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FINITE ELEMENTS SOFTWARE AND APPLICATIONS

ABSTRACT

The contents of this thesis are a detailed study of the software
for the finite element method. In the text, the finite element method
is introduced from both the engineering and mathematical points of view.
The computer implementation of the method is explained with samples. of
mainframe, mini- and micro-computer implementations. A solution is
presented for the problem of limited stack size for both mini- and
micro-computers which possess stack architecture.

Several finite element programs are presented. Special purpose
programs to solve problems in structural analysis and groundwater flow
are discussed. However, an efficient easy-to-use‘finite element program
for general two-dimensional problems is presented. Several problems in
groundwater flow are considered that include steady, unsteady flows in
different types of aquifers. Different cases of sinks and sources in
the flow domain are aiso considered. The performance of finite element
methods is studied for the chosen problems by ;omparing the numerical
solutions of test problems with analytical solutions (if they exist) or
with solutions obtained by othefiiﬁme;icalﬁﬁétﬂéd;; The polynomial
refinement of the finite elemeﬁts_iskstudiea'for the presented problems
in order to offer some evidence as to which finite element simulation

is best to use under a variety of circumstances.
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1.1 INTRODUCTION

The Finite Element Method (FEM) originated as a generalization of
the matrix structural analysis method to problems of elastic continua.
Despite the fact that the term "Finite Elements" itself was introduced
by Clough [196C] in a paper on plane elasticity, the ideas of Finite
Element (FE) analysis date back much further. Therefore, it is not
possible to mention a specific date when the FEM was invented. However,
it seems to be a fact that the challenge met when designing aircraft
during the last few decades was the motivation for new methods of
structural analysis. The complexity of these structural systems
together with the various loading conditions were behind the first
ideas of the method where a continuum is discretized into smaller
parts for which a solution can be approximated, At a later date, the
method was realised-to be egquivalent to finding approximate solutions
to variational problems using piecewise polynomials., This allowed the
method to be used for many £ield problems like those in fluid dynamics,
electrostatics and solid mechanics. As the FEM applications increased
rapidly in the 1960's, more mathematicians became interested in giving

the method a firm mathematical foundation. Meanwhile, since the FEM
2. o= e

is a computatlonal technique which requires the use of a digital

e e ——— —— e e T

computer for its 1mplementatlon, many computer specialists started
__,_———" ""-—_7,,—f [ S ———e e —

developlng software for the method. Due to the rapld advances in

a e e T - R p— e

computer hardware and software technology, several FE research and-

T T T T T e e e ——— B e S
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Unquestlonably, today the FEM is a well establlshed technique and

[ = —mes

is considered as one of the most powerfuleengineering analysis tools,
T e e e et e o o I R ___r__/‘—'_‘_
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1.2 THE BASIC CONCEPTS

It seems to be a general approach of the thinking methodology in

life: to study a complicated problem, try to _partition it to_simpler

———

construct the final solution to the original _problem by the assemblage

of the subproblems solution.

Inrthe FEM a discretization technique is employed through which a

e e

complex region is divided into 51mp1er subregions called finite elements.

e e it ¢ T T — e . -
p—— —— e ———

This discretizatignhprocess will convert a continuum, for example, of

e e T —— e

infinite degrees of freedom to 2 system of finite elements of finite

T e s —_—

degrees of freedom. These elements are connected at specified points called

nodes. It is possible to have fewer nodes within elements as well. The

L
[ —_—

field variable is speCified in terms of approximate functions within
T T T e e ——— =

each element. These functions are called 1nterpolation or ba31s functions

T — ~— ) - T - — T e

and are usually polynomials. The interpolation functions are defined

in terms of t the values of the field varjables_at .nodes. Thus, the

e e ——————

problem now becomes how to determine the field values_at nodes. It is

cbvious that: (1) these interpolation functions must satisfy some

continuity conditions across element boundaries, (2) certain boundary

S—— - e e s+ v e e
conditions must also be satisfied The major factors that affect the

——— -

obtained solution are the types, number and Size of elements, the

elements distribution and grading and the used interpolation functions.

-

* Four approaches can be used to obtain the element characteristics: the
direct, the variational, the weighted residual and the energy balance
approaches. The direct approach was the first to be used for

structural analysis problems and can be used in relatively simple cases



only. In this approach, a direct formulation of the element character-
istics can_be done based on the principles of structural mechanics in
applications of scolid mechanics, say. This will be explained in
greater detail in Chapter 2 of this thesis.

In the variational approach, a functional is extremised. The
functional in structural mechanics is usually the potential energy.
This appreocach can be used for more complicated problems provided that
a variational principle exists and is known. If there is no variational
principle known for a problem, then the weighted residual approach can
be used to obtain the element characteristics. In this case, the
starting peoint is the partial differential equation itself. Finally,
the energy balance approach, requires no variational principle and thus
can be used for a wider range of prcocblems where the balance of thermal
and/or mechanical energy of the system is utilized to formulate the
element characteristics.

Despite the approach used to formulate the element characteristics,

a_general strateg

y of finite element solution can be stated as follows:

(1) Discretization 6f the domain into suitable finite elements and
specification of the nodes. Generally, for one dimensional
prbblems, line segments are used, triangles or rectangles are
used in two dimensional problems, while tetrahedrons or hexahedrons
are used in three-dimensional problems. Several types of these ~
elements are used within this thesis for one and two dimensional
problems.

(2) Sélection of interpolation functions to express the field variable,
which may be scaiar, vector or higher-order tensor over the element.

{(3) Computation of the element characteristics using one of the above

mentioned approaches.



(4} Assemblage of the element characteristics to obtain the overall
system characteristics, then the incorporation of boundary
conditions and then the resulting set of equations is solved to
determine the value of the field variable at the ncdes.

(5) Performing some post processing functions like the computations

of other important values, the display or plotting of the results,

etc.



1.3 DOMAIN OF APPLICATIONS OF THE FINITE ELEMENT METHOD

Although the FEM was originally developed by structural engineers
as a solution technigque for structural analysis, it has spread rapidly
to cover many fields in Engineering, Physics and Applied Mathematics.
This may be due to the general nature of its theory as a method for the
solution of boundary value problems. However, it should be emphasised
that although mest branches of engineering analysis can be considered
as potential users of the FEM, it is not always the magic and the best
solution method to ALL these problems. In fact, every solution
technique has its merits and disadvantages. Despite that, it can be
safely said that the FEM is usually superior to other competitive
techniques in most cases.

It is impossible to list all the applications of the FEM and,
therefore, a partial list of the titles of the most well known areas
in engineering analysis is given as follows:

(1} Structural Engineering:

* Static and dynamic analysis of various types of structures

composed of different materials.

* Stability analysis of structures

* Response of structures to periodic loads

* Elasticity problems
(2) Strength of Materials:

* (Creep and fatigque analysis of materials

* Pond stresses in composite sections
(3) Heat transfer:

* Steady state temperature distribution in seolids and fluids

* The analysis of transient state in heat transfer problems like

heat flow in rocket nozzles and turbine blades.

.
-



(4} Hydraulics and Hydrodynamics:
* Analysis of laminar and turbulent flows
* Subsonic and ultrasonic flows
* BAnalysis of hydraulic structures like dams
* Lake and dam interaction.
{5) Water Resources:
* Analysis of potential floﬁs
* Free surface flows
* BSeepage analysis
* Flow in aquifers and porcus media.
{6) Geomechanics:
* Analysis of different types of foundations
* Analysis of soil structures interaction
* Rock and soil mechanics
{7) Electrical Engineering:
* Electric and magnetic potential
* Analysis of power transmission systems
(8) Mechanical Engineering:
* Fracture mechanics
* Analysis of mechanical systems, including frequency and.modal
analysis.
* Stress concentration problems
* Lubrication problems
{9) Nuclear Engineering:
* Bnalysis of nuclear pressure vessels and containment studies
* Structural analysis of reactors

* Neutron flux distribution



{10) Biomedical Engineering:
* gtress analysis of: bones, eye balls and teeth
* Mechanics of heart valves
* Structural behaviouxr of the skull -
{(11) Industrial Engineering:
* Welding analysis
* Manufacturing process of machine tools
(12) Chemical Engineering:
* Melting of solids in chemical plants
* Heat, mass and momentum transfer problems in chemical

engineering processes.

Within the body of this thesgis some problems in structural and

water resources engineering are considered.



1.4 SOFTWARE FOR THE FINITE ELEMENT METHOD

Since the FEM is a numerical technique for which the use of a
computer is essential, a potential user of the method is faced by the
problem of finding the software suitable for his application. Generally,
in most of the structural analysis and heat conduction problems there
exist many available software packages that can be used to solve many
classical practical problems in these two fields. However, this
statement does nqt exclude the modification pf existing software to
suit particular needs or even the develcopment of new special purpose
programs. The situation in other relatively new fields of applications
is quite different. In these fields there is no general purpose software
but rather software for particular problems. To illustrate, there is
no general purpose software known in the open literature that can be
used for general problems in fluid mechanics. This, in no case, means
that the current general purpose finite element packages cannot be used
to solving some particular problems in fluid mechanics as will bhe
demonstrated within this thesis. The aspecté of computer implementation
of the FEM will be detailed in Chapter 4, However, it may be useful to
give here a brief liét of some of the sources of information about FE
software [Noor, 19811 and fuebner aﬂd Thornton, 1982]:

. ASIAC

: DBerospace Structures Information and Analysis
Center, AFFDL/FBR Wright-Patterson Air Force
Base, Dayton, OH 45433, U.S.A.
. CEPA : Society for Computer Applicétion in Engineering,

Planning and Architecture, Inc., 358 Hungerford

Drive, Rockville, MA 20850, U.S.A.



. COSMIC Computer Software Management and Information

Center, 112 Barrow Hall, University of
Georgia, Athens, GA 30602, U.S.A.

. Finite Element

News : Robinson and Associates, Horton Road, Woodlands,

Wimborne, Dorset, BH21 GNE, U.K.

. ICES : ICES Users Group Inc., P.O. Box 8243,
Cranston, RI 02920, U.S.A.

. ICP : International Computer Programs Inc., 9000
Keystone Crossing, Indianapolis, IN 46240,U.S5.A.

. NISEE : National Information Service for Earthquake
Engineering, 519 Davis Hall, University of
California, Berkeley, CA 94720, U.S5.A.

. NTIS :+ National Technical Information Service, U.S.

Department of Commerce, 5285 Port Royal Rocad,
Springfield, VA 22161, U.S.A.

However, a more practical way to search for this information is to use

any of the available on-line search facilities that conduct several

internatioﬁal databases. The search strategy of these databases can be
summarized as follows:

(1} Specify keywords for the topic to be searched for.

(2) Each relevant database is searched for the qualifying entries of
each of these keywords separately. The actual entries are not
retrieved but rather data sets containing pointers to these entries
are created. These data sets are called the hit sets.

(3) The required entries are the intersection of the hit sets.

This is better clarified by an example. Suppose that a search is



1o

required for "Flow towards wells in a quifers using finite elements".

The formulation of the searching strategy for this request is:

Set A represents the set of c¢itations retrieved using the keyword

"Flow".
Set B is that using the keyword "Well"
" n " n

Set Cc " "A guifer"

Set D " " " " " "Finite Element"

The required set of citation is thus AN BN ¢ N D,

It should be noticed that synonyms must be considered to retrieve

all the possible citations. For example, the Set B in fact should be

replaced by the union of the sets Bl, B2 and B3 defined as:

Bl is the set representing the citations retrieved using the keyword

"Well"

B2 n " " " . [1] n n n

"Sinks"

B3 n " " n " " 1] "

"Sources

B=B1U BZU B:3

and the required set of citations is thus:

An(BlUB2U B3)ﬂ cn o
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1.5 THE STRUCTURE OF THE THESIS

This thesis is concerned with various aspects of the computer
implementation of the finite element method. The vast amount of
developments of compufational algorithms used in finite elements makes
it impossible to cover all the methods and techniques used in the
computer implementation of finite elements and therefore, an arbitrary
selection has to be done. The selection is based on the importance,
applicability and the range of applications. In addition to that,
problems in ground water hydraulics are solved to demonstrate the
versatility and utility of the presented scoftware.

In Chapter 2 an engineexing approach for the FEM is presented which
gives a logical step by step apprecach to the basgic ideas and concepts
 of FE analysis. This is followed by a mathematical approach in the
next chapter.

In Chapter 4, the computer implementation of FE is considered in
greater detail. This includes the types of FE software and the data
structures required in FE programming. Afterwards, proposed extensions
to the standard Fortran are given which will make FE programming more
efficient and easier. The different algorithms for the solution of FE
equationé are presented. Four different FE programs are then presented
as examples of computer implementation of FE on mainframe, mini- and
micro-computers. The features of these implementations are extracted
and demonstrated. The problems of computer implementation on mini- and
micro-computers are highlighted and propoéed solutions are given. The
CPU time analysis of some test problems is reported in order to know
the distribution of processing time among the different modules in a

class of FE programs. Pre- and post-processors are discussed in depth
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with an attempt to defipe the functions and types of each. The rest
of this chapter is devoted to the selection of FE software based on
three different quantitative approaches.

In Chapter 5, the problem of limited stack size in many of the
mini- and micro-computers is demonstrated. A proposed seclution is
given; namely the virtual stack facility. This software is implemented
and tested. A new replacement algorithm for a virtual stack is
implemented and proved to be more efficient than some of the known
replacement algorithms implemented for wvirtual storage systems.

In Chapter 6, a general programming system for the solution of a
wide class of second order partial differential equations based on
finite elements is presented. The computational aspects of this
software are explained. This software is then uéed to solve some
problems in ground water flow in the next chapter.

In the last chapter conclusions are drawn of this work and the

scope for further work proposed.
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2.1 HISTORICAL BACKGROUND

The main concept in the finite element method is to replace a
complex continuous system by discretized simpler elements whose
behaviour is already known. This concept is very old in the history
of the subject. The roots of this concept can be back-dated to
archimedes who used it to find an approximate value of m. He replaced
a circle by a polygon in order to compute the perimeter of a circle.
This concept is actually a form of one dimensional line elements
modelling. To calculate the area of the circle, Archimedes used
triangles originating from the centre of the circle to the vertices
of the polygen. This could be considered as a two-dimensiocnal
triangular element model. Beckmann [1971] gave full details of the
calculation of 7. A brief discussion of Archimedes's method to compute
the areas of plane figﬁres and volumes of solids and the work of other
ancient scientists can be found in Hogben [1967].

Despite this very old origin, the finite element method (FEM) in
its modern shape was discovered as a generalisation of the matrix
methods of Structural Analysis. These methods were used for solving
skeletal structural systems like trusses and frames which yield exact
solutions. However, in order to soive elastic continua, a similar
approach was used as an approximation. One of the methods for such
approximation is to use a lattice of framework to modei the actual
continuum {e.g. Hrenikoff (1941), Yettram and Busain (1966)]. Thus,
in this approach a plate loaded in plane like that shown in Figure 2.1
which possesses infinite degrees of freedom is modelled as a frame of
a finite number of degrees of freedom which can be solved using the

standard structural analysis methods as shown in Fiqure 2.2.
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FIGURE 2,l: A plate with in-plane point load

A ANV

FIGURE 2.2: A lattice of framework model

Another approach which is different in concept was adopted by
cother ‘scientists and engineers; [Clough, 1966] whoe introduced the term
finite element for the first time. In this approach, instead of
approximating the continuum into a framework whose stiffness matrices

are known exactly; an approximate v

alue of the stiffness matrix of a

triangular element is derived and by an assembly of these triangular

elements the whole structure is modelled.

S _ PP ——
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In the body of this chapter a description of the FEM as an
extension to the matrix structural analysis is given. This will give.
one an insight description of the method and the steps used to solve
problems using it. In section 2.2, the stiffness method of structural
analysis is briefly reviewed. 1In section_zig, the assembly process by
which the global structure is formed from its individual elements is
explained whilst dealing with the boundary conditions is discussed in

section 2.4. The solution of the resulting algebraic equations is

reviewed in 2.5. The determination of other element data like stresses

. vehicle to exemplify the method. In section 2.7 extensions to other
types of problems are presented, whereas section 2.8 presents the

ceonclusions.
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2.2 THE STIFFNESS METHOD FOR STRUCTURAL ANALYSIS

The matrix methods of structural analysis give a unified approach
to solve structural syétems. The most widely used approcach is the
stiffness method. Naturally it is the advent of digital computers
that makes such methods practically applicable. The details of such
methods can be found in the standard text books on the subject like
[Livesly (1964} and Przemieniecki (1968)]. Bowever, for the sake of
completeness, a rather short description is given.

In the matrix methods of Structural Analysis, the stiffness matrix
of each member of the structure is calculated. The stiffness matrix
relates the applied forces to displacements. The elements of this
matrix are functions of the geometry and material properties of that
element. Then, a glcbal stiffness matrix for the whole_structuré is
.assembled. Equaﬁing the external forces vector by the product of the
stiffness matrix and the displacement vectors will yield the determin-
ation of the unknown displacements. This is expressed in the following

matrix equation:
£=K4 , (2.1)

where £ is the load vector, K is the global stiffness matrix and &

is the unknown displacement vector. Hereafter, a plane trusswill be
considered to exemplify the various aspects of the finite element
process. Consider the truss element shown in Figure 2.3. There are
several ways to derive the stiffness matrix of this element. In the
early days of the FEM, the stiffness matrix was derived element by
element based on its definition as a force-displacement characteristic.
For example, since k.. is defined as the force associated with node i

ij

that produces a unit displacement at j, then to determine ki we may

3
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simply impose this unit displacement and calculate the corresponding
force. It is usually much easier to derive the stiffness matrix in
a local coordinate system rather than in the global one, then using
the necessary transformation to relate it to the global coordinate
system.

For the truss element the local coordinate system is chosen along
the axis of the member itself as shown in Figure 2.3. To derive the
stiffness matrix K we note that a truss element is subjected to axial
forces only thus we have two displacements along the member and none
perpendicular to it. To derive the elements of this matrix we need to

derive kl and kl2 only, while k according to the reciprocal

1 217°%12

theorem and k22 could be concluded by induction. To calculate kll we

know that kll is equal to the force that must be applied at node i in

order to produce a unit displacement at the same node along the member

EA

11 =-ET + where E is the

axis. From elementary theory of structures, k
Young's modulus of elasticity, A is the cross sectional area of the

member and I is its length. At the same time and due tqg equilibrium

k,. will be = - =2, gimilarly, k.. = 2. Thus the stiffness matrix
21 L° Yo %50 =L

‘in the local coordinate system is,

x = EA 1 -1 (2.2)

N I S|
In order to express the stiffness matrix in the global x-y coordinate
system, we assume that E, d and f are the stiffness matrix, displacement

vector and forcevector in the global cocordinate system, respectively.

The displacement vectors 4 and d are related by:

2|

d =34, (2.3)

where A is a transformation matrix.
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I+ must be noted that 4 is a two element vector:

a
d-= i (2.4)

4

while d is a four element one since the displacements are in two

dimensions with reference to the global x-y system.

ol
[

(2.5

Denoting the direction cosines between the x-axis and the x,y axis

by % and m respectively, then,

—_—

£

dy = dpgoq bt 9ym
= d, a. . " 2.
and dj 2§-1 L+ d2j (2.6)
or in matrix form,
311
a, 2 m 0 o Eéi
a = T o= — (2'7)
dj o o] £ m d2j—1
4, |

Therefore, the transformation matrix XA is,

2 m 0 0
X (2.8)

0 0 2 m |

If the angle between the x-axis and X-axis is g then,

and m = sin o (2.9)
Thus, cosa sing o} 0
A= (2.10)



19

If a virtual displacement vector 55-15 introduced on the element

then from (2.3) it follows that:
6d = Ada ,

The resulting virtual work -~ being a scalar quantity - must be

(2.11)

obviously independent on the coordinate system and it follows that:

saf = 8df .
Substituting in (2.12) from (2.1l1) we get:
§3°F = (\d)Tf
or 6ETE-= 5ETfo .
ie., 53" (E-2"5) = 0 .

Since 64 is arbitrary, it follows that,

Substituting from equation (2.1} for f in equation (2.16) gives,
F-ATka = 0 .

Substituting for 4@ from equation (2.3) into (2.17) gives,
=Ta -0,

or £ = (ATKA)E-.

Comparing (2.18) with {2.1) gives,
K =Tk,

substituting for A,lT and K from (2.2) and (2.10) gives,

Ebsa O.—

sina o) 1 -1} |[cosa sina o]

0 coso -1 1 0 0O cosa

(o] sinqj

e

i.e.,

(2.12)

(2.13)

(2.14)

(2.15)

(2.186)

{2.17)

(2.18)

{2.19)

sindg
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cos o
_l_(_ _ EA cosasina
L 2
-COoSs Q
~sinacosa
b

sinacosa
2

sin o

-cosasing

—sinza

2
-cos a
-sinacosa
2
cos o

slnoacosa

-sinacosa
2
-sin o

sincacosa

sinza

20

(2.20)

The element axis and the global x-axis are shown in Figure 2.3.

Consider the sample problem in Figure 2.4 which represents a simple

truss of constant cross sectional area A and modulus of elasticity E.

The first step to solve this problem is to number each node and element

in the structure.

Figure 2.5 shows the element and node numbers.

A

global x-y coordinate system is chosen for the whole structure passing

through node number 1.

is then computed according to equation (2.2b) as follows,

K(l) EA

10/2

(2)_ EA

1072

(4) | EA
10/2

K

Now, each element matrix is formed.

- A
V2
o

]

o)

0

-3
-4

-}
-3

matrices to form the overall structure matrix.

a general nature in FEM.

The element stiffness matrices for each member

We should assemble these

This procedure is of



x

b

FIGURE 2.3: A truss element

10 %{ 10 lO__ﬂ

FIGURE 2.4: A truss problem

FIGURE 2.5: Nodes and elements numbering
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2.3 ASSEMBLY OF ELEMENTS

The main idea of the assemblage of elements is to map the
contribution of each element into the global stiffness matrix in a
manner that preserves the compatibility at element nodes. In other
words, for a node which is common to more than one element; thernodal
stiffnesses and nodal loads for all the elements sharing this node are
added to obtain the net stiffness and net load at that node. To
illustrate this, we assemble the overall stiffness matrix of the
considered truss problem,

Since we have four nodes with two degrees of freedom (dof) . at
each, it results that the global stiffness matrix is of size (8x8).

We start by zeroing a (8x8) magrix that will hold the global stiffness

matrix. To map elements of the first element matrix K(l) we note that

element [l1] is connected to nodes 1 and 3. Thus K(l)

will be mapped
to the corresponding cells in the global stiffness matrix; i.e. to
cells corresponding to nodes 1 and 3 only as shown in Figure 2.6.
Note that each submatrix Kll' K13, K31 and K33 is a (2%2) matrix.

In the same manner, other element matrices could be assembled in

the overall global matrix. This is shown in Figure 2.7. The numerical

value of K will therefore be:
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FIGURE 2.6: Map of K(l)

1 2 3
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FIGURE 2.7: Formation of the global stiffness matrix

E 3 0 o -3 -1
) ) 0 0 -3 -}
0 0 23 -3} 0 0
EA
K =— |0 o} -1 13 o 0
10V2 N
-3 -4 o o = -1
Y2
-3 -3 o} o] 1-3 11
1
o] o -1 -3 - = .0
V2
O 0 -3 -3 o o]

into the overall stiffness matrix

4
i —
i
T
| _ 724
' (4)
I Kag
- 2
i (3) .. (4)
| Kia "%y
0 o |
0 8]
-3 -3
-1 -4
21 o
Y2
0 0
1
I+ — 1+0
V2
140 O+t

23
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3 3 0 o -3 -3 o 0|

3 3 5] o -4 -3 o o

o] (o} 1 o) o] o] -3 -}

o o o) 1 0 o] -i -3
1 1

K= (-} -1 o 0 l+— -1 -—= ©°

3 /2

-3 -3 o] 0 o 1 0 o)

0 o -1 -3 - L o) 3+ L by
Y2 V2

£e] o -3 -3 0 0 3 5

At this point it is useful to note some properties of the
assembled matrix. The first property is that K is symmetrical.
Second, it is a sparse banded matrix. This is due to the structural
connectivity of the elements. It is worthwhile to mention that the
global stiffness matrix - as the elemental ones - is a singular matrix.
This reflects the fact that so far, we did not impose any boundary
conditions on the problem, so the structure will have a rigid body

motion under any applied loads,
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2.4 IMPOSING OF BOUNDARY CONDITIONS

Since our main unknown in the problem is the displacement vector
4 and since at supports we know the displacements in advance as being
zerog, it follows that when solving equation 2.1 we must cater for
those known displacements. First let us form the f vector for the

ncdal loads. In our example, this is quite simple:

r

We know that the displacements in the x and y directions at

nodes 1 and 2 are zeros, thus 4 should look like:

~
"

O

& & o . O O O
m ~3 & un

~

In other words, we have.four unknowns only rather than eight.
Usually there are two approaches to impose this in the considered FE
solution. In the first approcach, the equations corresponding to the
known displacements are omitted and the remaining equations could then
be sclved for the actual unknowns. In our example, this means that the

first four rows and columns of K are removed and we will be left with:
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£ =xd,
where,
d5
a
£ = ,oa= 40 .
7
| ~-10 dB
and . .
1+ L 8 -1 0
2 Y2
0 1 o 0
K = -—_E_Ai_ l 1
102 |- = o 3+ — }
V2 V2
) 0 3 ]
which gives the solution vector d:
(V2 )
d = -lo—o 4 © 3
EA 1+/2
(-3-72)

Another method of imposing the boundary conditions on the
considered problem is to force the known displacements to be equal to
their known values. This is done by multiplying the diagonal terms of
K that correspond to a known displacement by a very large number and
multiplying the corresponding element in the load vector by the same
large number and the corresponding diagonal element in K and the
prescribed displacement. Thus, we force the solution to give us as a
solution, the prescribed displacement given. This approach is referred
to as the penalty modifications for nodal constraints.

In our example we get,
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[1x10°° 3 0 o |
i i><1o20 0 o
EA
K=— 20
1072 0 ) 1X10 )
2
K ) 0 1x10°°]

Other elements of K are unchanged. Since the prescribed

displacements in this case are zeros, the corresponding ncodal vector

£ will be:

Solving the equation f£=Kd for 4 will result in practically zero

values for the first four elements in d.
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2.5 SOLUTION OF EQUATIONS

As it is shown, the FEM will lead to the sclution of a set of
algebraic equations. These equations could be linear if the original
problem is linear by nature otherwise it will be non-linear. There
are many methods used to solve‘the FE algebraic equations. Generally,
we can classify two distinct approaches. In the first approach, exact
or direct methods of solution are tried while in the second approach,
approximate or iterative methods of éolution are being used. 1In the
exact methods a solution is guaranteed on the completion of a fixed
amount of arithmetical operations, whilst the iterative methods
generally involve a repetitive sequence of simple matrix-vector
operations in which a guess vector is successively improved until the

solution is obtained to a specified accuracy [Evans, 1973].

2.5.1 birect Methods

Direct methods of solving linear algebraic equations are primarily
based on the Gauss elimination method. In a standard Gauss elimination
method, the system of equations Ax=b is solved by reducing the matrix A
to an upper triangular form with unity values on the main diageonal.
Then by backward substitution, the last unknown is first determined
and consequently other unknowns are determined by backward substitution
[see Fox (1966), for example].

Consider the system of equations,

Ax = b , (2.21)
where A (nxn) is the matrix of coefficients, x (nxl) is the unknown
solution vector and b (nxl) is the known vector of constants. In FE

structural analysis systems; A is usually the stiffness matrix; x is
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the unknown nodal displacement and b is the nodal force.

The elimination of the unknown x, (i=1,2,...,n) by the Gauss

i
elimination method is done by modifying the elements of the matrix A

and the vector b as follows:

= - *

33k T 3k 334 Yk

b, =b.-a,,*b, /a
3 j 3ii

for j=i+l to n

/ (2.22)

341
ii r (2 -23)
and k=i+l to n.
The last equation will be in the form of
*n bn/ann
and thus X is determined directly while other x's are determined by

backward substitution using,

n
X, = (bi - z ai'xj)/aii' for i=n-1 to 1. (2.24)
j=i+l

It is clear that this method will fail if any of the elements
a; become zero during the elimination process. In the meanwhile if
the elements a,, are too small, big round-off errors are expected. To
avoid this situation pivoting is used. The main idea of pivoting is
to re—arrange the equations to be solved so that the elementsaii are
chosen to be the largest in absolute value sense among other elements
at each reduction step. Pivoting can be done by searching the complete

matrix a.. elements for the maximum value and take that to be the pivot.

ij
In this case both row and column interchanges are needed and the
pivoting process is called complete pivoting. If the search is limited
to the largest element per column, pivoting is called partial pivoting

and can be done by row interchanges only. In many cases partial

pivoting is found to be sufficient to obtain a successful elimination.
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In many of the practical FE problems the matrix A is positive
definite and symmetrical and pivoting is not required.

Another method of solution of linear equations is that by the
Gauss~Jordan method where at each elimination step the variable x,
is eliminated not only from the equations i+l,i+2,...,n as before,
but also it is eliminated from the equations 1,2,...,i-1. Thus the
coefficient matrix A is reduced to a diagonal form and the solution
of the unknowns g is determined directly by dividing, i.e. bi/aii'

A variant of the reduction of A to a triangular form by elimination
is the factorization of A to LU matrices, where L is a lower triangular
matrix and U is an upper triangular matrix with unity values among the

main diagonal,
A =10 . (2.25)

Thus equation (2.21) will be,

LUx = b , (2.26)

In the Crout algorithm [Stabrowski, (1981)] an auxiliary vector
y is calculated during the decomposition of A from the eguation,
Ly = b, (2.27)
and by backward substitution, x is determined from:
Ux =y , (2.28)

The elements of L, U, y and x could be determined from:
j-1

zij = a5 - L “ik“kj , .1>;.j, i=1,2,...,n (2.29)
For j=1, zil=ail
i-1
_ 1 C s 4o
vy = "ii(aij k§1 z,ikukj) . 1<, 3=2,3,....,n  (2.30)

and u,,=1 for i=j.

i3
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a a
For i=1 ulj = Iil =-;l1
11 11
1 iil
y, = =—— (b, - 2..9) (2.31)
i 111 i k=1 ik'k
and
)
X, =¥, - u, ® . (2.32)
i i Kei+l ik"k

This methed could be used to solve a family of systems of equations
having the same A matrix simultaneously. In this case the elements of
L and U will be the same and elements of y and x could be calculated

for all the r.h.s. a® the same time. Equations (2.31) and (2.32) will

ba:
1 i1 .
Yim = 7,. Pin ” ) Lix¥ym) (2.33)
ii k=1
and ﬁ
*im = Yim ~ u ’ (2.34)
im im X=i+1 ik)ﬁ(m

where m runs from 1 to r; the total number of r.h.s.

It is worth mentioning that although the coefficient matrix A is
factorized into two matrices of the same order, the storage regquired
is minimal. This is accomplished by storing the non-zero elements only.
The ones on the diagonal of the U matrix are not stored as well. 1In
fact the elements of U, except the diagonal, are stored in place of

the zeros of the matrix L as shown below,

— — ]

31 e~~~ T2, b1 Yy W3t oo Yn
231 32-——~- 2n Loy Fap V3 -m-- - Yy
| ! t 1 t !
| \ I + 1 ' [}
' I 1 \ \ |
anl an.? - == ann R'nl 2’n2 - 7= g'rm

A similar method of the Crout's algorithm is that known as

Doclittle's method. Here, the matrix A is decomposed into an LU pair
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where L has the ones on its diagcnal instead of U as before. The
Choleski's method requires that the diagonal elements of both L and U

are the same i.e. ¥ i. If the coefficient matrix A is positive

2175
definite i.e. z Az>0 for all non-zero vectors z and A'=A i.e. A is
symmetrical, the resulting factorization yields U=LT and A=LLT.

It sheuld be noted, however, that the Gauss elimination is not
implemented as such in FE systems. This is due to the fact that: first
the stiffness matrix is very sparse and it is normally symmetric and
positive definite. Another factor that should be considered is that
when solving the FE algebraic equations the stiffness matrix size is
usually large enough so that it will not fit in the computer's fast
memory {(core) and the use of auxiliary storage will be necessary. The

methods used for computer implementation of these methods will be

discussed in Chapter 4 of this thesis,.

