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1 Introduction 

Public policy problems are rife with conflicting objectives: efficiency versus fairness, 
technical criteria versus political goals, costs versus multiple benefits. Multi-Criteria 
Decision Analysis (MCDA) (Greco et al. [45]; Wallenius et al. [131]; Belton and 
Stewart [11]) provides robust methodologies to support policy makers in making 
tough choices and in designing better policy alternatives when considering these 
conflicting objectives (Daniell et al. [19]; Tsoukias et al. [129]).  

In MCDA-based policy analysis we work with groups of policy makers, modeling their 
decisions, facilitating their discussions, and representing preferences and priorities. 
The overarching goal is to improve decision processes (Spetzler et al. [127]) and 
provide support to evidence-based decision making, considering public priorities and 
the inherent uncertainties that long term horizons and complex systems bring into 
the problem (Tsoukias et al. [129]). 

Key challenges in these MCDA interventions are the use of expert judgments, 
whenever evidence is not available, the elicitation of preferences and priorities from 
policy makers and communities, and the effective management of group decision 
processes. Human behavior plays a major role on each one of these challenges: 
experts may be biased in their estimates, individuals may be unable to express 
clearly their preferences, and groups may present dysfunctional dynamics. 

The extensive developments in behavioral decision research, social psychology, 
facilitated decision modeling, and incomplete preference models shed light on how 
decision analysts should address these issues, so we can provide better decision 
support and develop high quality decision models. In this tutorial I discuss the main 
findings of these extensive, but rather fragmented, literatures providing a coherent 
and practical framework for managing behavioral issues, minimizing behavioral 
biases, and optimizing the quality of human judgments in policy analysis models with 
conflicting objectives.  

I illustrate these guidelines with policy analysis interventions that we have conducted 
over the last decade for several organizations, such as the evaluation of capabilities 
of health systems against rabies for the World Health Organization (WHO), the 
prioritization of low-moisture food categories for the Food and Agriculture 
Organization of the United Nations (FAO), the assessment of bio-security threats for 
the UK Department of Environment Food and Rural Affairs (DEFRA), the evaluation 
of malaria treatment kits for the Malaria Consortium/USAID, and the prioritization of 
value-for-money auditing studies for the UK National Audit Office. 

The tutorial has the following structure. The next section describes a framework for 

supporting policy analysis with conflicting objectives. Then the three key behavioral 

challenges are explored in sequence, followed by practical advice on how to deal 

with each one of them. I conclude the tutorial by suggesting some directions for 

further research on the topic and with a couple of warnings for decision analysts who 

want to support policy making with multiple objectives.  
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2 Policy Analysis with Facilitated Multi-Criteria Decision Analysis 
MCDA has been extensively employed in policy analysis, supporting a wide variety 

of prioritization problems and planning, such as in human health (e.g. Airoldi et al. 

[2]; Cox et al. [18]); animal health (e.g. Brookes et al. [14]), regional planning (e.g. 

Bana e Costa et al., [7]; Ferretti and Degioanni [34]), military decisions (e.g. Ewing et 

al. [29]; Parnell et al. [105]); hazard disposal (e.g. Merkhofer and Keeney [90]; 

Morton et al. [100]), counter-terrorism analysis (e.g.; Keeney and von Winterfeldt 

[61]; Keeney and von Winterfeldt [70]), environmental assessments (e.g. Ferretti 

[33]; Gregory [46]), natural resource management (Romero and Rehman [116]), 

energy-related decisions (Wang and Poh [133]), to name just a few areas of 

application. 

I will consider here Multi-Attribute Utility Theory (MAUT) (Keeney and Raiffa [68]), 

given its widespread use and normative foundations on Decision Theory (French 

[42]) and on Measurement Theory (Krantz et al. [76]), as well as the available 

behavioral evidence on judgments for this type of model. However, other important 

schools of multi-criteria decision analysis have also been extensively employed to 

support policy makers, such as the Outranking methods (Figueira et al. [36]) and the 

Analytic Hierarchy Process (Saaty [121]), among others. I will describe next how 

MAUT can be operationalized for the evaluation of policy options, followed by how 

these MCDA models can be built up with groups of policy makers. 

2.1 Multi-Attribute Value/Utility Analysis for the Evaluation of Policy Options 

The basic idea of MAUT-based models is to decompose an overall objective 

(assessed by a criterion C) as a value tree into sub-objectives, each one assessed 

by a sub-criterion Ci, which can be subsequently further decomposed by sub-criteria 

Cij as illustrated in Figure 1 (see also Belton and Stewart [11]). The sub-criteria at the 

bottom of the tree have associated attributes; each xij attribute measures the 

achievement of each policy option (a and b in the same figure) on the respective Cij 

sub-criterion (see Keeney and Gregory [67]). A value function vij in case of riskless 

choices, or a utility function in case of decisions under uncertainty, is elicited from 

policy makers, normalizing partial performances, usually on a scale 0 to 100 (see 

von Winterfeldt and Edwards [139]). In decision analysis, value functions express the 

strength of preferences of policy makers for outcomes under certainty, while utility 

functions represent both risk attitude and strength of preference for outcomes under 

uncertainty. For instance, in the same figure, for sub-criterion C11 the policy option b 

has a partial performance x11(b) on this attribute x11(.) and a respective partial value 

v11(b) on this value function.   

