of the set Vp of places; D is the vector of
switching delays; W is the vector of weights of edges.

The components of M and W are integers and those of D are
non-negative real numbers. So, a PN is an ordered 6-tuple of
two sets of nodes (Vp and Vt), edges, vector integers (M and
W) and a random non-negative real vector (D).

A Petri Net includes two types of nodes: places (drawn as
circles) and transitions (drawn as rectangles). There are two
types of transitions, the immediate (drawn as solid rectangles)
which when enabled fire immediately, and timed (drawn as
hollow rectangles) which have a time delay associated with
them. Arcs/edges are used to show the link between places and
transitions. The tokens removal from/addition to places
through the net describes the dynamic behaviour of the model.
Tokens represented by solid dots can be removed from
upstream places and created in downstream places only if the
corresponding transition has been enabled, i.e. fires. The
number of removed/added tokens is performed according to
the weights (multiplicity) of the arcs. A transition is enabled
and able to fire only if the number of tokens in each of its
input places is at least equal to the multiplicity of the
corresponding edge from that place. Another element that
increases the decision power of the Petri Nets is the inhibitor
arc, denoted as a dotted arc. The inhibitor arc does not allow
the firing of a transition when the place it comes from includes
a token. According to Figure 1, the token from place p1 can
fire t1 and pass to place p3 only if p2 does not contain a token.

Figure 1 Inhibitor Arc

The removal/addition of tokens through a PN can be
transformed into matrix form. Then the marking of the Petri
Net after the rth transition, Mr, can be found by Equation 2.

Mr = M0 + AT. T1 (2)

Where: M0 is a column matrix (n, 1), where n is the number of
places included in the net, showing the initial marking of the

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

net; T1 is a column matrix (m, 1) where m is the number of
transitions included in the net, showing the number of times
each transition has fired in the r transitions; A is the incidence
matrix (m, n) where each element aij shows the effect that
transition i has on place j.

The dynamic and concurrent activities of systems/processes
can be simulated using the removal/addition of tokens in the
net. For example, the Petri Net structure can capture and
describe different components combinations such as
components connected in series or parallel, repairable systems
with warm spares, load sharing, multiphase missions, pooled
repair, system on demand, damage tolerance [23].

IV. METHODOLOGY AND MODELLING METHODS
The methodology proposed in this paper introduces the

automated generation of a Petri Net model taking as input a
UML diagram widely used in industry. The UML diagram
includes all the required information, i.e. the topology of a
given system/process, for the user to develop the PN model in
the form of the incidence matrix A, which is the mathematical
representation of a PN model. Figure 2 shows the main
elements of the process.

Figure 2 Methodology steps for the automated PN generation

Hence, the first step, process modelling, includes the UML
2.0 Activity Diagram (AD) for a given system/process which
is provided by industry (though can be developed by the user).
Then this diagram is exported into Extensible Markup
Language (XML) Metadata Interchange (XMI) format. The
structural and behavioural information of the system/process
are now transformed into XMI format. The second step, model
transformation using Extensible Stylesheet Language
Transformation (XSLT), takes as input the XMI file developed
in the first step, develops the appropriate XSLT templates and
outputs a suitably structured XML file to be imported into a
database tool for further manipulation. The third step,
database modelling using MySQL-PN model, focuses on the
Structured Query Language (SQL) code development using
the system/process information as it is stored in the XML file
created in the second step. The code is able to generate the PN
incidence matrix.

A thorough description of the methodology steps and the
modelling methods and techniques used in this work are

explained in the following sections.

A. Step 1 – Process Modelling (PM)
The system/process topology can be described explicitly by

Process Modelling (PM) methods. There are several PM
methods used in industry such as Unified Modelling Language
(UML)/System Modelling Language (SysML) diagrams,
Business Process Modelling Notation (BPMN), Piping and
Instrumentation Diagrams (P&IDs), Computer Aided Design
(CAD), Graphical User Interface (GUI), etc. that focus on the
mapping of the structural and behavioural aspects of
components or activities in systems/processes. The PM can be
either developed by a software engineer or provided directly
by industry.

Unified Modelling Language (UML), a graphical modelling
language applied to engineering systems, was developed by
the OMG [24], International Council on Systems Engineering
(INCOSE) and Application Protocol 233 (AP233 consortium).
It is characterised as a critical enabler for Model Driven
Systems Engineering and can cope with model and data
interchange via XML Metadata Interchange (XMI) and the
evolving AP233. The UML 2.0 Activity Diagram (AD) has
been chosen for this work due to its wide applicability in
industry and the well-defined structure, hierarchical
representation, directness and well-defined semantics that it
provides. The Activity Diagram (AD) is often applied in a PM
and it graphically shows the flow of actions and activities in
systems/processes. This diagram consists of nodes and control
flow edges enabling the dynamic/ behavioural representation
of a process model. The nodes include the activity initial node,
i.e. a start point illustrated as a small solid circle; the activity
final node, i.e. a final point shown as a solid circle with a
hollow circle inside; opaque action nodes, i.e. blocks
represented as hollow rectangles; decision nodes notated as a
diamond-shaped symbol with one incoming edge and two or
more outgoing edges; and merge nodes shown as a diamond-
symbol with two or more incoming edges and one outgoing
edge. The control flow edges included in the diagram
correspond to the arcs.

Hence, the PN automation can begin with the UML 2.0 AD.
Once the UML 2.0 AD is created or provided directly from
industry, then it is exported in XMI format. The XMI file
consists of the two elements: nodes and edges as follows:

The XMI nodes are derived either from the AD activity
initial/ final nodes or from the UML 2.0 AD opaque action
nodes. The following attributes are included in an XMI node
element:

• The “type” attribute that defines that this element is
a node in the UML 2.0 AD.
o The “id” that is a unique element identifier.
o The “name” as this node is presented in the

AD.
o The “incoming” which corresponds to the

edge id attribute that enters the node.
o The “outgoing” attribute that corresponds to

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

the edge id attribute that leaves the node.
• The XMI edges are derived from the UML 2.0 AD

control flow edges, i.e. the arcs. The following
attributes are included in an XMI edge element:

o The “type” which defines that this element is
an edge in the UML 2.0 AD.

o The “id” that is a unique element identifier.
o The “name” as this edge is presented in the

AD.
o The “target” attribute that corresponds to the

node id attribute in which the edge ends up
o The “source” that corresponds to the node id

attribute from which the edge starts.

