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ABSTRACT 

This thesis develops the concept, management and control of metamodels for the 

management of software development projects. Metamodels provide a more flexible 
approach for managing and controlling the software engineering process and are based 

on the integration of several software development paradigms. Generalised Activity 
Networks are used to provide the more powerful planning techniques required for 

managing metamodels. In this thesis, both new node logics, that clarify previous work 
in this field, and Generalised Activity-on-the-Arrow and Generalised Activity-on-the­

Node representations are developed and defmed. Activity-on-the-Node representations 
reflect the current mood of the project management industry and allow constraints to be 

applied directly to logical dependencies between activities. The Generalised Activity 
Networks defined within this thesis can be used as tools to manage risks and 

uncertainties in both software developments and general engineering projects. They 
reflect the variation and uncertainties in projects more realistically and improve the 

planning and scheduling of such projects. 

An improved Monte Carlo simulation, that allows the number of simulations to be 

determined dynamically, is used in the temporal analysis of both Generalised and 
Probabilistic activity networks. The affect that various discrete and continuous activity 

temporal functions have on the duration of activity networks of different sizes and 
complexities is also examined. The results of this work, and the comparative simulation 

requirements of Generalised and Probabilistic Activity Networks, are presented. 

These three areas are tied together by a common thread that runs through the main text 

of this thesis. This thesis provides a new software development modelling concept 
(metamodels), a technique to support the management of this concept (Generalised 

Activity Networks), and develops a means of analysis for this technique. These 
developments are directed at the project management of software development rather 

than the embedded design processes that are more the concern of the systems analyst. 

By considering the software development process from several aspects, specific 

artificial intelligence techniques can be applied to particular aspects of that process. 
This thesis investigates how blackboard technology can be used as a framework on 

which an artificial intelligence support element can be developed. This support assists 
decision making during particular phases of the software development process. Reason 

maintenance is employed to allow alternative solutions to the software development 
process to be evaluated concurrently by allowing several plans to coexist at different 

levels of a blackboard structure. 
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CHAPTER 1 

Introduction, Scope, Aims and Objectives 

CHAPTER PREFACE 

This chapter puts the work of this thesis into an overall context. It begins by 

introducing the broader field of project-based management before looking in more 
detail at a subset of this area - software development management - and techniques 

for improving this activity. It looks at previous work in the field and identifies areas to 
which this thesis makes particular contributions. The evolution of activity networks is 

detailed and current gaps in these techniques are identified. This thesis aims to fill 
these gaps, and looks more closely at how flexible approaches can be used to model 

the software development process. 

CHAPTER KEYWORDS 

Software Development, Project Management, Activity Networks 

1.1 INTRODUCTION 

, ... a software product is a model of the real world, and the real world is constantly 

changing' [Schach 1993). 

The above quotation encapsulates perhaps the most difficult aspect of software 

developinent. That difficulty relates to the inherent changeability of a software product 

and the environment in which it is developed. This problem makes the development of 
software systems a particularly complex project area to manage - far more so than that 

needed for established engineering projects. The problems inherent within the 

development of software have lead to numerous project overruns and failures over the 

last thirty years. This has resulted in 'The Software Crisis' that was initially identified 
by a NATO study group as long ago as 1967. This thesis addresses the problems 

associated with the management of the software engineering process and develops 

models and management techniques that overcome some of the difficulties involved. 
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This thesis approaches the software crisis from two directions. First, it identifies the 

need for more dynamic models that can manage more flexible systems development. 

The concept of metamodels, that represent a hybrid of several other models, is , 
developed within chapter two. Second, it looks at one of the techniques of project 
management - activity networks - and develops theories behind this work. That part of 

the thesis concentrates on concepts in project management information systems -

primarily aimed at the software development process. It concentrates on activity 

networks, how these techniques can be developed to provide more realistic 
representations of projects, and improved approaches to their analysis. 

1.2 THE SOFfWARE DEVELOPMENT PROCESS 

1.2.1 Overview 

There are numerous texts devoted to the subject of Software Engineering - for example 
Schach (1993), Sommerville (1993), Macro (1990), Gilb (1988), Pressman (1994), and 

Macro and Buxton (1987). All of these provide different models, phase sets, 

methodologies and so on that aim to elevate some of the problems of a dynamic 

development, by imposing some form of structure on it. 

The main theme behind this thesis is the management of the software development 

process. There are several aspects to this process - models, methods, activities, support 

elements and phases that are covered in some detail in chapter two. This section briefly 
introduces the main stay of this process - software development models - and identifies 

where this thesis makes advances in this area. 

1.2.2 Models 

'in order to be able to manage a software project it is essential to follow a defined life­

cycle model' [Mazza 1989]. 

Models are the skeletal structure of the software development process. They provide a 

visual framework in which this inherently invisible product can be developed. 
Unfortunately, software development models have proved to be rather restrictive and 

have never really allowed software to grow within their structure. This has been noted 
by several authors (for example, Agresti (1986a and 1986b)) and alternative models 

have been developed over recent years. This thesis develops the concept of hybrid 

models or metamodels that provide a more flexible structure in which modem day 

software systems can evolve. 
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Liu and Horowitz (1989) identified three advantages of using models -

(i) They allow one to understand and explain to others the steps involved in the 

software process. 
(ii) They assist the management of the process. 

(iii) They provide a foundation for building tools that enhance the software process. 

The first ever model developed was the Stagewise model which is the origin of the 
widely used Waterfall or Classical Life Cycle model. These models were based on 

original engineering practices and can be traced back as long ago as 1956 [Benington 
1956]. Inadequacies of this and other early models have come to light over the years. 

According to Turner (1993) the original models 'discouraged effective approaches to 
software development such as prototyping and software reuse'. Liu and Horowitz 

(1989) also criticised the Waterfall model for four reasons: 

(i) It is foolish to believe that one model is appropriate for all software development 
projects. 

(ii) It provides an inadequate modelling of requirements change. 
(iii) It does not involve end users in the process. 

(iv) It fails to treat software development as a problem solving process. 

Pulk (1990) also pointed out that attempts to strictly adhere to the Waterfall model have 
been unsuccessful due to scheduling pressures causing overlap of development stages.· 

Overlap between phases in a software development is inherent and desirable within this 
process. This overlap should not be discouraged. 

Due to the inadequacies of the Waterfall model several other models have been 

developed over the past ten to fifteen years. Some represent hybrids of methodologies 
and techniques whilst others represent the implementation of methodological 

approaches. Examples include Prototyping Models [Bowen 1990], Evolutionary 
Deliveries [Sommervilie 1993], the Spiral Model [Boehm 1988], Formal 

Transformation Models [Sommerville 1993], and 4GL Models [Pressman 1994]. Liu 
and Horowitz (1989) developed a hybrid model consisting of And/Or graphs and Petri 

Nets called the DesignNet Model. This model appears more complex than the standard 
model approach which identifies the stages through which a software development 

progresses at a strategic level. Models are covered in more detail in chapter two . 

• 
In order to put forward their own ideas of a software development model, Lill and 
Horowitz (1989) identified six idealised features of models: 
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(i) They must adequately describe software development as a design process. 

(ii) They must accept software development as a parallel process - many people doing 

several tasks simultaneously. 

(iii) Activities can be undenaken when their diverse conditions exist - for example, a 
simple case would involve their resources being available and their preceding 

activities having completed successfully. 

(iv) They should be able to indicate all anifacts that are produced at various points in 

the process - for example, documentation at each stage. 
(v) If an activity fails, they should be able to indicate the activities and resources 

affected. Affected activities may have to be re-executed. 

(vi) They should be able to indicate the extent and nature of resources used by a 

subtask. 

The metamodel, developed within chapter two of this thesis, addresses points (i) and 

(iv). By supporting this model through the development of Generalised Activity 

Networks in chapter three, and their subsequent analysis in later chapters, this thesis 
also suppons the other idealised features of a model. 

1.3 SOFTWARE DEVELOPMENT MANAGEMENT 

1.3.1 Project-Based Management 

'to plan and manage a software project successfully, we must view project management 
as a process, and the project plan as an activity that prepares data for that process' 

[Rexing 1991]. 

Since software developments can be viewed, perhaps, as a specific subset of projects in 
general, it is wonh looking first at project-based management. This field is well 

established - as early as 1963 the US Air Force PERT Orientation and Training Center 

was able to cite 702 works in this field [Dooley 1964]. 

According to Turner's work (1993) project-based management involves three integrated 

dimensions: objectives, management processes, and levels. The management processes 

(plan, organise, implement, and control) are identifiable with project life cycle phases. 

The different phase sets applicable to the software development process are discussed in 
chapter two. 

The five objectives identified by Turner are scope, organisation, quality, time and cost. 

Earlier approaches to project-based management focused on the management of quality, 
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cost and time objectives. The feeling was, that if these three objectives could be 

managed, then projects would be completed successfully. However, Turner goes on to 
state that these objectives are, in fact, optional 'soft constraints'. It is scope and 

organisation that are obligatory. 'Without scope there is no project; without the 
organisation it cannot be implemented' [Turner 1993]. 

All organisations can be viewed as some form of hierarchical structure. Generally there 

are no more than eight levels within an organisation [Lucey 1987]. Taking a more 
general stance one can define three levels within an organisation. Turner (1993) defined 

three project levels as integrative, strategic and tactical. For the purposes of this thesis 
this terminology will be maintained. The objectives of a project must lie within an 

organisation's objectives which are represented by the integrative level (see chapter 
four). At the strategic level 'a strategy for achieving the purpose is defined' [Turner 

1993]. This strategy is viewed in this thesis as the model level of the software 
development process. The tactical level then represents ways of achieving these strategic 

targets. Generalised Activity Networks, defined in chapter three, can be used at both the 
strategic and tactical levels. 

1.3.2 Software Development Management 

'Most software developers regard keeping pace with ever-changing user requirements 

as their main challenge of the moment' [Peltu 1994]. 

Software developments represent a special kind of project. Unlike most engineering 
projects they prove to be particularly awkward to manage as their development 

processes are generally ill-defined and dynamic. One way these problems are overcome 

is to define a model that represents the way in which software is developed. To go from 

a set of requirements to a working system has to imply a certain process anyway. It was 
the lack of an applicable process in the late 1960s that initially lead to the software 

crisis. These days, however, even though several new models exist, software is still 
being delivered late and with errors. Personal contact with several software houses 

highlighted reasons for these problems - although new models exist, most developers 
use traditional Life Cycle approaches or, in some cases, no models or methodologies at 

all. They also tend to use more traditional project-based management approaches 
without regard to software's inherently dynamic nature. 

Even during the 1980s authors were still looking at how wider project management 

approaches could be applied to the software development industry. Blaney (1989) was 
one such author who stated 'There is no reason that project management techniques 

applied successfully in other industries cannot be applied in the software development 
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industry'. Tulip (1983) proposed that project management techniques used in the 

construction industry and contract management are equally applicable to the 
management of data processing projects. Tausworthe (1980) also applied general 

project management techniques from engineering to software project management, as 
did Carter, Clare and Thorogood (1987). 

The problem overlooked by these authors is that software development is inherently 

different to general engineering projects and requires a more know ledgeable approach. 
Although project management skills are required, more knowledge of the product is 

needed. Indeed, Pulk (1990) stated that a software project manager needs all of the 
following to be an effective leader: 

(i) Project management skills. 

(ii) Software development skills. 
(iii) A knowledge of the product being developed. 

In order to assist the problems faced by the software development industry, project 

management techniques need adopting and adapting. One of the techniques, taken from 
the broader field of project management, is that of project management information 

systems. Although these systems provide some means of support they need 
development to include risk and probabilistic analysis. Blaney (1989) confirmed this 

idea when he identified that one of the unique issues that drives project management in 
the software development industry is that 'Project management software that supports 

probabilistic risk analysis must be used to predict realistic completion dates'. 

1.4 PROJECT MANAGEMENT INFORMATION SYSTEMS 

'Tools are too inflexible and don't do what I want .... they seem to have been written 

by programmers not project managers' cited in Peltu (1994). 

Project management information systems provide computer-based support for project 
managers. The most popular of these systems are networking systems that are based on 

project management techniques dating back to the late 1950s (PERT and CPM) and 
earlier (Gantt charts). Not only do these systems provide a means of project planning 

but they also assist with project control. According to Turner (1993) three requirements 
of a project management information system include -

(i) Integration across an organisation. 

(ii) Planning and control. 
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(iii) Fast response. 

It is the last two of these requirements that are addressed by developments within this 

thesis. Improved planning and control is covered by developments within chapters two 

and three, and a faster response is dealt with by developments in chapter four. 

Although there was a plethora of research in the 1960s on activity networks, this tailed 

off somewhat during the I 970s and 19S0s. It has only been recently revived in the new 

information explosion of project management software tools (network based) that have 

appeared over recent years. Jacobs (1994) identified this by noting that 'the specialised 
nature of the topic and the non-visual nature of PCs meant that further development of 

the programs already produced took a back seat for a number of years'. The late 1970s 
and 19S0s is perhaps better remembered for its development of models and 

methodologies, in the field of software development management, than for project 

management. It is not worth denying, however, that project management software tools 

today are particularly user friendly and take much of the work out of the analytical side 

of project management. They provide comprehensive reporting facilities for all 

management levels and a means of planning, calculating and controlling all sizes of 

project. Appendix A provides a good visual example of one such tool in use. This 

appendix shows reports (various work breakdown structures, activity networks and 
Gantt charts) generated for the Milltown Road bridge project by CA-SuperProject®. 

This is one of the more popular PC-based project management software tools on the 

market today, and provides, like many of its rivals, an invaluable aid to the project 

manager. The only drawback with these tools is that they are still based primarily on 

techniques developed during the late 1950s. It is only through the use of more powerful 

Windows™ based machines that these techniques have become more usable. Now that 

the processing power is available, more radical developments are needed to take these 

project management tools into the next century. 

1.5 ACTIVITY NETWORKS 

1.5.1 Overview 

The earliest approach to project representation is the Gantt chart (after Henry L Gantt) 

or Bar chart. This approach is still in widespread use today and almost all project 

management information systems (network based) incorporate some means of 

representing these charts. Examples of Gantt charts can be found in Appendix A (pages 

A3 to AS). Since the 1950s, Gantt charts have been complemented by Activity 

Networks that allow the relationships between activities in a project to be explicitly 
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identified. . 

Since their inception, Activity Networks have become invaluable aids to the planning and 

management of a multitude of projects throughout business and industry. Activity 

Networks originated in two very similar forms in the late 1950s: PERT (Program 

Evaluation and Review Technique), and CPM (the Critical Path Method). CPM is 

sometimes referred to as CPA (Critical Path Analysis) but this relates more to the 

subsequent analysis of these networks than their actual representation. 

Both PERT and CPM have become intertwined over the years to fonn the basis of 

networking techniques that are used today. Generally speaking, either tenn is now used 

to refer the approach of representing a project by a network diagram, performing various 

calculations to determine a project's duration, resource requirements, and costs, and 

controlling a project through this medium. 

The original PERT and CPM techniques represented the activities of a project by arrows 

that connected nodes or events. Consequently these techniques are sometimes referred 

to as Activity-on-the-Arrow (AoA) or the Arrow Diagram Method. In Activity-on-the­

Arrow Networks, dummy activities (dashed arrows) are needed to define some of the 

interrelationships between tasks. These dummy activities have zero cost and time 

parameters associated with them. An example of a simple Activity-on-the-Arrow 

network is shown in figure 1.1. 

Figure 1.1 A Simple Activity-on-the-Arrow Network 

An alternative representation to Activity-on-the-Arrow is when activities are represented 

by nodes and their relationships are represented by arrows. This alternative 

representation is called Activity-on-the-Node (AoN) and is logically equivalent to an 

Activity-on-the-Arrow representation. An example of an equivalent simple Activity-on­

the-Node network is shown in figure 1.2. 
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Figure 1.2 A Simple Activity-on-the-Node Network 

The fIrst Activity-on-the-Node representation was developed in 1958 by Fondahl at 
Stanford University [Levine 1986]. To many, an Activity-on-the-Node representation 

provides a clearer representation of a project as it does away with the need for dummy 
activities that can complicate a project plan. Consequently Activity-on-the-Node is the 

more popular of the two representations in use today. The advantages of Activity-on­
the-Node are discussed in chapter three where a Generalised Activity-on-the-Node 

representation is developed. 

Activity Networks can be split into three categories of complexity according to their 
activity characteristics - Deterministic, Probabilistic and Generalised Activity Networks. 

CPM falls into the simplest of these three categories (Deterministic) and PERT into the 
Probabilistic category. 

1.5.2 Critical Path Method 

The Critical Path Method was developed in 1957 by the DuPont Company and 

Remington Rand for use in the construction industry. As activities within the 
construction industry are generally well understood and have been performed several 

times before, previous experience can be used to predict activity durations and costs 
accurately. In the original CPM approach two time estimates were required for the 

duration and cost of each activity - called normal and crash. The normal time 
represents the duration to complete a project requiring the least amount of money. The 

crash time and cost represent the minimum possible time to complete a project with an 
associated increase in cost. Consequently CPM can calculate an estimate of the most 

economical or shortest time to complete a project. Because of the simple representation 
of activity times and costs in CPM, it falls into the Deterministic Activity Network 

category. 

Deterministic Activity Networks are used to manage projects in which the activities of a 
project are well understood and complete in recognised times. Well established 

algorithms (for example Moder and Phillips (1983), and Whitehouse (1973», that make 
forward and backward passes through an activity network, are used to calculate various 
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data relating to a project's times and costs in these networks. These data include 

information such as the early start, late start, early finish and late fmish of each activity, 
the critical path and several different slack or float times. Appendix B provides 

formulae for these calculations. 

1.5.3 Program Evaluation and Review Technique 

PERT was developed in 1958 by the Lockheed Missile and Space Division, the United 
States Navy and consultants from Booz-Allen and Hamilton Company. It was 

developed to control the development of the Polaris Fleet Ballistic Missile. 

As identified earlier, PERT is a Probabilistic Activity Network representation. 
Probabilistic Activity Networks help to manage projects where there is some uncertainty 

about the duration of activities in a project. This is usually the case for new projects 
where activities have not been performed previously and an exact duration cannot be 

estimated accurately. In these situations the activity durations are represented by 
probability distribution functions (temporal functions). Due to the stochastic nature of 

the activity times in Probabilistic Activity Networks, they tend to be difficult to analyse. 
A way of analysing both Probabilistic Activity Networks and Generalised Activity 

Networks will be studied in chapter four. 

PERT has developed through four generations over the years; PERT/Time, PERT/Cost, 
PERTfLoB (Line of Balance) and PERTfLoB/Cosl. PERT/fime is the earliest and most 

basic version of PERT while the other techniques include enhancements to the simple 
PERT/fime idea. 

(i) Second Generation: PERT/Cost 

PERT/Cost was issued as a set of guidelines in 1962 by the American Department of 
Defense and NASA. It was developed for the specific purpose of integrating time data 

with associated financial data of physical accomplishment. It established certain cost 
tracking parameters as requirements for selected DOD and NASA projects. These 

parameters had to be integrated into the project schedule. 

(ii) Third Generation: PERT/LoB 

In 1967 Schoderbek and Digman (Schoderbek and Digman 1967] developed the third 

generation of PERT - PERTfLoB. The LoB technique had been used as an effective 
management tool in the control of steady state production activities for twenty five years 

prior to its amalgamation with PERT The PERTfLoB technique aimed to bring together 
the development techniques of PERT, with the production techniques of LoB. 

PERTfLoB covered the critical transition phase between these two phases. 
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(iii) Fourth Generation: PERT/LoB/Cost 

This system encompasses time, cost, and resource scheduling. One published 
PERT/LoB/Cost system is Cost and Schedule Planning and Control or CS PC [Saitow 

1969]. This method not only covers control from a project managers vieWJXlint, but it 
also provides reporting facilities for upper level management. 

1.5.4 Resource Allocation 

It was not until the mid-1960s that project management techniques began to take into 

consideration the fact that resources (staff, machinery, money etc) are seldom available 
to a project in unlimited quantities. Three possible methods of handling limited 

resources have been developed over the years [Guerrieri 1987]: 

(i) Resource Indication - this system highlights those areas where scheduled resources 
exceed available resources - it does not solve the problem but merely identifies it. 

(ii) Resource Levelling - reduces the amount of variability of resource usage over the 

project duration when sufficient resources are available, and the project must 
complete in a given time. This can be achieved by various methods including 

shifting non-critical tasks, splitting activities and so on. 

(iii) Fixed Resource Limits Scheduling - this technique has essentially the opposite 
constraint to resource levelling. In this technique the resource limits are fixed, but 

the project completion date is allowed to slip within given constraints. Resource 
limits can be fixed over the project duration or allowed to vary between certain 

limits. 

Combinations of these techniques are feasible and depend on the network type and the 
way in which activity durations are represented. It should also be possible to assign 

priorities to activities that are to be levelled. In this situation lower priority activities will 
be stretched/delayed first ensuring project priorities are maintained. There are 

numerous algorithms available for resource levelling and fixed resource limits 
scheduling - earlier publications describing different algorithms include Wiest (1967), 

Clark (196Ia), Levy et alia (1962), King (1964), and Berman (1964). 

In the 1960s it was only the large mainframe computer programs that could perform 
these calculations. One example is RAMPS (Resource Allocation and Multi-Project 

Scheduling) [Lam bourn 1963]. These days even some of the cheaper PC-based 
computer packages have facilities for resource optimisation. Examples include Project 

Scheduler™ 6, CA-SuperProject®, Primavera Project Planner®, and CS Project™ that 

11 



has its own scheduling criteria called CARLO - Cost and Resource Levelling 

Optirnisation (see chapter four). 

1.5.5 Precedence Diagram Method 

The Precedence Diagram Method (PDM) was the next real stage in activity network 
representation. Before PDM was developed the relationships between tasks in activity 

nerworks were fixed. In other words, an activity would be deemed to start immediately 
after its preceding activity(ies) had completed. It was obvious that in many situations 

this is not the case, and a solution to this problem was required. As an example, take the 
hardening of concrete foundations in a house building project. There is clearly some 

delay between pouring concrete to form a foundation and it becoming hard enough for 
the next stage of the project to commence. In 1973 Crandall [Crandall 1973, Wiest 

1981] introduced the Precedence Diagram Method that overcame this problem. PDM is 
based on Activity-on-the-Node as this provides a more clear representation of the 

constraints that can be applied. In Activity-on-the-Arrow networks, these constraints 
require additional nodes and dummy activities that can overly complicate project plans. 

PDM allows both overlap and underlap between connected activities using a delay factor 
called lag. A similar, more limited method, called the Metra Potential Model, was 

developed in 1983 by Gotthardt and Winkelmann [Gotthardt and Winkelmann 1983]. 
The Metra Potential Model defined a minimum (z) and maximum time (-w) delay 

between twO linked activities but did not incorporate the full power of all four PDM lag 

types (figure 1.3). 

z 

I Task A I Task B 

-w 

Figure 1.3 The Metra Potential Model 

In PDM there are four types of lag that can be defined - Start-to-Start, Start-to-Finish, 

Finish-to-Finish, and Finish-to·Start (SS-n, SF-n, FF-n, FS-n . where n represents the 
lag in associated time units). 

• Start-to-Start (SS) 

Task B cannot begin until a delay after the start of task A (figure 1.4). For example, 
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performance monitoring cannot start until a given time after system implementation 

has started, to allow time for the system to initially settle down. 

ss 

Figure 1.4 Start-to-Start Delay 

• Start-to-Finish (SF) 

Task B cannot finish until a delay after the start of task A (figure 1.5). For 
example, when a new software team starts work there must be some form of hand­

over period where the old team cannot finish work until the new team has had time 

to prepare to take over. 

SF 

Figure 1.5 Start-to-Finish Delay 

• Finish-to-Finish (FF) 

Task B cannot finish until a delay after the completion of task A (figure 1.6). For 

example, it may not be possible to finish testing until one month after a diagnostics 

system has been installed. After this time it might be safe to assume that the system 

is working. 

FF 

Figure 1.6 Finish-to-Finish Delay 

• Finish-to-Start (FS) 

Task B cannot start until a delay after the completion of task A (figure 1.7). For 

example, if task A represents the giving of notice for a meeting, there will be a delay 

corresponding to the notification time before the meeting itself takes place - task B. 
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----- -- - -------

I Task A I FS. 

Figure 1.7 Finish-to-Start Delay 

An example of a simple PDM network with all these constraints is shown in figure 1.8. 

How PDM constraints can be applied to Generalised Activity Networks will be 

discussed in chapter three. 

I Task A 
.. .. FF-5 

I Task Cl I Task D I , 
SS-1 SF-2 .. .. 

Task B I 
FS-3 

I Task E I Task F 

Figure 1.8 A Simple PDM Network 

1.5.6 Cost Control 

Cost control systems work as a control mechanism within project management 

information systems_ They generally work on an 'earned value' system which works 

on the principle that subsequent times and costs in a project are affected by times and 

costs accrued so far. The initial technique for cost control was specified in 1975 by the 

American Department of Defense when they issued specification DODI7000.2, called 

cost/schedule control system criteria (C/SCSC). At the same time the American 

Department of Energy had a similar specification called performance measurement 
system, but it is C/SCSC that is still in widespread use today. There are two alternatives 

to the type of forecasting within cost control systems: 

(i) Future work will ensue at the same rates of cost, resource requirements and duration 

as work completed so far. This means that any variations to the original plan will 

continue to occur at the same rate in the future. 

(ii) Future work will ensue at the previously planned rate. This method assumes that the 

only variation to the project plan was that already monitored in the work achieved so 

far. 
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Examples of project management software tools on offer today which include cost 

control measures based around C/SCSC are InstaPlan™ 5000, Schedule Publisher™ 
4.1 for Windows™, Cascade® by MANTIX which is an organisation wide approach, 

and CA-SuperProject®. Another system that performs earned value analysis is 
Parade® (1993) by Primavera that takes plans from Primavera Project Planner® and 

performs the necessary earned value cost control calculations on these plans. 

1.5.7 Generalised Activity Networks 

Generalised Activity Networks represent the third and final complexity level of Activity 
Networks. References to Generalised Activity Networks are particularly sparse when 

compared with PERT and CPM approaches. Examples of work in this field include 
Bellas and Samli (1973), Interrante and Biegal (1991), Moore and Clayton (1976), 

Moore and Taylor (1977), Pritsker (1974 and 1979), Pritsker and Happ (1966), Pritsker 
and Whitehouse (1966), Samli and Bellas (1971), Taylor and Moore (1978), 

Whitehouse and Pritsker (1969), McGowan (1987), Moeller (1972), Moeller and 
Digman (1981), Kidd (1990 and 199\). 

Generalised Activity Networks originated in 1962 [Eisner 1962] and evolved into a 

methodology called GERT [Drezner and Pritsker 1966] (Graphical Evaluation and 
Review Technique). Although this developed into several other Activity-on-the-Arrow 

forms (for example, Moore and Clayton (1976» only one other real advancement was 
made - that of VERT in 1972 [Moeller 1972, Lee et alia 1982, Kidd 1990 and 1991] 

(Venture Evaluation and Review Technique). Generalised Activity Networks have never 
become established as a project management technique. Reasons for this and their 

development is covered in chapter three. 

1.5.8 Summary 

Activity networks have three levels of complexity and a number of different 

representations. The complexity levels range from Deterministic and Probabilistic to 

Generalised Activity Networks. These networks can ultimately be represented in 
perhaps four different ways - Activity-on-the-Arrow, Activity-on-the-Node, Precedence 

Diagram Method and a Hybrid. A Hybrid representation refers to a combination of the 
other three. It is a Hybrid representation that is developed in chapter three. 

Table 1.1 summarises the different kinds of activity networks that are available. No one 

these days tends to refer explicitly to a specific approach (for example, a Probabilistic 
Activity-on-the-Node Network representation) preferring to group all activity networks 

under the PERT/CPM umbrella. This thinking is represented by CPM* and PERT* in 
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table 1.1. 

The gaps within this table (Generalised Activity-on-the-Node 'and Generalised 

Precedence Diagram Method) are the gaps filled by this thesis. Chapter three develops 
a Hybrid representation to fill these gaps and provides a means of analysis. 

Increasing 
Complexity 

DANs 

PANs 

GANs 

AoA 

CPM 

PERT 

GERTNERT 

Representation 

AoN PDM 

CPM* CPM* 

PERT* PERT* 

- . 

Table 1.1 Activity Networks - Representation and Complexity 

1.6 FUTURE WORK 

1.6.1 Overview 

The majority of popular project management information systems are based on 

established activity network techniques. Developments over recent years have merely 

included enhancements to the usability of such packages for example, by incorporating 

the Windows™ platform. Software development management needs more powerful 

concepts and supporting software to overcome the chronic software crisis. Areas of 

potential future research, that represent advancements towards a solution to this 

problem, are identified within several chapters of this thesis. One such long term aim is 

the development of intelligent project and software development management systems, 

development of which has only been patchy over the years. 

1.6.2 Intelligent Management Systems 

'While the responsibility for project decisions should and must lie with project 

managers, a knowledge based assistant could provide decision support for these and 

other project management tasks' [Ahmad et alia 1988]. 
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Ahmad et alia (1988) gives an outline of the tasks and methodologies that an artificial 

intelligence project management tool should incorporate. It is interesting to note that 
this work speaks of 'a knowledge based assistant' rather than an intelligent machine 

that would make all managerial decisions. This implicitly identifies that the decision 
making process lies with project managers themselves, and machines, certainly at this 

stage, are not sophisticated enough to take over the decision making process themselves. 

An example of an intelligent project management system is Callisto [Sathi et alia 1986]. 
'The Callisto project was born out of the realisation that the classical approaches to 

project management do not provide sufficient functionality to manage large engineering 
projects'. The Callisto project had four goals that encompass various aspects of the 

project management field: 

(i) Activity modelling - to generate a model of activities and their constraints. 
(ii) Configuration management - generate a hierarchical product representation, and 

develop a system to support change. 
(iii) Activity scheduling - schedule with various hard and soft constraints and goals 

that involve dynamic rescheduling, what if simulation and heuristics to guard 
against 'bad' schedules. 

(iv) Project control - study and model the status of updating and activity-tracking 
procedures and the use of managerial heuristics for reporting, focusing and 

diagnosing problems. 

Generalised Activity Networks, developed within this thesis, address some of the points 
raised in goals (i), (iii) and (iv) above. The interaction between these networks and 

intelligent management systems represents a particularly interesting area for future 
research. Although this work is beyond the intended scope of this thesis chapter six 

discusses a proposed artificial intelligence approach to software development 
management. 

1.7 CONTEXT 

'To provide effective support, project management tools should be tailored to the needs 
of the decision makers, and not vice-versa' [Ahmad et alia 1988]. 

This quote encapsulates one of the main themes running through this thesis - that of the 

development of techniques more applicable to the management of the software 
development process. 

17 



Software developments are a subset of projects in general which are managed through 

several phases (identified more explicitly within software development by models and 
phase sets). These developments require the management of different objectives at 

different organisational levels. Metamodels provide a means of managing software 
developments at a strategic, and subsequent tactical level for organisation, cost and time 

objectives. 

Activity networks represent a particular means of project representation that are used to 
assist both the planning and control of projects. Currently they are not flexible enough 

to cope with situations encountered in both software development projects and other, 
less clear problem domains (for example, research and development). Generalised 

Activity Networks provide more flexible activity networks for planning and control. 
They represent a more applicable project management information system and are 

supported by analytical techniques developed in chapter four. 

1.8 AIMS AND OBJECTIVES 

1.8.1 Overview 

To summarise the goal of this thesis into one aim is a very difficult task, since in the 

development of this work, a number of different but interrelating tasks were defined and 
executed. However, this thesis sets out: 

(i) To identify and develop models for more flexible management of software 
systems development. 

(ii) To develop Generalised Activity Networks, both Activity-on-the-Arrow, Activity­
on-the-Node and, as a consequence, PDM in order to support more flexible 

software development management models and other project types. 
(iii) To improve analysis and data quality of such management support systems. 

(iv) To look at the development of an artificially intelligent system for the management 
of the software development process. 

1.8.2 Contribution 

Although the above points may initially appear somewhat disjointed, they are brought 
together by a common thread that indicates the major contribution made by this thesis. 

This contribution involves the development of an entirely new concept for software 
engineering management (metamodels in chapter two), supported by a more flexible 

management technique (developed in chapter three) which in turn is supported by an 
improved analysis approach (developed and discussed in chapters four and five). 
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CHAPTER 2 

Development of Metamodels for Managing the Software 

Development Process 

CHAPTER PREFACE 

Software development paradigms currently used within industry are based on 
established models of the software life cycle. As technology has evolved and become 

more accessible, more flexible approaches to the development of software systems 
have been advocated. Several new models have evolved over the passed ten years 

based on more powerfuL software engineering tools and more sophisticated 
development methodologies. A more responsive approach to the development of 

software systems should allow the integration of alternative development models to be 
achieved without requiring changes in the development management structure. This 

chapter introduces metamodels that allow more flexible management of software 
systems development (presented in the paper by Dawson and Dawson (l994c)). It 

also introduces a technique (Generalised Activity Networks from Dawson and 
Dawson (1994a)) that provides the management support needed by metamodels. 

CHAPTER KEYWORDS 

Software Development, Paradigms, Metamodels, Generalised Activity Networks, 

Planning 

2.1 INTRODUCTION 

'Every project suffers from continuously changing users' requirements' [Peltu 1994]. 

Ever since the software crisis was identified by a NATO study group in 1967 [Schach 

1993), software practitioners have attempted to understand more fully the process by 
which software is developed. The early attempts at sttucturing the software development 

process were based on established engineering practices. It soon became clear, however, 
that software was inherently different from physically engineered products. The 

engineering project practices that had been adopted were (and still are) wholly 

inadequate. Brooks, in his work of 1987 [Brooks 1987), detailed two features of 
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software that make it particularly difficult to produce - those inherent within the software 

and those introduced by accident. 

The inherent problems identified by Brooks were complexity, conformity, changeability, 

and invisibility. Complexity derives from both the large number of states in which a 

software system can reside, and the interaction between software elements that increase 

. non linearly with this number of elements. Conformity relates to the problems 

associated with developing software so that it conforms with other software and 

hardware systems. Software can be produced to run on various platforms and must 

provide an interface that is compatible with other systems. As software environments 

are constantly changing (in terms of hardware and problem domains that are 

encountered), changeability presents another inherent software problem. The last 
inherent problem identified by Brooks was invisibility. Invisibility identifies the 

difficulties involved in representing software in a conceptual, diagrammatical form. 

According to Brooks, software needs to be represented by several, general directed 

graphs superimposed on one another - for example, control flow, data flow, dependency, 

time sequence and so on. Brooks went on to state that in spite of simplifying these 

structures they remain inherently unvisualisable. 

These inherent problems are compounded by accidental problems introduced by 
software developers. These problems represent difficulties that attend the production of 

software but are not inherent within it [Brooks 1987]. Accidental problems include 
using individual programs together (causing data compatibility problems), accidental 

complexity introduced by developers at higher levels (for example, poor data 
structuring), and slow software response times (for example, batch processing) possibly 

causing a user to lose track of the minutia and the thread of what s/he was thinking. 

It has already been advocated by many authors that a more flexible approach is needed 

for the development of software systems. As long ago as 1986 [Agresti 1986a] 

practitioners were calling for an approach that did not impose a rigid phase structure on 

the development of software systems such as that imposed by the conventional waterfall 

model (for example, Benington (1956». What was not addressed with this proposition 

was how management could cope with such a process. Project managers are reluctant to 

embark upon ideas that have little structure or visible direction. This culture, alongside 

the inertia of large organisations, has resulted in a situation where the majority of 

software projects undertaken today are based on the established life cycle or waterfall 

model. In order to distance ourselves from the rigid constraints imposed by the 

waterfall model other development paradigms have been introduced over recent years. 

These alternative paradigms can still impose a rather rigid set of constraints on the 

direction of a system's development by defining the specific stages (and the order) 
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through which a project develops. One way of overcoming this problem is to combine 

several different paradigms into a hybrid model called a metanwdel. Metamodels allow 

software development projects to evolve along more responsive pathways yet still 

provide management with a structure to which projects can relate. Metamodels can be 
controlled by using a more flexible management technique that is introduced later in this 

chapter. 

2.2 THE SOFTWARE DEVELOPMENT PROCESS 

2.2.1 Overview 

Boehm (1981) identified two different types of software developments: 

Projects: Software developments for a single, one-off client. 

Products: Software development for a multiplicity of unsecured (and possibly 
unknown) clients. 

Although these definitions identify the resultant operating environments of a software 

product, the use of the word project in these definitions is somewhat misleading. There 
is no reason why a software development project could not involve the development of a 

system for a broader market, in which case the project would be to develop a marketable 

product. From this perspective, all software developments can be viewed as projects of 

a sort, but what is meant by the term project? 

Software developments, when viewed at their broadest level, can appear as unclear 

systems with rather vague start and end points. After all, when has a software 

development started - after the initial idea, when coding begins, when a concept 

document is approved by developers and customers, or when a contract is signed? 

When is it complete - when the software leaves the development house, after the second 
version is released, or after three years of maintenance? 

This viewpoint contrasts quite significantly with Bames' [Barnes 1989] definition of a 

project - 'something which has a beginning and an end' cited by Turner (1993). Turner 

qualifies this definition by introducing several other project descriptions. He picks out -

'a one-time, unique endeavour by people to do something that has not been done 
before' [Smith 1985] - as the definition that captures 'the essence of projects'. 

Although software has already been shown to have a rather unclear beginning and end, 

Smith's definition encapsulates the essence of software development, be it a product or a 

project. 
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In order to conceptualise the aspects of software development projects, various 

structures have been devised. The software development process was viewed by Rook 

(1986), and less explicitly by Macro and Buxton (1987), as a three dimensional system. 

By imposing a structure on the system in this way it is possible to reduce its complexity. 

The three aspects or dimensions that encompass this system are support elements, 

activities, and phases. Figure 2.1, adapted from Rook (1986), provides a tighter 

representation of his ideas. Some of the detail in this figure is inaccurate in that it 

identifies certain items, for example Time Management, as separate entities to Project 
Management. These items are, in fact, subsumed within Project Management and 

should not be shown separately. This point is covered in more detail in chapter four. 

r 

Activities 

Support 
Elements 

- Standards and Procedures 

Techniques and Tools 

- Documentation System 
E 

I 

'" " Work Definition '" .~ 0 " .;;; 
~ >. .§ 

-S 
Training ";j 

~ ~ 
. ., 

" " « '" ~ 

Metrics and Estimation 

Project management 

Technical control 

Resource management 

Configuration management 

Time management 

Figure 2.1 Rook's Dimensions 

Phases 

Within Rook's representation there is a close association between certain project 

activities and specific life cycle phases that have been defined. He identified 

requirements specification, structural design, detailed design, and code and unit test as 

both phases and activities in the software development process. The activities that were 

defined, however, could represent ongoing tasks that are performed at other stages 

throughout the life cycle of a project, and should not be restricted to a particular phase. 

In this representation there is a more apparent link between some of the support 
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elements and certain activities. The dashed, arrowed lines in figure 2.1 indicate some of 

these more obvious associations. For example, standards and procedures assist the 
activity of quality assurance, a documentation system clearly assists project 

documentation, and metrics can help to simplify the task of project management. 

2.2.2 Support elements 

Support elements are those tools and procedures that have evolved to assist the software 
developer. They include aids such as standards and procedures, documentation systems, 

project management tools [Powell 1990], training, and can be used to assist specific 
acti vities or methodologies within particular phases of the project life cycle. CASE tools 

[Costello 1990, Hill 1990] and IPSEs (Integrated Project Support Environments) 
[Brown et alia 1986, Brown 1988] fall into this category. 

2.2.3 Activities 

Activities are ongoing tasks that different members of the software development team 

perform throughout the lifetime of the project, keeping it running on a daily basis. As 
noted earlier, some of these activities can be assisted by specific support elements. 

Several of these activities can also be attributed to specific team members. The project 
manager, for example, would be responsible for resource and project management 

activities, and project documentation could well be assigned to a technical author. 
Activities can also be attributed to particular phases of a software development (although 

they do not have to be limited to a particular phase). For example, control would, more 
often than not, be performed during synthesis and planning during analysis. 

2.2.4 Phases 

Rook originally defined eight phases within his representation. Phases represent the 

stages through which a project progresses to completion, any number of which could 
theoretically be defined. Software development phases will be studied in more detail 

later. 

2.2.5 Limitations of Earlier Representations 

Unfortunately this structure, identified by Rook, does not represent the software 
development process in its entirety. Today there are several paradigms available for the 

development of software systems. By identifying a specific, eight step phase structure 
within his representation, Rook related his model to a single, waterfall-type development 

paradigm. He has, in effect, presupposed the software development model and split the 

23 



development into a series of steps with specific start, end, and intermediate control 

points to reflect this. Imposing a specific phase structure on a representation in this way 
can be particularly dangerous as it can either be so vacuous as to provide no practical 

value to any software development model, or too specific to relate to alternative models 
[McCracken and Jackson 1986]. It is possible, however, to identify a set of phases that 

are broad enough so as not to restrict the process yet detailed enough for the purposes 
of this chapter. In order to put some of these ideas into context, later in this chapter a 

broad series of four phases will be defined. However, even with such a broad set of 
phases, there is always some overlap inherent between each phase. One cannot get away 

from the fact that phase sets are affected by the development paradigm used. They must 

not, as is the case with the waterfall model, be so inflexible that the paradigm is restricted 

within their structure. 

2.2.6 A Comprehensive Representation of the Software Development Process 

A more comprehensive representation of the software development process is provided 

in figure 2.2. This augments software development paradigms and methodologies with 

the three dimensions of Rook's representation. 

Assist 

Ongoing throughout 
the development life cycle 

Can 

Protocol for 

Figure 2.2 Comprehensive Software Development Process Representation 
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'If you can't model it, you can't build it' [Hill 1990). 

Models represent strategic level development plans within an organisation that identify 

the broad stages through which a software development progresses. Organisational 
levels and project objectives are covered in more detail in chapter four. 

One feature that has been omitted from these representations is that of resources. 

Although resources can be viewed as external to the process, they do have an influential 
effect on its progression. The software development process can be viewed, in fact, as a 

process in which resources are consumed, by going from an initial idea to a fully 
operational system. Resources are external to the representation of figure 2.2, being 

consumed by each of the aspects as and when they are required. 

This chapter is, therefore, concerned with five aspects that constitute the overall concept 
of the software development process - Models (also called Paradigms), Methods, 

Activities, Support Elements, and Phases. The following sections now cover the 
remaining aspects of this representation in more detail looking firstly at models, then 

methods and finally phases. 

2.3 SOFTWARE DEVELOPMENT MODELS AND PARADIGMS 

2.3.1 Early Models 

Developing an effective model is a balance between implementing an easy-to-understand 

life cycle and a process that is flexible enough to address all eventualities [Todd 1993]. 
Unfortunately this was not achieved by the conventional waterfall approach that is 

described below. 

The software development model defines how the overall software development process 

is to be performed. It defines the order in which various stages will be tackled through 
each phase of the development process, and can define some of the methodologies and 

techniques that will be used within that process. Models define what happens in the 
phases - not the phases themselves. Broad phases are common to all projects and are 

covered in more detail in section 2.5. 

