

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

,
" li

.,

e, lvose 1\0:- Ox. 1'67f,~1

LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY

LIBRARY

AUTHOR/FILING TITLE

---- ------ ---~~~-~-.>--~~-.-~~------ -------
i __ . ______ I ,"

ACCESSION/COPY NO.

(S\t cro ~ -+ "2. er '* ----------------- ---- --- ---- --- -- --------- - --- - - --
VOL. NO.

27 JUN 1997

26 JUN 1998
2 ~ .1... -~

••J

CLASS MARK

... --...~ .

lillUllll1

SOFTWARE DEVELOPMENT MANAGEMENT
USING METAMODELS AND ACTIVITY

NETWORKS

by

Christian Walker Dawson

A Doctoral Thesis

Submitted in partial fulfilment of the requirements for the award of Doctor

of Philosophy of the Loughborough University of Technology

15 June 1994

© by Christian Walker Dawson 1994

---~---~~--

-
Loughborcugh University

of Tr;'CI r:-'~·''''";ii":'· Uorary
1----.--. .,~.-

Date Jlu. '! ~
1------_ .. - _. "---'
Class

~

Acc.
&!.: 00 ''t 1 G. '{ No.

For Sarah

ABSTRACT

This thesis develops the concept, management and control of metamodels for the

management of software development projects. Metamodels provide a more flexible
approach for managing and controlling the software engineering process and are based

on the integration of several software development paradigms. Generalised Activity
Networks are used to provide the more powerful planning techniques required for

managing metamodels. In this thesis, both new node logics, that clarify previous work
in this field, and Generalised Activity-on-the-Arrow and Generalised Activity-on-the­

Node representations are developed and defmed. Activity-on-the-Node representations
reflect the current mood of the project management industry and allow constraints to be

applied directly to logical dependencies between activities. The Generalised Activity
Networks defined within this thesis can be used as tools to manage risks and

uncertainties in both software developments and general engineering projects. They
reflect the variation and uncertainties in projects more realistically and improve the

planning and scheduling of such projects.

An improved Monte Carlo simulation, that allows the number of simulations to be

determined dynamically, is used in the temporal analysis of both Generalised and
Probabilistic activity networks. The affect that various discrete and continuous activity

temporal functions have on the duration of activity networks of different sizes and
complexities is also examined. The results of this work, and the comparative simulation

requirements of Generalised and Probabilistic Activity Networks, are presented.

These three areas are tied together by a common thread that runs through the main text

of this thesis. This thesis provides a new software development modelling concept
(metamodels), a technique to support the management of this concept (Generalised

Activity Networks), and develops a means of analysis for this technique. These
developments are directed at the project management of software development rather

than the embedded design processes that are more the concern of the systems analyst.

By considering the software development process from several aspects, specific

artificial intelligence techniques can be applied to particular aspects of that process.
This thesis investigates how blackboard technology can be used as a framework on

which an artificial intelligence support element can be developed. This support assists
decision making during particular phases of the software development process. Reason

maintenance is employed to allow alternative solutions to the software development
process to be evaluated concurrently by allowing several plans to coexist at different

levels of a blackboard structure.

KEYWORDS

Software Development, Metamodels, Project Management, Activity Networks, Monte
Carlo Simulation, Blackboard Structure, Reason Maintenance

ACKNOWLEDGEMENTS

I wish to thank my supervisor, Ray Dawson, for his guidance and advice over the years

that have le :d to this thesis being written.

I am also grateful to the University of Derby, not only for practical support but also for

the help and encouragement provided by many of my colleagues there.

This work would not have been possible without support from many friends, colleagues,

and members of my family. To all these people, who are too numerous to mention, my

grateful thanks.

Most of aliI would like to thank my wife, Sarah, who has encouraged me throughout

my work and been a great support.

Chris Dawson

June 1994

CONTENTS

Chapter 1

Introduction, Aims and Objectives

1.1 In troduction 1

1.2 The Software Development Process 2

1.3 Software Development Management 4

1.4 Project Management Infonnation Systems 6

1.5 Activity Networks 7

1.6 Future Work 16

1.7 Context 17

1.8 Aims and Objectives 18

Chapter 2

Development of Metamodels for Managing the Software Development
Process

2.1 Introduction

2.2 The Software Development Process

2.3 Software Development Models and Paradigms

2.4 Software Development Methodologies
2.5 Software Development Phases

2.6 Metamodels (or Combined Paradigms)

2.7 A Flexible Planning Technique

2.8 Chapter Summary

Chapter 3

Generalised Activity Networks for Project Management

3.1 Introduction

3.2 Generalised Activity-on-the-Arrow Network DefInition
3.3 Generalised Activity-on-the-Node Network DefInition

3.4 Applications
3.5 Network Properties

3.6 Chapter Summary

I

19

21
25

34
36

40
46

47

49

54
69

78
86

89

Chapter 4

. Project Management and Activity Networks

4.1 Introduction

4.2 Temporal Analysis of Activity Networks

4.3 Analysing Probabilistic Activity Networks

4.4 Simulation

4.5 Analysis of Generalised Activity Networks

4.6 Modal Class Dynamic Sampling Technique

4.7 Chapter Summary

Chapter 5

Temporal Analysis of Activity Networks

5.1 Introduction
5.2 Analysis of Results

5.3 Network Characteristics

5.4 Comparative Requirement Results

5.5 Simulation with Known Activity Temporal Functions
5.6 Results for Continuous Activity Temporal Functions

5.7 Results for Discrete Activity Temporal Functions

5.8 Chapter Summary

Chapter 6

An Artificial Intelligence Approach to Software Development

Management

6.1 Introduction

6.2 Life Cycle Phases

6.3 Artificial Intelligence Techniques

6.4 The Intelligent Software Development System

6.5 Chapter Summary

u

91

100

109

113
116

124

126

128
129

134

138

144
146

155

166

167

170

172

179
183

Chapter 7

Summary, Evaluation, Conclusions

7.1 Introduction 185
7.2 Chapter Two 186
7.3 Chapter Three 188
7.4 Chapter Four 190
7.5 Chapter Five 191
7.6 Chapter Six 192
7.7 Project Management Software Tools 193
7.8 Evaluation 200
7.9 Conclusion 208

Appendices 209

Appendix A - An Example Project 210

Appendix B - Deterministic Activity Network Temporal Analysis 219
Appendix C - Pure xOr GAN Analysis with Flowgraph Theory 222
Appendix 0 - Minimum of Finite Set of Normal Random Variables 227
Appendix E - Typical Output from BestFWM 231
Appendix F - Generating Pseudo Random Numbers 234
Appendix G - Selected Company Addresses 239
Appendix H - Questionnaire 244

References 246

Software and Suppliers 266

11l

CHAPTER 1

Introduction, Scope, Aims and Objectives

CHAPTER PREFACE

This chapter puts the work of this thesis into an overall context. It begins by

introducing the broader field of project-based management before looking in more
detail at a subset of this area - software development management - and techniques

for improving this activity. It looks at previous work in the field and identifies areas to
which this thesis makes particular contributions. The evolution of activity networks is

detailed and current gaps in these techniques are identified. This thesis aims to fill
these gaps, and looks more closely at how flexible approaches can be used to model

the software development process.

CHAPTER KEYWORDS

Software Development, Project Management, Activity Networks

1.1 INTRODUCTION

, ... a software product is a model of the real world, and the real world is constantly

changing' [Schach 1993).

The above quotation encapsulates perhaps the most difficult aspect of software

developinent. That difficulty relates to the inherent changeability of a software product

and the environment in which it is developed. This problem makes the development of
software systems a particularly complex project area to manage - far more so than that

needed for established engineering projects. The problems inherent within the

development of software have lead to numerous project overruns and failures over the

last thirty years. This has resulted in 'The Software Crisis' that was initially identified
by a NATO study group as long ago as 1967. This thesis addresses the problems

associated with the management of the software engineering process and develops

models and management techniques that overcome some of the difficulties involved.

1

This thesis approaches the software crisis from two directions. First, it identifies the

need for more dynamic models that can manage more flexible systems development.

The concept of metamodels, that represent a hybrid of several other models, is ,
developed within chapter two. Second, it looks at one of the techniques of project
management - activity networks - and develops theories behind this work. That part of

the thesis concentrates on concepts in project management information systems -

primarily aimed at the software development process. It concentrates on activity

networks, how these techniques can be developed to provide more realistic
representations of projects, and improved approaches to their analysis.

1.2 THE SOFfWARE DEVELOPMENT PROCESS

1.2.1 Overview

There are numerous texts devoted to the subject of Software Engineering - for example
Schach (1993), Sommerville (1993), Macro (1990), Gilb (1988), Pressman (1994), and

Macro and Buxton (1987). All of these provide different models, phase sets,

methodologies and so on that aim to elevate some of the problems of a dynamic

development, by imposing some form of structure on it.

The main theme behind this thesis is the management of the software development

process. There are several aspects to this process - models, methods, activities, support

elements and phases that are covered in some detail in chapter two. This section briefly
introduces the main stay of this process - software development models - and identifies

where this thesis makes advances in this area.

1.2.2 Models

'in order to be able to manage a software project it is essential to follow a defined life­

cycle model' [Mazza 1989].

Models are the skeletal structure of the software development process. They provide a

visual framework in which this inherently invisible product can be developed.
Unfortunately, software development models have proved to be rather restrictive and

have never really allowed software to grow within their structure. This has been noted
by several authors (for example, Agresti (1986a and 1986b)) and alternative models

have been developed over recent years. This thesis develops the concept of hybrid

models or metamodels that provide a more flexible structure in which modem day

software systems can evolve.

2

Liu and Horowitz (1989) identified three advantages of using models -

(i) They allow one to understand and explain to others the steps involved in the

software process.
(ii) They assist the management of the process.

(iii) They provide a foundation for building tools that enhance the software process.

The first ever model developed was the Stagewise model which is the origin of the
widely used Waterfall or Classical Life Cycle model. These models were based on

original engineering practices and can be traced back as long ago as 1956 [Benington
1956]. Inadequacies of this and other early models have come to light over the years.

According to Turner (1993) the original models 'discouraged effective approaches to
software development such as prototyping and software reuse'. Liu and Horowitz

(1989) also criticised the Waterfall model for four reasons:

(i) It is foolish to believe that one model is appropriate for all software development
projects.

(ii) It provides an inadequate modelling of requirements change.
(iii) It does not involve end users in the process.

(iv) It fails to treat software development as a problem solving process.

Pulk (1990) also pointed out that attempts to strictly adhere to the Waterfall model have
been unsuccessful due to scheduling pressures causing overlap of development stages.·

Overlap between phases in a software development is inherent and desirable within this
process. This overlap should not be discouraged.

Due to the inadequacies of the Waterfall model several other models have been

developed over the past ten to fifteen years. Some represent hybrids of methodologies
and techniques whilst others represent the implementation of methodological

approaches. Examples include Prototyping Models [Bowen 1990], Evolutionary
Deliveries [Sommervilie 1993], the Spiral Model [Boehm 1988], Formal

Transformation Models [Sommerville 1993], and 4GL Models [Pressman 1994]. Liu
and Horowitz (1989) developed a hybrid model consisting of And/Or graphs and Petri

Nets called the DesignNet Model. This model appears more complex than the standard
model approach which identifies the stages through which a software development

progresses at a strategic level. Models are covered in more detail in chapter two .

•
In order to put forward their own ideas of a software development model, Lill and
Horowitz (1989) identified six idealised features of models:

3

(i) They must adequately describe software development as a design process.

(ii) They must accept software development as a parallel process - many people doing

several tasks simultaneously.

(iii) Activities can be undenaken when their diverse conditions exist - for example, a
simple case would involve their resources being available and their preceding

activities having completed successfully.

(iv) They should be able to indicate all anifacts that are produced at various points in

the process - for example, documentation at each stage.
(v) If an activity fails, they should be able to indicate the activities and resources

affected. Affected activities may have to be re-executed.

(vi) They should be able to indicate the extent and nature of resources used by a

subtask.

The metamodel, developed within chapter two of this thesis, addresses points (i) and

(iv). By supporting this model through the development of Generalised Activity

Networks in chapter three, and their subsequent analysis in later chapters, this thesis
also suppons the other idealised features of a model.

1.3 SOFTWARE DEVELOPMENT MANAGEMENT

1.3.1 Project-Based Management

'to plan and manage a software project successfully, we must view project management
as a process, and the project plan as an activity that prepares data for that process'

[Rexing 1991].

Since software developments can be viewed, perhaps, as a specific subset of projects in
general, it is wonh looking first at project-based management. This field is well

established - as early as 1963 the US Air Force PERT Orientation and Training Center

was able to cite 702 works in this field [Dooley 1964].

According to Turner's work (1993) project-based management involves three integrated

dimensions: objectives, management processes, and levels. The management processes

(plan, organise, implement, and control) are identifiable with project life cycle phases.

The different phase sets applicable to the software development process are discussed in
chapter two.

The five objectives identified by Turner are scope, organisation, quality, time and cost.

Earlier approaches to project-based management focused on the management of quality,

4

cost and time objectives. The feeling was, that if these three objectives could be

managed, then projects would be completed successfully. However, Turner goes on to
state that these objectives are, in fact, optional 'soft constraints'. It is scope and

organisation that are obligatory. 'Without scope there is no project; without the
organisation it cannot be implemented' [Turner 1993].

All organisations can be viewed as some form of hierarchical structure. Generally there

are no more than eight levels within an organisation [Lucey 1987]. Taking a more
general stance one can define three levels within an organisation. Turner (1993) defined

three project levels as integrative, strategic and tactical. For the purposes of this thesis
this terminology will be maintained. The objectives of a project must lie within an

organisation's objectives which are represented by the integrative level (see chapter
four). At the strategic level 'a strategy for achieving the purpose is defined' [Turner

1993]. This strategy is viewed in this thesis as the model level of the software
development process. The tactical level then represents ways of achieving these strategic

targets. Generalised Activity Networks, defined in chapter three, can be used at both the
strategic and tactical levels.

1.3.2 Software Development Management

'Most software developers regard keeping pace with ever-changing user requirements

as their main challenge of the moment' [Peltu 1994].

Software developments represent a special kind of project. Unlike most engineering
projects they prove to be particularly awkward to manage as their development

processes are generally ill-defined and dynamic. One way these problems are overcome

is to define a model that represents the way in which software is developed. To go from

a set of requirements to a working system has to imply a certain process anyway. It was
the lack of an applicable process in the late 1960s that initially lead to the software

crisis. These days, however, even though several new models exist, software is still
being delivered late and with errors. Personal contact with several software houses

highlighted reasons for these problems - although new models exist, most developers
use traditional Life Cycle approaches or, in some cases, no models or methodologies at

all. They also tend to use more traditional project-based management approaches
without regard to software's inherently dynamic nature.

Even during the 1980s authors were still looking at how wider project management

approaches could be applied to the software development industry. Blaney (1989) was
one such author who stated 'There is no reason that project management techniques

applied successfully in other industries cannot be applied in the software development

5

industry'. Tulip (1983) proposed that project management techniques used in the

construction industry and contract management are equally applicable to the
management of data processing projects. Tausworthe (1980) also applied general

project management techniques from engineering to software project management, as
did Carter, Clare and Thorogood (1987).

The problem overlooked by these authors is that software development is inherently

different to general engineering projects and requires a more know ledgeable approach.
Although project management skills are required, more knowledge of the product is

needed. Indeed, Pulk (1990) stated that a software project manager needs all of the
following to be an effective leader:

(i) Project management skills.

(ii) Software development skills.
(iii) A knowledge of the product being developed.

In order to assist the problems faced by the software development industry, project

management techniques need adopting and adapting. One of the techniques, taken from
the broader field of project management, is that of project management information

systems. Although these systems provide some means of support they need
development to include risk and probabilistic analysis. Blaney (1989) confirmed this

idea when he identified that one of the unique issues that drives project management in
the software development industry is that 'Project management software that supports

probabilistic risk analysis must be used to predict realistic completion dates'.

1.4 PROJECT MANAGEMENT INFORMATION SYSTEMS

'Tools are too inflexible and don't do what I want they seem to have been written

by programmers not project managers' cited in Peltu (1994).

Project management information systems provide computer-based support for project
managers. The most popular of these systems are networking systems that are based on

project management techniques dating back to the late 1950s (PERT and CPM) and
earlier (Gantt charts). Not only do these systems provide a means of project planning

but they also assist with project control. According to Turner (1993) three requirements
of a project management information system include -

(i) Integration across an organisation.

(ii) Planning and control.

6

(iii) Fast response.

It is the last two of these requirements that are addressed by developments within this

thesis. Improved planning and control is covered by developments within chapters two

and three, and a faster response is dealt with by developments in chapter four.

Although there was a plethora of research in the 1960s on activity networks, this tailed

off somewhat during the I 970s and 19S0s. It has only been recently revived in the new

information explosion of project management software tools (network based) that have

appeared over recent years. Jacobs (1994) identified this by noting that 'the specialised
nature of the topic and the non-visual nature of PCs meant that further development of

the programs already produced took a back seat for a number of years'. The late 1970s
and 19S0s is perhaps better remembered for its development of models and

methodologies, in the field of software development management, than for project

management. It is not worth denying, however, that project management software tools

today are particularly user friendly and take much of the work out of the analytical side

of project management. They provide comprehensive reporting facilities for all

management levels and a means of planning, calculating and controlling all sizes of

project. Appendix A provides a good visual example of one such tool in use. This

appendix shows reports (various work breakdown structures, activity networks and
Gantt charts) generated for the Milltown Road bridge project by CA-SuperProject®.

This is one of the more popular PC-based project management software tools on the

market today, and provides, like many of its rivals, an invaluable aid to the project

manager. The only drawback with these tools is that they are still based primarily on

techniques developed during the late 1950s. It is only through the use of more powerful

Windows™ based machines that these techniques have become more usable. Now that

the processing power is available, more radical developments are needed to take these

project management tools into the next century.

1.5 ACTIVITY NETWORKS

1.5.1 Overview

The earliest approach to project representation is the Gantt chart (after Henry L Gantt)

or Bar chart. This approach is still in widespread use today and almost all project

management information systems (network based) incorporate some means of

representing these charts. Examples of Gantt charts can be found in Appendix A (pages

A3 to AS). Since the 1950s, Gantt charts have been complemented by Activity

Networks that allow the relationships between activities in a project to be explicitly

7

identified. .

Since their inception, Activity Networks have become invaluable aids to the planning and

management of a multitude of projects throughout business and industry. Activity

Networks originated in two very similar forms in the late 1950s: PERT (Program

Evaluation and Review Technique), and CPM (the Critical Path Method). CPM is

sometimes referred to as CPA (Critical Path Analysis) but this relates more to the

subsequent analysis of these networks than their actual representation.

Both PERT and CPM have become intertwined over the years to fonn the basis of

networking techniques that are used today. Generally speaking, either tenn is now used

to refer the approach of representing a project by a network diagram, performing various

calculations to determine a project's duration, resource requirements, and costs, and

controlling a project through this medium.

The original PERT and CPM techniques represented the activities of a project by arrows

that connected nodes or events. Consequently these techniques are sometimes referred

to as Activity-on-the-Arrow (AoA) or the Arrow Diagram Method. In Activity-on-the­

Arrow Networks, dummy activities (dashed arrows) are needed to define some of the

interrelationships between tasks. These dummy activities have zero cost and time

parameters associated with them. An example of a simple Activity-on-the-Arrow

network is shown in figure 1.1.

Figure 1.1 A Simple Activity-on-the-Arrow Network

An alternative representation to Activity-on-the-Arrow is when activities are represented

by nodes and their relationships are represented by arrows. This alternative

representation is called Activity-on-the-Node (AoN) and is logically equivalent to an

Activity-on-the-Arrow representation. An example of an equivalent simple Activity-on­

the-Node network is shown in figure 1.2.

8

Figure 1.2 A Simple Activity-on-the-Node Network

The fIrst Activity-on-the-Node representation was developed in 1958 by Fondahl at
Stanford University [Levine 1986]. To many, an Activity-on-the-Node representation

provides a clearer representation of a project as it does away with the need for dummy
activities that can complicate a project plan. Consequently Activity-on-the-Node is the

more popular of the two representations in use today. The advantages of Activity-on­
the-Node are discussed in chapter three where a Generalised Activity-on-the-Node

representation is developed.

Activity Networks can be split into three categories of complexity according to their
activity characteristics - Deterministic, Probabilistic and Generalised Activity Networks.

CPM falls into the simplest of these three categories (Deterministic) and PERT into the
Probabilistic category.

1.5.2 Critical Path Method

The Critical Path Method was developed in 1957 by the DuPont Company and

Remington Rand for use in the construction industry. As activities within the
construction industry are generally well understood and have been performed several

times before, previous experience can be used to predict activity durations and costs
accurately. In the original CPM approach two time estimates were required for the

duration and cost of each activity - called normal and crash. The normal time
represents the duration to complete a project requiring the least amount of money. The

crash time and cost represent the minimum possible time to complete a project with an
associated increase in cost. Consequently CPM can calculate an estimate of the most

economical or shortest time to complete a project. Because of the simple representation
of activity times and costs in CPM, it falls into the Deterministic Activity Network

category.

Deterministic Activity Networks are used to manage projects in which the activities of a
project are well understood and complete in recognised times. Well established

algorithms (for example Moder and Phillips (1983), and Whitehouse (1973», that make
forward and backward passes through an activity network, are used to calculate various

9

data relating to a project's times and costs in these networks. These data include

information such as the early start, late start, early finish and late fmish of each activity,
the critical path and several different slack or float times. Appendix B provides

formulae for these calculations.

1.5.3 Program Evaluation and Review Technique

PERT was developed in 1958 by the Lockheed Missile and Space Division, the United
States Navy and consultants from Booz-Allen and Hamilton Company. It was

developed to control the development of the Polaris Fleet Ballistic Missile.

As identified earlier, PERT is a Probabilistic Activity Network representation.
Probabilistic Activity Networks help to manage projects where there is some uncertainty

about the duration of activities in a project. This is usually the case for new projects
where activities have not been performed previously and an exact duration cannot be

estimated accurately. In these situations the activity durations are represented by
probability distribution functions (temporal functions). Due to the stochastic nature of

the activity times in Probabilistic Activity Networks, they tend to be difficult to analyse.
A way of analysing both Probabilistic Activity Networks and Generalised Activity

Networks will be studied in chapter four.

PERT has developed through four generations over the years; PERT/Time, PERT/Cost,
PERTfLoB (Line of Balance) and PERTfLoB/Cosl. PERT/fime is the earliest and most

basic version of PERT while the other techniques include enhancements to the simple
PERT/fime idea.

(i) Second Generation: PERT/Cost

PERT/Cost was issued as a set of guidelines in 1962 by the American Department of
Defense and NASA. It was developed for the specific purpose of integrating time data

with associated financial data of physical accomplishment. It established certain cost
tracking parameters as requirements for selected DOD and NASA projects. These

parameters had to be integrated into the project schedule.

(ii) Third Generation: PERT/LoB

In 1967 Schoderbek and Digman (Schoderbek and Digman 1967] developed the third

generation of PERT - PERTfLoB. The LoB technique had been used as an effective
management tool in the control of steady state production activities for twenty five years

prior to its amalgamation with PERT The PERTfLoB technique aimed to bring together
the development techniques of PERT, with the production techniques of LoB.

PERTfLoB covered the critical transition phase between these two phases.

10

(iii) Fourth Generation: PERT/LoB/Cost

This system encompasses time, cost, and resource scheduling. One published
PERT/LoB/Cost system is Cost and Schedule Planning and Control or CS PC [Saitow

1969]. This method not only covers control from a project managers vieWJXlint, but it
also provides reporting facilities for upper level management.

1.5.4 Resource Allocation

It was not until the mid-1960s that project management techniques began to take into

consideration the fact that resources (staff, machinery, money etc) are seldom available
to a project in unlimited quantities. Three possible methods of handling limited

resources have been developed over the years [Guerrieri 1987]:

(i) Resource Indication - this system highlights those areas where scheduled resources
exceed available resources - it does not solve the problem but merely identifies it.

(ii) Resource Levelling - reduces the amount of variability of resource usage over the

project duration when sufficient resources are available, and the project must
complete in a given time. This can be achieved by various methods including

shifting non-critical tasks, splitting activities and so on.

(iii) Fixed Resource Limits Scheduling - this technique has essentially the opposite
constraint to resource levelling. In this technique the resource limits are fixed, but

the project completion date is allowed to slip within given constraints. Resource
limits can be fixed over the project duration or allowed to vary between certain

limits.

Combinations of these techniques are feasible and depend on the network type and the
way in which activity durations are represented. It should also be possible to assign

priorities to activities that are to be levelled. In this situation lower priority activities will
be stretched/delayed first ensuring project priorities are maintained. There are

numerous algorithms available for resource levelling and fixed resource limits
scheduling - earlier publications describing different algorithms include Wiest (1967),

Clark (196Ia), Levy et alia (1962), King (1964), and Berman (1964).

In the 1960s it was only the large mainframe computer programs that could perform
these calculations. One example is RAMPS (Resource Allocation and Multi-Project

Scheduling) [Lam bourn 1963]. These days even some of the cheaper PC-based
computer packages have facilities for resource optimisation. Examples include Project

Scheduler™ 6, CA-SuperProject®, Primavera Project Planner®, and CS Project™ that

11

has its own scheduling criteria called CARLO - Cost and Resource Levelling

Optirnisation (see chapter four).

1.5.5 Precedence Diagram Method

The Precedence Diagram Method (PDM) was the next real stage in activity network
representation. Before PDM was developed the relationships between tasks in activity

nerworks were fixed. In other words, an activity would be deemed to start immediately
after its preceding activity(ies) had completed. It was obvious that in many situations

this is not the case, and a solution to this problem was required. As an example, take the
hardening of concrete foundations in a house building project. There is clearly some

delay between pouring concrete to form a foundation and it becoming hard enough for
the next stage of the project to commence. In 1973 Crandall [Crandall 1973, Wiest

1981] introduced the Precedence Diagram Method that overcame this problem. PDM is
based on Activity-on-the-Node as this provides a more clear representation of the

constraints that can be applied. In Activity-on-the-Arrow networks, these constraints
require additional nodes and dummy activities that can overly complicate project plans.

PDM allows both overlap and underlap between connected activities using a delay factor
called lag. A similar, more limited method, called the Metra Potential Model, was

developed in 1983 by Gotthardt and Winkelmann [Gotthardt and Winkelmann 1983].
The Metra Potential Model defined a minimum (z) and maximum time (-w) delay

between twO linked activities but did not incorporate the full power of all four PDM lag

types (figure 1.3).

z

I Task A I Task B

-w

Figure 1.3 The Metra Potential Model

In PDM there are four types of lag that can be defined - Start-to-Start, Start-to-Finish,

Finish-to-Finish, and Finish-to·Start (SS-n, SF-n, FF-n, FS-n . where n represents the
lag in associated time units).

• Start-to-Start (SS)

Task B cannot begin until a delay after the start of task A (figure 1.4). For example,

12

performance monitoring cannot start until a given time after system implementation

has started, to allow time for the system to initially settle down.

ss

Figure 1.4 Start-to-Start Delay

• Start-to-Finish (SF)

Task B cannot finish until a delay after the start of task A (figure 1.5). For
example, when a new software team starts work there must be some form of hand­

over period where the old team cannot finish work until the new team has had time

to prepare to take over.

SF

Figure 1.5 Start-to-Finish Delay

• Finish-to-Finish (FF)

Task B cannot finish until a delay after the completion of task A (figure 1.6). For

example, it may not be possible to finish testing until one month after a diagnostics

system has been installed. After this time it might be safe to assume that the system

is working.

FF

Figure 1.6 Finish-to-Finish Delay

• Finish-to-Start (FS)

Task B cannot start until a delay after the completion of task A (figure 1.7). For

example, if task A represents the giving of notice for a meeting, there will be a delay

corresponding to the notification time before the meeting itself takes place - task B.

13

----- -- - -------

I Task A I FS.

Figure 1.7 Finish-to-Start Delay

An example of a simple PDM network with all these constraints is shown in figure 1.8.

How PDM constraints can be applied to Generalised Activity Networks will be

discussed in chapter three.

I Task A
.. .. FF-5

I Task Cl I Task D I ,
SS-1 SF-2

Task B I
FS-3

I Task E I Task F

Figure 1.8 A Simple PDM Network

1.5.6 Cost Control

Cost control systems work as a control mechanism within project management

information systems_ They generally work on an 'earned value' system which works

on the principle that subsequent times and costs in a project are affected by times and

costs accrued so far. The initial technique for cost control was specified in 1975 by the

American Department of Defense when they issued specification DODI7000.2, called

cost/schedule control system criteria (C/SCSC). At the same time the American

Department of Energy had a similar specification called performance measurement
system, but it is C/SCSC that is still in widespread use today. There are two alternatives

to the type of forecasting within cost control systems:

(i) Future work will ensue at the same rates of cost, resource requirements and duration

as work completed so far. This means that any variations to the original plan will

continue to occur at the same rate in the future.

(ii) Future work will ensue at the previously planned rate. This method assumes that the

only variation to the project plan was that already monitored in the work achieved so

far.

14

Examples of project management software tools on offer today which include cost

control measures based around C/SCSC are InstaPlan™ 5000, Schedule Publisher™
4.1 for Windows™, Cascade® by MANTIX which is an organisation wide approach,

and CA-SuperProject®. Another system that performs earned value analysis is
Parade® (1993) by Primavera that takes plans from Primavera Project Planner® and

performs the necessary earned value cost control calculations on these plans.

1.5.7 Generalised Activity Networks

Generalised Activity Networks represent the third and final complexity level of Activity
Networks. References to Generalised Activity Networks are particularly sparse when

compared with PERT and CPM approaches. Examples of work in this field include
Bellas and Samli (1973), Interrante and Biegal (1991), Moore and Clayton (1976),

Moore and Taylor (1977), Pritsker (1974 and 1979), Pritsker and Happ (1966), Pritsker
and Whitehouse (1966), Samli and Bellas (1971), Taylor and Moore (1978),

Whitehouse and Pritsker (1969), McGowan (1987), Moeller (1972), Moeller and
Digman (1981), Kidd (1990 and 199\).

Generalised Activity Networks originated in 1962 [Eisner 1962] and evolved into a

methodology called GERT [Drezner and Pritsker 1966] (Graphical Evaluation and
Review Technique). Although this developed into several other Activity-on-the-Arrow

forms (for example, Moore and Clayton (1976» only one other real advancement was
made - that of VERT in 1972 [Moeller 1972, Lee et alia 1982, Kidd 1990 and 1991]

(Venture Evaluation and Review Technique). Generalised Activity Networks have never
become established as a project management technique. Reasons for this and their

development is covered in chapter three.

1.5.8 Summary

Activity networks have three levels of complexity and a number of different

representations. The complexity levels range from Deterministic and Probabilistic to

Generalised Activity Networks. These networks can ultimately be represented in
perhaps four different ways - Activity-on-the-Arrow, Activity-on-the-Node, Precedence

Diagram Method and a Hybrid. A Hybrid representation refers to a combination of the
other three. It is a Hybrid representation that is developed in chapter three.

Table 1.1 summarises the different kinds of activity networks that are available. No one

these days tends to refer explicitly to a specific approach (for example, a Probabilistic
Activity-on-the-Node Network representation) preferring to group all activity networks

under the PERT/CPM umbrella. This thinking is represented by CPM* and PERT* in

15

table 1.1.

The gaps within this table (Generalised Activity-on-the-Node 'and Generalised

Precedence Diagram Method) are the gaps filled by this thesis. Chapter three develops
a Hybrid representation to fill these gaps and provides a means of analysis.

Increasing
Complexity

DANs

PANs

GANs

AoA

CPM

PERT

GERTNERT

Representation

AoN PDM

CPM* CPM*

PERT* PERT*

- .

Table 1.1 Activity Networks - Representation and Complexity

1.6 FUTURE WORK

1.6.1 Overview

The majority of popular project management information systems are based on

established activity network techniques. Developments over recent years have merely

included enhancements to the usability of such packages for example, by incorporating

the Windows™ platform. Software development management needs more powerful

concepts and supporting software to overcome the chronic software crisis. Areas of

potential future research, that represent advancements towards a solution to this

problem, are identified within several chapters of this thesis. One such long term aim is

the development of intelligent project and software development management systems,

development of which has only been patchy over the years.

1.6.2 Intelligent Management Systems

'While the responsibility for project decisions should and must lie with project

managers, a knowledge based assistant could provide decision support for these and

other project management tasks' [Ahmad et alia 1988].

16

Ahmad et alia (1988) gives an outline of the tasks and methodologies that an artificial

intelligence project management tool should incorporate. It is interesting to note that
this work speaks of 'a knowledge based assistant' rather than an intelligent machine

that would make all managerial decisions. This implicitly identifies that the decision
making process lies with project managers themselves, and machines, certainly at this

stage, are not sophisticated enough to take over the decision making process themselves.

An example of an intelligent project management system is Callisto [Sathi et alia 1986].
'The Callisto project was born out of the realisation that the classical approaches to

project management do not provide sufficient functionality to manage large engineering
projects'. The Callisto project had four goals that encompass various aspects of the

project management field:

(i) Activity modelling - to generate a model of activities and their constraints.
(ii) Configuration management - generate a hierarchical product representation, and

develop a system to support change.
(iii) Activity scheduling - schedule with various hard and soft constraints and goals

that involve dynamic rescheduling, what if simulation and heuristics to guard
against 'bad' schedules.

(iv) Project control - study and model the status of updating and activity-tracking
procedures and the use of managerial heuristics for reporting, focusing and

diagnosing problems.

Generalised Activity Networks, developed within this thesis, address some of the points
raised in goals (i), (iii) and (iv) above. The interaction between these networks and

intelligent management systems represents a particularly interesting area for future
research. Although this work is beyond the intended scope of this thesis chapter six

discusses a proposed artificial intelligence approach to software development
management.

1.7 CONTEXT

'To provide effective support, project management tools should be tailored to the needs
of the decision makers, and not vice-versa' [Ahmad et alia 1988].

This quote encapsulates one of the main themes running through this thesis - that of the

development of techniques more applicable to the management of the software
development process.

17

Software developments are a subset of projects in general which are managed through

several phases (identified more explicitly within software development by models and
phase sets). These developments require the management of different objectives at

different organisational levels. Metamodels provide a means of managing software
developments at a strategic, and subsequent tactical level for organisation, cost and time

objectives.

Activity networks represent a particular means of project representation that are used to
assist both the planning and control of projects. Currently they are not flexible enough

to cope with situations encountered in both software development projects and other,
less clear problem domains (for example, research and development). Generalised

Activity Networks provide more flexible activity networks for planning and control.
They represent a more applicable project management information system and are

supported by analytical techniques developed in chapter four.

1.8 AIMS AND OBJECTIVES

1.8.1 Overview

To summarise the goal of this thesis into one aim is a very difficult task, since in the

development of this work, a number of different but interrelating tasks were defined and
executed. However, this thesis sets out:

(i) To identify and develop models for more flexible management of software
systems development.

(ii) To develop Generalised Activity Networks, both Activity-on-the-Arrow, Activity­
on-the-Node and, as a consequence, PDM in order to support more flexible

software development management models and other project types.
(iii) To improve analysis and data quality of such management support systems.

(iv) To look at the development of an artificially intelligent system for the management
of the software development process.

1.8.2 Contribution

Although the above points may initially appear somewhat disjointed, they are brought
together by a common thread that indicates the major contribution made by this thesis.

This contribution involves the development of an entirely new concept for software
engineering management (metamodels in chapter two), supported by a more flexible

management technique (developed in chapter three) which in turn is supported by an
improved analysis approach (developed and discussed in chapters four and five).

18

CHAPTER 2

Development of Metamodels for Managing the Software

Development Process

CHAPTER PREFACE

Software development paradigms currently used within industry are based on
established models of the software life cycle. As technology has evolved and become

more accessible, more flexible approaches to the development of software systems
have been advocated. Several new models have evolved over the passed ten years

based on more powerfuL software engineering tools and more sophisticated
development methodologies. A more responsive approach to the development of

software systems should allow the integration of alternative development models to be
achieved without requiring changes in the development management structure. This

chapter introduces metamodels that allow more flexible management of software
systems development (presented in the paper by Dawson and Dawson (l994c)). It

also introduces a technique (Generalised Activity Networks from Dawson and
Dawson (1994a)) that provides the management support needed by metamodels.

CHAPTER KEYWORDS

Software Development, Paradigms, Metamodels, Generalised Activity Networks,

Planning

2.1 INTRODUCTION

'Every project suffers from continuously changing users' requirements' [Peltu 1994].

Ever since the software crisis was identified by a NATO study group in 1967 [Schach

1993), software practitioners have attempted to understand more fully the process by
which software is developed. The early attempts at sttucturing the software development

process were based on established engineering practices. It soon became clear, however,
that software was inherently different from physically engineered products. The

engineering project practices that had been adopted were (and still are) wholly

inadequate. Brooks, in his work of 1987 [Brooks 1987), detailed two features of

19

software that make it particularly difficult to produce - those inherent within the software

and those introduced by accident.

The inherent problems identified by Brooks were complexity, conformity, changeability,

and invisibility. Complexity derives from both the large number of states in which a

software system can reside, and the interaction between software elements that increase

. non linearly with this number of elements. Conformity relates to the problems

associated with developing software so that it conforms with other software and

hardware systems. Software can be produced to run on various platforms and must

provide an interface that is compatible with other systems. As software environments

are constantly changing (in terms of hardware and problem domains that are

encountered), changeability presents another inherent software problem. The last
inherent problem identified by Brooks was invisibility. Invisibility identifies the

difficulties involved in representing software in a conceptual, diagrammatical form.

According to Brooks, software needs to be represented by several, general directed

graphs superimposed on one another - for example, control flow, data flow, dependency,

time sequence and so on. Brooks went on to state that in spite of simplifying these

structures they remain inherently unvisualisable.

These inherent problems are compounded by accidental problems introduced by
software developers. These problems represent difficulties that attend the production of

software but are not inherent within it [Brooks 1987]. Accidental problems include
using individual programs together (causing data compatibility problems), accidental

complexity introduced by developers at higher levels (for example, poor data
structuring), and slow software response times (for example, batch processing) possibly

causing a user to lose track of the minutia and the thread of what s/he was thinking.

It has already been advocated by many authors that a more flexible approach is needed

for the development of software systems. As long ago as 1986 [Agresti 1986a]

practitioners were calling for an approach that did not impose a rigid phase structure on

the development of software systems such as that imposed by the conventional waterfall

model (for example, Benington (1956». What was not addressed with this proposition

was how management could cope with such a process. Project managers are reluctant to

embark upon ideas that have little structure or visible direction. This culture, alongside

the inertia of large organisations, has resulted in a situation where the majority of

software projects undertaken today are based on the established life cycle or waterfall

model. In order to distance ourselves from the rigid constraints imposed by the

waterfall model other development paradigms have been introduced over recent years.

These alternative paradigms can still impose a rather rigid set of constraints on the

direction of a system's development by defining the specific stages (and the order)

20

through which a project develops. One way of overcoming this problem is to combine

several different paradigms into a hybrid model called a metanwdel. Metamodels allow

software development projects to evolve along more responsive pathways yet still

provide management with a structure to which projects can relate. Metamodels can be
controlled by using a more flexible management technique that is introduced later in this

chapter.

2.2 THE SOFTWARE DEVELOPMENT PROCESS

2.2.1 Overview

Boehm (1981) identified two different types of software developments:

Projects: Software developments for a single, one-off client.

Products: Software development for a multiplicity of unsecured (and possibly
unknown) clients.

Although these definitions identify the resultant operating environments of a software

product, the use of the word project in these definitions is somewhat misleading. There
is no reason why a software development project could not involve the development of a

system for a broader market, in which case the project would be to develop a marketable

product. From this perspective, all software developments can be viewed as projects of

a sort, but what is meant by the term project?

Software developments, when viewed at their broadest level, can appear as unclear

systems with rather vague start and end points. After all, when has a software

development started - after the initial idea, when coding begins, when a concept

document is approved by developers and customers, or when a contract is signed?

When is it complete - when the software leaves the development house, after the second
version is released, or after three years of maintenance?

This viewpoint contrasts quite significantly with Bames' [Barnes 1989] definition of a

project - 'something which has a beginning and an end' cited by Turner (1993). Turner

qualifies this definition by introducing several other project descriptions. He picks out -

'a one-time, unique endeavour by people to do something that has not been done
before' [Smith 1985] - as the definition that captures 'the essence of projects'.

Although software has already been shown to have a rather unclear beginning and end,

Smith's definition encapsulates the essence of software development, be it a product or a

project.

21

In order to conceptualise the aspects of software development projects, various

structures have been devised. The software development process was viewed by Rook

(1986), and less explicitly by Macro and Buxton (1987), as a three dimensional system.

By imposing a structure on the system in this way it is possible to reduce its complexity.

The three aspects or dimensions that encompass this system are support elements,

activities, and phases. Figure 2.1, adapted from Rook (1986), provides a tighter

representation of his ideas. Some of the detail in this figure is inaccurate in that it

identifies certain items, for example Time Management, as separate entities to Project
Management. These items are, in fact, subsumed within Project Management and

should not be shown separately. This point is covered in more detail in chapter four.

r

Activities

Support
Elements

- Standards and Procedures

Techniques and Tools

- Documentation System
E

I

'" " Work Definition '" .~ 0 " .;;;
~ >. .§

-S
Training ";j

~ ~
. .,

" " « '" ~

Metrics and Estimation

Project management

Technical control

Resource management

Configuration management

Time management

Figure 2.1 Rook's Dimensions

Phases

Within Rook's representation there is a close association between certain project

activities and specific life cycle phases that have been defined. He identified

requirements specification, structural design, detailed design, and code and unit test as

both phases and activities in the software development process. The activities that were

defined, however, could represent ongoing tasks that are performed at other stages

throughout the life cycle of a project, and should not be restricted to a particular phase.

In this representation there is a more apparent link between some of the support

22

elements and certain activities. The dashed, arrowed lines in figure 2.1 indicate some of

these more obvious associations. For example, standards and procedures assist the
activity of quality assurance, a documentation system clearly assists project

documentation, and metrics can help to simplify the task of project management.

2.2.2 Support elements

Support elements are those tools and procedures that have evolved to assist the software
developer. They include aids such as standards and procedures, documentation systems,

project management tools [Powell 1990], training, and can be used to assist specific
acti vities or methodologies within particular phases of the project life cycle. CASE tools

[Costello 1990, Hill 1990] and IPSEs (Integrated Project Support Environments)
[Brown et alia 1986, Brown 1988] fall into this category.

2.2.3 Activities

Activities are ongoing tasks that different members of the software development team

perform throughout the lifetime of the project, keeping it running on a daily basis. As
noted earlier, some of these activities can be assisted by specific support elements.

Several of these activities can also be attributed to specific team members. The project
manager, for example, would be responsible for resource and project management

activities, and project documentation could well be assigned to a technical author.
Activities can also be attributed to particular phases of a software development (although

they do not have to be limited to a particular phase). For example, control would, more
often than not, be performed during synthesis and planning during analysis.

2.2.4 Phases

Rook originally defined eight phases within his representation. Phases represent the

stages through which a project progresses to completion, any number of which could
theoretically be defined. Software development phases will be studied in more detail

later.

2.2.5 Limitations of Earlier Representations

Unfortunately this structure, identified by Rook, does not represent the software
development process in its entirety. Today there are several paradigms available for the

development of software systems. By identifying a specific, eight step phase structure
within his representation, Rook related his model to a single, waterfall-type development

paradigm. He has, in effect, presupposed the software development model and split the

23

development into a series of steps with specific start, end, and intermediate control

points to reflect this. Imposing a specific phase structure on a representation in this way
can be particularly dangerous as it can either be so vacuous as to provide no practical

value to any software development model, or too specific to relate to alternative models
[McCracken and Jackson 1986]. It is possible, however, to identify a set of phases that

are broad enough so as not to restrict the process yet detailed enough for the purposes
of this chapter. In order to put some of these ideas into context, later in this chapter a

broad series of four phases will be defined. However, even with such a broad set of
phases, there is always some overlap inherent between each phase. One cannot get away

from the fact that phase sets are affected by the development paradigm used. They must

not, as is the case with the waterfall model, be so inflexible that the paradigm is restricted

within their structure.

2.2.6 A Comprehensive Representation of the Software Development Process

A more comprehensive representation of the software development process is provided

in figure 2.2. This augments software development paradigms and methodologies with

the three dimensions of Rook's representation.

Assist

Ongoing throughout
the development life cycle

Can

Protocol for

Figure 2.2 Comprehensive Software Development Process Representation

24

'If you can't model it, you can't build it' [Hill 1990).

Models represent strategic level development plans within an organisation that identify

the broad stages through which a software development progresses. Organisational
levels and project objectives are covered in more detail in chapter four.

One feature that has been omitted from these representations is that of resources.

Although resources can be viewed as external to the process, they do have an influential
effect on its progression. The software development process can be viewed, in fact, as a

process in which resources are consumed, by going from an initial idea to a fully
operational system. Resources are external to the representation of figure 2.2, being

consumed by each of the aspects as and when they are required.

This chapter is, therefore, concerned with five aspects that constitute the overall concept
of the software development process - Models (also called Paradigms), Methods,

Activities, Support Elements, and Phases. The following sections now cover the
remaining aspects of this representation in more detail looking firstly at models, then

methods and finally phases.

2.3 SOFTWARE DEVELOPMENT MODELS AND PARADIGMS

2.3.1 Early Models

Developing an effective model is a balance between implementing an easy-to-understand

life cycle and a process that is flexible enough to address all eventualities [Todd 1993].
Unfortunately this was not achieved by the conventional waterfall approach that is

described below.

The software development model defines how the overall software development process

is to be performed. It defines the order in which various stages will be tackled through
each phase of the development process, and can define some of the methodologies and

techniques that will be used within that process. Models define what happens in the
phases - not the phases themselves. Broad phases are common to all projects and are

covered in more detail in section 2.5.

Unfortunately, what has happened within industry is that time and time again software

developments are performed using a specific, established model with which the
organisation is familiar. What is advocated is that the model of the software

development process should not be preselected until some idea of the product is first
achieved.

25

There are still some organisations that do not knowingly use any explicit development
model. Some small software houses interviewed use no apparent model for

developments requiring less than one person-month of effort. This seems to be quite
common for projects of this size. In these cases the developers can usually be seen to

follow a build-and-fix paradigm (see section 2.3.2). Todd (a consultant with 3SL)
[fodd 1993] wrote that in his experience of organisations, many software departments

were lacking a defined development process, although he provides no specific figures.

Up until the early 1980s there existed only one software development model - the

classical waterfall approach. Since then a plethora of other models have evolved which
are based perhaps more on the introduction of new methodological ideas than anything

else. What has only been tentatively addressed so far is the possibility of combining
development models into a suite that allows a developer to choose which model's

attributes would suit best a particular project at a particular time. Metamodels represent
the next stage in the development of ever more flexible approaches to the development

of software systems. Several paradigms currently used within industry are now
presented, some of which are incorporated into the metamodel that is described in more

detail later.

2.3.2 Build-and-Fix

The build-and-fix, or code-and-fix, model is the earliest approach used to develop
software systems. It does not represent any real, explicitly defined model at all, but is

used to identify the approach to software development used by many programmers and
'hackers'. According to Schach (1993) this is probably the worst model that can be

adopted for the software development process. In this model there are no formal
specification stages or requirements analysis. It represents a 'thrown together' coding

solution that is subsequently reworked and fixed as required on a repetitive basis until
an adequate solution is reached. It is perhaps more widely recognised as the part-time

computer hacker's solution to programming software and the model used (although
unknowingly) for many other small, one person projects. Three difficulties with this

model were identified by Turner (1993):

(i) After several fixes the software becomes difficult to maintain as it becomes poorly
structured.

(ii) It often does not match the user's requirements.
(iii) It can be costly to maintain because of its poor structure and lack of definable

output that can be tested.

26

Because of the problems encountered with this unstructured approach several, more
detailed models were devised. The earliest of these models was the stage-wise model

from which the classical waterfall model developed.

2.3.3 The Stage-Wise Model

The classical software development models are based on a specific phase structure
through which a software process cascades to completion. These models were based on

the more familiar work of engineering projects and can be traced back as far as the work
of Benington in 1956 [Benington 1956]. Benington's model was known as the stage­

wise model and, depending on which of the many hundreds of articles read on the
subject, there can be anywhere between two and up to or over fifteen specific phases in

this model. One respectable view of the classical stage-wise model contains six specific
phases (figure 2.3). Detailed explanations of each phase are clearly beyond the scope

of this chapter - some such phases having entire books devoted to them. Briefly
however:

(i) Requirements Analysis
The idea for the system is identified either by an individual or as a specific requirement

that needs addressing within an organisation.

Requirements
Analysis

Specification

~,.--------,
Design

Implementation

~,.--------,
Operation

~,.--------,
Retirement

Figure 2.3 A Stage-Wise Model

27

(i i) Specification phase

Produces a detailed report on what the product should do, not how it should do it. This
specification includes any inputs and outputs that are to be produced and any

constraints imposed upon the system.

(iii) Design phase
This is where the 'how to do it' document is produced. From the product specification

the design phase is used to draw up a detailed design of how the product will go about
performing its required objectives.

(i v) Implementation
•

Conversion of the design, based on the specification, drawn from the initial
requirements, into the working product.

(v) Operation

U se of the system, including any enhancements and maintenance work that is required,
in its target environment.

(vi) Retirement

The phase out of the product when it reaches the end of its natural life.

One problem with the stage-wise model is that it represents a unidirectional
development. In other words, once a stage has been completed the results of that stage

become a fixed baseline from which the following stages develop. Usually, problems
within a particular development stage are not idt;ntified until later in the development

cycle. In the stage-wise model any problems within earlier, fixed stages cannot be
changed as feedback to them is not identified. One way around this problem is to allow

feedback from subsequent stages to earlier ones in the life cycle. The classical waterfall
model provides a limited form of this kind of feedback.

2.3.4 The Classical Waterfall Model

The classical waterfall model (or classical life cycle model) overcomes some of the

problems of the stage-wise model by allowing some form of feedback to take place
between linked stages. Unfortunately, all the waterfall model allows is feedback to one

previous stage in the cycle. Each stage, in this case, is identified by its outputs, that feed
into the following life cycle stage, rather than the activities that are perfonned within that

stage [Turner 1993]. This model identifies some inherent overlapping between
connected stages and allows problems, identified with a previous stage, to be corrected

before baselining that stage. A problem with this model is that it again emphasises the

28

baselining of early stages in the development process, when little is really known about a

problem. A lot of work, put into producing the deliverables of an early life cycle stage,
could later prove to be wasted when more is known about the problem domain. Figure

2.4 represents the classical waterfall model showing how feedback occurs between each
stage.

Requirements
Analysis

Specification

Design

Implementation

Operation

Figure 2.4 A Classical Waterfall Model

Retirement

It is not by accident that the waterfall model and its derivatives have remained at the

forefront of software development. It is due mainly to the inertia of large companies
that develop software systems based on these practices [Agresti 1986b]. The aim of this

chapter is to highlight the rigidity of these current software development practices, and
to propose the use of a more flexible planning technique that allows alternative

approaches to be explored by managers.

2.3.5 Prototyping

Prototyping represents a particular technique that, because of its flexibility, has allowed
the evolution of whole new set of software development models based on its concepts.

Prototyping is a technique whereby information is bought [Macro 1990] at a particular
stage of the development process. This purchasing analogy relates to the investment in

time and expenditure that provide the developer with the information required. It is
when and how the prototype is used that determines which of four prototyping models

29

is being adopted. Alavi (1984) provided an overview and assessment of the prototyping

approach.

(i) General Prototyping
A general prototyping model is the development of a system from an initial prototype

developed at either the requirements analysis or specification stage. As the system itself
is built up around this original prototype it can be viewed in some ways as a system

assembly technique. This technique will be looked at later.

(i i) Throw-away Prototyping
Throw-away prototypes, as the name implies, are discarded once their information has

been elicited. Throw-away prototypes are generally used to replace the requirements
analysis phase of the waterfall model and are sometimes referred to as rapid prototypes.

(i ii) Evolutionary Prototyping

According to Bowen (1990) the evolutionary prototyping model is used to develop a
'production product by the convergence of successive models'. This approach is also

sometimes referred to as the incremental model [Schach 1993]. In this model the
system is delivered to the user in a series of fully operational subsystems. Each

subsystem represents a subset of the overall system's requirements and each delivery is
a superset of the preceding one. This process continues until the system is completed

as a whole. An example of evolutionary prototyping can be found in Computing (8

April 1993, p26).