Criteria weights wij, associated with each Cij-th sub-criterion, are elicited from the 

policy makers, representing their value-tradeoffs (see Keeney [64]). These weights 

are then used to aggregate the partial performances of each policy option on an 

overall value V, again usually on a 0 to 100 scale. For example, the overall value of 

policy option b is V(b) in the same figure. The most common aggregation function is 

a simple weighted sum, but this requires strict preference conditions among the 

criteria (see von Winterfeldt and Edwards [139]).  
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The axiomatic and mathematical foundations of this type of model are well known 

and beyond the scope of this tutorial; Keeney and Raiffa [68] and von Winterfeldt 

and Edwards [139] provide excellent and detailed coverages of them. For a step-by-

step introduction to these models, focused on the modeling process, see Montibeller 

and Franco [93]. Comprehensive text books with in-depth coverage of the methods a 

large number of didactical examples are also available (e.g. Belton and Stewart [11] 

and Eisenfur et al. [27]). 

 

 

Figure 1. Multi-criteria value analysis of two policy options. 

 

I will illustrate the use of this type of multi-criteria model for policy analysis in practice 

with a project in which I was involved as a decision analyst a few years ago in 

collaboration with a risk analyst (Mike Batz from the University of Florida). Its aim 

was the prioritization of low-moisture food (LMF) categories for the Food and 

Agriculture Organization of the United Nations and the World Health Organization 

(FAO/WHO). These categories of food (such as cereals & grains, dried protein 

products, nuts & nut products) are important, with high volumes of global 

consumption and billions of dollars of international trade. The objective of the 

intervention was to identify the category with the highest overall impact, responding 

to a request from the Codex Committee on Food Hygiene (CCFH), which could then 

more rigorously consider and manage the microbiological hazards associated with 

these products. It was therefore critical that the assessment was conducted in a 

robust and transparent way, utilizing the best expertise on the subject available and 

a sound methodology for the assessment of impacts and ranking of food categories 

(for details see the FAO/WHO report [30]). 

For the decision analysis we employed a multi-attribute value analysis. The value 

tree is shown in Figure 2. Noticeably, only two criteria were present when the 2-day 

decision conference started: International Trade (C1) and Burden of Disease (C2); 
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the other two criteria, Vulnerabilities from Food Consumption (C3), and 

Vulnerabilities from Food Production (C4), were agreed upon during the facilitated 

discussions.  

 

Figure 2. Value tree for the assessment of low-moisture foods for FAO/WHO [30]. 

We also supported the policy makers in defining precisely the attributes (xij in Figure 

1) for the evaluation of LMF categories (see Table 1). There was full evidence 

available for assessing the impact of each food category only for criteria C1 and C2. 

Criteria C3 and C4 were decomposed, with evidence available for some sub-criteria 

(e.g. C3.1 Average Serving) but the need for using expert judgment for others (e.g. 

C3.3 Potential for Consumer Mishandling). 

Table 1. Attributes for the assessment of low-moisture foods for FAO/WHO [30]. 

Criteria Sub-Criteria Attribute 

C1: Impact on 

International 

Trade 

- Export value in US$ billions/year 

C2: Burden of 

Disease 

- Total Disability-Adjusted Life Years (DALYs) in 

outbreak cases from 1990 on 

C3: 

Vulnerabilities 

due to Food 

Consumption 

C3.1: Average 

Serving 

Average g/day 

 C3.2: Proportion 

Vulnerable 

Consumers 

Proportion (0-100%) consumed by vulnerable 

groups (toddlers and elderly) 

 C3.3: Potential for 

Consumer 

Mishandling 

Proportion (0-100%) of LMF products in a 

given category with an increased risk as a 
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result of mishandling/poor practices  at any 

time between final retail and consumption. 

C4: 

Vulnerabilities 

due to Food 

Production 

C4.1: Increased 

Risk of 

Contamination 

Proportion (0-100%) of LMF products in a 

given category with an increased risk of 

contamination post kill step. 

 C4.2: Proportion 

without Kill Step 

Proportion (0-100%) of LMF products in a 

given category without a kill step prior to retail 

and distribution. 

 C4.3: Prevalence 

of Pathogen 

Probability that a LMF is contaminated at a 

level with any pathogens with the potential to 

cause illness in consumers. 

 

Each LMF category was assessed on every attribute for the value of their impact. 

For instance, Table 2 presents the assessment for burden of disease (partial 

performance of each policy option, xij(a) in Figure 1) and the respective partial value 

of each LMF category (vij in Figure 1). Notice that in this case we assumed a linear 

value function, to reflect equity among patients affected by past outbreaks, but that is 

not always the case. Indeed research has shown that multi-attribute value models 

are sensitive to the shape of the value function (Stewart [128]). 

 

Table 2. Impacts and Value of LMF Categories on Burden of Disease for FAO/WHO [30] 

C2: Burden of Disease 
  

Code Category Name Total DALYs in 

outbreak cases 

from 1990 on  

Normalised 

Impact (v2) 

[Value] 

Cat 1 Cereals and Grains 72.53 45.9 

Cat 2 Confections and Snacks 60.26 35.4 

Cat 3 Dried Fruits and Vegetables 32.78 12.2 

Cat 4 Dried Protein Products 136.44 100.0 

Cat 5 Nuts and Nut Products 118.51 84.8 

Cat 6 Seeds for Consumption 18.42 0.0 

Cat 7 Spices, Dried Herb and Tea 80.71 52.8 

 

We elicited the weights using the swing weights protocol (see Section 3.1.5 for 

details) and employed a simple weighted sum for the aggregation of partial values, 
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as the required preference independence conditions were met. The overall values 

(V(.) in Figure 1) are shown in Figure 3. Cat 1 (Cereals & Grains) had the highest 

overall impact) followed by Cat 4 (Dried Protein Products).  

 

 

Figure 3. The overall ranking of low-moisture food categories for FAO/WHO [30]. 

