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a b s t r a c t 

The latest advancements in glazing technology are driving facade design towards complex and adaptive 

fenestration systems. Accurate simulation of their optical properties and operational controls for building 

daylight performance evaluation requires advanced modelling techniques, such as climate-based daylight 

modelling (CBDM). At the same time, computational efficiency is key to quickly simulate this complex 

performance over a full year. Over the years, several CBDM techniques were developed to answer these 

two main challenges, but they were never systematically benchmarked against each other. This paper 

compares state-of-the-art Radiance -based simulation techniques in terms of annual daylight performance 

metrics required by national guidelines and international green building rating schemes. The comparison 

is performed on three different shading systems: diffuse Venetian blinds, specular Venetian blinds, and 

perforated solar screens. Findings show that simulation methods are characterised by significant differ- 

ences in their implementation and visual rendering, but most annual daylight metrics result in consistent 

values (within ± 20%). A notable exception is Annual Sunlight Exposure, which is highly sensitive to the 

chosen simulation method, with differences of up to 47 percentage points. Additional outcomes from the 

present work are used to compile a list of generalised recommendations for designers and policy makers. 

© 2019 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Shading devices have been used for centuries to offer protec-

ion from excessive solar radiation. At the same time, they should

llow and modulate some daylight access as well as leaving an

utside view whenever possible. Nowadays, shading systems have

ecome a critical issue for global energy performance of buildings

hat should be responsive to variable climatic conditions and to oc-

upant comfort necessities. Influential compliance schemes such as

EED include assessments based on the accurate prediction of sun-

ight entering the space. Different studies have highlighted the sig-

ificant effect of shading devices on indoor daylight quality and on

nergy savings [1,2] . For some shading devices, such as overhangs,

ns and awnings, an acceptable analysis can be done using sim-

le calculations. For other devices such as Venetian blinds, louvres,

creens and roller shades, a more sophisticated evaluation process

s needed due to their complex geometries and optical properties

3] . Often though, simplified models are still being used to study

hese complex cases, e.g. considering all surfaces as perfect dif-
∗ Corresponding author. 

E-mail address: e.brembilla@lboro.ac.uk (E. Brembilla). 
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use materials, or modelling solar shading systems as uniform par-

llel layers which reduce incoming light flux without taking into

ccount components of daylight redirection [4] . These limitations

ffect the accuracy of complex fenestration systems’ evaluations

ince they do not consider the strong angular dependency of light

ransmission that can significantly impact the spatial distribution

f daylight in a space. 

Given the widespread use of complex shading devices and the

reater market penetration of yet more complex glazing materials,

t is important that evaluations are founded on accurate character-

sation of the materials and robust simulation techniques. Perfor-

ance evaluation of complex shading devices, including daylight

edirecting systems, has been reported by number of authors [5,6] .

ost evaluations employ the Radiance lighting simulation system

7] . This software has been widely applied due to its physically ac-

urate rendering capabilities and the rigorous validation tests that

t has been subjected to [8,9] . For more than two decades Radi-

nce has been regarded to be the most reliable tool for lighting

imulation for buildings. 

A high degree of integration of design and research is still re-

uired to address limitations associated with incorporating ‘per-

ormance criteria’ for daylight evaluation of spaces with complex

hading devices. For a favourable daylighting strategy that helps
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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reducing energy use, the building’s performance should be deter-

mined effectively and simulated at the design stage. A variety of

methods used for communicating the availability of daylight and

the effect of sun shading have been developed [10] . These mainly

refer to various ‘performance indicators’ that quantify the amount

of skylight or sunlight that reach indoor spaces. Climate-Based

Daylight Modelling (CBDM) provides the framework for a complete,

year-round, evaluation of the building’s daylit environment [11] .

CBDM performance metrics have been defined for space charac-

terisation and included in design guidelines that are actively pro-

moted by government departments [12] and even made manda-

tory [13] . Thus, building designers turned to simulation as a means

of demonstrating compliance with various schemes [14] . This has

encouraged the development of a constantly evolving number of

software packages that are either dedicated to CBDM or offer it as

part of the suite of evaluation tools. DIVA-for-Rhino, OpenStudio

and Groundhog are some examples of commonly used packages

which are mainly based on the Radiance ray-tracing engine [15] . 

This paper evaluates multiple different Radiance -based simu-

lation techniques that are currently used by both researchers and

practitioners to assess the daylighting performance of spaces with

Complex Fenestration Systems. The evaluation is based on an inter-

model comparison that takes the results from the 4-component

method as a relative reference to benchmark all other techniques,

as done in a previous work that analysed only clear glazing cases

[16] . Here, the analyses carried out in a preceding paper [17] were

expanded to consider three types of commonly used Complex Fen-

estration Systems (CFS): diffuse Venetian blinds, specular Venetian

blinds, and perforated solar screens. 

2. Modelling Complex Fenestration Systems 

Complex Fenestration Systems (CFS) refer to all non-specularly

transmitting fenestration technology including layers that provide

shading and layers that improve interior daylighting [18] . A non-

specular transmission occurs when an incident ray is redirected by

the CFS. Notwithstanding the fact that the most commonplace CFS

(i.e. venetian blinds) has been an intrinsic feature of facade shading

systems for more than half a century, the prediction of the light

scattering properties of CFS remains an open research field due to

the complexities both of the characterisation of the optical proper-

ties and their implementation in a lighting simulation program. 

Computational methods, tools and supporting data have been

developed to accurately describe the optical properties and day-

lighting performance of CFS [18,19] . Additionally, new CFS mod-

elling capabilities have been added to building simulation pro-

grams. One is the Bi-directional Scattering Distribution Function

(BSDF), used to characterise the angularly resolved transmission

and reflection of light of CFS. LBNL WINDOW implements the

Klems’ matrix multiplication algorithm to generate BSDF data of

multi-layered fenestration system from the angularly resolved data

of single layers, which could be independently measured or calcu-

lated [20] . It is also possible to generate BSDF data for a CFS using

lighting simulation if the light transport through the CFS can be

adequately represented in the simulation. For example, Radiance

includes the tool genBSDF to generate BSDF datasets from the ge-

ometry of macroscopic systems and surface properties of the base

materials [7] . 

The first Radiance -based CBDM technique that allowed the in-

sertion of BSDF materials to describe CFS was the 3-phase method.