(iv) Incremental Prototyping

Not to be confused with the incremental model, this prototyping approach represents a
'build it twice' ideology [Bowen 1990]. It differs from the throw-away approach in that

it is bound by an overall system design and it is not intended as a replacement to an
analysis subphase. The incremental prototype is built as closely to the required system

as possible and is rewritten each time the system needs to evolve.

2.3.6 Formal Transformations

Sometimes referred to as the Formal Method Model this is another model that has
grown around a particular development methodology. In this model a functional

specification, developed from the requirements specification, is formally converted step
by step into a fully operational software system. This conversion can be achieved by

formal development languages (for example, some 4GLs developed for this purpose) or

by more concentrated coding techniques. Based on fonnal development methodologies,

it is a more exacting software practice and leads to much higher standards of software

30

safety and software provability. It can remove much of the intensiveness of

transforming a specification into a solution through the use of specialised software. The

development can also be carried out in a formalised framework that has a precise

semantics [Beierle et alia 1986].

2.3.7 Evolutionary Deliveries

This is similar to the incremental prototype in that the final system evolves and grows

from a small embryonic core over a period of time. The evolutionary delivery model has

the advantage, however, of being able to change its direction as it evolves to reach ever

varying customer requirements. This model is sometimes referred to as exploratory

programming [Sommerville 1993] as the initial releases explore the user's requirements

before evolving into the next version of the product. It differs from a build-and-fix

model in that there is an initial specification from which to work and it gives a planned

sequence of deliverables to provide customer feedback.

2.3.8 Operational Specification

This is similar to a prototype in that it attempts to represent how the final system may

look by providing information to the user at an early stage. It does not, like a prototype,

need to be developed on the target system that might not exist at that time. According to

Agresti (1986a) an operational specification has two advantages. First it separates the

development process into problem-oriented and implementation-oriented phases, and

second it provides the user with an early executable system model.

2.3.9 Spiral Model

This model, developed by Boehm in 1988 [Boehm 1988], encapsulates some of the

better features of the life cycle and prototyping paradigms. It splits the development

into four cyclical phases - Planning, Determination (of objectives, alternatives and

constraints), Risk Analysis, and Engineering. These phases are performed, in turn,

during several iterations of a software evolution. The spiral model works by forcing the

risks of a project to be resolved before allowing the next cycle to be pursued. If risks

cannot be controlled, or limited to an acceptable level, the project should be terminated

there and then. Figure 2.5 provides an outline of this model. In this figure the radial

dimension represents incremental costs involved in developing a product, and the

angular dimension represents the progress of the project. From high levels of

abstraction, each loop repeats previous steps through lower levels of abstraction whilst

developing and maintaining the software. According to Sodhi (1991) one advantage of

this model is flexibility by providing an ability to encompass any mixture of

31

specification-oriented, process-oriented or object-oriented approaches. It does not,

however, match any existing standards and is still evolving into an acceptable, working

model.

Determine
objectives,
alternatives
constraints

Commitment

Partition

Plan next
phases

Cumulative
Cost

Evaluate alternatives:
resolve risks

Detailed

Develop, verify
next-level
product

Figure 2.5 Outline of Boehm 's Spiral Model

2.3.10 4GT Model

Fourth-Generation Techniques (4GTs) have their roots more as development

methodologies and tools, than as particular models. By enabling software to be

developed from a much higher specification level, 4GTs allow much faster development

of software code. These techniques have therefore led to the establishment of models
based on their operation. The 4GT model is a model in which the implementation of the

system from the design phase is achieved through a fourth generation technique.
Another offshoot of 4GTs is the automated formal and 4GL model.

32

2.3.11 Automated Formal and 4GL Model

This model brings together the more recently developed techniques of 4GLs and formal
methods. Figure 2.6, adapted from Pressman (1994), best explains how this model

progresses. Following requirements analysis a formal specification can be made (using
a formal specification technique). A 4GL can then be used to generate a prototype

directly from this specification, that can be optimised and tuned to provide the
operational system. This system, like all others, then goes through a period of operation

and maintenance before finally being retired.

Requirementst---,
Analysis

•
Formal

Language
Specification

•
4GL

Generation
of Prototype

I •
Optimise
and Tune

Operation f--

,
Retirement

Figure 2.6 Automated Formal and 4GL Model

33

2.4 SOFTWARE DEVELOPMENT METHODOLOGIES

2.4.1 Existing Methodologies

Although one can draw a distinction between the terms methods and metlwdologies, for

the purposes of this thesis both terms will be used interchangeably. Strictly speaking,
however, one would view a method as being more prescriptive than a methodology as it

provides a step by step approach. A methodology, on the other hand, represents a

broader approach providing a set of guidelines that can be followed.

Although Todd (1993) announced that very few organisations used any development

model, a survey by Spikes Cavell in 1992 [Spikes Cavell 1993] showed that 73% of

organisations used some form of software development methodology. A methodology

represents a defined way of performing at least one phase of the software development
process. It is basically a philosophy that describes the business process. Some

methodologies, for example SSADM, are particularly comprehensive and cover several

phases of the development process. Others are rather restrictive, having specific rules ,
and protocols that must be followed. Methodologies are also directed towards different
aspects of the development process. For example, Prince is a project management

methodology, whereas SSADM is a methodology aimed at the design process

If an organisation decides to implement a methodology, as part of its development
process, it can adopt it from one of three sources:

(i) Public Domain Methodology

Although the up front costs of a public domain methodology can appear quite low, their
long term implementation costs can prove to be rather high. They tend to be quite rigid

in their guidelines and can require much expenditure to integrate them into the

organisation's structure. Because public domain methodologies are widespread,

however, there are many consultancies and much support and training available for
them. Typical examples of public domain methods include SSADM, Merise (the

French equivalent), and Prince (Projects in a Controlled Environment) by CCfA which

is based on Prompt (a government standard introduced in 1983). There is also a

Europe-wide method called Euromethod under development that hopes to provide a
common methodological standard throughout the EEC [Spikes Cavell 1993].

(i i) Propriety Methodology

A propriety method is supplied and implemented by a single supplier. The user is
provided with all the training, consultancy and source material from that one source.

The disadvantages with this approach are that it is expensive and the user becomes

34

reliant on support from a single supplier. Examples of such methods include LSDM by

LBMS (Learmonth and Burchett Management Systems), Methodll by Anderson
Consulting, Navigator by Ernst and Young, and Prism by Hoskyns [Spikes Cavelll993,

Falla 1991].

(i i i) Home Tailored Methodology
Dissatisfaction with these sources has lead many companies to the development of their

own in-house methodologies. These can prove extremely costly to develop but, as they
grow out of the companies existing structure, they fit into the organisation's current

working practices extremely well. Unfortunately, these in-house methodologies can
mushroom out of control without specific guidelines and external support is virtually

nonexistent [Falla 1991].

2.4.2 Techniques

There is some overlap between what could be termed a development technique and a
development methodology. Generally speaking, however, techniques are not as

comprehensive as methodologies, and cover only part of a development phase. A
technique can be defined and used within a development methodology but this does not

represent a complete solution to an entire phase. Techniques can therefore perhaps, be
viewed as sub-methods. They are commonly supported by various tools.

Some examples of techniques and methodologies widely used within industry include

PERT (Program Evaluation and Review Technique) and COCOMO [Boehm 1981] that
may be used within a planning stage of a project. Data Flow Diagrams, Petri Nets, Z,

and Finite State Machines are techniques that assist the specification of a system. Data
Flow Analysis, Jackson System Design, Object Oriented Design and Stmctured System

Analysis can be used to design a product. C/SCSC and SSADM are techniques and
methodologies discussed in later chapters.

One technique used within the implementation stage is a system assembly. As the name

implies this is the development of a system by 'bolting' together smaller subsystems.
These subsystems could be pre-written, evolved from an initial prototype (the general

prototype model), or developed from scratch. Other techniques, that have already been
mentioned, are Fourth Generation Techniques that allow software to be developed in

more natural languages. Some of these techniques have evolved into specific models
that were detailed earlier.

35

2.5 SOFTWARE DEVELOPMENT PHASES

2.5.1 Overview

Phases are a separate entity to the models that were defined earlier. Whereas models

provide an indication of the stages within a process, the phases provide a more
integrative view of the project overall. Thus the link between phases and models is that

models constitute stages subsumed within phases that are based at the integrative level.

Countless authors have proposed different phase structures in an attempt to represent
the flow of software development processes. As mentioned earlier, these structures can

consist of any number of phases ranging from two [Grady and Caswe1l1986] up to and
over fifteen [Bowen 1990]. However, imposing a specific phase structure on a

development process can restrict the natural progression of that process. Turner (1993)
identified three problems with real life projects that emphasise the importance of not

rigidly imposing the life cycle:

(i) Exploratory work on subsequent stages can be required before the current stage is
completed.

(ii) Problems encountered in later stages may require reworking of earlier stages.
(iii) Users' requirements are dynamic and may change during the development of the

system.

It is not proposed that project phase plans are discarded because a basic underlying
structure is still necessary for the effective management of any process.

To show how a phase model can be constructed, an example is provided based on a

broad, four stage development structure consisting of analysis, synthesis, operation and
retirement (figure 2.7). By usin!; a Work Breakdown Structure on these phases one can

subdivide them into smaller stages that relate more directly to a development undertaken.
The use of a work breakdown structure to break a project down through various

organisational levels (integrative, strategic and tactical) is covered in chapter four.

Figure 2.7 shows some overlap between each of the four phases. This overlap is

common within most of the models developed since the early 1980s, since it represents

some form of interaction/feedback between the phases. 'In reality there are no clearly
defined breakpoints between the stages' [Turner 1993]. This interaction between

phases is inherent within the development process and should not be discouraged as it
was with the early stage-wise approach.

36

Time

Synthesis Operation

Figure 2.7 A Broad Phase Set

Overlap between the four phases can also be attributed in part to the' grey areas' within

the software development process. For example, there could, perhaps, be some debate
as to whether the specification stage should lie within the analysis or synthesis phase.

As this is dependent on which development paradigm is employed, and how the
information from this stage is used, it is best to show it within the boundaries of both

phases. A prototype used as a specification could well be viewed as providing analytical
information, whereas a formal specification would not. As it is important not to restrict

the process by a phase structure, overlap between the phases defined here is inevitable.

It is interesting to draw a comparison with the phase set defined here, and one defined
for use in project management for which software systems represent a subset. Another

phase set is that defined by Turner (1993). In Turner's representation of a project life
cycle, four phases - Germination, Growth, Maturity and Death - were identified. In this

representation the phases relate directly to the project management life cycle, referring to
the initiation and subsequent completion of the project itself. These four phases

actually refer to the Analysis and Synthesis phases identified in this chapter (Death

covering product use). The representation provided in this chapter takes the completion

stage one step further and identifies Operation and Retirement as two subsequent steps
in the development of a software system. Compared with engineered products, software

systems require far more maintenance, constant repairs and upgrades during their

operation.

2.5.2 The Analysis Phase

Within this phase one can identify the initial conceptualisation of a project. The project

idea can be formed by an individual within an organisation or it can be identified by
some form of requirements analysis. One can also identify an amount of project

planning where decisions are made as to how a project will be tackled, what resources
are used and in what order activities are undertaken (this is covered in more detail in

37

chapter four). Objectives are also set and milestones are identified. The analysis phase

basically identifies the need for a particular product and puts in place a mechanism for

developing that product.

2.5.3 The Synthesis Phase

This represents the actual development of a system from the basic concepts. Within

this phase managers are responsible for tracking a project as it progresses, and
adjusting future expectations accordingly. Often, in many projects, there is a distinct

split between the analysis and the synthesis phases although ideally there should be

some interaction between them. As a project progresses, more information is uncovered

about the problem which can be fed back into the analysis phase. Without any such
interaction the benefits of this gain in information would be lost. Control is an

identifiable management activity within this phase. This activity is covered in more

detail in chapter four.

2.5.4 The Operation Phase

This represents the operation of a final product in its target environment. It includes

maintenance and enhancement of a system, perhaps even feeding back information into
the analysis or synthesis phases. It can also include adapting software for use on other

systems, providing a help desk facility, and marketing the product. It is fair to say that,

on the whole, this is the phase to which the least planning and thought is applied even

though figures by Macro and Buxton (1987) show that maintenance within this phase
can take up to 60% of total project time. It is important that developers recognise the

importance of this phase and have some idea of how it will be managed

2.5.5 The Retirement Phase

This represents the phasing out of a system as it reaches the end of its natural life.

There can be some overlap between this phase and the operations phase as parts of the

system may be phased out, whilst other parts continue to operate.

2.5.6 Further Subdivision of Phases

If this structure is further subdivided it can constrict the development process to which it

relates. In this relatively coarse form, it remains an applicable management view of any

software development process. Applying a work breakdown structure from this level

onwards would depend on the model employed. For example, a formal transformation

38

model would not include feedback between the analysis and synthesis phases. In

contrast, feedback between these phases would be inherent within a prototyping model.

2.5.7 The Rigidity of a Phased Approach

The phases identified above are sufficiently broad to allow software systems to grow
within their structure, using any of the development models identified earlier. Generally

speaking however, phase structures tend to be so detailed that they constrict the natural
progression of a software development process.

Phase structures imposed by development paradigms tend to be adopted in one of two

ways. First they can be taken at face value, retaining each phase distinctly and
restricting feedback between the phases. Pressman (1994) identifies three implicit

problems with this approach. First, real projects rarely follow this sequential flow.
Second, it is difficult for customers to state all their requirements at the initial stages, and

third, the customer must be patient as they see nothing of the product until its final
release.

Technology is now at a level where it is possible for the analysis and synthesis phases to

be closely intertwined. This is particularly desirable as it leads to a greater
understanding of a problem and the development of a solution that evolves rather than

being built from a fixed, predetermined plan. This can stem from a preliminary solution
that is produced early in the development and provides a greater knowledge of the

problem as a whole. Indeed, it was stated by McCracken (1981) that to prepare a
detailed specification, some idea of the solution is first required. This implies greater

interplay between the analysis and synthesis phases and in some respects is related to
whether one sees the specification falling within the boundaries of either phase. The

fixed phase approach must therefore become more flexible to cope with interaction
between the phases to accommodate this need.

An alternative approach is for the phase model to be adopted with feedback from

sequential, or more separate phases, to earlier phases in the cycle. This can lead to
particularly complex feedback models with up to twenty five interlinked phases [Macro

and Buxton 1987]. Trying to relate these complex models to individual software
developments can be extremely difficult, and, in doing so, establishes it for that

particular project.

Unfortunately this approach shows perhaps too much belief in the rigidity of the
environment, and also in the precise configuration of the feedback loops themselves. It

is important that feedback systems are responsive not only to changes in the system

39

requirements, but also to proposed changes in the development process itself. The

development process should be responsive to any change - be it within the plan, the

process, or the solution.

To overcome these problems a more flexible management model is required that does

not impose a rigid direction on the process. One solution is to use metamodels that

represent a combination of alternative paradigms.

2.6 METAMODELS (OR COMBINED PARADIGMS)

2.6.1 An Early Combined Paradigm

Several different paradigms were detailed earlier that are used in the development of
software systems. Feedback from several software houses identified that a specific

paradigm is used by these organisations for each individual software development.
There are, however, advantages to be had by combining different paradigms within a

particular metamodel. The prototyping example from Bowen (1990) goes some way
towards emphasising this point. Bowen's prototyping model highlights the advantages

of combining two previously separate ideas (incremental and throw-away prototyping)
within one particular life cycle model. He showed how the advantages of each idea can

be reaped at different stages of the development process.

In 1994 Pressman [Pressman 1994] identified a simple model that combined alternative
paradigms within its structure. Pressman identified four paradigms - The Life Cycle,

Spiral Model, a Prototyping Model, and a Fourth Generation Model and showed, using
a non-deterministic structure, how they could be combined within one model (referred to

as a metamodel in this thesis). Figure 2.8, taken from Pressman (1994), is an example
of the early idea of combined paradigms. In this chapter, this idea is taken one stage

further and it is shown how the benefits of several models can be derived from within
one hybrid model called a metamodel.

40

Figure 2.8 Pressman's Early Combined Paradigms

2.6.2 New Metamodels

The concepts behind metamodels are directed at the project manager rather than the

systems analyst since these models provide a managerial approach to the development
process. Figure 2.9 is an example of the new concept of metamodels. It shows how

several software paradigms can be combined within a non-deterministic structure. In
this metamodel, eight paradigms have been combined within the structure to represent a

strategic level plan. The cells represent subphases (or stages) of the development
process, sometimes identified as specific techniques used for their accomplishment. For

41

Conceptualisation :

t
Preplanning I , 1 +

ReqUirementst;::[I I Analysis Prototype I Spiral
Model I

:=l ~
"" = 3 ..
to [
~
\C 6'

""" IV
;I> [
~ §

"'
Co

~
..
Cl
r

- ::::
~

+
, r

I~ Fonnal n~ I Specification 4GT I I Specification

~ n ~~fi'n I I Prototype Model

4GT I I nth I Prototype ~ , Design iteration
~

~ Prototype I
'" I Optimise I ImPlementatio~+ 4GT I '0

[
Fonnal

I Transformation ~ C [
Model :::: ~ I System I ., ~

~ ~ Assembly [

- . ~

I
~

Maintenance I Operations :

~ ~

I Retirement I

+ I Specification I
r

4GT I
~ IS;:
I Build I j

L~

f
~
'2.

J
""

+
Implement
and Test
1st build

I
Next

Build(s)
and test

L
-~
g
" " Pi
::::
8.
~

I
I l.

'"
l.
~

f ", El

~
ij'

~

example, the system assembly stage is a technique that is used for the implementation of

a system. The stages identified by 4GT represent the use of a fourth generation

technique for that particular stage of the development process. The 4GT stages, inherent

within certain paradigms (for example the 4GT model identified earlier), can now be
accessed from other models within the metamodel. For example, the common waterfall

model can access a 4GT stage as part of its implementation without needing to
completely replan the project or restructure the development process.

The four phases identified earlier have also been superimposed on this metamodel.

They are provided as guidelines to show where overlap between phases is inherent

within the metamodel. The analysis phase covers both conceptualisation and

preplanning that are inherent within all models. It can also be seen to cover the
requirements analysis stage (that can be replaced by some form of prototyping

technique) and in some cases the specification stage (especially if this is drawn up as

part of the exploratory programming model). The synthesis phase imposed on the

metamodel covers the building stages of the system. Again there is some overlap
between this phase and the analysis and operational phases. This cannot be avoided as

information is often passed between these phases. The operational phase covers

modification and maintenance of the system even within the target environment. This

undoubtedly overlaps with the retirement phase as parts of a system can be phased out
over a period of time.

2.6.3 Advantages of Using Metamodels

Project managers are undoubtedly unwilling to pursue a development without some

conceptualised framework in which to work. By incorporating several established

models within one metamodel, the advantages of each model can be achieved whilst still

providing a project manager with some form of structural framework in which to

operate. This combination results in a synergy effect that indicates the sum of the whole

is greater than the sum of the individual parts.

All projects begin by some initial idea. The Meliorist Model (figure 2.10) [Lucey 1987]
shows how a set of actions, that constitute a project, take an organisation from an

existing situation (possibly unacceptable) to a desired situation. The idea to perform a

project can come as either a push from the existing situation (for example, were a

current system is inadequate and has become outdated) or as a pull to a desired situation
(for example, a new system that would provide benefits to an organisation). The

conceptualisation stage, identified within the metamodel, represents this push or pull

from an existing situation.

43

{set of actions J
So .. SI

Existing
Situation

Desired
Situation

Figure 2.10 The Meliorist Model

After the project has been conceptualised, preplanning identifies the initial direction of

the process. For example, it may be decided to build a prototype to complete the
requirements analysis of the project. This can be used to develop the specification that

in turn can be used to either design the full system or another intermediate prototype.

By allowing alternatives to be represented within the metamodel, it enables managers to

direct the project according to the current project situation, and not in a direction
predetermined at a stage in the life cycle when far less is known about the problem.

Because of the non-deterministic branching within the structure of the metamodel
managers do not have to decide on the complete development process direction at the

outset. The metamodel, in fact, identifies points in the project where decisions need to
made, based on the project situation at that time. Managers are, in effect, making

decisions as to when to make decisions within the project life cycle. This makes far

more sense than attempting to decide initially what will be done later in a project when

the project environment may be completely different than it was at the start.

2.6.4 An Example of Metamodel Benefits

From personal contact with the manager of a one person-year project recently, the
advantages of a new metamodel approach have been identified. The project, to develop a

computer training package for eight year olds, began by using the classical waterfall

approach. Two months into the project, as the specification was being drawn up, this

approach had to be abandoned as the project fell drastically behind schedule. It was
realised at this stage that a prototype was required to determine more clearly the user

requirements of the system which were of a highly interactive nature. A general

prototyping model was then pursued to the successful completion of the project. Had

the project manager not been restricted to a single, predetermined waterfall approach
from the start, this 'crashing' of the project after two months could have been avoided.

The alternative prototyping paradigm could have been introduced as and when it was

required within the metamodel that described the process. This approach would have

been a visible, viable option from the outset and, as such, could have easily been adopted

into the development process when it became clear that it was required. Figure 2.9

highlights the course this particular project would have taken through the metamodel by

44

the bolder, arrowed lines. The metamodel thus clarifies all possible options available to

a project manager and provides a more visual representation of a project's progress.
Chapter seven provides more detail of this example.

2.6.5 Tracking the Development Process with Metamodels

One other benefit of the metamodel is its ability to provide project tracking even when a

software development has made several diverse changes. In the example studied (the
computer training package for schools) the project baseline plan became so disjointed

from the secondary plan (which included prototyping) that it became particularly
difficult to monitor its progress against this plan. The baseline plan no longer

represented the project direction and did not reflect the project's stages any more. A
secondary baseline plan was used to monitor the project's progression to its successful

completion. Many would argue that a project should be measured against an initial
baseline. In software developments, it is possible that the current project direction has

digressed so much from the baseline that a direct comparison is difficult to provide.
Because the metamodel provides all possible project directions at the outset, the software

development will follow one of these routes. The project can therefore be related to this
initial baseline plan as it will not digress outside the metamodel. Baselines provided by

the waterfall model, for example, do not allow this. The baselines in these cases are
fixed at each previous life cycle stage and not as a flexible baseline at the start.

2.6.6 The Way Forward with Metamodels

The metamodel defined in this chapter is not a definitive model and represents one of

many such metamodels. Organisations currently using perhaps one or two different
development approaches separately should be able to combine these within their own

metamodels, reaping the benefits that all their models can provide. The way forward is
to develop metamodels that provide the required benefits to an organisation to which

they are suited.

What is also required is a means whereby this type of model can be managed and
controlled. With reference to figure 2.2, a support element is required that assists a

management activity (planning) for any particular metamodel. The management
technique introduced below provides this support.

45

2.7 A FLEXIBLE PLANNING TECHNIQUE

2.7.1 Generalised Activity Networks

Perhaps the most common approach to planning projects, and consequently software

developments, is for a manager to use some form of project management software tool.
These tools are based on 1960s' ideas (for example, PERT) enhanced with 1990s'

technology (for example, WindowsTM). Generally speaking the more one pays for

these packages the prettier the screen looks, the more powerful the input and output

capabilities are, the more detailed are the results, and the larger the project(s) one can

manage. Their underlying concept remains the fixed project development structure that,

as far as software development is concerned, now belongs in history. The alternative to
these fixed planning techniques are Generalised Activity Networks that also originated

in the late 1960s but which have never really caught on.

Generalised Activity Networks operate in a similar way to standard PERT networks.
They represent projects as a series of tasks symbolised as interconnected arrows or

nodes (they are defined as both Activity-on-the-Node and Activity-on-the-Arrow
networks in the next chapter). Generalised Activity Networks differ from ordinary

Probabilistic Activity Networks in their definition of node input and output
characteristics. PERT networks insist on a deterministic node logic which implies that

all activities must occur, successfully in sequence, for a project to complete. Quite

clearly, this deterministic structure would be of little value for planning a software

development that uses a metamodel as a framework. It would not be able to cope with

alternative routes offered by a metarnodel within its representation. Generalised Activity

Networks, on the other hand, allow either deterministic or probabilistic branching to be

defined. This allows a more flexible project plan to be defined covering various phases

determined implicitly by whichever development model is being employed.

2.7.2 Benefits of Generalised Activity Networks

Another interesting facet of Generalised Activity Networks is their ability to handle

loops. If loops are formed in ordinary PERT type networks, a situation exists where

activities cannot start until after they have completed - an unacceptable logic. The

probabilistic nature of a Generalised Activity Network, on the other hand, allows

feedback (either probabilistic or defined) from activities to earlier stages in the project
plan. This ability provides an ideal representation for situations in metamodels where

feedback is inherent.

46

Generalised Activity Networks provide a means of planning variability and can be

nested in the same way as ordinary activity networks and bar charts. At their upper­

most level they can be used to plan and control the stages of a metamodel at a strategic

organisational level. An Activity-on-the-Arrow representation of the metamodel in

figure 2.9 is shown in figure 2.11. In order to keep things simple at this stage standard,

deterministic PERT nodes have been used. Obviously the loops and probabilistic

branches shown in this structure are not possible in an ordinary PERT technique.

Different node logics need to be defined so that they can cope with such problems.

These definitions are provided in chapter three. In constructing this network another

apparent link came to light between the prototype and the quick design stages. This

link, although not identified in the initial metamodel, should be an option as a prototype­

based specification could clearly lead to a quick design.

The activity network of figure 2.11 not only provides a project manager with a visual

representation of a project plan based on the metamodel but its analysis also determines

likely costs, durations and risks involved in a project overall.

Not only can Generalised Activity Networks be used for planning at the upper levels of

the development process (at the metamodellevel) but they can also be used to plan at the

lower tactical levels (nesting). At the lower levels of the development process it is

possible to use Generalised Activity Networks to plan how particular stages of a

metamodel are performed. How the implementation stage of a software development

can be planned with a Generalised Activity Network is provided as an example in the

following chapter.

2.8 CHAPTER SUMMARY

2.8.1 Conclusion

The software crisis has been around now for well over twenty years due, in part, to

organisations using development models that originated from completely different

project fields. It is now recognised that software is much more evolutionary than

engineered products and it is therefore necessary to adapt development processes

accordingly. What has been introduced within this chapter is the idea of hybrid

paradigms, or metamodels, that allow software to grow within their structure. They leave

managers with the project visibility they require, and allow more applicable development

routes to be pursued as and when required. By combining several different paradigms

within one structure, the benefits of each can be gained within one development

(providing that a project is allowed to evolve along its most logical route).

47

""" 00 .,

"'l
<i<i"

'" .,
'" N
;....
Cl
<>
~
~
'" 8-
~
~" ::.
-<
z
~ :e
o
~

~
]
§
g'
o ...,

~
~
"
~
~

Feedback

Feedback

\
\
\

\
\
\
\
\
\
\
\
\
\

Feedback

Formal Specification

Feedback

Optimise

\
\

\
\

\

Design

\
\

\
\

\
\

\
\

\

System
Assembly

Maintenance

Generalised Activity Networks have also been introduced that help the management

activities associated with planning and controlling more flexible software systems

development. It is perhaps too ambitious to assume that developers will take on board a

more flexible approach to managing projects without an established means of support.

It is anticipated that using more flexible management planning techniques, like

Generalised Activity Networks, may have to predate the employment of more flexible

metamodels. Managers may be unwilling to take such bold steps without the support of

a system with which they are comfortable.

To imply that managers are to give a free reign to the development of software and let it

evolve of its own accord would be wrong. What is suggested in this chapter is that a

more flexible approach is needed for managing software development projects with the

support of a more realistic planning technique. Software developments still require

some form of project management and planning, albeit a flexible one.

2.8.2 Future Work

Two areas still require developing from this initial research:

• Development of software dependent metamodels

• Development of organisation specific metamodels

The first of these areas identifies that different application domains have different

development needs. Metamodels for specific problem domains therefore need

developing from the broader metamodel presented in this chapter. Organisations have

also employed particular methodologies for their own domain specific developments.

Metamodels represent models that can be dedicated to the needs of specific
organisations. Again, these metamodels require some further development.

A discussion of other possible research areas related to this work is covered in chapter

seven.

48b

CHAPTER 3

Generalised Activity Networks for Project Management

CHAPTER PREFACE

In this chapter Generalised Activity-on-the-Arrow (presented in Dawson and Dawson

(l994a)) and Generalised Activity-on-the-Node Networks are defined. The chapter
begins by studying earlier developments in this field before providing a conclusive

definition of nodes in Generalised Activity-on-the-Arrow Networks. This work is then
developed to provide a definition of a Generalised Activity-on-the-Node representation

that also allows Logical Dependency Constraints to be applied. The Generalised
Activity Networks defined can be used as tools to manage both software developments

and general engineering projects where uncertainties exist.

CHAPTER KEYWORDS

Generalised Activity Networks, Activity-on-the-Arrow, Activity-on-the-Node, Logical
Dependency Constraints

3.1 INTRODUCTION

3.1.1 Scope

'The price paid for a more realistic representation is that the model is generally far more

difficult to analyse' [Moore and Clayton 1976].

Chapter one provided a general introduction to the different kinds of activity network

that are available to assist a project manager. Generalised Activity Networks are the

most powerful of the three activity networks available. Although the analysis of

Generalised Activity Networks can be somewhat difficult (this is addressed in the
following chapter) they do provide a more realistic way of mirroring real life projects.

A study of previous literature in this field showed little consistency between any of the

Generalised Activity Networks defined. This is due mainly to the fact that none were

adopted by industry and consequently no recognised, industry-wide standards emerged.

49

Some Generalised Activity Networks also provided rather ambiguous definitions and

overly complex representations, to which project managers had difficulty relating. What

has been required is a conclusive definition of Generalised Activity Networks. This

chapter provides such a definition and prepares the basis for a standard.

All previous literature devoted to the subject of Generalised Activity Networks (except
P-GERT [Pritsker 1974]) is concerned with an Activity-on-the-Arrow representation.

Later in this chapter, current thinking in the field of project management is addressed
and a Generalised Activity-on-the-Node representation is derived.

This chapter begins by clarifying all possible input and output forms of Split Node

Logic nodes in Generalised Activity-on-the-Arrow Networks. The chapter goes on to
define the three basic Unit Logic Nodes that are required and details some other

Generalised Activity-on-the-Arrow Network functions. This logic is then developed
into a Generalised Activity-on-the-Node representation that reflects the direction in

which most project management tools today are heading. By finally encompassing all
possible node input/output forms in a Generalised Activity Network presentation, a

representation is provided that can form the basis of an industry-wide standard.

Because of the flexibility provided by Generalised Activity Networks they offer several
advantages over standard Probabilistic Activity Networks. These advantages will

become apparent when specific examples (of Generalised Activity Networks being

used) will be studied later.

3.1.2 History

The first recognised Generalised Activity Network was introduced by Eisner in 1962

[Eisner 1962) when he developed a 'Decision Box Planning and Scheduling' technique

for research projects. This involved simple dichotomous choices at each node in a

network. Another early networking technique with some form of in-built probabilistic

option was Decision CPM [Crows ton and Thompson 1967). This technique explicitly

identified alternative ways of performing different tasks (with different costs and

durations) in a network diagram. More generalised developments were made by

Elmaghraby in 1964 and 1966 [Elmaghraby 1964 and 1966]. Elmaghraby viewed

nodes from the perspective of both input and output logics (called Split Node Logic or

SNL). Unfortunately, Elmaghraby was somewhat unclear in his definition of node
output logic. In most cases he assumed that only one activity can be performed from

any node (termed Exclusive-Or in this thesis), but in certain cases more than one activity

was performed. In figure 3.1, taken from Elmaghraby (1966), node 2 can only be

realised if both activities a and b are successfully completed. This is in contradiction to

50

Exclusive-Or logic that was assumed later in his paper when he analysed some example

networks.

a

b

Figure 3.1 Elmaghraby's Example Network

1966 also saw the introduction of the first of a series of Generalised Activity Networks

called GERT (Graphical Evaluation and Review Technique) [Drezner and Pritsker 1966,

Pritsker and Happ 1966, Pritsker and Whitehouse 1966, Whitehouse and Pritsker 1969,
Pritsker 1979, Pritsker and Sigal 1983]. GERTwas based on the ideas introduced by

Elmaghraby [Elmaghraby 1964 and 1966] and consequently inherited the same

deterministic and Exclusi ve·Or node output characteristics. GERT metamorphosised

into several domain-specific types. One of these was a purely Exclusive-Or input and

output form, called GERTE, that enabled analysis to be performed by flowgraph theory

(this form of analysis is presented in Appendix C). It was clear, in this Generalised

Activity Network, that the technique was being restricted by analysis limitations. A

simulation version of GERT, called GERTS, was therefore developed that included the

deterministic and Or-type inputs and outputs defined by Elmaghraby (1964). GERTS

progressed to incorporate resource requirements (without scheduling) and an Activity­

on-the-Node representation called P-GERT [Pritsker 1974]. P-GERT is the only

known reference to a Generalised Activity-on-the-Node representation.

According to Moore and Clayton (1976) the features available in GERT that do not

appear in PERT (ie standard Probabilistic Activity Networks) are:

• Probabilistic branching

• Network looping

• Network modification during execution

• Multiple sink nodes

• Multiple node realisations

• Specified activity releases

51

•

•

Multiple probability distributions

Multiple types of node input

Each of these features is available with both the Generalised Activity-on-the-Arrow
Network and the Generalised Activity-on-the-Node Network presented in this chapter.

The only development of Generalised Activity Networks since the time of GERT has

been the introduction of a particularly powerful technique called VERT (Venrure
Evaluation and Review Technique) [Moeller 1972, Moeller and Digman 1981, Kidd

1991]. VERT 'can offer a flexible tool for the strategic analysis of a project' [Kidd

1990]. The VERT technique continued with the split node logic of earlier techniques

but also introduced a unit logic node in which the output arcs from a node are linked in
various logical ways to the input arcs. Unfortunately, VERT has three shortcomings.

First, it again does not fully encompass all the possible probabilistic input and output
forms that can be defined for activity network nodes. It could not, therefore, mirror the

example provided later in this chapter. Second, because of its rather rigid and specific
design, it does not appear to be a natural progression from the PERT technique with

which most project managers are familiar. To take such a conceptual step is beyond the
scope and commitment of most managers. Third, VERT does not incorporate the ability

to handle loops - an inherently practical ability of Generalised Activity Networks - that
enable repetitive activities to be planned and controlled.

3.1.3 Generalised Project Management Tools

Two project management software tools, used by industry today, that incorporate some

form of Generalised Activity Network facility are Risnet™ (1993) and Monte Carlo™
(1993). Available for DOS version 3.2, Risnet™ provides twelve possible activity

temporal functions and several node input and output definitions. It is based on the
Activity-on-the-Arrow approach but unfortunately, it does not provide an ability to

model loops and provides none of the powerful features associated with Unit Logic
Nodes (defined in detail later). The second project management tool, with some form of

Generalised Activity Network representation, is Monte Carlo™ 2.0 - used in association
with Primavera Project Planner® (1994). This provides only very basic probabilistic

branching, concentrating more on its ability to model several different activity temporal

functions. As Monte Carlo™ is based on the output from Primavera Project Planner™

it represents an Activity-on-the-Node approach. However, its probabilistic branching is
limited to only two types - Conditional (Exclusive-Or in this thesis) and Probabilistic

(Independent-Or in this thesis).

52

3.1.4 Use of Generalised Activity Networks

Although a combination of all previous Generalised Activity Network definitions could

handle all project scenarios, they never became an established project management
technique. This is can be attributed to four reasons.

First, at the time of their development there was no prospect of software technology to

support their analysis requirements. With the advent of software technology, and the
introduction of personal computers in the 1980s, software planning tools were

developed based on the more established network techniques of PERT and CPM. Had
the technology to both create and analyse Generalised Activity Networks, been available

in the early 1970s, it is probable that they would have developed as the standard
planning tool for most projects. A Generalised Activity Network has more appeal to

project managers because of its flexibility and its ability to mirror projects more

accurately than the PERT technique.

Second, it is difficult to analyse standard Probabilistic Activity Networks without adding

the complication of stochastic activity nodes that are found in Generalised Activity
Networks. Although a project manager can produce a reasonable plan for his/her

project using a Generalised Activity Network, without suitable analysis the plan would
be virtually useless. The most productive way of analysing activity networks (both

Probabilistic and Generalised Activity Networks) is by simulation techniques.
Simulation avoids the computational expense of implementing excessively complex

multivariate integration solutions and conditional probabilities. It provides accurate
results of project characteristics in a reasonably short time and provides a practical

means by which analysis of Generalised Activity Networks could be incorporated into
software planning tools. Chapters four and five provide a more detailed discussion of

activity network analysis.

Third, it can be difficult to estimate the probability factors on which activity generations

are based. This can only improve through experience based on previous project results.

If managers were able to make regular use of a software tool for Generalised Activity
Network planning, they would become more used to this kind of prediction and the

problem would diminish.

Finally, human nature means that it can be difficult to persuade managers to incorporate
failure into their plans. The possibility of failure and the maturity to deal with its

outcomes must be incorporated into Generalised Activity Network plans. This allows
better analysis of risks than would otherwise be possible in standard activity network

approaches. Again, this problem will reduce once managers have gained experience of

53

Generalised Activity Networks.

Another possible reason why Generalised Activity Networks never became popular was

noted by Schonberger (1981). He wrote that managers tend not to have adopted a
GERT to assist with project planning because they are possibly bewildered by

conflicting theories as to which probability distribution to assign to project activities

with the technique. It is certainly the case that overly complex systems can be more of a

hindrance than a help. The Generalised Activity Network defined within this chapter
can be used, if required, by managers in a simple Probabilistic or Detenninistic Activity

Network form. The more powerful planning facilities that are available can be

introduced as and when required.

3.2 GENERALISED ACTIVITY·ON·THE·ARROW NETWORK DEFINITION

3.2.1 Essential Features

Like all Activity-on-the-Arrow techniques each activity, or stage, 10 a project is
represented by an arc (ij) that connects two nodes i, (its preceding node), and j (its

succeeding node). Because of this, Activity-on-the-Arrow networks are sometimes
referred to as /J Networks [Turner 1993]. Each arc is directed, that is, it shows a flow of

information between the two nodes that it links. Each arc has associated with it a time, a
cost, a performance measure, and a probability. The time, cost and performance

measures usually take the form of distribution functions (as in PERT). The probability,
represented by Pi/startS), is that activity ij is performed given that its preceding node, i,

is realised.

Activities, in this definition of Generalised Activity Networks, can reside in one of three
states at any given time. First, they can be in an active state that means they are

currently being performed. Second, they can be in an eliminated state meaning they

have being logically eliminated from the project at that time and will not be performed

during that project run. A neutral state represents the third state in which activities, not
in either of the first two states, reside. Although not strictly a state, a completed

marker can also be applied to an activity to signify its successful completion. This
marker is required for the Arc Constrained logic that is detailed later in this chapter.

Before each possible node representation was developed, all possible node realisations

were determined and compared with previous literature in the field (for example,

Drezner and Pritsker (1966), Moore and Clayton (1976». Nodes in a network

represent events that have any number of incoming and outgoing activities. The main

54

focus of attention in Generalised Activity Networks is at these nodes. The input and

output forms are detailed below with examples based on typical problems encountered
when planning software development projects.

3.2.2 Node Input

Each node can receive incoming activities in one of three ways; And, Or and Exclusive­

Or (Figure 3.2).

And Or Exclusive-Or

Figure 3.2 Generalised Node Inputs

In the following definitions p(j) represents the probability that a node, j, is realised given

that Phj(completes) and Pi/completes) represent the probabilities that incoming aCtivities

hj and ij complete successfully. This can, of course, be extended to m incoming
activities (m>o).

(i) And

All activities that are incoming to the node must be completed before the node can be
realised. This is the PERT form of the node input.

Example: In a software development, testing of modules must complete successfully

before the work of integrating them can begin.

p(j) = Ph/completes)npi/completes) (3.1)

(ii) Or

This node requires n incoming activities to complete successfully before it can be

realised. In many cases n= 1. This is taken as the default value and can be omitted from

the node. This definition implicitly accepts that a node can be realised every time n
incoming activities complete. Equation 3.2 represents a basic case when n = 2. The

different codes (represented by H in figure 3.2) applied to the node affect this reasoning
as follows:

55

H = Blank - as for the above definition. The node is realised when n incoming activities

complete. It can be realised as many times as required and does not rely on outgoing

activities completing (as code Q).

Example: For n= I this could represent a debugging process in a software development.
Each time a bug is found in a program a debugging process would be initiated.

H = C - The node is realised when n incoming activities complete successfully. All

other activities entering the node are allowed to complete in their own time. The node

can be realised once only.

Example: Where a number of system performance tests are being executed, although
one test fails, it may be better to complete any remaining tests as they may provide more

information and perhaps highlight more serious problems.

H = H - Cancel all remaining, active incoming activities when the node is realised and

eliminate all others.

Example: When searching for a particular problem in a system by several methods, as
soon as the problem is located all other search methods are terminated.

H = W - The node is realised when all active, incoming activities are completed

successfully and all other incoming activities have been eliminated. In other words, at
least n activities entering the node must have their completed markers set, and all others

must have been eliminated. This differs from the And input which would not allow
incoming activities to be eliminated from the project. This node can only be realised

once.
Example: When performing user testing, all user tests must have completed (either

successfully or unsuccessfully) before beginning work on a performance report.

H = Q - This represents a type of queuing node that represents a point in a project at

which only n completing activities can be dealt with at anyone time. This is equivalent

to the Blank-Or input except that all outgoing activities from the node must have

completed (or been eliminated) before the node can be realised again. In this case it

ensures that repetitive work does not run in parallel with itself.
Example: When performing user testing, after a user test completes a report is written

on that test. Work on the next report cannot begin until the first one is complete even

though new results have come in.

p(j) = Phj(completes) + Pij(completes) - Phj(completes)nPi/completes) (3.2)

56

(iii) xOr

Exclusive-Or. In previous Generalised Activity Network literature, this represented a
rather unrealistic input characteristic that would cancel the node if more than one

incoming activity completed successfully. It is difficult to envisage uses of an
Exclusive-Or node in this originally defined form. This ability can be achieved, if

required, by using the more powerful Unit Logic Nodes that will be described in the
next section. A far more realistic use of the Exclusive-Or is to constrain the Or node

input above to exclusive activity completions. In other words, for the definitions above,
n different activities must complete successfully before the Or node logic can be

interpreted, and not one activity completing successfully several times (which is
possible). This matches the Type A input of the GERT technique but it incorporates the

flexibility of the other node input definitions defined above. In its original Exclusive-Or
form, pG) would be calculated from equation 3.3.

Example: Testing of different modules must complete successfully. It is no use having
one module passing several tests whilst other modules fail theirs.

pG) = Ph/completes) + Pij(completes) - 2[Ph/completes)npi/completes)] (3.3)

Two possible input criteria that have not been defined are a Costffime dependency and a

a multiple realisation W-Or. No real examples could be defined for a mUltiple
realisation W -Or. Adding this criteria to the definitions above, however, would only

require the definition of another input code (for example, H = W2). The Cost/Time
dependency possibility is defined as part of a node's output and is examined below.

3.2.3 GERT

In simulation analysis of GERT networks [Drezner and Pritsker 1966, Moore and

Clayton 1976], for example the GERTS-IIIZ program maintained by Pritsker and
Associates Incorporated, an alternative definition of the node input is achieved by

applying different codes to the node (figure 3.3).

a Number of activities required for first realisation of the node.

/3 Number of activities needed for second and subsequent node

realisations. /3 = 00 implies the node will be realised once only.
/) Node identification number.

ro Node realisation code. This takes one of four values:

Blank Normal realisation occurs - The node may be

realised each time by the same incident
activity repeating more than once.

Type A Different incoming activities are needed to

57

activate the node.

Type H Cancel work of remaining incident activities

when the node is realised.

Type U A combination of type A and type H.

Examples of these definitions in a software development project are:

a = 2, ~ = I Module integration - two completed modules are required before

integration can begin. Subsequently only one more module is needed
each time for integration to continue.

(J) = Blank

(J)=A

(J)=H

(J)=U

A simulation test system (ie with repetitive testing) can use results from

the same, or different test routines to test a system.

Testing of all modules must be successful - it is no use having one

module testing successfully several times if others are to fail.

Cancel remaining testing when one unit test fails. After reprogramming,

all units will need retesting from scratch and so there is no poin t in

testing them further at this stage.

A combination of examples A and H above.

Figure 3.3 A GERTS-IIIZ Node

3.2.4 GERT Time Statistics

As a network is simulated it may be desirable to collect various time statistics associated

with the network. To this end it is possible to assign particular time statistic codes to

certain nodes. Figure 3.4 shows where this code, 't, is located on a node with the

corresponding values explained below. Thus, if a network was simulated, the required

time statistics could be acquired from the network.

Figure 3.4 Another GERTS-IIIZ Node

1: = F Time of fIrst realisation of the node (from the source node).

1: = A Time of all realisations of the node (from the source node).

1: = B Time between realisations of a specifIc node.

1: = I Time interval from a mark node to a statistical node.

1: = D Time delay from fIrst activity release at a node until the node is realised.

1: = M Mark node - forces future statistics to be referenced from this node as

opposed to the source node.

3.2.5 Node Output

Once a node has been realised the activities emanating from it can begin depending on

the form of the output defInition. As shown earlier in this chapter, previous literature

[Elmaghraby 1964 and 1966] assumed an ambiguous Or-type node output. In this

section the output types are clarifIed by using distinct node representations. The output

form of a node can actually take one of five forms: Deterministic, Independent-Or,

Exclusive-Or, Dependent-Or, or Cost/Time Dependency. Examples of these node styles

are provided in fIgure 3.5 with probabilities shown as examples.

(i) Deterministic

All activities emanating from this node begin when the node is realised. This is the

PERT form of node output.

Example: In a software development, the coding of all modules can begin after the

specifIcation is complete.

(ii) Independent-Or

All activities emanating from the node start independently with a given probability. This

can lead to a situation where all or, at the other extreme, no activities are started when the

node is realised.
Example: Following user trials the next activities may be; alter user manual, alter code

or any combination of the two.

59

(iii) Exclusive-Or

In this case only one activity emanating from the node can be activated. The sum of the

probabilities of the activity actuations in this case must equate to one, as the probability

of one activity being chosen to start is dependent on not selecting any of the others.
Example: A system test could result in perfonning a success activity or failure activity

but not both.

~-II~0.8 >1-.... 0.2

0.5 0.7

Detenninistic Independent-Or Exclusive-Or

~ 0.6

Dependent-Or Cost/Time Dependent

Figure 3.5 Generalised Node Outputs

(iv) Dependent-Or

The activities emanating from this fonn of node are in some way dependent on one
another. As for the independent case, each activity has its own probability of occurring,

but the combined probability no longer equates to the product of the individual activity

occurrence probabilities (equation 3.4). If this were the case then the node would be

replaced by the independent fonn.

Example: Following user trials the next activities may be; improve the software speed

and/or reduce the memory costs. Generally speaking, it may be particularly difficult to

attempt to improve both these problems as in some cases they affect one another. The

combined probability of even attempting to start both these activities together is
probably less than the product of both activities combined.

60

(3.4)

In figure 3.5 (Dependent-Or) one can see there is no explicit representation of the

combined probability value. This could be somewhat of a drawback. An alternative way
of representing a Dependent-Or output is to use dummy activities and nodes so that the

probabilities can be shown explicitly. Figure 3.6 shows how activities A and B, which
are dependent in some way on one another, can be represented using an Exclusive-Or

output and several dummy activities. The price one pays for this explicit representation
is an overly complex replacement to the simple Dependent-Or output node and this

would become even more complex if several outgoing activities were dependent on one

another.

--~

Figure 3.6 Messy Alternative to Dependent-Or Output

(v) Costfrime Dependency
The output activities from this node are dependent on the times and costs accrued to

date. This is particularly useful in planning for situations in which costs and times

significantly affect the course of a project. For example, if a project is overrunning its

estimated costs by 50% at a particular stage in its development cycle, it may be decided

to scrap the entire project. Being able to plan for this terminal possibility beforehand

provides the project manager with a clearer means of risk analysis.

Another suggestion for Cost/Time dependency could be to apply these restrictions to

the input side of a node. For example, a node could be activated after X days into a

project. In this case the activities emanating from the node are dependent on this

cost/time dependency and it is better to apply the code to the output side of the node for

consistency. Having this logic on the output side of a node also allows it to be used as a

source node - for example, activities A and B are started three days after the project

begins.

61

With each node having three possible forms of input and five possible types of output,

there are fifteen unique SNL node types. Table 3.1 illustrates how the input and output
styles combine to form all the available nodes.

And Or XOr

lt~ Output (~~ IE~

Deterministic) 0 0 K)

Independent Or > 0 0 K>
Exclusive Or)I 01 <)I K>I
Dependent Or] 0 (] KJ
Cost/Time J 0 a 10

Table 3.1 All Possible SNL Nodes

3.2.6 Unit Logic Nodes (ULNs)

Unit Logic Nodes (ULNs) were first introduced in the VERT technique by Moeller
(1972). The ULNs defined in this work were given particularly complex names such as

'Time Cost Performance Link Escape' and 'Partial Time Cost Performance Link
Escape'. ULNs link the output activities from a particular node logically to that node's

incoming activities. Only three types of ULN require definition - shown in figure 3.7.
The output activities from these nodes are activated as soon as their input criteria are

satisfied.

'"0

A "E X A X A " X '"0 c
"'Z ~z 'eo

B "O...J Y B ~S y B ~ 1:1 Y §~ <C '"
~ c

C '" Z C 0 Z C 0 Z U

a b c

Figure 3.7 Unit Logic Nodes

62

Although in some cases these node logics can be achieved by using standard Split Node
Logics, the ULN provides a much neater representation. Several SNL nodes may be

required where one ULN can be used.

An old style Exclusive-Or construct within the ULN is not defined because this logic
can be achieved by a deterministic structure within an ordered ULN. For example, if

Zt-A xOr B, this can be achieved by the ordered ULN:

I. Zt-AnB
2. Zt-A
3. Zt-B

(i) Standard ULN
Each output arc is linked in a logical way (either And or Blank-Or as in SNL input) to

one or more input arcs. For example in figure 3.7a, activity X can be defined to begin
when both activities A and Rcomplete successfully and activity Y can be defined to

begin when activities A or B or C complete successfully. In this case:

X=AnB
Y=AuBuC

Example: (all And) In a software development, after completing menu testing

successfully and menu selection 'A' coding, this selection can be integrated into the
menu driven system. The same is true for menu selection 'B' with the menu driven

system and so on.

(ii) Ordered
Only one output arc is performed depending on a preferred ordering applied to each

output activity. For example, activity X may be performed instead of activity Y if both
their input criteria are satisfied.

Example: If modules A and Band C fail their user trials it may be necessary to
redesign and recode the entire system. This rule would take precedence over' A and B

failing' that could, perhaps, involve debugging their particular modules. Although A
and B could prove to be true, A and B and C would take precedence over this rule. This

would be represented by the ordered rules:

I. Redesign and Recode = A n B n C
2. Debug A and B = A n B

2. Debug A =A
4. Debug B = B

63

(iii) Arc Constrained

This is equivalent to the Filter #3 output defined in VERT [Moeller 1972]. Although
not related solely to a node's input arcs, it fits more logically into the ULN definitions.

As in the Filter #3 node, each output arc has a list of activities with positive and negative
markers. If all activities with positive markers have been completed successfully (their

completed marker set) and all activities with negative markers have not yet completed
(their completed marker is not set), that output activity is allowed to start. This is

particularly useful for linking activities to events that occurred much earlier in a project
life cycle. This approach is much simpler than that adopted by Moore and Clayton

(1976). Their technique, called network modification, incorporated separate structured
routes through a network that would be initialised depending on a single, previously

executed activity.

Figure 3.8 shows an example of Arc Constrained network modification where the
modified route is represented by a dashed, arrowed line. In this case, if activity 3 were

to complete before node 4 had been realised, the system would replace the output from
node 4 with node 9. Thus, on completion of activity 2, the outputs from node 9, not

node 4, would be initiated. The replacement of node 4 with node 9 only occurs if
activity 3 completes before node 4 is realised. If node 4 had already been realised it

could not be replaced by node 9 which would remain dormant. The Arc Constrained
technique provides a more flexible approach to this problem and allows the

incorporation of alternative routes within an initial network. Figure 3.8 (Equivalent
ULN) shows this simpler representation.