2.5,2 Indirect Methods

Indirect methods for solving systems of linear eguations are
primarily based on the Gauss-Seidel iteration. If the system of

equations to be solved is Ax=b, and an initial approximate solution

(1)

vector is x then the iterative procedure is defined by:
b i-1 a N a
+1 i ij _(n+l ij _(n
xj(-n ) = "a"'J:"""'- z '—JX ) - z "—‘—:,‘xj ) r n=l,2'o¢¢ (2.35)

i ge1 %ag 3 j=i+l 2ii
where the superscript (n+l) denotes the iteration c¢ycle number n+l.

A sufficient condition for convergence is that [Gerald, 1978]

N
> ] |aij| P 1=1,2,...8 . (2.36)

j#L

|aiil
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Re-writing equation (2.35) as

i-1 n
(n+1) _ 1 { (n+1) (n)}
X = —— th, - a, . x - a,.x (2.37)
i ay i 451 ii ) 32141 ij )
i-1 n
(n) 1l {n+l) (n)
=x +—=— (b - Ya x -3 ).(2.38)
i ajy i = 1373 = ij j

If the second term in {2.38) is multiplied by scme factor w we get the
successive over-relaxation method (SOR) which will converge much faster
than the standard Gauss-Seidel method and then the iterative equations
become,

i-1
(n+l} {n) W
X = x + P (bi Z

n
; : (n+1) Z (n) (2.39)
ii j= j=1i

%13 ¥

The over~relaxation factor w must be hetween 1 and 2, the optimum
value is problem dependent.

It is a fact that iterative methods of solution are not popular
in the well-known finite element computer packages [Rao, (1982)]. 1In
a survey of 36 of the most well-known FE computer packages by [Noor,
(1381) ], none uses iterative methods to solve systems of linear
equations resulting during the sclution process. BAlthough the iterative
methods of solution requires less memory space than the elimination
methods and usually better for small size equation systems (500-1000)
fitting into the RAM of the computer [Stabrowski, (1981)] but for large
systems when using backing storage is unavoidable the direct methods
are better. This is almost certainly due to the lack of knowledge on
how many iterations are necessary to achieve an acceptable solution.,
Another disadvantage of iterative methods is the choice of a good
over-relaxation factor (w value) which is very sensitive in relation

to the rate of convergence. There is no guarantee of convergence for
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unsymmetric problems. Another very important factor is that in
iterative methods of solving linear systems of equations the re-
solution is almost as expensive as the solution itself although you

do possess a near starting solution. 1In engineering design, re-solution
is frequent for different right hand sides [e.g. different cases of

loading in a structural analysis problem] or in non-linear analysis.

2.5.3 Solution of Non-Linear Equations

If the problem tc be solved is not linear, the resulting system
of equations will be non-linear. Solution of a system of non-linear
equations is not, in general, possible by direct methods. Iterative
procedures are used to solve such equations. Many methods have been
devised [e.g. Ortega and Rheinboldt, (1970)] samples of which are given
only which represent those used in practical FE programs.

Consider the set of equations,

fl(x) =0

f2 Xy =0

£.(X) =0 (2.40)
3

£ (X)) =0

n

where X is the vector of unknowns ={x ,...,xn} and £_,f ,...,fn are

1'% 1'%2
nen-linear functions. These set of equations can be written as,

F(X) =0 . ' (2.419
The probler is to find the solution vector X with sufficient accuracy.

The main essence of the iterative procedures to be described is to

(0)

start by a guessing solution vector X which is close encugh to the

exact soluticon X* and try to generate a sequence of vectors x(l),x(z)

X(m) that converges to X¥*.

FRER N}
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The simplest and oldest method to solve the system of equations
{2.41) is the fixed point iterative method. In this method the
equations are re-written in the form,

X = G(X) (2.42)
The initial guess vector x(o) is chosen and subsequently updated
using the iterative process defined by,

x(iﬂ) = G(x(i)) ’ {2.43)
where the superscript i denotes the iteration cycle, The jiteration is
proceeded until an assigned criterion is satisfied. Practically; two
limits are set to accept the solution vector in iterative procedures:
(i) a preset error limit is satisfied and (ii) a maximum number of
iterations is not exceeded. It is clear that this method is of linear
convergence. However, it is possible to accelerate the convergence by
using the most updated values of the components of the wvector X. 1In

(i+1) (i+1) _{i+1) (i+1}

other words, when computing xm the values xl X, ""'xm—l

are used instead of the values x{l),x;l),...,xéf;.

Another method of solving the system of equations defined by (2.41)

is the Newton's method. 1In this case the iteration process is defined

by:
A i YC S I (2.44)
- where x(l+l) is the updated solution vector at iteration number i and
(1)-1 | : . (1)
J is the inverse of the Jacobian matrix computed at X . The
Jacobian 1) is defined by:
Bfl afl L 3f
(i) (1) (1)
o %,
|
s : , o (2.45)
afn afn L afn
(i) (i) (i)
L. 3%y 3%, %,
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It is known that Newton's method is of quadratic convergence.
However, the convergence of this method depends on the initial guessing
vector x(o). This is particularly noticed for highly nonlinear
equations. Practically the Jacobian is not inverted at each iteration

cycle since matrix inversion is expensive in terms of computer cost.

Rather, the Jacobian is evaluated and the system of eguations:

J(i)C(i) = F(X(i)) r | (2.46)
are solved for C(i) which represents the correction vector to update
the solution vector X(i). Finally, the updated vector X(i+l) is
computed as:

) _ g W (2.47)

There are many methods which are all based on Newton's method with

some modifications. Among these is the damped Hewtcon's method. In

this method we introduce a damping factor a(l)

, i . .
correction vector C( ) such that the residual error after iteration

to be multiplied by the

cycle (i+l) is always less than that in iteration cycle (i), i.e.,

i+l

[[Fex™ D) || < |[F(X(i))|| (2.48)

Another method which is based on Newton's method is that by Broyden
[1965] where the Jacobian matrix is replaced by an approximate one
which is updated at each iteration cycle. The iterative procedure is

defined by,
x(J.-l-l) (iJ_A(l)--lF

=X (x(i)) . (2.49)

i
The approximate Jacobian A( ) is computed from:

(1)_, (i-1)-1 (1), (1)T, (1-1)-1

(i)-1 (i-1)-1 (s
A = A + :
s(l)TA(i—l)-ly(i)

{2.50)

and,

S _ ) -1

¢ B L px) - i,

@)

. {2.52)

I
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It is clear that in this method the solution of equations
defined by (2.46) is replaced by simple matrix operations (multi-
pPlication, addition and subtraction) which are executed faster as in
equations (2.50), (2.51) and (2.52). On the other hand, the quadratic

convergence of Newton's method is degraded.
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2.6 DETERMINATION OF OTHER ELEMENT DATA

The previous procedures will result in the determination of the
unknown displacements at nodes. Uswally it is more important to know

the stress values at different points in the structure. The procedure

could be summarized as follows:
(i) Stress-strain relationship:
Generalization of Hook's law results in,
¢ = De (2.53)
x] is the s£ress vector

. T
€ is the strain vector = [e € e € & & ]
Xy 2 Xy yz 2x

where o=[0c00 O ©
[ XY 2 Xy yz 2z

D is the elasticity matrix and € is the strain vector.

For a linearly elastic material, D is given by [Pr zemieniecki,

(19681 1],
1-v v v o 0. o -
v 1-v v o] o o)
E v v 1-v o) 0 0
D= roia=zvl . o o 1-2\; o o (2.54)
! 0 o) 0 1"3" o
o o) . o) o o | 'l—ﬁ
— 2
{ii) Strain-displacement relationship,
e = Bd {2.55)
where ¢ is the strain vector as before
d is the general displacement vector = :
W

B is a matrix of differential operators given by,
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But since what is available is the node displacements only, then,
we must relate the displacements within the element to the nodal ones.
This is done using a function of the position called the shape function
or the interpolation function. Thus denoting the calculated nodal
displacements with a® then the displacement field d is giwven by:

4 =na° | (2.57)
The choice of the shape functions Ne(x,y,z) is in the hands of the
user and depends on the type of element under consideration [Davis,
{1980)]. The shape functions are said to be conforming functions if
they satisfy the following conditions [Maijid, (1980}]):
(1) The diéplacement and the resulting.derived strains must be
continuous functions (C0 continuity).
(ii) The shape function must give rise to uniform strains within the
element {constant first derivative).
(1ii) No strains should be produced due to rigid hody movement,
(iv) The function must satisfy the conditions of compatibility inside

the element, at the nodes where elements meet and along the sides.

The role of the shape functions in the FE modelling is important
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and usually only polynomials are used due to their ease of
manipulation symbolically and computationally. It is clear that

combining equations (2.53) through (2.57) the stresses can be computed.
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2.7 EXTENSIONS TO NON-STRUCTURAL APPLICATIONS

After the FEM was used successfully for linear problems in 2-D
structural analysis, the natural extension to 3-D analysis was
developed [Argyris, (1964)]. Non-linear problems, both in geometry and/or
material, were considered afterwards. After discovering that FEM
could be interpreted in terms of variational techniques, the method
was used to solve problems outside the structural domain. General
field problems were solved [Zienkiewicz and Cheung, (1965)]. Another
dimension added to the range of applications that could ke handled by
FE was after it was discovered that FEM can be formulated as one of
the methods of weighted residuals (MWR) such as Galerkin's method.

This idea paved the way to solve problems for which variational
principles do not exist or were difficult to find. The text of [Oden,
(1972)] gives a comprehensiﬁe account of the application of FE to non-
linear problems. A classical reference of the FEM that covers a wide
range of applications is that of [Zienkiewicz, (1977)]. Some of the
recent applications are: Biomechanics [Gallagher, et al, (1982)1},
Coupled Problems [e.g. Borsetto et al, (198l1) and Hinton et al (1981)].
In an excellent paper by [Zienkiewicz and Kelly, (1982)] the role of
finite elements as a unifiea problem solving and infbrmation transfer

method has been stressed.
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2.8 CONCLUSIONS
The FEM was originated by structural engineers to solve complex
structural problems. The main motivation for the development of the
method was the challenge problems posed by relatively high-speed, jet-
powered aircraft. High-speed digital computers coupled with space
exploration money for basic research helped to process the present
advance in FEM in the last two decades [Kaldjian et al, (1982)].
Generally, three main types of problems were found in Engineering and
Applied Mathematics that could be handled by FEM. These are [Huebner
and Thornton, (l982}]:
(1) Equilibrium problems:
These are systems that do not vary with time. Examples are: linear
structural analysis and steady state fluid flow in porous media.
{ii) Eigenvalue problems:
These are equilibrium problems whose solution often requires the
determination of natural frequencies and modes of vibration of
solids and fluids. Examples are: Stability of structures and
modes of vibration of dynamic systems.
(iii) Propagation problems:
These are time dependent problemé. It could arise from the
above mentioned categories when a time variation is considered.
Examples are: creep analysis éf structures and non-steady flow
of fluids in porous media.
The main steps in FE analysis could be summarized as:
(i) The discretization of the domain into appropriate finite elements
(ii) Evaluation of each element stiffness and load matrices
(iii) Assemblage of element stiffness and load matrices into the global

stiffness and load matrices.
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(iv} Application of suitable constraints or boundary conditiocns.
(v} Solution of the resulting simultaneous equations for the unknown
nodal variables.

{vi) Evaluation of other element quantities of interest in the problem.

The element stiffness matrix of an elemént could be derived by
direct methods in simple cases like truss elements, constant strain
triangles (CST) etc. In these cases, it is relatively easy to derive
the terms of the stiffness matrix in algebraic form. For more
complicated cases it is usually better, and sometimes the only possible
alternative to evaluate the element stiffness matrix using numerical
integration. Of the many available numerical integration schemes, the
Gauss-legendre method is the most popular technique used in FEM. This
is primarily due to its high éccuracy and ease of computer implementation.

As a general view of the current research in the FEM, three major
fields of specialization could be identified. In the engineering
aspects, the development of new elements specially for shell structures
is one of the many active areas of reéearch. Extending the FEM for new
applications could also be observedf Solution of interfacing and
coupling problems is a trend in the literature. Frequently new methods
for solving free surface and moving boundary problems occur. Methods
for non-linear analysis are being refined and developed that give
acceptable results with reasonable costs. 1In the mathematical aspects,
error analysis specially the discretization error is an area of active
research. The theoretical study of the convergence of the method for
non~linear analysis is frequently discussed. In the computational aspects

new methods and algorithms are necessary for: data structures, equation
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solving, programming systems, the use of microcomputers and systems of
microprocessors and the use of advanced computer architectures such as
pipeline processors, single instruction multiple data streams (SIMD)

and multiple instructions multiple data streams (MIMD). Preprocessors
and postprocessors are also urgently required in FEM. Although several

systems are becoming available, it seems that many more are required.
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3.1 PRELIMINARIES

The aim of this section is to introduce some of the basic concepts
in linear algebraic theory, partial differential equations and
variational calculus which are required in other parts ¢f the thesis.

The illustration is by no means neither complete nor comprehensive.

3.1.1 Basics of Linear Algebraic Theory

{1} Vector Spaces

Given a non-empty set X, the totality of vectors that can be
constructed by scalar multiplication and vector addition from the
vectors in X is called a vector space. The scalar multiplication must

satisfy the following conditions:

(i) a(x+y) = axtay , {3.1)
(ii) (a+B)x= ax+fx , (3.2)
(1ii) (aB)x = a(Bx) , (3.3)
(iv) l.x=x , _ (3.4)

where, x,y are two vectors in X and o,B are arbitrary scalars.
The vector addition must satisfy the following conditions:
{1} x+y = y+x , (3.5)
(11) =x+(y+2) = {(xtyl+z , (3.6)
{(iii) There exists the zero element O € X such that:
O4+x = x+0 , ¥ x €X (3.7)
{(iv) Vx € X; there exist a negative -x such that:
x+({~x) = 0 . (3.8)
A set of vectors is said to span the space if they can generate the
vector space by the use of these operations., If the set consists of

the least number of wectors that span the space, it is called a basis
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for the space. The number of vectors in the basis is called the
dimensionality of the space.

Assuming n basis vectors exist in X, an n-dimensional space can
be generated. Any subset of m basis vectors; m<n; forms the basis of
an m-dimensional subspace. A necessary and sufficient condition that
a set of n vectors be confined to a subspace is that the set be
linearly dependent, i.e., there exists coefficients ci, not all zeros,

such that, n

'z c;x, =0 . (3.9)
i=1

Otherwise the set is linearly independent.

{2) Matrxices and Sets of Linear Equations

Some notations and properties of a square real matrix A {nXn)
which are relevant to the solution of the set of linear equations
defined in matrix form as:

Ax = b , (3.10)
where x is the unknown wvector (nxl) and b is the known vector of
constants (nxl) are as follows:

® The matrix A is said to be non-singular if IAI#O where ]A|
is the determinant of the matrix A.

. . T T .
® A is symmetric if A=A~ where A" is the transpose of A.

: . -1 T -1 .
® A is orthogonal if A "=A  where A is the inverse of A.
¢ A is npull if aij=0 vi vi.
® A is diagonally dominant if |aii| ) laij] vi

_ i#j

& A is irreducible if there exists no permutation transformaticn

PAP 1 which reduces A to the form:

s
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where P and Q are square submatrices of order p and q,
respectively; p+tg=n and 0 is a {(pXq) null matrix.

® Two square matrices A and B are similar if there exists a
permutation matrix P such that: B=P_1AP.

® The vector space generated by the rows of A is called the row
space and that by the columns, the column space. The
dimensionality of these two spaces is the same and is called

the rank of A.

Considering the set of equations aAx=b, the sufficient condition
that this system of n nonhomogeneous linear equations in n unknowns
has a unique solution is that Aal exists, i.e. rank[Al=n. When the
rank of A is r<n, the system has a solution if it satisfies the
consistency condition:

rank [A|b] = rank[A]
i.e. if b is subject to the same linear dependencies as the rows of A.
In this case the egquaticns are permuted such that the first r are

linearly independent and in the partitioned form the system will be:

r , n-r
SR ST 2 N R ! (3.11)
n-r | Ay, ‘; Y ) P,
and the solution of the r ina;§enden;-unknowns will be,
X, = A;ibl - A;iAlzxz . {3.12)

In fact this re—arfangement of the system of equations is one of the
ways to apply the boundary condition in a finite element analysis as
demonstrated in Chapter 2 of this thesis. The known displacements,

which are the boundary conditions in structural analysis applications,
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are arranged as x, in the partitioned form of the system of equations.

2
However, as previously stated this method of imposing the boundary

conditions in FE programs is not commonly used.

(3) Determinants

The determinant of a matrix A (nxn) is denoted by |A| and is
defined by the Laplace expansion:
k

la] = J(-1) a,35 " 2, (3.13)
where o ,B,...,v represent one of the permutations of the natural
numbers 1,2,...,n. The total number of terms is n! The expeonent k is
used only to determine the sign of the permutation, i.e., the term is
negative if the permutation is odd otherwise the term is positive. The
permutation is said to be odd if the number of pairs of integers which
are out of natural order is odd. Thus, the permutation 13245 is an odd
permutation since there is only one sequence out of natural order; 32.
Since each of the numbers 1,2,...,n appears only once as a row‘sub-
script and once as a c¢olumn subscript, any term of the expansion
contains only one element from each row and column of A, This is best
jllustrated by an example of a 3x3 determinant,

a a a

11 12 13
A= Ay oY) 453
a3 %32 233

The different permutations with their signs are:
123, -132, =213, 231, 312 and 321.
Thus, the expansion is:

+ a ,.a..a +

[al = ajjay,a35 = 31135585y ~aj,aya53 tajanag,

213%21%32 T #13%22%3) -
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Some of the important properties of determinants are as follows:

(1) Taking the transpose does not change the determinant.

{2} 1If one of the rows of a determinant is all =zeros; the determinant
value is zero. '

{3) Interchanging two rows changes the sign of the determinant.

{4) If two rows of a determinant are the same, the determinant
is equal to zero.

(5) A determinant with two proportional rows is equal to =zero.

(6) A determinant remains unchanged if to the elements of cne of
its rows we add corresponding elements of another row

multiplied by the same number.

(4) oQuadratic Forms

A function of n variables XyrowasX in quadratic form is defined

ass:

F(xl,...,xn) (2.14)

I
~1
=1

]
e
b
E
-
ES
[}

2
= + ...
a; %] t oA X X, + a, %X, +

+ + ... + + + ..
821%2%) fon 2% T I *a®1 T -
2

+a x .,
nn n
This form is usually encountered whenever the energy of a continuous
system is expressed in a set of discretized coordinates of the system.

It is more convenient to write the quadratic form F in matrix notation

as:

: T
F(xl,...,xn) = x A% , (3.15)
where, b4
)
x = . .
X
{ n

A gquadratic form F(xl,...,xn) is positive definite if F is non-
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negative for all possible combinations of real X (i=1,...,n) and if

F is zero only when every X, is zero. A property of a positive

definite quadratic form is that the determinants of the coefficients
aij and all of its principal minors are positive, i.e.,

Iall 812

=1
b
a >0' >Ol L '
L)
a

a1 a2 nl=-""= " nn

11 %12° """ %1n
>0 .

Mewm

If the variables KyreeosX are subjected to a linear transformation

defined by:

q..¥, ¢ i=1,2,...,n (3.16)
i k=1 ik‘k ‘

or in matrix notation:
X =Qy . {3.17)
Thus, the quadratic form F will be:
F = x'AQy) |
since xT = yTQT, then,
F =y (QAQy
or P o= yTBy (3.18)
where, B =0ng . (3.19)
If the linear transformation defined by Q is non-singular, the
rank of QTAQ will be equal to the rank of A and thus the rank of a
quadratic form does not change under a non-singular linear transformation.
If the quadratic form F is changed by a system of non-singular
linear transformations to a sum of squares of the variables, it is

called its canonical form, i.e.:

2 2 2
F = blyl + b2y2 + ... + bnyn {3.20)
T
=y By .

In this case, the matrix B will be a diagonal matrix,
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It is always possible to reduce any quadratic form to canonical

form by means of non-singular linear transformations.

{5) Eigenvalues and Eigenvectors

Given a matrix A (nxn), the eigenproblem is to find the eigen-
values (also called characteristic roots or latent roots); Ai and the
eigenvectors x such that:

AX = AX , (3.21)
where the eigenvalues A are the roots of the characteristic equation
given by: |

|a-az] =0 . (3.22)
For each A, if %#0 and satisfy,

(A-AI)x = 0 , {3.23)
then x is an eigenvector of A corresponding to the eigenvalue li.

The spectral radius p(A) is defined as:

p(a) = max |A.| . (3.24)
. i
lgign

In other words the spectral radius is the largest eigenvalue of the

matrix A. Since the eigenvalues may be complex numbers, in general,

/ 2
then IA,| is a?+b. , where A, = a_+/-1 b,.
i i "1 i i i

(6) The Calculus of Matrices

If the elements of a matrix A are functions of n independent

variables x ,xz,...,xn then the matrix A is a matrix function of xl,...,

1
xn. The derivatives of A with respect to any of these variables is

done by differentiating every element with respect to the same variables,

e.q.,
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aall aa12 _ o aaln
3x2 3x2 sz
gxiz - : ! | O (3.29)
aanl l aahn
fxz sz i

In the same sense, the integral of a function matrix A exists
only when the integral of each element of the matrix A exists.

A quadratic functional I(x ,...,xn) is defined in matrix form as:

1
I(xl,xz,...,xn) = %xTAx-be ' (3.26)
where xl,xz,...,xn are n independent variables, A is a symmetric
square matrix and b is a column vector.
- To make the functional stationary, which is used frequently in
developing the element characteristics in the FEM, the n derivatives

of I with respect to xl,...,xn must be equated to zeros.

91
[$5] = 2= =0, i=1,2,...n (3.27)
i
since, 5 T
3 X AX = 22x , (3.28)
and x> = b (3.29)
i
substituting we get:
I .
-a—}-{--=Ax-b=0, 1=l,2,..._,n (3.30)
i .

This is in fact a system of linear equations.

(7) Norms X,
*2
The norm of a vector x = 4. is denoted by [Ix[] and is a real
X
n

nonnegative number such that:
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NN

| exl |

o iff x=0

]

Icl ]le] for all scalars ¢

||xl+x2|| < ||xl|[+||x2|[for all vectors x, and x,.

There are many norms for vectors the most commonly used ones are:

lell1 ) ENE (3.31)
i=1
g 2
=[], = -21 EN (3.32)
i=
1], = max|x| (3.33)
1l

The matrix norms can be defined in a similar manner as:

J i
IIA[|2 = (maximum eigenvalue of ATA)i (3.35)
[1all, = max  Jlal (3.36)
i 3

The Z2-norm is often called the spectral norm, and for any real
symmetric matrix A (nxn) this norm is p(A). The matrix norm satisfies

similar properties to those of vector norms, i.e.,

[eal| = [e| [1a]]
Haxf] < [[al] T1x]]
s [[al] {s]]

12| |

|[a+8}] < [|a]] + |]B]]

(8) Computational Errors in the Solution of Linear Algebraic Equations

Due to the finite word length of computers all the numerical
computations are done using finite arithmetic precision. Consequently,
errors occur during the numerical computations. If the system of linear

eguations are ill-conditioned, i.e. the matrix of coefficients is nearly
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singular the effect of these computaticnal errors became more serious.
In orxder to conclude simple bounds on these errors consider the system
of equations defined by:

Ax = b , (3.37)
Assume perturbation Ax in x due to a variation Ab in b, then,

A({x+Ax) = b+Ab ,

or A(Ax) = Ab
or Ax = a7 lab , (3.38)
. whence,

[taxt] < [1a7] []ab]] (3.39)
but since  |[al| ||xl| 3 ]0]]

by division the bound con the relative perturbation can be found as:

N R T T S L (3.40)

x| - |10l ]
The value ||a|]| ||A-l|l is called the condition number of A and is
denoted k(A). Since the norm ||AB||<||a]| ||B|] and putting B=A"' then:
-1 -1 :
|laa™ | |<lal ] [[a77]].
The norm of the identity matrix is 1 thus IIAII ||A—1|[Zl., i.e.
k{a) is =1 always. Thus,
[[ax|] g Llab]]| (3.41)
RE3N bl

where £31.

This shows that if B is a large number then small variations in
b (which can be due to computaticnal errors) will result in relatively
large variations in the solution.

In a similar manner it is possible to study the effect of
perturbation in the matrix A itself on the solution. Assuming the

perturbation AA then:
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(a+dA)% = b , (3.42)
where Q is the perturbed solution. A measure of the error in

the solution may be e=x-X and the residual r is defined by: r=b—A§,

r = 0AX (3.43)
. ||r[l_s |1aal} |1%]] (3.44)
AE;A(x—Q) =b-AR =r

. e=1A r

Hell < 1701 =l - (3.45)

Substituting for [|r|] we have,

Hell ¢ 11a™] |1aa)) L2ll

| 1% |la]]

i.e. llELL g k(a) llééLL ' (3.46)

which indicates that depending con the value of the condition number
k{a) the relative error in the solution can be very large due to

variations in the matrix of coefficients A.

3.1.2 Preliminaries of Partial Differential Equations

In many of the problems in engineering and science the physical
rhenomena to be studied can be formulated mathematically as a partial
differential equation or as a set of these equations. In these problems
two or more independent variables exist and the rates of changes of
the dependent variables are related to these independent variables
through differential operators.

The order of a partial differential equation (PDE) is the order

of the highest derivative in the equation. Thus, the Laplace eguation
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2 2 _
QJ% + 28 O is a second order partial differential equation. A
3x 3y

partial differential equation is said to be linear if the highest

degree of the variables and their derivatives is one. Thus the Laplace
82u2 82u
equation is linear while an equation like: —t o= fi{x,y,u) is a

non-linear partial differential equation ofaihe sizond order,
The problems which will be solved using the FEM within this thesis
can be written in the general form:

L) -f£=0, (3.47)
where £ is a known function and I is a differential operator. The
solution is required for some domain D bounded by the surface I and
¢ is the field variable (dependent). ¢ can be a scalar function, e.g.
hydraulic head in a fluid problem of a vector e.g. displacement in a
structural mechanics problem. The differential operator I, may be
linear or non-linear. Many of the physical problems can be modelled
using a second-order differential equation. This may be because many
of the physical problems deal with one form of the conservation
principle e.g. energy, mass or momentum conservation. Considering n
dimension space, [, can be written as:

2

n n

37 () 3( )

L()y= 3] & + § B, =——4+cC,() +D, (3.48)
jo2p 1 2 4o 1 IX i

X, i
3 i

where the coefficients Ai' Bi ' Ci and D may be functions. This

operator is linear if Ai'B ,C%and D are functions of the independent

_ i
variables (xl,xz,...,xn) only. -I, is quasilinear if Ai,Bi,Ci and D are
functions of X and the dependent variable as well as the first
derivatives of the dependent variable. Considering the case of two

independent variables x and y, a general second-order partial

differential equation may be written as,
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)2
a -—2 + 2B x‘g +¢ @ ¢ = D(x,y.b, gi g—¢) , (3.49)
Bx Y 8y Y

where A,B and C are functions of x and y only.
This equation can be linear or non-linear depending on the terms
in D. However, it 1s classified as:
Elliptic equation if BZ—AC <0
Parabolic equation if B2—AC =0
Hyperbolic equation if B2-AC > 0.
Since A,B and C may be functions of x and y, this classification may
change from point to point in the solution region. A well known example

of these three classes are:

2 2
Laplace 2—%-+ ——i- 0, which is elliptic,
8% ay
2
. , - a1 3 u , .
Diffusion equation EE == which is parabolic,
Ix
2 2
. 3du_3u . . .
and Wave equation 5 = T which is hyperbolic.
at ax

For parabolic and hyperbolic equations, the solution domains are_usually
open, while for the elliptic equations it is cleosed. In general,
elliptic equations are associated with steady-state phenomena and require
a knowledge of values of the unknown function or its derivatives on
the boundary of the region of interest. On the other hand, hyperbolic
equations are generally associated with propagation problems. The
parabolic equations are generally associated with problems in which
the quantity of interest varies slowly.

In order to be able to get a solution for a PDE, some boundary

conditions must be specified. The important types of boundary conditions

are:
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(2)

(3)

when
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Type I usually known as a Dirichlet boundary condition is where

the function u(x,y) is prescribed alcong the boundary i.e. u is

given on the boundary 9R. If the function assumes zeros along

the boundary, this condition is termed homogenecus Dirichlet,

Type II which is known as a Neumann condition is where the normal
derivative %ﬁ-is specified along the boundary.

Type III which is known as a mixed condition is where the function
u(x,y) and its normal derivative g% are specified along the boundary
3R.

For an elliptic operator [, the problem is said to be properly posed
only one of these conditions holds at each point of the boundary.

Consider the PDE in a 2-D region R expressed in the form,

L) = £, | (3.50)

where I is a differential operator defined as:

2

2 2
_ 3% 3% 3¢ 3¢ 3¢
L) = a ax2 + B 33y +C ay2 + D(x,y.$, s’ aY) (3.51)

and f(x,y) is a given function of position.

is a

Then the operator I is said to be self-adjoint iff the expression,
f[ Y L(¢}axdy -I[ ¢ L{p) dxdy (3.52)
R R

function of ¢,y and their derivatives evaluated on the boundary.

For homogenecus boundary conditions, L is self-adjoint iff

o
JI YL (¢) dxdy = JJ¢ L(p)dxdy . (3.53)
R R

The operator I is said to be positive definite, iff for all ¢:

I J ¢ L{¢) dxdy 2 © . (3.54)
R .

The eguality to zero occurs only iff ¢=0.
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3.1.3 Preliminaries of Variational Calculus

The aim of this part is to introduce some principles and notation
and to show the correspondence between differential equations and the
variational problem formulation. The variaticnal calculus (or calculus
of variations) is concerned with the determination of minima or maxima of
functionals. Thus, the basic problem in variational calculus is to
find the function ¢ {(x) which makes the functional I defined by:

*2
)
16l = | Feodid i, Jdx, (3.55)
stationary. x1
In order to solve {(3.55) for the value of ¢(x) which makes the

functional I[¢] stationary we notice that a necessary condition is to

have:

19l =0, (3.56)
where the variational operator & is similar to the differential operator
d. The operation of variation is commutative with respect to both

integration and differentiation, i.e.,

]
G(J Fdx) = J (SF) .dx (3.57)
and § %3 = <5 (3.58)

The variation in ¢, i.e. 8¢, is defined as an infinitesimal,

arbitrary change in ¢ for a fixed value of the variable x, i.e. for 6x=0,
The variaticon of a functional or a function of several variables is
defined in a similar manner to the calculus definition of a total

differential, i.e.,

oF 3F aF 3F
6P = — 8x + — 8¢ + — .G+ ) (3.59)
ax P 8¢x X a¢xx XX
since §x=Q, then,
aF aF oF
§F = — , + — . § + — . § 3.60
a6 "% Tag, ke Ty 00 (3.60)



and substituting in (3.56) we get,
rx2
SI[9) =0=J

*

¢ S+ ¢ 5¢x * T TURX

Integrating the second and third terms by parts we get:

® X
rx2 2 r2
F _ oF 3¢ _ aF ]
J Sa;-. 8¢ ax = J . 55— $(3) dx = Jx 55;-- g;(5¢).dx
X ) 1
1 x2 x2
_ 9F _ d
= W .5{’) | J 'd'_(3¢ ) .6¢ Ax
X X %)
and:
X X
2 2
aF aF ]
8¢ dx = f +—(8¢_Jax
le a¢xx XX X, a¢xx 9 X
X X
2 2
_  3F l d , OF
T 6¢x | J E§{3¢ Y. 8¢ .dx
xR X XX
1 1 x, X
X 2 2 2
) VO - U VS [ (- W} Y Y
Y x | dx 3¢ 2 3¢
%X 1 XX xl xldx XX
r)a 2
. aF d ,oF d aF
. 6I[¢] = [ -~ -0 )+ ( )] .8dédx
jxla¢ adx ‘3¢ dx2 a¢xx
X
JF d aF 2
[ - { 11. 6¢
a¢x dx '8¢ x1
X
2
aF |
+ . & =0 .
[(a¢xx ¢x] |x
1

Since §¢ is arbitrary, each term must vanish individually,

2
aF d ,aF d aF
‘—“"—_“‘( )+ ( }=Oa
3¢ dx a¢x dx2 3¢xx
X
and [gF—-aé—E'?F—)] 2=‘D v
¢x * ¢xx b'd
% 1
2
and E%E— I =0
X% xl

60

(3.61)

{3.62)

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

Equation (3.65) is the governing differential equation for the given
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problem and is called the Euler or Euler-Lagrange equation while the
other two eguations (3.66) and (3.67) give the associated boundary
conditions and are called NATURAL boundary conditions. If they are
satisfied they are called free boundary conditions. If the natural
boundary conditions are not satisfied, we must have:

5¢(xl) =0, 6¢(x2) =0

and , 6¢x(xl) =0, 6¢x(x2) =0 {3.68)

These are called the geometric or essential or forced boundary conditions.
To illustrate, consider the functional I[y] defined by:
b
/ 2
Ifyl = 1+(y") dx , (3.69)

a

where y(a)=yo and y(b)=yl.