Unfortunately, what has happened within industry is that time and time again software 

developments are performed using a specific, established model with which the 
organisation is familiar. What is advocated is that the model of the software 

development process should not be preselected until some idea of the product is first 
achieved. 
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There are still some organisations that do not knowingly use any explicit development 
model. Some small software houses interviewed use no apparent model for 

developments requiring less than one person-month of effort. This seems to be quite 
common for projects of this size. In these cases the developers can usually be seen to 

follow a build-and-fix paradigm (see section 2.3.2). Todd (a consultant with 3SL) 
[fodd 1993] wrote that in his experience of organisations, many software departments 

were lacking a defined development process, although he provides no specific figures. 

Up until the early 1980s there existed only one software development model - the 

classical waterfall approach. Since then a plethora of other models have evolved which 
are based perhaps more on the introduction of new methodological ideas than anything 

else. What has only been tentatively addressed so far is the possibility of combining 
development models into a suite that allows a developer to choose which model's 

attributes would suit best a particular project at a particular time. Metamodels represent 
the next stage in the development of ever more flexible approaches to the development 

of software systems. Several paradigms currently used within industry are now 
presented, some of which are incorporated into the metamodel that is described in more 

detail later. 

2.3.2 Build-and-Fix 

The build-and-fix, or code-and-fix, model is the earliest approach used to develop 
software systems. It does not represent any real, explicitly defined model at all, but is 

used to identify the approach to software development used by many programmers and 
'hackers'. According to Schach (1993) this is probably the worst model that can be 

adopted for the software development process. In this model there are no formal 
specification stages or requirements analysis. It represents a 'thrown together' coding 

solution that is subsequently reworked and fixed as required on a repetitive basis until 
an adequate solution is reached. It is perhaps more widely recognised as the part-time 

computer hacker's solution to programming software and the model used (although 
unknowingly) for many other small, one person projects. Three difficulties with this 

model were identified by Turner (1993): 

(i) After several fixes the software becomes difficult to maintain as it becomes poorly 
structured. 

(ii) It often does not match the user's requirements. 
(iii) It can be costly to maintain because of its poor structure and lack of definable 

output that can be tested. 
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Because of the problems encountered with this unstructured approach several, more 
detailed models were devised. The earliest of these models was the stage-wise model 

from which the classical waterfall model developed. 

2.3.3 The Stage-Wise Model 

The classical software development models are based on a specific phase structure 
through which a software process cascades to completion. These models were based on 

the more familiar work of engineering projects and can be traced back as far as the work 
of Benington in 1956 [Benington 1956]. Benington's model was known as the stage­

wise model and, depending on which of the many hundreds of articles read on the 
subject, there can be anywhere between two and up to or over fifteen specific phases in 

this model. One respectable view of the classical stage-wise model contains six specific 
phases (figure 2.3). Detailed explanations of each phase are clearly beyond the scope 

of this chapter - some such phases having entire books devoted to them. Briefly 
however: 

(i) Requirements Analysis 
The idea for the system is identified either by an individual or as a specific requirement 

that needs addressing within an organisation. 

Requirements 
Analysis 

Specification 

~,.--------, 
Design 

Implementation 

~,.--------, 
Operation 

~,.--------, 
Retirement 

Figure 2.3 A Stage-Wise Model 
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(i i) Specification phase 

Produces a detailed report on what the product should do, not how it should do it. This 
specification includes any inputs and outputs that are to be produced and any 

constraints imposed upon the system. 

(iii) Design phase 
This is where the 'how to do it' document is produced. From the product specification 

the design phase is used to draw up a detailed design of how the product will go about 
performing its required objectives. 

(i v) Implementation 
• 

Conversion of the design, based on the specification, drawn from the initial 
requirements, into the working product. 

( v) Operation 

U se of the system, including any enhancements and maintenance work that is required, 
in its target environment. 

(vi) Retirement 

The phase out of the product when it reaches the end of its natural life. 

One problem with the stage-wise model is that it represents a unidirectional 
development. In other words, once a stage has been completed the results of that stage 

become a fixed baseline from which the following stages develop. Usually, problems 
within a particular development stage are not idt;ntified until later in the development 

cycle. In the stage-wise model any problems within earlier, fixed stages cannot be 
changed as feedback to them is not identified. One way around this problem is to allow 

feedback from subsequent stages to earlier ones in the life cycle. The classical waterfall 
model provides a limited form of this kind of feedback. 

2.3.4 The Classical Waterfall Model 

The classical waterfall model (or classical life cycle model) overcomes some of the 

problems of the stage-wise model by allowing some form of feedback to take place 
between linked stages. Unfortunately, all the waterfall model allows is feedback to one 

previous stage in the cycle. Each stage, in this case, is identified by its outputs, that feed 
into the following life cycle stage, rather than the activities that are perfonned within that 

stage [Turner 1993]. This model identifies some inherent overlapping between 
connected stages and allows problems, identified with a previous stage, to be corrected 

before baselining that stage. A problem with this model is that it again emphasises the 
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baselining of early stages in the development process, when little is really known about a 

problem. A lot of work, put into producing the deliverables of an early life cycle stage, 
could later prove to be wasted when more is known about the problem domain. Figure 

2.4 represents the classical waterfall model showing how feedback occurs between each 
stage. 

Requirements 
Analysis 

Specification 

Design 

Implementation 

Operation 

Figure 2.4 A Classical Waterfall Model 

Retirement 

It is not by accident that the waterfall model and its derivatives have remained at the 

forefront of software development. It is due mainly to the inertia of large companies 
that develop software systems based on these practices [Agresti 1986b]. The aim of this 

chapter is to highlight the rigidity of these current software development practices, and 
to propose the use of a more flexible planning technique that allows alternative 

approaches to be explored by managers. 

2.3.5 Prototyping 

Prototyping represents a particular technique that, because of its flexibility, has allowed 
the evolution of whole new set of software development models based on its concepts. 

Prototyping is a technique whereby information is bought [Macro 1990] at a particular 
stage of the development process. This purchasing analogy relates to the investment in 

time and expenditure that provide the developer with the information required. It is 
when and how the prototype is used that determines which of four prototyping models 
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is being adopted. Alavi (1984) provided an overview and assessment of the prototyping 

approach. 

(i) General Prototyping 
A general prototyping model is the development of a system from an initial prototype 

developed at either the requirements analysis or specification stage. As the system itself 
is built up around this original prototype it can be viewed in some ways as a system 

assembly technique. This technique will be looked at later. 

(i i) Throw-away Prototyping 
Throw-away prototypes, as the name implies, are discarded once their information has 

been elicited. Throw-away prototypes are generally used to replace the requirements 
analysis phase of the waterfall model and are sometimes referred to as rapid prototypes. 

(i ii) Evolutionary Prototyping 

According to Bowen (1990) the evolutionary prototyping model is used to develop a 
'production product by the convergence of successive models'. This approach is also 

sometimes referred to as the incremental model [Schach 1993]. In this model the 
system is delivered to the user in a series of fully operational subsystems. Each 

subsystem represents a subset of the overall system's requirements and each delivery is 
a superset of the preceding one. This process continues until the system is completed 

as a whole. An example of evolutionary prototyping can be found in Computing (8 

April 1993, p26). 

(iv) Incremental Prototyping 

Not to be confused with the incremental model, this prototyping approach represents a 
'build it twice' ideology [Bowen 1990]. It differs from the throw-away approach in that 

it is bound by an overall system design and it is not intended as a replacement to an 
analysis subphase. The incremental prototype is built as closely to the required system 

as possible and is rewritten each time the system needs to evolve. 

2.3.6 Formal Transformations 

Sometimes referred to as the Formal Method Model this is another model that has 
grown around a particular development methodology. In this model a functional 

specification, developed from the requirements specification, is formally converted step 
by step into a fully operational software system. This conversion can be achieved by 

formal development languages (for example, some 4GLs developed for this purpose) or 

by more concentrated coding techniques. Based on fonnal development methodologies, 

it is a more exacting software practice and leads to much higher standards of software 
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safety and software provability. It can remove much of the intensiveness of 

transforming a specification into a solution through the use of specialised software. The 

development can also be carried out in a formalised framework that has a precise 

semantics [Beierle et alia 1986]. 

2.3.7 Evolutionary Deliveries 

This is similar to the incremental prototype in that the final system evolves and grows 

from a small embryonic core over a period of time. The evolutionary delivery model has 

the advantage, however, of being able to change its direction as it evolves to reach ever 

varying customer requirements. This model is sometimes referred to as exploratory 

programming [Sommerville 1993] as the initial releases explore the user's requirements 

before evolving into the next version of the product. It differs from a build-and-fix 

model in that there is an initial specification from which to work and it gives a planned 

sequence of deliverables to provide customer feedback. 

2.3.8 Operational Specification 

This is similar to a prototype in that it attempts to represent how the final system may 

look by providing information to the user at an early stage. It does not, like a prototype, 

need to be developed on the target system that might not exist at that time. According to 

Agresti (1986a) an operational specification has two advantages. First it separates the 

development process into problem-oriented and implementation-oriented phases, and 

second it provides the user with an early executable system model. 

2.3.9 Spiral Model 

This model, developed by Boehm in 1988 [Boehm 1988], encapsulates some of the 

better features of the life cycle and prototyping paradigms. It splits the development 

into four cyclical phases - Planning, Determination (of objectives, alternatives and 

constraints), Risk Analysis, and Engineering. These phases are performed, in turn, 

during several iterations of a software evolution. The spiral model works by forcing the 

risks of a project to be resolved before allowing the next cycle to be pursued. If risks 

cannot be controlled, or limited to an acceptable level, the project should be terminated 

there and then. Figure 2.5 provides an outline of this model. In this figure the radial 

dimension represents incremental costs involved in developing a product, and the 

angular dimension represents the progress of the project. From high levels of 

abstraction, each loop repeats previous steps through lower levels of abstraction whilst 

developing and maintaining the software. According to Sodhi (1991) one advantage of 

this model is flexibility by providing an ability to encompass any mixture of 
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specification-oriented, process-oriented or object-oriented approaches. It does not, 

however, match any existing standards and is still evolving into an acceptable, working 

model. 
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Figure 2.5 Outline of Boehm 's Spiral Model 

2.3.10 4GT Model 

Fourth-Generation Techniques (4GTs) have their roots more as development 

methodologies and tools, than as particular models. By enabling software to be 

developed from a much higher specification level, 4GTs allow much faster development 

of software code. These techniques have therefore led to the establishment of models 
based on their operation. The 4GT model is a model in which the implementation of the 

system from the design phase is achieved through a fourth generation technique. 
Another offshoot of 4GTs is the automated formal and 4GL model. 
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2.3.11 Automated Formal and 4GL Model 

This model brings together the more recently developed techniques of 4GLs and formal 
methods. Figure 2.6, adapted from Pressman (1994), best explains how this model 

progresses. Following requirements analysis a formal specification can be made (using 
a formal specification technique). A 4GL can then be used to generate a prototype 

directly from this specification, that can be optimised and tuned to provide the 
operational system. This system, like all others, then goes through a period of operation 

and maintenance before finally being retired. 
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Figure 2.6 Automated Formal and 4GL Model 
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2.4 SOFTWARE DEVELOPMENT METHODOLOGIES 

2.4.1 Existing Methodologies 

Although one can draw a distinction between the terms methods and metlwdologies, for 

the purposes of this thesis both terms will be used interchangeably. Strictly speaking, 
however, one would view a method as being more prescriptive than a methodology as it 

provides a step by step approach. A methodology, on the other hand, represents a 

broader approach providing a set of guidelines that can be followed. 

Although Todd (1993) announced that very few organisations used any development 

model, a survey by Spikes Cavell in 1992 [Spikes Cavell 1993] showed that 73% of 

organisations used some form of software development methodology. A methodology 

represents a defined way of performing at least one phase of the software development 
process. It is basically a philosophy that describes the business process. Some 

methodologies, for example SSADM, are particularly comprehensive and cover several 

phases of the development process. Others are rather restrictive, having specific rules , 
and protocols that must be followed. Methodologies are also directed towards different 
aspects of the development process. For example, Prince is a project management 

methodology, whereas SSADM is a methodology aimed at the design process 

If an organisation decides to implement a methodology, as part of its development 
process, it can adopt it from one of three sources: 

(i) Public Domain Methodology 

Although the up front costs of a public domain methodology can appear quite low, their 
long term implementation costs can prove to be rather high. They tend to be quite rigid 

in their guidelines and can require much expenditure to integrate them into the 

organisation's structure. Because public domain methodologies are widespread, 

however, there are many consultancies and much support and training available for 
them. Typical examples of public domain methods include SSADM, Merise (the 

French equivalent), and Prince (Projects in a Controlled Environment) by CCfA which 

is based on Prompt (a government standard introduced in 1983). There is also a 

Europe-wide method called Euromethod under development that hopes to provide a 
common methodological standard throughout the EEC [Spikes Cavell 1993]. 

(i i) Propriety Methodology 

A propriety method is supplied and implemented by a single supplier. The user is 
provided with all the training, consultancy and source material from that one source. 

The disadvantages with this approach are that it is expensive and the user becomes 
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reliant on support from a single supplier. Examples of such methods include LSDM by 

LBMS (Learmonth and Burchett Management Systems), Methodll by Anderson 
Consulting, Navigator by Ernst and Young, and Prism by Hoskyns [Spikes Cavelll993, 

Falla 1991]. 

(i i i) Home Tailored Methodology 
Dissatisfaction with these sources has lead many companies to the development of their 

own in-house methodologies. These can prove extremely costly to develop but, as they 
grow out of the companies existing structure, they fit into the organisation's current 

working practices extremely well. Unfortunately, these in-house methodologies can 
mushroom out of control without specific guidelines and external support is virtually 

nonexistent [Falla 1991]. 

2.4.2 Techniques 

There is some overlap between what could be termed a development technique and a 
development methodology. Generally speaking, however, techniques are not as 

comprehensive as methodologies, and cover only part of a development phase. A 
technique can be defined and used within a development methodology but this does not 

represent a complete solution to an entire phase. Techniques can therefore perhaps, be 
viewed as sub-methods. They are commonly supported by various tools. 

Some examples of techniques and methodologies widely used within industry include 

PERT (Program Evaluation and Review Technique) and COCOMO [Boehm 1981] that 
may be used within a planning stage of a project. Data Flow Diagrams, Petri Nets, Z, 

and Finite State Machines are techniques that assist the specification of a system. Data 
Flow Analysis, Jackson System Design, Object Oriented Design and Stmctured System 

Analysis can be used to design a product. C/SCSC and SSADM are techniques and 
methodologies discussed in later chapters. 

One technique used within the implementation stage is a system assembly. As the name 

implies this is the development of a system by 'bolting' together smaller subsystems. 
These subsystems could be pre-written, evolved from an initial prototype (the general 

prototype model), or developed from scratch. Other techniques, that have already been 
mentioned, are Fourth Generation Techniques that allow software to be developed in 

more natural languages. Some of these techniques have evolved into specific models 
that were detailed earlier. 
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2.5 SOFTWARE DEVELOPMENT PHASES 

2.5.1 Overview 

Phases are a separate entity to the models that were defined earlier. Whereas models 

provide an indication of the stages within a process, the phases provide a more 
integrative view of the project overall. Thus the link between phases and models is that 

models constitute stages subsumed within phases that are based at the integrative level. 

Countless authors have proposed different phase structures in an attempt to represent 
the flow of software development processes. As mentioned earlier, these structures can 

consist of any number of phases ranging from two [Grady and Caswe1l1986] up to and 
over fifteen [Bowen 1990]. However, imposing a specific phase structure on a 

development process can restrict the natural progression of that process. Turner (1993) 
identified three problems with real life projects that emphasise the importance of not 

rigidly imposing the life cycle: 

(i) Exploratory work on subsequent stages can be required before the current stage is 
completed. 

(ii) Problems encountered in later stages may require reworking of earlier stages. 
(iii) Users' requirements are dynamic and may change during the development of the 

system. 

It is not proposed that project phase plans are discarded because a basic underlying 
structure is still necessary for the effective management of any process. 

To show how a phase model can be constructed, an example is provided based on a 

broad, four stage development structure consisting of analysis, synthesis, operation and 
retirement (figure 2.7). By usin!; a Work Breakdown Structure on these phases one can 

subdivide them into smaller stages that relate more directly to a development undertaken. 
The use of a work breakdown structure to break a project down through various 

organisational levels (integrative, strategic and tactical) is covered in chapter four. 

Figure 2.7 shows some overlap between each of the four phases. This overlap is 

common within most of the models developed since the early 1980s, since it represents 

some form of interaction/feedback between the phases. 'In reality there are no clearly 
defined breakpoints between the stages' [Turner 1993]. This interaction between 

phases is inherent within the development process and should not be discouraged as it 
was with the early stage-wise approach. 
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Figure 2.7 A Broad Phase Set 

Overlap between the four phases can also be attributed in part to the' grey areas' within 

the software development process. For example, there could, perhaps, be some debate 
as to whether the specification stage should lie within the analysis or synthesis phase. 

As this is dependent on which development paradigm is employed, and how the 
information from this stage is used, it is best to show it within the boundaries of both 

phases. A prototype used as a specification could well be viewed as providing analytical 
information, whereas a formal specification would not. As it is important not to restrict 

the process by a phase structure, overlap between the phases defined here is inevitable. 

It is interesting to draw a comparison with the phase set defined here, and one defined 
for use in project management for which software systems represent a subset. Another 

phase set is that defined by Turner (1993). In Turner's representation of a project life 
cycle, four phases - Germination, Growth, Maturity and Death - were identified. In this 

representation the phases relate directly to the project management life cycle, referring to 
the initiation and subsequent completion of the project itself. These four phases 

actually refer to the Analysis and Synthesis phases identified in this chapter (Death 

covering product use). The representation provided in this chapter takes the completion 

stage one step further and identifies Operation and Retirement as two subsequent steps 
in the development of a software system. Compared with engineered products, software 

systems require far more maintenance, constant repairs and upgrades during their 

operation. 

2.5.2 The Analysis Phase 

Within this phase one can identify the initial conceptualisation of a project. The project 

idea can be formed by an individual within an organisation or it can be identified by 
some form of requirements analysis. One can also identify an amount of project 

planning where decisions are made as to how a project will be tackled, what resources 
are used and in what order activities are undertaken (this is covered in more detail in 
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chapter four). Objectives are also set and milestones are identified. The analysis phase 

basically identifies the need for a particular product and puts in place a mechanism for 

developing that product. 

2.5.3 The Synthesis Phase 

This represents the actual development of a system from the basic concepts. Within 

this phase managers are responsible for tracking a project as it progresses, and 
adjusting future expectations accordingly. Often, in many projects, there is a distinct 

split between the analysis and the synthesis phases although ideally there should be 

some interaction between them. As a project progresses, more information is uncovered 

about the problem which can be fed back into the analysis phase. Without any such 
interaction the benefits of this gain in information would be lost. Control is an 

identifiable management activity within this phase. This activity is covered in more 

detail in chapter four. 

2.5.4 The Operation Phase 

This represents the operation of a final product in its target environment. It includes 

maintenance and enhancement of a system, perhaps even feeding back information into 
the analysis or synthesis phases. It can also include adapting software for use on other 

systems, providing a help desk facility, and marketing the product. It is fair to say that, 

on the whole, this is the phase to which the least planning and thought is applied even 

though figures by Macro and Buxton (1987) show that maintenance within this phase 
can take up to 60% of total project time. It is important that developers recognise the 

importance of this phase and have some idea of how it will be managed 

2.5.5 The Retirement Phase 

This represents the phasing out of a system as it reaches the end of its natural life. 

There can be some overlap between this phase and the operations phase as parts of the 

system may be phased out, whilst other parts continue to operate. 

2.5.6 Further Subdivision of Phases 

If this structure is further subdivided it can constrict the development process to which it 

relates. In this relatively coarse form, it remains an applicable management view of any 

software development process. Applying a work breakdown structure from this level 

onwards would depend on the model employed. For example, a formal transformation 
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model would not include feedback between the analysis and synthesis phases. In 

contrast, feedback between these phases would be inherent within a prototyping model. 

2.5.7 The Rigidity of a Phased Approach 

The phases identified above are sufficiently broad to allow software systems to grow 
within their structure, using any of the development models identified earlier. Generally 

speaking however, phase structures tend to be so detailed that they constrict the natural 
progression of a software development process. 

Phase structures imposed by development paradigms tend to be adopted in one of two 

ways. First they can be taken at face value, retaining each phase distinctly and 
restricting feedback between the phases. Pressman (1994) identifies three implicit 

problems with this approach. First, real projects rarely follow this sequential flow. 
Second, it is difficult for customers to state all their requirements at the initial stages, and 

third, the customer must be patient as they see nothing of the product until its final 
release. 

Technology is now at a level where it is possible for the analysis and synthesis phases to 

be closely intertwined. This is particularly desirable as it leads to a greater 
understanding of a problem and the development of a solution that evolves rather than 

being built from a fixed, predetermined plan. This can stem from a preliminary solution 
that is produced early in the development and provides a greater knowledge of the 

problem as a whole. Indeed, it was stated by McCracken (1981) that to prepare a 
detailed specification, some idea of the solution is first required. This implies greater 

interplay between the analysis and synthesis phases and in some respects is related to 
whether one sees the specification falling within the boundaries of either phase. The 

fixed phase approach must therefore become more flexible to cope with interaction 
between the phases to accommodate this need. 

An alternative approach is for the phase model to be adopted with feedback from 

sequential, or more separate phases, to earlier phases in the cycle. This can lead to 
particularly complex feedback models with up to twenty five interlinked phases [Macro 

and Buxton 1987]. Trying to relate these complex models to individual software 
developments can be extremely difficult, and, in doing so, establishes it for that 

particular project. 

Unfortunately this approach shows perhaps too much belief in the rigidity of the 
environment, and also in the precise configuration of the feedback loops themselves. It 

is important that feedback systems are responsive not only to changes in the system 
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requirements, but also to proposed changes in the development process itself. The 

development process should be responsive to any change - be it within the plan, the 

process, or the solution. 

To overcome these problems a more flexible management model is required that does 

not impose a rigid direction on the process. One solution is to use metamodels that 

represent a combination of alternative paradigms. 

2.6 METAMODELS (OR COMBINED PARADIGMS) 

2.6.1 An Early Combined Paradigm 

Several different paradigms were detailed earlier that are used in the development of 
software systems. Feedback from several software houses identified that a specific 

paradigm is used by these organisations for each individual software development. 
There are, however, advantages to be had by combining different paradigms within a 

particular metamodel. The prototyping example from Bowen (1990) goes some way 
towards emphasising this point. Bowen's prototyping model highlights the advantages 

of combining two previously separate ideas (incremental and throw-away prototyping) 
within one particular life cycle model. He showed how the advantages of each idea can 

be reaped at different stages of the development process. 

In 1994 Pressman [Pressman 1994] identified a simple model that combined alternative 
paradigms within its structure. Pressman identified four paradigms - The Life Cycle, 

Spiral Model, a Prototyping Model, and a Fourth Generation Model and showed, using 
a non-deterministic structure, how they could be combined within one model (referred to 

as a metamodel in this thesis). Figure 2.8, taken from Pressman (1994), is an example 
of the early idea of combined paradigms. In this chapter, this idea is taken one stage 

further and it is shown how the benefits of several models can be derived from within 
one hybrid model called a metamodel. 
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Figure 2.8 Pressman's Early Combined Paradigms 

2.6.2 New Metamodels 

The concepts behind metamodels are directed at the project manager rather than the 

systems analyst since these models provide a managerial approach to the development 
process. Figure 2.9 is an example of the new concept of metamodels. It shows how 

several software paradigms can be combined within a non-deterministic structure. In 
this metamodel, eight paradigms have been combined within the structure to represent a 

strategic level plan. The cells represent subphases (or stages) of the development 
process, sometimes identified as specific techniques used for their accomplishment. For 
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example, the system assembly stage is a technique that is used for the implementation of 

a system. The stages identified by 4GT represent the use of a fourth generation 

technique for that particular stage of the development process. The 4GT stages, inherent 

within certain paradigms (for example the 4GT model identified earlier), can now be 
accessed from other models within the metamodel. For example, the common waterfall 

model can access a 4GT stage as part of its implementation without needing to 
completely replan the project or restructure the development process. 

The four phases identified earlier have also been superimposed on this metamodel. 

They are provided as guidelines to show where overlap between phases is inherent 

within the metamodel. The analysis phase covers both conceptualisation and 

preplanning that are inherent within all models. It can also be seen to cover the 
requirements analysis stage (that can be replaced by some form of prototyping 

technique) and in some cases the specification stage (especially if this is drawn up as 

part of the exploratory programming model). The synthesis phase imposed on the 

metamodel covers the building stages of the system. Again there is some overlap 
between this phase and the analysis and operational phases. This cannot be avoided as 

information is often passed between these phases. The operational phase covers 

modification and maintenance of the system even within the target environment. This 

undoubtedly overlaps with the retirement phase as parts of a system can be phased out 
over a period of time. 

2.6.3 Advantages of Using Metamodels 

Project managers are undoubtedly unwilling to pursue a development without some 

conceptualised framework in which to work. By incorporating several established 

models within one metamodel, the advantages of each model can be achieved whilst still 

providing a project manager with some form of structural framework in which to 

operate. This combination results in a synergy effect that indicates the sum of the whole 

is greater than the sum of the individual parts. 

All projects begin by some initial idea. The Meliorist Model (figure 2.10) [Lucey 1987] 
shows how a set of actions, that constitute a project, take an organisation from an 

existing situation (possibly unacceptable) to a desired situation. The idea to perform a 

project can come as either a push from the existing situation (for example, were a 

current system is inadequate and has become outdated) or as a pull to a desired situation 
(for example, a new system that would provide benefits to an organisation). The 

conceptualisation stage, identified within the metamodel, represents this push or pull 

from an existing situation. 
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Figure 2.10 The Meliorist Model 

After the project has been conceptualised, preplanning identifies the initial direction of 

the process. For example, it may be decided to build a prototype to complete the 
requirements analysis of the project. This can be used to develop the specification that 

in turn can be used to either design the full system or another intermediate prototype. 

By allowing alternatives to be represented within the metamodel, it enables managers to 

direct the project according to the current project situation, and not in a direction 
predetermined at a stage in the life cycle when far less is known about the problem. 

Because of the non-deterministic branching within the structure of the metamodel 
managers do not have to decide on the complete development process direction at the 

outset. The metamodel, in fact, identifies points in the project where decisions need to 
made, based on the project situation at that time. Managers are, in effect, making 

decisions as to when to make decisions within the project life cycle. This makes far 

more sense than attempting to decide initially what will be done later in a project when 

the project environment may be completely different than it was at the start. 

2.6.4 An Example of Metamodel Benefits 

From personal contact with the manager of a one person-year project recently, the 
advantages of a new metamodel approach have been identified. The project, to develop a 

computer training package for eight year olds, began by using the classical waterfall 

approach. Two months into the project, as the specification was being drawn up, this 

approach had to be abandoned as the project fell drastically behind schedule. It was 
realised at this stage that a prototype was required to determine more clearly the user 

requirements of the system which were of a highly interactive nature. A general 

prototyping model was then pursued to the successful completion of the project. Had 

the project manager not been restricted to a single, predetermined waterfall approach 
from the start, this 'crashing' of the project after two months could have been avoided. 

The alternative prototyping paradigm could have been introduced as and when it was 

required within the metamodel that described the process. This approach would have 

been a visible, viable option from the outset and, as such, could have easily been adopted 

into the development process when it became clear that it was required. Figure 2.9 

highlights the course this particular project would have taken through the metamodel by 
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the bolder, arrowed lines. The metamodel thus clarifies all possible options available to 

a project manager and provides a more visual representation of a project's progress. 
Chapter seven provides more detail of this example. 

2.6.5 Tracking the Development Process with Metamodels 

One other benefit of the metamodel is its ability to provide project tracking even when a 

software development has made several diverse changes. In the example studied (the 
computer training package for schools) the project baseline plan became so disjointed 

from the secondary plan (which included prototyping) that it became particularly 
difficult to monitor its progress against this plan. The baseline plan no longer 

represented the project direction and did not reflect the project's stages any more. A 
secondary baseline plan was used to monitor the project's progression to its successful 

completion. Many would argue that a project should be measured against an initial 
baseline. In software developments, it is possible that the current project direction has 

digressed so much from the baseline that a direct comparison is difficult to provide. 
Because the metamodel provides all possible project directions at the outset, the software 

development will follow one of these routes. The project can therefore be related to this 
initial baseline plan as it will not digress outside the metamodel. Baselines provided by 

the waterfall model, for example, do not allow this. The baselines in these cases are 
fixed at each previous life cycle stage and not as a flexible baseline at the start. 

2.6.6 The Way Forward with Metamodels 

The metamodel defined in this chapter is not a definitive model and represents one of 

many such metamodels. Organisations currently using perhaps one or two different 
development approaches separately should be able to combine these within their own 

metamodels, reaping the benefits that all their models can provide. The way forward is 
to develop metamodels that provide the required benefits to an organisation to which 

they are suited. 

What is also required is a means whereby this type of model can be managed and 
controlled. With reference to figure 2.2, a support element is required that assists a 

management activity (planning) for any particular metamodel. The management 
technique introduced below provides this support. 
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2.7 A FLEXIBLE PLANNING TECHNIQUE 

2.7.1 Generalised Activity Networks 

Perhaps the most common approach to planning projects, and consequently software 

developments, is for a manager to use some form of project management software tool. 
These tools are based on 1960s' ideas (for example, PERT) enhanced with 1990s' 

technology (for example, WindowsTM). Generally speaking the more one pays for 

these packages the prettier the screen looks, the more powerful the input and output 

capabilities are, the more detailed are the results, and the larger the project(s) one can 

manage. Their underlying concept remains the fixed project development structure that, 

as far as software development is concerned, now belongs in history. The alternative to 
these fixed planning techniques are Generalised Activity Networks that also originated 

in the late 1960s but which have never really caught on. 

Generalised Activity Networks operate in a similar way to standard PERT networks. 
They represent projects as a series of tasks symbolised as interconnected arrows or 

nodes (they are defined as both Activity-on-the-Node and Activity-on-the-Arrow 
networks in the next chapter). Generalised Activity Networks differ from ordinary 

Probabilistic Activity Networks in their definition of node input and output 
characteristics. PERT networks insist on a deterministic node logic which implies that 

all activities must occur, successfully in sequence, for a project to complete. Quite 

clearly, this deterministic structure would be of little value for planning a software 

development that uses a metamodel as a framework. It would not be able to cope with 

alternative routes offered by a metarnodel within its representation. Generalised Activity 

Networks, on the other hand, allow either deterministic or probabilistic branching to be 

defined. This allows a more flexible project plan to be defined covering various phases 

determined implicitly by whichever development model is being employed. 

2.7.2 Benefits of Generalised Activity Networks 

Another interesting facet of Generalised Activity Networks is their ability to handle 

loops. If loops are formed in ordinary PERT type networks, a situation exists where 

activities cannot start until after they have completed - an unacceptable logic. The 

probabilistic nature of a Generalised Activity Network, on the other hand, allows 

feedback (either probabilistic or defined) from activities to earlier stages in the project 
plan. This ability provides an ideal representation for situations in metamodels where 

feedback is inherent. 
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Generalised Activity Networks provide a means of planning variability and can be 

nested in the same way as ordinary activity networks and bar charts. At their upper­

most level they can be used to plan and control the stages of a metamodel at a strategic 

organisational level. An Activity-on-the-Arrow representation of the metamodel in 

figure 2.9 is shown in figure 2.11. In order to keep things simple at this stage standard, 

deterministic PERT nodes have been used. Obviously the loops and probabilistic 

branches shown in this structure are not possible in an ordinary PERT technique. 

Different node logics need to be defined so that they can cope with such problems. 

These definitions are provided in chapter three. In constructing this network another 

apparent link came to light between the prototype and the quick design stages. This 

link, although not identified in the initial metamodel, should be an option as a prototype­

based specification could clearly lead to a quick design. 

The activity network of figure 2.11 not only provides a project manager with a visual 

representation of a project plan based on the metamodel but its analysis also determines 

likely costs, durations and risks involved in a project overall. 

Not only can Generalised Activity Networks be used for planning at the upper levels of 

the development process (at the metamodellevel) but they can also be used to plan at the 

lower tactical levels (nesting). At the lower levels of the development process it is 

possible to use Generalised Activity Networks to plan how particular stages of a 

metamodel are performed. How the implementation stage of a software development 

can be planned with a Generalised Activity Network is provided as an example in the 

following chapter. 

2.8 CHAPTER SUMMARY 

2.8.1 Conclusion 

The software crisis has been around now for well over twenty years due, in part, to 

organisations using development models that originated from completely different 

project fields. It is now recognised that software is much more evolutionary than 

engineered products and it is therefore necessary to adapt development processes 

accordingly. What has been introduced within this chapter is the idea of hybrid 

paradigms, or metamodels, that allow software to grow within their structure. They leave 

managers with the project visibility they require, and allow more applicable development 

routes to be pursued as and when required. By combining several different paradigms 

within one structure, the benefits of each can be gained within one development 

(providing that a project is allowed to evolve along its most logical route). 
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Generalised Activity Networks have also been introduced that help the management 

activities associated with planning and controlling more flexible software systems 

development. It is perhaps too ambitious to assume that developers will take on board a 

more flexible approach to managing projects without an established means of support. 

It is anticipated that using more flexible management planning techniques, like 

Generalised Activity Networks, may have to predate the employment of more flexible 

metamodels. Managers may be unwilling to take such bold steps without the support of 

a system with which they are comfortable. 

To imply that managers are to give a free reign to the development of software and let it 

evolve of its own accord would be wrong. What is suggested in this chapter is that a 

more flexible approach is needed for managing software development projects with the 

support of a more realistic planning technique. Software developments still require 

some form of project management and planning, albeit a flexible one. 

2.8.2 Future Work 

Two areas still require developing from this initial research: 

• Development of software dependent metamodels 

• Development of organisation specific metamodels 

The first of these areas identifies that different application domains have different 

development needs. Metamodels for specific problem domains therefore need 

developing from the broader metamodel presented in this chapter. Organisations have 

also employed particular methodologies for their own domain specific developments. 

Metamodels represent models that can be dedicated to the needs of specific 
organisations. Again, these metamodels require some further development. 

A discussion of other possible research areas related to this work is covered in chapter 

seven. 
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CHAPTER 3 

Generalised Activity Networks for Project Management 

CHAPTER PREFACE 

In this chapter Generalised Activity-on-the-Arrow (presented in Dawson and Dawson 

(l994a)) and Generalised Activity-on-the-Node Networks are defined. The chapter 
begins by studying earlier developments in this field before providing a conclusive 

definition of nodes in Generalised Activity-on-the-Arrow Networks. This work is then 
developed to provide a definition of a Generalised Activity-on-the-Node representation 

that also allows Logical Dependency Constraints to be applied. The Generalised 
Activity Networks defined can be used as tools to manage both software developments 

and general engineering projects where uncertainties exist. 

CHAPTER KEYWORDS 

Generalised Activity Networks, Activity-on-the-Arrow, Activity-on-the-Node, Logical 
Dependency Constraints 

3.1 INTRODUCTION 

3.1.1 Scope 

'The price paid for a more realistic representation is that the model is generally far more 

difficult to analyse' [Moore and Clayton 1976]. 

Chapter one provided a general introduction to the different kinds of activity network 

that are available to assist a project manager. Generalised Activity Networks are the 

most powerful of the three activity networks available. Although the analysis of 

Generalised Activity Networks can be somewhat difficult (this is addressed in the 
following chapter) they do provide a more realistic way of mirroring real life projects. 

A study of previous literature in this field showed little consistency between any of the 

Generalised Activity Networks defined. This is due mainly to the fact that none were 

adopted by industry and consequently no recognised, industry-wide standards emerged. 
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Some Generalised Activity Networks also provided rather ambiguous definitions and 

overly complex representations, to which project managers had difficulty relating. What 

has been required is a conclusive definition of Generalised Activity Networks. This 

chapter provides such a definition and prepares the basis for a standard. 

All previous literature devoted to the subject of Generalised Activity Networks (except 
P-GERT [Pritsker 1974]) is concerned with an Activity-on-the-Arrow representation. 

Later in this chapter, current thinking in the field of project management is addressed 
and a Generalised Activity-on-the-Node representation is derived. 

This chapter begins by clarifying all possible input and output forms of Split Node 

Logic nodes in Generalised Activity-on-the-Arrow Networks. The chapter goes on to 
define the three basic Unit Logic Nodes that are required and details some other 

Generalised Activity-on-the-Arrow Network functions. This logic is then developed 
into a Generalised Activity-on-the-Node representation that reflects the direction in 

which most project management tools today are heading. By finally encompassing all 
possible node input/output forms in a Generalised Activity Network presentation, a 

representation is provided that can form the basis of an industry-wide standard. 

Because of the flexibility provided by Generalised Activity Networks they offer several 
advantages over standard Probabilistic Activity Networks. These advantages will 

become apparent when specific examples (of Generalised Activity Networks being 

used) will be studied later. 

3.1.2 History 

The first recognised Generalised Activity Network was introduced by Eisner in 1962 

[Eisner 1962) when he developed a 'Decision Box Planning and Scheduling' technique 

for research projects. This involved simple dichotomous choices at each node in a 

network. Another early networking technique with some form of in-built probabilistic 

option was Decision CPM [Crows ton and Thompson 1967). This technique explicitly 

identified alternative ways of performing different tasks (with different costs and 

durations) in a network diagram. More generalised developments were made by 

Elmaghraby in 1964 and 1966 [Elmaghraby 1964 and 1966]. Elmaghraby viewed 

nodes from the perspective of both input and output logics (called Split Node Logic or 

SNL). Unfortunately, Elmaghraby was somewhat unclear in his definition of node 
output logic. In most cases he assumed that only one activity can be performed from 

any node (termed Exclusive-Or in this thesis), but in certain cases more than one activity 

was performed. In figure 3.1, taken from Elmaghraby (1966), node 2 can only be 

realised if both activities a and b are successfully completed. This is in contradiction to 
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Exclusive-Or logic that was assumed later in his paper when he analysed some example 

networks. 

a 

b 

Figure 3.1 Elmaghraby's Example Network 

1966 also saw the introduction of the first of a series of Generalised Activity Networks 

called GERT (Graphical Evaluation and Review Technique) [Drezner and Pritsker 1966, 

Pritsker and Happ 1966, Pritsker and Whitehouse 1966, Whitehouse and Pritsker 1969, 
Pritsker 1979, Pritsker and Sigal 1983]. GERTwas based on the ideas introduced by 

Elmaghraby [Elmaghraby 1964 and 1966] and consequently inherited the same 

deterministic and Exclusi ve·Or node output characteristics. GERT metamorphosised 

into several domain-specific types. One of these was a purely Exclusive-Or input and 

output form, called GERTE, that enabled analysis to be performed by flowgraph theory 

(this form of analysis is presented in Appendix C). It was clear, in this Generalised 

Activity Network, that the technique was being restricted by analysis limitations. A 

simulation version of GERT, called GERTS, was therefore developed that included the 

deterministic and Or-type inputs and outputs defined by Elmaghraby (1964). GERTS 

progressed to incorporate resource requirements (without scheduling) and an Activity­

on-the-Node representation called P-GERT [Pritsker 1974]. P-GERT is the only 

known reference to a Generalised Activity-on-the-Node representation. 

According to Moore and Clayton (1976) the features available in GERT that do not 

appear in PERT (ie standard Probabilistic Activity Networks) are: 

• Probabilistic branching 

• Network looping 

• Network modification during execution 

• Multiple sink nodes 

• Multiple node realisations 

• Specified activity releases 
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• 

• 

Multiple probability distributions 

Multiple types of node input 

Each of these features is available with both the Generalised Activity-on-the-Arrow 
Network and the Generalised Activity-on-the-Node Network presented in this chapter. 

The only development of Generalised Activity Networks since the time of GERT has 

been the introduction of a particularly powerful technique called VERT (Venrure 
Evaluation and Review Technique) [Moeller 1972, Moeller and Digman 1981, Kidd 

1991]. VERT 'can offer a flexible tool for the strategic analysis of a project' [Kidd 

1990]. The VERT technique continued with the split node logic of earlier techniques 

but also introduced a unit logic node in which the output arcs from a node are linked in 
various logical ways to the input arcs. Unfortunately, VERT has three shortcomings. 

First, it again does not fully encompass all the possible probabilistic input and output 
forms that can be defined for activity network nodes. It could not, therefore, mirror the 

example provided later in this chapter. Second, because of its rather rigid and specific 
design, it does not appear to be a natural progression from the PERT technique with 

which most project managers are familiar. To take such a conceptual step is beyond the 
scope and commitment of most managers. Third, VERT does not incorporate the ability 

to handle loops - an inherently practical ability of Generalised Activity Networks - that 
enable repetitive activities to be planned and controlled. 

3.1.3 Generalised Project Management Tools 

Two project management software tools, used by industry today, that incorporate some 

form of Generalised Activity Network facility are Risnet™ (1993) and Monte Carlo™ 
(1993). Available for DOS version 3.2, Risnet™ provides twelve possible activity 

temporal functions and several node input and output definitions. It is based on the 
Activity-on-the-Arrow approach but unfortunately, it does not provide an ability to 

model loops and provides none of the powerful features associated with Unit Logic 
Nodes (defined in detail later). The second project management tool, with some form of 

Generalised Activity Network representation, is Monte Carlo™ 2.0 - used in association 
with Primavera Project Planner® (1994). This provides only very basic probabilistic 

branching, concentrating more on its ability to model several different activity temporal 

functions. As Monte Carlo™ is based on the output from Primavera Project Planner™ 

it represents an Activity-on-the-Node approach. However, its probabilistic branching is 
limited to only two types - Conditional (Exclusive-Or in this thesis) and Probabilistic 

(Independent-Or in this thesis). 
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3.1.4 Use of Generalised Activity Networks 

Although a combination of all previous Generalised Activity Network definitions could 

handle all project scenarios, they never became an established project management 
technique. This is can be attributed to four reasons. 

First, at the time of their development there was no prospect of software technology to 

support their analysis requirements. With the advent of software technology, and the 
introduction of personal computers in the 1980s, software planning tools were 

developed based on the more established network techniques of PERT and CPM. Had 
the technology to both create and analyse Generalised Activity Networks, been available 

in the early 1970s, it is probable that they would have developed as the standard 
planning tool for most projects. A Generalised Activity Network has more appeal to 

project managers because of its flexibility and its ability to mirror projects more 

accurately than the PERT technique. 

Second, it is difficult to analyse standard Probabilistic Activity Networks without adding 

the complication of stochastic activity nodes that are found in Generalised Activity 
Networks. Although a project manager can produce a reasonable plan for his/her 

project using a Generalised Activity Network, without suitable analysis the plan would 
be virtually useless. The most productive way of analysing activity networks (both 

Probabilistic and Generalised Activity Networks) is by simulation techniques. 
Simulation avoids the computational expense of implementing excessively complex 

multivariate integration solutions and conditional probabilities. It provides accurate 
results of project characteristics in a reasonably short time and provides a practical 

means by which analysis of Generalised Activity Networks could be incorporated into 
software planning tools. Chapters four and five provide a more detailed discussion of 

activity network analysis. 

Third, it can be difficult to estimate the probability factors on which activity generations 

are based. This can only improve through experience based on previous project results. 