B. Step 2 – Model Transformation using Extensible
Stylesheet Language Transformation (XSLT)

This second methodology step refers to the model
transformation process where the XMI file (source model) is
transformed into an XML (target model) file. This model
transformation is necessary to facilitate the use of the XML
document later in the database modelling step, since this XML
file is then imported in the database modelling software.

The transformation of the XMI file into an XML format is
carried out using XSLT templates. This transformation is
accomplished with the help of an XSLT transformer tool that
takes as input the XML source model file, i.e. XMI file, and
the XSLT document created by the user and creates the XML
target model file, i.e. XML file, automatically. The XSLT
belongs to the XML family and is used to perform XML
transformations allowing the user to specify the desired
structure and content of the output file. Hence, XSLT can
reorder XML elements, add new elements and decide which
elements should be displayed or omitted. XML elements are
used to classify data in an XML document. The start and end
of an XML element are represented with opening and closing
tags, respectively. The transformation process is based on
specific template rules defined by the user.

The nodes and edges from the XMI document created in step
1 are used to form an XML document following the XSLT
rules. Two XSLT files have been developed providing the
rules which are applied to the XMI file as follows:

1 The first XSLT file consists of two templates as
follows:
• The first template is for the XMI nodes and

retrieves the “incoming”, “name” and “outgoing”
attributes and their corresponding values.

• The second template is for the XMI edges and
retrieves the “id”, “name”, “target” and “source”
attributes and their corresponding values.

The output XML file includes the attributes retrieved
from the XMI as mentioned above.

2 The next step in the model transformation targets the
transformation of the XML attributes into XML
elements. This second XSLT file that consists again of
two templates is generated and applied to the XML
document created from the first XSLT model

transformation. The two XSLT templates developed in
the second transformation transforms the XML
attributes of nodes and edges into XML elements of
nodes and edges, respectively.

Therefore, the two XSLT transformations have formed the
target XML document that can be loaded into MySQL
Workbench for further manipulation so that the PN incidence
matrix can be generated.

C. Step 3 – Database Modelling MySQL–PN Model
A versatile development in the field of software engineering

is the database concept that since the late 1980s has been used
widely in industry [26]. Database modelling tools are able to
capture analyse and organise data in an easy way to be
accessed, managed and updated.

MySQL (Michael Widenius Structured Query Language)
[27] is a general purpose relational database has been chosen
in this work. MySQL, one of the most popular open source
visual databases, is a powerful program with high-
performance and scalability that uses the SQL data language.
The user can create tables by storing, updating and
manipulating the data. MySQL can work very quickly with
large data sets and with many languages, including C, C++,
JAVA, PHP, etc.

In this step the XML file created in the model
transformation step is imported into the MySQL software
(MySQL Workbench) and an SQL code is developed to
manipulate and organise the data in a matrix form similar to
that of the PN incidence matrix.

The XML file, developed following the XML
transformations in step 2, is automatically loaded into the
MySQL Workbench. The final step includes the manipulation
and storage of the XML document information into the
transpose of the PN incidence matrix using an SQL code.

The automated construction of the transpose of the PN
incidence matrix was generated applying the following steps:

1. The ‘node’ table is created in MySQL. This table
consists of four columns, i.e. the “primary_id”,
“incoming”, “name” and “outgoing” columns. The
“primary_id” column acts as a primary key giving to
each row a unique identification number. The text
values of the “incoming”, “name” and “outgoing”
elements for each node sub-element as included in the
XML file, created in the second step, are stored in this
table. The order that the records are stored in the ‘node’
table, i.e. order of rows in the table, is determined by
the order that the node elements are identified in the
XML file.

2. The ‘edge’ table is created in MySQL. This table
consists of three columns, i.e. the “primary_id”, “id”
and “target” columns. The “primary_id” column acts as
a primary key giving to each row a unique
identification number. The text values for the “id” and
“target” elements are also stored in this table. The order
that the records stored in this table. The order is
determined by the order that the edge elements
identified in the XML file.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

3. The SQL code traces the XML edge sub-elements that
have identical targets and source values and replaces
the id values of the targets with the id values of the
sources, generating the ‘decision’ table. This table
includes the “id” and “name” columns. The data values
for the ‘decision’ table are derived from the ‘edge’
table and the edge elements from the XML file.

4. The ‘new-edge’ table is generated. This table consists
of the id values derived from the combination of the
‘edge’ and ‘decision’ tables, created in steps 2 and 3. It
stores for each id the corresponding “name” value as
derived from the XML file.

5. The ‘node’ and ‘new-edge’ tables, generated in steps 1
and 4, are joined. The “incoming” and “outgoing”
columns listed in step 1 in the ‘node’ table are replaced
by the “names” as listed in step 4 in the ‘new-edge’
table. The ‘final’ table is developed and three columns
are created, the “name_source”, “name_activity” and
“name_target”.

6. A matrix is generated using data from the ‘final’ table
as created in step 5. The matrix columns are defined by
the entries of the “name_activity” column, whereas the
rows are defined by the entries of the “name_source”
column of the ‘final’ table (step 5). Therefore, once a
“name_activity” and “name_source” are in the same
row in the ‘final’ table, then the value -1 should be put
in the corresponding matrix cell.

7. Similarly, a second matrix is generated. The matrix
columns are defined by the entries of the
“name_activity” column, whereas the rows are defined
by the entries of the “name_target” column of the
‘final’ table (step 5). Therefore, once a “name_activity”
and “name_target” are in the same row in the ‘final’
table, then the value +1 should be put in the
corresponding matrix cell.

8. The transpose of the incidence matrix is generated by
combining the matrices developed in steps 6 and 7.

V. CASE STUDY – AUTOMATED PETRI NET GENERATION AND
SIMULATION

The automated PN generation is demonstrated by its
application to an end of life manufacturing process. A
recycling IT asset process has been used to show the
application of the methodology developed for automated PN
model construction. Once constructed the PN is used to
investigate the efficiency of the process.

A. Step 1 – Process Modelling
1) Recycling IT Asset Process Description & UML 2.0 AD
Development

The recycling IT asset process targets the repair of electronic
devices. Once a mobile device enters the process line, it can
end up at in one of two states, either refurbished or scrapped.
Decisions and actions along the potential paths in the process
include seven different possible activities as follows:

• Asset Track (AT): Asset information is introduced

into the traceability system. The characteristics of
each product such as model device, battery and
memory capacity, screen size, etc., are recorded.

• Visual Inspection (VI): The physical condition of
each asset is assessed. If the repair or refurbishment
of the device is economically viable, it is forwarded
to the Functional Test activity. Otherwise, the device
is forwarded to Strip and Scrap.