What we need is to find the function g that minimizes I([yl. In
this case, the functional defines the distance between the two points
a and b aleng the curve y=f(x). The obvious solution of this problem is
a straight line connecting the two points a and b where y(a)=yo and

y(b)=yl. In this case

2
F 2 Flx,y,y') = (1+(y") )i {3.70)
Q-Elz §§_= '2-% '
5y 0 and 3y’ H1+(y") ]' 2y, (3.71)
The Euler equation is, therefore,
_g_; ____x;__;do, (3.72)
(I+y' )

and by integrating once, we have,

(+y 5}
or

w92 = a(1ey'?)
i.e. 2 A2 2

(y') =_2=B
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i.e., y' =B .
Integrating once more, we obtain,
y=Bx+c¢c , (3.73)
which is a straight line as expected.
In the case of two variables x,y, the functional I[¢] will be of
'the form:

I[9] = Jf F(err¢:¢xt¢y:¢xxr¢xyr¢yy)dXdY (3.74)
R

and the corresponding Euler equation is:

32 (BF - 32 ¢ oF + 32 ( oF )
8x2 a¢xx Ixdy a¢xy 8y2 a¢yy
3 ,aF 3 OF aF
- ax(3¢ ) - By(EE;? + T 0. (3.75)
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3.2 APPROXIMATE SOLUTIONS FOR PARTIAL DIFFERENTIAL EQUATIONS

3.2.1 Introduction

Obtaining exact analytical solutions to most of the problems
expressed in partial differential equations is usually not possible.
Only a few problems with regular geometry can be solved by direct
integration methods using, for example, separation of variables or
Fourier or Laplace transformation technigques. It is therefore a
necessity to try to find approximate solutions for the PDE. One of
the approaches to approximate solutions is the use of perturbation
methods.. However, since these methods are basically useful when the
problem contains relatively small nonlinear terms, their applicability
is limited.

The advent of computers make the numerical approximate solutions
more attractive and easier. It can be said that the three currently
outstanding metheds for obtaining approximate numerical solutions of
high accuracy are the method of weighted residuals, the finite difference
method, and the finite element method [Huebner and Thornton, 1982].

It is worthwhile to mention that these methods can be related to each
other as we shall be demonstrating later in this chapter, where the
finite element method can be derived as a special method of weighted
residuals. The choice of a particular technique is a function of many
parameters concerning the problem to be solved, the required accuracy,
the availability of software and hardware suitable for the technique
and the cost.

In what follows a brief presentation is given for the methods of

weighted residuals and finite differences.
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3.2.2 The Method of Weighted Residuals

The method of weighted residuals is an approximate technique used
for solving PDE's. Consider the boundary-value problem defined by,
L) =f inR , | {3.76)
subject to the boundary conditions,
¢ =g(s) , (3.77)

on scme part Cl of the boundary, and

% 4 q(s)¢ = his) (3.78)

an
on the remainder C2.

"N
Assume an approximate solution ¢ is to be found, then the difference
from the exact solution ¢ is called the residual r, thus,
r=1L{) -f (3.79)

The approximate solution $ is expressed in terms of a suitable complete

set of linearly independent trial functions wi which are chosen to

satisfy the boundary conditions as ¢,

n
o= 1 Cu; - | (3.80)
i=1
The method of weighted residuals is based on the determination of
the Ci parameters in such a way that the weighting average of the
residual over the whole domain vanishes. This is accomplished by
choosing n linearly independent weighting functions W and the weighted

residual is therefore.

[
J A dR =0 , i=1,2,... {3.81)
R

Once these weighting functions are specified, and substituting in
equations (3.80) we get a system of equations for the parameters Ci.
These equations are linear algebraic if the operator L is linear

otherwise they are non-linear. Moreover, if the dependent variable



65

in the problem to be solved is a function of both spatial and

temporal variables, the < will be functions of time and the resulting

equations will be ordinary differential equations rather than dlgebraic

ones.

There are many ways to choose the weighting functions W, and,

consequently many methods of weighted residuals. The most popular

methods are:

(i)

(i)

(iii)

The collocation method, where the weighting function is the
delta function. Thus,
wi(x,y) = 6(x—xi,y—yi) {3.82)
This means that we are forcing the residual to vanish at
specified points (xl,yll,...,(xn,yn). These points are called
the collocation points. In this way the <, parameters can be
determined by solving the resulting n equations. In practice,
it is often that m collocation points are chosen where m>>n.
Thus, the resulting system of equations will be overdetermined
and the solution can be obtained by a least sguares approach.
The least squares method where the parameters c, are chosen to
minimize the residual r in a least square sense. In this approach
the integral,
fr 2
= JJ r dxdy , (3.83)
R .
is to be minimized with respect to the unknown parameters ci,

i.e., A Lo, i-1,2,... (3. 84)

These equations are then used to solve for the c, .
The Galerkin method where the weighting functions w, are chosen

to be the same as the trial functions. This approach is the most
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popular and, indeed, it will be used in the derivation of the

FEM equations within this thesis as explained in Chapter 7.

3.2.3 The Finite Difference Method

The finite difference method is an approximating technique used to
golve partial differential equations numerically. It is amongst the
first methods used in this context and is a well established method.
The main idea of the method is to approximate the derivatives by
difference gquotients over a small interval i.e. %%-is replaced by %%
where 6x is small enough. Practically, to use this technique to solve
a PDE in a région R in two dimensions, a system of rectangular meshes
formed by two sets of egually spaced lines, one set is parallel to the
¥ axis and the cother to the y axis, are overlaid on the regicon R as
shown in Figure (3.1). The points of intersection of the parallel

lines are called mesh points (also named: grid, lattice or nodal points).

The solution of the PDE is determined at these points.

Ya

_‘—-__—‘—
AT Pika ™
B L,
{ 1-1,4+1 Pit), 541
P T P
i-l,3 i |Pier,;

k p. | .. p P |
BT DT Ut DR I PSP

v
®

FIGURE 3.l: Finite difference grid
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The main idea is to approximate the derivatives at each point Pij by
the difference quotients expressed in terms of the function values at
the neighbour points to Pij as explained later. Ultimately, this process
will result in n algebraic equations for the n unknowns which are ¢l’¢2'
...,¢n at the nodal points. The accuracy of the sclution can be
improved as usual by refining the mesh or by expressing the dexivatives
more accurately in terms of finite differences.

In the case of parabolic or hyperbolic equations, we notice that
the solution proceeds from each time walue to the next time step and
the finite difference approximation is, therefore, applied in both

spatial and temporal planes,

Derivative Approximations

There are many approximations for the derivatives, They stem from
approximating the Taylor expansion in the neighbourhood of a point

(xo,yo) as follows:

X100 3.1
¢ egrEr Yorm) = 9 Gxguyg) + ] Jr6x * My 4x_

j=1 v
Yo
1 3 3 k+l
* oDt B Y Wy ¢|x=x0+rg (3.85)
Y=Y, N

for some Ogrgl.

Considering the first derivatives only, we can write,

x 3%
¢(x0+h,yo) ¢(x0,yb) +h v . {3.86)
or a .1 _
Y 2 Tle(x they ) -6 (x .y ) ] (3.87)
*o'¥g
. . . . . . 29
This is the forward difference approximation for the derivative %"
- . . 3
Similar expressions can be obtained for 3y 3
3¢ = L -
3y s lolx sy th) -6 (x,y,) ) (3.88)

*0'¥p
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The backward difference approximation for the derivatives are:

] . 1
% - E{‘# (xO'YO)—‘#(xO-h'YO)} (3.89)
%570
2 Lo i
and  $h T e (G vg) 4 G vgTh) (3.90)
%61¥0

Expanding ¢(x0+h,yo) and ¢(x0—h,yb) about (xo,yb) and subtracting gives

the central difference approximation for the derivative ai-:

X

o] . 2 _

X 2 2—h[¢(x0+h'y0)_¢(x0 h:Yo)} {3.91)
*o0r¥g

Similarly,

3 x Lpix v +h)-p (x .,y _-h)} (3.92)

3y 2h o'fo o'1o ' .
Xa0¥g

Adding the expansions of ¢(xo+h,y0) and g(xo—h,yo) about (xo,yo) gives
the finite difference approximation of g—%-:
Ix

39
2
3%

=

b%i?

¢ (x_ +h,y. )=24{x_,y )+ {x -h,y )}. (3.93)
0 0] (3o} o] 0

*0'¥g

It is convenient to represent this equation in a molecular form as:

OO~

It is obvious that the local truncation error in the forward and backward
difference approximation is of order h while in the central difference
R 2
it is of order h .

To illustrate the use of these derivative approximations consider

the elliptic PDE for the torsion of a long solid elastic cylinder:

2 2
33+L%+2=0, (3.94)
ox” a3y
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2 2
The derivatives ii% and g--—%-at a general point Pij (Figure 3.1) are
X Y

approximated as before and the resulting finite difference equations

will be of the form:

1 l1+2=0

1 1
—_— - +h — —-
h2[¢i+1,j 25,500,311 h2[¢i,j+l #i,5%4,51

or

1
g Lo +4 . o, =44, .] = - .
h2[¢l+1lj ¢l-113 ¢lrj+1+¢i,j—l ¢l,j_] 2 (3.95)

In a molecular form this equation is represented by:

In the case of parabolic and hyperbolic PDE's the discretization process

is deone spatially and temporally as shown in the following sectiens.

Explicit Method for Parabolic and Hyperbolic PDE's

An explicit method in finite differences means that in each finite
difference equation, at step i, for example, one unknown nodal value is
expressed directly in terms of the known nodal values in previous steps.

To illustrate this methed consider the parabolic PDE:
2

M _ 38 5x<l and 30 . (3.96)
at 2
3x
One of the finite difference approximations for this equation may be:
l{u. L=, L} =-£L fu, ,=2u, +u, o+ O(k+h2) (3.97)
X i,j+1 "i,3 h2 i+l,3 i, 7i-1,3

.
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Where the time steps are k and the x steps are h i.e. %x=0,h,2h,...

and t=0,k,2k,... . Let r=5§ then the finite difference equation can
h

be written as:

-~

u + r{u =2 ) . {3.98)

TS B 1+1,37°% 37,5
It is obvious that the solution at the (j+1) interval is determinéd by
using the values at the jth interval. This is why this metheod is
called explicit. Given the boundary conditions at t=0, the
values of u at t=k can be determined and so on. A condition for the
convergence of this procedure is that r<i i.e., the obtained soluticen
G will converge to the exact solution u as h tends to O. This finite-

difference scheme is also numerically unstable for x>t [Smith, 1969].

In the case of hyperbolic PDE's like the wave equation:

2 »%u '
—Z T3 0, \ (3.99)
at X

Using the same technique as above the explicit formulation for the
finite differences will be:
(3.100}

u = 2u +2{1- 2)u + 2u -u
1,941 0 T %1, Dy ,57 M4, 70,91

where q=§u This method is convergent and stable when g¢l [Smith, 1969].
Recall again that for a parabolic PDE the ratio of time step k

to the spatial step h must be r=l%ﬁ§. This means that ksihz to get a
h .

valid approximation. This is not convenient since it necessitates that
the time step must be very small. If, for example when h is .1 then k
must be £.005. This motivates the introduction of a method which is
convergént and stable for all values of r which is the Crank-Niceclson

method.
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Crank-Nicolson Implicit Method for Parabolic PDE's

This method is an implicit one, i.e. the finite difference equation
contains two or more unknown values at step i in terms of the known
values at step (i-l). Applying this implicit difference eéuation at
each nodal point a system of simultanegus algebraic equations will
result and the solution of which gives the values of the unknowns at
all the points in step i.

Crank and Nicolson used an average value of the finite-differences

2
for the term a—%-in the time steps j+l1 and j. Thus the parabolic
u ax2u
equation au . &—5 is now approximately,
9 3%
l{u -u, ,) = —l—-{u ~2u +u +u -2u
k' i,3+41 "i,3 2h2 i+l,3+1 1,341 "i-1,3+1 Ti+l,3 i3
2.2
+ui—l,j} + O{k"+h"} ‘
or,
- +2 (r+1l)u, -ru, % + - P
rui-l,j+l (x )ul,j+l ru1+l,j+1 rui—l,j 2(1 r)ul'] rui+1,j ’

(3.101)

where r = Ji—as before.
h2

Note that the lefthand side of the difference equation now contains
three unknowns instead of one as in the explicit method. This means
that at each time step a system of N egquations must be solved. However,
for many practical problems the matrix of coefficients is independent of
the time step.

A more general finite difference approximation that combines both
the implicit and the explicit forms for the considered parabolic

equation is the weighted average approximation, where:

1
E{u. ,

-~ 1
i,j+1 uilj} N 2{9(u

h

where Og6sgl. 2u, _+u, .
. i,3 i-1.3

)+(1-e)(ui+ .-

141,941 77%, 541 o1, 541 1,3

)} . (3.102)
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When 0=0 we get the explicit approximation, for 6=} the Crank-
Nicolson and for 08=1, a fully implicit backward time-difference
method. The approximation is unconditionally valid for 1<6<l but for

1 o

k
= r—— € —r
?SB<§ the ratio r h2 must be £ 2 (1-28)

Dealing with Derivative Boundary Conditions

If some of the boundary conditions are expressed in terms of the
derivatives of the dependent variable, then fictitious nodal points
are considered to approximate the derivative boundary condition on the
boundary itself. This condition can be expressed as central-difference
quotients (say) using the fictitious nodes. To illustrate this consider
the grid shown in Figure (3.2). Assuming that derivative boundary
conditions are specified along the two horizontal sides the fictitious

nodes are introduced as shown circled.

6 G0 96
YT'::I'
| | |

1y |

o]
¥
"

1 L [ 1
|
|

:!|I
1
@ 0 © & 6
FIGURE 3.2: Finite difference grid with derivative boundary

conditions at sides (1) and (2). Fictitious nodes
are circled.

Handling of Curved Boundaries

If the boundary of the region is curved or, in general, cannot be

overlaid exactly by the rectangular mesh the previcus equations cannot
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be used at these boundary points. Let us consider the general case
where the region near the point 2, is irreghlar as shown in Figure
(3.3). The curved boundary AB does not coincide with the normal
grid points. To approximate the derivatives at the point O which is

the closest one to the boundary BA where the function value u is

2
e
\ B
h
62h
N\ A
- ¥
3 o6mn ! 1
.1——"—‘-“""‘*
h
>
4
b3 h ¥ h X
FIGURE 3.3: Curved boundary finite difference
prescribed we use the Taylor expansion fog u_ and Uy
3u 3cu
S Q 2 0 3
u, = uy + (Blh) - + }(Glh) > + 0(h)
Ix
2
Ju 2 u
_ 0 2 Q 3
uy = U h el it h 5+ o(h™)
. 9x '
Thus:
auo 1 { Uy ) (l—el)u0 i Blu3 } (3.103)
Ix h Bl(l+el) Bl l+B1
32u u u u
and 50 ° _23{ 8 (lie. 7t 1+g - 'eg} (3.104).
ax h 1l 1 1 1 2
auo 3 uO
Similar expressions can be obtained for 3§— and 5= -
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Improving the Accuracy of Solutions

There aré several approaches to improve the accuracy of solutions
obtained by finite difference methods. The main apprcaches can be
divided into:

(i) Mesh refinement:

It is expected, as usual, that the finer the finite difference
mesh, the more accurate the solution. This h-version of finite
differences will, however, result in ever increasing number of equations

1
since the number of grid points is proportional to = -
h

{(ii) Richardson Extrapolation:

This approach can be used if the discretization error can be
estimated as being proportional to the mesh length and two estimated
solutions are obtained, in order to get a more accurate one.

ﬁet u be the exact solution of the P.D.E. and ul and u2 are

approximate solutions at the same ncdal points but with mesh lengths hl

and h2 respectively. If the discretization error is proporticnal to nP

then:

o = p

u-u,y C hl (3.105)

and u-u. = ¢ HP (3.106)
2 2

where C is some constant. Elimination of C gives,

_ P
u-u P
2 h2
cr
hpu, - hyu, |
u =—"""-'§"—§'-"-—— (3.107)
hy=hy

In the case of the five-point star finite difference approximation for
the Laplace equation, the discretization error for a rectanqular region

. . . 2
with smooth known boundary values is known to be proportional to h ', i.e.
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p is 2 in this case. Assume that the problem is solved twice with the

mesh length halved, i.e. h2 = ihl, then:

1l
u=u, + 3(u2-ul) . {3.108)

If the value of p is not known, an estimate can be done with the expense
of a third solution set u3.

This approach will be employed in the general finite element
programming system presented in Chapter 6 of this fhesis where the time

discretization is treated using finite differences rather than finite

elements as done spatially.

(iii) Using higher accuracy finite difference equations:

The accuracy of the approximate solutions cobtained by finite
difference methods can be improved by representing the P.D.E. by a
higher-crder finite difference approximation designed to minimize the
truncation errors. This of course, will increase the number of nodal
values at each step. Many of these formulae have been devised. For
example, the following molecule, known as the nine-point molecule, has
a truncation error of the order of h4 rather than the five-point which

. 2 . . 2
has a truncation error of the order of h”. For the Poissons equation V u=f.

2 2

}u=6hf+ih4\7f

-

If £ is a constant then the nine-point formula will be,
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f@ﬁ |
2
< 4 ;20< ru1 + 6h £ =0 (3.3.09)
1 . \\j’// 1

4
. . \ 6
with truncation error in the order of h .
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3.3 VARIATIOMAL APPROACH OF THE FEM

The engineering approach presented in Chapter 2 for the FEM gave
an insight to the understanding of the method as was originally developed
and helped in giving an orderly step-by-step formulation of the method.
However, this approach which is a direct one, cannot be applied as such
to other engineering and scientific applications. The variational
approach for formulating the FE equations gives a broader range of
applications to be solved. The variational basis of the FEM dictates
the criteria to be satisfied by the element interpolation functions
and enables us to make definitive statements about the convergence of
the results as we use an ever increasing number of smallexr and smaller
elements,

Variational principles occur frequently in many engineering and
physical problems, and, historically, these methods are among the oldest
means of obtaining approximate solutions to these problems. Since the
FEM formulated from a variational principle can be considered as a
special case of the Rayleigh-Ritz method when the interpolation
functions satisfy some continuity requirements over elements, it may

be convenient to explain the Rayleigh-~Ritz method first.

"3.3.1 The Rayleigh-Ritz Method

The Rayleigh-Ritz (R.R.) method is one of the methods used to
minimize a functiocnal. The method is based on the choice of a suitable
complete set of linearly independent basis functions wi(x,y) for i=1,
2,4+« » The exact solution ¢0 is approximated by a sequence of trial

functions: n
s = Tcuw, (3.110)
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where C's are chosen to minimize the functional I(¢n). This procedure
is said to be convergent to the solution if ¢n+¢0 as n*», This method
is best illustrated by an example. Consider the Poisson's equation,

v = -f, (3.111)

subject to the boundary conditions:

¢ = g(s) on some part of the boundary Fl (3.112)

and %% + o(s)¢ = h(s) onT

where n is the direction of the outward normal on the boundary T

0 (3.113)

2*

The functiocnal I[¢) corresponding to this equation [Davies, 1980]:

f 3¢, 2 39, 2
I{$] = JJ 07 + (3;)
R

- 2¢f} dxdy + f (o¢2-2¢h)ds (3.114)
T
2

The problem now becomes how to find the function ¢(x,y) that minimizes
the functional I[¢]. We choose a linearly independent set of basis
functions wi which satisfy the homogeneous Dirichlet condition, i.e.,
¢i=0 on Fl' then a sequence of trial functions which satisfy the non-

homogeneous Dirichlet condition on Pl is:

n
b =g+ _2 cb, - (3.115)
i=1

This can be rewritten as:
n+l
¢, = ‘Z C¥; (3.116)
i=1

where ¥ =g and Cn+ =1,

n+l 1l

The functional I[¢) can now be written in terms of the C's and {'s

as:

a¢i 2 awi 2
I(Cl'c2""'cn+1)=fj {(Eci —5;0 + (Eci *3;0 - 2Eciwif}dxdy
R
{ 2 7
+ Jr {c(Zci¢i) - 2(Zciwi)h)ds . {3.117)

2
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In order _to minimize I we must have:
-— =0, for i=1,2,...,n. (3.118)

We notice that Ce1 is known to be 1 as stated before., Performing

the differentiation:

2 -omc, +2 [ac -2 425 ¢ +2 IS c%k =0,
i 3¢ 3 J j#i )
i=l,2,...,n ’ (3-119)
.wherE; . a‘pi awj awl aw
Ay =] G et ey Tay Y (3.120)
R
r
hi = ‘{ wi faxdy , (3.121)
R
. _
= g .
Sij J wiwj ds , (3.122)
1;2
and k, = J ¥, hds . (3.123)
i r
2
The set of equations resulting from equating %%— to zero can
i

be written in a matrix form as:

Be = g , ' (3.124)

where, Bij = Aij + Sij R (3.125}

and g, =h, +Kk, . (3.126)
i i i

Solving this set of equations, the values of the Cy 4 i=l,...,n, can be
determined and hence the solution of the original PDE is obtained. The
success of this method depends strongly on the choicé of the trial
functions. Generally, the larger the size of the family of trial
functions (i.e. the number of adjustable parameters} is, the more

accurate is the solution. Although the trial functions are usually
polynomials, it is possible to choose a different class of trial functions
e.g. trigoncmetric for some problems as has been explained by Hildebrand

[1965].
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It is known [Finlayson and Scriven, 1966], that for linear self-
adjoint operators L the application of a variational principle (R.R.
method say) will give an identical solution to that obtained by the
Galerkin method of weighted residuals. This can be illustrated by
the following example.

Consider the Poisson's equation,

v% = -f . (3.127)

For simplicity assume that we have the homogeneous condition on the
boundary $=0. The variational formulation of this problem has been

done before and it was shown to be:

[ 3¢.2 34,2
Il$] = ”[(5;) + (5" - 2flaxdy . (3.128)
Assume the solution ¢ is expressed in terms of the trial functions Ni'
i.e., n .
b = LN, (3.129)
i=1

Substituting in I[¢] we get:

fr n ani o n 3Ni 9 n
I[¢] = Jfﬂ.x ¢i —3;) + (.Z ¢i —ssﬁ -2f 'z ¢iNi}dxdy . (3.130)
i=1 i=1l i=1
To minimize the functional I[¢] then %%— = Q for j=1,2,...,n. This
b
results in:
51 3N, n BNi N, R BNi
—_ = = 2 -— —_—) - dxdy.
Ty 0 ” (2 —% 3x(i£1¢i o) * 2 _lay(i§1¢i 5y 20N, Jaxdy

(3.131)
If we start to solve the same problem using the Galerkin method then
2
the Poisson's equation ¥V ¢=—fwill produce the following weighted

residual statement:

2 2
N, 1224+ 22, flaxay = o (3.132)
i 2 2

ax 3y



8l

Applying Green's theorem to the first two terms we get:

N N '
3 3 Cff Tive, TTiae -
I NG b, gy B Jds JI{ % 9%t 3y oy N Jaxdy = 0 (3.133)

Since the functions Ni are chosen teo satisfy the homogeneous

boundary conditions then the first term will be a zero and we get:

N 3N
i 3, i 3¢ _ _
” s ox Sy Oy fNi} dxdy = 0 , {3.134)

Since the weighting functions are the same as the interpolation

functions in the Galerkin's procedure, then ¢ is expressed in terms

n
of N, ie, ¢ = Z Ni¢i. Thus equation (3.134) can be written as:
i=1
BNi BNi aNi aNi
” Crai 3% "oy XN 3y - jlaxdy = o (3.135)

which is identical to the same eguation obtained using the variational
approach.

The consequence of this result is that it is possible to formulate
the FEM equations directly from the PDE rather than considering the
corresponding variational principle which may not be easily found or

unknown as will be explained later,

3.3.2 Merits and Limitations of Variational Formulations

Despite the fact that variational formulation of continuum problems
were amongst the first methods used to solve these problems it has some
limitations that can be summarized as follows:

(1} It is not possible, generally, to find one function (or a sequence
of functions) that satisfy certain essential boundary conditions

for an irregular-shaped boundary. Thus the variational approach



(2)

(3)

(4)
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is suited for fairly simple geometries,

The need to have high order trial functions, even in the case of
simple geometrical domains, since, in general, very high order
polynomials would be required to approach the exact behaviour of
the unknown over the whole domain.

Difficulties in the handling of singularities; since in the
variational methods all parts of the domain are covered using the
same trial functions, and no special treatment is performed or
allowed to areas that require more attention.

Weak coupling of points, which are distant from one another. This

will yield dense matrices in the final analysis.

The merits of the variational formulation can be summarized as [Rao,

1982]:

(1)

(2)

(3)

(4)

(5)

The variational principle usually ﬁossesses a clear physical
interpretation in most of the practical problems.

The functional can contain lower order derivatives of the field
variable compared to the governing differential equations and
hence an approximate solution can be obtained using a larger class
of functions.

It is possible to prove the existance of solution in some cases
using the variational formulation.

The variational formulation permits the treatment of complicated
boundary conditions implicitly as natural boundary conditions and
thus we need to explicitly impose the geometric or forced boundary
conditions.

Sometimes, the problem may possess a dual variational formulation

in which case the solution can be sought either by minimizing
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(or maximizing) the functional I or by maximizing (or minimizing)
its dual functional. In such cases it is possible to find upper

and lower bounds to the solution.

3.3.3 The Variational Formulation of the FEM

The finite element method and the Rayleigh-Ritz method are
essentially similar. The main difference is that in the R.R. method
the assumed trial functions are defined over the whole domain and have
to satisfy the boundary conditions. However, in the FEM the assumed
trial functions are defined over each element and they have to satisfy
some continuity conditions over elements. This shows the greater
flexibility of the FEM éver the R.R. technique which, in factf can be
used for fairly simple geometries only. 8o, if the functiconal for a
given problem can be expressed as the sum of functionals evaluated for
all elements, it is sufficient to consider an isclated element to derive
the equations describing its behavicur. To do so, interpolation
functions are assumed to define the field variable ¢e in terms of its
values at the nodes of the element. Then, the functional over the
element Ie is evaluated by substituting the assumed form for ¢e and
its dérivatives and doing the integration over the element domain.

At last, the differentiation of the functional Ie' now expressed in
terms of nodal values of ¢, is done with respect to these nodal values.
This can be summarized in the following steps:

Assume the problem to be solved is expressed in a variational

principle as:

{ f
1[4} = j Fy(0sd reee IR + J Fy(b,6_,.00,)ds (3.136)

R oR
(1) The first step is to divide the domain R into n smaller non-
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overlapped parts thatlcover the whele domain R. These smaller
parts are the finite elements. If I[¢] can be expressed as a
sumﬁation of elemental contributions, ‘thcn
Il¢] =1L Ie[¢] , V elements € R (3.137)
{2) The unknown field wvariable ¢ (which is a vector in general) is
assumed to vary in each element and can be expressed in terms of

its nodal values. Assume the element has r nodes, then:

r
$ = .Z N.¢, (3.138)
i=1
where Ni are the shape functions.
{3) To minimize the functional I[¢] then %%‘is equated to 0. Since I
X e )
is the sum ZI~, then SE'Wlll be:
E e
oI 91
'5@ = e; a—¢— =0, i=1,2,...,N (3.139)

where E is the total number of elements.
In the special case where I is a quadratic function of ¢ and its

derivatives, the element eguations can be written as:
— =K¢ - f , (3.140)

where Ke is the element characteristic matrix and fe is the
element characteristic vector. These are the corresponding terms
to the stiffness matrix and equivalent nodal loads wvector in the
direct formulation of the FEM.

(4) The overall equations of the system can be written by the summation
of the elements contributions. This is known as the assembly
process, Thus,rwe reach the set of equations defined by,

3L

a¢=K¢'f=°' (3.141)

where,



(5)
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E
K= ) K (3.142)
and

E
£f= ) £ (3.143)

The assembly process has been explained in Chapter 2 and it
will not be repeated here again.

After imposing the boundary conditions, the system of equations
K¢=f can be solved for ¢. If I was not quadratic in ¢, the

resulting set of equations will be non-linear.
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3.4 A WEIGHTED RESIDUAL APPROACH TO THE FEM

The main difficulty with the wvariational formulation of the FEM
is that it relies on having a variational principle for the problem
to be solved. This is not always possible in general. A more flexible
and general approach is by using the method of weighted residuals (MWR)
for the FE equation formulation starting from the governing PDE directly.
As previously explained, the FEM can be considered as a special case
of the MWR and the variational methods for solving PDE's in the sense
that the assumed trial functions need not be defined over the whole
domain, but rather, on finite elements only. In addition to that, they
have to satisfy some continuity conditions but nothing for the boundary
conditions. The Galerkin's method is usually used among the other MWR
techniques in the FEM. 1In the Galerkin metheod, the weighting functions
are chosen to be the same as the trial functions themselves. Thus the
equations governing the behaviour of a finite element according to the
Galerkin method is:

J L% -£%} Ni ap® = 0, i=1,2,...,r (3.144)
e
D

where r is the number of unknown parameters assigned to the element,

The interpolation functions Ni are defined over the element and usually
pelynomials are chosen. These sets of equations can be written for every
element. The Ni functions must satisfy interelement continuity. This
requires that the ¢ values, as well as the derivatives up to the highest
order minus one of the derivatives in the expression to be integrated,
are continuous over element boundaries. Since the higher the order of
continuity to be satisfied by the interpolation functions, the narrower

the class of functions that can be chosen, it is desirable to lower the
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highest-order derivative appearing in the element equations. This is
done by integrating equation (3.144) by parts. This will have two
advantages: first, the resulting expressions will contain lower-order
derivatives which implies tpat lower-order interelement continuiﬁy needs
to be satisfied by the interpolation functions, and second, it offers

a convenient way to introduce the natural boundary conditions that must
be satisfied on some portion of the boundary. The fixed boundary
conditions can be introduced after assembly of elements in a similar
manner to that presented in Chapter 2 of this thesis.

These concepts are better clarified by a simple example. 2 more
complicated one will be given in Chapter 7 of this thesis for the FE
formulation for some ground water problems.

Consider the one dimensicnal Poisson eguation defined by:

dz¢

dx

+ fi{x} =0 , (3.145)

with boundary conditions ¢ (a)=a and ¢ (b)=B.

This problem will now be sclved by the FEM based on the two
approaches which have been explained i.e. starting from a variational
formulation and by the Galerkin's MWR. The solution by the variational
formulaticn is simply to find the function ¢(x) that minimizes the

function I[¢] defined by:

b as. 2 )

Il9] = f [i(a;) - f{x)¢(x)]ax (3.146)
a

Since the problem is 1-D, then line elements can be used. The simplest

of these line elements are those with linear interpolation functions.

Thus two nodes at the ends of each line element are required. A typical

element is shown in Figure (3.4).
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J‘
node 1 node 2 x X x

(@) (b)

(a) The interpolation functions Nl and N2

(b) Linear variation of ¢ over the element

FIGURE 3.4: Two nodes line element

The value of ¢ at a typical point x within the element can be expressed

in terms of the nodal values ¢l and ¢2 using:

(xz-x) x—-x1
9 = (e, (9
(x) X xl 1 x2 xl 2
]
or o = wy wa| s e - (3.147)
P
where, x2-x
Nl(x) = g (3.148)
2™y
¥y ‘
and, Nz(x) = — . {3.149)
2™

The overall functional I[¢)] for the whole domain can be derived

by summing the contributions of each element, i.e.,
I[¢] = EI[¢e] ¥ elements,. (3.150)

e
In order to determine the expression I[¢ ] we substitute the expression

of ¢e into equation (3.146) for the I[¢]e, i.e.,

x — -
114°] Iz{m %102 [ ] B }a (3.151)
= NIN! - f(x) [N N ® .151

12 ¢2 1 2 l¢2

X1
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1 2
] " 3 —_—
Nl is T and N2 is an "

Minimizing I[¢°] with respect to the nodal values ¢, and o,

requires that 2 = L2 = 0.
3¢ 3¢
1 2
e X -E
BI —_ 2 ] t [} l —
50 = J vy ) s £N Yax = o (3.152)
1 Xy |72
and; aIe X2 "¢1
= = {N!IN! N!J - fN ldx =0 . (3.153)
¢ 271 2714 2
2 Xy L 2
Rewriting these equations as:
X, X,
] —
f Ni(¢lNi+¢2N2)dx = I le dx {3.154)
and *1 *1
X
*2
1 ] ] -
I N2(¢1Nl+¢2N2)dx J fN2 dx (3.155)
*1 %
These two equations can be combined in a matrix form as:
x1°161° = (,1° (3.156)
X
where, 2 |N!N! N'N!
x® = 11 V2 ax (3.157)
] 1 ] ]
xl N2N1 N2N2
B
¢% = ¢l | (3.158)
L2
and
[ Ten
F1€ = H oax (3.159)
. I sz
1

Thus we have obtained the element characteristics using the variational
principle. 1In order to derive these equations based on the Galerkin's
MWR we start with the differential equation itself and assume that the

~
approximate solution ¢ is described in terms of the nodal values ¢i
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and the interpolation functions Ni then,

n

N .

