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for efficient Optimized Schwarz preconditioning
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The Stokes-Darcy case
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Abstract Optimized Schwarz Methods (OSM) are domain decomposition tech-
niques based on Robin-type interface condition that have became increasingly pop-
ular in the last two decades. Ensuring convergence also on non-overlapping decom-
positions, OSM are naturally advocated for the heterogeneous coupling of multi-
physics problems. Classical approaches optimize the coefficients in the Robin con-
dition by minimizing the effective convergence rate of the resulting iterative algo-
rithm. However, when OSM are used as preconditioners for Krylov solvers of the
resulting interface problem, such parameter optimization does not necessarily guar-
antee the fastest convergence. This drawback is already known for homogeneous
decomposition, but in the case of heterogeneous decomposition, the poor perfor-
mance of the classical optimization approach becomes utterly evident. In this paper,
we highlight this drawback for the Stokes/Darcy problem and we propose a more
effective alternative optimization procedure.

1 Problem settings

The Stokes-Darcy problem, a classical model for the filtration of an incompressible
fluid in a porous media [2], is a good example of a multi-physics problem where two
different boundary value problems are coupled into a global heterogeneous one.

The problem is defined in a bounded domain Ω ⊂ RD (D = 2,3) formed by
two non overlapping subregions: the fluid domain Ω f and the porous medium Ωp
separated by an interface Γ . If the fluid is incompressible with constant viscosity
and density and low Reynolds’ number, it can be described by the Stokes equations
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in Ω f and by Darcy’s law in Ωp. The physics of the problem naturally drives the
decomposition of the domain and, at the same time, imposes interface conditions
across Γ to describe filtration phenomena. The coupled problem reads as follows:
Find the fluid velocity u f and pressure p f , and the pressure pp such that

−∇ ·σ(u f , p f ) = f f in Ω f Stokes equations
∇ ·u f = 0 in Ω f

−∇ · (ηp∇pp) = gp in Ωp Darcy equation
−(ηp∇pp) ·n = u f ·n on Γ continuity of the normal velocity
−n ·σ(u f , p f ) ·n = pp on Γ continuity of the normal stresses

−τ ·σ(u f , p f ) ·n = ξ u f · τ on Γ BJS condition on the tangential stresses

(1)

where σ(u f , p f ) = µ f (∇u f +(∇u f )
T − p f I is the Cauchy stress tensor, while f f

and gp are given external forces. The Beaver-Joseph-Saffman (BJS, [1]) condition
does not play any role in the coupling of the local problems. Thus, a Robin-Robin
coupling on Γ can be obtained by linear combination of the first two conditions:

−n ·σ(u f , p f ) ·n−α f u f ·n = pp +α f (ηp ∇pp) ·n
pp−αp (ηp ∇pp) ·n =−n ·σ(u f , p f ) ·n+αp u f ·n

(2)

An iterative algorithm based on (2) is of immediate derivation [3].

2 Optimization of the Robin parameters αp and α f

Classical approaches in the Optimized Schwarz literature derive, through Fourier
analysis, the convergence rate ρ(α f ,αp,k) of the iterative algorithm as a function
of the parameters α f , αp and of the frequency k, and they aim at optimizing α f and
αp by minimization of ρ(α f ,αp,k) over all the relevant frequencies of the problem.
This amounts to solve the min-max problem

min
α f ,αp∈R+

max
k∈[kmin,kmax]

ρ(α f ,αp,k), (3)

where kmin and kmax are the minimal frequency relevant to the problem and the
maximal frequency supported by the numerical grid (of the order of π/h).

However, when the OSM is used as a preconditioner for a Krylov method
to solve the interface problem, such a choice does not necessarily guarantee the
fastest convergence. Minimising the effective convergence rate (ρe f f (α f ,αp) =
maxk ρ(α f ,αp,k)) does not make the convergence rate automatically small for all
frequencies, and the Krylov type solver can then suffer from slow convergence.
Such an issue can be particularly relevant in the presence of heterogeneous cou-
pling. In the rest of the section, we first introduce the exact interface conditions,
then present three different approaches to optimize the interface parameters. The
first one is based on a classical equioscillation principle, the second one exploits
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the peculiar characteristics of the Stokes/Darcy problem, while the third one aims
to globally minimize the convergence rate for all frequencies.

