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Abstract

Needle-punched carbon/carbon composites (NP-C/Cs) are advanced materials widely used in
aerospace applications. The needle-punching technique improves the integrality of carbon-
fibre plies, however, it also introduces many defects, affecting the mechanical behavior of NP-
C/Cs. A theoretical model of irregular beams is suggested to investigate the mechanical
behavior of unidirectional needle-punched carbon/carbon composites. Stress distributions in
punched and squeezed fibres and an effect of the needle-punching technology are assessed.
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1 Introduction

Carbon/Carbon composites (C/Cs) demonstrate excellent properties such as high specific stiffness
and strength, low density, good wear resistance, high thermal resistance and low thermal
expansion [1]. As a result, they are widely used in aerospace structures and braking systems.

The needle-punched (NP) structure, produced from fibre fabrics and nonwoven webs with a
through-thickness needling technique, has advantages of the combined high inter-laminar
properties and lower-cost processing [2, 3]. The NP C/Cs are prepared from the preforms by
employing a chemical vapor-deposition (CVD) process, with heat-treatment at temperature of
2000 K for 2 h, followed by densification at 1300 K under the pressure of 1 kPa. Thanks to the
NP process, interlaminar properties are strengthened; however, many defects are introduced
into laminates inevitably.

Some efforts were taken to characterise the performance of C/Cs. Zhang et al. [4, 5] investigated
bending properties and fracture mechanism of C/Cs with high-density preform and observed
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delamination and interlaminar fracture. Li et al. [6-8] examined macro-fracture with scanning
electron microscope (SEM) micrographs to understand the bending deformation and failure mech-
anism of 3D NP C/Cs at room and high temperatures. The obtained results showed that the load-
deflection curves below 400°C exhibited a linear elastic behaviour and brittle fracture, while failure
above 500°C was plastic. Static compressive behavior of such composites was studied by Zhang
etal. [9, 10], demonstrating that both transverse and longitudinal compressive strengths for materials
with dual matrix were higher than those with a single matrix. The failure modes under transverse and
longitudinal compressive loading regiones were shear and extension failure, respectively. Cai et al.
[11-13] also investigated the bending properties of the 3D NP C/Cs. measuring the flexure strength
of 98 MPa. Variety researchers [14—16] investigated effect of holes due to needling, e.g. properties of
3D z-pinned composites, including development model of their internal geometry and characteri-
zation of mechanical properties under static loading conditions.

Still, to the best of authors’ knowledge, researches employing theoretical models and numer-
ical simulations of mesoscopic features of NP C/Cs are rare. In this paper, the microscopic stress
distributions are derived analytically for fibres and matrix; bending behavior of such composites is
studied theoretical. Finally, some conclusions are drawn based on the obtained results.

2 Mesoscopic Features of NP C/Cs

The NP C/Cs studied in this paper were alternately stacked with 0° and 90°unidirectional (UD)
carbon plies, as well as layers of short-cut-fibre web clothes between them, as schematically shown
in Fig. 1(a). The composites contained ten layers and the thickness of each layer was 0.5 mm.

The preform [17, 18] was punched by regularly arranged needles on the needle plate. A
distance between the neighboring needles was 2.4 mm along the X direction and 4 mm along
the Y direction (Fig. 1(b)), the diameter of needle hole is 0.9 mm.

3 Theoretical Analysis of UD NP C/Cs
3.1 Mesoscale Mechanical Model of Squeezed Fibre Bundles
Fibres of UD NP C/Cs are squeezed in the X-Y plane as a result of application of the needle-

punching technology [19, 20]. To simplify the analysis, the produced hole shape formed by
squeezed fibres is considered as the irregular hexagon (Fig. 2). This is used as a representative
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Fig. 1 Schematic diagram of geometry model: a NP C/Cs; b needle distribution



volume element (RVE) for analysis below. Hence, the shape equation for the matrix can be
suggested as:

Zx(0 < x<1)
hy(x) = 1
&) {z{(l<x§(l+r)) 0

where 7 is the radius of the needle hole, / is the range of the punching effect.
The shape equation of a fibre bundle has the following form:
h
FE 2 (0<x < 1)
H(x) = / 5 2
y
r+—=

(2)
(Isx<I1+r)

where 4, is the height of fibre bundles before punching.
According to the relationship of deformation between the fibre bundles and the
matrix (Fig. 3) [21-23], the shear strain of the latter can be presented as:

= g 5

where 4, is the height of matrix, A is the sum height of fibre bundle and matrix.
So, the shear stress of the matrix can be solved as:

4 (%) = Tn(x) = GuYp = Gn7— 5y (x) (4)

where G, is the shear modulus of matrix.