.Z {6, (3.160)

i=1
where n is the number of nodes in the element. Since we use two nodes
linear element, n is = 2. 1In the Galerkin's method the weighting
functions are chosen to be the same as the interpolation functions.
The integration of the weighted residual is equated to zero which is

expressed as,

f2 g2a
l L+ £y N wax =0, 121 ana 2, (3.161)
dx
*
i.e.,
d o *5
J —2IN, (x)dx + J £GON, (x)dx = 0 . (3.162)
x dx X
1 1

The first term can be integrated by parts to give,

A X 2 ‘-dN
) |, ae |2 & i
[ )N (x)dx = INi A [ O ax > ax. (3.163)
l dx x1 xl
Thus,
AR X A dN X
|, a |72 _ [T2as Ti 2 -
|Ni ax lx I ax ax dx + J f(x)Ni(x)dx =Q , (3.164)
1 xl xl i=l and 2,
but,
~ n dn ¢
-giz ._i. - ] ] l
. _{ & ¢ - I NI, (3.165)
i=1 2
. . . . x
Z(N' N? ) EEi-dx jC I b B 2f(xm (x)dx , (3.166)
1 27 dx ) idx J i '
® 2 X
1l 1 x1
i=1 and 2,
but, A x
d¢ | 2 - d¢ =
Ni o =N (x2 dx Nl(xl) e for i=1.
1 *2 %)

and since Nl at X, is zero and Nl at X, is 1 by definition of this
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interpolation function, then,

db b db
x —3 - — | — ———
lNl ol 2= -5 To(x) (3.167)
Xy Xy
Similarly:
a|*2  d
N2 ax = 'd—x-(xz) {3.168)
x
. L $
ot Arx - =tx.)
N, 80072, | dxl (3.169)
i dx
*1 gq—’-(x )
dx 2
. — d$
X, an, (¢ T Xy X,
[] [ ] — = A
f [Nl N2] I dx ¢2 §24x ) + fo(x)Ni(x)dx {3.170)
Xy o dx "2 1
— i=l and 2,
— A ...e
. dé
i.e., .. dx(xl) Fl e
K¢ = d$ + P | (3.171)
a—;(xz) _ 2]
where, L i
X, NN NN
e 2 1 12
K = dx (3.172)
L] ] T L}
Ix, NING NG|
and, e € v [+
. | F1l_[*2| ™
¢ = and _ dx . (3.173)
¢2 Pl *%; [N,

This set of equations expresses the characteristics of the two nodes

line element. The expression for Ke and Fe are identical to those

derived using the variational principle. We notice that the natural

boundary conditions are taken into account when we assemble the element

matrices. During assembly of the matrices, the natural boundary condition
ab

terms a;-will cancel at all interior nodes of the solution domain, leaving

only the natural boundary conditions at the exterior nodes i.e. at the



points a and b only. In the numerical solution for these classes of
problems the boundary conditions at exterior nodes are incorporated

as was described in Chapter 2.

92
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3.5 THE DOMAIN DISCRETIZATION PROCESS IN THE FEM

The domain in the FPEM must be divided into finite elements as the
first step in the solution process. The discretization process is
sometimes fairly simple and clear such as in the case of structural
analysis of skeletal structures like beams, trusses and frames.

However, for other problems like continuum problems, the discretization

requires more attention. Choice of finite elements is one of the most

important factors that affect the solution obtained in the FEM. Another
very important factor is the choice of the interpolation functions.

Choosing particular elements and interpolation functions depends

heavily on the nature of the problem to be solved, the required accuracy,

the available computing resources and the cost. There are no formal

fixed sets of rules that can be set to achieve the best discretization
of the domain.‘. Sometimes, it is referred to the technique of

choosing finite elements as "elementology". Here, we list some major

guide lines principles for "elementology" that are based on experience

and engineering judgement in the first place.

(i) Nodes should be placed at points of application of external
forces in structural analysis problems and in similar situations
like heat sources in heat transfer problems. The same is true
at corners in the domain.

(ii) Whenever possible, one type of element should be used in the
discretization. However, sometimes it becomes impossible to
model the continum by one type of element only, as in the case,
for example, of a plate supported by springs.

(iii) Usually line elements are used in 1-D problems, triangles in 2-D

and tetrahedrons in 3-D. This is due to their simplicity and
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ability to represent irregular boundaries. These elements can
have any number of exterior and interior nodes as required to
satisfy the interpolation functions defined cover them. Moreover,
they can have curved sides at curved boundaries,

(iv) In regions of the soclution domain where the gradient of the field
variable is expected to be varying quickly, or at irregular
boundaries, more elements should be created i.e, a finer mesh
should be constructed.

(v) Ill~proportioned elements should be avoided since they tend to
give directional bhias solutions that may not be correct. For
example, in triangular elements it is recommended that internal
angles be around 60°. Generally, an aspect ratio around 1 is the
best.

fvi) It is usually true that increasing the number of elements will
give more accurate results provided that the elements obey the
requirements for a convergent soluticn. However, this will lead
to more expensive sclution and a compromise must be done. Some-
times, particularly for new problems, it is a good practice to
start solving the problem using a sequence of nl,nz,... elements
where ni>ni_1 until a stable solution is reached.

(vii) For regions which extend to infinity, a similar technique to that
mentioned in (vi) is utilized, i.e. the problem is solved with

the boundary located at distances d

'd2"" such that di>di-l

1

until an. acceptable seclution is found.

3.5.1 Element Shapes

A finite element is fully specified if all of the following data
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are specified:
{i) its shape i.e. the geometry of the element;
(ii) the number of its nodes and their locations within the element;
(iii) the type of each of its nodes, i.e. exterior or interior;
(iv) the nodal variables to be computed and their nature; and
(v) the type of the interpolation functions.

In this section, the element shapes are described while in later
sections other relevant criteria are discussed.

In the case of one-dimensional problems, line elements are used.
It is possible to specify m nodes in these line segments depending upon
the type of the interpolation functions, the degree of continuity
required.and the type of nodal variables. A family of these line

elements is shown in Figure (3.5}.

- —g _— X%
1 2
- - —- —_ %
1 3 2
- — -y x
1 a4 ... 2

FIGURE 3.5: Family of 1-D elements

In the case of two-dimensional problems the basic element is the
linear triangle i.e. the 3-nodes triangle. This, actually, was the
first 2-D element used in the FEM. It was first developed for the
solution of elasticity problems and known as the constant stress
triangle (CST). More advanced triangles are those with mid-side nodes

which are the quadratic triangles. It is also possible to use higher
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order triangles.with interior nodes like cubic and quartic triangles.

These are shown in Figure (3.6).

3

—
3N ]

{a) linear triangle- 3 nodes

(c) cubic triangle - 10 nodes (d) quartic triangle - 15 nodes
FIGURE 3.6: Family of triangular elements

A less frequently used 2-D element is the rectangular element. A
family of rectangular elements that correspond to the above-mentioned
triangular elements is shown in Pigure (3.7). The main advantage of
rectangular elements is that they can be created automatically by a
fairly simple preprocessor. However, since many sbphisticated pre-
processors are now available that can subdivide the domain to triangular
elements automatically with the minimal user input, it seems that

triangular elements will still be dominant in 2-D FE modelling.
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—

- - -- - —®

'
1

(a} linear rectangle - 4 nodes (b} quadratic rectangle -~ 9 nodes

Fe O

v ’ A g P T
| ! e — b= — b — b — —}
- — - —_—— - — — 4
| !
T S I
.,__JI.__JI,_.,_. S S
’ s F N G
{c) cubic rectangle - 16 nodes {d) quartic rectangle - 25 nodes

FIGURE 3.7: Family of rectangular elements

For the three-dimensional case tetrahedron elements are generally
used. Less frequently, right prism elements can be used. Modelling of
thick shells is usually deone by the 3-D element of 16 nodes. These

elements are shown in Figure (3.8).

(a) tetrahedron - 4 nodes (b) right prism - 8 nodes
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¥
=
l
-

(c) brick element - 16 ncdes

FIGURE 3.8: Scme three—dimensional elements

If the boundary is not linear, it is possible to have the element
sides curved as well. These elements will be explained later. It is
worthwhile to mention that in some instants it is possible to decrease
the dimensionality of the problem by one. This is in the case of
axisymmetric problems, where axial symmetry exists in cylindrical co-
ordinates. Mé& practical engineering prcblems are axisymmetric like
storage tanks, pistons and shafts. A problem is considered as axi-
symmetric where all of its parameters are invariant with respect to any

plane passing through the symmetry axis of the solution domain.

3.5.2 Nodes

Nodes can be classified as exterior or interior. Exterior nodes
are those positioned at the corners of elements or along the edges (or
on the surfaces in the 3-D case). Elements can be connected at exterior
rnodes only. In contrast, the interior nodes are those inside the
element itself and are not connected to any other elements. It is
cbvious that in the case of 1l-D linear elements, the two nodes of this
element are both exterior. In the case of 3-nodes linear elements, we

have 2 exterior nodes and one interior node. In the case of cubic
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triangular elements we have 1 interior node and 9 exterior ones, If
the field variable is continuous along element interfaces we say that
we have C° continuity. If, in addition to that, the first derivatives
are also continuous, we have C1 continuity and so on. The number of
nodal variables is called the degree of freedom associlated with the
node. The roots of this term is due to structural analysis problems
where the degrees of freedom of a node are the number of available

displacements at this node.

3.5.3 Interpolation Functions

One of the most crucial factors in finite element analysis is the
choice of interpolation functions. These functions describe the
behaviour of the field variable within the finite element itself in
terms of their wvalues at nodes. Although polynemials are mostly used,
it is possible to use other functions like trigonometric. The reasons
which give preference to polynomials over other types of functions are
their ease of computation both symbolically and numerically, ease of
differentiation and integration, eafsa of controlling the required
accuracy by increasing its degree and ease of programming. Polynomials
are also attractive since any continucus function can‘be approximated,
arbitrarily closely, by a polynomial. This is kﬁéwn as the Weierstrass
approximation theory.

The choice of the polynomial to be used to describe the field
variable behaviour within the element is dependent on many factors,
Here some guidelines are given for choosing "good" polynomials.

(i) The number of terms in the polynomial must be equal to the total

number of degrees of freedom associated with the element,
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otherwise the polynomial may not be unique. To illustrate,
consider a line element with three nodes and assume that the
field variable associated with each node is a scalar quantity,
then a polynomial like:

P (%) = a, +ta;x+ a2x2 (3.174)
should be used.

(ii) The polynomial representation within an element should be
geometrically invariant or geometrically isotrcpic. This means
that the polynomial should not possess any preference for either
the x or the y directions over the other. Consequently, the

polynomial should contain terms which do not violate the symmetry

of the complete polynomials as shown in Figure (3.9).

Polynomial Behaviour No. of terms
1 Constant 1
X b4 Linear 3
2 2 .
b4 Xy Y Quadratic 6
x3 x2y xy2 y3 Cubic 10
x4 x3y x2y2 xy3 y4 Quartic 15
x5 x4y x3y2 x2y3 xy4 YS Quantic 21
x6 x5y x4y2 x3y3 x2y4 xy5 y6 Hexadic 28

FIGURE 3.9: Complete polynomials in two-dimensions

" (1ii} The interpolation polynomial should satisfy the convergence
requirements, i.e, the unknown field variable must be continuous
within the element itself.

In one-dimension a general complete nth order polynomial can be
expressed as:

n .
p ) = L ax . (3.175)
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Samples of interpolation functions in one dimension are, therefore:

Po(x) = ao constant
= o+ i
Pl(x) ay +ax linear
2 .
Pz(x) =a, +ax+ax quadratic

In the two-dimensional case the complete nth order peolynomial can

be expressed as:
m -
pn(x,y) = E akxlyJ . i+j¢n
k=1 m=(n+1) / (n+2) /2 (3.176)

Samples of interpolation functions in two-dimension are therefore,

Po(x,y) = al constant
Pl(x,y) = a1+a2x+a3y linear

2 2 .
Pz(x,y) = a1+a2x+a3x +a4y+a5y +a6xy quadratic

In the three-dimensional case the complete nth order polyncmial can be

expressed as:
m 14Kk
Pn(x,y,z) = z azx yjz , 1+j+ks<n
%=1 (n+1) (n+2) (n+3)
6

(3.177)

Samples of interpolation functions in three dimensions are, therefore,

Po(x-y,Z) = a, constant
Pl(x,y,z) = al+a2x+a3y+a4z linear
P2(x,y,z) = al+azx+a3y+a4z+a5xy+ quadratic

2 2
a6xz+a7yz+a8x +a9y +aloz

Some examples of the determination of the unknown coefficients (the a's}
and consequently the determination of the interpolation functions will be

given later in this chapter and the next chapter.
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3.5.4 Natural Coordinate Systems

Natural coordinate systems are a family of coordinate systems
which possess the property that they are local within the element
geometry and can assume values between O and 1 only. In these systems
the value of the coordinate ié one at a particular node while at other
nodes it is zero. The main idea of a natural coordinate system is to
express the location of a point inside an element in terms of coordinates
associated with the nodes of the element. This is particularly useful
in deriving the interpolation functions (Ni).at each node in a curve-
sided element which will be discussed later in this chapter. If an
element contains n external nodes; then, n natural coordinates are used.

Assume a linear element in one-dimension with two nodes, the natural
coordinate system for this element denoted as Ll and L2 can be derived
as follows.

For a general point % on the element its global coordinate x is
related to the natural coordinates by,

X = LX), + LyX, . (3.178)

We notice that, by definition,

Ll =1 at X=X,
= 0 at x=x2
L, =1 at x=x,
and 2 2
= 0 at x=xl
Both Ll and L2 varies linearly along the element 1-2 (Figure 3.10)
Iy La
1 1
. - ! —
0O xl M x2 X

FIGURE 3.10: Natural coordinates for two nodes line elements
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Therefore,
X, =X x—xl
L. (x) = and L,{x} = (3.179)
1 x2—x1 2 xz—xl
and Ll(x) + Lz(x) =1 . {(3.180)

Since the funct:ions\Ll and L2 are simply ratios of “lengths they are

often called length coordinates. It should be noted that since the
problem is one dimensional in position (x only); then Ll and L2 must
be related to each other to keep the dimensicnality unchanged. In fact,
Ll and L2 are weighting functions that relate the coordinates of the
end nodes to the coordinates of any interior point. Thus we must have,
Ll+L2=1 as explained earlier., It is easier in the derivation of the
natural coordinates to start by imposing the relationship between the
Li functions as their sum at any point is always 1.

Similarly, natural coordinates in two-dimensions can be formulated.
Assume a 3-node triangle element, the natural coordinate system in this

case comprises 3 coordinates L and L., where Li assumes the value

1702 3
of 1 at node i and zeros at other nodes. The original cartesian co-
ordinates of a point in the element should be linearly related to the

new natural coordinates by:

X = lel + L2x2 + L3x3 (3.181)
and Yy = Llyl + L2y2 + L3y3 (3.182)
where, L + L, + Ly = 1. ) {(3.183)

These 3 equations can be solved for Ll' L2 and L3 which results in:
L. (x,y) -~£%a +h_x+c.y) (3.184)

IRt AT S Wt RS T :

1

Lz(x,y) = 2A(a2+b2x+c2y) {3.185)

I
L3(x,y) = 2A(a3+b3x+c3y) (3.186)
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where,
1 x1 yl
area of the triangle
b=l ) ¥, "  whose vertices are (xl,yl),
1 Xq Y4 (xz,yz) and (x3,y3)
(3.187)
and the constants al,az,a3,b1,..., etc. are given by,
a) = A,¥4 = Xy, bl = ¥,"¥, and c) = X37X, (3.188)

The other coefficients are obtained by cyclically permuting the

subscripts.

It should be noticed that L and L. are ratios of area and

1752 3

hence they are often called area coordinates (Figure 3.11}.

Lo
1 A
Lotz
2
Ag
Ly =%
—> x

FIGURE 3.l1: Area coordinates for a triangle with 3 nodes
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3.6 THE TWO-DIMENSIONAL TRIANGULAR ELEMENTS

The family of the two-dimensional triangular elements are very
popular and most widely used in 2-D problems. One reason for this
situation may be because irregular boundaries can be better approximated
by triangles. In addition to this, the complete nth order polynomial,

n

x2+a yzh ves 2 Y {3.189)

= a +a xX+a v+a
v a b 5 6 m

1739 3 Xyt+a

4

where a re-.,0 are the coeificients of the polynomial, alsc known

1'%
as generalized coordinates; n is the degree of the polynomial and

m = nili can be used to interpolate a function u at 3}(n+l) (n+2)
symmiztically placed nodes in a trianéle.

Throughout this thesis most of the FE modelling will be done
utilizing triangular elements with different degrees, viz: linear,
quadratic,... etc.

In the linear case, the value of the interpolation function can be
determined if its wvalues at three nodes, typically the vertices, are
known. For the higher. degree polynomials, the required nodes can be
generated by taking (n-l) equally spaced lines parallel'to each side
and placing the nodes at the iﬁtersections of these lines with each
other and with the sides of the triangle as shown in Figure 3.6.

To compute the interpolation functions for a triangular element,
let us start by the linear triangular elements. We must notice that
all the family of fhe triangular elements possess the advantage that
they have the sufficient number of nodes to uniquely specify a complete
polynomial of the order necessary to retain C° continuity, i.e. inter-
element continuity of the field variable ¢ along element boundaries.

Bence, the compatibility, completeness and geonmetric isgropy requirements

are satisfied.
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Let the coordinates of the three nodes of the linear triangle
element be: (xl,yl),(xz,yz) and (x3,y3) with the values of the field
variable ¢ at the three nodes ¢l,¢2 and ¢3, respectively. The field
variable ¢ defined over the element being a linear function can be
expressed by,

p{x,y} = al + a2x + a3y . (3.190)

a2 and a3 we substitute in (3.190) by the

value of ¢l,¢2 and ¢3 and thus we obtain the system of linear equations,

To evaluate the values of al,

a, +ax+a (3.191)

1 251" 43¥y

¢2 = a1 + a2x2 + a3y2 (3.192)

-
=
]

¢3 = a, + axX, + a3y, (3.193)
Solving these equations for al,a2 and a3 gives:
a, = (a ¢, + ad, +ad.) (3.194)
1 2a°1'1 272 373 :
a, = ==(b,¢, + b ¢, + b_o.) (3.195)
2 22171 272 373
=L
23 = 20101 * Cafy * C303) (3.196)
where A is the area of the element given by
1l X, ¥y
A =131 X, Y, (3.197)
1 x3 y3
and : al = x2y3 - x3y2 (3.198)
a2 = x3yl - xly3 (3.199)
ay = Xy, - XY, (3.200)
bl =¥y " ¥, (3.201)

b, =y, - Y, (3.202)
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b3 =Y, " Y, (3.203)
c1 = x3 - x2 : | (3.204)
C, = X, = X, (3.205)
Cy = X, = Xy (3.206)

Substituting in the original expression for ¢ results in

n

1
¢p(x,y) = o=(a,+b x+°1Y)¢(x1'Y1)

2211

1
+ Ex(a2+b2x+c2y)¢(x2,y2)

1
+ 211\(‘at3+b3x+c3y) ¢ (x3,y3) {3.207)

which can be rewritten as

3
d(x,y) = { N%(X.y)¢.(X.y) (3.208)
i=1 1
where, .
[} 1
Ni(x.y) = Ex(ai+bix+ciy). i=1,2,3 (3.209)
and ¢i(x,y) = ¢(xi,yi). i=1,2,3. {3.210)

The functions Ni(x,y), i=1,2,3 are the interpolation functions
associated with nodal degrees of freedom for the linear triangle.
These nodal interpolation functions have the value of unity at the
associated node and zeros at all other nodes of the element. Thus,
Nl(x,y), for example, will have the value of 1 at node 1 and zeros
at nodes 2 and 3.

In a similar way, the interpolation functions for other higher-
order triangular elements can be determined. Huebner and Thornton
{1982}, presented a systematic method to derive these interpolation
functions using a triple-index numbering scheme. The idea of this
scheme is to denote the nodes of the triangular element by a three-~

digit lakel wBy where, «,B and y are integers satisfying a+f+y=n and n
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is the order of the interpolatiocn polynomial used. These integers
define constant coordinate lines in the area coordinate system and
indicate the number of steps or levels by which a particular node is
located from a side of the triangle. This is best illustrated as shown

in Figure (3.12) for the case of the quadratic triangular element.

Y4

~

FIGURE 3.12: Node labelling in quadratic triangular element

In this case node number 1 will be labelled as node 200, while a mid-
side node like number 4 will be labelled as 110. The interpolation

functions can now be written in the area coordinates Ll'LZ and L3 as

triple subscript function Nu associated with the node afy as follows:

By
NaBY(Ll'LZ'LB) = Nu(Ll)NB(LZ)NY(LB) ’ (3.211)
where, ¢ nbL ~i+l
N (L ) = (‘_LT__—) for azl {2.212)
o 1 . i
i=1
=1 for a=0.

N.(L.) and NY(L } have similar equations. These equations can be used

B 2 3

to derive the interpolation functions for higher-order triangular

elements in area coordinates in an easy way. For example, for the six-



109

node quadratic triangle we have the node labels: 200, 020 and 002 for
the vertices and 110,011 and 101 for the mid-side nodes. The associated

and N ¢an be

i i i : N
interpolation functions NZOO' 020'N002’N110'N011 1ol

computed using n=2 (the degree of the polynomial) using the above

equations. To illustrate consider N

200
Nooo = N2(L1)NO(L2)NO(L3) (3.213)
2. 2L,-itl 2L -1
N, (L) = II(———I———) = 2L, (—5—) = L, (2L -1) (3.214)
i=1
NO(Lz) =1, NO(L3) = 1. (3.215)
Thus, we have,
Nooo = Ll(2Ll—l) . (3.216)
and similarly,
020 = L2(2L2-1) : (3.217)
Noga = L3(2L3—1) (3.218)
- ' . 219
NllO 4L1L2 (3 )
Nop1 = 4L2L3 (3.220)
Niop = 41.11.3 . (3.221)

These equations can be rewritten in a more compact form as for vertices,
=L - j= *
Ni i(ZLi 1y, i=1,2,3 (3.222)
and for mid-side nodes,

N, = 4L1L2, N, = 4L,L, and N_ = 4L3Ll (3.223)

In a similar way for the cubic element the interpolation functions
will be, for vertices,

L

= i - - -
Ni = 2(3Li 1)(3Li 2y , i=1,2,3 , (3.224)

for side nodes,
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9
N, =2 LL (L), (3.225)
N. =251 (3L.-1) (3.226)
5 = 2 Py 0L, .

N =215 (3L.-1) (3.227)
6 = 7 Lol3 L,

N. = 21, L (3L.-1) : (3.228)
7 = 7 Lol oL, .

N. =2 L.L (3L.-1) (3.229)
g = 2 L3l 3y .

N. = 2 1.1 (3L.-1) (3.230)
9 = 7 b3l 0y | .

N = 27L,L,L. (3.231)

For the gquartic triangular element the shape function will be, for

vertices, 1
Ni =3z Li(4Li—l)(4Li-2)(4Li—3) , 1=1,2,3 (3.232)
for side nodes:
N =S L 1_(4L.-1) (4L,-2) | (3.233)
4 371721 1 :
N5 = 4L1L2(4L1-l)(4L2-l) (3.234)
8
N6 = 3L1L2(4L2—1)(4L2—2) (3.235)
.0 ete.

For internal nodes:

N13 = 32 L1L2L3(4L2-l) (3.236)
N14 = 32 L1L2L3(4L3-l) (3.237)
and le = 32 LlL2L3(4Ll-1) . {3.238)

It is worthwhile to mention that it is sometimes customary to write
the equaticns of the interpolation functions for the higher-order
elements in terms of those of the linear one. This in the case of

the triangular elements can be simply done by substituting Ni which means
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the interpolation function Nl in the case of a linear polynomial for

R Né for L, and Ni for L_. This can be achieved if we consider

every L 5 3 3

1
the case of a linear triangular element with node labelling 100, 0lO

and 001 and the associated interpolation functions are,

NlOO = Ll ) (3.239)
Nolo = L2 (3.240)
and Noop = L3 . (3.241)

Por all these triangular elements the function wvalues, the ¢'s, along

a side are uniquely determined by the nodal values along that side and
this is the reason for denoting such elements as conforming elements.
The evaluaticn of the matrices for the higher-order elements is usually
carried out by numerical integration.

It is important to note that for elements with internal nodes,
like the cubic and quartic triangles, it is advantagecus to eliminate
their degrees of freedom before assembly. This is known as condensation.
This can be done because these nodes are not, by definition, connected
to any other elements and thus their degrees of freedom do not affect
inter-element continuity. This process is desirable because it saves
computational effort and the cost that will occur due to the resulting
reduced master matrix size after assembly. This is particularly useful
if a band solver is to be used in solving the resulting FE equations.
However, if a frontal algorithm is to be used its effect is much less,
A similar technique called substructuring can be used to divide a hyper
complex structure into substructures each of which is still a complex
structure but can be solved within the available computing resources.

The details of these techniques can be found in Wilson [1974].
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3.7 THE ISOPARBMETRIC ELEMENTS

When the boundary of the region is not straight i.e. curved, the
mesh must be refined enough to accommodate the curvature of the
boundary. Consegquently, many straight sided elements can substitute
for a curved boundary. A much better approach is to use finite
elements with curved sides at curved boundarjes. This will not only
give better accuracy, but alsoc a lesser number of elements can be used.
Among the first pioneers of this idea were Irons [1966] and Ergatoudis
et al [1968]. The basic idea behind the isoparametric elements is to
map simple geometric shapes in local coordinates into distorted shapes
in the global coordinates. The same interpolation functions used to
define the field variable within the element are used to define the
element shape and hence the naming isoparametric. Linear iscoparametric
elements can have straight sides only while higher order elements have
curved sides. Although it is possible to define subparametric and
superparametric elements where in the former the interpolation functions
used to define the element shape is of lower order than that used for
the field variable and in the latter the opposite, they are rarely
used. Since the line and the quadrilateral elements will be covered
in Chapter 4 of this thesis, it may be useful to discuss the triangular
element here.

Consider the quadratic 6-nodestriangular elements with curved
sides as shown in Figure (3.13a). The mapped triangle is shown in
Figure (3.13b) in the £-n plane. The analysis is essentially following
that proposed by Mitchell et al [1971)}. We notice that out of the
three local coordinates E£-f-n [xi-zeta-etal only two are independent

since at any point £+Z+n=1. BAssuming a quadratic shape function
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n A
3 (0,1)
5
6}
> £
1 4 2
(0,0) (1,0)

(a)‘ The transformed (disteorted element)

{b) The parent element

FIGURE 3.13: The isoparametric¢ quadratic triangular element

of the form,

S{x,y) = a_ +a_x+a_y+a x2+a y2
! 1720 737 74 5 6 !

where the 6 unknown coefficients are uniquely determined knowing the

Xy+a (3.242)
values of S(x,y) at the six nodes. The transformation from the x-y
plane to the £-n plane is given by,

X = ;(ZC-l)xl+£(25-1)x2+n(n-l)x3+4£nx4+4n§x5+4;§x6 {(3.243)
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and Yy = C(2C—l)yl+€(2£-1)y2+n(2n—1)y3+4€Cy4+4nEy5+4Cny6 {3.244)
or in a more compact form,

S (x,y) = z({2z-1) sl+E (2£-1) 52+n (21’]—1)‘53+4€Cs4+4n£55+4§n56

(3.245)
Since r=1-f(-n this equation can be written as
S{x,y) = s +E(4; -3s_-s5_)+n(ds_-3s —é )+g2(2s +25_-4s5 )
24 1 47878 TS5 T8, 78, 1748275,
2 - .
+n (Zsl+253-456)+4€n(sl-s4—ss+s5) | (3.246)

It is clear that £ and n can be determined from the glcocbal coordinates
(x,y) by solving the quadratic egquations simultanecusly though it is.
not easy to havé a closed form expression for these equations.

In the special case where one side only of fhe triangle is curved,
these expressions can be simplified. Assume that side 2~3 is the only:

curved one, then:

X = xi~a5n+(x§xl)g+(%;xl}n (3.247)
and y = yyPEnt gy JE+(yry In (3.248)
where, _ _ ' . ‘ '

a = 2x2 + 2x3 4x5 | (3.249)
and b = 2y2 + 2y3 - 4y5 (3.250)

It should be noticed that by this quadratic approximation to the
original curved side it is possible to model any region wiﬁh‘curved
boundaries using the quadratic triangular elements with one cprved
side only at the curved boundary. In fact; this element will be used

in some of the problems solved in this thesis.
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v 4
N
n
/]
3
6
1 )
(0,0) {1,0)
(a) The transformed {(distorted element)
(b) The parent element
FIGURE 3.13: The isoparametric quadratic triangular'element
of the fdrm,
8(x,y) = a_+a_x+a,y+a xXy+a x2+a y2 ' e (3.242i
! 1 2 3 4 5 6 r

where the & unknown coefficients are uniquely determined knowing the
values of S(x,y) at the six nodes. The transformatioh from thé X-y
plane to the £-n plane is given by,

X = ;(2;—1)xl+g(25-1)x2+ncm-1)x3+4£§x4+4ngx5+4gnxG _ (3.243)
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and Y = S{2& -1y, +£(28-1)y +n(2n-L)y +4Eny +dngy +dzly,  (3.244)
or in a more compact form,

S(x,y) = C(2c-1)sl+5(25-1)sz+n(2n-1)§3+4€ns4+4nc55+4c556

(3.245)
Since r=1-£-n this equation can be written as
2
Si{x,y) = sl+€(456-351—52)+n(4ss—351-s3)+5 (251+252—456)
2
+n (251+2s3+4ss)+4En(sl+s4—56—ss) {3.246)

It is clear that £ and n can be determined from the global coordinates
{x,y) by solving the guadratic equations simultaneously though it is
not easy to have a closed form expression for these equations.

In the special case where one side only of the triangle is curved,
these expressions can be simplified. Assume that side 2-3 is the only

curved one, then:

X = xl+a5n+(x—x2)5+(x—x3)n (3.247)
and y = ¥ thEnt(y-y,) e+ (y-y)n (3.248)
where, 3 _

a= 2x2 + 2x3 4x4 (3.249)
and b =2y, +2y, - 4y4 (3.250)

It should be noticed that by this quadratic approximation to the
original curved side it is possible to model any region with curved
boundaries using the quadratic triangular elements with one curved
side only at the curved boundary. 1In fact, this element will be used

in some of the problems solved in this thesis.
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3.8 CONVERGENCE QF THE FEM

In the FEM, convergence may be thought of by different approaches
[Babuska and Szabo, 1982]:
(i) The basis functions of each finite element can be fixed and the
diameter of the largest element, denoted by hmax' is decreased.
This mode is called the h-convergence and its computer
implementation is called the h-version of the FEM.
(ii} The finite element mesh can be kept fixed and the minimum order
of the polynomial basis functions, denoted by Poin’ is increased.
This mode is called the p-convergence and its computer
implementaticon is called the p-version of the FEM.
(iii) A mixture of the two approaches, let us call it the h-p-
convergence, and its computer implementation the h-p-version
of the FEM.
As an example, Figure(3.14) shows the two versions for a simple
triangular element. In Figure (3.14a), the initial triangular element
is subdivided into smaller triangles all of them are of the same type,
using linear basis functions. In Figure (3.14b), the initial triangular

element is refined by increasing the order of the basis function.

AA
(NNEN
JAVATETN

l1-linear element 4-linear elements l16-linear elements

{a) The h-version of FE
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Linear element Quadratic element Cubic element
(b) The p-version of FE
FIGURE 3.l4: h- and p-versions of the FEM
In practice, however, most of the computer software implement the
h-version of the FEM. This may be due to the following factors:

(i) Programming the h-version is substantially easier compared to
the p-version.