Based on the Daylight Coefficient approach, it separates the light

transport between the outdoor and the indoor environments into

three phases: exterior transport (Daylight matrix, D ); fenestration

transmission (Transmission matrix, T ) through a BSDF dataset gen-

erated on a Klems basis of 145 × 145 bins; and interior trans-

port (View matrix, V ) [7,21] . This method was mainly introduced
or concept design stage and for parametric analyses, as the Klems

asis leads to an averaging of the incident light over large solid an-

les, making it unsuitable for precise representation of light peaks

ransmission. 

The 5-phase method was later introduced as an alternative

o enable simulations of CFS at a higher accuracy. The 5-phase

ethod takes the results from the three phase method, then it

ubtracts the direct sunlight component and recalculates it in a

ore accurate way by using 5185 sun-like sources evenly dis-

ributed on the sky vault and by using variable-resolution Tensor

ree BSDF material instead of the Klems one. In this way, it is a

ore accurate solution for specular or semi-specular systems [22] .

he 4-phase and 6-phase methods were later added to the suite of

phased’ method to allow for the simulation of non-coplanar CFS

23] . 

Other Radiance -based methods preceded the two already

resented. The 4-component method, DAYSIM and the 2-phase

ethod were the first examples of annual daylight simulation

ools that also took advantage of the Daylight Coefficient approach.

lthough they were not specifically developed to handle com-

lex fenestration systems, they are included in this work as they

re widely used to assess the luminous performance of building

paces, including those with CFS. 

The 4-component method calculates the contribution of each of

he following daylight components: direct sunlight, indirect sun-

ight, direct skylight and indirect skylight. The indirect components

re obtained using Radiance stochastic sampling, with a Tregenza

ky division [24] formed by 145 circular patches for indirect sun-

ight and 145 rectangular patches for indirect skylight. The direct

unlight is obtained from a deterministic way, where the sun is

epresented by 2056 (or 5035 if a finer description is needed)

xed points evenly distributed on the sky vault. The direct skylight

omponent is also obtained deterministically, as 900 light point

ources are placed over each of the 145 rectangular patches cover-

ng the whole hemisphere [11] . The 4-component method is used

s a benchmark in many studies because it is widely regarded as

he most rigorously validated (for clear glazing) of all the various

BDM techniques [25] . 

DAYSIM is one of the most widespread tools to perform CBDM,

s it is often used as simulation engine by commercial tools with

raphic interfaces. In its original version [26] , the sky is subdi-

ided in 145 patches for the indirect light component, while for

he direct sunlight there are up to 65 representative sun positions,

epending on the location. Additionally, there are three concen-

ric circular daylight coefficients for the external ground. Later on,

he Dynamic Daylight Simulation (DDS) [27] was proposed, includ-

ng separate calculations for 145 diffuse sky segments, one diffuse

round segment, 145 indirect solar positions and 2305 direct solar

ositions evenly distributed around the sky vault. DAYSIM includes

hree different calculation modes but the widely available version

s based on the interpolation algorithm. This mode distributes the

uminance from the sun among four solar positions that circum-

cribe the actual sun at any given time of the year. The luminance

istribution is derived from climate data files using the Perez All-

eather model [28] . 

Finally, the 2-phase method assigns the sun luminance to three

ky patches surrounding the actual sun position. The sky subdi-

ision can have variable resolution by subdividing each patch in

maller parts (Multiplication Factor, MF). The sun and sky contribu-

ions can therefore be accounted for in a single stochastic sampling

un and the computation load can noticeably diminish. However, to

revent sampling errors around the sun region, the ambient inter-

olation is switched off and the ray-tracing mainly relies on the

umber of ambient divisions ( -ad ). 
To date, there have been some studies which investigated dif-

erent modelling strategies to represent CFS properties. However,
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hese models have been focused on prediction of solar gains

hrough CFS in building simulation programs [29–31] . In those

orks, the shading control strategies were dependant on ther-

al variables, such as indoor air temperature and energy load.

hen they had calculated daylight illuminances or solar radiation,

hey mainly tested one Radiance -based method (e.g. the 3-phase

ethod) against EnergyPlus. To date, no studies have system-

tically compared multiple Radiance -based approaches to model

paces with CFS. Consequently, practitioners who are increasingly

elying on lighting simulation tools to demonstrate compliance are

acking the necessary guidance to help them select the appropri-

te CBDM methodology for designs which include CFS. The study

escribed here aims to address this deficiency. 

. Methodology 

To evaluate the options available when modelling CFS with

adiance -based methods and to understand how they compare to

ach other, a case study room was modelled with three different

hading systems in place. These three systems were each simulated

ith five simulation techniques, varying their representation ac-

ording to the simulation strategy. The following sections describe

he characteristics of the case study and the precise procedures fol-

owed to run climate-based daylight simulations. 

.1. Description of the case studies 

A classroom space with a large South-facing window was cho-

en as case study. The dimensions of the space are 11.2 m × 7.9 m.

t is side-lit from a curtain-wall that occupies a complete side

f the room. Table 1 shows the standard reflectances and the

isible transmittances applied on the model surfaces. Specularity

nd roughness were set to be zero where not otherwise speci-

ed. Three different shading devices were placed on the glazed fa-

ade, as Fig. 1 displays: (1) Diffusing Venetian blinds, (2) Specular

enetian blinds, and (3) Perforated Solar Screen (PSS). These three

ystems were treated as fixed shadings and applied on the curtain-
Table 1 

Characteristics of model surfaces. 

Reflectance 

Classroom Ceiling 0.7 

Interior walls 0.5 

Floor 0.2 

External ground 0.2 

Reflectance Specularity 

CFS Diffusing Venetian blinds 0.62 0.0 

Specular Venetian blinds 0.62 0.9 

PSS (Opaque surface) 0.8 0.0 

Visible transmittance 

Clear windows 0.8 
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ig. 1. Renderings of the classroom from its interior, with each of the three CFS in place: 

creen. 
all of the room’s South facade. Strictly speaking, a thin PSS can-

ot be classified as CFS as its structure is either blocking light com-

letely or it is letting light through its holes in a ‘specular’ man-

er. It was however included in the investigation, as it exemplifies

 shading system design obtained through parametric modelling

32] ; as some of the investigated simulation techniques were de-

eloped with the specific intent of facilitating parametric design, it

as deemed significant to include this third shading system in the

resent analysis. 