Fig. 2 Half of RVE of squeezed fibre bundles
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Fig. 3 Deformation relationship between fibre bundle and matrix

Then, equilibrium equations for fibre bundles can be written as (see Fig. 4):

x h
—M(x) + Sox*foqf(x)%ds =M,
S(x) + foqf( Vsinfds = S (5)
qy(x)cos(0) = g, (x)
where M, and S are the moment and shear force at the end(x = 0), respectively; M(x) and S(x)

are the moment and shear force of the beam element representing the bundle, respectively;
gm(x) and g/(x) are the shear stress of matrix and fibre domains, respectively.

Fig. 4 Quarter of RVE of squeezed fibre bundles



The moment of fibre can be described by:

Eaihk
M) = 20 ) 0

where y(x) is the deflection shape equation of the beam element, £, is the elastic
modulus of fibres along the 1 direction. Then, the equilibrium equations can be
simplified as:
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The boundary conditions:
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The Eq. (7a) cannot be solved analytically, so the forth-order approximation was used:
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Using boundary conditions (8), the equations for moment M, (x) and shear force S;(x) can be
solved (0<x<):
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where
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The shear force S)(x) can be obtained directly:
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The maximum axial stress is
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where b is the bundle’s width.
The shear stress between the fibre bundle and the matrix is:

T17(x) = G (1 +%)y1’(x) =Gy (1 +%) {173Q1x+% (0* + Q2x3)} J0x< 1.  (14)

Equation (7b) can be solved exactly analytically as follows:
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Using the boundary conditions:
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where L =[+r, the coefficients can be found as:
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So, the moment M(x) and shear force S(x) equations can be obtained for / <x < L using Egs.
(15) and (17):
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So that the maximum axial stress is:
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The shear stress between the fibre bundle and the matrix is:
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3.2 Mesoscale Mechanical Model of Deflected Fibre Bundles

Changing from the plane x-0-y (Fig. 4) to x-0-z (Fig. 5), another RVE can be introduced to
analyse the in-plane deflection of fibre bundles caused by needle-punching.

Based on the RVE geometry, the relationship for deformation of the fibre bundle and the
matrix can be obtained as:

(22)

where Ay, h, is the height of fibre bundle and matrix, respectively, 7, is the shear strain of
matrix.
So, shear stress of the matrix is:
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Fig. 5 RVE model of deflected fibre bundles: a analysis of internal force; (b) shape parameters



The differential equations of equilibrium in a polar coordinate system can be written
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The shear stress in fibre bundle has the following form:
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Equation (24) after simplification is:
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Then, from Eq. (28) and the boundary conditions (29), parameters of Eq. (27) can be

obtained as Eq. (30):
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where
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Please check displayed equation below if presented correctly.
So, the full form of deflection equation for the fibre bundles is solved:
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The moment and shear force of the fibre bundle are:
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Using geometric neutral surface considerations of a circular beam (Fig. 6):

Together with the Taylor series expansion omitted higher order term [24-26]:
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The axial stress of the beam element can be presented as:
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The shear stress of the fibre bundle has the following form:
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Fig. 6 Section parameters
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4 Conclusion

The theoretical bending model was suggested for UD NP C/Cs to analyse the stress distribu-
tion of fibre bundles after the application of the needle-punching technology. The suggested
analytical approach can be used for predictions of stress distribution in fibre bundles for design
and optimization of C/Cs.

Acknowledgements This work is partially supported by the National Natural Science Foundation of China
(11872205, 11272147), SKL Open Fund (MCMS-0218G01), Foundation of National Scholarship of China
(201706830073), Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

10.

11.

12.

13.

14.

15.

17.

18.

. Li, X, Yu, S., Li, Y.P, Wu, Q., Li, Z., Xiao, T., et al.: Effect of pre-fatigue on bending behavior of 2.5D C/C

composites. Mater. Sci. Eng. A. 682, 290-295 (2017)

Li, D.S., Duan, H.W., Wang, W., Ge, D.Y,, Jiang, L., Yao, Q.Q.: Strain rate and temperature effect on
mechanical properties and failure of 3D needle-punched carbon/carbon composites under dynamic loading.
Compos. Struct. 172, 229-241 (2017)

. Alipour, M.M.: An analytical approach for bending and stress analysis of cross/angle-ply laminated

composite plates under arbitrary non-uniform loads and elastic foundations. Arch. Civ. Mech. Eng. 16,
193-210 (2016)

Zhang, M.Y., Su, Z.A., Li, J.L., Huang, Q.Z.: Bending properties and fracture mechanism of C/C
composites with high density preform. Trans. Nonferrous Metals Soc. China. 21, 1795-1800 (2011)

. Zhang, M.Y., Su, Z., Xie, Z., Chen, J., Huang, Q.: Microstructure of pyrocarbon with chemical vapor

infiltration. Procedia Eng. 27, 847-854 (2011)

Li, D.S., Yao, Q., Jiang, N., Jiang, L.: Bend properties and failure mechanism of a carbon/carbon composite
with a 3D needle-punched preform at room and high temperatures. New Carbon Mater. 31, 437444 (2016)
Li, D.S., Fang, D.N., Zhang, G.B., Hu, H.: Effect of temperature on bending properties and failure
mechanism of three-dimensional braided composite. Mater. Des. 41, 167-170 (2012)