(i1) The structure of the master matrix in the h-version will be
essentially the same, i.e. the sparseness pattern will be the
same in the h-version. O©On the other hand, this pattern is not
retained in the p-version.

(iii) The sparseness in the h-version is bigger compared to that in
the case of the p-version. However, we must notice ;hat the
overall matrix size may not bhe bigger since in the p-versicn
a smaller number of elements are used.

(iv) In practice; it is easier to decrease the wvalue of hmax' i.e.,
refine the mesh many times. ©On the other hand, the value of Poax

cannot be increased to more than 3 or 4 at most.

Nevertheless, the p-version usually gives better convergence than

the h-version. 1In the case of corner singularities, the rate of
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convergence of the p-version iIs exactly twice that of the h-version
[Babuska and Szabo, 1982]. More details about the theoretical found-
ations for the rate of convergence of both the h- and p-versions can be
found in Babuska et al {1981}, Babuska and Door [1981] and Babuska et
al [1979]. Here, a practical example is used to demonstrate the rate
of convergence of both approaches.

Consider the Poisson's equation,

V2¢ = 4-2(x+y) , (3.251)

in a unit square as shown in Figure(3,15). The boundary conditions are:

$(0,y) = y2 _ {3.252)
§(x,0) = x° . (3.253)
_%i-(l,y) = 2-2y-Y2 |
and 2 (x,1) = 2-2x-x° (3.254)
3y
The exact solution for this test problem is:
p(x,y) = x2+y2-xy(x+y) (3.255)

Y A 3 =2—2x—x2
3y
{o,1) (1,1)
¢= 2 - it =2-2y—y2
ox
N X
(0,0) $=x? (1,0)

FIGURE 3.15: Sample problem



118

This problem is solved using both approaches, i.e. the h-version
and the p-version. The region is divided up to triangles of increasing
number and for each discretization triangles of different orders are
used. The values are computed for values of (x,y) of spacing .2 in both
directions, i.e. at points {0,0), (0,.2),(0,.4},...,(.2,0),(.2,.2},...,

(1,1). The error norm L, is defined by:

L, = Z- Z'(¢ij - Qij)z , (3.256)
Vi ¥Vj
where ¢ij is the exact value of ¢ at the point (xi,yj) and $;j is the
computed value obtained by the FE modelling. The results are shown in
Table 3.1. It is evident that with a fewer number of elements of
higher order better accuracy can be obtained. We must notice also that
since the exact solution of ¢ is a polynomial of order 3, the cubic

triangular elements give the best results with a fewer number of elements.

More problems will be solved using both approaches in Chapter 7 of this

thesis.
L2 Error Norm
Number of . . .

Elements Quadratic Cubic Quartic
-3 -3

4 .2143 .4712%x10 .4591x10
g .4273x10"° .1463x107°> | .1892x107°
16 .576x10"° .1941x107° | .2073x107°
-4 -7 -7

32 .6103x10 .9362x10 .B250 10

TABLE 3.1l: Comparison of h- and p-versions for test problem

One of the simple, yet powerful, tests of the convergence of elements is
the patch test [Irons and Razzaque, 1973). This test can be stated in
several ways. In its general case it can be formulated as follows [Davis,

1980]:
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Given a solution ¢o for the PDE defined by L¢=£f, assume that
round the perimeter of any arbitrary patch of elements values of ¢
are chosen to be equal to ¢O; then, if the approximate solution $'to
this problem inside the patch, is identical with ¢O there, then the
test is passed and the element will yield convergence. This is best
illustrated by a simple example, [Davies, 1980].

Consider the solution of Laplace's equation in the region shown

in Figure 3.16.

Y a
3D (1,1) n
C2 6,7
> ~
1 \Ji/ 9 C .
L rd
s N8 (2,0) x
4 B Ss 3
7 °(1,-1)

FIGURE 3.16: A square region
What we like to test is the bilinear rectangular element. In the patch
shown we assume a test solution x-y+l, this will lead to nodal values
as follows:
b =6y =03=1; ¢, =dg=2and ¢; = ¢g = g = 3
and ¢5=2.

The element interpolaticn functions for this element are given in
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[Huebner and Thornton, 19821, viz.

4
05 = § N (Eme, (3.257)
T
where,
Ny (Em) = 316 (1-n) (3.258)
N, (£,n) = F(1+8) (Ln) (3.259)
Ny (E,m) = S(148) (L+n) , (3.260)
N, (E,m) = F(1-E) (L+n) . (3.261)

Consider the element whose nodes are 1,4,5 and 2. In this element ¢
will be:
¢ = Nl+2N2+2N3+N4
= %{1—£—n+gn+2+2£-2n—2£n+2+2§+2n+2£n+1-€+n—£n)
= F(E+).
But inside this element the relationship between the local cocrdinate £
and the global coordinate system is:

£ = 2x-2y-1 , (3.262)

thus, 1

) %12x-2y-l+3) = x-y+1 . (3.263)

2 .3 4
In a similar manner it is possible to find that ¢ ,$ and ¢ all will
have the same solution x-y+l which is the assumed for the patch when

this element passes the patch test.
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3.9 ERROR ESTIMATES IN FE

3.9.1 Sources of Errors

Starting from a physical problem and ending by a numerical FE
solution a number of approximations have to be done. Assume that a
physical system is characterised by a field wvariable $(t) in which ¢
is, in general, a vector and t is the time. Assume that the FE solution
of this éystem gives the solution‘$(t). The difference between the
actual physical quantity $1t) and the corresponding numerical solution
Q(t) is the total error E:

E = $(£)-6(t) . (3.264)
This error is due to the following approximations:
(1) Modelling of the physical problem:

What is solved by a mathematical technique is a mathematical model
of a'physical proklem. During the derivation of the system eguations
many simplifying assumptions are done whether in the underlying theory:
in the gecmetry or in other parameters of the system. Such assumptions
are found in almost every physical procblem. They are, however, usually
very small and can be neglected provided that these assumptions are
reasonable and usually suppeorted by experimental evidence. Examples of
these reasonable assumptions are: flow in aquifers is assumed to be
essentially horizontal, a plane sectioﬁ in the beam theory remains
plane after deformation. These assumptions are valid, of course, within
prescribed ranges. For example, to apply the beam theory, the height
of the section must be sufficiently small compared to the span otherwise
the obtained results will be erroneocus. In the following discussion the
mathematical modelling errors are assumed to be negligible and therefore

they will not be considered, i.e. hereafter solution errors do not
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include mathematical meodelling errors.
(ii) Discretization Errors:

The actual mathematical system possesses infinite degrees of
freedom while its FE model has a finite number of degrees of freedom.
Moreover, the FE model may have also simplifications of the geometry
of the domain and modifications of the boundary conditions. 1In addition,
to that, in most FE analysis, the terms of the element matrix are
computed by numerical integration rather than having explicit exact terms.
{iii) Roundoff Errors:

These are due to the finite word length of computers. The current
generation of computers used in FE analysis have a word length that
ranges from 16 bits to 64 bits, Consequently, most of the real numbers
are represented in these machines approximately. Since most of the FE
calculations are done in floating point arithmetic it implies that
roundoff errors do exist in almost every FE analysis. In the floating
point arithmetic, a number is represented as a mantissa and an exponent.

If error estimates can be established prior to the FE solution
they are called a-priori estimates. ©On the other hand, if errox
estimates are based on the information obtained from the FE solution

they are called a-posteriori estimates.

3.9.2 Error Measures

From an analysis point of view, it is usually more convenient to
decompose the solution errors to its simplexr constituents as follows.
At time t, the difference between the exact solution of the mathematical
model ¢(x,t) and the obtained numerical sclution Q(x,t) is dencted by ¢

which is the residual [Utku and Melosh, 1984].
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r o= (xX,t)—p(x,t) . (3.265)

+ r and r, ,

This residual can be decomposed to three components: rd r i

where: rd is the error due to discretization, rr is the error due to
round-off and ri is the inherited errors at time t and represents the
effects of all equation errors of the earlier times. These error
components are at any time t, but in fact when solving a time-dependent
problem there is a possibility of having another source of error during
the solution process, this is the manipulation error {[Melosh, 1973].
This error is due to the used solution algorithm. During the solution
process, depending upon the solution algorithm, intrinsic characteristics
of the system may be altered. It is possible to have a large manipulation
error in an intrinsically stable system due to a wrong choice of the
solution algorithm. The total solution error at a time t=T is defined
now as the sum of equation errors at times t<T and the manipulatiocn
errors.

Errors are usually measured by one of the error norms which have

been explained earlier this chapter. In general a p-norm is defined as,

lell, = (e P+ [e 1P+ ... |en|p)1/P , for p=1,2 or = (3.266)

A brief discussion of measuring the round-off and the discretization

errors is given in the next section.

3.9.3 Round-Off Errors

The exact computation of the round-off errors is not possible.
So what is possible is to get a reasonable estimate of its value. Let
us assume the actual number to be represented in the computer to be x

and its machine representation in floating point is Xei then the round-off
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error £ will be:

€ = X=X_ , (3.267)

The lower bound of € can be zero in case the number is one of those
which can be represented exactly within the computer word length. On
the other hand, the upper bound of the error £ can be computed as follows:
Assume that the real numbers are represented in floating point with
mantissa of M bits for the normalised fractional part, and e bits for
the exponent. Most computers chop the extra bits rather than perform
the rounding operations. Thus the maximum value of the chopped bits
will be the sequence,
2—(m+1) . 2—(m+2)
This is a geometric series and its sum is,

Z-m-l -m
1-27t

Therefore, the upper bound of ¢ is 2_m*exponent. The exponent part is
[x|, thus:

-m
0 ¢ Ienumber; £ 27 *lx| (3.268)

Considering two floating point numbers x and y, the bounds for
the round-off errors of their sum is:

s Ux|+lyh=2™, (3.269)

05 lenl s

and for their multiplication is:
ixjx]yj*2™ . (3.270)

O Iemultl §

For a scalar product of two vectors a and b each of n elements the
bounds of the round-off error will be: -
* RN I
0 < |e| g n*jlaj|*i|b]|*2 " . (3.271)

The same inequality applies for matrix multiplication since each element
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of the resultant matrix is the scalar products of two vectors of the
same length.

From the above equations it is clear that in order to minimize the
effect of round-off errors we have to increase the number of bits
assigned for the mantissa, i.e. m which can be realised through the use
of computers of larger word length or by using double (or higher) length
precision arithmetic. In addition to that, small magnitude guantities
will give smaller round-off errors. In the case of matrix and vector
operations, in addition to the previously mentioned solutions, the
length of vector n should be small.

The relative error in the computed value (x-y)f for two floating
point numbers x and y will be:

(x-y)—-(x-y) £ e

r= G, Gen, (3.272)

Using the above inequalities for € this equation can be written as the

inequality:
(le+|y|)*2_m
(e-y) g

osrg (3.273)

From this equation it is clear that if x-y is too small, the effect of
round-off errors may be too large. A solution for this situation may
be the avoidance of a too refined finite element mesh and the use of
double precision arithmetic in critical quantities. In the Gaussian
elimination process for the solution of a set of n linear algebraic
equations, which is usually used in FEM, it has been proved by
Wilkinson [1963] that the cumulative effect of rounding errcrs on the
solution obtained can be related to the effect of rounding errors in the

representation of the matrix of coefficients and the vector of constants.
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Consider the set of équations defined by:

Ax = b , (3.274)
where A is the (n*n) matrix of coefficients, b is the (nxl) vecter
of constants and x is (nXl) vector of unknowns. Assume that both A and
b are normalized such that their elements are all of absolute value <1,
and ﬁheir values are correct to m binary places (the mantissa). Assume
further that the arithmetic dperations of the Gaussian elimination
method with pivoting is‘carried out using m+log2n binary places. Then,
the obtained solution to m binary places is the exact solution of a set
of n linear algebraic equations whose coefficients and constants differ
from those in the original equations by less than the possible rounding

error in the data, i.e. by less than 2—m—1.

3.9.4 Discretization Error

In the FEM the field variable ¢(x,t) is approximated by trial
solutions of the form P{x,t). Let AY(x,t) denote the difference between
the actual field wvalue and its assumed trial vaiue, i.e.,

A (x,t) = ¢(x,t) - V(x,t) , {3.275)

Considering the functional I[¢(x,t}], it is possible to wriﬁe:

I{¢(x,t}] = IlY(x,t)+Ap(x,t)]
+AL [P (x,t) +4¢(x,t)] (3.276)
where AI represents the effect of some probable errors like: (a) the
sum of the spatial domain represented by FE may be different than the
actual spatial domain, (b) the boundary conditions may not be exactly
satisfied by the approximation. Due to the existance of AI and Ay the

solution obtained from the functional I{y(x,t)] will be deviated from
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that obtained from I[¢(x,t)]. The difference between the two sets of

eguations is the equation discretization error vector rd. It can be
shown that [Becker et al, 1982]:
Hrgll = o), (3.277)

where h is the mesh size and p is a power related to the higheét order
of the interpclation functions used in the approximation. This actually
gives the basis of the two versions usually adopted in FE refining,

viz, the h-version and the p-version which have been discussed before.
It should be noted that if the discretization error is monotonically
decreasing with decreasing the mesh size, then, using Richardson's
extrapolation it is possible to get a better solution as explained
earlier in this chapter. It is only recently [Dunavant and Szabo, 1983;
Kelly, et al, 1983]) where some a-posteriorierror estimates for some FE
problems have been established. However, two points should be noted:
{a) Almost none of the existing FE software available handles the error
problem. An exception to this is the FEARS (Finite Element Adaptive
Research Solver) which is a research-type FE software developed at the
University of Maryland, U.S.A., (b) practically, in order to assess the
errors by computer experiments, particularly for new problems solved by
FEM; the same problem should be solved several times {at least three)},
with a gradually refined mesh. Sometimes, it may be useful to use a
Richardson's extrapolation technique to conclude a better approximation.

Utilizing higher order elements can then be applied for best results.
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3.1C¢ SPECIAL PROBLEMS IN FE ANALYSIS

In this section some special problems in the FEM are briefly

highlighted.

3.10.1 Time-Dependent Problems

Two apprcoaches can he used to model time-dependent problems using
the FEM. These are:-
(i) Considering time as an extra dimension for the problem to be solved,
Thus, a 2-D problem will have now 3 dimensions: x,y and t. The shape

functions are defined in terms of these dimensions, i.e.,

bol
0% (x,y,t) = DN (x,y,8)0, , (3.278)
i=1 * .

where ¢e stands for the elemental field variable ¢, Ni the shape
functions and ¢i the nodal field variables. This approach can be
considered as a natural extension to the steady-state FE formulation
already discussed. It should be noted that the cost of computation

with this extra dimension is usually very high so that this approach is
farely used in practice.

(ii) Considering the problem at any one instant of time and the nodal
variables are considered as functions of time while the space variables
are used in the FE analysis. This approach leads to a system of ordinary
differential equations which can be solved using other techniques, usually
finite differences. This approach is usually used in practice and indeed
it is the one to be used within this thesis as will be explained in

later chapters. In this case the FE model will have the form,

n
¢e(x:Y:t) = E N.(X:Y)d).(t) {(3.279)
i=1 *t *
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3.10.2 Mixed and Hybrid Elements

In mest of the FE formulations for structural and solid mechanics
the field variable is chosen to be the displacement field. Consequently,
the displacements are assumed, and forced to satisfy certain continuity
compatibility conditions. The stresses computed after the solution for
displacements are nearly continuous. Solutions for such situations
should be covered by an ideal postprocessocr. This will be explained in
a later chapter. What we are going to explain here is that it is
possible, though not used in practice, to define other variables as the
field variable and hence an appropriate FE formulation can be develcped.
Perhaps the most known formulation other than the displacement one is
that based on assumed stress field. The associated functional in this
case is the complementary energy and the primary unknowns are the nodal
stresses. FE models based on this formulation are termed stress-based
FE models. If a mix of stress and displacement quantities are considered
as independent unknowns the resulting FE formulation is termed mixed
elements FE model. An example for a mixed element is the plate bending

element shown in Figure (3.17), where the nodal variables are the lateral

FIGURE 3.17: Mixed element for plate bending
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displacements at nodes 1,3,5 and the bending moments normal to the edge
at other nodes, i.e. at nodes 2,4 and 6. The associated functional
in this case is the Stationary Reissner energy.

Hybrid FE models are obtained if in ad@ition to one field variable
the displacement or stress, other variable (i.e. stress or displacement)
are introduced and the parameters that correspond to the additional
variables are eliminated at the element stage before assembling the
element equations. For example, it is possible in a plate elemert to
consider the field variable within the element to be the moments Mx'My
and Mxy [Raoc, 1982] while the lateral displacements of any edge is
quadratic or cubic in the edge-parallel coordinates and governed by
rotations and displacements of ncdes on the edge. More information on

this approach can be found in Zienkiewicz {1977].

3.10.3 Infinite Pinite Elements

When modelling an infinite region using finite elements, only a
finite part of the region is considered and the solution at infinity
is approximated by that at the boundaries of the finite part or conversely,
the boundary conditions at'infinity are assumed to happen at the boundaries
of thehfinite part. Consider, for example, a well in an aguifer where
the agquifer itself is assumed to extend to ® in the x-y plane., Similar
situations occur in electromagnetic field problems and in ocean
engineering models. In general, the region R is partiticned into two
subregions Rc and Ri, where R = RC U Ri' The subregion Rc stands for
a closed domain that extends up to the range within which the sclution

varies significantly while R, stands for the rest of the region which

i

extends to ®. Of course, we do not know the boundaries of Ri in advance.
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However, engineering judgement and experience are helpful in many
problems. In case no previous experience is available, for the problem
to be solved, then the problem is solved several times moving the
boundaries of Rc until a satisfactory solution is obtained. Another
approach is to use "infinite finite elements" where the elements possess
some functions of a decaying nature and the integration is performed
over the infinite domain. One of these decaying functiens is that
proposed by Ungless (1973) given by,

1

£{g) = L ! {3.280)

where L is the effective length. This function is used to reduce the

magnitude of u as £ increases where:

£(E) =1 at £=0
£(£) = .5 at &=L | (3.281)
and : f(E£) - 0 as L .

Bettess (1977) uses Lagrangian polynomials as interpolation functions
and multiplies them by an exponential decay function which can best fit
for the rapidly decaying phenomena. Assuming the Lagrangian inter-
polation function to be G(£) the modified function will be:

£(8) = a(gye /L, (3.282)

Again, the decaying multiplier is 1 at £=0 and =0 as &=,
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3.11 COMPARISON OF THE FINITE ELEMENT METHOD WITH OTHER COMPUTATIONAL

TECHNIQUES

There are many computational techniques that can be used to solve
PDE's and it is impossible to compare the FEM with all other methods.
So, the comparison will be limited to what are considered as the most
competitive methods: the finite differences and the relatively new
method, the boundary element method. Before discussing the criteria
used in the comparison it is convenient to give the metalgorithms for
the three methods. The word metalcgorithm is due to Rice [1975}. It
consists of a set of blocks or components which represent a class of
algorithms each of which has the form and attributes specified by the
metalgorithm. A metalgorithm can be described in English statements or
in the form of flowcharts. In fact, metalgorithms are used as a frame-
work or theory to study algorithms [Houstis et al, 1975].

(1) The metalgorithm for the FEM:

(i) The domain is divided into a set of finite elements.

{(ii} A choice is done for interpolation functions associated with
elements.

(iii) A processor is used to generate a set of algebraic equations
from the PDE or an associated functional.

(iv) A processor is used to generate a set of algebraic equatiocns
from the auxiliary conditions.

(v) An equation solver for the system of equations generated by
components (iii) and (iv) is used.

{(vi) Measurement of results and termination of the algorithm.

(2) The metalgorithm for the finite difference methods:

(1) A grid of nodal points are placed on the domain.
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(ii) A processor that generates a set of algebraic equations from
the PDE is utilized.

(iii) A processor is used to generate a set of algebraic eguaticns
from the auxiliary conditions.

(iv) An equation solver is used for the system of equations resulting
from (ii) and (iii).

(v) Measurement of the results and termination of the algorithm.

{3} The metalgorithm for the boundary element methods:

(i) The boundaiy of the region is discretized into a set of boundary
elements.

(ii) The original PDE is transformed into an equivalent set of
boundary integrals.

(iii) A processor is used to generate a set of algebraic equations from
the boundary integrals.

{iv) A processor is used to generate a set of algebraic equations
from the auxiliary conditiocns.

(v) An eguation solver is utilized to solve the system of egquations
resulting in (iii) and (iv).

{vi) Measurements of the results and termination of the algorithm.

The criteria used in comparison are then: (i) domain modelling, {(ii)

handling of auxiliary conditions, {(iii) processor properties and (iv)

user convenience.

(i) Domain modelling:

The ability of the FEM to model an arbitrary geometry through the
use of the higher order isoparametric elements is an advantage of this
method over the others.

Although it is possible to model such geometries using finite
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differences (FDM) as explained earlier in this chapter, but the
approximation is usually poorer compared to the FEM., It is easier

to use a mix of elements of various types, sizes, shapes and gradaticn
in the FEM as compared to other methods. An advantage of the boundary
element method (BEM) over the other methods is that a smaller number of
elements is required since the discretization process is applied to the
boundary only rather than the whole region.

(ii) Handling of auxiliary conditions:

Derivative boundary conditions are treated in the FDM utilizing
fictituous nodes that reside outside the domain itself, This is some-
what unnatural. Aapplication of such conditions in other methods do not
require fictitious elements.

(iii) Processor properties:

The processors used in each method to generate the set of algebraic
equations are quite different. In the FDM the derivatives are replaced
by function values at the grid points. This is a straightforward process
and no assembly is required for the resulting equaticns. This is not
the case in the other two methods where an elaborate assembly process
is required to form the final set of equations. Another factor is the
characteristics of the master matrix of the resulting set of equations.
In the FEM the master matrix is usually symmetrical, positive definite,
sparse and banded or can be transformed to a banded one.

These "good" properties save computer memory and execution time
for the solution. ©On the other hand, in the FDM the master matrix is
usually sparse but in many cases is unsymmetric. In the BEM the
resulting matrix is normally dense and unsymmetric. However, since the

boundary is discretized only, the size of the master matrix is much less
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as compared to the other methods,
(iv) User convenience:

Three aspects are considered here. First, the input data required
in the analysis is much less in the case of the BEM compared to the
other method. This is apparently due to the fact that the boundary is
discretized in the BEM rather than the whole domain. Consequently an
easier user-interface can be achieved in the BEM.

Secondly, the domain of applications of the FDM and FEM seems to
be wider than that of the BEM. The solution obtained in the BEM is
that on the boundary only and the solution inside the domain has to be
computed. In the other methods, the solution is obtained inside and on the
boundary of the domain directly. Third, there are many standard,
reliable computer software for the FDM and the FEM that c<an be used to
solve a wide range of problems. This is not the case with the BEM

where very few specialized codes are produced.



CHAPTER 4

COMPUTER IMPLEMENTATION OF THE FINITE ELEMENT METHOD

TABLE OF CONTENTS

4.1 Introduction
4.2 Classification of Finite Element Software
4.3 Data Structures for Finite Element Programming
4.4 Proposed Fortran Extensions
4.5 Computer Solutton of Finite Element Equations
4.5.1 Banded Algorithms
4.5.2 The General Sparse Matrix Algorithms
4.5.3 The Frontal Algorithm
4.5.4 Software for the Solution of Equations
4.5.4.1 Matrix Storage Modes
4.5.4.2 Linear Equation Solvers
4.5.4.3 Test Problems
4.6 Mazinframe Computer Implementation
4.6.1 Historical Background
4.6.2 Program Capabilities
4.6.3 Implementation Details
4.6.4 Installation Procedure
"4.6.5 Discussion
4.7 Mini-Computer Implementation
4.7.1 Background
4.7.2 The ELASTIC Package
4.7.2.1 Element Library
4.7.2.2 Implementation Details
4.7.2.3 The ELASTIC Program Structure

4.7.2.4 Numerical Tests



4.7.3

The STRAP Program
4.7.3.1 STRAP Capabilities
4.7.3.2 SITRAP Structure

4.8 Miero=Computer Implementation

4.8‘1
4.8.2

4.8.3

Background

Finite Element Programming on Micro-Computers:
Problems and Solutions '

The Interactive Finite Element Program for
Aquifer Simulation IFEP

4.8.3.1 Program Structure

4.9 Pre-Processors for Finite Element Programs

4.9.1
4.9.2

4.9.3

4.9.4

Introduction

Methods of Mesh Generation

4.9.2.1 Mapping Techniques

4.3.2.2 Mesh Generation by Direct Subdivision
4.9.2.3 Mesh Generation by Quad Trees

4.9.2.4 Duplicate Nodes in Automatic Mesh Generators
Data Input for Finite Element Programs

4.9.3.1 Interactive Ask-and-Answer

4.9.3.2 Speeial Definition Language

4.9.3.3 Direct Data Input Through Digitization
Numbering Algorithms

4.9.4.1 Algorithms for Minimizing Matrix Bandwidth
4.9.4.2 Algorithms for Minimization of Frontal Width

4.10 Post-Processors for Finite Element Programs

4.10.1
4.10.2
4.10.8
4.10.4

4.10.5

Introduction

The Functions of Post-Processors

Stress Smoothing Methods

Hardware for Interactive Graphical Post-Processors

4.10.4.1 Graphical Terminals
4.10.4.2 Input Devices for Interactive Graphical
Post-Processors

4.10.4.3 Output Devices for Interactive Graphical
Post-Processors

Software for Interactive Graphical Post—Processors
4.10.5.1 Representation of Graphical Entities

4.10.5.% Programming Languages for Interactive
Computer Graphics



4.10.5.3 Geometry Modelling
4.10.5.4 Removal of Hidden Surfaces
4.10.6 Design of User Interface in Graphical Post-Processors
4.10.6.1 The User's Model
4.10.6.2 The Command Language
4.10.6.3 Information Display
4.10.6.4 Feedback
4.10.7 Examples of FE Post-Processors
4.10.8 Recent Trends in Graphical Post-Procegsors
4.11 Spectal Topies in Computer Implementation of FE
4.11.1 FE on Parallel Computing Systems
4.11.2 Database Technology for FE Software
4.11.3 Standardization for FE Softuare
4.12 Selection of Finite Elements Software
4.12.1 Introduction
4.12.2 Attributes of FE Packages
4.12.3 The Simple Matrix Method
4,12.4 The Multi-attribute Utility Theory
4.12.5 The Multi—attribute Fuzzy Decision Analysis
4.12.6 A Case Study



136

4.1 INTRODUCTION

The FEM is a computational technique which requires the essential use
of a digital computer for practical applications. Since the FEM was
originally developed by structural engineers, it is not surprising
that the first computer implementation of this method was for structural
analysis systems.

FE programs in the sixties were typical in that they had their inputs on
punched cards and outputs on line printers with in-core soluticn
techniques. It is possible to identify five milestones in the computer
implementaticn of F.E.:

(1) In the late sixties the use of direct access storage devices
like magnetic discs and the building of the virtual memory
machines had enlarged the capabilities of F.E. programs to
handle fairly big problems, e.g. SAP I [Wilson, 1970Q1.

{ii) In the early seventies the out—of-core techniques and sparse
matrix methods opened the way to solve very big problems e.g.
NASTRAN [MacNeal, 1970] and George [1971].

(iii) In the mid-seventies the evolution of super mini-computers
allowed the FE user to get access to large systems on a
relativély cheap machine in a time-sharing environment. The
use of interactive programs was dominant.

{iv) In the late 70's and early 80's and due to large scale
integration (LS8I) and very large scale integration (VLSI)
technological advances, micro- and super-computers started to
be used in scientific computations. This gives the possibility
for in-house F.E. computations on a small size machine which

cost less than a time-sharing service with a mainframe. The
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use of MIMD and SIMD computers for extremely large problems was
also exploited. fhe use of graphics to enhance man-machine
interface is another feature ¢of these F.E. programs.

(v) The last milestone is the current state—ocf-the-art for which
software integration is a major objective. The use of database
management systems (DBMS) and some techniques from the field
of artificial intelligence {AI) are among the features of these
F.E. programs. Other features are: the extensive use of colour
graphics and digitizers.

In this chapter F.E. software is classified according to different
criteria such as use and size. The data structures necessary for
implementing F.E. on computers are reviewed and discussed. Since most
of F.E. programming is done in Fortran a proposed set of extensions
is given to facilitate scientific programming in general and F.E,
programming in particular. Four F.E. programs are presented. The
first is a model of a mainframe computer implementation; the second
and the third are mini-computer implementations; and the fourth is a
micro-computer implementation. The first two are adapted by the author
while the last two are developed by him. In choosing these programs
thé fellowing factors were considered:

(i) The program must be available in source code and not

a proprietary one.
(ii) The program must be already loaded and tested on the
available computer hardware.
(iii) Program docﬁmentations must be available.
In view of the above, the MSAP program [Kaldjian et al, 1982] is

chosen as a mainframe computer implementation, the ELASTIC [Sharaf Eldin
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and Evans, 1987] and STRAP [Turaby and Sharaf Eldin, 1978] are chosen
as samples of mini-computer implementations, and the IFEP [Sharaf
Eldin, 1983a and 1985a)] program is chosen as a sample of a micro-
computer implementation.

The importance of pre- and post-processors for F.E. systems is
evident. Two sections are devoted to these two important subjects.
Special topics in computer implementation of FEM are discussed which
include F.E. on parallel systems, use of database technology in F.E.
and standards for F.E. codes. Finally three quantitative approaches

for the selection of FE software are given.
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4,2 CLASSIFICATION OF FINITE ELEMENT SOFTWARE

It is possible to classify finite element software according to
several criteria such as: applicability, function, size and approach.

Considering the domain of applications we can distinguish four
‘different types of F.E. software:

(1) General Purpose Practical Packages:

These are the most widely used packages for F.E, Most of these
packages are oriented for structural analysis and are used for practical
problems. The main features of such packages are: a broad spectrum of
capabilities, rich library elements and most of them are in proprietary
code, Examples of such packages are ADINA [Bathe, 1978] and MSAP
[Kaldjian et al, 1982],.

(ii} Special Purpose Packages:

These packages are usually develcoped to solve very specialized
problems for which no general-purpose package exists. As an example
the IFEP [Sharaf Eldin, 1983a)] which is used to simulate some ground-
water problems. This program will be discussed in Section 4.8 in detail.
(iii) Educatiocnal Packages:

These are packages used for teaching purposes. They are usually
available in source code. Such packages are simple in design and
contain a good user interface to make the communication with the package
easy. Examples of such packages are: FEMSKI [Irons and Shrive, 1983],
FINEL [Hitchings, 1975) and STRAP [Turaby and Sharaf Eldin, 1978].

(iv) Research-oriented Packages:

Thése are programs which have been developed for research purposes

in F.E. Unfortunately, no general-purpose packages are available that

allows the implementation and testing of new algorithms in F.E. in an
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easy way. Most of the researchers in computer implementation of FE
start their work from an existing package and attempt to modify it
for their application such as Sada Costa [1980]. One of the attempts
to solve this problem is to add special capabilities for cone of the
available high level programming languages as language extensions and
thus allow the FE researchers to test different algorithms. Example
of such an approach is that developed by Collins [1980].
FE systems can be classified according to their size into three
different categories:
{i) F.E. packages that require a super or a mainframe computer
to run. These progréms are usually general purpose large
scale software used for practical applications in industry.
These systems are usually expensive and most of them are
available in binary code conly. They require a large memory
size supported by DASD for back-storage. In addition, graphics
devices are invariably required to cobtain the plotted results.
It is worthwhile to mention that none of the known F.E.
packages fully utilize super-computer capabilities and in
particular parallel processing facilities. These are expected
soon, Examples of mainframe implementations are ADINA
[Bathe, 1978] and MSAP [Kaldjian et al, 1982].
(ii) In the mid 70's the powerful super mini-computers like VAX
and PRIME made it péssible to have F.E. packages that could be
implemented on mini-computers. Due to their relative cheapness
compared to mainframe computer prices it sometimes becomes an
cost-~effective alternative. Examples of programs that
can be implemented on mini~computers are: Gattass and

Abel [1983] and STRAP [Turaby and Sharaf Eldin, 1978]. Among
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the problems encounte;ed when'using mini- and microcomputers
for F.E. analysis is the limited stack size. This problem is
explained and a solution is given in Chapter 5 of this thesis.
(1iii) During the last few years and due to the advances in the LSI
and VLSI technologies, many micro-computers with greater
capabilities have been introduced. However, very few general FE
packages are available using such micro-systems., This may be
due to the fact that developing a new F.E. code from scratch
is time consuming and expensive process and the developments with
micro~computer are changing very rapidly. Examples of micro-
computer implementations are Yamada and Okumura [1980) and
Sharaf Eldin [1985].

