

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

.' .

LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY

LIBRARY
AUTHOR/FILING TITLE

, --------------~[J!1.fd)-r--l\--~-~------------

-------------------------------- --- ----- - -------~
ACCESSION/COPY NO.

~ 0 I 't-~~ ""'I) '2... '.
! ----------------- ---- _______ 7 ____________________ _
I VOL. NO. CLASS MARK

30 JUN 1989

6 OCT 1989

.. 5 JUL 1991

~ '3 JUL \992

koA~ Coet·~

- ym(1994
(A.L 26 MAV 1997

~Nlm

2 ~ MAP 199B

001 4330 '02· ,

1IIIIIIIIIIIIIIIIIIIIIIIIillllllllllllllllllllllllll

FINITE ELEMENTS SOFTWARE AND APPLICATIONS

BY

AHMED SHARAF ELDIN AHMED

A Doctoral Thesis

Submitted in partial fulfilment of the requirements

for the award of Doctor of Philosophy

of Loughborough University of Technology

July, 1987.

SUpervisor: Professor D.J. EVANS, Ph.D.,D.Sc.,

Department of Computer Studies

External Supervisor: Professor A.S. NOUH

© by Ahmed Sharaf Eldin Ahmed, 1987.

L."9"'1ta~<>"", "nlvetlty

of T itr;:".·, t.JP-r.tf'y
~,,'--\J,~ . 'kr

-""" , "''''''''-
CI~f'J .

- .. , ,~,_I

:;:. Ol+~'l!t~

FINITE ELEMENTS SOFTWARE AND APPLICATIONS

ABSTRACT

The contents of this thesis are a detailed study of the software

for the finite element method. In the text, the finite element method

is introduced from both the engineering and mathematical points of view.

The computer implementation of the method is explained with samples of

mainframe, mini- and micro-computer implementations. A solution is

presented for the problem of limited stack size for both mini- and

micro-computers which possess stack architecture.

Several finite element programs are presented. Special purpose

programs to solve problems in structural analysis and groundwater flow

are discussed. However, an efficient easy-to-use finite element program

for general two-dimensional problems is presented. Several problems in

groundwater flow are considered that include steady, unsteady flows in

different types of aquifers. Different cases of sinks and sources in

the flow domain are also considered. The performance of finite element

methods is studied for the chosen problems by comparing the numerical

solutions of test problems with analytical solutio~s (if they exist) or

with solutions obtained by other numerical methods~ The polynomial

·refinement of the finite elements is studied for the presented problems

in order to offer some evidence as to which finite ~lement simulation

is best to use under a variety of circumstances.

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to my supervisor,

Professor D.J. Evans, for his considerable guidance, advice and

willingness to assist and advice at any time throughout the

programme of this work. I am also grateful to professor A.S. Nouh

who acted as an external supervisor during this research. Thanks

are also due to Dr. E.I. Elniema for his suggestions.

Finally, my sincere gratitude and thanks to my mother, my wife,

Olfat and my children Omniya and Ahmed for their patience and moral

encouragement. To them this thesis is dedicated.

CONTENTS

CHAPTER 1: INTRODUCTION

1.1 Introduction

1.2 The Basic Concepts

1.3 Domain of Applications of the Finite
Element Method

1.4 Software for the Finite Element Method

1.5 The Structure of the Thesis

CHAPTER 2: THE FINITE ELEMENT METHOD: AN ENGINEERING APPROACH

PAGE

1

2

5

8

11

2.1 Historical Background 13

2.2 The Stiffness Method for Structural Analysis 16

2.3 Assembly of Elements 22

2.4 Imposing of Boundary Conditions 25

2.5 Solution of Equations 28

2.5.1 Direct Methods

2.5.2 Indirect Methods

2.5.3 Solution of Non-Linear Equations

2.6 Determination of Other Element Data

2.7 Extensions to Non-Structural Applications

2.8 Conclusions

CHAPTER 3: THE FINITE ELEMENT METHOD: A MATHEMATICAL APPROACH

3.1 Preliminaries

28

32

34

38

41

42

45

3.1.1 Basics of Linear Algebraic Theory 45

3.1.2 Preliminaries of Partial Differential 55
Equations

3.1.3 Preliminaries of Variational Calculus 59

3.2 Approximate Solutions for Partial Differential
Equations

3.2.1 Introduction

3.2.2 The Method of Weighted Residuals

63

63

64

3.2.3 The Finite Difference Method

3.3 Variational Approach of the FEM

PAGE

66

77

3.3.1 The Rayleigh-Ritz Method 77

3.3.2 Merits and Limitations of Variational 81
Formulations

3.3.3 The Variational Formulation of the FEM 83

3.4 A Weighted Residual Approach to the FEM 86

3.5 The Domain Discretization Process in the FEM 93

3.5.1 Element Shapes

3.5.2 Nodes

3.5.3 Interpolation Functions

3.5.4 Natural Coordinate System

3.6 The Two-Dimensional Triangular Elements

3.7 The Isoparametric Elements

3.8 Convergence of the FEM

3.9 Error Estimates in FE

3.9.1 Sources of Errors

3.9.2 Error Measures

3.9.3 Round-off Errors

3.9.4 Discretization Errors

3.10 Special Problems in FE Analysis

3.10.1 Time-Dependent Problems

3.10.2 Mixed and Hybrid Elements

3.10.3 Infinite Finite Elements

94

98

99

102

105

112

115

121

121

122

123

126

128

128

129

130

3.11 Comparison of the FEM with Other Computational 132
Techniques

CHAPTER 4.: COMPUTER IMPLEMENTATION OF THE FINITE ELEMENT METHOD

4.1

4.2

4.3

4.4

4.5

Introduction

classification of Finite Element Software

Data Structures for Finite Element Programming

proposed Fortran Extensions

Computer Solution of Finite Element Equations

136

139

143

148

152

4.5.1 Banded Algorithms 152

4.5.2 The General Sparse Matrix Algorithms 158

PAGE

4.5.3 The Frontal Algorithm 163

4.5.4 Software for the Solution of Equations 169

4.5.4.1 Matrix Storage Modes

4.5.4.2 Linear Equation Solvers

4.5.4.3 Test Problems

4.6 Mainframe Computer Implementation

4.6.1 Historical Background

4.6.2 Program Capabilities

4.6.3 Implementation Details

4.6.4 Installation Procedure

4.6.5 Discussion

4.7 Mini-Computer Implementation

4.7.1 Background

4.7.2 The ELASTIC Package

172

176

178

187

187

188

189

194

195

196

196

197

4.7.2.1 Element Library 198

4.7.2.2 Implementation Details 208

4.7.2.3 The ELASTIC Program Structure 213

4 7 2 2 r> • • .4 Numerical Tests

4.7.3 The STRAP Program

4.7.3.1 STRAP Capabilities

4.7.3.2 STRAP Structure

4.8 Micro-Computer Implementation

4.8.1 Background

4.8.2 Finite Element Programming on Micro­
Computers: Problems and Solutions

4.8.3 The Interactive Finite Element Program
for Aquifer Simulation IFEP

4.8.3.1 Program Structure

4.9 Pre-Processors for Finite Element Programs

4.9.1 Introduction

4.9.2 Methods of Mesh Generation

4.9.2.1 Mapping Techniques

4.9.2.2 Mesh Generation by Direct
Subdivision

251

252

255

257

257

258

263

265

269

269

274

276

278

PAGE

4.9.2.3 Mesh Generation by Quad Trees 280

4.9.2.4 Duplicate Nodes in Automatic 282
Mesh Generators

4.9.3 Data Input for Finite E1ecent Programs 283

4.9.3.1 Interactive Ask-and-Answer

4.9.3.2 Special Definition Language

4.9.3.3 Direct Data Input Through
Digitization

4.9.4 Numbering Algorithms

4.9.4.1 Algorithms for Minimizing
Bandwidth

4.9.4.2 Algorithms for Minimization
Frontwidth

4.10 Post-Processors for Finite Element Programs

4.10.1 Introduction

4.10.2 The Functions of Post-Processors

4.10.3 Stress Smoothing Methods

of

4.10.4 Hardware for Interactive Graphical Post­
Processors

284

285

287

288

292

312

316

316

317

318

321

4.10.4.1 Graphical Terminals 322

4.10.4.2 Input Devices for Interactive
Graphical Post-Processors 324

4.10.4.3 Output Devices for Interactive
Graphical Post-Processors 325

4.10.5 Software for Interactive Graphical Post-
Processors 327

4.10.5.1 Representation of Graphical
Entities 329

4.10.5.2 Programming Languages for
Interactive Computer Graphics 330

4.10.5.3 Geometry Modelling 332

4.10.5.4 Removal of Hidden Surfaces 333

4.10.6 Design of User Interface in Graphical
Post-Processors

4.10.6.1 The User's Model

4.10.6.2 The Command Language

4.10.6.3 Information Display

4.10.6.4 Feedback

337

338

339

340

341

4.10.7 Examples of FE Post-Processors

4.10.8 Recent Trends in Graphical Post­
Processors

4.11 Special Topics in Computer Implementation of

PAGE

342

345

FE 348

4.11.1 FE on Parallel Computing Systems 348

4.11.2 Database Technology for FE Software 356

4.11.3 Standardization for FE Software 360

4.12 Selection of Finite Elements Software

4.12.1 Introduction

4.12.2 Attributes of FE Packages

4.12.3 The Simple Matrix Method

4.12.4 The Multi-attribute utility Theory

4.12.5 The Multi-attribute Fuzzy Decision
Analysis

4.12.6 A Case Study

CHAPTER 5: THE VIRTUAL STACK FACILITY

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

Introduction

The Stack Architecture

The VSF Source Language

5.3.1 The Declaration Block

5.3.2 The VSF Compiler Commands

5.3.3 The VSF Statements

5.3.4 Use of Virtual Arrays

The VSF Compiler

5.4.1 Implementation Considerations

5.4.2 The VSF Compiler Structure

5.4.3 Compiler Dictionaries

5.4.4 Translating the Assignment Statement

The Run-Time Library

The VSF Error Messages

Replacement Algorithms

VSF Procedures

364

364

365

367

369

373

374

378

380

383

383

384

386

389

392

392

393

395

395

398

400

402

409

5.9 Test Problems

5.10 Conclusions

CHAPTER 6: GENERAL PURPOSE MATHEMATICAL SOFTWARE FOR THE
FINITE ELEMENT METHOD

PAGE

410

417

6.1 Introduction 418

6.2 Requirements of a General Purpose Mathematical
FE Software Package 419

6.3 The Problem Definition 422

6.4 Domain of Applications 424

6.5 The Package Structure 427

6.5.1 The Preprocessor

6.5.2 The Mesh Generation

6.5.3 Node Numbering

6.5.4 Solution Methods

6.5.5 Subprograms

6.5.6 The Postprocessor

6.6 Input Data Sets

427

428

429

431

432

434

435

6.6.1 The Global Variables 435

6.6.2 Specifying the Equations 436

6.6.3 Specifying the Element Parameters 438

6.6.4 Specifying Computational Parameters 438

6.6.5 Specifying the Topology 439

6.6.6 Specifying the Boundary Conditions 441

6.6.7 Specifying the Outputs 442

6.6.8 Inputs of the Postprocessor 445

6.6.9 Examples 446

6.7 Special Techniques 459

6.7.1 Utilization of Symmetry 459

6.7.2 Mixed Type Boundary Conditions 459

6.7.3 Solving a Single Equation 460

6.7.4 Solving Several Simultaneous Equations 460

6.7.5 Non-Uniform Distribution of Elements 461

6.7.6 Updating the Master Matrix 461

6.7.7 Accessing the Solution Stored by an
Earlier Run 462

PAGE

6.8 Computer Implementation 464

6.8.1 Implementation on a Mainframe Computer 464

6.8.2 Implementation on a Mini-computer 467

6.9 Enhancements to the Package

6.9.1 Performance Optimization

6.9.2 Definition of User variables

6.9.3 Supercomputer Implementation

CHAPTER 7: FINITE ELEMENT SOLUTION TO SOME GROUNDWATER FLOW
PROBLEMS

7.1 Introduction

7.1.1 Types of Aquifers

7.1.2 Functions of Aquifers

7.1.3 Effect of Human Activities on Ground­
water

7.1.4. Groundwater Problems

7.2 Modelling of Groundwater Flow

4~

468

472

473

475

475

476

478

479

482

7.2.1 The Basic Equations 482

7.2.2 Boundary Conditions in Aquifers 486

7.2.3 Solution Methods 488

7.2.4 Software for Groundwater Flow Problems 489

7.3 The Finite-Element Formulation

7.4 Steady Flow in Aquifers

492

498

7.4.1 Steady Flow in Confined Aquifers 498

7.4.2 Steady Flow in Unconfined Aquifers 500

7.4.3 Steady Flow in a Confined Aquifer with
Leakage from an Adjacent One 506

7.4.4 Modelling of Sources/Sinks in Aquifers 509

7.5 Unsteady Flow in Aquifers 515

7.5.1 The Time Interval 515

7.5.2 Unsteady Flow in Confined Aquifers 516

7.5.3 Unsteady Flow in an Unconfined Aquifer 519

7.6 Free Surface Problems in Aquifer Flow

7.7 Miscellaneous Problems in Groundwater Flow

521

536

PAGE

7.7.1 Problem 7-9: Small Watershed 536

7.7.2 Problem 7-10: Transient Well Flow 540

7.7.3 Problem 7-11: Transient Well Flow 541
with Leakage

7.7.4 Problem 7-12: Anisotropic Aquifer Flow 544

7.7.5 Conclusions 554

CHAPTER 8: CONCLUSIONS

8.1 Conclusions

8.2 Scope for Further Research

REFERENCES

558

563

564

APPENDICES: Al Sample Programs that Demonstrate the Existing
problem of Limited Stack Size 589

A2 Samples of the Outputs Produced by the VSF
Compiler 592

A3 Error Messages Produced by the VSF Compiler 599

B programs for the Problems Solved in Chapter 7 600

CHAPTER 1

I NTRODUCTI ON

TABLE OF CONTENTS

1.1 Introduction

1.2 The Basic Concepts

1.3 Domain of Applications of the Finite Element
Method

1.4 Software for the Finite Element Method

1.5 The Structure of the Thesis

1

1.1 INTRODUCTION

The Finite Element Method (FEM) originated as a generalization of

the matrix structural analysis method to problems of elastic continua.
,

Despite the fact that the term "Finite Elements" itself was introduced

by Clough [1960] in a paper on plane elasticity, the ideas of Finite

Element (FE) analysis date back much further. Therefore, it is not

possible to mention a specific date when the FEM was invented. However,

it seems to be a fact that the challenge met when designing aircraft

during the last few decades was the motivation for new methods of

structural analysis. The complexity of these structural systems

together with the various loading conditions were behind the first

ideas of the method where a continuum is discretized into smaller

parts for which a solution can be approximated. At a later date, the

method was realised·to be equivalent to finding approximate solutions

to variational problems using piecewise polynomials. This allowed the

method to be used for many field problems like those in fluid dynamics,

electrostatics and solid mechanics. As the FEM applications increased

rapidly in the 1960's, more mathematicians became interested in giving

the method a firm mathematical foundation. Meanwhile, since the FEM --------
i~a-c:omputat>:.onal techni'i:ll-=-_~hi..c:h~ires the use of a digjtal

computer for its implementation, many comIlUter specialists. started ------- -~--~-- ---------.---~~.----.-- ---- - -._- -- ---------------- - ,---~-.

developing .software for the method.
-- - ----._-----------........----------_. Due to the rapid advances in

computer hardware and software technology, several FE research and
------ -.. -------- ._-

software pr~jects~ar.e . .<>e>:I!J develoj):d to. cope with_these advances.
- ----- ---------

U~questionably, today the FEM is a well-est~~~~dtechnique and
--------- -

is considered as one of the most powerfuLengiIleering analysis ~ls •
. ---------.---

2

1.2 THE BASIC CONCEPTS

It seems to be a general approach of the thinking methodology in

life: to st~l'~ complicated problem, try~_o_partition it __ to_simpler ---- -----.- --------------------~---.---- - -

construct the final solutIo_n_ to_--!he original problem __ by the assemblage
---~-------'-. -, ---._-.-._--_._---- ,. - - ~------------

of the subproblems solution.
------- --~ - ------- _.---,

In the FEM a discretization technique is employed through which a
- --------------- --------------- .-- ----- ---- -----

complex region is divided into simpler sub regions called finite elements.
---.--- - -" -----..- --------_ .. ---_.-. --------- .------------------~--

This disc~etiza~ion process will convert a continuum, for example, of
~---,- ---------- ---------.:._-------------_.-- _.-.--------~----- -

iI1.1:inI~_e. degrees ofJre"dom to a system of finite elements of finite
" ________________ ---- _____ on .. __ • ______ ., __ _

degrees of freedom. These elements are connected at specified points called
" . - '-- - ,,- --."- ---

?odes. It is possible to have fewer nodes within elements as well. The

each element. These functions are called interpolation or basis functions .---'-----'- "-

------------------- -and are usually polynomials. The interpolation functions_are defined
-' - ---_ .. --,-- -' ,,--., ,-.. _------, -- - ._- - '-' ... ,------- .---- --.. _---

Thus, the ---
problem now becomes how to determine_the_fieldvalues.at nodes. It is

obvious that: (1) these interpolation functions must satisfy some
/ ----------------------
continuity conditions across element boundaries, (2) certain boundary

----_ .. _-------- ,-- -' .-- - -~--.-------.-- .. -- ~-,----- .. '._--

conditions must also be satisfied. The major factors that affect the ,------ ----- -~-- .-----..-

obtained solution are the types, number and size of elements, the

elements distribution and grading and the used interpolation fllnctions.

Four approaches can be used to obtain the element characteristics: the

direct, the variational, the weighted residual and the energy balance

approaches. The direct approach was the first to be used for

structural analysis problems and can be used in relatively simple cases

3

only. In this approach, a direct formulation of the element character-

istics can be done based on the principles of structural mechanics in

applications of solid mechanics, say. This will be explained in

greater detail in Chapter 2 of this thesis.

In the variational approach, a functional is extremised. The

functional in structural mechanics is usually the potential energy.

This approach can be used for more complicated problems provided that

a variational principle exists and is known. If there is no variational

principle known for a problem, then the weighted residual approach can

be used to obtain the element characteristics. In this case, the

starting point is the partial differential equation itself. Finally,

the energy balance approach, requires no variational principle and thus

can be used for a wider range of problems where the balance of thermal

and/or mechanical energy of the system is utilized to formulate the

element characteristics.

Despite the approach used to formulate the element characteristics,

a_general strategy of finite element solution can be stated as follows:
, _ .. _--._.--------------- ---_._--- - _ .. --- "-- .. --- --._----_. __ ... -- - ---"".- ... -._----- ------'

(1) Discretization of the domain into suitable finite elements and

specification of the nodes. Generally, for one dimensional

problems, line segments are used, triangles or rectangles are

used in two dimensional problems, while tetrahedrons or hexahedrons

are used in three-dimensional problems. Several types of these

elements are used within this thesis for one and two dimensional

problems.

(2) Selection of interpolation functions to express the field variable,

which may be scalar, vector or higher-order tensor over the element.

(3) Computation of the element characteristics using one of the above

mentioned approaches.

4

(4) Assemblage of the element characteristics to obtain the overall

system characteristics, then the incorporation of boundary

conditions and then the resulting set of equations is solved to

determine the value of the field variable at the nodes.

(5) Performing some post processing functions like the computations

of other important values, the display or plotting of the results,

etc.

5

1.3 DOMAIN OF APPLICATIONS OF THE FINITE ELEMENT METHOD

Although the FEM was originally developed by structural engineers

as a solution technique for structural analysis, it has spread rapidly

to cover many fields in Engineering, Physics and Applied Mathematics.

This may be due to the general nature of its theory as a method for the

solution of boundary value problems. However, it should be emphasised

that although most branches of engineering analysis can be considered

as potential users of the FEM, it is not always the magic and the best

solution method to ALL these problems. In fact, every solution

technique has its merits and disadvantages. Despite that, it can be

safely said that the FEM is usually superior to other competitive

techniques in most cases.

It is impossible to list all the applications of the FEM and,

therefore, a partial list of the titles of the most well known areas

in engineering analysis is given as follows:

(1) Structural Engineering:

*

*

*

*

Static and dynamic analysis of various types of structures

composed of different materials.

Stability analysis of structures

Response of structures to periodic loads

Elasticity problems

(2) Strength of Materials:

*

*

Creep and fatigue analysis of materials

Pond stresses in composite sections

(3) Heat transfer:

*

*

Steady state temperature distribution in solids and fluids

The analysis of transient state in heat transfer problems like

heat flow in rocket nozzles and turbine blades.

(4) Hydraulics and Hydrodynamics:

* Analysis of laminar and turbulent flows

* Subsonic and ultrasonic flows

* Analysis of hydraulic structures like dams

* Lake and dam interaction.

(5) Water Resources:

*

*

*

*

Analysis of potential flows

Free surface flows

Seepage analysis

Flow in aquifers and porous media.

(6) Geomechanics:

*

*

*

Analysis of different types of foundations

Analysis of soil structures interaction

Rock and soil mechanics

(7) Electrical Engineering:

*

*

Electric and magnetic potential

Analysis of power transmission systems

(8) Mechanical Engineering:

* Fracture mechanics

6

* Analysis of mechanical systems, including frequency and modal

analysis.

*

*

Stress concentration problems

Lubrication problems

(9) Nuclear Engineering:

*

*

*

Analysis of nuclear pressure vessels and containment studies

Structural analysis of reactors

Neutron flux distribution

(10) Biomedical Engineering:

* stress analysis of: bones, eye balls and teeth

* Mechanics of heart valves

* structural behaviour of the skull

(11) Industrial Engineering:

* Welding analysis

* Manufacturing process of machine tools

(12) Chemical Engineering:

*

*

Melting of solids in chemical plants

Heat, mass and momentum transfer problems in chemical

engineering processes.

7

Within the body of this thesis some problems in structural and

water resources engineering are considered.

8

1.4 SOFTWARE FOR THE FINITE ELEMENT METHOD

Since the FEM is a numerical technique for which the use of a

computer is essential, a potential user of the method is faced by the

problem of finding the software suitable for his application. Generally,

in most of the structural analysis and heat conduction problems there

exist many available software packages that can be used to solve many

classical practical problems in these two fields. However, this

statement does not exclude the modification of existing software to

suit particular needs or even the development of new special purpose

programs. The situation in other relatively new fields of applications

is quite different. In these fields there is no general purpose software

but rather software for particular problems. To illustrate, there is

no general purpose software known in the open literature that can be

used for general problems in fluid mechanics. This, in no case, means

that the current general purpose finite element packages cannot be used

to solving some particular problems in fluid mechanics as will be

demonstrated within this thesis. The aspects of computer implementation

of the FEM will be detailed in Chapter 4. However, it may be useful to

give here a brief list of some of the sources of information about FE

software [Noor, 1981] and ~ebner and Thornton, 1982]:

ASIAC

CEPA

Aerospace Structures Information and Analysis

Center, AFFDL/FBR Wright-Patterson Air Force

Base, Day ton, OH 45433, U.S.A.

Society for Computer Application in Engineering,

Planning and Architecture, Inc., 358 Hungerford

Drive, Rockville, MA 20850, U.S.A.

COSMIC

Finite Element
News

ICES

ICP

NI SEE

NTIS

9

Computer Software Management and Information

Center, 112 Barrow Hall, University of

Georgia, Athens, GA 30602, U.S.A.

Robinson and Associates, Horton Road, Woodlands,

Wimborne, Dorset, BH21 6NB, U.K.

ICES Users Group Inc., P.O. Box 8243,

Cranston, RI 02920, U.S.A.

: International Computer Programs Inc., 9000

Keystone Crossing, Indianapolis, IN 46240,U.S.A.

National Information Service for Earthquake

Engineering, 519 Davis Hall, University of

California, Berkeley, CA 94720, U.S.A.

National Technical Information Service, U.S.

Department of Commerce, 5285 Port Royal Road,

Springfield, VA 22161, U.S.A.

However, a more practical way to search for this information is to use

any of the available on-line search facilities that conduct several

international databases. The search strategy of these databases can be

summarized as follows:

(I) Specify keywords for the topic to be searched for.

(2) Each relevant database is searched for the qualifying entries of

each of these keywords separately. The actual entries are not

retrieved but rather data sets containing pointers to these entries

are created. These data sets are called the hit sets.

(3) The required entries are the intersection of the hit sets.