• Functional Test (FT): The functionality of each
product is investigated conducting the following
tests/activities such as charger check, battery test,
LCD screen check, and ringing test, vibration,
microphone and speaker test.

• Data Erasure (DE): Data is erased securely by using
specific licensed software.

• Cleaning and De-Labelling (CD): Refurbished
products are cleaned properly. Labels are removed
and replaced only if considered necessary.

• Repair (R): A product is repaired in case its repair is
economically viable.

• Strip and Scrap (SS): Failed assets are checked for
any useful parts that can be salvaged and recycled to
be used in other cases and are then sent for secure
destruction.

All activities can handle only one device at a time except
for Data Erasure that can accept 100 devices simultaneously.
Each activity has a time to completion associated with it,
which can vary for different devices and product types too.

Additionally, each activity has a probability of pass or fail.
In practise, most of the activities are carried out at the same
physical location, i.e. on the computer. The repair activity (R)
however, takes place away from the main refurbishment
process but in the same factory, and is not performed until
there is a batch requiring repair. For that reason there is a
delay between the functional test (FT) and the repair (R)
activities. A schematic of the process that includes all the
possible paths of the recycling IT process is presented, in
Figure 3.

An open source Integrated Development Environment
(IDE), Eclipse software, version 4.5 Mars [25], has been used
for the UML 2.0 AD development. The AD has been
developed representing all of the paths in the IT asset process,
and validated successfully. The diagram consists of an initial
node (‘Start’) which corresponds to the start of the process i.e.
where a mobile device enters the system, a final node (‘End’)
when the process is completed for a device, 7 opaque action
nodes (‘Asset Track (AT)’, ‘Visual Inspection (VI)’, etc.), that
correspond to the activities carried out through the process, 1
merge node that is used when the output of two activities have
a common source node, 4 decision nodes which are used when
one activity has two target nodes and control flows with
unique names that correspond to the links between the nodes.
Additionally, a control loop starting from node ‘D_R’ exists in
the AD, as seen in Figure 3, increasing process complexity.

This is the starting point for the automated PN model
generation, which is typically available from industry. From
this point all information is extracted automatically involving

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

the various steps of conversion.

2) AD to XMI format
The Activity Diagram for the IT asset process is exported in

XMI format, using the ‘Export’ option available in Eclipse
Mars (4.5). The XMI file consists of nodes such as the Start,
Asset Track, Visual Inspection, End etc. and edges such as
pin, ATp, VIp, VIf, pout etc. as shown in Figure 3. The XMI
nodes correspond to the PN places, whereas the XMI edges to
the PN transitions. The XMI “type”, “id”, “name”, “incoming”
and “outgoing” attributes for the ‘Asset Track’ node element
are included in Figure 4. The id value is unique for each
element. The text next to Figure 4 shows how the XMI node
elements are related to the UML 2.0 AD as presented in
Figure 3. Similarly, the XMI “type”, “id”, “name”, “source”
and “target” attributes of the ‘pin’ edge element are presented
in Figure 5. The text next to Figure 5 shows how the XMI
edge elements are related to the UML 2.0 AD in Figure 3.

Figure 3 UML 2.0 AD of the IT Asset Recycling Process

Figure 4 Node Element in XMI Format

Figure 5 Edge Element in XMI Format

B. Step 2 – Model Transformation using XSLT
This step focuses on the XML file development that is

loaded in the next step into the MySQL Workbench database
environment for automated PN construction. The XML
document is obtained from the second stage XMI file
transformation using two XSLT files.

Using the methodology described in Section IV, Part B, the
first XML file is created and part of it is presented in Figure 6
for the ‘Asset Track’ node and the ‘pin’ edge. The text next to
Figure 6 shows how the XML node elements are related to the
UML 2.0 AD in Figure 3.

Figure 6 First XML Format developed from the XMI using XSLT

The second XSLT document applied to the XML file
developed from the first XSL transformation consists again of
two templates. The text next to Figure 6 describes how the
XML edge elements are related to the UML 2.0 AD developed
for the IT asset process. In the second XSLT transformation
stage, the node or edge child element as included in the first
XML node or edge file accordingly is transformed into node
or edge root element respectively. Then, the attributes of the
node/edge child element, i.e. “incoming”, “name”, etc., are
transformed into sub-elements of the root node or edge XML
element.

The XML files developed in this section for the IT asset
process consists of 31 elements, 17 are edges, and 14 are
nodes. Hence, their size is the same as the XMI document
created.

C. Step 3 – MySQL Database Modelling
The final XML file is loaded into MySQL Workbench and

the general SQL code developed is used to generate the PN
model. The steps to generate the transpose of the PN incidence
matrix for the IT asset process were applied as follows:

1 The ‘node’ table is created using the SQL code as
described in Section IV, Part C, step 1. The table
developed is illustrated in Table 1. In the activity
column the “M” value corresponds to the Merge nodes
from the UML 2.0 AD.

2 The ‘edge table is created using the SQL code as
introduced in Section IV, Part C, step 2. The ‘edge’
table is presented in Table 2. So, for example it can
been seen that the id and target values for the edge
presented in the XML document in Figure 6 are placed
to the 1st row of Table 2.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