The first shading device is formed by light diffusing Venetian

linds, placed on the interior side of the glazing, within the depth

f the sill. The slats were modelled as simple horizontal surfaces,

ith zero thickness, 50 mm wide and spaced every 40 mm; their

eflectance value was 0.62 and they were treated as perfect dif-

users. The second device has the same geometry as the first one,

ut it was defined as metallic material, with a specularity of 0.90

n both sides of the slats. The third device is a PSS placed out-

ide the room’s curtain-wall, 5 mm from it. The PSS was modelled

s a three-dimensional solid, measuring 11.5 m width, 3 m height

nd 3 mm thickness. It has 576 hexagonal holes, equivalent to a

5% perforation ratio. The material assigned to the PSS was char-

cterised by a 0.80 diffuse reflectance. 

.2. Description of CBDM simulation techniques 

Five different techniques to perform CBDM were considered

or the inter-model comparison: 4-component method (4CM),

AYSIM, 2-phase method (2PH), 3-phase method (3PH), and 5-

hase method (5PH). Three different DAYSIM modes were evalu-

ted and three different procedures to implement the 3PH and 5PH

ethods were also investigated. Table 2 summarizes all included

mplementations, for each of the three shading system. 

To meet the requirements for every simulation method, the

D model had to be modified. Fig. 2 illustrates the modification

pplied for each single simulation mode. For the 4CM, DAYSIM

nd the 2PH methods all the elements of the classroom and of

he three shading systems were explicitly modelled. The three

AYSIM cases (B, B1, B2) all used the same geometry, but differ-

nt daylight simulation methods and release versions. DIVA-for-

rasshopper was the interface used to access the latest available

AYSIM version (v4), which is based on the interpolation mode;

AYSIM v3.1e was accessed through its legacy Java interface, from

hich the interpolation or DDS options were selected. For the 3PH

nd 5PH methods, each shading systems required slightly different

pproaches. Choosing the most appropriate representation of a CFS

mong the ones described here depends on the accuracy needed

nd on the availability of BSDF data. 

The three procedures for the 3PH method are explained here-

fter. For case D1, a ‘thick’ BSDF was created with genBSDF , on

 Klems Basis. It sampled the complete curtain-wall system: clear

lazing, frames and Venetian blinds. The resulting BSDF is specific

o the sampled geometry and its dimensions, and cannot be ap-
(1) Diffusing Venetian blinds; (2) Specular Venetian blinds; and (3) Perforated Solar 
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Table 2 

Simulation methods and specific implementations investigated for the comparative analysis of CBDM in 

the presence of complex fenestration systems. 

Diffusing Specular 

Venetian Venetian PSS 

blinds blinds 

A 4-component method � � � 

B DAYSIM v4 ( DIVA-for-Grasshopper ) � � � 

B1 DAYSIM v3.1e with interpolation mode � � � 

B2 DAYSIM v3.1e with DDS option � � � 

C 2-phase method � � � 

D1 3-phase method with thick BSDF, from genBSDF � � n/a 

D2 3-phase method with zero thickness BSDF, from genBSDF � � � 

D3 3-phase method with zero thickness BSDF, from Window6 � n/a n/a 

E1 5-phase method with thick BSDF, without proxied geometry � � n/a 

E2 5-phase method with thick BSDF, with proxied geometry � � n/a 

E3 5-phase method with zero thickness BSDF � � � 

Fig. 2. Schematic illustration of the different modes investigated. Image (a) shows the vertical section of the fenestration system with Venetian blinds on the interior side; 

for the 4CM, DAYSIM and the 2PH the system was explicitly modelled as shown. Image (b) shows the model modified to be used with the 3PH, where the system was 

replaced by two enclosing surfaces: a receiver and a sender of rays. The equivalent modification was used for the 5PH – without (c) and with (d) proxied geometry – with a 

BSDF material representing the whole fenestration system applied to the interior surface and a sampling displacement equivalent to the wall thickness (0.25 m in this case). 

Lastly, image (e) represents the cases where a ‘thin’ BSDF was applied, assuming the optical transmission and reflection of both glazing and Venetian blinds happen at the 

glass surface, which acts as a receiver and a sender of rays. 
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plied to any generic surface. The 3D model consisted of two sur-

faces enclosing the wall depth. The surface that faces the interior

of the room acts as a receiver for the rays traced from the vir-

tual sensors, while on the exterior side further rays – originated

from points randomly distributed over the exterior surface – are

sent towards the sky vault. The optical behaviour of the fenestra-

tion system enclosed within these two surfaces is represented by

this ‘thick’ BSDF. 

In the D2 and D3 cases, a ‘thin’ BSDF was used to describe the

combined system of clear glazing and Venetian blinds, while the

frame geometry was explicitly modelled as part of the room’s 3D

geometry. For the D2 case, the BSDF was created using genBSDF ,
on a Klems basis. The command option -dim was inserted to se-

lect a limited area to be sampled, representative of the overall be-

haviour of the material, independently of the geometry size. For

the D3 case, the system was modelled using components from the

LBNL WINDOW library. This option was investigated only for the

diffusing Venetian blinds, as it is not possible to insert specular

elements from LBNL WINDOW. 

For the 5PH method, three different modes were explored. The

cases E1 and E2 used a ‘thick’ BSDF, similar to that for the D1
ase but based on the TensorTree scheme. However, when the 5PH

ethod uses a ‘thick’ BSDF, there is an additional, optional inser-

ion of a proxied geometry , i.e. geometry that blocks direct sunlight

ut is bypassed by off-angle direct-reflected rays. This results in

etter defined indoor light patterns, as the equivalent of a shadow

esting is performed during the sampling. For case E1, a surface

as placed on the interior side of the curtain-wall (the same as

he internal surface created for the 3PH method in case D1) and

he actual fenestration geometry was not modelled. A BSDF mate-

ial was assigned to that surface, where the BSDF definition was

reated by using genBSDF but specifying the option (-t4 5) for

 Tensor Tree basis. For case E2, a proxied geometry for windows

nd Venetian blinds was included in the model; this required the

pecification of the system’s thickness in the BSDF material defini-

ion, so that only direct rays were blocked by the proxied geome-

ry, while off-angle rays bypassed it. Lastly, the E3 case consisted

n the generation of a ‘thin’ BSDF, as done for the D2 case, but us-

ng a Tensor Tree basis rather than a Klems one. For more detailed

nformation about the considered methods and the use of BSDFs

n these case studies’ CFSs, please refer to a more extensive evalu-

tion by Brembilla [33] . 
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Table 3 

Radiance ambient parameters set for each method. For the 3PH and 5PH, the different parameter 

sets refer to the 3PH view matrix (vmx), the 3PH daylight matrix (dmx), and the 5PH direct solar 

contribution (dsc). 