Li, D.S., Li, J.L., Chen, L., Lu, Z.X., Fang, D.N.: Finite element analysis of mechanical properties of 3D
four-directional rectangular braided composites part 1: microgeometry and 3D finite element model. Appl.
Compos. Mater. 17, 373-387 (2010)

Zhang, Y., Lu, Z., Yang, Z., Zhang, D., Shi, J., Yuan, Z., Liu, Q.: Compression behaviors of carbon-bonded
carbon fibre composites: experimental and numerical investigations. Carbon. 116, 398408 (2017)
Zhang, Y., Lu, Z., Yang, Z.: An interface model of the fiber pullout process of the carbon nanotubes
hybridized carbon fiber composites. In: 17th European conference on composite materials. ECCM, Munich
(2016)

Cai, Y., Fan, S., Yin, X., Zhang, L., Cheng, L., Wang, Y.: Microstructures and mechanical properties of
three-dimensional ceramic filler modified carbon/carbon composites. Ceram. Int. 40, 399408 (2014)

Cai, Y., Yin, X., Fan, S., Zhang, L., Cheng, L.: Tribological behavior of three-dimensional needled ceramic
modified carbon/carbon composites in seawater conditions. Compos. Sci. Technol. 87, 50-57 (2013)

Cai, Y., Fan, S., Liu, H., Zhang, L., Cheng, L., Dong, B., Jiang, J.: Microstructures and improved wear
resistance of 3D needled C/SiC composites with graphite filler. Compos. Sci. Technol. 69, 2447-2453
(2009)

Mouritz, A.P.: Compression properties of z-pinned composite laminates. Compos. Sci. Technol. 67, 3110—
3120 (2007)

Belingardi, G., Cavatorta, M.P., Frasca, C.: Bending fatigue behavior of glass—carbon/epoxy hybrid
composites. Compos. Sci. Technol. 66, 222-232 (2006)

. Patel, N.P., Sharma, D.S.: Bending of composite plate weakened by square hole. Int. J. Mech. Sci. 94-95,

131-139 (2015)

Lacoste, M., Lacombe, A., Joyez, P.: Carbon/Carbon extendible nozzles. Acta Astronaut. 50, 357-367
(2002)

Turner, P., Liu, T., Zeng, X.: Collapse of 3D orthogonal woven carbon fibre composites under in-plane
tension/compression and out-of-plane bending. Compos. Struct. 142, 286-297 (2016)



19.

20.

21.

22.

23.

24.

25.

26.

Liu, W.: Element rigidity matrix and coordinate transformation matrix of space circular arc curved beam.
Journal of Wuhan Institute of Water Transportation. Engineering. 27, 97-106 (1985)

Dietrich, S., Gebert, J.-M., Stasiuk, G., Wanner, A., Weidenmann, K.A., Deutschmann, O., Tsukrov, 1., Piat,
R.: Microstructure characterization of CVI-densified carbon/carbon composites with various fibre distribu-
tions. Compos. Sci. Technol. 72, 1892-1900 (2012)

Koricho, E.G., Belingardi, G.: An experimental and finite element study of the transverse bending behaviour
of CFRP composite T-joints in vehicle structures. Composites Part B. 79, 430-443 (2015)

Alshahrani, H., Hojjati, M.: A theoretical model with experimental verification for bending stiffness of
thermosetting prepreg during forming process. Compos. Struct. 166, 136-145 (2017)

Ropers, S., Kardos, M., Osswald, T.A.: A thermo-viscoelastic approach for the characterization and
modeling of the bending behavior of thermoplastic composites. Compos. Part A. 90, 22-32 (2016)
D’Ottavio, M., Dozio, L., Vescovini, R.: Bending analysis of composite laminated and sandwich structures
using sublaminate variable-kinematic Ritz models. Compos. Struct. 155, 45-62 (2016)

Sobuz, H.R., Ahmed, E., Sutan, N.M., Hasan, N.M., Uddin, M.A., Uddin, M.J.: Bending and time-
dependent responses of RC beams strengthened with bonded carbon fibre composite laminates. Constr.
Build. Mater. 29, 597-611 (2012)

Margossian, A., Bel, S., Hinterhoelzl, R.: Bending characterisation of a molten unidirectional carbon fibre
reinforced thermoplastic composite using a dynamic mechanical analysis system. Compos. Part A. 77, 154—
163 (2015)



	Theoretical Analysis on Needle-Punched �Carbon/Carbon Composites
	Abstract
	Introduction
	Mesoscopic Features of NP C/�Cs
	Theoretical Analysis of UD NP C/�Cs
	Mesoscale Mechanical Model of Squeezed Fibre Bundles
	Mesoscale Mechanical Model of Deflected Fibre Bundles

	Conclusion
	References