This is better clarified by an example. Suppose that a search is

10

required for "Flow towards wells in a quifers using finite elements".

The formulation of the searching strategy for this request is:

Set A represents the set of citations retrieved using the keyword

IIFlow".

Set B is that using the keyword "Well"

Set C " " "

Set D " " "

" "

" "

"A quifer"

"Finite Element"

The required set of citation is thus A n B n CnD.

It should be noticed that synonyms must be considered to retrieve

all the possible citations. For example, the Set B in fact should be

replaced by the union of the sets B1, B2 and B3 defined as:

B1 is the set representing the citations retrieved using the keyword

"Well n

B2 u " " " " " " " " "
"Sinks"

B3 If " " " " " " " " "

"Sources

B = B1 U B2 U B3

and the required set of citations is thus:

11

1.5 THE STRUCTURE OF THE THESIS

This thesis is concerned with various aspects of the computer

implementation of the finite element method. The vast amount of

developments of computational algorithms used in finite elements makes

it impossible to cover all the methods and techniques used in the

computer implementation of finite elements ·and therefore, an arbitrary

selection has to be done. The selection is based on the importance,

applicability and the range of applications. In addition to that,

problems in ground water hydraulics are solved to demonstrate the

versatility and utility of the presented software.

In Chapter 2 an engineering approach for the FEM is presented which

gives a logical step by step approach to the basic ideas and concepts

of FE analysis. This is followed by a mathematical approach in the

next chapter.

In Chapter 4, the computer implementation of FE is considered in

greater detail. This includes the types of FE software and the data

structures required in FE programming. Afterwards, proposed extensions

to the standard Fortran are given which will make FE programming more

efficient and easier. The different algorithms for the solution of FE

equations are presented. Four different FE programs are then presented

as examples of computer implementation of FE on mainframe, mini- and

micro-computers. The features of these implementations are extracted

and demonstrated. The problems of computer implementation on mini- and

micro-computers are highlighted and proposed solutions are given. The

CPU time analysis of some test problems is reported in order to know

the distribution of processing time among the different modules in a

class of FE programs. Pre- and post-processors are discussed in depth

12

with an attempt to define the functions and types of each. The rest

of this chapter is devoted to the selection of FE software based on

three different qUantitative approaches.

In Chapter 5, the problem of limited stack size in many of the

mini- and micro-computers is demonstrated. A proposed solution is

given; namely the virtual stack facility. This software is implemented

and tested. A new replacement algorithm for a virtual stack is

implemented and proved to be more efficient than some of the known

replacement algorithms implemented for virtual storage systems.

In Chapter 6, a general programming system for the solution of a

wide class of second order partial differential equations based on

finite elements is presented. The computational aspects of this

software are explained. This software is then used to solve some

problems in ground water flow in the next chapter.

In the last chapter conclusions are drawn of this work and the

scope for further work proposed.

CHAPTER 2

THE FINITE ELEMENT METHOD:

AN ENGINEERING APPROACH

TABLE OF CONTENTS

2.1 Historical Background

2.2 The Stiffness Method for Structural Analysis

2.3 Assembly of Elements

2.4 Imposing of Boundary Conditions

2.5 Solution of Equations

2.5.1 Direct Methods

2.5.2 Indirect Methods

2.5.3 Solution of Non-Linear Equations

2.6 Determination of Other Element Data

2.7 Extensions to Non-Structural Applications

2.8 Conclusions

13

2.1 HISTORICAL BACKGROUND

The main concept in the finite element method is to replace a

complex continuous system by discretized simpler elements whose

behaviour is already known. This concept is very old in the history

of the subject. The roots of this concept can be back-dated to

Archimedes who used it to find an approximate value of n. He replaced

a circle by a polygon in order to compute the perimeter of a circle.

This concept is actually a form of one dimensional line elements

modelling. To calculate the area of the circle, Archimedes used

triangles originating from the centre of the circle to the vertices

of the polygon. This could be considered as a two-dimensional

triangular element model. Beckmann [1971] gave full details of the

calculation of n. A brief discussion of Archimedes's method to compute

the areas of plane figures and volumes of solids and the work of other

ancient scientists can be found in Hogben [1967].

Despite this very old origin, the finite element method (FEM) in

its modern shape was discovered as a generalisation of the matrix

methods of Structural Analysis. These methods were used for solving

skeletal structural systems like trusses and frames which yield exact

solutions. However, in order to solve elastic continua, a similar

approach was used as an approximation. One of the methods for such

approximation is to use a lattice of framework to model the actual

continuum [e.g. Hrenikoff (1941), Yettram and Husain (1966)]. Thus,

in this approach a plate loaded in plane like that shown in Figure 2.1

which possesses infinite degrees of freedom is modelled as a frame of

a finite number of degrees of freedom which can be solved using the

standard structural analysis methods as shown in Figure 2.2.

:;
;'

;'

"..

"..~----------------------~
;'

"..

--
"..

./

"..~------------------------~

FIGURE 2.1: A plate with in-plane point load

FIGURE 2.2: A lattice of framework model

Another approach which is different in concept was adopted by

14

other scientists and engineers; [Clough, 1960] who introduced the term

finite element for the first time. In this approach, instead of

approximating the continuum into a framework whose stiffness matrices

are known exactly, an approximate value of the stiffness matrix of a

elements the whole structure is modelled.

15

In the body of this chapter a description of the FEM as an

extension to the matrix structural analysis is given. This will give

one an insight description of the method and the steps used to solve

problems using it. In section 2.2, the stiffness method of structural
~

analysis is briefly reviewed. In section 2.3, the assembly process by

which the global structure is formed from its individual elements is

explained whilst dealing with the boundary conditions is discussed in

section 2.4. The solution of the resulting algebraic equations is

reviewed 1.1 2.5. The determination of other element data like stresses

is given in 2.6. Throughout a simple truss problem is used as a

vehicle to exemplify the method. In section 2.7 extensions to other

types of problems are presented, whereas section 2.8 presents the

conclusions.

16

2.2 THE STIFFNESS METHOD FOR STRUCTURAL ANALYSIS

The matrix methods of structural analysis give a unified approach

to solve structural systems. The most widely used approach is the

stiffness method. Naturally it is the advent of digital computers

that makes such methods practically applicable. The details of such

methods can be found in the standard text books on the subject like

[Livesly (1964) and Przemieniecki (1968»). However, for the sake of

completeness, a rather short description is given.

In the matrix methods of Structural Analysis, the stiffness matrix

of each member of the structure is calculated. The stiffness matrix

relates the applied forces to displacements. The elements of this

matrix are functions of the geometry and material properties of that

element. Then, a global stiffness matrix for the whole structure is

assembled. Equating the external forces vector by the product of the

stiffness matrix and the displacement vectors will yield the determin­

ation of the unknown displacements. This is expressed in the following

matrix equation:

f = Kd , (2.1)

where f is the load vector, K is the global stiffness matrix and d

is the unknown displacement vector. Hereafter, a plane truss will be

considered to exemplify the various aspects of the finite element

process. Consider the truss element shown in Figure 2.3. There are

several ways to derive the stiffness matrix of this element. In the

early days of the FEM, the stiffness matrix was derived element by

element based on its definition as a force-displacement characteristic.

For example, since kij is defined as the force associated with node i

that produces a unit displacement at j, then to determine kij we may

17

simply impose this unit displacement and calculate the corresponding

force. It is usually much easier to derive the stiffness matrix in

a local coordinate system rather than in the global one, then using

the necessary transformation to relate it to the global coordinate

system.

For the truss element the local coordinate system is chosen along

the axis of the member itself as shown in Figure 2.3. To derive the

stiffness matrix K we note that a truss element is subjected to axial

forces only thus we have two displacements along the member and none

perpendicular to it. To derive the elements of this matrix we need to

derive kll and k12 only, while k21=k12 according to the reciprocal

theorem and k22 could be concluded by induction. TO calculate kll we

know that kll is equal to the force that must be applied at node i in

order to produce a unit displacement at the same node along the member

axis.
EA

From elementary theory of structures, kll = ~ , where E is the

Young's modulus of elasticity, A is the cross sectional area of the

member and L is its length. At the same time and due tQ equilibrium

EA
k21 will be = - ~. Similarly, k22 =

·in the local coordinate system is,

K
EA

=
L

EA Thus the stiffness matrix -.
L

(2 .2)

In order to express the stiffness matrix in the global x-y coordinate

system, we assume that K, d and f are the stiffness matri~ displacement

vector and force vector in the glObal coordinate system, respectively.

The displacement vectors d and d are related by:

d = Ad , (2 .3)

where A is a transformation matrix.

18

It must be noted that d is a two element vector:

d = {::}
(2.4)

while d is a four element one since the displacements are in two

dimensions with reference to the global x-y system.

d2i- l

d =
d2i (2.5)
d
2j

_
l

d2j

Denoting the direction cosines between the x-axis and the x,y axis

by R. and m respectively, then,

d. = d2i- l • R. + d2im
l.

-
and d j = d

2j
_

l R. + d2j
.... (2.6)

or in matrix form,

d2i- l

b:l [:
m 0 J d

2i d = =
0 R. d

2j
_

l

(2.7)

d
2j

Therefore, the transformation matrix A is,

m o
A = (2.8)

o

If the angle between the x-axis and x-axis is a then,

R. = coS a

and m = sin a (2.9)

Thus, r:sa sina 0

Si:J
A =

0 COSa
(2.10)

19

If a virtual displacement vector 5d is introduced on the element

then from (2.3) it follows that:

5d = Aod (2.11)

The resulting virtual work - being a scalar quantity - must be

obviously independent on the coordinate system and it follows that:

Substituting in (2.12) from (2.11) we get:

6d:Tf" = (A5d) T f ,

or

1.e. ,

5~f = 5~ATf ,

Since 5d is arbitrary, it follows that,

f-ATf = 0 .

Substituting from equation (2.1) for f in equation (2.16) gives,

i-A TKd = 0 •

Substituting for d from equation (2.3) into (2.17) gives,

- T -
f-A KAd = 0 ,

or f = p,TKA)d

Comparing (2.18) with (2.1) gives,

K = ATKA ,
T

substituting for A,A and K from (2.2) and (2.10) gives,

cosa 0

EA sina 0

~l -J [:sa
sina

K =-
L

0 0 cosa

0 sina

i.e. ,

0

cosa

(2.12)

(2.13)

(2.14)

(2.15)

(2 .16)

(2.17)

(2 .18)

(2 .19)

Si:J

20

2 sinacosa 2 -sinacosa cos a -cos a

cosasina
2 2

EA
sin a -sinacosa -sin a

K =
L 2 2

(2.20)
-cos a -cosasina cos a sinacosa

-sinacosa
2

-sin a sinacosa
2

sin a

The element axis and the global x-axis are shown in Figure 2.3.

Consider the sample problem in Figure 2.4 which represents a simple

truss of constant cross sectional area A and modulus of elasticity E.

The first step to solve this problem is to number each node and element

in the structure. Figure 2.5 shows the element and node numbers. A

global x-y coordinate system is chosen for the whole structure passing

through node number 1. The element stiffness matrices for each member

is then computed according to equation (2.2b) as follows,

; ; -; -;

K(l): EA
1 1 -1 -1 K (3) =

10,12 -; -; ; 1

-; -; ; ;

; -; -; ;

-; ; ; -;
K(2)= EA

-; ; ; -; 1012
1 -; -; !

; 1 0 0
12

K(4): EA
0 0 0 0

1 1 1012 0 0
12 12

0 0 0 0

NOW, each element matrix is formed. We should assemble these

matrices to form the overall structure matrix. This procedure is of

a general nature in FEM.

21

y

x

FIGURE 2.3: A truss element

T
10 10

1
1(-__ 10 ---~;)!«f-- 10 -""*,'--_ 10~

FIGURE 2.4: A truss problem

~----_____ -;r4

CL=45 0

~ - --7X 2

FIGURE 2.5: Nodes and elements numbering

22

2.3 ASSEMBLY OF ELEMENTS

The main idea of the assemblage of elements is to map the

contribution of each element into the global stiffness matrix in a

manner that preserves the compatibility at element nodes. In other

words, for a node which is common to more than one element; the nodal

stiffnesses and nodal loads for all the elements sharing this node are

added to obtain the net stiffness and net load at that node. To

illustrate this, we assemble the overall stiffness matrix of the

considered truss problem.

Since we have four nodes with two degrees of freedom (dof)at

each, it results that the global stiffness matrix is of size (axa).

We start by zeroing a (axa) matrix that will hold the global stiffness

(1) matrix. To map elements of the first element matrix K we note that

element [1) is connected to nodes 1 and 3. Thus K(l) will be mapped

to the corresponding cells in the global stiffness matrix; i.e. to

cells corresponding to nodes 1 and 3 only as shown in Figure 2.6.

Note that each submatrix Kll , Kl3 , K3l and K33 is a (2 x2) matrix.

In the same manner, other element matrices could be assembled in

the overall global matrix. This is shown in Figure 2.7. The numerical

value of K will therefore be:

1

2
K =

3

4

=

1 2 3
1 1

K(ll 1 I K(ll 1
_ 11_J ___ {- 13 i

-t

1

J... ___l

r
I

1

K{l)
33 I

-1-

4

FIGURE 2.6: Map of K(ll into the overall stiffness matrix

1 2 3

K(ll 1 K(ll
11 _ 1_ _ _ _ _ _ _ .. !.3 _ _

1 K(2 l +K(3l 1 K(2l
_I _ 22_ }2 _ 1_ _ _23_

K(ll I K(2l 1 K(ll+K(2l+K(4l
_ 21 _ I- _ .22 __ :_ 33 33 33

1 K(3l 1 K(4l
I 42 I 43

K =

1

2

3

4

1
FIGURE 2.7: Formation of the global stiffness matrix

o

K = EA 0

10/2
-t

-t

o

o

i.e. ,

o

o

-t

-t

o

o

o

o

H

-H

o

o

-t

-t

o

o

-H

H

o

o

-t

-t

-t

-t

o

o

H.l.
12

H
1

12
o

o

o

-H

H

·0

o

o

o

-!

-t

1

12
o

1 !+ -
/2

1+0

23

4

o

o

-!

-!

o

o

1+0

o+t

24

~ ~ 0 0 -~ -~ 0 0

~ ~ 0 0 -~ -~ 0 0

0 0 1 0 0 0 -! -!

0 0 0 1 0 0 -! -!

K = -! -! 0 0 l~ -1 1
0

12 12
-! -! 0 0 0 1 0 0

0 0 -! -! 1

12
0

1 !+ -
12

!

0 0 -! -! 0 0 ! !

At this point it is useful to note some properties of the

assembled matrix. The first property is that K is symmetrical.

Second, it is a sparse banded matrix. This is due to the structural

connectivity of the elements. It is worthwhile to mention that the

global stiffness matrix - as ,the elemental ones - is a singular matrix.

This reflects the fact that so far, we did not impose any boundary

conditions on the problem, so the structure will have a rigid body

motion under any applied loads.

25

2.4 IMPOSING OF BOUNDARY CONDITIONS

Since our main unknown in the problem is the displacement vector

d and since at supports we know the displacements in advance as being

zeros, it follows that when solving equation 2.1 we must cater for

those known displacements. First let us form the f vector for the

nodal loads. In our example, this is quite simple:

0

0

0

f
0

=
0

0

-:oJ
We know that the displacements in the x and y directions at

nodes 1 and 2 are zeros, thus d should look like:

d = : I

In other words, we have four unknowns only rather than eight.

Usually there are two approaches to impose this in the considered FE

solution. In the first approach, the equations corresponding to the

known displacements are omitted and the remaining equations could then

be solved for the actual unknowns. In our example, this means that the

first four rows and columns of K are removed and we will be left with:

26

f = Kd,

where,
0 od

5
0 d

6 f = d =
0

,
d

7
-10 da

and
1

1+ - -1 1
0

/2 12

0 1 0 0

K
EA

=
10/2 1

0 1+
1

1
12 12

0 0 1

which gives the solution vector d:

12

100 0
d =

EA 1+12

l-3-12
Another method of imposing the boundary conditions on the

considered problem is to force the known displacements to be equal to

their known values. This is done by multiplying the diagonal terms of

K that correspond to a known displacement by a very large number and

multiplying the corresponding element in the load vector by the same

large number and the corresponding diagonal element in K and the

prescribed displacement. Thus, we force the solution to give us as a

solution, the prescribed displacement given. This approach is referred

to as the penalty modifications for nodal constraints.

In our example we get,

27

!X10
2O

! 0 0

EA ! !X10
2O

0 0
K =

1012 0 0 lX10
20

0

0 0 0 lX10
20

Other elements of K are unchanged. Since the prescribed

displacements in this case are zeros, the corresponding nodal vector

f will be:
0

0

0

f
0

=
0

0

0

-10

Solving the equation f=Kd for d will result in practically zero

values for the first four elements in d.

28

2.5 SOLUTION OF EQUATIONS

As it is shown, the FEM will lead to the solution of a set of

algebraic equations. These equations could be linear if the original

problem is linear by nature otherwise it will be non-linear. There

are many methods used to solve the FE algebraic equations. Generally,

We can classify two distinct approaches. In the first approach, exact

or direct methods of solution are tried while in the second approach,

approximate or iterative methods of solution are being used. In the

exact methods a solution is guaranteed on the completion of a fixed

amount of arithmetical operations, whilst the iterative methods

generally involve a repetitive sequence of simple matrix-vector

operations in which a guess vector is successively improved until the

solution is obtained to a specified accuracy [Evans, 1973].

2.5.1 Direct Methods

Direct methods of solving linear algebraic equations are primarily

based on the Gauss elimination method. In a standard Gauss elimination

method, the system of equations Ax=b is solved by reducing the matrix A

to an upper triangular form with unity values on the main diagonal.

Then by backward substitution, the last unknown is first determined

and consequently other unknowns are determined by backward substitution

[see Fox (1966), for example].

Consider the system of equations,

Ax = b , (2.21)

where A (nxn) is the matrix of coefficients, x (nxl) is the unknown

solution vector and b (nxl) is the known vector of constants. In FE

structural analysis systems; A is usually the stiffness matrix; x is

29

the unknown nodal displacement and b is the nodal force.

The elimination of the unknown xi (i=1,2, ••• ,n) by the Gauss

elimination method is done by modifying the elements of the matrix A

and the vector b as follows:

a jk = ajk-aji*aik/aii

b j = bj-aji*bi/aii '

for j=i+l to n

and k=i+l to n.

The last equation will be in the form of

x = b la
n n nn

(2.22)

(2.23)

and thus x is determined directly while other x's are determined by
n

backward substitution using,
n

x = i
- L ai·x.)/a .. , for i=n-l to 1.

j=i+l J J 11

(2.24)

It is clear that this method will fail if any of the elements

a .. become zero during the elimination process. In the meanwhile if
11

the elements a
ii

are too small, big round-off errors are expected. To

avoid this situation pivoting is used. The main idea of pivoting is

to re-arrange the equations to be ·solved so that the elementsaii are

chosen to be the largest in absolute value sense among other elements

at each reduction step. Pivoting can be done by searching the complete

matrix a
ij

elements for the maximum value and take that to be the pivot.

In this case both row and column interchanges are needed and the

pivoting process is called complete pivoting. If the search is limited

to the largest element per column, pivoting is called partial pivoting

and can be done by row interchanges only. In many cases partial

pivoting is found to be sufficient to obtain a successful elimination.

30

In many of the practical FE problems the matrix A is positive

definite and symmetrical and pivoting is not required.

Another method of solution of linear equations is that by the

Gauss-Jordan method where at each elimination step the variable Xi

is eliminated not only from the equations i+l.i+2 ••••• n as before.

but also it is eliminated from the equations 1.2 ••••• i-l. Thus the

coefficient matrix A is reduced to a diagonal form and the solution

of the unknowns x, is determined directly by dividing. i.e. bi/a".
~ ~~

A variant of the reduction of A to a triangular form by elimination

is the factorization of A to LU matrices. where L is a lower triangular

matrix and U is an upper triangular matrix with unity values among the

main diagonal.
A = LU • (2.25)

Thus equation (2.21) will be.

LUx = b , (2.26)

In the Crout algorithm [Stabrowski. (1981») an auxiliary vector

Y is calculated during the decompos'ition of A from the equation.

Ly = b •

and by backward substitution. x is determined from:

The elements of L.

i, ,
~)

and uij=l for i=j.

Ux = y •

U. Y and x could

j-l
= a ij - L iik~j

k=l

i-l
1

= -(a, -
i11 ~j L

k=l

be determined from:

• i~j. i=1,2, ... ,n

(2.27)

(2.28)

(2.29)

(2.30)

31

For i=l ulj
= a lj = ~

1.11 all

1
i-l

Yi = (bi - L 1.ikyk)
1.U k=l

(2.31)

and
n

xi = Y, - L uikxk l. k=i+l
(2.32)

This method could be used to solve a family of systems of equations

having the same A matrix simultaneously. In this case the elements of

L and U will be the same and elements of y and x could be calculated

for all the r.h.s. at the same time. Equations (2.31) and (2.32) will

be:

(2.33)

and
n

xim = Yim - k=t+luik~m (2.34)

where m runs from 1 to r; the total number of r.h.s.

It is worth mentioning that although the coefficient matrix A is

factorized into two matrices of the same order, the storage required

is minimal. This is accomplished by storing the non-zero elements only.

The ones on the diagonal of the U matrix are not stored as well. In

fact the elements of U, except the diagonal, are stored in place of

the zeros of the matrix L as shown below,

all a12- - - - - a ln fi;.l u12 u -----u 13 ln

a2l a22 - - -- - a2 1.21 1.22 u23 - - - - u
I I I n I I

12n
I + I I

I I I I I I

anl an2 - - - - ann 1. nl 1.n2 - - --- 1.nn

A similar method of the Crout' s algorithm is that known as

Doolittle's method. Here, the matrix A is decomposed into an LU pair

32

where L has the ones on its diagonal instead of U as before. The

Choleski's method requires that the diagonal elements of both Land U

are the same i.e. tii=uii V i. If the coefficient matrix A is positive

T T
definite i.e. z Az>O for all non-zero vectors z and A =A i.e. A is

T T
symmetrical, the resulting factorization yields U=L and A=LL •

It should be noted, however, that the Gauss elimination is not

implemented as such in FE systems. This is due to the fact that: first

the stiffness matrix is very sparse and it is normally symmetric and

positive definite. Another factor that should be considered is that

when solving the FE algebraic equations the stiffness matrix size is

usually large enough so that it will not fit in the computer's fast

memory (core) and the use of auxiliary storage will be necessary. The

methods used for computer implementation of these methods will be

discussed in Chapter 4 of this thesis.

2.5.2 Indirect Methods

Indirect methods for solving systems of linear equations are

primarily based on the Gauss-Seidel iteration. If the system of

equations to be solved is Ax=b, and an initial approximate solution

(1) vector is x then the iterative procedure is defined by:

i-l
= L

j=l

aij (n+1)
--x
aii j

N

L , n=1,2, ...
j=i+1

(2.35)

where the superscript (n+l) denotes the iteration cycle number n+l.

A sufficient condition for convergence is that [Gerald, 1978]

N

> L I aiJ,1 ' i=l ,2, ••• ,N
j=l

(2.36)

j#i

33

Re-writing equation (2.35) as

{

i-1
=_1_ b - L

aii i j=l
(2.37)

= (n) + --L- (b _
xi a i

ii

i-1
~ (n+1)
L ai·x j j=l J

n

L
j=i

If the second term in (2.38) is multiplied by some factor w we get the

successive over-relaxation method (SOR) which will converge much faster

than the standard Gauss-Seide1 method and then the iterative equations

become,

(n+1)
xi

i-1
(b - L

i j=l

n

L
j=i

The over-relaxation factor w must be between 1 and 2, the optimum

value is problem dependent.

It is a fact that iterative methods of solution are not popular

in the well-known finite element computer packag3s [Rao, (1982)]. In

a survey of 36 of the most well-known FE computer packages by [Neor,

(1981)], none uses iterative methods to solve systems of linear

equations resulting during the solution process. Although the iterative

methods of solution requires less memory space than the elimination

methods and usually better for. small size equation systems (500-1000)

fitting into the RAM of the computer [Stabrowski, (1981») but for large

systems when using backing storage is unavoidable the direct methods

are better. This is almost certainly due to the lack of knowledge on

how many iterations are necessary to achieve an acceptable solution.