4CM -ab 5 -ad 2048 -ar 128 -as 256 -aa 0.2 -lw 5e-3 
DAYSIM v4 -ab 5 -ad 4096 -ar 512 -as 512 -aa 0.2 -lw 4e-3 
DAYSIM V3.1e -ab 3 -ad 4096 -ar 512 -as 512 -aa 0.1 -lw 4e-3 
2PH -ab 5 -ad 89600 -lw 1e-5 
3PH (vmx) -ab 5 -ad 22400 -lw 5e-5 
3PH (dmx) -ab 2 -ad 22400 -lw 5e-5 
5PH (dsc) -ab 1 -ad 89600 -lw 1e-5 -dc 1 -dt 0 -dj 1 -st 1 -ss 0 
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Thus far, the descriptions of the 3D model mainly explained

he Venetian blinds modelling. The number of different simula-

ion cases appropriate for the PSS study was reduced in compar-

son with all cases considered for the other two shading devices.

or instance, the use of a ‘thick’ system was not deemed necessary

or the PSS, which is 3 mm deep and does not produce signifi-

ant inter-reflections within its depth. In the simulation process re-

uired by the 3PH and 5PH methods, a scene where all geometries

re assigned a black material is normally used to avoid taking into

ccount any type of specular reflection when calculating the direct

lluminance component. Thus, this approach assumes a Lambertian

ehaviour for all surfaces that are not represented with a BSDF ma-

erial. As the window panes for this specific model were not part

f the fenestration system included in the BSDF, the scripts used to

un the analyses had to be modified to exclude the windows from

eing transformed into black opaque surfaces. 

All ambient parameters were set following a convergence test

or each of the methods under analysis. The test was based on the

greement of the Total Annual Illumination (TAI) values obtained

rom multiple simulation runs. TAI is the sum of the illuminance

ecorded at every hour in a year by each virtual sensor point,

lso called Annual Light Exposure [34] . It was selected as it was

eemed to be more sensitive to changes in parameters than any of

he other annual metrics. Table 3 displays the Radiance ambient

arameters determined for each simulation method when simu-

ating the two Venetian blinds scenarios. In the PSS case slightly

ifferent ambient settings had to be specified to reach a satisfac-

ory convergence of TAI results, in particular for the 4CM method,

hich required the following settings: -ab 7 -ad 2048 - ar
12 -as 256 -aa 0.15 . The settings used in all DAYSIM-based

ases were not increased but they would also have benefited from

igher resolution parameters, as results will show later. The 2PH,

PH and 5PH methods did not need any particular change in am-

ient parameters. As an approximate indication, the 4CM method

ook ∼ 10 h to run this simulation, the 2PH method took ∼ 5 h,

he 3PH method took about ∼ 1.5 h and the 5PH method took over

0 h, on the same computer. 

The weather file used was the EnergyPlus IWEC file for London

atwick. The occupancy schedule was set to go from 8:00 a.m.

o 18:00 p.m. every day of the year, to be similar to the one re-

uired by LEED v4. The analysis grid was placed on a horizontal

lane 0.80 m above ground level, representing the working plane

or typical student activities, such as desk writing and reading.

he edge of the workplane was defined at a 0.50 m distance from

he room perimeter. The sensor points were arranged in a grid of

.25 × 0.25 m, except in the case of DAYSIM modes B1 and B2,

here the grid had to be coarser (1 m spacing) as a trade-off be-

ween accuracy and computation times. The range of metrics em-

loyed in this evaluation are listed below. 

• Useful Daylight Illuminance (UDI), representing the percent-

age of the occupied hours where the illuminance level falls

into certain ranges [35] , and using the later revised ranges

[36] : 0–100 lx: UDI-n, or non-sufficient, 100–300 lx: UDI-s,
or supplementary, 30 0–30 0 0 lx: UDI-a, or autonomous, over

30 0 0 lx: UDI-x, or exceeded. 

• Daylight Autonomy (DA), representing the percentage of oc-

cupied hours where the illuminance level is higher than a

set threshold [37] , 300 lx in this work. Shading devices op-

eration is not considered here. 

• Total Annual Illumination (TAI) results, averaged over the

working plane. 

• Annual Sunlight Exposure (ASE), which considers only di-

rect sunlight, representing the portion of the working plane

where the sensor points recorded illuminances higher than

10 0 0 lx for more than 250 occupied hours [38] . 

These metrics were chosen as those most commonly found

n software with CBDM capabilities and amongst those required

n building guidelines, e.g. for the Priority School Building Pro-

ramme (PSBP) required by the UK Education Funding Agency

EFA) [13] . Metrics which embed algorithms for the control of

hading systems were not considered since those algorithms could

ave masked the differences revealed by the inter-model com-

arison. Further studies could focus on the impact that the

hoice of simulation technique has on the modelling of shading

peration. 

. Results 

The selected annual daylight metrics were used to compare the

imulation results for each shading device. The results are pre-

ented in the three sections below and the findings drawn from

heir comparison are presented in the following discussion section.

.1. Diffusing venetian blinds 

For the first analysis – with diffusing Venetian blinds placed in

he model – all the possible variations listed in Table 2 were in-

estigated. Fig. 3 shows the annual daylight metrics obtained with

ach of those simulation technique variants. Except for ASE, all

he metrics were found to be in good agreement, with a maxi-

um of four percentage points of difference in the case of UDI

nd DA, and a maximum relative difference of 18% for TAI calcu-

ated with DAYSIM (B1) and with the 5PH (E2). It appears that

he slightly lower values achieved by the 4CM and DAYSIM are

ue to an insufficient sampling of inter-reflected light within the

pace, and that these two methods would require higher ambi-

nt parameter settings to reach the same light levels of the other

ethods. This partly demonstrates the need for developing spe-

ific methods – such as the 3PH and 5PH – to handle CFS more

fficiently. 