It is also possible to classify F.E. systems according to their
functions as:

(1) Pre-processor Packages:

These packages are used as a man-machine interface to facilitate
the data input to the main F.E., processor. The definition and functions
of pre-processors and post-processors will be discussed in detail in
later sections of this chapter. Examples of pre-processors are the
GIFTS III {Kamel and McCabe, 1976] and PREMSAP ([Kaldjian, 1976].

{ii) Processors that perform the actual F.E. analysis
(iii) Post-processcr packages:

These are concerned with graphical representation of results and
correction and checking of the solution. Examples of post-processors
are: MSAPPOST [Kaldjian, 1977] and MENTAT [Marc, 1980].

Finally, it is possible to classify F.E. systems according to

their approach. Two types can be figured out: Mathematical and
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Engineering. Most of the available F.E. systems are engineering type
software where the input to such systems is a collection of elements,
nodes, material properties and boundary conditions, The characteristics
of elements and the solution steps are all stored in the system. On
the other hand a mathematical F.E. software accepts its input as the
governing differential equations with the necessary boundary conditions.
An example of a mathematical F.B. system is the TWODEPEP package which

will be discussed in Chapter 6 of this thesis.
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4.3 DATA STRUCTURES FOR FINITE ELEMENTS PROGRAMMING

The problem of data structures for F.E. programming has been given
less attention in the literature than it deserves. Many of the existing
large finite element software packages have their roots in the late
sixties and early seventies. The fast progress that occurred in computer
scientific computation is not accompanied by a parallel one in software
development. Although progress in software theory is relatively fast,
the actual implementation is a great deal slower. As an evidence, most
of the existing large F.E. programs do not have built-in interactive
input/output facilities. Almost none of them is built around a truely
database management system.

One of the main reasons for this situaticn is that when a F.E.
developer designs his system he is faced with problems of data structuring,
storage management and data management. The existing programming languages
used in F.E. programming, mostly Fortran, do not possess the adequate
capabilities to enable the easy command of data structuring, storage and
data management. As a consequence, the F.E. develcper finds himself
involved more and more in the organizing, storing and management of data.
The ﬁse of a data structure may, therefore, act as an interface between
the F.E. developer and the computer.

The first attempt to build a data structure for F.E. systems as
reported ‘in the literature was that of Bettess [1977].. In his work a
direct access disc file is mapped ontc a fixed area of core. The access
is granted via a Fortran function NO(I) where the contents of the Ith
word of the disc file can be transferred to a core location or vice versa.
The data structure has two main parts; a fixed permanent part that holds

the title block and the peinter block. The title block holds the problem
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title while the pointer block holds pointers to element data, node data
and so on. The other parts of the data structure are the entries:

node entries, element/node entries and element entries. The node entry
holds the node number, the node co-ordinates, and a pointer for the
first element/node entry for that node. The element entry holds the
element number, type, and a peinter to the first element/node entry

for this element. The element/node entry holds the element number,

the node number and a pointer to the next element/node entry for this
node. A suite of 8 subroutines are available to store and retrieve

the nodes, elements and connectivity data. This data structure could
be considered as a simple solution for the considered problem. However,
it must be emphasized that the use of database management systems (DBMS)
to handle data management in F.E. systems is a more efficient way.
This will be explained later in more detail.

It is safe to predict that more than 90% of the develcoped F.E.
programs are programmed in Fortran. This may be due to the fact that
Fortran is the oldest high level programming language for scientific
and engineering applications. A large amount of investment has been
spent ©N the existing software and in training engineers and scientists
in Fortran. For these reasons it is believed that Fortran will be
dominant for some time in F.E. programming. The guestion which arises
is: dees Fortran possess the adequate data structures and management
of F.E. programming? Before giving an answer, let us first state what
a programmer expects from a programming language for F.E. programming
and then examine Fortran in the light of these requirements.

In general a programming language should provide the following

capabilities [Browne, 1976]:
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® A set of primitive and system defined data structures,

® A set of operations on them.

® 3 set of composition rules. that enable the composing of
primitive.and system defined data structures into structures
appropriate for the application.

® The same but for operations.

® A set of capabilities to manage the computer resources allocated
to a program specially the memory size and filing system.

® an interface to capabilities defined in the operating system or

in the system libraries.

Before examining Fortran we must know that there are twe major
versions of Fortran available in the computer community known as Fortran
€6 and Fortran 77. Most of the well known large scale F.E. systems are
based on Fortran 66 which lacks most of the structuring programming
constructs. However, our examination for Fortran will be based on both
versions: Fortran 66 and Fortran 77.

The primitive numerical data objects in Fortran are the data types
defined explicitly by a type statement or implicitly by its first letter
(the I,J,K,L,M and N rule). This includes: integer, real, complex and
double precision. In Forﬁran 77 it is possible to define these data
types through an implicit statement as well. A character data type
is also available in Fortran 77. The system defined data structure is
the array which is a collection of identical objects and can span over
a number of dimensions: 3 in Fortran 66 and 7 in Fortran 77. Howéver,
most of the existing Fortran compilers permit more than 7 dimensions
for the array declaration. The set of operations defined in Fortran

are quite powerful for data elements but no operations are allowed on
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system data structures. Thus we can write:
A=B+¢C

where A,B and C are data objects (scalars) but not arrays. One exception
is the I/O of arrays which could be done directly. However, Fortran
gives the facility to compose user-defined operations using the system
defined operations through functions and subroutines.

The other three capabilities are very limited in Fortran, These
are: the composition of system defined data structures into more user-
oriented data structures; the capability to manage the allocated computer
memory and the adequate interface to operating systemsand system libraries,
To exemplify, let us consider the problem of the storage of the master matrix
K (stiffness matrix) in a F.E. program. PFirst of all it is well-known
that K is sparse and in many cases banded. However no data structure in
Fortran is available except the array and thus K is stored as a rectangular
array with the necessary vectors that store pointers to different elements
of the array. Thus, it is the programmer's responsibility to establish
the whole mechanism to manipulate and store this sparse matrix. Another
problem is that since Fortran allows the allocation of a fixed amount of
memory it implies that K will be dimensioned in the main program
s0 as to fit the largest problem to be handled by this program.
This means.that when solving problems of smaller size, memory wastage
will occur.

This is due to the fact that Fortran does not possess the capability
to manage the memory allocated to a program. Fortran does not allow
the direct interface with the operating system and system libraries.
However, many of the Fortran compilers nowadays define some system

calls that give a fairly limited amount of interface to some of the
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operating system tables and system libraries. Nevertheless, some
'tricks' have been practiced by engineers to overcome some of these
handicaps. One of these 'tricks' is to have the whole memory allocated
to the F.E. program in the form of & single vector and hold the suitable

pointers to partition this vector.
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4.4 PROPOSED FORTRAN EXTENSIONS

The following extensions to Fortran are proposed in order to
facilitate F.E. programming, in particular, and scientific computations
in general. The underlying philosophy for these extensions are:

® Enrich the system defined data structures

® Increase the capabilities of user-defined data structures

® Define more operations on data structures

® 2dd the capability to manage the memory allocatgd to a process

® 2Add an interface to the operating system

® FEnhance the readability of Fortran programs
The definition of arrays:

An array could be defined as it is now in a dimension statement
with two more extensions:

(i} Allow dynamic storage allocation by allowing constants, integer
variables or expressions to be used in the main segment of a Fortran
program.
Examples:

DIMENSION X(10,20),Y(1:15,-3:4)

DIMENSION R(N,M),K(l:N+l,—M:N—l)
where N and M will be supplied at run-time. This will minimize the
wasted memory when running the program. It is worth mentioning that
some compilers allow a similar facility through a system call to free
unused memory.

(1i} Allow the declaration of a triangular métrix, e.qg.
DIMENSION X(l:N,l:*)
DIMENSION Y(l:N,*:N)

The X array is defined as a lower triangular array while array Y is an
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upper triangular one. In the same sense a diagonal matrix can be

defined by:
DIMENSION Z (l:N,*:*)

(iii)} Allow the declaration of virtual arrays. These arrays reside in
virtual memory. This point will be discussed in greater detail in
Chapter 5 of this thesis. Adding this facility is important since
paging, dene by operating systems, has a basic éroblem in that it does
not reflect the programmer's knowledge of the program structure but
rather leaves the whole task to the operating system.
QOperations on arrays:

It is interesting to notice that most of the existing BASIC inter-
preters and compilers allow expressions like:

MAT X =4 + B

where A,B and X are arrays of the same dimensionality. It seems that
matrix operations must be allowed in Fortran. The following list of
matrix operations is proposed:.

(i) Allow the use of arrays in expressions as scalers provided that

the correct dimensionality is met, e.q.

A=B+C
R=0
K = IDENT
M=1

where A,B,C,R and K are arrays.

In the first statement array A is set to the sum of arrays B and
C. 1In the second statement array R is zeroed and in the third
statement array K is set to the unit matrix. Note that IDENT is a
reserved token. In the last statement all the elements of array M are

set to 1.
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{(ii) Allow the use of sub-arrays in a manner analcogous to substring

manipulation, e.g.

A = B(l:N, 1:M)
This will copy the submatrix of B defined by rows 1:N and columns 1:M

into A,

A = B{(l:N,1:*}
This will copy the lower triangular part of B into A.

B(L:N, 1:M) = A(l:N, 1:M)
This statement will copy in the subarray B the same NxM part from A.

This facility will be of great help when mapping local stiffness

matrices to the global one in F.E. programming. The use of subarrays
in the lefthand side is also useful in matrix partitioning.
{(iii) Allow the use of arrays as arguments in some of the intrinsic
functions like the ABS, SQRT,... functions, e.g.

A

t

ABS(A)

R = AMAX (A)

it

In the first statement all the elements of A will be set to their
absolute values while in the second statement the maximum element of
array A is stored in the variable R.

(iv) Add more intrinsic functions for matrices like:

TRANSPOSE, INVERSE.
(v) Allow the use of integer vectors as subscripts for matrices. This
is helpful in programming the frontal seclution algorithm, e.gq.

REAL K(1:N, 1:N)
INTEGER ACTIVE (3)
If ACTIVE has the value:

ACTIVE={1,4,9}

then K(N,ACTIVE) will give the elements: K(N,1l), K(N,4) and X(N,9).
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Interfacing with the operating system:
(i) Allow the user control of real and virtual memory allocated to
his program data segment through two new statements:

KEEP REAL list
RELEASE REAL list

These statements are explained in greater detail in Chapter 5 of this
thesis.

Enhancement of Fortran readability:

(1) Allow longer names for variables. The current Fortran specifications
allow variable names of up to 7 characters. This seems to be very
restrictive. Some of the available compilers allow more than 7
characters. It is proposed to increase the variable names up to 30
characters.

(ii) Allow the use of character labels in addition to numerical labels.

The above-mentioned proposal could be used as a basis for a more
powerful Fortran which is more adequate to FE programming in particular,

and to sclentific computations in general.
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4.5 COMPUTER SOLUTION OF FINITE ELEMENT EQUATIONS

As explained in Chapter 2, direct methods of solution for the
resulting linear equations are usually used in F.E. programs. These
methods, although all are variants of Gauss elimination, they are
implemented on computers following the three main approaches, viz:

(i) The banded algorithms;

(ii) The general sparse matrix algorithms; and

{(iii) The frontal algorithm.

4.5.1 Banded Algorithms

In the FEM the stiffness matrix is sparse in general. In many
cases it is banded and symmetrical too. Band matrices are stored in a
compact form. Assuming that the F.E. system of linear equaticns to be

solved is:
Ax = b, (4.1)

where A is n*n banded matrix of semi-bandwidth r. A is stored as a
rectangular array of n*r elements instead of n2 as in the case of full
storage mode. Figure (4.l) shows the storage of a banded symmetrical

matrix,

[ ]

r r+l
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i.e., _ _

41 - a1
41 %22 - % %
231 233 333 831 %32 233

A = +

O a4 3 3y, 8420 243 94

| O 33 a5 Ag) 353 %54 55
€-—-3 - -~ 3 € ——3--=2»

FIGURE 4.1: Storage of a banded symmetrical matrix

This will save not only the computer storage but also the execution
time required to solve the set of equations. The semi-bandwidth ¥

is a function of the node numbering scheme. As a simple rule, the
half-bandwidth is the maximum difference between any two node numbers
in the same element as illustrated in Figure 4.2 {[Sharaf Eldin, 1983b].
Many techniques are, therefore, used to minimize the bandwidth by node
renumbering. These methods will be explained in a later section of

this chapter as one of the F.E. preprocessors' functions.

1 2 3 4 5
10 9 8 7 &
11 12 13 14 15

{a)
1l 4 7 10 13
3 6 9 12 15
(b)

{a) Bad node numbering, semibandwidth = 9

{k} Good node numbering, semibandwidth = 4

FIGURE 4.2: Effect of node numbering on bandwidth
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It'should be noted that the zeros laying cutside the band region
remain zeros at all times in the solution process and for that reason
they are ignored. Also, we notice that during the Gauss elimination
process of the ith row, a limited number of elements of A are affected.
Recall equations (2.22) and (2.23) and since A is banded we notice that

a,

ik is zero outside the active triangle shown in Figure (4.3}.

row i

FIGURE 4.3: Active triangle in eliminating the ith row of a
banded matrix.

lThis suggests to keep b rows only of the matrix in core and swapping
other rows to backing storage media such as DASD. Examining the active
triangle shown in Figure (4.3) we notice that the active triangle is
meving downwards. When eliminatiné the(i+ﬁ#row we thus need to retrieve
other elements from the backing store. This will involve heavy'I/O
operations. In order to decrease the number of these I/0 it is
preferable to have larger portions of A in-core. A proposed scheme
could be to have multiple active triangles in-core. The number of
which is dependent on the available core and the size of each active
triangle. The storage of a banded matrix as a rectangular array

is very simple and quite efficient provided that the number of zeros
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inside the band is small. However, this is not always the case.
Some problems will give a stiffness matrix which has large variations
in the bandwidth from row to row. In this case a more efficient
method to store the matrix A is the envelope or profile method.
Before discussing this method let us give a definition of the envelope
of a matrix following George and Liu [1981] as follows:

For each row i (i=1l,2,...,n} in the symmetrical matrix A we

define:

£,(a) min{j|ai #0} (4.2)

3
i-£_(A) (4.3)
1

and Bi(A)
Equation (4.2) gives the column subscript of the first non-zero
element in the ith row of A, While equation (4.3) gives the semi-
bandwidth of A at the ith row. The semi-bandwidth of A 1is thus:

B(A) = max Bi(A) . 1=1,2,...,n {4.4)
Considering the variations in Bi(A) with i, the envelope (or profile)

of A is denoted by Env(A) and defined by,

Env(a) = {(i,%) |O<i—j$Bi(A)} (4.5)
In terms of fi(A) this could be rewritten as,

Evn(a) = {(i,3) lfi(A) <j<i} (4.6)

The total size of envelope of A denoted by |Env(d)]| is

|Env(R)| =
i

B.{(A) . (4.7)
1

19

In the envelope method the non-zero elements within Env{A) are stored.
Since by definition Env(a) € Band{A) it implies that there are savings

in the storage of an envelope rather than the band. This is particularly
clear if the variations in bandwidth are very large. The most commonly

used storage scheme for the profile of a matrix is thatgiven by Jennings
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[(1966]. Here, in each row of the matrix all the entries from the
first non-zero to the diagonal are stored in contiguous locations in
a vector ENV. An auxiliary index vector DIAG is used to point to the
location of diagonals in the vector ENV. This is best illustrated by

the example shown in Figure (4.4).

21 %12 A3
%22
833 834
24 %15 %46
Symmetrical
855 %356
| %66
A
Index: 1 all Index: 1 1l
2
%12 2 14
3 a4 3 5
4 a22 4 7
5 a33 5 10
6 A34 6 |12]
7 a44 Pointer vector DIAG
8 a45 giving location of diagonals
9 a46 within ENV
10 a55
11 a56
12 L?GQ

Storage of elements of A

in vector ENV
FIGURE 4.4: The storage scheme for matrix envelope

Note that the vector DIAG 1s of integer type and of length n. The

size of the real vector ENV is ]ENV(A) . The map which defines the

location of an element aij within the envelope region of A into the
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vector ENV is defined by,
{1,3} » DIAG(I)+J-I . (4.8)
Note that since A is symmetrical we consider the upper part only, i.e.
J2I. To illustrate the use of (4.8) consider the element a45 in
Figure (4.4). This element will be stored in ENV in the position:
DIAG(4) + 5 - 4 i.e, B
If A was not symmetrical, a variant of the above methcod proposed by
George and Liu ([1981) is to store the diagonal elements themselves in
a separate vector DIAG and store other elements of A within the profile
region into another vector ENV. A pointer vector ROW of integer type
is used to keep track of the start of each row portion within ENV.
Note that the vector DIAG in this case is not of type integer as before.
The length of DIAG is n, while the length of ENV is ]ENV(A)I and that
of ROW is n. However, to have easier indexing when referencing the
elements of ENV; the vector ROW is increased by one element to be n+l

and the last element in it i.e. ROW(n+l) is set to |ENV(A)|+l. This

storage scheme is illustrated in Figure (4.5).

11 %12
1 %22
O a3 #53
2 M43 %4
- %54 55
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Index: 1 1] Ta.l; I-al;
2 2 21 @22
3 3 332 33
4 4 342 24
5 6 2,4 La55ﬂ
6 7] (354
ROW ENV DIAG

FIGURE 4.5: Another storac';e scheme for envelopes
Note that ROW(I) is the element number in ENV where the lst element of
the Ith row elements is stored. The mapping of any aij element within
the profile of A cnto the vector ENV is defined by:
{1,3} » ROW(I+1)-{I-F] TIAJ (4.9)

For example, element a 4 will be stored in

5
ROW(6) - (5-4} = 6

i.e. in ENV(6).

4.5.2 The General Sparse Matrix Algorithms

In the general sparse matrix algorithms use is made of the sparsity
of the matrix of coefficients to store nonzero elements only. Here, a
well-known problem arises; the fillin's i.e. the zero elements of A may
become nonzeros during the solution process. The problem of fill-in's
does not exist in banded algorithms since zeros within the band are
stored. However, in the general sparse algorithms, the nonzeros of A
are stored but due to the fill-in's some additional storage must be
added, To illustrate the problem of fill-in's consider the following
example [George and Liu, 1981]:

Consider the system of equations Ax=b where A is the symmetric

sparse matrix,
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! 1 2 .5 21
1 .5 O Q O
2 Q 3 o o]

5 0 (o] .625 ©

|2 0 0 0 18]

and x is the vector of unknowns and b is the r.h.s. vector of constants,

]
3
7
-4

-4
A could be factored to LLT where,

.5 .5
1 -1 1l
L:
.25 ~,25 -5 .5
1 -1 =2 -3 1]
"2
and the solution is x = i

e
We notice that the zeros structure of A is not retained in L. Many
fill-in's occur, Also note that using banfed algorithms for such a
problem with this ordering is not useful. This is, in fact, the
motivation of using general sparse algorithms.,

To minimize the number of f£ill-in's, re-ordering of the equations
is necessary. This is done by multiplying the matrix A by a permutaticn
matrix P. Pre-multiplication PA means re-arranging the rows of A while
post-multiplication means permutation of the columns of A, Thus the

sparse Gaussian elimination for the solution of sparse symmetric
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positive definite equations is usually done in three different steps:

(1)

(ii)

(1ii)

Permutation of A to reduce the fill-in's

Pinding the non-zero structure of the factors of A.

This cculd be done by symbolic factorization [Schreiber,1982].
It is worth mentioning that the prediction of fill-in's is
not possible for a general sparse matrix.

Using the data structure cbtained in (ii}, the actual

numerjcal computation is done.

The separation of these three steps is useful since it allows the

solution of different problems which possessthe same structure but

with different values by doing the symbolic factorization only once.

Recall the given example again and use the permutation matrix:

T
PAP

0 o o o I
o o 0o 1 o
P= |0 o 1 o o =p"
o 1 o o o
1 o o o o
16 o 0 ) 2
o) .625 0 .5
“lo o) 3 2
o) 0 .5 1
|2 .5 2 1 4;

The system of equations Ax=b will be:

(PAPY) (Px) = Pb, i.e. Cz=d.

T T
The factorization of PAP to LL will give:

[4 o ]

o .791

o o} 1.73

o o o .707

.5 .632 1.15 1.41 1.129]
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which has the same sparsity structure as (PAPT) itself. We proceed
as before to solve the system of equations: Ly=d, LTz=y and finally
x=PTZ.
It should be noticed, however, that:
(i} Finding the best permutation matrix P is not always possible.
Some heuristics are used to find a good permutation matrix P.
(ii) The storage requirements for a sparse matrix consists of
two main parts: primary and overhead. The primary storage is
used to store the non-zero elements of A while the overhead
is used to keep the necessary data to access elements of the
primary storage like pointers, subscriéts, etc. The total
storage required is, therefore, the sum of these two portions.
{iii) It may happen that during the reduction of A that some zeros
arise which are not due to. the sparsity structure of A but due to
numerical calculations. These zeros are usually not

exploited in sparse matrix methods.

There are many methods to store a sparse matrix which differ in
their complexity and execution time. However, an inadequate sparse
scheme can lead to very inefficient programs due to the large amounts
of data handling involved [Evans, 1973]. One of the well-known data
structures used is to store the elements of the lower triangle of A,
including the zeros that later will Be filled in, in a vector v. A
separate vector r is used to record the row number of the corresponding
element of array v. Thus if aij is stored in v({k) then r(k}=i. A is
stored columnwise i.e. elements of the same column are stored in
contiguous elements in v. Thus we need to keep in another vector c,

the diagonal elements of A as stored in v. e.g. if v(6) holds a55 then

c(5) will be 6.
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To illustrate, consider the following example:

— ——

%1
C 23y
A= a a
831 %32 %33
251 O 343 34

then the v, r and ¢ vectors will be

VS 31 B3 By fn %3 %33 %3 %4
r=|1 3 4 2 3 3 4 4
c = =1 4 6 *J g ¢

A survey of 36 of the most well known FE systems in the marketplace
[{Noor, 1981] indicates that none of them use general sparse methods to
solve FE equations. This may be due to: (i) The sparsity structure of
the resulting FE equations from general purpose FE software in practical
use differs greatly from one problem to another and it is very difficult,‘
if not practically impossible, to tell in advance which solution
strategy should be followed: banded, frontal or general sparse. (ii)
unless the matrix of coefficients is greatly sparsed, banded algorithms
are normally faster and require less computer memory. (iii) If A, the
matrix of coefficients is not symmetric positive definite, there is

no algorithm knewn to find a good permutation matrix. (iv) General
software for sparse matrices are relatively new compared to banded
algorithms.

However, high quality software packages for sparse matrices exist
since the mid-seventies. Among these are; the Yale Sparse Matrix
Package: YSMP [Eisenstat, et al., 1976] and the SPARSPAK [George and
Liu, 1981]. These two packages have similar general structure and

solution philosophy. However, they have different data structures.
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Consider the system of equations to be solved is Ax=b where A is a
sparse symmetric positive definite matrix. In these packages the basic
solution steps are:

(i) Input structure of A.

{ii} Permuting A according to one of the available methods in
the system library to reduce the fill-in's. At the end of
this step, the data structure needed for L is allocated.

(iii) Input of the numerical wvalues of non-zero elements of A.

(iv) PFactorise A into LLT.

(v) Input of righthand side.

{(vi) Final solution for x and output of results.

The factorization is done in two steps in the YSMP: symbolic factor-
ization by the subroutine SYMFAC and numerical factorization by the
subroutine NUMFAC. The SYMFAC routine determines the f£ill-in's in
the factor L of A while the routine NUMFAC uses this structural
information to do the actual numerical computations. In the SPARSPAK
package the user allocates a vector of the total memory allccated to
the problem and interface subroutines use this vector to allocate

memory for different modules during the computation.

4.5.3 The Frontal Algorithm

The other widely used method for the solution of linear equations
resulting in FE analysis is the frontal technigue. It is a fact that
the majority of FE systems available use either banded algorithms
(simple or profile) or the frontal technique. The frontal solution
technique was originated independently from Irons [1970], Melosh and

Bamford ([1969] and Hellen [1962}. In this method, the assembly
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procedure for the stiffness matrix and nodal forces and the solution

of the unknown displacement by means of the Gaussian elimination methed
are all done in one application. The main and important idea is to
assemble the equations and eliminate the variables at the same time.

As soon as the coefficients of an equation are completely'assembled
from the contributions of all relevant elements, the corxresponding
variable can be eliminated., Therefore, the complete master matrix is
never formed as such, since after elimination the reduced equation is
immediately transferred to backing storage. So, the frontal method is
basically an out-of-core technique. To explain the method we consider
the system of linear equations defined by Ax=b. In the Gauss elimination
method the elimination of the unknown xi (i=1,2,...,n) is done by
medifying the elements of the coefficient matrix A and the vector b as
follows: |

/a T (4.10)

*
a, ‘s
ik 7id

sk~ P9k T %51
b, =b., -a,. *b_ /a_ (4.11)
i"Tii
for j=i+l to n
and k=i+l to n.
The last equation will be in the form xn=bn/ann which gives X, directly,

while the remaining unknowns xl,xz,...,xn are determined by backward

-1

substitution using:
= - *
% (bi 2 a, xj)/aii : (4.12)

for i=n-1 to 1.
If the matrix A is symmetric, then equation (4.10) can be written
in the form:
= - *
Ay e aij aik/aii (4.13)
for j=i+l to n

and k=i+l to n.
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Now it should be noted that:
(i} At the time of elimination ajk and bj need not be fully
assembled provided all the other terms are.

(ii) If either aij or a,. 1ls zero, then a,, will not be changed

ik jk
by the elimination process. Similarly, bj is unchanged if aij
is 0.

The frontal algorithm takes advantage of these points by alternating
assembly and elimination. A variable X is eliminated as soon as ;11
the elements that contribute to’'any of the terms aij or bi EaVe been
assembled. After the elimination of X, its row equaticn .Zlaijszbi
will not be needed in the elimination process and thus thi; row can be
swapped to out-of-core backing storage. Only the terms of A and b that
correspond to "active" variables need to be kept in main memory. By
active variables we mean those variables xj for which scme ajk or bj
has been affected by assembly but are not yet ready for elimination.

In the backward substitution phase, the reduced rows of the matrix with
the corresponding terms of b are read from the backing storage in the
reverse order. This could be done by backspacing through the backing
storage device. It is worthwhile to mention, however, that usually
direct access storage deviées {(DASD) like disc devices are used as
working files during the frontal operation. For these devices, back-
spacing is not done physically by repositioning the file one record

in the reverse direction as the case in magnetic tapes, but the hardware
record address is decremented by one. This makes the execution time

for a frontal solver competent and superior, in many cases, to other

comparable techniques.

In implementing a frontal solver the symmetric coefficient matrix
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A of dimensions {nxn) is considered as a vector v of length n(n+l}/2.

Thus, any term aij is to be mapped to location in v defined by the

function:
£(i,9) = i(i-1}/2 + j for i>3 to store lower triangle
and £(i,3j) = j{3-1)/2 + i for ig¢j to store upper triangle {4.14)

In the frontal technique, however, we do not store the whole matrix a
in core, rather only the active nodes. So the size of the vector v.can
be decreased to wiw+l)/2 only, where w is the magximum frontwidth. For
each variable xi in the set of eguations to be solved, which corresponds
to a degree of freedom, we should calculate a destination di which
determines where the terms associated with the variable will be placed
in the vector v. Thus, the terms can be accessed while they are
active by applying the function f to their destinaticns. 1In other words,
if both X, and xj are active, the current value corresponding to aij
will be held in v(f(di,dj)). The destinations are calculated by pre-
processing the elements' nodal connection data i.e. the connectivity
matrices. At the end of the assembly/reduction process, a work file
has a size of n records and equal to the number of degrees of freedom
in the structure is created. One record corresponding to an eliminated
variable equaﬁion. The back substitution phase is considered as a frontal
process in reverse. The details of the frontal algorithm with the
necessary housekeeping and Fortran coding can be found in Hinton and
Owen [1979], Cheung and Yeo [1979] and Irons and Ahmad [1980]. However,
we give here a brief description of the implementation details on a
computer as follows.

The first step in the frontal routine is to determine the last

appearance of each node during the assembly/elimination process. This
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is known as the pre-front process. The reason why we need to determine
the last appearance of each node is that during the "life" of each node
in the front procedure it moves through three stages: (1) the inactive
status where it is not yet summed; (2) the active status where it is
within the front; and (3} the deactivated status where it has been
eliminated and removed from the front. The main idea is that during
the assembly/elimination process, when an element is to be considered
its matrix is formulated and mapped to the appropriate places in the
existing equations if all the corresponding nodes are active. However,
if some of these nodes were not active then a new equation is formed to
cater for them. On the other hand, if any node will appear for the
last time, their corresponding equations can be eliminated and moved to
a backing storage thus freeing space in the front for a new equation.
It is now clear from this discussion that we must know the last time a
node will appear during the assembly/elimination process., To do that

a loop is done over all elements in the same order in which they will '
be assembled and the last appearance of a node in this list is marked.
An easy way to mark this last appearance is to put a negative sign in
front of it, i.e. the node number is negated. This is best illustrated
by'the example shown in Figure (4.6) which is the same as the one

presented in Chapter 2 of this thesis in Figure (2.5).

FIGURE 4.6: Sample problem
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The connectivity matrix for this problem is:

Element Nodes
1 1 3
2 2 3
3 2 4
4 3 4

The last appearance of nodes will be:

-1 3

2 3
-2 4
-3 -4

The second step is to determine the position in the front into which
each degree of freedom of a node is to be assembled (mapped} this is
known as the destination vector and to determine the list of active
variables currently in the front. To determine the destination vector
we note that at the beginning, the front is zeros, thus the degrees of
freedom corresponding to the nodes of the first element to be assembled
are given the first locations in the front. In the considered example,
nodal variables 1,2 corresponding to node 1 will be allocated to the
first two positions in the front while the nodal variables 5,6
corresponding to node 3 will be allocated to the third and fourth
elements in the front. Thus the element destination vector of element
lis [L,2,3,4). Elimination is done in conjunction to assembly. If any
node of the considered element has a negative sign it means that this
is the last appearance of this node and so it is ready for elimination.
Elimination is virtually the same as explained earlier except that the

equation used for reduction of other equations within the front area is
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not on the top but may be anywhere in the front. In our example, we
can eliminate equations 1 and 2 which are of node 1. The free space

in the front can be utilised when assembling the second element where
node 2 appears for the first time. Thus, the second element destination
vector will be [1,2,3,4]. After elimination of an equation, its
coefficients are stored out-of-core and its position is zeroed to be
ready to be occupied by a new equation.

Although the frontal algorithm was devised for FE analysis, the
approach is extended to solve sparse symmetric linear equations in
general [Duff and Reid, 1983]. The frontal solution requires elaborate
housekeeping procedures and higher programming skills as compared to_a
simple band solver. However, it has many advantages over the band
solvers. The solution is not affected by nocde numbering as in band
solvers but rather is dependent on the element ordering and their
connectivities. This is very useful for elements with mid-side and
internal nodes that will result in an increase in the bandwidth, while
in a frontal solution such nodes will be active for a very short time
only. A reconstruction of the mesh is not easily implemented for band
solvers as the frontal algorithm where the node numbers are unimportant.
The frontwidth is normally smaller than the bandwidth but it is very
difficult to predict its width. 1In practice the available memory {(core)
is utilised to assemble as much elements as possible to reduce the 1/0

operations which can be done in blocks of records rather than one by one.

4.5.4 Software for the Solution of Equations

Many well known software systems have been developed for the

solution of systems of algebraic equations. They differ in their
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complexity, capabilities, cost and availability. Two major types of
such systems exist: (l) packages which comprise of stand-alone programs
that can be used directly by the user. All what he needs to do is to
supply the input data. (2) Libraries which contain subroutines that
can be called from a user program. The main differences between these
two types can be summarized in the following [Sharaf Eldin, 1984]:

(i) Libraries require programming knowledge (Fortran, say),

while a package user need not do any programming.

(1i) To use a library a host program must be supplied. However,
for a package no host program is required. This host program
is normally the main segment of the whole program.

(iii) Libraries are more flexible, they can be modified by the users
or used to build more sophisticated software. In other words
they can be customised by the user. This is not the case
with packages.