 

Two key behavioral challenges affect this type of modeling. The first one is to elicit 

knowledge and content for the multi-criteria model from the policy makers: 

objectives, attributes, value/utility functions, and weights (cij, xij, vij or uij, and wij 

respectively in Figure 1).The second key behavioral challenge is the use of expert 

judgments and the minimization of biases in those judgments, whenever the 

evidence is not available or of low quality, to estimate the performances of each 

policy option (xij(.) in Figure 1). These MCDA models are often built up with a group 

of policy makers, with the decision analyst also playing a role as the group’s 

facilitator, as detailed next. 

2.2 Facilitated Decision Modeling 

In these interventions we employ facilitated decision modeling (Franco and 

Montibeller [39]), in which the decision analyst is also a neutral facilitator for the 

group. The analyst facilitates strategy workshops with a small group of senior policy 

makers in charge of the decision, in the format of decision conferences (Phillips 

[109]). In these workshops the analyst is responsible for modeling the decision, for 

facilitating policy maker’s discussions, and for representing their preferences and 

priorities. Therefore, two roles must be simultaneously managed: the content of the 

policy analysis and the process of making the decision. 

This type of facilitated decision analysis brings several key benefits for supporting 

policy making: (i) the opportunity to share different pieces of information about policy 

options (Rouwette and Vennix [118]) and perspectives about relevant objectives 

(Eden and Ackermann [26]); (ii) the ability to provide a platform for negotiation of 

different positions (Eden and Ackermann [25]); and (iii) the drive toward a joint 

commitment for successful implementation of a chosen policy option (Franco et al. 

[41]; Franco and Montibeller [39]; Phillips [109]). 
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Group learning is a key aim in this type of intervention (Roy [119]): understanding the 

intricacies of the decision problem, agreeing on the objectives and priorities that 

must be considered, identifying the costs and benefits of each decision option, and 

considering the key uncertainties that may affect their performance. These multi-

criteria decision models should thus be employed as learning tools (de Geus [44]) 

instead of providing the “optimal” solution. Figure 4 illustrates a typical setting for 

facilitated policy analysis, the decision conference with the group of low-moisture 

food experts at the FAO headquarters in Rome. 

 

 

Figure 4. A typical facilitated decision analysis setting for low-moisture food experts at FAO. 

 

Once again, I will use the project for FAO/WHO on prioritizing low-moisture food 

categories to illustrate this type of approach. There were several challenges that 

were addressed during its development: the need for a global perspective in the 

assessment, the existence of multiple impacts of concern, the limited amount of 

evidence about some of these impacts, and the need to promote the sharing of 

expertise and opinions among the experts involved in the assessment. 

In a two-day workshop, we supported a team of top international experts and policy 

makers from the USA, Canada, Japan, Switzerland and the UK in developing a 

multi-criteria evaluation model. The model was interactively built up with the group 

and projected on the screen, while I was managing the model content as well as 

facilitating the group dynamics. Notice the layout of the meeting with an oval table 

that allowed face-to-face interactions and discussions mediated by the decision 
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model. We explored the solutions in the model projecting from a computer (shown in 

Figure 4) and “played” with the model interactively with the policy makers, 

particularly focusing on: (i) varying criteria weights; (ii) and on addressing their 

concerns about lack of reliable evidence, by ranging the partial impacts until they 

were satisfied with the robustness of the ranking. After the meeting a more extensive 

evidence-gathering session was conducted and we developed a full sensitivity 

analysis, which informed the final report [30]. 

Despite the important benefits of a facilitated mode, it does bring an additional key 

behavioral challenge, when compared with mathematical aggregation of preferences 

(see Belton and Pictet [10] and Keller et al. [72]). The key challenge is managing the 

group dynamics and minimizing group biases of policy makers and experts.  

The tutorial will now analyze each of these key behavioral challenges and provide 

recommendations on how to deal with them and maximize the quality of decision 

analytic models and decision processes. 

3 Key Challenge I: Value Judgments in Multi-Criteria Policy Analysis 
Two core principles of multi-criteria decision analysis are the modeling of decision 

makers’ values, given the conflicting objectives being pursued (Keeney [66]; Parnell 

et al. [106]), and the decomposition of a complex decision into its important 

components (Howard [49], Keeney [62], Raiffa [115]). Indeed there is behavioral 

evidence that this decomposition improves the quality of choices (Arkes et al. [5], 

Morera and Budescu [97]). However, the quality of a multi-criteria model relies 

heavily on the input from decision makers and on the ability of a decision analyst in 

correctly eliciting their judgments (Dias et al. [23]) and in adequately representing 

their values (Montibeller and von Winterfeldt [95]).  

The behavioral literature on modeling values is rather limited when compared with 

the findings on probabilistic thinking. Two major behavioral issues impact such 

modeling tasks: biases that may affect policy makers’ judgments and their cognitive 

limitations in quantitatively expressing their preferences. As Montibeller and von 

Winterfeldt [95] argued, only a relatively small number of biases are relevant for risk 

and decision analysis. In addition to the cognitive biases, which are discussed in the 

behavioral decision research literature, also relevant motivational biases are 

pervasive, but studied in social psychology. I review cognitive and motivational 

biases next, followed by issues related to cognitive complexity, and provide some 

practical advice on how to overcome each of them. 