"0 0 .,
c

m ~ 'ca
~ t;

c
0 [?J u

Arc Constrained Equivalent ULN

Figure 3.8 Arc Constrained and Equivalent ULN

64

3.2.7 Dummy Activities

To maintain the logic of a network it is sometimes necessary to use dummy activities.
These activities have no times or costs associated with them and are represented by

dashed, arrowed lines in an activity network. They link nodes between which there is a

logical dependence, but no actual activity. Dummy activities will be used in examples

and defmitions used in following sections.

3.2.8 Loops

Another dimension of Generalised Activity Networks is their ability to handle loops. In
ordinary Probabilistic and Deterministic activity networks, where all node inputs are

deterministic, a loop results in a situation where activities need to complete before they

can start. Allowing loops to be formed in an activity network provides useful analysis·

of projects where certain tasks are repeated, for example software debugging and

retesting loops. Loops can be analysed to deduce the expected number of times each

loop is performed, with associated times, costs and performance measures. Loops can

either be formed by probabilistic branching to earlier stages of a project life cycle, or can

be explicitly defined by a specified number of repetitions.

In cases where loops are explicitly defined, it was suggested by Grey (1994) that loops
are handled best by repetitive implementation of single activities. This can become

rather messy, especially if the loop is to be performed several times. The solution to this
problem is an alternative implementation of the Exclusive-Or output from a node. In

this case, instead of applying probabilities to the output arcs, a figure is applied to an arc

(representing, in this case, the activity looping back) that represents the number of times

that activity should be performed. Thus, each time the node is realised, the arc with this
applied counter is performed and the counter is reduced. This repeats until the activity

has been performed the required number of times, after which the alternative output

route from the node is taken. Figure 3.9 shows an explicit loop that will ensure activity

A will be repeated four times. This is clearer and simpler than redrawing task a several
times, and it also identifies, more explicitly within the network, where repetition is taking

place. It is worth noting that loops can involve several activities (for example, activity A

in figure 3.9 could represent a subnetwork as could the loop back) in which case

repetitive implementation of the loop would be particularly messy.

65

---- ---

Figure 3.9 An Example Loop

3.2.9 Clarity

With the probabilistic output of SNL nodes defmed in five mutually exclusive forms, it

is important to differentiate between them within a network diagram. This ensures that
the logic and clarity of a network is maintained. For example, after completing user

trials in a software development project, it may be necessary to reword the user manuals

and/or debug the program. Clearly these tasks are independent from one another but

the probability of continuing, without needing to debug the program, is exclusively
dependent on having to debug the program. Figure 3.10 shows that the previous

representations could not handle clearly this combination of node output styles whereas,
by using dummy activities and alternative node representation, the definitions provided

in this chapter can. The probabilities assigned to the activities in this diagram are
provided as examples.

When a node is the source of a single activity, that node's output should be represented

by the deterministic form. If it has an independent probability associated with it, then

the Independent-Or form should be used instead. Similarly, a deterministic input should

be used when only a single activity enters a node, unless there is a reason why one of
the other node inputs are required (for example, if an activity must complete n times

before the node is realised).

66

Reword User
Manuals

User Trials
Debug

Do not debug

User Trials

Previous Representation

Reword User
Manuals

New Representation

Debug

Do not debug

Figure 3.10 Improved Network Representation

3.2.10 Non-activities

In the previous section dummy activities were used to maintain the logic of a network.
Dummy activities can also be used to represent what are called non-activities in a

Generalised Activity Network. Non-activities are links that represent probabilistic
outcomes from certain tasks. For example, non-activities can be used to represent the

outcome of a test, whether it is success or failure - figure 3.11. In these cases the non­
activities are represented by dummy activities to indicate that they have no cost or time

associated with them.

3.2.11 Activity Completion Probabilities

Although not identified in any previous literature in the field, the inherent flexibility of
Generalised Activity Networks allows one to apply a completion probability to each

activity in a network. The completion probability for activity ij is represented as

67

--- -----

pij(finishes). This probability represents the chances of successfully completing task ij

given that it is started. In most cases activities that start do complete successfully, and
consequently the completion probability is one (Pij(finishes) = I) and can be omitted

from the network diagram. However, in certain circumstances it is possible that tasks
may not complete successfully and completion probabilities are applied to these

activities to reflect this. The successful completion of an activity in a project, therefore,

depends on the probability that it starts (Pij(startS)) and the probability that it

successfully completes (pi/finishes)). Thus:

Pij(completes) = Pi/startS) * pij(finishes) (3.5)

The standard PERT technique cannot incorporate this form of detail because of the
implicit deterministic nature of the technique. Completion probabilities can prove

particularly useful for risk analysis where managers need to anticipate possible task
failures. For example, in research and development projects one may expect certain

avenues of research to fail. Being able to plan for these failures beforehand allows a
manager to prepare alternative solutions.

Failure --0.3 __ --
--

Test
0.7

Success

Figure 3.11 Example of Non-Activities

If an activity is deemed to have failed, it is important that the repercussions of this failure

are perpetuated through a network. In other words, all other activities relying on the

successful completion of this activity must be marked as eliminated from that run of the

activity network. Figure 3.12 shows an example of the importance of this effect.

68

A

Figure 3.12 Example of Perpetuated Elimination

In this case, if activity A fails to start (which is possible due to the probabilistic output

nature of node 1), activity B has no chance of being performed. If activity B was not
marked as eliminated, node 4 would be in perpetual limbo as it would be waiting for

activity B to either be eliminated or completed, which would, of course, never happen.
This example emphasises the need to perpetuate failure through a network and mark as

eliminated all activities relying on a previously failed task.

3.3 GENERALISED ACTIVITY-ON-THE-NODE NETWORK DEFINITION

3.3.1 Overview

Today, project management software tools are moving away from Activity-on-the-Arrow

towards Activity-on-the-Node representations. In Activity-on-the-Node representations,
nodes represent activities and arcs represent logical connections between activities. At a

recent exhibition in London [Project Management South 1994], out of twelve project
management software tools on offer, the majority (ten) provided Activity-on-the-Node

representations. MICROPLANNERTM (1992) was the only package offering solely the
Activity-on-the-Arrow representation. Pertmaster Advance (1994) was the only tool

offering both representations - in the same way as the original Pertmaster product. The
ASTA Development Corporation [PowerProject® 1991] had abandoned activity

networks altogether and had developed the concept of linked bar charts (Gantt Charts).
Linked Bar Charts were on offer with several other packages (for example, Artemis

Schedule Publisher™ (1993)) but these packages provided Activity-on-the-Node
representations as well. The general mood was one of a movement away from older

Activity-on-the-Arrow representations towards standardised Activity-on-the-Node and
Gantt charts (often referred to as Bar charts) based Windows™ products. With this

direction in mind, it was important to define a Generalised Activity-on-the-Node
Network to reflect the direction in which most project managers today are heading.

69

-- - -----

Another advantage of an Activity-on-the-Node representation is the ease in which

precedence diagram constraints (also known as logical dependencies constraints) can be

applied (for example, finish to start, start to finish constraints). In Activity-on-the­

Arrow representations, applying these constraints involves the introduction of both

dummy activities and nodes between activities being constrained [Crandall 1973].

Trying to apply these constraints in Generalised Activity-on-the-Arrow Networks is

even more complex as dummy activities must be introduced alongside new nodes with

specific characteristics that maintain the original logic of a network. Applying logical
dependencies to Generalised Activity-on-the-Node Networks is much easier as the

constraint can be applied directly to the logic connections linking activities.

Turner (1993) also identified several other reasons why the Activity-on-the-Node
representation was preferred by many managers to Activity-on-the-Arrow.

1. Work is more naturally associated with a box.

2. It is more flexible for drawing networks.
3. Software is easier to write for this representation.

4. Gantt charts are easier to draw, requiring no dummy activities

5. The work is independent of the logic which can be added later.

One difference between Generalised Activity-on-the-Arrow and Generalised Activity­

on-the-Node representations is that, in the latter, nodes in a diagram are stretched to

accommodate any necessary activity identifying text. Figure 3.13 shows an example of

a typical node. In this case activity A has a deterministic input and probabilistic output.

Figure 3.13 An Example Activity in a Generalised-Activity-on-the-Node

Representation

Because this definition of a Generalised Activity Network representation contains both

Unit Logic Nodes and Dummy Nodes it can, in some respects, be viewed as a Hybrid of

Activity-on-the-Arrow and Activity-on-the-Node. For the:' purposes of this thesis,
however, it will be referred to as a Generalised Activity-on-the-Node representation.

70

3.3.2 Activity Node Inputs

The development of a Generalised Activity-on-the-Node Network leads directly from

the node definitions of the Generalised Activity-on-the-Arrow Network defined earlier
in this chapter. As the definitions represent all node input logics, they can be used

directly as definitions of Activity Node inputs in Generalised Activity-on-the-Node

Networks. The node input definitions, And, Or and xOr are exactly the same as those

defined earlier in this chapter with the defmitions relating to logic relationships between

activities.

(ii) And

All activities preceding an activity must be completed before that activity can be

performed.

(ii) Or
This activity requires n preceding activities to complete before it can be performed. This

definition implicitly accepts that the activity can be performed several times, each time n
preceding activities complete. As before, when n= I this can be omitted from the node.

The different codes applied to the input of the activity affect this reasoning in the same

way as the Activity-on-the-Arrow definition earlier:

H = Blank - as for the above definition. It is not necessary to wait for the activity to

finish before starting it again (like code Q dictates).

H = C - Allow all other activities preceding this activity to complete in their own time.

The activity will be performed once only.

H = H - Cancel all remaining, active preceding activities when the activity starts and

eliminate all others.

H = W - The activity is performed when all active, preceding activities are completed and

all other preceding activities have been eliminated. The node still requires a minimum of
n activities to complete successfully before realisation, and can be realised only once.

H = Q - This represents a queuing activity that can only deal with n completing activities

at anyone time. The activity must complete before allowing the next n activities to

restart the activity again.

(iii) xOr
This works in the same way as the Activity-on-the-Arrow definition and ensures that n

71

different activities complete successfully before applying the above rules.

3.3.3 Activity Node Outputs

Again, the definitions of activity output logics are derived directly from the Activity-on­

the-Arrow defini tions provided earlier.

(i) Deterministic
All logical relations emanating from this activity will be pursued when the activity

completes. This is the standard Activity-on-the-Node representation found in almost all
project management software tools.

(ii) Independent-Or

All logical relations from this activity will be pursued, depending on their probability

values, when the activity completes. In a similar way to the Generalised-Activity-on-the­

Arrow representation this can lead to a situation where all or, at the other extreme, no

logical relations are pursued when the acti vity completes.

(iii) Exclusive-Or

In this case only one logical relation leaving the activity will be pursued when the activity

completes. The probabilities, rules, and examples are the same as those in the

Generalised-Activity-on-the-Arrow representation.

(iv) Dependent-Or
The logic relations with other activities that emanate from this form of activity output are

in some way dependent on one another. As for the independent case, each logic relation

has its own probability of occurring, but the combined probability no longer equates to

the product of the individual activity occurrence probabilities.

(v) Cost/Time Dependency

The iogic relations emanating from this activity are dependent on the times and costs

accrued to date. This is exactly the same as the Generalised Activity-on-the-Arrow

representation.

3.3.4 Activity Completion Probabilities

Activity completion probabilities (such as those explained earlier) can be applied directly

to the output side of an activity node in this Generalised Activity-on-the-Node

representation. This value represents the probability that the activity completes

successfully given that it starts.

72

Figure 3.13 brings together the points introduced above, showing how activities can be
represented with different input and output forms and illustrating an example of an

applied completion probability (in this case PA (finishes)= O.7).

One of the strengths of the Generalised Activity-on-the-Node representation defined in
this chapter is its similarity to conventional Deterministic and Probabilistic Activity

Network styles. Figure 3.14 illustrates how an activity network, generated using these
rules, can look virtually identical to a standard probabilistic activity network

representation, when the more powerful Generalised Activity-on-the-Node functions are
not required. With this similarity to more popular techniques, it requires no retraining at

the initial stages of its implementation. Managers can be introduced to new concepts
and representations provided by this Generalised Activity-on-the-Node representation in

a progressive way.

Activity I Activity 2 Activity 4

Activity 3

Figure 3.14 A Simple· Generalised-Activity-on-the-Node Network

3.3.5 Unit Logic Nodes

Unit Logic Nodes provide an immense amount of power to Generalised Activity-on-the­

Node Networks by providing a means for filtering future routes through a network.
They determine which subsequent activities should be performed, based on what has

happened previously. All three ULN nodes, defined earlier in this chapter, can be used
in a Generalised Activity-on-the-Node Network. Figure 3.7 shows the three node types

available for Generalised Activity-on-the-Node Networks. The various incoming and
outgoing arcs represent logic relationships with other activities in this case. Apart from

milestones and dummy nodes, Unit Logic Nodes represent the only other nodes in a
Generalised Activity-on-the-Node Network where resources are not consumed.

73

(i) Standard ULN

Each output logical relation is linked in a logical way to each incoming logical relation.

The example provided earlier illustrates this situation. In this case the example relates

directly to logical relations to subsequent nodes.

(ii) Ordered

Only one output logical relation is pursued depending on a preferred ordering applied 10

each output logical relation. Again, the example provided earlier illustrates the

possibilities of this function.

(iii) Arc Constrained

Exactly as in the Generalised Activity-on-the-Arrow representation, each output logical

relation from this node has a list of activities with positive and negative markers. If all

the activities with positive markers have been completed successfully (their completed
marker set) and all the activities with negative markers have not yet completed, that

output logical relation is allowed to be pursued.

3.3.6 Dummy Nodes

It may be necessary to introduce dummy nodes into a Generalised Activity-on-the-Node

Network to preserve the logic of a connection. As an example, suppose, from the

outcome of a test (which is either successful or not), two possible activities may need

performing with independent probabilities. Trying to incorporate both an Exclusive-Or

output (the test result) and an Independent-Or output for these activities, onto the output

side of the Test node is rather messy. The solution is to use a dummy node that enables

the logic to be maintained. Figure 3.15 shows how a dummy node is used in this

situation. To ensure that there is a connection between the dummy node and activity C

(it is not guaranteed by Activity A and B which are probabilistic) a logical relation

between these nodes has also been applied with probability one. The other probabilities

are provided as examples.

Figure 3.15 Example of Dummy Node Usage

74

3.3.7 Loops

Loops are fonned as easily in Generalised Activity-on-the-Node networks as they are in

Generalised Activity-on-the-Arrow networks. Figure 3.16 illustrates how an activity, A,

that requires perfonning four times, would be represented. The similarities between this

representation and that shown in figure 3.9 are self evident The Exclusive-Or output is
being used in the same way in this example as it was earlier. In this case the output

defines that the logical relation leading back should be perfonned four times - each time
activity A completes. Loops can also be produced by probabilistic branching in which

cases probabilistic activity outputs would be used and loops would only be performed

by chance. Unit Logic Nodes can also be used to initiate feedback to earlier stages of a

project plan. In this case they provide an incredible amount of planning power as

feedback can be dependent on events that occurred earlier in a project. An example of

this will be presented later.

4

Figure 3.16 Example of a Loop in a Generalised Activity-on-the-Node Network

3.3.8 Non-Activities

Non-activities, that are used in Generalised Activity-on-the-Arrow Networks, are not

required in the Generalised Activity-on-the-Node representation as they are represented

by the logical relationships between activities. For example, figure 3.11 can be

represented in a Generalised Activity-on-the-Node representation as shown in figure

3.17. The logical connections between activities in this case replace the need for non­

activities in this form of activity network. It is worth noting that the power of this

Activity-on-the-Node representation also allows a completion probability to be applied

simultaneously to an activity. In figure 3.17 the probability of actually completing the

test itself is 0.9, the probability of the test proving successful is 0.7, and failing is 0.3.

In this case the probability of perfonning the Success Activity is 0.63 (the product of

successfully completing the test and the test proving positive).

75

Success
Activity

Fail
Activity

Figure 3.17 Completion Probabilities and Probabilistic Branching

3.3.9 Precedence Diagram Method (PDM)

PDM constraints (or logical dependency constraints) have being used by project
managers for a long time [Crandalll973, Wiest 1981, Moder and Phillips 1983]. They

have also been successfully implemented into several current project management tools
for example, Microsoft® Project 4.0TM (1994), Project Manager Workbench™ for

Windows™ (1994), and Primavera Project Planner® (1994). It was noted earlier in this
chapter how such constraints are difficult to implement within Activity-on-the-Arrow

networks. This is not the case with Generalised Activity-on-the-Node Networks that
prove to be as open to his approach as standard Probabilistic Activity-on-the-Node

Networks.

I

r Activity
A

F-S Del!y .1 Activity

B

F-F Delay

Activity
B

L

Activity
A

I

Activity
A

SOS Delay ..
• I

Activity
B

S-FDelay

I
/

Activity
B

Figure 3_18 The Four Possible PDM Constraints

The four possible PDM constraints that can be applied between any two activities are

represented in figure 3.18. The definition of these constraints was covered in more
detail in chapter one. Applying these constraints to Generalised Activity-on-the-Node

networks could not be easier as they are applied directly to the logical relations that
connect any two nodes. Figure 3.19 shows a simple example of a Generalised Activity-

76

on-the-Node network with some PDM constraints applied. In this example there are

Finish-to-Start constraints between activities C and D, and between E and F. There is a
Start-to-Start constraint between activities A and C, and a Start-to-Finish constraint

between activities A and B (although the use of such a constraint is rather limited).

Figure 3.19 An Example Network with PDM Constraints

3.3.10 Milestones

A project milestone is a moment that represents a significant step towards the

completion of a project. Determining a project's milestones beforehand helps to define

goals for the project and maintain the developers awareness of those goals. They also

give a visibility to the progress of the project in a measurable sense and highlight any
problems in keeping to schedule, that in turn allows remedial action to be taken at the

earliest opportunity. Examples of milestones include:

The project start day.
The delivery of a new computer.

Part of the system is ready for demonstration.

Part of the system is delivered to the customer.

The final system is deli vered.

Representing milestones in Generalised Activity-on-the-Node networks is not as clear

cut as it might first seem. In ordinary Activity-on-the-Node Networks it can be a simple

case of representing a milestone in a rounded box or oval (for example, figure 3.20). In
Generalised Activity-on-the-Node Networks the input and output logics to the milestone

may need preserving, in which case it is necessary to maintain the logical style of the

node. The solution in Generalised Activity-on-the-Node networks is to represent

milestones in dashed nodes that allow the logic of a node to be maintained. Figure 3.21

77

provides a simple example of milestone representation in a Generalised Activity-on-the­

Node network.

@-~.~(ACtiVilYA) ... --.~®

Figure 3.20 Milestone Representation in an Activity-on-the-Node Network

.' -.. . '
f Ml·>-....... ~(ActivityA)

. ",,'

, -'- ' .

J
(M2':
" : . .' -

Figure 3.21 Milestone Representation in a Generalised Activity-on-the-Node Network

3.4 APPLICATIONS

3.4.1 Overview

Virtually all project management software in use today is based on either the standard

Deterministic or Probabilistic Activity Network solution. It was noted by Kidd in 1990

lKidd 1990J that 'these programs cannot address the strategic uncertainties that face all

project managers.' Kidd went on to identify that a solution would be for managers'

to use more sophisticated management tools such as the VERT technique mentioned

earlier in this chapter. Unfortunately, as noted earlier, the VERT technique represents

too broad a change for managers to make. The alternative is the implementation of a

technique that has much in common with the popular PERT technique, with the added

flexibility and clarity available as and when it is required. The completion of both

Generalised Activity-on-the-Arrow and Node Network representations provided in this

chapter provides just such a definition.

The flexibility offered by Generalised Activity Networks enable them to be used in all

kinds of development projects. In their basic form they can be implemented as purely

deterministic network structures. In this configuration they represent common

Probabilistic Activity Networks and can be used in the same way as the standard PERT

technique. Where Generalised Activity Networks come into their own is in projects

where uncertainties exist and conclusions of particular tasks cannot be predetermined.

An obvious field where these problems are encountered is Research and Development

where outcomes from various research activities can only be guessed at initially.

78

Another field is Software Development where projects include test results and

integration and implementation uncertainties that cannot be fully guaranteed at a
project's outset. Being able to code these uncenainties into a project plan at the outset

enables mangers to perform a more detailed risk analysis.

In previous literature, examples of Generalised Activity Networks mentioned earlier are

given in specific, real life projects. For example, Moeller (1972) shows how VERT was

used in the planning of a helicopter development Moore and Clayton (1976) shows the
GERT technique being used in planning the drilling of an oil well, and Kidd (1990)

provides an example of how a Generalised Activity Network can be used in managing a

software development project.

3.4.2 An Example Problem

In order to see how both the Generalised Activity-on-the-Arrow and Generalised

Activity-on-the-Node Networks defined in this chapter could be used in the planning of
a project, the following example, based on a simple software development, has been

devised. This example is related to the design and implementation phases of a project -
representing a more tactical level plan than the strategic metamodellevel. An example of

a Generalised Activity Network for a metamodel can be found in chapter two. It is
unlikely that anyone project would require all possible Generalised Activity Network

functions defined in this chapter. To try and incorporate every function into an example
would prove too complex for illustrative purposes. However, as shown in previous

examples, each logic has its practical uses and managers would employ any required
subset of the logics available. The example, that helps to illustrate the possibilities of

Generalised Activity Network usage, is based on the following scenario:

A software system to be developed consists of three modules - A, Band C. These

modules are coded and tested separately after the design is complete. If all modules

fail their testing, the whole system must be redesigned and re coded as major
problems have clearly been encountered. Although module C must be working before

the project can continue, any bugs found within modules A and B can be ignored as
they will be removed automatically during the integration phase. The user manuals

can also be wrinen concurrently with the integration of modules A, Band C,

After integrating the modules and completing the user manuals, the viability of the
project will be assessed. If, at that stage, the project is overrunning its expected costs

by 50% or more the project must be scrapped. Otherwise the project continues with
the integrated testing phase. It is anticipated that the only reasons for this testfailing

are due to the system being too slow or too costly (in terms of memory requirements).

79

These problems need rectifying before user trials can take place. The only problems

anticipated with the user trials are that the manuals are inadequate, or some simple

bugs are found resulting in a basic debugging process. No further testing will take

place after this phase and this implementation stage of the project is completed.

(i) A Solution Using PERT
To begin, an attempt is made to plan this project using a standard PEKT' type approach

(both Activity-on-the-Arrow and Activity-on-the-Node). The PERT network is
somewhat difficult to form from this scenario due to the uncertain behaviour and

repetition of particular tasks. The resultant PERT networks are shown in figures 3.22

(Activity-on-the-Arrow) and 3.23 (Activity-on-the-Node). Uncertainties at various

stages of the project cycle have had to be implicitly coded into specific tasks in these
networks. For example, Improvements 2, following User Trials, includes the possibility

of having a zero cost/duration or a cost/duration that is based on recoding some

software or rewriting parts of the user manual. The deterministic structure of PERT has

not allowed these alternatives to be explicitly incorporated into the plan and they have
become buried in the simplicity of the technique.

(ii) A Solution Using a Generalised Activity-on-the-Arrow Network

The Generalised Activity-on-the-Arrow Network, on the other hand, allows more

detailed analysis of the project plan, explicitly identifying problems that may occur. The

Generalised Activity-on-the-Arrow Network, based on this project scenario, is shown in

figure 3.24. In this diagram, all uncertainties are shown explicitly, providing the project

manager with a more detailed view of possible risk points in the project life cycle. Each
node in figure 3.24 has been assigned a number to assist with the explanation below.

It is worth noting how the different node input styles have been used in constructing this

network. While the deterministic node input at node 9 should be clear it is worth
explaining the W -Or node inputs at nodes 13 and 17. The w-Or inputs at these nodes

ensure that the project only progresses when all active incoming activities to the node

complete successfully. It would be wrong, for example, to continue with the User

Trials (between nodes 14 and 15) while attempts were still being made to increase the

software speed, even though a reduction in the memory costs had been achieved.

Because of the probabilistic nature of the activities between nodes 12, 13 and 16, 17 (ie

it is possible that none of these activities may be performed), a dummy activity also links

these nodes. This ensures that the project plan will not grind to a halt should either of

these pairs of activities be eliminated from the project plan.

Nodes 14 and 18 represent Blank-Or inputs (an w-Or input could have been used here

80

"'l
dQ"
c ., ...
~

N
N

~
0-
0>
s:
~
::to
n

>-n
::to

00 <: - ~.

~

'< ,
0
::s ,
So
<1> ,
>-a
~
z
<1>

~
0
:;(-
0,
m
><
0> a
'0

" ~
..9.

<1>
n
~

Design

Improvements 1

Code and Test
Module A

Code and Test B

Code and Test
Module C

User
Trials

Test

Write Manuals

Integrate

Improvements 2

"l
tiiS"
c .,
'" ...
N ...
~ er
'" g
v;"
~
~"

n
;I>
n
p.

00 :5.
IV ~

'< ,
0

'" , S-
e> ,
Z

~
Z
e>
~

~
0
:>;"

0,
tT1
;.<

'" a
't:l -e>

4'
8.
e>
n
~

Code/
TestA

Code/
Test A Test

Code/
TestA

1--t~Improvemen ts I--t~
1

User
Trials

I--t~mprovements
2

00
w

0- --
A~0!L. 7
~K -
~0!L.

"0
~ Z I!.Q.K _ '" ,...< "0

~0!L.
(5 ::l

d'test I"-
Design Code an

}----=--.... ..t 3 CodoandTQt B

COK

Debug and Retest C

Test

Increase
Speed 13

Test ~-~~
Fails/' Reduce "

/' Memory Costs "
- - - ~ 14 J--:-:----t

Test Succeeds User
Trials

AnBnC

Write Manuals

C
~ 8

Integrate
-
C

Redo
Manual 17

~-:-~
Redo Code "

Co)
Tenninate~

/'
/'

"
Trials
Fail/'
/'

Trials Successful
--~

as well). Nodes 2 and 6 also represent a Blank-Or input. Node 6 allows the result of

testing module C to be passed straight on to the Unit Logic Node (node 7). This

ensures that node 6 can be realised several times due to the loop consisting of the

Debug and Retest of module C from the ULN.

The output activities from the Ordered ULN are based on the following rules that are

coded into the ordered logic of the node.

- - -I. AnBnC
2. e
3. C

The node output logics at nodes 4, 5, 6, 8,9, 12 and 16 clearly match the project scenario

as detailed.

It should be noted that, as it stands, this Generalised Activity-on-the-Arrow Network
provides no temporal or cost information to the project manager. However, it does

provide an initial visual representation of the project and identifies possible risk points

and repetition in the project life cycle. In order to be of some more analytical use the

activities are assigned duration/cost functions and probabilities, and the network is
analysed. How networks such as these are analysed is discussed in the next chapter.

(iii) A Solution Using a Generalised Activity-on-the-Node Network

Figure 3.25 provides a Generalised Activity-on-the-Node representation of the project
scenario detailed earlier. As one would expect, there are many similarities with the node

input and output logics of the Activity-on-the-Arrow network discussed above. Points

worth noting in this representation are the inclusion of milestones, representing the start

(Ml) and completion (M3) of this part of the project. M2 represents the terminal

completion of the project if it has overrun its budget by the amount specified earlier.

The coding and testing of module C has had to be separated to allow the feedback from

Debug C to feed into the testing stage. Without this separation the feedback would

have lead into the coding of module C which is not the case. Dummy nodes have also

been included after the integrated modules have been tested and after the user trials.

These ensure the logic of the scenario is maintained and do away with the difficulty of

applying two different probabilistic output types to the test and user trials nodes.

The ULN is coded in exactly the same way as the Generalised Activity-on-the-Arrow

description, and all other node inputs and outputs are the same.

84

00
v.

AnBnC

AOk

A not OK

BOK 1:5
B not OK 6::>

COK

C not OK

DebugC

C
Manuals

C
lntegrate

Test Succeeds Trials Successful

C

From these three representations of the project scenario the PERT technique was the

weakest being unable to represent all the possibilities in the project scenario explicitly.
The two Generalised Activity Network versions provided a more accurate representation

of the project scenario and, of the two, the Generalised Activity-on-the-Node
representation is perhaps the clearer. This representation also has the advantage of

providing PDM constraints when they are required and, as the mood of the project
management industry has indicated, represents the most popular activity network

representation these days.

3.5 NETWORK PROPERTIES

3.5.1 Overview

Parameters are applied to tasks within activity networks to provide measures by which

projects can be planned and controlled. The majority of work is directed towards time
and cost values, although performance measures [Moeller and Digman 1981] can also

be used. Although many project managers treat time and project management as
synonymous [Turner 1993], time is not the only variable within a project. Activity

networks should be used to manage both times and costs within a project providing a
means of optimising and controlling the interaction between these factors. The

interaction of resources (that also equate with costs) and temporal factors within
Generalised Activity Networks is a particularly complex task. No work to date has been

noted in this area and it proves to be an interesting area for future research. For the
purposes of this thesis, the affect of temporal factors (the more complex of cost and

time factors) is assessed in chapter five.

3.5.2 Durations

Various distribution functions (referred to as temporal functions) have been proposed to

represent the duration of activities in Generalised Activity Networks. These temporal

functions include the usual PERT three time Beta distribution estimate, single time
estimates and so on. In literature on the subject, one of the most flexible methods

proposed for applying these functions to activities was that proposed by Moore and
Clayton (1976) for the GERT technique. Their technique provides ten possible function

estimates that are listed below. In their technique each activity was associated with three
parameters (shown in figure 3.26).

86

(a, 13, 0)

Figure 3.26 GERT Time Representation

a The probability that the branch will be taken (l~a>O). Clearlya=1 when the

originating node is deterministic.

13 A reference to a parameter set where the data associated with the disnibution type

is stored (figure 3.27).

o A code identifying the temporal function. The ten possible disnibution codes are:

I A constant value

2 Normal disnibution

3 Uniform disnibution

4 Erlang disnibution

5 Lognormal disnibution

6 Poisson disnibution

7 Beta disnibution

8 Gamma disnibution

9 Beta fitted to three parameters (as in PERn

10 Triangular disnibution

Figure 3.27 provides an example of how an activity, with probability 0.2 of occurring
and Normally disnibuted temporal function, is represented by relating the arc to a

corresponding reference parameter set associated with the activity.

Reference

o (0.2,7,2)

"""
RefNo 7

Parameters

~ cr
15 5

Figure 3.27 More Detailed GERT Time Representation

87

In more recent project management packages, several other distribution functions have

been made available to the project manager. For example, Predict!TM (1992) - a

Probabilistic Activity-on-the-Node software tool developed by Risk Decisions Limited -

provides twenty one different temporal functions that can be applied to project activities.
The sales team for this product point out that it is very unlikely that anyone manager

would require all of these functions, using a subset of the more popular ones most of
the time. @Risk™ (1990) is an add-in to Microsoft Excel™ that allows probabilistic

risk to be determined within an Excel spreadsheet. In addition to the ten distribution
functions provided in GERT above,@RiskTM also provides:

Binomial Chi-square Correlations

Cumulative Discrete Discrete Uniform
Error Function Exponential General

Geometric Histogram Hypergeometric

Logistic Negative Binomial Pareto

Weibull

In addition, Predict!TM provides many of these functions along with:

Bernoulli

Sensitivity

Cauchy
T-distribution

F-distribution

The affect that some of these activity temporal functions have on the duration of an

activity network is studied in some detail in chapter five. The effectiveness and
implementation of these activity temporal functions is an interesting area for future

research.

Risnet™ (the risk analysis software tool mentioned earlier) provides twelve activity

temporal functions including an Exponential-Triangular and a Triangular-Exponential.

Monte Carlo™ 2.0, the other risk analysis package available today, provides ten such

functions.

3.5.3 Resources

Before a project baseline can be set it is necessary to determine the constraints imposed

on that project. Resources represent the most common of these constraints [Turner
1993]. If adequate resources are not available for a project (which. according to most

managers. is usually the case) it can cause that project to be adversely delayed. Also. if
particular resources are over or underused at any stage (for example. machine hire which

could be over or under booked, staff overtime costs and so on) this can add unnecessary

88

costs to a project.

It is also possible that resources are not available constantly during the life cycle of a

project and the effects of this must be anticipated. It is also possible that resources are
needed by activities non-uniformly. There are different ways in which activities can be

applied to activities in a project - represented by a resource profile for each activity.
Turner (1993) identifies four such ways of applying resources to activities - constant,

stepped, triangular and Normal. Project Manager Workbench™ (1994) is an example
of a project management tool that allows managers to apply different resource profiles

to activities. It also allows resource profiles to be considered from a more global project
viewpoint and considers these factors when scheduling a project.

Scheduling a project to optimise resource usage can prove to be particularly difficult and

several algorithms can be used to achieve this. Examples include Berman (1964),
Burgess and Killebrew (1962), Clark (1961a), Levy et alia (1962), King (1964), and

Davis (1974) which are mentioned in chapter four.

How Generalised Activity Networks schedule projects with various constraints poses
some interesting problems. For example, should a machine be booked for an activity

with only 70% chance of been performed? The scheduling of Generalised Activity
Networks with various constraints is clearly an area that needs addressing in future

research and is beyond the scope of this thesis.

3.6 CHAPTER SUMMARY

3.6.1 Overview

This chapter has provided a conclusive definition for both Generalised Activity-on-the­

Arrow Networks (based on the work presented in Dawson and Dawson (1994a)) and
Generalised Activity-on-the-Node Networks.

3.6.2 Conclusion

Previous research In this field has been sadly lacking and implementation of

Generalised Activity Network' ideas even less so. The majority of popular software
planning tools available (for example, Project Manager Workbench™ (1994), CA­

SuperProject® (1993)) are based on the ideas of Deterministic Activity Network
structures. A few, for example Predict!TM (1992), Artemis Schedule Publisher™

(1993), Primavera Project Planner® (1994) with the Monte Carlo™ 2.0 (1993) package,

89

provide more risk analysis by implementing the ideas of Probabilistic Activity Networks

and providing several activity cost and temporal functions. Only GERT and VERT
instigated attempts to implement Generalised Activity Networks. Since these appeared

in the late 1960s and 1970s, before the explosion of project management tools, they
have been somewhat overlooked by managers of today. Only two tools - Risnet™ and

Monte Carlo™ 2.0 provide any means of managing project uncertainties and even they
provide only limited functionality.

The future for the work presented in this chapter is the implementation of the defmitions

provided for a Generalised Activity-on-the-Node representation. The Activity-on-the­
Node representation not only provides more clear network diagrams and includes PDM

constraints but it also reflects the current mood of the industry and provides a more
powerful means of project planning and control.

3.6.3 Future Work

Four areas for future research have been identified from this work:

• Implementation of the definitions in a software tool

• Gantt chart representation of Generalised Activity Networks
• Costffime optimisation and resource levelling in Generalised Activity

Networks
• Developing a Work Breakdown Structure for Generalised Activity Networks

Whether it is possible to implement a Generalised Activity Network in a hybrid Gantt

representation is an area that requires some thought. It is perhaps unlikely that
combining these two charts into one would provide any real benefit as the resultant

graph would be overly complex. How probabilistic branching is used within a Gantt
chart and how it affects scheduling is also an area that requires addressing. The most

interesting problem is that posed by the scheduling of Generalised Activity Networks.
Various heuristics require developing and applying to this particular problem area.

What resources should be assigned to an activity, that mayor may not occur, and how
time/cost/resource tradeoffs could be performed between probabilistic activities is an

interesting problem. How a Work Breakdown Structure should be performed and
represented in the implementation of Generalised Activity Networks is also an area for

future research.

90

CHAPTER 4

Project Management and Activity Networks

CHAPTER PREFACE

This chapter deals with techniques for the temporal analysis of both Probabilistic and

Generalised Activity Networks. In order to put this work into context the chapter
begins by introducing the concepts of project management and previous

computational approaches, before moving on to Monte Carlo simulation of activity
networks. An improved technique for limiting the number of simulations required in

activity network analysis is developed (presented in Dawson and Dawson (1 993b)).
Antithetic variables are also used to improve the efficiency of this method. A Modal

Class simulation algorithm is also introduced (presented in Dawson and Dawson
(l993b and 1994b)).

CHAPTER KEYWORDS

Project Management, Monte Carlo Simulation, Dynamic Sampling Technique,

Antithetic Variables, Modal Class

4.1 INTRODUCTION

This chapter concentrates on the temporal analysis of activity networks using a Monte

Carlo simulation technique. In order to put this analysis into perspective, the following
sections introduce the concepts of project-based management and identify the area in

which this analysis is used.

4.1.1 Project-Based Management

A traditional, established approach for the management of projects focused on three
particular objectives - time, cost and quality. It was felt that if these three objectives

could be achieved by good management and optimum tradeoffs between each of them,
projects would be performed successfully. Turner (1993) showed that to deliver a

project successfully, two other objectives must also be managed - scope and
organisation. Figure 4.1 (taken from Turner (1993)) shows how all these five factors

91

are integrated through the organisational objective. The boxes highlight the techniques

that are used in meeting particular project objectives, identified in the circles. This
chapter cannot hope to cover all of these objectives at all different project levels,

therefore it concentrates on an analytical approach that assists the management of time
objectives at lower organisational levels.

Activty Networks
Gantt Charts

Work Breakdown
1-----1 Structure

Organisation breakdown
structure
Responsibility charts

1----1 Quality
assurance

Cost Breakdown
t----j Structure

Figure 4.1 Turner's Structured Approach to Project Management

Once the requirement for a project has been identified (it has a purpose), management

needs to perform a series of functions to develop an idea (a plan) of how that project

will be tackled (this takes place within the analysis phase). The methodology shown in

figure 4.1 is an ideal representation of how projects should be managed. In reality a
common methodology used by many managers today, for managing smaller projects,

usually includes the following set of component functions at some level (a larger project
management methodology is covered in section 4.1.9):

(i) Work Breakdown Structure.

(ii) Identification of milestones.

92

(iii) Activity precedence.

(iv) Application of cost, resource, time, performance estimates.
(v) Calculation of expected costs, times, performance requirements of a project.

(vi) OptimisationlScheduling.
(vii) Control.

These components are identified, to some degree, in numerous texts including Howes

(1984), Pressman (1994), Sommerville (1993), and Plasket (1986) to name but a few.

4.1.2 Work Breakdown Structure

Developing a Work Breakdown Structure is an established technique and is covered in
several texts including Tausworthe (1980), Howes (1984), Morreale (1985), and Plasket

(1986). More modern approaches to the decomposition of projects include work by
Wilson and Sifer (1988 and 1990).

According to Turner (1993) a common pitfall in planning projects is to plan them at a

detailed level only. Turner went on to point out that this is a common problem within
the development of software systems. Projects cannot be planned at just one level

within a business as they need justification at all levels of an organisation's structure.
There must also be some coordination between a project at different levels. Turner

identified three fundamental levels at which the five objectives identified earlier need to
be managed - integrative, strategic, and tactical. At the integrative level, the scope of a

project must be identified and its purpose must be within the bounds of the
organisation's objectives (figure 4.2). At the strategic level managers aim to create a

stable plan that remains fixed throughout the lifespan of a project [Turner 1993]. For
the purposes of this thesis chapter one identified the metamodel as representative of a

strategic level plan. As the metamodel incorporates any possible changes within its
structure it provides a firm baseline from which to work. Any variation can be

constrained to within the next level down - the tactical level. The tactical level is the
detail at which most project managers tend to work. Most project management software

tools are also aimed at this level of detail. At this level, specific tasks and
responsibilities for those tasks, are identified. The software development example in

chapter three represented a more detailed tactical level plan. It is at the tactical level that
the project management functions identified above are targeted.

Breaking a project down through these levels, to ever increasing detail, represents the

creation of a Work Breakdown Structure. This does not occur in one step, but through
several levels of breakdown. Turner (1993) identified several advantages of using a

Work Breakdown Structure:

93

• It provides better control of work definition

• It allows work to be delegated in coherent packages

• It allows work to be defined at an appropriate level for estimating and control of the

current stage
• It allows risk to be contained within the Work Breakdown Structure

An example of a Work Breakdown Structure (for the Milltown Road Bridge project)

can be found in Appendix A (page AI). This breakdown was generated with CA­
SuperProject® (1993). The project was successfully completed in January, 1994.

4.1.3 Milestones

Organisation
Objectives

Figure 4.2 Project and Organisation Objectives

By breaking a project down into a strategic level of detail (the metamodellevel) each

stage within a plan at this level represents a milestone. Milestones identify a measurable

step on the way to completing a project. They provide a useful focus of attention for the

project team and they highlight any problems in keeping to schedule, that in turn allows

remedial action to be taken at the earliest opportunity. Milestones were identified in

Generalised Activity Networks in chapter three by dashed nodes.

94

4.1.4 Activity Precedence

The precedence between activities at the tactical level is detennined and represented as

either an activity network (Activity-on-the-Arrow or Activity-on-the-Node) or as a linked

Gantt chart. Linked Gantt charts are felt by some companies as the future of the project

management industry. As an example, PowerProject® Version 2 (1991) by ASTA has

no facility for generating Activity Networks and relies solely on a linked Gantt chart. It

is unlikely that managers could just rely on linked Gantt charts as they tend to become
rather cluttered with detail. Keeping the dependencies on a separate chart - an activity

network - minimises this infonnation overload.

4.1.5 Applying cost, resource, time, performance estimates to activities

At the tactical level, more accurate estimates of costs, durations and performance

measures can be detennined. In cases where these estimates are unclear, distribution

functions are used (for example, Beta temporal functions in PERT) to provide a likely
representation of durations or costs of activities. By using complex distribution

functions, the analysis of these networks becomes more difficult.

Several approaches have been developed to detennine costs and duration estimates of

software development projects. Boehm (1981 and 1984) [DeMarco 1982] introduced

the COCOMO (Constructive Cost Model) technique that detennines the amount of
effort and cost involved in developing a software product. Other metrics have also been

devised in an attempt to quantify the development of software [Conte et alia 1986].
Activity temporal functions and their analysis are studied in more detail in sections 4.2

and 4.3.

4.1.6 Network Analysis

Activity networks provide more than just a visual representation of a potential project at

a tactical level. By applying various parameters to activities within an activity network

and perfonning some fonn of network analysis, estimates can be made of a project's
likely cost, duration and perfonnance. The temporal analysis of activity networks is

studied in more detail in sections 4.2 and 4.3 where a method of analysis is improved

and applied to Generalised Activity Networks.

4.1.7 Optimisation/ScheduIing

Resources, such as people, finance, materials and machinery, are seldom available in

unlimited quantities for use on any project [Goodman and Love 1980]. It becomes

95

------ ---- ---

necessary, therefore, to detennine an optimum use of resources within a project. This is

achieved by either employing various algorithms or trying a what if analysis.

Algorithms have long been used to smooth resource usage within projects and minimise

costs and times with respect to one another and projects as a whole. Examples of

algorithms developed for this purpose include Berman (1964), Burgess and Killebrew
(1962), Clark (1961a), Levy et alia (1962), King (1964), Davis (1974), Woodworth and

Willie (1975), Talbot (1982) and Brown (1988). Another way of scheduling a project is
to select baseline dates. Turner (1993) identified three ways of selecting baseline dates

for a project:

Schedule by early start - to motivate the workforce.

Schedule by late finish - presents progress in the best light.

Schedule in between - to smooth resource usage or detennine the most likely outcome.

It is not necessary, however, to baseline a project within its initial time frame (early and
late dates). Guerrieri (1987) identified two scheduling procedures that can be used to

optimise either resource usage or times in a project:

(i) Resource levelling

Reduces the amount of variability in the pattern of resource usage for the duration of a

project where there are sufficient resources available and the project must complete in a

specified time.

(ii) Fixed Resources Limits Scheduling

Meets as close as possible the project completion date subject to fixed limits on
resource availability.

Almost all project management tools mentioned within this thesis provide techniques for

scheduling projects using mainly the approaches identified above. CS Project™ (1992),

as another example, provides its own resource levelling approach called CARLO - Cost

and Resource Levelling Optimisation. CARLO provides a scheduling algorithm that
schedules activities with either the highest priority first, the least float first, or the least

duration first. Other approaches to scheduling, noted as current research trends in this

area, include the analysis of optimal float usage in projects, a study of the interaction

between parallel and interconnected activities, and the calculation of resource constrained
float.

What if analysis identifies the effects that various changes can have on a project. As an

example, the Monte Carlo™ (1993) software package provides a fonn of what if

96

analysis. It allows a user to increase (default of 20%) or decrease (default of 15%) the

duration of all activities globally within a project to see what effect this will have. The
theory behind this is that if an initial activity in a project varies from its expected

duration or cost by a particular amount, the chances are that estimates of other activities
will be out by a similar factor. Other forms of what if analysis can identify the effects of

activities overrunning their expected costs, what if a member of the project team leaves at
a particular stage?, or what if the software is developed by department X in this order?

and so on. By identifying possible problems in a project beforehand, contingency plans
can be arranged because the results of various changes will have already been

anticipated. What if analysis is also used to determine optimum project configurations,
for example, with respect to costs, location, staffing sizes and so on. Artificial intelligent

systems often include what if analysis to determine optimum project solutions. For
example, Kunz et alia (1986) detail an artificial intelligent management tool that allows a

manager to view several project alternatives concurrently and see what affects various
changes have on them.

By improving network analysis in stage four of the management process detailed above,

it allows more efficient analysis within this scheduling stage. What if analysis becomes
more accurate and more quickly performed, and simulation of changes in levelling and

time/cost optimisation can be improVed.

4.1.8 Control

Control perhaps represents more of an activity performed by management during the
synthesis of a software development. It involves capturing 'actuals' as a project

progresses, comparing these actuals with the baseline plan and updating a project plan
accordingly. Using metamodels for software development has already been shown to

improve the visibility and controllability of software development projects by providing
more stable baselines at a strategic level. Another technique that improves management

control of projects is Cost Schedule Planning and Control or CS PC [Saitow 1969].

CSPC integrates cost and schedule data, it provides a concise picture of project

progress, it allows several projects to be controlled simultaneously, and it reduces
subjective estimation.

Another technique that improves control is the Department of Defence methodology -

DOD 7000.2 called C/SCSC (Cost/Schedule Control Systems Criteria or CSPEC)
[DOD 1975]. This methodology works on the principle of a cost control cube where

three structures, a Work Breakdown Structure, a Cost Breakdown Structure, and an
Organisation Breakdown Structure are combined. When controlling a project, this

methodology works on the earned value principle. This identifies how much earned

97

value an acti vity has achieved and is defined in one of four ways:

(i) The percentage of progress. This is rather subjective and can suffer from the 90%

syndrome mentioned below.

(ii) 0/100 measure. This only counts activities in the control process if they have been

successfully completed.
(iii) 100/0 measure. This accumulates all earnings from an activity as soon as that

activity is started.
(iv) 50/50 measure. This splits the earned value into a start and an end. Half the

earned value would be achieved when an activity starts, and the remainder when it

ends.

Project management software packages that employ this technique are InstaPlan TM

(1990), Cascade® (1993), Parade® (1993) and CA-SuperProject® (1993). Parade®
takes plans generated by Primavera Project Planner® (1994) and provides an earned

value control analysis for them. Cascade®, that provides the user with a complete

planning methodology, is covered in more detail below.

Trying to estimate how much of a task is complete as a project progresses is fraught

with problems. This subjective estimate often suffers from the 90%/10% rule (or 90%
syndrome) [Abdel-Hamid 1988]. This rule shows that people usually feel, after

spending 10% of the expected time on an activity, that 90% of that activity is complete.

It is usually the case, however, that the remaining 10% of work takes up the remaining

90% of the allotted time.

4.1.9 Larger Projects

The techniques outlined above relate to the more traditional idea of project management
- that of planning and control from a strategic and tactical level. Also identified,

however, was the need for project-based management that embodied alilevels of an

organisational structure. In large organisations, where projects can span several

departments and constitute several mini projects, the functions, identified above, are
performed at some level, somewhere along the line. Figure 4.1 shows a more modern,

organisation-wide approach to project-based management. Cascade® by MANTIX

Systems Limited (1993), used at both British Telecom at Martlesham Heath [Hurley

1993] and GPT at Nottingham, provides a methodology very similar to this structured

approach. Cascade® provides an example of a large organisation-wide project

management methodology based initially on the C/SCSC technique mentioned earlier.

Managers using Cascade® begin by performing a Work Breakdown Structure, like the

methodology above, but from a higher organisational level. The next stage in this

98

-------- ---

methodology is to determine an Organisation Breakdown Structure (OBS) that

identifies particular work groups within the organisation. These work groups are
assigned particular tasks, identified from the WBS, called Cost Accounts in a

Responsibility Assignment Matrix (RAM). Within each Cost Account, in !be RAM,
budgets are assigned, costs and schedules are approved, and baselines are maintained.

Responsibility for each Cost Account is assigned to a Cost Account Manager. In effect,
the Cost Account Manager is responsible for their own mini-project !bat is approached

in much !be same way as !be steps detailed earlier. Each mini-project is broken down,
using a Work Breakdown Structure, into work packages that form a detailed schedule

for a mini-project. A Cost Breakdown Structure (eBS) is then used to pull together all
costs and resources required by the work packages. The CBS identifies how resources

relate to one another, it pulls in information from rate tables and working calendars (!bat
identify resource availability, overheads and so on), and it summarises costs by cost

types. In these mini-projects dependencies are set up, enabling standard critical path
analysis to be performed, and resources are levelled by spreading the resource

requirement evenly over the duration of the work packages. The mini-projects are !ben
monitored and controlled using the C/SCSC methodology described earlier. This

information can be rolled up through each level, via any of the structures, to provide
summary information to senior executives, departmental managers, program managers,

financial managers, and project team members. Figure 4.3, adapted from the sales
literature of Cascade®, provides a visual representation of this entire process.

99

OBS RAM

a CB' -:.::
Detailed Schedule

I ISS Si

9 I

Figure 4.3 The Cascade® Methodology

4.2 TEMPORAL ANALYSIS OF ACTIVITY NETWORKS

4.2.1 Overview

Activity networks provide more than just a visual representation of a potential project.

The analysis of activity networks at the tactical level, identified in stage five of the
planning process, can often prove difficult. Temporal, cost and quality analysis is

somewhat handicapped by the limited computational techniques available. Of these

100

three parameters, temporal analysis is the most difficult to perform due to the way in

which activity temporal functions combine. Whereas costs combine in a rather
simplistic additional form, activity durations can combine in minimum, maximum, or

additional ways. For example, figure 4.4 represents a simple subnetwork (Activity-on­
tbe-Arrow in tbis case) consisting of two activities A and B. The cost of performing this

subnetwork is simply the additive costs of tbe two activities concerned. The duration of
this subnetwork is more difficult to determine as it is calculated as the maximum

duration of tbe two activity temporal functions. This is much more difficult to determine
and is not based on simple additional rules. In the case when both activities are

represented by Normal distribution functions, formulae from Clark (1961 b) can be
used. In most situations, however, simulation provides a more direct result.

A

B

Figure 4.4 Simple Activity Network

More problems are introduced in the temporal analysis of Generalised Activity

Networks. Figure 4.5 represents an example of a Generalised Activity-on-the-Arrow
network that will complete, quite clearly, when all activities A, Band C, have finished.

What is not clear from this network is which activity will be the last to finish. It is
possible that activity B may take longer to perform than both A and C combined. The

analysis of Generalised Activity Networks can prove 10 be particularly difficult as tbey
are based on both activity temporal outcomes and the rt?sults of probabilistic logics.

Simulation is seen as the most straight forward analysis approach 10 such networks.

A

B

Figure 4.5 Simple Generalised Activity Network

An approach commonly used for the analysis of both Probabilistic and Generalised

Activity Networks is Monte Carlo Simulation. Although this approach is perhaps the

101

most popular and 'accurate' technique available, it is not beyond improvement. How

this technique can be improved, and how it is used in Generalised Activity Network
analysis, is the subject of the latter part of this chapter. Monte Carlo Simulation is also

used to assess the affects that various, known activity temporal functions have on an

overall project duration. These results, along with various Probabilistic and Generalised

Activity Networlc simulation results, are presented in the following chapter.

4.2.2 Deterministic Activity Networks

Due to the nature of activity temporal functions (ie constants) in Deterministic Activity

Networks they are relatively easy to analyse. The original CPM technique [Kelley

1961, Moder and Phillips 1983, Levy et alia 1963] provided basic equations for making
forward and backward pass calculations through Deterministic Activity Networks. For

more detail of these equations, and calculations of various activity float times, refer to
Goodman and Love (1980) and Appendix B.