If managers were able to make regular use of a software tool for Generalised Activity 
Network planning, they would become more used to this kind of prediction and the 

problem would diminish. 

Finally, human nature means that it can be difficult to persuade managers to incorporate 
failure into their plans. The possibility of failure and the maturity to deal with its 

outcomes must be incorporated into Generalised Activity Network plans. This allows 
better analysis of risks than would otherwise be possible in standard activity network 

approaches. Again, this problem will reduce once managers have gained experience of 
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Generalised Activity Networks. 

Another possible reason why Generalised Activity Networks never became popular was 

noted by Schonberger (1981). He wrote that managers tend not to have adopted a 
GERT to assist with project planning because they are possibly bewildered by 

conflicting theories as to which probability distribution to assign to project activities 

with the technique. It is certainly the case that overly complex systems can be more of a 

hindrance than a help. The Generalised Activity Network defined within this chapter 
can be used, if required, by managers in a simple Probabilistic or Detenninistic Activity 

Network form. The more powerful planning facilities that are available can be 

introduced as and when required. 

3.2 GENERALISED ACTIVITY·ON·THE·ARROW NETWORK DEFINITION 

3.2.1 Essential Features 

Like all Activity-on-the-Arrow techniques each activity, or stage, 10 a project is 
represented by an arc (ij) that connects two nodes i, (its preceding node), and j (its 

succeeding node). Because of this, Activity-on-the-Arrow networks are sometimes 
referred to as /J Networks [Turner 1993]. Each arc is directed, that is, it shows a flow of 

information between the two nodes that it links. Each arc has associated with it a time, a 
cost, a performance measure, and a probability. The time, cost and performance 

measures usually take the form of distribution functions (as in PERT). The probability, 
represented by Pi/startS), is that activity ij is performed given that its preceding node, i, 

is realised. 

Activities, in this definition of Generalised Activity Networks, can reside in one of three 
states at any given time. First, they can be in an active state that means they are 

currently being performed. Second, they can be in an eliminated state meaning they 

have being logically eliminated from the project at that time and will not be performed 

during that project run. A neutral state represents the third state in which activities, not 
in either of the first two states, reside. Although not strictly a state, a completed 

marker can also be applied to an activity to signify its successful completion. This 
marker is required for the Arc Constrained logic that is detailed later in this chapter. 

Before each possible node representation was developed, all possible node realisations 

were determined and compared with previous literature in the field (for example, 

Drezner and Pritsker (1966), Moore and Clayton (1976». Nodes in a network 

represent events that have any number of incoming and outgoing activities. The main 
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focus of attention in Generalised Activity Networks is at these nodes. The input and 

output forms are detailed below with examples based on typical problems encountered 
when planning software development projects. 

3.2.2 Node Input 

Each node can receive incoming activities in one of three ways; And, Or and Exclusive­

Or (Figure 3.2). 

And Or Exclusive-Or 

Figure 3.2 Generalised Node Inputs 

In the following definitions p(j) represents the probability that a node, j, is realised given 

that Phj(completes) and Pi/completes) represent the probabilities that incoming aCtivities 

hj and ij complete successfully. This can, of course, be extended to m incoming 
activities (m>o). 

(i) And 

All activities that are incoming to the node must be completed before the node can be 
realised. This is the PERT form of the node input. 

Example: In a software development, testing of modules must complete successfully 

before the work of integrating them can begin. 

p(j) = Ph/completes)npi/completes) (3.1) 

(ii) Or 

This node requires n incoming activities to complete successfully before it can be 

realised. In many cases n= 1. This is taken as the default value and can be omitted from 

the node. This definition implicitly accepts that a node can be realised every time n 
incoming activities complete. Equation 3.2 represents a basic case when n = 2. The 

different codes (represented by H in figure 3.2) applied to the node affect this reasoning 
as follows: 
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H = Blank - as for the above definition. The node is realised when n incoming activities 

complete. It can be realised as many times as required and does not rely on outgoing 

activities completing (as code Q). 

Example: For n= I this could represent a debugging process in a software development. 
Each time a bug is found in a program a debugging process would be initiated. 

H = C - The node is realised when n incoming activities complete successfully. All 

other activities entering the node are allowed to complete in their own time. The node 

can be realised once only. 

Example: Where a number of system performance tests are being executed, although 
one test fails, it may be better to complete any remaining tests as they may provide more 

information and perhaps highlight more serious problems. 

H = H - Cancel all remaining, active incoming activities when the node is realised and 

eliminate all others. 

Example: When searching for a particular problem in a system by several methods, as 
soon as the problem is located all other search methods are terminated. 

H = W - The node is realised when all active, incoming activities are completed 

successfully and all other incoming activities have been eliminated. In other words, at 
least n activities entering the node must have their completed markers set, and all others 

must have been eliminated. This differs from the And input which would not allow 
incoming activities to be eliminated from the project. This node can only be realised 

once. 
Example: When performing user testing, all user tests must have completed (either 

successfully or unsuccessfully) before beginning work on a performance report. 

H = Q - This represents a type of queuing node that represents a point in a project at 

which only n completing activities can be dealt with at anyone time. This is equivalent 

to the Blank-Or input except that all outgoing activities from the node must have 

completed (or been eliminated) before the node can be realised again. In this case it 

ensures that repetitive work does not run in parallel with itself. 
Example: When performing user testing, after a user test completes a report is written 

on that test. Work on the next report cannot begin until the first one is complete even 

though new results have come in. 

p(j) = Phj(completes) + Pij(completes) - Phj(completes)nPi/completes) (3.2) 
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(iii) xOr 

Exclusive-Or. In previous Generalised Activity Network literature, this represented a 
rather unrealistic input characteristic that would cancel the node if more than one 

incoming activity completed successfully. It is difficult to envisage uses of an 
Exclusive-Or node in this originally defined form. This ability can be achieved, if 

required, by using the more powerful Unit Logic Nodes that will be described in the 
next section. A far more realistic use of the Exclusive-Or is to constrain the Or node 

input above to exclusive activity completions. In other words, for the definitions above, 
n different activities must complete successfully before the Or node logic can be 

interpreted, and not one activity completing successfully several times (which is 
possible). This matches the Type A input of the GERT technique but it incorporates the 

flexibility of the other node input definitions defined above. In its original Exclusive-Or 
form, pG) would be calculated from equation 3.3. 

Example: Testing of different modules must complete successfully. It is no use having 
one module passing several tests whilst other modules fail theirs. 

pG) = Ph/completes) + Pij(completes) - 2[Ph/completes)npi/completes)] (3.3) 

Two possible input criteria that have not been defined are a Costffime dependency and a 

a multiple realisation W-Or. No real examples could be defined for a mUltiple 
realisation W -Or. Adding this criteria to the definitions above, however, would only 

require the definition of another input code (for example, H = W2). The Cost/Time 
dependency possibility is defined as part of a node's output and is examined below. 

3.2.3 GERT 

In simulation analysis of GERT networks [Drezner and Pritsker 1966, Moore and 

Clayton 1976], for example the GERTS-IIIZ program maintained by Pritsker and 
Associates Incorporated, an alternative definition of the node input is achieved by 

applying different codes to the node (figure 3.3). 

a Number of activities required for first realisation of the node. 

/3 Number of activities needed for second and subsequent node 

realisations. /3 = 00 implies the node will be realised once only. 
/) Node identification number. 

ro Node realisation code. This takes one of four values: 

Blank Normal realisation occurs - The node may be 

realised each time by the same incident 
activity repeating more than once. 

Type A Different incoming activities are needed to 
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activate the node. 

Type H Cancel work of remaining incident activities 

when the node is realised. 

Type U A combination of type A and type H. 

Examples of these definitions in a software development project are: 

a = 2, ~ = I Module integration - two completed modules are required before 

integration can begin. Subsequently only one more module is needed 
each time for integration to continue. 

(J) = Blank 

(J)=A 

(J)=H 

(J)=U 

A simulation test system (ie with repetitive testing) can use results from 

the same, or different test routines to test a system. 

Testing of all modules must be successful - it is no use having one 

module testing successfully several times if others are to fail. 

Cancel remaining testing when one unit test fails. After reprogramming, 

all units will need retesting from scratch and so there is no poin t in 

testing them further at this stage. 

A combination of examples A and H above. 

Figure 3.3 A GERTS-IIIZ Node 

3.2.4 GERT Time Statistics 

As a network is simulated it may be desirable to collect various time statistics associated 

with the network. To this end it is possible to assign particular time statistic codes to 

certain nodes. Figure 3.4 shows where this code, 't, is located on a node with the 

corresponding values explained below. Thus, if a network was simulated, the required 

time statistics could be acquired from the network. 



Figure 3.4 Another GERTS-IIIZ Node 

1: = F Time of fIrst realisation of the node (from the source node). 

1: = A Time of all realisations of the node (from the source node). 

1: = B Time between realisations of a specifIc node. 

1: = I Time interval from a mark node to a statistical node. 

1: = D Time delay from fIrst activity release at a node until the node is realised. 

1: = M Mark node - forces future statistics to be referenced from this node as 

opposed to the source node. 

3.2.5 Node Output 

Once a node has been realised the activities emanating from it can begin depending on 

the form of the output defInition. As shown earlier in this chapter, previous literature 

[Elmaghraby 1964 and 1966] assumed an ambiguous Or-type node output. In this 

section the output types are clarifIed by using distinct node representations. The output 

form of a node can actually take one of five forms: Deterministic, Independent-Or, 

Exclusive-Or, Dependent-Or, or Cost/Time Dependency. Examples of these node styles 

are provided in fIgure 3.5 with probabilities shown as examples. 

(i) Deterministic 

All activities emanating from this node begin when the node is realised. This is the 

PERT form of node output. 

Example: In a software development, the coding of all modules can begin after the 

specifIcation is complete. 

(ii) Independent-Or 

All activities emanating from the node start independently with a given probability. This 

can lead to a situation where all or, at the other extreme, no activities are started when the 

node is realised. 
Example: Following user trials the next activities may be; alter user manual, alter code 

or any combination of the two. 
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(iii) Exclusive-Or 

In this case only one activity emanating from the node can be activated. The sum of the 

probabilities of the activity actuations in this case must equate to one, as the probability 

of one activity being chosen to start is dependent on not selecting any of the others. 
Example: A system test could result in perfonning a success activity or failure activity 

but not both. 

~-II~0.8 >1-.... 0.2 

0.5 0.7 

Detenninistic Independent-Or Exclusive-Or 

~ 0.6 

Dependent-Or Cost/Time Dependent 

Figure 3.5 Generalised Node Outputs 

(iv) Dependent-Or 

The activities emanating from this fonn of node are in some way dependent on one 
another. As for the independent case, each activity has its own probability of occurring, 

but the combined probability no longer equates to the product of the individual activity 

occurrence probabilities (equation 3.4). If this were the case then the node would be 

replaced by the independent fonn. 

Example: Following user trials the next activities may be; improve the software speed 

and/or reduce the memory costs. Generally speaking, it may be particularly difficult to 

attempt to improve both these problems as in some cases they affect one another. The 

combined probability of even attempting to start both these activities together is 
probably less than the product of both activities combined. 
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(3.4) 

In figure 3.5 (Dependent-Or) one can see there is no explicit representation of the 

combined probability value. This could be somewhat of a drawback. An alternative way 
of representing a Dependent-Or output is to use dummy activities and nodes so that the 

probabilities can be shown explicitly. Figure 3.6 shows how activities A and B, which 
are dependent in some way on one another, can be represented using an Exclusive-Or 

output and several dummy activities. The price one pays for this explicit representation 
is an overly complex replacement to the simple Dependent-Or output node and this 

would become even more complex if several outgoing activities were dependent on one 

another. 

--~ 

Figure 3.6 Messy Alternative to Dependent-Or Output 

(v) Costfrime Dependency 
The output activities from this node are dependent on the times and costs accrued to 

date. This is particularly useful in planning for situations in which costs and times 

significantly affect the course of a project. For example, if a project is overrunning its 

estimated costs by 50% at a particular stage in its development cycle, it may be decided 

to scrap the entire project. Being able to plan for this terminal possibility beforehand 

provides the project manager with a clearer means of risk analysis. 

Another suggestion for Cost/Time dependency could be to apply these restrictions to 

the input side of a node. For example, a node could be activated after X days into a 

project. In this case the activities emanating from the node are dependent on this 

cost/time dependency and it is better to apply the code to the output side of the node for 

consistency. Having this logic on the output side of a node also allows it to be used as a 

source node - for example, activities A and B are started three days after the project 

begins. 
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With each node having three possible forms of input and five possible types of output, 

there are fifteen unique SNL node types. Table 3.1 illustrates how the input and output 
styles combine to form all the available nodes. 

And Or XOr 

lt~ Output ( ~~ IE~ 

Deterministic ) 0 0 K) 

Independent Or > 0 0 K> 
Exclusive Or )I 01 <)I K>I 
Dependent Or ] 0 (] KJ 
Cost/Time J 0 a 10 

Table 3.1 All Possible SNL Nodes 

3.2.6 Unit Logic Nodes (ULNs) 

Unit Logic Nodes (ULNs) were first introduced in the VERT technique by Moeller 
(1972). The ULNs defined in this work were given particularly complex names such as 

'Time Cost Performance Link Escape' and 'Partial Time Cost Performance Link 
Escape'. ULNs link the output activities from a particular node logically to that node's 

incoming activities. Only three types of ULN require definition - shown in figure 3.7. 
The output activities from these nodes are activated as soon as their input criteria are 

satisfied. 

'"0 

A "E X A X A " X '"0 c 
"'Z ~z 'eo 

B "O...J Y B ~S y B ~ 1:1 Y §~ <C '" 
~ c 

C '" Z C 0 Z C 0 Z U 

a b c 

Figure 3.7 Unit Logic Nodes 
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Although in some cases these node logics can be achieved by using standard Split Node 
Logics, the ULN provides a much neater representation. Several SNL nodes may be 

required where one ULN can be used. 

An old style Exclusive-Or construct within the ULN is not defined because this logic 
can be achieved by a deterministic structure within an ordered ULN. For example, if 

Zt-A xOr B, this can be achieved by the ordered ULN: 

I. Zt-AnB 
2. Zt-A 
3. Zt-B 

(i) Standard ULN 
Each output arc is linked in a logical way (either And or Blank-Or as in SNL input) to 

one or more input arcs. For example in figure 3.7a, activity X can be defined to begin 
when both activities A and Rcomplete successfully and activity Y can be defined to 

begin when activities A or B or C complete successfully. In this case: 

X=AnB 
Y=AuBuC 

Example: (all And) In a software development, after completing menu testing 

successfully and menu selection 'A' coding, this selection can be integrated into the 
menu driven system. The same is true for menu selection 'B' with the menu driven 

system and so on. 

(ii) Ordered 
Only one output arc is performed depending on a preferred ordering applied to each 

output activity. For example, activity X may be performed instead of activity Y if both 
their input criteria are satisfied. 

Example: If modules A and Band C fail their user trials it may be necessary to 
redesign and recode the entire system. This rule would take precedence over' A and B 

failing' that could, perhaps, involve debugging their particular modules. Although A 
and B could prove to be true, A and B and C would take precedence over this rule. This 

would be represented by the ordered rules: 

I. Redesign and Recode = A n B n C 
2. Debug A and B = A n B 

2. Debug A =A 
4. Debug B = B 
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(iii) Arc Constrained 

This is equivalent to the Filter #3 output defined in VERT [Moeller 1972]. Although 
not related solely to a node's input arcs, it fits more logically into the ULN definitions. 

As in the Filter #3 node, each output arc has a list of activities with positive and negative 
markers. If all activities with positive markers have been completed successfully (their 

completed marker set) and all activities with negative markers have not yet completed 
(their completed marker is not set), that output activity is allowed to start. This is 

particularly useful for linking activities to events that occurred much earlier in a project 
life cycle. This approach is much simpler than that adopted by Moore and Clayton 

(1976). Their technique, called network modification, incorporated separate structured 
routes through a network that would be initialised depending on a single, previously 

executed activity. 

Figure 3.8 shows an example of Arc Constrained network modification where the 
modified route is represented by a dashed, arrowed line. In this case, if activity 3 were 

to complete before node 4 had been realised, the system would replace the output from 
node 4 with node 9. Thus, on completion of activity 2, the outputs from node 9, not 

node 4, would be initiated. The replacement of node 4 with node 9 only occurs if 
activity 3 completes before node 4 is realised. If node 4 had already been realised it 

could not be replaced by node 9 which would remain dormant. The Arc Constrained 
technique provides a more flexible approach to this problem and allows the 

incorporation of alternative routes within an initial network. Figure 3.8 (Equivalent 
ULN) shows this simpler representation. 

"0 0 ., 
c 

m ~ 'ca 
~ t; 

c 
0 [?J u 

Arc Constrained Equivalent ULN 

Figure 3.8 Arc Constrained and Equivalent ULN 
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3.2.7 Dummy Activities 

To maintain the logic of a network it is sometimes necessary to use dummy activities. 
These activities have no times or costs associated with them and are represented by 

dashed, arrowed lines in an activity network. They link nodes between which there is a 

logical dependence, but no actual activity. Dummy activities will be used in examples 

and defmitions used in following sections. 

3.2.8 Loops 

Another dimension of Generalised Activity Networks is their ability to handle loops. In 
ordinary Probabilistic and Deterministic activity networks, where all node inputs are 

deterministic, a loop results in a situation where activities need to complete before they 

can start. Allowing loops to be formed in an activity network provides useful analysis· 

of projects where certain tasks are repeated, for example software debugging and 

retesting loops. Loops can be analysed to deduce the expected number of times each 

loop is performed, with associated times, costs and performance measures. Loops can 

either be formed by probabilistic branching to earlier stages of a project life cycle, or can 

be explicitly defined by a specified number of repetitions. 

In cases where loops are explicitly defined, it was suggested by Grey (1994) that loops 
are handled best by repetitive implementation of single activities. This can become 

rather messy, especially if the loop is to be performed several times. The solution to this 
problem is an alternative implementation of the Exclusive-Or output from a node. In 

this case, instead of applying probabilities to the output arcs, a figure is applied to an arc 

(representing, in this case, the activity looping back) that represents the number of times 

that activity should be performed. Thus, each time the node is realised, the arc with this 
applied counter is performed and the counter is reduced. This repeats until the activity 

has been performed the required number of times, after which the alternative output 

route from the node is taken. Figure 3.9 shows an explicit loop that will ensure activity 

A will be repeated four times. This is clearer and simpler than redrawing task a several 
times, and it also identifies, more explicitly within the network, where repetition is taking 

place. It is worth noting that loops can involve several activities (for example, activity A 

in figure 3.9 could represent a subnetwork as could the loop back) in which case 

repetitive implementation of the loop would be particularly messy. 
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Figure 3.9 An Example Loop 

3.2.9 Clarity 

With the probabilistic output of SNL nodes defmed in five mutually exclusive forms, it 

is important to differentiate between them within a network diagram. This ensures that 
the logic and clarity of a network is maintained. For example, after completing user 

trials in a software development project, it may be necessary to reword the user manuals 

and/or debug the program. Clearly these tasks are independent from one another but 

the probability of continuing, without needing to debug the program, is exclusively 
dependent on having to debug the program. Figure 3.10 shows that the previous 

representations could not handle clearly this combination of node output styles whereas, 
by using dummy activities and alternative node representation, the definitions provided 

in this chapter can. The probabilities assigned to the activities in this diagram are 
provided as examples. 

When a node is the source of a single activity, that node's output should be represented 

by the deterministic form. If it has an independent probability associated with it, then 

the Independent-Or form should be used instead. Similarly, a deterministic input should 

be used when only a single activity enters a node, unless there is a reason why one of 
the other node inputs are required (for example, if an activity must complete n times 

before the node is realised). 
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Reword User 
Manuals 

User Trials 
Debug 

Do not debug 

User Trials 

Previous Representation 

Reword User 
Manuals 

New Representation 

Debug 

Do not debug 

Figure 3.10 Improved Network Representation 

3.2.10 Non-activities 

In the previous section dummy activities were used to maintain the logic of a network. 
Dummy activities can also be used to represent what are called non-activities in a 

Generalised Activity Network. Non-activities are links that represent probabilistic 
outcomes from certain tasks. For example, non-activities can be used to represent the 

outcome of a test, whether it is success or failure - figure 3.11. In these cases the non­
activities are represented by dummy activities to indicate that they have no cost or time 

associated with them. 

3.2.11 Activity Completion Probabilities 

Although not identified in any previous literature in the field, the inherent flexibility of 
Generalised Activity Networks allows one to apply a completion probability to each 

activity in a network. The completion probability for activity ij is represented as 
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pij(finishes). This probability represents the chances of successfully completing task ij 

given that it is started. In most cases activities that start do complete successfully, and 
consequently the completion probability is one (Pij(finishes) = I) and can be omitted 

from the network diagram. However, in certain circumstances it is possible that tasks 
may not complete successfully and completion probabilities are applied to these 

activities to reflect this. The successful completion of an activity in a project, therefore, 

depends on the probability that it starts (Pij(startS)) and the probability that it 

successfully completes (pi/finishes)). Thus: 

Pij(completes) = Pi/startS) * pij(finishes) (3.5) 

The standard PERT technique cannot incorporate this form of detail because of the 
implicit deterministic nature of the technique. Completion probabilities can prove 

particularly useful for risk analysis where managers need to anticipate possible task 
failures. For example, in research and development projects one may expect certain 

avenues of research to fail. Being able to plan for these failures beforehand allows a 
manager to prepare alternative solutions. 

Failure --0.3 __ --
--

Test ...... 
0.7 ............ ...... 

Success 

Figure 3.11 Example of Non-Activities 

If an activity is deemed to have failed, it is important that the repercussions of this failure 

are perpetuated through a network. In other words, all other activities relying on the 

successful completion of this activity must be marked as eliminated from that run of the 

activity network. Figure 3.12 shows an example of the importance of this effect. 
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A 

Figure 3.12 Example of Perpetuated Elimination 

In this case, if activity A fails to start (which is possible due to the probabilistic output 

nature of node 1), activity B has no chance of being performed. If activity B was not 
marked as eliminated, node 4 would be in perpetual limbo as it would be waiting for 

activity B to either be eliminated or completed, which would, of course, never happen. 
This example emphasises the need to perpetuate failure through a network and mark as 

eliminated all activities relying on a previously failed task. 

3.3 GENERALISED ACTIVITY-ON-THE-NODE NETWORK DEFINITION 

3.3.1 Overview 

Today, project management software tools are moving away from Activity-on-the-Arrow 

towards Activity-on-the-Node representations. In Activity-on-the-Node representations, 
nodes represent activities and arcs represent logical connections between activities. At a 

recent exhibition in London [Project Management South 1994], out of twelve project 
management software tools on offer, the majority (ten) provided Activity-on-the-Node 

representations. MICROPLANNERTM (1992) was the only package offering solely the 
Activity-on-the-Arrow representation. Pertmaster Advance (1994) was the only tool 

offering both representations - in the same way as the original Pertmaster product. The 
ASTA Development Corporation [PowerProject® 1991] had abandoned activity 

networks altogether and had developed the concept of linked bar charts (Gantt Charts). 
Linked Bar Charts were on offer with several other packages (for example, Artemis 

Schedule Publisher™ (1993)) but these packages provided Activity-on-the-Node 
representations as well. The general mood was one of a movement away from older 

Activity-on-the-Arrow representations towards standardised Activity-on-the-Node and 
Gantt charts (often referred to as Bar charts) based Windows™ products. With this 

direction in mind, it was important to define a Generalised Activity-on-the-Node 
Network to reflect the direction in which most project managers today are heading. 
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Another advantage of an Activity-on-the-Node representation is the ease in which 

precedence diagram constraints (also known as logical dependencies constraints) can be 

applied (for example, finish to start, start to finish constraints). In Activity-on-the­

Arrow representations, applying these constraints involves the introduction of both 

dummy activities and nodes between activities being constrained [Crandall 1973]. 

Trying to apply these constraints in Generalised Activity-on-the-Arrow Networks is 

even more complex as dummy activities must be introduced alongside new nodes with 

specific characteristics that maintain the original logic of a network. Applying logical 
dependencies to Generalised Activity-on-the-Node Networks is much easier as the 

constraint can be applied directly to the logic connections linking activities. 

Turner (1993) also identified several other reasons why the Activity-on-the-Node 
representation was preferred by many managers to Activity-on-the-Arrow. 

1. Work is more naturally associated with a box. 

2. It is more flexible for drawing networks. 
3. Software is easier to write for this representation. 

4. Gantt charts are easier to draw, requiring no dummy activities 

5. The work is independent of the logic which can be added later. 

One difference between Generalised Activity-on-the-Arrow and Generalised Activity­

on-the-Node representations is that, in the latter, nodes in a diagram are stretched to 

accommodate any necessary activity identifying text. Figure 3.13 shows an example of 

a typical node. In this case activity A has a deterministic input and probabilistic output. 

Figure 3.13 An Example Activity in a Generalised-Activity-on-the-Node 

Representation 

Because this definition of a Generalised Activity Network representation contains both 

Unit Logic Nodes and Dummy Nodes it can, in some respects, be viewed as a Hybrid of 

Activity-on-the-Arrow and Activity-on-the-Node. For the:' purposes of this thesis, 
however, it will be referred to as a Generalised Activity-on-the-Node representation. 
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3.3.2 Activity Node Inputs 

The development of a Generalised Activity-on-the-Node Network leads directly from 

the node definitions of the Generalised Activity-on-the-Arrow Network defined earlier 
in this chapter. As the definitions represent all node input logics, they can be used 

directly as definitions of Activity Node inputs in Generalised Activity-on-the-Node 

Networks. The node input definitions, And, Or and xOr are exactly the same as those 

defined earlier in this chapter with the defmitions relating to logic relationships between 

activities. 

(ii) And 

All activities preceding an activity must be completed before that activity can be 

performed. 

(ii) Or 
This activity requires n preceding activities to complete before it can be performed. This 

definition implicitly accepts that the activity can be performed several times, each time n 
preceding activities complete. As before, when n= I this can be omitted from the node. 

The different codes applied to the input of the activity affect this reasoning in the same 

way as the Activity-on-the-Arrow definition earlier: 

H = Blank - as for the above definition. It is not necessary to wait for the activity to 

finish before starting it again (like code Q dictates). 

H = C - Allow all other activities preceding this activity to complete in their own time. 

The activity will be performed once only. 

H = H - Cancel all remaining, active preceding activities when the activity starts and 

eliminate all others. 

H = W - The activity is performed when all active, preceding activities are completed and 

all other preceding activities have been eliminated. The node still requires a minimum of 
n activities to complete successfully before realisation, and can be realised only once. 

H = Q - This represents a queuing activity that can only deal with n completing activities 

at anyone time. The activity must complete before allowing the next n activities to 

restart the activity again. 

(iii) xOr 
This works in the same way as the Activity-on-the-Arrow definition and ensures that n 
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different activities complete successfully before applying the above rules. 

3.3.3 Activity Node Outputs 

Again, the definitions of activity output logics are derived directly from the Activity-on­

the-Arrow defini tions provided earlier. 

(i) Deterministic 
All logical relations emanating from this activity will be pursued when the activity 

completes. This is the standard Activity-on-the-Node representation found in almost all 
project management software tools. 

(ii) Independent-Or 

All logical relations from this activity will be pursued, depending on their probability 

values, when the activity completes. In a similar way to the Generalised-Activity-on-the­

Arrow representation this can lead to a situation where all or, at the other extreme, no 

logical relations are pursued when the acti vity completes. 

(iii) Exclusive-Or 

In this case only one logical relation leaving the activity will be pursued when the activity 

completes. The probabilities, rules, and examples are the same as those in the 

Generalised-Activity-on-the-Arrow representation. 

(iv) Dependent-Or 
The logic relations with other activities that emanate from this form of activity output are 

in some way dependent on one another. As for the independent case, each logic relation 

has its own probability of occurring, but the combined probability no longer equates to 

the product of the individual activity occurrence probabilities. 

(v) Cost/Time Dependency 

The iogic relations emanating from this activity are dependent on the times and costs 

accrued to date. This is exactly the same as the Generalised Activity-on-the-Arrow 

representation. 

3.3.4 Activity Completion Probabilities 

Activity completion probabilities (such as those explained earlier) can be applied directly 

to the output side of an activity node in this Generalised Activity-on-the-Node 

representation. This value represents the probability that the activity completes 

successfully given that it starts. 
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Figure 3.13 brings together the points introduced above, showing how activities can be 
represented with different input and output forms and illustrating an example of an 

applied completion probability (in this case PA (finishes)= O.7). 

One of the strengths of the Generalised Activity-on-the-Node representation defined in 
this chapter is its similarity to conventional Deterministic and Probabilistic Activity 

Network styles. Figure 3.14 illustrates how an activity network, generated using these 
rules, can look virtually identical to a standard probabilistic activity network 

representation, when the more powerful Generalised Activity-on-the-Node functions are 
not required. With this similarity to more popular techniques, it requires no retraining at 

the initial stages of its implementation. Managers can be introduced to new concepts 
and representations provided by this Generalised Activity-on-the-Node representation in 

a progressive way. 

Activity I Activity 2 Activity 4 

Activity 3 

Figure 3.14 A Simple· Generalised-Activity-on-the-Node Network 

3.3.5 Unit Logic Nodes 

Unit Logic Nodes provide an immense amount of power to Generalised Activity-on-the­

Node Networks by providing a means for filtering future routes through a network. 
They determine which subsequent activities should be performed, based on what has 

happened previously. All three ULN nodes, defined earlier in this chapter, can be used 
in a Generalised Activity-on-the-Node Network. Figure 3.7 shows the three node types 

available for Generalised Activity-on-the-Node Networks. The various incoming and 
outgoing arcs represent logic relationships with other activities in this case. Apart from 

milestones and dummy nodes, Unit Logic Nodes represent the only other nodes in a 
Generalised Activity-on-the-Node Network where resources are not consumed. 
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(i) Standard ULN 

Each output logical relation is linked in a logical way to each incoming logical relation. 

The example provided earlier illustrates this situation. In this case the example relates 

directly to logical relations to subsequent nodes. 

(ii) Ordered 

Only one output logical relation is pursued depending on a preferred ordering applied 10 

each output logical relation. Again, the example provided earlier illustrates the 

possibilities of this function. 

(iii) Arc Constrained 

Exactly as in the Generalised Activity-on-the-Arrow representation, each output logical 

relation from this node has a list of activities with positive and negative markers. If all 

the activities with positive markers have been completed successfully (their completed 
marker set) and all the activities with negative markers have not yet completed, that 

output logical relation is allowed to be pursued. 

3.3.6 Dummy Nodes 

It may be necessary to introduce dummy nodes into a Generalised Activity-on-the-Node 

Network to preserve the logic of a connection. As an example, suppose, from the 

outcome of a test (which is either successful or not), two possible activities may need 

performing with independent probabilities. Trying to incorporate both an Exclusive-Or 

output (the test result) and an Independent-Or output for these activities, onto the output 

side of the Test node is rather messy. The solution is to use a dummy node that enables 

the logic to be maintained. Figure 3.15 shows how a dummy node is used in this 

situation. To ensure that there is a connection between the dummy node and activity C 

(it is not guaranteed by Activity A and B which are probabilistic) a logical relation 

between these nodes has also been applied with probability one. The other probabilities 

are provided as examples. 

Figure 3.15 Example of Dummy Node Usage 

74 



3.3.7 Loops 

Loops are fonned as easily in Generalised Activity-on-the-Node networks as they are in 

Generalised Activity-on-the-Arrow networks. Figure 3.16 illustrates how an activity, A, 

that requires perfonning four times, would be represented. The similarities between this 

representation and that shown in figure 3.9 are self evident The Exclusive-Or output is 
being used in the same way in this example as it was earlier. In this case the output 

defines that the logical relation leading back should be perfonned four times - each time 
activity A completes. Loops can also be produced by probabilistic branching in which 

cases probabilistic activity outputs would be used and loops would only be performed 

by chance. Unit Logic Nodes can also be used to initiate feedback to earlier stages of a 

project plan. In this case they provide an incredible amount of planning power as 

feedback can be dependent on events that occurred earlier in a project. An example of 

this will be presented later. 

4 

Figure 3.16 Example of a Loop in a Generalised Activity-on-the-Node Network 

3.3.8 Non-Activities 

Non-activities, that are used in Generalised Activity-on-the-Arrow Networks, are not 

required in the Generalised Activity-on-the-Node representation as they are represented 

by the logical relationships between activities. For example, figure 3.11 can be 

represented in a Generalised Activity-on-the-Node representation as shown in figure 

3.17. The logical connections between activities in this case replace the need for non­

activities in this form of activity network. It is worth noting that the power of this 

Activity-on-the-Node representation also allows a completion probability to be applied 

simultaneously to an activity. In figure 3.17 the probability of actually completing the 

test itself is 0.9, the probability of the test proving successful is 0.7, and failing is 0.3. 

In this case the probability of perfonning the Success Activity is 0.63 (the product of 

successfully completing the test and the test proving positive). 

75 



Success 
Activity 

Fail 
Activity 

Figure 3.17 Completion Probabilities and Probabilistic Branching 

3.3.9 Precedence Diagram Method (PDM) 

PDM constraints (or logical dependency constraints) have being used by project 
managers for a long time [Crandalll973, Wiest 1981, Moder and Phillips 1983]. They 

have also been successfully implemented into several current project management tools 
for example, Microsoft® Project 4.0TM (1994), Project Manager Workbench™ for 

Windows™ (1994), and Primavera Project Planner® (1994). It was noted earlier in this 
chapter how such constraints are difficult to implement within Activity-on-the-Arrow 

networks. This is not the case with Generalised Activity-on-the-Node Networks that 
prove to be as open to his approach as standard Probabilistic Activity-on-the-Node 

Networks. 
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Figure 3_18 The Four Possible PDM Constraints 

The four possible PDM constraints that can be applied between any two activities are 

represented in figure 3.18. The definition of these constraints was covered in more 
detail in chapter one. Applying these constraints to Generalised Activity-on-the-Node 

networks could not be easier as they are applied directly to the logical relations that 
connect any two nodes. Figure 3.19 shows a simple example of a Generalised Activity-
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on-the-Node network with some PDM constraints applied. In this example there are 

Finish-to-Start constraints between activities C and D, and between E and F. There is a 
Start-to-Start constraint between activities A and C, and a Start-to-Finish constraint 

between activities A and B (although the use of such a constraint is rather limited). 

Figure 3.19 An Example Network with PDM Constraints 

3.3.10 Milestones 

A project milestone is a moment that represents a significant step towards the 

completion of a project. Determining a project's milestones beforehand helps to define 

goals for the project and maintain the developers awareness of those goals. They also 

give a visibility to the progress of the project in a measurable sense and highlight any 
problems in keeping to schedule, that in turn allows remedial action to be taken at the 

earliest opportunity. Examples of milestones include: 

The project start day. 
The delivery of a new computer. 

Part of the system is ready for demonstration. 

Part of the system is delivered to the customer. 

The final system is deli vered. 

Representing milestones in Generalised Activity-on-the-Node networks is not as clear 

cut as it might first seem. In ordinary Activity-on-the-Node Networks it can be a simple 

case of representing a milestone in a rounded box or oval (for example, figure 3.20). In 
Generalised Activity-on-the-Node Networks the input and output logics to the milestone 

may need preserving, in which case it is necessary to maintain the logical style of the 

node. The solution in Generalised Activity-on-the-Node networks is to represent 

milestones in dashed nodes that allow the logic of a node to be maintained. Figure 3.21 
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provides a simple example of milestone representation in a Generalised Activity-on-the­

Node network. 

@-~.~(ACtiVilYA ) ... --.~® 

Figure 3.20 Milestone Representation in an Activity-on-the-Node Network 
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Figure 3.21 Milestone Representation in a Generalised Activity-on-the-Node Network 

3.4 APPLICATIONS 

3.4.1 Overview 

Virtually all project management software in use today is based on either the standard 

Deterministic or Probabilistic Activity Network solution. It was noted by Kidd in 1990 

lKidd 1990J that 'these programs cannot address the strategic uncertainties that face all 

project managers.' Kidd went on to identify that a solution would be for managers' 

to use more sophisticated management tools such as the VERT technique mentioned 

earlier in this chapter. Unfortunately, as noted earlier, the VERT technique represents 

too broad a change for managers to make. The alternative is the implementation of a 

technique that has much in common with the popular PERT technique, with the added 

flexibility and clarity available as and when it is required. The completion of both 

Generalised Activity-on-the-Arrow and Node Network representations provided in this 

chapter provides just such a definition. 

The flexibility offered by Generalised Activity Networks enable them to be used in all 

kinds of development projects. In their basic form they can be implemented as purely 

deterministic network structures. In this configuration they represent common 

Probabilistic Activity Networks and can be used in the same way as the standard PERT 

technique. Where Generalised Activity Networks come into their own is in projects 

where uncertainties exist and conclusions of particular tasks cannot be predetermined. 

An obvious field where these problems are encountered is Research and Development 

where outcomes from various research activities can only be guessed at initially. 
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Another field is Software Development where projects include test results and 

integration and implementation uncertainties that cannot be fully guaranteed at a 
project's outset. Being able to code these uncenainties into a project plan at the outset 

enables mangers to perform a more detailed risk analysis. 

In previous literature, examples of Generalised Activity Networks mentioned earlier are 

given in specific, real life projects. For example, Moeller (1972) shows how VERT was 

used in the planning of a helicopter development Moore and Clayton (1976) shows the 
GERT technique being used in planning the drilling of an oil well, and Kidd (1990) 

provides an example of how a Generalised Activity Network can be used in managing a 

software development project. 

3.4.2 An Example Problem 

In order to see how both the Generalised Activity-on-the-Arrow and Generalised 

Activity-on-the-Node Networks defined in this chapter could be used in the planning of 
a project, the following example, based on a simple software development, has been 

devised. This example is related to the design and implementation phases of a project -
representing a more tactical level plan than the strategic metamodellevel. An example of 

a Generalised Activity Network for a metamodel can be found in chapter two. It is 
unlikely that anyone project would require all possible Generalised Activity Network 

functions defined in this chapter. To try and incorporate every function into an example 
would prove too complex for illustrative purposes. However, as shown in previous 

examples, each logic has its practical uses and managers would employ any required 
subset of the logics available. The example, that helps to illustrate the possibilities of 

Generalised Activity Network usage, is based on the following scenario: 

A software system to be developed consists of three modules - A, Band C. These 

modules are coded and tested separately after the design is complete. If all modules 

fail their testing, the whole system must be redesigned and re coded as major 
problems have clearly been encountered. Although module C must be working before 

the project can continue, any bugs found within modules A and B can be ignored as 
they will be removed automatically during the integration phase. The user manuals 

can also be wrinen concurrently with the integration of modules A, Band C, 

After integrating the modules and completing the user manuals, the viability of the 
project will be assessed. If, at that stage, the project is overrunning its expected costs 

by 50% or more the project must be scrapped. Otherwise the project continues with 
the integrated testing phase. It is anticipated that the only reasons for this testfailing 

are due to the system being too slow or too costly (in terms of memory requirements). 
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These problems need rectifying before user trials can take place. The only problems 

anticipated with the user trials are that the manuals are inadequate, or some simple 

bugs are found resulting in a basic debugging process. No further testing will take 

place after this phase and this implementation stage of the project is completed. 

(i) A Solution Using PERT 
To begin, an attempt is made to plan this project using a standard PEKT' type approach 

(both Activity-on-the-Arrow and Activity-on-the-Node). The PERT network is 
somewhat difficult to form from this scenario due to the uncertain behaviour and 

repetition of particular tasks. The resultant PERT networks are shown in figures 3.22 

(Activity-on-the-Arrow) and 3.23 (Activity-on-the-Node). Uncertainties at various 

stages of the project cycle have had to be implicitly coded into specific tasks in these 
networks. For example, Improvements 2, following User Trials, includes the possibility 

of having a zero cost/duration or a cost/duration that is based on recoding some 

software or rewriting parts of the user manual. The deterministic structure of PERT has 

not allowed these alternatives to be explicitly incorporated into the plan and they have 
become buried in the simplicity of the technique. 

(ii) A Solution Using a Generalised Activity-on-the-Arrow Network 

The Generalised Activity-on-the-Arrow Network, on the other hand, allows more 

detailed analysis of the project plan, explicitly identifying problems that may occur. The 

Generalised Activity-on-the-Arrow Network, based on this project scenario, is shown in 

figure 3.24. In this diagram, all uncertainties are shown explicitly, providing the project 

manager with a more detailed view of possible risk points in the project life cycle. Each 
node in figure 3.24 has been assigned a number to assist with the explanation below. 

It is worth noting how the different node input styles have been used in constructing this 

network. While the deterministic node input at node 9 should be clear it is worth 
explaining the W -Or node inputs at nodes 13 and 17. The w-Or inputs at these nodes 

ensure that the project only progresses when all active incoming activities to the node 

complete successfully. It would be wrong, for example, to continue with the User 

Trials (between nodes 14 and 15) while attempts were still being made to increase the 

software speed, even though a reduction in the memory costs had been achieved. 

Because of the probabilistic nature of the activities between nodes 12, 13 and 16, 17 (ie 

it is possible that none of these activities may be performed), a dummy activity also links 

these nodes. This ensures that the project plan will not grind to a halt should either of 

these pairs of activities be eliminated from the project plan. 

Nodes 14 and 18 represent Blank-Or inputs (an w-Or input could have been used here 
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as well). Nodes 2 and 6 also represent a Blank-Or input. Node 6 allows the result of 

testing module C to be passed straight on to the Unit Logic Node (node 7). This 

ensures that node 6 can be realised several times due to the loop consisting of the 

Debug and Retest of module C from the ULN. 

The output activities from the Ordered ULN are based on the following rules that are 

coded into the ordered logic of the node. 

- - -I. AnBnC 
2. e 
3. C 

The node output logics at nodes 4, 5, 6, 8,9, 12 and 16 clearly match the project scenario 

as detailed. 

It should be noted that, as it stands, this Generalised Activity-on-the-Arrow Network 
provides no temporal or cost information to the project manager. However, it does 

provide an initial visual representation of the project and identifies possible risk points 

and repetition in the project life cycle. In order to be of some more analytical use the 

activities are assigned duration/cost functions and probabilities, and the network is 
analysed. How networks such as these are analysed is discussed in the next chapter. 

(iii) A Solution Using a Generalised Activity-on-the-Node Network 

Figure 3.25 provides a Generalised Activity-on-the-Node representation of the project 
scenario detailed earlier. As one would expect, there are many similarities with the node 

input and output logics of the Activity-on-the-Arrow network discussed above. Points 

worth noting in this representation are the inclusion of milestones, representing the start 

(Ml) and completion (M3) of this part of the project. M2 represents the terminal 

completion of the project if it has overrun its budget by the amount specified earlier. 

The coding and testing of module C has had to be separated to allow the feedback from 

Debug C to feed into the testing stage. Without this separation the feedback would 

have lead into the coding of module C which is not the case. Dummy nodes have also 

been included after the integrated modules have been tested and after the user trials. 

These ensure the logic of the scenario is maintained and do away with the difficulty of 

applying two different probabilistic output types to the test and user trials nodes. 