3.1 Biases in Modeling Values 

Five main components can be distinguished in a multi-criteria model: objectives, 

decision alternatives, attributes, value or utility functions, and criteria weights (as 

shown in Figure 1). I will list both cognitive and motivational biases affecting each 

one of these tasks and provide some suggestions on how to debias and/or improve 

each modeling step (for details see Montibeller and von Winterfeldt [95]).  
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3.1.1 Biases in the Definition of Objectives 

The identification and structuring of objectives relies heavily on policy makers’ 

mental models of the problem situation (Johnson-Laird [55]). These mental models 

might be affected by myopic problem representation bias, in which the problem 

definition is over-simplified (Legrenzi et al. [81]; Legrezni and Girotto [82]). In 

addition, there is evidence that decision makers suffer from the omitted variable bias 

(Jargowsky [52]), in which some fundamental objectives are neglected, and 

availability bias (Tversky and Kahneman [130]),  in which only recently relevant 

objectives are considered. These biases may prevent the group from generating a 

comprehensive set of objectives (Bond et al. [12]; Bond et al. [13]). In addition to 

these cognitive biases, one motivational bias that may affect the definition of 

objectives is the desirability of policy options bias (Montibeller and von Winterfeldt 

[95]) in which an objective is included as it favors a “pet” policy option. 

The evidence on how these biases might be overcome is rather limited, but three 

advices are the use of problem structuring methods (Belton et al. [9]; Mingers and 

Rosenhead [91]; Montibeller and Belton [92]) and an adequate decision framing 

(Barcus and Montibeller [8]; Keeney [63]) to support the development of a 

comprehensive set of objectives. The use of external probes may also help to 

increase the number and quality of objectives (Bond et al. [13]; León [83]).  

For the project on ranking low-moisture food categories for FAO/WHO, for instance, I 

employed a causal map (Eden [24]) to help the group identify all the relevant 

objectives (see Figure 5). Group members were asked to input, using their laptops, 

the concepts of the map (nodes) in an action-oriented way, on a shared Google doc, 

to encourage creativity and breadth. The comprehensive map was developed to 

minimize the omitted variable bias. The colored concepts, which were selected as 

the key ones (Eden [24]; Montibeller and Belton [92]), were the basis for the four 

fundamental objectives in the value tree (Figure 2): International Trade (blue), 

Burden of Disease (red), Vulnerabilities from Food Consumption (green), and 

Vulnerabilities from Food Production (purple). 
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Figure 5. Causal map for the low-moisture food experts for FAO. 

3.1.2 Biases in the Identification of Policy Options 

The identification of potentially good alternatives is crucial for policy analysis, as the 

choice cannot be better than the best option under evaluation (Keeney [63]). 

However, public choices are, unfortunately, often focused on a single alternative 

against the status quo (Eisenhardt [28]; Nutt [103]). 

There is evidence of widespread omitted variable bias, in which relevant decision 

alternatives are not included in the analysis or even generated (Butler and Scherer 

[15]; Jungermann et al. [57]; Pitz et al. [110]). This issue might be often generated by 

a myopic problem representation, where the problem is excessively constrained, 

preventing policy makers to contemplate potentially valuable decision alternatives 

(Payne et al. [107]; Russo and Schoemaker [120]). Other causes might be 

anchoring, when all the options being generated are anchored on the initial set of 

decision alternatives (Keeney [63]), and availability bias, when the existing decision 

alternatives prevent creative thinking about new ones (Del Missier et al. [20]). 

Two motivational biases may also prevent the generation or inclusion of potentially 

valuable policy options. The desirability of options bias may lead to the exclusion of 

other decision alternatives that compete with a “pet” option (Montibeller and von 

Winterfeldt [95]). The affect influenced bias (Finucane et al. [37]; Slovic et al. [126]) 

may cause the inclusion of decision alternatives that cause positive feelings and/or 

the exclusion of those that generate negative feelings. 
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Some very useful prescriptive advice on how to generate decision alternatives is 

available (Gregory and Keeney [47]; Keeney [63]; Keeney [65]; Keller and Ho [71]; 

Siebert and Keeney [123]). These can be classified into: objective-based probes, in 

which one objective is presented at a time, sparking the generation of decision 

alternatives that perform well on its achievement; state-based probes, in which one 

future state is presented at a time, promoting the search for high performing decision 

alternatives under this state; and alternative-based probes, in which an ideal 

decision alternative is employed to support the generation of good alternatives. In 

addition, Spetzler et al. [127] provide a useful list of properties for the set of decision 

alternatives. There is some behavioral evidence that the first type of probe generates 

not only more but also better decision alternatives (Butler and Scherer [15]; Siebert 

and Keeney [123]).  

Problem-structuring tools, such as causal maps (Belton et al. [9]; Montibeller et al. 

[94];  Montibeller and Belton [92]), the strategic choice approach (Friend [43]), and 

strategy generation tables (Howard [49]) may also be employed to generate decision 

alternatives. They are particularly useful to support the development of complex 

policy options. See also Franco and Montibeller [40]; Marttunen et al. [88] for further 

guidance on how problem-structuring methods may support structuring multi-criteria 

models. 

3.1.3 Biases in the Definition of Attributes 

The definition of attributes may also suffer from some bias. Attributes might be 

affected by scaling biases (Poulton [112,113]), a family of biases that occur when 

stimulus (xij in Figure 1) and response (vij in Figure 1) scales are mismatched and 

caused by different ways of presenting and scaling the attribute, as well as by the 

upper and lower limits of its scale. Other biases that might affect attributes are the 

gain-loss bias and its role in the framing effects, i.e., if a performance is perceived as 

a gain or as a loss against a reference point (Levin et al. [84,85]), as well as the 

proxy bias, which may distort weights of this type of attribute (Fischer et al. [38]). 

Natural attributes, which measure directly the achievement of decision alternatives, 

should be employed whenever is possible (for example billions of US dollars for 

assessing the impact of international trade in Table 1). Attributes should have a 

range that encompasses the spread of performances of the policy options. If natural 

attributes are not available then constructed attributes should be carefully developed 

(for example the attribute for burden of disease in Table 2, with a range from 18.42 

to 136.44 DALYs) in a way that biases are minimized. Keeney and Gregory [67] 

provide excellent advice for the development of high-quality attributes. 