Table 1 MySQL ‘Node’ Table

id incoming activity outgoing

2 _pWiwMLJTEeaTirlhAX5dxQ Asset_Track _0ZeSILJTEeaTirlhAX5dxQ

3 _lLpAkpLJUEeaTirlhAX5dxQ Visual_Inspection _Ao6DcLJTEeaTirlhAX5dxQ

4 _0ZeSILJTEeaTirlhAX5dxQ Visual_Inspection _Ao6DcLJTEeaTirlhAX5dxQ

5 _FrRKELJUEeaTirlhAX5dxQ Functional_Test _NbtAgLJUEeaTirlhAX5dxQ

6 _N9kXcLJUEeaTirlhAX5dxQ Data_Erasure _XK0xMLJUEeaTirlhAX5dxQ

7 _JXp8QLJUEeaTirlhAX5dxQ Strip_Scrap _pJgkULJUEeaTirlhAX5dxQ

8 _d8He0LJUEeaTirlhAX5dxQ Strip_Scrap _pJgkULJUEeaTirlhAX5dxQ

9 _jOjo0LJUEeaTirlhAX5dxQ Strip_Scrap _pJgkULJUEeaTirlhAX5dxQ

10 _QEscALJUEeaTirlhAX5dxQ Repair _h5c3ELJUEeaTirlhAX5dxQ

11 _Ysk30LJUEeaTirlhAX5dxQ Cleaning_De_Labelling _vA0V8LJUEeaTirlhAX5dxQ

21 _pJgkULJUEeaTirlhAX5dxQ M _1tIc8LJUEeaTirlhAX5dxQ

22 _vA0v8LJUEeaTirlhAX5dxQ M _1tIc8LJUEeaTirlhAX5dxQ

Table 2 MySQL ‘Edge’ Table

id_p id target

1 _pWiwMLJUEeaTirlhAX5dxQ _InKv8LJTEeaTirlhAX5dxQ

2 _0ZeSILJTEeaTirlhAX5dxQ _MAZVkLJTEeaTirlhAX5dxQ

3 _Ao6DcLJTEeaTirlhAX5dxQ _iwxWELJTEeaTirlhAX5dxQ

4 _FrRKELJTEeaTirlhAX5dxQ _M-adALJTEeaTirlhAX5dxQ

5 _JXp8QLJTEeaTirlhAX5dxQ _OIQZ8LJTEeaTirlhAX5dxQ

6 _NbtAgLJUEeaTirlhAX5dxQ _jxsAgLJTEeaTirlhAX5dxQ

7 _N9kXcLJUEeaTirlhAX5dxQ _NahxQLJTEeaTirlhAX5dxQ

8 _QEscALJUEeaTirlhAX5dxQ _PslTcLJTEeaTirlhAX5dxQ

9 _XK0xMLJUEeaTirlhAX5dxQ _ksMg8LJTEeaTirlhAX5dxQ

10 _Ysk30LJUEeaTirlhAX5dxQ _QDcUQLJTEeaTirlhAX5dxQ

11 _d8He0LJUEeaTirlhAX5dxQ _OIQZ8LJTEeaTirlhAX5dxQ

12 _h5c3ELJUEeaTirlhAX5dxQ _ltzH4LJTEeaTirlhAX5dxQ

13 _jOjo0LJUEeaTirlhAX5dxQ _OIQZ8LJTEeaTirlhAX5dxQ

14 _lLpAkpLJUEeaTirlhAX5dxQ _MAZVkLJTEeaTirlhAX5dxQ

15 _pJgkULJUEeaTirlhAX5dxQ _9vls8LJTEeaTirlhAX5dxQ

16 _vA0v8LJUEeaTirlhAX5dxQ _9vls8LJTEeaTirlhAX5dxQ

17 _1tIc8LJUEeaTirlhAX5dxQ _ex_zYLJTEeaTirlhAX5dxQ

3 A table named ‘source’ is created by defining its
columns, i.e. ‘id_p’, ‘name’ and ‘source’, and the types
of its data. The rows of the table are identified by the
‘edge’ element following the order presented in the
final XML file. The ‘name’ and ‘source’ columns hold
information derived from the edge elements of the final
XML file, as can be seen from Table 3. In Table 3, it is
noted that some rows have the same values of sources.
For example, the 3rd and 4th rows have the same source
value. This happens because those two edges
correspond to the outputs of the “D_VI decision node”
of the UML 2.0 AD and hence they have the same
source element. Therefore, the ‘decision’ table, shown
in Table 4, is created as described in Section IV, Part

C, step 3. In this table the records from Table 3 that
have the same source values are stored. This is
conducted for all the decision nodes.

Table 3 MySQL ‘Source’ Table

id_p name source

1 pin _Ftmh0LJTEeaTirlhAX5dxQ

1 ATp _InKv8LJTEeaTirlhAX5dxQ

4 VIp _iwxWELJTEeaTirlhAX5dxQ

5 VIf _iwxWELJTEeaTirlhAX5dxQ

7 FTp _jxsAgLJTEeaTirlhAX5dxQ

8 FTf _jxsAgLJTEeaTirlhAX5dxQ

10 DEp _ksMg8LJTEeaTirlhAX5dxQ

11 DEf _ksMg8LJTEeaTirlhAX5dxQ

13 Rf _ltzH4LJTEeaTirlhAX5dxQ

14 Rp _ltzH4LJTEeaTirlhAX5dxQ

15 SSp _OIQZ8LJTEeaTirlhAX5dxQ

16 CDp _QDcUQLJTEeaTirlhAX5dxQ

17 pout _9vls8LJTEeaTirlhAX5dxQ

Table 4 MySQL ‘Decision’ Table

id id_p name

_Ao6DcLJTEeaTirlhAX5dxQ 4 VIp

_Ao6DcLJTEeaTirlhAX5dxQ 5 VIf

_NbtAgLJUEeaTirlhAX5dxQ 7 FTp

_NbtAgLJUEeaTirlhAX5dxQ 8 FTf

_XK0xMLJUEeaTirlhAX5dxQ 10 DEp

_XK0xMLJUEeaTirlhAX5dxQ 11 DEf

_h5c3ELJUEeaTirlhAX5dxQ 13 Rf

_h5c3ELJUEeaTirlhAX5dxQ 14 Rp

4 The ‘new_edge’ table, illustrated in Table 5, is created

following the SQL code as described in Section IV,
Part C, step 4.

5 The code creates the ‘final table’, presented in Table 6,
as explained in Section IV, Part C, step 5. The
‘activity’ column of Table 6 corresponds to the
transitions as presented in the PN model, whereas the
‘id_name’ and ‘name’ columns correspond to the input
and output places of each transition respectively for
each row. The ‘id_name’ and ‘name’ columns are the
input and the output control flows respectively of each
node in the UML 2.0 AD. For example, the ‘Asset
Track’ has input the ‘pin’ and output the ‘ATp’.

6 The code described in Section IV, Part C, step 6 creates
the negative matrix as presented in Table 7. A matrix is
created including the PN transitions, as presented in the
‘activity’ column from the ‘final’ table, in the 1st row
and the places, as presented in the ‘id_name’ column
from the ‘final’ table, in the first column. Once a
transition and a place from the ‘final’ table are in the

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

same row, then the value -1 is put in the corresponding
matrix cell. For example, if the ‘Asset Track’ is in the
same row with the ‘pin’ in the ‘final’ table, then the
SQL code adds in the corresponding cell of the matrix
the value -1.

7 The code described in Section IV, Part C, step 7
generates the positive matrix as presented in Table 8.
Similar to step 6, a second matrix with the +1 value is
created. Therefore, for example it can be seen that if
‘Visual Inspection’ is in the same row with ‘VIp’ /
‘VIf’ in the ‘final’ table, then the SQL code adds in the
corresponding cell of the matrix the value 1.