The ULN is coded in exactly the same way as the Generalised Activity-on-the-Arrow 

description, and all other node inputs and outputs are the same. 
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From these three representations of the project scenario the PERT technique was the 

weakest being unable to represent all the possibilities in the project scenario explicitly. 
The two Generalised Activity Network versions provided a more accurate representation 

of the project scenario and, of the two, the Generalised Activity-on-the-Node 
representation is perhaps the clearer. This representation also has the advantage of 

providing PDM constraints when they are required and, as the mood of the project 
management industry has indicated, represents the most popular activity network 

representation these days. 

3.5 NETWORK PROPERTIES 

3.5.1 Overview 

Parameters are applied to tasks within activity networks to provide measures by which 

projects can be planned and controlled. The majority of work is directed towards time 
and cost values, although performance measures [Moeller and Digman 1981] can also 

be used. Although many project managers treat time and project management as 
synonymous [Turner 1993], time is not the only variable within a project. Activity 

networks should be used to manage both times and costs within a project providing a 
means of optimising and controlling the interaction between these factors. The 

interaction of resources (that also equate with costs) and temporal factors within 
Generalised Activity Networks is a particularly complex task. No work to date has been 

noted in this area and it proves to be an interesting area for future research. For the 
purposes of this thesis, the affect of temporal factors (the more complex of cost and 

time factors) is assessed in chapter five. 

3.5.2 Durations 

Various distribution functions (referred to as temporal functions) have been proposed to 

represent the duration of activities in Generalised Activity Networks. These temporal 

functions include the usual PERT three time Beta distribution estimate, single time 
estimates and so on. In literature on the subject, one of the most flexible methods 

proposed for applying these functions to activities was that proposed by Moore and 
Clayton (1976) for the GERT technique. Their technique provides ten possible function 

estimates that are listed below. In their technique each activity was associated with three 
parameters (shown in figure 3.26). 
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(a, 13, 0) 

Figure 3.26 GERT Time Representation 

a The probability that the branch will be taken (l~a>O). Clearlya=1 when the 

originating node is deterministic. 

13 A reference to a parameter set where the data associated with the disnibution type 

is stored (figure 3.27). 

o A code identifying the temporal function. The ten possible disnibution codes are: 

I A constant value 

2 Normal disnibution 

3 Uniform disnibution 

4 Erlang disnibution 

5 Lognormal disnibution 

6 Poisson disnibution 

7 Beta disnibution 

8 Gamma disnibution 

9 Beta fitted to three parameters (as in PERn 

10 Triangular disnibution 

Figure 3.27 provides an example of how an activity, with probability 0.2 of occurring 
and Normally disnibuted temporal function, is represented by relating the arc to a 

corresponding reference parameter set associated with the activity. 

Reference 

o (0.2,7,2) 

""" 
RefNo 7 

Parameters 

~ cr 
15 5 

Figure 3.27 More Detailed GERT Time Representation 
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In more recent project management packages, several other distribution functions have 

been made available to the project manager. For example, Predict!TM (1992) - a 

Probabilistic Activity-on-the-Node software tool developed by Risk Decisions Limited -

provides twenty one different temporal functions that can be applied to project activities. 
The sales team for this product point out that it is very unlikely that anyone manager 

would require all of these functions, using a subset of the more popular ones most of 
the time. @Risk™ (1990) is an add-in to Microsoft Excel™ that allows probabilistic 

risk to be determined within an Excel spreadsheet. In addition to the ten distribution 
functions provided in GERT above,@RiskTM also provides: 

Binomial Chi-square Correlations 

Cumulative Discrete Discrete Uniform 
Error Function Exponential General 

Geometric Histogram Hypergeometric 

Logistic Negative Binomial Pareto 

Weibull 

In addition, Predict!TM provides many of these functions along with: 

Bernoulli 

Sensitivity 

Cauchy 
T-distribution 

F-distribution 

The affect that some of these activity temporal functions have on the duration of an 

activity network is studied in some detail in chapter five. The effectiveness and 
implementation of these activity temporal functions is an interesting area for future 

research. 

Risnet™ (the risk analysis software tool mentioned earlier) provides twelve activity 

temporal functions including an Exponential-Triangular and a Triangular-Exponential. 

Monte Carlo™ 2.0, the other risk analysis package available today, provides ten such 

functions. 

3.5.3 Resources 

Before a project baseline can be set it is necessary to determine the constraints imposed 

on that project. Resources represent the most common of these constraints [Turner 
1993]. If adequate resources are not available for a project (which. according to most 

managers. is usually the case) it can cause that project to be adversely delayed. Also. if 
particular resources are over or underused at any stage (for example. machine hire which 

could be over or under booked, staff overtime costs and so on) this can add unnecessary 
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costs to a project. 

It is also possible that resources are not available constantly during the life cycle of a 

project and the effects of this must be anticipated. It is also possible that resources are 
needed by activities non-uniformly. There are different ways in which activities can be 

applied to activities in a project - represented by a resource profile for each activity. 
Turner (1993) identifies four such ways of applying resources to activities - constant, 

stepped, triangular and Normal. Project Manager Workbench™ (1994) is an example 
of a project management tool that allows managers to apply different resource profiles 

to activities. It also allows resource profiles to be considered from a more global project 
viewpoint and considers these factors when scheduling a project. 

Scheduling a project to optimise resource usage can prove to be particularly difficult and 

several algorithms can be used to achieve this. Examples include Berman (1964), 
Burgess and Killebrew (1962), Clark (1961a), Levy et alia (1962), King (1964), and 

Davis (1974) which are mentioned in chapter four. 

How Generalised Activity Networks schedule projects with various constraints poses 
some interesting problems. For example, should a machine be booked for an activity 

with only 70% chance of been performed? The scheduling of Generalised Activity 
Networks with various constraints is clearly an area that needs addressing in future 

research and is beyond the scope of this thesis. 

3.6 CHAPTER SUMMARY 

3.6.1 Overview 

This chapter has provided a conclusive definition for both Generalised Activity-on-the­

Arrow Networks (based on the work presented in Dawson and Dawson (1994a)) and 
Generalised Activity-on-the-Node Networks. 

3.6.2 Conclusion 

Previous research In this field has been sadly lacking and implementation of 

Generalised Activity Network' ideas even less so. The majority of popular software 
planning tools available (for example, Project Manager Workbench™ (1994), CA­

SuperProject® (1993)) are based on the ideas of Deterministic Activity Network 
structures. A few, for example Predict!TM (1992), Artemis Schedule Publisher™ 

(1993), Primavera Project Planner® (1994) with the Monte Carlo™ 2.0 (1993) package, 
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provide more risk analysis by implementing the ideas of Probabilistic Activity Networks 

and providing several activity cost and temporal functions. Only GERT and VERT 
instigated attempts to implement Generalised Activity Networks. Since these appeared 

in the late 1960s and 1970s, before the explosion of project management tools, they 
have been somewhat overlooked by managers of today. Only two tools - Risnet™ and 

Monte Carlo™ 2.0 provide any means of managing project uncertainties and even they 
provide only limited functionality. 

The future for the work presented in this chapter is the implementation of the defmitions 

provided for a Generalised Activity-on-the-Node representation. The Activity-on-the­
Node representation not only provides more clear network diagrams and includes PDM 

constraints but it also reflects the current mood of the industry and provides a more 
powerful means of project planning and control. 

3.6.3 Future Work 

Four areas for future research have been identified from this work: 

• Implementation of the definitions in a software tool 

• Gantt chart representation of Generalised Activity Networks 
• Costffime optimisation and resource levelling in Generalised Activity 

Networks 
• Developing a Work Breakdown Structure for Generalised Activity Networks 

Whether it is possible to implement a Generalised Activity Network in a hybrid Gantt 

representation is an area that requires some thought. It is perhaps unlikely that 
combining these two charts into one would provide any real benefit as the resultant 

graph would be overly complex. How probabilistic branching is used within a Gantt 
chart and how it affects scheduling is also an area that requires addressing. The most 

interesting problem is that posed by the scheduling of Generalised Activity Networks. 
Various heuristics require developing and applying to this particular problem area. 

What resources should be assigned to an activity, that mayor may not occur, and how 
time/cost/resource tradeoffs could be performed between probabilistic activities is an 

interesting problem. How a Work Breakdown Structure should be performed and 
represented in the implementation of Generalised Activity Networks is also an area for 

future research. 
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CHAPTER 4 

Project Management and Activity Networks 

CHAPTER PREFACE 

This chapter deals with techniques for the temporal analysis of both Probabilistic and 

Generalised Activity Networks. In order to put this work into context the chapter 
begins by introducing the concepts of project management and previous 

computational approaches, before moving on to Monte Carlo simulation of activity 
networks. An improved technique for limiting the number of simulations required in 

activity network analysis is developed (presented in Dawson and Dawson (1 993b)). 
Antithetic variables are also used to improve the efficiency of this method. A Modal 

Class simulation algorithm is also introduced (presented in Dawson and Dawson 
(l993b and 1994b)). 

CHAPTER KEYWORDS 

Project Management, Monte Carlo Simulation, Dynamic Sampling Technique, 

Antithetic Variables, Modal Class 

4.1 INTRODUCTION 

This chapter concentrates on the temporal analysis of activity networks using a Monte 

Carlo simulation technique. In order to put this analysis into perspective, the following 
sections introduce the concepts of project-based management and identify the area in 

which this analysis is used. 

4.1.1 Project-Based Management 

A traditional, established approach for the management of projects focused on three 
particular objectives - time, cost and quality. It was felt that if these three objectives 

could be achieved by good management and optimum tradeoffs between each of them, 
projects would be performed successfully. Turner (1993) showed that to deliver a 

project successfully, two other objectives must also be managed - scope and 
organisation. Figure 4.1 (taken from Turner (1993)) shows how all these five factors 
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are integrated through the organisational objective. The boxes highlight the techniques 

that are used in meeting particular project objectives, identified in the circles. This 
chapter cannot hope to cover all of these objectives at all different project levels, 

therefore it concentrates on an analytical approach that assists the management of time 
objectives at lower organisational levels. 

Activty Networks 
Gantt Charts 

Work Breakdown 
1-----1 Structure 

Organisation breakdown 
structure 
Responsibility charts 

1----1 Quality 
assurance 

Cost Breakdown 
t----j Structure 

Figure 4.1 Turner's Structured Approach to Project Management 

Once the requirement for a project has been identified (it has a purpose), management 

needs to perform a series of functions to develop an idea (a plan) of how that project 

will be tackled (this takes place within the analysis phase). The methodology shown in 

figure 4.1 is an ideal representation of how projects should be managed. In reality a 
common methodology used by many managers today, for managing smaller projects, 

usually includes the following set of component functions at some level (a larger project 
management methodology is covered in section 4.1.9): 

(i) Work Breakdown Structure. 

(ii) Identification of milestones. 
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(iii) Activity precedence. 

(iv) Application of cost, resource, time, performance estimates. 
(v) Calculation of expected costs, times, performance requirements of a project. 

(vi) OptimisationlScheduling. 
(vii) Control. 

These components are identified, to some degree, in numerous texts including Howes 

(1984), Pressman (1994), Sommerville (1993), and Plasket (1986) to name but a few. 

4.1.2 Work Breakdown Structure 

Developing a Work Breakdown Structure is an established technique and is covered in 
several texts including Tausworthe (1980), Howes (1984), Morreale (1985), and Plasket 

(1986). More modern approaches to the decomposition of projects include work by 
Wilson and Sifer (1988 and 1990). 

According to Turner (1993) a common pitfall in planning projects is to plan them at a 

detailed level only. Turner went on to point out that this is a common problem within 
the development of software systems. Projects cannot be planned at just one level 

within a business as they need justification at all levels of an organisation's structure. 
There must also be some coordination between a project at different levels. Turner 

identified three fundamental levels at which the five objectives identified earlier need to 
be managed - integrative, strategic, and tactical. At the integrative level, the scope of a 

project must be identified and its purpose must be within the bounds of the 
organisation's objectives (figure 4.2). At the strategic level managers aim to create a 

stable plan that remains fixed throughout the lifespan of a project [Turner 1993]. For 
the purposes of this thesis chapter one identified the metamodel as representative of a 

strategic level plan. As the metamodel incorporates any possible changes within its 
structure it provides a firm baseline from which to work. Any variation can be 

constrained to within the next level down - the tactical level. The tactical level is the 
detail at which most project managers tend to work. Most project management software 

tools are also aimed at this level of detail. At this level, specific tasks and 
responsibilities for those tasks, are identified. The software development example in 

chapter three represented a more detailed tactical level plan. It is at the tactical level that 
the project management functions identified above are targeted. 

Breaking a project down through these levels, to ever increasing detail, represents the 

creation of a Work Breakdown Structure. This does not occur in one step, but through 
several levels of breakdown. Turner (1993) identified several advantages of using a 

Work Breakdown Structure: 
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• It provides better control of work definition 

• It allows work to be delegated in coherent packages 

• It allows work to be defined at an appropriate level for estimating and control of the 

current stage 
• It allows risk to be contained within the Work Breakdown Structure 

An example of a Work Breakdown Structure (for the Milltown Road Bridge project) 

can be found in Appendix A (page AI). This breakdown was generated with CA­
SuperProject® (1993). The project was successfully completed in January, 1994. 

4.1.3 Milestones 

Organisation 
Objectives 

Figure 4.2 Project and Organisation Objectives 

By breaking a project down into a strategic level of detail (the metamodellevel) each 

stage within a plan at this level represents a milestone. Milestones identify a measurable 

step on the way to completing a project. They provide a useful focus of attention for the 

project team and they highlight any problems in keeping to schedule, that in turn allows 

remedial action to be taken at the earliest opportunity. Milestones were identified in 

Generalised Activity Networks in chapter three by dashed nodes. 
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4.1.4 Activity Precedence 

The precedence between activities at the tactical level is detennined and represented as 

either an activity network (Activity-on-the-Arrow or Activity-on-the-Node) or as a linked 

Gantt chart. Linked Gantt charts are felt by some companies as the future of the project 

management industry. As an example, PowerProject® Version 2 (1991) by ASTA has 

no facility for generating Activity Networks and relies solely on a linked Gantt chart. It 

is unlikely that managers could just rely on linked Gantt charts as they tend to become 
rather cluttered with detail. Keeping the dependencies on a separate chart - an activity 

network - minimises this infonnation overload. 

4.1.5 Applying cost, resource, time, performance estimates to activities 

At the tactical level, more accurate estimates of costs, durations and performance 

measures can be detennined. In cases where these estimates are unclear, distribution 

functions are used (for example, Beta temporal functions in PERT) to provide a likely 
representation of durations or costs of activities. By using complex distribution 

functions, the analysis of these networks becomes more difficult. 

Several approaches have been developed to detennine costs and duration estimates of 

software development projects. Boehm (1981 and 1984) [DeMarco 1982] introduced 

the COCOMO (Constructive Cost Model) technique that detennines the amount of 
effort and cost involved in developing a software product. Other metrics have also been 

devised in an attempt to quantify the development of software [Conte et alia 1986]. 
Activity temporal functions and their analysis are studied in more detail in sections 4.2 

and 4.3. 

4.1.6 Network Analysis 

Activity networks provide more than just a visual representation of a potential project at 

a tactical level. By applying various parameters to activities within an activity network 

and perfonning some fonn of network analysis, estimates can be made of a project's 
likely cost, duration and perfonnance. The temporal analysis of activity networks is 

studied in more detail in sections 4.2 and 4.3 where a method of analysis is improved 

and applied to Generalised Activity Networks. 

4.1.7 Optimisation/ScheduIing 

Resources, such as people, finance, materials and machinery, are seldom available in 

unlimited quantities for use on any project [Goodman and Love 1980]. It becomes 
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necessary, therefore, to detennine an optimum use of resources within a project. This is 

achieved by either employing various algorithms or trying a what if analysis. 

Algorithms have long been used to smooth resource usage within projects and minimise 

costs and times with respect to one another and projects as a whole. Examples of 

algorithms developed for this purpose include Berman (1964), Burgess and Killebrew 
(1962), Clark (1961a), Levy et alia (1962), King (1964), Davis (1974), Woodworth and 

Willie (1975), Talbot (1982) and Brown (1988). Another way of scheduling a project is 
to select baseline dates. Turner (1993) identified three ways of selecting baseline dates 

for a project: 

Schedule by early start - to motivate the workforce. 

Schedule by late finish - presents progress in the best light. 

Schedule in between - to smooth resource usage or detennine the most likely outcome. 

It is not necessary, however, to baseline a project within its initial time frame (early and 
late dates). Guerrieri (1987) identified two scheduling procedures that can be used to 

optimise either resource usage or times in a project: 

(i) Resource levelling 

Reduces the amount of variability in the pattern of resource usage for the duration of a 

project where there are sufficient resources available and the project must complete in a 

specified time. 

(ii) Fixed Resources Limits Scheduling 

Meets as close as possible the project completion date subject to fixed limits on 
resource availability. 

Almost all project management tools mentioned within this thesis provide techniques for 

scheduling projects using mainly the approaches identified above. CS Project™ (1992), 

as another example, provides its own resource levelling approach called CARLO - Cost 

and Resource Levelling Optimisation. CARLO provides a scheduling algorithm that 
schedules activities with either the highest priority first, the least float first, or the least 

duration first. Other approaches to scheduling, noted as current research trends in this 

area, include the analysis of optimal float usage in projects, a study of the interaction 

between parallel and interconnected activities, and the calculation of resource constrained 
float. 

What if analysis identifies the effects that various changes can have on a project. As an 

example, the Monte Carlo™ (1993) software package provides a fonn of what if 
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analysis. It allows a user to increase (default of 20%) or decrease (default of 15%) the 

duration of all activities globally within a project to see what effect this will have. The 
theory behind this is that if an initial activity in a project varies from its expected 

duration or cost by a particular amount, the chances are that estimates of other activities 
will be out by a similar factor. Other forms of what if analysis can identify the effects of 

activities overrunning their expected costs, what if a member of the project team leaves at 
a particular stage?, or what if the software is developed by department X in this order? 

and so on. By identifying possible problems in a project beforehand, contingency plans 
can be arranged because the results of various changes will have already been 

anticipated. What if analysis is also used to determine optimum project configurations, 
for example, with respect to costs, location, staffing sizes and so on. Artificial intelligent 

systems often include what if analysis to determine optimum project solutions. For 
example, Kunz et alia (1986) detail an artificial intelligent management tool that allows a 

manager to view several project alternatives concurrently and see what affects various 
changes have on them. 

By improving network analysis in stage four of the management process detailed above, 

it allows more efficient analysis within this scheduling stage. What if analysis becomes 
more accurate and more quickly performed, and simulation of changes in levelling and 

time/cost optimisation can be improVed. 

4.1.8 Control 

Control perhaps represents more of an activity performed by management during the 
synthesis of a software development. It involves capturing 'actuals' as a project 

progresses, comparing these actuals with the baseline plan and updating a project plan 
accordingly. Using metamodels for software development has already been shown to 

improve the visibility and controllability of software development projects by providing 
more stable baselines at a strategic level. Another technique that improves management 

control of projects is Cost Schedule Planning and Control or CS PC [Saitow 1969]. 

CSPC integrates cost and schedule data, it provides a concise picture of project 

progress, it allows several projects to be controlled simultaneously, and it reduces 
subjective estimation. 

Another technique that improves control is the Department of Defence methodology -

DOD 7000.2 called C/SCSC (Cost/Schedule Control Systems Criteria or CSPEC) 
[DOD 1975]. This methodology works on the principle of a cost control cube where 

three structures, a Work Breakdown Structure, a Cost Breakdown Structure, and an 
Organisation Breakdown Structure are combined. When controlling a project, this 

methodology works on the earned value principle. This identifies how much earned 
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value an acti vity has achieved and is defined in one of four ways: 

(i) The percentage of progress. This is rather subjective and can suffer from the 90% 

syndrome mentioned below. 

(ii) 0/100 measure. This only counts activities in the control process if they have been 

successfully completed. 
(iii) 100/0 measure. This accumulates all earnings from an activity as soon as that 

activity is started. 
(iv) 50/50 measure. This splits the earned value into a start and an end. Half the 

earned value would be achieved when an activity starts, and the remainder when it 

ends. 

Project management software packages that employ this technique are InstaPlan TM 

(1990), Cascade® (1993), Parade® (1993) and CA-SuperProject® (1993). Parade® 
takes plans generated by Primavera Project Planner® (1994) and provides an earned 

value control analysis for them. Cascade®, that provides the user with a complete 

planning methodology, is covered in more detail below. 

Trying to estimate how much of a task is complete as a project progresses is fraught 

with problems. This subjective estimate often suffers from the 90%/10% rule (or 90% 
syndrome) [Abdel-Hamid 1988]. This rule shows that people usually feel, after 

spending 10% of the expected time on an activity, that 90% of that activity is complete. 

It is usually the case, however, that the remaining 10% of work takes up the remaining 

90% of the allotted time. 

4.1.9 Larger Projects 

The techniques outlined above relate to the more traditional idea of project management 
- that of planning and control from a strategic and tactical level. Also identified, 

however, was the need for project-based management that embodied alilevels of an 

organisational structure. In large organisations, where projects can span several 

departments and constitute several mini projects, the functions, identified above, are 
performed at some level, somewhere along the line. Figure 4.1 shows a more modern, 

organisation-wide approach to project-based management. Cascade® by MANTIX 

Systems Limited (1993), used at both British Telecom at Martlesham Heath [Hurley 

1993] and GPT at Nottingham, provides a methodology very similar to this structured 

approach. Cascade® provides an example of a large organisation-wide project 

management methodology based initially on the C/SCSC technique mentioned earlier. 

Managers using Cascade® begin by performing a Work Breakdown Structure, like the 

methodology above, but from a higher organisational level. The next stage in this 
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methodology is to determine an Organisation Breakdown Structure (OBS) that 

identifies particular work groups within the organisation. These work groups are 
assigned particular tasks, identified from the WBS, called Cost Accounts in a 

Responsibility Assignment Matrix (RAM). Within each Cost Account, in !be RAM, 
budgets are assigned, costs and schedules are approved, and baselines are maintained. 

Responsibility for each Cost Account is assigned to a Cost Account Manager. In effect, 
the Cost Account Manager is responsible for their own mini-project !bat is approached 

in much !be same way as !be steps detailed earlier. Each mini-project is broken down, 
using a Work Breakdown Structure, into work packages that form a detailed schedule 

for a mini-project. A Cost Breakdown Structure (eBS) is then used to pull together all 
costs and resources required by the work packages. The CBS identifies how resources 

relate to one another, it pulls in information from rate tables and working calendars (!bat 
identify resource availability, overheads and so on), and it summarises costs by cost 

types. In these mini-projects dependencies are set up, enabling standard critical path 
analysis to be performed, and resources are levelled by spreading the resource 

requirement evenly over the duration of the work packages. The mini-projects are !ben 
monitored and controlled using the C/SCSC methodology described earlier. This 

information can be rolled up through each level, via any of the structures, to provide 
summary information to senior executives, departmental managers, program managers, 

financial managers, and project team members. Figure 4.3, adapted from the sales 
literature of Cascade®, provides a visual representation of this entire process. 
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Figure 4.3 The Cascade® Methodology 

4.2 TEMPORAL ANALYSIS OF ACTIVITY NETWORKS 

4.2.1 Overview 

Activity networks provide more than just a visual representation of a potential project. 

The analysis of activity networks at the tactical level, identified in stage five of the 
planning process, can often prove difficult. Temporal, cost and quality analysis is 

somewhat handicapped by the limited computational techniques available. Of these 
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three parameters, temporal analysis is the most difficult to perform due to the way in 

which activity temporal functions combine. Whereas costs combine in a rather 
simplistic additional form, activity durations can combine in minimum, maximum, or 

additional ways. For example, figure 4.4 represents a simple subnetwork (Activity-on­
tbe-Arrow in tbis case) consisting of two activities A and B. The cost of performing this 

subnetwork is simply the additive costs of tbe two activities concerned. The duration of 
this subnetwork is more difficult to determine as it is calculated as the maximum 

duration of tbe two activity temporal functions. This is much more difficult to determine 
and is not based on simple additional rules. In the case when both activities are 

represented by Normal distribution functions, formulae from Clark (1961 b) can be 
used. In most situations, however, simulation provides a more direct result. 

A 

B 

Figure 4.4 Simple Activity Network 

More problems are introduced in the temporal analysis of Generalised Activity 

Networks. Figure 4.5 represents an example of a Generalised Activity-on-the-Arrow 
network that will complete, quite clearly, when all activities A, Band C, have finished. 

What is not clear from this network is which activity will be the last to finish. It is 
possible that activity B may take longer to perform than both A and C combined. The 

analysis of Generalised Activity Networks can prove 10 be particularly difficult as tbey 
are based on both activity temporal outcomes and the rt?sults of probabilistic logics. 

Simulation is seen as the most straight forward analysis approach 10 such networks. 

A 

B 

Figure 4.5 Simple Generalised Activity Network 

An approach commonly used for the analysis of both Probabilistic and Generalised 

Activity Networks is Monte Carlo Simulation. Although this approach is perhaps the 
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most popular and 'accurate' technique available, it is not beyond improvement. How 

this technique can be improved, and how it is used in Generalised Activity Network 
analysis, is the subject of the latter part of this chapter. Monte Carlo Simulation is also 

used to assess the affects that various, known activity temporal functions have on an 

overall project duration. These results, along with various Probabilistic and Generalised 

Activity Networlc simulation results, are presented in the following chapter. 

4.2.2 Deterministic Activity Networks 

Due to the nature of activity temporal functions (ie constants) in Deterministic Activity 

Networks they are relatively easy to analyse. The original CPM technique [Kelley 

1961, Moder and Phillips 1983, Levy et alia 1963] provided basic equations for making 
forward and backward pass calculations through Deterministic Activity Networks. For 

more detail of these equations, and calculations of various activity float times, refer to 
Goodman and Love (1980) and Appendix B. 

4.2.3 Probabilistic Activity Networks 

In Probabilistic Activity Networks the activity durations are represented by some form 

of distribution function (temporal function). Consequently, analysis of the completion 

time of these networks is particularly difficult and is sometimes referred to as the PERT 

problem. The classical PERT approach to this problem will be examined first, before 
highlighting its shortfalls and examining the alternative techniques. 

4.2.4 Classical PERT 

Probabilistic Activity Networks originated in the late 1950s when the original PERT 

methodology was developed by the United States Navy et alia (see chapter one) 

[Department of the Navy 1958]. The PERT methodology incorporates the 

understanding that the duration of activities within a project cannot necessarily be 

estimated accurately (as the CPM technique assumes). As a consequence, some form of 

subjective estimate needs to be made as to the duration of each activity within a project. 

An attempt was made to model the activity durations by some form of distribution 

function, from which various statistics could then be drawn. The PERT originators 

decided that a Beta distribution function (represented by ~(al' 0(2» provided an 

acceptable representation as it can be manipulated into various shapes according to its 

two parameters, 0.1 and 0.2' Law and Kelton (1991) confirmed the original assumption 

that this Beta distribution function is probably skewed to the right (positively skewed) 

for real world activities. In this case 0.2> 0.1 > I and the distribution resembles that 

shown in figure 4.5. 
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To generate an approximation of an activity's duration by a Beta distribution function, 

project managers are required to make three subjective estimates of an activity's 

duration: a, m, and b. 

a an optimistic estimate of the activity's duration 

m an estimate of the most likely duration of the activity (the mode) 

b a pessimistic estimate of the activity's duration 

From these estimates the classical PERT approach provides two equations from which 

an estimate of the mean, le, and standard deviation, cse> of an activity's duration can be 
calculated - equations 4.1 and 4.2 respectively [Miller 1962, Goodman and Love 1980]. 

Figure 4.5 shows the relative positions of these estimates and the calculated mean, te, on 
a Beta distribution function. 

te= 
a +4m + b 

6 
(4.1) 

(J2 
(b - al 

(4.2) = e 36 

Figure 4.5 Beta Temporal Function 

If one assumes, as the PERT originators, positive skew in this beta distribution function, 

the parameters of the Beta distribution, a l and az, can be calculated directly from the 

three estimates a, m, and b. Equations 4.3 and 4.4, adapted from Law and Kelton 

(1991), represent these calculations. 
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4m + b - 5a 
b-a 

(4.3) 

(4.4) 

With the mean duration, te, and the standard deviation, O"e' calculated for each activity in 

an activity network, it is possible to calculate the expected completion time of a project 

using the same approach as that used for Deterministic Activity Networks - forward and 

backward pass calculations (Appendix B). 

Within a Probabilistic Activity Network there are K paths, P j (j = 1, 2, ... , K), each 

consisting of a number of activities i. Activity iE Pj if activity i lies on path Pj. Using 

equations 4.1 and 4.2 respectively, each activity, i, has associated with it an estimated 

mean duration, ti' and standard deviation, O"i. Thus, within the classical PERT approach, 

one can calculate the duration, Dj, of a path, Pj, in an activity network as: 

D. = ~ t. (4.5) 
J L. I 

iEP. 
J 

According to the classical PERT approach one can also calculate the variance, Vj' of this 

duration from: 

Vj = L O"~ (4.6) 
iEP. 

J 

The classical PERT approach then dictates that the expected completion time of a project 

is based on the duration of the longest path through the network (the Critical Path). The 

variance of the Critical Path is also used to represent the variance of the project duration. 

There are, however, several problems with the assumptions and calculations used in this 

classical PERT approach. As early as 1964 three problems were identified by 

MacCrimmon and Ryavec [MacCrimmon and Ryavec 1964]: 

(i) The activity temporal function is not necessarily Beta distributed. 

(ii) The mean and standard deviation calculations, 4.1 and 4.2, are incorrect. 

(iii) Errors are introduced by poor estimates of the three parameters a, m and b. 
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TIrree other problems with the classical PERT approach can also be identified: 

(iv) The assumption that there is one dominant, critical path is not always correct. 
(v) For one-off projects the modal estimates of the project duration provide more 

realistic results than the mean. 

(vi) The deterministic structure of the PERT network makes it difficult to model 

uncertainties that are inherent in many development projects. 

(i) Problems with the Beta Distribution in PERT 

It is unreasonable to assume that the duration of every activity within every project can 

be modelled by some form of Beta distribution function. MacCrimmon and Ryavec 
noted this problem in 1964 [MacCrimmon and Ryavec 1964]. They calculated the 

worst absolute error in the mean, Err(tcJ, and the worst absolute error in the standard 

deviation, Err( crJ, by incorrectly assuming a Beta distribution as: 

1- 2m 
Err(te) = 3 (4.7) 

Err(cr)=..!. (4.8) 
e 6 

Their assumption was based on the belief that an activity temporal function has at least 
the three properties of unimodality, continuity, and two non-negative abscissa intercepts. 

This, in fact, is not necessarily the case. Lootsma (\989) argued that discrete 

distribution functions would reflect activity durations more accurately. After all, an 

activity tends not to complete midway through a specific time unit. Lootsma stated that 
even though an activity could end during the middle of a day it would be unlikely that 

work would start on the next activity until at least the following morning. Activities 

usually finish in whole time units and this is modelled more realistically by discrete 

distribution functions. Pohl and Chapman (1987) also identified the need for discrete 

activity temporal functions and described two in their work - a 'bar' distribution and a 

'spike' distribution. A 'bar' distribution represents an activity that can only be 
completed at specified time intervals (discrete) and a 'spike' distribution represents an 

·activity that only completes at more disjointed discrete times (for example, an activity 
that relies on a committee that meets only four times per month). Pohl and Chapman 

also suggested other alternatives to the Beta distribution function including the Normal 

distribution, a Triangular distribution and a 'user determined' distribution. Various 

project management software packages also provide alternatives to the Beta temporal 
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function - for example, Predict!TM (1992) and @RiskTM (1990). The temporal 

functions these and other packages offer were detailed in chapter three. 

Lootsma (1989) also suggested using the Gamma distribution function, because it is 
more natural than the original Beta distribution, and it is also simpler to analyse. Other 

authors have also used alternative activity temporal functions. Clark (1961 b) used a 
Normal distribution function in his analysis, and Mongalo and Lee (1990) used 

Triangular, Rectangular, Beta and Normal distributions in their simulation analysis of 
PERT type networks. Lootsma (1989) also suggested using a Triangular membership 

function. Alternative distribution functions have also been used in the GERT technique 

[Moore and Clayton 1976]. This technique allowed up to ten possible distributions to 

be modelled for each activity duration (see section 3.5). 

There is still much research needed into which distribution functions model best the 
duration of real world activities. Project managers are, on the whole, not statisticians 

and to expect them to estimate much more than three time estimates, as some do now 
with the classical PERT approach, is unreasonable. Pohl and Chapman (1987) noted, 

however, that' A significant amount of time should be invested to accurately determine 
the probability function of each activity'. It is because time represents a significant cost 

to project managers that this investment is not achieved. 

The affect that alternative activity temporal functions have on the overall project duration 
will be studied in detail in chapter five. 

(ii) Erroneous Mean and Standard Deviation Estimates in PERT 

The estimates of the mean and standard deviation of an activity duration (equations 4.1 
and 4.2 respectively) are by no means precise. Indeed, MacCrimmon and Ryavec 

(1964) identified the worst absolute errors in these equations as: 

Err(t ) = I 4m + 1 
e 6 

Err(cr ) = I ~ -
e 6 

(4.9) 

2 
m (al + J)(al - alm.+ m) 

2 
(a l + 2m) (al + 3m) 

(4.10) 
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Improvements on these estimates have been explored over the years. Work by 

Golenko-Ginzburg in 1988 [Golenko-Ginzburg 1988] provided an improvement on 

these estimates - equations 4.11 and 4.12. Chae and Kim (1990) also suggested an 

improvement based on using the likelihood ratio of the mean and the midpoint and 
Donaldson (1964) provides an improved estimate of the variance based on one of the 

initial estimates being the mean. 

t = e 
2a + 9m + 2b 

13 

(b - a)2 (22 + 81 (m - a) _ 81 (m - a'f ) 
1268 (b - a). b - a) 

(4.11) 

(4.12) 

Another suggested improvement to estimating an activity's mean duration comes from 

Whitehouse (1973). He suggested that the mean of the Beta distribution should be 

adopted as the third time estimate, m, rather than the mode. This would remove 

statistical inconsistencies inherent in previous values and allow for greater skew in the 

distribution. In this case the values of te and O"e' derived from the Beta distribution, can 
be calculated from equations 4.13 and 4.14. 

(Cl! + l)b + (Cl2 + I)a 

Cl! + Cl2 + 2 

2 
(b - a) (Cl! + I) (Clz + 1) 

Z 
(Cl! + Clz + 2) (Cl! + Clz + 3) 

(4.13) 

(4.14) 

Lootsma (1989) argued the case for using the modal estimate of an activity's duration in 

a fuzzy model approach to the PERT problem. This makes more sense in one-off 

projects as the mode represents the most likely outcome of an activity in question. It 

also reduces the complexity of the calculations required when a network is analysed. 

The arguments for using the modal values for a network duration are discussed later. 

(i i i) Poor estimates of a, m and b in PERT 

Not only are errors introduced by the mean and standard deviation estimates, as 

highlighted above, but errors are also introduced by possible erroneous estimates of a, 
m and b by a project manager. The worst absolute errors introduced by these estimates 

for the mean and standard deviation are: 
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Err(t ) 
e 

a+ 4m + 2b 
60(b - a) 

b+a 
30(b - a) 

[MacCrimmon and Ryavec 1964]. 

(4.15) 

(4.16) 

Improving on these estimates rests on the shoulders of project managers themselves. It 

is only through experience that more accurate estimates of a, m and b can be made. 
How these figures are used, however, is the task of the theoretician. 

(i v) The Single Critical Path Problem with PERT 

The classical PERT approach highlighted the critical path as representative of an actual 
project duration. It has long been shown that this assumption can grossly underestimate 

project completion times [MacCrimmon and Ryavec 1964, Schonberger 1981, 

Anklesaria and Drezner 1986, Ballot 1989]. Although the critical path provides a useful 

focus of attention as a project unfolds, it should not be relied upon to provide an 

accurate estimate of a project's duration. Mongalo and Lee (1990) also highlighted this 

problem in their work when they compared PERT calculated network durations and 

Monte Carlo simulation results of various network types. Their work will be discussed 

in more detail later. 

(v) Mode more accurate 

In many cases it would make more sense to calculate the modal class of a network 

duration than the mean. This is certainly the case when network temporal functions are 
non-symmetrical and/or multimodal. In Generalised Activity Networks this is often the 

case. In symmetrical cases the mode and mean represent the same values anyway. For 

skewed and multimodal distributions this is not the case and the mode would certainly 

provide a better estimate of a project's duration, especially if the project was a one-off 
which most tend to be. 

(vi) Inflexible Structure 

The structure of a Probabilistic Activity Network, as was shown in chapter three, is 
purely deterministic in nature. By example in chapter three, a more generalised structure 

would allow real world activities to be mirrored more accurately. Any elaboration on 
this point has been covered in chapter three. 
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4.3 ANALYSING PROBABILISTIC ACTIVITY NETWORKS 

Due to the inaccuracies introduced by the classical PERT approach, various techniques 

have being developed that attempt to solve, more precisely, the temporal analysis of 
probabilistic activity networks. 

Many authors have categorised these approaches [Burt and Garman 1971a and 1971b, 

Robillard and Trahan 1977, Sculli and Wong 1985, Adlakha and Kulkarni 1989]. 
Adlakha and Kulkami (1989) perhaps encompass these approaches more clearly than 

any other. The approaches can, broadly speaking, be split into six categories: Classical 

PERT (discussed above), exact analysis, approximation, bounds, miscellaneous 

approaches, and simulation. 

Each of these approaches will now be discussed in turn before concentrating on Monte 

Carlo simulation in detail. 

4.3.1 Analytical Solution 

An exact duration of probabilistic actiVIty networks can be defined in precise 

mathematical terms. Burt and Garman (l971a and 1971b), Fishman (1985), Adlakha 
and Arsham (1992), and Adlakha (1992) provide definitions of the solution, the main 

points of which are detailed here. It is perhaps worth noting that these definitions are 

independent of activity temporal functions within a network. This definition is based on 

an Activity-on-the-Arrow representation. The calculations for an Activity-on-the-Node 
network are equivalent. 

A probabilistic activity network can be defined as a directed, acyclic network with a 

single source node, s, and a single sink node, z. A network consists of N arcs, each 

associated with an independent, nonnegative random variable, Xi (i = I, 2, ... , N), 

representing an activity duration. Each Xi has a known distribution function, fi' on 

[0,00). There are K, paths Pj U=I, 2, ... , K), through a network that link the source 

node, s, with the sink node, z. Activity iE Pj if activity i lies on path Pj' The duration of 

path Pj is a random variable, Tj' where: 

T.="' X. ) £..J I 

iEPj 

(4.17) 

The problem of calculating the completion time of a probabilistic activity network can be 

defined as calculating the density function of the random variable: 
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D = max T. 
j=1..K J 

(4.18) 

The distribution function of D is given by: 

0000 00 

N 

Fo(t) = J J ... J h(t; x" X2 •.•.• xN) IT fj dx 

o 0 0 i=! 

(4.19) 

if o <max ( L x) !> t 
J=1..K . 

lEPj 

o otherwise 

This analytical solution is particularly complex and involves two stages of calculation. 
The first stage involves calculation of a joint distribution function of path times. The 

second stage involves the complex multivariate integration of 4.19. Since an exact 
computation of equation 4.19 is #P complete. according to Adlakha and Kulkarni 

(1989) there is no hope of developing an algorithm to solve this problem In a 
polynomial time. Thus. other techniques have been devised that avoid this work. 

4.3.2 Simplification 

The idea behind simplification is to streamline the problem into one that can be managed 

more easily by either computational or simulation techniques. 

There are two ways in which one can simplify a Probabilistic Activity Network. One 
can either simplify the network as a whole, or simplify the activity temporal functions 

that constitute the network. 

There are two ways to simplify a network as a whole: 

(i) Approximate a network by one that has a high positive correlation with the 
original. yet is easier to analyse. This can be used in both simulation and 

analytical approaches. This is generally referred to as Control Variates [Bun 
et alia 1970. Bun and Garman 197Ia]. This approach requires the construction 

of a similar network to that being analysed (with a high positive correlation). 
Although this may improve the speed of the calculations thereafter, the 

construction of this positively correlated network does take some time. In 
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simulation approaches to network analysis it is questionable as to whether 

control variates provide an adequate improvement in simulation overheads due 
to this construction time. Bun and Garrnan (1971b) use control variates to 

improve their simulation analysis of probabilistic activity networks. 

(ii) Reduce a network by a series parallel reduction to a simpler form. Manin 
(1965) provides an algorithm for this approach. It is based, however, on the 

understanding that the activity temporal functions can be represented by simple 
polynomials. This introduces an alternative simplification technique - that of 

simplifying a network's activity temporal functions. 

There are three ways in which Activity Temporal Function Simplification can be 
achieved: 

(i) Assume discrete random variables. Based on this simplification, Hagstrom 

(1990) and Fulkerson (1962) provide algorithms for solving the PERT 
problem. These algorithms would certainly be of some use if it could be 

shown that discrete distribution functions provide a more realistic 

representation of activity duration, than continuous functions that are used at 

present. Their algorithms only work, however, if all activities within a network 
are of a discrete kind. 

(ii) Manipulate the distribution parameters only. Clark (196Ib) and Sculli (1983) 
used this approach when they assumed activity durations could be represented 

by Normal distribution functions. In this case, as the Normal distribution 
function is well understood, manipulation of the distribution parameters only is 

a logical approach. 
(ill) Martin (1965) approximated activity temporal functions by simple 

polynomials. This enabled him to implement a series parallel reduction 
algorithm that reduced an entire network to a single activity with a known 

polynomial function. This approach is, perhaps, an over simplification of the 

problem as activity temporal functions can prove to be rather complex. 

4.3.3 Bounds 

An alternative approach to solving the PERT problem is not to try and determine an 

exact solution to the problem, but to determine boundaries on a network completion 
time. There are several approaches to bounding the expected duration of an activity 

network. Elmaghraby (1967) provides two estimates that bound the duration from 

below. In these cases the bounds represent optimistic estimates of a project's duration. 
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Lerevere (1986) uses 'bounds for the expectation of linear combinations of order 

statistics' to determine upper bounds on the completion time of a project. These upper 
bounds represent pessimistic estimates. An upper bound was also determined by 

Kamburowski (1985a). In his calculations, although the exact forms of an activity's 
temporal functions do not have to be known, it was a requirement that their cumulative 

density function belonged within the NBUE class (although no explanation was 
provided for this). 

Kamburowski (l985b) reviewed the various approaches to bounding the completion 

time of PERT type networks. He commented on, and compared, the approximations of 
Fulkerson (1962), Malcolm et alia (1959), McClellan (1969), Spelde (1977), Shogan 

(1977), and Kleindorfer (1969). Kamburowski then went on to provide algorithms, 
based on the series parallel reduction of Martin (1965), that reduced a Probabilistic 

Activity Network to a trivial form providing lower bounds on the expected completion 
time. 

4.3.4 Miscellaneous Approaches 

There are some alternative approaches to the PERT problem that cannot be put into any 

of the categories encountered above. 

In 1989 Lootsma [Lootsma 1989] wrote a particularly interesting paper, using fuzzy 
numbers, that condemned all attempts to estimate accurately the expected completion 

time of Probabilistic Activity Networks. His argument was that more accurate 
approaches to the PERT problem produce non-tight plans that create conflicts between 

project leaders and subcontractors. Non-tight plans are those that involve float times 
that provide bargaining power to both project leaders and sub-contractors. Without 

such float (ie a tight plan) no conflict arises as there is no time to negotiate with. 