3.1.4 Biases in the Elicitation of Value or Utility Functions 

As mentioned before, value functions are employed for riskless decisions while utility 

functions should be defined for decisions under uncertainty. Well-developed 

elicitation protocols for each type of function are available (Farquhar [31]; von 

Winterfeldt and Edwards [139]), with value functions requiring judgments over 
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outcomes or decision alternatives and utility functions requiring judgments over 

lotteries. There is more behavioral evidence available on biases affecting utility 

elicitation than for value elicitation. 

Utility elicitations are noisy, i.e., repetitive elicitations from the same subject may 

lead to slightly different functions (Hey et al. [48]) and are also affected by anchoring 

and gain-loss biases. The certainty effect (Allais [4]; Kahneman and Tversky [59]), in 

which decision makers prefer “sure things” to gambles with similar expected utility, 

also may affect the shape of utility functions. Two further motivational biases might 

have an impact on value and utility functions: the desirability of options bias, which 

may distort the function in a way that favors the preferred decision alternative and 

the affect influenced bias, which may trigger an over-sensitivity to increases in a 

consequence. 

Practitioners often adopt simplified forms of elicitation1, particularly as values are 

constructed instead of discovered (Slovic [125]). These involve using value functions 

as proxy for utility ones (von Winterfeldt and Edwards [139]), deriving utility functions 

from value functions (Keeney and von Winterfeldt [69]), or adopting standardized 

shapes for the functions (McNamee and Celona [89]). 

A recent project that we conducted for the Pan-American Health Organization 

(PAHO)/World Health Organization (WHO), on assessing the capability of health 

systems of different countries against dog-mediated human rabies, illustrates the 

relevance of the reference point in building prescriptive models and of the gain-loss 

bias (see also Del Rio Vilas et al. [21]). (Rabies is a deadly and neglected disease 

that affects disproportionally poor regions and disadvantaged communities.)  

We developed for PAHO/WHO a decision support system (DSS) that assesses the 

multiple capabilities of a health system, using a multi-attribute value model. The 

system can be used to identify the highest value-for-money action for capability 

building, if additional resources were available. This DSS can also be employed for 

identifying which capabilities should be reduced if budget cuts are needed, in a way 

that minimizes the loss of overall capability. The value function in Figure 6 shows the 

median value function that we elicited from six top international experts on rabies for 

both capability gains (G) and capability losses (L) for the attribute percentage of 

post-exposure to the virus prophylaxis (PEP). Notice the shape is not the same for 

both functions, with gains more convex than losses. These two functions are 

switched accordingly in the DSS depending on the prioritization (capability building 

or capability maintenance) that is being conducted. 

                                            
1 However, an unfortunate trend in multi-criteria decision analysis has been the direct elicitation of 
relative judgments of value for the alternatives, with often poorly defined attributes and without 
assessment of their performances, from policy makers. While this might be acceptable for private 
decisions, it does not provide a transparent link between evidence and values, which reduces the 
justifiability of public choices, and thus it should be avoided in my opinion. 
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3.1.5 Biases in the Elicitation of Criteria Weights 

Weights in MAUT-based models are scaling constants that represent value trade-

offs and are employed to aggregate partial values of each policy option. Well-

developed protocols for their elicitation are available (von Winterfeldt and Edwards 

[139]), which stress that these judgments must consider the range of each attribute. 

Unfortunately, mistakes are frequently made in eliciting this type of parameter 

(Keeney [64]), with the most common one being the assumption that weights 

represent “direct importance”. 

 

 

Figure 6. Value for gains (G) and losses (L) for the rabies capability assessment for PAHO/WHO. 

Several cognitive biases affect the elicitation of weights. The splitting bias drives 

heavier weights to areas of the value tree that have more sub-criteria, i.e., to criteria 

that were more decomposed (Pöyhönen et al. [114]; Weber [136]). The gain-loss 

bias may also affect weights, if trade-offs are elicited as improvement or degradation 

of performances (Weber and Borcherding [135]). The proxy bias might also affect 

weights as proxy attributes get over-weighted. A serious bias is the range 

insensitivity bias (von Nitzsch and Weber [102]), which may lead to highly distorted 

weights if policy makers disregard the range of the attributes. The equalizing bias 

may drive decision makers to provide similar weights to all criteria.  

While I have experienced the equalizing bias in consultancy projects, a detailed 

recent review has not found further evidence that it has happened (Marttunen et al. 

[87]). An example of the equalizing bias occurred in a project for DEFRA, in which 

we developed a multi-criteria based decision support system for the prioritization of 

animal health threats (see Del Rio Vilas et al. [22]). The elicitation of swing weights 
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from policy makers for the four impacts that mattered (impacts on public health, on 

animal welfare, on wider society and on international trade) showed that they were 

clearly different, with the first one receiving a heavier weight. However, in the final 

version of the tool, which has been used by DEFRA since 2009 for assessing such 

threats and for supporting their policy recommendations, the four impact criteria were 

set with the same weight (25%) as it would have been politically difficult to justify 

different weights for the four impacts. 

Two motivational biases affect the elicitation of weights. The desirability of options 

bias may lead policy makers to over/under weight some criteria to favor a “pet” 

option (von Winterfeldt [138]). The affect influenced bias may cause a distortion of 

weights in favor of attributes that generate positive feelings or, conversely, against 

those that provoke negative ones. 

Several best practices should be used for the elicitation of weights. The use of 

elicitation methods that explicitly use the ranges of the attributes should always be 

employed in the elicitation of weights, such as in the swing weights method (see 

Belton and Stewart [11]). Cross-checking elicited values with selected trade-offs can 

help in alleviating biases and constructing preferences. A balanced value tree, with 

similar level of decomposition along its branches, avoids the splitting bias. The use 

of natural or constructed attributes eliminates the proxy bias. 