Table 5 MySQL ‘New-edge’ Table

mono id name

1 _pWiwMLJUEeaTirlhAX5dxQ pin

2 _0ZeSILJTEeaTirlhAX5dxQ ATp

3 _pJgkULJUEeaTirlhAX5dxQ SSp

4 _vA0V8LJUEeaTirlhAX5dxQ CDp

5 _1tIc8LJUEeaTirlhAX5dxQ pout

6 _Ao6DcLJTEeaTirlhAX5dxQ VIp

7 _Ao6DcLJTEeaTirlhAX5dxQ VIf

8 _NbtAgLJUEeaTirlhAX5dxQ FTp

9 _NbtAgLJUEeaTirlhAX5dxQ FTf

10 _XK0xMLJUEeaTirlhAX5dxQ DEp

11 _XK0xMLJUEeaTirlhAX5dxQ DEf

12 _h5c3ELJUEeaTirlhAX5dxQ Rf

13 _h5c3ELJUEeaTirlhAX5dxQ Rp

Table 6 MySQL ‘Final’ Table

primary_id id_name activity name

1 pin Asset_Track ATp

2 VIf Strip_Scrap pout

3 DEf Strip_Scrap pout

4 Rf Strip_Scrap pout

5 DEp Cleaning_De_Labelling pout1

6 ATp Visual_Inspection VIp

7 Rp Visual_Inspection VIp

8 ATp Visual_Inspection VIf

9 Rp Visual_Inspection VIf

10 VIp Functional_Test FTp

11 VIp Functional_Test FTf

12 FTp Data_Erasure DEp

13 FTp Data_Erasure DEf

14 FTf Repair Rf

15 FTf Repair Rp

Table 7 Input Matrix for the IT Asset Process

id_name AT VI FT DE R CD SS

ATp 0 -1 0 0 0 0 0

DEf 0 0 0 0 0 0 -1

DEp 0 0 0 0 0 -1 0

FTf 0 0 0 0 -1 0 0

FTp 0 0 0 -1 0 0 0

pin -1 0 0 0 0 0 0

Rf 0 0 0 0 0 0 -1

Rp 0 -1 0 0 0 0 0

VIf 0 0 0 0 0 0 -1

VIp 0 0 -1 0 0 0 0

Table 8 Output Matrix for the IT Asset Process

name AT VI FT DE R CD SS

ATp 1 0 0 0 0 0 0

DEp 0 0 0 1 0 0 0

DEf 0 0 0 1 0 0 0

FTf 0 0 1 0 0 0 0

FTp 0 0 1 0 0 0 0

pout 0 0 0 0 0 1 1

Rf 0 0 0 0 1 0 0

Rp 0 0 0 0 1 0 0

VIp 0 1 0 0 0 0 0

VIf 0 1 0 0 0 0 0

8 The code generates the transpose of the overall PN
incidence matrix for the IT asset recycling process
unifying the tables/ matrices developed in steps 6 and
7, as shown in Table 9.

Table 9 Overall Transpose of the PN Incidence Matrix for the IT

Asset Process

name AT VI FT DE R CD SS

ATp 1 -1 0 0 0 0 0

DEf 0 0 0 1 0 0 -1

DEp 0 0 0 1 0 -1 0

FTf 0 0 1 0 -1 0 0

FTp 0 0 1 -1 0 0 0

pin -1 0 0 0 0 0 0

pout 0 0 0 0 0 1 1

Rf 0 0 0 0 1 0 -1

Rp 0 -1 0 0 1 0 0

VIf 0 1 0 0 0 0 -1

VIp 0 1 -1 0 0 0 0

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

D. Automated Petri Net Model Generation
From the matrix generated from the automated process and

shown for this example in Table 9, a PN model can be
developed and is presented in Figure 7. The PN consists of 7
transitions, which correspond to activities, and 11 places. Each
transition included in the overall PN in Figure 7 consists of a
sub-PN. Figure 8 shows a generalised sub-Petri Net for any
activity with a start and end place (Activity Starts and Activity
Ends), a transition time (Activity Time), two probability
transitions (pass and fail probability transitions) and their
corresponding places (pass and fail probability places), the
time between two activities (interval activity pass and fail) and
the next activity places for the pass and fail paths,
correspondingly. All the PN activities are represented by such
a net.

Four cases have been identified for the sub-PNs as follows:

• Initial activity where a ‘device arrives’ place and an
‘immediate’ transition should be added in the net.

• One probability path, in this case only the pass
probability path is required.

• Two probability paths, in this case both the pass and
fail probability paths are required.

• Final activity where a ‘device leaves’ place is used.
This is the last place of all the sub-nets.

The incidence matrix for the generalised sub-Petri Net
shown in Figure 8 has been created and presented in Table 10.

Figure 7 Overall PN model for the IT asset process

Figure 8 Generalised sub-PN model

Table 10 Incidence matrix for the generalized sub-PN model

 AStart AEnd PPP NAP FPP NAF

ATime -1 1 0 0 0 0

PPT 0 -1 1 0 0 0

IAP 0 0 -1 1 0 0

FPT 0 -1 0 0 1 0

IAF 0 0 0 0 -1 1

Therefore, all the sub-PNs and the corresponding matrices
for the IT asset process are developed following the rules
defined in this section. For example, for the Asset Track (AT)
the sub-PN is presented in Figure 9 and the corresponding
transpose of the incidence matrix is shown in Table 11. The
AT sub-net relates to the first case identified in this section for
the development of the sub-PNs, which includes the initial
activity part and hence the AT sub-net consists of the DA
place, which declares the existence of a device in the process.
The immediate transition allows the device to start with the
AT activity immediately after the device is in the process.
After the AT activity has completed a token will exists in the
ATEnd place and then the probability part is presented. In this
case, there is only one path for the device to follow after Asset
Track, see Figure 7, and hence the pass probability of the AT
is equal to 1 and there is no fail probability path. The ATPPP
place enables the removal/addition of a token (device) from
the ATPPT to the IATP that corresponds to the interval
between the end of the AT activity and the next activity, i.e.
the VI.

Figure 9 Sub-PN model for the Asset Track Activity

Table 11 Transpose of the sub-PN incidence Matrix for the Asset Track

 DA ATStart ATEnd ATPPP VIStart

Immediate -1 1 0 0 0

ATTime 0 -1 1 0 0

ATPPT 0 0 -1 1 0

IATP 0 0 0 -1 1

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

E. Petri Net Model Simulation
1) Process Data and Petri Net Simulation

This section presents the simulation steps followed
following the automated generation of the PN model described
above for the IT asset process. The input data for the
simulation consists of the values for the time taken for all the
activities and probabilities for the pass and fail. This
corresponds to the times for all the transitions presented in the
sub-PNs developed according to the overall PN in Figure 7.
Table 12 shows the pass and fail probabilities for each
activity, PPT and FPT in Figure 8, and the minimum and
maximum times needed to complete each activity. Table 13
shows the minimum and maximum times required for a device
to move one activity to another, used to determine IAP and
IAF in Figure 8. The data used for the simulation comes from
2113 mobile phones processed over 323 hours.