In his work, Lootsma also used a Gamma distribution function within a classical PERT 
approach and modal values for a fuzzy approach. His argument was that, for one-off 

projects, modal values provide better estimates of a project duration than calculated 
means and standard deviations. The use of modal values has been discussed earlier and 

will be looked at in more detail in the simulation analysis of activity networks. 

Another approach has been the use of Order of Processing diagrams by Fisher et alia 
(1985) but this never caught on as an analytical approach. Anklesaria and Drezner 

provided yet another solution in 1986 [Anklesaria and Drezner 1986] when they applied 
a multivariate approach to the PERT problem. They determined the duration of the r 

most critical paths in an activity network and consequently an estimate of its duration. 
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They compared their results with the classical PERT approach that they found to 

underestimate the completion time by as much as 30%. As they used the multivariate 
Normal distribution function for activity temporal function representation, their 

approach did not provide a general result. 

4.4 SIMULATION 

4.4.1 Overview 

'A project network is an example of a problem that lends itself very well to simulation 

applications' [Badiru 1991]. 

The analytical approaches outlined above, according to Neumann (1984), require a great 
deal of computational effort, therefore simulation is widely used for evaluating 

Generalised Activity Networks and Probabilistic Activity Networks. It is worth noting, 
however, that although the analytical approaches can still prove costly in terms of 

computational time, they do provide valuable benchmarks for simulation techniques 
[Ragsdale 1989]. 

The general Monte Carlo technique for analysing activity networks involves sampling 

from each activity's time or cost distribution function and combining these samples to 
produce one simulation of the entire network. These simulations are combined to form 

a picture of how a network behaves 'on average'. 

As a network is repeatedly simulated, various statistics are obtained that provide 
information of a network's characteristics. These data can be split into two groups: 

those that are automatically generated as a simulation proceeds, and those that require 
some manipulation to provide results. Information that is generated automatically 

includes raw network duration and cost values, path occurrence counts, activity 
occurrence counts, and critical path counts. These data are manipulated to calculate the 

mean network duration and cost, the variance and the modal classes for these 
parameters, criticality indices for paths and activities, completion probabilities for 

Generalised Activity Networks, and distribution and cumulative distribution functions 
for times and costs. 

Several 'improvements' have been made to the general Monte Carlo simulation 

approach over the years. The main improvements to which are: 

(i) Control Variates. 
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(ii) Antithetic Variables/Stratification (used later). 

(iii) Cutsets [Sigal et alia 1979 and 1980]. 
(iv) Conditional Monte Carlo Simulation [Burt and Garman 1971a, Garman 1972, 

Dodin 1986]. 
(v) Quasirandom Points [Adlakha 1992]. 

(vi) Intelligent Simulation Methods. 

4.4.2 Control Variates 

Control variates [Burt et alia 1970] improve the technique by using localised analysis 
and simulation to simplify a network into a form that can be simulated more quickly 

with smaller sample sizes and fewer activity time generations. The application of this 
approach differs between Probabilistic and Generalised Activity Networks and, as a 

result, is avoided in the comparison of these two simulation approaches in chapter five. 

4.4.3 Stratification 

Stratification has also been referred to as the Latin Hypercube approach [@RiskTM 

1990] and provides more 'efficient sampling than the Monte Carlo technique for 

symmetrical distribution functions. References to Latin Hypercube include McKay et 
alia (1979), Iman et alia (1980) and Startzman and Wattenbarger (1985). Stratification 

is actually a more refined version of the antithetic variable approach outlined in section 
4.5.7 later. 

4.4.4 Cutsets 

Cutsets [Sigal et alia 1979] are used to reduce the simulation of an entire network to 

some subset of the original. However, determining a Uniformly Directed Cutset within 
a network can take some time. This must be compounded with the overall simulation 

time and, as such, reduces the effectiveness of this method. Within Generalised Activity 
Networks it is impossible to determine a Uniformly Directed Cutset due to the 

probabilistic nature of a network's structure. Uniformly Directed Cutsets are, therefore, 
avoided in the simulation techniques presented later. 

4.4.5 Conditional Monte Carlo 

Conditional Monte Carlo [Burt and Garman 1971a], that assumes independence of 

certain paths in a network, has also been used to improve the efficiency of simulation 
techniques. This technique was found to be ineffectual in most cases as there are 

seldom any independent paths in a network or many unique activities (those activities 
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common to all paths) to make this method worthwhile. Also the time to identify 

independent paths and unique activities must be compounded with the time to simulate a 

network, thus reducing the efficiency of this method. 

4.4.6 Quasirandom Points 

More recent developments involve using quasirandom points [Adlakha 1987] to 

improve the efficiency of activity network simulation. Quasirandom points were shown 

[Adlakha 1992] to be more efficient in simulating small activity networks (fewer than 

twenty nodes) than an antithetic variable approach. Ideally one could pick and choose 

which simulation technique to use depending on a network's type and size. In practice, 

however, one cannot predetermine the network to be analysed and one tends to stick 

with a more popular simulation approach for analysing all networks. The antithetic 

variable approach presented later represents a more popular approach. 

4.4.7 Intelligent Simulation 

The term 'intelligent' in this title is somewhat of a misnomer. It tends to imply some 

form of highly sophisticated intellectual reasoning within the simulation technique. The 

intelligent simulation approaches proffered by Cook and Jennings (1979) are by no 

means sophisticated. Cook and Jennings provide three improvements to the crude 

Monte Carlo Simulation approach - min-max,path deletion and dynamic shut-off. 

min-max was originally suggested by Van Slyke (1963). It involves removing 

paths from a simulation based on the following criteria: The optimistic duration 

of each activity is used to determine the optimum critical path. The pessimistic 

time is then assumed and the pessimistic critical path determined. Any paths 

with a pessimistic duration less than the optimistic critical path time are 

eliminated from any future simulations of the network. Of course, for this to 

work, there must be some unique activities on these paths for any arc deletions 

to occur. If this were not the case, the entire network would require simUlating. 

It is also rather unlikely that many paths would have a pessimistic duration less 

than the optimistic critical path length. It is therefore felt that this is a rather 

weak approach. 

Path deletion After one hundred iterations of a network, any activities on paths 

that have not been flagged as critical are eliminated from future simulations. 

This again requires the presence of unique activities on these particular paths to 

be of any practical use. 
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Dynamic Shut-off This approach uses crude simulation to produce iterations 

from a network. If, after one hundred simulations, using a Kolmogorov­
Smimov test at the 0.05 level, there is no change in the cumulative density 

function of a network's duration, the simulation terminates. This is an extremely 
poor technique as the Kolmogorov-Smirnov test is a particularly weak test. 

Experience showed this test to be far too insensitive to changes in the density 
functions. 

One other intelligent approach, proffered by Van Slyke (1963), is to limit the samples 

taken from arcs with a low criticality index to every Kth simulation (K>l). This can 

improve the efficiency of the simulation but can be difficult to implement for particular 
network types. If only the mean and variance of the project duration are required, Van 

Slyke also suggested fixing the duration of activities that are always critical to their 
calculated mean and variance. Once again, like the previous technique, the network 

requires some initial sim ulation to determine which arcs to fix. 

4.5 ANALYSIS OF GENERALISED ACTIVITY NETWORKS 

4.5.1 Why Simulation is Used for Generalised Activity Network Analysis 

All the analysis looked at so far has been devoted to the temporal analysis of 
Probabilistic Activity Networks. The analysis of Generalised Activity Networks has 
been largely overlooked due to the scarcity of this method. Generalised Activity 

Network analysis falls into three categories - Flowgraph Theory, Monte Carlo 
Simulation, and Mathematical Analysis. 

Flowgraph Theory can only be used when a Generalised Activity Network consists 

solely of Exclusive-Or input and output nodes. These networks are particularly rare. 
Appendix C provides the detail of this approach. 

Usually, Generalised Activity Networks consist of many different connection types. 

Their analysis is therefore limited to either simulation or some form of analytical 
technique. When one tries to analyse a Generalised Activity Network mathematically 

one soon begins to realise the complexity of this problem. The complex calculations 
involved in analysing ordinary Probabilistic Activity Networks are compounded with the 

probabilistic branching (both independent, dependent and exclusive) that can be 
commonplace within a Generalised Activity Network. Not only this, but cenain node 

input characteristics imply that network durations can be dependent on minimum (as 
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well as maximum) completion times of several independent temporal functions. 

Providing activity temporal functions can be approximated, in this case by Normal 

distribution functions, it is possible to determine the completion time of a network. 

Formulae for calculating these values is presented in Dawson (l994c) and covered in 

Appendix D. 

The complex nature of cross connections within Generalised Activity Networks cannot 

easily be solved by mathematical means. This is why simulation proves to be the most 
practical approach to Generalised Activity Network temporal analysis. 

To see how effective Generalised Activity Network simulation analysis can be, a 

comparison is made between the simulation requirements of both Generalised and 
Probabilistic Activity Networks in the next chapter. 

4.5.2 Monte Carlo Simulation of Activity Networks 

In the following sections the analysis of both Generalised and Probabilistic Activity 

Networks by simulation is studied in more detail. A Dynamic Sampling Technique is 

introduced that improves the efficiency of such simulations. Antithetic Variables are 

introduced and can be used in simulations, where possible, to improve the efficiency of 
the technique still further. 

Identifying the number of simulations required in the analysis of activity network is an 

area that has not yet been addressed by the project management industry. Three 
packages that perform simulation in the analysis of activity networks are Risnet™ 

(1993), @RiskTM (1990) and Monte Carlo™ (1993). When personnel who use these 

products were interviewed, there was no clear way in which the number of simulations 

were determined. Generally a 'suck it and see' type approach was used. The packages 

provide users with initial default simulation values from which they would start to work 

(usually set at around 500). If this default value provides too much accuracy, or takes 

too long, the value can be lowered. If not enough accuracy is obtained the value can be 

raised. The Dynamic Sampling Technique introduced below, moves away from this 
approach by determining the number of simulations required to provide a desired 

accuracy in the results obtained. This is a more responsive solution to the problem than 

that adopted by these software packages. 

4.5.3 The Dynamic Sampling Technique 

This section is based on the work presented in Dawson and Dawson (l993b and 

1994b). 
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When a network is simulated usually an attempt is being made to obtain, as quickly as 

possible, an 'accurate' estimate of particular network characteristics - usually the mean 
duration, ~, the variance, 02, and a representative temporal function. One way of 

achieving this is to ensure that a network is not simulated any more times than necessary 
to reach the required level of accuracy. The Dynamic Sampling Technique discussed 

below ensures this criteria is accomplished. 

Let D be a random variable corresponding to a network duration and let D(i), i = 1,2, .. , 

N, be N independent samples taken from the distribution D. Since there are thousands 

of samples, the Central Limit Theory states that: 

(4.20) 

" is an unbiased and consistent estimator of~, the true mean of D, since E[~l = ~ (where 

E[~l is the expectation of A). 

Also, s, from: 

(4.21) 

is an unbiased estimator of a2, the true variance ofD. After some more manipulations: 

N 2 

Var(~) = Var (-.!. L d i
) ) =..Q 

N i=! N 
(4.22) 

(because at this stage one can assume that the D(i)s are independent) which implies that 

the larger the sample size N, the closer rl should be to the true mean, ~. 

The question arises as how N is chosen such that a 'good' estimate of ~ and other 

network characteristics are obtained? A particularly large value of N could be used so 

that there is extreme confidence in the results, but this would be inefficient if a smaller 

sample size would have sufficed. 

The basis of the Dynamic Sampling Technique is to simulate the network n times 

(usually n is set to one hundred), and calculate the required sample size (called~) from 
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the results obtained for ~ and S2. This process is repeated, refining the estimates of Jl, 
CJ2, and hence~, until N2:N. At that stage enough samples have been taken from the 

network to imply the confidence in the estimate of the true mean of the network duration 

is within the required limits. One can also work out a confidence interval for the 

variance of the network duration. 

Say, for example, in the network under consideration the estimate~, with a probability of 

95%, needs to be within 1 % of the true mean, Jl 

P[.99Jl ~ A ~ 1.0lJll = 0.95 

This can be expanded to: 

(4.23) 

1.01Jl- Jl ] = 0.95 

s~ 
(4.24) 

where A, -~ represents the Student t-distribution with f:! - I degrees 

sly ~ 

of freedom. 

" For large values of N this corresponds to the Standard Normal Distributionl
. 

Thus: 

1.01Jl- Jl = I. 96 

sJ[A 
(4.25) 

from the tables of the Standard Nonnal Distribution. 

" It is therefore possible to estimate the required sample size, N, from: 

I. 962 S2 

(0.01? Jl2 
(4.26) 

, For a value of ~=IOO thj,<; assumption would be in error by at most 4% for the 95% confidence 
interval. For larger values of N, such as those used later (N)500), this error becomes insignificant. 
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where 11 is estimated by~, and S2 represents an estimate of the true variance (J2. 

These results are based on the confidence in the estimates n and S2 which are based in 

turn on, what are believed to be, independent random samples D(i) (i=l, 2, ... , N) from 

a network. It is assumed that there is no correlation between the D (i)s - in other words 

Pj = 0 for j = 0, 1, 2, ... ,N-l (where Pj is the correlation between D(i) and D(i+j) ). 

" 4.5.4 Improving the Estimate of N 

It has been shown [Law and Kelton 1991] that simulation output data are usually 

correlated and so the estimates of 11 and (J2 may be biased in some way. Any correlation 
would not affect the sample mean, ~, that remains an unbiased estimate of the true mean. 

However, the estimate of (J2 is affected by the correlation and it was shown by Anderson 

(1971) that: 

N·J 

E[sl = (J2[t -

2L(1-...l )p 
j~J N J] 

N-l 
(4.27) 

In practice there is a positive correlation between samples: pj>O that results in E[S2] < 
(J2. The estimate could therefore underestimate the true variance to some degree and, as 

" a consequence, could grossly underestimate N which in turn affects the accuracy of the 

simulated results. To avoid this underestimation of (J2 the X2 (Chi-square) distribution 

function is used: 

2 
2 (N-l)s 

X = -'--2':­
(J 

(4.28) 

The upper bound (X 2u) of the 95% confidence interval for X2 can be estimated by: 

2 (J 2N-3 - 1.96/ 
X = -'-'----;0---'-

2 
(4.29) (adapted from Conover (1971)) 

Therefore if (J2u represents the upper bound for (J2 at the 95% level, from equations 

(4.28) and (4.29): 

2 
2 2(N - l)S 

(J = --;:::====--'--.....". 
U (hN _ 3 _ \.96)2 

(4.30) 
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As 02u is the upper bound of the 95% confidence interval for 02: 

P[02u ~ 02] = 0.975 (4.31) 

Thus, there is 97.5% confidence that this represents an upper estimate on the value of 

02. 

The following are typical values of 02u for example values of N: 

N = 100 

N=1000 

N =2000 

N = 1()6 

N=oo 

02u = 1. 36s2 

02u = 1.09s2 

02u = 1.07s2 

02u = 1.003s2 

02u = S2 = 02 

Equation (4.26) is therefore adapted to: 

1.96
2cr; 

(0.Odp.2 
(4.32) 

The Dynamic Sampling Technique can now be implemented as: 

(i) N f- 0 

(ii) Simulate the network n times (n usually set to one hundred) 

(iii) N f- N + n 
1\ 

(iv) Calculate Jl, s2 
/>. 

(v) Calculate N from equation (4.29 and 4.30) 

" (vi) If N<N then go to step (ii) 
(vii) Required accuracy has been reached 

4.5.5 Reducing Sample Size 

To reduce the number of samples needed for a simulation still further, one can either 

reduce the confidence in the results or demand less accuracy from the mean duration 

estimate. For example, reducing the confidence in the result from 95% to 90% results 

in a reduction of 30% in the required sample size. A greater reduction can be achieved 
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by demanding less accuracy in the estimate of the mean. Reducing accuracy from 

within 1 %, to within 2% of the true mean, results in a 75% reduction in sample size -

clearly this is something worth considering should simulation time be an overriding 

factor. 

4.5.6 Problems 

For Generalised Activity Networks the temporal function of a project is not necessarily 

distributed Normally, and can prove to be distributed in any multimodal form. In these 

situations the variance of a network's temporal function proves to be extremely high and 

consequently affects the efficiency of the Dynamic Sampling Technique. Applying the 

Dynamic Sampling Technique in these particular cases is ill conceived as the results in 

the next chapter will show. It is also worth noting the problem of over setting n. For 

example, if, after 100 simulations, it is identified that 101 are required, the technique will 

perform 200 before finishing. This can be avoided by using smaller values of n but the 

additional computations involved compound with the simulation time. Usually, with 

sample sizes determined over 1000, n = 100 is a reasonable starting point. 

4.5.7 Antithetic Variables 

Another way of improving the Monte Carlo simulation technique is to make use of 

antithetic variables. Sullivan et alia (1982) highlight the efficiency of using such 

methods in the simulation of Probabilistic Activity Networks. 

Antithetic variables induce a negative correlation between pairs of samples taken from 

each activity's time distribution function. The following explanation of antithetic 

variables is adapted from the work of Burt, Gaver and Perlas (1970). 

Antithetic variables can be used in the simulation of activity networks in which the 

activity time and cost distribution functions are independent of one another. Figure 4.6 

represents a single activity network for which T'2 is a random variable corresponding to 

the duration of activity a'2, and D is the random variable corresponding to the network 

duration. Clearly D = T'2 for this simple case. 

In order to simulate this network it is necessary to take samples from the activity's time 

distribution function and use these samples to build up a picture of the network 

temporal characteristics. One way of taking samples from the activity's time 

distribution, T'2' is to generate uniform random numbers from R(i) = [0,1] and transform 

these into realisations of T'2 by T 12(i) = F-i(R(i)) (where F is the distribution function 
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of T12, and T12(i) is the ith sample from Td. 

Figure 4.6 Single Activity Network 

D(i) = T 12(i) is the i ID iteration of this network. This process is repeated N times to 

provide an estimate, Il, of the true network duration mean, Il: 

...,(1) (2) ...,IN) 

112+ TI2+···· + 112 
N 

(4.33) 

The basis behind antithetic variables is, that in order to estimate Il, the samples TI2(i) (i = 

I, 2, .... , N) need not be independent as long as they have the correct marginal 

distributions. In other words, if a sample from TI2 is 'large' in one realisation it should 
be 'small' in another (and vice versa). This avoids skewing results excessively to either 

side of the mean. To achieve this, the sample T12(i)' = F'(1-R) is generated at the same 
time that the sample Tl2(i) = F"(R) is produced. TI2(ij' is the antithetic ofT, ii). 

One can, therefore, calculate an alternative estimator of Il called rlA using sampled 

variables and their antithetics: 

A 18) + 18)' + 1fi) + 'lW' + . . . . . + 1M') + n~)' 
IlA =~~--~----~--~~----------=---~~ 

•• ~A = ~ (t + t') 
2 

2N 

(4.35) 

(4.34) 

- - , 
where T is the mean of the sample, T 12(i), and T' is the mean of the sample T12(i) (i=l, 

2, ... ,N). 

By construction, T and T' are negatively correlated, ie Cov<T, T') < 0 (where Cov(X,Y) 

is the covariance between X and Y) and 

(4.36) 
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As Var(T) = Var(T'): 

1\ 
Var(T) IC (-TT-') Var(Il) ---+- ov, <--'--

2 2 2 
(4.37) 

Equation 4.37 shows that antithetic variables provide a more accurate estimate of 11 than 

is achieved by doubling the sample size. 

The most significant effect of antithetic variables is achieved when samples are taken 

from symmetric distributions. For example, assume that T 12 is Normally distributed 

with mean IlTl2 and variance aT!,2. A sample T(i)12 is generated from T 12 by taking a 

value r(i) from the standard Normal distribution Nor[O,l). T<i)12 = IlTI2 + r (i)~fl,2 is 

then calculated. The antithetic ofT<i)12 can then be produced directly from: 

(4.38) 

which requires no further random number generation. 

Using antithetic variables in activity network simulation provides three efficiency gains. 

First, only one random number needs to be generated to provide two samples from an 
activity's time distribution function. Second, as shown, they prove more efficient than 

doubling the sample size. Finally, in Generalised Activity Network simulation, not only 

are activities simulated but so is a network configuration that adds to the time of the 

simulation. Using antithetic variables allows two network simulations to be generated 

for each network configuration making the complete simulation more efficient. 

4.6 MODAL CLASS DYNAMIC SAMPLING TECHNIQUE 

The results in chapter five show how one cannot necessarily expect the temporal 

function of an activity network to be symmetrically distributed. For activity networks 

with multimodal or skewed temporal functions the mean and variance provide little 

information to a project manager. In these cases the mode (representing a most likely 

single time estimate) or the modal class(es) (representing a most likely range) provide 

more useful estimates of a project's completion time as they represent the most likely 

outcome of that project. As an example (taken from chapter five), figure 4.7 shows the 

duration histogram of an example Generalised Activity Network with low parallelism 

and low precedence (see chapter five). In this case the mean duration was calculated as 

103 days with a variance of 110 days. The modal classes, in this case, provide a more 
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realistic estimate of this project's expected completion time. In this case the modal 

classes are 108 to 110 and 114 to 116 days. Usually one refers to one mode, or modal 
class, within a distribution. To refer to just one modal class in the example would ignore 

an equally possible project result. It is possible to have two or more intervals 
representing the most 'popular' project durations and all these intervals should be 

highlighted. 

200 

1 SO 
» 
g 
g 100 
g 
~ SO 

76 100 124 
Duration (Days) 

Figure 4.7 Example Generalised Activity Network Duration 

Results of interviews with local software houses also identified a project manager's need 

for more realistic project outcomes such as those provided by modal classes rather than 
mean estimates. Managers prefer an indication of the most likely completion time of a 

one-off project rather than a mean value that represents the average completion time if a 

project was performed many thousands of times. 

When the Dynamic Sampling Technique, introduced earlier, is used in skewed or 
multimodal cases, the variance tends to be so high that an unacceptable number of 

simulations are required to calculate an accurate estimate of the mean network duration. 
As this mean provides no real information, the Dynamic Sampling Technique requires 

some adaptation to deal with these situations. The alternative is a Dynamic Sampling 
Technique that attempts to home in, as quickly as possible, on the modal class of a 

network duration. An initial prototype algorithm is based on: 
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N represents the total number of samples from the network 

(i) N f- 0 

(ii) Simulate the network n times 
(iii) N f- N + n 

(iv) Calculate the Modal Class 
(v) If there is a change in the Modal Class from the previous n samples go to step (ii) 

(vi) The modal class has been established 

Initial attempts to use this algorithm provide quite rapid results identifying a modal class 

rather quickly. There are, however, some shonfalls with this approach that require 

addressing before the full benefits of this technique can be achieved: 

(i) There may be two or more similarly sized modal classes. At this stage this 

technique finds only one of them. Ideally the technique should identify the first r 
modal classes. 

(ii) The technique appears to stabilise too quickly so one has reservations as to whether 

the true modal class has been established. The technique could, perhaps, be 

adapted to terminate only if a modal class has been identified three or more times in 

a row. 

(iii) The range of the modal class cannot be predetermined. In this algorithm the range 

of the modal class is determined by the range of the network duration. Also, if one 

adjusts the size and number of class intervals the mode can jump around somewhat 

[Hays 1988). One questions, in this instance, if the modal class determined by the 
technique is an accurate enough estimate. 

(iv) It would be useful to determine the probability of a modal class occurring. Again, 

this is not achieved through this technique. 

4.7 CHAPTER SUMMARY 

4.7.1 Conclusion 

This chapter began by introducing project-based management. Temporal analysis of 

activity networks is a sub pan of this, assisting the management of time objectives at a 
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project's tactical and strategic level. The chapter went on to study approaches to the 

temporal analysis of activity networks and simulation was identified as the most popular 

approach to this form of analysis. A Dynamic Sampling Technique has been introduced 

to improve the efficiency of such methods. Antithetic variables have also been examined 

and shown to provide another improvement of simulation techniques. From this 

research, the need for a Modal Class simulation technique has been identified and its 

current shortfalls highlighted. 

4.7.2 Future Work 

From this work there are four areas that require further investigation. 

First, the Modal Class Simulation of Activity Networks requires development. 

Second, in real projects, if early activities over run their expected durations due to 

unforeseen circumstances and delays, the chances are that later activities will do 

likewise. This phenomenon is identified within the Monte Carlo™ (1993) software 

package that allows global changes of activity durations. It is likely that there is a 

positive correlation between delays in early and late activities. Introducing this 

reasoning into the simulation process would provide a more accurate model of real 
world processes. 

Third, applying more representative distribution functions to activity durations needs 

researching. Discrete distributions may provide better estimates of activity completion 
times as activities tend to be completed in whole time units. 

Finally, parallel algorithms can be used to reduce simulation costs still further (provided 

one has access to parallel processors). Initial inspection of this idea identifies two ways 
in which a parallel algorithm could be implemented: 

(i) Simulate several activities concurrently. 

(ii) Simulate several subnetworks concurrently. 

It may also be possible to apply parallel algorithms to the complex problems of levelling 

and what if analysis. This could involve allowing various what if scenarios to be 

evaluated concurrently. 
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CHAPTERS 

Temporal Analysis of Activity Networks 

CHAPTER PREFACE 

Having outlined improvements to Monte Carlo simulation of activity networks (that 

are applicable to both Generalised and Probabilistic Activity Networks) this chapter 
presents, and discusses, the results of analysing these networks. Two results are 

presented in this chapter: First, the comparative simulation requirements of 
Generalised and Probabilistic activity networks from work based on Dawson and 

Dawson (1993b and 1994b), and second, the affect that various discrete and 
continuous activity temporal functions have on the duration of activity networks of 

different sizes and complexities (presented in Dawson (l994a and 1994b)). 

CHAPTER KEYWORDS 

Probabilistic Activity Networks, Generalised Activity Networks, Monte Carlo 
Simulation, Discrete Activity Temporal Functions, Continuous Activity Temporal 

Functions 

5.1 INTRODUCTION 

Three results are provided in this chapter - comparative simulation requirements of 

Probabilistic and Generalised Activity Networks, the affect of continuous activity 
temporal functions on the temporal function of a project, and the affect of discrete 

activity temporal functions on the duration of a project. 

This chapter begins by detailing how the results of the network sim ulations are analysed 
both subjectively and objectively. It then moves on to present the results. 
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5.2 ANALYSIS OF RESULTS 

5.2.1 Overview 

When activity networks were simulated in this analysis, data values representing the 

duration of a planned project are generated. These data values were assessed by two 

different approaches - subjectively by graph plotting and objectively with the BestFit™ 

(1993) data analysis package. An example of the output data produced by BestFit™ is 

provided in Appendix E. In some cases a Normal Probability Plot was also generated to 

provide a subjective test for Normality. A representative subset of these results was then 

analysed using BestFit™ that applied three goodness-of-fit tests (see below) to 

determine which distribution function could best describe the data. BestFit™ was used 

to compare the durations of the activity networks with fourteen distribution functions -

Poisson, Negative Binomial, Binomial, Geometric, Hypergeometric, Beta, Weibull, 

Triangular, Logistic, Chi-square, Normal, Lognormal, m-Erlang and Gamma. BestFit™ 

then ranked these functions in order according to which represented the data most 

accurately. 

5.2.2 BestFit™ 

BestFit™ (1993) provides three goodness-of-fit tests (taken from Law and Kelton 

(1991) and outlined below) that are used to assess formally whether the data 
"­

observations are independent samples from a particular distribution function, F. 

BestFit™ matches the data to the most representative statistical distribution, testing the 

null hypothesis: 

HO: The data samples, Xi (i=l, .. , n), are independent and identically distributed random 
/\ 

variables from F. 

(i) Chi-square Goodness-of-Fit Test (C-S Test) 

The C-S test can be used to determine the best fit for both discrete and continuous 

distribution functions. Selecting the size and number of intervals, k, for the C-S test is 

particularly important as it can significantly affect the accuracy of results that are 

obtained. In most cases the number of intervals was defined implicitly by the range of 

discrete data obtained. In some cases, however, this range proved so large that a value of 

k was selected based on figures defined by Yamold (1970). Yamold stated that the C-S 

test would generally be acceptable provided that: 

1. k~3 

2. ~5y(5) 
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where a = min np., 
l!>j,.;Jc J 

y(5) is Ihe number of npi's less Ihan 5, 

and Pj is Ihe proportion of data values in interval j. 

For the data concerned, k was either assigned values ranging from fifteen and Ihirty to 
enable these criteria to be satisfied or was defined implicitly by the discrete output 

obtained. 

The CoS test statistic (T-S), X2, is defmed as: 

k 2 
2 '" (N.-np.) 

X=.£... J J 
np. 

j;l J 

where N j is the number of values in the jth interval of the data. 

Kelton (1991), Ihe null hypothesis is not rejected providing that: 

X2<X2 - k-l,l-a 

(5.1) 

According to Law and 

(5.2) 

For a at the 0.1 0 level, and for the values of k concerned, Ho is not rejected provided 

that: 

X2 S; 21.064 for k=15 

X2 S; 39.087 for k=30 

(5.3) 

(5.4) 

For oIher values of k (defined by the discrete data itself) the results were checked with 

required values from tables in Law and Kelton (1991). 

(ii) Kolmogorov-Smirnov Test (K-S Test) 

The K-S test can only be used to determine the best fit for continuous distribution 

functions. The K-S T-S, Dn, calculated by BestFit™ is defined as: 

" D = sup! I F (x) - F (x) I} 
n x n n (5.5) 

To compare the data samples with a hypothesised Normal distribution the mean and 
standard deviation of this distribution are estimated from the data. Having estimated 
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these values, Dn must be modified: 

( 'n -0 01 + 0.85 ) D 
VII . rn n 

(5.6) 

Thus, for a sample size of one thousand, the modified critical value for IX at the 0.1 level 

means that Ho is not rejected provided that: 

Dn ~ 0.025885 (5.7) 

(iii) Anderson-Darling Test (A-D Test) 
The K-S test can only be used to determine the best fit for continuous distribution 

functions. The A-D T-S, An2, calculated by BestFit™ is defmed as: 

00 

2 J 1\ 2 1\ 
An = n [ F n(X) - F n(X)] 'V(x) f(x) dx (5.8) 

-00 

1 
where 'V(x) = ....,....--,.--

Fl(x)[1 - Fl(x)] 

In order to compare the data samples with a hypothesised Normal distribution the mean 

and standard deviation of this distribution are estimated from the data. Having estimated 

these values, An2 must be modified: 

(5.9) 

Thus, for a sample size of one thousand, the modified critical value for a. at the 0.1 level 

means that Ho is not rejected provided that: 

An2~ 0.6295 (5.10) 

5.2.3 Tests for Normality 

When activity networks are analysed one result of interest is the temporal function of 

the project they represent. Initial tests were based on ideas inspired by the results of 
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Mongalo and Lee (1990). They reported that the temporal function of an activity 

network was approximately Normal for all network types, even when the activity 
temporal functions were Triangular, Rectangular, Beta or Normally distributed. Based 

on this assumption a test for Normality is required that could handle up to five thousand 
simulations of an activity network. Ideally, one would hope that the duration of a 

probabilistic activity network could always be approximated by one of the more 
common distribution functions (such as the Normal) irrespective of which activity 

temporal function was used. If this proved to be the case, statistical results could be 
inferred directly from the characteristics of this known function. Simulation 

requirements could also be minimised as the function's parameters could easily be 
generated. Confidence intervals could also be obtained providing more accurate limits 

on project completion times and the Dynamic Sampling Technique could be used. 

The tests available for Normality are: 

(i) Chi-square Test 
The Chi-square test is perhaps the most obvious choice as a test for Normality due to its 

popularity. However, Wetherill (1981) claims the Chi-square goodness of fit test is not 
a particularly good test for Normality in some cases. This is due mainly to the problem 

of combining cells in the tails of the distribution to avoid small frequencies. This is 
confirmed by the results presented later. 

(ii) Normal Probability Plot 

According to Wetherill (1981) the Normal Probability Plot provides a good, but 
subjective, approach to testing for Normality. With the number of samples dealt with 

(usually well over one thousand), although a Normal Probability Plot can take some 
time, it does provide a good visual indication of the Normality of a set of data. A 

Normal distribution would result in a straight (f(x)=x) plot on these axis. 

(iii) W Test 
Mongalo and Lee (1990) claimed to use this test based on the work of Royston (1982) 

and Shapiro and Wilk (1965). Unfortunately, this test is only applicable to sample sizes 
of less than fifty. This somewhat contradicts the results of Mongalo and Lee who claim 

to have used this test for 7500 simulation results. The results of simulating activity 
networks with different activity temporal functions also clearly contradict Mongalo and 

Lee's work (more on this later). The W Test was found to be of no practical use for 
sample sizes that are dealt with in these tests. 

(iv) Calculation of Skewness and Kurtosis 

For distributions suspected to be Normal, it is possible to calculate their skewness, 11, 
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and kurtosis, 12. Providing these values compare favourably with an equivalent, known 

Nonnal distribution function, one could perhaps claim Nonnality. To perfonn this test 

Wetherill (1981) provides the following test. 

One carries out significance tests on 11 and 12' testing the hypotheses that 11 =0 and 

12=0 assuming that 11 and 12 are Nonnally distributed with expectation zero and 

calculable variances. For sample sizes greater than one thousand (which are required), 

the variances of 11 and 12 can be calculated as: 

6 
V(1) =-

1 n 

24 
V(y)=-

2 n 

(5.11) 

(5.12) 

respectively (where n represents the sample size). 

Based on a sample size of one thousand, and a 95% confidence interval on the 

coefficients, 11 and 12, one has 

-0.005 < YI < 0.005 (5.l3) 

-0.01 < Y2 < 0.01 (5.14) 

Provided these criteria are satisfied one could possibly assume Nonnality. 

Unfortunately, when sampling directly from a known Nonnal distribution function, the 

values of YI and Y2 exceed these limits by quite some margin. For example, figure 5.1 
shows the histogram and Nonnal Probability Plot of one thousand samples taken from 

a Nonnal distribution with mean 100 and variance 5. Although a test for Nonnality 

should prove positive in this case, the values of 11 and 12 from this data are: 

YI = 0.02712 and Y2 = -0.20926 

exceeding the calculated limits defined in 5.13 and 5.14. It was therefore felt that the YI 
and Y2 test for Nonnality was inadequate for samples of this size. 
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5.3 NETWORK CHARACTERISTICS 

5.3.1 Overview 

The configuration of an activity network significantly affects the work required and the 

accuracy of results that are obtained when that network is analysed. Three network 

characteristics, identified by Mongalo and Lee (1990), are size, precedence (sometimes 

called fatness), and parallelism. Table 5.1, which is adapted from Mongalo and Lee 

(1990), identifies a tighter quantification of these characteristics based on Activity-on­

the-Arrow networks. The nodes and activity dependencies (the arrows) in Activity-on­

the-Node networks do not lend themselves directly to these criteria. To detennine the 

characteristics in Activity-on-the-Node networks either alternative definitions are 

required or they must first be converted to an equivalent Activity-on-the-Arrow 

representation. 

Although the size measure is self evident, the two other measures require some 

clarification. The Criticality Index measures the probability that a given path through a 

network has a longer duration than any other path. The Critical Path is the path with the 

highest such probability. In Probabilistic Activity Networks the Criticality Index is the 

probability that a given path has a longer duration than any other path in the network. In 

pure Exclusive-Or Generalised Activity Networks this index is based solely on paths' 

probability values. In Generalised Activity Networks with several node characteristics 

this index is based on the duration of paths, on the probability that paths occur, and the 

probability that other paths do not occur. Calculating Criticality Indices based on 

maximum time characteristics (for example Clark (1961 b)) and/or probabilities is 

134 



---------~- ----------

particularly difficult. Network simulation provides an alternative way of generating 

these results. 

Precedence provides an indication of the complexity of a network structure based on the 
number of paths it contains. A network with high precedence would be fatter than one 

with low precedence. 

In an Activity-on-the-Arrow network, given the number of activities, Acts, and the 
number of nodes, Nodes, it is possible to calculate the maximum, Max, and minimum, 

Min, number of possible paths through that network. Calculating the exact number of 

paths is impossible from these data alone and it is best left to simulation to provide such 

results. 

Given that Q = Quotient ( Acts ) and M = Modulus ( Aas ) 
Nxrs - I Nxrs - I 

Min = Acts - Nodes + 2 (5.15) 

Max = (Q + I)M * Q(Nodes - 1 - M) (5.16) 

Clearly, if M = 0, this reduces to: 

Max = Q(Nodes - I) (5.17) 

The maximum number of paths in a network, and consequently its complexity, can prove 
to be quite considerable even for small networks. For example, with only three nodes 

and ten activities there can be up to twenty five possible paths through a network. 

Adding only one more activity can raise this number to thirty. 
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Size Small Medium Large 

Number of activities under 26 26 to 80 over 80 

Parallelism Low High 

Criticality Index of 
over 80% under 80% the Critical Path 

Precedence Low High 

number of activities 
under 1.5 over 1.5 

number of nodes 

Table 5.1 Network Characteristics 

Mongalo and Lee's [Mongalo and Lee 1990] main interest was in the comparative 

accuracy of Monte Carlo simulation and standard PERT calculations based on a single 
critical path. They showed that whilst precedence had no affect on the comparative 

results obtained by both methods, both parallelism and size did have an affect. Mongalo 

and Lee used four activity temporal functions in their analysis - Triangular, Rectangular, 

Beta, and Normal. They used the W Test for Normality [Royston 1982] in all cases to 
test the distribution function of the network duration. In all variations of network 

characteristics this test for Normality did not fail. These results must be viewed with 

some caution as the W Test for Normality is a particularly weak test and cannot be 

applied to sample sizes with which they were working. Assuming Normality in all cases 
can also prove fallacious as the results below show. 

In contrast, results presented later show that the duration of a Generalised Activity 

Network cannot be relied upon to assimilate a Normal distribution. When analysing the 

results of these networks a manager should be more interested in modal classes than the 

mean, and in the cumulative distribution functions of time and cost that provide 

probabilities of completing projects within particular limits. 

5.3.2 Generalised Activity Networks 

As it is of interest to compare simulation requirements of both Generalised and 

Probabilistic Activity Networks, the sample set of Generalised Activity Networks will be 
generalised somewhat (otherwise there would be an infinite sample set). For 

comparative purposes both Pure Exclusive-Or Generalised Activity Networks and Pure 
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Independent-Or Generalised Activity Networks will be compared. 

As chapter three highlighted, Generalised Activity Networks allow loops to be fonned 

within a network providing a useful approximation to real life projects where certain 
tasks are repeated. For the purposes of this analysis, loops have been avoided in the 

sample networks so that a clearer comparison can be made with Probabilistic Activity 
Network simulation in which loops are not allowed. 

(i) Exclusive-Or Generalised Activity NetwOlK 

This form of Generalised Activity Network allows only Exclusive-Or input and output 
logics at each network node. This implies that only a single path can be performed 

during one network simulation. Mathematically this network would appear to be the 
simplest to analyse. The mean of the network completion time, Jl, and the variance of 

this time, r:P, can be calculated from the simple pseudo code algorithm: 

There are K paths, Pj (j= I, 2, ... , K), in the network. 

Let PcPj) be the probability of taking path Pj' and TcPj) the expected duration of path Pj. 

for i = I to K do begin 

T(P .) = L mean duration of activity i 
J . P 

lE . 
J 

P(P.) = IT probability of performing activity i 
J . P 

lE . 
J 

end 

then: 

K K 

Jl = ~ P(P.) T(P.) L J J 
j=! 

cl = L P(P.)T(P./ Jl2 
. J J 
J=1 

Unfortunately this algorithm can prove formidable because the number of paths is 

difficult to determine precisely in complex networks. It has already been shown how 

there can be a considerable number of paths even in small networks. For larger 
networks this algorithm proves to be wholly inappropriate. Simulation, therefore, 

provides a simpler alternative. The validity of using the mean and variance for analysing 
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the project completion time in Generalised Activity Networks must also be questioned 

as the results presented later show. 

(ii) Independent-Or Generalised Activity Network 
In this configuration node outputs were defined as Independent-Or and node inputs as 

w-Or (as defmed in chapter three). This implied that nodes were realised when the last 
activity leading to them was completed or eliminated. In some cases, when all incoming 

acti vities are eliminated, nodes are not realised. If the sink node is not realised this 
implies that the network has 'failed'. This situation is unique to the Independent-Or 

Generalised Activity Network. In this case network simulation can be used, not only to 
estimate the project completion time, but also to estimate the expected probability of 

completing a project successfully. 

The reader should be aware that it is possible to combine the activity characteristics from 
each network type to form an 'impure' activity network. Simulation analysis of an 

impure network is beyond the scope of this chapter since it presents an infinite sample 

set. 

5.4 COMPARATIVE REQUIREMENT RESULTS 

5.4.1 Overview 

The first set of results presented are concerned with the comparative simulation 
requirements of Generalised and Probabilistic Activity Networks. 

The comparative results provided two parameters that signified the simulation costs for 

each network type. The first value was a total count of the number of times activities in 
a network were sampled in each simulation. The second measure was a basic tick count 

Cl/60th second) based on CPU time. These simulations were running on an Apple 
Macintosh™ LC 5/40. As one would expect the results showed that the ratio of the tick 

count to the number of activities sampled remained stable for each network type and 
configuration. However, this ratio differed quite significantly between Probabilistic and 

Generalised Activity Networks. The reason for this is that Generalised Activity 
Networks need to select which of an network's paths are simulated each time a network 

is iterated. This consequently compounds the simulation time. Probabilistic Activity 
Networks, on the other hand, need to sample every activity as all paths occur in each 

simulation. Consequently, the ratio of the tick count to activity samples proved to be 
higher in Generalised Activity Network simulation than in the comparative Probabilistic 
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Activity Networlc simulation. 

Tick counts were chosen as the comparator between the two network types since they 

provide a more meaningful comparison of the network simulation costs than activity 
sample counts alone. As developments are made in Generalised Activity Network 

simulation analysis, it is anticipated that the time to generate a network configuration 
during each simulation will fall dramatically (for example, using control variates). It will 

then be more feasible to compare the network simulation requirements by activity 
sample counts alone. 

Each configuration of size, precedence, and parallelism identified in table 5.1 was 

simulated for all network types using the Dynamic Sampling Technique detailed in the 
previous chapter. In all cases the required accuracy in the mean duration was set at 

0.2% with 95% confidence and the simulation stepsize was set to one hundred. For the 
purpose of comparing Probabilistic and Generalised Activity Networks simulations, 

activities were represented by Nonnal temporal functions throughout. This allowed 
antithetic variables to be used, improving the efficiency of the simulations, and ensuring 

that all networks were assessed on the same footing. Two main results came out of 
these simulations. 

5.4.2 Generalised Activity Network Temporal Function 

Generalised Activity Networks cannot be relied upon to have a temporal function that is 

symmetrical and unimodal (ie a Nonnal type). Figure 5.2 shows a histogram of the 
duration of a Generalised Activity Network highlighting the possibilities. This figure 

represents the duration of a large Exclusive-Or Generalised Activity Network with high 
parallelism and high precedence. It is accompanied by the Normal Probability Plot. 

Figure 5.3 provides another example. In this case it represents the duration of a small 
Independent-Or Generalised Activity Network with low parallelism and low precedence. 