For example, in the low-moisture food category ranking for FAO/WHO, we employed 

the protocol shown in Figure 7 to elicit swing weights for the sub-criteria associated 

with C3 (Vulnerabilities from Food Consumption) and avoid the range insensitivity 

bias. It presents hypothetical food categories (Y0, Y1, Y2, and Y3) with one impact at 

the highest level on one attribute and the other impacts at the lowest level on the 

remaining attributes. The policy makers were then asked to rank these hypothetical 

food categories, score the highest impact (category) as 100, Y0 as 0, and the other 

impacts (categories) proportionally to this first one. 
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Figure 7. Elicitation of swing weights for the low-moisture food project for FAO/WHO. 

3.2 Cognitive Limitations in Eliciting Preferences 

Multi-criteria models based on MAUT present high demand for clear preferences: 

only strict preference and indifference relations can be modeled, and quantitative 

preference statements such as value/utility functions and criteria weights are 

needed. But policy makers are boundedly rational (Simon [124]) with intrinsic 

cognitive limitations in thinking about and expressing their preferences (Larichev 

[79]). This means that elicitation protocols might have to be adapted to 

accommodate such limitations. Indeed many of the interesting developments in 

Europe in multi-criteria analysis have been exactly trying to address these 

limitations, with a larger number of preference relations being available to decision 

makers (Figueira et al. [36]), methods that try to reduce cognitive demands (Larichev 

and Brown [80]) and several methods that can deal with incomplete information 

(Weber [134]). 

A full review of these models for incomplete information is beyond the scope of this 

tutorial. However, it is worth mentioning that eliciting value functions, utility functions 

and numerical swing weights are all classified as cognitively complex parameters 

Larichev [79]; Olson et al. [104]). On the other hand, ordinal preference information 

is cognitively less complex and more stable (Moshkovich et al. [101]).  

Therefore, methods that can translate ordinal judgments into cardinal parameters 

(see Krantz et al. [76]) might be useful in cases where the policy makers are unable 

to understand clearly, or express their preferences, on cardinal scales. Particularly 

useful are the methods for ordinal ranking of weights (for a review see Alfares and 

Duffuaa [3]) and those for eliciting value functions with user-friendly protocols, such 

as Macbeth (Bana e Costa et al. [6]).  

In the project on ranking emerging animal health threats for DEFRA (Del Rio Vilas et 

al. [22]), we employed Macbeth to help the group construct a value function. Figure 8 

shows the constructed attribute Public Concern on the left, with five levels (L1 to L5). 

Policy makers were asked to make qualitative pair-wise comparisons between the 

difference of value between each pair of levels (for example, “very weak” between L1 

and L2). The software then calculates a value function that accommodates these 

constraints, as shown on the right of the same figure, and provides a value for each 

level (which can be fine-tuned within a boundary as shown for L3). 

 



17 
 

 

Figure 8. Elicitation of a value function for the project on evaluating animal health threats for DEFRA. 

 

4  Key Challenge II: Expert Judgment in Multi-Criteria Policy Analysis 
 

The influential movement for evidence-based policy making since the 1990s (see 

Tsoukias et al. [129] for details) calls for the use of the best evidence available about 

the possible benefits and costs of each policy alternative under consideration. In a 

value-driven decision making framework (Keeney [63]) this means identifying the 

impacts of each policy alternative on each attribute (xij(.) in Figure 1).  

Whenever evidence is available, or predictive models can be developed, they should 

be employed to estimate such impacts. If that is not the case, then expert judgment 

may be used to estimate such consequences. This typically takes the form of either 

a continuous or discretized distribution of impacts, for a given policy option, over the 

attribute xij. 

An extensive literature on expert elicitation in policy analysis is available (for a good 

introduction see Morgan [98] and Morgan and Henrion [99]) and a plethora of biases 

that affect judgments about uncertainty are known (Kahneman et al. [58]; Kahneman 

and Tversky [60]). As mentioned in the previous section, Montibeller and von 

Winterfeldt [95] suggest that only a relatively small number are relevant in this 

context. I briefly review the biases that are relevant for the impact estimations of 

policy options and debiasing tools against them next. 

4.1 Biases in the Elicitation of Expert Judgments on Policy Impacts 

Several cognitive biases affect the assessment of probabilities for a given impact: 

how the variable is scaled may influence results due to scaling biases; 

overconfidence (Klayman et al. [75]), anchoring and availability biases may make the 
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range of the estimated impacts too narrow; and the equalizing bias may make the 

estimated probabilities of discretized events similar. 

In addition, several motivational biases may affect these judgments: the desirability 

bias may distort estimated probabilities of events that are desirable (Krizan and 

Windschitl [77]) or undesirable (Chapin [17]), which may also be caused by the affect 

influenced bias. In addition, the desirability of options bias may lead experts to 

over/under estimate probabilities to favor their preferred policy option (Montibeller 

and von Winterfeldt [95]). 

Different elicitation protocols may reduce biased estimates, with the fixed value 

method (in which a probability is elicited for a given value of the variable) producing 

less overconfidence (Seaver et al. [122]; Abbas et al. [1]). Further decomposition of 

variables, multiple experts and stretching the extremes (for instance using 

counterfactuals or hypothetical bets) are usually employed in practice to improve 

accuracy, but our recent behavioral experiment has shown these stretching tools to 

be of limited efficacy (Ferretti et al. [35]). Scoring rules that reward accuracy (Winkler 

[137]) and hypothetical bets (Dias et al. [23]) on fractiles of the distribution may help 

in reducing motivational biases. 