2.1 Convergence rate and exact interface conditions

The convergence rate of the Robin-Robin algorithm does not depend on the iteration
and, for positive parameters αp,α f > 0, is given by [3]

ρ(α f ,αp,k) =
∣∣∣∣2µ f k−αp

2µ f k+α f

∣∣∣∣ · ∣∣∣∣1−α f ηp k
1+αp ηp k

∣∣∣∣ . (4)

(As shown in [3], by symmetry we can restrict to the case k > 0.)
The optimal parameters force the reduction factor ρ(α f ,αp,k) to be identically

zero for all k, so that convergence is attained in a number of iterations equal to the
number of subdomains. They can be easily devised from (4) as

α
exact
p (k) = 2µ f k α

exact
f (k) =

1
ηp k

. (5)

Their direct use is unfortunately not viable: both depend on the frequency k, and
their back transforms in the physical space are either introducing an imaginary co-
efficient which multiplies a first order tangential derivative (αexact

p (k)) or result in a
nonlocal operator (αexact

f (k)). The use of approximations based on low-order Taylor
expansions of the optimal values (5) (around k = kmin for αp and k = kmax for α f )
would not help either, as they would suffer from the same drawbacks (see [3]).

2.2 The equioscillation approach

The convergence rate (4) is continuous, has two positive roots, k1 = (α f ηp)
−1 and

k2 = αp/(2µ f ), and a maximum between k1 and k2, given by (setting δ = 2µ f ηp)

k∗ =
2δ (αp−α f )+

√
4δ 2(αp−α f )2 +4δ (2µs +α f αpηp)2

2δ (2µs +α f αpηp)
. (6)

The natural approach to solve the min-max problem (3) would resort to an
equioscillation principle, where one seeks for α

eq
f and α

eq
p such that

ρ(αeq
f ,αeq

p ,kmin) = ρ(αeq
f ,αeq

p ,k∗) = ρ(αeq
f ,αeq

p ,kmax). (7)

This approach ensures that all other frequencies exhibit a smaller convergence rate.

Proposition 1. The solution to problem (7) is given by the two pairs of optimal
coefficients (αeq

f ,i,α
eq
p,i), i = 1,2:
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α
eq
f ,i =

1
2

(
Xi +

√
X2

i +4Yi

)
, α

eq
p,i =

1
2

(
−Xi +

√
X2

i +4Yi

)
, i = 1,2, (8)

with Yi ∈ R+ and Xi ∈ R defined as follows:

Yi =
2µ f

ηp

b
a
−1+(−1)i+1

√(
b
a
−1
)2

−1

 i = 1,2, (9)

Xi =
1−δkminkmax

ηp(kmin + kmax)

(
ηp

2µ f
Yi +1

)
i = 1,2, (10)

where a > 0 and b > 0 are the positive quantities

a =
1+δk2

max

(kmin + kmax)2

(
kmin(k∗+ kmax)+ k∗(kmax− k∗)

+δkminkmax(k∗(kmin + k∗)+ kmax(k∗− kmin))
)
,

(11)

b = (1+δk2
max)(1+δk2

∗), (12)

and k∗ > 0 becomes

k∗ =
δkminkmax−1+

√
(δkminkmax−1)2 +δ (kmin + kmax)2

δ (kmin + kmax)
. (13)

Proof. We consider the first condition of equioscillation in (7): ρ(α f ,αp,kmin) =
ρ(α f ,αp,kmax). With the help of some algebra, we obtain

αp−α f = (δkminkmax−1)(ηpα f αp +2µ f )(δ (kmin + kmax))
−1 . (14)