Among the well-known systems of equation solvers cne can mention

YSMP [Eisenstat et al., 1976], IMSL [IMSL, 1984], LINPACK [Dongarra
et al., 1979] and MINPACK-1l [More et al., 1980]). Here the IMSL which
is a library of Fortran subroutines for mathematical and statistical
analysis is presented. The choice of this library is due to its
availability in source code, its wide spectrum of applications and
being used by many universities and research centres in the world.
The general characteristics of the library are:
{i) Several storage modes of matrices are supported. These

are band, symmetric, band symmetric and Hermitian. These

storage modes will be discussed later.

(ii) All the routines conform to established conventions in coding

and documentation.
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{iii) Each routine outputs a return code which can be tested to
monitor the results given by this routine., This is a good
means for error detecting.

{(iv) Computer readable documentation is available which permits
on-line access to the basic documentation.
(v) Several routines are supplied based on different algorithms
to allow a wider choice for the user,
(vi) All routines are available in single and double precision.
(vii) The order of pafameters in the argument list of the routines

is:
Input parameters,

Input and cutput parameters,
Qutput parameters,
Work areas, and

Error parameters (return codes).
(viii) Many routines have more than one version, e.g. in-core and
out—-of-core versions.

The error detecting facility supplied by the library is based on
the "return code" method. In other words, one of the arguments in
the routine call (the last one in order) is an integer wariable;
namely IER. This variable is set automatically by the routine to a
value that indicates the conditions met while executing this routine.
After the call of the routine it is the responsibility of the user to
test the value of the variable IER to check whethef the routine was
executed normally or any abnormal conditions have occurred. To
exemplify, suppose that a system of linear equations are to be solved
using one of the solvers available in this library. After calling the

solver, the return variable IER must be tested. The solver routine
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will place a value in this variable to indicate whether it succeeded
in obtaining results with the requested accuracy or not. If the
matrix of coefficients was singular another value will be returned by
the routine. Three typés of errors can be detected by IMSL routines:
warning, warning with fix and fatal errors. The warning errors are
those which caution the user that, during the course of computations,
certain critical conditions were detected. These are not so severe as
to suspend subsequent computations. For example, if one requires the
solution of a system of linear equations and specify a number of digits
for which the solution is correct but during the computation the routine
discovers that this condition cannot be satisfied, a warning error will
be returned. The value returned is an integer 32<IER<64. The
interpretation of these values can be found in the library manuals.
Warning errors with fix are those encountered during computation but
some attempts have been done by the routine to correct the situation
and the computations are continued. The returned value is 64<IERg128.
Fatal errors are those of critical nature, Once an error of this type
has been detected by the routine it aborts and no further computations
are done. BAn example of this type is a singular matrix for which an

inverse is required. The value of the returned value is >128;

4,5.4,1 Matrix Storage Modes

Five storage modes for matrices are supported by the IMSL library
routines as follows:
(i) Full storage mode:

This is the normal storage mode of a general matrix. As known

in Fortran a matrix is stored in memory in contiguous area column by
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column. The adjustable dimensioning feature in Fortran is utilized to
pass a submatrix to an IMSL routine. For example, suppose that an
array is dimensioned in the main (master segment) program as A(1l00,100}

and a call to a subroutine is done using the submatrix of A with dimensions

20%20 only. 1In order to have the correct elements to be processed in
the subroutine, the row dimension of A must be passed to the routine
and used in the adjustable dimensioning in it. Failing to do that

will result in processing other submatrices of A in the subroutine as
follows:
DIMENSION A(100,100)
N=20
CALL SUBl(a,20,5UM)

SUBROUTINE SUBL(X,N,TOTAL)
DIMENSICN X(N,N)
TOTAL=0
DO 10 1=1,N
Do 10 J=1,N
TOTAL=TOTAL+X(I,J)
10 CONTINUE
RETURN
END

Bearing in mind that matrices are stored in column-wise sequence,

A will be stored in memory as:

pens A

#11°%217%317° 100,17 %127 %227 %32 100, 100
The array X is declared N*N elements and the value of N passed to
this routine is 20 i.e. 400 elements. Thus the elements of A that will

be used in subroutine SUBl will be:
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.o d of
all'a21'a31'""aloo,l'alz’a22' 'a100,4 instead o

31178917 7 r30, 1712739277 *20,2' """ %20, 20
The solution to this situation is to pass the row dimension of A to

the subroutine SUBL and use it in dimensioning X. Thus the correct code

will be:
DIMENSION A(100,100)
IA=10C0
c IA is the row dimension of A
N=20

CALL SUBl({A,IA,N,SUM)

SUBROUTINE SUBL(X,IA,N,TOTAL)
DIMENSION X (IA,N)

.
-
.

As before

In this case the elements a will

1178217 *®20,1%127%22°** * *%20, 20
be used in SUBL which are the correct elements. '
(ii) Symmetric Storage Mode:

To conserve memory space and reduce the arithmetic operations, a
symmetric matrix is stored in vector form. By definition in a symmetric
matrix Ai,j=Aj,i' thus all what is stored are the elements on the
diagonal and those below it. An NxXN symmetric matrix will be stored
in symmetric storage mode in only N(N+1l)/2 elements as compared to N2

elements if it were stored in full storage mode. An element i,j in

i(i-1)

the original matrix A is now the element 5

+j, for izj in the
vector B which is the symmetric storage mode of A. Figure (4.7)

represents a symmetric storage mode for a 4%4 symmetric matrix.
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a
11 symmetric

a a a
21 “22 - 21

831 %32 %33 a

241 %42 %43 244 a

A

FIGURE 4.7: Symmetric storage mode
It is clear that the saving in memory locations is n(n-1)/2.
{iii) Band Storage Mode:
In this mode an nxn banded-matrix with i lower codiagonals and j
upper codiagonals is stored in a matrix of dimensions nx(i+j+l). The
zero elements outside the band are not stored while the non-zero
elements are stored row-wise. Figure (4.8) shows the storage mode of

a banded matrix of size 5x5 with 1 upper codiagonal and 2 lower co-

diagonals. ©Note that the diagonal elements are stored in the (i+l)

column. The savings in memory locations is n(n-i-j-1).
—‘;11 a, © O o | 0 o a); al_;
31 %2 %23 ° 0 °© O Ay 2 A
331 %32 %33 3y °© 2331 %32 333 234
O 35y %43 s s %2 243 244 %45
L% © %3 %54 25 253 *sq s O

FIGURE 4.8:

Band storage mode
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(iv) Band Symmetric Storage Mode:

This mode combines the two modes: symmetric and band. Thus it
is suitable for banded symmetric matrices. BAn nxn symmetric matrix
with semi-band width=i is stored in a matrix of size n(i+l). The
matrix is stored row-wise so that the diagonal is stored in the last
column. Figure 4.9 shows a 5x5 symmetric, banded matrix with semi-

bandwidth of 1 and its band symmetric storage mode.

—— Y —

E;l a, o o o 0 a ,
391 @y 33 9O 21 %22
O a3, 83 a3 O} = |33, 2
© 0 a3 3y s a3 244
(0 o 0 a5, agy 25, 2]

FIGURE 4.9: Band symmetric storage mode
(v) Hermitian Storage Mode:

Hermitian storage mode for complex matrices is analogous to
symmetric storage mode for real matrices. Thus an nxn Hermitian

matrix is stored in a complex vector of n{n+l)/2 elements.

4.5.4.2 Linear Eguation Solvers

There ére many subroutines available in the IMSL that can be used
to solve systems of linear algebraic equations. However, they can be
divided into two main categories: space economizers and high accuracy
solutions. The main difference between both versions is that in the
space economizer version the solution is cbtained without any attempts
for iteratiﬁe improvements. In the high accuracy versions, iterative
improvements of the solution can be done if specified by the user.

This is costly in terms of computer memory and time. Two subroutines
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will be presented here:

{i) LEQTIF which is a space economizer solver and

(ii) ©LEQT2F which is a high accuracy solution.

These routines are for full storage mode, real matrices of the form,

Ax =b , (4.15)
where A 1is the'(nxn) matrix of coefficients, x is the vector of
unknowns {nxl) and b is the righthand side (nxl) vector.

In fact these routines can be used to solve several systems of
equations that have the same matrix of coefficients A. In these
routines a working area vector is required. Its size is n in the case
of thg space economizer solvers and n2+3n in the case of the high
accuracy versions. A goed feature of these routines is the accuracy
test that can be specified. This is achieved by specifying a parameter
that determines the number of significant digits to which the elements
of A and b are assumed to be correct. This parameter, IDGT, can be
set to O to bypass the accuracy test.

(i) The subroutine LEQTI1F

The purpose of this subroutine is to solve systems of linear
equations. It uses a Gaussian elimination (Crout algorithm). Since
the routine decomposes the matrix A, several righthand sides can be
solved simultaneously; If the IDGT parameter is given a value greater
than O, the elements of A are assumed to be correct to IDGT decimal
digits. The solution, x, will be the exact sclution without any round-
off error to a matrix A which agrees with A in the first IDGT decimal
digits.

(ii) The subroutine LEQT2F

This is the high accuracy version of the routine LEQT1F. It uses
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the Crout algorithm but iterative improvement is performed if the

solution obtained is not correct to the IDGT decimal digits. If IDGT
is set to 0 the accuracy test is by-passed but iterative improvements
are repeated automatically until the answer is correct to the working
precision. In most mini-computers this is 7 decimal digits in single

precision and 14 in deouble precision.

4.,5.4,3 Test Problems

Some test problems have been designed to test these two subroutines
and to determine the CPU time spent in solving systems of linear
algebraic equations with different levels of accuracies. The number of
equations vary from 10 to S00 in steps of 10. Computations are done
specifying 0,1,2,3,4,5,6 and 7 decimal digits accuracy. The results
of these runs are plotted in Figures(4.10 to 4.17). It is clear that
both routines will take nearly the same time for N (number of equations)
€420. A sharp rise is then noticed in the interval 420<Ng5CO0.

Note that it is anticipated that this will be true for N>500. A
suggested reason for this sharp rise as noticed from the figures is
that the required memory size to accommodate the arrays in the program
when N is 2420 has exceeded the allocated region whence more page

faults occur.
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LEQTIF LEQGT2F
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FIG. (4.10) CPU TIME FOR ROUTINES LEQTIFELEGQT2F (0 DOF)
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LEQTIF LEGQT2F
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FIG. (4.11) CPU TIME FOR ROUTINES LEGTIFELEGT2F (1 DPF)
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LEQGTIF LEQTSF
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FIG. ( 4.12) CPU TIME FOR ROUTINES LEQT1FELEQT2F (2 DF)
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LEQTIF LEQT2F
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FIG. (4-13) CPU TIME FOR ROUTINES LEQGTIFE&LEQTSF (3 DF)
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LEGTIF LEQTZF
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FIG. (4.14) CPU TIME FOR ROUTINES LEQT1FELEQT2F (4 DF)
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LEQGTIF LEQT2F
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FIG. (4.15) CPU TIME FOR ROUTINES LEGTIFSLEQTZF (5 DP)
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LEGTIF LEQT2F
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FIG. (4.16 ) CPU TIME FOR ROUTINES LEQGTI1FSELEQGT2F (6 DP)
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LEQT1F LEQTSF
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4.6 MAIN-FRAME COMPUTER IMPLEMENTATION

4.6.1 Historical Background

The considered model program is the MSAP program. This program
is one of the first computer codes for FE analysis. It originated
from the SAPIV program developed at Berkley, U.S.A. in 1974 by Bathe
et al, which in turn is an advanced version of the SAP program developed
by Wilson [1970]. It has high popularity for two main reasons. First
it is in the open literature and the source code is available which
makes it amenable to modification and adaptation on several different
computers. The second is that it is inexpensive. The program costs
only about $500. This is due to the fact that it was developed under
a grant sponsored by the American Government. The program was developed
on the CDC 6400, 6600 and 7600 range of computers. Later on it was
modified to run on an IBM 370 computer by Kaldjian, [1982] at Michigan
University, Ann Arbor, U.S.A. using the MTS operating system. When
Professor Kalidjian visited our university in Riyadh, MSAP was
implemented on our local computer system, IBM 3033 running under the
MVS operating system where the author participated in that and
assisted in courses about Computer Aided Design (CAD) offered by the
University of Riyadh. Van Fossen [1978) modified SAP IV also and
developed the program FESAP. 1In this section we present this program
as a model for main~-frame implementations of the FEM.

The main features of the main-frame computer implementation of
the FEM can be summarised in:

(i) Rich element library. Typically 10 or more different elements

are expected., Some very big FE systems like MARC [Marcal,

1976] has 50 elements in its element library.



(ii)

(iii)

(iv)

{v)

{vi)

(vii)
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Normally more than one type of analysis is available, e.g.
linear analysis, eigenvalues, non-linear analysis, etc.

The procedure library can go up to 15 procedures.

Sometimes more than one constitutive behaviour is available
i.e, different D matrices can be defined. This is called the
material library.

The program size is too big to fit in real storage all the
time. Usually automatic overlaying is used and most of the
modules are kept in virtual memory instead.

The use of backing storage during the solution process is a
must for most practical problems.

Since most of these packages are developed over a relatively
long time span, some of the most recent advances in computer
graphics and man-machine interface techniques are not built
inside these programs.

Most of such programs are propriety codes and expensive.

4,6.2 Program Capabilities

MSAP can be used for static and dynamic analysis of linear

structural systems. The element library in MSAP contains 10 different

elements:

(1)
(2}
(3)
(4)
(5)

(6)

Three-dimensional truss element

Three-dimensional beam element

Plane stress and plane strain elements

Two—-dimensional axisymmetric solid

Three-dimensional solid

Variable—-number-nodes thick shell and three-dimensional

element
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(7) Thin plate or thin shell element

(8) Boundary element

(9) Pipe element

{10) Contact element.

Each nodal point in the system can have from zero to six displace-
ment degrees of freedom (DOF). In the static analysis the program solves
the equations of equilibrium and computes the element stresses. In
the dynamic analysis the frequency calculations are done. It is also
possible to obtain the response spectrum analysis. The program itself
does not include any pre- or post-processors capabilities except a
fairly very simple mesh generation based on equi-dividing element
gides. Several types of loads can be handled, i.e. concentrated loads,
line, axisymmetric, surface, veolume, gravity, thermal and hydrostatic
loads. The program.has a re-start facility. This enables executing a
very long run partially and then resume execution at another time

without re-solving the whole problem.

4.6,.3 Implementation Details

The general flowchart of the program is shown in Figure 4.18.
The first step in the program is the input of the main data. The first
input record is for general parameters, i.e. number of nodes, number of
elements, etc. The nodal points input data are then read. For each
node six boundary conditions codes, 3 coordinates and ncdal point
temperature are read. The equations associated with each degree of
freedom at each node are numbered as they are entered. Nodes which are
constrained in any direction are marked and excluded from eguation

numbering. Knowing the nodal peints data, equation numbers for all
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degrees of freedom, it is straightforward to compute the element
stiffness matrices, the mass and stress-displacement transformation
matrices for each structural element. This information and the element
connectivity arrays are stored in a work file. In the MSAP program,
all the elements of the same type are entered sequentially and grouped
together. The static analysis involves the solution of the equilibrium
equation f£=Kd where f is the load vector, K is the stiffness matrix and
d is the unknown displacement vector. The solution is obtained by
decomposing X to LTDL. It should be noted that such a decomposition

is always possible in the linear static structural analysis problems
where K is always symmetric and positive definite. After the solution
of equations is completed, the stresses are computed using the stress-
displacement matrices which have been stored on the work file. Boundary
conditions in this program are handled as follows: (i) If a displacement
component is zero, e.g. a support condition, then the corresponding
equation is net retained in the structure equilibrium equations, and
the corresponding element stiffness and mass terms are disregarded.

{ii) If a prescribed displacement component is specified at a node with
non-zerc value, e.g. a settlement of support; then the corresponding
component is multiplied by a very big number (1E20) which when solving'
the equilibrium equation will yield the prescribed displacement as a
solution to the considered displacement component. This technigque has
already been explained in Chapter 2 of this thesis. In the following
problem we will show how the equation numbers are established. Figure
(4.19) is a truss in two-dimensicns (i.e. plane truss) to be solved.
The coordinate axes are a right-angled system with x-axis perpendicular

to the plane. Recall the flowchart in Figure(4.18) we notice that the
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first stage is the input of nodal point data. Nodes are assumed to
be labelled with integers ranging from 1 to the total number of nodes
in the structure, while elements are numbered serially from 1 but

within each element group.

FIGURE 4.19: A truss example

The nodal points data for the truss example shown in Figure (4.19)

are defined in the ID array where a "1" indicates a fixed condition i.e.
a prescribed displacement of zero, while a "0" indicates a free degree
of freedom. The & degrees of freedom are for displacements and rotations
around the three coordinate axes. Since the considered problem is a
two—dimensional one, the displacement in the x direction is always zero.
Moreover, since the considered elements are the truss elements, no
rotations are allowed in the x,y and z directions. Furthermore, nodes

I and 2 are fully restrained. Thus ID will be:

Degrees of Freedom

Node 2 3 a 5 6
1 1 1 1 1 1 i
2 1 1 1 1 1 1
D=3 1 0 o 1 1 1
4 1 0 0 1 1 1]

Equation numbering is done by scanning the ID array for the zero

elements. Since each zero element corresponds to an unknown displacement,
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it is evident that the total number of eguations will be equal to the
number of zero elements. Equations are numbered serially from 1.

Since gcanning is done row by row, i.e. node by node, it is clear that
equation numbers will be assigned in the same manner. Equation numbers
for the considered sample problem will be:

E 0 o) 0 0 ol

o) o o) 0 0 0
> = 0 1 2 0 0 )
o 3 4 o 0 0]

In order to add the contribution of any element to the global stiffness
matrix it is necessary to establish the map between element nodal

points and equation numbers. This is done by specifying the correspond-
ing equaticn numbers in the mapping vector Q. 1In our example, the

vector @ for the member 3-4 will be:

©]
i

1 yi

2 zi

Q = 0 X,
J

3 .

yJ

4 z,

- J

Note that X and xj are always O for two-dimensicnal truss elements,
Usiﬁg Q together with the actual element stiffness matrix it will be
easy to add the contribution of each element to the corresponding

equation.
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4,.6.4 Installation Procedure

SAP IV was written in Fortran IV (aNS166) and implemented on CDC

computers.

The program is about 15000 lines and structured in modules

so that it can be easily overlaid. To implement this program on the

IBM 3033 computer operating under the MVS operating system, the

following points are observed:

(1)

(ii)

(1ii)

(iv)

{v)

To have reasonable accuracy, double precision arithmetic
is used.
To have a good execution speed, a region of 4096K of memory
is allocatedlto the program. This is accomplished in the IBM
Jok Control Language (JCL) as:

// EXEC PGM=MSAP,REGION=4096K
Since MSAP access backing storage devices sequentially only;
different files are allocated for different types of data,
e.g. mass matrices and element stiffnesses are saved in two
different files which are used temporarily during the execution
of the program.
It is possible to have a data-check run where no actual
processing took place. 1In this case all the input records
are checked and saved on a file which could be usgd as an
input for other programs or for the processing in a subsequent
run.
The JCL statements required to execute the MSAP program and
allocating the necessary data sets are stored in a procedure

in a library.
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4.6.5 Discussion

MSAP is a general analysis tool for the linear static and dynamic
analysis of complex structures. The root of this program, SAPI, is
cne of the first computer implementations of FEM in structural analysis.
The main advantages of MSAP are being in the open literature with the
source code supplied and its modest price. This makes it ideal for
adaptation and modification by several users. However, the program
itself suffers from the lack of pre- and post-processors. Generation
of nodal cocrdinates is limited to equal increments along a straight
line. No bandwidth reduction is tried. The user interface in SAP is
not adequate. All input data must be formatted and arranged in a
specific manner. The I/0 operation on backing storage is done
sequentially. The use of direct I/0 will result in more efficient
data transfer and will decrease the number of work files used. However,
MSAP can be considered as a typical model of the first generation of

the main-frame computer implementation of FE.
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4.7 MINI-COMPUTER IMPLEMENTATION

4.7.1 Background

In the seventies minicomputers were developed. The term mini-
computers as now used covers a wide spectrum of computers that range
from the small size 16 bits computers to the bigger cnes of 32 bits
computers with virtual storage capabilities. What we consider here is
a mid-range mini-computers. During the first years of computer
implementation of FE on main—fr;me computers, the main criteria
thoughts were speed, core storage size, backing storage size and
organisation. However, after the development of mini-computexrs angd
the increased interest in interactive computing, other criteria for
FE software take on more importance such as: pre- and post-processors,
interactive programs and computer ergonomic aspects in general. Two
programs are presented in this section. These are the ELASTIC and the
STRAP programs. The ELASTIC is a FE package which consists of two
programs: a FE analysis program and its interactive pre-processor. The
FE analysis program of ELASTIC is an enhanced version of the coding
given in the excellent book by Hinton and Owen [1979]. An interactive
pre-processor is developed to prepare the input data for this program.

The STRAP program is a simple FE érogram for beam elements developed
for educational purposes [Turaby and Sharaf Eldin, 1978]. The STRAP
program was developed on the small mini-computer HP2100S, while the
ELASTIC programs were developed on the medium-size mini-computer HP3000.
The main features of minicomputers implementation are:

(1) Problems of less size can be handled as compared to the main-
frame implementations. This means less element library, material

library and procedure library. Typically, 3 to 5 elements are



(ii)

(iii)
(iv)

{v)

(vi}

{vii)
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expected to be supported and single material and procedure.
Programs are usually interactive with possible pre- and post-
processors.

Computer graphics are supported as part of the FE system,
Inputs are usually in free format.

Use of backing storage is limited to 4 work files only.
Scmetimes they are used for pre- and post-processing only
while the computations are all in-core.

Cost is much less than those of main-frame computers.

Most of the source codes can be obtained. This makes them

easy to be modified and adapted.

4.7.2 The ELASTIC Package

This package consists of two programs for the analysis of linear

structural systems. The first program is a pre-processor developed for

the second program which is the main FE processor. Although the FE

processor is built on the subroutines given by Hinton and Owen [1979],

however, the following enhancements are done:

(1)

(ii)

{iii)

Critical variables are defined as double precision.

A full time-log routine is added to the FE processor that

computes the CPU time spent in each step of the solution:
- Data entry and validation

Element stiffnesses

Loading data

Frontal solution of the FE equations

Stress computation.

The error handling method is modified to be more versatile
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by keeping all the error messages on a separate file which

is accessible in read only mode to multi-users. When an
error is detected by the program, the appropriate messages are
read directly using the record number which is set to the
error number and printed. This will shorten the program
length and this decreases the memory required to run this
program. It also provides a more flexible way to modify the
error messages. It is the author's opinion that "hard-coded"
error messages should be, in general, avoided as much as
possible in large systems where a fairly large number of
error messages should be processed.

(ilv) A pre-processor program is developed to increase the inter-
action between the user and the program. This pre-processor
is of the ask-and-answer type. It prepares the input data
sets for the ELASTIC processor itself,

(v} A procedure is designed to facilitate the operation of the

whole package.

4.7.2.1 Element Library

Three elements are supported in this package: one-dimensional
beam, 2-D plane stress, plain strain and plate bending elements. All
of them are parabolic iscparametric elements.

In order to develop the stiffness matrices for these elements,
we proceed as explained in Chapter 2, i.e. the interpclation or shape
functions are assumed, the strains are defined in terms of nodal
displacement and relate the stress to strain. For the 1-D beam element,

the parabolic isoparametric thick beam element, we have three nodes:



199

one at each end and cone inbetween. We need three nodes to allow for
a parabolic element. As shown in Figure 4,20, the shape functions

are defined at each node such that the value of the functicon is 1 at
the node itself and 0 at other nodes. These functions, in terms of

the natural coordinates are:

Nl(E) = -3g(l-g)
N, (g) = (1-g) (1+g) (4.16)
Ny(g) = g(l+g)

£=-1 £= £=1

1 2 3

(a) Definition of nodes in the parabolic
isoparametric thick beam element

(b} The shape function Nl

{c} The shape function N2

(d) The shape function N3

FIGURE 4.20: The parabolic iscparametric thick beam element
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These functions can be easily computed as follows:

Since the shape functions are quadratic then we can write it in the

form,

2
N, = a& +ag+a,. (4.17)

Consider the case of the Ny function, we have Nl=l at £=-1 and Nl=0

at £=0 and at £=1, Thus,

al - a2 + a3 =1
a, = 0 . {4.18)
al + a2 + a3 =0

Solving these equations yields:

[[§

a 3, a, = -} and a; = 0

1

which gives:

N

-ie(l-g)
Similarly, N2 and N3 can be computed.

This procedure is of general nature in the determination of the
coefficients of the chosen shape functions.

At each node i there are two degrees of freedom: the lateral
displacement ui and the rotation to the normal ei; thus for the whole

A

element, i.e., [ u

5 = | ) {(4.19)

The lateral displacement and rotation at any point can thus be defined
in terms of those at the nodes only using the interpolation functions

as follows:
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u(f)

and i

1
[ e [P
=
e

(4.20)

6 (&)

[l
Il 1t
2
Lo+ ]

Since the element is isoparametric, then by definition, the same
interpolétion functions used to define the displacement field within
the element are used also to define its shape. Thus, the x-coordinate
is defined by:

3
() = }Nx_ . (4.21)

The Jacobian matrix J is computed from:

3N1 N s8N

_8x 1 2 3
J = 3¢ 3 X, + 3% x, + 3 %3 (4.22)
i.e.,
J = (E-i)xl-2£x2+(g+5)x3 (4.23)

In the special case where the second node {node number 2) is

chosen to be at the middle of the element, J will be:

L
J= =5 =3 (4.24)

where L is the element length.

In order to define the strains in terms of the nodal displacement .
i.e. to get the B matrix, we notice that according to the thick beam
theory, the lateral displacement u, and the rotation of the normal Bi

are associated with the relation:

u
ei = (3;91 + ¢i (4.25)
or "
¢i = Gi - (3;01 {4.26)

where ¢i is the effective shear rotation.
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Since 3Ni 3Ni 3E
—_—= =, = (4.27)
it is possible to express the strain-nodal displacement relationship

in the following equation:
3N ~

L O O i N B <
ox ax X X 1
= - N N uz . (4.28)
é N -2 N, -2y %
Ix 1 ax 2 ax 3 "
3
| %3

The last step is to express the stress/strain relationship [the D
matrix] for the element which is in the form of [see for example Timoshenko

and Goodier, 1951}

M EI o 38
9x .
= , (4.29)
0 s
Q ¢

where, M is the bending moment
Q is the shearing force
EI is the flexural rigidity
, . . GA
and S is the shear rigidity = 7;-
with G is the shear modulus
A 1s the cross sectional area

a is the warping factor.

The stiffness matrix of the element Ke can be calculated from:

x° = J [B]TDB dx {4.30)

Since all the matrices B and D are computed, it is possible to write

e T -
the expression for K . The integrand B DB is:
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Although it is possible to compute these terms and do the
integration analytically in this pa;ticular case, it is custoﬁary to
use numerical integration instead. In fact, the use of explicit forms
for the evaluation of the elements of the stiffness matrices is done
in the very simple cases only like the truss elements as explained in
Chapter 2.

One of the methods which are used to do the numerical integration
is the Gauss gquadrature method which is employed in this package.

In the case of plane stress and plane strain elements we proceed
in a similar manner but in this case we have a two-dimensional element.
The displacement field and the geometry of the element can he expressed
using the same shape functions as follows:=-

Figure 4.21 shows the isoparametric element and its parent

quadratic element. The general form of the intérpolation function is:

N, = a,+a_ f+ta_n+ 2va_n2+ ra_ £+ 2 (4.32)
i al 325 a3n 345 asn aGEn 7€ n 3851'1 . .

Substituting the value of N at the 8 nodes of the element it is possible
to determine the coefficients al,az,...,a8 in a similar manner to that

done for the case of the beam element. The shape functions are found

to be:
N, = -1/4(1-£) (1-n) (1+&+n)
N, = 1/2(-8) (1-n)
N, = 1/4(1+8) (1-1) (E-n-1)
N, = 1/2(1+8) (1-n%)
N = 1/4(1+£) (1+n) (§+n-1)
N = 1/2(1-6%) (1+n)
N, = 1/4(1-§) (L+n) (-E+n-1)
N, = 1/2(1-£) (1-n°) (4.33)
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Y.V
)
7 . 5
8 | 4 £=-1
1 2 3
FIGURE 4.21: Quadratic parent element and isoparametric element
The displacements u and v at any point within the element can be
expressed in terms of those at nodes using the interpolation functions
as follows:
8
u = X N.u,
i 21
8
v = N,v (4.34)
5 i'i
The coordinates x(£,n) and y(E,n) of any point (&,n) within the element
will also be expressed as:
8
x(E,m) = YN (£,n).x
e i i
8
viE,m) = YN (g,n) .y, (4.35)
goy B i

The Jacobian matrix J(£,n) for this case will be,

Ly Y
g = 3¢ Y
X Y

an an



3N ]
ag ¥y
aN,

Bn ) yi-J

The inverse of the Jacobian matrix [.:T]-l is,

&

%

3
oy

an 3y
3x _ 1 an
iﬂ detJ ) §§
3y an

4
13

ax
3
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(4.36)

(4.37)

The straln matrix B which relates the strain to nodal displacement is:

—oN
i

ox

B, = o

BNi

and B = [Bl,...,le

Q] Q)
m, 2 o
[ ad

, for i=1,2,...,8

(4.38)

The matrix of elastic constants D for the plane stress situation

is defined by,

E

D = —
(l—vz)

[1

v

o

v o)

1 0
l-v

© 2

whereas for plane strain situations:

E(l-v)

(1+v) (1-2v)

- Y
1l Ty
-
l-v 1
o] o}

0

0

1-2y

2(1—v)__

(4.39)

(4.40)

where E is the Young's modulus of elasticity and V is the Poisson's

ratio.

Finally, the element stiffness matrix X~ is calculated from:
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k& = ” (8] TDBAV (4.41)

A submatrix Ki linking the nodes i and j may be evaluated from the

j
expression:

Ko, = II[B ]TDB.t det J d&dn (4.42)
1] i J
where t is the element thickness and,

dxdy = det J d&dn (4.43)

In the case of the plate bending element the interpolation functions

N.,-..,N, are identical to those used in the case of the plane stress/

1 8
strain element. The geometry is also expressed using the same functions.
However, the nodal displacement components here are: w: the deflection,

Sx the average rotation about x-axis and By the average rotation about

y-aXis. As in the case of the beam element Gx and ey can be expressed

. Aw 2w
in terms of 3% * 3y ° ¢x and ¢Y, where ¢x and éy are the average shear

deformation in x and y directions respectively [Mindlin, 1951]. Thus

we can write:

) — 1
w aww 8
A N R .
i=1
Jw
) +
Y By Ty
The strain matrix B=[Bl,32,...,38] is given by:
[~ oN_ ]
) - —= )
ax
aNi
o} o -~
BNi aNi
= o) -— - —
By 3y Y . (4.45)
BNi
3% - Ny °
N,
o o) -
Y 1]




208

- 3 3
‘ Et > Et > o 0 0
12(1-v°) 12{1-v“)
3 3
Et
VEt 3 e o) 0 0
12(1—") 12 (1)
D = (1—) Et°
- 0 o} ;“ 5 o} o)
12 (1)
Et
0 © o 3.4(i+v) °
Et
© © ° ° 2.4(1r)

(4.46)
Thus the element stiffness matrix can be calculated in an identical

manner to that of a plane stress/strain element.