For the low-moisture food ranking project for FAO/WHO we asked the experts 

individually to estimate lower, upper, and most-likely values for the parameters of 

three sub-criteria where their expert judgment was needed (C3.3, C4.1 and C4.2 – 

see Figure 2). The aim was to minimize individual biases such as anchoring and 

availability. The ranges of the estimates provided by experts were very wide, 

signaling that the procedure may have reduced overconfidence. For this reason, we 

opted to use their most likely values in the analysis of robustness as shown in Figure 

9. Results show that Category 4 would be the one with the highest overall value 

under these lower most likely values and upper most likely value bounds, thus 

slightly above Category 1 (which has the highest overall value under the baseline 

most likely estimates). 
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Figure 9. Analysis of robustness of low-moisture food categories ranking for the FAO/WHO project. 

4.2 Cognitive Limitations in the Elicitation of Expert Judgments on Policy Impacts 

The same concern about cognitive limitations expressed in the previous section for 

preferences apply for the elicitation of expert judgments. While many experts have 

advanced degrees in statistics or quantitative methods, some of them struggle to 

express their judgments in a quantitative way. Indeed the prevalence of qualitative 

labels for describing uncertainties in an ambiguous way (Wallsten et al. [132]) might 

be an indication of this phenomenon. In addition, I noticed in several projects the 

experts’ reluctance in expressing a quantitative judgment without having all hard 

evidence available, indicating a motivational issue. 

These cognitive and motivational challenges have led Jaspersen and Montibeller 

[53] to develop a family of methods that use only ordinal information about estimated 

probabilities of events, while assuming the principle of maximum entropy (Jaynes 

[54]), to derive  quantitative probability estimates for both discrete and continuous 

distributions. For example, Figure 10 illustrates the probability of up to 10 

stochastically independent events which were a priori ordinally ranked – this method 

was employed to estimate the probability of different emerging animal health threats 

for the project for DEFRA that I mentioned previously. See also Dias et al. [23] for a 

recent coverage of other elicitation protocols. 
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Figure 10. Probability of events using rank-order judgments [53]. 

 

5 Key Challenge III: Facilitation of Groups in Multi-Criteria Policy 

Analysis  
 

Most relevant policy decisions are taken in groups. Furthermore, it is common to 

assemble groups of experts when estimates are needed in public planning. In this 

section I review the advantages of working with groups as well as the key biases that 

groups might suffer from.  

5.1 The Facilitation of Policy Makers’ Groups  

Groups have several advantages when compared with individual policy makers, 

particularly when the group composition favors diversity of perspectives and 

representativeness of different interests at stake in the decision. Groups enhance the 

pooling of relevant and distinctive information, they help in error checking and 

correction, they can enhance individual task motivation and can also improve 

satisfaction among members (Kerr and Tindale [74]), as well as increase the 

commitment to the agreed way forward (Phillips [109]).  

One important distinction of multi-criteria decision analysis, when compared with 

other Operations Research methods, is that there is no single optimal solution as in 

optimization models (Franco and Montibeller [39]; Phillips [109]), or a true value as in 

prediction problems. What decision analysts seek to develop are requisite models 

(Phillips [108]) which are not “perfect” but only rich enough to help the group solving 

the problem that they are dealing with. In addition, as mentioned earlier, preferences 

are constructed instead of discovered, i.e., they are developed during the decision 
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aiding process instead of pre-defined in the policy makers’ minds (Roy [119]; Slovic 

[125]). This type of intervention aim requires an effective management of decision 

making processes, which promotes information sharing among members of the 

group, supports negotiation of their different perspectives and stakes, and enables 

the group to reach a joint agreement on the way forward.  

A recent project for the Malaria Consortium/USAID, in collaboration with the MIT 

Humanitarian Supply Chain Lab, illustrates the different perspectives that 

stakeholders often have and the importance of understanding their values to create 

high value policy options (Keeney [63]; Gregory and Keeney [47]; Siebert and 

Keeney, 2015 [123]). We developed a multi-criteria value model for understanding 

the preferences and priorities of the agents involved in a supply chain of rapid 

malaria test kits in Uganda (which involve first-line buyers [FLB], distributors, and 

retailers). We used a low-tech workshop – with criteria defined from the literature and 

enriched from inputs from the participants during the workshops – and elicited value 

functions and swing weights for each agent of the supply chain (see also Keller et al. 

[72]). We employed this value model to evaluate existing malaria kits (A, B, C and E) 

and develop new options (D, F-M). Figure 11 shows the setting of the workshop (on 

the right) and the overall results (on the left). Notice that option L had a higher value 

than the existing ones for the agents of the supply chain (10.31 units of value) when 

considering them equally relevant (equal weights on the agents). The results proved 

robust against variations of these weights on the agents (see Carland et al. [16] for 

details). 

 

Figure 11. Value of malaria kits for different agents in the supply chain for the Malaria Consortium/USAID [16]. 

5.2 Group Biases and Debiasing 

Group dynamics may present many dysfunctional behaviors and group biases. 

Relevant dysfunctional behaviors (Kerr and Tindale [73,74]) encompass group 
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pressure on individual members to conform to the majority view; groups that are 

dominated by a strong, authoritarian, leader; group inattention to novel or unshared 

information; dysfunctional shared representations about the decision problem; group 

motivation losses due to inefficiencies in the group decision process and 

disengagement of some members; and group coordination losses due to the strains 

that group work incur when compared with individual tasks. Decision processes that 

are adequately facilitated and well-designed elicitation techniques, such as Delphi 

(Linstone and Turoff [86]), may help to minimize these behaviors in policy making 

groups. 