4.2.3 Probabilistic Activity Networks

In Probabilistic Activity Networks the activity durations are represented by some form

of distribution function (temporal function). Consequently, analysis of the completion

time of these networks is particularly difficult and is sometimes referred to as the PERT

problem. The classical PERT approach to this problem will be examined first, before
highlighting its shortfalls and examining the alternative techniques.

4.2.4 Classical PERT

Probabilistic Activity Networks originated in the late 1950s when the original PERT

methodology was developed by the United States Navy et alia (see chapter one)

[Department of the Navy 1958]. The PERT methodology incorporates the

understanding that the duration of activities within a project cannot necessarily be

estimated accurately (as the CPM technique assumes). As a consequence, some form of

subjective estimate needs to be made as to the duration of each activity within a project.

An attempt was made to model the activity durations by some form of distribution

function, from which various statistics could then be drawn. The PERT originators

decided that a Beta distribution function (represented by ~(al' 0(2» provided an

acceptable representation as it can be manipulated into various shapes according to its

two parameters, 0.1 and 0.2' Law and Kelton (1991) confirmed the original assumption

that this Beta distribution function is probably skewed to the right (positively skewed)

for real world activities. In this case 0.2> 0.1 > I and the distribution resembles that

shown in figure 4.5.

102

To generate an approximation of an activity's duration by a Beta distribution function,

project managers are required to make three subjective estimates of an activity's

duration: a, m, and b.

a an optimistic estimate of the activity's duration

m an estimate of the most likely duration of the activity (the mode)

b a pessimistic estimate of the activity's duration

From these estimates the classical PERT approach provides two equations from which

an estimate of the mean, le, and standard deviation, cse> of an activity's duration can be
calculated - equations 4.1 and 4.2 respectively [Miller 1962, Goodman and Love 1980].

Figure 4.5 shows the relative positions of these estimates and the calculated mean, te, on
a Beta distribution function.

te=
a +4m + b

6
(4.1)

(J2
(b - al

(4.2) = e 36

Figure 4.5 Beta Temporal Function

If one assumes, as the PERT originators, positive skew in this beta distribution function,

the parameters of the Beta distribution, a l and az, can be calculated directly from the

three estimates a, m, and b. Equations 4.3 and 4.4, adapted from Law and Kelton

(1991), represent these calculations.

103

4m + b - 5a
b-a

(4.3)

(4.4)

With the mean duration, te, and the standard deviation, O"e' calculated for each activity in

an activity network, it is possible to calculate the expected completion time of a project

using the same approach as that used for Deterministic Activity Networks - forward and

backward pass calculations (Appendix B).

Within a Probabilistic Activity Network there are K paths, P j (j = 1, 2, ... , K), each

consisting of a number of activities i. Activity iE Pj if activity i lies on path Pj. Using

equations 4.1 and 4.2 respectively, each activity, i, has associated with it an estimated

mean duration, ti' and standard deviation, O"i. Thus, within the classical PERT approach,

one can calculate the duration, Dj, of a path, Pj, in an activity network as:

D. = ~ t. (4.5)
J L. I

iEP.
J

According to the classical PERT approach one can also calculate the variance, Vj' of this

duration from:

Vj = L O"~ (4.6)
iEP.

J

The classical PERT approach then dictates that the expected completion time of a project

is based on the duration of the longest path through the network (the Critical Path). The

variance of the Critical Path is also used to represent the variance of the project duration.

There are, however, several problems with the assumptions and calculations used in this

classical PERT approach. As early as 1964 three problems were identified by

MacCrimmon and Ryavec [MacCrimmon and Ryavec 1964]:

(i) The activity temporal function is not necessarily Beta distributed.

(ii) The mean and standard deviation calculations, 4.1 and 4.2, are incorrect.

(iii) Errors are introduced by poor estimates of the three parameters a, m and b.

104

TIrree other problems with the classical PERT approach can also be identified:

(iv) The assumption that there is one dominant, critical path is not always correct.
(v) For one-off projects the modal estimates of the project duration provide more

realistic results than the mean.

(vi) The deterministic structure of the PERT network makes it difficult to model

uncertainties that are inherent in many development projects.

(i) Problems with the Beta Distribution in PERT

It is unreasonable to assume that the duration of every activity within every project can

be modelled by some form of Beta distribution function. MacCrimmon and Ryavec
noted this problem in 1964 [MacCrimmon and Ryavec 1964]. They calculated the

worst absolute error in the mean, Err(tcJ, and the worst absolute error in the standard

deviation, Err(crJ, by incorrectly assuming a Beta distribution as:

1- 2m
Err(te) = 3 (4.7)

Err(cr)=..!. (4.8)
e 6

Their assumption was based on the belief that an activity temporal function has at least
the three properties of unimodality, continuity, and two non-negative abscissa intercepts.

This, in fact, is not necessarily the case. Lootsma (\989) argued that discrete

distribution functions would reflect activity durations more accurately. After all, an

activity tends not to complete midway through a specific time unit. Lootsma stated that
even though an activity could end during the middle of a day it would be unlikely that

work would start on the next activity until at least the following morning. Activities

usually finish in whole time units and this is modelled more realistically by discrete

distribution functions. Pohl and Chapman (1987) also identified the need for discrete

activity temporal functions and described two in their work - a 'bar' distribution and a

'spike' distribution. A 'bar' distribution represents an activity that can only be
completed at specified time intervals (discrete) and a 'spike' distribution represents an

·activity that only completes at more disjointed discrete times (for example, an activity
that relies on a committee that meets only four times per month). Pohl and Chapman

also suggested other alternatives to the Beta distribution function including the Normal

distribution, a Triangular distribution and a 'user determined' distribution. Various

project management software packages also provide alternatives to the Beta temporal

105

function - for example, Predict!TM (1992) and @RiskTM (1990). The temporal

functions these and other packages offer were detailed in chapter three.

Lootsma (1989) also suggested using the Gamma distribution function, because it is
more natural than the original Beta distribution, and it is also simpler to analyse. Other

authors have also used alternative activity temporal functions. Clark (1961 b) used a
Normal distribution function in his analysis, and Mongalo and Lee (1990) used

Triangular, Rectangular, Beta and Normal distributions in their simulation analysis of
PERT type networks. Lootsma (1989) also suggested using a Triangular membership

function. Alternative distribution functions have also been used in the GERT technique

[Moore and Clayton 1976]. This technique allowed up to ten possible distributions to

be modelled for each activity duration (see section 3.5).

There is still much research needed into which distribution functions model best the
duration of real world activities. Project managers are, on the whole, not statisticians

and to expect them to estimate much more than three time estimates, as some do now
with the classical PERT approach, is unreasonable. Pohl and Chapman (1987) noted,

however, that' A significant amount of time should be invested to accurately determine
the probability function of each activity'. It is because time represents a significant cost

to project managers that this investment is not achieved.

The affect that alternative activity temporal functions have on the overall project duration
will be studied in detail in chapter five.

(ii) Erroneous Mean and Standard Deviation Estimates in PERT

The estimates of the mean and standard deviation of an activity duration (equations 4.1
and 4.2 respectively) are by no means precise. Indeed, MacCrimmon and Ryavec

(1964) identified the worst absolute errors in these equations as:

Err(t) = I 4m + 1
e 6

Err(cr) = I ~ -
e 6

(4.9)

2
m (al + J)(al - alm.+ m)

2
(a l + 2m) (al + 3m)

(4.10)

106

Improvements on these estimates have been explored over the years. Work by

Golenko-Ginzburg in 1988 [Golenko-Ginzburg 1988] provided an improvement on

these estimates - equations 4.11 and 4.12. Chae and Kim (1990) also suggested an

improvement based on using the likelihood ratio of the mean and the midpoint and
Donaldson (1964) provides an improved estimate of the variance based on one of the

initial estimates being the mean.

t = e
2a + 9m + 2b

13

(b - a)2 (22 + 81 (m - a) _ 81 (m - a'f)
1268 (b - a). b - a)

(4.11)

(4.12)

Another suggested improvement to estimating an activity's mean duration comes from

Whitehouse (1973). He suggested that the mean of the Beta distribution should be

adopted as the third time estimate, m, rather than the mode. This would remove

statistical inconsistencies inherent in previous values and allow for greater skew in the

distribution. In this case the values of te and O"e' derived from the Beta distribution, can
be calculated from equations 4.13 and 4.14.

(Cl! + l)b + (Cl2 + I)a

Cl! + Cl2 + 2

2
(b - a) (Cl! + I) (Clz + 1)

Z
(Cl! + Clz + 2) (Cl! + Clz + 3)

(4.13)

(4.14)

Lootsma (1989) argued the case for using the modal estimate of an activity's duration in

a fuzzy model approach to the PERT problem. This makes more sense in one-off

projects as the mode represents the most likely outcome of an activity in question. It

also reduces the complexity of the calculations required when a network is analysed.

The arguments for using the modal values for a network duration are discussed later.

(i i i) Poor estimates of a, m and b in PERT

Not only are errors introduced by the mean and standard deviation estimates, as

highlighted above, but errors are also introduced by possible erroneous estimates of a,
m and b by a project manager. The worst absolute errors introduced by these estimates

for the mean and standard deviation are:

107

Err(t)
e

a+ 4m + 2b
60(b - a)

b+a
30(b - a)

[MacCrimmon and Ryavec 1964].

(4.15)

(4.16)

Improving on these estimates rests on the shoulders of project managers themselves. It

is only through experience that more accurate estimates of a, m and b can be made.
How these figures are used, however, is the task of the theoretician.

(i v) The Single Critical Path Problem with PERT

The classical PERT approach highlighted the critical path as representative of an actual
project duration. It has long been shown that this assumption can grossly underestimate

project completion times [MacCrimmon and Ryavec 1964, Schonberger 1981,

Anklesaria and Drezner 1986, Ballot 1989]. Although the critical path provides a useful

focus of attention as a project unfolds, it should not be relied upon to provide an

accurate estimate of a project's duration. Mongalo and Lee (1990) also highlighted this

problem in their work when they compared PERT calculated network durations and

Monte Carlo simulation results of various network types. Their work will be discussed

in more detail later.

(v) Mode more accurate

In many cases it would make more sense to calculate the modal class of a network

duration than the mean. This is certainly the case when network temporal functions are
non-symmetrical and/or multimodal. In Generalised Activity Networks this is often the

case. In symmetrical cases the mode and mean represent the same values anyway. For

skewed and multimodal distributions this is not the case and the mode would certainly

provide a better estimate of a project's duration, especially if the project was a one-off
which most tend to be.

(vi) Inflexible Structure

The structure of a Probabilistic Activity Network, as was shown in chapter three, is
purely deterministic in nature. By example in chapter three, a more generalised structure

would allow real world activities to be mirrored more accurately. Any elaboration on
this point has been covered in chapter three.

108

4.3 ANALYSING PROBABILISTIC ACTIVITY NETWORKS

Due to the inaccuracies introduced by the classical PERT approach, various techniques

have being developed that attempt to solve, more precisely, the temporal analysis of
probabilistic activity networks.

Many authors have categorised these approaches [Burt and Garman 1971a and 1971b,

Robillard and Trahan 1977, Sculli and Wong 1985, Adlakha and Kulkarni 1989].
Adlakha and Kulkami (1989) perhaps encompass these approaches more clearly than

any other. The approaches can, broadly speaking, be split into six categories: Classical

PERT (discussed above), exact analysis, approximation, bounds, miscellaneous

approaches, and simulation.

Each of these approaches will now be discussed in turn before concentrating on Monte

Carlo simulation in detail.

4.3.1 Analytical Solution

An exact duration of probabilistic actiVIty networks can be defined in precise

mathematical terms. Burt and Garman (l971a and 1971b), Fishman (1985), Adlakha
and Arsham (1992), and Adlakha (1992) provide definitions of the solution, the main

points of which are detailed here. It is perhaps worth noting that these definitions are

independent of activity temporal functions within a network. This definition is based on

an Activity-on-the-Arrow representation. The calculations for an Activity-on-the-Node
network are equivalent.

A probabilistic activity network can be defined as a directed, acyclic network with a

single source node, s, and a single sink node, z. A network consists of N arcs, each

associated with an independent, nonnegative random variable, Xi (i = I, 2, ... , N),

representing an activity duration. Each Xi has a known distribution function, fi' on

[0,00). There are K, paths Pj U=I, 2, ... , K), through a network that link the source

node, s, with the sink node, z. Activity iE Pj if activity i lies on path Pj' The duration of

path Pj is a random variable, Tj' where:

T.="' X.) £..J I

iEPj

(4.17)

The problem of calculating the completion time of a probabilistic activity network can be

defined as calculating the density function of the random variable:

109

D = max T.
j=1..K J

(4.18)

The distribution function of D is given by:

0000 00

N

Fo(t) = J J ... J h(t; x" X2 •.•.• xN) IT fj dx

o 0 0 i=!

(4.19)

if o <max (L x) !> t
J=1..K .

lEPj

o otherwise

This analytical solution is particularly complex and involves two stages of calculation.
The first stage involves calculation of a joint distribution function of path times. The

second stage involves the complex multivariate integration of 4.19. Since an exact
computation of equation 4.19 is #P complete. according to Adlakha and Kulkarni

(1989) there is no hope of developing an algorithm to solve this problem In a
polynomial time. Thus. other techniques have been devised that avoid this work.

4.3.2 Simplification

The idea behind simplification is to streamline the problem into one that can be managed

more easily by either computational or simulation techniques.

There are two ways in which one can simplify a Probabilistic Activity Network. One
can either simplify the network as a whole, or simplify the activity temporal functions

that constitute the network.

There are two ways to simplify a network as a whole:

(i) Approximate a network by one that has a high positive correlation with the
original. yet is easier to analyse. This can be used in both simulation and

analytical approaches. This is generally referred to as Control Variates [Bun
et alia 1970. Bun and Garman 197Ia]. This approach requires the construction

of a similar network to that being analysed (with a high positive correlation).
Although this may improve the speed of the calculations thereafter, the

construction of this positively correlated network does take some time. In

110

simulation approaches to network analysis it is questionable as to whether

control variates provide an adequate improvement in simulation overheads due
to this construction time. Bun and Garrnan (1971b) use control variates to

improve their simulation analysis of probabilistic activity networks.

(ii) Reduce a network by a series parallel reduction to a simpler form. Manin
(1965) provides an algorithm for this approach. It is based, however, on the

understanding that the activity temporal functions can be represented by simple
polynomials. This introduces an alternative simplification technique - that of

simplifying a network's activity temporal functions.

There are three ways in which Activity Temporal Function Simplification can be
achieved:

(i) Assume discrete random variables. Based on this simplification, Hagstrom

(1990) and Fulkerson (1962) provide algorithms for solving the PERT
problem. These algorithms would certainly be of some use if it could be

shown that discrete distribution functions provide a more realistic

representation of activity duration, than continuous functions that are used at

present. Their algorithms only work, however, if all activities within a network
are of a discrete kind.

(ii) Manipulate the distribution parameters only. Clark (196Ib) and Sculli (1983)
used this approach when they assumed activity durations could be represented

by Normal distribution functions. In this case, as the Normal distribution
function is well understood, manipulation of the distribution parameters only is

a logical approach.
(ill) Martin (1965) approximated activity temporal functions by simple

polynomials. This enabled him to implement a series parallel reduction
algorithm that reduced an entire network to a single activity with a known

polynomial function. This approach is, perhaps, an over simplification of the

problem as activity temporal functions can prove to be rather complex.

4.3.3 Bounds

An alternative approach to solving the PERT problem is not to try and determine an

exact solution to the problem, but to determine boundaries on a network completion
time. There are several approaches to bounding the expected duration of an activity

network. Elmaghraby (1967) provides two estimates that bound the duration from

below. In these cases the bounds represent optimistic estimates of a project's duration.

111

Lerevere (1986) uses 'bounds for the expectation of linear combinations of order

statistics' to determine upper bounds on the completion time of a project. These upper
bounds represent pessimistic estimates. An upper bound was also determined by

Kamburowski (1985a). In his calculations, although the exact forms of an activity's
temporal functions do not have to be known, it was a requirement that their cumulative

density function belonged within the NBUE class (although no explanation was
provided for this).

Kamburowski (l985b) reviewed the various approaches to bounding the completion

time of PERT type networks. He commented on, and compared, the approximations of
Fulkerson (1962), Malcolm et alia (1959), McClellan (1969), Spelde (1977), Shogan

(1977), and Kleindorfer (1969). Kamburowski then went on to provide algorithms,
based on the series parallel reduction of Martin (1965), that reduced a Probabilistic

Activity Network to a trivial form providing lower bounds on the expected completion
time.

4.3.4 Miscellaneous Approaches

There are some alternative approaches to the PERT problem that cannot be put into any

of the categories encountered above.

In 1989 Lootsma [Lootsma 1989] wrote a particularly interesting paper, using fuzzy
numbers, that condemned all attempts to estimate accurately the expected completion

time of Probabilistic Activity Networks. His argument was that more accurate
approaches to the PERT problem produce non-tight plans that create conflicts between

project leaders and subcontractors. Non-tight plans are those that involve float times
that provide bargaining power to both project leaders and sub-contractors. Without

such float (ie a tight plan) no conflict arises as there is no time to negotiate with.

In his work, Lootsma also used a Gamma distribution function within a classical PERT
approach and modal values for a fuzzy approach. His argument was that, for one-off

projects, modal values provide better estimates of a project duration than calculated
means and standard deviations. The use of modal values has been discussed earlier and

will be looked at in more detail in the simulation analysis of activity networks.

Another approach has been the use of Order of Processing diagrams by Fisher et alia
(1985) but this never caught on as an analytical approach. Anklesaria and Drezner

provided yet another solution in 1986 [Anklesaria and Drezner 1986] when they applied
a multivariate approach to the PERT problem. They determined the duration of the r

most critical paths in an activity network and consequently an estimate of its duration.

112

They compared their results with the classical PERT approach that they found to

underestimate the completion time by as much as 30%. As they used the multivariate
Normal distribution function for activity temporal function representation, their

approach did not provide a general result.

4.4 SIMULATION

4.4.1 Overview

'A project network is an example of a problem that lends itself very well to simulation

applications' [Badiru 1991].

The analytical approaches outlined above, according to Neumann (1984), require a great
deal of computational effort, therefore simulation is widely used for evaluating

Generalised Activity Networks and Probabilistic Activity Networks. It is worth noting,
however, that although the analytical approaches can still prove costly in terms of

computational time, they do provide valuable benchmarks for simulation techniques
[Ragsdale 1989].

The general Monte Carlo technique for analysing activity networks involves sampling

from each activity's time or cost distribution function and combining these samples to
produce one simulation of the entire network. These simulations are combined to form

a picture of how a network behaves 'on average'.

As a network is repeatedly simulated, various statistics are obtained that provide
information of a network's characteristics. These data can be split into two groups:

those that are automatically generated as a simulation proceeds, and those that require
some manipulation to provide results. Information that is generated automatically

includes raw network duration and cost values, path occurrence counts, activity
occurrence counts, and critical path counts. These data are manipulated to calculate the

mean network duration and cost, the variance and the modal classes for these
parameters, criticality indices for paths and activities, completion probabilities for

Generalised Activity Networks, and distribution and cumulative distribution functions
for times and costs.

Several 'improvements' have been made to the general Monte Carlo simulation

approach over the years. The main improvements to which are:

(i) Control Variates.

113

(ii) Antithetic Variables/Stratification (used later).

(iii) Cutsets [Sigal et alia 1979 and 1980].
(iv) Conditional Monte Carlo Simulation [Burt and Garman 1971a, Garman 1972,

Dodin 1986].
(v) Quasirandom Points [Adlakha 1992].

(vi) Intelligent Simulation Methods.

4.4.2 Control Variates

Control variates [Burt et alia 1970] improve the technique by using localised analysis
and simulation to simplify a network into a form that can be simulated more quickly

with smaller sample sizes and fewer activity time generations. The application of this
approach differs between Probabilistic and Generalised Activity Networks and, as a

result, is avoided in the comparison of these two simulation approaches in chapter five.

4.4.3 Stratification

Stratification has also been referred to as the Latin Hypercube approach [@RiskTM

1990] and provides more 'efficient sampling than the Monte Carlo technique for

symmetrical distribution functions. References to Latin Hypercube include McKay et
alia (1979), Iman et alia (1980) and Startzman and Wattenbarger (1985). Stratification

is actually a more refined version of the antithetic variable approach outlined in section
4.5.7 later.

4.4.4 Cutsets

Cutsets [Sigal et alia 1979] are used to reduce the simulation of an entire network to

some subset of the original. However, determining a Uniformly Directed Cutset within
a network can take some time. This must be compounded with the overall simulation

time and, as such, reduces the effectiveness of this method. Within Generalised Activity
Networks it is impossible to determine a Uniformly Directed Cutset due to the

probabilistic nature of a network's structure. Uniformly Directed Cutsets are, therefore,
avoided in the simulation techniques presented later.

4.4.5 Conditional Monte Carlo

Conditional Monte Carlo [Burt and Garman 1971a], that assumes independence of

certain paths in a network, has also been used to improve the efficiency of simulation
techniques. This technique was found to be ineffectual in most cases as there are

seldom any independent paths in a network or many unique activities (those activities

114

common to all paths) to make this method worthwhile. Also the time to identify

independent paths and unique activities must be compounded with the time to simulate a

network, thus reducing the efficiency of this method.

4.4.6 Quasirandom Points

More recent developments involve using quasirandom points [Adlakha 1987] to

improve the efficiency of activity network simulation. Quasirandom points were shown

[Adlakha 1992] to be more efficient in simulating small activity networks (fewer than

twenty nodes) than an antithetic variable approach. Ideally one could pick and choose

which simulation technique to use depending on a network's type and size. In practice,

however, one cannot predetermine the network to be analysed and one tends to stick

with a more popular simulation approach for analysing all networks. The antithetic

variable approach presented later represents a more popular approach.

4.4.7 Intelligent Simulation

The term 'intelligent' in this title is somewhat of a misnomer. It tends to imply some

form of highly sophisticated intellectual reasoning within the simulation technique. The

intelligent simulation approaches proffered by Cook and Jennings (1979) are by no

means sophisticated. Cook and Jennings provide three improvements to the crude

Monte Carlo Simulation approach - min-max,path deletion and dynamic shut-off.

min-max was originally suggested by Van Slyke (1963). It involves removing

paths from a simulation based on the following criteria: The optimistic duration

of each activity is used to determine the optimum critical path. The pessimistic

time is then assumed and the pessimistic critical path determined. Any paths

with a pessimistic duration less than the optimistic critical path time are

eliminated from any future simulations of the network. Of course, for this to

work, there must be some unique activities on these paths for any arc deletions

to occur. If this were not the case, the entire network would require simUlating.

It is also rather unlikely that many paths would have a pessimistic duration less

than the optimistic critical path length. It is therefore felt that this is a rather

weak approach.

Path deletion After one hundred iterations of a network, any activities on paths

that have not been flagged as critical are eliminated from future simulations.

This again requires the presence of unique activities on these particular paths to

be of any practical use.

115

Dynamic Shut-off This approach uses crude simulation to produce iterations

from a network. If, after one hundred simulations, using a Kolmogorov­
Smimov test at the 0.05 level, there is no change in the cumulative density

function of a network's duration, the simulation terminates. This is an extremely
poor technique as the Kolmogorov-Smirnov test is a particularly weak test.

Experience showed this test to be far too insensitive to changes in the density
functions.

One other intelligent approach, proffered by Van Slyke (1963), is to limit the samples

taken from arcs with a low criticality index to every Kth simulation (K>l). This can

improve the efficiency of the simulation but can be difficult to implement for particular
network types. If only the mean and variance of the project duration are required, Van

Slyke also suggested fixing the duration of activities that are always critical to their
calculated mean and variance. Once again, like the previous technique, the network

requires some initial sim ulation to determine which arcs to fix.

4.5 ANALYSIS OF GENERALISED ACTIVITY NETWORKS

4.5.1 Why Simulation is Used for Generalised Activity Network Analysis

All the analysis looked at so far has been devoted to the temporal analysis of
Probabilistic Activity Networks. The analysis of Generalised Activity Networks has
been largely overlooked due to the scarcity of this method. Generalised Activity

Network analysis falls into three categories - Flowgraph Theory, Monte Carlo
Simulation, and Mathematical Analysis.

Flowgraph Theory can only be used when a Generalised Activity Network consists

solely of Exclusive-Or input and output nodes. These networks are particularly rare.
Appendix C provides the detail of this approach.

Usually, Generalised Activity Networks consist of many different connection types.

Their analysis is therefore limited to either simulation or some form of analytical
technique. When one tries to analyse a Generalised Activity Network mathematically

one soon begins to realise the complexity of this problem. The complex calculations
involved in analysing ordinary Probabilistic Activity Networks are compounded with the

probabilistic branching (both independent, dependent and exclusive) that can be
commonplace within a Generalised Activity Network. Not only this, but cenain node

input characteristics imply that network durations can be dependent on minimum (as

116

well as maximum) completion times of several independent temporal functions.

Providing activity temporal functions can be approximated, in this case by Normal

distribution functions, it is possible to determine the completion time of a network.

Formulae for calculating these values is presented in Dawson (l994c) and covered in

Appendix D.

The complex nature of cross connections within Generalised Activity Networks cannot

easily be solved by mathematical means. This is why simulation proves to be the most
practical approach to Generalised Activity Network temporal analysis.

To see how effective Generalised Activity Network simulation analysis can be, a

comparison is made between the simulation requirements of both Generalised and
Probabilistic Activity Networks in the next chapter.

4.5.2 Monte Carlo Simulation of Activity Networks

In the following sections the analysis of both Generalised and Probabilistic Activity

Networks by simulation is studied in more detail. A Dynamic Sampling Technique is

introduced that improves the efficiency of such simulations. Antithetic Variables are

introduced and can be used in simulations, where possible, to improve the efficiency of
the technique still further.

Identifying the number of simulations required in the analysis of activity network is an

area that has not yet been addressed by the project management industry. Three
packages that perform simulation in the analysis of activity networks are Risnet™

(1993), @RiskTM (1990) and Monte Carlo™ (1993). When personnel who use these

products were interviewed, there was no clear way in which the number of simulations

were determined. Generally a 'suck it and see' type approach was used. The packages

provide users with initial default simulation values from which they would start to work

(usually set at around 500). If this default value provides too much accuracy, or takes

too long, the value can be lowered. If not enough accuracy is obtained the value can be

raised. The Dynamic Sampling Technique introduced below, moves away from this
approach by determining the number of simulations required to provide a desired

accuracy in the results obtained. This is a more responsive solution to the problem than

that adopted by these software packages.

4.5.3 The Dynamic Sampling Technique

This section is based on the work presented in Dawson and Dawson (l993b and

1994b).

117

When a network is simulated usually an attempt is being made to obtain, as quickly as

possible, an 'accurate' estimate of particular network characteristics - usually the mean
duration, ~, the variance, 02, and a representative temporal function. One way of

achieving this is to ensure that a network is not simulated any more times than necessary
to reach the required level of accuracy. The Dynamic Sampling Technique discussed

below ensures this criteria is accomplished.

Let D be a random variable corresponding to a network duration and let D(i), i = 1,2, .. ,

N, be N independent samples taken from the distribution D. Since there are thousands

of samples, the Central Limit Theory states that:

(4.20)

" is an unbiased and consistent estimator of~, the true mean of D, since E[~l = ~ (where

E[~l is the expectation of A).

Also, s, from:

(4.21)

is an unbiased estimator of a2, the true variance ofD. After some more manipulations:

N 2

Var(~) = Var (-.!. L d i
)) =..Q

N i=! N
(4.22)

(because at this stage one can assume that the D(i)s are independent) which implies that

the larger the sample size N, the closer rl should be to the true mean, ~.

The question arises as how N is chosen such that a 'good' estimate of ~ and other

network characteristics are obtained? A particularly large value of N could be used so

that there is extreme confidence in the results, but this would be inefficient if a smaller

sample size would have sufficed.

The basis of the Dynamic Sampling Technique is to simulate the network n times

(usually n is set to one hundred), and calculate the required sample size (called~) from

118

the results obtained for ~ and S2. This process is repeated, refining the estimates of Jl,
CJ2, and hence~, until N2:N. At that stage enough samples have been taken from the

network to imply the confidence in the estimate of the true mean of the network duration

is within the required limits. One can also work out a confidence interval for the

variance of the network duration.

Say, for example, in the network under consideration the estimate~, with a probability of

95%, needs to be within 1 % of the true mean, Jl

P[.99Jl ~ A ~ 1.0lJll = 0.95

This can be expanded to:

(4.23)

1.01Jl- Jl] = 0.95

s~
(4.24)

where A, -~ represents the Student t-distribution with f:! - I degrees

sly ~

of freedom.

" For large values of N this corresponds to the Standard Normal Distributionl
.

Thus:

1.01Jl- Jl = I. 96

sJ[A
(4.25)

from the tables of the Standard Nonnal Distribution.

" It is therefore possible to estimate the required sample size, N, from:

I. 962 S2

(0.01? Jl2
(4.26)

, For a value of ~=IOO thj,<; assumption would be in error by at most 4% for the 95% confidence
interval. For larger values of N, such as those used later (N)500), this error becomes insignificant.

119

where 11 is estimated by~, and S2 represents an estimate of the true variance (J2.

These results are based on the confidence in the estimates n and S2 which are based in

turn on, what are believed to be, independent random samples D(i) (i=l, 2, ... , N) from

a network. It is assumed that there is no correlation between the D (i)s - in other words

Pj = 0 for j = 0, 1, 2, ... ,N-l (where Pj is the correlation between D(i) and D(i+j)).

" 4.5.4 Improving the Estimate of N

It has been shown [Law and Kelton 1991] that simulation output data are usually

correlated and so the estimates of 11 and (J2 may be biased in some way. Any correlation
would not affect the sample mean, ~, that remains an unbiased estimate of the true mean.

However, the estimate of (J2 is affected by the correlation and it was shown by Anderson

(1971) that:

N·J

E[sl = (J2[t -

2L(1-...l)p
j~J N J]

N-l
(4.27)

In practice there is a positive correlation between samples: pj>O that results in E[S2] <
(J2. The estimate could therefore underestimate the true variance to some degree and, as

" a consequence, could grossly underestimate N which in turn affects the accuracy of the

simulated results. To avoid this underestimation of (J2 the X2 (Chi-square) distribution

function is used:

2
2 (N-l)s

X = -'--2':­
(J

(4.28)

The upper bound (X 2u) of the 95% confidence interval for X2 can be estimated by:

2 (J 2N-3 - 1.96/
X = -'-'----;0---'-

2
(4.29) (adapted from Conover (1971))

Therefore if (J2u represents the upper bound for (J2 at the 95% level, from equations

(4.28) and (4.29):

2
2 2(N - l)S

(J = --;:::====--'--.....".
U (hN _ 3 _ \.96)2

(4.30)

120

As 02u is the upper bound of the 95% confidence interval for 02:

P[02u ~ 02] = 0.975 (4.31)

Thus, there is 97.5% confidence that this represents an upper estimate on the value of

02.

The following are typical values of 02u for example values of N:

N = 100

N=1000

N =2000

N = 1()6

N=oo

02u = 1. 36s2

02u = 1.09s2

02u = 1.07s2

02u = 1.003s2

02u = S2 = 02

Equation (4.26) is therefore adapted to:

1.96
2cr;

(0.Odp.2
(4.32)

The Dynamic Sampling Technique can now be implemented as:

(i) N f- 0

(ii) Simulate the network n times (n usually set to one hundred)

(iii) N f- N + n
1\

(iv) Calculate Jl, s2
/>.

(v) Calculate N from equation (4.29 and 4.30)

" (vi) If N<N then go to step (ii)
(vii) Required accuracy has been reached

4.5.5 Reducing Sample Size

To reduce the number of samples needed for a simulation still further, one can either

reduce the confidence in the results or demand less accuracy from the mean duration

estimate. For example, reducing the confidence in the result from 95% to 90% results

in a reduction of 30% in the required sample size. A greater reduction can be achieved

121

by demanding less accuracy in the estimate of the mean. Reducing accuracy from

within 1 %, to within 2% of the true mean, results in a 75% reduction in sample size -

clearly this is something worth considering should simulation time be an overriding

factor.

4.5.6 Problems

For Generalised Activity Networks the temporal function of a project is not necessarily

distributed Normally, and can prove to be distributed in any multimodal form. In these

situations the variance of a network's temporal function proves to be extremely high and

consequently affects the efficiency of the Dynamic Sampling Technique. Applying the

Dynamic Sampling Technique in these particular cases is ill conceived as the results in

the next chapter will show. It is also worth noting the problem of over setting n. For

example, if, after 100 simulations, it is identified that 101 are required, the technique will

perform 200 before finishing. This can be avoided by using smaller values of n but the

additional computations involved compound with the simulation time. Usually, with

sample sizes determined over 1000, n = 100 is a reasonable starting point.

4.5.7 Antithetic Variables

Another way of improving the Monte Carlo simulation technique is to make use of

antithetic variables. Sullivan et alia (1982) highlight the efficiency of using such

methods in the simulation of Probabilistic Activity Networks.

Antithetic variables induce a negative correlation between pairs of samples taken from

each activity's time distribution function. The following explanation of antithetic

variables is adapted from the work of Burt, Gaver and Perlas (1970).

Antithetic variables can be used in the simulation of activity networks in which the

activity time and cost distribution functions are independent of one another. Figure 4.6

represents a single activity network for which T'2 is a random variable corresponding to

the duration of activity a'2, and D is the random variable corresponding to the network

duration. Clearly D = T'2 for this simple case.

In order to simulate this network it is necessary to take samples from the activity's time

distribution function and use these samples to build up a picture of the network

temporal characteristics. One way of taking samples from the activity's time

distribution, T'2' is to generate uniform random numbers from R(i) = [0,1] and transform

these into realisations of T'2 by T 12(i) = F-i(R(i)) (where F is the distribution function

122

of T12, and T12(i) is the ith sample from Td.

Figure 4.6 Single Activity Network

D(i) = T 12(i) is the i ID iteration of this network. This process is repeated N times to

provide an estimate, Il, of the true network duration mean, Il:

...,(1) (2) ...,IN)

112+ TI2+···· + 112
N

(4.33)

The basis behind antithetic variables is, that in order to estimate Il, the samples TI2(i) (i =

I, 2, , N) need not be independent as long as they have the correct marginal

distributions. In other words, if a sample from TI2 is 'large' in one realisation it should
be 'small' in another (and vice versa). This avoids skewing results excessively to either

side of the mean. To achieve this, the sample T12(i)' = F'(1-R) is generated at the same
time that the sample Tl2(i) = F"(R) is produced. TI2(ij' is the antithetic ofT, ii).

One can, therefore, calculate an alternative estimator of Il called rlA using sampled

variables and their antithetics:

A 18) + 18)' + 1fi) + 'lW' + + 1M') + n~)'
IlA =~~--~----~--~~----------=---~~

•• ~A = ~ (t + t')
2

2N

(4.35)

(4.34)

- - ,
where T is the mean of the sample, T 12(i), and T' is the mean of the sample T12(i) (i=l,

2, ... ,N).

By construction, T and T' are negatively correlated, ie Cov<T, T') < 0 (where Cov(X,Y)

is the covariance between X and Y) and

(4.36)

123

As Var(T) = Var(T'):

1\
Var(T) IC (-TT-') Var(Il) ---+- ov, <--'--

2 2 2
(4.37)

Equation 4.37 shows that antithetic variables provide a more accurate estimate of 11 than

is achieved by doubling the sample size.

The most significant effect of antithetic variables is achieved when samples are taken

from symmetric distributions. For example, assume that T 12 is Normally distributed

with mean IlTl2 and variance aT!,2. A sample T(i)12 is generated from T 12 by taking a

value r(i) from the standard Normal distribution Nor[O,l). T<i)12 = IlTI2 + r (i)~fl,2 is

then calculated. The antithetic ofT<i)12 can then be produced directly from:

(4.38)

which requires no further random number generation.

Using antithetic variables in activity network simulation provides three efficiency gains.

First, only one random number needs to be generated to provide two samples from an
activity's time distribution function. Second, as shown, they prove more efficient than

doubling the sample size. Finally, in Generalised Activity Network simulation, not only

are activities simulated but so is a network configuration that adds to the time of the

simulation. Using antithetic variables allows two network simulations to be generated

for each network configuration making the complete simulation more efficient.

4.6 MODAL CLASS DYNAMIC SAMPLING TECHNIQUE

The results in chapter five show how one cannot necessarily expect the temporal

function of an activity network to be symmetrically distributed. For activity networks

with multimodal or skewed temporal functions the mean and variance provide little

information to a project manager. In these cases the mode (representing a most likely

single time estimate) or the modal class(es) (representing a most likely range) provide

more useful estimates of a project's completion time as they represent the most likely

outcome of that project. As an example (taken from chapter five), figure 4.7 shows the

duration histogram of an example Generalised Activity Network with low parallelism

and low precedence (see chapter five). In this case the mean duration was calculated as

103 days with a variance of 110 days. The modal classes, in this case, provide a more

124

realistic estimate of this project's expected completion time. In this case the modal

classes are 108 to 110 and 114 to 116 days. Usually one refers to one mode, or modal
class, within a distribution. To refer to just one modal class in the example would ignore

an equally possible project result. It is possible to have two or more intervals
representing the most 'popular' project durations and all these intervals should be

highlighted.

200

1 SO
»
g
g 100
g
~ SO

76 100 124
Duration (Days)

Figure 4.7 Example Generalised Activity Network Duration

Results of interviews with local software houses also identified a project manager's need

for more realistic project outcomes such as those provided by modal classes rather than
mean estimates. Managers prefer an indication of the most likely completion time of a

one-off project rather than a mean value that represents the average completion time if a

project was performed many thousands of times.

When the Dynamic Sampling Technique, introduced earlier, is used in skewed or
multimodal cases, the variance tends to be so high that an unacceptable number of

simulations are required to calculate an accurate estimate of the mean network duration.
As this mean provides no real information, the Dynamic Sampling Technique requires

some adaptation to deal with these situations. The alternative is a Dynamic Sampling
Technique that attempts to home in, as quickly as possible, on the modal class of a

network duration. An initial prototype algorithm is based on:

125

N represents the total number of samples from the network

(i) N f- 0

(ii) Simulate the network n times
(iii) N f- N + n

(iv) Calculate the Modal Class
(v) If there is a change in the Modal Class from the previous n samples go to step (ii)

(vi) The modal class has been established

Initial attempts to use this algorithm provide quite rapid results identifying a modal class

rather quickly. There are, however, some shonfalls with this approach that require

addressing before the full benefits of this technique can be achieved:

(i) There may be two or more similarly sized modal classes. At this stage this

technique finds only one of them. Ideally the technique should identify the first r
modal classes.

(ii) The technique appears to stabilise too quickly so one has reservations as to whether

the true modal class has been established. The technique could, perhaps, be

adapted to terminate only if a modal class has been identified three or more times in

a row.

(iii) The range of the modal class cannot be predetermined. In this algorithm the range

of the modal class is determined by the range of the network duration. Also, if one

adjusts the size and number of class intervals the mode can jump around somewhat

[Hays 1988). One questions, in this instance, if the modal class determined by the
technique is an accurate enough estimate.

(iv) It would be useful to determine the probability of a modal class occurring. Again,

this is not achieved through this technique.

4.7 CHAPTER SUMMARY

4.7.1 Conclusion

This chapter began by introducing project-based management. Temporal analysis of

activity networks is a sub pan of this, assisting the management of time objectives at a

126

project's tactical and strategic level. The chapter went on to study approaches to the

temporal analysis of activity networks and simulation was identified as the most popular

approach to this form of analysis. A Dynamic Sampling Technique has been introduced

to improve the efficiency of such methods. Antithetic variables have also been examined

and shown to provide another improvement of simulation techniques. From this

research, the need for a Modal Class simulation technique has been identified and its

current shortfalls highlighted.

4.7.2 Future Work

From this work there are four areas that require further investigation.

First, the Modal Class Simulation of Activity Networks requires development.

Second, in real projects, if early activities over run their expected durations due to

unforeseen circumstances and delays, the chances are that later activities will do

likewise. This phenomenon is identified within the Monte Carlo™ (1993) software

package that allows global changes of activity durations. It is likely that there is a

positive correlation between delays in early and late activities. Introducing this

reasoning into the simulation process would provide a more accurate model of real
world processes.

Third, applying more representative distribution functions to activity durations needs

researching. Discrete distributions may provide better estimates of activity completion
times as activities tend to be completed in whole time units.

Finally, parallel algorithms can be used to reduce simulation costs still further (provided

one has access to parallel processors). Initial inspection of this idea identifies two ways
in which a parallel algorithm could be implemented:

(i) Simulate several activities concurrently.

(ii) Simulate several subnetworks concurrently.

It may also be possible to apply parallel algorithms to the complex problems of levelling

and what if analysis. This could involve allowing various what if scenarios to be

evaluated concurrently.

127

CHAPTERS

Temporal Analysis of Activity Networks

CHAPTER PREFACE

Having outlined improvements to Monte Carlo simulation of activity networks (that

are applicable to both Generalised and Probabilistic Activity Networks) this chapter
presents, and discusses, the results of analysing these networks. Two results are

presented in this chapter: First, the comparative simulation requirements of
Generalised and Probabilistic activity networks from work based on Dawson and

Dawson (1993b and 1994b), and second, the affect that various discrete and
continuous activity temporal functions have on the duration of activity networks of

different sizes and complexities (presented in Dawson (l994a and 1994b)).

CHAPTER KEYWORDS

Probabilistic Activity Networks, Generalised Activity Networks, Monte Carlo
Simulation, Discrete Activity Temporal Functions, Continuous Activity Temporal

Functions

5.1 INTRODUCTION

Three results are provided in this chapter - comparative simulation requirements of

Probabilistic and Generalised Activity Networks, the affect of continuous activity
temporal functions on the temporal function of a project, and the affect of discrete

activity temporal functions on the duration of a project.

This chapter begins by detailing how the results of the network sim ulations are analysed
both subjectively and objectively. It then moves on to present the results.

128

5.2 ANALYSIS OF RESULTS

5.2.1 Overview

When activity networks were simulated in this analysis, data values representing the

duration of a planned project are generated. These data values were assessed by two

different approaches - subjectively by graph plotting and objectively with the BestFit™

(1993) data analysis package. An example of the output data produced by BestFit™ is

provided in Appendix E. In some cases a Normal Probability Plot was also generated to

provide a subjective test for Normality. A representative subset of these results was then

analysed using BestFit™ that applied three goodness-of-fit tests (see below) to

determine which distribution function could best describe the data. BestFit™ was used

to compare the durations of the activity networks with fourteen distribution functions -

Poisson, Negative Binomial, Binomial, Geometric, Hypergeometric, Beta, Weibull,

Triangular, Logistic, Chi-square, Normal, Lognormal, m-Erlang and Gamma. BestFit™

then ranked these functions in order according to which represented the data most

accurately.

5.2.2 BestFit™

BestFit™ (1993) provides three goodness-of-fit tests (taken from Law and Kelton

(1991) and outlined below) that are used to assess formally whether the data
"­

observations are independent samples from a particular distribution function, F.

BestFit™ matches the data to the most representative statistical distribution, testing the

null hypothesis:

HO: The data samples, Xi (i=l, .. , n), are independent and identically distributed random
/\

variables from F.

(i) Chi-square Goodness-of-Fit Test (C-S Test)

The C-S test can be used to determine the best fit for both discrete and continuous

distribution functions. Selecting the size and number of intervals, k, for the C-S test is

particularly important as it can significantly affect the accuracy of results that are

obtained. In most cases the number of intervals was defined implicitly by the range of

discrete data obtained. In some cases, however, this range proved so large that a value of

k was selected based on figures defined by Yamold (1970). Yamold stated that the C-S

test would generally be acceptable provided that:

1. k~3

2. ~5y(5)

129

where a = min np.,
l!>j,.;Jc J

y(5) is Ihe number of npi's less Ihan 5,

and Pj is Ihe proportion of data values in interval j.

For the data concerned, k was either assigned values ranging from fifteen and Ihirty to
enable these criteria to be satisfied or was defined implicitly by the discrete output

obtained.

The CoS test statistic (T-S), X2, is defmed as:

k 2
2 '" (N.-np.)

X=.£... J J
np.

j;l J

where N j is the number of values in the jth interval of the data.

Kelton (1991), Ihe null hypothesis is not rejected providing that:

X2<X2 - k-l,l-a

(5.1)

According to Law and

(5.2)

For a at the 0.1 0 level, and for the values of k concerned, Ho is not rejected provided

that:

X2 S; 21.064 for k=15

X2 S; 39.087 for k=30

(5.3)

(5.4)

For oIher values of k (defined by the discrete data itself) the results were checked with

required values from tables in Law and Kelton (1991).

(ii) Kolmogorov-Smirnov Test (K-S Test)

The K-S test can only be used to determine the best fit for continuous distribution

functions. The K-S T-S, Dn, calculated by BestFit™ is defined as:

" D = sup! I F (x) - F (x) I}
n x n n (5.5)

To compare the data samples with a hypothesised Normal distribution the mean and
standard deviation of this distribution are estimated from the data. Having estimated

130

these values, Dn must be modified:

('n -0 01 + 0.85) D
VII . rn n

(5.6)

Thus, for a sample size of one thousand, the modified critical value for IX at the 0.1 level

means that Ho is not rejected provided that:

Dn ~ 0.025885 (5.7)

(iii) Anderson-Darling Test (A-D Test)
The K-S test can only be used to determine the best fit for continuous distribution

functions. The A-D T-S, An2, calculated by BestFit™ is defmed as:

00

2 J 1\ 2 1\
An = n [F n(X) - F n(X)] 'V(x) f(x) dx (5.8)

-00

1
where 'V(x) =,....--,.--

Fl(x)[1 - Fl(x)]

In order to compare the data samples with a hypothesised Normal distribution the mean

and standard deviation of this distribution are estimated from the data. Having estimated

these values, An2 must be modified:

(5.9)

Thus, for a sample size of one thousand, the modified critical value for a. at the 0.1 level

means that Ho is not rejected provided that:

An2~ 0.6295 (5.10)

5.2.3 Tests for Normality

When activity networks are analysed one result of interest is the temporal function of

the project they represent. Initial tests were based on ideas inspired by the results of

131

Mongalo and Lee (1990). They reported that the temporal function of an activity

network was approximately Normal for all network types, even when the activity
temporal functions were Triangular, Rectangular, Beta or Normally distributed. Based

on this assumption a test for Normality is required that could handle up to five thousand
simulations of an activity network. Ideally, one would hope that the duration of a

probabilistic activity network could always be approximated by one of the more
common distribution functions (such as the Normal) irrespective of which activity

temporal function was used. If this proved to be the case, statistical results could be
inferred directly from the characteristics of this known function. Simulation

requirements could also be minimised as the function's parameters could easily be
generated. Confidence intervals could also be obtained providing more accurate limits

on project completion times and the Dynamic Sampling Technique could be used.

The tests available for Normality are:

(i) Chi-square Test
The Chi-square test is perhaps the most obvious choice as a test for Normality due to its

popularity. However, Wetherill (1981) claims the Chi-square goodness of fit test is not
a particularly good test for Normality in some cases. This is due mainly to the problem

of combining cells in the tails of the distribution to avoid small frequencies. This is
confirmed by the results presented later.

(ii) Normal Probability Plot

According to Wetherill (1981) the Normal Probability Plot provides a good, but
subjective, approach to testing for Normality. With the number of samples dealt with

(usually well over one thousand), although a Normal Probability Plot can take some
time, it does provide a good visual indication of the Normality of a set of data. A

Normal distribution would result in a straight (f(x)=x) plot on these axis.

(iii) W Test
Mongalo and Lee (1990) claimed to use this test based on the work of Royston (1982)

and Shapiro and Wilk (1965). Unfortunately, this test is only applicable to sample sizes
of less than fifty. This somewhat contradicts the results of Mongalo and Lee who claim

to have used this test for 7500 simulation results. The results of simulating activity
networks with different activity temporal functions also clearly contradict Mongalo and

Lee's work (more on this later). The W Test was found to be of no practical use for
sample sizes that are dealt with in these tests.

(iv) Calculation of Skewness and Kurtosis

For distributions suspected to be Normal, it is possible to calculate their skewness, 11,

132

and kurtosis, 12. Providing these values compare favourably with an equivalent, known

Nonnal distribution function, one could perhaps claim Nonnality. To perfonn this test

Wetherill (1981) provides the following test.

One carries out significance tests on 11 and 12' testing the hypotheses that 11 =0 and

12=0 assuming that 11 and 12 are Nonnally distributed with expectation zero and

calculable variances. For sample sizes greater than one thousand (which are required),

the variances of 11 and 12 can be calculated as:

6
V(1) =-

1 n

24
V(y)=-

2 n

(5.11)

(5.12)

respectively (where n represents the sample size).

Based on a sample size of one thousand, and a 95% confidence interval on the

coefficients, 11 and 12, one has

-0.005 < YI < 0.005 (5.l3)

-0.01 < Y2 < 0.01 (5.14)

Provided these criteria are satisfied one could possibly assume Nonnality.

Unfortunately, when sampling directly from a known Nonnal distribution function, the

values of YI and Y2 exceed these limits by quite some margin. For example, figure 5.1
shows the histogram and Nonnal Probability Plot of one thousand samples taken from

a Nonnal distribution with mean 100 and variance 5. Although a test for Nonnality

should prove positive in this case, the values of 11 and 12 from this data are:

YI = 0.02712 and Y2 = -0.20926

exceeding the calculated limits defined in 5.13 and 5.14. It was therefore felt that the YI
and Y2 test for Nonnality was inadequate for samples of this size.

133

lOO

» 80
g
g 60

[40

"'"
20

93.5 100.0 106.5

Duration

105
c
.2 102
~
'" 99 Cl

96
. .. .r

-2 o 2

nscores

Figure 5.1 Histogram and Nonnal Probability Plot of Samples from a Nonnal

Disoibution

5.3 NETWORK CHARACTERISTICS

5.3.1 Overview

The configuration of an activity network significantly affects the work required and the

accuracy of results that are obtained when that network is analysed. Three network

characteristics, identified by Mongalo and Lee (1990), are size, precedence (sometimes

called fatness), and parallelism. Table 5.1, which is adapted from Mongalo and Lee

(1990), identifies a tighter quantification of these characteristics based on Activity-on­

the-Arrow networks. The nodes and activity dependencies (the arrows) in Activity-on­

the-Node networks do not lend themselves directly to these criteria. To detennine the

characteristics in Activity-on-the-Node networks either alternative definitions are

required or they must first be converted to an equivalent Activity-on-the-Arrow

representation.

Although the size measure is self evident, the two other measures require some

clarification. The Criticality Index measures the probability that a given path through a

network has a longer duration than any other path. The Critical Path is the path with the

highest such probability. In Probabilistic Activity Networks the Criticality Index is the

probability that a given path has a longer duration than any other path in the network. In

pure Exclusive-Or Generalised Activity Networks this index is based solely on paths'

probability values. In Generalised Activity Networks with several node characteristics

this index is based on the duration of paths, on the probability that paths occur, and the

probability that other paths do not occur. Calculating Criticality Indices based on

maximum time characteristics (for example Clark (1961 b)) and/or probabilities is

134

---------~- ----------

particularly difficult. Network simulation provides an alternative way of generating

these results.

Precedence provides an indication of the complexity of a network structure based on the
number of paths it contains. A network with high precedence would be fatter than one

with low precedence.

In an Activity-on-the-Arrow network, given the number of activities, Acts, and the
number of nodes, Nodes, it is possible to calculate the maximum, Max, and minimum,

Min, number of possible paths through that network. Calculating the exact number of

paths is impossible from these data alone and it is best left to simulation to provide such

results.

Given that Q = Quotient (Acts) and M = Modulus (Aas)
Nxrs - I Nxrs - I

Min = Acts - Nodes + 2 (5.15)

Max = (Q + I)M * Q(Nodes - 1 - M) (5.16)

Clearly, if M = 0, this reduces to:

Max = Q(Nodes - I) (5.17)

The maximum number of paths in a network, and consequently its complexity, can prove
to be quite considerable even for small networks. For example, with only three nodes

and ten activities there can be up to twenty five possible paths through a network.

Adding only one more activity can raise this number to thirty.