4.7.2.2 Implementation Details

The ELASTIC package consists of two integrated programs: the
ELASTIC pre-processor and the ELASTIC processor. The ELASTIC pre-
. processor 1s an interactive program which prompts the user for the
input data. It validates these data and stores it in a file for
subsequent processing by the ELASTIC processor. A general flowchart
of the ELASTIC preprocessor is shown in Figure 4.22, The data required
by the preprocessor is as follows:

(i) The menu options displayed by the pre-processor are:

1l = Beam

2 = Plain stress

3 = Plain strain

4 = Plate bending

(ii) The control data is:

® The problem title
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® Number of nodal points in the structure
® Number of elements in the structure
® Number of nodes where a known displacement is prescribed,.
® Number of loading cases
® Number of different materials.
(iii) Elements characteristic parameters are set by the preprocessor
according to the selection done at (i) as follows:
® Number of nodes per element:
3 for beam elements
8 otherwise
® Number of degrees of freedom per nodal point:
2 for beam elements: u and §
2 for plane stress/strain elements: u,v
3 for plate bending elements: m,ex,ey .
® Number of material parameters:
3 for beam analysis
5 for plane stress/strain
4 for plate bending
® Number of coordinate components required to define
each nodal point:
1 for beam analysis
. 2 otherwise,
® Number of independent stress components at any point:
2 for beam analysis
3 otherwise
The ELASTIC process reads the data file created by the preprocessor and

perform the FE analysis. A general block diagram of this program is shown
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in Figqure 4.23. Four work files are used in this program in addition
to the input file which ié prepared by the preprocessor. The work
files are referred to as unit numbers 1,2,3 and 4 in the source Fortran
program. The input data file is number 5, File 1 is used to store the
element stiffness matrices., File 3 is used to store the stress matrix
and the Gauss point coordinates for the elements. Files 2.and 4 are
used in the frontal subroutine: file 2 is used to store the reduced
equations; while file 4 is used to hold the righthand sides of the
equations. To facilitate the execution of this program, the following
procedure has been designed:
1., GOELASTIC Indata
2. PURGE WORK1,WORKZ2,WORK3,WORK4
3. Build WORKl, WORK3 on LDN 1
4. Build WORKZ2Z, WORK4 on LDN 2
5. FILE FTNOI=WORKl,OLD
6. FILE FTNOZ=WORK2,0LD
7. FILE FTNO3=WORK3,0LD
8. FPFILE FTNO4=WORK4,OLD
9. FILE FTNO5=!Indata,OLD
10. RUN ELASTIC
11. RESET FTNOl,FTNO2,FINO3,FTNO4 ,FTNOS
® Line 1 of this procedure specify the procedure name and
the required argument. The name given to this procedure is
GOELASTIC, the required argument is given the symbolic name
Indata which is the file name of the input data that has

been created by the pre-processor.
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® Line 2 purges the four work files needed by this program.
This is done so that any old files used in a previous
problem will be purged out.

® Line 3 builds (creates) the new fiies work 1 and work 3 on
a logical device number different from those of the other
tﬁo work files work 2 and work 4. This "trick" is found to
be useful in speeding up the turn around time of the run.

® Line 4 is the same but for building files work 2 and work 4.

® Lines 5 to 9 set the necessary file equations requirea by
the operating system in order to allocate actual files to
Fortran unit numbers,

® Line 10 is running the ELASTIC program.

® Line 11 is to cancel the file equations previously defined

in lines 5 to 9.

4,7.2.3 The ELASTIC Program Structure

The ELASTIC program has a modular structure. It consists of a
main segment which drives the whole subroutines in the program. The
basic FE steps are performed by primary subroutines which in turn call
auxiliary subroutines to carry out secondary operations. In addition
to that, utility subrou;ines are added which do general utility operations.
These routines and their functions are as follows:
INPUT: reads the input data which has been prepared by the preprccessor.
STIFB: calculates the stiffness and stress matrices for the beam element.
STIFPS: calculates the stiffness and stress matrices for the plane stress/

strain element.



STIFPB:

LOADE:

LOADPS:

LOADPB:

FRONT:
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calculates the stiffness and stress matrices for the plate
bending element.

calculates the equivalent nodal loads for beam elements.
calculates the equivalent nodal loads for plane stressg/strain
elementé.

calculates the equivalent nodal loads for plate bending elements.

sclves the FE eguations by the frontal algorithm.

CPU TIME: a function to give the total CPU time consumed so far from the

STREB:

STREPS:

STREPB:

NODEXY:

GAUSSQ:

MODB:

MCDPS :

MCDPB:

SFR1:

SFR2:

start of computation.

computes the stress components for the beam element.

computes the stress components for the plane stress/strain
element.

computes the stress components for the plate bending elements.
calculates the coordinates of midside nodes in plane stress/strain
or plate bending elements.

sets up the sampling point position and weighting constants for
numerical integration by Gaussian quadrature,

calculates the elements of the D matrix for beam elements.
calculates the elements of the D matrix for plane stress/strain
elements.

calculates the elements of the D matrix for plate bending elements.
computes the shape functions and their derivatives in one
dimension in natural coordinates for the beam element.

computes the shape functions and their derivatives in two-
dimensions in natural coordinates for plane stress/strain angd

plate bending elements.
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JACOB 1: computes the Jacobian matrix, its inverse and the Cartesian
derivatives of the shape functions for the one-dimensional
case, i.e. for beam elements.

JACOB 2: computes the Jacobian matrix, its inverse and the Cartesian
derivatives of the shape functions for the two-dimensional
case i.e. for plane stress/strain and plate bending elements.

BMATB: computes the B matrix for beam-elements.

BMATPS : computes the B matrix for plane stress/strain. elements,

BMATPB: computes the B matrix for plate bending elements.

DBE: performs the matrix multiplication DB.

ERRORMSG: writes error messages specified by their numbers,

To facilitate the communications between different segments of

the program, common blocks are used, Three common blocks are used:

CONTROL: which contains the control parameters of the problem
being sclved as has been explained in the pre-processor
earlier like number of elements, number of nodal peoints,
etc. This common block is required in all subroutines
{except the error messages cone) and in the master segment
as well,

LGDATA: which contains arrays needed to hold the FE topology s
material, loads and boundary condition arrays.

WORK : which contains work arrays used at the eleﬁent level

e _e
e.g. D ,B ,... etc.

4.7.2.4 Numerical Tests

The aims of the following test problems are to verify the correctness

of the ELASTIC package and to try to find out approximate values of the
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CPU time spent in each phase of the solution process., In addition to
that, the package is a useful educational and analysis tool for some

of the standard structural mechanics problems. In otherwords, it can

be used to solve a fairly wide class of problems in structural mechanics,

structural analysis and elasticity.

Test Problem 1

This problem is taken from Hinton and Owen [1879] to check the
validity of the ELASTIC package. The problem is shown in Figure (4.24)
It is a simply supported beam of unit length subjected to a uniformly
distributed load of intensity gq=1.0. The material properties are: EI=1
and S=1000., The FE model is composed of two beam elements with 5 nodes.

The results cbtained are:

q-‘.o
NODES: ! 2 3 4 >
ELEMENT 1 | ELEMENT 2
. = 1.0 -
-
(a)
A B C D
p—F—O—F—O—x——O—X
(b}
FIGURE 4.24: Test problem 1 for ELASTIC
{a)} The beam problem
(b} The FE model:
2 Elements: 1,2
S Nodes: 1,2,3,4,5
4 Gauss peints: a,B,C,D
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® Reactions at nodes 1 and 5 are -.5 and -.5.

® Displacements at different nodes are:

Node Displacement Rotation
1 . o.0 .041667
2 .0091240 .02865
3 .013033 0.

4 .0091240 -.02865
5 0 -.041667

® Stresses are computed at Gauss points:

Point Moment Shearing Force
A -.04725 -.3943
B -.1194 -.10566
c -.1194 .10566
D -.04725 .3943

These results are almost identical to those quoted in the stated
reference and are in excellent agreement with those predicted by simple
beam theory.

The distribution of the CPU time required to solve this problem on

the minicomputer HP3000 series II is as shown in Table 4.1.
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Phase CPU time Percentage‘%

in seconds to total time
Data entry and Validation .43 24.4
Element stiffnesses .16 9.0
Loading .08 4.5
Frontal solution .94 53.1
Stress computation .16 9.0
TOTAL 1,77 100.0

TABIE 4.1: CPU time distribution for test Problem 1

It is clear from this table that more than 50% of the CPU time required
to solve this problem is spent in the solution of the FE equations.
This demonstrates the critical role played by equation solvers in FE
analysis. The other interesting result is that about 25% of the total
time is sbent in data entry and validation. This in turn emphasises
the importance of preprocessors.

However, since this problem is fairly simple, we consider a series
of test problems that vary in the number of elements, nodes and
dimensiocnality. We start by one-dimensicnal problems, i.e. beam
elements. The test problems are all similar in structure but with
different number of elements. We notice that in these problems the
number of nodes nn and the number of elements n, are related by the

following equation,
n_ = 2ne + 1, (4.47)

The results are summarized in Table 4.2. These results show that more
than half of the total CPU time is spent in the frontal solution

algorithm irrespective of the number of nodes (and elements). The



219

stiffnesses computation takes relatively less ratio of the time that

increases with the increase in the number of ncdes. This is due to the
simplicity of 1-D element stiffness. The Jacobian in this case is a
scalar rather than a matrix. Also the number of Gauss points is two

only in each element.

5 nodes 11 nodes 2). nodes 41 nodes
Phase Time % Time % Time % Time %
{sec.) (sec.) (sec.) (sec.)

Data entry .43 24.4 .650 20.11.014 17.211.631 14.5
and validation
Element .16 9.0 | .397 | 12.3] .794 | 13.5|1.604 |14.3
stiffness
Loading .08 4.5 .166 5.1] .343 5.8] .765 6.8

Frontal solution .94 33.1 |1.688 | 52,213,081 | 52.4]5.947 |53

Stress .16 9.0} .331 | 10.3| .653 {11.11.264 |11.4
computation
TOTAL 1.77 |100.0 |3.232 100 |5.885 f100 J11.211 | 100

TABLE 4.2: CPU time distribution for problems of cone dimensional elements

13 nodes 28 nodes 53 nodes 103 nodes
Phase
Time % Time % Time % Time %
(sec.) {sec.) (sec.) (sec.)
Data entry .615 8.2] 1.140 6.5|2.050 | 5.9 3.413 5.1
and validation
Element 2.870 |38.3| 7.414 |42.1|14.933(43.1 |29.314 [43
stiffness .870 R . . . .1 .31 .6
Loading .414 5.51 1.042 5.9} 2.055] 5.9 4.009 6.0

Frontal solution | 2.683 | 35.8] 5.972 33.91]11.48533.2 122.536 |33.5

Stress
computation -.915 12.2] 2.060 11.6} 4.099{11.9 7.925 |11.8
TOTAL 7.497 100 |17.628 100 |34.622]100 67.197 100

TABLE 4.3: CPU time distribution for problems of 2-D elements
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In the case of two-dimensional problems there is no general
equation that relates the number of elements to the number of nodes
in general. However, in the considered problem of plane stress/strain
the domain is assumed to be a rectangle [Figure 4.25] which is discretized
systematically into smaller two-dimensicnal plane stress/strain elements.
In this particular case, the number of nodes n and the number of
elements n, are related according to:

n =5n_ + 3., (4.48)}
n e

The results of these test problems are summarized in Table 4.2. It
indicates that the frontal solution's share of total time is no more
dominant as the case in 1-D problems, but rather, the element stiffness
consumes more CPU time. The ratio of the frontal seolution is around
1/3 of the total time. The element stiffness consumes little more than
40% of the total time. The data entry and validation share is around
5% or 6% only. The main reason is that element stiffness in 2-D are
much more complicated in comparison to that in 1-D, The Jacobian is
no longer scalar but rather a matrix that needs to be inverted.
Numerical integration is in two dimensions rather than one with 3 Gauss
points instead of 2.

it is possible to conclude that most of the CPU time in 1-D problems
is expected to be spent in the solution of the FE equations while in the
2-D problems both the solution of the FE eqguations and the element
stiffness consume most of the time, It seems, however, that computation
of element stiffness may need more research efforts to reach an optimal
strategy with sufficient generality for implementation.

These results are shown graphically in Figures 4.26 to 4.39.
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Note that the following abbreviations are used:

NEL number of elements

NNOD number of nodes

DIM number of dimensions: 1L or 2

DE data entry CPU time

DE% percentage of CPU time spent in data entry compared

to total CPU time for the problem

STIFF stiffness computation CPU time

STIFF% percentage of CPU time spent in stiffness computation
'compared to total CPU time for the problem

LOAD equivalent nodal loads computation CPU time

LOAD% percentage of CPU time spent in load computation

compared to ;otal CPU time for the problem

FRONT frontal solution CPU time

FRONT% percentage of CPU time spent in frontal solution

compared to total CPU time for the problem,

STRESS stress computation CPU time

STRESS% percentage of CPU time spent in stress computation

compared to total CPU time for the problem

TOTAL the total sclution time for the problem
All times are in seconds.

A statistical analysis was perfofmed using the well-known Statistical
Analysis System - SAS [SAS, 1982] to correlate the CPU time in these
problems to the other parameters.

Table 4.4 shows the correlation matrix between all the considered

parameters. In this table, each cell (i,j) contains two numbers. The
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upper one is the correlation coefficient between the two variables i
and j. The lower number is the probability that this value of
correlation is insignificant i.e. the null hypothesis is:

H: p, . =0, {4.49)

where pi 3 is the correlation coefficient between the two variables i
r
and j.
The diagonal elements are, of course l's for correlation coefficients

P and its associated probability is 0. Examination of othexr elements

i.3
in the ceorrelation matrix shows that all correlation coefficients are
positive and that all of these coefficients are highly significant,

This seems to be natural since the CPU time consumed in any phase
of the solution phases will certainly increase as the number of elements
or other parameters are increased. Perhaps the notable fact from this
table is that the correlation ccefficients with the number of nodes is
bigger and more significant compared to the corresponding correlation
coefficient with the number of elements.

on the other hand, Table (4.5) shows the correlation matrix between
the number of nodes, number of elements and the percentage of the CPU,
time spent in each step of the sclution. Here about half of the
cérrelation coefficients are -ve. However, considering only the
significant correlation coefficients as those have a probability value
£.10 we can conclude that:

(1) The percentage of time for data entry will decrease as the

number of nodes are increased. The same is true with the

percentage of CPU time for stiffness matrix computations.
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(ii) The percentage of loading time is increasing with the
increase in the number of elements. Here the correlation
is much stronger with the number of elements.

{iii) The percentage of frontal time is increasing as the data
entry time is increased. The same is true with the stiffneés
formulation and stress computation %.

Similar tables are done for each individual c¢lass of problems, namely:
1-D and 2-D. These results are shown in Tables (4.6) and (4.7) for 1-D
problems and in Tables (4.8) and (4.9) for 2-D problems.

A regression analysis that relates the total CPU time in seconds

to the main parameters shows that we can write:
T = .8966 NNOD - 1,217 NEL - .9306 (4.50)
where:

T is the total CPU time

NNOD is the number of nodes

NEL is the number of elements.

When considering 1-D problems only, the correlation between CPU time
and NEL can be:

T = .527 NEL + ,6524 ' . {(4.51)
and with number of nodes:

.263 NNOD + .3891 (4.52)

4

T

In case of 2-D problems alone, the corresponding equations will be:

T = 3.3149 NEL + 1,07296 (4.53)

.663 NNOD - ,91599 (4.54)

and T
It is worth mentioning that an abstracted form of some of these results

has been given in [Sharaf Eldin and Evans, 1987].



VARIABLE ‘MEAN STD.DEV. SUM MINIMUM MAXIMUM
o
NEL 9. 25000000 7.30459738 74 .00000000 2.00000000 20.00000000
NNOD 34.,37500000 32.03987471 275 .00000000 5.00000000 103 . 00000000
DE 1.36787500 0.98966047 10.94300000 0.43000000 3.41300000
STIFF 7.18575000 10.25263602 57.48600000 0.16000000 29.31400000
LOAD 1.10925000 1.33339585 8.87400000 0.0800Q000 4, 00900000
FRONT 6.78050000 7.20259201 54.24400000 0. 94000000 22.53600000
STRESS 2.17587500 2.64499692 15.40700000 0.16000000 7.92500000
TOTAL 18.63025000 22,29118928 149.04200000 1,77000000 67.19700000

TABLE 4.4: Correlation matrix of all parameters (1-D and 2-D)
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NEL NNOD DE STIFF LOAD FRONT | STRESS TOTAL
NEL 1.00000 | 0.79795 0.81689 0.55127 (| ©0.65127 0.70236 0.62398" | 0.62943
NO. OF ELEMENTS 0. 00000 0.0176 0.0133 0.1567 0.0802 0.0521 ©.0982 ©.0945
NNOD 0.79795 | 1.00000 | 0.99749 ] 0.94249 | 0.97692 | 0.98936 0.96880 | 0.97043
NO. OF NODES 0.0176 0.0000 0.0001 0.0005 0.0001 0.0001 0.0001 0.0001
DE 0.81689 0.99749 1.0000 0.92913 0.96752 0.98176¢ 0.95829 0.96013
DATA ENTRY TIME 0.0133 0.0001 0.0000 0.0008 0.0001 0.0001 0.0002 0.0002
STIFF 0.55127 0.94249 0,92913 1.00000 0.00202 0.98098 ©.99587 0.99529
STIFFNESS TIME 0.1567 0.0005 0.0008 0.0000 ©.0001 0.0001 0.0001 0.0001
LOAD 0.65127 | ©.97692 | 0.96752 0.99202 1.00000 | 0.99750 | O0.coc028 | 0.99952
LOADING TIME 0.0802 0.0001 0.0001 0.0001 0.0000 0.0001 0.0001 0.0001
FRONT 0.70236 0.98936 0.98176 0.98098 0.99750 1.00000 0.99443 0.99515
FRONTAL SOLUTION TIME 0.0521 0.0001 0.0001 0.0001 0.0001 0.0000 0.0001 0.0001
STRESS 0.62398 0.96880 0.95829 0.99587 0.99928 0.99443 1.00000 0.99994
STRESS COMPUTATION TIME || ©.0982 0.0001 0.0002 0.0001 0.0001 0.0001 ©.0000 0.0001
TOTAL 0.62943 0.97043 0.96013 0.99529 0.99952 0.99515 ©.99994 1.0000Q0
TOTAL CPU TIME L,0'0945 0.0001 0.0002 0.0001 0.0001 0.0001 0.0001 0.0000

TABLE 4.4: Correlation coefficients - Prob > |R| Under HO:RHO=0O - N=8

ove
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VARIABLE MEAN STD.DEV. S5UM MINIMUM MAXIMUM

—_— —

=
NEL 9. 25000000 7.30459738 74 . 00000000 2.00000000 20 .00000000
NNOD 34 . 37500000 32.03987471 275 .00000000 5.00000000 | 103.00000000
DEP 12 .73750000 7.34670723 101 . 30000000 5 . 10000000 24, 40000000
sp 27 .02500000 15.91986630 216 . 20000000 9 . 00000000 43 . 60000000
LP 5.68750000 0.67915389 45.50000000 |  4.50000000 6. 80000000
FP 43.38750000 9.96242046 347.10000000 | 33.20000000 53.10000000
TP 11.12500000 1.04437268 89 .00000000 900000000 12, 20000000

TABLE 4.5: Correlation matrix of % of all parameters (1-D and 2-D)
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NEL NNOD DEP sp LP FP TP
NEL 1.00000 10.79795 | -0.32310 | 0.11148 | 0.78110 | —0.03215 | 0.31179
NO. OF ELEMENTS 0.0000 |0.0176 0.4350 | 0.7927 | 0.0221 | 0.9398 | 0.4522
NNOD 0.79795 |1.00000 | -0.65388 | 0.57976 | 0.54187 | -0.53427 | 0,49791
NO. OF NODES 0.0176 |0.,0000 0.0786 0.1320 0.1654 0.1725 0.2092
DEP -0.32310 |0.65388 | 1.00000 |-0.95651 |-0.57338 | 0.92536 |-0.91805
DATA ENTRY % 0.4350 0.0786 0.0000 0.0002 0.1373 0.0010 0.0013
SP 0.11148 10.57976 | -0.95651 | 1.00000 | 0.31793 | -0.99555 | 0.80797
STIFFNESS TIME % 0.7927 0.1320 0.0002 Q,0000 ©0.4428 0.0001 0.0153
LP 0.78110 | 0.54187 | -0.57338 | ©.31793 | 1.00000 | -0.22911 | 0.65508
LOADING TIME % 0.0221 |0.1654 0.1373 | 0.4428 | 0.0000 | 0.5852 | 0.0779
FP -0.03215 l0.53427 | 0.92536 | ~0.99555 | -0.22911{ 1.00000 |-0.76351
FRONTAL SOLUTION TIME % 0.9398 0.1725 0.0010 0.0001 0.5852 0.0000 0.0275
TP 0.31179 | 0.49791 | -0.91805 | 0.80797 | 0.65508 { -0.76351 | 1.00000
STRESS COMPUTATION % 0.4522 0.2092 0.0013 0.0153 0.0779 0.0275 0.0000

TABLE 4.5: Correlation coefficients - Prob > |R] Under HO:RHO=O - N=8
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VARIABLE N MEAN STD.DEV. SUM MINIMUM MAXIMUM
NEL 4 9. 25000000 7.88986692 37.00000000 2.00000000 20, 00000000
NNOD 4 19.50600000 15.77973384 78.00000000 5. 00000000 41 .00000000
DE 4 0.931.25000 0.52499230 3.72500000 0.43000000 1.63100000
STIFF 4 0.73875000 0.63336528 2.95500000 0.16000000 1.60400000
LOAD 4 0.33850000 0.30468618 1.35400000 0. 08000000 0. 76500000
FRONT 4 2.89200000 2.22473324 11.56800000 0.34000000 5.94700000
STRESS 4 0. 60200000 0.48636406 2.40800000 0. 16000000 1.26400000
TOTAL 4 5.52450000 l4.15604255 22.09800000 1.77000C00 11.21100000

TABLE 4.6: Correlation matrix of all parameters (1-D problems)
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NEL NNOD DE STIFF LOAD FRONT STRESS TOTAL
NEL 1.00000 1.00000 0.99899 ©.99998 0.99774 0.99938 0.99991 0.99991
NO. OF ELEMENTS 0.0000 0.0000 ©.0010 0.0001 0.0023 0,0006 0.0001 0.0001
NNOD 1.00000 1.00000 | 0.99899 0.oo0008 0.99774 0.99838 0.99991 0.99991
NO. OF NODES 0.0000 0.0000 0.0010 0.0001 0.0023 0.0006 0.0001 0.0001
DE 0.99899 ©.99899 1.00000 0.99871 0.99381 0.99751 0.99897 0.99847
DATA ENTRY TIME 0.0010 0.0010 0.0000 0.0013 0.0062 0.0025 0.0010 0.0015
STIFF 0.99998 0.99998 0.99871 1.00000 |} 0.99811 0.99949 0.99989 0.99996
STIFFNESS TIME 0.0001 0.0001 0.0013 0.0000 0.0019 0.0005 0.0001 0.0001
LOAD 0.99774 0.99774 0.99381 0.99811 1.00000 0.99889 0.99778 0.99843
LOADING TIME 0.0023 0.0023 0.0062 0.0019 0.0000 0.0011 0.0022 0.0016
FRONT 0.99938 0.99938 0.99751 0.99949 ©.993889 1.00000 | ©.99965 0.99974
FRONTAL SOLUTION TIME 0.0006 0.0006 0.0025 0.0005 0.0011 0.0000 0.0003 0.0003
STRESS 0,99991 0.99991 0.99897 0.99989 0.99778 0.99965 1.00000 0.99993
STRESS COMPUTATION TIME 0.0001 0.0001 0.0010 0.0001 0.0022 0.0003 0.0000 0.0001
TOTAL 0.99991 0.99991 0.99847 0.99996 0.99843 0.99974 0.99993 1.00000
TOTAL CPU TIME 0.0001 0.0001 0.0015 0.0001 0.0016 0.0003 0.0001 Q0.0000

TABLE 4.6: Correlation coefficients - Prob. > *R[ Under HO:RHO=0 - N=4
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VARIABLE N MEAN STD.DEV. S5UM MINIMUM MAXIMUM
| -
NEL 4 9.25000000 7.88986692 37 .00000000 2.00000000 20 .00000000
NNOD 4 19.50000000 15.77973384 78 .00000000 5 .00000000 41 .00000000
CEP 4 19.050000C0 4.23674403 76 . 20000000 14 .50000000 24 .40000000
Sp 4 12 ,27500000 2.33291663 49 .10000000 9,00000000 14.30000000
Lp 4 5.55000000 0.98826447 22 20000000 4 . 50000000 6 .80000000
FP 4 52.67500009 0.44253060 210.70000000 52 . 20000000 53.10000000
TP 4 10. 37500000 0.99121138 41 . 5000000 9.00000000 11.10000000

TABLE 4.7: Correlation matrix of % of all parameters (1-D problems)
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NEL NNOD DEP sP LP Fp TP
—_— Fr ———
NEL 1.00000 | 1.00000 | —0.93287 | 0.83893 {0.98966 0.21242 0.79385
NO. OF ELEMENTS 0.0000 0.0000 0.0671 0.1611 |0.0103 0.7876 0.2061
NNOD 1.00000 1.00000 | -0.92387 0.83893 [0.98966 0.21242 0.79385
NO. OF NODES 0.0000 0.0000 0.0671 0.1611 |0.0103 0.7876 0.2061
DEP -0,93287 | -0.93287 1.00000 | -0.97717 F0.97444 0.14312 | -0,95845
DATA ENTRY % 0.0671 0.0671 0.0000 0.0228 |0.0256 0.8569 0.0416
SP 0.83893 | 0.83893 | -0.97717 1.00000 | 0.90579 —0.34951 | ©0.98851
STIFFNESS TIME % 0.1611 0.1611 0.0228 0.0000 |D.0942 0.6505 0.0115
Lp 0.98966 0.98966 | -0.97444 0.90579 | 1.00000 0.08003 0.87282
LOADING TIME % 0.0103 0.0103 0.0256 0.0942 0.0000 0.9200 0.1272
FP 0.21242 0.21242 0.14312 } -0.34951 | 0.08003 1.00000 | ~0.38946
FRONTAL SOLUTION TIME % 0.7876 0.7876 0.8569 0.6505 |0.9200 0 .0000 0.6105
TP 0.79385 | 0.79385| -0.95845 | ©.98851 ;0.87282 -0,38946 1.00000
STRESS COMPUTATION % 0.2061 0.2061 0.0416 0.0115 0.1272 0.6105 0.0000

TABLE 4.7: Correlation coefficients - Prob > |R| Under HO:RHO=0 - N=4
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VARIABLE MEAN STD.DEV. S5UM MINIMUM MAXIMUMV
NEL 9. 25000000 7.88986692 37.00000000 2.00000000 20.00000000
NNOD 49, 25000000 39.44933460 197.00000000 13.00000000 103. 00000000
DE 1.80450000 1.22529085 7.21800000 0.61500000 3.41300000
STIFF 13.63275000 11.57730381 54 .53100000 2.87000000 29.31400000
LOAD 1.88000000 1.57211810 7. 52000000 0.41400000 4.00900000
FRONT 10.66900000 8.70497080 42. 67609000 2.68 30000;)- 22.,53600000
STRESS 3.74975000 3.07927214 14.99%00000 0.931500000 7.92500000
TOTAL 31. 73600000 26.15579160 126. 94400000 7.49700000 | 67.19700000

TABLE 4.8: Correlation matrix of all parameters (2-D problems)
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NEL NNOD DE STIFF LOAD FRONT STRESS TOTAL
NEL 1.00000 | 1.00000 | ©.99129 | 0.99992 | 0.99991 1.00000 { ©.9999%2 | 0.99994
NO. OF ELEMENTS 0.00000 0.00000 0.0027 0.0001 0.0001 0.0001 0.0001 0.0001
NNOD 1.00000 | 1.00000 | 0.99729 | 0.99992 | 0.99991 1.00000 | ©.99992 | 0.99994
NC. OF NODES 0.0000 0.0000 0.0027 0.0001 0.0001 0.0001 0.0001 0.0001
DE 0.99729 | 0.99729 1.00000 | 0.99813 | 0.99813 | 0.99720 | 0.99800 | ©0.99802
DATA ENTRY TIME 0.0027 Q.0027% 0.0000 0.0019 0.0019 0.0028 0.0020 0.0020
STIFF 0.99992 ©.99992 0.99813 1.00000 1.00000 0.99990 ©.99996 1.00000
STIFFNESS TIME 0.0001 0.0001 0.0019 0.0000 0.0001 0.0001 0.0001 0.0001
1,OAD 0.99991 | 0.99991 ( ©.99813 1.00000 | 1.00000 | 0.99989 [ 0.99993 0.98999
LOADING TIME 0.0001 0.0001 0.0019 0.0001 0.0000 ©.0001 0.0001 0.0001
FRONT 1.00000 | 1l.00000 | 0.99720 | 0.999%0 | 0.99989 1.00000 | ©0.,99991 | 0.99993
FRONTAL SOLUTION TIME 0.0001 0.0001 0.0028 0.0001 0.0001 0.0000 0.0001 0.0001
STRESS 0.99992 | 0.99992| 0.99800 | 0.99996 ; 0.99993 | 0.99991 1.00000 | 0.99998
STRESS COMPUTATION TIME 0.0001 ©.0001 0.0020 0.0001 0.0001 0.0001 0.0000 0.0001
TOTAL 0.99994 | ©0.99994| 0.99802 1.00000 | 0.99999 | 0.99993 | 0.99998 1.00000
TOTAL CPU TIME 0.0001 0.0001 ©.0020 0.0001 0.0001 0.0001 0.0001 0.0000

TABLE 4.8: Correlation coefficients - Prob > IR] Under HO:RHO=0 — N=4
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VARIABLE

MEAN

STD.DEV. SUM MINIMUM MAXIMUM
NEL 9 . 25000000 7.88986692 37 00000000 2 .00000000 20 .00000000
NNOD 49 . 25000000 39.44933460 197.00000000 | 13.00000000 | 103.00000000
DEP 6 . 42500000 1.31497782 25, 70000000 5., 10000000 8 . 20000000
sp 41 . 77500000 2.39913179 167.10000000 |  38.30000000 43.60000000
L 5.82500000 0.22173558 23 . 30000000 5 . 50000000 6 .00000000
FP 34 . 10000000 1.16904519 136.40000000 | 33.20000000 35 80000000
TP 11 .87500000 0.25000000 47.50000000 | 11 .60000000 12 .20000000

TABLE 4.9: Correlation matrix of % of all parameters (2-D problems)
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NEL NNOD DEP ) LP FP TP
:::: —rrr—— T ——— ——— __—'—,,‘_ :
NEL 1.00000 | 1.00000{ —0.89398 |0.78232" |{0.75737 | -0.67219 | -0.33376
NO. OF ELEMENTS 0.0000 0.0000 0.1060 0.2177 0.2426 0.3278 0.6662
NNOD 1.00000 | 1.00000| —-0.89398 | 0.78232 |0.75737 | -0.67219 | -0.33376
NO. OF NODES 0.0000 0.0000 0.1060 |0.2177 0.2426 0.3278 0.6662
DEP -0.89398 | -0.89398| 1.00000 |-0.97814 }-0.96315 0.92588 | 0.65147
DATA ENTRY % 0.1060 0.1060 0.0000 0.0219 0.0368 0.0741 0.3485
SP 0.78232 | 0.78232| -0.97814 | 1.00000 | 0.98533 | -0.98169 { -0.73499
STIFFNESS TIME % 0.2177 0.2177 0.0219 0.0000 ©.0147 ©.0183 ¢.2650
LP 0.757371 0.75737] -0.96315[ 0.98533 | 1.00000 | ~0.95158 | -0.82681
LOADING TIME % 0.2426 0.2426 0.0368 | 0.0147 0.0000 0.0484 0.1732
FpP -0.67219| -0.67219] 0.92588|-0.98169 }-0.95158 1.00000]| ©0.71854
FRONTAL SCOLUTICN TIME % 0.3278 0.3278 0.0741 0.0183 0.0484 0.0000 0.2815
TP -0.33376| -0.33376] 0.65147{-0.73499 |-0.82681 0.71854} 1.00000
STRESS COMPUTATION % 0.6662 0.6662 0.3485 | 0.2650 0.1732 0.2815 0.0000

TABLE 4.9: Correlation coefficients

- prob > |R| Under HO:RHO=0 - N=4
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Although this package is of limited capabilities compared to the
more advanced and complicated packages like NASTRAN or MSAP, it proved
to be a cost effective solution for small to medium size FE problems
which lie within the domain of applications covered by it. The
developmentdof the time log module ih this package makes it suitable
for research purposes in addition to the solution of practical

structural mechanics problems.

4.7.3 The STRAP Program

This program was developed by the author as part of a joint project
between the Civil Engineering Department and the Computer Centre at the
College of Engineering, King Saud University [Turaby and Sharaf Eldin,
1978]. The aim is to solve classical skeletal structures such as
continuous beams, frames and trusses. STRAP is a fully interactive
program, the user need only "sketch” the problem on the screen of the
terminal in the same way he would sketch it on paper. 1In addition, the
output may also be plotted on a small x-y graph plotter together with
the printed results. The system is also offered in batch mode.
Although this program is designed to run on a mini-computer, it is
readily available to run on a micro-computer. The presented program
is for thé solution of beam elements only. Despite thesé fairly simple
elements, the main advantage of this program is the ease of data input.
The user of this program is relieved from the burden of preparing his
problem in the usual manner, i.e. numbering of nodes, elements, etc.

a versatile plotting program is added to STRAP as a postprocesscr which

gives additional facilities to STRAP