When the duration of a Generalised Activity Network is multimodal, although the 

variance and mean duration can be calculated, the usefulness of these values must be 
questioned. In these situations the modal ciass(es) would provide a more sensible 

measure of a project's duration as it represents the most likely outcome of that project. 
In the example shown in figure 5.3 the actual mean completion time of this project was 

calculated as 103 days with a variance of 110 days. The modal classes, in this case, 
would provide a more realistic estimate of the project's completion time. In this case 

there are two modal classes - 108 to 110 and 114 to 116 days - both with equal 
probability. A manager should be more interested in these values than the mean 

duration. S/he would also be very interested in the secondary peaks around 88 days. 
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Figure 5.3 Example of a Generalised Activity Network Duration 
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Figure 5.4 provides a more useful representation of the duration of this project - a 

cumulative frequency distribution. Cumulative frequency distributions are often 
provided by project management software tools (for example, Risnet™ (1993), Monte 

Carlo™ (1993), and @Risk™ (1990» to provide a more useful representation of 
project outcomes. They provide the probabilities of completing projects within 

particular time and cost limits. In this case there is only a 50% chance of completing 
this project within 107 days - 4 days longer than that indicated by the mean duration. 

Pohl and Chapman also identified the usefulness of cumulative density functions and 
claimed that they 'form the basis for project risk assessment or risk management' . 
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Figure 5.4 Cumulative Frequency of a Generalised Activity Network 

The results for Probabilistic Activity Networks confinned those of Mongalo and Lee -

that the distribution function of a project's duration does approximate a Nonnal 
distribution in all cases (provided, at this stage, the activity temporal functions are 

Nonnal as well). Figure 5.5 shows a typical example of a Probabilistic Activity 
Network duration - in this case the network was large, had a low precedence, and low 

parallelism. It is accompanied by the Normal Probability Plot of this data. 
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The Dynamic Sampling Technique worked particularly well for Probabilistic Activity 

Networks but proved costly in terms of simulations required for non-Nonnally 
distributed Generalised Activity Networks. In these cases a high variance in the network 

duration implied the need for a large sample size to provide a reasonable estimate of the 
mean network duration. As shown above, the mean itself provides little information to a 

project manager. The technique, therefore, requires some adaptation to provide a 
reasonable estimate of the modal class(es) or the cumulative frequency distribution of a 

project's duration. The modal class simulation approach that was introduced in chapter 
four provides a more logical alternative. 
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5.4.3 Generalised Activity Network Normally Distributed 

When the distribution function of the duration of a Generalised Activity Network is 

approximately Normally distributed (for example with a highly dominant critical path, or 
when the duration of dominant paths are similar) it takes at most the same time to 

simulate as the comparative Probabilistic Activity Network. This is particularly 
noticeable in networks with a high precedence. With low precedence and high 

parallelism the Generalised Activity Networks simulation is at worst within 20% of the 
equivalent Probabilistic Activity Network simulation time. Networks with low 

precedence are particularly uncommon and it is worth noting that these networks, due to 
their relative simplicity, are perhaps easier to analyse by alternative techniques (perhaps 

analytical). The results obtained show a clear improvement in the time to simulate 
Generalised Activity Networks for common high precedence networks. The reason for 

this is clear. Probabilistic Activity Networks require that all activities are sampled each 
time a network is simulated. A Generalised Activity Network on the other hand, 

although requiring a network's configuration to be generated, does not require that all 
activities be sampled each time. This proves to be a great time saving and results in a 

much faster simulation process. 

The reader may have noticed that Probabilistic Activity Network and Generalised 
Activity Network simulations could be improved by only sampling from activities or 

paths which are dominantly critical - for example, incorporating the simulation 
approaches used by Van Slyke (1963). This chapter is concerned with the comparative 

simulation requirements of Probabilistic Activity Networks and Generalised Activity 
Networks and is not, therefore, concerned with streamlining the simulation techniques at 

this stage. 

Table 5.2 shows the number of tick counts required for each network configuration. In 
these simulations Generalised Activity Network activity probabilities and time 

distribution functions were selected to ensure that these network durations approximated 

a Normal distribution. The starred (*) values were from distributions that were 

beginning to show signs of non-Normality. This lead to higher variances and 
consequently required larger than expected simulation times. Figure 5.6 represents the 

duration of the smaller starred network and figure 5.7 the medium (again they are 
accompanied by Normal Probability Plots) from table 5.2. 
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GAN GAN 

Large High High 8,180 3,123 5,263 

Medium High High 5,526 2,354 3,115 

Small High High 1,836 1,537 1,690 

Large High Low 53,136 62,133 54,892 

Medium High Low 32,690 35,857 35,050 

Small High Low 7,066 7,864 7,393 

Large Low High 46,485 2,271 5,066 

Medium Low High 24,889 2,127 3,174 

Small Low High 4,883 2,123 1,683 

Large Low Low 53,123 79,412* 62,095 

Medium Low Low 31,102 53,846* 33,842 

Small Low Low 5,680 17,475* 7,154 

Table 5.2 Tick Count Results of Comparative Simulations 
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Figure 5.6 Small, Exclusive-Or Generalised Activity Network Duration 
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Figure 5.7 Medium, Exclusive-Or Generalised Activity Network Duration 

5.4.4 Summary of Comparative Simulations 

Simulation has proved to be a useful way of analysing both Probabilistic and 

Generalised Activity Networks. In Generalised Activity Networks however, more 
useful simulation results are those giving modal intervals and cumulative frequency 

distributions. The use of a Dynamic Sampling Technique and antithetic variables 
provided an improvement on a standard Monte Carlo simulation approach. The main 

results show that Generalised Activity Network duration distribution functions do not 
always assimilate a Normal distribution, but when they do, they prove to be quicker to 

simulate than the comparative Probabilistic Activity Network for common high 
precedence networks. The uncommon low precedence networks take similar times to 

analyse and may be better suited to an analytical approach than Monte Carlo simulation. 

5.5 SIMULATION WITH KNOWN ACTIVITY TEMPORAL FUNCTIONS 

Another area of analysis is the affect that different activity temporal functions have on an 

overall network duration. The moti vation behind this work was the results presented by 
Mongalo and Lee (1990). It has already been shown that Generalised Activity 

Network's temporal functions cannot be_ relied upon to assimilate a Nonnal distribution 
function in all cases. The temporal function of Probabilistic Activity Networks, 

however, has so far been seen to be approximately Normally distributed. In this section 
each network configuration in Probabilistic Activity Networks was simulated with six 

different continuous activity temporal functions - Normal, Lognormal, Gamma, Beta, 
Rectangular, and Triangular and five discrete temporal functions - Binomial, Poisson, 

Negative Binomial, Bernoulli, and Discrete Uniform. 
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Each network configuration identified in table 5.1 was simulated one thousand times 
using these discrete and continuous activity temporal functions. Algorithms to generate 

the activity temporal functions were obtained from the following sources (for more 

detail refer to appendix F): 

Bernoulli Distribution [Law and Kelton 1991, pp496-497] Used to represent two 

possible outcomes of an activity duration. 

Binomial Distribution [Law and Kelton 1991, p502] Used to represent the likely 
successful completion of an activity in a discrete number of time units with probability 

p. 

Discrete Uniform Distribution [Law and Kelton 1991, p497] Used when there is 

equal probability of an activity completing any discrete time during some finite period. 

Negative Binomial Distribution [Law and Kelton 1991, p503] Used to provide a 

discrete function with identifiable skew. 

Poisson Distribution (adapted from Ahrens and Dieter (1974)) Used to represent an 
activity with an estimated mean completion time in discrete units. 

Normal Distribution [Rubinstein 1981, p90] The Normal distribution has been used 

by several authors (for example Clarke (l961b) and Mongalo and Lee (1990» to 

represent the duration of activities in projects. Pohl and Chapman (1987) identified the 

Normal distribution function as that used for activities that have been performed several 

times before and in which the probability of unusual delays is very small. 

Lognormal Distribution [Law and Kelton 1991, p492] Selected due to its ability to 

represent a skewed temporal function. 

Rectangular Distribution (Generated by a simple algorithm) Some activities could 

have equiprobable continuous durations and are best represented by this distribution 

function (used by Mongalo and Lee (1990». 

Triangular Distribution (adapted from Law and Kelton (1991), p494) U sed by 

Lootsma (1989) as a simpler representation than a Beta distribution function, and Pohl 

and Chapman (1987). 

Gamma Distribution [Cheng 1977] Used by Lootsma (1989) as it is more natural 
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and simpler than the Beta distribution function. 

Beta Distribution [Rubinstein 1981, p81] Used in the popular PERT technique. 

It should be noted that the networks have been assessed with a specific activity temporal 

function throughout as, more often than not, managers use a single function with which 
they are familiar. The affects of several different, combined activity temporal functions 

on a project duration is an area for future research (and represents an enormous sample 
set). 

5.6 RESULTS FOR CONTINUOUS ACTIVITY TEMPORAL FUNCTIONS 

5.6.1 Overview 

In this section the results are presented for all possible configurations of activity 
networks with the particular activity temporal functions. The graphs shown represent 

histograms of the duration of the network concerned. In some cases a line graph is 
superimposed on the histogram to show the fit of a particular distribution function 

(identified by BestFit™). Normal probability plots of the network duration are .also 
shown in some cases. In these results it is interesting to determine which distribution 

function provides the most accurate representation of the temporal function of the 
networks concerned. 

5.6.2 Normal Distribution 

In all cases the C-S and K-S tests for Normality did not fail for all network 

configurations. The C-S T-S values ranged from 0.00674 to 0.078, and the K-S T-S 
values from 0.020174 to 0.023013. There were two anomalies with the A-D test which 

provided T-S figures of 0.707188 (high precedence, high parallelism, ten activities), and 
0.650595 (high precedence, low parallelism, ten activities). These figures were 

particularly insignificant when compared with other A-D T-S values obtained. Figure 
5.8 shows a typical example of the results obtained. The line plot in this case shows a 

Normal distribution with mean 991, standard deviation 14.13. 
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Figure 5.8 Nonnal, Low Precedence, High Parallelism, One Hundred Activities 

5.6.3 Lognormal Distribution 

All network durations prove to be distributed Nonnally as far as the C-S test was 
concerned (T-S values ranging from 0.00559 to 0.18194). For a network with high 

precedence and high parallelism both the K-S test and A-D test failed (having T·S 
values of 0.0794 and 8.9892 respectively). In this case the network duration showed 

signs of positive skew (skewed to the right). Although the C·S test for Normality did 

not fail (the T-S value was 0.18194) a more indicative fit was the Lognormal with mean 

119 and standard deviation 3.39. Figure 5.9 shows this function plotted over the 
network duration histogram with these characteristics. 

All other network configurations passed both the K-S and A-D tests for Normality. The 

K-S T-S values ranged from 0.0152 to 0.0234 and the A-D T-S values from 0.24319 to 

0.62798. 
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Figure 5.9 Lognonnal, High Precedence, High Parallelism, One Hundred Activities 
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5.6.4 Rectangular Distribution 

The results obtained for a network consisting of activities with rectangular temporal 

functions highlight the weakness of the CoS and K-S goodness-of-fit tests applied. 
Figure 5.10 shows a distinctive negative skew (skewness measured as -1.34) for the 

duration of a network with high precedence, high parallelism and ten activities. Even 
with such a distinctive shape the test for Normality did not fail (the CoS T-S value was 

calculated as 0.8635, the K-S T-S value as 0.1246). The Normal probability plot shown 
alongside is clearly curved. BestFit™ showed that a Beta distribution ( (1,=2, (12=0.53) 

was a more likely representation of this data having a CoS T-S value of 0.093092. 
Figure 5.11 shows a difference graph showing the absolute error between the network 

duration and this fitted Beta function. The A -D test did not accept the Normal 
Distribution as a good fit in this case (T-S value 28.94) preferring the fitted Beta 

distribution function (T-S value 2.439). 
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Equally non-Normal network temporal functions were obtained for networks with high 

precedence and low parallelism. Figure 5.12 is particularly representative of these 
networks showing the temporal histogram of a network with ten activities. The C-S T-S 

value for the Normal distribution proves surprisingly low at 0.066616 in this case. 
BestFit™ indicated that a more likely representation would be a Beta distribution 

function (Ctl=0.86, Ct2=O.95) which had a C-S T-S value of 0.0192. Figure 5.13 
represents a difference graph showing the absolute difference between the network 

duration and this fitted Beta function. This network failed both the K-S and A-D tests 
for Normality having T-S values of 0.1444 and 28.2 respectively. Both these tests 

favoured the fitted Beta function. 

All other network configurations (those with low precedence) proved to be distributed 
Normally. C-S T-S values for these network durations ranged from 0.000789 to 

0.000887, K-S T-S values ranged from 0.0190 to 0.0264 (placing the Normal 
distribution first), and A-D T-S values ranged from 0.3025 to 0.5180. 
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5.6.5 Triangular Distribution 

Activity networks with high precedence and high parallelism all showed signs of 

negative skew (for example, one with one hundred activities had a skewness value of -
0.6363). The C-S goodness-of-fit test for Normality was still acceptable having a T-S 

value of 0.3458 in this case. BestFit™ identified that a more likely fit was the Weibull 
(a=I06, 13=147) with a C-S T-S value of 0.13346. This is shown in comparison with 

the network temporal histogram in figure 5.14. The K-S and A-D test were more 
sensitive in this case and, although identifying the Normal distribution as the best fit in 

both cases, failed to accept it as representative of the data having test statistic values of 
0.05624 and 6.398 respectively. 
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Figure 5.14 Triangular, High Precedence, High Parallelism, One Hundred Activities 

For activity networks with a high precedence and low parallelism some more obscure 

temporal function shapes were obtained. In most cases the network duration is 
positively skewed (for example with ten activities the skewness value is 0.4752 (see 

figure 5.15». In this case the most likely fit is a Triangular function (a=136, b=152, 
c=205) with a C-S T-S value of 0.010315. The Normal distribution comes out as the 

eighth most popular fit with a C-S T-S value of 0.051231. The K-S and A-D tests also 

prefer the fitted Triangular distribution, ranking the Normal distribution as the fifth most 

likely fit in both cases. A rather formless duration was produced with one hundred 
activities (figure 5.16). This network duration looks rectangular with some skew. In 

this case BestFit™ identified the most likely fit as the Triangular function (C-S T-S 

value of 0.057, a=1l6, b=181, c=200) with the Normal distribution coming in fourth 

place with a T-S value of 0.100529 (~=172, cr=16.77). Figure 5.16 compares this 
network duration with both the fitted Triangular and Normal distributions. Both the K-S 

test and the A-D found the Normal distribution unacceptable having T-S values of 
0.0880 and 13.26 respectively. 
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All other network configurations (those with low precedence) proved to be Nonnally 

distributed for all tests. C-S T-S values for these network durations ranged from 

0.001615 to 0.001748, K-S T-S values from 0.186 to 0.2321, and A-D T-S values from 

0.2955 to 0.58706. 
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Figure 5.15 Triangular, High Precedence, Low Parallelism, Ten Activities 
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Figure 5.16 Comparisori with a Triangular and Normal Distribution Function 

5.6.6 Gamma Distribution 

Although activity networks with a high precedence and high parallelism appeared to be 

skewed to the right (positively skewed) they did not fail the C-S test for Normality (C-S 

T-S value being 0.463126 for a network with one hundred activities). BestFit™ showed 

a more indicative representation would be the Logistic function (a=16.25, ~=0.79) in 

this case having a C-S T-S value of 0.159439 or a Lognormal function (~=16.53. 

cr=1.28) with a C-S T-S value of 0.179452. Figure 5.17 shows a comparison between 
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this activity duration and the fined Logistic function. The K-S and A-D tests found the 

Nonnal Distribution unacceptable both preferring a fitted Lognonnal distribution with 

~=16.53, a=1.28. 

All other configurations of activity networks with Gamma activity temporal functions 

prove to be Nonnally distributed according to the C-S test which provided T-S values 

ranging from 0.006765 to 0.240463. The Nonnal Distribution was also ranked in first 

place by the K-S and A-D tests even though they would sometimes fail to accept any 
function ai all. There were some anomalies with both the A-D and K-S tests for 

networks with high parallelism. In these cases the Nonnal distribution was ranked in 
fourth place although the differences between the T-S values and the first placed 

Lognonnal distribution were quite negligible in these cases. 
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Figure 5.17 Gamma, High Precedence, High Parallelism, One Hundred Activities 

5.6.7 Beta Distribution 

All networks with a high precedence and high parallelism are skewed to the left to some 

degree. For example, the network with ten activities is shown in figure 5.18 (skewness 

value -0.827). In this case the C-S T-S for Normality was particularly high (16.44) yet 

within acceptable limits. BestFit™ indicated a more likely representation would be the 

Weibull (a=19, ~=O.92) which was preferred by all three goodness-of-fit tests. A 

medium sized network (one with fifty activities) proved to be less skewed (skewness 

value -0.081071). In this case the most likely distribution fit was the Normal (~=O.78, 

a=O.0725) with a C-S T-S value of 1.38889. The K-S and A-D tests also preferred this 

fitted Nonnal distribution with T-S values of 0.0195 and 0.8003 respectively. 

All other configurations of activity networks with Beta activity temporal functions 

proved to be Nonnally distributed according to the C-S test - having C-S T-S values 
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ranging from 0.111985 to 5.914. However, network durations with high precedence 

and low parallelism appeared triangular in shape with negative skew. For example, 
figure 5.19 shows the duration of a network with fifty activities (having a skewness 

measure of -0.64596) compared with the most likely distribution fit - a Triangular 
function (a=0.43, b=O.98, c=1.07) with C-S T-S value of 2.978881. The Normal 

distribution was the third most obvious fit in this case with a C-S T-S value of 
6.156842. 

For networks with high parallelism both the K-S and A-D tests accepted the Normal 
distribution as the most likely fit (for example, with low precedence the K-S T-S value 
was 0.0286, A-D T -S value was 0.8773) even though these figures were unacceptable at 

the a=O.1 level. For networks with low parallelism, the K-S and A-D tests were in 
conflict over which function provided the best fit, discounting all functions as unsuitable 

in most cases. 
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Figure 5.18 Beta, High Precedence, High Parallelism, Ten Activities 
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5.6.8 Continuous Results Summary 

The C-S test accepted all network durations as approximately Normal even in cases 

when a visual check would discount this claim. This emphasises the weakness of the C­
S goodness-of-fit test in certain situations and shows that it should not be used in 

isolation. The K-S test only accepted Normality in 46% of cases whilst the A-D test 
was even more sensitive accepting Normality 32% of the time. If one looks more 

closely at particular network configurations, networks with low precedence are, on the 
whole, more likely to be Normally distributed, being so 62% of the time with both the 

K-S and A-D test. This is due to the additive nature of the temporal functions within the 
networks and stems from the Central Limit Theorem. In these cases the simulation 

algorithm was, in effect, taking N independent samples from a given distribution 
function. This is the basis of the Central Limit Theorem (for example, Schagen (1986)) 

which implies that the sampling distribution of the calculated network duration would be 

approximately Normal, especially if the sample size was increased towards infinity. 

In cases of high precedence the results were clearly dependent on the temporal function 

of the activities themselves. The Central Limit Theorem in this case was overshadowed 
by the maximum combination of the activity temporal functions used. The maximum of 

several distribution functions does not approximate Normality as the results clearly 

demonstrate. 

Networks consisting of activities with Normal activity temporal functions are seen to 

have an approximate Normal temporal function in all cases. This is not the case for 
activity networks with Beta activity temporal functions (such as PERT networks) where 

several different distribution functions appear to be more appropriate representations of 
project durations in some cases. 

With low parallelism and high precedence the network temporal function generally 

approximated the activity temporal function used. With high precedence and high 
parallelism it was difficult to predict the outcome. In some cases the network temporal 

function was positively skewed (when the activity temporal functions were Gamma or 
Lognormal distributed). In other cases the network temporal function was negatively 

skewed (when the activity temporal functions were Triangular or Beta distributed). 

In conclusion one can only rely on Normality for Low Precedence networks. In other 
cases one can expect the unexpected. The only guarantee in these cases is when the 

activity temporal functions are Normal throughout. In this case the network temporal 

function does tend to be Normal. 
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5.7 RESULTS FOR DISCRETE ACTIVITY TEMPORAL FUNCTIONS 

5.7.1 Bernoulli Distribution 

For all networks with high precedence and Bernoulli activity temporal functions, a single 

network duration figure was obtained. This figure represented the absolute completion 
time of these networks. It was generated because of the minimal variation produced 

between activity temporal outcomes. No test was applied to these results as their 
distribution characteristics were obvious. 

For networks with low precedence and high parallelism several different network 

duration histogram shapes were produced. Figure 5.20 shows a network of ten 
activities with these characteristics. According to the C-S test, the best fit for this 

network duration was a Logistic function (0.=9.81, P=O.64) having a C-S T-S value of 
0.01931 (superimposed in figure 5.20). Both the K-S and A-D tests favoured a m­

Erlang function (m=107, P=O.0939) having T-S values of 0.197566 and 54.73 
(although this is quite clearly unacceptable) respectively. The larger network (with one 

hundred activities) was more accurately represented by a Binomial function (n=197, 
p=0.96) with a C-S T-S value of 0.015706 (figure 5.21). In this case the K-S test 

preferred a Logistic function (0.=188, P=1.8) having a T-S value of 0.0769, and the A-D 
test preferred a Normal function (11=188, cr=2.92) with a T-S value of 6.006. The C-S 

test accepted a Normal distribution as a possible fit in all these cases with C-S T-S 
values ranging from 0.00685 to 0.121. 
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Figure 5.20 Bernoulli, Low precedence, High parallelism, Ten activities 
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Figure 5.21 Bernoulli, Low precedence, High parallelism, One Hundred activities 

For networks with low precedence and low parallelism there was again no definitive 

shape. A small network with ten activities (see figure 5.22) was best represented by a 

Lognormal (11=10.77, cr=O.91) distribution function according to the C-S test with a T-S 

value of 0.049. Both the K-S and A-D tests preferred a m-Erlang (m=135, ~=O.0798) 
function with T-S values of 0.2173 and 58.38 respectively. The C-S test also accepted 

the Normal distribution as a possible fit in all these cases having C-S T-S values ranging 

from 0.03291 to 0.112706. A network with these characteristics and one hundred 

activities is shown in figure 5.23. In this case a fitted Lognormal function provided the 
best fit according to the C-S test with a T-S value of 0.024447. Figure 5.23 shows this 

duration histogram with a fitted Normal function (the fourth most acceptable choice with 

a C-S T-S value of 0.03291). 
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Figure 5.22 Bemoulli, Low precedence, Low parallelism, Ten activities 
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Figure 5.23 Bemoulli, Low precedence, Low parallelism, One Hundred activities 

5.7.2 Binomial Distribution 

Networks with high precedence and high parallelism produced no distinct temporal 

function varying from single durations to those shown in figures 5.24 and 5.25. 
According to the C-S test a network with only ten activities (figure 5.24) was best 

represented by a Gamma function (a=9.31, 13=0.29) having a T-S value of 0.01399. A 
Normal distribution function was placed in ninth place by this test with a T-S value of 

0.577. The K-S and A-D tests also failed to agree on a most likely function, favouring 
the m-Erlang (T-S value 0.2225) and the Weibull (T-S value 60.91) respectively. For 

larger networks (one hundred activities) with these characteristics (for example, figure 

5.25) the Lognormal (~=18.18, 0"=1.53) was preferred by all tests. T-S values were 

0.041,0.1498, and 20.57 for the C-S, K-S and A-D tests respectively. The Normal 

function was still accepted by the C-S test in this case with a T-S value of 0.126508. 
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Figure 5.24 Binomial, High precedence, High parallelism, Ten activities 
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Figure 5.25 Binomial, High precedence, High parallelism, One Hundred activities 

With low precedence and high parallelism more regular, almost rectangular shapes were 

formed. For example, figures 5.26 and 5.27 show the duration of a network with one 

hundred activities and these characteristics. The CoS test preferred a triangular 

distribution (T-S value 0.0844) as the best fit in this case (shown in figure 5.26) 
whereas both the K-S and A-D tests preferred a Normal function (figure 5.27) with T-S 

values of 0.03 and 0.087 respectively. 
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Figures 5.26, 5.27 Binomial, Low precedence, High parallelism, One Hundred 

activities 

The networks with low precedence and low parallelism provided similar results. The 

Normal distribution function was preferred by both the CoS and A-D test (T -S values 
0.028854 and 2.68 respectively). The K-S test ranked the Normal distribution as the 

. second most obvious fit, preferring a fitted Logistic function. 

With high precedence and low parallelism rather simplistic, minimal outputs were 
produced. Figure 5.28 is particularly representative of these results showing the 

duration of a network with ten activities and a fitted Normal function. The Binomial 
function (n= I 0, p=0.9) was the best fit according to CoS test (T-S value 0.0039). The 
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K-S and A-D tests both preferred a filled Nonnal distribution function with T-S values 

0.219 and 61.58 respectively. 
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Figure 5.28 Binomial, High precedence, Low parallelism, Ten activities 

5.7.3 Discrete Uniform Distribution 

For networks with high precedence and high parallelism their durations. were generally 

negatively skewed. For a network with ten activities (figure 5.29) both the C-S and K­

S tests preferred a Weibull (u=15.16, ~=1O.47) as the most likely fit. The A-D test 
preferred a Nonnal function as the most acceptable fit although this was outside the 

acceptable bounds (T-S value of 76.173). The C-S value for the Nonnal in this case 

was still acceptable with a value of 0.2043. For a network with fifty activities (figure 

5.30) the C-S test preferred a Weibull function with a T-S value of 0.06147. The K-S 
and A-D tests both preferred a Normal distribution with T-S values of 0.2314 and 

52.091 respectively (figure 5.30 shows this Nonnal function superimposed on the 

duration histogram). 
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Figure 5.29 Discrete Unifonn, High precedence, High parallelism, Ten activities 
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Figure 5.30 Discrete Uniform, High precedence, High parallelism, Fifty activities 

All networks with low precedence showed signs of Normality - regular bell shaped 

curves. The C-S T-S values for a fitted Normal function ranged from 0.000249 to 
0.12433, the K-S T-S values from 0.01304 to 0.01728, and the A-D T-S values from 

0.21095 to 0.308934. Figure 5.31 shows a network with low precedence, low 
parallelism, one hundred activities, and a fitted Normal distribution function. 
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Figure 5.31 Discrete Uniform, Low precedence, Low parallelism, One hundred 
activities 

On the whole the duration of networks with high precedence and low parallelism looked 
rectangular in shape. For example, figure 5.32 shows the temporal histogram of a 

network with fifty activities and these characteristics. In this case the best fit was a Beta 
function (ul=0.65, u2=0.85)*97+94 with as C-S T-S value 0.021103, or a 

Weibull(u=5.45, ~=153) according to K-S and A-D tests (T-S values 0.07887 and 
12.58 respectively). Figure 5.33 shows the absolute difference between the network 

duration, in this case, and the fitted Beta distribution function. The Normal function was 
still acceptable in these cases with C-S T-S values values ranging from 0.05363 to 

0.2212. 
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Figure 5.32 Discrete Unifonn, High precedence, Low parallelism, Fifty activities 
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Figure 5.33 Difference Between Temporal Function and Fitted Beta Function 

5.7.4 Negative Binomial Distribution 

Networks with high precedence and high parallelism on the whole showed signs of 

positive skew. For example, a network with fifty activities is shown in figure 5.34 

(skewness 1.021). In all three tests the best fit was identified as a Lognonnal (1l=42.92, 
cr=I1.75) (superimposed in figure 5.34) with a CoS T-S value of 0.0619, K-S T-S value 

of 0.0437, and A-D T-S value of 1.251. The Normal distribution function was 

acceptable according to the CoS test in these cases with T-S values ranging from 

0.141327 to 11.32. It was not acceptable to the more sensitive A-D test, however, in one 

case having a T-S value as high as 27.1. 
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Figure 5.34 Negative Binomial, High precedence, High parallelism, Fifty activities 

In all but one case of low precedence a reasonable bell shaped temporal curve was 

produced. For example, figure 5.35 shows a duration histogram of a network with one 
hundred activities and high parallelism. The Cos T-S value in this case was 0.000696. 

The K-S test accepted the Normal distribution as the best fit with a T-S value of 
0.016255. The A-D placed the Normal in third place with a T-S value of 0.325044 

(preferring a Gamma function in this case). In one case a duration with some positive 
skew was produced (figure 5.36 - low parallelism, one hundred activities, skewness 

1.945846, with fitted Lognormal). A Lognormal (11=13.9, 0'=14.09) was identified as 

the best fit in this case by all tests with T-S values of 0.054018, 0.065109,6.38671 for 

the CoS, K-S and A-D tests respectively. The Normal function was still acceptable to 
the CoS test with a T-S value of 0.3262. 
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Figure 5.35 Negative Binomial, Low precedence, High parallelism, One Hundred 
activities 
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Figure 5.36 Negative Binomial, Low precedence, Low parallelism, One Hundred 

activities 

With high precedence and low parallelism the networks showed distinctive positive 
skew. For example with ten activities (figure 5.37) no single fit was agreed by the tests. 

The CoS test preferred a Gamma (a=1.03, 13=9.34) with a T-S value of 0.054992, the K­
S test preferred a Lognormal(Jl=1O.88, a=16.25) with a T-S value of 0.068284, and the 

A-D test preferred a Weibull(a=l.l, 13=9.99) with a T-S value of 6.395508. This 
histogram again highlighted the weakness of the CoS test for Normality which, in this 

case, accepted Normality with a T-S value of 0.60648. The K-S was a little more 
sensitive with a T-S value of 0.340905 and the A-D provided a more understandable 

rejection with a T-S value of 138.332686. 
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Figure 5.37 Negative Binomial, High precedence, Low parallelism, Ten activities 

5.7.5 Poisson Distribution 

All networks with high precedence and high parallelism showed signs of slight positive 

skew - for example figure 5.38 shows a network with fifty activities (skewness 
0.573707). In this case a Lognorrnal function most favoured fit by all tests with T-S 
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values of 0.018812,0.106772, 13.254991 for the C-S, K-S and A-D tests respectively. 

The C-S test for Normality provided acceptable T-S values ranging from 0.06754 to 
0.229335, even though this function was rejected by the K-S and A-D tests in these 

cases (again highlighting the weakness of the C-S test in isolation). 
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Figure 5.38 Poisson, High precedence, High parallelism, Fifty activities 

All other network configurations, with Poisson activity temporal functions, appeared to 
be reasonably bell shaped. For example, one with low precedence, low parallelism and 

ten activities is shown in figure 5.39. In this case the Normal distribution function was 
accepted as the best fit by both the C-S and A-D test (T-S values of 0.036038 and 

2.521598 respectively). The K-S preferred a fitted Logistic function but still placed the 
Normal distribution function as its second choice. For these network configurations the 

Normal CoS T-S values ranged from 0.034587 to 0.059232. The K-S and A-D tests 
were less convinced, however, accepting the Normal as the best fit in only two cases and 

a mixture of other distributions at other times. 
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Figure 5.39 Poisson, Low precedence, Low parallelism, Ten activities 
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5.7.6 Discrete Results Summary 

Although the results presented above appear rather different, they do provide some 

important conclusions. The first point to note is that one cannot assume that the 
duration of an activity network can be represented, in all cases, by a single distribution 

for any discrete activity temporal function. The COS test would, however, discount this 
as it accepted all network durations as approximately Normal, even in cases when a 

visual check would discount this claim. This emphasises the weakness of the CoS 
goodness-of-flt test in certain situations and shows that it should not be used in 

isolation. One reason why the CoS test is particularly weak in this area is that it does 
not give great weight to the important tails of a distribution which can represent 

substantial project overruns. 

In total, eleven different functions were selected by the three goodness-of-fit tests as 
representative of an activity network duration at some stage. From the fourteen 

functions that were assessed, only the Hypergeometric, the Geometric and the Chi­
square distributions were not chosen as good fits at any stage. 

Viewing the tests individually the CoS test preferred no outright function, selecting both 

the Normal and Lognormal functions 20% of the time. All other distribution functions 
were evenly spread throughout the remaining 60%. The K-S test also had no definite 

result, selecting the Normal as the best fit 28% of the time, the Lognormal and Logistic 
18%, and the rest evenly spread. The A-D test was more decisive preferring the Normal 

distribution function 52% of the time, with all other functions evenly spread 

Overall, from all three tests, the Normal distribution function was the most popular fit 
(34% of the time), and the Lognormal distribution second (16%). All other functions 

were fairly evenly spread. These results were not unexpected when one looks at the 
shape of the temporal histograms produced. The duration of activity networks take 

various shapes - standard Normal bell shapes, positively and negatively skewed shapes, 
rectangular shapes, and single point values. In 80% of cases, although all durations 

were in discrete form, they were modelled more accurately by one of the continuous 
distribution functions (this, of course, could only be determined by the CoS test). This 

result must be treated with some caution as, after determining that activities and projects 

complete in whole time units, one would not use the real parameters provided by these 

functions. It is worth emphasising again that modal classes provide far more accurate 
estimates of project completion times and, for one-off projects (that most tend to be), 

represent the most likely duration. 
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5.8 CHAPTER SUMMARY 

Many other distribution functions can be used to represent both the cost and duration of 

activities within a project. The results presented in this chapter show that managers 
should not use a single mean figure as representative of the overall completion time of a 

project but should view the resultant duration as a whole function. These results have 
shown that both Generalised and Probabilistic Activity Networks cannot be easily 

represented by a single distribution function and should be viewed on an individual 
basis. No distinct distribution function can be used to represent the duration of a 

project with any of the activity temporal functions analysed here. In conclusion, it 

makes far more sense for managers to use the modal class as an approximation of the 

expected project duration than a single mean value that could grossly underestimate or 
overestimate the duration ofaproject with a highly skewed, irregular or level temporal 

function. Cumulative distribution functions also provide more valuable results and this 

is emphasised by the availability of project management software packages with such 

facilities. 
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CHAPTER 6 

An Artificial Intelligence Approach to Software Development 

Management 

CHAPTER PREFACE 

This chapter is presented in the form of a working chapter. It puts forward a 
proposal for an artificial intelligence based support tool for software development 

management, developed from the working paper of Dawson and Dawson (1993a). 
Blackboard Architectures are introduced that provide a framework on which a tool of 

this kind can be built. Reason and temporal maintenance systems (also known as 

belief revision systems) are also examined to provide a means of maintaining several 

project plans and providing several problem solutions simultaneously (if they exist). 

CHAPTER KEYWORDS 

Software Development, Project Management, Artificial Intelligence, Blackboard 
Architectures, Reason Maintenance, Temporal Maintenance 

6.1 INTRODUCTION 

6.1.1 Overview 

Chapter two discussed in some detail the main components of the software development 
process and introduced a metamodel for controlling this process at the strategic level. 

An area in which there has been little research or development over recent years is the 

development of 'intelligent' software process management systems. In this chapter, 

Blackboard Architectures are introduced that can support the development of an 
intelligent software process management system. This system focuses on the problems 

associated with managing the development of software. As different project 
management problems are encountered at different stages of a development process, this 

chapter looks at artificial intelligence techniques that can be used in particular phases of 
this process. It is worth noting that while the responsibility for project decisions should 

and must lie with project managers, a knowledge based assistant could provide decision 
support for these and other activities [Ahmad et alia 1988]. The development of such a 
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system represents a significant input of research. This is clearly beyond the intended 

scope of this thesis and perhaps represents a doctoral work in its own right. 

The software development process was identified in chapter two as a particularly 
complex task (complexity being identified by Brooks (1987» as inherent within 

modern software systems). This complexity makes software systems notably difficult 
to build. Compounding software development problems are behavioural problems, such 

as those detailed by Kerzner (1989). Kerzner stated that the most common causes for 
overdue, and over cost projects, are behavioural. 

In many respects the root cause of software development problems can be attributed to 

poor management of the software development process. There are two identifiable 
reasons for this. First, it is the responsibility of managers to ensure good team morale, 

human relations, and labour productivity. Without these qualities in a project, a software 
development team could soon develop the behavioural complications identified by 

Kerzner. Second, it is the responsibility of management to set realistic time, cost, and 
performance targets for a project. After all, when one identifies that a project is overdue 

and/or over cost, it may be that this is in respect to previous, possibly unrealistic goals. 

It is the initial intention of this chapter to put forward a proposal to assist this second 
managerial responsibility - that of determining realistic and attainable goals within a 

software development process and identifying an optim urn software development plan. 
Management inaccuracies in planning lead to projects that slip further behind schedule 

leading to low team morale and, as a consequence, augment the f'ITst managerial 
problem. Managers should also be supported throughout all phases of a project and 

not just within initial planning stages. Because different problems are encountered at 
different stages of a project development, this chapter looks at how artificial intelligence 

can support all these stages. 

6.l.2 Context 

Chapter two has already covered in some detail the aspects and approaches to software 
development. With reference to figure 2.2, this chapter presents a support element that 

assists a particular activity (project management) through various phases of a software 
development life cycle. By identifying particular artificial intelligent techniques within 

different phases of the life cycle, these techniques can assist managers through the 
development of a product. 
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6.1.3 Artificial Intelligence 

Although the fields of artificial intelligence and software development are extremely 

diverse, there are specific artificial intelligence techniques that are particularly useful in 
certain aspects of the software development process. Applying artificial intelligence 

techniques to general project management is a relatively new field of research. 
Examples of more recent work include Kunz et alia (1986), who proposed the use of 

multiple worlds as a method of husbanding various project plans simultaneously. 
Several plans could be stored as worlds in this system (based on Assumption Based 

Reason Maintenance) and could be viewed, by a manager, to compare different project 
plan solutions (a kind of what if analysis). In Kunz et alia's example project this 

system enabled choices for the location of a graving dock to be viewed concurrently, 
based on factors including geology, site location and labour productivity. 

In 1987 Foster [Foster 1987) looked at potential applications for artificial intelligence in 

more general project management, and in 1986, Sathi et alia [Sathi et alia 1986) 
developed Callisto - an intelligent project management system. The Callisto project 

devised intelligent project management tools for documenting expertise and exploring 
phases in the development of computer system prototypes. Callisto could be used to 

manage different objectives within a project - for example, resources, product 
configuration, and activities. This work also introduced a smaller prototype system 

called Mini-Callisto. 

In 1987 Guerrieri [Guerrieri 1987) explained the application of expert systems to 
project management in a paper that included truth and temporal maintenance 

approaches. Guerrieri's work included project scheduling and showed how an 
explanation facility could be incorporated within Prolog. This facility explains how 

project decisions were obtained. Guerrieri also introduced time guards that provided a 
means of temporal maintenance within project plans. Also in 1987 Levitt and Kunz 

[Levitt and Kunz 1987) analysed the phases and levels of project management, before 
proposing the application of specific artificial intelligent techniques to these phases and 

levels. They also looked at the use of blackboard architectures and detailed the 
PLATFORM system, developed from KEETM and the multiple worlds approach of 

Kunz et alia (1986). Chapman and Manesero (1988) developed an intelligent 
management system for use in the construction industry in 1988 and Noronha and 

Sarma (1991) provided a detailed study of artificial intelligence approaches to 
scheduling problems in 1991. Their work touched on the use of PERT and CPM as a 

means of project scheduling. Expert systems have also been used to assist management 
decision making from a higher integrative level. For example, Spangler (1991) 

presented a paper on how artificial intelligence could be used to assist the strategic 
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decision making process. 

6.1.4 Project Management Software 

Apart from the few exceptions highlighted above, the majority of software tools 

available in the project management market today do not incorporate any real artificial 

intelligence concepts. Most tools merely automate the calculations (resource levelling, 

critical path analysis and so on) involved in established techniques such as activity 
networks and Gantt charts. Although these tools provide more user friendly interfaces 

and rapid results by automating these calculations, they still leave any deliberation and 
what if analysis to the project manager. These software tools have been developed for 

support and, as stated by Plasket (1986), 'There is not a piece of software that will 
'manage' your project; only you can do that'. 

Generally speaking, project management systems employed by many companies for the 

development of software produce a single, baseline plan at the initiation stage of a 
project (usually at a tactical level). Any variations to this plan - such as adjustments to 

milestone dates, development techniques employed and so on - are applied to this 
baseline as anomalies. The metamodel defined in chapter two overcomes many of the 

problems associated with losing touch of an initial baseline by providing a flexible 

strategic level plan to start with. With a rigid baseline system a software development 

manager perhaps feels obliged to 'get it right first time'. Too many variations to an 

initial baseline can complicate a plan and lead to possible misinterpretations. 

6.2 LIFE CYCLE PHASES 

6.2.1 Overview 

Chapter two identified a high level phase set that is applicable to all software 

development projects. By breaking the development process into these master phases 

(Analysis, Synthesis, Operation, and Retirement), specific managerial problems can be 

identified within each phase. For example, during the analysis stages difficult decisions 

need to made for the scope, size, resource requirements, and location of a project at 

various organisational levels. Within synthesis, more decisions need to be made as 

targets are missed and team moral falls. During operations, the costs and effects of 

various changes must be considered, and when a software system approaches 

retirement, decisions on the feasibility of replacing that system must be made. 

Breaking these master phases down through an organisation's levels (strategic and 
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tactical) using a Work Breakdown Sttucture increases the level of detail and eventually 

identifies the tasks involved in the development of a software product. For the purposes 

of this chapter Analysis is broken down into Objective Setting and Planning. Control is 

identified as a task within the synthesis phase, and maintenance as part of operations. 

Figure 6.1 shows these submaster phases as distinct from the master phases. These 

submaster phases can be considered more simply as: 

• Idea - Identify something that needs to be done 

• Plan - Plan how to do it 

• Do - Control the doing of it 

• Improve - Improve and/or modify it 

6.2.2 Objective Setting 

Objective Setting represents the initial conceptualisation of a project where decisions are 

made as to the type, size, location etc of that project. This stage is sometimes referred to 

as Conceptual Design and is used to clarify the objectives of a project and to determine 

project priorities. Objective setting determines the aims and deliverables of a project. 

Synthesis Operation 

Objective Planning Control 
Setting 

Maintenance 

Figure 6.1 Phase Hierarchy 

6.2.3 Planning 

Planning defines the tasks necessary to complete a project with the assistance of a Work 

Breakdown Structure. At a tactical level, tasks are arranged in an ordered network using 

precedence analysis. During this phase management decides on a project's milestones 

that are included in a network plan. Incorporated into planning is the scheduling of 

durations, start and finish times, and resource requirements for each task. This was 

171 



covered in some detail in chapter four. 

6.2.4 Control 

Control can perhaps be viewed more as a managerial activity than as a submaster phase 

in its own right. It consists of tracking a project as it progresses and adjusting future 

expectations accordingly. Again, control was covered in more detail in chapter four. 

6.2.5 Maintenance 

Maintenance represents any post release work that may be needed after a system has 

gone live. This can include enhancing and upgrading software, programming software 

for use on other platforms, and producing more user friendly, faster enhancements. It 

can also include activities such as providing a help desk facility and removing any bugs 

that are not found until post-release. 

Ideally, at this level, each phase should complete before the next one begins. In practice 

it is more likely that overlap occurs between phases and some form of feedback takes 

place (see chapter two). Scheduling pressures can also cause an overlapping of these 

steps (for example, Pulk (1990)). This overlap allows a developer to feed results back 

more easily to earlier phases and emphasises the need for a more flexible approach to 

the phased plan. 