Substituting (14) into (6) we obtain the expression (13) for k∗ which is now inde-
pendent of α f and αp. It can be easily verified that the obtained value of k∗ satisfies
kmin < k∗ < kmax so that we can proceed imposing the second condition of equioscil-
lation in (7): ρ(α f ,αp,kmax) = ρ(α f ,αp,k∗), that is:

−δ (k2
∗+ k2

max)(α f −αp)
2 +2ηpk∗kmax(α f αp)

2

+ηp(k∗+ kmax)(1−δk∗kmax)(α f −αp)α f αp

+2µ f (k∗+ kmax)(1−δk∗kmax)(α f −αp)

−2(1+δ 2k2
∗k

2
max +δ (kmax− k∗)2)α f αp +8µ2

f k∗kmax = 0.

(15)

We introduce now the change of variables: X = α f − αp and Y = α f αp. We
substitute the expression of X from (14) into (15) to get

Y 2
(

a
ηp

2µ f

)
+2Y (a−b)+a

2µ f

ηp
= 0 (16)

where a and b are as in (11) and (12), respectively. Since kmin < k∗ < kmax, a > 0
and we can rewrite (16) as
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Y 2 ηp

2µ f
−2Y

(
b
a
−1
)
+

2µ f

ηp
= 0 (17)

whose roots are (9). With the help of a little algebra it can be verified that b−2a > 0
which also implies that b− a > 0, so that the discriminant of (17) is positive and
both its roots are positive as well: Yi > 0, i = 1,2. Finally, (10) follows from (14)
and (8) is obtained reversing the change of variables. ut

2.3 Exploiting the problem characteristics

From (5), we observe that the product of the optimal values αexact
f (k) and αexact

p (k)
is constant and equals 2µ f /ηp. We exploit such peculiarity of the problem (not
occurring in homogeneous decomposition, see e.g. [5]), and restrict our search for
optimized parameters to the curve

α f αp = 2µ f /ηp. (18)

Notice that such curve is the subset of the (α f ,αp) upper-quadrant where the zeros
k1 and k2 of the convergence rate ρ coincide.

Proposition 2 ([3]). The solution of the min-max problem

min
α f αp=

2µ f
ηp

max
k∈[kmin,kmax]

ρ(α f ,αp,k)

is given by the pair

α
∗
f =

1−2µ f ηp kminkmax

ηp(kmin + kmax)
+

√(
1−2µ f ηp kminkmax

ηp(kmin + kmax)

)2

+
2µ f

ηp

α
∗
p =−

1−2µ f ηp kminkmax

ηp(kmin + kmax)
+

√(
1−2µ f ηp kminkmax

ηp(kmin + kmax)

)2

+
2µ f

ηp

(19)

Moreover, ρ(α∗f ,α
∗
p,k)< 1 for all k ∈ [kmin,kmax].

2.4 Minimisation of the mean convergence rate

The reduction factor along (18) is given by

ρ(α f ,k) =
2µ f

ηp

(
ηpα f k−1
2µ f k+α f

)2

. (20)

To further exploit the characteristics of the problem, we consider the set
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A f = {α f > 0 : ρ(α f ,k)≤ 1 ∀k ∈ [kmin,kmax]}.
Notice that the convergence of the Robin-Robin method in the iterative form would
be ensured only if the inequality in the definition of A f is strict. From [3] we know
that the convergence rate can equal 1 in at most one frequency, either in kmin or in
kmax. When using the OSM as a preconditioner for a Krylov method, the latter can
handle isolated problems in the spectrum (see, e.g., [4, 6, 7]).

In order to improve the overall convergence for a Krylov method, we minimize,
on the set A f , the expected value of ρ(α f ,k) in the interval [kmin,kmax]:

E(α f ) := E[ρ(α f ,k)] =
1

kmax− kmin

∫ kmax

kmin

ρ(α f ,k)dk.