Another disadvantage of iterative methods is the choice of a good

over-relaxation factor (w value) which is very sensitive in relation

to the rate of convergence. There is no guarantee of convergence for

34

unsymmetric problems. Another very important factor is that in

iterative methods of solving linear systems of equations the re-

solution is almost as expensive as the solution itself although you

do possess a near starting solution. In engineering design, re-solution

is frequent for different right hand sides [e.g. different cases of

loading in a structural analysis prob1emJ or in non-linear analysis.

2.5.3 SOlution of Non-Linear Equations

If the problem to be solved is not linear, the resulting system

of equations will be non-linear. Solution of a system of non-linear

equations is not, in general, possible by direct methods. Iterative

procedures are used to solve such equations. Many methods have been

devised [e.g. Ortega and Rheinbo1dt, (1970)J samples of which are given

only which represent those· used in practical FE programs.

Consider the set of equations,

f1 (X) = 0

f2 (X) = 0

f3 (X) = 0

f (X) = 0
n

(2.40)

where X is the vector of unknowns ={x
1

,x
2

, ••• ,X
n

} and f
1
,f

2
, ••• ,f

n
are

non-linear functions. These set of equations can be written as,

F(X) = 0 •

The problem is to find the solution vector X with sufficient accuracy.

The main essence of the iterative procedures to be described·is to

start by a guessing solution vector x(O) which is close enough to the

(1) (2)
exact solution x* and try to generate a sequence of vectors X ,X , •••

(m)
X that converges to X*.

35

The simplest and oldest method to solve the system of equations

(2.41) is the fixed point iterative method. In this method the

equations are re-written in the form,

x = G(X) (2.42)

The initial guess vector X(O) is chosen and subsequently updated

using the iterative process defined by,

x(i+l) = G(x(i» , (2.43)

where the superscript i denotes the iteration cycle. The iteration is

proceeded until an assigned criterion is satisfied. Practically, two

limits are set to accept the solution vector in iterative procedures:

(i) a preset error limit is satisfied and (ii) a maximum number of

iterations is not exceeded. It is clear that this method is of linear

convergence. However, it is possible to accelerate the convergence by

using the most updated values of the components of the vector X. In

. (i+1) (i+l) (i+1) (i+l)
other words, when computl.ng xm the values Xl .x

2
, ••• ,xm_l

(i) (i) (i)
are used instead of the values Xl .x2 , .•.• xm_l •

Another method of solving the system of equations defined by (2.41)

is the Newton's method. In this case the iteration process is defined

by:

(2.44)

where x(i+l) is the upd~ted solution vector at iteration number i and

J(i)-l is the inverse of the Jacobian matrix computed at x(i). The

Jacobian
(i)

J is defined by:

~ ",
af

l

axt) ax (i)
,2

J (i) l'
I

= ,
af af

axIi)

n
(i)

aX
2

,
I

. ,
af

n

ax (i)
n

(2.45)

36

It is known that Newton's method is of quadratic convergence.

However, the convergence of this method depends on the initial guessing

(0) vector X • This is particularly noticed for highly nonlinear

equations. Practically the Jacobian is not inverted at each iteration

cycle since matrix inversion is expensive in terms of computer cost.

Rather, the Jacobian is evaluated and the system of equations:

J(i)C(i) = F(x(i» , (2.46)

are solved for c(i) which represents the correction vector to update

(i) . (i+l)
the solution vector X • FLnally, the updated vector X is

computed as:

(2.47)

There are many methods which are all based on Newton's method with

some modifications. Among these is the damped Ilewton' s method. In

this method we introduce a damping factor ~(i) to be multiplied by the

correction vector c(i) such that the residual error after iteration

cycle (i+l) is always less than that in iteration cycle (i), i.e.,

Another method which is based on Newton's method is that by Broyden

(1965) where the Jacobian matrix is replaced by an approximate one

which is updated at each iteration cycle. The iterative procedure is

defined by,

The approximate Jacobian A(i) is computed from:

and,

(1)-1 (i-l)-l
A = A +

(S(i)_A(i-l)-ly(i»S(i)TA(i-l)-l

(i)T (i-l)-l (i)
SAy

S(i) = xCi) _ x(i-l)

y(i) = F(x(i» _ F(x(i-l»

(2.49)

(2.50)

(2.5])

(2.52)

37

It is clear that in this method the solution of equations

defined by (2.46) is replaced by simple matrix operations (multi­

plication, addition and subtraction) which are executed faster as in

equations (2.50), (2.51) and (2.52). On the other hand, the quadratic

convergence of Newton's method is degraded.

38

2.6 DETERMINATION OF OTHER ELEMENT DATA

The previous procedures will result in the determination of the

unknown displacements at nodes. Usually it is more important to know

the stress values at different EQints in the structure. The procedure

could be summarized as follows:

(i) Stress-strain relationship:

Generalization of Hook's law results in,

where

o = De:

-r
o = [0 0 0 0 0 0 1 is the stress vector

x y z xy yz Zx
T e: is the strain vector = [e: e: e: e: £ e: 1 xyzxyyzzx

(2.53)

D is the elasticity matrix and £ is the strain vector.

Fer a linearly elastic material, D is given by [Pr- zemieniecki,

(1968) 1 ,

1-v v v 0 0 0 l
V 1-V v 0 0 0

D= E
v V 1-v 0 0 0

(2.54)
(1+v)0.-2v)

0 0 0
1-2 v

0 0
2

0 0 0 0
1-2 v

0
2

0 0 0 0 0
1-2v

2

(ii) Strain-displacement relationship,

£: = Bd (2.55)

where £ is the strain vector as before

d is the general displacement vector = {:}
is a matrix of differential B operators given by,

39

.L
ax

0 0

0 .1..
ay

0

0 0 ...2...
az

B = (2.56)
.L .L 0
ay ax

0 .1.. ...2...
az ay

.L 0 ...2...
az ax

But since what is available is the node disp1acements only, then,

we must relate the disp1acements within the element to the nodal ones.

This is done using a function of the position called the shape function

or the interpolation function. Thus denoting the calculated nodal

e disp1acements with d then the displacement field d is given by:

d = Nede
(2.57)

The choice of the shape functions Ne(x,y,z) is in the hands of the

user and depends on the type of element under consideration [Davis,

(1980)). The shape functions are said to be conforming functions if

they satisfy the following conditions [Majid, (1980)):

(i) The displacement and the resulting derived strains must be

continuous functions (CO continuity).

(ii) The shape function must give rise to uniform strains within the

element (constant first derivative).

(iii) No strains should be produced due to rigid body movement.

(iv) The function must satisfy the conditions of compatibility inside

the element, at the nodes where elements meet and along the sides.

The role of the shape functions in the FE modelling is important

40

and usually only polynomials are used due to their ease of

manipulation symbolically and computationally. It is clear that

combining equations (2.53) through (2.57) the stresses can be computed.

2.7 EXTENSIONS TO NON-STRUCTURAL APPLICATIONS

After the FEM was used successfully for linear problems in 2-D

structural analysis, the natural extension to 3-D analysis was

41

developed [Argyris, (1964)]. Non-linear problems, both in geometry and/or

material, were considered afterwards. After discovering that FEM

could be interpreted in terms of variational techniques, the method

was used to solve problems outside the structural domain. General

field problems were solved [Zienkiewicz and Cheung, (1965)]. Another

dimension added to the range of applications that could be handled by

FE was after it was discovered that FEM can be formulated as one of

the methods of weighted residuals (MWR) such as Galerkin's method.

This idea paved the way to solve problems for which variational

principles do not exist or were difficult to find. The text of [Oden,

(1972)] gives a comprehensive account of the application of FE to non­

linear problems. A classical reference of the FEM that covers a wide

range of applications is that of [Zienkiewicz, (1977)]. Some of the

recent applications are: Biomechanics [Gallagher, et al, (1982)],

Coupled Problems [e.g. Borsetto et al, (1981) and Hinton et al (1981)].

In an excellent paper by [Zienkiewicz and Kelly, (1982)] the role of

finite elements as a unified problem solving and information transfer

method has been stressed.

42

2.8 CONCLUSIONS

The FEM was originated by structural engineers to solve complex

structural problems. The main motivation for the development of the

method was the challenge problems posed by relatively high-speed, jet­

powered aircraft. High-speed digital computers coupled with space

exploration money for basic research helped to process the present

advance in FEM in the last two decades [Kaldjian et al, (1982)).

Generally, three main types of problems were found in Engineering and

Applied Mathematics that could be handled by FEM. These are [Huebner

and Thornton, (1982)):

(i) Equilibrium problems:

These are systems that do not vary with time. Examples are: linear

structural analysis and steady state fluid flow in porous media.

(ii) Eigenvalue problems:

These are equilibrium problems whose solution often requires the

determination of natural frequencies and modes of vibration of

solids and fluids. Examples are: Stability of structures and

modes of vibration of dynamic systems.

(iii) Propagation problems:

These are time dependent problems. It could arise from the

above mentioned categories when a time variation is considered.

Examples are: creep analysis of structures and non-steady flow

of fluids in porous media.

The main steps in FE analysis could be summarized as:

(i) The discretization of the domain into appropriate finite elements

(ii) Evaluation of each element stiffness and load matrices

(iii) Assemblage of element stiffness and load matrices into the global

stiffness and load matrices.

43

(iv) Application of suitable constraints or boundary conditions.

(v) Solution of the resulting simultaneous equations for the unknown

nodal variables.

(vi) Evaluation of other element quantities of interest in the problem.

The element stiffness matrix of an element could be derived by

direct methods in simple cases like truss elements, constant strain

triangles (eST) etc. In these cases, it is relatively easy to derive

the terms of the stiffness matrix in algebraic form. For more

complicated cases it is usually better, and sometimes the only possible

alternative to evaluate the element stiffness matrix using numerical

integration. Of the many available numerical integration schemes, the

Gauss-Legendre method is the most popular teChnique used in FEM. This

is primarily due to its high accuracy and ease of computer implementation.

As a general view of the current research in the FEM, three major

fields of specialization could be identified. In the engineering

aspects, the development of new elements specially for shell structures

is one of the many active areas of research. Extending the FEM for new

applications could also be observed. Solution of interfacing and

coupling problems is a trend in the literature. Frequently new methods

for solving free surface and moving boundary problems occur. Methods

for non-linear analysis are being refined and developed that give

acceptable results with reasonable costs. In the mathematical aspects,

error analysis specially the discretization error is an area of active

research. The theoretical study of the convergence of the method for

non-linear analysis is frequently discussed. In the computational aspects

new methods and algorithms are necessary for: data structures, equation

44

solving, programming systems, the use of microcomputers and systems of

microprocessors and the use of advanced computer architectures such as

pipeline processors, single instruction multiple data streams (SIMD)

and multiple instructions multiple data streams (MIMD). Preprocessors

and postprocessors are also urgently required in FEM. Although several

systems are becoming available, it seems that many more are required.

CHAPTER 3

THE FINITE ELEMENT METHOD: A MATHEMATICAL APPROACH

TABLE OF CONTENTS

3.1 Preliminaries

3.1.1 Basias of Linear Algebraia Theory

3.1.2 Preliminaries of Partial Differential Equations

3.1.3 Preliminaries of Variational calaulus

3.2 Approximate Solutions for Partial Differential Equations

3.2.1 In troduat ion

3.2.2 The Method of Weighted Residuals

3.3.3 The Finite Differenae Method

3.3 Variational Approach of the FEM

3.3.1 The Rayleigh-Ritz Method

3.3.2 Merits and Limitations of Variational FOI'l1lUZations

3.3.3 The Variational FOI'l1lUlation of the FEM

3.4 A Weighted Residual Approaah to the FEU

3.5 The Domain Disaretization Process in the FEM

3.5.1 Element Shapes

3.5.2 Nodes

3.5.3 Interpolation Functions

3.5.4 Natural Coordinate System

3.6 The Two-Dimensional Triangular Elements

3.7 The Isoparametria Elements

3.B Convergence of the FEM

3.9 Error Estimates in FE

3.9.1 Souraes of Errors

3.9.2 Error Measures

3.9.3 Round-off Errors

3.9.4 Discretization Errors
3.10 Speaial Problems in FE Analysis

3.10.1 Time-Dependent Problems

3.10.2 Mixed and Hybrid Elements

3.10.3 Infinite Finite Elements

3.11 Comparison of the FEM with Other Computational Techniques

45

3.1 PRELIMINARIES

The aim of this section is to introduce some of the basic concepts

in linear algebraic theory, partial differential equations and

variational calculus which are required in other parts of the thesis.

The illustration is by no means neither complete nor comprehensive.

3.1.1 Basics of Linear Algebraic Theory

(1) vector Spaces

Given a non-empty set X, the totality of vectors that can be

constructed by scalar multiplication and vector addition from the

vectors in Xis called a vector space. The scalar multiplication must

satisfy the following conditions:

(i)

(ii)

(iii)

(iv)

a (x+y) = ax+ay ,

(a+8)x= ax+8x ,

(aB)x = a(Bx) ,

l.x = x ,

where, x,y are two vectors in X and a,B are arbitrary scalars.

The vector addition must satisfy the following conditions:

(i) x+y = y+x ,

(ii) x+(y+z) = (x+y)+z ,

(iii) There exists the zero element 0 E X such that:

O+x = x+O , v x E X

(iv) 'Ix E X; there exist a negative -x such that:

x+(-x) = 0 •

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

A set of vectors is said to span the space if they can generate the

vector space by the use of these operations. If the set consists of

the least number of vectors that span the space, it is called a basis

46

for the space. The number of vectors in the basis is called the

dimensionality of the space.

Assuming n basis vectors exist in X, an n-dimensional space can

be generated. Any subset of m basis vectors; m<n; forms the basis of

an m-dimensional subspace. A necessary and sufficient condition that

a set of n vectors be confined to a subspace is that the set be

linearly dependent, i.e., there exists coefficients c
i

' not all zeros,

such that,

(3.9)

Otherwise the set is linearly independent.

(2) Matrices and Sets of Linear Equations

Some notations and properties of a square real matrix A (nXn)

which are relevant to the solution of the set of linear equations

defined in matrix form as:

~=b, (3.10)

where x is the unknown vector (nxl) and b is the known vector of

constants (nxl) are as follows:

• The matrix A is said to be non-singular if IAlfo where IAI

•
•
•
•

is the determinant of the matrix A.

A is symmetric if A=AT where AT is the transpose of A.

-1 T ~ A is orthogonal if A =A where A is the inverse of A.

A is null if a .. =0 Vi Vj.
~J

A is diagonally dominant if la .. 1 ~ I la .. 1 Vi
~~ ifj ~J

• A is irreducible if there exists no permutation transformation

-1
PAP which reduces A to the form:

where P and Q are square submatrices of order p and q,

respectively; p+q=n and 0 is a (pXq) null matrix.

• Two square matrices A and B are similar if there exists a

-1
permutation matrix P such that: B=P AP.

47

• The vector space generated by the rows of A is called the row

space and that by the columns, the column space. The

dimensionality of these two spaces is the same and is called

the rank of A.

Considering the set of equations Ax=b, the sufficient condition

that this system of n nonhomogeneous linear equations in n unknowns

-1
has a unique solution is that A exists, i.e. rank [A]=n. When the

rank of A is r<n, the system has a solution if it satisfies the

consistency condition:

rank[Aib] = rank [A]

i.e. if b is subject to the same linear dependencies as the rows of A.

In this case the equations are permuted such that the first rare

linearly independent and in the partitioned form the system will be:

(3.11)

and the solution of the r independent unknowns will be,

-1 -1
xl = Allbl - AllA12x2 (3.12)

In fact this re-arrangement of the system of equations is one of the

ways to apply the boundary condition in a finite element analysis as

demonstrated in Chapter 2 of this thesis. The known displacements,

which are the boundary conditions in structural analysis applications,

48

are arranged as x2 in the partitioned form of the system of equations.

However, as previously stated this method of imposing the boundary

conditions in FE programs is not commonly used.

(3) Determinants

The determinant of a matrix A (nxn) is denoted by IAI and is

defined by the Laplace expansion:

a n\!

where a,S, ... ,\! represent one of the permutations of the natural

(3.13)

numbers 1,2, ••• ,n. The total number of terms is nl The exponent k is

used only to determine the sign of the permutation, i.e., the term is

negative if the permutation is odd otherwise the term is positive. The

permutation is said to be odd if the number of pairs of integers which

are out of natural order is odd. Thus, the permutation 13245 is an odd

permutation since there is only one sequence out of natural order; 32.

Since each of the numbers 1,2, .•• ,n appears only once as a row sub-

script and once as a column subscript, any term of the expansion

contains only one element from each row and column of A. This is best

illustrated by an example of a 3x3 determinant,

A =

The different permutations with their signs are:

123, -132, -213, 231 , 312 and 321.

Thus, the expansion is:

49

Some of the important properties of determinants are as follows:

(1) Taking the transpose does not change the determinant.

(2) If one of the rows of a determinant is all zeros; the determinant
value is zero.

(3) Interchanging two rows changes the sign of the determinant.

(4) If two rows of a determinant are the same, the determinant

is equal to zero.

(5) A determinant with two proportional rows is equal to zero.

(6) A determinant remains unchanged if to the elements of one of

its rows we add corresponding elements of another row

multiplied by the same number.

(4) Quadratic Forms

as:

A function of n variables x
1

, ••• ,xn in quadratic form is defined

n

i:
i=l

n

i: a .. xix.
j=l 1.))

(3.14)

This form is usually encountered whenever the energy of a continuous

system is expressed in a set of discretized coordinates of the system.

It is more convenient to write the quadratic form F in matrix notation

as:
F(XI ,··· ,xn)

where,

x

= T xAx

xl
x2

x
l n

, (3.15)

A quadratic form F(XI, ••• ,xn) is positive definite if F is non-

negative for all possible combinations of real x. (i;l, ••• ,n) and if
1

F is zero only when every xi is zero. A property of a positive

definite quadratic form is that the determinants of the coefficients

a
ij

and all of its principal minors are positive, i.e.,

I all a12 all a12 - - - - a ln , ,
all > 0 , > 0, ... , > 0 . ,

a2l a22 anl - - - - - - a
nn

If the variables xl"",xn are subjected to a linear transformation

defined by:
n

50

X. =
1

I qikYk ' i;1,2, ••• ,n
k;l

(3.16)

or in matrix notation:

(3.17)

Thus, the quadratic form F will be:

T
F ; x A (Qy) ,

T TT since x ; y Q , then,

T T
F ; Y (Q AQ)y

or F ;
T y By (3.18)

where, B ; QTAQ (3.19)

If the linear transformation defined by Q is non-singular, the

rank of QTAQ will be equal to the rank of A and thus the rank of a

quadratic form does not change under a non-singular linear transformation.

If the. quadratic form F is changed by a system of non-singular

linear transformations to a sum of squares of the variables, it is

called its canonical form, i.e.:

(3.20)

In this case, the matrix B will be a diagonal matrix.

51

It is always possible to reduce any quadratic form to canonical

form by means of non-singular linear transformations.

(5) Eigenvalues and Eigenvectors

Given a matrix A (nxn) , the eigenproblem is to find the eigen-

values (also called characteristic roots or latent roots), A. and the
l.

eigenvectors x such that:

Ax = AX , (3.21)

where the eigenvalues A are the roots of the characteristic equation

given by:

lA-AIl = 0 .

For each A., if x#O and satisfy,
l.

(A-AI)X = 0 ,

(3.22)

(3.23)

then x is an eigenvector of A corresponding to the eigenvalue Ai'

The spectral radius p(A) is defined as:

p (A) = max IA.I
1

. l.
~~:;n

(3.24)

In other words the spectral radius is the largest eigenvalue of the

matrix A. Since the eigenvalues may be complex numbers, in general,

is ~:+b: , where Al.' = a.+i=l b .•
~ 1 .1. l.

(6) The Calculus of Matrices

If the elements of a matrix A are functions of n independent

variables x
l

,x2 , ••. ,x
n

then the matrix A is a matrix function of Xl"'"

x. The derivatives of A with respect to any of these variables is
n

done by differentiating every element with respect to the same variables,

e.g .. ,

52

aa
ll

aa
l2 aaln l - - - -aX2 aX2 aX2

aA I

--= (3.25)
aX2 I

aanl aa
nn - - - - - aX
2 aX2

In the same sense, the integral of a function matrix A exists

only when the integral of each element of the matrix A exists.

A quadratic functional I(XI, ••• ,x
n

) is defined in matrix form as:

where x
l

,x2 , ••• ,x
n

are n independent variables, A is a symmetric

square matrix and b is a column vector.

(3.26)

To make the functional stationary, which is used frequently in

developing the element characteristics in the FEM, the n derivatives

of I with respect to xl, ••• ,x
n

must be equated to.zeros.

[l!.] = ar = 0 , i=I,2, ..• ,n
ax aX

i
since,

and

a T
-- x Ax = 2Ax aX

i

a xTb = b
aX

i

substituting we get:

ar --=Ax-b=O, i=l,2, ... ,n
aX

i

This is in fact a system of linear equations.

(7) Norms

(3.27)

(3.28)

(3.29)

(3.30)

The norm of a vector x = is denoted by 11 x 11 and is a real

nonnegative number such that:

x
n

53

II xii = 0 iff x=o

II cxll = I cl II xii for all scalars c

There are many norms for vectors the most commonly used ones are:

n

Ilxlll = l: Ix·1 i=l ~

M 2 II xii 2 = L I x·1 i=l ~

Ilxll., = ~xlxil
~

The matrix norms can be defined in a similar manner as:

max
j

max
i

1:1 a .. 1
i ~J

The 2-norm is often called the spectral norm, and for any real

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

symmetric matrix A (nxn) this norm is p(A). The matrix norm satisfies

similar properties to those of vector norms, i.e.,

IlcAII = Icl IIAII

IIAxl1 ~ IIAII Ilxll

IIABII ~ IIAII IIBII

IIA+BII~IIAII + IIBII

(8) Computational Errors in the Solution of Linear Algebraic Equations

Due to the finite word length of computers all the numerical

computations are done using finite arithmetic precision. Consequently,

errors occur during the numerical computations. If the system of linear

equations are ill-conditioned, i.e. the matrix of coefficients is nearly

54

singular the effect of these computational errors became more serious.

In order to conclude simple bounds on these errors consider the system

of equations defined by:

Assume perturbation 6x in x due to a variation 6b in b, then,

or

or

. whence,

but since

A (x+6x) = b+6b ,

A(6x) = 6b

-1
6x = A 6b,

I 16x II If 11 A-Ill 116b II

IIAllllxll:;llbll

(3.37)

(3.38)

(3.39)

by division the bound on the relative perturbation can be found as:

(3.40)

The value I IAI I I IA-ll I is called the condition number of A and is

denoted k(A). Since the norm IIABlllfllAl1 IIBII and putting B=A-
l

then:

IIAA-llllfIIAIIIIA-lll.

The norm of the identity matrix is 1 thus IIAII IIA-lll:;l., Le.

k(A) is :;1 always. Thus,

where a:;l.

116xll

Ilxll

(3.41)

This shows that if a is a large number then small variations in

b (which can be due to computational errors) will result in relatively

large variations in the solution.

In a similar manner it is possible to study the effect of

perturbation in the matrix A itself on the solution. Assuming the

perturbation 6A then:

55

(A+t.A)~ = b , (3.42)

where ~ is the perturbed solution. A measure of the error in

~ A
the solution may be e=x-x and the residual r is defined by: r=b-Ax,

Ilrll ~ IIt.AII II~II
... 1\

Ae = A(x-x) = b-Ax = r

-1
e = A r

Substituting for 11 r 11 we have,

i.e. Ilell
II~II

.ull,-=-e LLII ~
II~II

~ k(A)

(3.43)

(3.44)

(3.45)

(3.46)

which indicates that depending on the value of the condition number

k(A) the relative error in the solution can be very large due to

variations in the matrix of coefficients A.

3.1.2 Preliminaries of Partial Differential Equations

In many of the problems in engineering and science the physical

phenomena to be studied can be formulated mathematically as a partial

differential equation or as a set of these equations. In these problems.

two or more independent variables exist and the rates of changes of

the dependent variables are related to these independent variables

through differential operators.

The order of a partial differential equation (PDE) is the order

of the highest derivative in the equation. Thus, the Laplace equation

56

u+u
2 2

ax ay
= 0 is a second order partial differential equation. A

partial differential equation is said to be linear if the highest

degree of the variables and their derivatives is one. Thus the Laplace
2 2 2 . . a u a u

equat~on ll.ke: -- + -- =
ax2 ay2

equation is linear while an f(x,y,u} is a

non-linear partial differential equation of the second order.