6.3 ARTIFICIAL INTELLIGENCE TECHNIQUES 

6.3.1 Overview 

Over recent years attempts have been made to incorporate some form of intelligence into 

various project management systems. Techniques have been applied specifically to 

different phases of a project life cycle - Objective setting, Planning, Scheduling and 

ControL One example is provided by Levitt and Kunz (1987) who proposed the 

following artificial intelligence techniques for each phase: 

Objective Setting 

Planning 

Scheduling 

Control 

Assumption Based Truth Maintenance System. 

Means end AI planning and domain specific knowledge. 

Knowledge based interactive graphics and knowledge processing. 

Knights and Villains and a knowledge processing system. 

There are a broad range of management tasks operating at different organisational levels 

172 



and aimed at different project objectives. As these tasks operate through different 

phases of a development it is clear that a single artificial intelligence technique would 
need to be extremely flexible and powerful to be applicable to every software 

development process. Working with the blackboard architecture that is introduced 
below provides an artificial intelligent framework on which knowledge, appropriate to 

problems encountered at different stages and at different organisational levels, can be 
applied. 

6.3.2 Blackboard Architectures 

According to Adler (1992), a blackboard architecture is intended to address the 

following objectives: 

(i) To incorporate diverse sorts of knowledge in a single problem· solving system. 
(ii) To compensate for unreliability in the available knowledge. 

(iii) To compensate for uncertainty in the available data. 
(iv) To apply available knowledge intelligently in the absence of a known problem­

solving algorithm. 
(v) To support cooperative system development among multiple builders. 

(vi) To support system modification and evolution. 

Adler went on to explain how each of these factors can be achieved by blackboard 
architectures. By incorporating these capabilities, a blackboard architecture provides a 

powerful approach to problem solving in different problem domains. 

'The Blackboard Model is a relatively complex problem-solving model prescribing the 
organisation of knowledge and data and the problem solving behaviour within the 

overall organisation' [Nii 1986a]. This reference to Nii provides one of the more 
detailed studies of blackboard architectures. Nii introduces the concept of this artificial 

intelligent structure and provides, in Nii (1986b), examples of systems that use this 
architecture. This text was based on the work of Hayes-Roth (1983, 1984, 1985a, and 

1985b) who developed the concept of blackboard architectures and provided a 
comprehensive coverage of its applications. 

The earliest reference to Blackboard Architectures can be traced back as far as 1962 

when Newell wrote [NeweIl1962]: 

'Metaphorically we can think of a set of workers, all looking at the same 
blackboard: each is able to read everything that is on it, and to judge 

when he has something worthwhile to add to it'. 
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This statement encapsulates the aspects of more up-to-date views of Blackboard 

Architectures. Blackboard architectures can be pictured in much the same way as 
ordinary classroom blackboards. A problem is written onto a Blackboard Data 

Structure (either by a user, or by an internal source within the architecture) and various 
expens (called Knowledge Sources) apply themselves separately to solve what they can 

of this problem. The order in which the knowledge sources approach the blackboard 
data structure is determined by a Control Unit that interprets what each knowledge 

source has to offer to a solution (the knowledge sources bid for a chance to work on the 
blackboard). The knowledge sources continue to solve what they can of the problem 

until either a solution is reached or more information is required for them to proceed. 
Figure 6.2, which illustrates this blackboard architecture, is adapted from Nii (1986a). 

Blackboard Data Structure 

~~ L==================~ ~ .- ~~ 

-g 
I':: 
o 

U 

Knowledge 
Source 

Knowledge 
Source 

Knowledge 
Source 

Figure 6.2 A Basic Blackboard Architecture [Nii 1986a] 

A blackboard system therefore consists of three main components - a blackboard data 

structure, knowledge sources and a control unit. 

(i) Blackboard Data Structure [Nii 1986a] 
The blackboard data structure is a global database within the management system. It 

holds computational and solution state data needed by, and produced by, the knowledge 
sources. This data structure is partitioned into different levels of analysis that 

correspond to application-dependent hierarchies. The different levels of the hierarchy 
(represented by the dashed lines in figure 6.2) represent the different levels of object 
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properties that are connected by named links. Figure 6.2 also shows that a blackboard 

can be made up of several panels each of which can represent several different solutions 
to a problem. Contradictory information can be maintained concurrently by this 

architecture using reason maintenance systems that are discussed later. 

(ii) Knowledge Sources 
Knowledge needed to solve a problem is partitioned into knowledge sources that are 

kept separate and independent. In a project management system, for example, 
knowledge sources may be created that can perform critical path analysis, resource 

levelling and so on. The knowledge sources transform information on one level of the 
blackboard hierarchy into information on the same or other levels using algorithmic 

procedures or heuristic rules. These knowledge sources can work on several different 
panels of the data structure, providing several solutions to a problem. Knowledge 

sources can only interact with one another through the blackboard data structure. 

(iii) Control Unit 
The control unit decides which module of knowledge to apply next, based on the current 

solution state and what each knowledge source has to offer. This results in an 
incremental generation of partial solutions to a problem on a blackboard panel. Figure 

6.2 suggests one way in which the control unit fits into the overall blackboard 
architecture. From this position it monitors the current solution state on the blackboard 

and manages the knowledge sources. It is possible that the problems encountered by 
the control unit (ie deciding what part of the problem to focus on and which knowledge 

source to apply next) can themselves be solved by a blackboard architecture. In this 
situation the control data can be incorporated into one of the blackboard structure panels 

where knowledge sources, specifically aimed at these problems, can work. 

There are several variations to this basic principle including changes to the blackboard 
data structure itself, the knowledge sources or the control element [Nii 1986a and 

1986bl. At some stage inconsistencies may appear on the Blackboard and some form 
of knowledge or factual maintenance is required. This maintenance can be performed 

by reason maintenance systems. 

6.3.3 Reason Maintenance 

Artificial intelligence systems need to maintain a model of their particular environment. 
The domain, that represents this environment, needs to be updated at various stages to 

reflect perceived changes in this environment. One reason for updating the model could 
be the discovery of contradictory information about the environment in the domain or 

the introduction of new information that contradicts facts already there. The 
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conventional approach for removing these contradictions is to change the most recent 

decision made. This is known as chronological backtracking and is the technique used 
in more popular artificial intelligent languages such as Prolog. An alternative solution is 

not to change the most recent assumption made, but to change the assumption that 
produced this unexpected condition. This alternative approach is called reason 

maintenance or belief revision. Broadly speaking reason maintenance exists in two 
different forms - Justification Based Reason Maintenance and Assumption Based 

Reason Maintenance. A good coverage of most of the literature in this field was 
presented in Martins (1990). 

(i) Justification Based Reason Maintenance 

Reason maintenance (and Reason Maintenance Systems) were originally introduced·in 
a paper by Doyle in 1978 [Doyle 1978]. Doyle actually based his work on an earlier 

text of Stallman and Sussman (1977). In Doyle's initial work [Doyle 1978, 1979a, 
1979b, McDermott and Doyle 1979 and 1980] reason maintenance was referred to as 

truth maintenance which was a rather confusing terminology since it was not truth that 
was been maintained but the reasoning behind assumptions. Strictly speaking his 

approach is a Justification Based Reason Maintenance System (a JRMS). It has several 
disadvantages when compared· with the Assumption Based Reason Maintenance System 

(ARMS) that was developed by DeK1eer in 1984 [DeKleer 1984] (see below). 

A Justification Based Reason Maintenance System maintains one consistent database at 

a time and will facilitate switching out of that database if it becomes inconsistent. 

Rather than backtracking chronologically, it will employ dependency directed 

backtracking so the source of an inconsistency is rapidly isolated and removed. A 

JRMS allows non-monotonic justifications, unlike the initial ARMS, but it only allows 
beliefs to be changed if a contradiction is found within the knowledge base. Each 

statement or rule within a knowledge base is represented by a node [Doyle 1979b]. 
Nodes can either be IN (believed to be true) or OUT (not believed to be true). Attached 

to each node is a list of justifications (hence JRMS) validating that node. There are two 
kinds of justification - support lists and conditional proofs. 

A support list provides a list of statements or rules that, because they are deemed to be 

true or false, justify a particular node. Conditional proofs, on the other hand, represent 
hypothetical arguments that. represents an implication of some facts. The main 

drawback of the JRMS is its inability to maintain several possible solution states 
simultaneously. Another problem is that changing one set of beliefs into another only 

occurs when a contradiction is detected [Martins 1992]. In what if analysis this can 

result in delays as previously computed solutions need recalculating for comparative 

purposes. 
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(i i) Assumption Based Reason Maintenance 

An Assumption Based Reason Maintenance System is based on manipulating 
assumption sets rather than justifications. The ARMS processes multiple contexts 

simultaneously and consequently has the advantage of making available all possible 
solutions or partial solutions to a user. However, according to Dressier (1988) an 

ARMS only allows monotonic justifications (ie once information is added it cannot be 
removed for that particular program run). 

Exploiting an ARMS allows a problem solver to work efficiently on all solutions 

simultaneously and avoids the computational expense of backtracking [DeKleer 1984, 
1986a, 1986b, Reiter and DeKleer 1987, Martins 1992). When a contradiction in 

knowledge is detected, all assumptions underlying that assumption are directly 
identifiable. This removes the need for backtracking that could remove current, possibly 

acceptable, assumptions. 

Work by DeKleer and Williams in 1~87 [DeKleer and Williams 1987) identified some 
advantages of reintroducing backtracking into an ARMS. They stated that three 

problems associated within an ARMS are: 

(i) The task may require only a fraction of a search space to be explored. 
(ii) Even for problems where all solutions are required, an ARMS would often search 

more than was necessary. 
(iii) They are inherently more difficult to debug. 

As an ARMS only allows monotonic justifications, there are advantages to be made by 

combining both an ARMS and JRMS together. Examples of combining these 
techniques include Rodi (1989), Dressier (1988) and Urbanski (1988). 

6.3.4 Temporal Maintenance 

Another problem associated with maintaining information within a knowledge base is 

that an environment can change over a period of time. The reason maintenance systems 
introduced above cannot cope with this temporal variation and therefore another form of 

reason maintenance - temporal maintenance - is required. Within a project management 
system, time represents an important factor (for example, it is one of the project 

objectives identified by Turner (1993)). As project conditions are dynamic, and results 
are constantly changing with respect to time, some form of temporal maintenance is 

required. 

Temporal maintenance systems keep track of the consistency of a knowledge base at a 
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given time or time interval. In reason maintenance systems updates are usually required 

as more information is contributed to the system or contradictions are discovered. In 

temporal maintenance systems changes can be seen to occur over a period of time 

alongside more usual information modifications. The system is aware that the 

knowledge base is affected by the passage of time and updates it accordingly [Guerrieri 

1987, Dean and McDermotl 1987, Alien and Hayes 1985, Tsang 1988, Shoham and 

McDermon 1991). 

Within temporal maintenance systems current valid states are based on underlying valid 

assumptions (the same as reason maintenance) that can, in this case, include temporal 

parameters. Rather than absolute dates being used, a temporal maintenance system can 

use reference intervals [Alien and Hayes 1985). This implies that much of the 

knowledge within these systems is organised relatively rather than absolutely. 

Examples of these relationships, from Alien (1983), include X before X X equal X X 

meets X X overlaps X X during X X starts X and X finishes Y This fonn of temporal 

relationship appears to relate directly to the relationships represented within activity 

networks. Guerrieri (1987) employed temporal maintenance in his system that dealt 

with multiple projects concurrently. This worked by applying time guards to facts 

within the knowledge base to identify the interval in which these facts are held to be 

true. 

As temporal systems change assumptions based on the passage of time, they must also 

be able to access previous information that has since become outdated (in case this 

information needs reworking for any reason). This is particularly imponant in project 

management where reference to an original, baseline plan may be required. In addition, 

the model must also be able to support persistence. In other words, if something has 

happened to produce a change in state from SI to S2, it will remain in state S2 until 

there is further information or a progression of time to indicate otherwise. 

6.3.5 Interaction 

The question must be raised as to how the reason and temporal maintenance systems 

can interact with one another as data is manipulated on a blackboard. The obvious 

solution is that temporal maintenance is kept within each context of the ARMS. If this 

were not the case, temporal inconsistencies would be difficult to spot unless there was 

some form of temporal overlap between each context. A solution to this problem is to 

build temporal maintenance into the knowledge sources themselves. As the knowledge 

sources only ever see a single context at any given viewing, so would the temporal 

maintenance system. Interaction between the components of the temporal maintenance 

system within the knowledge sources is required in this case to ensure that temporal 
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consistency is maintained throughout the whole of the blackboard structure, and not just 

in a specific knowledge source region. 

6.4 THE INTELLIGENT SOFTWARE DEVELOPMENT SYSTEM 

6.4.1 Overview 

Having outlined some approaches that are used in artificial intelligent systems, this 

section provides some initial thoughts on how these techniques can be applied to 
support the management of software developments. Section 6.2 showed how the 

development of software can be decomposed into four project su bmaster phases that 
present different managerial problems. Each of these submaster phases can be helped 

by different types of knowledge captured within an artificial intelligent system. 

6.4.2 The Blackboard Architecture 

Project managers possess a vast range of skills and knowledge that they apply to 
problems encountered in the development of projects. In order to pull together the 

diverse knowledge and skills for a software development process some fonn of 
structure is required. The blackboard architecture introduced earlier represents a 

suitable framework for this task. Not only does it allow separate knowledge sources 
(and consequently approaches) to work on particular problems, but it also structures the 

problem development in a hierarchal way that enables a software development plan to be 
split logically into constituent phases or levels. There are several aspects that require 

representation on a blackboard - the organisational levels, the different phases through 
which a project progresses, the different problem solutions, and perhaps even different 

organisational objectives if these are kept separate. How these aspects are represented 
within a blackboard data structure, that has only three possible dimensions (hierarchical, 

panels, and reason maintenance supporting multiple solutions in these dimensions) is a 
question that still needs addressing. 

Initial thoughts on this representation are to use the different panels of a blackboard 

data structure to store separate solutions to a project management problem. Each panel 
of the blackboard, in this case, could represent a possible project scenario. For example, 

separate routes through a metamodel at the strategic level could be represented on 
different panels of the blackboard. The hierarchical levels of each panel could be used 

to represent different organisational levels of a project plan - for example, the top level 

could represent the integrative level, the next level down a strategic plan (metamodel 

level) and the next level a tactical plan. A knowledge source for this structure could 
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perform a work breakdown structure on the strategic level plan to produce lower 

hierarchallevels. Knowledge sources could also be used to provide different forms of 
what if analysis with the solutions kept on different panels of the blackboard. This 

representation does not account for the different phases through which a project 
progresses and the different objectives that may be involved. 

An alternative view could be to use the hierarchy of a blackboard panel to represent 

plans for different phases of a software development process. Knowledge sources for 
different stages of the development process could then provide solutions to problems 

encountered at each stage. In this case each panel could represent the different levels of 

organisational interest (integrative, strategic, and tactical) or different problem solutions 

encountered within each phase. Obviously there may be several solutions for different 
problems and these need maintaining simultaneously by some form of reason 

maintenance in particular areas of the blackboard data structure. 

6.4.3 The Knowledge Sources 

Initial ideas in this area are to group the knowledge sources into phase specific sets so 
that each set produces alternative solutions to a problem within each development phase. 

The way in which these alternative solutions are maintained is discussed for each 
specific phase below. These knowledge sources represent knowledge that is captured 

from particular fields of project management. Initial ideas for knowledge sources 
include critical path analysis, resource levelling and ones that can implement some form 

of what if analysis. 

Acquiring knowledge for knowledge based systems is by no means a simple task. 
Various texts have been written on the subject such as Hart (\ 989). There are also 

several approaches to representing captured knowledge within a knowledge source. 
This knowledge is usually represented as rules within the knowledge source that 'fire' 

when they can solve a particular problem presented to them on a blackboard pane\. This 

usually occurs when facts on the blackboard match the antecedents of a rule within a 

knowledge source. Approaches to knowledge representation are studied in more detail 
in Ringland and Duce (1988) and Brachman and Levesque (1985) to name but two. 

The following sections discuss the use of reason maintenance as a technique that assists 

the knowledge sources in providing solutions to problems encountered in different 
phases of a project. As discussed in section 6.4.2, these different phases could be 

represented on different hierarchical levels on a blackboard pane\. Each panel in turn 
could represent either different problem solutions or different organisational levels of 

interest (in which case multiple solutions would exist at each hierarchical level). 
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6.4.4 Objective Setting 

During this submaster phase the objectives of a project must be set in line with the 

organisation's objectives (see chapter four). To assist the management of this particular 
phase some form of decision support tool is required. At this stage of a development 

tradeoffs must be made between scope, time, and cost while there is still considerable 
uncertainty about other detailed development parameters [Levin and Kunz 1987]. 

An Assumption Based Reason Maintenance System applied to this stage of the 

development would allow managers to analyse the scope of a development by 
comparing different outcomes concurrently. Underlying assumptions could be 

reviewed and revised using the ARMS to assess alternative approaches generated by 
different knowledge sources. The ARMS would be maintaining alternative project 

objectives that were devised by specific knowledge source sets. The ARMS is an ideal 
means of knowledge maintenance in this stage because the architecture is particularly 

well suited for tasks where a reasonable fraction of the potential solutions must be 
explored [DeKleer 1986a]. 

6.4.5 Planning 

In some respects this stage is similar to that of objective setting. Alternative solutions 
are sought to determine the best balance of time, resources, and costs for a development. 

Planning is more analytically based with solutions being derived through various rules 
and heuristics within the knowledge sources. There is not one heuristic that produces 

an optimum plan under all circumstances and consequently the knowledge sources 
capture alternative plan solutions that can be viewed by management. 

The multiple worlds approach, developed by Kunz et alia (1986), is particularly well 

suited to this stage. Again this is based on an Assumption Based Reason Maintenance 
system and allows multiple solutions of a problem to be viewed and analysed 

concurrently. The way the worlds are created enables them to be maintained as 
complete units, so that reworking is not required each time a manager wishes to view an 

alternative plan. This allows a more real time, interactive management process, 
providing a manager with 'online' comparisons. 

For the knowledge sources this also provides a practical technique. Different plans can 

be assessed by weighing up the tradeoffs between resource, cost, and time levels. 
Consequently the knowledge sources themselves can perform trial and error approaches 

(what if analysis) based on perturbations or changes that they introduce into plans on 

181 



the blackboard. Feedback from these changes provide knowledge sources with 

infonnation they need to deduce the sensitivity of specific parameters. 

6.4.6 Control 

This is an ongoing activity throughout the working stages of a development. It is 
affected primarily by the advancement of time in which tasks begin and end. 

Consequently a temporal maintenance approach is proposed to control the changes that 
occur within this stage. Temporal maintenance updates the consistency of the 

knowledge base as time progresses. As tasks starting and completing significantly 
affect a project's status, and these events depend on time, the temporal maintenance 

approach is ideally suited to this particular stage. 

The relative way in which the knowledge is represented within a temporal maintenance 
system allows the system to update dynamically a project task plan as it progresses. 

Anomalies which are input by a manager affect current and future progress. These 
changes cascade through the knowledge base via the relative connections imposed by 

the temporal maintenance system. 

The knowledge maintained by a reason maintenance system within a blackboard can 
also be time guarded [Guerrieri 1987). This means that each fact or rule is augmented 

with time guards that allow information to be believed or disbelieved at a particular time 
or time interval. These guards could be defined with relative, rather than absolute, 

temporal values because a software development plan is itself a relative structure. How 
time guards can be implemented within a relative data structure is an area for future 

research. 

6.4.7 Maintenance 

As highlighted in previous work this can be the most costly stage (with respect to both 
time and resources). It tends to be, however, the one in which the least planning and 

control is used. Initially, in the maintenance stages, strategic decisions must be made as 
to the depth and quality of future work that may be required for a specific software 

product. This could be assisted through a similar approach to that used during the 
objective setting stage. 

It is important that managers extend the enthusiasm they have for project planning into 

this maintenance stage. They should weigh up alternative approaches to specific tasks 
in this stage with as much care as they used in objective setting. 
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An ARMS can be used to assess alternative cost/resource requirements and productivity 

from proposed work involved. It can also be used as a decision suppon system to test 
the feasibility of alternative updates that may seem beneficial to a development in the 

future. A decision suppon system based on an ARMS would assist management, for 
example, in assessing the feasibility of debugging a system, recalling software and 

introducing enhancements. 

6.4.8 System Inputs and Outputs 

An imponant question that must be raised is what are the intended inputs and outputs 

from this type of management system? At the initial objective setting and planning 

stages this does not pose a problem. It is envisaged that from an initial project outline 
(possibly at the strategic level) the system could apply work breakdown structure rules 

to decompose a project to lower tactical levels. It would also provide various project 
scenarios that could be compared, either by managers, or by knowledge sources. 

However, what are the inputs and outputs from knowledge sources within control and 
maintenance? One envisages an intelligent system that suggests changes in the project 

management approach as information is fed into the system based on a project's 
progress. These ideas are still in their infancy and require maturing before their actual 

implementation can be achieved. 

6.5 CHAPTER SUMMARY 

6.5.1 Conclusion 

The theories and ideas introduced in this chapter are still very much in their infancy. 

They represent initial thoughts, and a possible solution, to the problem of developing an 
intelligent project management suppon tool that can be used in the development of 

software systems. There is obviously much work to be done before these thoughts and 
ideas can mature into a fully operational system at any level. The Assumption Based 

Reason Maintenance System has been identified as tool that allows managers to view 
several solutions to management problems concurrently and assess the alternatives. 

Temporal maintenance has also been identified as a technique that is directly applicable 
to dynamic changes encountered by projects. 

6.5.2 Future Work 

Although there is much work to be done in developing the ideas put forward in this 

chapter, there is already a blackboard framework in place at Loughborough University 
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on which the LUMP (Loughborough University Manufacturing Processing) system 

performs process planning [Herbert et alia 1990]. As this system is domain 
independent, the knowledge sources for the software development system can be 

applied directly to it. Work is still needed to capture the knowledge used for managing 
the software development process into the knowledge sources of this system. The 

initial steps would be to incorporate simple project planning knowledge sources into 
this system. Determining the final hierarchical/panel structure of the blackboard also 

requires addressing, as does the development of temporal maintenance within this 
system. 
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CHAPTER 7 

Summary, Evaluation, Conclusions 

CHAPTER PREFACE 

This chapter brings together the work covered within this thesis. It summarises each 
chapter in turn, identifying advances made within those chapters, and highlights 

areas of potential future research. Current industrial approaches to software 
development are studied and real projects are examined where advances made in this 

thesis can be applied. Project management information systems, currently available 
within industry, are also surveyed. 

KEYWORDS 

Metamodels, Project Management, Generalised Activity Networks, Temporal 

Analysis, Artificial Intelligence 

7.1 INTRODUCTION 

The aim of this chapter is to collate the work of this thesis. With reference to figure 2.2, 

a support element has been developed within chapter three that supports the project 

management activity within a new software development model (chaptertwo). Chapter 

four put this work into context and improved the approach of activity network analysis, 

and chapter five used this development to analyse potential projects' temporal 

outcomes. Chapter six represented a working chapter, again providing a support 

element for project management of the software development process. 

This thesis has covered several areas, all intertwined within the management of the 

software engineering process. This conclusion will start by summarising each chapter 

in turn before looking at the current state of the software development industry and 

examining projects where some of these ideas can be applied. Current industrial 

practices are also assessed to see where the concepts introduced here can be applied. 
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7.2 CHAPTER TWO 

7.2.1 Summary 

Chapter two (based primarily on the work presented in Dawson and Dawson (1994c» 
began by identifying an early concept of the software development process, its aspects, 

and how these aspects interacted. This concept was developed and brought up-to-date 
by introducing identifiable models and methodologies. Having identified the essential 

aspects of the software development process, this chapter went on to develop a new 
concept called metamodels. Metamodels were defined as combined paradigms or 

hybrid models allowing more flexible, visual development of software systems -
enabling software to grow within their structure. The benefits of metamodels were 

identified and a means of control was introduced (Generalised Activity Networks). The 
chapter concluded by identifying two areas of potential research: 

(i) Development of software dependent metamodels. 

(ii) Development of organisation specific metamodels. 

In the following section another potential research area is identified· that of the 
interaction between established methodologies (for example, SSADM) and new, more 

dynamic approaches to the development of software systems. 

7.2.2 Discussion 

Many companies have recognised the need for more dynamic approaches to software 
systems development. A concept paper published by the Butler Group in Autumn, 1993 

[Butler Group 1993] identified, once again, the need for more flexible approaches to the 

development of software (see also Agresti (1986a and 1986b». Although keen to push 

forward their own concepts on software development management, they highlighted the 
problems encountered by companies using engineering approaches to this different 

management field. Their methodological approach is aimed at managers involved in 
strategic level planning of information systems developments. Figure 7.1, taken from 

the Butler Group repon, emphasises the problems encountered by software development 
managers who use old engineering practices. 

The Butler Group emphasised the need for a closer interaction between developers and 

client. Too little feedback between client and developer can lead to a system being 
incorrectly specified and produced. Too much feedback can lead to an overly complex 

system produced months (or even years) late. Figure 7.1 shows how, at the initial 
stages of a development, the user does not really know what they want. If they are then 
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excluded from feedback in subsequent stages they will not get what they really want in 

the final delivery. The cost of errors discovered in each phase is also shown to increase 

dramatically over the life cycle of a project. Usually one sees a ten fold increase in error 

costs for each subsequent life cycle stage as each stage inherits problems from earlier 

mistakes. By limiting software developments to out-dated, life cycle models, based on 

engineering practices, these are the results that ensue. 

The main point from this report is that development of software is a dynamic process, 

constantly changing to reach either varying customer goals or a more comprehensible 

problem domain. The metamodel, introduced in chapter two, provides a hybrid model 

that can cope with more dynamic systems development. It provides a means of 

controlling software development projects and identifies risk and decision points within 

a project life cycle. 