Using the 3PH with a ‘thin’ BSDF obtained with the genBSDF
ommand (D2) or obtained from LBNL WINDOW (D3) did not af-

ect the results of any of the considered metrics. As the Venetian

linds simulated in this case were perfect diffusers of light, the

SDF Klems definition can be reliably obtained from both methods;

his finding is in agreement with previous studies that assessed the

erformance of genBSDF [3,18] . The agreement between the BSDF
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Fig. 3. Annual CBDM metrics for the diffusing Venetian blinds system. The barplot (a) shows the four UDI ranges on the same stacked bar, for all simulation cases; the choice 

of simulation method did not influenced the final results in terms of UDI. The DA and TAI barplots (b, c) leads to similar conclusions, although it is more noticeable how 

the 4CM and DAYSIM would benefit of higher ambient parameter settings. The ASE barplot (d) shows the enormous discrepancy in ASE values depending on the simulation 

method adopted, even though ASE is independent from ambient parameter settings, as it accounts only for direct sunlight. 
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retrieved from LBNL WINDOW and that created using genBSDF
further confirms the effectiveness of the simulation approach for

certain CFS types. 

For ASE, the results are completely independent from the ambi-

ent parameter settings since the metric considers only the contri-

bution of direct sunlight onto the workplane (i.e. virtual sensors).

Yet, the results are remarkably different among simulation tech-

niques, as visible in Fig. 3 (d). The 4CM, DAYSIM (B2) and the 5PH

(E2, E3) resulted in very low ( 0 − 4% ) ASE results; DAYSIM (B, B1)

resulted in ASE = 15%; whereas the use of 2PH, all 3PH modes

and one 5PH mode (E1) led to ASE values higher than 36%. Note

that one of the requirements to achieve a LEED Daylight Credit

is an ASE lower than 10%. Thus, the discrepancies revealed here

show that compliance outcomes can be significantly affected by

the choice of simulation approach – something that many prac-

titioners are probably not aware of. 

This discrepancies can be explained by close examination of the

direct illuminance values simulated for the whole year by each

method. First, from a comparison of the frequency distribution his-

tograms, shown in Fig. 4 , and second from plots displaying the

instantaneous direct illuminance on the horizontal working plane,

shown in Fig. 5 and 6 . The histogram shows the frequency distri-

bution of direct illuminance values simulated at each point on the

working plane for each hour of the year (1148 points × 8760 h).

The logarithmic scale helps showing the frequency of both low

and high illuminance values, even if the latter are much less fre-

quent. The first bin (0–6 klx) includes zero values too, from in-

stances recorded during night-time or from points in the room not

directly illuminated by sunlight. Most of the simulation methods

produced values within the range 0–12 klx, while a few methods

– 4CM (A), DAYSIM (B), 5PH (E2) – recorded instances with direct

illuminance over 12 klx, reaching values up to 37 klx with the 5PH

(E2). It becomes clearer how this latter group of simulation tech-

niques is able to represent sunlight peaks passing through shading

devices, whereas the rest of the methods tend to average them and

have a higher frequency of low intensity sunlight instances. 
The histograms showed the different distribution of results ob-

ained from an entire year, but from the analysis of point-in-time

nstances one can discern differences in how the sunlight spatial

istribution is computed by each of the methods. Two instances

ere isolated to show how the illuminance distribution over the

orking plane changes depending on the chosen method, one from

he range 0–6 klx and the other from the range 30–36 klx. The first

ne is displayed in Fig. 5 and corresponds to the 19th January at

5:00, the second one is displayed in Fig. 6 and corresponds to the

th March at 12:00. The sensor points recording zero illuminance

ere set to be coloured white, and the higher values are coloured

epending on the logarithmic colour scale displayed on the right

f the plots. Under each plot, the following information relative to

he selected instant is reported: cumulative illuminance; average

lluminance; and number of sensor points recording illuminance

igher than 10 0 0 lx (therefore accounted for in ASE calculations). 

The simulation methods can be grouped into two types based

n their sunlight calculation method: one type can represent well-

efined solar patches, whereas the other type ‘smears’ the sunlight

ver large solid angles, thereby effectively diminishing the magni-

ude of the predicted component of direct sun. The 4CM employs

trace in its standard mode to predict direct sun. Used in this

ay, a single shadow ray is sent to test for visibility of the sun,

.g. to determine its illuminance contribution. Although the sun is

escribed as a source solid angle with an opening angle of 0.5 ◦,

 single shadow ray is used and so there is no attempt to repro-

uce the effect of the solar penumbra (which would require mul-

iple shadow ray samples and result in a significant computational

verhead). As there is no conceivable practical value to comput-

ng the effect of the solar penumbra, this is a perfectly reasonable

fficiency saving. Thus, for the computation of direct sun illumi-

ance in the 4CM method, a point is either in sun or in shade

ased on visibility of the nearest of the 2056 pre-computed di-

ect sun ‘patches’ to the actual sun position at that instant. Con-

equently, the 4CM results (A) show a distinct sun pattern, created

y sunlight rays passing through Venetian blinds and falling onto
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Fig. 4. Frequency distribution of direct illuminance values for each simulation method. Each sample includes direct illuminance values from all sensor points, at every 

occupied hour in a year. Some of the methods – such as the 4CM (A), DAYSIM (B) and 5PH (E2) – can reach high illuminance peaks over 24 klx, whereas the rest of the 

methods tend to ‘smooth out’ any light peak and averaging the overall light intensity over larger areas. 

Fig. 5. Direct illuminance distribution over the horizontal working plane (identified by a red line on the room plan view) at 15:00 on 19th January. Depending on the 

simulation technique, the direct sunlight patterns on the horizontal working plane can look very different: the 4CM (A) and 5PH with proxied geometry (E2) retain the 

realistic shadow of the CFS; on the opposite hand, all other methods are characterised by an average distribution of direct sunlight that do not preserve information on the 

CFS geometry. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Direct illuminance distribution over the horizontal working plane (identified by a red line on the room plan view) at 12:00 on 4th March. The differences presented 

in Fig. 5 can be observed in this Figure too, but here the higher sun angle is partially blocked by Venetian blinds. Hence, in the 4CM plot (A), DAYSIM (B) and 5PH with 

proxied geometry (E2), only few sensors records high peaks of direct illuminance. As a consequence of this, even though the sunlight intensity is higher than the rest of 

the methods, there are only a few points hit at each hourly time step, not necessarily reaching the 250 hours (i.e. time steps) necessary to be counted towards ASE. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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he working plane. The low sun angle instance shown in Fig. 5 cre-

tes more defined patches as there are more sensors that can ‘see’

he sun directly, whereas the high sun angle instance of Fig. 6 al-

ows less sensor points to have a direct view of the sun. All sen-

or points that are not in the sun’s direct view record an illumi-

ance value of zero (shaded white in the figure). For the direct sun
ontribution the 4CM results can be considered benchmark values

gainst which the others are compared. 