The problems which will be solved using the FEM within this thesis

can be written in the general form:

L ($) - f = 0 , (3.47)

where f is a known function and L is a differential operator. The

solution is required for some domain D bounded by the surface E and

$ is the field variable (dependent). $ can be a scalar function, e.g.

hydraulic head in a fluid problem or a vector e.g. displacement in a

structural mechanics problem. The differential operator L may be

linear or non-linear. Many of the physical problems can be modelled

using a second-order differential equation. This may be because many

of the physical problems deal with one form of the conservation

principle e.g. energy, mass or momentum conservation. Considering n

dimension space, L can be written

n
a

2
(}

L () = I A.
2 + l. i=l eXi

where the coefficients Ai' Bi '

as:

n
!.LJ...+ c .(I B. } + D, (3.48)

l. aX i l. i=l

C. and D may be functions. This l.

operator is linear if A. ,Bi,C. and D are functions of the independent l. I

variables (Xl ,x2 '··· ,xn) only. ·L is quasilinear if Ai ,Bi 'Ci and Dare

functions of Xi and the dependent variable as well as the first

derivatives of the dependent variable. Considering the case of two

independent variables X and y, a general second-order partial

differential equation may be written as,

57

2 2
2B LL- + c U =

axay a/
a~ ~)

D(x,y,~, ax' ay (3.49)

where A,B and C are functions of x and y only.

This equation can be linear or non-linear depending on the terms

in D. However, it is classified as:

Elliptic equation if B
2

-AC < 0

Parabolic equation if B
2

-AC = 0

Hyperbolic equation if B
2

-AC > O.

Since A,B and C may be functions of x and y, this classification may

change from point to point in the solution region. A well known example

of these three classes are:

Laplace

Diffusion equation

and Wave equation

.Q.+.Q.=
2 2

ax ay

au
-=
at

a2
u

ax
2

a2
u

ax
2

0, which is elliptic,

which is parabolic,

which is hyperbolic.

For parabolic and hyperbolic equations, the solution domains are usually

open, while for the elliptic equations it is closed. In general,

elliptic equations are associated with steady-state phenomena and require

a knowledge of values of the unknown function or its derivatives on

the boundary of the region of interest. On the other hand, hyperbolic

equations are generally associated with propagation problems. The

parabolic equations are generally associated with problems in which

the quantity of interest varies slowly.

In order to be able to get a solution for a PDE, some boundary

conditions must be specified. The important types of boundary conditions

are:

58

(1) Type I usually known as a Dirichlet boundary condition is where

the function u(x,y) is prescribed along the boundary i.e. u is

given on the boundary aR. If the function assumes zeros along

the boundary, this condition is termed homogeneous Dirichlet.

(2) Type II which is known as a Neumann condition is where the normal

d 't' au, if' d 1 th b d er~va ~ve an ~s spec ~e a ong e oun ary.

(3) Type III which is known as a mixed condition is where the function

u(x,y) and its normal derivative ~~ are specified along the boundary

aR.

For an elliptic operator L, the problem is said to be properly posed

when only one of these conditions holds at each point of the boundary.

Consider the PDE in a 2-D region R expressed in the form,

L ($) = f ,

where L is a differential operator defined as:

L ($)

and f(x,y) is

D (.. 2.1 2.t)
x,y,~, ox' ay

(3.50)

(3.51)

Then the operator L is said to be self-adjoint iff the expression,

(3.52)

is a function of $,~ and their derivatives evaluated on the boundary.

For homogeneous boundary conditions, L is self-adjoint iff

ffR~L($)dxdY = Jf: L(~)dxdy •

The operator L is said to be positive definite, iff for all $:

J J $ L($) dxdy >- 0 •
R

The equality to zero occurs only iff $=0.

(3.53)

(3.54)

59

3.1.3 Preliminaries of Variational Calculus

The aim of this part is to introduce some principles and notation

and to show the correspcndence between differential equations and the

variational problem formulation. The variational calculus (or calculus

of variations) is concerned with the determination of minima or maxima of

functionals. Thus, the basic problem in variational calculus is to

find the function $(x) which makes the functional I defined by:

x
2

=

stationary.

J
F(x,$,$,$)dx x xx (3.55)

In order to solve (3.55) for the value of $(x) which makes the

functional 1[$] stationary we notice that a necessary condition is to

have:

01[$] = 0 , (3.56)

where the variational operator 0 is similar to the differential operator

d. The operation of variation is commutative with respect to both

integration and differentiation, i.e.,
r

f o (J Fdx) = (OF) .dx (3.57)

and o~ = ~ 0$ (3.58)
dx dx

The variation in $, i.e. 0$, is defined as an infinitesimal,

arbitrary change in $ for a fixed value of the variable x, i.e. for ox=O.

The variation of a functional or a function of several variables is

defined in a similar manner to the calculus definition of a total

differential, i.e.,

of = :~ .ox + ~:

since oX=O, then,

of = 0$ +~
x 3$

xx

.0$
xx

0$
xx

(3.59)

(3.60)

and substituting in (3.56) we get,

o I [$]

x
r 2 of

= 0 = J (~.
Xl

Integrating the second

r'\F
J ~. o$x dx

x
xl

and:

C of

a$xx
1

of
a$xx

of
=

a$xx

rll:2 d
2

oI [$] = J [E - ..9..(OF) + --a$ dx a$ dx
2

xl x

aF d aF
15$ + [~- dx (~)].

x xx

OF +--
0$

xx

o -a (0$)dx x x

(-1.!:...)]
a$xx

.o$dx

r2

xl

= 0 •

a
ox(O$).dx

Since 0$ is arbitrary, each term must vanish individually,

and

and

2
+ ~(-1.!:...)

dx
2 0$ xx

= 0 ,

60

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

Equation (3.65) is the governing differential equation for the given

61

problem and is called the Euler or Euler-Lagrange equation while the

other two equations (3.66) and (3.67) give the associated boundary

conditions and are called NATURAL boundary conditions. If they are

satisfied they are called free boundary conditions. If the natural

boundary conditions are not satisfied, we must have:

and

6. (xl) = 0 , 6. (x2) = 0

6.
x

(x
l

) = 0, 6.
x

(x2) = 0 (3.68)

These are called the geometric or essential or forced boundary conditions.

To illustrate, consider the functional I[y] defined by:
b

I[y] = J h+(y,)2dx ,

a

where y(a)=yo and y(b)=Yl.

(3.69)

What we need is to find the function g that minimizes I[y]. In

this case, the functional defines the distance between the two points

a and b along the curve y=f(x). The obvious solution of this problem is

a straight line connecting the two points a and b where y(a)=yo and

y(b)=Yl. In this case
2 ,

F" F(X,y,y') = (l+(y'))

aF
-= 0 ay and

aF 2 -,
-;;-;-= ![l+(y')] .2y'.
ay .

The Euler equation is, therefore,

d
dx

and by integrating once, we have,

:t' = A
(l+y,2),

or
(y') 2 A2 (l+y,2) =

i.8. (y') 2
2

2 A = --= B

l-A
2

(3.70)

(3.71)

(3.72)

62

i.e. , y' = B •

Integrating once more, we obtain,

y=Bx+c, (3.73)

which is a straight line as expected.

In the case of two variables x,y, the functional I[~l will be of

the form:

I[~l = ff F(X,y'~'~x'~Y'~xX'~XY'~yy)dxdy
R

and the corresponding Euler equation is:

2
a(~)

2 a~ ax xx

a
2

aF a
2

+-- (-+--
axay a~ a 2 xy y

(2L)
a~

yy

(3.74)

(3.75)

3.2 APPROXIMATE SOLUTIONS FOR PARTIAL DIFFERENTIAL EQUATIONS

3.2.1 Introduction

63

Obtaining exact analytical solutions to most of the problems

expressed in partial differential equations is usually not possible.

Only a few problems with regular geometry can be solved by direct

integration methods using, for example, separation of variables or

Fourier or Laplace transformation techniques. It is therefore a

necessity to try to find approximate solutions for the PDE. One of

the approaches to approximate solutions is the use of perturbation

methods. However, since these methods are basically useful when the

problem contains relatively small nonlinear terms, their applicability

is limited.

The advent of computers make the numerical approximate solutions

more attractive and'easier. It can be said that the three currently

outstanding methods for obtaining approximate numerical solutions of

high accuracy are the method of weighted residuals, the finite difference

method, and the finite element method [Huebner and Thornton, 19821.

It is worthwhile to mention that these methods can be related to each

other as we shall be demonstrating later in this chapter, where the

finite element method can be derived as a special method of weighted

residuals. The choice of a particular technique is a function of many

parameters concerning the problem to be solved, the required accuracy,

the availability of software and hardware suitable for the technique

and the cost.

In what follows a brief presentation is given for the methods of

weighted residuals and finite differences.

64

3.2.2 The Method of Weighted Residuals

The method of weighted residuals is an approximate technique used

for solving PDE's. Consider the boundary-value problem defined by,

L (~) ~ f in R , (3.76)

subject to the boundary conditions,

~ ~ g(s) , (3.77)

on some part Cl of the boundary, and

~ + q(s)~ ~ h(s) (3.78)

on the remainder C
2

.

" Assume an approximate solution ~ is to be found, then the difference

from the exact solution ~ is called the residual r, thus,

1\
r ~ L (~) - f (3.79)

" The approximate solution ~ is expressed in terms of a suitable complete

set of linearly independent trial functions $. which are chosen to
~

satisfy the boundary conditions as ~,

n
<P ~ I C.$.•

i~l ~ ~
(3.80)

The method of weighted residuals is based on the determination of .

the C. parameters in such a way that the weighting average of the
~

residual over the whole domain vanishes. This is accomplished by

choosing n linearly independent weighting functions w
i

and the weighted

residual is therefore.

r
J

R
r wi dR ~ 0 , i:::::l, 2, (3. 8 1)

Once these weighting functions are specified, and substituting in

equations (3.80) we get a system of equations for the parameters Ci •

These equations are linear algebraic if the operator L is linear

otherwise they are non-linear. Moreover, if the dependent variable

65

in the problem to be solved is a function of both spatial and

temporal variables, the c. will be functions of time and the resulting
l.

equations will be ordinary differential equations rather than algebraic

ones.

There are many ways to choose the weighting functions w. and,
l.

consequently many methods of weighted residuals. The most popular

methods are:

(i) The collocation method, where the weighting function is the

delta function. Thus,

wl.' (x,y) = 6 (x-x. ,y-y.) l. l.
(3.82)

This means that we are forcing the residual to vanish at

specified points (xl'Yl), .•• ,(xn'Yn). These points are called

the collocation points. In this way the c. parameters can be
l.

determined by solving the resulting n equations. In practice,

it is often that m collocation points are chosen where m»n.

Thus, the resulting system of equations will be overdetermined

and the solution can be obtained by a least squares approach.

(ii) The least squares method where the parameters c. are chosen to
l.

minimize the residual r in a least square sense. In this approach

the integral,

I
rr 2

= JJRr dxdy (3.83)

is to be minimized with respect to the unknoWn parameters c.,
l.

i.9 .. , o , i=1,2,

These equations are then used to solve for the c .•
l.

(3. 84)

(iii) The Galerkin method where the weighting functions w. are chosen
l.

to be the same as the trial functions. This approach is the most

66

popular and, indeed, it will be used in the derivation of the

FEM equations within this thesis as explained in Chapter 7.

3.2.3 The Finite Difference Method

The finite difference method is an approximating technique used to

solve partial differential equations numerically. It is amongst the

first methods used in this context and is a well established method.

The main idea of the method is to approximate the derivatives by

d ' ff ' t 1 ,~ , 1 d b 8~ 1 erence quot1en s over a sma 1 interval 1.e. oX 1S rep ace y 8x

where 8x is small enough. Practically, to use this technique to solve

a PDE in a region R in two dimensions, a system of rectangular meshes

formed by two sets of equally spaced lines, one set is parallel to the

x axis and the other to the y axis, are overlaid on the region R as

shown in Figure (3.1). The points of intersection of the parallel

lines are called mesh points (also named: grid, lattice or nodal points).

The solution of the PDE is determined at these points.

y

~ ,

/'
V P,

IHl "'" 1
p, 1 1- , 0+1 Pi + ,j+l

P,
,j P

ij Pi+l,j 1-

I
P; ;--L ;_1 P +1 ~~

L)

x

FIGURE 3.1: Finite difference grid

67

The main idea is to approximate the derivatives at each point P
ij

by

the difference quotients expressed in terms of the function values at

the neighbour points to P .. as explained later. Ultimately, this process
l.J

will result in n algebraic equations for the n unknowns which are ~l'~2'

••• ,~ at the nodal points. The accuracy of the solution can be
n

improved as usual by refining the mesh or by expressing the derivatives

more accurately in terms of finite differences.

In the case of parabolic or hyperbolic equations, we notice that

the solution proceeds from each time value to the next time step and

the finite difference approximation is, therefore, applied in both

spatial and temporal planes.

Derivative Approximations

There are many approximations for the derivatives. They stem from

approximating the Taylor expansion in the neighbourhood of a point

for some O~r~l.

k
I -:h-(t;1.. +

j=l J! ax

1 a
+ (k+l) I (t;a;;- + a)k+l I

nay ~ X=Xo +rt;

y=yo+rn

Considering the first derivatives only, we can write,

or

(3.85)

(3.86)

(3.87)

This is the forward difference approximation for the derivative ~.

Similar expressions can be obtained for ~

(3.88)

68

The backward difference approximation for the derivatives are:

(3.89)

and (3.90)

Expanding ~ (xo+h,yo) and ~(xo-h,yo) about (xo'Yo) and subtracting gives

the central difference approximation for the derivative

Similarly,

Adding the expansions of ~(xo+h,yo)

the finite difference approximation

.G.
2 ax

~
ax

(3.91)

(3.92)

(3.93)

It is convenient to represent this equation in a molecular form as:

It is obvious that the local truncation error in the forward and backward

difference approximation is of order h while in the central difference

it is of order h2 .

To illustrate the use of these derivative approximations consider

the elliptic PDE for the torsion of a long solid elastic cylinder:

2 2
li+li+ 2 =o,

2 2 ax ay
(3.94)

69

The derivatives
2
li

2 ax
and

2
li at 2 ay

a general point p" (Figure 3.1l are
l.J

approximated as before and the resulting finite difference equations

will be of the form:

1
+ -2 [~. '+1-2~, ,~, , 11 + 2 = 0

h 1,J l.,J l.,J-

or

1
-2 [~'+l ,+~, 1 ,+~, '+l+~' , l-4~. ,1 = -2 h 1. ,J 1.-,J 1.,) 1.,)- 1.,J

(3.95)

In a molecular form this equation is represented by:

1

In the case of parabolic and hyperbolic POE's the discretization process

is done spatially and temporally as shown in the following sections.

Explicit Method for Parabolic and Hyperbolic POE's

An explicit method in finite differences means that in each finite

difference equation, at step i, for example, one unknown nodal value is

expressed directly in terms of the known nodal values in previous steps.

To illustrate this method consider the parabolic POE:

2 a u
-2- , 0<>«1 and
ax

au -= at t>O • (3.96)

One of the finite difference approximations for this equation may be:

(3.97)

70

Where the time steps are k and the x steps are h i.e. x=0,h,2h, •••

and t=0,k,2k, ••• Let
k

r- 2 then the finite difference equation can
h

be written as:

U].' ,)'+1 : u .. + r(u. 1 .-2u .. +u. 1 .) •
~,J 1.+,J 1.,J J..-,J

(3.98)

It is obvious that the solution at the (j+l) interval is determined by

using the values at the jth interval. This is why this method is

called explicit. Given the boundary conditions at t=O, the

values of u at t=k can be determined and so on. A condition for the

convergence of this procedure is that r~! i.e. the obtained solution

ti will converge to the exact solution u as h tends to O. This finite-

difference scheme is also numerically unstable for r>! [Smith, 1969].

In the case of hyperbolic PDE's like the wave equation:

2 a u
"'2 ax

, t>O , (3.99)

Using the same technique as above the explicit formulation for the

finite differences will be:

2 2 2
u .. 1 = q u. 1 .+2(1-q)u .. +q U. 1 .-u .. 1
1,J+ 1.- ,] 1.,J 1.+,J 1.,J-

(3.100)

k
where q-h' This method is convergent and stable when q~l [Smith, 1969].

Recall again that for a parabolic PDE the ratio of time step k

to the spatial step h must be
k

r- 2""
h

2
This means that k~!h to get a

valid approximation. This is not convenient since it necessitates that

the time step must be very small. If, for example when h is .1 then k

must be ~.005. This motivates the introduction of a method which is

convergent and stable for all values of r which is the Crank-Nicolson

method.

Crank-Nicolson Implicit Method for Parabolic PDE's

This method is an implicit one, i.e. the finite difference equation

contains two or more unknown values at step i in terms of the known

values at step (i-l). Applying this implicit difference equation at

each nodal point a system of simultaneous algebraic equations will

result and the solution of which gives the values of the unknowns at

all the points in step i.

Crank and Nicolson used an average value of the finite-differences
2

for the term a ~ in the time steps j+l and j. Thus the parabolic
aX 2

equation a u = ~ is now approximately, at 2 ax

1
-k(u. ·+l-u ..)

1.,) 1.,J
1

= -2- {u. 1 . l-2ui . l+u. 1 . l+u. 1 . -2u. . 2h ~+ ,J+ ,J+ ~- ,J+ ~+ ,J ~,J

or,
-ru. 1 . 1+2 (r+l)u .. l-ru. 1 . 1 = ru. 1 .+2 (l-r)u .. +rui 1 . ,

1.- ,J+ 1.,J+ 1.+ ,J+ 1.- ,J 1.,) +,J

(3.101)

where r = k - as before.
h

2

Note that the lefthand side of the difference equation now contains

three unknowns instead of one as in the explicit method. This means

that at each time step a system of N equations must be solved. However,

for many practical problems the matrix of coefficients is independent of

the time step.

A more general finite difference approximation that combines both

the implicit and the explicit forms for the considered parabolic

equation is the weighted average approximation, wher~:

1
;={k u. ·+l-u. j} 1.,J 1.,

: l2{8(U. 1 . l-2u .. l+u. 1 . 1)+(1-8) (u. 1 .-h 1.+ ,J+ 1.,)+ 1.- ,J+ 1..+ ,J

where 0~8~1. 2u .. +u. 1 .)} •
1.,) 1-,)

(3.102)

72

When 8=0 we get the explicit approximation, for 8=! the Crank-

Nicolson and for 8=1, a fully implicit backward time-difference

method. The approximation is unconditionally valid for !~8~1 but for

0~8<! the ratio r = k 2 must
h

1
be ~ 2 (1-28)

Dealing with Derivative Boundary Conditions

If some of the boundary conditions are expressed in terms of the

derivatives of the dependent variable, then fictitious nodal points

are considered to approximate the derivative boundary condition on the

boundary itself. This condition can be expressed as central-difference

quotients (say) using the fictitious nodes. To illustrate this consider

the grid shown in Figure (3.2). AssUming that derivative boundary

conditions are specified along the two horizontal sides the fictitious

nodes are introduced as shown circled.

y

o

Q

,
I

,
I
I

CV

,
'11 \

I
I

8

2)

Q
I

I
I

I I

C;,
I

I
I

x

FIGURE 3.2: Finite difference grid with derivative boundary
conditions at sides (1) and (2). Fictitious nodes
are circled.

Handling of Curved Boundaries

If the boundary of the region is curved or, in general, cannot be

overlaid exactly by the rectangular mesh the previous equations cannot

be used at these boundary points. Let us consider the general case

where the region near the point Uo is irregular as shown in Figure

(3.3). The curved boundary AB does not coincide with the normal

grid points. To approximate the derivatives at the point 0 which is

the closest one to the boundary BA where the function value u is

2

~ B ;----'

'.

8
2

h

\ A

3 0 8
l

h I 1 ,

4

)(
h

..
h

FIGURE 3.3: Curved boundary finite difference

prescribed we use the Taylor expansion
dU

+ (8 h) --2.+ >(8
l

h)2

Thus:

uA ; Uo 1 dX >

dUO
h -- + ax

for u and u
3 ,2 A

Q u 3 -T + O(h)
dX

h

h

73

(3.103)

and

Similar expressions can be obtained
auo for -­ay

(3.104)

2 a Uo and--
a/

74

Improving the Accuracy of Solutions

There are several approaches to improve the accuracy of solutions

obtained by finite difference methods. The main approaches can be

divided into:

(i) Mesh refinement:

It is expected, as usual, that the finer the finite difference

mesh, the more accurate the solution. This h-version of finite

differences will, however, result in ever increasing number of equations

since the number of grid points is proportional

(ii) Richardson Extrapolation:

This approach can be used if the discretization error can be

estimated as being proportional to the mesh length and two estimated

solutions are obtained, in order to get a more accurate one.

Let u be the exact solution of the P.D.E. and u
l

and u
2

are

approximate solutions at the same nodal points but with mesh lengths hl

and h2 respectively. If the discretization error is proportional to hP

then:

and

where C is some

or

u-u
1

constant. Elimination

u-u
1

hP
1 --=

u-u2 hP
2

p p

u
h2U

l - hl u2
=

(3.105)

(3.106)

of C gives,

(3.107)

In the case of the five-point star finite difference approximation for

the Laplace equation, the discretization error for a rectangular region

with smooth known boundary values is known to be proportional to h2 , i.e.

75

P is 2 in this case. Assume that the problem is solved twice with the

mesh length halved, i.e. h2 ; !h
l

, then:

(3.108)

If the value of p is not known, an estimate can be done with the expense

of a third solution set u
3

•

This approach will be employed in the general finite element

programming system presented in Chapter 6 of this thesis where the time

discretization is treated using finite differences rather than finite

elements as done spatially.

(iii) Using higher accuracy finite difference equations:

The accuracy of the approximate solutions obtained by finite

difference methods can be improved by representing the P.D.E. by a

higher-order finite difference approximation designed to minimize the

truncation errors. This of course, will increase the number of nodal

values at each step. Many of these formulae have been devised. For

example, the following molecule, known as the nine-point molecule, has

a truncation error of the order of h4 rather than the five-point which

has a truncation error of the order of h
2

• For the Poissons equation ~2u;f.

If f is a constant then the nine-point formula will be,

6
with truncation error in the order of h •

2
u+6hf=O

76

(3.109)

77

3.3 VARIATIONAL APPROACH OF THE FEM

The engineering approach presented in Chapter 2 for the FEM gave

an insight to the understanding of the method as was originally developed

and helped in giving an orderly step-by-step formulation of the method.

However, this approach which is a direct one, cannot be applied as such

to other engineering and scientific applications. The variational

approach for formulating the FE equations gives a broader range of

applications to be solved. The variational basis of the FEM dictates

the criteria to be satisfied by the element interpolation functions

and enables us to make definitive statements about the convergence of

the results as we use an ever increasing number of smaller and smaller

elements.

Variational principles occur frequently in many engineering and

physical problems, and, historically, these methods are among the oldest

means of obtaining approximate solutions to these problems. Since the

FEM formulated from a variational principle can be considered as a

special case of the Rayleigh-Ritz method when the interpolation

functions satisfy some continuity requirements over elements, it may·

be convenient to explain the Rayleigh-Ritz method first .

. 3.3.1 The Rayleigh-Ritz Method

The Rayleigh-Ritz (R.R.) method is one of the methods used to

minimize a functional. The method is based on the choice of a suitable

complete set of linearly independent basis functions ~i(x,y) for i=l,

2, •••. The exact solution ~O is approximated by a sequence of trial

functions:

~n = (3.110)

78

where C's are chosen to minimize the functional I (~). This procedure
n

is said to be convergent to the solution if ~ +~ as n~. This method
n 0

is best illustrated by an example. Consider the Poisson's equation,

subject to the boundary conditions:

~ = g(s) on some part of the boundary r
l

and ;! + a(s)~ = h(s) on r2 •

(3.111)

(3.112)

(3.113)

where n is the direction of the outward normal on the boundary r
2

•

The functional I[~) corresponding to this equation [Davies, 1980):

I [~) =ff
R

- 2~f} dxdy + f (a~2-2~h)dS
r 2

(3.114)

The problem now becomes how to find the function ~(x,y) that minimizes

the functional I[~). We choose a linearly independent. set of basis

functions ~. which satisfy the homogeneous Dirichlet condition, i.e.,
l.

~i=O on r l , then a sequence of trial functions which satisfy the non­

homogeneous Dirichlet condition on r
l

is:

This can be

n
~ = g +
n L Ci~i

i=l

rewritten as:
n+1

~ = n L Ci~i '
i=l

where ~n+l=g and Cn+l =l.