135

Size Small Medium Large

Number of activities under 26 26 to 80 over 80

Parallelism Low High

Criticality Index of
over 80% under 80% the Critical Path

Precedence Low High

number of activities
under 1.5 over 1.5

number of nodes

Table 5.1 Network Characteristics

Mongalo and Lee's [Mongalo and Lee 1990] main interest was in the comparative

accuracy of Monte Carlo simulation and standard PERT calculations based on a single
critical path. They showed that whilst precedence had no affect on the comparative

results obtained by both methods, both parallelism and size did have an affect. Mongalo

and Lee used four activity temporal functions in their analysis - Triangular, Rectangular,

Beta, and Normal. They used the W Test for Normality [Royston 1982] in all cases to
test the distribution function of the network duration. In all variations of network

characteristics this test for Normality did not fail. These results must be viewed with

some caution as the W Test for Normality is a particularly weak test and cannot be

applied to sample sizes with which they were working. Assuming Normality in all cases
can also prove fallacious as the results below show.

In contrast, results presented later show that the duration of a Generalised Activity

Network cannot be relied upon to assimilate a Normal distribution. When analysing the

results of these networks a manager should be more interested in modal classes than the

mean, and in the cumulative distribution functions of time and cost that provide

probabilities of completing projects within particular limits.

5.3.2 Generalised Activity Networks

As it is of interest to compare simulation requirements of both Generalised and

Probabilistic Activity Networks, the sample set of Generalised Activity Networks will be
generalised somewhat (otherwise there would be an infinite sample set). For

comparative purposes both Pure Exclusive-Or Generalised Activity Networks and Pure

136

Independent-Or Generalised Activity Networks will be compared.

As chapter three highlighted, Generalised Activity Networks allow loops to be fonned

within a network providing a useful approximation to real life projects where certain
tasks are repeated. For the purposes of this analysis, loops have been avoided in the

sample networks so that a clearer comparison can be made with Probabilistic Activity
Network simulation in which loops are not allowed.

(i) Exclusive-Or Generalised Activity NetwOlK

This form of Generalised Activity Network allows only Exclusive-Or input and output
logics at each network node. This implies that only a single path can be performed

during one network simulation. Mathematically this network would appear to be the
simplest to analyse. The mean of the network completion time, Jl, and the variance of

this time, r:P, can be calculated from the simple pseudo code algorithm:

There are K paths, Pj (j= I, 2, ... , K), in the network.

Let PcPj) be the probability of taking path Pj' and TcPj) the expected duration of path Pj.

for i = I to K do begin

T(P .) = L mean duration of activity i
J . P

lE .
J

P(P.) = IT probability of performing activity i
J . P

lE .
J

end

then:

K K

Jl = ~ P(P.) T(P.) L J J
j=!

cl = L P(P.)T(P./ Jl2
. J J
J=1

Unfortunately this algorithm can prove formidable because the number of paths is

difficult to determine precisely in complex networks. It has already been shown how

there can be a considerable number of paths even in small networks. For larger
networks this algorithm proves to be wholly inappropriate. Simulation, therefore,

provides a simpler alternative. The validity of using the mean and variance for analysing

137

the project completion time in Generalised Activity Networks must also be questioned

as the results presented later show.

(ii) Independent-Or Generalised Activity Network
In this configuration node outputs were defined as Independent-Or and node inputs as

w-Or (as defmed in chapter three). This implied that nodes were realised when the last
activity leading to them was completed or eliminated. In some cases, when all incoming

acti vities are eliminated, nodes are not realised. If the sink node is not realised this
implies that the network has 'failed'. This situation is unique to the Independent-Or

Generalised Activity Network. In this case network simulation can be used, not only to
estimate the project completion time, but also to estimate the expected probability of

completing a project successfully.

The reader should be aware that it is possible to combine the activity characteristics from
each network type to form an 'impure' activity network. Simulation analysis of an

impure network is beyond the scope of this chapter since it presents an infinite sample

set.

5.4 COMPARATIVE REQUIREMENT RESULTS

5.4.1 Overview

The first set of results presented are concerned with the comparative simulation
requirements of Generalised and Probabilistic Activity Networks.

The comparative results provided two parameters that signified the simulation costs for

each network type. The first value was a total count of the number of times activities in
a network were sampled in each simulation. The second measure was a basic tick count

Cl/60th second) based on CPU time. These simulations were running on an Apple
Macintosh™ LC 5/40. As one would expect the results showed that the ratio of the tick

count to the number of activities sampled remained stable for each network type and
configuration. However, this ratio differed quite significantly between Probabilistic and

Generalised Activity Networks. The reason for this is that Generalised Activity
Networks need to select which of an network's paths are simulated each time a network

is iterated. This consequently compounds the simulation time. Probabilistic Activity
Networks, on the other hand, need to sample every activity as all paths occur in each

simulation. Consequently, the ratio of the tick count to activity samples proved to be
higher in Generalised Activity Network simulation than in the comparative Probabilistic

138

Activity Networlc simulation.

Tick counts were chosen as the comparator between the two network types since they

provide a more meaningful comparison of the network simulation costs than activity
sample counts alone. As developments are made in Generalised Activity Network

simulation analysis, it is anticipated that the time to generate a network configuration
during each simulation will fall dramatically (for example, using control variates). It will

then be more feasible to compare the network simulation requirements by activity
sample counts alone.

Each configuration of size, precedence, and parallelism identified in table 5.1 was

simulated for all network types using the Dynamic Sampling Technique detailed in the
previous chapter. In all cases the required accuracy in the mean duration was set at

0.2% with 95% confidence and the simulation stepsize was set to one hundred. For the
purpose of comparing Probabilistic and Generalised Activity Networks simulations,

activities were represented by Nonnal temporal functions throughout. This allowed
antithetic variables to be used, improving the efficiency of the simulations, and ensuring

that all networks were assessed on the same footing. Two main results came out of
these simulations.

5.4.2 Generalised Activity Network Temporal Function

Generalised Activity Networks cannot be relied upon to have a temporal function that is

symmetrical and unimodal (ie a Nonnal type). Figure 5.2 shows a histogram of the
duration of a Generalised Activity Network highlighting the possibilities. This figure

represents the duration of a large Exclusive-Or Generalised Activity Network with high
parallelism and high precedence. It is accompanied by the Normal Probability Plot.

Figure 5.3 provides another example. In this case it represents the duration of a small
Independent-Or Generalised Activity Network with low parallelism and low precedence.

When the duration of a Generalised Activity Network is multimodal, although the

variance and mean duration can be calculated, the usefulness of these values must be
questioned. In these situations the modal ciass(es) would provide a more sensible

measure of a project's duration as it represents the most likely outcome of that project.
In the example shown in figure 5.3 the actual mean completion time of this project was

calculated as 103 days with a variance of 110 days. The modal classes, in this case,
would provide a more realistic estimate of the project's completion time. In this case

there are two modal classes - 108 to 110 and 114 to 116 days - both with equal
probability. A manager should be more interested in these values than the mean

duration. S/he would also be very interested in the secondary peaks around 88 days.

139

800

1;' 600
c:
Q)

[400
u..

200

200

150
>.
g
g 100
[
u.. 50

lOO
r--....

c: 75
.9
:;;

50 ~
'" Cl

25

J j
..--

r h h

4 60 116 -2 0
Duration nscores

Figure 5.2 Example of a Generalised Activity Network Duration

76 lOO
Duration

124

c:
0
.~ -'"
'" Cl

125.0

112.5

100.0

87.5

.. -
-2 o

nscores

Figure 5.3 Example of a Generalised Activity Network Duration

2

2

Figure 5.4 provides a more useful representation of the duration of this project - a

cumulative frequency distribution. Cumulative frequency distributions are often
provided by project management software tools (for example, Risnet™ (1993), Monte

Carlo™ (1993), and @Risk™ (1990» to provide a more useful representation of
project outcomes. They provide the probabilities of completing projects within

particular time and cost limits. In this case there is only a 50% chance of completing
this project within 107 days - 4 days longer than that indicated by the mean duration.

Pohl and Chapman also identified the usefulness of cumulative density functions and
claimed that they 'form the basis for project risk assessment or risk management' .

140

:::~ .
. ;,.. ", 0.0 L-_~L.... __ L_ __ L_ __ _'__ _ _____1

73 84 95 106 115 124

Duration

Figure 5.4 Cumulative Frequency of a Generalised Activity Network

The results for Probabilistic Activity Networks confinned those of Mongalo and Lee -

that the distribution function of a project's duration does approximate a Nonnal
distribution in all cases (provided, at this stage, the activity temporal functions are

Nonnal as well). Figure 5.5 shows a typical example of a Probabilistic Activity
Network duration - in this case the network was large, had a low precedence, and low

parallelism. It is accompanied by the Normal Probability Plot of this data.

200

>. 150
u
c g

I lOO

50

93 108 123

Duration

120.0

c 112.5
.::2 -'" ... 105.0 ::J

Cl
97.5 .. '

-2 o
nscores

Figure 5.5 Example of a Probabilistic Activity Network Duration

.. '

2

The Dynamic Sampling Technique worked particularly well for Probabilistic Activity

Networks but proved costly in terms of simulations required for non-Nonnally
distributed Generalised Activity Networks. In these cases a high variance in the network

duration implied the need for a large sample size to provide a reasonable estimate of the
mean network duration. As shown above, the mean itself provides little information to a

project manager. The technique, therefore, requires some adaptation to provide a
reasonable estimate of the modal class(es) or the cumulative frequency distribution of a

project's duration. The modal class simulation approach that was introduced in chapter
four provides a more logical alternative.

141

5.4.3 Generalised Activity Network Normally Distributed

When the distribution function of the duration of a Generalised Activity Network is

approximately Normally distributed (for example with a highly dominant critical path, or
when the duration of dominant paths are similar) it takes at most the same time to

simulate as the comparative Probabilistic Activity Network. This is particularly
noticeable in networks with a high precedence. With low precedence and high

parallelism the Generalised Activity Networks simulation is at worst within 20% of the
equivalent Probabilistic Activity Network simulation time. Networks with low

precedence are particularly uncommon and it is worth noting that these networks, due to
their relative simplicity, are perhaps easier to analyse by alternative techniques (perhaps

analytical). The results obtained show a clear improvement in the time to simulate
Generalised Activity Networks for common high precedence networks. The reason for

this is clear. Probabilistic Activity Networks require that all activities are sampled each
time a network is simulated. A Generalised Activity Network on the other hand,

although requiring a network's configuration to be generated, does not require that all
activities be sampled each time. This proves to be a great time saving and results in a

much faster simulation process.

The reader may have noticed that Probabilistic Activity Network and Generalised
Activity Network simulations could be improved by only sampling from activities or

paths which are dominantly critical - for example, incorporating the simulation
approaches used by Van Slyke (1963). This chapter is concerned with the comparative

simulation requirements of Probabilistic Activity Networks and Generalised Activity
Networks and is not, therefore, concerned with streamlining the simulation techniques at

this stage.

Table 5.2 shows the number of tick counts required for each network configuration. In
these simulations Generalised Activity Network activity probabilities and time

distribution functions were selected to ensure that these network durations approximated

a Normal distribution. The starred (*) values were from distributions that were

beginning to show signs of non-Normality. This lead to higher variances and
consequently required larger than expected simulation times. Figure 5.6 represents the

duration of the smaller starred network and figure 5.7 the medium (again they are
accompanied by Normal Probability Plots) from table 5.2.

142

;;.,
u
0:: .,
'" 0-.,
~

Size Parallelism Precedence PAN Ex-Or Ind-Or
GAN GAN

Large High High 8,180 3,123 5,263

Medium High High 5,526 2,354 3,115

Small High High 1,836 1,537 1,690

Large High Low 53,136 62,133 54,892

Medium High Low 32,690 35,857 35,050

Small High Low 7,066 7,864 7,393

Large Low High 46,485 2,271 5,066

Medium Low High 24,889 2,127 3,174

Small Low High 4,883 2,123 1,683

Large Low Low 53,123 79,412* 62,095

Medium Low Low 31,102 53,846* 33,842

Small Low Low 5,680 17,475* 7,154

Table 5.2 Tick Count Results of Comparative Simulations

400

300

200

100

79.5 102.0

Duration

124.5

125.0

g 112.5
. .:::
r::
'" 1 00.0 o

87.5
.. '

-2 o 2

nscores

Figure 5.6 Small, Exclusive-Or Generalised Activity Network Duration

143

300
"

120
>. 200 c: u 110 c: 0 ., '0
::l i:! [::l 100
~

100 0
90 ."

84.0 106.5 129.0 -2 o 2

Duration nscores

Figure 5.7 Medium, Exclusive-Or Generalised Activity Network Duration

5.4.4 Summary of Comparative Simulations

Simulation has proved to be a useful way of analysing both Probabilistic and

Generalised Activity Networks. In Generalised Activity Networks however, more
useful simulation results are those giving modal intervals and cumulative frequency

distributions. The use of a Dynamic Sampling Technique and antithetic variables
provided an improvement on a standard Monte Carlo simulation approach. The main

results show that Generalised Activity Network duration distribution functions do not
always assimilate a Normal distribution, but when they do, they prove to be quicker to

simulate than the comparative Probabilistic Activity Network for common high
precedence networks. The uncommon low precedence networks take similar times to

analyse and may be better suited to an analytical approach than Monte Carlo simulation.

5.5 SIMULATION WITH KNOWN ACTIVITY TEMPORAL FUNCTIONS

Another area of analysis is the affect that different activity temporal functions have on an

overall network duration. The moti vation behind this work was the results presented by
Mongalo and Lee (1990). It has already been shown that Generalised Activity

Network's temporal functions cannot be_ relied upon to assimilate a Nonnal distribution
function in all cases. The temporal function of Probabilistic Activity Networks,

however, has so far been seen to be approximately Normally distributed. In this section
each network configuration in Probabilistic Activity Networks was simulated with six

different continuous activity temporal functions - Normal, Lognormal, Gamma, Beta,
Rectangular, and Triangular and five discrete temporal functions - Binomial, Poisson,

Negative Binomial, Bernoulli, and Discrete Uniform.

144

Each network configuration identified in table 5.1 was simulated one thousand times
using these discrete and continuous activity temporal functions. Algorithms to generate

the activity temporal functions were obtained from the following sources (for more

detail refer to appendix F):

Bernoulli Distribution [Law and Kelton 1991, pp496-497] Used to represent two

possible outcomes of an activity duration.

Binomial Distribution [Law and Kelton 1991, p502] Used to represent the likely
successful completion of an activity in a discrete number of time units with probability

p.

Discrete Uniform Distribution [Law and Kelton 1991, p497] Used when there is

equal probability of an activity completing any discrete time during some finite period.

Negative Binomial Distribution [Law and Kelton 1991, p503] Used to provide a

discrete function with identifiable skew.

Poisson Distribution (adapted from Ahrens and Dieter (1974)) Used to represent an
activity with an estimated mean completion time in discrete units.

Normal Distribution [Rubinstein 1981, p90] The Normal distribution has been used

by several authors (for example Clarke (l961b) and Mongalo and Lee (1990» to

represent the duration of activities in projects. Pohl and Chapman (1987) identified the

Normal distribution function as that used for activities that have been performed several

times before and in which the probability of unusual delays is very small.

Lognormal Distribution [Law and Kelton 1991, p492] Selected due to its ability to

represent a skewed temporal function.

Rectangular Distribution (Generated by a simple algorithm) Some activities could

have equiprobable continuous durations and are best represented by this distribution

function (used by Mongalo and Lee (1990».

Triangular Distribution (adapted from Law and Kelton (1991), p494) U sed by

Lootsma (1989) as a simpler representation than a Beta distribution function, and Pohl

and Chapman (1987).

Gamma Distribution [Cheng 1977] Used by Lootsma (1989) as it is more natural

145

and simpler than the Beta distribution function.

Beta Distribution [Rubinstein 1981, p81] Used in the popular PERT technique.

It should be noted that the networks have been assessed with a specific activity temporal

function throughout as, more often than not, managers use a single function with which
they are familiar. The affects of several different, combined activity temporal functions

on a project duration is an area for future research (and represents an enormous sample
set).

5.6 RESULTS FOR CONTINUOUS ACTIVITY TEMPORAL FUNCTIONS

5.6.1 Overview

In this section the results are presented for all possible configurations of activity
networks with the particular activity temporal functions. The graphs shown represent

histograms of the duration of the network concerned. In some cases a line graph is
superimposed on the histogram to show the fit of a particular distribution function

(identified by BestFit™). Normal probability plots of the network duration are .also
shown in some cases. In these results it is interesting to determine which distribution

function provides the most accurate representation of the temporal function of the
networks concerned.

5.6.2 Normal Distribution

In all cases the C-S and K-S tests for Normality did not fail for all network

configurations. The C-S T-S values ranged from 0.00674 to 0.078, and the K-S T-S
values from 0.020174 to 0.023013. There were two anomalies with the A-D test which

provided T-S figures of 0.707188 (high precedence, high parallelism, ten activities), and
0.650595 (high precedence, low parallelism, ten activities). These figures were

particularly insignificant when compared with other A-D T-S values obtained. Figure
5.8 shows a typical example of the results obtained. The line plot in this case shows a

Normal distribution with mean 991, standard deviation 14.13.

146

Duration nscores

Figure 5.8 Nonnal, Low Precedence, High Parallelism, One Hundred Activities

5.6.3 Lognormal Distribution

All network durations prove to be distributed Nonnally as far as the C-S test was
concerned (T-S values ranging from 0.00559 to 0.18194). For a network with high

precedence and high parallelism both the K-S test and A-D test failed (having T·S
values of 0.0794 and 8.9892 respectively). In this case the network duration showed

signs of positive skew (skewed to the right). Although the C·S test for Normality did

not fail (the T-S value was 0.18194) a more indicative fit was the Lognormal with mean

119 and standard deviation 3.39. Figure 5.9 shows this function plotted over the
network duration histogram with these characteristics.

All other network configurations passed both the K-S and A-D tests for Normality. The

K-S T-S values ranged from 0.0152 to 0.0234 and the A-D T-S values from 0.24319 to

0.62798.

0.16 r:.--,.--,.-;". r.. -:-. -:-. -:-. r.:-:.:-:.--'.r.. -;". -:-. -:-. .,...,...,.....,...."

,
. ",

~: .:~
0.00 L.!!!I:!:Il..llU1JL:llJllllllJUll~--.J

110 114 118 122 126 130
Duration

c
o

127.5

.~ 120.0

8
112.5

-2 o 2
nscores

Figure 5.9 Lognonnal, High Precedence, High Parallelism, One Hundred Activities

147

5.6.4 Rectangular Distribution

The results obtained for a network consisting of activities with rectangular temporal

functions highlight the weakness of the CoS and K-S goodness-of-fit tests applied.
Figure 5.10 shows a distinctive negative skew (skewness measured as -1.34) for the

duration of a network with high precedence, high parallelism and ten activities. Even
with such a distinctive shape the test for Normality did not fail (the CoS T-S value was

calculated as 0.8635, the K-S T-S value as 0.1246). The Normal probability plot shown
alongside is clearly curved. BestFit™ showed that a Beta distribution ((1,=2, (12=0.53)

was a more likely representation of this data having a CoS T-S value of 0.093092.
Figure 5.11 shows a difference graph showing the absolute error between the network

duration and this fitted Beta function. The A -D test did not accept the Normal
Distribution as a good fit in this case (T-S value 28.94) preferring the fitted Beta

distribution function (T-S value 2.439).

150

»
g 100 .,
'" g
~ 50

108 129 150

Duration

150

140
c
.g 130

~
Cl 120

110 .. ; ...

I • ,

-2 o
nscores

2

Figure 5.10 Rectangular, High Precedence, High Parallelism, Ten Activities

0.05

., .,
0.03 - <.)

'" c
"0 e 0.00 '" <E .0
<t: .~

-0.03 Cl
: ·~V:

: : : : : : : : : /i
::::::/:

-0.05
108 116 124 132 140 148

Duration

Figure 5.11 Difference Between Duration and Fitted Beta Distribution Function

148

Equally non-Normal network temporal functions were obtained for networks with high

precedence and low parallelism. Figure 5.12 is particularly representative of these
networks showing the temporal histogram of a network with ten activities. The C-S T-S

value for the Normal distribution proves surprisingly low at 0.066616 in this case.
BestFit™ indicated that a more likely representation would be a Beta distribution

function (Ctl=0.86, Ct2=O.95) which had a C-S T-S value of 0.0192. Figure 5.13
represents a difference graph showing the absolute difference between the network

duration and this fitted Beta function. This network failed both the K-S and A-D tests
for Normality having T-S values of 0.1444 and 28.2 respectively. Both these tests

favoured the fitted Beta function.

All other network configurations (those with low precedence) proved to be distributed
Normally. C-S T-S values for these network durations ranged from 0.000789 to

0.000887, K-S T-S values ranged from 0.0190 to 0.0264 (placing the Normal
distribution first), and A-D T-S values ranged from 0.3025 to 0.5180.

80 240

220
60 c

>. 0
200 u '0 c '" ., ...

'" 40 '" 180 0' Cl
~

\l.. 20 160

140 188
Duration

236 -2 o 2

nscores

Figure 5.12 Rectangular, High Precedence, Low Parallelism, Ten Activities

., 0.010 \ •••• : • : : • : ••••• : •

E ~ 0.005 ·l··········· -..'Ii..

g:.IJ 0.000 1":"'. \.: :~ .. : I .~. ~I"''. :",.. ···AI
- ~ ~I .".- IV : • : .v-.:
<t: 0 -0.005 1---¥----=-I----I------1I------1----l

-0.010 '--__ -'--__ ...L.-__ --'-_._._. -l' ,-' _._. _. --'

140 160 180 200 220 240

Duration

Figure 5.13 Difference Between Duration and Fitted Beta Distribution Function

149

5.6.5 Triangular Distribution

Activity networks with high precedence and high parallelism all showed signs of

negative skew (for example, one with one hundred activities had a skewness value of -
0.6363). The C-S goodness-of-fit test for Normality was still acceptable having a T-S

value of 0.3458 in this case. BestFit™ identified that a more likely fit was the Weibull
(a=I06, 13=147) with a C-S T-S value of 0.13346. This is shown in comparison with

the network temporal histogram in figure 5.14. The K-S and A-D test were more
sensitive in this case and, although identifying the Normal distribution as the best fit in

both cases, failed to accept it as representative of the data having test statistic values of
0.05624 and 6.398 respectively.

0.30 ,...,....,....,....,..T"7" . .,... . .,.-. 'T. .,..,.,..,.--, •". -:-. -:-. -:-• .,.... ,..-:-,....,...,.,

>.

.......... /:.

.

g g O. 15,..,,....,...+~. ~. ~ . .". r.-. -:-. -:-. .." . .I'iI

I
,....,.

~ :~~ 0.00 L..:.. :lI!I'I:LUIll.UJJ.1.U:UW:.1J..Lrl1
140 142 144 146

Duration

148 150

150.0 .. '

"
147.5

0 ·c 145.0 '" '-<

" Cl 142.5

140.0

-3.0 -1.5 0.0 1.5 3.0
nscores

Figure 5.14 Triangular, High Precedence, High Parallelism, One Hundred Activities

For activity networks with a high precedence and low parallelism some more obscure

temporal function shapes were obtained. In most cases the network duration is
positively skewed (for example with ten activities the skewness value is 0.4752 (see

figure 5.15». In this case the most likely fit is a Triangular function (a=136, b=152,
c=205) with a C-S T-S value of 0.010315. The Normal distribution comes out as the

eighth most popular fit with a C-S T-S value of 0.051231. The K-S and A-D tests also

prefer the fitted Triangular distribution, ranking the Normal distribution as the fifth most

likely fit in both cases. A rather formless duration was produced with one hundred
activities (figure 5.16). This network duration looks rectangular with some skew. In

this case BestFit™ identified the most likely fit as the Triangular function (C-S T-S

value of 0.057, a=1l6, b=181, c=200) with the Normal distribution coming in fourth

place with a T-S value of 0.100529 (~=172, cr=16.77). Figure 5.16 compares this
network duration with both the fitted Triangular and Normal distributions. Both the K-S

test and the A-D found the Normal distribution unacceptable having T-S values of
0.0880 and 13.26 respectively.

150

All other network configurations (those with low precedence) proved to be Nonnally

distributed for all tests. C-S T-S values for these network durations ranged from

0.001615 to 0.001748, K-S T-S values from 0.186 to 0.2321, and A-D T-S values from

0.2955 to 0.58706.

0.03

0.015

0.00

135 170
Duration

205

195

§ 180

.~ 165
Cl

150
~

-2 o 2
nscores

Figure 5.15 Triangular, High Precedence, Low Parallelism, Ten Activities

110 128 146 164 182 200 120 140 160 180 200 220
Duration Duration

Figure 5.16 Comparisori with a Triangular and Normal Distribution Function

5.6.6 Gamma Distribution

Although activity networks with a high precedence and high parallelism appeared to be

skewed to the right (positively skewed) they did not fail the C-S test for Normality (C-S

T-S value being 0.463126 for a network with one hundred activities). BestFit™ showed

a more indicative representation would be the Logistic function (a=16.25, ~=0.79) in

this case having a C-S T-S value of 0.159439 or a Lognormal function (~=16.53.

cr=1.28) with a C-S T-S value of 0.179452. Figure 5.17 shows a comparison between

151

this activity duration and the fined Logistic function. The K-S and A-D tests found the

Nonnal Distribution unacceptable both preferring a fitted Lognonnal distribution with

~=16.53, a=1.28.

All other configurations of activity networks with Gamma activity temporal functions

prove to be Nonnally distributed according to the C-S test which provided T-S values

ranging from 0.006765 to 0.240463. The Nonnal Distribution was also ranked in first

place by the K-S and A-D tests even though they would sometimes fail to accept any
function ai all. There were some anomalies with both the A-D and K-S tests for

networks with high parallelism. In these cases the Nonnal distribution was ranked in
fourth place although the differences between the T-S values and the first placed

Lognonnal distribution were quite negligible in these cases.

..
20.0 /

c
0 ·c 17.5 '" El
Cl 15.0

I I I

0.4

,., ::::~::::::::::::::::: i 0.2 :::: ::: ~.::::::::.:::

0.0 ~ :~~ : : : : : : :

13 15 17 19 21 22 -2 0 2
Duration nscores

Figure 5.17 Gamma, High Precedence, High Parallelism, One Hundred Activities

5.6.7 Beta Distribution

All networks with a high precedence and high parallelism are skewed to the left to some

degree. For example, the network with ten activities is shown in figure 5.18 (skewness

value -0.827). In this case the C-S T-S for Normality was particularly high (16.44) yet

within acceptable limits. BestFit™ indicated a more likely representation would be the

Weibull (a=19, ~=O.92) which was preferred by all three goodness-of-fit tests. A

medium sized network (one with fifty activities) proved to be less skewed (skewness

value -0.081071). In this case the most likely distribution fit was the Normal (~=O.78,

a=O.0725) with a C-S T-S value of 1.38889. The K-S and A-D tests also preferred this

fitted Nonnal distribution with T-S values of 0.0195 and 0.8003 respectively.

All other configurations of activity networks with Beta activity temporal functions

proved to be Nonnally distributed according to the C-S test - having C-S T-S values

152

ranging from 0.111985 to 5.914. However, network durations with high precedence

and low parallelism appeared triangular in shape with negative skew. For example,
figure 5.19 shows the duration of a network with fifty activities (having a skewness

measure of -0.64596) compared with the most likely distribution fit - a Triangular
function (a=0.43, b=O.98, c=1.07) with C-S T-S value of 2.978881. The Normal

distribution was the third most obvious fit in this case with a C-S T-S value of
6.156842.

For networks with high parallelism both the K-S and A-D tests accepted the Normal
distribution as the most likely fit (for example, with low precedence the K-S T-S value
was 0.0286, A-D T -S value was 0.8773) even though these figures were unacceptable at

the a=O.1 level. For networks with low parallelism, the K-S and A-D tests were in
conflict over which function provided the best fit, discounting all functions as unsuitable

in most cases.

150

;>,

g lOO
~

I 50

0.6250 0.8125
Duration

1.0000

1.0

c 0.9
o

'J:I

~ 0.8
Cl

0.7

-2 o
nscores

Figure 5.18 Beta, High Precedence, High Parallelism, Ten Activities

4.4 ,

~
" g. 2.2

&: :'';'<.

0.0 ~T.ln :
0.44 0.55 0.66 0.77 0.88

Duration

'N':' · ...
., ..
.' ..
· .. .
·
0.99 1.10

1.000

c 0.875
o
.~ 0.750
~

::l
Cl 0.625

0.500 -'

-2 o
nscores

2

Figure 5.19 Triangular, High Precedence, Low Parallelism, Fifty Activities

153

2

5.6.8 Continuous Results Summary

The C-S test accepted all network durations as approximately Normal even in cases

when a visual check would discount this claim. This emphasises the weakness of the C­
S goodness-of-fit test in certain situations and shows that it should not be used in

isolation. The K-S test only accepted Normality in 46% of cases whilst the A-D test
was even more sensitive accepting Normality 32% of the time. If one looks more

closely at particular network configurations, networks with low precedence are, on the
whole, more likely to be Normally distributed, being so 62% of the time with both the

K-S and A-D test. This is due to the additive nature of the temporal functions within the
networks and stems from the Central Limit Theorem. In these cases the simulation

algorithm was, in effect, taking N independent samples from a given distribution
function. This is the basis of the Central Limit Theorem (for example, Schagen (1986))

which implies that the sampling distribution of the calculated network duration would be

approximately Normal, especially if the sample size was increased towards infinity.

In cases of high precedence the results were clearly dependent on the temporal function

of the activities themselves. The Central Limit Theorem in this case was overshadowed
by the maximum combination of the activity temporal functions used. The maximum of

several distribution functions does not approximate Normality as the results clearly

demonstrate.

Networks consisting of activities with Normal activity temporal functions are seen to

have an approximate Normal temporal function in all cases. This is not the case for
activity networks with Beta activity temporal functions (such as PERT networks) where

several different distribution functions appear to be more appropriate representations of
project durations in some cases.

With low parallelism and high precedence the network temporal function generally

approximated the activity temporal function used. With high precedence and high
parallelism it was difficult to predict the outcome. In some cases the network temporal

function was positively skewed (when the activity temporal functions were Gamma or
Lognormal distributed). In other cases the network temporal function was negatively

skewed (when the activity temporal functions were Triangular or Beta distributed).

In conclusion one can only rely on Normality for Low Precedence networks. In other
cases one can expect the unexpected. The only guarantee in these cases is when the

activity temporal functions are Normal throughout. In this case the network temporal

function does tend to be Normal.

154

5.7 RESULTS FOR DISCRETE ACTIVITY TEMPORAL FUNCTIONS

5.7.1 Bernoulli Distribution

For all networks with high precedence and Bernoulli activity temporal functions, a single

network duration figure was obtained. This figure represented the absolute completion
time of these networks. It was generated because of the minimal variation produced

between activity temporal outcomes. No test was applied to these results as their
distribution characteristics were obvious.

For networks with low precedence and high parallelism several different network

duration histogram shapes were produced. Figure 5.20 shows a network of ten
activities with these characteristics. According to the C-S test, the best fit for this

network duration was a Logistic function (0.=9.81, P=O.64) having a C-S T-S value of
0.01931 (superimposed in figure 5.20). Both the K-S and A-D tests favoured a m­

Erlang function (m=107, P=O.0939) having T-S values of 0.197566 and 54.73
(although this is quite clearly unacceptable) respectively. The larger network (with one

hundred activities) was more accurately represented by a Binomial function (n=197,
p=0.96) with a C-S T-S value of 0.015706 (figure 5.21). In this case the K-S test

preferred a Logistic function (0.=188, P=1.8) having a T-S value of 0.0769, and the A-D
test preferred a Normal function (11=188, cr=2.92) with a T-S value of 6.006. The C-S

test accepted a Normal distribution as a possible fit in all these cases with C-S T-S
values ranging from 0.00685 to 0.121.

0.4 I

;>, ~:::\:::::
g V-': : : : : :, : : :
g 0.2 ~Q=;=i"""'-T,....;....,....;....t-""""':-j J ., .. - .. : : : -..,. .

O 0 LJL..:...j· ~. ~·~·~·l~:S:bJ~..:...J .
9 10 11 12 13 14

Duration

Figure 5.20 Bernoulli, Low precedence, High parallelism, Ten activities

155

..

>-.
u

: : ;,.' : : : ~ 0.08
.

•• ::l

:.:;~~ . : : ~~: :
0.00 1oaI::L,;.I' ~. !;..I' u..;.u:...L.J..'~'..a;.'..L...L..;,I' m&./' •

!
179 183 186 190 193 197

Duration

Figure 5.21 Bernoulli, Low precedence, High parallelism, One Hundred activities

For networks with low precedence and low parallelism there was again no definitive

shape. A small network with ten activities (see figure 5.22) was best represented by a

Lognormal (11=10.77, cr=O.91) distribution function according to the C-S test with a T-S

value of 0.049. Both the K-S and A-D tests preferred a m-Erlang (m=135, ~=O.0798)
function with T-S values of 0.2173 and 58.38 respectively. The C-S test also accepted

the Normal distribution as a possible fit in all these cases having C-S T-S values ranging

from 0.03291 to 0.112706. A network with these characteristics and one hundred

activities is shown in figure 5.23. In this case a fitted Lognormal function provided the
best fit according to the C-S test with a T-S value of 0.024447. Figure 5.23 shows this

duration histogram with a fitted Normal function (the fourth most acceptable choice with

a C-S T-S value of 0.03291).

0.5

>-.
u
c
<!)
::l 0.2 0' e
~

0.0
9 10 11 12 13 14

Duration

Figure 5.22 Bemoulli, Low precedence, Low parallelism, Ten activities

156

»
g : :1:
g 0.08 I-:-:-:-~~

~ ..

r:~ :
! : : Jl: : : i'4: :

0.00 b;l:....1...1..jI..:..1:...LL...L:L:.L:.J: ::..L~.LJ. :s.:~
102 106 110 114 118 122

Duration

Figure 5.23 Bemoulli, Low precedence, Low parallelism, One Hundred activities

5.7.2 Binomial Distribution

Networks with high precedence and high parallelism produced no distinct temporal

function varying from single durations to those shown in figures 5.24 and 5.25.
According to the C-S test a network with only ten activities (figure 5.24) was best

represented by a Gamma function (a=9.31, 13=0.29) having a T-S value of 0.01399. A
Normal distribution function was placed in ninth place by this test with a T-S value of

0.577. The K-S and A-D tests also failed to agree on a most likely function, favouring
the m-Erlang (T-S value 0.2225) and the Weibull (T-S value 60.91) respectively. For

larger networks (one hundred activities) with these characteristics (for example, figure

5.25) the Lognormal (~=18.18, 0"=1.53) was preferred by all tests. T-S values were

0.041,0.1498, and 20.57 for the C-S, K-S and A-D tests respectively. The Normal

function was still accepted by the C-S test in this case with a T-S value of 0.126508.

»
u
c::
g 0.3
cr'

J:
0.0 L......l~.....L~L-....~~......J_....--.J

1.0 2.2 3.4 4.6 5.8 7.0

Duration

Figure 5.24 Binomial, High precedence, High parallelism, Ten activities

157

0.4 r,-:-:--;-y-,.--'.:-:-. 7. r.. -:.-,.,....;-;,-;-:---,--,,.....,....,.....,...,,-,
.r""""'" ••••• :,.....

~ ~ .. , HI'" .. . I 0.2 : rj .,..~,..-,. :--:-1: C:-: ,..-,: :--:-+,....,.....,--:-i

~ ::~: 0.0 ...
15 17 19 21 23 25

Duration

Figure 5.25 Binomial, High precedence, High parallelism, One Hundred activities

With low precedence and high parallelism more regular, almost rectangular shapes were

formed. For example, figures 5.26 and 5.27 show the duration of a network with one

hundred activities and these characteristics. The CoS test preferred a triangular

distribution (T-S value 0.0844) as the best fit in this case (shown in figure 5.26)
whereas both the K-S and A-D tests preferred a Normal function (figure 5.27) with T-S

values of 0.03 and 0.087 respectively.

470 480 490 500 . 510 520 470 480 490 500 510 520

Duration Duration

Figures 5.26, 5.27 Binomial, Low precedence, High parallelism, One Hundred

activities

The networks with low precedence and low parallelism provided similar results. The

Normal distribution function was preferred by both the CoS and A-D test (T -S values
0.028854 and 2.68 respectively). The K-S test ranked the Normal distribution as the

. second most obvious fit, preferring a fitted Logistic function.

With high precedence and low parallelism rather simplistic, minimal outputs were
produced. Figure 5.28 is particularly representative of these results showing the

duration of a network with ten activities and a fitted Normal function. The Binomial
function (n= I 0, p=0.9) was the best fit according to CoS test (T-S value 0.0039). The

158

K-S and A-D tests both preferred a filled Nonnal distribution function with T-S values

0.219 and 61.58 respectively.

6.0 7.2 8.4 9.6 10.8 12.0
Duration

Figure 5.28 Binomial, High precedence, Low parallelism, Ten activities

5.7.3 Discrete Uniform Distribution

For networks with high precedence and high parallelism their durations. were generally

negatively skewed. For a network with ten activities (figure 5.29) both the C-S and K­

S tests preferred a Weibull (u=15.16, ~=1O.47) as the most likely fit. The A-D test
preferred a Nonnal function as the most acceptable fit although this was outside the

acceptable bounds (T-S value of 76.173). The C-S value for the Nonnal in this case

was still acceptable with a value of 0.2043. For a network with fifty activities (figure

5.30) the C-S test preferred a Weibull function with a T-S value of 0.06147. The K-S
and A-D tests both preferred a Normal distribution with T-S values of 0.2314 and

52.091 respectively (figure 5.30 shows this Nonnal function superimposed on the

duration histogram).

7 8 9 10 11 12
Duration

Figure 5.29 Discrete Unifonn, High precedence, High parallelism, Ten activities

159

»
u
c
<I)

g. 0.151----+--+-...,""i

&:
0.00 L...-_ II:..I-'-.I-II...L..L..JLL-~...I

90 93 96 99 102 105

Duration

Figure 5.30 Discrete Uniform, High precedence, High parallelism, Fifty activities

All networks with low precedence showed signs of Normality - regular bell shaped

curves. The C-S T-S values for a fitted Normal function ranged from 0.000249 to
0.12433, the K-S T-S values from 0.01304 to 0.01728, and the A-D T-S values from

0.21095 to 0.308934. Figure 5.31 shows a network with low precedence, low
parallelism, one hundred activities, and a fitted Normal distribution function.

0.0016

»
u c
<I) 0.0008
" 0-

&:
~

~ :.~ ...
0.0000

4300 4600 4900 5200 5600 5900
Duration

Figure 5.31 Discrete Uniform, Low precedence, Low parallelism, One hundred
activities

On the whole the duration of networks with high precedence and low parallelism looked
rectangular in shape. For example, figure 5.32 shows the temporal histogram of a

network with fifty activities and these characteristics. In this case the best fit was a Beta
function (ul=0.65, u2=0.85)*97+94 with as C-S T-S value 0.021103, or a

Weibull(u=5.45, ~=153) according to K-S and A-D tests (T-S values 0.07887 and
12.58 respectively). Figure 5.33 shows the absolute difference between the network

duration, in this case, and the fitted Beta distribution function. The Normal function was
still acceptable in these cases with C-S T-S values values ranging from 0.05363 to

0.2212.

160

80

C 60
c
<I.)

140

20

92 124 156 188
Duration

Figure 5.32 Discrete Unifonn, High precedence, Low parallelism, Fifty activities

0.010

<I.) 8 0.005 _c
.z~ .- :...;...;....;, : ...
oJl 0.000
.6~
<: Cl -0.005

.~ . ~
.. ··1 "·

••• ~ •• "!"' ••
............ V ··r-·

.

-0.010

90 110 130 150 170 190

Duration

Figure 5.33 Difference Between Temporal Function and Fitted Beta Function

5.7.4 Negative Binomial Distribution

Networks with high precedence and high parallelism on the whole showed signs of

positive skew. For example, a network with fifty activities is shown in figure 5.34

(skewness 1.021). In all three tests the best fit was identified as a Lognonnal (1l=42.92,
cr=I1.75) (superimposed in figure 5.34) with a CoS T-S value of 0.0619, K-S T-S value

of 0.0437, and A-D T-S value of 1.251. The Normal distribution function was

acceptable according to the CoS test in these cases with T-S values ranging from

0.141327 to 11.32. It was not acceptable to the more sensitive A-D test, however, in one

case having a T-S value as high as 27.1.

161

0.06 .---....-----r---,.--.-----,

>,
u
c
gO.Q3

I
0.00

20 32 44 56 68 80
Duration

Figure 5.34 Negative Binomial, High precedence, High parallelism, Fifty activities

In all but one case of low precedence a reasonable bell shaped temporal curve was

produced. For example, figure 5.35 shows a duration histogram of a network with one
hundred activities and high parallelism. The Cos T-S value in this case was 0.000696.

The K-S test accepted the Normal distribution as the best fit with a T-S value of
0.016255. The A-D placed the Normal in third place with a T-S value of 0.325044

(preferring a Gamma function in this case). In one case a duration with some positive
skew was produced (figure 5.36 - low parallelism, one hundred activities, skewness

1.945846, with fitted Lognormal). A Lognormal (11=13.9, 0'=14.09) was identified as

the best fit in this case by all tests with T-S values of 0.054018, 0.065109,6.38671 for

the CoS, K-S and A-D tests respectively. The Normal function was still acceptable to
the CoS test with a T-S value of 0.3262.

0.006

>,

'!i.' . u
c
" 0.003 =
~ ~~:
~ .. .~ . ..

0.000
750 830 910 990 1070 1150

Duration

Figure 5.35 Negative Binomial, Low precedence, High parallelism, One Hundred
activities

162

0.08
.. ~ . . .

>.
u
c::
<1) 0.04 ::l
0"'
<1) ... rrtfi: ~

0.00
1 9 17 25 33 41

Duration

Figure 5.36 Negative Binomial, Low precedence, Low parallelism, One Hundred

activities

With high precedence and low parallelism the networks showed distinctive positive
skew. For example with ten activities (figure 5.37) no single fit was agreed by the tests.

The CoS test preferred a Gamma (a=1.03, 13=9.34) with a T-S value of 0.054992, the K­
S test preferred a Lognormal(Jl=1O.88, a=16.25) with a T-S value of 0.068284, and the

A-D test preferred a Weibull(a=l.l, 13=9.99) with a T-S value of 6.395508. This
histogram again highlighted the weakness of the CoS test for Normality which, in this

case, accepted Normality with a T-S value of 0.60648. The K-S was a little more
sensitive with a T-S value of 0.340905 and the A-D provided a more understandable

rejection with a T-S value of 138.332686.

250

200
>.

~ 150

I lOO

50

0.0 25.0 50.0
Duration

Figure 5.37 Negative Binomial, High precedence, Low parallelism, Ten activities

5.7.5 Poisson Distribution

All networks with high precedence and high parallelism showed signs of slight positive

skew - for example figure 5.38 shows a network with fifty activities (skewness
0.573707). In this case a Lognorrnal function most favoured fit by all tests with T-S

163

values of 0.018812,0.106772, 13.254991 for the C-S, K-S and A-D tests respectively.

The C-S test for Normality provided acceptable T-S values ranging from 0.06754 to
0.229335, even though this function was rejected by the K-S and A-D tests in these

cases (again highlighting the weakness of the C-S test in isolation).

0.2 ,---,------.------.----,---,
.~.::

;>.., .. ~.

g
g 0.1

: ::j.:: " t: ~:(U: I
0.0 E:J.:...J.:.....:L.:..L..J....:..J..:..J..:...J:~~~

14 16 18 20 22 24

Duration

Figure 5.38 Poisson, High precedence, High parallelism, Fifty activities

All other network configurations, with Poisson activity temporal functions, appeared to
be reasonably bell shaped. For example, one with low precedence, low parallelism and

ten activities is shown in figure 5.39. In this case the Normal distribution function was
accepted as the best fit by both the C-S and A-D test (T-S values of 0.036038 and

2.521598 respectively). The K-S preferred a fitted Logistic function but still placed the
Normal distribution function as its second choice. For these network configurations the

Normal CoS T-S values ranged from 0.034587 to 0.059232. The K-S and A-D tests
were less convinced, however, accepting the Normal as the best fit in only two cases and

a mixture of other distributions at other times.

0.10
;>..

.~. CJ
C
<I)

0.05 :l cr- ...
J: ~ m ...

0.00
b.:.. .

6 11 16 21 26 31

Duration

Figure 5.39 Poisson, Low precedence, Low parallelism, Ten activities

164

5.7.6 Discrete Results Summary

Although the results presented above appear rather different, they do provide some

important conclusions. The first point to note is that one cannot assume that the
duration of an activity network can be represented, in all cases, by a single distribution

for any discrete activity temporal function. The COS test would, however, discount this
as it accepted all network durations as approximately Normal, even in cases when a

visual check would discount this claim. This emphasises the weakness of the CoS
goodness-of-flt test in certain situations and shows that it should not be used in

isolation. One reason why the CoS test is particularly weak in this area is that it does
not give great weight to the important tails of a distribution which can represent

substantial project overruns.

In total, eleven different functions were selected by the three goodness-of-fit tests as
representative of an activity network duration at some stage. From the fourteen

functions that were assessed, only the Hypergeometric, the Geometric and the Chi­
square distributions were not chosen as good fits at any stage.

Viewing the tests individually the CoS test preferred no outright function, selecting both

the Normal and Lognormal functions 20% of the time. All other distribution functions
were evenly spread throughout the remaining 60%. The K-S test also had no definite

result, selecting the Normal as the best fit 28% of the time, the Lognormal and Logistic
18%, and the rest evenly spread. The A-D test was more decisive preferring the Normal

distribution function 52% of the time, with all other functions evenly spread

Overall, from all three tests, the Normal distribution function was the most popular fit
(34% of the time), and the Lognormal distribution second (16%). All other functions

were fairly evenly spread. These results were not unexpected when one looks at the
shape of the temporal histograms produced. The duration of activity networks take

various shapes - standard Normal bell shapes, positively and negatively skewed shapes,
rectangular shapes, and single point values. In 80% of cases, although all durations

were in discrete form, they were modelled more accurately by one of the continuous
distribution functions (this, of course, could only be determined by the CoS test). This

result must be treated with some caution as, after determining that activities and projects

complete in whole time units, one would not use the real parameters provided by these

functions. It is worth emphasising again that modal classes provide far more accurate
estimates of project completion times and, for one-off projects (that most tend to be),

represent the most likely duration.

165

5.8 CHAPTER SUMMARY

Many other distribution functions can be used to represent both the cost and duration of

activities within a project. The results presented in this chapter show that managers
should not use a single mean figure as representative of the overall completion time of a

project but should view the resultant duration as a whole function. These results have
shown that both Generalised and Probabilistic Activity Networks cannot be easily

represented by a single distribution function and should be viewed on an individual
basis. No distinct distribution function can be used to represent the duration of a

project with any of the activity temporal functions analysed here. In conclusion, it

makes far more sense for managers to use the modal class as an approximation of the

expected project duration than a single mean value that could grossly underestimate or
overestimate the duration ofaproject with a highly skewed, irregular or level temporal

function. Cumulative distribution functions also provide more valuable results and this

is emphasised by the availability of project management software packages with such

facilities.

166

CHAPTER 6

An Artificial Intelligence Approach to Software Development

Management

CHAPTER PREFACE

This chapter is presented in the form of a working chapter. It puts forward a
proposal for an artificial intelligence based support tool for software development

management, developed from the working paper of Dawson and Dawson (1993a).
Blackboard Architectures are introduced that provide a framework on which a tool of

this kind can be built. Reason and temporal maintenance systems (also known as

belief revision systems) are also examined to provide a means of maintaining several

project plans and providing several problem solutions simultaneously (if they exist).

CHAPTER KEYWORDS

Software Development, Project Management, Artificial Intelligence, Blackboard
Architectures, Reason Maintenance, Temporal Maintenance

6.1 INTRODUCTION

6.1.1 Overview

Chapter two discussed in some detail the main components of the software development
process and introduced a metamodel for controlling this process at the strategic level.

An area in which there has been little research or development over recent years is the

development of 'intelligent' software process management systems. In this chapter,

Blackboard Architectures are introduced that can support the development of an
intelligent software process management system. This system focuses on the problems

associated with managing the development of software. As different project
management problems are encountered at different stages of a development process, this

chapter looks at artificial intelligence techniques that can be used in particular phases of
this process. It is worth noting that while the responsibility for project decisions should

and must lie with project managers, a knowledge based assistant could provide decision
support for these and other activities [Ahmad et alia 1988]. The development of such a

167

system represents a significant input of research. This is clearly beyond the intended

scope of this thesis and perhaps represents a doctoral work in its own right.

The software development process was identified in chapter two as a particularly
complex task (complexity being identified by Brooks (1987» as inherent within

modern software systems). This complexity makes software systems notably difficult
to build. Compounding software development problems are behavioural problems, such

as those detailed by Kerzner (1989). Kerzner stated that the most common causes for
overdue, and over cost projects, are behavioural.

In many respects the root cause of software development problems can be attributed to

poor management of the software development process. There are two identifiable
reasons for this. First, it is the responsibility of managers to ensure good team morale,

human relations, and labour productivity. Without these qualities in a project, a software
development team could soon develop the behavioural complications identified by

Kerzner. Second, it is the responsibility of management to set realistic time, cost, and
performance targets for a project. After all, when one identifies that a project is overdue

and/or over cost, it may be that this is in respect to previous, possibly unrealistic goals.

It is the initial intention of this chapter to put forward a proposal to assist this second
managerial responsibility - that of determining realistic and attainable goals within a

software development process and identifying an optim urn software development plan.
Management inaccuracies in planning lead to projects that slip further behind schedule

leading to low team morale and, as a consequence, augment the f'ITst managerial
problem. Managers should also be supported throughout all phases of a project and

not just within initial planning stages. Because different problems are encountered at
different stages of a project development, this chapter looks at how artificial intelligence

can support all these stages.

6.l.2 Context

Chapter two has already covered in some detail the aspects and approaches to software
development. With reference to figure 2.2, this chapter presents a support element that

assists a particular activity (project management) through various phases of a software
development life cycle. By identifying particular artificial intelligent techniques within

different phases of the life cycle, these techniques can assist managers through the
development of a product.

168

6.1.3 Artificial Intelligence

Although the fields of artificial intelligence and software development are extremely

diverse, there are specific artificial intelligence techniques that are particularly useful in
certain aspects of the software development process. Applying artificial intelligence

techniques to general project management is a relatively new field of research.
Examples of more recent work include Kunz et alia (1986), who proposed the use of

multiple worlds as a method of husbanding various project plans simultaneously.
Several plans could be stored as worlds in this system (based on Assumption Based

Reason Maintenance) and could be viewed, by a manager, to compare different project
plan solutions (a kind of what if analysis). In Kunz et alia's example project this

system enabled choices for the location of a graving dock to be viewed concurrently,
based on factors including geology, site location and labour productivity.

In 1987 Foster [Foster 1987) looked at potential applications for artificial intelligence in

more general project management, and in 1986, Sathi et alia [Sathi et alia 1986)
developed Callisto - an intelligent project management system. The Callisto project

devised intelligent project management tools for documenting expertise and exploring
phases in the development of computer system prototypes. Callisto could be used to

manage different objectives within a project - for example, resources, product
configuration, and activities. This work also introduced a smaller prototype system

called Mini-Callisto.

In 1987 Guerrieri [Guerrieri 1987) explained the application of expert systems to
project management in a paper that included truth and temporal maintenance

approaches. Guerrieri's work included project scheduling and showed how an
explanation facility could be incorporated within Prolog. This facility explains how

project decisions were obtained. Guerrieri also introduced time guards that provided a
means of temporal maintenance within project plans. Also in 1987 Levitt and Kunz

[Levitt and Kunz 1987) analysed the phases and levels of project management, before
proposing the application of specific artificial intelligent techniques to these phases and

levels. They also looked at the use of blackboard architectures and detailed the
PLATFORM system, developed from KEETM and the multiple worlds approach of

Kunz et alia (1986). Chapman and Manesero (1988) developed an intelligent
management system for use in the construction industry in 1988 and Noronha and

Sarma (1991) provided a detailed study of artificial intelligence approaches to
scheduling problems in 1991. Their work touched on the use of PERT and CPM as a

means of project scheduling. Expert systems have also been used to assist management
decision making from a higher integrative level. For example, Spangler (1991)

presented a paper on how artificial intelligence could be used to assist the strategic

169

decision making process.