Relevant group biases need to be dealt with when dealing with groups, as there is 

evidence that they affect group judgments. Montibeller and Winterfeldt [96] suggest 

five main ones, based on reviews of forecasting elicitation (Kerr and Tindale [74]) 

and of team-based decision making (Jones and Roelofsma [56]). The first bias is 

false consensus, in which individual group members overestimate the similarities 

between his/her judgment and the other members, leading to judgments using 

incorrect assumptions about the decision problem (Ross et al. [117]). The second 

bias is groupthink (Janis [51]) in which members of very cohesive groups are 

focused on getting consensus on the agreed solution disregarding other decision 

alternatives, objectives, or limiting information search (Jones and Roelofsma [56]). 

The third one is group polarization (Lamm [78]), in which group discussions enhance 

the initial position or opinion of the majority of its members. This bias may affect the 

choice, if the group had an initial inclination for a given policy option, as well as the 

group’s risk attitude, which may become more risk seeking/averse than those of 

individual members as discussions progress (Isenberg [50]). Another bias is group 

escalation of commitment, in which a group supports a course of action that is clearly 

failing, which is exacerbated by groupthink and group polarization. Finally, groups 

may suffer from group overconfidence, beyond the overconfidence of its individual 

members (Plous [111]). 

The available debiasing tools against group biases encompass: using multiple 

experts with different perspectives of the policy problem, encouraging the expression 

of multiple perspectives and opinions, using structured elicitation protocols, and 

employing facilitated decision processes.  

A project that we developed for the UK National Audit Office (NAO) illustrates how 

the redesigning of a decision process, coupled with a multi-criteria evaluation, helped 

to minimize group biases and to support the reach of agreement on the options to be 

selected. We developed a model to evaluate the of NAO’s value of value-for-money 

auditing studies. It is surprisingly hard to asses the potential of these studies a priori, 

so we developed qualitative attributes for the criteria that mattered for the policy 

makers: Relevance of the Study, Potential Influence that it might bring, 

Accountability that it might generate, Topicality of the theme and the Capability of the 

auditing team for performing the study. The attribute for Relevance is shown on the 

left-hand side of Figure 12 (with the levels describing the 100, 75, 50, 25 and 0 value 



23 
 

scores). Swing weights were elicited from the group so an overall value for each 

study could be assessed. The evaluation process was redesigned in three main 

steps. First, individual assessors evaluate each study on each criterion (avoiding 

group biases) using the levels shown in the same figure (thus reducing anchoring 

and response scale biases). Second, aggregated scores are calculated, and then the 

group can review and re-assess scores for projects with high dispersion of individual 

valuations (supporting the share of information and opinions but also constraining 

motivational biases for “pet” projects). Third, projects are prioritized on their overall 

value, but the group can force projects in and out (balancing technical criteria and 

political feasibility), while being informed of the value loss of the adjusted portfolio 

(as shown on the right-hand side of Figure 12). 

 

 

Figure 12. Supporting the selection of a portfolio of value-for-money auditing projects for NAO. 

6 Conclusions 
The choice of public policies is necessarily a multi-criteria problem of balancing and 

making trade-offs among conflicting objectives – that is why it is so challenging for 

policy makers and so attractive for decision analysts. Multi-criteria decision analysis 

is being employed extensively, and successfully, worldwide to support such tough 

choices. But some key behavioral challenges must be addressed, if we want to 

develop high quality decision models and provide top quality decision support. This 

tutorial provided an overview of these challenges and gave some advice on how to 

deal with them. 

The first theme is that these models rely heavily on judgments, preferences and 

priorities from policy makers and estimates from experts. The quality of the model is 
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therefore closely dependent on the quality of these judgments. Several cognitive and 

motivational biases thus must be minimized when decision analysts are eliciting 

these judgments. The tutorial provided several suggestions on how to debias these 

judgments in practice and the relevant literature on the topic. 

The second theme, which is less visible in behavioral decision research but crucial 

for successful interventions of multi-criteria policy analysis, is managing cognitive 

complexity. This is particularly true whenever there is a group of diverse 

stakeholders and not all of them with a quantitative background (for instance the 

malaria kit evaluation that we conducted for the Malaria Consortium/USAID – see 

Carland et al. [16]). Solutions to this challenge call for simple interfaces, user-friendly 

elicitation protocols, and incomplete information models. 

The third theme, which is perhaps the trickiest one to address due to its socio-

technical nature, is how to maximize the efficiency of team work and minimize group 

biases in judgments. Solutions require the use of effective facilitated decision 

modeling and (re)design of decision processes. 

These three themes open exciting avenues for further research. The first one is on 

assessing the effectiveness of existing debiasing tools and developing, if needed, 

more efficient ones (see also Montibeller and von Winterfeldt [95]). The second 

avenue is more research on MCDA model-user interface and rigorous behavioral 

assessment of cognitive complexity in preference elicitation and matches with 

individual styles (e.g. the analysis conducted by Fasolo e Bana e Costa [32] on 

different value elicitation methods). The third one is a better understanding of the 

interaction between model and group dynamics in MCDA interventions (e.g. as 

conducted by Franco et al. [41] who were supporting groups in applying value-

focused thinking for the allocation of resources). 

I conclude this tutorial with two worries and one encouragement. I worry that 

decision analysts are spending far too much effort and time in dealing with the 

(undoubtedly important) technical issues related to multi-criteria evaluation, while 

assuming that the inputs of their models, i.e. judgments, are debiased and reliable. 

They are not. I also worry that decision analysts often assume that policy makers are 

a single unit in their analyses, “the decision maker”, with stable, unique, and clear 

preferences. They are not. So, I encourage decision analysts to “get their hands 

dirty” with policy makers’ judgments and group dynamics. Learn how they can help 

to improve the former and facilitate the latter. This will help our community to 

become better practitioners and get involved in even more complex policy problems, 

while it may also open up exciting avenues for interdisciplinary research.  
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