(3.115)

(3.116)

The functional I[~) can now be written in terms of the C's and ~'s

as:

a~i 2
{(Ec·-a-) +

l. x

- 2(Ec.~.)h)ds
l. l.

- nc. ~. f}dxdy
l. l.

(3.117)

In order -to minimize I we must have:

aI
aC

i
= 0, for i=l,2, ... ,n.

79

(3.118)

We notice that c 1 is known to be 1 as stated before. Performing n+

the differentiation:

ar \ -a- = 2Ai ·C. + 2 LA .. c.
c i l. l. j;li l.J J

where I

- 2h
i

+ 2S .. c. + 2 I: S .. c .-2k. = 0 ,
l.l. l. .-,. l.J J l.

Jrl.

i=1,2 I ,n , (3.119)

o1jJ. ~ a1jJ. a1jJ.
Aij = ff (~ . + __ l. --.J..) dxdy , ox ax ay ay (3.120)

R

h. = If 1jJi fdxdy ,
l.

(3.121)

R

Sij = J01jJi1jJj ds , (3.122)

r 2
r

and k. = J 1jJ. h l. r 1.
2

ds (3.123)

aI The set of equations resulting from equating to zero can aC
i

be written in a matrix form as:

where,

and

Bc = g ,

Bij = Aij + Sij ,

g. = h. + k .•
l. l. l.

(3.124)

(3.125)

(3.126)

Solving this set of equations, the values of the c i ' i=l, ••. ,n, can be

determined and hence the solution of the original PDE is obtained. The

success of this method depends strongly on the choice of the trial

functions. Generally, the larger the size of the family of trial

functions (i.e. the number of adjustable parameters) is, the more

accurate is the solution. Although the trial functions are usually

polynomials, it is possible to choose a different class of trial functions

e.g. trigonometric for some problems as has been explained by Hildebrand

[19651.

80

It is known [Finlayson and Scriven, 1966], that for linear self-

adjoint operators L the application of a variational principle (R.R.

method say) will give an identical solution to that obtained by the

Galerkin method of weighted residuals. This can be illustrated by

the following example.

Consider the Poisson's equation,

(3.127)

For simplicity assume that we have the homogeneous condition on the

boundary $=0. The variational formulation of this problem has been

done before and it was shown to be:

2H]dxdy • (3.128)

Assume the solution $ is expressed in terms of the trial functions Ni'

i.e. I n

= L N.$.
i=l 1. 1.

(3.129)

substituting in 1[$] we get:

1[$] =
rf n aN.

J
{(L $. _1)2

i=l 1. ax

n
+ (L $.

i=l 1

-2f
n
L $.N.}dxdy

i=l 1. 1

• (3.130)

To minimize the functional 1[$]
ar

then --- = 0 for j=1.2 ••••• n.
a$ j

This

results in:

aN. n aN. n aN.
aI
a$j = ~(L $.

x i=l 1.

+ 2 --2(L $. _1)
ay i=l 1 ay

-2fN .] dxdy.
J

(3.131)

If we start to solve the same problem using the Galerkin method then

the Poisson's equation V
2

$=-fwill produce the following weighted

residual
statement!f Ni .it a2

$
[2+--2-+
ax ay

f]dxdy = 0 (3.132)

81

Applying Green's theorem to the first two terms we get:

IN. [~~ R, + ~~ R, Jds
1. oX X oy y

fN. }dxdy = 0
1.

(3.133)

Since the functions N. are chosen to satisfy the homogeneous
1.

boundary conditions then the first term will be a zero and we get:

!t-fN}dxdy=O, ay i
(3.134)

Since the weighting functions are the same as the interpolation

functions in the Galerkin's procedure, then ~ is expressed in terms
n

of Ni' i.e. = L N.~ .•
i=l 1. 1.

Thus equation (3.134) can be written as:

II
aN.

{_l.
ax

aN.
__ 1. +

ax (3.135)

which is identical to the same equation obtained using the variational

approach.

The consequence of this result is that it is possible to formulate

the FEM equations directly from the PDE rather than considering the

corresponding variational principle which may not be easily found or

unknown as will be explained later.

3.3.2 Merits and Limitations of Variational Formulations

Despite the fact that variational formulation of continuum problems

were amongst the first methods used to solve these problems it has some

limitations that can be summarized as follows:

(1) It is not possible, generally, to find one function (or a sequence

of functions) that satisfy certain essential boundary conditions

for an irregular-shaped boundary. Thus the variational approach

82

is suited for fairly simple geometries.

(2) The need to have high order trial functions, even in the case of

simple geometrical domains, since, in general, very high order

polynomials would be required to approach the exact behaviour of

the unknown over the whole domain.

(3) Difficulties in the handling of singularities, since in the

variational methods all parts of the domain are covered using the

same trial functions, and no special treatment is performed or

allowed to areas that require more attention.

(4) Weak coupling of points, which are distant from one another. This

will yield dense matrices in the final analysis.

The merits of the variational formulation can be summarized as [Rao,

1982] :

(1) The variational principle usually possesses a clear physical

interpretation in most of the practical problems.

(2) The functional can contain lower order derivatives of the field

variable compared to the governing differential equations and

hence an approximate solution can be obtained using a larger class

of functions.

(3) It is possible to prove the existance of solution in some cases

using the variational formulation.

(4) The variational formulation permits the treatment of complicated

boundary conditions implicitly as natural boundary conditions and

thus we need to explicitly impose the geometric or forced boundary

conditions.

(5) Sometimes, the problem may possess a dual variational formulation

in which case the solution can be sought either by minimizing

83

(or maximizing) the functional I or by maximizing (or minimizing)

its dual functional. In such cases it is possible to find upper

and lower bounds to the solution.

3.3.3 The Variational Formulation of the FEM

The finite element method and the Rayleigh-Ritz method are

essentially similar. The main difference is that in the R.R. method

the assumed trial functions are defined over the whole domain and have

to satisfy the boundary conditions. However, in the FEM the assumed

trial functions are defined over each element and they have to satisfy

some continuity conditions over elements. This shows the greater

flexibility of the FEM over the R.R. technique which, in fact, can be

used for fairly simple geometries only. So, if the functional for a

given problem can be expressed as the sum of functionals evaluated for

all elements, it is sufficient to consider an isolated element to derive

the equations describing its behaviour. To do so, interpolation

functions are assumed to define the field variable $ in terms of its
e

values at the nodes of the element. Then, the functional over the

element I is evaluated by substituting the assumed form for $ and e e

its derivatives and doing the integration over the element domain.

At last, the differentiation of the functional le' now expressed in

terms of nodal values of $, is done with respect to these nodal values.

This can be summarized in the following steps:

Assume the problem to be solved is expressed in a variational

principle as:

I[$] = J Fl (~'~x,···,)dR +
r
J F2(~'~x,···,)ds (3.136)

R aR
(1) The first step is to divide the domain R into n smaller non-

84

overlapped parts that cover the whole domain R. These smaller

parts are the finite elements. If I[~l can be expressed as a

summation of elemental contributions, -l~tn

I[~l ~ E Ie[~l , V elements ER (3.137)

(2) The unknown field variable ~ (which is a vector in general) is

assumed to vary in each element and can be expressed in terms of

its nodal values. Assume the element has r nodes, then:

~ ~

r
L N.~.

. 1 ~ ~
~~

where N. are the shape functions.
~

(3.138)

(3) To minimize the functional I[~l then ~~ is equated to o. Since I

is the sum El
e

, then ~~ will be:

E
~ L o , i~1,2, ... ,N (3.139)

e~l

where E is the total number of elements.

In the special case where I is a quadratic function of ~ and its

derivatives, the element equations can be written as:

OIe

o~e

where K
e

is the element characteristic matrix and fe is the

(3.140)

element characteristic vector. These are the corresponding terms

to the stiffness matrix and equivalent nodal loads vector in the

direct formulation of the FEM.

(4) The overall equations of the system can be written by the summation

of the elements contributions. This is known as the assembly

process. Thus, we reach the set of equations defined by,

= K~ - f = o , (3.141)

where,

85

E
K L K

e
(3.142)

e=l
and

E
f = L fe (3.143)

e=l

The assembly process has been explained in Chapter 2 and it

will not be repeated here again.

(5) After imposing the boundary conditions, the system of equations

K~=f can be solved for ~. If I was not quadratic in ~, the

resulting set of equations will be non-linear.

86

3.4 A WEIGHTED RESIDUAL APPROACH TO THE FEM

The main difficulty with the variational formulation of the FEM

is that it relies on having a variational prinCiple for the problem

to be solved. This is not always possible in general. A more flexible

and general approach is by using the method of weighted residuals (MWR)

for the FE equation formulation starting from the governing PDE directly.

As previously explained, the FEM can be considered as a special case

of the MWR and the variational methods for solving PDE's in the sense

that the assumed trial functions need not be defined over the whole

domain, but rather, on finite elements only. In addition to that, they

have to satisfy some continuity conditions but nothing for the boundary

conditions. The Galerkin's method is usually used among the other MWR

techniques in the FEM. In the Galerkin method, the weighting functions

are chosen to be the same as the trial functions themselves. Thus the

equations governing the behaviour of a finite element according to the

Galerkin method is:

N1.
e, dDe ; 0 1.'-1 2 r , - I ,- •• , (3.144)

where r is the number of unknown parameters assigned to the element.

The interpolation functions N~ are defined over the element and usually
1.

polynomials are chosen. These sets of equations can be written for every

element. The N, functions must satisfy interelement continuity. This
1.

requires that the $ values, as well as the derivatives up to the highest

order minus one of the derivatives in the expression to be integrated,

are continuous over element boundaries. Since the higher the order of

continuity to be satisfied by the interpolation functions, the narrower

the class of functions that can be chosen, it is desirable to lower the

87

highest-order derivative appearing in the element equations. This is

done by integrating equation (3.144) by parts. This will have two

advantages: first, the resulting expressions will contain lower-order

derivatives which implies that lower-order interelement continuity needs

to be satisfied by the interpolation functions, and second, it offers

a convenient way to introduce the natural boundary conditions that must

be satisfied on some portion of the boundary. The fixed boundary

conditions can be introduced after assembly of elements in a similar

manner to that presented in Chapter 2 of this thesis.

These concepts are better clarified by a simple example. A more

complicated one will be given in Chapter 7 of this thesis for the FE

formulation for some ground water problems.

Consider the one dimensional Poisson equation defined by:

+ f(x) = 0 , (3.145)

with boundary conditions ~(a)=A and ~(b)=B.

This problem will now be solved by the FEM based on the two

approaches which have been explained i.e. starting from a variational

formulation and by the Galerkin's MWR. The solution by the variational

formulation is simply to find the function ~(x) that minimizes the

function I[~] defined by:

I[$] = Ib[!(~)2 - f(x)~(x)]dx
a

(3.146)

Since the problem is 1-0, then line elements can be used. The simplest

of these line elements are those with linear interpolation functions.

Thus two nodes at the ends of each line element are required. A typical

element is shown in Figure (3.4).

88

1 1 4>1

node 1 node 2 x

(a) (b)

(a) The interpolation functions NI and N2

(b) Linear variation of 4> over the element

FIGURE 3.4: Two nodes line element

The value of 4> at a typical point x within the element can be expressed

in terms of the nodal values 4>1 and 4>2 using:

4> (x) =

or 4> (e) =

where,

and,

[NI
N2] ~~J

x -x
NI (x)

2 = x
2

-x
l

N2 (x) =
x-xl

x2-x
l

x-x
1

= [N] [4>] (e) (3.l47)

(3.l48)

(3.l49)

The overall functional I[4>] for the whole domain can be derived

by summing the contributions of each element, i.e.,

V elements. (3.lS0)

In order to determine the expression I[4>e] we substitute the expression

i.e. ,

(3.lSl)

dN
1 N' is--

1 dx

dN
2 and N' is --

2 dx

Minimizing I[~e] with respect to the nodal values ~1 and ~2

requires aI aI
that ~ = ~ = o.

1 2

ale rX2 N'{:~ - fN }dx = 0 a~l =
J {N' [N'
x 1 1 2 ~2 1

and,
1

ale
f2 N']l~ -fN }dx = 0 --= {N' [N'

a~2 x 2 1 2 ~2 2
1

Rewriting these equations as:

x
2

x
2

J Ni(~lNi+~2N2)dx = J fN1 dx

and xl xl

P
x

2
N2(~lNi+~2N2)dx = J fN2 dx

xl xl

These two equations can be combined in a matrix form as:

[K] e [~] e = [F] e

where,
f2 ~'N' N'~J e 1 1 1 2

dx K =
N'N' N'N 1

xl 2 1 2 2

and

89

(3.152)

(3.153)

(3.154)

(3.155)

(3.156)

(3.157)

(3.158)

(3.159)

Thus we have obtained the element characteristics using the variational

principle. In order to derive these equations based on the Galerkin's

MWR we start with the differential equation itself and assume that the

"-
approximate solution ~ is described in terms of the nodal values ~.

1.

and the interpolation functions Ni then,

n

L N. (x) $ i '
i=l 1.

90

(3.160)

where n is the number of nodes in the element. Since we use two nodes

linear element, n is = 2. In the Galerkin's method the weighting

functions are chosen to be the same as the interpolation functions.

The integration of the weighted residual is equated to zero which is

expressed as,
x r 2 2"

J (d ~ +
xl dx

i.e. I

f (xl) N. (x) dx = 0,
1.

i=l and 2 ,

The first term can be integrated by parts to give,

J
x 2" I 1\ IX JX2

d; dN i
2 (d ~)Ni (x)dx = INi ~ 2 - dx dx dx.

xl dx . xl xl
Thus,

IN ~ IX2 - f2
~ dNi

f2 f (x) N. (x) dx = -- dx +
I i dx I dx dx 1.

xl
xl xl i=l and 2,

but,

" n dNi
N'l ~~ ~= L dX $i = [N'

dx i=l 1 2 $2

rX2

(3.161)

(3.162)

(3.163)

o , (3.164)

(3.165)

+ J f(X)N i (x)dx , (3.166)

xl
i=l and 2,

but,

and since Nl at x2 is zero and Nl at xl is 1 by definition of this

interpolation function, then,

Similarly:

h :l x

2
xl

IN. ~;r2
~ dx

xl

P [Ni N'l 2
xl

i.e. I

Ke~e =

where,

K
e

=

and,

"-
= _ d~ I

d x

"-

= d~ dX"(x2)

"

,...

= - ~ (x)
dx 1

r- " Ix '] l dx 1 =
" d~

Cbe (x2)

l ,;
dNi ~~

- -(x)
Cbe 1

--dx = " dx $2 d~
dx (x2)

A e
d~
Cbe (xl)

+ ~~e ,..
d~
dx(x2)

r2 ~N'N' N'N

J
1 1 1 2

Cbe
N'N' N'N'

xl 2 1 2 2

f2 + f(X)N
i

(x)dx
xl

i=l and 2,

~e = ~je and
Fl =f2 fNl ~J ~ J F2 xl fN2 dx

91

(3.167)

(3.168)

(3.169)

(3.170)

(3.171)

(3.172)

(3.173)

This set of equations expresses the characteristics of the two nodes

line element. The expression for Ke and Fe are identical to those

derived using the variational principle. We notice that the natural

boundary conditions are taken into account when we assemble the element

matrices. During assembly of the matrices, the natural boundary condition
,..

terms ~ will cancel at all interior nodes of the solution domain, leaving

only the natural boundary conditions at the exterior nodes i.e. at the

points a and b only. In the numerical solution for these classes of

problems the boundary conditions at exterior nodes are incorporated

as was described in Chapter 2.

92

93

3.5 THE DOMAIN DISCRETIZATION PROCESS IN THE FEM

The domain in the FEM must be divided into finite elements as the

first step in the solution process. The discretization process is

sometimes fairly simple and clear such as in the case of structural

analysis of skeletal structures like beams, trusses and frames.

However, for other problems like continuum problems, the discretization

requires more attention. Choice of finite elements is one of the most

important factors that affect the solution obtained in the FEM. Another

very important factor is the choice of the interpolation functions.

Choosing particular elements and interpolation functions depends

heavily on the nature of the problem to be solved, the required accuracy,

the available computing resources and the cost. There are no formal

fixed sets of rules that can be set to achieve the best discretization

of the domain. Sometimes, it is referred to the technique of

choosing finite elements as "elementologyfl. Here, we list some major

guide lines principles for "elementology" that are based on experience

and engineering judgement in the first place.

(i) Nodes should be placed at points of application of external

forces in structural analysis problems and in similar situations

like heat sources in heat transfer problems. The same is true

at corners in the domain.

(ii) Whenever possible, one type of element should be used in the

discretization. However, sometimes it becomes impossible to

model the continum by one type of element only, as in the case,

for example, of a plate supported by springs.

(iii) Usually line elements are used in l-D problems, triangles in 2-D

and tetrahedrons in 3-D. This is due to their simplicity and

94

ability to represent irregular boundaries. These elements can

have any number of exterior and interior nodes as required to

satisfy the interpolation functions defined over them. Moreover,

they can have curved sides at curved boundaries.

(iv) In regions of the solution domain where the gradient of the field

variable is expected to be varying quickly, or at irregular

boundaries, more elements should be created i.e. a finer mesh

should be constructed.

(v) Ill-proportioned elements should be avoided since they tend to

give directional bias solutions that may not be correct. For

example, in triangular elements it is recommended that internal

angles be around 60°. Generally, an aspect ratio around 1 is the

best.

(vi) It is usually true that increasing the number of elements will

give more accurate results provided that the elements obey the

requirements for a convergent solution. However, this will lead

to more expensive solution and a compromise must be done. Some­

times, particularly for new problems, it is a good practice to

start solving the problem using a sequence of n
l

,n2 , .•• elements

where ni>ni _
l

until a stable solution is reached.

(vii) For regions which extend to infinity, a similar technique to that

mentioned in (vi) is utilized, i.e. the problem is solved with

the boundary located at distances dl ,d2 ,.·. such that di>d i _l

until an acceptable solution is found.

3.5.1 Element Shapes

A finite element is fully specified if all of the following data

95

are specified:

(i)

(ii)

(iii)

(iv)

(v)

its shape i.e. the geometry of the element;

the number of its nodes and their locations within the element;

the type of each of its nodes, i.e. exterior or interior;

the nodal variables to be computed and their nature; and

the type of the interpolation functions.

In this section, the element shapes are described while in later

sections other relevant criteria are discussede

In the case of one-dimensional problems, line elements are used.

It is possible to specify m nodes in these line segments depending upon

the type of the interpolation functions, the degree of continuity

required .. cand the type of nodal variables. A family of these line

elements is shown in Figure (3.5).

• • ~ x

1 2

• • • ~ x
1 3 2

• • • - x
1 3 4 ... 2

FIGURE 3.5: Family of l-D elements

In the case of two-dimensional problems the basic element is the

linear triangle i.e. the 3-nodes triangle. This, actually, was the

first 2-D element used in the FEM. It was first developed for the

solution of elasticity problems and known as the constant stress

triangle (eST). More advanced triangles are those with mid-side nodes

which are the quadratic triangles. It is also possible to use higher

96

order triangles.with interior nodes like cubic and quartic triangles.

These are shown in Figure (3.6).

3
3

1 2 1 4 2

(a) linear triangle- 3 nodes (b) quadratic triangle - 6 nodes

3
3

9

7

1 4 5 2
1 4 5 6 2

(c) cubic triangle - 10 nodes (d) quartic triangle - 15 nodes

FIGURE 3.6: Family of triangular elements

A less frequently used 2-D element is the rectangular element. A

family of rectangular elements that correspond to the above-mentioned

triangular elements is shown in Figure (3.7). The main advantage of

rectangular elements is that they can be created automatically by a

fairly simple preprocessor. However, since many sophisticated pre­

processors are now available that can subdivide the domain to triangular

elements automatically with the minimal user input, it seems that

triangular elements will still be dominant in 2-D FE modelling.

97

(a) linear rectangle - 4 nodes (b) quadratic rectangle - 9 nodes

T ,
I I

~ - - 1- - - e- ----<
I .. -L
I
1

I ...
I

I --.- -r--
~ +'
1 I

(c) cubic rectangle - 16 nodes (d) quartic rectangle - 25 nodes

FIGURE 3.7: Family of rectangular elements

For the three-dimensional case tetrahedron elements are generally

used. Less frequently, right prism elements can be used. Modelling of

thick shells is usually done by the 3-D element of 16 nodes. These

elements are shown in Figure (3.8).

(a) tetrahedron - 4 nodes (b) right prism - 8 nodes

98

I ,
I j -*-- -4 _ L

~. I

(c) brick element - 16 nodes

FIGURE 3.8: Some three-dimensional elements

If the boundary is not linear, it is possible to have the element

sides curved as well. These elements will be explained later. It is

worthwhile to mention that in some instants it is possible to decrease

the dimensionality of the problem by one. This is in the case of

axisymmetric problems, where axial symmetry exists in cylindrical co­

ordinates. " ~ practical engineering problems are axisymmetric like

storage tanks, pistons and shafts. A problem is considered as axi-

symmetric where all of its parameters are invariant with respect to any

plane passing through the symmetry axis of the solution domain.

3.5.2 Nodes

Nodes can be classified as exterior or interior. Exterior nodes

are those positioned at the corners of elements or along the edges (or

on the surfaces in the 3-D case). Elements can be connected at exterior

nodes only. In contrast, the interior nodes are those inside the

element itself and are not connected to any other elements. It is

obvious that in the case of l-D linear elements, the two nodes of this

element are both exterior. In the case of 3-nodes linear elements, we

have 2 exterior nodes and one interior node. In the case of cubic

99

triangular elements we have 1 interior node and 9 exterior ones. If

the field variable is continuous along element interfaces we say that

we have Co continuity. If, in addition to that, the first derivatives

1 t · h Cl .. d are a so con 1nuous, we aye cont1nu1ty an so on. The number of

nodal variables is called the degree of freedom associated with the

node. The roots of this term is due to structural analysis problems

where the degrees of freedom of a node are the number of available

displacements at this node.

3.5.3 Interpolation Functions

One of the most crucial factors in finite element analysis is the

choice of interpolation functions. These functions describe the

behaviour of the field variable within the finite element itself in

terms of their values at nodes. Although polynomials are mostly used,

it is possible to use other functions like trigonometric. The reasons

which give preference to polynomials over other types of functions are

their ease of computation both symbolically and numerically, ease of

differentiation and integration, eaSe of controlling the required

accuracy by increasing its degree and ease of programming. Polynomials

are also attractive since any continuous function can be approximated,

arbitrarily closely, by a polynomial. This is known as the Weierstrass

approximation theory.

The choice of the polynomial to be used to describe the field

variable behaviour within the element is dependent on many factors.

Here some guidelines are given for choosing "good" polynomials.

(i) The number of terms in the polynomial must be equal to the total

number of degrees of freedom associated with the element,

100

otherwise the polynomial may not be unique. To illustrate,

consider a line element with three nodes and assume that the

field variable associated with each node is a scalar quantity,

then a polynomial like:

2
~ (x) ~ a

o
+ a

l
x + a 2x

should be used.

(ii) The polynomial representation within an element should be

(3.174)

geometrically invariant or geometrically isotropic. This means

that the polynomial should not possess any preference for either

the x or the y directions over the other. Consequently, the

polynomial should contain terms which do not violate the symmetry

of the complete polynomials as shown in Figure (3.9).

Pol;tnomial Behaviour No. of terms

1 Constant 1
x y Linear 3

2 2
Quadratic 6 x xy Y

3 2 2 3 Cubic 10 x x Y xy Y

4 3 2 2 3 4 Quartic 15 x x Y xy xy Y

5 4 3 2 2 3 4 5 Quantic 21 x x Y x Y x Y xy Y

6 5 4 2 3 3 2 4 5 6 Hexadic 28 x xy x y x y x y xy y

FIGURE 3.9: Complete polynomials in two-dimensions

(iii) The interpolation polynomial should satisfy the convergence

requirements, i.e. the unknown field variable must be continuous

within the element itself.