Table 12 Pass and fail probabilities & minimum and maximum activity times

for the IT asset process.

Activity
Time

Pass
Probability

Fail
Probability

min_time
(secs)

max_time
(secs)

AT 1 0 107 148

VI 0.688 0.312 5 10

FT 0.733 0.267 60 180

R 0.294 0.706 240 900

DE 0.971 0.029 30 40

CD 1 0 30 60

SS 1 0 30 60

Table 13 Minimum and maximum interval times for the IT asset process

Interval
Pass/Fail
Activity Time

min_time
(secs)

max_time
(secs)

AT pass 30 120

VI pass 300 1800

VI fail 300 3600

FT pass 1800 7200

FT fail 7200 8640

R pass/fail 1800 28800

DE pass/fail 1800 10800

CD pass 0 0

SS pass 0 0

The algorithm developed creates a connection between the
MySQL and Eclipse retrieving the generated PN incidence
matrix and reads the data from Tables 12 and 13 stored in
Excel. During the simulation the activity times and interval
activity times needed in the sub-PNs are generated using
Equation 3. The sojourn time in the current state, found by
applying Equation 4, can be computationally modelled using
any cumulated distribution function, such as exponential,

related to the time of occurrence of the corresponding event.
This indicates that the developed model follows the SPN
concept where the delays are randomly chosen by sampling
distributions associated with transitions. Hence, the SPN
model that adds flexibility and a wider range of applicability is
considered.

𝑡𝑡 = min _𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + (max _𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − min _𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) ∗ 𝑥𝑥 (3)

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = (𝑡𝑡_𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎 + 𝑡𝑡_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑖𝑖_𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎) ∗ 𝑥𝑥 (4)

Where: t is the time in the current activity/interval state;
tsojourn is the sum of activity, i.e. service, time and interval,
i.e. waiting, time; min_time and max_time are those given in
Tables 12 and 13; and x is a uniformly distributed random
number in the interval (0, 1).

Random numbers for all the PN transitions, i.e. activity
transitions, probabilistic transitions and interval activity
transitions, are generated, and hence the PN model is
transformed into a stochastic PN (SPN) since time t obtained
applying Equation 3 is a random variable. For the probabilistic
transitions, if the random number generated is lower than or
equal to the pass probability of an activity then the device is
assumed to pass, otherwise the device fails. Equation 2
presented in Section III is also used in the simulation using the
matrices generated for the overall PN and sub-PNs for the IT
asset process. This equation can show each time the
removal/addition of the token into the PN model.

The simulation can provide the average time each path
requires to be completed, the average time for each transition,
the most common visited places in each path, as well as the
paths resulted most in failure and the nodes most involved
with route to failure.
2) Simulation Results and Discussion

The results obtained from the simulation, conducted to
investigate the process performance and identify possible
deficiencies that exist in the IT process, are discussed in this
section. The six paths identified in the IT asset process, using
the incidence matrix in Table 9 and the overall PN in Figure 7,
and then simulated are shown in Table 14 in the ‘Path
Activities’ column.

Table 14 Paths and average times of each path for the IT asset process

Path
ID Path Activities

Average
Path Time
(secs)

1 pin-AT-ATp-VI-VIp-FT-FTp-DE-DEp-CD-
pout 12398.14

2 pin-AT-ATp-VI-VIp-FT-FTp-DE-DEf-SS-pout 1229.05

3 pin-AT-ATp-VI-VIp-FT-FTf-R-Rp-VI-VIp-FT-
FTp-DE-DEp-CD-pout 38698.8

4 pin-AT-ATp-VI-VIp-FT-FTf-R-Rp-VI-VIp-FT-
FTp-DE-DEf-SS-pout 35140.8

5 pin-AT-ATp-VI-VIp-FT-FTf-R-Rf-SS-pout 24657.25

6 pin-AT-ATp-VI-VIf-SS-pout 2158.8

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

All the six paths listed in Path Activities column in Table
14 can be found in the overall PN in Figure 7. The average
times for each path obtained by applying the Monte Carlo
Simulation have been processed by applying the chi-square
law, estimating the confidence interval of 0.9. This enables
estimation of the precision of results obtained from the
simulation. These results are shown in Table 14. The
simulation results have shown that the 3rd and 4th paths are the
longest. This is due to the Repair stage, which is the most time
consuming stage in both paths.

To conclude the simulation findings, the average interval
repair pass or fail time creates long delays in the repair path.
This is a limiting factor in the process and happens because
the repair of the devices is completed in a different location
from the rest of the activities and hence additional time is
required for the transportation of the assets. From the
simulation results, some recommendations are provided to
improve the process’s performance.

• Increase the ability of the activities to accept multiple
devices simultaneously as the Data Erasure does.

• Locate the activities at the same place in order to
decrease the interval times and the manpower
required.

The PN obtained by the automated procedure for the
recycling IT asset process has been verified successfully, by
checking its structural and behavioural properties such as
boundedness, liveness and safeness. Additionally, once timing
and probabilistic data was introduced into the corresponding
PN transitions, the automated PN generation procedure has
been validated via the PN’s simulation. Initially, the
simulation algorithm visually checked the movement of tokens
through the PN paths, validating that the paths followed the
same route as the paths existing in the UML AD provided for
the recycling IT asset process. The algorithm has also been
validated by comparing data from the IT process, with
simulation results, which were estimated by following the
various PN paths, proving that the PN is a realistic
representation of the recycling IT asset process. Therefore, the
algorithm used for the automated PN model generation is
correct, complete and develops PN models with accuracy
satisfying its intended purpose. Therefore, the PN model is
necessary to: (i) check the correctness of the algorithm
developed for the automation procedure; and (ii) be simulated
to investigate the system/process performance identifying
possible deficiencies. In this work, the PN model for the
recycling IT asset process has been automatically generated
and used for the simulation. However, the full benefits of the
methodology are in the application to more complex
systems/processes with a larger number of
components/activities and paths, where the PN visualisation,
animation and graphical representation of simulation results
can improve the quality of decision-making.