6.1.4 Project Management Software

Apart from the few exceptions highlighted above, the majority of software tools

available in the project management market today do not incorporate any real artificial

intelligence concepts. Most tools merely automate the calculations (resource levelling,

critical path analysis and so on) involved in established techniques such as activity
networks and Gantt charts. Although these tools provide more user friendly interfaces

and rapid results by automating these calculations, they still leave any deliberation and
what if analysis to the project manager. These software tools have been developed for

support and, as stated by Plasket (1986), 'There is not a piece of software that will
'manage' your project; only you can do that'.

Generally speaking, project management systems employed by many companies for the

development of software produce a single, baseline plan at the initiation stage of a
project (usually at a tactical level). Any variations to this plan - such as adjustments to

milestone dates, development techniques employed and so on - are applied to this
baseline as anomalies. The metamodel defined in chapter two overcomes many of the

problems associated with losing touch of an initial baseline by providing a flexible

strategic level plan to start with. With a rigid baseline system a software development

manager perhaps feels obliged to 'get it right first time'. Too many variations to an

initial baseline can complicate a plan and lead to possible misinterpretations.

6.2 LIFE CYCLE PHASES

6.2.1 Overview

Chapter two identified a high level phase set that is applicable to all software

development projects. By breaking the development process into these master phases

(Analysis, Synthesis, Operation, and Retirement), specific managerial problems can be

identified within each phase. For example, during the analysis stages difficult decisions

need to made for the scope, size, resource requirements, and location of a project at

various organisational levels. Within synthesis, more decisions need to be made as

targets are missed and team moral falls. During operations, the costs and effects of

various changes must be considered, and when a software system approaches

retirement, decisions on the feasibility of replacing that system must be made.

Breaking these master phases down through an organisation's levels (strategic and

170

tactical) using a Work Breakdown Sttucture increases the level of detail and eventually

identifies the tasks involved in the development of a software product. For the purposes

of this chapter Analysis is broken down into Objective Setting and Planning. Control is

identified as a task within the synthesis phase, and maintenance as part of operations.

Figure 6.1 shows these submaster phases as distinct from the master phases. These

submaster phases can be considered more simply as:

• Idea - Identify something that needs to be done

• Plan - Plan how to do it

• Do - Control the doing of it

• Improve - Improve and/or modify it

6.2.2 Objective Setting

Objective Setting represents the initial conceptualisation of a project where decisions are

made as to the type, size, location etc of that project. This stage is sometimes referred to

as Conceptual Design and is used to clarify the objectives of a project and to determine

project priorities. Objective setting determines the aims and deliverables of a project.

Synthesis Operation

Objective Planning Control
Setting

Maintenance

Figure 6.1 Phase Hierarchy

6.2.3 Planning

Planning defines the tasks necessary to complete a project with the assistance of a Work

Breakdown Structure. At a tactical level, tasks are arranged in an ordered network using

precedence analysis. During this phase management decides on a project's milestones

that are included in a network plan. Incorporated into planning is the scheduling of

durations, start and finish times, and resource requirements for each task. This was

171

covered in some detail in chapter four.

6.2.4 Control

Control can perhaps be viewed more as a managerial activity than as a submaster phase

in its own right. It consists of tracking a project as it progresses and adjusting future

expectations accordingly. Again, control was covered in more detail in chapter four.

6.2.5 Maintenance

Maintenance represents any post release work that may be needed after a system has

gone live. This can include enhancing and upgrading software, programming software

for use on other platforms, and producing more user friendly, faster enhancements. It

can also include activities such as providing a help desk facility and removing any bugs

that are not found until post-release.

Ideally, at this level, each phase should complete before the next one begins. In practice

it is more likely that overlap occurs between phases and some form of feedback takes

place (see chapter two). Scheduling pressures can also cause an overlapping of these

steps (for example, Pulk (1990)). This overlap allows a developer to feed results back

more easily to earlier phases and emphasises the need for a more flexible approach to

the phased plan.

6.3 ARTIFICIAL INTELLIGENCE TECHNIQUES

6.3.1 Overview

Over recent years attempts have been made to incorporate some form of intelligence into

various project management systems. Techniques have been applied specifically to

different phases of a project life cycle - Objective setting, Planning, Scheduling and

ControL One example is provided by Levitt and Kunz (1987) who proposed the

following artificial intelligence techniques for each phase:

Objective Setting

Planning

Scheduling

Control

Assumption Based Truth Maintenance System.

Means end AI planning and domain specific knowledge.

Knowledge based interactive graphics and knowledge processing.

Knights and Villains and a knowledge processing system.

There are a broad range of management tasks operating at different organisational levels

172

and aimed at different project objectives. As these tasks operate through different

phases of a development it is clear that a single artificial intelligence technique would
need to be extremely flexible and powerful to be applicable to every software

development process. Working with the blackboard architecture that is introduced
below provides an artificial intelligent framework on which knowledge, appropriate to

problems encountered at different stages and at different organisational levels, can be
applied.

6.3.2 Blackboard Architectures

According to Adler (1992), a blackboard architecture is intended to address the

following objectives:

(i) To incorporate diverse sorts of knowledge in a single problem· solving system.
(ii) To compensate for unreliability in the available knowledge.

(iii) To compensate for uncertainty in the available data.
(iv) To apply available knowledge intelligently in the absence of a known problem­

solving algorithm.
(v) To support cooperative system development among multiple builders.

(vi) To support system modification and evolution.

Adler went on to explain how each of these factors can be achieved by blackboard
architectures. By incorporating these capabilities, a blackboard architecture provides a

powerful approach to problem solving in different problem domains.

'The Blackboard Model is a relatively complex problem-solving model prescribing the
organisation of knowledge and data and the problem solving behaviour within the

overall organisation' [Nii 1986a]. This reference to Nii provides one of the more
detailed studies of blackboard architectures. Nii introduces the concept of this artificial

intelligent structure and provides, in Nii (1986b), examples of systems that use this
architecture. This text was based on the work of Hayes-Roth (1983, 1984, 1985a, and

1985b) who developed the concept of blackboard architectures and provided a
comprehensive coverage of its applications.

The earliest reference to Blackboard Architectures can be traced back as far as 1962

when Newell wrote [NeweIl1962]:

'Metaphorically we can think of a set of workers, all looking at the same
blackboard: each is able to read everything that is on it, and to judge

when he has something worthwhile to add to it'.

173

This statement encapsulates the aspects of more up-to-date views of Blackboard

Architectures. Blackboard architectures can be pictured in much the same way as
ordinary classroom blackboards. A problem is written onto a Blackboard Data

Structure (either by a user, or by an internal source within the architecture) and various
expens (called Knowledge Sources) apply themselves separately to solve what they can

of this problem. The order in which the knowledge sources approach the blackboard
data structure is determined by a Control Unit that interprets what each knowledge

source has to offer to a solution (the knowledge sources bid for a chance to work on the
blackboard). The knowledge sources continue to solve what they can of the problem

until either a solution is reached or more information is required for them to proceed.
Figure 6.2, which illustrates this blackboard architecture, is adapted from Nii (1986a).

Blackboard Data Structure

~~ L==================~ ~ .- ~~

-g
I'::
o

U

Knowledge
Source

Knowledge
Source

Knowledge
Source

Figure 6.2 A Basic Blackboard Architecture [Nii 1986a]

A blackboard system therefore consists of three main components - a blackboard data

structure, knowledge sources and a control unit.

(i) Blackboard Data Structure [Nii 1986a]
The blackboard data structure is a global database within the management system. It

holds computational and solution state data needed by, and produced by, the knowledge
sources. This data structure is partitioned into different levels of analysis that

correspond to application-dependent hierarchies. The different levels of the hierarchy
(represented by the dashed lines in figure 6.2) represent the different levels of object

174

properties that are connected by named links. Figure 6.2 also shows that a blackboard

can be made up of several panels each of which can represent several different solutions
to a problem. Contradictory information can be maintained concurrently by this

architecture using reason maintenance systems that are discussed later.

(ii) Knowledge Sources
Knowledge needed to solve a problem is partitioned into knowledge sources that are

kept separate and independent. In a project management system, for example,
knowledge sources may be created that can perform critical path analysis, resource

levelling and so on. The knowledge sources transform information on one level of the
blackboard hierarchy into information on the same or other levels using algorithmic

procedures or heuristic rules. These knowledge sources can work on several different
panels of the data structure, providing several solutions to a problem. Knowledge

sources can only interact with one another through the blackboard data structure.

(iii) Control Unit
The control unit decides which module of knowledge to apply next, based on the current

solution state and what each knowledge source has to offer. This results in an
incremental generation of partial solutions to a problem on a blackboard panel. Figure

6.2 suggests one way in which the control unit fits into the overall blackboard
architecture. From this position it monitors the current solution state on the blackboard

and manages the knowledge sources. It is possible that the problems encountered by
the control unit (ie deciding what part of the problem to focus on and which knowledge

source to apply next) can themselves be solved by a blackboard architecture. In this
situation the control data can be incorporated into one of the blackboard structure panels

where knowledge sources, specifically aimed at these problems, can work.

There are several variations to this basic principle including changes to the blackboard
data structure itself, the knowledge sources or the control element [Nii 1986a and

1986bl. At some stage inconsistencies may appear on the Blackboard and some form
of knowledge or factual maintenance is required. This maintenance can be performed

by reason maintenance systems.

6.3.3 Reason Maintenance

Artificial intelligence systems need to maintain a model of their particular environment.
The domain, that represents this environment, needs to be updated at various stages to

reflect perceived changes in this environment. One reason for updating the model could
be the discovery of contradictory information about the environment in the domain or

the introduction of new information that contradicts facts already there. The

175

conventional approach for removing these contradictions is to change the most recent

decision made. This is known as chronological backtracking and is the technique used
in more popular artificial intelligent languages such as Prolog. An alternative solution is

not to change the most recent assumption made, but to change the assumption that
produced this unexpected condition. This alternative approach is called reason

maintenance or belief revision. Broadly speaking reason maintenance exists in two
different forms - Justification Based Reason Maintenance and Assumption Based

Reason Maintenance. A good coverage of most of the literature in this field was
presented in Martins (1990).

(i) Justification Based Reason Maintenance

Reason maintenance (and Reason Maintenance Systems) were originally introduced·in
a paper by Doyle in 1978 [Doyle 1978]. Doyle actually based his work on an earlier

text of Stallman and Sussman (1977). In Doyle's initial work [Doyle 1978, 1979a,
1979b, McDermott and Doyle 1979 and 1980] reason maintenance was referred to as

truth maintenance which was a rather confusing terminology since it was not truth that
was been maintained but the reasoning behind assumptions. Strictly speaking his

approach is a Justification Based Reason Maintenance System (a JRMS). It has several
disadvantages when compared· with the Assumption Based Reason Maintenance System

(ARMS) that was developed by DeK1eer in 1984 [DeKleer 1984] (see below).

A Justification Based Reason Maintenance System maintains one consistent database at

a time and will facilitate switching out of that database if it becomes inconsistent.

Rather than backtracking chronologically, it will employ dependency directed

backtracking so the source of an inconsistency is rapidly isolated and removed. A

JRMS allows non-monotonic justifications, unlike the initial ARMS, but it only allows
beliefs to be changed if a contradiction is found within the knowledge base. Each

statement or rule within a knowledge base is represented by a node [Doyle 1979b].
Nodes can either be IN (believed to be true) or OUT (not believed to be true). Attached

to each node is a list of justifications (hence JRMS) validating that node. There are two
kinds of justification - support lists and conditional proofs.

A support list provides a list of statements or rules that, because they are deemed to be

true or false, justify a particular node. Conditional proofs, on the other hand, represent
hypothetical arguments that. represents an implication of some facts. The main

drawback of the JRMS is its inability to maintain several possible solution states
simultaneously. Another problem is that changing one set of beliefs into another only

occurs when a contradiction is detected [Martins 1992]. In what if analysis this can

result in delays as previously computed solutions need recalculating for comparative

purposes.

176

(i i) Assumption Based Reason Maintenance

An Assumption Based Reason Maintenance System is based on manipulating
assumption sets rather than justifications. The ARMS processes multiple contexts

simultaneously and consequently has the advantage of making available all possible
solutions or partial solutions to a user. However, according to Dressier (1988) an

ARMS only allows monotonic justifications (ie once information is added it cannot be
removed for that particular program run).

Exploiting an ARMS allows a problem solver to work efficiently on all solutions

simultaneously and avoids the computational expense of backtracking [DeKleer 1984,
1986a, 1986b, Reiter and DeKleer 1987, Martins 1992). When a contradiction in

knowledge is detected, all assumptions underlying that assumption are directly
identifiable. This removes the need for backtracking that could remove current, possibly

acceptable, assumptions.

Work by DeKleer and Williams in 1~87 [DeKleer and Williams 1987) identified some
advantages of reintroducing backtracking into an ARMS. They stated that three

problems associated within an ARMS are:

(i) The task may require only a fraction of a search space to be explored.
(ii) Even for problems where all solutions are required, an ARMS would often search

more than was necessary.
(iii) They are inherently more difficult to debug.

As an ARMS only allows monotonic justifications, there are advantages to be made by

combining both an ARMS and JRMS together. Examples of combining these
techniques include Rodi (1989), Dressier (1988) and Urbanski (1988).

6.3.4 Temporal Maintenance

Another problem associated with maintaining information within a knowledge base is

that an environment can change over a period of time. The reason maintenance systems
introduced above cannot cope with this temporal variation and therefore another form of

reason maintenance - temporal maintenance - is required. Within a project management
system, time represents an important factor (for example, it is one of the project

objectives identified by Turner (1993)). As project conditions are dynamic, and results
are constantly changing with respect to time, some form of temporal maintenance is

required.

Temporal maintenance systems keep track of the consistency of a knowledge base at a

177

given time or time interval. In reason maintenance systems updates are usually required

as more information is contributed to the system or contradictions are discovered. In

temporal maintenance systems changes can be seen to occur over a period of time

alongside more usual information modifications. The system is aware that the

knowledge base is affected by the passage of time and updates it accordingly [Guerrieri

1987, Dean and McDermotl 1987, Alien and Hayes 1985, Tsang 1988, Shoham and

McDermon 1991).

Within temporal maintenance systems current valid states are based on underlying valid

assumptions (the same as reason maintenance) that can, in this case, include temporal

parameters. Rather than absolute dates being used, a temporal maintenance system can

use reference intervals [Alien and Hayes 1985). This implies that much of the

knowledge within these systems is organised relatively rather than absolutely.

Examples of these relationships, from Alien (1983), include X before X X equal X X

meets X X overlaps X X during X X starts X and X finishes Y This fonn of temporal

relationship appears to relate directly to the relationships represented within activity

networks. Guerrieri (1987) employed temporal maintenance in his system that dealt

with multiple projects concurrently. This worked by applying time guards to facts

within the knowledge base to identify the interval in which these facts are held to be

true.

As temporal systems change assumptions based on the passage of time, they must also

be able to access previous information that has since become outdated (in case this

information needs reworking for any reason). This is particularly imponant in project

management where reference to an original, baseline plan may be required. In addition,

the model must also be able to support persistence. In other words, if something has

happened to produce a change in state from SI to S2, it will remain in state S2 until

there is further information or a progression of time to indicate otherwise.

6.3.5 Interaction

The question must be raised as to how the reason and temporal maintenance systems

can interact with one another as data is manipulated on a blackboard. The obvious

solution is that temporal maintenance is kept within each context of the ARMS. If this

were not the case, temporal inconsistencies would be difficult to spot unless there was

some form of temporal overlap between each context. A solution to this problem is to

build temporal maintenance into the knowledge sources themselves. As the knowledge

sources only ever see a single context at any given viewing, so would the temporal

maintenance system. Interaction between the components of the temporal maintenance

system within the knowledge sources is required in this case to ensure that temporal

178

consistency is maintained throughout the whole of the blackboard structure, and not just

in a specific knowledge source region.

6.4 THE INTELLIGENT SOFTWARE DEVELOPMENT SYSTEM

6.4.1 Overview

Having outlined some approaches that are used in artificial intelligent systems, this

section provides some initial thoughts on how these techniques can be applied to
support the management of software developments. Section 6.2 showed how the

development of software can be decomposed into four project su bmaster phases that
present different managerial problems. Each of these submaster phases can be helped

by different types of knowledge captured within an artificial intelligent system.

6.4.2 The Blackboard Architecture

Project managers possess a vast range of skills and knowledge that they apply to
problems encountered in the development of projects. In order to pull together the

diverse knowledge and skills for a software development process some fonn of
structure is required. The blackboard architecture introduced earlier represents a

suitable framework for this task. Not only does it allow separate knowledge sources
(and consequently approaches) to work on particular problems, but it also structures the

problem development in a hierarchal way that enables a software development plan to be
split logically into constituent phases or levels. There are several aspects that require

representation on a blackboard - the organisational levels, the different phases through
which a project progresses, the different problem solutions, and perhaps even different

organisational objectives if these are kept separate. How these aspects are represented
within a blackboard data structure, that has only three possible dimensions (hierarchical,

panels, and reason maintenance supporting multiple solutions in these dimensions) is a
question that still needs addressing.

Initial thoughts on this representation are to use the different panels of a blackboard

data structure to store separate solutions to a project management problem. Each panel
of the blackboard, in this case, could represent a possible project scenario. For example,

separate routes through a metamodel at the strategic level could be represented on
different panels of the blackboard. The hierarchical levels of each panel could be used

to represent different organisational levels of a project plan - for example, the top level

could represent the integrative level, the next level down a strategic plan (metamodel

level) and the next level a tactical plan. A knowledge source for this structure could

179

perform a work breakdown structure on the strategic level plan to produce lower

hierarchallevels. Knowledge sources could also be used to provide different forms of
what if analysis with the solutions kept on different panels of the blackboard. This

representation does not account for the different phases through which a project
progresses and the different objectives that may be involved.

An alternative view could be to use the hierarchy of a blackboard panel to represent

plans for different phases of a software development process. Knowledge sources for
different stages of the development process could then provide solutions to problems

encountered at each stage. In this case each panel could represent the different levels of

organisational interest (integrative, strategic, and tactical) or different problem solutions

encountered within each phase. Obviously there may be several solutions for different
problems and these need maintaining simultaneously by some form of reason

maintenance in particular areas of the blackboard data structure.

6.4.3 The Knowledge Sources

Initial ideas in this area are to group the knowledge sources into phase specific sets so
that each set produces alternative solutions to a problem within each development phase.

The way in which these alternative solutions are maintained is discussed for each
specific phase below. These knowledge sources represent knowledge that is captured

from particular fields of project management. Initial ideas for knowledge sources
include critical path analysis, resource levelling and ones that can implement some form

of what if analysis.

Acquiring knowledge for knowledge based systems is by no means a simple task.
Various texts have been written on the subject such as Hart (\ 989). There are also

several approaches to representing captured knowledge within a knowledge source.
This knowledge is usually represented as rules within the knowledge source that 'fire'

when they can solve a particular problem presented to them on a blackboard pane\. This

usually occurs when facts on the blackboard match the antecedents of a rule within a

knowledge source. Approaches to knowledge representation are studied in more detail
in Ringland and Duce (1988) and Brachman and Levesque (1985) to name but two.

The following sections discuss the use of reason maintenance as a technique that assists

the knowledge sources in providing solutions to problems encountered in different
phases of a project. As discussed in section 6.4.2, these different phases could be

represented on different hierarchical levels on a blackboard pane\. Each panel in turn
could represent either different problem solutions or different organisational levels of

interest (in which case multiple solutions would exist at each hierarchical level).

180

6.4.4 Objective Setting

During this submaster phase the objectives of a project must be set in line with the

organisation's objectives (see chapter four). To assist the management of this particular
phase some form of decision support tool is required. At this stage of a development

tradeoffs must be made between scope, time, and cost while there is still considerable
uncertainty about other detailed development parameters [Levin and Kunz 1987].

An Assumption Based Reason Maintenance System applied to this stage of the

development would allow managers to analyse the scope of a development by
comparing different outcomes concurrently. Underlying assumptions could be

reviewed and revised using the ARMS to assess alternative approaches generated by
different knowledge sources. The ARMS would be maintaining alternative project

objectives that were devised by specific knowledge source sets. The ARMS is an ideal
means of knowledge maintenance in this stage because the architecture is particularly

well suited for tasks where a reasonable fraction of the potential solutions must be
explored [DeKleer 1986a].

6.4.5 Planning

In some respects this stage is similar to that of objective setting. Alternative solutions
are sought to determine the best balance of time, resources, and costs for a development.

Planning is more analytically based with solutions being derived through various rules
and heuristics within the knowledge sources. There is not one heuristic that produces

an optimum plan under all circumstances and consequently the knowledge sources
capture alternative plan solutions that can be viewed by management.

The multiple worlds approach, developed by Kunz et alia (1986), is particularly well

suited to this stage. Again this is based on an Assumption Based Reason Maintenance
system and allows multiple solutions of a problem to be viewed and analysed

concurrently. The way the worlds are created enables them to be maintained as
complete units, so that reworking is not required each time a manager wishes to view an

alternative plan. This allows a more real time, interactive management process,
providing a manager with 'online' comparisons.

For the knowledge sources this also provides a practical technique. Different plans can

be assessed by weighing up the tradeoffs between resource, cost, and time levels.
Consequently the knowledge sources themselves can perform trial and error approaches

(what if analysis) based on perturbations or changes that they introduce into plans on

181

the blackboard. Feedback from these changes provide knowledge sources with

infonnation they need to deduce the sensitivity of specific parameters.

6.4.6 Control

This is an ongoing activity throughout the working stages of a development. It is
affected primarily by the advancement of time in which tasks begin and end.

Consequently a temporal maintenance approach is proposed to control the changes that
occur within this stage. Temporal maintenance updates the consistency of the

knowledge base as time progresses. As tasks starting and completing significantly
affect a project's status, and these events depend on time, the temporal maintenance

approach is ideally suited to this particular stage.

The relative way in which the knowledge is represented within a temporal maintenance
system allows the system to update dynamically a project task plan as it progresses.

Anomalies which are input by a manager affect current and future progress. These
changes cascade through the knowledge base via the relative connections imposed by

the temporal maintenance system.

The knowledge maintained by a reason maintenance system within a blackboard can
also be time guarded [Guerrieri 1987). This means that each fact or rule is augmented

with time guards that allow information to be believed or disbelieved at a particular time
or time interval. These guards could be defined with relative, rather than absolute,

temporal values because a software development plan is itself a relative structure. How
time guards can be implemented within a relative data structure is an area for future

research.

6.4.7 Maintenance

As highlighted in previous work this can be the most costly stage (with respect to both
time and resources). It tends to be, however, the one in which the least planning and

control is used. Initially, in the maintenance stages, strategic decisions must be made as
to the depth and quality of future work that may be required for a specific software

product. This could be assisted through a similar approach to that used during the
objective setting stage.

It is important that managers extend the enthusiasm they have for project planning into

this maintenance stage. They should weigh up alternative approaches to specific tasks
in this stage with as much care as they used in objective setting.

182

An ARMS can be used to assess alternative cost/resource requirements and productivity

from proposed work involved. It can also be used as a decision suppon system to test
the feasibility of alternative updates that may seem beneficial to a development in the

future. A decision suppon system based on an ARMS would assist management, for
example, in assessing the feasibility of debugging a system, recalling software and

introducing enhancements.

6.4.8 System Inputs and Outputs

An imponant question that must be raised is what are the intended inputs and outputs

from this type of management system? At the initial objective setting and planning

stages this does not pose a problem. It is envisaged that from an initial project outline
(possibly at the strategic level) the system could apply work breakdown structure rules

to decompose a project to lower tactical levels. It would also provide various project
scenarios that could be compared, either by managers, or by knowledge sources.

However, what are the inputs and outputs from knowledge sources within control and
maintenance? One envisages an intelligent system that suggests changes in the project

management approach as information is fed into the system based on a project's
progress. These ideas are still in their infancy and require maturing before their actual

implementation can be achieved.

6.5 CHAPTER SUMMARY

6.5.1 Conclusion

The theories and ideas introduced in this chapter are still very much in their infancy.

They represent initial thoughts, and a possible solution, to the problem of developing an
intelligent project management suppon tool that can be used in the development of

software systems. There is obviously much work to be done before these thoughts and
ideas can mature into a fully operational system at any level. The Assumption Based

Reason Maintenance System has been identified as tool that allows managers to view
several solutions to management problems concurrently and assess the alternatives.

Temporal maintenance has also been identified as a technique that is directly applicable
to dynamic changes encountered by projects.

6.5.2 Future Work

Although there is much work to be done in developing the ideas put forward in this

chapter, there is already a blackboard framework in place at Loughborough University

183

------~-- --

on which the LUMP (Loughborough University Manufacturing Processing) system

performs process planning [Herbert et alia 1990]. As this system is domain
independent, the knowledge sources for the software development system can be

applied directly to it. Work is still needed to capture the knowledge used for managing
the software development process into the knowledge sources of this system. The

initial steps would be to incorporate simple project planning knowledge sources into
this system. Determining the final hierarchical/panel structure of the blackboard also

requires addressing, as does the development of temporal maintenance within this
system.

184

CHAPTER 7

Summary, Evaluation, Conclusions

CHAPTER PREFACE

This chapter brings together the work covered within this thesis. It summarises each
chapter in turn, identifying advances made within those chapters, and highlights

areas of potential future research. Current industrial approaches to software
development are studied and real projects are examined where advances made in this

thesis can be applied. Project management information systems, currently available
within industry, are also surveyed.

KEYWORDS

Metamodels, Project Management, Generalised Activity Networks, Temporal

Analysis, Artificial Intelligence

7.1 INTRODUCTION

The aim of this chapter is to collate the work of this thesis. With reference to figure 2.2,

a support element has been developed within chapter three that supports the project

management activity within a new software development model (chaptertwo). Chapter

four put this work into context and improved the approach of activity network analysis,

and chapter five used this development to analyse potential projects' temporal

outcomes. Chapter six represented a working chapter, again providing a support

element for project management of the software development process.

This thesis has covered several areas, all intertwined within the management of the

software engineering process. This conclusion will start by summarising each chapter

in turn before looking at the current state of the software development industry and

examining projects where some of these ideas can be applied. Current industrial

practices are also assessed to see where the concepts introduced here can be applied.

185

7.2 CHAPTER TWO

7.2.1 Summary

Chapter two (based primarily on the work presented in Dawson and Dawson (1994c»
began by identifying an early concept of the software development process, its aspects,

and how these aspects interacted. This concept was developed and brought up-to-date
by introducing identifiable models and methodologies. Having identified the essential

aspects of the software development process, this chapter went on to develop a new
concept called metamodels. Metamodels were defined as combined paradigms or

hybrid models allowing more flexible, visual development of software systems -
enabling software to grow within their structure. The benefits of metamodels were

identified and a means of control was introduced (Generalised Activity Networks). The
chapter concluded by identifying two areas of potential research:

(i) Development of software dependent metamodels.

(ii) Development of organisation specific metamodels.

In the following section another potential research area is identified· that of the
interaction between established methodologies (for example, SSADM) and new, more

dynamic approaches to the development of software systems.

7.2.2 Discussion

Many companies have recognised the need for more dynamic approaches to software
systems development. A concept paper published by the Butler Group in Autumn, 1993

[Butler Group 1993] identified, once again, the need for more flexible approaches to the

development of software (see also Agresti (1986a and 1986b». Although keen to push

forward their own concepts on software development management, they highlighted the
problems encountered by companies using engineering approaches to this different

management field. Their methodological approach is aimed at managers involved in
strategic level planning of information systems developments. Figure 7.1, taken from

the Butler Group repon, emphasises the problems encountered by software development
managers who use old engineering practices.

The Butler Group emphasised the need for a closer interaction between developers and

client. Too little feedback between client and developer can lead to a system being
incorrectly specified and produced. Too much feedback can lead to an overly complex

system produced months (or even years) late. Figure 7.1 shows how, at the initial
stages of a development, the user does not really know what they want. If they are then

186

excluded from feedback in subsequent stages they will not get what they really want in

the final delivery. The cost of errors discovered in each phase is also shown to increase

dramatically over the life cycle of a project. Usually one sees a ten fold increase in error

costs for each subsequent life cycle stage as each stage inherits problems from earlier

mistakes. By limiting software developments to out-dated, life cycle models, based on

engineering practices, these are the results that ensue.

The main point from this report is that development of software is a dynamic process,

constantly changing to reach either varying customer goals or a more comprehensible

problem domain. The metamodel, introduced in chapter two, provides a hybrid model

that can cope with more dynamic systems development. It provides a means of

controlling software development projects and identifies risk and decision points within

a project life cycle.