In one-dimension a general complete nth order polynomial can be

expressed as:

p (x) ~
n

(3.175)

101

Samples of interpolation functions in one dimension are, therefore:

PO(x) = a
O

constant

P
l

(x) = a
O + alx linear

P
2

(x)
2

quadratic = a
O + alx + a

2
x

In the two-dimensional case the complete nth order polynomial can

be expressed as:

P (x,y) =
n

i+j~n

m= (n+l) / (n+2) /2 (3.176)

Samples of interpolation functions in two-dimension are therefore,

PO(x,y) = a
l

constant

P
l

(x,y) = a
l

+a
2

x+a
3

y linear

P
2

(x,y)
2 2

= a
l

+a
2
x+a

3
x +a

4
y +a

S
y +a

6
xy quadratic

In the three-dimensional case the complete nth order polynomial can be

expressed as:

p (x,y,z) =
n

i+j+k~n

m =
(n+l) (n+2) (n+3)

6
(3.177)

Samples of interpolation functions in three dimensions are, therefore,

PO(x,y,z) = a
l

constant

P
l

(x,y,z) = a
l

+a
2

x+a
3
y+a

4
z linear

P
2

(x,y,z) = al+a2x+a3y+a4z+aSXY+ quadratic

2 2 2
a6xz+a7yz+aSx +a9y +alOz

Some examples of the determination of the unknown coefficients (the a's)

and consequently the determination of the interpolation functions will be

given later in this chapter and the next chapter.

102

3.5.4 Natural Coordinate Systems

Natural coordinate systems are a family of coordinate systems

which possess the property that they are local within the element

geometry and can assume values between 0 and 1 only. In these systems

the value of the coordinate is one at a particular node while at other

nodes it is zero. The main idea of a natural coordinate system is to

express the location of a point inside an element in terms of coordinates

associated with the nodes of the element. This is particularly useful

in deriving the interpolation functions (N.) at each node in a curve­
~

sided element which will be discussed later in this chapter. If an

element contains n external nodes; then, n natural coordinates are used.

Assume a linear element in one-dimension with two nodes, the natural

coordinate system for this element denoted as L1 and L2 can be derived

as follows.

For a general point x on the element its global coordinate x is

related to the natural coordinates by,

(3.178)

We notice that, by definition,

= 0 at x=X2

and
L2 = 1 at x=x2

= 0 at x=x1

Both L1 and L2 varies linearly along the element 1-2 (Figure 3.10)

1

o· --~)x

FIGURE 3.10: Natural coordinates for two nodes line elements

Therefore,

and

and

x-x
1

103

(3.179)

(3.180)

Since the functions Ll and L2 are simply ratios of ~engths they are

often called length coordinates. It should be noted that since the

problem is one dimensional in position (x only); then Ll and L2 must

be related to each other to keep the dimensionality unchanged. In fact,

Ll and L2 are weighting functions that relate the coordinates of the

end nodes to the coordinates of any interior point. Thus we must have,

L
l

+L
2

=1 as explained earlier. It is easier in the derivation of the

natural coordinates to start by imposing the relationship between the

Li functions as their sum at any point is always 1.

Similarly, natural coordinates in two-dimensions can be formulated.

Assume a 3-node triangle element, the natural coordinate system in this

case comprises 3 coordinates L
l

,L2 and L3 where Li assumes the value

of 1 at node i and zeros at other nodes. The original cartesian co-

ordinates of a point in the element should be linearly related to the

new natural coordinates by:

and

where,

x = LlXl + L2X2 + L3x3

Y = LlYl + L2Y2 + L3Y3

Ll + L2 + L3 = 1.

(3.lSl)

(3.1S2)

(3.1S3)

These 3 equations can be solved for L
l

, L2 and L3 which results in:

Ll (x,y)
1

(3.lS4) = 211 (al+blx+cly)

L
2

(X,y}
1 (3.1S5) = 211 (a2+b2x+c2y)

L3 (x ,y)
1

(3.1S6) = 211 (a3+b3x+c3y)

104

where,

1 xl Yl
area of the triangle

= = l::. ! 1 x
2 Y2 whose vertices are (xl'Yl) ,

1 x3 Y3 (x2 ,Y2) and (x
3

,Y
3

)

(3.187)

(3.188)

The other coefficients are obtained by cyclically permuting the

subscripts.

It should be noticed that L
l

,L
2

and L3 are ratios of area and

hence they are often called area coordinates (Figure 3.11).

Y L =1 Al
L3=L =0 Ll = T 1 2 -- 3 A2 - L2 =

;3

L3 =
l::.

1

L =1 I
1 I " /2 L =1

2
L =L =0 L =L =0 2 3 1 3

L-________________________ ~X

FIGURE 3.11: Area coordinates for a triangle with 3 nodes

lOS

3.6 THE TWO-DIMENSIONAL TRIANGULAR ELEMENTS

The family of the two-dimensional triangular elements are very

popular and most widely used in 2-D problems. One reason for this

situation may be because irregular boundaries can be better approximated

by triangles. In addition to this, the complete nth order polynomial,

2 2 n
U = a l +a2x+a3y+a4xy+aSx +a6

y + ..•. +amy (3.189)

where a
l

,a
2

, ••• ,m are the coefficients of the polynomial, also known

as generalized coordinates; n is the degree of the polynomial and
n+l

m = L i can be used to interpolate a function u at t(n+l) (n+2)
i=l

symmetrically placed nodes in a triangle.

Throughout this thesis most of the FE modelling will be done

utilizing triangular elements with different degrees, viz: linear,

quadratic, ••. etc.

In the linear case, the value of the interpolation function can be

determined if its values at three nodes, typically the vertices, are

known. For the higher degree polynomials, the required nodes can be

generated by taking (n-l) equally spaced lines parallel to each side

and placing the nodes at the intersections of these lines with each

other and with the sides of the triangle as shown in Figure 3.6.

To compute the interpolation functions for a triangular element,

let us start by the linear triangular elements. We must notice that

all the family of the triangular elements possess the advantage that

they have the sufficient number of nodes to uniquely specify a complete

polynomial of the order necessary to retain Co continuity, i.e. inter-

element continuity of the field variable ~ along element boundaries.

Hence, the compatibility, completeness and geo~etric i~ropy requirements

are satisfied.

106

Let the coordinates of the three nodes of the linear triangle

element be: (xl'Yl) ,(x
2

'Y
2

) and (x
3

,Y
3

) with the values of the field

variable ~ at the three nodes ~1'~2 and ~3' respectively. The field

variable ~ defined over the element being a linear function can be

expressed by,

(3.190)

TO evaluate the values of a
l

,a
2

and a
3

we substitute in (3.190) by the

value of ~1'~2 and ~3 and thus we obtain the system of linear equations,

~l = a
l

+ a
2
x

l
+ a

3Yl
(3.191)

$2 = a
l

+ a
2
x

2
+ a

3Y2
(3.192)

~3 = a
l

+ a
2
x

3
+ a

3Y3
(3.193)

Solving these equations for a
l
,a

2
and a

3
gives:

(3.194)

1
a2 = 2A(bl $1 + b2~2 + b3~3) (3.195)

1
a 3 = 2A(cl $1 + C2$2 + C3$3) (3.196)

where A is the area of the element given by

1

A = ! 1 (3.197)

1

and a
l x2Y3 - x

3Y2
(3.198)

a
2

= x
3Yl

x
l Y3

(3.199)

a
3

= x
l Y2

x
2Yl

(3.200)

b
l Y2 - Y

3
(3.201)

b2
= Y3 - Y 1

(3.202)

107

b
3

= Yl - Y2 (3.203)

cl = x3 - x
2

(3.204)

c
2

= xl - x3 (3.205)

(3.206)

Substituting in the original expression for $ results in

1
$(x,y) = 2A(al+blx+clY)$(xl'Yl)

1
+ 2A(a2+b2x+c2Y)$(x2'Y2)

1
+ 2A(a3+b3x+c3Y)$(x3'Y3) (3.207)

which can be rewritten as

$ (x,y) =
3 R,
~ N. (x,Y)$. (x,y)

i=l ~ ~
(3.208)

where,
1

= --2 (ai+b,x+c,y), i=1,2,3
A ~ ~

(3.209)

and (3.210)

The functions N~(X'Y)' i=1,2,3 are the interpolation functions

associated with nodal degrees of freedom for the linear triangle.

These nodal interpolation functions have the value of unity at the

associated node and zeros at all other nodes of the element. Thus,

Nl (x,y) , for example, will have the value of 1 at node 1 and zeros

at nodes 2 and 3.

In a similar way, the interpolation functions for other higher-

order triangular elements can be determined. Huebner and Thornton

[1982], presented a systematic method to derive these interpolation

functions using a triple-index numbering scheme. The idea of this

scheme is to denote the nodes of the triangular element by a three-

digit label aSy where, a,S and y are integers satisfying a+B+y=n and n

108

is the order of the interpolation polynomial used. These integers

define constant coordinate lines in the area coordinate system and

indicate the number of steps or levels by which a particular node is

located from a side of the triangle. This is best illustrated as shown

in Figure (3.12) for the case of the quadratic triangular element.

y ,,=0
\ /

\ y=2
,,=1

y=l_ --I
,,=2, - /

\ I _y~O_

1\
I 4

\ I ,
/ /:-,. \ I \ / \ / of \ / 0

0{ '\
of'" \

x

FIGURE 3.12: Node labelling in quadratic triangular element

In this case node number 1 will be labelled as node 200, while a mid-

side node like number 4 will be labelled as 110. The interpolation

functions can now be written in the area coordinates L
l

,L
2

and L3 as

triple subscript function N Q associated with the node "Sy as follows:
""y

(3.211)

where,
" nLl-i+l TT (.) for "~l

i=1 l.

(3.212)

= 1 for "=0.

N
S

(L
2

) and N
y

(L
3

) have similar equations. These equations can be used

to derive the interpolation functions for higher-order triangular

elements in area coordinates in an easy way. For example, for the six-

109

node quadratic triangle we have the node labels: 200, 020 and 002 for

the vertices and 110,011 and 101 for the mid-side nodes. The associated

interpolation functions: N2oo,N020,N002,NllO,NOll and NIOl can be

computed using n=2 (the degree of the polynomial) using the above

equations. To illustrate consider N
2oo

:

--L 2L
l
-i+l

11 (•) =
i=l ~

NO (L2) 1, NO (L3) = l.

Thus, we have,

N
200

= Ll (2Ll -l) ,

and similarly,

N
020

= L
2

(2L
2
-1)

N002 = L
3

(2L
3
-1)

N
llO

= 4LIL2

NOll 4L2L3

NlOl = 4LIL3

(3.213)

(3.214)

(3.215)

(3.216)

(3.217)

(3.218)

(3. 219)

(3.220)

(3.221)

These equations can be rewritten in a more compact form as for vertices,

N = L. (2L.-l), i=1,2,3
i ~ 1.

and for mid-side nodes,

(3.222)

(3.223)

In a similar way for the cubic element the interpolation functions

will be, for vertices,
Li

Ni = :f(3L
i
-l) (3L

i
-2) , i=1,2,3 ,

for side nodes,

(3.224)

110

9
(3.22S) N4 = - L L (3L -1) ,

212 1

9
(3.226) NS = - L L (3L -1)

212 2

N6
9

= "2 L2L3 (3L2-1) (3.227)

9
(3.228) N7 = "2 L2L3 (3L3-1)

N8
9

= "2 L3Ll (3L3-1) (3.229)

N9
9

= "2 L3Ll (3Ll -l) (3.230)

NlO = 27L1L2L3 (3.231)

For the quartic triangular element the shape function will be, for

vertices,

for side nodes:

NS = 4L
1

L
2

(4L
l
-l) (4L

2
-1)

8
N6 = 3L1L2(4L2-1) (4L2-2)

etc.

For internal nodes:

and

N
13

= 32 L
1
L

2
L

3
(4L

2
-1)

N14 = 32 L1L2L3 (4L
3
-l)

(3.232)

(3.233)

(3.234)

(3.23S)

(3.236)

(3.237)

(3.238)

It is worthwhile to mention that it is sometimes customary to write

the equations of the interpolation functions for the higher-order

elements in terms of those of the linear one. This in the case of

the triangular elements can be simply done by substituting Ni which means

111

the interpolation function NI in the case of a linear polynomial for

~ ~
every L

l
, N2 for L2 and N3 for L

3
. This can be achieved if we consider

the case of a linear triangular element with node labelling 100, 010

and 001 and the associated interpolation functions are,

and

NlOO = Ll

NOlO = L2

NOOl = L3

(3.239)

(3.240)

(3.241)

For all these triangular elements the function values, the $'S, along

a side are uniquely determined by the nodal values along that side and

this is the reason for denoting such elements as conforming elements.

The evaluation of the matrices for the higher-order elements is usually

carried out by numerical integration.

It is important to note that for elements with internal nodes,

like the cubic and quartic triangles, it is advantageous to eliminate

their degrees of freedom before assembly. This is known as condensation.

This can be done because these nodes are not, by definition, connected

to any other elements and thus their degrees of freedom do not affect

inter-element continuity. This process is desirable because it saves

computational effort and the cost that will occur due to the resulting

reduced master matrix size after assembly. This is particularly useful

if a band solver is to be used in solving the resulting FE equations.

However, if a frontal algorithm is to be used its effect is much less.

A similar technique called substructuring can be used to divide a hyper

complex structure into substructures each of which is still a complex

structure but can be solved within the available computing resources.

The details of these techniques can be found in Wilson [1974].

112

3.7 THE ISOPARAMETRIC ELEMENTS

When the boundary of the region is not straight i.e. curved, the

mesh must be refined enough to accommodate the curvature of the

boundary. Consequently, many straight sided elements can substitute

for a curved boundary. A much better approach is to use finite

elements with curved sides at curved boundaries. This will not only

give better accuracy, but also a lesser number of elements can be used.

Among the first pioneers of this idea were Irons [1966] and Ergatoudis

et al [1968]. The basic idea behind the isoparametric elements is to

map simple geometric shapes in local coordinates into distorted shapes

in the global coordinates. The same interpolation functions used to

define the field variable within the element are used to define the

element shape and hence the naming isoparametric. Linear isoparametric

elements can have straight sides only while higher order elements have

curved sides. Although it is possible to define subparametric and

superparametric elements where in the former the interpolation functions

used to define the element shape is of lower order than that used for

the field variable and in the latter the opposite, they are rarely

used. Since the line and the quadrilateral elements will be covered

in Chapter 4 of this thesis, it may be useful to discuss the triangular

element here.

Consider the quadratic 6-nodestriangular elements with curved

sides as shown in Figure (3.13a). The mapped triangle is shown in

Figure (3.13b) in the ~-n plane. The analysis is essentially following

that proposed by Mitchell et al [1971]. We notice that out of the

three local coordinates ~-~-n [xi-zeta-eta] only two are independent

since at any point ~+~+n=l. Assuming a quadratic shape function

Y , , ,
,~ -,

, , ,
, , , 6

" , \
I , 1

1\
\ 4

~=l ~=.5

11

3

6

1
(0,0)

(0,1)

4

11=1

/

/
I

I

5

~=O
/~=.5

/

'11= .5
/

5
r

/-

\ 2
\
\

~=O

~=l

/

/ .-- 11=0

x

2
(1,0)

(a) The transformed (distorted element)

(b) The parent element

113

FIGURE 3.13: The isoparametric quadratic triangular element

of the form,

2 2
S(x,y) = al+a2x+a3y+a4xy+a5x +a6Y (3.242)

where the 6 unknown coefficients are uniquely determined knowing the

values of S(x,y) at the six nodes. The transformation from the x-y

plane to the ~-11 plane is given by,

(3.243)

)

~.

114

and (3.244)

or in a more compact form,

S{x,y) = ~(2~-l)Sl+~{2~-l)s2+n{2n-l)s3+4~~s4+4n~s5+4~nS6

(3.245)

Since ~=l-~-n this equation can be written as

S{x,y)
, 2

= sl+~{4s4-3sl-s2)+n{4s6-3sl-s3)+~ (2sl +2s2-4S
4

)

(3.246)

It is clear that ~ and n can be determined from the global coordinates

(x,y) by solving the quadratic equations simultaneously though it is

not easy to have a closed form expression for these equations.

In the special case where one side only of the triangle is curved,

these expressions can be simplified. Assume that side 2-3 is the only

curved one, then:

x = xl-a~n+ (x2"l) ~+ (~-xl) n (3.247)

and y = y -b~n+{~-y)~+{~-y)n (3.248)
1 1 1

where,
2"2 + 2x

3
- 4x (3.249) a =

5

and b = 2y + 2Y3 - 4y (3.250)
2 5

It should be noticed that by this quadratic approximation to the

original curved side it is possible to model any region with curved

boundaries using the quadratic triangular elements with one curved

side only at the curved boundary. In fact, this element will be used

in some of the problems solved in this thesis.

y

,
,

,
"-

~

,
1

n

3

6

1
(0,0)

"-, ,
6 ,

,
1\

\

(0,1)

i

4,
I

I

s

4

(

,
/

t' ,/
.-. ~ n;;;Q

2
(1,0)

x

(a) The transformed (distorted element)

(b) The parent element

113

FIGURE 3.13: The isoparametric quadratic triangular element

of the form,

2 2
S(x,y) = al+a2x+a3y+a4xy+aSx +a6

y (3.242)

where the 6 unknown coefficients are uniquely determined knowing the

values of S(x,y) at the six nodes. The transformation from the x-y

plane to the ~-n plane is given by,
•

(3.243)

(I

114

and (3.244)

.')r in a more compact form,

S(x,y) = s(2s-l)sl+~(2~-l)s2+n(2n-l)s3+4~ns4+4nss5+4s~s6

(3.245)

Since s=l-~-n this equation can be written as

S(x,y)
2

= sl+~(4s6-3s1-s2)+n(4s5-3s1-s3)+~ (2s1+2s2-4s6)

2
+n (2s1+2s3+4s5)+4~n(sl+s4-s6-s5) (3.246)

It is clear that ~ and n can be determined from the global coordinates

(x,y) by solving the quadratic equations simultaneously though it is

not easy to have a closed form expression for these equations.

In the special case where one side only of the triangle is curved,

these expressions can be simplified. Assume that side 2-3 is the only

curved one, then:

x = xl+a~n+(x-x2)~+(x-x3)n (3.247)

and y = Yl+b~n+(Y-Y2)~+(Y-Y3)n (3.248)

i.,here,
a = 2x

2
+ 2x -

3
4x

4
(3.249)

and b 2Y2 + 2Y3 - 4y
4

(3.250)

It should be noticed that by this quadratic approximation to the

original curved side it is possible to model any region with curved

boundaries using the quadratic triangular elements with one curved

side only at the curved boundary. In fact, this element will be used.

i.n some of the problems solved in this thesis.

115

3.8 CONVERGENCE OF THE FEM

In the FEM, convergence may be thought of by different approaches

[Babuska and Szabo, 1982]:

(i) The basis functions of each finite element can be fixed and the

diameter of the largest element, denoted by h ,is decreased.
max

This mode is called the h-convergence and its computer

implementation is called the h-version of the FEM.

(ii) The finite element mesh can be kept fixed and the minimum order

of the polynomial b.asis functions, denoted by p . , is increased.
ml.n

This mode is called the p-convergence and its computer

implementation is called the p-version of the FEM.

(iii) A mixture of the two approaches, let us call it the h-p-

convergence, and its computer implementation the h-p-version

of the FEM.

As an example, Figure(3.l4) shows the two versions for a simple

triangular element. In Figure (3.14a), the initial triangular element

is subdivided into smaller triangles all of them are of the same type,

using linear basis functions. In Figure (3.14b), the initial triangular

element is refined by increasing the order of the basis function.

1

I-linear element 4-linear elements 16-linear elements

(a) The h-version of FE

116

1 1 1

4

5

3 2 3 5 2
3 7 6 2

Linear element Quadratic element Cubic element

(b) The p-version of FE

FIGURE 3.14: h- and p-versions of the FEM

In practice, however, most of the computer software implement the

h-version of the FEM. This may be due to the following factors:

(i) programming the h-version is substantially easier compared to

the p-version.

(ii) The structure of the master matrix in the h-version will be

essentially the same, i.e. the sparseness pattern will be the

same in the h-version. On the other hand, this pattern is not

retained in the p-version.

(iii) The sparseness in the h-version is bigger compared to that in

(~)

the case of the p-version. However, we must notice that the

overall matrix size may not be bigger since in the p-version

a smaller number of elements are used.

In practice, it is easier to decrease the value of h , i.e., max

refine the mesh many times. On the other hand, the value of p
max

cannot be increased to more than 3 or 4 at most.

Nevertheless, the p-version usually gives better convergence than

the h-version. In the case of corner singularities, the rate of

117

convergence of the p-version is exactly twice that of the h-version

[Babuska and Szabo, 1982]. More details about the theoretical found-

at ions for the rate of convergence of both the h- and p-versions can be

found in Babuska et al [1981], Babuska and Door [1981] and Babuska et

a1 [1979]. Here, a practical example is used to demonstrate the rate

of convergence of both approaches.

Consider the Poisson's equation,

2 V <j> = 4-2 (x+y) , (3.251)

in a unit square as shown in Figure(3.15). The boundary conditions are:

and

<j>(O,y)

4> (x,O)

2 = Y
2 = x

~(l,y) =
2

2-2y-y

2
= 2-2x-x

The exact solution for this test problem is:

2 2
<j>(x,y) = x +y -xy(x+y)

Y I aej> 2
- =2-2x-x ay

(0,1) ~---------, (1,1)

2
<j>=y

(0,0)

FIGURE 3.15: Sample problem

a~ 2
.:::0:. =2-2y-y ax

(1,0)

(3.252)

(3.253)

(3.254)

(3.255)

x

118

This problem is solved using both approaches, i.e. the h-version

and the p-version. The region is divided up to triangles of increasing

number and for each discretization triangles of different orders are

used. The values are computed for values of (x,y) of spacing .2 in both

directions, Le. at points (O,O) , (0,.2},(0,.4}, ••• ,(.2,o},(.2,.2}, ••• ,

(l,l) • The error norm L2 is defined by:

L2 =!L L (<P •• _ ~ •• }2
Vi Vj 1.) 1.)

, (3.256)

"-
where <Pij is the exact value of <P at the point (Xi,Y

j
) and <Pij is the

computed value obtained by the FE modelling. The results are shown in

Table 3.1. It is evident that with a fewer number of elements of

higher order better accuracy can be obtained. We must notice also that

since the exact solution of <P is a polynomial of order 3, the cubic

triangular elements give the best results with a fewer number of elements.

More problems will be solved using both approaches in Chapter 7 of this

thesis .
L2 Error Norm

Number of Quadratic Cubic Quartic
Elements

4 .2143 . 4712xlO
-3

.459lxlO
-3

8 .4273xlO
-2

.1463xlO
-5 .1892xlO

-5

16 .576xlO
-3

.194lxlO -6 .2073xlO -6

32 .6103xlO
-4

.9362xlO
-7

.8250 10
-7

TABLE 3.1: Comparison of h- and p-versions for test problem

One of the simple, yet powerful, tests of the convergence of elements is

the patch test [Irons and Razzaque, 1973]. This test can be stated in

several ways. In its general case it can be formulated as follows [Davis,

1980]:

Given a solution ~o for the PDE defined by L~~f, assume that

round the perimeter of any arbitrary patch of elements values of ~

A
are chosen to be equal to ~o; then, if the approximate solution ~ to

this problem inside the patch, is identical with ~o there, then the

test is passed and the element will yield convergence. This is best

illustrated by a simple example, [Davies, 1980).

Consider the solution of Laplace's equation in the region shown

in Figure 3.16.

y

3 D (1,1) 11
, 2 6/?I ,

1 9 C

A / (2,0)
x

/

4

FIGURE 3.16: A square region

119

What we like to test is the bilinear rectangular element. In the patch

shown we assume a test solution x-y+l, this will lead to nodal values

as follows:

~l ~ ~2 ~ ~3 ~ 1; ~4 ~ ~6 ~ 2 and ~7 ~ ~8 ~9 ~ 3

and ~5~2.

The element interpolation functions for this element are given in

[Huebner and Thornton, 19821, viz.

where,

4
e

~ U;,n) = L N. (~,n)~. ,
i=l 1. 1.

N2 (~,n)

N3(~,n)

N4(~,n)

1
= 4(l+~) (l-n) ,

= t(l+~) (l+n)

1
= 4(1-~) (l+n)

120

(3.257)

(3.258)

(3.259)

(3.260)

(3.261)

Consider the element whose nodes are 1,4,5 and 2. In this element ~

will be:

~l = Nl +2N
2

+2N
3

+N
4

1 = 4(1-~-n+~n+2+2~-2n-2~n+2+2~+2n+2~n+l-~+n-~n)
1

= 2(~+3) •

But inside this element the relationship between the local coordinate ~

and the global coordinate system is:

~ = 2x-2y-l (3.262)

thus,
~l = t(2X-2Y-l+3) = x-y+l • (3.263)

2 3 4
In a similar manner it is possible to find that ~ ,~ and ~ all will

have the same solution x-y+l which is the assumed for the patch when

this element passes the patch test.