Although DAYSIM (B) also employs standard rtrace , it is con-

gured to compute the weighted contribution from the four (pre-

omputed) suns which are the nearest to the actual sun position

t any instant, i.e. the default interpolation mode. This generally
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Fig. 7. Schematic visualisation of the difference between transmission of direct sun by diffusing (left) and specular (right) blinds. 
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results in lower direct sun illuminances than the 4CM, but spread

out over a larger area. The pattern resulting from what is effec-

tively multiple suns with different intensities is evident in the

Figs. 5 and 6 . 

The 2PH (C) results in a large illuminance patch falling onto

the working plane, in which the shading from the window mul-

lions are barely discernible. With the 3PH (D1, D2, D3) there are

no points in the room recording zero illuminance, as even the area

at the dark back corner of the room receives some light re-diffused

by the BSDF Klems patches. The shadow of the mullions is slightly

visible for cases D2 and D3, whereas in case D1 the window frame

was not included in the model, and it is therefore not recognis-

able. The 5PH (E1, E2, E3) creates better defined patches, repre-

senting the average light influx in case E1, the actual patches fil-

tering through the windows and through Venetian blinds in case

E2 (due to the insertion of proxied geometry ), or a reduced trans-

mittance window patches in case E3. 

Both the 4CM (A) and 5PH (E2) result in higher cumulative and

average illuminances than the other methods, as shown in the his-

togram of Fig. 4 . All other cases (B, C, D1, D2, D3, E1, E3) show a

remarkable similarity in cumulative and average illuminance val-

ues, indicating that the total energy entering the room is about

the same but its redistribution in the space is treated differently

by each method. 

Generally speaking, for evaluations based on average illumi-

nance values, it could be said that the analysed methods are

largely interchangeable. However, for direct sun the methods

that faithfully reproduce the direct sun component (i.e. 4CM (A),

DAYSIM (B2) and 5PH (E2)) all predicted zero ASE values. Whereas,

all the other methods – which effectively ‘smeared’ sunlight over

the sensor plane – predicted ASE percentage values ranging be-

tween 4 and 47. Thus, depending on the metrics required from the

evaluation, the user may need to choose the simulation method

very carefully. 

4.2. Specular venetian blinds 

The use of specular Venetian blinds resulted in higher inter-

nal illuminance values compared to the results obtained with dif-

fuse Venetian blinds, due to the more effective transport of light

through the blinds by reflection. Consequently, annual metrics such

as UDI-a, UDI-x, DA and TAI all reported increased values, irrespec-

tive of the simulation method used for the evaluation. The dif-

ferences among simulation methods, shown in Fig. 8 , are larger

than for the previous case, but they can be explained by the

same reasoning as before. For metrics such as UDI, DA and TAI,

the difference is not significant (less than ± 20%), and it can be

largely attributed to the need for higher ambient parameter set-

tings. Whereas for ASE values, the differences are attributable to
ach method’s description of sunlight, as previously explained for

he diffusing blinds case. 

Recall that ASE is a metric based on direct sun received at the

ensor plane. Arrival of sunlight at the sensor plane by specular

eflections effectively confounds any assessment based on direct

unlight since its commonplace notion no longer applies, and there

s no widely agreed understanding regarding how to classify redi-

ected direct sunlight. Furthermore, some materials (both reflecting

nd transmitting) can have both part-diffusing and part-specular

haracteristics. For such materials it may be impossible to formu-

ate any rigorous distinction between what constitutes direct sun-

ight and the other components of illumination. For the study de-

cribed here, whether or not a ray is considered to be ‘direct sun’

s more a matter of (largely ad hoc) simulation terminology than

greed upon definitions. This is illustrated in Fig. 7 showing a case

here high angle direct sun is completely blocked by the diffus-

ng blinds, but the same geometry for specular blinds could result

n the simulation registering the transmission of ‘direct sun’ rays

epending on the technique used. To add to the uncertainty, it is

ost likely that specular reflection effects did not figure largely (or

erhaps at all) in the considerations which ultimately resulted in

he formulation of the ASE metric. This should be borne in mind

or the evaluation that follows. 

For some simulation techniques, the specular Venetian blinds

ystem accentuates the difference with benchmark ASE results

ven further. Comparing ASE results for the diffuse blinds with

hose for the specular blinds ( Figs. 3 (d) and 8 (d), it can be no-

iced that the 2PH (C) result increased of 7 percentage points, and

he 5PH (E2, E3) results increased of 18 and 24 percentage points.

hese increments might be explained by the fact that the 2PH (C)

nd the 5PH (E2, E3) use one ambient bounce (-ab 1) even for

irect sunlight simulations. In the 2PH this bounce is necessary

o ‘find’ the sunlight source, which is represented by sky patches

ith a glow material assigned to them, i.e. the ray-tracing follows

 stochastic process rather than a deterministic one. In the 5PH,

he extra bounce is necessary to account for off-angle light trans-

ission through a CFS, i.e. the part of sunlight that do not enter

he space directly between the blinds slats, but it is reflected off

f them and then directed towards the room interior after a sin-

le bounce. In effect, if these strong reflections fall within an ob-

erver’s field of view, the resulting visual discomfort is comparable

o those caused by direct sunlight. It is therefore understandable

hat the recommended 5PH simulation settings are accounting for

ff-angle transmission effects. It is less clear whether these should

e included in the ‘direct sunlight’ definition that is prescribed in

he ASE calculation guidelines. Theoretically, it could be possible

o set a zero bounce calculation with the 5PH method – specific

or ASE – but at the moment there is not a clear procedure rec-

mmending this use of the 5PH. As previously noted, guidelines
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Fig. 8. Annual CBDM metrics for the specular Venetian blinds system. As for the diffusing Venetian blinds system, the barplot (a) shows the four UDI ranges on the same 

stacked bar, for all simulation cases; the choice of simulation method did not influenced the final results in terms of UDI. The DA and TAI barplots (b, c) leads to similar 

conclusions, although it is more noticeable how the 4CM and DAYSIM would benefit of higher ambient parameter settings. The ASE barplot (d) shows significant differences 

among methods, with values of 0% for the 4CM (A) and DAYSIM (B2) and as high as 46% for the 3PH (D1). 
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efining annual CBDM metrics do not include detailed instructions

bout specular reflections and about what exactly constitutes di-

ect sunlight. 