Users do not know 
what they want Specify 

{

Design 

~~~but 1-----1 
Build 

Users do not get 
what they want Use 

Cost of Errors Discovered 

Time 

Figure 7.1 Flaws in the Engineering Model [©Butler Group 1993] 

'Far from being the helpful tools they promised to be, software methodologies could 

turn out to be too complicated for their own good' [Davidson 1990]. 

Another point worth noting within current industrial practices is that, very often, projects 

are constricted, not just by models employed, but by development methodologies used. 

In a recent case at the University of Derby, a one person-year project was undertaken 

using SSADM. SSADM is, quite clearly, a methodology aimed at medium to large 

scale information systems developments. To apply SSADM in depth, as it was in this 

case, to a small project was unsatisfactory. The project was constricted by the 

limitations imposed on it by this methodology and was not completed successfully. It is 
important to realise that developments and models should not be dictated to by older 

development methodologies which are, after all, intended to support and improve the 
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development process. 

One question that this raises is how new, flexible models, such as the metamodel 
developed in this thesis, are to interact with current, established methodologies. 

Although Generalised Activity Networks (developed in chapter three) provide a means 
of supporting such a model they do not answer the question of how methodologies 

could be adapted to cope with such flexible systems. Clearly, for smaller 
methodologies, covering only single stages of the life cycle (for example, data flow 

analysis, JSD and so on), this does not pose a problem. It is the larger, project-wide 
methodologies that require some adaptation. SSADM, for example, can prove quite 

constrictive in software development projects and the question posed should not be how 
metamodels interact with established methodologies but how these old methodologies 
can be adapted for newer, more dynamic systems development. The development of 
new, flexible methodologies, and the interaction between dynamic systems development 

and old methodologies, is another area for future research. 

7.2.3 Evaluation 

How a metamodel relates to a real software development project is discussed in some 
detail in section 7.7.4. 

7.2.4 Conclusion 

Chapter two introduces the metamodel which provides a new concept for model 

development within the field of software engineering. This flexible, dynamic structure 
provides a greater visibility of project direction and progress and provides a model that 

does not constrict the software development process. 

7.3 CHAPTER THREE 

7.3.1 Summary 

Chapter three was based initially on work presented in Dawson and Dawson (l994a). It 

identified limitations in an area of project management support - Generalised Activity 
Networks - and began by identifying previous work in this field. Two project 

management software tools, that have limited abilities in this area, were also discussed. 
The early pans of the chapter concentrated on the work of Dawson and Dawson 

(1 994a) - that of the development of a Generalised Activity-on-the-Arrow 
representation. The chapter moved on, in light of further research into current practices 
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in the project management industry, and developed a Generalised Activity-on-the-Node 

representation from this work. 

An example of how Generalised Activity Networks could be used (more especially in 

software development management) was shown with a project developed for illustration. 

This example illustrated a tactical level plan for the implementation of a software system. 

Network properties were then discussed in view of current practices and approaches in 

this field. The chapter concluded by identifying four potential areas of future work: 

(i) Implementation of the definitions in a software tool. 

(ii) Gantt chart representation of Generalised Activity Networks. 

(iii) Cost/fime optimisation and resource levelling in Generalised Activity 

Networks. 
(iv) Work Breakdown Structures for Generalised Activity Networks. 

7.3.2 Evaluation 

Generalised Activity Networks provide more realistic representation of project 

scenarios. However, although some minor developments have been made in this field 

over the years, Generalised Activity Networks never became an established project 

management technique. A possible reason for this, which also makes evaluation of 
Generalised Activity Networks difficult, is that projects can always be seen to complete 

in a deterministic fashion. In other words, a project will complete at a given time along 

with the activities that constitute it. Probabilistic branches will have either been pursued 

or not, and loops performed a specific number of times. To say that a probabilistic 

activity that was not performed could have been omitted from a project plan would be 

wrong as, at the inception of a project, the final project environment can only be guessed 

at. At a project's outset a deterministic conclusion cannot be predetermined and only a 

probabilistic structure is able to represent the possibilities. 

Generalised Activity Networks have already been successfully used in large 

development projects (for example, Moeller (1972), Kidd (1990)). The need for more 

flexible, network-based planning techniques can be implicitly identified by looking at 

how a software development can be successfully modelled by a metamodel (in section 

7.7.4). 

Many project managers interviewed felt that more powerful planning techniques, that 

include an ability to plan for alternatives, were needed. Generalised Activity Networks 

satisfy these requirements and support the management of more dynamic systems 

development. 
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7.3.3 Conclusion 

The Generalised Activity Network representation provided in chapter three provides a 
conclusive definition in an area sadly overlooked in the past. The Generalised Activity­

on-the-Node representation provides a support tool with which most project managers 
should be comfortable. The more powerful planning techniques (loops, probabilistic 

branching and so on), identified as a requirement by many project managers interviewed 
(see section 7.8.1), are provided as and when required. By encompassing all possible 

variations in one conclusive definition, a baseline has been set from which future 

developments can be made. 

7.4 CHAPTER FOUR 

7.4.1 Summary 

Having defined a more powerful, new approach to project planning in chapter three, the 
aim of chapter four was to identify and improve analysis approaches for this and related 

techniques (ie PERT type analysis). Chapter four began by putting into context the uses 
of activity networks within the field of project management. It then moved on to a 

comprehensive coverage of past and present approaches to activity network analysis 
before concentrating on Monte Carlo simulation. A new approach was then introduced 

(a Dynamic Sampling Technique) based on work presented in Dawson and Dawson 
(l993b and 1994b). Antithetic variables (a less refined approach than stratification or 

Latin Hypercube) were also discussed as these can improve the efficiency of network 
simulations in certain cases (ie when activity temporal functions are symmetrical). 

Limitations were noted with the Dynamic Sampling Technique and a prototype Modal 

Class Dynamic Sampling Technique was introduced. This prototype is in its infancy 
and requires development to overcome the problems identified with it in chapter four. 

The chapter concluded by noting four potential areas of research: 

(i) The development of Modal Class Simulation of Activity Networks. 
(ii) The affects of early delays on future activities. 

(iii) Representing activity durations by more applicable distribution functions. 
(iv) Parallel algorithms for the reduction of simulation costs still further. 

7.4.2 Evaluation 

Of all the risk analysis packages on the market today, none offer the ability to limit, by 
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accuracy, the number of Monte Carlo simulations performed. All the companies 
involved with these packages (for example, Predict!TM, @Risk™ and Monte Carlo™) 

recommend rather subjective estimates for the number of samples needed to provide 
'accurate' estimates of project completions and risks. None of these packages seem to 

identify a need to highlight the most likely project outcome (the mode) preferring to 
calculate the mean (which only represents an average if a project is performed many 

times). Nurse (a User Champion with Marconi) uses Opera® which is a Monte Carlo 
risk analysis package that accepts plans from Open Plan®. He claims that 

approximately one thousand simulations, based on a subjective estimate, should 
performed with this package to provide the required accuracy for network plan results. 

According to Nurse, one way of reducing the time for these simulations is to remove 
some of the lower risk activities beforehand (a kind of path deletion approach - see 

section 4.4.7). Some other project managers interviewed (see section 7.8.1) welcomed 

the modal approach and said they would find it of far more benefit than the approach 

offered by current risk analysis packages. 

7.4.3 Conclusion 

The techniques developed in chapter four provide more accurate and realistic 
representations of project outcomes in shorter times. These techniques now need 

integrating into Monte Carlo based systems. Managers can then reap the benefits 
offered by this, more efficient, approach. 

7.5 CHAPTER FIVE 

7.5.1 Overview 

Chapter five used some of the techniques developed in chapter four to provide a detailed 
temporal analysis of activity networks. This chapter presents results from four papers 

[Dawson 1994a and 1994b, Dawson and Dawson 1993b and 1994bl. The results are 
presented as the comparative simulation requirements of Probabilistic and Generalised 

Activity Networks, and the affects that various discrete and continuous activity temporal 
functions have on the duration of projects represented by activity networks. It is 

unlikely that a single distribution function (for example, the Beta) can represent all 
activity temporal functions in all projects. The affect that various other distribution 

functions have on the duration of a project was, therefore, important to determine. The 
project outcomes determined in chapter five highlight the possibilities that can occur. 
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7.5.2 Conclusion 

The one important conclusion that comes out of this chapter is that projects, when 

analysed by simulation techniques, cannot be represented by one particular temporal 

function. It is important that managers realise, having identified and incorporated risk 
into their project plans (both temporal and probabilistic) that project outcomes are not 

deterministic. In other words, project results must be viewed on an overall basis and 
statistical figures (for example, the mean and standard deviation), must be viewed with 

some caution. This work emphasises the need for modal estimates and cumulative 
frequency distributions that provide far more useful information to managers. 

7.6 CHAPTER SIX 

7.6.1 Summary 

Chapter six represents a working chapter based on work presented in Dawson and 
Dawson (1993a). Overall it looked at how artificial techniques could be used to 

improve support for software project managers. It viewed management of the software 
development process from the angle of four phases and identified problems encountered 

by managers in these phases. A blackboard architecture was discussed that represents 
an ideal framework on which to build a software development management system. 

How knowledge from the field can be incorporated into the system as knowledge 

sources was also discussed. Reason maintenance systems were also introduced and a 

way of allowing interaction between reason and temporal maintenance systems within 
the blackboard architecture was proposed. The chapter concluded by looking in more 

detail at the artificial intelligence approach and its structure for a software development 
management system. It finished by identifying this work as an area for future 

development. 

7.6.2 Conclusion 

Artificial intelligence techniques for software development management are particularly 
limited at the moment and represent a target for the future. Artificial intelligence 

approaches to the more general field of project management are, however, more 

widespread. Examples include Levitt and Kartam (1990), Brown (1988) and Foster 

(1987). The approach put forward in chapter six provides a suitable framework on 

which intelligent systems can be developed. These systems can relieve some of the 

burden on the project manager by providing decision support where it is needed. At the 
moment, however, intelligent software development management systems are a future 
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goal and even then they may not be expected to manage projects on their own - only 
managers can really do that. 

7.7 PROJECT MANAGEMENT SOFTWARE TOOLS 

7.7.1 Overview 

One cannot conclude a thesis that has developed new concepts in the field of project 
management without looking at some of the tools managers are currently using within 

both academia and industry. The best forum to assess these different tools was at a 
recent exhibition in London [Project Management South 1994] where all the companies 

active in this field were demonstrating their wares and introducing their own approaches 

to project-based management. 

Turner (1993) identified five types of Project Management Information Systems 

(PMIS), three of which are available and two of which still require development. They 
are, respectively: 

(i) Networking systems. 

(ii) Cost and resource management systems. 
(iii) Application generators. 

(iv) Capacity planning systems. 
(v) Totally integrated, modular packages. 

Of these five systems, networking systems and cost and resource management systems 

are the two most closely related to the work of this thesis (mainly chapter three). 
Networking systems represent the more well known project management packages 

available today that include the ability to model projects by activity networks and/or 
Gantt charts (also called bar charts). The concepts within these networking packages 

were developed within chapter three. Cost and resource management systems represent 
a more methodical approach to project management and incorporate cost, work, and 

organisational structures within project plans. Generally speaking, cost and resource 
management systems represent more organisation-wide approaches to project 

management. 

The following list presents the tools/methodologies/consultancies and companies active 
in the project management information system's market today. Most of these 

companies were presenting their tools at Project Management South (1994). Addresses 
for some these companies can be found in Appendix G. 
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Company 

AranLId 
ASTA Development Corporation Lld 

Baesema 
Complete Project Management Lld 

Computer Associates® PLC 

Computerline Lld 

Deepak: Sareen Associates 

Hoskyns Group Plc 

IBM (UK) Ltd 

JMCA (John Cockerham and Associates) 

LBMS 

Lucas Management Systems 

Leach Management Systems 

MANTIX Systems Limited 

Micro Planning International Lld 

Microsoft® 

OPL 
Palisade Corporation 

Panorama Software Corporation Ltd 

PARISS Ltd 

People in Technology Lld 

Ptimavera Systems Inc 

PSDI (UK) Ltd 

Risk Decisions Ltd 

Scitor Corporation 

TBV Consult 

Welcom Software Technology Int. 

7.7.2 Networking Systems 

Software Toolsllmeresr 

PMSX-KerneI™ (Ingres based) 

PowerProject™ Version 2 

RISKNETTM 
TrackStar™ 

CA-SuperProject® 

PLANTRAC-APROPOS® 

Time Line® 6, On Target™, InstaPlan™, 

ProjectGuide™ 

PMW, Project RISK 

MITP 

Risnet™ 

Methods On-Line, SSADM Engineer 

Artemis Schedule Publisher™, and 

Prestige™ 

CS Project™ for Windows™ 

Cascade® 

MICRO PLANNER® Version 6 
Microsoft® Project™ 4.0 

RISKMAN 
@RiskTM 

Panorama ™ PLANNER and COST 

PARISS Enterprise™ 

Pertmaster Advance 2.4G 
Ptimavera Project Planner®, Monte 

Carlo™ 2.0, Parade® 

Project/2 Series X® 

Predict!TM 

Project Scheduler 6™ 

Consultants (see appendix A) 

Texim Project™, Open Plan®, Opera®, 

and Cobra® 

The majority of tools on offer were PC-based project management tools, now 

supporting the Windows™ environment. Generally speaking, they provide a means of 

planning projects using Gantt charts and activity networks (mostly Activity-on-the­

Node). One tool, ProjectGuide™ (1993), provides a means of generating project plans 
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based more on an organisation's own approach or methodology. These plans can then 

be imported directly into CA-SuperProject®, InstaPlan™, Project Manager Workbench, 

Microsoft® Project™ or Time Line®. Most tools have an ability to level resources to 
some degree and some offer methods for project control (for exarnple, earned value). 

Costs can also be applied and, in most cases, work breakdown structures can be created. 
Some of the tools allow data to be exported into databases or spreadsheets where other 

tools (for example @RiskTM (1990) or RISKNETTM (1992» can be used to perform 

risk analysis on project plans. Those tools that perform risk analysis are discussed 

below. 

The following list identifies the tools that fall into this category - the marketing details of 

which are beyond the intended scope of this thesis. 

Panorama™ PLANNER and COST, Texim Project™, Artemis Schedule Publisher™, 

Primavera Project Planner®, Pertmaster Advance 2.4G, Project Scheduler 6™, 

Microsoft® Project™ 4.0, Time Line® 6, On Target™, CS Project™ for WindowsTM, 

PowerProject® Version 2, CA-SuperProject®, InstaPlan™, MICRO PLANNER® 

Version 6. 

Turner (1993) identified that a requirement missing from current Project Management 

Information Systems is a completely integrated, modular system. He went on to state 

that perhaps the closest any company comes to this requirement is the suite of programs 

sold by Welcom Software Technology (Open Plan®, Cobra®, Opera® and Texim 
Project™). Turner also identified Cascade® (1993) by MANTIX Systems Limited as a 

system fulfilling this requirement, although in this case it is a single package with these 

facilities. 

7.7.3 Cost and Resource Management 

Large cost and resource management systems tend to be organisation-wide products 

that introduce a methodological approach to project management within an organisation. 

Two of the more well known packages that fall into this category are Cobra® (C/SCSC 

Cost Management) and Cascade®. Other systems, that are not as large but incorporate 

recognised cost control methodologies, are MICRO PLANNER® X-Pert (based on 

control using earned values) and InstaPlan TM (based on C/SCSC). 

7.7.4 Methodology Based 

Several companies at Project Management South offered methodology based tools (see 

also Powell (1990». These packages either represent methodologies in their own right 
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(identified in figure 2.2) or support elements for already established methodologies. 
The better known of these tools are Cobra®, InstaPlan TM (both based on C/SCSC cost 

management), and Cascade®. Others include PMSX-KerneI™ and PLANTRAC­
APROPOS® (both based on the Prince methodology), MITP (an IBM methodology), 
Methods On-Line and SSADM Engineer (methodology support by LBMS), MICRO 
PLANNER® X-Pert (based on control using earned values), and RISKMAN (a 

methodology based on a European Project Risk management initiative). 

7.7.5 Risk Systems 

'How can one manage and plan for the unknown when the "known" is always 
changing?' cited in Peltu (1994). 

Perhaps of more interest to this thesis were the tools offering some form of risk 

analysis. Articles detailing risk analysis software include Computing (17 June, 1993) 
and Milton (1994). Of the thirty five tools listed earlier only six offered limited project 

risk facilities. 

Opera®, by Welcom Software Technology, is an extension to Open Plan®. It provides 
four activity temporal functions - Normal, Uniform, Triangular and Beta and performs a 

Monte Carlo simulation to determine the mean and standard deviation of start dates, 
finish dates, and float. It also determines cost curves, and produces cumulative 

frequency distribution functions for times and costs along with histograms of these 
parameters. As it imports plans from Open Plan® it does not provide any probabilistic 

branching. The number of simulations performed is based on a subjective estimate 
recommended by the suppliers. This appears to be the case for all other Monte Carlo 

packages on offer today. 

Predict!TM includes health and safety risks, financial appraisal, and marketing analysis. 
It provides an Activity-on-the-Node project representation but no probabilistic 

branching. It offers twenty two activity temporal functions and the ability for the users 
to customise their own. This system takes no bold steps in the field of project-based 

management but enhances concepts already in existence. 

Another tool making no great improvements but advertising its developments 
nevertheless is Project Scheduler 6™. Project Scheduler 6™ allows three time 

estimates for each activity (as in PERT) and identifies the best, most likely and worst 
project completion time based on these figures. 

Project RISK by Hoskyns provides a new concept in risk analysis. It represents a 
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question and answer based risk analysis system that provides no project planning. This 

system asks a user a set of questions to determine the risks involved with a project. It 

then reports back on various aspects of the project including the chances of completing 

the project, its tardiness, usability, and supportability. 

Monte Carlo™ 2.0 and Risnet™ were two tools introduced in chapter three. Monte 

Carlo™ 2.0 is a plug in to Primavera Project Planner®. It allows two probabilistic 

branches, and two activity temporal functions. Risnet™ is an Activity-on-the-Arrow 

tool with limited node logic and twelve activity temporal functions. 

@RiskTM, supplied by the Palisade Corporation, is a plug in to either Lotus 123™ or 

Microsoft® Excel™. As projects planned using Microsoft® Project™ can be imported 

into Excel™ spreadsheets these plans can, in turn, be analysed by the @Risk™ 

package. @Risk™ provides either Monte Carlo or Latin Hypercube simulation 

methods (Latin Hypercube is a more efficient sampling technique for some distributions 

- see chapter four) that provide a form of project temporal risk analysis. As the results 

are based on plans drawn up within Microsoft® Project™, they are based on 

Probabilistic Activity-on-the-Node networks. Uyeno (1992) looks at the uses of 

@RiskTM in decision support for project managers. 

RISKNETfM is another package that integrates itself within a spreadsheet. In this case 

it is the Smart spreadsheet and database manager. RISKNETfM was developed by the 

Anglo-French avionics group Baesema as part of their own risk analysis for Ministry of 

Defence contracts. The tool is limited to a Triangular activity temporal function based 

on three time estimates (most likely, pessimistic and optimistic). Although it then 

simulates a project to provide more detailed results, it can perform a deterministic 

analysis to resolve the project on a one-off basis. This form of analysis represents a 

concept identified in chapter four of this thesis - that of determining a most likely 

project outcome. RISKNETfM, in this case, only performs one iteration of a project 

plan and accepts this result as the most likely outcome. In fact, what the system should 

do is to repeat the process several times and then conclude that the most most likely 

outcome is the one that occurs most often (the mode or modal class). The fIrst result 

generated by RISKNETfM is not necessarily representative of this case. 

In a recent survey, published in Personal Computer (May, 1994),@Risk™, Predict!TM, 

RISKNETfM and Project RISK were assessed. Unfortunately, none of these packages 

incorporate probabilistic risk into project plans (unlike Generalised Activity Networks) 

and merely identify risk as a temporal or costing problem. The only two packages 

available on the market that incorporate some form of explicit risk within project plans 

are Monte Carlo™ and Risnet™. Risnet™ is based on the less familiar (certainly in the 
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1990s) Activity-on-the-Arrow representation and this, and Monte CarloTM, provide only 

limited probabilistic branching. The approaches of Generalised Activity Networks, such 

as those used in VERT and GERT, that have proved themselves in large, organisation­

wide projects (for example Kidd (1990» need reintroducing to industry today. The 

shortfall in potential tools with these capabilities is perhaps due in pan to a case of 

managers not knowing what is possible and what they are missing. 

7.7.6 Company Wide 

Some of the project management systems introduced above represent larger, company­

wide approaches to project management. Two of the more popular approaches are 

TrackStar™ (a matrix organisation tool providing consolidation and infonnation to any 

management reporting level), and Cascade® that was covered in more detail in chapter 

four. Other organisation-wide approaches included Project/2 Series X® (PSDI (UK) 

Ltd), PARlSS Enterprise™, Artemis Prestige™ (Lucas Management Systems), PMSX­

Kernel™ and Open Plan®. 

7.7.7 Summary 

'Tools are not flexible enough to do what I want' cited in Peltu (1994). 

The overall feel from industry at the moment is that project management tools are not 

flexible enough to cope with problems encountered in real projects. Although the 

companies offering tools in the current market are striving to do more than their 

competitors, very few provide a means of identifying and controlling risk. To make 

more impact than a rival, companies emphasise their system's user-friendliness and 

detailed reponing capabilities. 

In some cases encountered, project managers are clearly hampered by the project 

management tools they are currently using. For example, figure 7.2 is an example of a 

particularly unclear Activity-on-the-Node plan produced by Microsoft® ProjectTM. 

This is a plan of the development of a software system that monitors babies' conditions 

in neonatal care. It is a six person-year project developed by a small software house in 

Loughborough and Edinburgh (five staff spread between these two sites). The manager, 

in charge of this particular project, has very little interest in the plans produced due to 

their lack of clarity and detail. The project is pursued on a more informal basis as these 

plans provide no workable information from which to operate. The version of 

Microsoft® ProjectTM being used is an old DOS-based package, the more modern 

Windows™ versions providing more workable plans (for example, see the CA­

SuperProject® example in Appendix A). Other project managers interviewed are also 
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Figure 7.2 An Obscure Project Plan of a Real Software Development 

199 



looking for more powerful tools with clearer reporting capabilities. A representative of 
the RAF at Project Management South (1994) was looking at improving his project 

planning capabilities and was assessing Primavera Project Planner®. His current 
system was proving unworkable and a more powerful system, with a clear management 

reponing facility, was required. 

In conclusion, the current state of project management information systems on offer are 
based on old, 1960s project management concepts (for example, PERT). Very few 

companies have taken bold steps to implement new ideas into their tools and are merely 
tinkering with the user friendliness of their systems and improving their input and 

output capabilities (for example, report generation). The only real development of late 
has been to upgrade these packages to Windows™ based products. 

7.8 EVALUATION 

7.8.1 The Software Development Industry 

In order to avoid developing theories within the closeted walls of academia, contact was 
made with a number of companies throughout the development of this thesis. Thanks 

must go to these companies who provided valuable insights into the 'coal face' of 
software development in the real world. These contacts were used to assess the 

popularity of the concepts developed and to keep in touch with real world approaches to 
project management used in the development of software. During the development of 

this thesis a questionnaire was used (Appendix H) to determine a more objective view of 
what was happening in the real world. This was backed up with visits to companies to 

discuss ideas with project managers experiencing real risks and uncertainties with their 
own software. Questionnaires must always be treated with some caution as the 

information they provide may be biased depending on how questions are raised. Both 
qualitative and quantitative information was provided through the feedback from this 

source. Due to the limited number of local companies available for interview (twelve in 
all) qualitative analysis proved more valuable due to the nature of the information 

sought. A broad cross section of companies were interviewed ranging from large 
nationals (for example, BT and GPT) to small, local software houses. 

The response rate for the questionnaire was pleasantly high with 60% of those 

companies contacted responding. The companies that did reply provided quite positive 
information with regard to the ideas developed. This questionnaire also provided a 

means of assessing each of the companies approaches to the development of software. 

The general feeling was that software houses are, on the whole, a number of years 
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behind the concepts and ideas been produced within academia. 

From the companies who responded, one third (four companies) used no identifiable 
software development model or methodology. The excuse in these cases was down to 

the size of development projects undertaken that required no more than one person­

month of effort. These projects were, therefore, performed using an early build-and-fix 

model without any real specification or requirements analysis. A specification of sorts 
would be provided by a client, and a programmer would be assigned the task of putting 

together a solution. One questions, in these cases, how organisational objectives were 
reached. How are these companies managing long term objectives when they appear to 

be working to only short term goals at anyone time? 

All of the other companies interviewed had an identifiable software development strategy 
and employed particular methods for developing their systems. For example, both GPT 

and BT use Cascade®, (a propriety tool and methodology) that not only provides them 

with an organisation-wide project management tool, but also with a methodology with 

which all departments can work. Other companies used methods such as SSADM, E-R 
Modelling, and Formal Methods, and one technique adopted was to use reusable code 

(one company developing its systems from 80% reusable code). The traditional life 
cycle approach was also identified as a model used by several of the companies 

interviewed (30% for this case). 

None of the companies felt that project management has been used within their 

organisation optimally. Both BT at Martlesham Heath and GPT at Nottingham had 

done something about this, and introduced an organisation-wide methodology based on 
Cascade®. The other companies felt there was something lacking with the approaches 

being used, and identified that some of the developments made within this thesis would 
be of practical benefit to them. They highlighted identification of project risks, and the 

ability to plan for alternatives, as the most beneficial parts of a new system. Modelling 
different time and cost functions was also identified as a need although, as has been 

noted in previous chapters, there are several project management packages that already 
offer this facility. 

More powerful planning techniques were also needed by two of the companies 

interviewed. These companies identified that their current practices were not flexible 

enough and felt that Generalised Activity Networks would provide a more visual 

representation of their projects. 

The most likely outcome of a project is clearly important to many managers and this 
was identified as a result lacking in most approaches. Modal estimates provide this 
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result. One company was also interested in having an intelligent project management 
tool that could try various what if analysis to provide several possible project 

development scenarios. A smaller company was also interested in these ideas especially 
if larger defence contracts were undertaken. More management reporting facilities were 

also identified as a need and this was backed up from discussions at Project 
Management South (1994). 

An overall impression that one had after speaking with several companies was the large 

split between academia and industry. It was felt that many companies, although strong 
in their own particular fields (for example, telecommunications, health care, general 

consultancy), had software development concepts that were still based on 1960s' ideas. 
It is obviously going to be some time before more dynamic approaches are widely 

accepted in the software development industry. 

7.8.2 An Example of a Project With Little Requirement for Generalised 
Activity Networks 

Unfortunately, applying probabilistic rules to one or two projects can never prove to be a 

fair assessment of Generalised Activity Networks. At the end of the day all projects are 
seen to complete, and are signed off, in a particular time, as are individual activities 

within those projects (although this completion can be somewhat difficult to define in 
software development projects). One would argue with hindsight, having planned a 

project and seen it through to completion, that that project could have easily have been 
modelled by detenninistic means. Unfortunately, this does not help the evaluation of 

probabilistic techniques. 

Generalised Activity Networks provide a means of explicitly identifying potential risk 
points in a project. Identifying these risks is the first step in perfonning risk 

management. By forcing managers to plan risks they become aware of the 
consequences and can reduce these risks (either by avoidllnce, deflection or 

contingencies [Turner 1993]). Having explicitly identified a project's possibilities and 
its risks within a Generalised Activity Network, its analysis provides details of the most 

likely outcome of that project (ie the mode rather than the mean). The detailed analysis 
of such plans however, must be questioned as 'these systems [Monte Carlo, PERIl 

must be treated with extreme care or the analysis takes over. You will spend an 
inordinate amount of time producing data of little value' [Turner 1993]. This point was 

addressed in chapter four as this analysis was improved to ensure that the data produced 
was of some value and the time to produce this data was minimised. 

The first example project (presented in Appendix A) shows that there are projects in 
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which risks are limited. Standard engineering projects usually fall into this category -
activities have been performed many times before and experienced managers are usually 

aware of all the possible risks. 

The project outlined in Appendix A provides a good example of how useful current 
project management information systems (network based) are in these engineering-type 

projects. These plans represent the Milltown Bridge Project - an engineering project 
with little risk or variation. Page A I in the appendices shows a detailed Work 

Breakdown Structure of this project from the integrative level down. The tactical level of 
the project is derived from the strategic level that shows simply preconstruction, 
construction and finals. Page A2 shows an Activity-on-the-Node representation of the 
project (based at a more strategic level) and pages A3 to A8 show various project Gantt 

charts. These charts provide a detailed representation of the project in a report form that 
is easily understood by all levels of the project's team. They also provide important 

managerial reports that are used for project tendering, and hopefully securing a contract 
in the first place. For projects of this nature (ie reasonably deterministic) plans of this 

form are invaluable. 

In these situations Generalised Activity Networks are perhaps unnecessary as plans are 
based on activities that have been performed many times before and have little risk 

associated with them. However, should there be uncertainties in a project, these could be 
modelled explicitly by Generalised Activity Networks. The advantage of Generalised 

Activity Networks in this case is that they still allow projects to be planned in the same 
straight forward way as that shown in Appendix A. They are powerful enough to 

provide the flexibility as and when it is required. 

This example shows that for general engineering-type projects the powerful facilities 
offered by Generalised Activity Networks are, in many cases, unnecessary. As most 

software developments are based on these established engineering practices it is not 
surprising that they have adopted the same deterministic managerial principles. 

Unfortunately, software developments (along with other project types - for example, 

research and development projects) have already been shown to be much more dynamic 

in nature. It is these dynamic projects that require more flexible management support 

systems such as Generalised Activity Networks. This will be born out in the following 

example. 

7.8.3 An Example Project Where Metamodels and Generalised Activity 
Networks Give Benefits 

In order to evaluate Generalised Activity Networks and metamodels, it is necessary to 
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look at a software project where problems were encountered. It is important to see how 
those problems were overcome by the project manager involved and how the concepts 

developed in this thesis would have helped. It was not necessary to search very far for a 
project that fitted this requirement as the first software project studied provided the 

required results. The project chosen for this study is a small, eleven person-month 
software development undertaken at Derby (larger projects have already been 

documented in other papers - for example Kidd (1990)). The intention of this project 
was to create an educational software package for use in primary schools. The package 

was completed in a collaboration between the University of Derby and Redhill Primary 

School, Nottingham. 

The initial approach to this project was to use the traditional software development life 

cycle with which most companies are familiar. This is represented in figure 7.3 which 
shows the initial strategic level plan (Activity-on-the-Node in this case) drawn up during 

the first week of the project. The project was observed from a distance - in other words 
no affect was imposed on the development of this project - its development was merely 

monitored. 

Specification 

Design 

Figure 7.3 The Initial Project Plan 

Figure 7.3 actually represents a standard waterfall approach along the lines of Analysis, 

Specification, Design and Implementation. When interviewing the project manager at 

the end of this project he stated 'In retrospect it was impossible to decide on these 
issues at that point in the project. This was because a greater understanding of the 

problems associated with providing educational software was required'. 
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It was not until two months into the project that the traditional development approach 
was found to be totally inadequate for a project of this nature. While the specification 

was been put together it became clear that the project was way off course. Teachers 
were uncomfortable about been involved in the software development process as they 

are used to ready-made products. This suggested using prototypes so that the teachers 
could be prompted into providing feedback. This prototype development, therefore, 

needed to be introduced into the project plan. 

When the project hit these problems, the project plan was radically altered to incorporate 
prototyping. It was followed to the successful completion of the project. The actual 

path this project took is shown in figure 7.4. This strategic level plan is taken directly 
from the metamodel developed in chapter two. Had this metamodel been available to the 

project manager from the outset, the use of prototypes could have been adopted more 
smoothly. The final plan, in the words of the manager, was a hybrid of several models. 

This emphasises the uses of combined models or metamodels that are clearly of benefit 

to many software development projects. 

Requirements I Prototype I Analysis 

Specification ~ 

~ Quick 
Design 

Prototype 

Implementation 

Figure 7.4 Final Project Plan 

A question one could ask is why a prototyping model was not adopted from the outset. 
This model would have provided an adequate framework in which this project could 

have evolved. Unfortunately, this project emphasises the main difficulty of software -
the problem domain and project environment is never fully understood at the outset. 

Figure 7.5 goes some way to emphasising this point. This figure shows the 
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considerable differences between planned and perfonned activities in this project. The 

uncertainties inherent within software developments lead to this unpredictable 

perfonnance. Had it been known that prototypes were required it is true to say that a 

prototyping model could have been used. However, it was not until the project was 

planned and underway that this requirement was determined. It is only when the 

software development project is undenaken that its true environment comes to light. 

The metamodel copes with this problem by identifying all possible alternatives at 

different stages of a project's progression. By combining several models within one 

metamodel, these approaches can be adopted as and when they are required. This 

allows a manager to adopt and adapt alternative development models at applicable stages 

in a project life cycle. Managers are not restricted to one model and can accommodate a 

dynamic systems development without major replanning. 

In retrospect one could have put together the final project plan (figure 7.4) at the outset 

using a Detenninistic Activity Network in a popular project management tool (although 

the loop would have had to be coded implicitly). This was obviously impossible as any 

probabilistic branching, that was unknown at the initial stages of this project 

development, could not have been identified within such a plan. The plan put together at 

the end of the project is not a genuine reflection of the problem domain at the outset. 

In conclusion, by encountering several problems at its initial stages, this project provided 

a valuable insight into real software project difficulties. The metamodel would have 

provided this project manager with a more flexible model with which to work. Frantic 

replanning after two months could have been avoided as variations could have been 

accommodated by a metamodel plan. The introduction of a prototyping approach could 

have been adopted more smoothly as the project plan would not have needed changing. 

The plan would merely have been used to identify the alternative strategic route pursued 

and would have provided an acceptable means of project control. A Generalised Activity 

Network representing this project would also have helped to control the development 

process by allowing the project manager to explicitly identify alternative approaches 

within the plan. Although estimates of probabilistic branching may have been sketchy at 

the initial stages (for example, what would have been the assigned probability for the 

prototype approach?), any alternatives would have already been brought to the attention 

of the project manager. It would only be through experience, like all other project 

estimation, that accurate project estimates can be made. It is worth noting that the 

estimates of probabilistic branching within a project plan would improve as the project 

progressed. These estimates would ultimately reach certainty when the branch point 

was reached. 
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7.9 CONCLUSION 

7.9.1 Contribution 

This thesis has made a significant contribution to three areas of software development 

and project management. First, the concept of hybrid models or metamodels has been 

developed to assist a more dynamic development of software systems. Second, a project 

management technique (activity networks) has been improved and developed and made 

more applicable to industrial requirements today. Third, current analysis techniques that 

use simulation for activity networks have been improved in terms of both efficiency and 

quality of data identified (backed up by experimental results). These three contributions 

have shown that a more flexible planning approach required for software development 

can and should be adopted. 

7.9.2 Summary 

Overall this thesis has made substantial progress in several areas involved with the 

management of the software development process. Initial aims and objectives have been 

reached and taken further and many new avenues of research have been opened up. 

In conclusion, even after thirty years, the field of software development management is 

in its infancy. It has a long way to go before the software crisis is averted. Only by 

adopting more flexible, dynamic approaches to software development can this problem 

be elevated. The advances made in this thesis go some way to allowing these 

approaches to be adopted. 
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APPENDIX A 

An Example Project 

A.1 OVERVIEW 

This appendix presents project documentation associated with the Milltown Road 
Bridge Project. This project began in December, 1992 and was completed successfully 

in January, 1994. The extracts are listings produced by CA-SuperProject® version 3 
'C'. Thanks must go to Computer Associates® and TBY Consult for allowing these 

project plans to be reproduced here. 

A.2 STAFF 

Consultant Engineer: Murray Walker 

Main Contractor: Scott Bradley 
Sub Contractor: J Fitzgerald 

Programme Managers: Mike Harvey (TBY Corisult, Croydon) 
Jonathan Reece (TBY Consult, Croydon) 

Client: Department of Transport 

A.3 LISTINGS 

Chart Page Date 

Tender Programme, Work Breakdown Structure Al 4 September, 1992 

Master Programme, Network Logic A2 4 September, 1992 
(Strategic level, Activity-on-the-Node) 

Master Programme, High Level Baseline A3 4 January, 1993 

Baseline Resource Programme A4 4 January, 1994 

Tender Programme AS 4 September, 1992 

Tender Programme (with early/late start) A6 4 September, 1992 

Contract Programme Baseline A7 4 January, 1993 

Progress as at January, 1993 A8 4 January, 1993 
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APPENDIXB 

Deterministic Activity Network Temporal Analysis 
(Activity-on-the-Arrow) 

B.1 DEFINITIONS 

t single estimate of mean activity duration time 

T E earliest event occurrence time 

T L latest allowable event occurrence time 

ES earliest activity start time 

EF earliest activity finish time 

LS latest allowable activity start time 

LF latest allowable activity finish time 

B.2 TOTAL ACTIVITY SLACK (S) 

S=LF-EF=h- EF (T L of the activity's successor event) 

The amount of time by which the actual completion time of an activity can exceed its 

earliest expected completion time without directly affecting the duration of the project. 

B.3 ACTIVITY FREE SLACK (SF) 

(TE of the activity's successor event) 

The amount of time by which the actual completion time of an activity can exceed its 

earliest expected completion time without affecting any other activity or event in the 

network. 

B.4 INTERFERING SLACK (IS) 

IS = S - SF 

219 



The amount of flexibility in scheduling an activity that must be shared with succeeding 

activities. 

B.5 INDEPENDENT SLACK (IndS) 

erE of the successor event, T L of the predecessor event) 

Slack that can be used exclusively for an activity having no affect on preceding or 

succeeding activities. 

B.6 FORWARD PASS RULES 

Rules 

1. The earliest occurrence time of an 
initial event in the network is taken 

as zero. 

2. Each activity begins as soon as its 

predecessor event occurs. 

3. The earliest event time is the largest 
of the earliest finish times of the 

activities merging to the event in 

question. 

B.7 BACKWARD PASS RULES 

Rules 

1. The latest allowable occurrence 

time of a terminal event is set 

equal to the earliest occurrence time 
computed in the forward pass. 

Formulae 

T E = 0 (for the initial event) 

ES = T E (for predecessor event) 

EF = ES + t = T E + t 

TE = largest of (EFl' EF2,"" EFn) 
for an event with n merging activities 

Formulae 

T L = T E (for terminal event) 
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2. The latest allowable stan time 

for an activity is its successor 

event latest allowable time minus 

the duration of the activity. 

3. The latest allowable stan time 

for an event is the smallest of 

the latest allowable stan times of 

the activities bursting from the 

event in question. 
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LF = T L (for successor event) 

LS = LF - t = TL - t 

h = smallest of (LS\. LS2•···• LSn) 

for an event with n bursting activities 



APPENDIXC 

Pure Exclusive-Or Generalised Activity Network Analysis Using 

Flowgraph Theory 

C.I INTRODUCTION 

This appendix deals with the analysis of pure Exclusive-Or Generalised Activity 
Networks. In these definitions an Activity-on-the-Arrow network is analysed. 

A Generalised Activity Network consisting only of Exclusive-Or SNL input and output 

nodes (an XOrGAN) can be analysed using flowgraph theory. The input side of nodes 
in this case are Blank-Or. XOrGANs represent open flowgraphs with a single source 

node s and a single sink node z. A network consists of N arcs. Each arc, i, is associated 
with an independent, nonnegative random variable X; (i = 1, 2, ... , N) and a probability, 

Pi, representing the probability that an arc, i, is performed given that its source node is 

realised. Each X; has a known distribution function f;(t) on [0,00). Between sand z 

there are K paths Pj (j= 1, 2, ... ,K). Arc ie Pj if arc i lies on path Pj. 

A First Order Loop is defined as a path in which the start node is also the finish node. 

An nth Order Loop is defined as n 'non-touching first order loops. In flowgraph theory 

the value of a transmittance through each path or loop is the product of the 
transmittances within that route. 

One of the most important equations within flow graph theory is the Topological 

Equation (C.l). 

~ 

H = 1- L (_1); L; 

;=1 

where L; = L ilh 
order loops 

(C.l) 

In a closed flowgraph (one composed entirely of loops) H = 0. In open flowgraphs, 
however, H ~ ° and is used to calculate T, the transmittance through a network between 

nodes s and z, using Mason's Rule (C.2). 
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K 

[ L (Pi x Lnon-touching loops) ] 
T = __ io::="'I ____ --;-:: _____ _ 

H 
(C.2) 

~ 

where L non-touching loops = 1 + L (-l~ I. 
. 1 J 
J= 

and ~ is the sum of the jth order loops not touching Pi' 

C.2 MOMENT GENERATING FUNCTIONS 

Mason's Rule and the Topological Equation apply to networks in which the 

transmittances along arcs are multiplicative. Although this is the case for arc 
probabilities in Generalised Activity Networks, the time and cost elements are additive. 

In order to enable the time element to be handled by flow graph theory it requires 
transforming into a multiplicative form. Pritsker and Happ (1966) proposed using 

Moment Generating Functions (MGFs) for this operation. Their reasoning behind this 

was that the resultant transmittances 'form a system of linear independent equations 

and, hence, can be reduced to a single W-function topology equation of flowgraph 
theory'. 

If e represents the exponential constant, then the time associated with arc 1 IS 

characterised by the MGF: 

f SI 
M.(s) = e f.(t) dt 

I I 
(C.3) 

o 

The distribution function, fi(t), can take many forms all of which can be converted into 

the corresponding MGF using equation C.3. For example, equation CA represents the 
MGF of a constant duration to' The MGF of the Normal distribution with mean J.1 and 

standard deviation cr is given in equation C.5, and equation C.6 represents the MGF of 
the Uniform distribution with limits a and b. 
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I 2 2 
Sll~ sa 

M.(s) = e 2 
I 

sb sa 
e - e 

M(s) = (b ) 
I - a s 

(C.4) 

(C.5) 

(C.6) 

The second stage of the transfonnation into multiplicative fonn is to generate the (J)­

function, wi(s), of arc i (C.7). 

(C.7) 

By converting each arc duration into an equivalent (J}-function one can employ Mason's 

Rule to reduce an XOrGAN into a single equivalent arc, e, between nodes s and z (figure 

C.l). 

~f--_e --I.~0 

Figure C.I Equivalent Arc 

If one analyses this equivalent arc then one has the time characteristics of an entire 

network. we(s) represents the (J}-function of this equivalent arc. The arc has probability, 

Pe, associated with it and MGF of the time distribution, Me(s). Thus: 

We(s) = PeMe(s) (CS) 

As all MGFs reduce to unity at s=O the value of Pe can be calculated from: 

We(O) = PeMe(O) = Pe (C9) 

Rearranging equations CS and C.9 leads to: 

M (s) 
e 

(C.lO) 

The nth derivative of Me(s) evaluated at s=O yields the expected value of the nth power 

of te - the duration of the equivalent arc. The second derivative enables the standard 
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deviation of this duration to be calculated. Equations C.II and C.12 show these 

derivatives. 

E(te) = dd M (S)I =0 s e s-

dO 
E(t~ =- M (S)I 

o e =0 ds s-

(C.II) 

(C.12) 

Thus, the required time characteristics of the network can be calculated. 

C.3 EXAMPLE 

b 

si---------~~~~--------__ ~z 
a c 

Figure C.2 Example Network 

As an example take the simple XOrGAN shown in figure C.2. Each arc has associated 

with it the following characteristics: 

Probabil ity Time Distribution 
Function 

a Pa = I Constant, fit) = ta 

b Pb = I - Pc Negative Exp, fb( t) = Ae-At 

c Pc = I - Pb Constant, fc(t) = le 

The w-function of the time transmittances through each arc a, b, c are wa' cut, and Olc 
respectively and, from equations (C.3) and (C.7), are evaluated as: 
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From Mason's rule the equivalent transmittance, T, between nodes s and z is: 

T= 
0000 

a c 

l-~ 
= 00 (s) 

e 

Pc 
Now P = 00 (0) = -- = 1 

eel - P 
b 

.. Me(s) = ooe(s) and thus 

d I Pb 
E(t) = - M (s) = t + t +--=--

e ds e s=o a c (l-p) "-

and 

(i = E(t2) _ E(t )2 = 1 
e e e 2 2 

(l-p),,­
b 

from (C.ll) and (C.12). 

b 
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APPENDIXD 

The Minimum of a Finite Set of Normal Random Variables 

0.1 INTRODUCTION 

This appendix is based on the work presented in Dawson (1993 and 1994c) which are 

developments from Clark's work [Clark 1961bl. 

x, Y, and Z are three independent Normal distributions with means J!x' liy' liz and 

standard deviations o"x' O"y' o"z respectively. Equations D.1 and D.2 are defined from 

Clark (1961b). P denotes the coefficient of linear correlation between X and Y (p(X,Y». 

2 2 2 
a =cr +cr -2cr cr P x y x y 

(DJ) 

a (D.2) 

If p( ) denotes the coefficient of linear correlation then 

PI = p(X,z) 

P2 = p(Y,z) 

(D.3) 

(D.4) 

Equations D.5 and D.6 (adapted from Clark (1961 b» represent the first two moments 

(VI and v2) about the origin of the distribution of the maximum of the two distributions 

X and Y. <1>(x) represents the standard Normal integral and '¥ (x) the standard Normal 

distribution function. 

VI = <1>(a) (11 - 11 ) + 11 + a'¥(a) (D.5) x y y 

2 2 2 2 2 2 
v2 = <1>(a)(1l - 11 + cr - cr ) + 11 + cr + (11 + 11 )a'¥(a) (D.6) 

xyxy yy xy 

It follows that the standard deviation (crmax) of this maximum distribution can be 

defined as shown in equation D.7. 
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(D.7) 

Clark went on to show how the maximum of n distributions could be calculated by 

employing equations D.8 and D.9. 

max(X,Y,z, ... ) = max(max(max ... «(X,Y),Z), ... » (D.8) 

<1>(0.) (cr PI - cr P2) + cr P2 p(Z, max(X, y)) = x y y 

J Vz - v~ 
(D.9) 

D.2 MINIMUM 

Although Clark leaves his work at the maximum of a finite set of random variables it 

does lead to some equally important results. Adapting equations D.S and D.6 produces 
formulae for calculating the first and second moments of the distribution of the 

minimum of a finite set of Normal random variables (equations D.1O andD.ll). 

VI = <1>(0.) (11 - 11 ) + 11 - a'P(o.) y x x 
(D. 10) 

2 2 2 2 2 2 
vz =<1>(o.)(1l -11 +cr -cr)+1l +0 - (11 +1l)a'P(o.) 

yxyx xx xy (D. 11) 

Similarly, equations D.12 and D.13 represent the equivalent formulae required to 

calculate the minimum of three or more Normal random variables. 

min(X,Y,Z, ... ) = min(min(min ... «(X,Y),z), ... » (D.12) 

(D. 13) 

Equation D.14, from Clark (1961 b), is provided for completeness. Both distributions A 

and B are independent of the other three distributions in this equation. The proof is 
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provided in Clark (1961 b). 

p(X+A,Y+B) 
p(X, y)jV(X) jV(Y5 
J V(X+A)J V(Y+B) 

0.3 EXAMPLE 

0.3.1 Overview 

(D. 14) 

Take, as an example, the problem of finding the shortest route through a directed, acyclic 

network in which the disoibution times of the arcs are Normally disoibuted with known 

means and standard deviations. For the minimum duration we assume that events occur 

as soon as their earliest incoming arc completes, ie node inputs are represented by c-Or 
in this case. Figure D.l, adapted from Clark (196Ib), represents just such a network. It 

is intended to find the disoibution parameters of the minimum event time of node D. 

Thus, one is interested in calculating the mean (E(D» and variance (V(D» of this 

minimum completion time. 

C 

Figure 0.1 Example Network 

0.3.2 Solution 

Clearly E(A) = 0, V(A) = 0 

E(B) = E(A)+E(b) = E(b) known 

V(B) = V(A)+V(b) = V(b) known 
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- ----------------- ---- -~ 

The event time of C is distributed as the minimum of (a, B+c). 

V(C), E(a) and V(a) are required which are known. 

To calculate E(C) and 

E(B+c) = E(B) + E(c) and V(B+c) = V(B) + V(c) are also required which are again all 
known. p(a, B+c) = 0 as 'a' is independent of B+c. Therefore, by employing 

equations D.I, D.2, D.IO, and D.II, both E(C) and V(C) can be calculated. 

It only remains to calculate the expected completion time of event D (E(D» and the 
variance (V(D» of this time. The event time of D is distributed as the minimum of 

(C+d, B+e). The estimates of the expected values and variances of C+d and B+e are 
similar to those made earlier. By employing equations D.13 and D.14 in a manner 

similar to Clark, it is also possible to calculate p(C+d, B+e). Thus E(D) and V(D) can 
be calculated directly. 
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APPENDIXE 

Typical Output from the BestFit™ Data Analysis Package 

Statistics for PoisBLl 

Minimum = 74.0 

Maximum = 128.0 
Mode =97.0 

Mean = 99.314 
Std Deviation = 9.557654 

Variance = 91.348753 
Skewness = 0.066171 

Kurtosis = 3.067222 
Input Settings: 

[High Precedence, Low Parallelism, One Hundred Activities, 

Poisson Activity Temporal Functions] 

Type of Fit: Full Optimisation 
Tests Run: Chi-square K-S Test 

Histogram: 
Min: 74.0 

Max: 128.0 
Pl.O: 2.006018e-3 

P2.0: 2.006018e-3 
P3.0: 2.006018e-3 

P4.0: 2.006018e-3 
P5.0: 4.012036e-3 

P6.0: l.OO300ge-3 
P7.0: 6.018054e-3 

P8.0: 5.015045e-3 
P9.0: 0.01003 

PIO.O: 6.018054e-3 
PIl.O: 0.017051 

PI2.0: 0.015045 
P13.0: 7.021063e-3 

PI4.0: 0.02006 

PI5.0: 0.016048 

PI6.0: 0.022066 
PI7.0: 0.038114 

A-DTest 

231 



PI8.0: 0.037111 

PI9.0: 0.027081 
P20.0: 0.032096 

P21.0: 0.031093 
P22.0: 0.036108 

P23.0: 0.042126 
P24.0: 0.054162 

P25.0: 0.048144 
P26.0: 0.036108 

P27.0: 0.036108 
P28.0: 0.042126 

P29.0: 0.035105 
P30.0: 0.039117 

P31.0: 0.036108 

P32.0: 0.031093 

P33.0: 0.033099 
P34.0: 0.033099 

P35.0: 0.026078 
P36.0: 0.027081 

P37.0: 0.019057 
P38.0: 0.022066 

P39.0: 0.017051 
P40.0: 8.024072e-3 

P41.0: 0.019057 
P42.0: 0.01003 

P43.0: 0.012036 
P44.0: 5.OJ504Se-3 

P45.0: 3.009027e-3 
P46.0: 7.021063e-3 

P47.0: 3.009027e-3 
P48.0: 3.009027e-3 

P49.0: 2.oo6018e-3 
P50.0: 2.oo6018e-3 

PS 1.0: 2.0060 18e-3 
P52.0: 1.00300ge-3 

P53.0: l.oo300ge-3 
P54.0: 3.009027e-3 

P55.0: 2.oo6018e-3 

#Classes = 55.0 

---- .. -
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Filtering: 
X minimum 74.0 

X maximum 128.0 

BestFit Results 

Function C-S Test Rank K-S Test Rank A-DTest 

Rank 
Poisson(99.31) 0.052878 I N/A N/A 

Erlang(l07,0.93) 0.052969 2 0.036854 3 0.792257 3 

Gamma(108,0.92) 0.053475 3 0.0362 2 0.776855 2 

Lognonnal(99.32,9.66) 0.054618 4 0.042639 5 1.135987 4 

Logistic(99.03,5.84) 0.055024 5 0.035524 I 1.765252 5 
Nonnal(99.31,9.56) 0.059323 6 0.037459 4 0.717108 I 

Weibull(9.67,103) 0.144159 7 0.095192 7 13.849956 7 

Chisq(99) 0.193964 8 0.132912 8 34.21684 8 
NegBin(l,0.00997) 6.550607 9 N/A N/A 

Geomet(0.00997) 6.550607 1O N/A N/A 

Beta(0.21 ,0.87)*54+74 449268.2 11 0.80116 9 1691.95918 9 

Binomial(128,0.78) 5.445e+8 12 N/A N/A 

Triang(74,97.6,128) le+34 13 0.078903 6 10.790222 6 

HypeIDeo(135,129,292) le+34 14 N/A N/A 
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APPENDIX F 

Generating Pseudo Random Numbers from Known Distributions 

F.l INTRODUCTION 

Almost all computers provide a means of generating pseudo random numbers from a 
'continuous' Rectangular distribution of some finite range. The statistician, however, 

often needs to simulate samples from other, more popular distributions. The algorithms 
presented represent ways of generating random samples from known continuous and 

discrete distributions given that a random sample is available from a continuous 

Rectangular distribution on [0,1]. 

Uj (i = I, 2, ... , N) are N independent random samples from the Rectangular 

distribution on [0, I]. 

X represents one sample from the distribution in question. 

F.2 CONTINUOUS DISTRmUTIONS 

F.2.1 Normal Distribution [Rubinstein 1981, p90] 

N(jl,a2 ) is Normally distributed with mean, Il, and variance, a2 . 

12 

Y= L Uj - 6 
j =1 

x = Il + aY 

F.2.2 Lognormai Distribution [Law and Kelton 1991, p492] 

LN(jl,a2) is a Lognormal distribution with mean Il and variance a2. 
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) 

2 
Generate Y - N (~" crI ) 

X=eY 

F.2.3 Rectangular Distribution 

R(a,b) is a Rectangular distribution with range [a,b]. 

F.2.4 Triangular Distribution (adapted from Law and KeIton (1991), p494) 

T(a,m,b) is a Triangular distribution with range [a,b] and mode m. 

If Y S; (m - a) then X = a + J Y,<m - a) 

otherwise X = b - J (b - m)(b - a - Y) 

F.2.S Gamma Distribution [Cheng 1977] 

G(a,~) is Gamma distributed with shape parameter, a (<Dl), and scale parameter, ~. 

Initialise 
1 

a 

J 2a- 1 

1. Generate V, and V 2 

b = a -In 4, 
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2 
Z= U, U2 , W=b+qV-Y 

2. If W + d - ez ~ 0 or W ~ In Z then X=Y 

otherwise return to step 1. 

F.2.6 Beta Distribution [Rubin stein 1981, p81l 

~(etl IJ.2) is Beta distributed with parameters etl and et2' 

Generate YI - G(etl ,1) 

Y2 - G(et2 ,I) 

F.3 DISCRETE DISTRIBUTIONS 

F.3.1 Bernoulli Distribution [Law and Kelton 1991, pp496-497l 

Bern(p) is a Bernoulli distribution that represents a random occurrence of two possible 

outcomes. p is the probability of one outcome. 

if U I S; p then X=I 

otherwise X=O 

F.3.2 Discrete Uniform Distribution [Law and Kelton 1991, p497l 

DU(i,j) is a Discrete Uniform distribution on [iJl. 
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F.3.3 Poisson Distribution (adapted from Ahrens and Deiter (1974» 

P(A.) is a Poisson distribution with mean A.. 

Initialise L = e-", p = 1, k =-1 

repeat 

p = p Vk+2 

k=k+l 

until p < L 

X=k 

F.3.4 Binomial Distribution [Law and Kelton 1991, p502] 

Bin(t,p) is a Binomial distribution representing the number of successes of probability p 

in t independent Bernoulli trials. 

Generate Yj - Bern(p) (i = 1,2,3, ... , t) 

F.3.S Geometric Distribution [Law and Kelton 1991, p502) 

Geom(p) is a Geometric distribution representing the number of failures before a 

success of probability p occurring in a sequence of independent Bernoulli trials. 

1_ In VI . 1 
X= L \n(l- p~ 

F.3.6 Negative Binomial Distribution [Law and Kelton 1991, p503] 

NB(s,p) is a Negative Binomial distribution representing the number of failures before 

the sth success of probability p in a sequence of independent Bernoulli trials. 
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Generate 'I'i. - Geom(p) (i = 1,2, 3, ... , s) 

238 



Appendix G 

Selected Company Addresses 

Aran Lld 
Rivermead, Pipers Way, 

Thatcham, Berks 
RG134EP 

Asta Development Corporation Ltd 

5 SI. Andrew's Court 

Wellington Street 

Thames, Oxon 

OX93WT 

British Telecom 

Martlesham Heath 
Ipswich 

Suffolk 

Complete Project Management Lld 
Dovetail House 

Wycombe Road 

Stokenchurch 

Bucks 
HP143RQ 

Computer Associates Plc 

183/187 Bath Road 

Slough, Berks 

SLl4AA 

Deepak Sareen Associates 
Bydell House 

Sudbury Hill 

Harrow-<Jn--the-Hill 

Middlesex 
HA13NJ 
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GP'T Telecommunications Limited 
Beeston 

Nottingham 

Hoskyns Group Plc 
Hoskyns South Bank 

95 Wandsworth Road 
London 

SW82HG 

IBM (UK) Ltd 
76 Upper Ground 

London 
SE19PZ 

John Cocker ham and Associates 
Slington House 
Rankine Road 

Daneshill Estate West 
Basingstoke 

Hampshire 
RG240PH 

LBMS 
Evelyn House 
62 Oxford Street 

London 
WIN 9LF 

Lucas Management Systems 

Artemis House 
219 Bath Road 

Slough 
Berkshire 

SL14AA 

• 
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Leach Management Systems 

Temple House 
6-7 The Causeway 

Chippenham 

Wilts 

SN153BT 

Mantix Systems Lld 

Mantix House 

London Road 

Bracknell 
Berks 

RG122XH 

Microplanning International Lld 
34 High Street 

Westbury-<ln-Trym 

Bristol 

BS93DZ 

Microsoft 
Microsoft Place 

Winnersh Triangle 

Wokingham 

Berks 
RGll 5TP 

OPL 
5 The Spinney 
Tattenham Corner 

Epsom 
Surrey 

KTl85QX 

Palisade Corporation 
31 Decker Road 

Newfield 

New York 

14867 
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PMP (Project Management Professional Services Lld) 
PMP House 

Gardner Road 
Maidenhead 

Berks 
SL67RJ 

PSDI (UK) Lld 

No 5 Woking Eight 
Forsyth Road 

Woking 
Surrey 

GU215SB 

Panorama Software Corporation Lld 
PO Box 2128 

Walton Court 
Station Avenue 

Walton on Thames 
Surrey 
KTI21YG 

Pariss Lld 
Premier House 

15 Wheeler Gate 
Nottingham 

NGI2NN 

People in Technology Lld 
Epworth House 

25 City Road 
London 

ECIY lAA 
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Primavera Systems Inc 

Unit 2 
2nd Floor 

Elsinore House 
77 Fulham Palace Road 

Hammersmith 
London 

W68JA 

Risk Decisions Lld 
27 Park End Street 

Oxford 
OXIIHU 

Scitor Corporation 

393 Vintage Park Drive 
Suite 140 

Foster City 
CA 94404 

TBV Consult 
The Lansdowne Building 

Lansdowne Road 

Croydon 
CR02BX 

Welcom Software Technology International 

South Bank Technopark 
90 London Road 

London 

SE16LN 
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APPENDIXH 

Questionnaire Sent to a Number of Midlands' Companies 

I What kinds of developments are you involved with? 

2 How many person days (or months) are involved in a typical project? 
3 Typically how many staff are involved? 

4 Typically how many separate tasks do you break a project into for planning 
purposes? 

5 Do you use any project management tools for planning (Y ft{)? 

6 If so which tool(s) do you use (for example PMW, InstaPlan, Open Plan, 

Cascade)? 

7 If not-

7.1 Why not? 

7.2 How do you decide when to do things? 

7.3 How do you estimate project costs and durations? 
8 Who is involved with planning your projects? 

9 Do you attempt to assess risks (cost and time uncertainties) in your projects (Y/N)? 
10 If so - what methods do you use? 

II Do you find your current methods allow you to adequately ascertain the risks of 

any cost and time overruns in a project? 

12 Do you use simulation to analyse your project plans (Y IN)? 

13 If so - how do you decide how many simulations to perform? 

Below are some theoretical ideas for project management tools that offer certain 

facilities: 

a) An ability to plan for repetitive tasks by allowing managers to represent these in 
project plan neTWorks (PERT neTWorks) as loops. 

b) An ability to identify project risk points more visibly in PERT neTWorks. 

c) An ability for PERT neTWorks to modify themselves dynamically as information 

is provided form earlier phases in the project life cycle. 

d) An ability to plan, and hence evaluate, alternative project outcomes (including 

terminating the project). 

e) An ability to model activities using several different kinds of cost and time 

functions. 

f) An ability to plan activities that depend on previous outcomes in the project. 
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