121

3.9 ERROR ESTIMATES IN FE

3.9.1 Sources of Errors

Starting from a physical problem and ending by a numerical FE

solution a number of approximations have to be done. Assume that a

physical system is characterised by a field variable $(t) in which $

is, in general, a vector and t is the time. Assume that the FE solution

" of this system gives the solution $(t). The difference between the

actual physical quantity $(t) and the corresponding numerical solution

" $(t) is the total error E:

A
E = $(t)-$(t) (3.264)

This error is due to the following approximations:

(i) Modelling of the physical problem:

What is solved by a mathematical technique is a mathematical model

of a physical problem. During the derivation of the system equations

many simplifying assumptions are done whether in the underlying theory,

in the geometry or in other parameters of the system. Such assumptions

are found in almost every physical problem. They are, however, usually

very small and can be neglected provided that these assumptions are

reasonable and usually supported by experimental evidence. Examples of

these reasonable assumptions are: flow in aquifers is assumed to be

essentially horizontal, a plane section in the beam theory remains

plane after deformation. These assumptions are valid, of course, within

prescribed ranges. For example, to apply the beam theory, the height

of the section must be sufficiently small compared to the span otherwise

the obtained results will be erroneous. In the following discussion the

mathematical modelling errors are assumed to be negligible and therefore

they will not be considered, i.e. hereafter solution errorS do not

122

include mathematical modelling errors.

(ii) Discretization Errors:

The actual mathematical system possesses infinite degrees of

freedom while its FE model has a finite number of degrees of freedom.

Moreover, the FE model may have also simplifications of the geometry

of the domain and modifications of the boundary conditions. In addition,

to that, in most FE analysis, the terms of the element matrix are

computed by numerical integration rather than having explicit exact terms.

(iii) Roundoff Errors:

These are due to the finite word length of computers. The current

generation of computers used in FE analysis have a word length that

ranges from 16 bits to 64 bits. Consequently, most of the real numbers

are represented in these machines approximately. Since most of the FE

calculations are done in floating point arithmetic it implies that

roundoff errors do exist in almost every FE analysis. In the floating

point arithmetic, a number is represented as a mantissa and an exponent.

If error estimates can be established prior to the FE solution

they are called a-priori estimates. On the other hand, if error

estimates are based on the information obtained from the FE solution

they are called a-posteriori estimates.

3.9.2 Error Measures

From an analysis point of view, it is usually more convenient to

decompose the solution errors to its simpler constituents as follows.

At time t, the difference between the exact solution of the mathematical

A
model ~(x,t) and the obtained numerical solution ~(x,t) is denoted by r

which is the residual [Utku and Melosh, '1984].

123

" r = ~(x,t)-~(x,t) (3.265)

This residual can be decomposed to three components: r
d

, rr and ri'

where: rd is the error due to discretization, rr is the error due to

round-off and r. is the inherited errors at time t and represents the
l.

effects of all equation errors of the earlier times. These error

components are at any time t, but in fact when solving a time-dependent

problem there is a possibility of having another source of error during

the· solution process, this is the manipulation error [Melosh, 1973].

This error is due to the used solution algorithm. During the solution

process, depending upon the solution algorithm, intrinsic characteristics

of the system may be altered. It is possible to have a large manipulation

error in an intrinsically stable system due to a wrong choice of the

solution algorithm. The total solution error at a time t=T is defined

now as the sum of equation errors at times t~T and the manipulation

errors.

Errors are usually measured by one of the error norms which have

been explained earlier this chapter. In general a p-norm is defined as,

A brief discussion of measuring the round-off and the discretization

errors is given in the next section.

3.9.3 Round-Off Errors

The exact computation of the round-off errors is not possible.

So what is possible is to get a reasonable estimate of its value. Let

us assume the actual number to be represented in the computer to be x

and its machine representation in floating point is x
f

; then the round-off

124

error E will be:

(3.267)

The lower bound of £ can be zero in case the number is one of those

which can be represented exactly within the computer word length. on

the other hand, the upper bound of the error £ can be computed as follows:

Assume that the real numbers are represented in floating point with

mantissa of m bits for the normalised fractional part, and e bits for

the exponent. Most computers chop the extra bits rather than perform

the rounding operations. Thus the maximum value of the chopped bits

will be the sequence,

2
- (m+2) + + ••• 00

This is a geometric series and its sum is,

-m-l
2 -m

= 2 •

-m
Therefore, the upper bound of £ is 2 *exponent. The exponent part is

Ix I, thus:

(3.268)

Considering two floating point numbers x and y, the bounds for

the round-off errors of their sum is:

(3.269)

and for their multiplication is:

O I I < :Ix·l* lyl*2-m
~ £ It ' mu •

(3.270)

For a scalar product of two vectors a and b each of n elements the

bounds of the round-off error will be:

(3.271)

The same inequality applies for matrix multiplication since each element

125

of the resultant matrix is the scalar products of two vectors of the

same length.

From the above equations it is clear that in order to minimize the

effect of round-off errors we have to increase the number of bits

assigned for the mantissa, i.e. m which can be realised through the use

of computers of larger word length or by using double (or higher) length

precision arithmetic. In addition to that, small magnitude quantities

will give smaller round-off errors. In the case of matrix and vector

operations, in addition to the previously mentioned solutions, the

length of vector n should be small.

The relative error in the computed value (x-y)f for two floating

point numbers x and y will be:

r =
(x-y)-(x-y)

f

(x-y)f (x-y) f
(3.272)

Using the above inequalities for £ this equation can be written as the

inequality:

o ~ r ~
(lxl+l y l)*2-m

(x-y)f
(3.273)

From this equation it is clear that if x-y is too small, the effect of

round-off errors may be too large. A solution for this situation may

be the avoidance of a too refined finite element mesh and the use of

double precision arithmetic in critical quantities. In the Gaussian

elimination process for the solution of a set of n linear algebraic

equations, which is usually used in FEM, it has been proved by

Wilkinson [19631 that the cumulative effect of rounding errors on the

solution obtained can be related to the effect of rounding errors in the

representation of the matrix of coefficients and the vector of constants.

126

Consider the set of equations defined by:

(3.274)

where A is the (nXn) matrix of coefficients, b is the (nxl) vector

of constants and x is (nXl) vector of unknowns. Assume that both A and

b are normalized such that their elements are all of absolute value <1,

and their values are correct to m binary places (the mantissa). Assume

further that the arithmetic operations of the Gaussian elimination

method with pivoting is carried out using m+log
2

n binary places. Then,

the obtained solution to m binary places is the exact solution of a set

of n linear algebraic equations whose coefficients and constants differ

from those in the original equations by less than the possible rounding

-m-l error in the data, i.e. by less than 2 •

3.9.4 Discretization Error

In the FEM the field variable ~(x,t) is approximated by trial

solutions of the form W(x,t}. Let ~W(x,t} denote the difference between

the actual field value and its assumed trial value, i.e.,

~w(x,t} = ~(x,t) - W(x,t} , (3.27S)

Considering the functional I[~(x,t}), it is possible to write:

I[~(x,t}) = I[W(x,t}+~W(x.t})

+~Irw(x,t}+~~(x.t}) (3.276)

where ~I represents the effect of some probable errors like: (a) the

sum of the spatial domain represented by FE may be different than the

actual spatial domain, (b) the boundary conditions may not be exactly

satisfied by the approximation. Due to the existance of ~I and ~W the

solution obtained from the functional I[W(x,t}) will be deviated from

127

that obtained from I[~(x,t)]. The difference between the two sets of

equations is the equation discretization error vector r
d

• It can be

shown that [Becker et al, 1982]:

Ilrdll - O(hP) (3.277)

where h is the mesh size and p is a power related to the highest order

of the interpolation functions used in the approximation. This actually

gives the basis of the two versions usually adopted in FE refining,

viz. the h-version and the p-version which have been discussed before.

It should be noted that if the discretization error is monotonically

decreasing with decreasing the mesh size, then, using Richardson's

extrapolation it is possible to get a better solution as explained

earlier in this chapter. It is only recently [Dunavant and Szabo, 1983;

Kelly, et al, 1983] where some a-posteriori error estimates for some FE

problems have been established. However, two points should be noted:

(a) Almost none of the existing FE software available handles the error

problem. An exception to this is the FEARS (Finite Element Adaptive

Research Solver) which is a research-type FE software developed at the

University of Maryland, U.S.A., (b) practically, in order to assess the

errors by computer experiments, particularly for new problems solved by

FEM, the same problem should be solved several times (at least three),

with a gradually refined mesh. Sometimes, it may be useful to use a

Richardson's extrapolation technique to conclude a better approximation.

Utilizing higher order elements can then be applied for best results.

128

3.10 SPECIAL PROBLEMS IN FE ANALYSIS

In this section some special problems in the FEM are briefly

highlighted.

3.10.1 Time-Dependent Problems

TwO approaches can be used to model time-dependent problems using

the FEM. These are:-

(i) Considering time as an extra dimension for the problem to be solved.

Thus, a 2-D problem will have now 3 dimensions: x,y and t. The shape

functions are defined in terms of these dimensions, i.e.,

e q, (x,y,t)
n

~ L N. (x,y,t)q,i '
i~l ~

where q,e stands for the elemental field variable q" N. the shape
~

(3.278)

functions and q,. the nodal field variables. This approach can be
~

considered as a natural extension to the steady-state FE formulation

already discussed. It should be noted that the cost of computation

with this extra dimension is usually very high so that this approach is

rarely used in practice.

(ii) Considering the problem at anyone instant of time and the nodal

variables are considered as functions of time while the space variables

are used in the FE analysis. This approach leads to a system of ordinary

differential equations which can be solved using other techniques, usually

finite differences. This approach is usually used in practice and indeed

it is the one to be used within this thesis as will be explained in

later chapters. In this case the FE model will have the form,

n
l:

i~l

e q, (x,y, t) ~ N. (x, y) q, . (t)
~ ~

(3.279)

129

3.10.2 Mixed and Hybrid Elements

In most of the FE formulations for structural and solid mechanics

the field variable is chosen to be the displacement field. Consequently,

the displacements are assumed, and forced to satisfy certain continuity

compatibility conditions. The stresses computed after the solution for

displacements are nearly continuous. Solutions for such situations

should be covered by an ideal pcstprocessor. This will be explained in

a later chapter. What we are going to explain here is that it is

possible, though not used in practice, to define other variables as the

field variable and hence an appropriate FE formulation can be developed.

Perhaps the most known formulation other than the displacement one is

that based on assumed stress field. The associated functional in this

case is the complementary energy and the primary unknowns are the nodal

stresses. FE models based on this formulation are termed stress-based

FE models. If a mix of stress and displacement quantities are considered

as independent unknowns the resulting FE formulation is termed mixed

elements FE model. An example for a mixed element is the plate bending

element shown in Figure (3.l7), where the nodal variables are the lateral

5

1

3

FIGURE 3.17: Mixed element for plate bending

130

displacements at nodes 1,3,5 and the bending moments normal to the edge

at other nodes, i.e. at nodes 2,4 and 6. The associated functional

in this case is the Stationary Reissner energy.

Hybrid FE models are obtained if in addition to one field variable

the displacement or stress, other variable (i.e. stress or displacement)

are introduced and the parameters that correspond to the additional

variables are eliminated at the element stage before assembling the

element equations. For example, it is possible in a plate elemeRt to

consider the field variable within the element to be the moments M ,M
x Y

and M [Rao, 1982] while the lateral displacements of any edge is xy

quadratic or cubic in the edge-parallel coordinates and governed by

rotations and displacements of nodes on the edge. More information on

this approach can be found in Zienkiewicz [1977].

3.10.3 Infinite Finite Elements

When modelling an infinite region using finite elements, only a

finite part of the region is considered and the solution at infinity

is approximated by that at the boundaries of the finite part or conversely,

the boundary conditions at infinity are assumed to happen at the boundaries

of the finite part. Consider, for example, a well in an aquifer where

the aquifer itself is assumed to extend to ~ in the x-y plane. Similar

situations occur in electromagnetic field problems and in ocean

engineering models. In general, the region R is partitioned into two

subregions Rc and Ri' where R = Rc U Ri' The subregion R stands for
c

a closed domain that extends up to the range within which the solution

varies significantly while Ri stands for the rest of the region which

extends to~. Of course, we do not know the boundaries of Ri in advance.

131

However, engineering judgement and experience are helpful in many

problems. In case no previous experience is available, for the problem

to be solved, then the problem is solved several times moving the

boundaries of R until a satisfactory solution is obtained. Another
c

approach is to use "infinite finite elements" where the elements possess

some functions of a decaying nature and the integration is performed

over the infinite domain. One of these decaying functions is that

proposed by Ungless (1973) given by,

1
f(~) = l+~/L (3.280)

where L is the effective length. This function is used to reduce the

magnitude of u as ~ increases where:

f(~) = 1 at ~=O

f(~) = .5 at ~=L (3.281)

and f(~) + 0 as ~+»

Bettess (1977) uses Lagrangian polynomials as interpolation functions

and multiplies them by an exponential decay function which can best fit

for the rapidly decaying phenomena. Assuming the Lagrangian inter-

polation function to be G(~) the modified function will be:

f (~) = G (~) e -~/L (3.282)

Again, the decaying multiplier is 1 at ~=O and +0 as ~+».

3.11 COMPARISON OF THE FINITE ELEMENT METHOD WITH OTHER COMPUTATIONAL

TECHNIQUES

132

There are many computational techniques that can be used to solve

PDE's and it is impossible to compare the FEM with all other methods.

So, the comparison will be limited to what are considered as the most

competitive methods: the finite differences and the relatively new

method, the boundary element method. Before discussing the criteria

used in the comparison it is convenient to give the metalgorithms for

the three methods. The word metalogorithm is due to Rice [1975]. It

consists of a set of blocks or components which represent a class of

algorithms each of which has the form and attributes specified by the

metalgorithm. A metalgorithm can be described in English statements or

in the form of flowcharts. In fact, metalgorithms are used as a frame­

work or theory to study algorithms [Houstis et al, 1975].

(1) The metalgorithm for the FEM:

(i) The domain is divided into a set of finite elements.

(ii) A choice is done for interpolation functions associated with

elements.

(iii) A processor is used to generate a set of algebraic equations

from the PDE or an associated functional.

(iv) A processor is used to generate a set of algebraic equations

from the auxiliary conditions.

(v) An equation solver for the system of equations generated by

components (iii) and (iv) is used.

(vi) Measurement of results and termination of the algorithm.

(2) The metalgorithm for the finite difference methods:

(i) A grid of nodal points are placed on the domain.

133

(ii) A processor that generates a set of algebraic equations from

the PDE is utilized.

(iii) A processor is used to generate a set of algebraic equations

from the auxiliary conditions.

(iv) An equation solver is used for the system of equations resulting

from (ii) and (iii).

(v) Measurement of the results and termination of the algorithm.

(3) The metalgorithm for the boundary element methods:

(i) The boundary of the region is discretized into a set of boundary

elements.

(ii) The original PDE is transformed into an equivalent set of

boundary integrals.

(iii) A processor is used to generate a set of algebraic equations from

the boundary integrals.

(iv) A processor is used to generate a set of algebraic equations

from the auxiliary conditions.

(v) An equation solver is utilized to solve the system of equations

resulting in (iii) and (iv).

(vi) Measurements of the results and termination of the algorithm.

The criteria used in comparison are then: (i) domain modelling, (ii)

handling of auxiliary conditions, (iii) processor properties and (iv)

user convenience.

(i) Domain modelling:

The ability of the FEM to model an arbitrary geometry through the

use of the higher order isoparametric elements is an advantage of this

method over the others.

Although it is possible to model such geometries using finite

differences (FDM) as explained earlier in this chapter, but the

approximation is usually poorer compared to the FEM. It is easier

l34

to use a mix of elements of various types, sizes, shapes and gradation

in the FEM as compared to other methods. An advantage of the boundary

element method (BEM) over the other methods is that a smaller number of

elements is required since the discretization process is applied to the

boundary only rather than the whole region.

(ii) Handling of auxiliary conditions:

Derivative boundary conditions are treated in the FDM utilizing

fictituous nodes that reside outside the domain itself. This is some­

what unnatural. Application of such conditions in other methods do not

require fictitious elements.

(iii) Processor properties:

The processors used in each method to generate the set of algebraic

equations are quite different. In the FDM the derivatives are replaced

by function values at the grid points. This is a straightforward process

and no assembly is required for the resulting equations. This is not

the case in the other two methods where an elaborate assembly process

is required to form the final set of equations. Another factor is the

characteristics of the master matrix of the resulting set of equations.

In the FEM the master matrix is usually symmetrical, positive definite,

sparse and banded or can be transformed to a banded one.

These "good" properties save computer memory and execution time

for the solution. On the other hand, in the FDM the master matrix is

usually sparse but in many cases is unsymmetric. In the BEM the

resulting matrix is normally dense and unsymmetric. However, since the

boundary is discretized only, the size of the master matrix is much less

as compared to the other methods.

(iv) User convenience:

135

Three aspects are considered here. First, the input data required

in the analysis is much less in the case of the BEM compared to the

other method. This is apparently due to the fact that the boundary is

discretized in the BEM rather than the whole domain. Consequently an

easier user-interface can be achieved in the BEM.

Secondly, the domain of applications of the FDM and FEM seems to

be wider than that of the BEM. The solution obtained in the BEM is

that on the boundary only and the solution inside the domain has to be

computed. In the other methods, the solution is obtained inside and on the

boundary of the domain directly. Third, there are many standard,

reliable computer software for the FDM and the FEM that can be used to

solve a wide range of problems. This is not the case with the BEM

where very few specialized codes are produced.

CHAPTER 4

COMPUTER IMPLEMENTATION OF THE FINITE ELEMENT METHOD

TABLE OF CONTENTS

4.1 Introduction

4.2 Classifioation of Finite Element Software

4.3 Data Structures for Finite Element Programming

4.4 Proposed Fortran Extensions

4.5 Computer Solution of Finite Element Equations

4.5.1 Banded Algorithms

4.5.2 The General Sparse M2trix Algorithms

4.5.3 The Frontal Algorithm

4.5.4 Software for the Solution of Equations

4.5.4.1 M2trix Storage Modes

4.5.4.2 Linear Equation Solvers

4.5.4.3 Test Problems

4.6 M2inframe Computer Implementation

4.6.1 Historioal Baokground

4.6.2 Program Capabilities

4.6.3 Implementation Details

4.6.4 Installation Prooedure

'4.6.5 Disoussion

4.7 Mini-Computer Implementation

4.7.1 Baokground

4.7.2 The ELASTIC Paokage

4.7.2.1 Element Library

4.7.2.2 Implementation Details

4.7.2.3 The ELASTIC Program Struoture

4.7.2.4 Numerical Tests

4.7.3 The STRAP Program

4.7.3.1 STRAP CapabiLities

4.7.3.2 STRAP Structure

4.8 Micro-Computer ImpLementation

4.8.1 Background

4.8.2 Finite ELement Programming on Micro-Computers:
Prob~ems and So~utions

4.8.3 The Interactive Finite ELement Program for
Aquifer SimuLation IFEP

4.8.3. 1 Program Structure

4.9 Pre-Processors for Finite E~ement Programs

4.9.1 Introduction

4.9.2 Methods of Mesh Generation

4.9.2.1 M2pping Techniques

4.9.2.2 Mesh Generation

Mesh Generation

by Direct subdivision

by Quad Trees 4.9.2.3

4.9.2.4 DupLicate Nodes in Automatic Mesh Generators

4.9.3 £Uta Input for Finite ELement Programs

4.9.3.1 Interactive Ask-and-Answer

4.9.3.2 speciaL Definition Language

4.9.3.3 Direct Data Input Through Digitization

4.9.4 Numbering A~gorithms

4.9.4.1 ALgorithms for Minimizing Matrix Bandwidth

4.9.4.2 ALgorithms for ~nimization of Fronta~ Width

4.10 Post-Processors for Finite ELement Programs

4.10.1 Introduction

4.10.2 The Functions of Post-Processors

4.10.3 Stress Smoothing Methods

4.10.4 Hardware for Interactive GraphicaL Post-Processors

4.10.4.1 Graphica~ TerminaLs
4.10.4.2 Input Devices for Interactive GraphicaL

Post-Processors

4.10.4.3 Output Devices for Interactive Graphica~
Post-Processors

4.10.5 Software for Interactive Graphica~ Post-Processors

4.10.5.1 Representation of Graphica~ Entities

4.10.5.2 Programming Languages for Interactive
Computer Graphios

4.10.5.3 Geometry ModeZZing

4.10.5.4 RemovaZ of Hidden Surfaces

4.10.6 Design of User Interfaoe in GraphicaZ Post-Frooessors

4.10.6.1 The User's ModeZ

4.10.6.2 The Command Language

4.10.6.3 Information DispZay

4.10.6.4 Feedback

4.10.? ExampZes of FE Post-Frooessors

4.10.8 Recent Trends in GraphicaZ Post-Processors

4.11 SpeciaZ Topics in Computer ImpZementation of FE

4.11.1 FE on RzraZZeZ Computing Systems

4.11.2 Database TechnoZogy for FE Software

4.11.3 Standardization for FE Software

4.12 SeZection of Finite EZements Software

4.12.1 Introduction

4.12.2 Attributes of FE Paokages

4.12.3 The SimpZe Matrix Method

4.12.4 The MuZti-attribute UtiZity Theory

4.12.5 The MUZti-attribute Fuzzy Decision AnaZysis

4.12.6 A Case Study

136

4.1 INTRODUCTION

The FEM is a computational technique which requires the essential use

of a digital computer for practical applications. Since the FEM was

originally developed by structural engineers, it is not surprising

that the first computer implementation of this method was for structural

analysis systems.

FE programs in the sixties were typical in that they had their inputs on

punched cards and outputs on line printers with in-core solution

techniques. It is possible to identify five milestones in the computer

implementation of F.E.:

(i) In the late sixties the use of direct access storage devices

like magnetic discs and the building of the virtual memory

machines had enlarged the capabilities of F.E. programs to

handle fairly big problems, e.g. SAP I [Wi1son, 1970).

(ii) In the early seventies the out-of-core techniques and sparse

matrix methods opened the way to solve very big problems e.g.

NASTRAN [MacNea1, 1970) and George [1971).

(iii) In the mid-seventies the evolution of super mini-computers

allowed the FE user to get access to large systems on a

relatively cheap machine in a time-sharing environment. The

use of interactive programs was dominant.

(iv) In the late 70's and early 80's and due to large scale

integration (LS1) and very large scale integration (VLS1)

technological advances, micro- and super-computers started to

be used in scientific computations. This gives the possibility

for in-house F.E. computations on a small size machine which

cost less than a time-sharing service with a mainframe. The

137

use of MIMD and SIMD computers for extremely large problems was

also exploited. The use of graphics to enhance man-machine

interface is another feature of these F.E. programs.

(v) The last milestone is the current state-of-the-art for which

software integration is a major objective. The use of database

management systems (DBMS) and some techniques from the field

of artificial intelligence (AI) are among the features of these

F.E. programs. other features are: the extensive use of colour

graphics and digitizers.

In this chapter F.E. software is classified according to different

criteria such as use and size. The data structures necessary for

implementing F.E. on computers are reviewed and discussed. Since most

of F.E. programming is done in Fortran a proposed set of extensions

is given to facilitate scientific programming in general and F.E.

programming in particular. Four F.E. programs are presented. The

first is a model of a mainframe computer implementation; the second

and the third are mini-computer implementations; and the fourth is a

micro-computer implementation. The first two are adapted by the author

while the last two are developed by him. In choosing these programs

the following factors were considered:

(i) The program must be available in source code and not

a proprietary one.

(ii) The program must be already loaded and tested on the

available computer hardware.

(iii) Program documentations must be available.

In view of the above, the MSAP program [Kaldjian et al, 1982] is

chosen as a mainframe computer implementation, the ELASTIC [Sharaf Eldin

138

and Evans, 1987) and STRAP [Turaby and Sharaf Eldin, 1978) are chosen

as samples of mini-computer implementations, and the IFEP [Sharaf

Eldin, 1983a and 1985a) program is chosen as a sample of a micro­

computer implementation.

The importance of pre- and pest-processors for F.E. systems is

evident. Two sections are devoted to these two important subjects.

Special topics in computer implementation of FEM are discussed which

include F.E. on parallel systems, use of database technology in F.E.

and standards for F.E. codes. Finally three quantitative approaches

for the selection of FE software are given.