Users do not know
what they want Specify

{

Design

~~~but 1-----1 
Build 

Users do not get 
what they want Use 

Cost of Errors Discovered 

Time 

Figure 7.1 Flaws in the Engineering Model [©Butler Group 1993] 

'Far from being the helpful tools they promised to be, software methodologies could 

turn out to be too complicated for their own good' [Davidson 1990]. 

Another point worth noting within current industrial practices is that, very often, projects 

are constricted, not just by models employed, but by development methodologies used. 

In a recent case at the University of Derby, a one person-year project was undertaken 

using SSADM. SSADM is, quite clearly, a methodology aimed at medium to large 

scale information systems developments. To apply SSADM in depth, as it was in this 

case, to a small project was unsatisfactory. The project was constricted by the 

limitations imposed on it by this methodology and was not completed successfully. It is 
important to realise that developments and models should not be dictated to by older 

development methodologies which are, after all, intended to support and improve the 

187 



development process. 

One question that this raises is how new, flexible models, such as the metamodel 
developed in this thesis, are to interact with current, established methodologies. 

Although Generalised Activity Networks (developed in chapter three) provide a means 
of supporting such a model they do not answer the question of how methodologies 

could be adapted to cope with such flexible systems. Clearly, for smaller 
methodologies, covering only single stages of the life cycle (for example, data flow 

analysis, JSD and so on), this does not pose a problem. It is the larger, project-wide 
methodologies that require some adaptation. SSADM, for example, can prove quite 

constrictive in software development projects and the question posed should not be how 
metamodels interact with established methodologies but how these old methodologies 
can be adapted for newer, more dynamic systems development. The development of 
new, flexible methodologies, and the interaction between dynamic systems development 

and old methodologies, is another area for future research. 

7.2.3 Evaluation 

How a metamodel relates to a real software development project is discussed in some 
detail in section 7.7.4. 

7.2.4 Conclusion 

Chapter two introduces the metamodel which provides a new concept for model 

development within the field of software engineering. This flexible, dynamic structure 
provides a greater visibility of project direction and progress and provides a model that 

does not constrict the software development process. 

7.3 CHAPTER THREE 

7.3.1 Summary 

Chapter three was based initially on work presented in Dawson and Dawson (l994a). It 

identified limitations in an area of project management support - Generalised Activity 
Networks - and began by identifying previous work in this field. Two project 

management software tools, that have limited abilities in this area, were also discussed. 
The early pans of the chapter concentrated on the work of Dawson and Dawson 

(1 994a) - that of the development of a Generalised Activity-on-the-Arrow 
representation. The chapter moved on, in light of further research into current practices 

188 



in the project management industry, and developed a Generalised Activity-on-the-Node 

representation from this work. 

An example of how Generalised Activity Networks could be used (more especially in 

software development management) was shown with a project developed for illustration. 

This example illustrated a tactical level plan for the implementation of a software system. 

Network properties were then discussed in view of current practices and approaches in 

this field. The chapter concluded by identifying four potential areas of future work: 

(i) Implementation of the definitions in a software tool. 

(ii) Gantt chart representation of Generalised Activity Networks. 

(iii) Cost/fime optimisation and resource levelling in Generalised Activity 

Networks. 
(iv) Work Breakdown Structures for Generalised Activity Networks. 

7.3.2 Evaluation 

Generalised Activity Networks provide more realistic representation of project 

scenarios. However, although some minor developments have been made in this field 

over the years, Generalised Activity Networks never became an established project 

management technique. A possible reason for this, which also makes evaluation of 
Generalised Activity Networks difficult, is that projects can always be seen to complete 

in a deterministic fashion. In other words, a project will complete at a given time along 

with the activities that constitute it. Probabilistic branches will have either been pursued 

or not, and loops performed a specific number of times. To say that a probabilistic 

activity that was not performed could have been omitted from a project plan would be 

wrong as, at the inception of a project, the final project environment can only be guessed 

at. At a project's outset a deterministic conclusion cannot be predetermined and only a 

probabilistic structure is able to represent the possibilities. 

Generalised Activity Networks have already been successfully used in large 

development projects (for example, Moeller (1972), Kidd (1990)). The need for more 

flexible, network-based planning techniques can be implicitly identified by looking at 

how a software development can be successfully modelled by a metamodel (in section 

7.7.4). 

Many project managers interviewed felt that more powerful planning techniques, that 

include an ability to plan for alternatives, were needed. Generalised Activity Networks 

satisfy these requirements and support the management of more dynamic systems 

development. 

189 



7.3.3 Conclusion 

The Generalised Activity Network representation provided in chapter three provides a 
conclusive definition in an area sadly overlooked in the past. The Generalised Activity­

on-the-Node representation provides a support tool with which most project managers 
should be comfortable. The more powerful planning techniques (loops, probabilistic 

branching and so on), identified as a requirement by many project managers interviewed 
(see section 7.8.1), are provided as and when required. By encompassing all possible 

variations in one conclusive definition, a baseline has been set from which future 

developments can be made. 

7.4 CHAPTER FOUR 

7.4.1 Summary 

Having defined a more powerful, new approach to project planning in chapter three, the 
aim of chapter four was to identify and improve analysis approaches for this and related 

techniques (ie PERT type analysis). Chapter four began by putting into context the uses 
of activity networks within the field of project management. It then moved on to a 

comprehensive coverage of past and present approaches to activity network analysis 
before concentrating on Monte Carlo simulation. A new approach was then introduced 

(a Dynamic Sampling Technique) based on work presented in Dawson and Dawson 
(l993b and 1994b). Antithetic variables (a less refined approach than stratification or 

Latin Hypercube) were also discussed as these can improve the efficiency of network 
simulations in certain cases (ie when activity temporal functions are symmetrical). 

Limitations were noted with the Dynamic Sampling Technique and a prototype Modal 

Class Dynamic Sampling Technique was introduced. This prototype is in its infancy 
and requires development to overcome the problems identified with it in chapter four. 

The chapter concluded by noting four potential areas of research: 

(i) The development of Modal Class Simulation of Activity Networks. 
(ii) The affects of early delays on future activities. 

(iii) Representing activity durations by more applicable distribution functions. 
(iv) Parallel algorithms for the reduction of simulation costs still further. 

7.4.2 Evaluation 

Of all the risk analysis packages on the market today, none offer the ability to limit, by 

190 



accuracy, the number of Monte Carlo simulations performed. All the companies 
involved with these packages (for example, Predict!TM, @Risk™ and Monte Carlo™) 

recommend rather subjective estimates for the number of samples needed to provide 
'accurate' estimates of project completions and risks. None of these packages seem to 

identify a need to highlight the most likely project outcome (the mode) preferring to 
calculate the mean (which only represents an average if a project is performed many 

times). Nurse (a User Champion with Marconi) uses Opera® which is a Monte Carlo 
risk analysis package that accepts plans from Open Plan®. He claims that 

approximately one thousand simulations, based on a subjective estimate, should 
performed with this package to provide the required accuracy for network plan results. 

According to Nurse, one way of reducing the time for these simulations is to remove 
some of the lower risk activities beforehand (a kind of path deletion approach - see 

section 4.4.7). Some other project managers interviewed (see section 7.8.1) welcomed 

the modal approach and said they would find it of far more benefit than the approach 

offered by current risk analysis packages. 

7.4.3 Conclusion 

The techniques developed in chapter four provide more accurate and realistic 
representations of project outcomes in shorter times. These techniques now need 

integrating into Monte Carlo based systems. Managers can then reap the benefits 
offered by this, more efficient, approach. 

7.5 CHAPTER FIVE 

7.5.1 Overview 

Chapter five used some of the techniques developed in chapter four to provide a detailed 
temporal analysis of activity networks. This chapter presents results from four papers 

[Dawson 1994a and 1994b, Dawson and Dawson 1993b and 1994bl. The results are 
presented as the comparative simulation requirements of Probabilistic and Generalised 

Activity Networks, and the affects that various discrete and continuous activity temporal 
functions have on the duration of projects represented by activity networks. It is 

unlikely that a single distribution function (for example, the Beta) can represent all 
activity temporal functions in all projects. The affect that various other distribution 

functions have on the duration of a project was, therefore, important to determine. The 
project outcomes determined in chapter five highlight the possibilities that can occur. 

191 



7.5.2 Conclusion 

The one important conclusion that comes out of this chapter is that projects, when 

analysed by simulation techniques, cannot be represented by one particular temporal 

function. It is important that managers realise, having identified and incorporated risk 
into their project plans (both temporal and probabilistic) that project outcomes are not 

deterministic. In other words, project results must be viewed on an overall basis and 
statistical figures (for example, the mean and standard deviation), must be viewed with 

some caution. This work emphasises the need for modal estimates and cumulative 
frequency distributions that provide far more useful information to managers. 

7.6 CHAPTER SIX 

7.6.1 Summary 

Chapter six represents a working chapter based on work presented in Dawson and 
Dawson (1993a). Overall it looked at how artificial techniques could be used to 

improve support for software project managers. It viewed management of the software 
development process from the angle of four phases and identified problems encountered 

by managers in these phases. A blackboard architecture was discussed that represents 
an ideal framework on which to build a software development management system. 

How knowledge from the field can be incorporated into the system as knowledge 

sources was also discussed. Reason maintenance systems were also introduced and a 

way of allowing interaction between reason and temporal maintenance systems within 
the blackboard architecture was proposed. The chapter concluded by looking in more 

detail at the artificial intelligence approach and its structure for a software development 
management system. It finished by identifying this work as an area for future 

development. 

7.6.2 Conclusion 

Artificial intelligence techniques for software development management are particularly 
limited at the moment and represent a target for the future. Artificial intelligence 

approaches to the more general field of project management are, however, more 

widespread. Examples include Levitt and Kartam (1990), Brown (1988) and Foster 

(1987). The approach put forward in chapter six provides a suitable framework on 

which intelligent systems can be developed. These systems can relieve some of the 

burden on the project manager by providing decision support where it is needed. At the 
moment, however, intelligent software development management systems are a future 

192 



goal and even then they may not be expected to manage projects on their own - only 
managers can really do that. 

7.7 PROJECT MANAGEMENT SOFTWARE TOOLS 

7.7.1 Overview 

One cannot conclude a thesis that has developed new concepts in the field of project 
management without looking at some of the tools managers are currently using within 

both academia and industry. The best forum to assess these different tools was at a 
recent exhibition in London [Project Management South 1994] where all the companies 

active in this field were demonstrating their wares and introducing their own approaches 

to project-based management. 

Turner (1993) identified five types of Project Management Information Systems 

(PMIS), three of which are available and two of which still require development. They 
are, respectively: 

(i) Networking systems. 

(ii) Cost and resource management systems. 
(iii) Application generators. 

(iv) Capacity planning systems. 
(v) Totally integrated, modular packages. 

Of these five systems, networking systems and cost and resource management systems 

are the two most closely related to the work of this thesis (mainly chapter three). 
Networking systems represent the more well known project management packages 

available today that include the ability to model projects by activity networks and/or 
Gantt charts (also called bar charts). The concepts within these networking packages 

were developed within chapter three. Cost and resource management systems represent 
a more methodical approach to project management and incorporate cost, work, and 

organisational structures within project plans. Generally speaking, cost and resource 
management systems represent more organisation-wide approaches to project 

management. 

The following list presents the tools/methodologies/consultancies and companies active 
in the project management information system's market today. Most of these 

companies were presenting their tools at Project Management South (1994). Addresses 
for some these companies can be found in Appendix G. 

193 



Company 

AranLId 
ASTA Development Corporation Lld 

Baesema 
Complete Project Management Lld 

Computer Associates® PLC 

Computerline Lld 

Deepak: Sareen Associates 

Hoskyns Group Plc 

IBM (UK) Ltd 

JMCA (John Cockerham and Associates) 

LBMS 

Lucas Management Systems 

Leach Management Systems 

MANTIX Systems Limited 

Micro Planning International Lld 

Microsoft® 

OPL 
Palisade Corporation 

Panorama Software Corporation Ltd 

PARISS Ltd 

People in Technology Lld 

Ptimavera Systems Inc 

PSDI (UK) Ltd 

Risk Decisions Ltd 

Scitor Corporation 

TBV Consult 

Welcom Software Technology Int. 

7.7.2 Networking Systems 

Software Toolsllmeresr 

PMSX-KerneI™ (Ingres based) 

PowerProject™ Version 2 

RISKNETTM 
TrackStar™ 

CA-SuperProject® 

PLANTRAC-APROPOS® 

Time Line® 6, On Target™, InstaPlan™, 

ProjectGuide™ 

PMW, Project RISK 

MITP 

Risnet™ 

Methods On-Line, SSADM Engineer 

Artemis Schedule Publisher™, and 

Prestige™ 

CS Project™ for Windows™ 

Cascade® 

MICRO PLANNER® Version 6 
Microsoft® Project™ 4.0 

RISKMAN 
@RiskTM 

Panorama ™ PLANNER and COST 

PARISS Enterprise™ 

Pertmaster Advance 2.4G 
Ptimavera Project Planner®, Monte 

Carlo™ 2.0, Parade® 

Project/2 Series X® 

Predict!TM 

Project Scheduler 6™ 

Consultants (see appendix A) 

Texim Project™, Open Plan®, Opera®, 

and Cobra® 

The majority of tools on offer were PC-based project management tools, now 

supporting the Windows™ environment. Generally speaking, they provide a means of 

planning projects using Gantt charts and activity networks (mostly Activity-on-the­

Node). One tool, ProjectGuide™ (1993), provides a means of generating project plans 

194 



based more on an organisation's own approach or methodology. These plans can then 

be imported directly into CA-SuperProject®, InstaPlan™, Project Manager Workbench, 

Microsoft® Project™ or Time Line®. Most tools have an ability to level resources to 
some degree and some offer methods for project control (for exarnple, earned value). 

Costs can also be applied and, in most cases, work breakdown structures can be created. 
Some of the tools allow data to be exported into databases or spreadsheets where other 

tools (for example @RiskTM (1990) or RISKNETTM (1992» can be used to perform 

risk analysis on project plans. Those tools that perform risk analysis are discussed 

below. 

The following list identifies the tools that fall into this category - the marketing details of 

which are beyond the intended scope of this thesis. 

Panorama™ PLANNER and COST, Texim Project™, Artemis Schedule Publisher™, 

Primavera Project Planner®, Pertmaster Advance 2.4G, Project Scheduler 6™, 

Microsoft® Project™ 4.0, Time Line® 6, On Target™, CS Project™ for WindowsTM, 

PowerProject® Version 2, CA-SuperProject®, InstaPlan™, MICRO PLANNER® 

Version 6. 

Turner (1993) identified that a requirement missing from current Project Management 

Information Systems is a completely integrated, modular system. He went on to state 

that perhaps the closest any company comes to this requirement is the suite of programs 

sold by Welcom Software Technology (Open Plan®, Cobra®, Opera® and Texim 
Project™). Turner also identified Cascade® (1993) by MANTIX Systems Limited as a 

system fulfilling this requirement, although in this case it is a single package with these 

facilities. 

7.7.3 Cost and Resource Management 

Large cost and resource management systems tend to be organisation-wide products 

that introduce a methodological approach to project management within an organisation. 

Two of the more well known packages that fall into this category are Cobra® (C/SCSC 

Cost Management) and Cascade®. Other systems, that are not as large but incorporate 

recognised cost control methodologies, are MICRO PLANNER® X-Pert (based on 

control using earned values) and InstaPlan TM (based on C/SCSC). 

7.7.4 Methodology Based 

Several companies at Project Management South offered methodology based tools (see 

also Powell (1990». These packages either represent methodologies in their own right 

195 



(identified in figure 2.2) or support elements for already established methodologies. 
The better known of these tools are Cobra®, InstaPlan TM (both based on C/SCSC cost 

management), and Cascade®. Others include PMSX-KerneI™ and PLANTRAC­
APROPOS® (both based on the Prince methodology), MITP (an IBM methodology), 
Methods On-Line and SSADM Engineer (methodology support by LBMS), MICRO 
PLANNER® X-Pert (based on control using earned values), and RISKMAN (a 

methodology based on a European Project Risk management initiative). 

7.7.5 Risk Systems 

'How can one manage and plan for the unknown when the "known" is always 
changing?' cited in Peltu (1994). 

Perhaps of more interest to this thesis were the tools offering some form of risk 

analysis. Articles detailing risk analysis software include Computing (17 June, 1993) 
and Milton (1994). Of the thirty five tools listed earlier only six offered limited project 

risk facilities. 

Opera®, by Welcom Software Technology, is an extension to Open Plan®. It provides 
four activity temporal functions - Normal, Uniform, Triangular and Beta and performs a 

Monte Carlo simulation to determine the mean and standard deviation of start dates, 
finish dates, and float. It also determines cost curves, and produces cumulative 

frequency distribution functions for times and costs along with histograms of these 
parameters. As it imports plans from Open Plan® it does not provide any probabilistic 

branching. The number of simulations performed is based on a subjective estimate 
recommended by the suppliers. This appears to be the case for all other Monte Carlo 

packages on offer today. 

Predict!TM includes health and safety risks, financial appraisal, and marketing analysis. 
It provides an Activity-on-the-Node project representation but no probabilistic 

branching. It offers twenty two activity temporal functions and the ability for the users 
to customise their own. This system takes no bold steps in the field of project-based 

management but enhances concepts already in existence. 

Another tool making no great improvements but advertising its developments 
nevertheless is Project Scheduler 6™. Project Scheduler 6™ allows three time 

estimates for each activity (as in PERT) and identifies the best, most likely and worst 
project completion time based on these figures. 

Project RISK by Hoskyns provides a new concept in risk analysis. It represents a 

196 



question and answer based risk analysis system that provides no project planning. This 

system asks a user a set of questions to determine the risks involved with a project. It 

then reports back on various aspects of the project including the chances of completing 

the project, its tardiness, usability, and supportability. 

Monte Carlo™ 2.0 and Risnet™ were two tools introduced in chapter three. Monte 

Carlo™ 2.0 is a plug in to Primavera Project Planner®. It allows two probabilistic 

branches, and two activity temporal functions. Risnet™ is an Activity-on-the-Arrow 

tool with limited node logic and twelve activity temporal functions. 

@RiskTM, supplied by the Palisade Corporation, is a plug in to either Lotus 123™ or 

Microsoft® Excel™. As projects planned using Microsoft® Project™ can be imported 

into Excel™ spreadsheets these plans can, in turn, be analysed by the @Risk™ 

package. @Risk™ provides either Monte Carlo or Latin Hypercube simulation 

methods (Latin Hypercube is a more efficient sampling technique for some distributions 

- see chapter four) that provide a form of project temporal risk analysis. As the results 

are based on plans drawn up within Microsoft® Project™, they are based on 

Probabilistic Activity-on-the-Node networks. Uyeno (1992) looks at the uses of 

@RiskTM in decision support for project managers. 

RISKNETfM is another package that integrates itself within a spreadsheet. In this case 

it is the Smart spreadsheet and database manager. RISKNETfM was developed by the 

Anglo-French avionics group Baesema as part of their own risk analysis for Ministry of 

Defence contracts. The tool is limited to a Triangular activity temporal function based 

on three time estimates (most likely, pessimistic and optimistic). Although it then 

simulates a project to provide more detailed results, it can perform a deterministic 

analysis to resolve the project on a one-off basis. This form of analysis represents a 

concept identified in chapter four of this thesis - that of determining a most likely 

project outcome. RISKNETfM, in this case, only performs one iteration of a project 

plan and accepts this result as the most likely outcome. In fact, what the system should 

do is to repeat the process several times and then conclude that the most most likely 

outcome is the one that occurs most often (the mode or modal class). The fIrst result 

generated by RISKNETfM is not necessarily representative of this case. 

In a recent survey, published in Personal Computer (May, 1994),@Risk™, Predict!TM, 

RISKNETfM and Project RISK were assessed. Unfortunately, none of these packages 

incorporate probabilistic risk into project plans (unlike Generalised Activity Networks) 

and merely identify risk as a temporal or costing problem. The only two packages 

available on the market that incorporate some form of explicit risk within project plans 

are Monte Carlo™ and Risnet™. Risnet™ is based on the less familiar (certainly in the 

197 



1990s) Activity-on-the-Arrow representation and this, and Monte CarloTM, provide only 

limited probabilistic branching. The approaches of Generalised Activity Networks, such 

as those used in VERT and GERT, that have proved themselves in large, organisation­

wide projects (for example Kidd (1990» need reintroducing to industry today. The 

shortfall in potential tools with these capabilities is perhaps due in pan to a case of 

managers not knowing what is possible and what they are missing. 

7.7.6 Company Wide 

Some of the project management systems introduced above represent larger, company­

wide approaches to project management. Two of the more popular approaches are 

TrackStar™ (a matrix organisation tool providing consolidation and infonnation to any 

management reporting level), and Cascade® that was covered in more detail in chapter 

four. Other organisation-wide approaches included Project/2 Series X® (PSDI (UK) 

Ltd), PARlSS Enterprise™, Artemis Prestige™ (Lucas Management Systems), PMSX­

Kernel™ and Open Plan®. 

7.7.7 Summary 

'Tools are not flexible enough to do what I want' cited in Peltu (1994). 

The overall feel from industry at the moment is that project management tools are not 

flexible enough to cope with problems encountered in real projects. Although the 

companies offering tools in the current market are striving to do more than their 

competitors, very few provide a means of identifying and controlling risk. To make 

more impact than a rival, companies emphasise their system's user-friendliness and 

detailed reponing capabilities. 

In some cases encountered, project managers are clearly hampered by the project 

management tools they are currently using. For example, figure 7.2 is an example of a 

particularly unclear Activity-on-the-Node plan produced by Microsoft® ProjectTM. 

This is a plan of the development of a software system that monitors babies' conditions 

in neonatal care. It is a six person-year project developed by a small software house in 

Loughborough and Edinburgh (five staff spread between these two sites). The manager, 

in charge of this particular project, has very little interest in the plans produced due to 

their lack of clarity and detail. The project is pursued on a more informal basis as these 

plans provide no workable information from which to operate. The version of 

Microsoft® ProjectTM being used is an old DOS-based package, the more modern 

Windows™ versions providing more workable plans (for example, see the CA­

SuperProject® example in Appendix A). Other project managers interviewed are also 

198 



Figure 7.2 An Obscure Project Plan of a Real Software Development 

199 



looking for more powerful tools with clearer reporting capabilities. A representative of 
the RAF at Project Management South (1994) was looking at improving his project 

planning capabilities and was assessing Primavera Project Planner®. His current 
system was proving unworkable and a more powerful system, with a clear management 

reponing facility, was required. 

In conclusion, the current state of project management information systems on offer are 
based on old, 1960s project management concepts (for example, PERT). Very few 

companies have taken bold steps to implement new ideas into their tools and are merely 
tinkering with the user friendliness of their systems and improving their input and 

output capabilities (for example, report generation). The only real development of late 
has been to upgrade these packages to Windows™ based products. 

7.8 EVALUATION 

7.8.1 The Software Development Industry 

In order to avoid developing theories within the closeted walls of academia, contact was 
made with a number of companies throughout the development of this thesis. Thanks 

must go to these companies who provided valuable insights into the 'coal face' of 
software development in the real world. These contacts were used to assess the 

popularity of the concepts developed and to keep in touch with real world approaches to 
project management used in the development of software. During the development of 

this thesis a questionnaire was used (Appendix H) to determine a more objective view of 
what was happening in the real world. This was backed up with visits to companies to 

discuss ideas with project managers experiencing real risks and uncertainties with their 
own software. Questionnaires must always be treated with some caution as the 

information they provide may be biased depending on how questions are raised. Both 
qualitative and quantitative information was provided through the feedback from this 

source. Due to the limited number of local companies available for interview (twelve in 
all) qualitative analysis proved more valuable due to the nature of the information 

sought. A broad cross section of companies were interviewed ranging from large 
nationals (for example, BT and GPT) to small, local software houses. 

The response rate for the questionnaire was pleasantly high with 60% of those 

companies contacted responding. The companies that did reply provided quite positive 
information with regard to the ideas developed. This questionnaire also provided a 

means of assessing each of the companies approaches to the development of software. 

The general feeling was that software houses are, on the whole, a number of years 

200 



behind the concepts and ideas been produced within academia. 

From the companies who responded, one third (four companies) used no identifiable 
software development model or methodology. The excuse in these cases was down to 

the size of development projects undertaken that required no more than one person­

month of effort. These projects were, therefore, performed using an early build-and-fix 

model without any real specification or requirements analysis. A specification of sorts 
would be provided by a client, and a programmer would be assigned the task of putting 

together a solution. One questions, in these cases, how organisational objectives were 
reached. How are these companies managing long term objectives when they appear to 

be working to only short term goals at anyone time? 

All of the other companies interviewed had an identifiable software development strategy 
and employed particular methods for developing their systems. For example, both GPT 

and BT use Cascade®, (a propriety tool and methodology) that not only provides them 

with an organisation-wide project management tool, but also with a methodology with 

which all departments can work. Other companies used methods such as SSADM, E-R 
Modelling, and Formal Methods, and one technique adopted was to use reusable code 

(one company developing its systems from 80% reusable code). The traditional life 
cycle approach was also identified as a model used by several of the companies 

interviewed (30% for this case). 

None of the companies felt that project management has been used within their 

organisation optimally. Both BT at Martlesham Heath and GPT at Nottingham had 

done something about this, and introduced an organisation-wide methodology based on 
Cascade®. The other companies felt there was something lacking with the approaches 

being used, and identified that some of the developments made within this thesis would 
be of practical benefit to them. They highlighted identification of project risks, and the 

ability to plan for alternatives, as the most beneficial parts of a new system. Modelling 
different time and cost functions was also identified as a need although, as has been 

noted in previous chapters, there are several project management packages that already 
offer this facility. 

More powerful planning techniques were also needed by two of the companies 

interviewed. These companies identified that their current practices were not flexible 

enough and felt that Generalised Activity Networks would provide a more visual 

representation of their projects. 

The most likely outcome of a project is clearly important to many managers and this 
was identified as a result lacking in most approaches. Modal estimates provide this 

201 



result. One company was also interested in having an intelligent project management 
tool that could try various what if analysis to provide several possible project 

development scenarios. A smaller company was also interested in these ideas especially 
if larger defence contracts were undertaken. More management reporting facilities were 

also identified as a need and this was backed up from discussions at Project 
Management South (1994). 

An overall impression that one had after speaking with several companies was the large 

split between academia and industry. It was felt that many companies, although strong 
in their own particular fields (for example, telecommunications, health care, general 

consultancy), had software development concepts that were still based on 1960s' ideas. 
It is obviously going to be some time before more dynamic approaches are widely 

accepted in the software development industry. 

7.8.2 An Example of a Project With Little Requirement for Generalised 
Activity Networks 

Unfortunately, applying probabilistic rules to one or two projects can never prove to be a 

fair assessment of Generalised Activity Networks. At the end of the day all projects are 
seen to complete, and are signed off, in a particular time, as are individual activities 

within those projects (although this completion can be somewhat difficult to define in 
software development projects). One would argue with hindsight, having planned a 

project and seen it through to completion, that that project could have easily have been 
modelled by detenninistic means. Unfortunately, this does not help the evaluation of 

probabilistic techniques. 

Generalised Activity Networks provide a means of explicitly identifying potential risk 
points in a project. Identifying these risks is the first step in perfonning risk 

management. By forcing managers to plan risks they become aware of the 
consequences and can reduce these risks (either by avoidllnce, deflection or 

contingencies [Turner 1993]). Having explicitly identified a project's possibilities and 
its risks within a Generalised Activity Network, its analysis provides details of the most 

likely outcome of that project (ie the mode rather than the mean). The detailed analysis 
of such plans however, must be questioned as 'these systems [Monte Carlo, PERIl 

must be treated with extreme care or the analysis takes over. You will spend an 
inordinate amount of time producing data of little value' [Turner 1993]. This point was 

addressed in chapter four as this analysis was improved to ensure that the data produced 
was of some value and the time to produce this data was minimised. 

The first example project (presented in Appendix A) shows that there are projects in 

202 



which risks are limited. Standard engineering projects usually fall into this category -
activities have been performed many times before and experienced managers are usually 

aware of all the possible risks. 

The project outlined in Appendix A provides a good example of how useful current 
project management information systems (network based) are in these engineering-type 

projects. These plans represent the Milltown Bridge Project - an engineering project 
with little risk or variation. Page A I in the appendices shows a detailed Work 

Breakdown Structure of this project from the integrative level down. The tactical level of 
the project is derived from the strategic level that shows simply preconstruction, 
construction and finals. Page A2 shows an Activity-on-the-Node representation of the 
project (based at a more strategic level) and pages A3 to A8 show various project Gantt 

charts. These charts provide a detailed representation of the project in a report form that 
is easily understood by all levels of the project's team. They also provide important 

managerial reports that are used for project tendering, and hopefully securing a contract 
in the first place. For projects of this nature (ie reasonably deterministic) plans of this 

form are invaluable. 

In these situations Generalised Activity Networks are perhaps unnecessary as plans are 
based on activities that have been performed many times before and have little risk 

associated with them. However, should there be uncertainties in a project, these could be 
modelled explicitly by Generalised Activity Networks. The advantage of Generalised 

Activity Networks in this case is that they still allow projects to be planned in the same 
straight forward way as that shown in Appendix A. They are powerful enough to 

provide the flexibility as and when it is required. 

This example shows that for general engineering-type projects the powerful facilities 
offered by Generalised Activity Networks are, in many cases, unnecessary. As most 

software developments are based on these established engineering practices it is not 
surprising that they have adopted the same deterministic managerial principles. 

Unfortunately, software developments (along with other project types - for example, 

research and development projects) have already been shown to be much more dynamic 

in nature. It is these dynamic projects that require more flexible management support 

systems such as Generalised Activity Networks. This will be born out in the following 

example. 

7.8.3 An Example Project Where Metamodels and Generalised Activity 
Networks Give Benefits 

In order to evaluate Generalised Activity Networks and metamodels, it is necessary to 

203 



look at a software project where problems were encountered. It is important to see how 
those problems were overcome by the project manager involved and how the concepts 

developed in this thesis would have helped. It was not necessary to search very far for a 
project that fitted this requirement as the first software project studied provided the 

required results. The project chosen for this study is a small, eleven person-month 
software development undertaken at Derby (larger projects have already been 

documented in other papers - for example Kidd (1990)). The intention of this project 
was to create an educational software package for use in primary schools. The package 

was completed in a collaboration between the University of Derby and Redhill Primary 

School, Nottingham. 

The initial approach to this project was to use the traditional software development life 

cycle with which most companies are familiar. This is represented in figure 7.3 which 
shows the initial strategic level plan (Activity-on-the-Node in this case) drawn up during 

the first week of the project. The project was observed from a distance - in other words 
no affect was imposed on the development of this project - its development was merely 

monitored. 

Specification 

Design 

Figure 7.3 The Initial Project Plan 

Figure 7.3 actually represents a standard waterfall approach along the lines of Analysis, 

Specification, Design and Implementation. When interviewing the project manager at 

the end of this project he stated 'In retrospect it was impossible to decide on these 
issues at that point in the project. This was because a greater understanding of the 

problems associated with providing educational software was required'. 

204 



It was not until two months into the project that the traditional development approach 
was found to be totally inadequate for a project of this nature. While the specification 

was been put together it became clear that the project was way off course. Teachers 
were uncomfortable about been involved in the software development process as they 

are used to ready-made products. This suggested using prototypes so that the teachers 
could be prompted into providing feedback. This prototype development, therefore, 

needed to be introduced into the project plan. 

When the project hit these problems, the project plan was radically altered to incorporate 
prototyping. It was followed to the successful completion of the project. The actual 

path this project took is shown in figure 7.4. This strategic level plan is taken directly 
from the metamodel developed in chapter two. Had this metamodel been available to the 

project manager from the outset, the use of prototypes could have been adopted more 
smoothly. The final plan, in the words of the manager, was a hybrid of several models. 

This emphasises the uses of combined models or metamodels that are clearly of benefit 

to many software development projects. 

Requirements I Prototype I Analysis 

Specification ~ 

~ Quick 
Design 

Prototype 

Implementation 

Figure 7.4 Final Project Plan 

A question one could ask is why a prototyping model was not adopted from the outset. 
This model would have provided an adequate framework in which this project could 

have evolved. Unfortunately, this project emphasises the main difficulty of software -
the problem domain and project environment is never fully understood at the outset. 

Figure 7.5 goes some way to emphasising this point. This figure shows the 

205 



f 
= o 

::c 
>­
&J 

C 
o 
';: 

= &J .;: -.!! 
C 

/ 

~[ 

• • 

8 ~ ... 

.. 

£~ 
/~ [ 

") 
.. 

.. .. 
........ + 

~ 

r~ 
+ 

. 

~ 
. 

i 
~ 

o 0 ... 

Project Reports 

Product Complete 

Documentotion 

Produce Product 

Applicotion Software 
Base 

Analysis and Design 

Software 
Develoment 

Report 'IT in 
Schools' 

Feasibility Report 

Project Initiotion 

Project 
Management 

Figure 7.S Difference Between Planned and Performed Activity Hours 

206 



considerable differences between planned and perfonned activities in this project. The 

uncertainties inherent within software developments lead to this unpredictable 

perfonnance. Had it been known that prototypes were required it is true to say that a 

prototyping model could have been used. However, it was not until the project was 

planned and underway that this requirement was determined. It is only when the 

software development project is undenaken that its true environment comes to light. 

The metamodel copes with this problem by identifying all possible alternatives at 

different stages of a project's progression. By combining several models within one 

metamodel, these approaches can be adopted as and when they are required. This 

allows a manager to adopt and adapt alternative development models at applicable stages 

in a project life cycle. Managers are not restricted to one model and can accommodate a 

dynamic systems development without major replanning. 

In retrospect one could have put together the final project plan (figure 7.4) at the outset 

using a Detenninistic Activity Network in a popular project management tool (although 

the loop would have had to be coded implicitly). This was obviously impossible as any 

probabilistic branching, that was unknown at the initial stages of this project 

development, could not have been identified within such a plan. The plan put together at 

the end of the project is not a genuine reflection of the problem domain at the outset. 

In conclusion, by encountering several problems at its initial stages, this project provided 

a valuable insight into real software project difficulties. The metamodel would have 

provided this project manager with a more flexible model with which to work. Frantic 

replanning after two months could have been avoided as variations could have been 

accommodated by a metamodel plan. The introduction of a prototyping approach could 

have been adopted more smoothly as the project plan would not have needed changing. 

The plan would merely have been used to identify the alternative strategic route pursued 

and would have provided an acceptable means of project control. A Generalised Activity 

Network representing this project would also have helped to control the development 

process by allowing the project manager to explicitly identify alternative approaches 

within the plan. Although estimates of probabilistic branching may have been sketchy at 

the initial stages (for example, what would have been the assigned probability for the 

prototype approach?), any alternatives would have already been brought to the attention 

of the project manager. It would only be through experience, like all other project 

estimation, that accurate project estimates can be made. It is worth noting that the 

estimates of probabilistic branching within a project plan would improve as the project 

progressed. These estimates would ultimately reach certainty when the branch point 

was reached. 

207 



7.9 CONCLUSION 

7.9.1 Contribution 

This thesis has made a significant contribution to three areas of software development 

and project management. First, the concept of hybrid models or metamodels has been 

developed to assist a more dynamic development of software systems. Second, a project 

management technique (activity networks) has been improved and developed and made 

more applicable to industrial requirements today. Third, current analysis techniques that 

use simulation for activity networks have been improved in terms of both efficiency and 

quality of data identified (backed up by experimental results). These three contributions 

have shown that a more flexible planning approach required for software development 

can and should be adopted. 

7.9.2 Summary 

Overall this thesis has made substantial progress in several areas involved with the 

management of the software development process. Initial aims and objectives have been 

reached and taken further and many new avenues of research have been opened up. 

In conclusion, even after thirty years, the field of software development management is 

in its infancy. It has a long way to go before the software crisis is averted. Only by 

adopting more flexible, dynamic approaches to software development can this problem 

be elevated. The advances made in this thesis go some way to allowing these 

approaches to be adopted. 

208 



Appendices 



APPENDIX A 

An Example Project 

A.1 OVERVIEW 

This appendix presents project documentation associated with the Milltown Road 
Bridge Project. This project began in December, 1992 and was completed successfully 

in January, 1994. The extracts are listings produced by CA-SuperProject® version 3 
'C'. Thanks must go to Computer Associates® and TBY Consult for allowing these 

project plans to be reproduced here. 

A.2 STAFF 

Consultant Engineer: Murray Walker 

Main Contractor: Scott Bradley 
Sub Contractor: J Fitzgerald 

Programme Managers: Mike Harvey (TBY Corisult, Croydon) 
Jonathan Reece (TBY Consult, Croydon) 

Client: Department of Transport 

A.3 LISTINGS 

Chart Page Date 

Tender Programme, Work Breakdown Structure Al 4 September, 1992 

Master Programme, Network Logic A2 4 September, 1992 
(Strategic level, Activity-on-the-Node) 

Master Programme, High Level Baseline A3 4 January, 1993 

Baseline Resource Programme A4 4 January, 1994 

Tender Programme AS 4 September, 1992 

Tender Programme (with early/late start) A6 4 September, 1992 

Contract Programme Baseline A7 4 January, 1993 

Progress as at January, 1993 A8 4 January, 1993 

210 



-_ ...... ":' 

I _ 
t---' 1 : _. --=' 

_. I 
~ 

~ --- _ .. 
~~. '. -- --

L~ 

I 

r::~-=":'J 
I 
L =- J I -- _': 
I '-- '--1 ....... --

y 
~I 

-- -.. I 
-- I _. _'":I 

-- 1 _. _-:' 



T 

,1010 (SIaJ1) 
'-4 tlHROVAL et!AS!! 

OIJanl3 27cty 

1 L 
002 (Sun) 
CONSUl1JllNT! 
07[)H 12 IOdy 

r 
I 11G63 (start) 
~FAl.SEW9Rt( 
'I21D1ct2 l11dy 

~ (atan) (NI (at.,,) ON la~) 

SOUTH MUTMEN'T • peps mN !lAsr CANDl..f'{§! 
Oi.Un lA H~ -+ o"'_"" __ " ____ ''''-'. r 21Jull3 lldy 

(SUrt) 
WfSrCAN!lL.E"fflI'_ 
OMugn 22dy 



Task Heading/Task Schd 
ID 7 Days Per Column Our 

P' MBMASTER.PJ 269dy 

002 CONSULTANTS 10dy 

004 DESIGN & CALC'S 2Sdy 

010 APPROVAL PHASE 27dy 

016 PROCUREMENT 77dy 

)- 023 NORTH ABUTMENT 100dy 
w 

0'3 SOUTH ABUTMENT 114dy 

043 FALSEWORK 173dy 

049 DECK SPAN 36dy 

OS3 EAST CANTILEVER 1Sdy 

OS6 WEST CANTILEVER 22dy 

OS9 SLABS & FINALS 82dy 

Baseline Baseline 
Se Oct i No De Start Finish 

------- , , : 07Dec 92 17Jan 94 

----+--+--+1 07Dec 92 18Dec 92 
, , I , " I I I , 

----------~----~----~----~-- .. -.-.--~----.-----~----~------~----~----
• : I I I : : I : I I I 

, , " , , , 
- : I :::: I : __________ L ____ L ____ L ____ L _____ J ____ J ____ J _____ ~ ____ J ______ ~ ____ L ___ _ _ ____ L ____ L ____ ~_ 

: : 21 Dec 92 02Feb 93 I I , I , , I ' I I 

I I " , • 

" " " I I ---- _= ____ c ____ :_ - - -~ --- -r ----- i--- -~-- --~- -----:--- ---- --- -,- ----:- --- +, -----i ----i----i -I 06Jan 93 
, , , ., , '" I , 

I I , I I , , I , I , , 

---==--=-=--=-=-=-=--=_=--=-=- =-=--=-,. ---.- .. -- --.,.., --..,.., -.., ---.... -- --.... ------r- -.., - -~ - - --- -.., - - - .. ..,..,.-,. -.., - -,.-
: , : ' I 'I : : : 1- 210ec 92 
, I I , " I I 

------- ---"--- -"- ---"----~-----: ----~- -- -: --- --~----~- -- --~ --- ~ ----1 ----- t--- -t- --- :-[ 21 Dec 92 

____ 1 __ - - _ -, - - __ L _ - -- L ___ -, ----- l ___ -; -- _ -, -- __ --:-- __ -'- _____ L _ -- -'- -- __ L ___ --; _ -- -; _ -- -;-1 
1 

I : ' : : : : i : : : OSJan 93 I : ; ; ; ; : I ; , I I : : : : 

1- ---1--- --- j---- j---T ---j----- j ---- ( --r ---- ~-- ---:--- --_c ____ : ---or -- ---t-- --r --- -t-1 21 Dec 92 

- - --j----- -~-- --~--- -~-- - -~----- ~ - ---;- - --;---- - ~- - - -~-- --- -~----~ --- -~ ----- i----f ---- ~ - 07Jun 93 

1 
: : : : , i i : , : , ! : : : 

----1--- ---~-- --~--- -~- ---~-----; ---- ~- --- "_------:- --- ,- ---- -~-- --c -- --r --- --; --- -;----; -1 27Jul 93 
I , " I '" I - I , , 

i : : : : ; , _ : ; , : i : : : __________ C ____ L ____ • ____ c _____ " ____ , ____ , _____ J ____ , ______ L _________ _____ ' ____ ' ____ '_1 
: : : ~ , : ~ .... : ;; ::: 03Aug 93 
I I I , , , ' iiiii ' . ", 

------ - -- -~----~- ---~----~-----~- ---~- --- ~--. --~-- - -~--.., --.: ----~ --..,.., .., ..,.., -- ~- ---~ -- - - ~ -1 16sep 93 
, I I " ,I I , I 

• I , I I " I , I ,I 

1- ---I- ---- -~-- --~- -- -i --- -~---- -:- ---~ ----~-- ---~- -- -~- -----~ -- --" ------ ---- ~- ---i ----:-: 

11Feb 93 

23Apr 93 

27May 93 

23Jun 93 

09Sep 93 

26Jul93 

16Aug 93 

02Sep 93 

17Jan 94 



--_.-
-_.-
----
-
._-

--
_.--_. -_. 
-"---
--~---=::,.-
-~-_.-_.-
0::.:=-

_.­--

------

=-
-.-

A4 

I 

;. 
:: 

_. 
~ .. ' . . . 

: : 

" .. 

or , 

~ 
:::::: ._ . ..,. 



T .. I Hudint/T .. k Est ,913 1 I I I I I I I ! I I " ~MIi ID 5 o.ys p., Cotumn 0.... .. ~ ... n lF" I "" l Ap< I MIY IJun IJuI I ..... l"' IOct 1_ 10.. l ..!in FMl : ti -- -. 
~.i'" fi:.;i,.--.J._ 

1-=' C~,~ 'JLI:_~ - 0 : 0 : 0 0 

FinaHM Detlils 'Ody - : 0 

: 0 : ... ,,~~_. t" ' 
~ 

0 0 

.~ 
0 0 ... Forms N Abutment Ody 0 : 0 ... FotmSS~ Ody .. : 0 

007 F.1MWOric Ody I · · 0 0 
0 0 

001 o..k ..,. -- : ... P.rapM Strings Ody ,. : 
010 -.-. 
011 Forms N Abutment 7<1'( '. 0 

012 Forms S AbtItmenl 7<1'( '. : : 0" FI_ 7<1'( - : 0 

0 .. o..k 7dy - 0 

0" Strings 7dy :- : : 0 
0 0 

0 .. t';~\.; ,_....;i.-~ L. 
017 Forms N Abutment '2<1'( .. 0 

0 .. Fonns S Abutment '2<1'( ... : 0 

h_ 25dy -- 0 

0" 0 : : 020 DK:k MllteMls 20dy : .... 0 
0 0 : 02' P.rapet Strings 45dy I I 0 0 : 0 

0 0 : 0 

022 Hone! ()n;lnage ..." 0 0 0 
0 0 

023 ",'.; rt: "' '. 0 0 

Excav.Uon ..,. • 0 0 : 0 

: : 
Blinding 2<1'( 11... : 0 

Reinforcement 10 a. .. '8<1'( ... 0 : 
027 Formwotk • Cone SlIM ,..,. - 0 

0" Re ......... Blinding 'Ody --021 Reinfmt 10 Walls '''y -- : 
030 w.n Pour "1" '8<1'( : - : 
031 W.II Pour"T 11<1'( 0 - : 0 0 

032 W.II Pour "3" '''y 0 0 :-- : 0 
0 0 0 

t'j 'I H,. -tt' 
0 

0 

0,. Exca""tton ..,. 
1-'" 0 : 0,. 

eo_ 
2<1'( 

I:: Relnforcemnet a. .. 'Ody :- : : : 1 ,-- Fonnwot1c I Cone a. .. ,..,. 
0 -

RewtM Blinding 'Ody : -0 0 : 
Reinfmllo Waits ,..,. : .... : 0 0 

~ W." Pour"1" '8<1'( 
0 - 0 : 0 

0 0 ... P'-ce in ()n;iNge 2<1'( 0 : • : : 0 

: : 0 

W" Pour"T 11<1'( 0 ~ 0 

WIlt! Pow"'" ,..,. .-043 f • .:ok.: . .2!.'\.. ... lAy SIMpers Ody .~ 
0 : : ... DK:k ap.n 'Ody :--: : ... Put strike I Prop 2dy : ~ 0 0 

047 Romo ........ 'dy 0 0 : : • 
~- '<I'( 

0 
0 0 0 

P~r.! ..:. j~.- : : I. 0 
0 : o.ck Out Spen 'Ody 0 : .~ 0 

R1tbar 10 Deck 22dy : : - ; 
CtMnlConcNte 2<1'( ' 0 

f~':; r (. 1~; a.fi1. q : : : ..... 
Relnforc.menI ..,. I' 0 0 

: Fonns I Cone ... 12<1'( : 0 0 - 0 

""1,.li£.6.N 'lbt..U,~ 0 0 :~ 0 0 
0 0 0 : 057 -- 8<1'( 0 0 :-" 

Forma I Cone,.... 12dy : : 0 .. 0 0 

: 0 

s~.!.;[~ • .I..t!'-~!. 
0 0 0 0 

0 0 

SIIekfll AbutlMnts 8<1'( : 0 . 0 

SbbUiudon Period .... : : 
Consttuct SIIIb 28dy : : 
Final Sn.Ig I ctNr 3dy 
... nctoverlM Ody 0 : : 17J.n $4 

0 0 : 0 

: 0 

: 0 0 0 
0 0 : : : 0 

0 : 0 

: : 0 0 

: : 
: : 

0 0 

AS 



T •• 
ID 

..,. 
D05 ... 
007 
008 ... 
010 
011 
012 
013 .,. .,5 . ,. 
.17 .,. .,. ... 
.21 
.22 
023 

027 
028 
021 
030 
031 
032 

034 
035 

, ... 
043 
044 
045 ... 
047 

057 

HudingfTuk Est 
10011& Pw Co4umn Our 

---!-

ANlI .. DlUills 

Forms N Abutment 
Forms S Abutment 
F alMWOf'tl: 
Dock 
ParllpM Strtngs 

Forms N Abutment 
Forms S Abutment 
FalMWOf'tl: 
Dock 
Strings 

d • 

Forms N Abutment 
Forms S Abutment 
FalMWQftc 
DIck Materials 
Parll".t Strings 
Honal Dralnagll 

.=l.L-
Excavation 
Blinding 
Reinforcement to S ... 
FormWOft( - Cone Ba .. Re.,.,.. Blinding 
Relnfmt to Walls 
Wall Pour"," 
WallPour"r 
Wall Pour "3" 

ExcaVltion 
Blinding 
~nfOleemnet a. .. 
FonnwottI: & Cone sue 
RewrM Blinding 
Rrt!nfmt to Waits 
WaH Pour "1" 
Place In Dralnagll 
Wall Pour"r 
Wall Pour "3" 

~yS"'pers 
OeckSpan 
Part StrIke & Prop 
Remove Props 
Complete Strike 

DKk Out Span 
Reblr to Deck 
C ... n & Concrete 

Reinforcement 
Forms & Cone,... 

Baekfil AbutI'Mnts 
Stabilization Period 
Construct Slab 
Final Snag & CiMr 
Ho_ ... 

10dy 

5dy 
5dy 
5dy 
5dy 
5dy 

7dy 
7dy 
7dy 
7dy 
7dy 

12dy 
12dy 
25dy 
20dy 
45dy 
IOdy 

4dy 
2dy 

18dy 
15dy 
10dy 
15dy 
10dy 
11dy 
"dy 

4dy 
2dy 

10dy 
15dy 
10dy 
15dy 
10dy 
2dy 

11dy 
14dy 

Ody 
10dy 
2dy 
1dy 
1dy 

10dy 
22dy 
2dy 

5dy 
'2dy 

Ody 
12dy 

Ody 
45dy 
20dy 
3dy 
Ody 

1 1"i"'~ '---'~'---' Early Early Late 
f ," J J A S ,0 N P P Ft ..J.A _l'--,Jy_"' __ rt_~_F._;_n_;._h __ ~~~ _ 

-t- : ' ... ' , ... 
: .... ,: 
~: 

: : : ~ : 
: : : i , 

ot , ~ : j j 

~ . : 1 
.. ~ I : :" : .. .. 

. ' j j : . : : 
',:, / .• ,: 

, '" ' : " ; : ' , ~:: .... : 
Ji ; ' " , I' : .. 2 •• • • 
~ . : : : : 

I ~:: : " .. . : : ,," ' , 
, ~ : .... : I 

• ~ r : .. , 

, : ~ 1 
I : : .. , 

: : ; tj 
: I: 

~ , : 
, ! : ": , 

" , 
" , : ...... : 
!! ~Jt 

, ~ . .. .' ~ 
':' 

A6 

, : 
: 

: ' 

: : : 

11o.c 92 17 ...... tot r"ec ' UJ~ 
f lOa<- .. 2 ,ao.c; 92 ,!" _ l.lf'ebl3 
OlOKI2 l SOK92 0 1Feb'3 12febtJ 
21Oec: 12 02f"eb ~ ou,Pf" 13 02Ju1IJ 
21o.c t: 05.Jaft t3 OUpt" S' 20Apr 11 
06JIln 13 12Jan 13 27Apr" OAM~ I ... 
l lJan'3 llJan 'iI3 05M"1 .3 11 M~ lJ 
2CUan t3 2SJan 13 oaJun 13 , ....... t3 
Z1.t.n 13 02Fetl 'j 1 21Jun tl 02.NI13 
06Jan., 15Feb In 21J.pr IS 1lJu11l -..an" , ....... 13 21.A.pf'Sl !9Apr 13 
lUaP t3 2t.Jan 13 tJ~ '3 21Mq 13 
20Jan 13 28Jan.3 12MJ!1 '3 1OM~.3 
:u .... n 13 Well tl 15Jun '3 .n..Jrun tl 
0SFeb t] tSF.., 93 05Jut '3 llJ1u1 tJ 
2,OItc 12 27. t3 t 9Apr 93 lSSeop s:: 
ISJan IJ GtFeb 93 lOApr 93 IIIhy t.:! 
22Jaa tJ oeF_.) 24M.y 93 0Sl.JwI t.: 
2tJtI ... t3 04Mar tJ 11May'3 l$.Iun": 
05Feb 13 IMMM 13 24Jun 93 21Ju1 eJ 
'tFKl!U 27Ap# 13 14Jadl3 1ss.. I! 
Z1DMn 2111«13 l~rt3 1lJu1tl 
:tIOK: 12 27May ~ 15Feb 13 1eJu1tl 
21o.c 12 04Jan 9J ISF.b 13 ,.'" 13 
05Jata 13 06Jan 93 19Feb IJ 22Feb 93 
0IJIan IJ 02fetl Sl W.b.3 19tbr a.:: 
22JI" 13 I1feb tl 15Mar I) 02Apr Sl 
12Feb13 25FebSl ll5.ArrtJ ZIiApf_~ 
_lib 13 18Mu 13 rtApr.3 tllby-.; 
lltbr S3 21Apr 91 19Jhy t3 1-4..b\ S3 
Z2AfM' U 07May 9J 15Jun tl ZSUt.tIa 13 
IQlby tJ PM.." 13 JO.Iun 13 J9Jul9J 
05.bn 53 1J..hJn 93 11 M Ir 13 09Aug ~ 
OS.iuItl I)I..MplJ I 1M.lrS.] 1l1li.,83 
11 .... " tl 12 ....... 93 17Mu t3 llM. Sl 
Olhbt3 2£Feb9J 22M-u.3 Z2AprSJ 
l1FebtJ 09Mar9) 05Apr93 CMIbJ~ 
.0Mar a 2lMa1 a3 05t.by 13 'a».y ~ 
24Ma,a 2tApr'3 19111 .. y83 ot..IuRSl 
22Apr tJ ,aIN, 13 10Jun t3 H.JuI93 
l IMa,.'3 20IIlay 93 14Ju193 15.JuI9.l 
11 .... ., tJ 0J.Jun 13 06JuI 9l lO..tuI U 
04Jun 13 23Jun 93 2tJu' 9J 09Aug 9J 
21Dtc t2 oas.pSJ laJun tl Ol Nov 13 
Z'OK 12 ..... " tl lLJun tJ lS.Jun 13 
05abttl )OM.u93 ZIJun'3 ZUul93 
OlAug 11 03Aug tJ t4Qct 13 150ct 13 
1&Aug 13 18Aug 13 01Nov'3 OtNo\!' 13 
G9SItp 13 09..." 13 Z60et 9J 260ct IQ 
01 Jut. tl 2S.JuI 91 2ZJuI n 10Sep 13 
0 1JuntJ lO.Juntl Z2Jul9J llAutll 
2J..11.m 13 22Jut t:J otAug IJ I)I:$ep 13 
23Ju1 '] 2Uu1 S3 09$1!:p 9) 10Sep 13 
27..1ull3 16Aug 13 13Scp 13 01()cn:J 
n ,JwUl 02Aug 13 I lSap tJ 17Sep ~ 
)O.IuI1J 16Aug 13 lss.p DJ 010ct 13 
03Aug 13 02Sep 13 29SofJ B3 190cltl 
03Auv 13 OSAug t3 29S.p 9] Il50ct 13 
l 1Aug13 02Sep1l (W()(:t91 19Oct93 
I &s.pSJ 11Jan'" 02Novt3 0JM.t, .. 
1&.Se-p13 ZlSepl3 O:>Nov.l 0tN0v13 
, . s.pll ~93 10N0\l'93 19.An1ot 
26No'1 t3 12.J1in'" 2OJ.n!M lIF.o M 
13Ju'114 17.JanSC 0l Nar'" 0JaI..u''' 
17,JaaN 17..Aa"" O')M3rW GJMarN 



HeadinQlTask Es. 
5 o.ys Per Column "'" 

n 'Od, 
~SIGN & CALC'S 

Forms N Abutment .. , 
Forms S Abutment .. , 
Falsework 5., 
""" .. , 
Parapet Strings 5dy 

APPROVAl. PHASE 
Form. N Abutment 7d, 
Form. S Abutment 7dy 
FalsaWOf'tl: 7d, 
Dock 7d, 
Strings 7d, 

PROCUREM.ENT 
Forms N Abutment 12dV 
Forms S Abutment 12., 
FalMwork 25dy 
Deck Materials 2Od, 
Parapet String. .s., 
HonaII Drainage &Od, 

NORTH ABVTItIENl 
Exc.vaflon .. , 
BUndin" 2d, 
Reinforcement to Ba .. ,ad, 
Formwork - Cone ea .. 15., 
Rev.rse Blinding 10dV 
Relnfmt to Well. 15dV 
Well Pour "1" 18dV 
Wall Pour "2" 11dV 
Wall Pour "3" 1-4dV 

SOUTH ABU!}gNT 
Exc.v_tlon <d, 
Blinding 2d, 
Reinfonamnet a. .. 'ad, 
Fonnwori< & Conc ea._ 15dV 
Reverse Blinding 10dV 
Relnfmt to Walls , .. , 
Well Pour "1" ,ad, 
PtIIc. In Drainage 2d, 
Wall Pour "2" 11dV 
Wall Pour "3" 14dV 

FALSEWORJ _ 
l.IoyStMpen Od, 
Oec:kSpan ,ad, 
Pert Strike & Prop 2d, 
Remove Props 1d, 
COmP'eta Strike 'd, 

DECK SPAN 
Deck out SPIn 18dy 
Rebar to Deck 22dV 
aean & Concrete 2d, 

EAST cANaEVER 
Reinforcement .. , 
Forms & Concrete 12dV 

WESTCANTIt.EVER 
Relnton:ement Od, 
Forms & Concrwta 12dy 

SLABS & ANALS 
BIIckfill Abutments 6d, 
Stabilizetion Period ... , 
Construct S*ab 28dV 
Final SRllg & Clear 3d, 
Hando .... r B6 Od, 

-----~----, I " I 
__ .. __ ._ - .. ___ - .. ___ - -I. ____ 1 _____ 1 _____ .... _____ ._. 

I I • , , I , , , I --.,-----..,-- · .. ----...,----..,----·-,----- .... ----r---- .. ----.·---
I I , , I , I , , • I 

- 1 - - - ... - - - - - , - - - -.., - - - - ',- - - - "," - - - "," - - - -r - - - - r - - - - f" - - - - r 

-t---~-· ---1-· ---:- -- --:-----:-- -- -:- ----:---- -:----- :--- _of ---
• ___ ... _____ .J ____ .J ____ .'. ___ .'. ___ .'. ____ ... ___ .'- ____ L ____ L ___ _ 

I I , I I I , • I , 

-- .. ----_ .. _-_ .... --- .... ----,- - --- •• ---- ... - - - .>-. ~- - - -. ----, , , 
I "'-_:~····· ~.-.- ~ .... ~ .... : .... -: ..... ~ .... ~ .... ~ -.. -~. ---. 
.j...II ,-----'"--- ... ----,-----,-- "," ---r----,.- - r----" 

~ - - - - - ~ - - - - -: - - - - -: - - - - -:- - - --;- - - - -;- - - - -:- - .. - :- - - - - f - - - -
_____ ~_-_.~_-- _: _____ ' _____ :_ . _: ____ L. 1. ____ ' 

- - - __ .. _ - __ ~ ___ - -<. - - - -1- ___ •• ____ ..... ____ >- ____ .. __ 

" , ,----.,--- --,..--_' .---_., ._-,_. 

I' •• ~."'~""'" 
----,- - ---,-- - - -,--- --,-- - - -,----r ___ or ----

: --··:··-··:-····:·····:··-·,:,···f···-f· 
____ ~ ____ -' __ • __ , _____ '- ____ '-. ___ L ____ " ____ L __ ._ . , . , , , , 

_ ..... ____ ......... ____ • _____ !- ___ .. ___ L ____ • 

" , -- . .,---- .. -----,-~---.----- .. ---- .. -- - .. ----,.----

~
-- .' •.... -: ..... : .... .: ..... : .... _,_ .. -,-_ .. 

-- --:-.-. -:. --- .: .. ::.::: -: ·t·::· t::· -t: ... 
____ ._ ----0-- ___ 0- ___ .... __ • _r ____ .. ___ _ , , , , 

.-,-----,----.,-----,.- r----r ----
, , , , , , 

- - - -,- - _. -,--- - -,- - - - -,---- - r -- - -r - ---

, , , , , , 
- - - -,- - - - -,- - - - - ,- - - - - r - - - - ... - - - r - - - -, " , , ',--- '-,- --.,.- . --or 
-. - -;- - - - -:- - ---~ -- - -~ --- - ~ -- -- ~ - -- -

_ .. _ _ _ L • __ _ 

_,_ • - - _,_ - - - - 0- ____ ... ___ .... ____ .. ___ _ , , , , 
;:::~::::~: ".,- - -,-·-~··-'·----r-- I---"r---­
- ·--·:-···-:·-···;····-:···-·,···-,·--·f ---

. - r _ - 'r - , - -

-r --,--
----~---~--

_" _J_ 

.. , 

- - - r ,- 1 -

-- -- ~ -- - { 

r - -. ,- -, , 
- - - • ,- - - 1 - • 

l _ J_ 

, , -
----r---,-· 
- - - ~ -- : 
---- .. ---~--

, I , " " .. --,-
.- -., --- .-':::: T:~ ____ J. __ ~ 

_··--,-----.-----r----r ---r---- -r-- ,--, , , , , 
- - -,- - - - -,- - - - -,- - - - -.- - - - - i :- - - -

- ---:- ----:- - - - -~ --- - ~ - - - - ~ ---- ____ l __ J ............ :-.~ .... ~.- .. ~--.- ....•... , 
..,.... --r----r-·--r·--- - 1 

- ~ 

'" 

- - - r - _. , '-

. - ~ -
.• , ____ ;._ .. ___ ~---- " ---J _ 

__ __ L ____ L ____ L __ 

, 

, , 
- r -- I 

----~ - -- ~ - . 
____ " _ ~ _ J _ , 

: ............ 1: -'---1.­. f· . ; .. 
____ L ___ J __ 

~---.- .. ..... ,-----,. .. .. ,,~-
- ~ -- - ~- -- -. ~ -- - -~- -- - ~.- - - -:- - - - -:- . - - -:- - - - -~ -- - -~ - - - - Ill - ~ - -- ~-, , , " "'" -,----,-----,-----,.'----,--.', .. - .. ,. ,-.---,-----,.----1' 

- - - - t - - - ~ - - - - - ~ - - - - ~ - - - - -: - - - - -:- - - - -:- - - - -:- - - - -~ -- - - ~ - - - - ~ - - ~ : 
, , 

A7 



>-00 

HndlnglTe.1I 
, o.YI Pet' C04umn 

DESIGN & CA! C '$ 
FonM N AbI.Itrr.nt 
Fo~ S Abutmlnl 
FelleWOftl 

""" PIf..,. Strings 
ApPROVAL mAR 

FonTIS N Abulmtnt 
Fonns S Abutment 
F ....... 

""" Strlngt 
f'ROCURfMfNT 
FOnM N Abutment 
FOITM S Abutment 
FllseworlI 
DKII Mst.rialt 

Blinding 
Rmforc_nt to BllSI 
Formwm· Cone 811 .. 
RlvefH Blinding 
RelnTn"l'llo Well. 
wen Pour -1-
W.IIPour ~2~ 
Well Pour -,-

SQllnt ABUTMENT 
Extlvetlotl .... ,'" 
Rlln'ortlr'Met SlSI 
FormworIt .. Cone BllSI 
RIVItl'SI allnding 
Reinfmt to Wells 
Well Pour ~ 1~ 
PIsetIIn Drelnage 
Well Pour -2~ 
WtllPour'­

FA' gwoRK 
lIy SIM"...t 
DKlIa~n 
Pel1 Stnke .. Prop 
Remove Pr. 
CompIets Slrlg 

oeCKSPAN 
Dlell Out SPIn 
Reblirto Oeck 

FQmlI" Concrete 
WEST CANIJt..EVER 
Relnfon::ement 
Forms .. Concrete 

SL ABS &. FINALS 
Beekftll Abutments 
Steblliutlon Psriod 
Construct SlIb 
Fil'llll Sl'IIIg .. Cwer 
HlndoVsrN 

_____ ~ _____ i _____ J _____ ~ _____ _ ~ _____ i ___ _ _ J _____ ~____________ _ ___ J ___ _ 

•• IIj)Oo( - - - - - - - - - ~ - - - - - + -----, --- -- ~ ----- - f - - - - - ; - - - - - ~ - - - - - - - - - - - - - - - - - - - - - - - ~ - - - -

- -:::=~::::::::::::::::~::~::::::::::::::::::::::::::::::::::::::::~:::::::::: 

--:::t:::::t:::::~:::::~:::::~::::::t:::::!:::::;:::::~:::::~::::::t:::::~~::: 
----~:::::~:::::::::::~:::::~::::::;:::::;::: : :~:::::::::::;::::::1:::::::::: 

r-----r-----T-----l-----~------T-----T-----7-----'-----~------I-----T----

::~:::::::::::::::::~::::::::::::::::::::::::::::::=:::::::::::: :::::::::: 
'" .. i~··t:::::t:::::t:::::~:::::~::::::~:::::~:::::~:::::j:::::~::::::I:::::~:::: 

~i!I!IiiW~ : :::;: ::: : ;:::::: ;: :: : :; ::: ::;: :: ::;::::: ;:: :::: I: : : : : ; :: :: 
::::-~:::::::::::~::::::~:::::!:::::~:::::~:::::~:::::: :::::~:::: 
---- - ------~-----~------~-----.-----~-----~-----~------+-----~----

----~:::::j::::::t:::::i:::::~:::::~:::::~::::::t:::::~:::: 
~"'" - - - - . - - - - - - • - - - - - • - - - . - • - .... ~ . - - ... - - - - . - i - . - - - . - .. -
~ ____ ~ ______ i _____ J _____ ~ _____ ~ _____ J ______ ~-----J----

--,-----~------+-----;-----~-----~-----~------t-----~----
---~----- - ------~-----~-----~-----~-----~------T-----~----____ _ __ _ _ ~ ____ ._~_. ___ ~ _____ J _____ ~. _ _ ___ _ _____ ~ _____ ~~ __ _ 

:==:====:~====:=~===:=~===:=~=:===~===:=:=:::::I::===::::: 
=1 ~j:Ji~~~~~~~[~- ~-j'i-::::; ::: = ~ ~ 1 ~ ~ ~ ~ ~ i ~ ~~ ~ ~ E ~ ~ ~ ~ ~ ~ ~~~~ ~~ ~ ~ ~ ~ ~ g ~ ~ ~ ~ 1 ~ ~ ~ ~ 

--;-~---~------~-----t-----~-----J------------~-----~-~--

:==~:,::=:~:===~=~::~::~:::::~:::::~:::::~==::::l:==::~=::= 
--~-~---~------~-----T-----:-----~·----~------+-----~----

~-::'f~f-~:": : : : :: :: : : : : : : : : : : : : : : : : : : : : : : :: : :: : :: : : I: : : : : : : : : : 
= -~------~-----+-----1-----J-----J------+-----+----

T-----T-----T-----~-----,------t-----~----

~~~~:;:::::~:::::~::::::I:::::;:::: 
J_. ~---- '- I----~------ -----l-----~------------t-----l----

--- ------- ----.~----~-,----~------ -:::::::::::::::::::::::t::::::::::
= =_ :_- =_ =.~ =_ :.- .. ~ =_ =_ ~:_ :_-:.:_ =_ =_ ~.:~. =_ =_ =_ :_- ~.: ;_,:_- '.~ =. =_ ;.: =1:::::: ::::: --.. -1- - - - - ~ - - -- - -:- - -- - - t - - - - - ~ - - --

- . _:~:~:::::~:::::~::::::f:::::~::::
.- -_.-: -. t-.·.·.:.·.~:-.-.-::-I._,,·-.. ··.·.~j:-.·. --- • , ,., j , .. " ----,-----,-----~------ ----------
:::::::::::~::::::::::::~:::::::::::: ---~~-----'-----~------l----------

-__ -T-_·_.,.--.·---.-~_,-.--.--.-.-".,· .. -· .. ---------•. -.-_-', •• --_-.-_ - - - - -~ - -- - - ~ - -- - - ~ - - - - - t -l: - - - i.- - - - - ~ - - -- -. , .• C'.... .

nt1 :1:: ii1n+ 1 n': 1 ni i: i f:" :,,"" i,~::: Ii:' ~:
, I " ", I'

271dy
'Od, 'Od, 'Od, 'd, Od,
'd,

12dy
'd,,
'd,
Od,
10dy 'd, 'd,
IOdy
1Idy 'Id,
"dy
20dy
Ud,
7Sdy
"Ody 'd,
'dy
lIdy
"d,
10dy
"dy
11dy
Hdy

"d,
123dy 'd,
'dy

11dy
Uldy
10dy
"dy
lldy
'd,
Hdy

"d,
171dy
Ody
11dy
'dy
'dy 'd, "d,
lldy
22dy
'd, 'Od, Od,

12dy
22dy Od,
12dy
12dy .. , , .. ,
28dy ,.,
Dd,

APPENDIXB

Deterministic Activity Network Temporal Analysis
(Activity-on-the-Arrow)

B.1 DEFINITIONS

t single estimate of mean activity duration time

T E earliest event occurrence time

T L latest allowable event occurrence time

ES earliest activity start time

EF earliest activity finish time

LS latest allowable activity start time

LF latest allowable activity finish time

B.2 TOTAL ACTIVITY SLACK (S)

S=LF-EF=h- EF (T L of the activity's successor event)

The amount of time by which the actual completion time of an activity can exceed its

earliest expected completion time without directly affecting the duration of the project.

B.3 ACTIVITY FREE SLACK (SF)

(TE of the activity's successor event)

The amount of time by which the actual completion time of an activity can exceed its

earliest expected completion time without affecting any other activity or event in the

network.

B.4 INTERFERING SLACK (IS)

IS = S - SF

219

The amount of flexibility in scheduling an activity that must be shared with succeeding

activities.

B.5 INDEPENDENT SLACK (IndS)

erE of the successor event, T L of the predecessor event)

Slack that can be used exclusively for an activity having no affect on preceding or

succeeding activities.

B.6 FORWARD PASS RULES

Rules

1. The earliest occurrence time of an
initial event in the network is taken

as zero.

2. Each activity begins as soon as its

predecessor event occurs.

3. The earliest event time is the largest
of the earliest finish times of the

activities merging to the event in

question.

B.7 BACKWARD PASS RULES

Rules

1. The latest allowable occurrence

time of a terminal event is set

equal to the earliest occurrence time
computed in the forward pass.

Formulae

T E = 0 (for the initial event)

ES = T E (for predecessor event)

EF = ES + t = T E + t

TE = largest of (EFl' EF2,"" EFn)
for an event with n merging activities

Formulae

T L = T E (for terminal event)

220

2. The latest allowable stan time

for an activity is its successor

event latest allowable time minus

the duration of the activity.

3. The latest allowable stan time

for an event is the smallest of

the latest allowable stan times of

the activities bursting from the

event in question.

221

LF = T L (for successor event)

LS = LF - t = TL - t

h = smallest of (LS\. LS2•···• LSn)

for an event with n bursting activities

APPENDIXC

Pure Exclusive-Or Generalised Activity Network Analysis Using

Flowgraph Theory

C.I INTRODUCTION

This appendix deals with the analysis of pure Exclusive-Or Generalised Activity
Networks. In these definitions an Activity-on-the-Arrow network is analysed.

A Generalised Activity Network consisting only of Exclusive-Or SNL input and output

nodes (an XOrGAN) can be analysed using flowgraph theory. The input side of nodes
in this case are Blank-Or. XOrGANs represent open flowgraphs with a single source

node s and a single sink node z. A network consists of N arcs. Each arc, i, is associated
with an independent, nonnegative random variable X; (i = 1, 2, ... , N) and a probability,

Pi, representing the probability that an arc, i, is performed given that its source node is

realised. Each X; has a known distribution function f;(t) on [0,00). Between sand z

there are K paths Pj (j= 1, 2, ... ,K). Arc ie Pj if arc i lies on path Pj.

A First Order Loop is defined as a path in which the start node is also the finish node.

An nth Order Loop is defined as n 'non-touching first order loops. In flowgraph theory

the value of a transmittance through each path or loop is the product of the
transmittances within that route.

One of the most important equations within flow graph theory is the Topological

Equation (C.l).

~

H = 1- L (_1); L;

;=1

where L; = L ilh
order loops

(C.l)

In a closed flowgraph (one composed entirely of loops) H = 0. In open flowgraphs,
however, H ~ ° and is used to calculate T, the transmittance through a network between

nodes s and z, using Mason's Rule (C.2).

222

K

[L (Pi x Lnon-touching loops)]
T = __ io::="'I ____ --;-:: _____ _

H
(C.2)

~

where L non-touching loops = 1 + L (-l~ I.
. 1 J
J=

and ~ is the sum of the jth order loops not touching Pi'

C.2 MOMENT GENERATING FUNCTIONS

Mason's Rule and the Topological Equation apply to networks in which the

transmittances along arcs are multiplicative. Although this is the case for arc
probabilities in Generalised Activity Networks, the time and cost elements are additive.

In order to enable the time element to be handled by flow graph theory it requires
transforming into a multiplicative form. Pritsker and Happ (1966) proposed using

Moment Generating Functions (MGFs) for this operation. Their reasoning behind this

was that the resultant transmittances 'form a system of linear independent equations

and, hence, can be reduced to a single W-function topology equation of flowgraph
theory'.

If e represents the exponential constant, then the time associated with arc 1 IS

characterised by the MGF:

f SI
M.(s) = e f.(t) dt

I I
(C.3)

o

The distribution function, fi(t), can take many forms all of which can be converted into

the corresponding MGF using equation C.3. For example, equation CA represents the
MGF of a constant duration to' The MGF of the Normal distribution with mean J.1 and

standard deviation cr is given in equation C.5, and equation C.6 represents the MGF of
the Uniform distribution with limits a and b.

223

I 2 2
Sll~ sa

M.(s) = e 2
I

sb sa
e - e

M(s) = (b)
I - a s

(C.4)

(C.5)

(C.6)

The second stage of the transfonnation into multiplicative fonn is to generate the (J)­

function, wi(s), of arc i (C.7).

(C.7)

By converting each arc duration into an equivalent (J}-function one can employ Mason's

Rule to reduce an XOrGAN into a single equivalent arc, e, between nodes s and z (figure

C.l).

~f--_e --I.~0

Figure C.I Equivalent Arc

If one analyses this equivalent arc then one has the time characteristics of an entire

network. we(s) represents the (J}-function of this equivalent arc. The arc has probability,

Pe, associated with it and MGF of the time distribution, Me(s). Thus:

We(s) = PeMe(s) (CS)

As all MGFs reduce to unity at s=O the value of Pe can be calculated from:

We(O) = PeMe(O) = Pe (C9)

Rearranging equations CS and C.9 leads to:

M (s)
e

(C.lO)

The nth derivative of Me(s) evaluated at s=O yields the expected value of the nth power

of te - the duration of the equivalent arc. The second derivative enables the standard

224

deviation of this duration to be calculated. Equations C.II and C.12 show these

derivatives.

E(te) = dd M (S)I =0 s e s-

dO
E(t~ =- M (S)I

o e =0 ds s-

(C.II)

(C.12)

Thus, the required time characteristics of the network can be calculated.

C.3 EXAMPLE

b

si---------~~~~--------__ ~z
a c

Figure C.2 Example Network

As an example take the simple XOrGAN shown in figure C.2. Each arc has associated

with it the following characteristics:

Probabil ity Time Distribution
Function

a Pa = I Constant, fit) = ta

b Pb = I - Pc Negative Exp, fb(t) = Ae-At

c Pc = I - Pb Constant, fc(t) = le

The w-function of the time transmittances through each arc a, b, c are wa' cut, and Olc
respectively and, from equations (C.3) and (C.7), are evaluated as:

225

From Mason's rule the equivalent transmittance, T, between nodes s and z is:

T=
0000

a c

l-~
= 00 (s)

e

Pc
Now P = 00 (0) = -- = 1

eel - P
b

.. Me(s) = ooe(s) and thus

d I Pb
E(t) = - M (s) = t + t +--=--

e ds e s=o a c (l-p) "-

and

(i = E(t2) _ E(t)2 = 1
e e e 2 2

(l-p),,­
b

from (C.ll) and (C.12).

b

226

APPENDIXD

The Minimum of a Finite Set of Normal Random Variables

0.1 INTRODUCTION

This appendix is based on the work presented in Dawson (1993 and 1994c) which are

developments from Clark's work [Clark 1961bl.

x, Y, and Z are three independent Normal distributions with means J!x' liy' liz and

standard deviations o"x' O"y' o"z respectively. Equations D.1 and D.2 are defined from

Clark (1961b). P denotes the coefficient of linear correlation between X and Y (p(X,Y».

2 2 2
a =cr +cr -2cr cr P x y x y

(DJ)

a (D.2)

If p() denotes the coefficient of linear correlation then

PI = p(X,z)

P2 = p(Y,z)

(D.3)

(D.4)

Equations D.5 and D.6 (adapted from Clark (1961 b» represent the first two moments

(VI and v2) about the origin of the distribution of the maximum of the two distributions

X and Y. <1>(x) represents the standard Normal integral and '¥ (x) the standard Normal

distribution function.

VI = <1>(a) (11 - 11) + 11 + a'¥(a) (D.5) x y y

2 2 2 2 2 2
v2 = <1>(a)(1l - 11 + cr - cr) + 11 + cr + (11 + 11)a'¥(a) (D.6)

xyxy yy xy

It follows that the standard deviation (crmax) of this maximum distribution can be

defined as shown in equation D.7.