F. Comparison of PNs Construction Methods
In this section, a comparison between the current work and

the methods that focus on the semi-automated and automated
construction of PNs, as they were reviewed in Section II
(Related Work), has been made in terms of the number of

steps involved in the process. From the methods identified in
the literature and included in Section II for the PN model
generation, i.e. [15] – [19], only method [18] is fully
automated. All the other methods require the user’s
intervention in order to input the system/process
representation into the algorithm. The methodology outlined
in the paper retrieves the topology information from the
graphical diagram, i.e. the UML/SysML AD, of the system
description, without user intervention, and generates the
mathematical representation of the corresponding PN model.
Hence, a comparison between the current work and the
previous methods has been made in terms of the number of
steps involved in the process, indicating level of user input
needed. This comparison, as viewed in block A in Figure 10,
indicates the novelty and enhancement of the technique in this
paper regarding removing the model pre-processing that is
required with the techniques in the literature.

Figure 10 Comparison of PNs Construction Methods

The automated method described in [18] uses as inputs the

OMG State Machine Diagram (SMD) metamodel with some
modifications and a SMD and for each element of the
metamodel and model (SMD) a template is developed using
the model-to-text transformation tool, named Acceleo. These
templates act as a translation mechanism including mapping

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

rules that transform the SMD elements such as states to
corresponding PN structures such as places. The output of this
algorithm, as seen in Figure 10, is an XML file, which is
manually imported into CPN Tools to obtain the graphical PN
model visualisation. Although this method can automatically
retrieve the topology information of a system from a UML
SMD and generate PN models, is software dependent on the
destination syntax, i.e. syntax of CPN Tools. The output XML
file, used as input to CPN Tools, has a tailored syntax that
only complies with a specific version of the selected tool. This
syntax may be incomplete or faulty after a version update and
hence the PN model is considered inaccurate. Therefore,
method [18] lacks efficiency and cannot provide a robust and
rigorous methodology. Like for the semi-automated cases the
comparison of steps in the algorithm is made with our
approach, as viewed in block B in Figure 10. This comparison
indicates that the proposed method requires less post-
processing of outputs to be understandable by the user.

Finally, in block C in Figure 10, the methodology steps, as
well as the novelty and added value of the current work
compared to the reviewed techniques identified in the
literature are summarised.

VI. CONCLUSIONS
In this paper, a methodology for the automated PN model

generation from the system/process description has been
described. The methodology has been demonstrated by
applying it to an IT asset recycling process example where the
PN incidence matrix has been generated from a UML 2.0
Activity Diagram and then simulated to assess the process
performance. The methodology is based on three main steps:
the process modelling, i.e. the UML 2.0 AD development; the
model transformations using the XSLT, i.e. XSLT templates
development and XMI transformation into XML format; and
database modelling using SQL code, i.e. XML file
manipulation developing SQL code for the matrix generation.

An algorithm has been developed to establish a connection
between the incidence matrix in the database software and the
Java Integrated Development Environment (IDE), read data
stored in Excel files and run a simulation. Currently the
simulation is being extended to consider various scenarios
such as having multiple devices in the process, to identify
improvements in the process.

The proposed methodology overcomes the limitations of
human-aided reliability model construction by saving time and
effort. Additionally, the novel methodology, proposed for the
automated PN model generation, applying a database
(MySQL) algorithm, contributes to knowledge through the
combination of the following:

• Fully automated PN model generation capability:
the novel method retrieves the topology information
from the UML AD of a system/process, without the
user intervention and directly transforms this
information into a PN model, overcoming the
weakness of the most current attempts reviewed that
require the user intervention to import system
information to the algorithm, resulting in the semi-

automated generation of PN models.
• Systems/Processes modelling characteristics: the

proposed method can handle and efficiently model
systems/processes with control loops.

• Generic domain applicability: the proposed
algorithm provides a wide applicability spectrum,
without targeting specific domains.

• Software independence: The output matrix of the
proposed methodology is readily understandable by
the user without being based upon the syntax of any
industrial software which can be easily modified after
a version update, and hence to fail the desired model
generation. (Software dependent can be considered a
methodology that generates outputs in XML format,
which are then imported to tools to produce either a
matrix or a net that can be meaningful to users.)

However, further generic capability of the method needs to
be explored since the developed methodology cannot provide
valid matrices for any UML AD, since only certain elements
such as opaque action, decision, merge, etc., have been
considered. Thus, as future work, the proposed algorithm
should be extended to a generic methodology that provides
transformation rules for mapping all the AD elements into
PNs, for any potential AD provided by industry.

Future investigation could involve the automated generation
of the mathematical form of the PN for the recycling IT asset
process increasing the complexity of the algorithm by: (i)
accepting multiple devices with several tokens into the start
PN place; and (ii) introducing inhibitor arcs processing only
one device at the same time. Additional future work could
include the application of the developed methodology in
complex systems/processes so as to detect possible limitations,
optimise the algorithm and ensure the generic applicability of
the method. Another line of investigation includes the
automated graphical representation/visualisation of the PN
model that can facilitate the understanding of the structure and
behaviour of the net.

Additional extension of this work is to check the correctness
of the algorithm developed for the PN automation procedure
by: (i) verifying that the PN model obtained performs the
correct function by checking behavioural and structural
properties of PN via reachability graph or place/transition
invariants; and (ii) validating the PN model obtained
accurately represents the system architecture by checking a)
visually the system’s behaviour playing the token game and b)
the model’s quality by obtaining numerical results and
comparing these numerical results with observed in the real
world system (numerical simulation). Finally, an animated
graphical user interface (GUI), readily understandable by the
user, could be built to represent the results of calculations
made on the low-level model (SPN) into the high-level model
(UML).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

ACKNOWLEDGMENT

THE RESEARCH REPORTED IN THIS PAPER ALIGNS TO THE WORK
BEING RESEARCHED AS PART OF THE EPSRC GRANT

EP/K014137/1.

REFERENCES
[1] J. V. Zille, C. Bérenguer, A. Grall and A. Despujols, Simulation of

maintained multicomponent systems for dependability assessment”, In
Faulin, Javier and Juan, Angel A. and Martorell, Sebastian and Ramirez-
Marquez, J.E. (eds), Simulation Methods for Reliability and Availability
of Complex Systems, Springer Series in Reliability Engineering, vol. 12,
no. 1, pp. 253-272. London, U.K.: Springer, 2010.

[2] J. B. Dugan, K. J. Sullivan and D. Coppit, “Developing a Low-Cost
High-Quality Software for Dynamic Fault-Tree Analysis”, IEEE
Transactions on Reliability, vol. 49, no. 1, pp. 49-59, 2000.