.3. Perforated solar screen 

The PSS shading system needed to be modelled differently from

he other two systems as it was positioned on the exterior side

f the fenestration system, hence it was modelled as an indepen-

ent element. Thus, the BSDF created for the 3PH and 5PH (D2,

3) represented only the PSS – assumed to be a single surface

ithout thickness – while all parts of the windows were explic-

tly modelled. The number of simulation cases is therefore reduced

n comparison with those investigated for Venetian blinds. Even

hough the PSS is a fixed shading system, the interest in mod-

lling it with a BSDF relies on the possibility of running efficient

arametric analyses, say, to find the optimal perforation ratio and

hape. For the 4CM, DAYSIM and 2PH, all geometries – windows

nd PSS – were explicitly modelled. 

For methods based on Radiance rtrace , like 4CM and

AYSIM, PSS were found particularly challenging to simulate, and

he time to complete simulation runs was significantly longer than

or previous CFS. Fig. 9 shows how an inadequate setting of ambi-

nt parameters for DAYSIM (B, B1, B2) influenced all annual CBDM

etrics (except for ASE, which does not include ambient light

edirection). The 2PH potentially overestimates light levels, as the

arger sun angle could be seen through PSS perforations more of-

en than in reality. ASE values for the 2PH and 3PH (C and D2)

ere surprisingly identical, even if the former accounts for di-

ect sunlight through the actual geometry and the latter accounts

or direct sunlight as ‘filtered’ through the BSDF matrix; ASE for

he 5PH (E3) was also found to be similar. However, all of these

hree methods reported ASE values well higher than the 4CM (A)

which is taken to be the benchmark for ordinary glazing and

on-redirecting CFS. 
Examining the frequency distribution of direct illuminance

hown in Fig. 10 , it can be noticed that rtrace -based methods,

uch as 4CM (A) and DAYSIM (B, B1, B2 – but B2 in particular),

esult in higher direct sunlight values. These peaks are the result

f sunlight passing through PSS holes, thus equivalent to a situa-

ion where no shading systems are present. For the 3PH (D2) and

PH (E3), the use of BSDF to represent the PSS leads to the dis-

ppearance of any geometrical feature/pattern of the PSS itself (as

isible in Fig. 1 (c)), and to the averaging of the transmitted light

ver the whole surface representing the screen. This effect reduces

ignificantly the presence of light peaks in case of the 3PH (D2),

hich uses BSDF on a Klems basis, and slightly less for the 5PH

E3), which uses a Tensor-Tree basis. 

From these results, it would appear that, at present, it is not

ossible to recommend any simulation technique that is able to

eproduce the discontinuous light pattern that the PSS produces

ithin the room and that is computationally efficient for annual

valuations. This is likely to be more critical for glare and visual

omfort studies, for which the correct representation – i.e. inten-

ity and directionality – of direct sunlight has a strong impact on

he results. For annual metrics that take into account illuminance

alues averaged on the working plane the choice of simulation

echnique is less influential, but the correct calibration of Radiance

arameter settings was found to be essential and particularly chal-

enging for this type of shading geometry. 

. Discussion 

The results presented in the previous section show that state-

f-the-art CBDM Radiance -based methods to simulate CFS are ex-

remely varied in the way they reproduce the effect of direct sun-

ight onto and through fenestration and shading systems. These

ifferences notwithstanding, some annual CBDM metrics resulted

n very similar values, whereas other metrics – such as ASE – are

trongly affected by the choice of simulation method. Addition-

lly, methods such as the 3PH or the 5PH offer more than one
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Fig. 9. Annual CBDM metrics for the PSS system. The ambient parameter settings used for the 4CM (A) had to be increased to reach the values shown in the Figure. For 

DAYSIM (B, B1, B2) the parameter were not increased, thus UDI-a, DA and TAI results are lower than other methods. 2PH (C) resulted in generally higher annual values, likely 

because the sensors could ‘see’ the larger sun through the PSS holes more often. 3PH (D2) and 5PH (E3) resulted in very similar values, as both methods represented the 

PSS as an homogeneous surface with a transmittance proportional to the PSS perforation ratio. 

Fig. 10. Frequency distribution of direct illuminance values for each simulation method, when the PSS was applied. Each sample includes direct illuminance values from all 

sensor points, at every occupied hour in a year. Some of the methods – such as the 4CM (A) and DAYSIM (B2) – can reach high illuminance peaks over 48 klx, whereas the 

rest of the methods tend to ‘smooth out’ any light peak and averaging the overall light intensity over larger areas. 
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approach to solve the same problem, giving the user additional

flexibility – and also the potential for making an incorrect choice

– when setting up the analysis. Front-end (i.e. user friendly) soft-

ware tools increasingly offer simplicity in order to lower the ‘en-

try point’ skills required to run complex simulations. These tend

to offer to the user a single simulation approach wherever pos-

sible in order to: (i) reduce software development costs, and (ii)

to avoid presenting the (possibly non-expert) user with choices

that require an expert’s insight in order to make the right/best

decision. A single approach could meet the requirements of many

users wishing to evaluate only traditional fenestration systems, and

depending of which metrics are required. However, for CFS – in-

cluding commonplace Venetian blinds – a single simulation ap-

proach could lead to limitations, which ideally should be made

clear in the software specification. In other words, the tool’s do-

main of applicability should be clearly described. An informed

user could then select the most appropriate tool for the task, bal-

ancing accuracy and simulation speed. For example, a paramet-
ic analysis at the concept stage could be performed using the

PH to run many simulations quickly and still have a reason-

ble approximation of the prevailing daylight performance. How-

ver, when more rigorous evaluations are required and/or if the

irectionality of light peaks is an important part of the evalua-

ion (e.g. for glare analyses), then the user should consider using

ther simulation techniques, e.g. 5PH or 4CM (depending on the

ature of the CFS), or perhaps also selected point-in-time visuali-

ations with rtrace . Guidelines on how to perform CBDM anal-

ses with the Radiance phased methods do exist [39] , but more

ccessible information should be also made available to front-end

ool users, for them to consciously choose the most appropriate

ethod. 