227

(D.7)

Clark went on to show how the maximum of n distributions could be calculated by

employing equations D.8 and D.9.

max(X,Y,z, ...) = max(max(max ... «(X,Y),Z), ... » (D.8)

<1>(0.) (cr PI - cr P2) + cr P2 p(Z, max(X, y)) = x y y

J Vz - v~
(D.9)

D.2 MINIMUM

Although Clark leaves his work at the maximum of a finite set of random variables it

does lead to some equally important results. Adapting equations D.S and D.6 produces
formulae for calculating the first and second moments of the distribution of the

minimum of a finite set of Normal random variables (equations D.1O andD.ll).

VI = <1>(0.) (11 - 11) + 11 - a'P(o.) y x x
(D. 10)

2 2 2 2 2 2
vz =<1>(o.)(1l -11 +cr -cr)+1l +0 - (11 +1l)a'P(o.)

yxyx xx xy (D. 11)

Similarly, equations D.12 and D.13 represent the equivalent formulae required to

calculate the minimum of three or more Normal random variables.

min(X,Y,Z, ...) = min(min(min ... «(X,Y),z), ... » (D.12)

(D. 13)

Equation D.14, from Clark (1961 b), is provided for completeness. Both distributions A

and B are independent of the other three distributions in this equation. The proof is

228

provided in Clark (1961 b).

p(X+A,Y+B)
p(X, y)jV(X) jV(Y5
J V(X+A)J V(Y+B)

0.3 EXAMPLE

0.3.1 Overview

(D. 14)

Take, as an example, the problem of finding the shortest route through a directed, acyclic

network in which the disoibution times of the arcs are Normally disoibuted with known

means and standard deviations. For the minimum duration we assume that events occur

as soon as their earliest incoming arc completes, ie node inputs are represented by c-Or
in this case. Figure D.l, adapted from Clark (196Ib), represents just such a network. It

is intended to find the disoibution parameters of the minimum event time of node D.

Thus, one is interested in calculating the mean (E(D» and variance (V(D» of this

minimum completion time.

C

Figure 0.1 Example Network

0.3.2 Solution

Clearly E(A) = 0, V(A) = 0

E(B) = E(A)+E(b) = E(b) known

V(B) = V(A)+V(b) = V(b) known

229

- ----------------- ---- -~

The event time of C is distributed as the minimum of (a, B+c).

V(C), E(a) and V(a) are required which are known.

To calculate E(C) and

E(B+c) = E(B) + E(c) and V(B+c) = V(B) + V(c) are also required which are again all
known. p(a, B+c) = 0 as 'a' is independent of B+c. Therefore, by employing

equations D.I, D.2, D.IO, and D.II, both E(C) and V(C) can be calculated.

It only remains to calculate the expected completion time of event D (E(D» and the
variance (V(D» of this time. The event time of D is distributed as the minimum of

(C+d, B+e). The estimates of the expected values and variances of C+d and B+e are
similar to those made earlier. By employing equations D.13 and D.14 in a manner

similar to Clark, it is also possible to calculate p(C+d, B+e). Thus E(D) and V(D) can
be calculated directly.

230

APPENDIXE

Typical Output from the BestFit™ Data Analysis Package

Statistics for PoisBLl

Minimum = 74.0

Maximum = 128.0
Mode =97.0

Mean = 99.314
Std Deviation = 9.557654

Variance = 91.348753
Skewness = 0.066171

Kurtosis = 3.067222
Input Settings:

[High Precedence, Low Parallelism, One Hundred Activities,

Poisson Activity Temporal Functions]

Type of Fit: Full Optimisation
Tests Run: Chi-square K-S Test

Histogram:
Min: 74.0

Max: 128.0
Pl.O: 2.006018e-3

P2.0: 2.006018e-3
P3.0: 2.006018e-3

P4.0: 2.006018e-3
P5.0: 4.012036e-3

P6.0: l.OO300ge-3
P7.0: 6.018054e-3

P8.0: 5.015045e-3
P9.0: 0.01003

PIO.O: 6.018054e-3
PIl.O: 0.017051

PI2.0: 0.015045
P13.0: 7.021063e-3

PI4.0: 0.02006

PI5.0: 0.016048

PI6.0: 0.022066
PI7.0: 0.038114

A-DTest

231

PI8.0: 0.037111

PI9.0: 0.027081
P20.0: 0.032096

P21.0: 0.031093
P22.0: 0.036108

P23.0: 0.042126
P24.0: 0.054162

P25.0: 0.048144
P26.0: 0.036108

P27.0: 0.036108
P28.0: 0.042126

P29.0: 0.035105
P30.0: 0.039117

P31.0: 0.036108

P32.0: 0.031093

P33.0: 0.033099
P34.0: 0.033099

P35.0: 0.026078
P36.0: 0.027081

P37.0: 0.019057
P38.0: 0.022066

P39.0: 0.017051
P40.0: 8.024072e-3

P41.0: 0.019057
P42.0: 0.01003

P43.0: 0.012036
P44.0: 5.OJ504Se-3

P45.0: 3.009027e-3
P46.0: 7.021063e-3

P47.0: 3.009027e-3
P48.0: 3.009027e-3

P49.0: 2.oo6018e-3
P50.0: 2.oo6018e-3

PS 1.0: 2.0060 18e-3
P52.0: 1.00300ge-3

P53.0: l.oo300ge-3
P54.0: 3.009027e-3

P55.0: 2.oo6018e-3

#Classes = 55.0

---- .. -

232

Filtering:
X minimum 74.0

X maximum 128.0

BestFit Results

Function C-S Test Rank K-S Test Rank A-DTest

Rank
Poisson(99.31) 0.052878 I N/A N/A

Erlang(l07,0.93) 0.052969 2 0.036854 3 0.792257 3

Gamma(108,0.92) 0.053475 3 0.0362 2 0.776855 2

Lognonnal(99.32,9.66) 0.054618 4 0.042639 5 1.135987 4

Logistic(99.03,5.84) 0.055024 5 0.035524 I 1.765252 5
Nonnal(99.31,9.56) 0.059323 6 0.037459 4 0.717108 I

Weibull(9.67,103) 0.144159 7 0.095192 7 13.849956 7

Chisq(99) 0.193964 8 0.132912 8 34.21684 8
NegBin(l,0.00997) 6.550607 9 N/A N/A

Geomet(0.00997) 6.550607 1O N/A N/A

Beta(0.21 ,0.87)*54+74 449268.2 11 0.80116 9 1691.95918 9

Binomial(128,0.78) 5.445e+8 12 N/A N/A

Triang(74,97.6,128) le+34 13 0.078903 6 10.790222 6

HypeIDeo(135,129,292) le+34 14 N/A N/A

233

APPENDIX F

Generating Pseudo Random Numbers from Known Distributions

F.l INTRODUCTION

Almost all computers provide a means of generating pseudo random numbers from a
'continuous' Rectangular distribution of some finite range. The statistician, however,

often needs to simulate samples from other, more popular distributions. The algorithms
presented represent ways of generating random samples from known continuous and

discrete distributions given that a random sample is available from a continuous

Rectangular distribution on [0,1].

Uj (i = I, 2, ... , N) are N independent random samples from the Rectangular

distribution on [0, I].

X represents one sample from the distribution in question.

F.2 CONTINUOUS DISTRmUTIONS

F.2.1 Normal Distribution [Rubinstein 1981, p90]

N(jl,a2) is Normally distributed with mean, Il, and variance, a2 .

12

Y= L Uj - 6
j =1

x = Il + aY

F.2.2 Lognormai Distribution [Law and Kelton 1991, p492]

LN(jl,a2) is a Lognormal distribution with mean Il and variance a2.

234

)

2
Generate Y - N (~" crI)

X=eY

F.2.3 Rectangular Distribution

R(a,b) is a Rectangular distribution with range [a,b].

F.2.4 Triangular Distribution (adapted from Law and KeIton (1991), p494)

T(a,m,b) is a Triangular distribution with range [a,b] and mode m.

If Y S; (m - a) then X = a + J Y,<m - a)

otherwise X = b - J (b - m)(b - a - Y)

F.2.S Gamma Distribution [Cheng 1977]

G(a,~) is Gamma distributed with shape parameter, a (<Dl), and scale parameter, ~.

Initialise
1

a

J 2a- 1

1. Generate V, and V 2

b = a -In 4,

235

1
q=a+-,

a
9 =4.5, d=I+1n9

2
Z= U, U2 , W=b+qV-Y

2. If W + d - ez ~ 0 or W ~ In Z then X=Y

otherwise return to step 1.

F.2.6 Beta Distribution [Rubin stein 1981, p81l

~(etl IJ.2) is Beta distributed with parameters etl and et2'

Generate YI - G(etl ,1)

Y2 - G(et2 ,I)

F.3 DISCRETE DISTRIBUTIONS

F.3.1 Bernoulli Distribution [Law and Kelton 1991, pp496-497l

Bern(p) is a Bernoulli distribution that represents a random occurrence of two possible

outcomes. p is the probability of one outcome.

if U I S; p then X=I

otherwise X=O

F.3.2 Discrete Uniform Distribution [Law and Kelton 1991, p497l

DU(i,j) is a Discrete Uniform distribution on [iJl.

236

F.3.3 Poisson Distribution (adapted from Ahrens and Deiter (1974»

P(A.) is a Poisson distribution with mean A..

Initialise L = e-", p = 1, k =-1

repeat

p = p Vk+2

k=k+l

until p < L

X=k

F.3.4 Binomial Distribution [Law and Kelton 1991, p502]

Bin(t,p) is a Binomial distribution representing the number of successes of probability p

in t independent Bernoulli trials.

Generate Yj - Bern(p) (i = 1,2,3, ... , t)

F.3.S Geometric Distribution [Law and Kelton 1991, p502)

Geom(p) is a Geometric distribution representing the number of failures before a

success of probability p occurring in a sequence of independent Bernoulli trials.

1_ In VI . 1
X= L \n(l- p~

F.3.6 Negative Binomial Distribution [Law and Kelton 1991, p503]

NB(s,p) is a Negative Binomial distribution representing the number of failures before

the sth success of probability p in a sequence of independent Bernoulli trials.

237

Generate 'I'i. - Geom(p) (i = 1,2, 3, ... , s)

238

Appendix G

Selected Company Addresses

Aran Lld
Rivermead, Pipers Way,

Thatcham, Berks
RG134EP

Asta Development Corporation Ltd

5 SI. Andrew's Court

Wellington Street

Thames, Oxon

OX93WT

British Telecom

Martlesham Heath
Ipswich

Suffolk

Complete Project Management Lld
Dovetail House

Wycombe Road

Stokenchurch

Bucks
HP143RQ

Computer Associates Plc

183/187 Bath Road

Slough, Berks

SLl4AA

Deepak Sareen Associates
Bydell House

Sudbury Hill

Harrow-<Jn--the-Hill

Middlesex
HA13NJ

239

GP'T Telecommunications Limited
Beeston

Nottingham

Hoskyns Group Plc
Hoskyns South Bank

95 Wandsworth Road
London

SW82HG

IBM (UK) Ltd
76 Upper Ground

London
SE19PZ

John Cocker ham and Associates
Slington House
Rankine Road

Daneshill Estate West
Basingstoke

Hampshire
RG240PH

LBMS
Evelyn House
62 Oxford Street

London
WIN 9LF

Lucas Management Systems

Artemis House
219 Bath Road

Slough
Berkshire

SL14AA

•

240

Leach Management Systems

Temple House
6-7 The Causeway

Chippenham

Wilts

SN153BT

Mantix Systems Lld

Mantix House

London Road

Bracknell
Berks

RG122XH

Microplanning International Lld
34 High Street

Westbury-<ln-Trym

Bristol

BS93DZ

Microsoft
Microsoft Place

Winnersh Triangle

Wokingham

Berks
RGll 5TP

OPL
5 The Spinney
Tattenham Corner

Epsom
Surrey

KTl85QX

Palisade Corporation
31 Decker Road

Newfield

New York

14867

241

PMP (Project Management Professional Services Lld)
PMP House

Gardner Road
Maidenhead

Berks
SL67RJ

PSDI (UK) Lld

No 5 Woking Eight
Forsyth Road

Woking
Surrey

GU215SB

Panorama Software Corporation Lld
PO Box 2128

Walton Court
Station Avenue

Walton on Thames
Surrey
KTI21YG

Pariss Lld
Premier House

15 Wheeler Gate
Nottingham

NGI2NN

People in Technology Lld
Epworth House

25 City Road
London

ECIY lAA

242

Primavera Systems Inc

Unit 2
2nd Floor

Elsinore House
77 Fulham Palace Road

Hammersmith
London

W68JA

Risk Decisions Lld
27 Park End Street

Oxford
OXIIHU

Scitor Corporation

393 Vintage Park Drive
Suite 140

Foster City
CA 94404

TBV Consult
The Lansdowne Building

Lansdowne Road

Croydon
CR02BX

Welcom Software Technology International

South Bank Technopark
90 London Road

London

SE16LN

243

APPENDIXH

Questionnaire Sent to a Number of Midlands' Companies

I What kinds of developments are you involved with?

2 How many person days (or months) are involved in a typical project?
3 Typically how many staff are involved?

4 Typically how many separate tasks do you break a project into for planning
purposes?

5 Do you use any project management tools for planning (Y ft{)?

6 If so which tool(s) do you use (for example PMW, InstaPlan, Open Plan,

Cascade)?

7 If not-

7.1 Why not?

7.2 How do you decide when to do things?

7.3 How do you estimate project costs and durations?
8 Who is involved with planning your projects?

9 Do you attempt to assess risks (cost and time uncertainties) in your projects (Y/N)?
10 If so - what methods do you use?

II Do you find your current methods allow you to adequately ascertain the risks of

any cost and time overruns in a project?

12 Do you use simulation to analyse your project plans (Y IN)?

13 If so - how do you decide how many simulations to perform?

Below are some theoretical ideas for project management tools that offer certain

facilities:

a) An ability to plan for repetitive tasks by allowing managers to represent these in
project plan neTWorks (PERT neTWorks) as loops.

b) An ability to identify project risk points more visibly in PERT neTWorks.

c) An ability for PERT neTWorks to modify themselves dynamically as information

is provided form earlier phases in the project life cycle.

d) An ability to plan, and hence evaluate, alternative project outcomes (including

terminating the project).

e) An ability to model activities using several different kinds of cost and time

functions.

f) An ability to plan activities that depend on previous outcomes in the project.

244

References

~

Abdel-Hamid, T.K. (1988) 'Understanding the "90% Syndrome" in Software Project

Management: A Simulation-Based Case Study', The Journal of Systems and Software,

\018, pp319-330

Adlakha, V.G. (1987) 'A Monte Carlo Technique with Quasirandom Points for the

Stochastic Shortest Path Problem', American Journal of Mathematical and Management

Sciences, Vol 7(3 and 4), pp325-358

Adlakha, v.G. (1992) 'An Empirical Evaluation of Antithetic Variates and Quasirandom

Points for Simulating Stochastic Networks', Simulation, VoI58(1), pp23-31

Adlakha, v.G. and Arsham, H. (1992) 'A Simulation Technique for Estimation in
Perturbed Stochastic Activity Networks', Simulation, VoI58(4), pp258-267

Adlakha, V.G. and Kulkarni, V.G. (1989) 'A Classified Bibliography of Research on

Stochastic PERT Networks: 1966-1987', INFOR (Canada), VoI27(3), pp272-296

Adler, R. (1992) 'Blackboard Systems', Encyclopedia of Artificial Intelligence, Ed.
Shapiro, S. c., Vol 1, John WHey and Sons Incorporated, New York, pp116-126

Agresti, W.W. (1986a) 'New Paradigms for Software Development', IEEE Computer

Society Tutorial EH0245-1, ISBN 0-8186-0707-6

Agresti, w.w. (l986b) 'Framework for a Flexible Development Process', IEEE
Computer Society Tutorial, EH0245-1, ISBN 0-8186-0707-6

Ahmad, M. Opdyke, W.E Kim, M.W. and Zislis, M.W. (1988) 'A Knowledge Based

Approach to Assist in Telecommunications Software Project Management', IEEE
International Conference on Communications, pp1455-1458

Ahrens, J.H. and Dieter, U. (1974) 'Computer Methods for Sampling from Gamma,

Beta, Poisson and Binomial Distributions', Computing, VoI12(3), pp223-246

Alavi, M. (1984) 'An Assessment of the Prototyping Approach to Information Systems

Development', Communications of the ACM, VoI27(6), pp556-563

Alien, J.F. (1983) 'Maintaining Knowledge About Temporal Intervals',

Communications of the ACM, VoI26(11), pp832-843

247

Alien, J.F. and Hayes, P.J. (1985) 'A Common-Sense Theory of Time', 9th

International Conference on AI, DCAI-85, pp528-531

Anderson, T. W. (1971) 'The Statistical Analysis of Time Series', John Wiley and Sons
Incorporated, New York

--,
Anklesaria, K.P. and Drezner, Z.V.1. (1986) 'A Multivariate Approach to Estimating the

Completion Time for PERT Networks', Journal of the Operational Research Society,

\b137(8), pp81l-815

Badiru, A.B. (1991) 'A Simulation Approach to PERT Network Analysis', Simulation,
\b157(4), pp245-255

Ballot, M. (1989) 'Probability and PERT Avoiding Errors Through Simulation',

Modelling and Simulation on Microcomputers, Society for Computer Simulation,
International Proceedings of the SCS Western Multi Conference, San Diego, CA, USA,

4-6Jan,ppI4-18

Bames, D. and Brown, P. Ed. (1986) 'Software Engineering 86', IEE Computing Series

6, Peter Peregrinus

Bames, M. (1989) in 'Have Project Will Manage', BBC2

Beierie, C. Olthoff, W. and Voss, A. (1986) 'Towards a Formalisation of the Software

Development Process', in Bames and Brown (1986)

Bellas, c.J. and Samli, A.C. (1973) 'Improving New Product Planning with GERT
Simulation', California Management Review, VoI15(4), ppl4-21

Benington, H.D. (1956) 'Production of Large Computer Programmes', Proceedings

ONR, Symposium on Advanced Programming Methods, pp15-27

Berman, E.B. (1964) 'Resource Allocation in a PERT network Under Continuous
Activity Time-Cost Functions', Management Science, VoI1O(4), pp734-745

Blaney, J. (1989) 'Managing Software Development Projects', Proceedings of the

Project Management Institute Annual Seminar, Atlanta, USA, 7-11 October, pp41O-417

248

Boehm, B.W. (1981) 'Software Engineering Economics', Prentice-Hall Incorporated,

Englewood Cliffs, New Jersey

Boehm, B.W. (1984) 'Software Engineering Economics', IEEE Transactions on
Software Engineering, Vol 10(1), pp4-21

Boehm, B.W. (1988) 'A Spiral Model for Software Development and Enhancement',

Computer, VoI21(5), pp61 -72

Bowen, R.B. (1990) 'Software Project Management Under Incomplete and Ambigious
Specifications', IEEE Transactions Engineering Management (USA), VoI37(l), pplO-

21

Brachman, R.J. and Levesque, H.J. Ed. (1985) 'Readings in Knowledge

Representation', Magan Kaufmann Publishers, Los Altos

Brooks, F.P. (1987) 'No Silver Bullet, Essence of Accidents of Software Engineering',

Computer, VoI20(4), pplO-19

Brown, A. W. (1988) 'Integrated Project Support Environments', Information and
Management, VoI15(3), pp125-134

Brown, A.W. Robinson, D.S. and Weedon, R. (1986) 'Managing Software

Development', in Bames and Brown (1986), pp 197-225

Brown, R. (1988) 'Knowledge-Based Scheduling and Resource Allocation in the

CAMPS Architecture', Intelligent Manufacturing, The Benjarnin/Cummings Publishing

Company Incorporated, California, pp165-l86

Burgess, A.R. and Killebrew, J.B. (1962) 'Variation in Activity Level on a Cyclical

Arrow Diagram', Journal of Industrial Engineering, Vol 13(2), pp76-83

Burt, J.M. and Garman, M.B. (l97la) 'Conditional Monte Carlo: A Simulation

Technique for Stochastic Network Analysis', Management Science, VoI18(3), pp207-
217

Burt, J.M. and Garman, M.B. (197lb) 'Monte Carlo Techniques for Stochastic PERT

Network Analysis', INFOR, VoI9(3), pp248-262

249

,
I ,

-'

Burt, J.M. Gaver, D.P. and Perlas, M. (1970) 'Simple Stochastic Networks: Some

Problems and Procedures', Naval Research Logistics Quarterly, Vol 17, pp439-458

Butler Group (1993) 'Dynamic Systems Development', Concept Papers Number 5,
September, Hull

Carter, G.D. Clare, C.P. and Thorogood, D.C.J. (1987) 'Engineering Project
Management Techniques and their Application to Computer Projects', Software

Engineering Journal, January, pp 15-20

Chae, K.C. and Kim, S. (1990) 'Estimating the Mean and Variance of PERT Activity
Time Using Likelihood-ratio of the Mode and the Midpoint', lIE Transactions, Vol

22(3), pp 198-202

Chapman, K.P. and Manesero, A. (1988) 'An Intelligent Knowledge-Based System for
Construction Project Management', European Coordinating Committee for AI Expert

Systems and Their Applications, 8th International Workshop, pp505-514

Cheng, R.C.H. (1977) 'The generation of Gamma variables with non-integral shape
parameters', Applied Statistics, Vo126, pp71-75

Clark, C.E. (1961 a) 'The Optimum Allocation of Resources Among Activities of a

Network', Journal of Industrial Engineering, Vol 12, ppll-17

Clark, C.E. (1961 b) 'The Greatest of a Finite Set of Random Variables', Operations
Research, Vol 9(2), pp 145-162

Clark, K.L. and McCabe, F.G. (1982) 'Prolog: A Language for Implementing Expert

Systems', Machine Intelligence, Vol 2, pp455-470

Conover, W.J. (1971) 'Practical Non-Parametric Statistics', John Wiley and Sons
Incorporated, New York

Conte, S.D. Dunsmore, H.E. and Shen, v:Y. (1986) 'Software Engineering Metrics and

Models', The Benjamin/Cummings Publishing Company Incorporated,California

Cook, T.M. and Jennings, R.H. (1979) 'Estimating a Project's Completion Time
Distribution Using Intelligent Simulation Methods', Journal of the Operational

Research Society, Vol 30, pp 1103-1108

250

.;

Dawson, C.W. and Dawson, R.J. (1993b) 'Simulation of Stochastic and Generalised

Actvity Networks', International AMSE Conference, London, Proceedings Vo13, pp41-

55

Dawson, C.w. and Dawson, RJ. (1994a) 'A Clarification of Node Representation in

Generalised Activity Networks for Practical Project Management', International Journal
of Project Management, VoI12(2), pp81-88

Dawson, C.W. and Dawson, R.J. (1994b) 'A Comparative Simulation of Pure

Probabilistic and Generalised Activity Networks', Simulation, The Journal of the
Society for Computer Simulation (submitted)

Dawson, C.W. and Dawson, RJ. (1994c) 'Towards More Flexible Management of

Software Systems Development Using Metamodels', Software Engineering Journal
(submitted)

Dean, T.L. and McDermott, D.V. (1987) 'Temporal Data Base Management', Artificial

Intelligence, VoI32(1), ppl-55

DeKleer, J. (1984) 'Choices Without Backtracking', American Association for AI,
Proceedings of the National Conference on AI, August 6-10, pp79-85

DeKleer, J. (1986a) 'An Assumption-Based TMS', AI Journal, Vo128, pp127-162

DeKleer, J. (1986b) 'Extending the ATMS', AI Journal, Vo128, pp163-196

DeKleer, J. and Williams, B.C. (1987) 'Back to Backtracking, Controlling the A TMS',

Proceedings of the 5th National Conference on AI, Magan Kaufmann Publishers, Los
Altos, pp91O-917

DeMarco, T. (1982) 'Controlling Software Projects: Management, Measurement and

Estimation', Yourdon Monograph, Prentice-Hall Incorporated, Englewood Cliffs, New
Jersey

DeMarco, T. and Lister, T. Eds. (1990) 'Software State-of-the-Art', Dorset House

Publishing, New York

Department of the Navy (1958) 'Summary Report, phase 1', Special Projects Office,

Washington DC

252

DOD (1975) 'Work Break-down Structures for Defence Material Items', Military

Standard 881a, Department of Defenses, Washington DC

Dodin, B. (1986) 'Minimum Number of Arcs in Conditional Monte Carlo Sampling of
Stochastic Networks', Canadian Journal of Operations Research and Infonnation

Processing, INFOR, VoI24(1), pp33-44

Donaldson, w.A. (1964) 'The Estimation of the Mean and Variance of a PERT Activity
Time' , Operations Research, pp382-385

Dooley, A.R. (1964) 'Interpretations of PERT', Harvard Busines Review, March/April,

pp160-168

Doyle, J. (1978) 'Truth Maintenance System for Problem Solving', International Joint
Conference on Artificial Intelligence, UCAI-78, p247

Doyle, J. (1979a) 'A Glimpse of Truth Maintenance', AI: An MIT perspective, Voll,

MIT, ppI17-135

Doyle, J. (1979b) 'A Truth Maintenance System', Artificial Intelligence, Vol 12(3),
pp231-272

Dressier, O. (1988) 'Extending the Basic ATMS', Proceedings of 8th European

Conference on AI, Munich, August 1-15, ISBN 0273087983, International Library,
pp535-540

Drezner, S.M. and Pritsker, A.A.B. (1966) 'Network Analysis of a Count-Down', The

Rand Corporation, RM-4976-NASA, Santa Monica, California

Eisner, H. (1962) 'A Generalised Network Approach to the Planning and Scheduling of

a Research Project', Operations Research, Vol 10, pp115-125

Elmaghraby, S.E. (1964) 'An Algebra for the Analysis of Generalised Activity

Networks', Management Science, VoI1O(3), pp494-514

Elmaghraby, S.E. (1966) 'On Generalised Activity Networks', Journal of Industrial

Engineering, Vol 17 (11), pp621-631

253

Elmaghraby, S.E. (1967) 'On the Expected Duration of PERT Type Networks',

Management Science, VoI13(5), pp299-306

Falla, M. (1991) 'A Measured Approach to Method', Computer Weekly, April, plO

Fisher, D.L. Saisi, D. and Goldstein, W.M. (1985) 'Stochastic PERT Networks: OP

Diagrams, Critical Paths and the Project Completion Time', Computers and Operations
Research, VoI12(5), pp471-482

Fishman, G.S. (1985) 'Estimating Network Characteristics in Stochastic Activity

Networks', Management Science, Vo15, pp579-593

Foster, A.T. (1987) 'Artificial Intelligence in Project Management', Chartered
Mechanical Engineering, VoI 34(3), pp44-46

Fulkerson, D.R. (1962) 'Expected Critcal Path Lengths in PERT networks', Operations

Research, Vol 10, pp808-817

Garman, M.B. (1972) 'More on Conditional Sampling in the Simulation of Stochastic

Networks', Management Science, VoI19(1), pp90-95

Gilb, T. (1988) 'Principles of Software Engineering Management', Addison-Wesley
Publishing Company, Wokingham

Golenko-Ginzburg, D. (1988) 'On the Distribution of Activity Time in PERT', Journal

of the Operational Research Society, VoI39(8), pp767-77I

Goodman, L.J. and Love, R.N. Ed. (1980) 'Project Planning and Management - An
Integrated Approach', Pergarnmon Press, New York

Gotthardt, H. and Winkelmann, R. (1983) 'Software Development', John WiJey and

Sons Incorporated, New York

Grady, R.B. and Caswell, D.L. (1986) 'Software Metrics: Establishing a
Company-Wide Program', Prentice-Hall Incorporated, Englewood Cliffs, New Jersey

Grey, S. (1994) Risk Manager, ICL Enterprises, Wokingham, Berks, Pers Comm

254

Guerrieri, E. (1987) 'Expen Systems and Prolog in Multiple Project Management',

Knowledge Based Expen Systems in Engineering: Planning and Design, Southampton
Computational Mecahnics Publications, pp I 85-209

Hagstrom, J.N. (1990) 'Computing the Probability Distribution of Project Duration in a
PERT Network', Networks, Vo120, pp231-244

Han, A. (1989) 'Knowledge Acquisition for Expen Systems', Kogan Page

Hayes-Roth, B. (1983) 'The Blackboard Architecture: A General Framework for

Problem Solving?', Repon Number HPP-83-30, Depanment of Computer Science,
Stanford University

Hayes-Roth, B. (1984) 'BBI: An Architecture for Blackboard Systems that Control,

Explain and Learn About Their Own Behaviour', Repon Number Stan-CS-84-1034,
Depanment of Computer Science, Stanford University

Hayes-Roth, B. (1985a) 'A Blackboard Architecture for Control', Journal of Anificial

Intelligence, Vo126, pp251-321

Hayes-Roth, B. (1985b) 'A BB Architecture for Control', Anificial Intelligence - An

International Journal, Vol 26(3)

Hays, w.L. (1988) 'Statistics', 4th Edition, Holt, Rinehan and Winston Incorporated,

New York

Healey, T.L. (1960) 'Activity Subdivision and PERT Probability Statements',
Operations Research, pp341-348

Herben, P.1. Hinde, C.1. Bray, A.D. Launders, Y.A. Round, D. and Temple, D.M. (1990)

'Feature Recognition within a Truth Maintained Process Planning System',
International Journal Computer Integrated Manufacturing, Vol 3(2), pp 121-132

Hill, A. (1990) 'A Bad Case of Malaise in UK Management', Computer Weekly, 18

October, p20

Howes, N.R. (1984) 'Managing Software Development Projects for Maximum

Productivity', IEEE Transactions on Software Engineering, Vol SE 10(1), pp27 -35

255

Hurley, D. (1993) 'PM at the Heart of the BT Network', Project Manager Today, June,

pp12-16.

Iman, R.L. Davenport, J.M. and Zeig1er, D.K. (1980) 'Latin Hypercube Sampling (A

Programmers Guide)', Technical Report SAND79-1473, Sandia Laboratories,

A1buquerque

Interrante, L.D. and Biegal, J.E. (1991) 'A Modified GERT Network for Automatic

Acquisition of Temporal Knowledge' , Computers and Industrial Engineering, Vo1 21 (1-

4), pp79-83

Jacobs, G (1994) 'The Division of Labour', Personal Computer Magazine, June,

pp170-189

Kamburowski, J. (1985a) 'An Upper Bound on the Expected Completion Time of
PERT Networks' , European Journal of Operational Research, Vol 21 (2), pp206-212

Kamburowski, J. (1985b) 'Bounds in Temporal Analysis of Stochastic Networks',

Foundations of Control Engineering, Vol 10(4), ppl77-189

Kelley, J.E. (1961) 'Critical Path Planning and Scheduling: Mathematical Basis',
Operations Research, Vo19, pp296-320

Kerzner, H. (1989) 'Project Management', Van Nostand Reinhold, New York

Kidd, J.B. (1990) 'Project Management Software - Are We Being Over-Persuaded?',

International Journal of Project Management, Vol 8(2), pp109-115

Kidd, J.B. (1991) 'Do Today's Projects Need Powerful Network Planning Tools?',
International Journal Production Research, Vol 29(10), pp 1969-1978

King, W.R. (1964) 'A Stochastic Personnel Assignment Model', Operations Research,

March, pp67-81

Kleindorfer, G.B. (1969) 'Bounding Distributions for Stochastic Activity Networks',
Working Paper, School of Education, University of California, Berke1y

256

Kunz, J.C. Bonura, T. and Stezlner, M.J. (1986) 'Contingent Analysis for Project

Management U sing Multiple Worlds', Applications of Artificial Intelligence in
Engineering Problems, Vol2, pp707-718

Lambourn, S. (1963) 'Resource Allocation and Multi-Project Scheduling (RAMPS) - A
New Tool in Planning and Control', The Computer Journal, VoI5(4), pp 300-304

Law, A.M. and Kelton, W.D. (1991) 'Simulation Modelling and Analysis', McGraw

Hill Incorporated, New York, 2nd edition

Lee, S.E. Moeller, G.L. and Digman, L.A. (1982) 'Network Analysis for Management
Decisions', Kluwer-Nijhoff Publishing, Boston

Letevre, C. (1986) 'Bounds for the Expectation of Linear Combinations of Order

Statistics with Application to PERT Networks', Stochastic Analysis and Applications,
VoI4(3), pp351-356

Levine, H.A. (1986) 'Project Management Using Microcomputers', Osborne

McGraw-Hill, California

Levitt, R. and Kartam, N. (1990) 'Expert Systems in Construction Engineering and
Management: State of the Art', Knowledge Engineering Review, Vol 5(2), pp97-125

Levitt, R.E. and Kunz,I.C. (1987) 'Using Artificial Intelligence Techniques to Support

Project Management', Al Edam, Voll(I), ©Academic Press Limited, pp3-24

Levy, F.K. Thompson, G.L. and Wiest, J.D. (1962) 'Multiship, Multistop Workload­
Smoothing Program', Naval Research Logistics Quarterly, Vol 9(3), pp37-44

Levy, EK. and Thompson, G.L. and Wiest, I.D. (1963) 'The AB Cs of the Critical Path

Method', Harvard Business Review, pp98-108

Liu, L. and Harowitz, E. (1989) 'A Formal Method for Software Project Management',
IEEE Transactions on Software Engineering, Vol 15(I 0), pp 1280-1293

Lootsma, EA. (1989) 'Stochastic and Fuzzy PERT', European Journal of Operations

Research, Vo143, pp174-183

257

Lucey, T. (1987) 'Management Information Systems', 5th Edition, DP Publications

Limited, Hampshire

MacCrimmon, K.R. and Ryavec, c.A. (1964) 'An Analytical Study of the PERT

Assumptions' , Operations Research, Vol 12, pp 16-37

Macro, A. (1990) 'Software Engineering: Concepts and Management', Prentice Hall

International (UK) Limited

Macro, A. and Buxton, 1. (1987) 'The Craft of Software Engineering', Addison-Wesley

Publishing Company, Wokingham

Malcolm, D.G. Roseboom, J.H. CIark, C.E. and Fazar, W. (1959) 'Application of a
Technique for Research and Development Program Evaluation', Operations Research,

\01 7, pp646-669

Martin, I.I. (1965) 'Distribution of the Time Through a Directed, Acyclic Network',

Operations Research, Vol 13, pp46-66

Martins, J. (1992) 'Belief Revision', in Shapiro, S. C. Ed, Encyclopedia of Anificial

Intelligence, Vol I, John WiJey and Sons Incorporated, New York, pp58-62

Martins, J.P. (1990) 'The Truth, The Whole Truth, and Nothing but the Truth: An
Indexed Bibliography to the Literature of Truth Maintenance Systems', AI Magazine,

\0111(5), pp7-25

Mazza, C. (1989) 'Software Project Management', Computer Physics Communications,
\01 (57), pp23-28

McClellan, H.S. (1969) 'Bounds for use in stochastic network analysis', Master Thesis,

Faculty of the School of Engineering, Air Force Institiute of Technology, Wright

Patterson AFB, Ohio

McCracken, D.D. (1981) 'A Maverick Approach to Systems Analysis and Design',

Systems Analysis and Design - A Foundation for the 1980s, Elsevier North Holland,

pp551-553

McCracken, D.D. and Jackson, M.A. (1986) 'A Minority Dissenting Position', IEEE

Computer Society Tutorial, EH0245-1, ISBN 0-8186-0707-6, p23

258

McDermott, D. and Doyle, J. (1979) 'An Introduction to Non-Monotonic Logic',

UCAI-79,6th Conference, Tokyo, Voll, pp562-567

McDennott, D. and Doyle, J. (1980) 'Non-Monotonic Logic 1', Anificial Intelligence,

\b113(1&2), pp41-72

McGowan, J.W. (1987) 'VERT-PC Placing a Powerful Analysis Tool at the

Decisionmakers Fingenips', Proceedings of the of 1987 International Conference on
Systems Man and Cybernetics, Alexandria, VIrginia, USA, 20-23 October, Voll, pp274-

280

McKay, M.D. Conover, W.1. and Beckman, R.1. (1979) 'A Comparison of Three

Methods for Selecting Values of Input Variables in the Analysis of Output from a

Computer Code', Technometrics, Vol 211, pp239-245

Miller, R.W. (1962) 'How to Plan and Control with PERT', Harvard Business Review,
Mar/Apr, pp93-104

Milton, R. (1994) 'A Game of Chance', Personal Computer Magazine, May ppI98-209

Moder, J.1. and Phillips, C.R. (1983) 'Project Management with CPM and PERT',

Reinhold Publishing Corporation, Chapman Hall Limited, London

Moeller, G.L. (1972) 'VERT - A Tool to Assess Risk', 23rd Conference of the
American Institute of Industrial Engineering, pp21 1-221

Moeller, G.L. and Digman, L.A. (1981) 'Operations Planning with VERT', Operations

Research, VoI29(4), pp676-697

Mongalo, M.A. and Lee, J. (1990). 'A Comparative Study of Methods for Probabilistic

Project Scheduling', Computers and Industrial Engineering, Vol 19(1-4), pp505-509

Moore, L.1. and Clayton, E.R. (1976) 'GERT Modelling and Simulation: Fundamentals

and Applications', Petocelli/Charter, New York

Moore, L.J. and Taylor, B.w. (1977) 'Multiteam, Multiproject Research and
Development Planning with GERT', Management Science VoI24(4), pp401-410

Morreale, R. (1985) 'Project Planning and Control', Data Processing (GB), VoI27(3),

pp19-21

259

-------- - - - -

Neumann, K. (1984) 'Recent Developments in Stochastic Activity Networks', INFOR,

\bl 22(3), August, pp2l9-248

Newell, A. (1962) 'Some Problems in Basic Organisation in Problem Solving
Programs', in Yovits et alia (1962), pp393-423.

Nii, H.P. (1986a) 'Blackboard Systems: The Blackboard Model of Problem Solving

and Evolution of Blackboard Architectures', AI Magazine, Summer, pp38-53

Nii, H.P. (1986b) 'Blackboard Systems, Blackboard Application Systems, Blackboard
Systems from a Knowledge Engineering Perspective', AI Magazine, August, pp82-106

Noronha, S.1. and Sarma, V.V.S. (1991) 'Knowledge-Based Approaches for Scheduling

Problems: A Survey', IEEE Transactions on Knowledge and Data Engineering, Vol
3(2), ppl60-171

Paige, H.W. (1963) 'How Pert-Cost Helps The General Manager', Harvard Busines

Review, Nov/Dec, pp87-95

Peltu, M. (1994) 'Rising to the Challenge', Computing, 31 March, p47

Plasket, R.L. (1986) 'Project Management: New Technology Enhances Old Concepts',

Journal of Systems Management, Vol 37(6), pp6-1O

Platz, J. (1986) 'Project Management in the Development of Scientific Software',
Computer Physics Communications, Vol 41 (2-3), pp217 -225

Pohl, J. and Chapman, A. (1987) 'Probabilistic Project Management', Building and

Environment, Vol 22(3), pp209-214

Powell, M. (1990) 'Where Tools Meet Methods', Computer Weekly, 3 May, p26

Pressman, R.S. (1994) 'Software Engineering A Practitioner's Approach' , 3rd Edition,
European Adaption, McGraw Hill Incorporated, New York

Pritsker, A.A.B. (1974) 'The Precedence GERT User's Manual' Pritsker and

Associates Incorporated, Lafayette

260

Pritsker A.A.B. (1979) 'Modelling and Analysis Using Q-GERT Networks', John

WHey and Sons Incorporated, New York

Pritsker, A.A.B. and Happ, W.W. (1966) 'GERT: Graphical Evaluation and Review
Technique Pan 1. Fundamentals' Journal of Industrial Engineering, VoI17(5), pp267-

274

Pritsker, A.A.B. and Sigal, C.E. (1983) 'Management Decision Making, A Network
Simulation Approach', Prentice-Hall Incorporated, Englewood Cliffs, New Jersey

Pritsker, A.A.B. and Whitehouse, G.E. (1966) 'GERT: Graphical Evaluation and

Review Technique Part n. Probabilistic and Industrial Engineering Applications',
Journal ofIndustrial Engineering, VoI17(6), pp293-301

Project Management South (1994) Novotel, Hammersmith, London, 22-23 March,

Project Management Exhibitions Limited, Basingstoke, Hampshire

Pulk, B.E. (1990) 'Improving Software Project Management', Journal of Systems
Software, Vol 13, pp231-235

Ragsdale, C. (1989) 'The Current State of Network Simulation in Project Management
Theory and Practice', Omega International Journal of Management Science, \b117(1),

pp21-25

Reiter, R. and DeKleer, J. (1987) 'Foundations of Assumption-Based Truth
Maintenance Systems: Preliminary Report', Proceedings of the AAAI-87, 6th National

Conference on Artificial Intelligence, Magan Kaufmann Publishers, Los Altos, pp183-
188

Rexing, G.L. (1991) 'Software Project Management: Moving Beyond Project Plans' ,

AT &T Technical Journal, Vol 70(2), pp40-48

Ringland, G.A. and Duce, D.A. (1988) 'Approaches to Knowledge Representation',
Research Studies

Robillard, P. and Trahan, M. (1977) 'The completion Time of PERT Networks',

Operations Research, Vol 25(1), pp15-29

261

Radi, W.L. (1989) 'A New Algorithm for Truth Maintenance', The Annual AI systems

in Government, Proceedings of the IEEE Conference, Washington, March, 0818619341,

pp14-21

Rook, P. (1986) 'Controlling Software Projects', Software Engineering Journal, Vol

1(1), pp7-16

Royston, lP. (1982) 'The W Test for Normality', Royal Statistical Society.

Rubinstein, R.Y. (1981) 'Simulation and the Monte Carlo Method', John Wiley and
Sons Incorporated, New York

Saitow, A.R. (1969) 'CSPC: Reporting Pioject Progress to the Top', Harvard Busines
Review, January/February, pp88-97

Samli, A.C. and Bellas, C. (1971) 'The Use of GERT in the Planning and Control of

Marketing Research', Journal of Marketing Research, Vo18, pp335-339

Sathi, A. Morton, T.E. and Roth, S.F. (1986) 'Callisto: An Intelligent Project
Management System', The AI Magazine, Vo15, pp34-52

Schach, S. R. (1993) 'Software Engineering', 2nd Edition, Aksen Associates

Incorporated, Boston, USA

Schagen, LP. (1986) 'Statistics and Operations Research' , Chartwell-Bratt, Sweden

Schoderbek, P.P. and Digman, L.A. (1967) 'Third Generation, PERT/LOB', Harvard
Busines Review, September/October, pplOO-l1O

Schonberger, RJ. (1981) 'Why Projects are 'Always' Late: A Rationale Based on

Manual Simulation of a PERT/CPM Network', Interfaces, Vol11(5), pp66-70

Sculli, D. (1983) 'The Completion Time of PERT Networks', Journal of the
Operational Research Society, VoI34(2), pp155-158

Sculli, D. and Wong, K.L. (1985) 'The Maximum and Sum of Two Beta Variables and

the Anlaysis of PERT Networks', Omega International Journal of Management Science,
\b113(3), pp233-240

262

Shapiro, S.S. and Wilk, M.B. (1965) 'An Analysis of Variance Test for Normality

(complete samples)', Biometrika, \bl 52(3&4), pp591-611

Shogan, A.W. (1977) 'Bounding Distributions for a Stochastic PERT Network',
Networks, Vol 7(4), pp359-381

Shoham, Y. and McDermott, D. V. (1991) 'Temporal Reasoning', Encyclopedia of

Artificial Intelligence, Ed. Shapiro, S. c., Vol I, John Wiley and Sons, New YOlk,
pp1334-1339

Sigal, C.E. Pritsker, A.A.B. and Solberg, J.J. (1979) 'The Use of Cutsets in Monte

Carlo Analysis of Stochastic Netwoks', Mathematics and Computers in Simulation, Vol
21, pp376-384

Sigal, C.E. Pritsker, A.A.B. and Solberg, J.J. (1980) 'The Stochastic Shortest Route

Problem', Operations Research, VoI28(5), pp579-593

Slagle, J.R. Gardiner, D.A. and Han, K. (1990) 'Knowledge Specification of an Expert
System', IEEE Expert, August, pp29-38

Smith, B. (1985) 'Project Concepts', Effective Project Administration, Institute of

Mechanical Engineers

Sodhi, J. (1991) 'Software Engineering Methods and Management and CASE Tools',
TAB Professional and Reference Books, McGraw Hill Incorporated, Blue Ridge

Summit, PA

Sommerville, I. (1993) 'Software Engineering', 4th Edition, Addison-Wesley
Publishing Company, Wokingham

Spangler, W.E. (1991) 'The Role of Artificial Intelligence in Understanding the

Strategic Decision-Making Process', IEEE Transactions on Knowledge and Data
Engineering, \bl 3(2), pp149-159

Spelde, H.G. (1977) 'Bounds for the Distribution Function of Network Variables',

Operations Research, Verfahren XXVII, ppl13-123

Spikes Cavell (1993), Survey results, 8 April, Computing, p20

263

Stallman, R.M. and Sussman, G.J. (1977) 'Forward Reasoning and Dependency

Directed Backtracking in a System for Computer-Aided Circuit Analysis', Artificial
Intelligence, Vol 9(2), pp l35-159

Startzman, RA. and Wattenbarger, RA. (1985) 'An Improved Computation Procedure

for Risk Analysis Problems with Unusual Probability Functions', SPE Hydrocarbon
Economics and Evaluation Symposium Proceedings, Dallas

Sullivan, RS. Hayya, J.e. and Schaul, R. (1982) 'Efficiency of the Antithetic Variate

Method for Simulating Stochastic Networks', Management Science, VoI28(S), ppS63-
572

Talbot, EB. (1982) 'Resource-Constrained Project Scheduling with Time-Resource
Tradeoffs: The Nonpreemptive Case', Management Science, VoI28(1O), ppl197-1210

Tausworthe, R.e. (1980) 'The Work Breakdown Structure in Software Project

Management', Journal of Systems and Software, pp181-186

Taylor, B.W. and Moore, L.J. (1978) 'Project Management Using GERT Analysis',
Project Management Quarterly, September, pp99-104

Todd, A. (1993) 'A Development Process', Computing, November 18, pp47-48

Tsang, E.P.K. (1988) 'Elements in Temporal Reasoning in Planning', Proceedings of

8th European Conference on AI, Munich, August I-IS, ISBN 0273087983,
International Library, ppS71-S73

Tulip, A. (1983) 'Project Management Techniques Applied to Computing', Data

Processing, Vol 25(7), pp9-27

Turner, J.R. (1993) 'The Handbook of Project-Based Management', McGraw-HiIl
Book Company Europe, UK

Urbanski, A. (1988) 'Formalizing Non-Monotonic Truth Maintenance Systems',
Artificial Intelligence ill: Methodology, Systems, Applications, pp43-50

Uyeno, D. (1992) 'Monte Carlo Simulation on Microcomputers', Simulation, VoI58(6),

pp418-423

264

Van Slyke, R.M. (1963) 'Monte Carlo Methods and the PERT Problem', Operations

Research, Vol 11, pp839-860

Wetherill, G.B. (1981) 'Intennediate Statistical Methods', Chapman and Hall Limited,

London

Whitehouse, G.E. (1973) 'Systems Analysis and Design Using Network Techniques',
Prentice-Hall Incorporated, Englewood Cliffs, New Jersey

Whitehouse, G.E. and Pritsker, A.A.B. (1969) 'GERT: Part III - Further Statistical

Results; Counters, Renewal Times and Correlations', AIIE Transactions, Voll(l), pp45-
50

Wiest, J.D. (1967) 'A Heuristic Model for Scheduling Large Projects with Limited

Resources', Management Science, VoI13(3), ppB359-B377

Wiest, J.D. (1981) 'Precedence Diagramming Method: Some Unusual Characteristics
and their Implications for Project Managers', Journal of Operations Management, Vol

1(3), pp213-222

Wilson, D.N. and Sifer, M.I. (1988) 'Structural Planning - Project Views', Software
Engineering Journal, July, pp134-140

Wilson, D.N. and Sifer, MJ. (1990) 'Structured Planning: Deriving Project Views',

Software Engineering Journal, March, pp138-148

Woodworth, B.M. and Willie, C.J. (1975) 'A Heuristic Algorithm for Resource
Levelling in Multi-project, Multi-resource Scheduling', Decision Sciences, Vol 6,

pp525-40

Yarnold, J.K. (1970) 'The Minimum Expectation in X2 Goodness-of-Fit Tests and the

Accuracy of Approximations for the Null Distribution', Journal of the American

Statistical Association, Vol 65, pp864-886

Yovits, M.C. Jacobi, G.T. and Goldstein, G.D. Eds. (1962) Conference on Self­
Organising Systems, Spartan Books, Washington DC

265

SOFTWARE AND SUPPLIERS

@Risk™ Version 1.11 (1990) ©Palisade Corporation, New York

Artemis Prestige™ forWindows™ (1993) ©Lucas Management Systems, London

Artemis Schedule Publisher™ (1993) ©Advanced Management Solutions Incorporated

BestFit™ (1993) Distribution Fitting Software for Windows™, Release 1.0, ©Palisade

OJrporation, New York

CA-SuperProject® for Windows™ (1993) ©Computer Associates® International

Incorporated, Islandia, New York

CS Project™ for Windows™ (1992) ©CREST Software, Leach Management Systems

Ltd, Chippingham, Wiltshire

Cascade® Version 2.3.1 (1993) MANTIX Systems Limited, Bracknell, UK

Cobra® (1993) ©Welcom Software Technology International, London Road, London

InstaPlan™ (1990) ©Micro Planning International Limited, Bristol, Supplier Deepak

Sareen Associates, Harrow-on-the-Hill, Middlesex

Methods On-line (1992), Learmonth and Burchett Management Systems (LBMS),

London

MICRO PLANNER® Version 6 (1992) ©Micro Planning International Limited, Bristol

Microsoft® Project™ 4.0 (1994) ©Microsoft® Limited, Wokingham, Berkshire

Monte Carlo™ 2.0 (1993) ©Primavera Systems Incorporated, Bala Cynwyd, PA, USA

On Target™ (1991) ©Symantec (UK) Limited, Maidenhead, Berkshire

Open Plan® 4.0 (1993) ©We!com Software Technology International, London Road,

London

Opera® (1993) ©Welcom Software Technology International, London Road, London

266

Panorama™ COST for Windows™, Panorama Software Corporation Limited, W alton

on Thames, Surrey

Panorama™ PLANNER for Windows™, Panorama Software Corporation Limited,

Walton on Thames, Surrey

Parade® (1993) Primavera Systems Incorporated, Bala Cynwyd, PA, USA

PARISS Enterprise™ for Windows™ (1994) P ARISS Limited, Notingham, UK

Pertmaster Advance 2.4G (1994) People in Technology Limited, St John Street, London

PLANTRAC-APROPOS®, Computerline Limited, Woodham, Weybridge, Surrey

PMSX-KemeI™ (1994) Aran Limited, Thatcham, Berks

PowerProject® Version 2 (1991) Asta Development Corporation Limited, Thame,

Oxfordshire

Predict!TM (1992) ©Risk Decisions Limited, Oxford, UK

Primavera Project Planner® for Windows™ (1994) ©Primavera Systems Incorporated,

Bala Cynwyd, PA, USA

Project Manager Workbench DOS and 3.1 for Windows™ (1983 and 1994), Hoskyns

Group PLC, Wandsworth Road, London

Project RISK (1993) Hoskyns Group PLC, Wandsworth Road, London

Project Scheduler 6™ for Windows™ (1993), Scitor ® Corporation, Foster City, CA

Project/2 Series X®, ©Project Software and Development (PSDI) Incorporated (UK)

Limited, Woking, Surrey

ProjectGuide™ (1993) Supplier Deepak Sareen Associates, Harrow-on-the-Hill,

Middlesex

RISKNETTM (1992) ©Baesema, Broomielaw, Glasgow

267

Risnet™ (1993) JMCA (John Cockerham and Associates) Incorporated, Huntsville, Al,

USA

Schedule Express™ (1993) Deepak Sareen Associates, Harrow-on-the-Hill, Middlesex

Schedule Publisher™ (1992) ©Project Managment Professional Services Limited,

Maidenhead, Berkshire

SSADM Engineer (1992), Learmonth and Burchett Management Systems (LBMS),

London

Texim Project™ 2.0 for Windows™ (1993) ©Welcom Software Technology
International, London Road, London

Time Line® for Windows TM (1991), ©Symantec (UK) Limited, Maidenhead, Berkshire

TrackStar™, Complete Project Management Limied, Stokenchurch, Buckinghamshire

268