[3] A. Carpignano and A. Poucet, “Computer Assisted Fault Tree
Construction: A Review of Methods and Concerns”, Reliability
Engineering and System Safety, vol. 44, pp. 265-278, 1994.

[4] S. A. Lapp and G. J. Powers, “Computer-aided Synthesis of Fault
Trees”, IEEE Transactions on Reliability, vol. 26, no.1, pp. 2-13, 1977.

[5] S. L. Salem, G. E. Apostolakis and D. Okrent, “A new methodology for
the computer-aided construction of fault trees”, Ann. Nucl. Energy, vol.
4, no.9-10, pp.417-433, 1997.

[6] J. D. Andrews and J. J. Henry, “A computerized fault tree construction
methodology”, Proceedings of the Institution of Mechanical Engineers,
Part E: Journal of Process Mechanical Engineering, vol. 211, no. 3,
pp.171-183, 1977.

[7] A. Rauzy, “Mode automata and their compilation into fault trees”,
Reliability Engineering and System Safety, vol. 78, no. 1, pp. 1-12, 2002.

[8] G. Xie, D. Xue and S. Xi, “Tree-Expert: A tree based expert system for
fault tree construction”, Reliability Engineering and System Safety, vol.
40, no. 1, pp. 295-309, 1993.

[9] T. Prosvirnova, M. Batteux, P.-A. Brameret, A. Cherfi, T. Friedlhuber,
J.-M. Roussel and A. Rauzy, “The AltaRica 3.0 project for Model-Based
Safety Assessment”, Proceedings of 4th IFAC Workshop on Dependable
Control of Discrete Systems, DCDS 2013, York (Great Britain),
September 2013. IFAC.

[10] A. Majdara and T. Wakabayashi, “Component-based modelling of
systems for automated fault tree generation”, Reliability Engineering
System Safety, vol. 94, no 6, pp.1076-1086, 2009.

[11] J. Xiang, K. Yanoo, Y. Maeno and K. Tadano, “Automatic Synthesis of
Static Fault Trees from System Models”, Proceedings of the 5th
International Conference on Secure Software Integration and Reliability
Improvement (SSIRI ‘11), PP. 127-136, 2011.

[12] M. Roth, M. Wolf and U. Lindemann, “Integrated matrix-based Fault
tree generation and evaluation”, Procedia Computer Science, vol. 44,
no. 1, pp. 599-608, 2015.

[13] Y. Papadopoulos and C. Grante, “Evolving car designs using model-
based automated safety analysis and optimisation technique”, The
Journal of Systems and Software, vol. 76, no. 1, pp. 77-89, 2005.

[14] C. Zhao, M. Bhushan and V. Venkatasubramanian, “PHASUITE: An
automated HAZOP analysis tool for chemical processes: Part I.
Knowledge Engineering Framework”, Process Safety and
Environmental Protection, vol. 83, no. B6, pp. 509-532, 2005.

[15] A. Alhroob, K. Dahal and H. Alamgir, H. “Transforming UML
Sequence Diagram to High Level Petri Nets”, IEEE International
Conference of Software Technology and Engineering, pp. 260-264,
2011.

[16] K. S. Stockwell and S. J. Dunnett, “Automatic construction of a
reliability model for a phased mission system”, Proceedings of the 20th
Advances in Risk and Reliability Technology Symposium, pp. 192-204,
2013.

[17] M. Taibi, M. Ioualalen and R. Abdmeziem, “An Automatic Petri-net
Generator for Modelling Multi-agent Systems’, ICSEA 2013: The Eighth
International Conference of Software Engineering Advances, 2013

[18] É. André, M. M. Benmoussa and C. Choppy, “Translating UML State
Machines to Coloured Petri Nets Using Acceleo: A Report”, J. Pang and
Y. Liu (Eds.) 3rd International Workshop on Engineering Safety and
Security Systems 2014 EPTCS 150, 2014.

[19] H. Reza and A. Chatterjee, “Mapping AADL to Petri Net Tool-Sets
Using PNML Framework”, Journal of Software Engineering and
Applications, vol. 7, no. 11, pp. 920-933, 2014.

[20] C. A. Petri, 1962. “Kommunikation mit Automaten”. Rheinisch-
Westfaelisches Institut fuer Instrumentelle Mathematik and der
Universitaet Bonn, Schrift Nr. 2; English Translation: “Communication
with Automata, Griffiss Ari Force Base, New York, RADC-TR-65-377,
vol. 1, suppl. 1, 1996.

[21] IEC62551, “Analysis techniques for dependability – Petri net
techniques”, International Electrotechnical Commission, Geneva, 2012.

[22] W. G. Schneeweiss, Petri nets for reliability modelling: in the fields of
engineering safety and dependability, LiLoLe Verlag, Hagen, 1990.

[23] V. V. Volovoi, “Modelling of System Reliability Petri Nets with Aging
Tokens”, Reliability Engineering and System Safety, vol. 84, no. 2, pp.
149-161, 2004.

[24] OMG DMN Specification. Available at:
http://www.omg.org/spec/DMN/1.0/Beta2

[25] Eclipse. 2015. http://www.eclipse.org
[26] T. M. Connolly and C. E. Begg, Database systems: A practical approach

to design, implementation, and management. (4. [rev.] ed.), Harlow:
Addison-Wesley, 2005.

[27] MySQL Workbench.2017. http://mysql.com

http://www.omg.org/spec/DMN/1.0/Beta2
http://www.eclipse.org/
http://mysql.com/

	I. INTRODUCTION
	II. Related Work
	III. Petri Net Model
	IV. Methodology and Modelling Methods
	A. Step 1 – Process Modelling (PM)
	B. Step 2 – Model Transformation using Extensible Stylesheet Language Transformation (XSLT)
	C. Step 3 – Database Modelling MySQL–PN Model

	V. Case Study – Automated Petri Net Generation and Simulation
	A. Step 1 – Process Modelling
	1) Recycling IT Asset Process Description & UML 2.0 AD Development
	2) AD to XMI format

	B. Step 2 – Model Transformation using XSLT
	C. Step 3 – MySQL Database Modelling
	D. Automated Petri Net Model Generation
	E. Petri Net Model Simulation
	1) Process Data and Petri Net Simulation
	2) Simulation Results and Discussion

	F. Comparison of PNs Construction Methods

	VI. Conclusions
	Acknowledgment
	The research reported in this paper aligns to the work being researched as part of the EPSRC grant EP/K014137/1.
	References