The following considerations are listed with the intent to help

esigners choosing the most appropriate simulation method for

heir needs, and to help policy makers taking into account the vari-

bility of simulation tools and their implementations when defin-

ng performance metrics and targets: 
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• The use of BSDF materials to describe CFS with macroscopic

discontinuities – such as Venetian blinds and PSS – will

always result in an averaged homogeneous light transmis-

sion within the space, with the complete disappearance of

clear sunlight patterns within the space, although in dif-

ferent measure for each simulation method. The 5PH with

proxied geometry is the only simulation method that makes

use of BSDFs and that can closely resemble the effects ob-

tained with rtrace . 
• The Radiance tool genBSDF gives the user complete free-

dom to create BSDF descriptions for any material and system

that can be modeled in Radiance . For example, as shown in

the analysis carried out for this paper, the BSDF can contain

only the transmitting part of the fenestration, the whole fen-

estration system, both fenestration and shading systems, and

so forth. 

• A CFS composed of microscopic elements or one that com-

pletely re-diffuses incoming light can be accurately repre-

sented by BSDF created from measurements, whereas CFS

composed by macroscopic elements can only be obtained by

‘virtually’ sampling the modelled geometry with simulation

tools such as genBSDF [22] . 

• At the moment of writing, BSDFs retrieved from LBNL WIN-

DOW libraries can only be based on the Klems division, and

do not account for specular reflections [18] . 

• The 2PH and 3PH cannot compute the direct sunlight com-

ponent by simply setting -ab 0 ; as the sunlight is repre-

sented as a glow type source, the Radiance raytracing pro-

cess uses a statistical sampling rather than a deterministic

one. In order to ‘find’ the sun, the virtual sensors have to

send at least one bounce towards the sky. 

• The 5PH uses a light source type to represent the sun,

and it can therefore account for direct sunlight when setting

-ab 0 . However, as the overall results from the 5PH rely

on the diffuse and inter-reflected light calculated with the

3PH, the direct sunlight component obtained with the 5PH

has to be consistent with the 3PH direct sunlight compo-

nent. For this reason, when calculating the 5PH direct sun-

light the bounces are set at -ab 1 , thus accounting for off-

angle transmission of direct solar rays due to reflections on

the CFS. Guidelines should clearly state whether reflected-

direct sunlight should be taken into account or not. 

The main limitation in this study is, of course, the absence of a

easurement dataset for the various scenarios against which the

imulated values could be compared. A truly reliable validation

ataset should include measurements of the sky luminance distri-

ution in addition to direct normal illuminance rather than infer-

ing sky conditions from global values [25] . Attempts at validation

ithout sky luminance data can lead to erroneous findings [40] .

he long-term measurement of sky luminance patterns has only

arely been carried out, and then usually as part of major studies,

.g. the International Daylight Measurement Programme. Although

amera-based capture of sky luminance patterns using high dy-

amic range imaging may eventually offer an effective replacement

or costly sky scanners, these measurements are still some way off

rom becoming a routine occurrence. All of the simulation methods

onsidered here have undergone some form of validation/testing.

owever, the validation procedures were different in each case,

nd each employed differing levels of rigour. Accordingly, for this

tudy the authors have made every effort to make only reasonable

xtrapolations from existing validation studies when discussing the

erformance noted here. For example, treating the 4CM prediction

f direct sun as a benchmark for the case of diffusing blinds and

erforated screen. However it is evident that further research work
n the validation of CBDM approaches for CFS should be carried

ut. 

. Conclusion 

This paper has presented and compared state-of-the-art

adiance -based techniques to perform Climate-Based Daylight

odelling (CBDM) with facades containing Complex Fenestration

ystems (CFS). Three different shading systems were analysed with

ve CBDM techniques: the 4-component method (4CM); DAYSIM;

he 2-phase method (2PH); the 3-phase method (3PH); and the 5-

hase method (5PH). For DAYSIM, the 3PH and 5PH methods, mul-

iple implementations and approaches were also considered. The

tudy performed in this paper is the first systematic inter-model

omparison to group all these methods. 

The analysis focused on the sensitivity of annual daylight

etrics to the chosen simulation method. Findings showed that

he more traditional methods, i.e. those based on the Radiance

trace command – such as the 4CM and DAYSIM – require

n increase in ambient parameter settings when CFS are present

e.g. from -ab 5 to -ab 7 for the PSS), with consequent in-

reases in computational time. The other methods, based on the

contrib command, are generally more efficient, but at the ex-

enses of a realistic representation of daylight patterns within the

oom. This is partly due to the use of BSDF representations of CFS,

hich offers a big potential in terms of computation efficiency,

ut which can result in averaging and even the disappearance of

ight peaks. Furthermore, there can be multiple approaches to set

p an annual CBDM evaluation with BSDF, even within the same

imulation method, e.g. 3PH or 5PH. Guidelines on these differ-

nt approaches are currently limited, and the choice of an ap-

ropriate simulation method depends completely on the user’s 

xpertise. 

CBDM annual metrics show varying degrees of sensitivity to

dopted simulation method. With appropriate ambient parameter

ettings, metrics based on total illumination – such as UDI, DA and

AI – were found to be comparable across all methods, well within

he ± 20% uncertainty range expected for daylight simulation. Con-

ersely, ASE values were found to vary significantly depending on

he chosen simulation method (up to 47 percentage points), and

ven when adopting different approaches with the same method

up to 10 percentage points). These findings are in agreement with

revious studies that looked at spaces with clear glazing, but this

aper shows that when CFS are present, there is an even wider

ange of possible simulation implementations that can potentially

ncrease the overall uncertainty in annual CBDM results. Guide-

ines and performance metrics definitions should take this varia-

ions into account to avoid misinterpretation. A list of recommen-

ations for designers and policy makers was presented in the dis-

ussion section. 

This study brought to the attention of the daylight simulation

ommunity the vast disparity of tools and implementations that

he users are confronted with when evaluating CFS. It is suggested

hat current guidelines need to take this into account when pre-

cribing performance metrics. To further increase our understand-

ng of the relationship between simulation and reality, future re-

earch should also consider how state-of-the-art CBDM techniques

elate to data measured in real spaces. 
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