Owing to (20), E(α f ) can be explicitly computed: it is positive in α f = 0, and
has a minimum in the point α̂ f after which it is always increasing (see [3]). As a
consequence, the minimum α

opt
f of E(α f ) is attained in α̂ f if the latter belongs to

A f , or in one extremum of A f otherwise, namely:

α
opt
f =


min

α f∈A f
α f if α̂ f < min

α f∈A f
α f

α̂ f if α̂ f ∈A f

max
α f∈A f

α f if α̂ f > max
α f∈A f

α f .

(21)

3 Numerical results

We compare here the three approaches (8), (19) and (21) considering a test with
analytic solution: u f = (

√
µ f ηp, αBJx), p f = 2µ f (x + y− 1) + (3ηp)

−1, pp =

(−αBJx(y− 1) + y3/3− y2 + y)/ηp + 2µ f x. We set Ω f = (0,1)× (1,2), Ωp =
(0,1)× (0,1) and interface Γ = (0,1)×{1}. The computational grids are uniform,
structured, made of triangles with h = 2−(s+2), s≥ 0; P2-P1 finite elements are used
for Stokes and P2 elements for Darcy’s law; ηp is constant, αBJ = 1, kmin = π ,
kmax = π/h. The interface system associated to the OSM [3] is solved by GMRES
with tolerance 1e-9. In Table 1 we report the parameters obtained for various co-
efficients µ f and ηp. Figure 1 shows the convergence rates versus k for the three

Table 1 Parameters obtained in (8), (19) and (21) for different values of µ f , ηp and h = 2−5.

µ f ηp α
eq
f α

eq
p α∗f α∗p α

opt
f α

opt
p

1 1 0.27 36.93 0.16 12.33 0.036 56.04
1 1e-2 23.00 68.59 9.91 20.17 5.44 36.75
1 1e-4 852.50 157.10 258.19 77.46 217.34 92.01
1e-1 1 0.26 4.19 0.15 1.35 0.03 5.48
1e-1 1e-2 15.71 12.01 4.84 4.13 3.37 5.93
1e-1 1e-4 613.00 17.02 201.61 9.92 195.90 10.21
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possible choices of α f and αp and two pairs of values (µ f ,ηp). The number of iter-
ations for α f and αp at fixed h is computed for two pairs of values (µ f ,ηp) and is
shown in Figure 2. The parameters devised in (8) feature both the smallest conver-
gence rate and the worst preconditioning performance in terms of iteration counts.
Notice also that α

opt
f in (21), minimizing the mean convergence rate, always ensures

the best performance in terms of iteration counts. Figure 3 displays the number of
iterations versus h for different combinations of µ f and ηp: α

opt
f consistently ex-

hibits the best convergence properties, in particular when the ratio µ f /ηp increases.

Fig. 1 Convergence rates as a function of k for the parameters (8) (red line), (19) (blue line), and
(21) (magenta line). Left: µ f = 1, ηp = 1e-2. Right: µ f = 1e-1, ηp = 1e-2. h = 2−5.

Fig. 2 Number of iterations for h = 2−5 and parameters α f and αp as in (8) (red circle and square),
(19) (blue circle) and (21) (magenta circle). Left: µ f = 1, ηp = 1e-2; right: µ f = 1e-1, ηp = 1e-2.
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Fig. 3 Number of iterations versus h. Red lines refer to (8), blue lines to (19) and magenta lines
(21). Squares refer to ηp = 1, circles ηp = 1e-2, diamonds ηp = 1e-4. Left: µ f = 1; right: µ f = 1e-
1.

4 Conclusions

Using the Stokes/Darcy coupling as a testbed for heterogeneous problems, we show
that minimizing the convergence rate of the corresponding iterative algorithm leads
to poor convergence when an Optimized Schwarz Method is used as preconditioner
for a Krylov method applied to the interface equation. On the other hand, taking ad-
vantage of the problem characteristics and minimizing the mean of the convergence
rate is providing effective preconditioning.
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