139

4.2 CLASSIFICATION OF FINITE ELEMENT SOFTWARE

It is possible to classify finite element software according to

several criteria such as: applicability, function, size and approach.

Considering the domain of applications we can distinguish four

different types of F.E. software:

(i) General Purpose Practical Packages:

These are the most widely used packages for F.E. Most of these

packages are oriented for structural analysis and are used for practical

problems. The main features of such packages are: a broad spectrum of

capabilities. rich library elements and most of them are in proprietary

code. Examples of such packages are ADINA [Bathe. 1978] and MSAP

[Kaldjian et al. 1982].

(ii) Special Purpose Packages:

These packages are usually developed to solve very specialized

problems for which no general-purpose package exists. As an example

the IFEP [Sharaf Eldin, 1983a] which is used to simulate some ground­

water problems. This program will be discussed in Section 4.8 in detail.

(iii) Educational Packages:

These are packages used for teaching purposes. They are usually

available in source code. Such packages are simple in design and

contain a good user interface to make the communication with the package

easy. Examples of such packages are: FEMSKI [Irons and Shrive. 1983].

FINEL [Hitchings, 1975] and STRAP [Turaby and Sharaf Eldin, 1978].

(iv) Research-oriented Packages:

These are programs which have been developed for research purposes

in F.E. Unfortunately, no general-purpose packages are available that

allows the implementation and testing of new algorithms in F.E. in an

140

easy way. Most of the researchers in computer implementation of FE

start their work from an existing package and attempt to modify it

for their application such as Sada Costa [1980]. One of the attempts

to solve this problem is to add special capabilities for one of the

available high level programming languages as language extensions and

thus allow the FE researchers to test different algorithms. Example

of such an,approach is that developed by Collins [1980].

FE systems can be classified according to their size into three

different categories:

(i) F.E. packages that require a super or a mainframe computer

to run. These programs are usually general purpose large

scale software used for practical applications in industry.

These systems are usually expensive and most of them are

available in binary code only. They require a large memory

size supported by DASD for back-storage. In addition, graphics

devices are invariably required to obtain the plotted results.

It is worthwhile to mention that none of the known F.E.

packages fully utilize super-computer capabilities and in

particular parallel processing facilities. These are expected

soon. Examples of mainframe implementations are ADINA

[Bathe, 1978] and MSAP [Kaldjian et aI, 1982].

(ii) In the mid 70's the powerful super mini-computers like VAX

and PRIME made it possible to have F.E. packages that could be

implemented on mini-computers. Due to their relative cheapness

compared to mainframe computer prices it sometimes becomes an

cost-effective alternative. Examples of programs that

can be implemented on mini-computers are: Gattass and

Abel [1983] and STRAP [TUraby and Sharaf Eldin, 1978]. Among

141

the problems encountered when using mini- and microcomputers

for F.E. analysis is the limited stack size. This problem is

explained and a solution is given in Chapter 5 of this thesis.

(iii) During the last few years and due to the advances in the LSI

and VLSI technologies, many micro-computers with greater

capabilities have been introduced. However, very few general FE

packages are available using such micro-systems. This may be

due to the fact that developing a new F.E. code from scratch

is time consuming and expensive process and the developments with

micro-computer are changing very rapidly. Examples of micro­

computer implementations are Yamada and Okumura [1980] and

Sharaf Eldin [1985].

It is also possible to classify F.E. systems according to their

functions as:

(i) Pre-processor packages:

These packages are used as a man-machine interface to facilitate

the data input to the main F.E. processor. The definition and functions

of pre-processors and post-processors will be discussed in detail in

later sections of this chapter. Examples of pre-processors are the

GIFTS III [Kamel and McCabe, 1976] and PREMSAP [Kaldjian, 1976].

(ii) Processors that perform the actual F.E. analysis

(iii) Post-processor packages:

These are concerned with graphical representation of results and

correction and checking of the solution. Examples of post-processors

are: MSAPPOST [Kaldjian, 1977] and MENTAT [Marc, 1980].

Finally, it is possible to classify F.E. systems according to

their approach. Two types can be figured out: Mathematical and

142

Engineering. Most of the available F.E. systems are engineering type

software where the input to such systems is a collection of elements,

nodes, material properties and boundary conditions. The characteristics

of elements and the solution steps are all stored in the system. On

the other hand a mathematical F.E. software accepts its input as the

governing differential equations with the necessary boundary conditions.

An example of a mathematical F.E. system is the TWODEPEP package which

will be discussed in Chapter 6 of this thesis.

143

4.3 DATA STRUCTURES FOR FINITE ELEMENTS PROGRAMMING

The problem of data structures for F.E. programming has been given

less attention in the literature than it deserves. Many of the existing

large finite element software packages have their roots in the late

sixties and early seventies. The fast progress that occurred in computer

scientific computation is not accompanied by a parallel one in software

development. Although progress in software theory is relatively fast,

the actual implementation is a great deal slower. As an evidence, most

of the existing large F.E. programs do not have built-in interactive

input/output facilities. Almost none of them is built around a truely

database management system.

One of the main reasons for this situation is that when a F.E.

developer designs his system he is faced with problems of data structuring,

storage management and data management. The existing programming languages

used in F.E. programming, mostly Fortran, do not possess the adequate

capabilities to enable the easy command of data structuring, storage and

data management. As a consequence, the F.E. developer finds himself

involved more and more in the organizing, storing and management of data.

The use of a data structure may, therefore, act as an interface between

the F.E. developer and the computer.

The first attempt to build a data structure for F.E. systems as

reported 'in the literature was that of Bettess [1917]. In his work a

direct access disc file is mapped onto a fixed area of core. The access

is granted via a Fortran function NO(I) where the contents of the Ith

word of the disc file can be transferred to a core location or vice versa.

The data structure has two main parts; a fixed permanent part that holds

the title block and the pointer block. The title block holds the problem

144

title while the pointer block holds pointers to element data, node data

and so on. The other parts of the data structure are the entries:

node entries, element/node entries and element entries. The node entry

holds the node number, the node co-ordinates, and a pointer for the

first element/node entry for that node. The element entry holds the

element number, type, and a pointer to the first element/node entry

for this element. The element/node entry holds the element number,

the node number and a pointer to the next element/node entry for this

node. A suite of 8 subroutines are available to store and retrieve

the nodes, elements and connectivity data. This data structure could

be considered as a simple solution for the considered problem. However,

it must be emphasized that the use of database management systems (DBMS)

to handle data management in F.E. systems is a more efficient way.

This will be explained later in more detail.

It is safe to predict that more than 90% of the developed F.E.

programs are programmed in Fortran. This may be due to the fact that

Fortran is the oldest high level programming language for scientific

and engineering applications. A large amount of investment has been

spent on the existing software and in training engineers and scientists

in Fortran. For these reasonS it is believed that Fortran will be

dominant for some time in F.E. programming. The question which arises

is: does Fortran possess the adequate data structures and management

of F.E. programming? Before giving an answer, let us first state what

a programmer expects from a programming language for F.E. programming

and then examine Fortran in the light of these requirements.

In general a programming language should provide the following

capabilities [Browne, 19761:

145

• A set of primitive and system defined data structures.

• A set of operations on them.

• A set of composition rules. that enable the composing of

primitive and system defined data structures into structures

appropriate for the application.

• The same but for operations.

• A set of capabilities to manage the computer resources allocated

to a program specially the memory size and filing system.

• An interface to capabilities defined in the operating system or

in the system libraries.

Before examining Fortran we must know that there are two major

versions of Fortran available in the computer community known as Fortran

66 and Fortran 77. Most of the well known large scale F.E. systems are

based on Fortran 66 which lacks most of the structuring programming

constructs. However, our examination for Fortran will be based on both

versions: Fortran 66 and Fortran 77.

The primitive numerical data objects in Fortran are the data types

defined explicitly by a type statement or implicitly by its first letter

(the I,J,K,L,M and N rule). This includes: integer, real, complex and

double precision. In Fortran 77 it is possible to define these data

types through an implicit statement as well. A character data type

is also available in Fortran 77. The system defined data structure is

the array which is a collection of identical objects and can span over

a number of dimensions: 3 in Fortran 66 and 7 in Fortran 77. However,

most of the existing Fortran compilers permit more than 7 dimensions

for the array declaration. The set of operations defined in Fortran

are quite powerful for data elements but no operations are allowed on

146

system data structures. Thus we can write:

A = B + C

where A,B and C are data objects (scalars) but not arrays. One exception

is the I/O of arrays which could be done directly. However, Fortran

gives the facility to compose user-defined operations using the system

defined operations through functions and subroutines.

The other three capabilities are very limited in Fortran. These

are: the composition of system defined data structures into more user­

oriented data structures; the capability to manage the allocated computer

memory and the adequate interface to operating systems and system libraries.

To exemplify, let us consider the problem of the storage of the master matrix

K (stiffness matrix) in a F.E. program. First of all it is well-known

that K is sparse and in many cases banded. However no data structure in

Fortran is available except the array and thus K is stored as a rectangular

array with the necessary vectors that store pointers to different elements

of the array. Thus, it is the programmer's responsibility to establish

the whole mechanism to manipulate and store this sparse matrix. Another

problem is that since Fortran allows the allocation of a fixed amount of

memory it implies that K will be dimensioned in the main program

so as to fit the largest problem to be handled by this program.

This means that when solving problems of smaller size, memory wastage

will occur.

This is due to the fact that Fortran does not possess the capability

to manage the memory allocated to a program. Fortran does not allow

the direct interface with the operating system and system libraries.

However, many of the Fortran compilers nowadays define some system

calls that give a fairly limited amount of interface to some of the

147

operating system tables and system libraries. Nevertheless, some

'tricks' have been practiced by engineers to overcome some of these

handicaps. One of these 'tricks' is to have the whole memory allocated

to the F.E. program in the form of a single vector and hold the suitable

pointers to partition this vector.

148

4.4 PROPOSED FORTRAN EXTENSIONS

The following extensions to Fortran are proposed in order to

facilitate F.E. programming, in particular, and scientific computations

in general. The underlying philosophy for these extensions are:

•
•
•
•
•
•

Enrich the system defined data structures

Increase the capabilities of user-defined data structures

Define more operations on data structures

Add the capability to manage the memory allocated to a process

Add an interface to the operating system

Enhance the readability of Fortran programs

The definition of arrays:

An array could be defined as it is now in a dimension statement

with two more extensions:

(i) Allow dynamic storage allocation by allowing constants, integer

variables or expressions to be used in the main segment of a Fortran

program.

Examples:

DIMENSION X(IO,20),Y(I:15,-3:4)

DIMENSION R(N,M) ,K(I:N+I,-M:N-I)

where N and M will be supplied at run-time. This will minimize the

wasted memory when running the program. It is worth mentioning that

some compilers allow a similar facility through a system call to free

unused memory.

(ii) Allow the declaration of a triangular matrix, e.g.

DIMENSION X(I:N,I:*)

DIMENSION Y(I:N,*:N)

The X array is defined as a lower triangular array while array Y is an

upper triangular one. In the same sense a diagonal matrix can be

defined by:

DIMENSION Z(l:N,*:*)

149

(iii) Allow the declaration of virtual arrays. These arrays reside in

virtual memory. This point will be discussed in greater detail in

Chapter 5 of this thesis. Adding this facility is important since

paging, done by operating systems, has a basic problem in that it does

not reflect the programmer's knowledge of the program structure but

rather leaves the whole task to the operating system.

Operations on arrays:

It is interesting to notice that most of the existing BASIC inter­

preters and compilers allow expressions like:

MAT X = A + B

where A,B and X are arrays of the same dimensionality. It seems that

matrix operations must be allowed in Fortran. The following list of

matrix operations is proposed:

(i) Allow the use of arrays in expressions as scalers provided that

the correct dimensionality is met, e.g.

A = B + C

R = 0

K = IDENT

M = 1

where A,B,C,R and K are arrays.

In the first statement array A is set to the sum of arrays Band

C. In the second statement array R is zeroed and in the third

statement array K is set to the unit matrix. Note that IDENT is a

reserved token. In the last statement all the elements of array M are

set to 1.

(ii) Allow the use of sub-arrays in a manner analogous to substring

manipulation, e.g.

A = B(l:N, l:M)

This will copy the submatrix of B defined by rows l:N and columns l:M

into A,

A = B(l:N,l:*)

This will copy the lower triangular part of B into A.

B(l:N, l:M) = A(l:N, I:M)

This statement will copy in the subarray B the same NXM part from A.

This facility will be of great help when mapping local stiffness

matrices to the global one in F.E. programming. The use of subarrays

in the lefthand side is also useful in matrix partitioning.

(iii) Allow the use of arrays as arguments in some of the intrinsic

functions like the ABS, SQRT, •.• functions, e.g.

150

A = ABS (A)

R = AMAX(A)

In the first statement all the elements of A will be set to their

absolute values while in the second statement the maximum element of

array A is stored in the variable R.

(iv) Add more intrinsic functions for matrices like:

TRANSPOSE, INVERSE.

(v) Allow the use of integer vectors as subscripts for matrices. This

is helpful in programming the frontal solution algorithm, e.g.

REAL K(l:N, I:N)

INTEGER AcrIVE (3)

If AcrIVE has the value:

AcrIVE={1,4,9}

then K(N,AcrIVE) will give the elements: K(N,I), K(N,4) and K(N,9).

151

Interfacing with the operating system:

(i) Allow the user control of real and virtual memory allocated to

his program data segment through two new statements:

KEEP REAL list

RELEASE REAL list

These statements are explained in greater detail in Chapter 5 of this

thesis.

Enhancement of Fortran readability:

(i) Allow longer names for variables. The current Fortran specifications

allow variable names of up to 7 characters. This seems to be very

restrictive. Some of the available compilers allow more than 7

characters. It is proposed to increase the variable names up to 30

characters.

(ii) Allow the use of character labels in addition to numerical labels.

The above-mentioned proposal could be used as a basis for a more

powerful Fortran which is more adequate to FE programming in particular,

and to scientific computations in general.

152

4 • 5 COMPUTER SOLUTION OF FINITE ELEMENT EQUATIONS

As explained in Chapter 2, direct methods of solution for the

resulting linear equations are usually used in F.E. programs. These

methods, although all are variants of Gauss elimination, they are

implemented on computers following the three main approaches, viz:

(i) The banded algorithms;

(ii) The general sparse matrix algorithms; and

(iii) The frontal algorithm.

4.5.1 Banded Algorithms

In the FEM the stiffness matrix is sparse in general. In many

cases it is banded and symmetrical too. Band matrices are stored in a

compact form. Assuming that the F.E. system of linear equations to be

solved is:

Ax = b , (4.1)

where A is nXn banded matrix of semi-bandwidth r. A is stored as a

rectangular array of nxr elements instead of n
2

as in the case of full

storage mode. Figure (4.1) shows the storage of a banded symmetrical

matrix,

r
A =>.

r+l

153

i. e. ,
all all

a21
a 22 a

21
a

22

a 31 a 32 a 33 a
31

a 32 a
33

A = +
0 a42 a43 a44 a 42 a43 a44

0 0 aS3 a S4 aSS aS3 a S4 aSS
i---3- -- . (-- 3 - - - ~

FIGURE 4.1: Storage of a banded symmetrical matrix

This will save not only the computer storage but also the execution

time required to solve the set of equations. The semi-bandwidth r

is a function of the node numbering scheme. As a simple rule, the

half-bandwidth is the maximum difference between any two node numbers

in the same element as illustrated in Figure 4.2 [Sharaf Eldin, 1983bl.

Many techniques are, therefore, used to minimize the bandwidth by node

renumbering. These methods will be explained in a later section of

this chapter as one of the F.E. preprocessors' functions.

1 2
3 4 5

'0\ '\ '\ '\ I'
11 12 .13 14 15

(a)

1 4 7 10 13

: I '\ 1 '1 \ "
6 9 12 15

(b)

(a) Bad node numbering, semi bandwidth = 9

(b) Good node numbering, semibandwidth = 4

FIGURE 4.2: Effect of node numbering on bandwidth

154

It should be noted that the zeros laying outside the band region

remain zeros at all times in the solution process and for that reason

they are ignored. Also, we notice that during the Gauss elimination

process of the ith row, a limited number of elements of A are affected.

Recall equations (2.22) and (2.23) and since A is banded we notice that

aik is zero outside the active triangle shown in Figure (4.3).

row i

FIGURE 4.3: Active triangle in eliminating the ith row of a
banded matrix.

This suggests to keep b rows only of the matrix in core and swapping

other rows to backing storage media such as DASD. Examining the active

triangle shown in Figure (4.3) we notice that the active triangle is

moving downwards. When eliminating the(i+~row we thus need to retrieve

other elements from the backing store. This will involve heavy I/O

operations. In order to decrease the number of these I/O it is

preferable to have larger portions of A in-core. A proposed scheme

could be to have multiple active triangles in-core. The number of

which is dependent on the available core and the size of each active

triangle. The storage of a banded matrix as a rectangular array

is very simple and quite efficient provided that the number of zeroS

155

inside the band is small. However, this is not always the case.

some problems will give a stiffness matrix which has large variations

in the bandwidth from row to row. In this case a more efficient

method to store the matrix A is the envelope or profile method.

Before discussing this method let us give a definition of the envelope

of a matrix following George and Liu [1981] as follows:

For each row i (i=1,2, .•• ,n) in the symmetrical matrix A we

define:

and i-f. (A)
~

Equation (4.2) gives the column subscript of the first non-zero

(4.2)

(4.3)

element in the ith row of A. While equation (4.3) gives the semi-

bandwidth of A at the ith row. The semi-bandwidth of A is thus:

S(A) = max S. (A) , i=1,2, ... ,n
~

(4.4)

Considering the variations in S. (A) with i, the envelope (or profile)
~

of A is denoted by Env(A) and defined by,

Env(A) = {(i,j) IO<i-j:;S. (A)}
~

In terms of fi (A) this could be rewritten as,

Evn(A) = {(i,j) If. (A) :;j<i}
~

The total size of envelope of A denoted by IEnv(A) I is

n
IEnv(A)1 = t S. (A)

i=l ~

(4.5)

(4.6)

(4.7)

In the envelope method the non-zero elements within Env(A) are stored.

Since by definition Env(A) C Band (A) it implies that there are savings

in the storage of an envelope rather than the band. This is particularly

clear if the variations in bandwidth are very large. The most commonly

used storage scheme for the profile of a matrix is that given by Jennings

156

[1966]. Here, in each row of the matrix all the entries from the

first non-zero to the diagonal are stored in contiguous locations in

a vector ENV. An auxiliary index vector DIAG is used to point to the

location of diagonals in the vector ENV. This is best illustrated by

the example shown in Figure (4.4).

III a12
a
l3

a 22

I a33
I
I
I Symmetrical

L
A

Index: 1

~l~ 2 a
12

3 a l3
4 a

22
5 a 33
6 a34 1

7 a44
8 a

4S
9 a46

10 aSS
11

l

a S6
1 12 La66J

Storage of elements of A

in vector ENV

a34

a44

l
a

4S a461

aSS a S6 1

a6J
Index: 1 r 11

2 41
3

~I 4

l~~j S

6

Pointer vector DIAG

giving location of diagonals

within ENV

FIGURE 4.4: The storage scheme for matrix envelope

Note that the vector DIAG is of integer type and of length n. The

size of the real vector ENV is IENV(A) I. The map which. defines the

location of an element a ij within the envelope region of A into the

157

vector ENV is defined by,

{I,J} + DIAG(I)+J-I (4.8)

Note that since A is symmetrical we consider the upper part only, i.e.

J~I. TO illustrate the use of (4.8) consider the element a
45

in

Figure (4.4). This element will be stored in ENV in the position:

DIAG(4) + 5 - 4 i.e. 8

If A was not symmetrical, a variant of the above method proposed by

George and Liu [1981] is to store the diagonal elements themselves in

a separate vector DIAG and store other elements of A within the profile

region into another vector ENV. A pointer vector ROW of integer type

is used to keep track of the start of each row portion within ENV.

Note that the vector DIAG in this case is not of type integer as before.

The length of DIAG is n, while the length of ENV is 1 ENV (A) I and that

of ROW is n. However, to have easier indexing when referencing the

elements of ENV. the vector ROW is increased by one element to be n+l

and the last element in it i.e. ROW (n+l) is set to IENV(A) 1+1. This

storage scheme is illustrated in Figure (4.5).

~:'
a

12

a 21
a

22

0 a
32

a
33

l
a

42
a

43
a

44

L a54

A

158

Index: 1

r:1 al~
2 a 2l

3 3 a32

4 4 a 42

5 6 I a43

6 l7 LaJ

ROW ENV DIAG

FIGURE 4.5: Another storage scheme for envelopes

Note that ROW(I) is the element number in ENV where the 1st element of

the Ith row elements is stored. The mapping of any a .. element within
~J

the profile of A onto the vector ENV is defined by:

{I,J} + ROW(I+l)-II-JI I#J (4.9)

For example, element a
54

will be stored in

ROW (6) - (5-4) = 6

Le. in ENV(6) •

4.5.2 The General Sparse Matrix Algorithms

In the general sparse matrix algorithms use is made of the sparsity

of the matrix of coefficients to store nonzero elements only. Here, a

well-known problem arises; the fillin's i.e. the zero elements of A may

become nonzeros during the solution process. The problem of fill-in's

does not exist in banded algorithms since zeros within the band are

stored. However, in the general sparse algorithms, the nonzeros of A

are stored but due to the fill-in's some additional storage must be

added. TO illustrate the problem of fill-in's consider the following

example [George and Liu, 1981]:

Consider the system of equations Ax=b where A is the symmetric

sparse matrix,

159

~
1 2 .5 J .5 0 0

I
2 0 3 0

01

~5 0 0 .625

IJ 0 0 0

and x is the vector of unknowns and b is the r.h.s. vector of constants,

~ 1
~4~
-4)

A could be factored to LLT where,

Iz
.5 .5

1 -1 1
L

.25 -.25 -.5

~ -1 -2

and the solution is x = r~
l~~

I
I
I

.5

-3 J

we notice that the zeros structure of A is not retained in L. Many

fill-in's occur. Also note that using banded algorithms for such a

problem with this ordering is not useful. This is, in fact, the

motivation of using general sparse algorithms.

To minimize the number of fill-in's, re-ordering of the equations

is necessary. This is done by multiplying the matrix A by a permutation

matrix P. Pre-multiplication PA means re-arranging the rows of A while

post-multiplication means permutation of the columns of A. Thus the

sparse Gaussian elimination for the solution of sparse symmetric

160

positive definite equations is usually done in three different steps:

(i) Permutation of A to reduce the fill-in's

(ii) Finding the non-zero structure of the factors of A.

This could be done by symbolic factorization [Schreiber,1982].

It is worth mentioning that the prediction of fill-in's is

not possible for a general sparse matrix.

(iii) Using the data structure obtained in (ii), the actual

numerical computation is done.

The separation of these three steps is useful since it allows the

solution of different problems which possess the same structure but

with different values by doing the symbolic factorization only once.

Recall the given example again and use the permutation matrix:

~ 0 0 0 11

~
0 0 1 0

P = 0 1 0 0 = pT

1 0 0 0

0 0 0 0

16 0 0 0 21
0 .625 0 0 I .5,

PApT
= 3 2 0 0 0

0 0 0 .5 J L2 .5 2 1

The system of equations Ax=b will be:

(PApT) (Px) = Pb, i.e. Cz=d.

The factorization
T T

of PAP to LL will give:

[4 0 l 0 .791

L = 0 0 1.73 I

ts
0 0 .707 I

.632 1.15 1.41 1.12~

161

which has the same sparsity structure as (PAp
T

) itself. We proceed

T
as before to solve the system of equations: Ly=d, L z=y and finally

T
x=P z.

It should be noticed, however, that:

(i) Finding the best permutation matrix P is not always possible.

Some heuristics are used to find a good permutation matrix P.

(ii) The storage requirements for a sparse matrix consists of

two main parts: primary and overhead. The primary storage is

used to store the non-zero elements of A while the overhead

is used to keep the necessary data to access elements of the

primary storage like pointers, subscripts, etc. The total

storage required is, therefore, the sum of these two portions.

(iii) It may happen that during the reduction of A that some zeros

arise which are not due to the sparsity structure of A but due to

numerical calculations. These zeros are usually not

exploited in sparse matrix methods.

There are many methods to store a sparse matrix which differ in

their complexity and execution time. However, an inadequate sparse

scheme can lead to very inefficient programs due to the large amounts

of data handling involved [Evans, 1973]. One of the well-known data

structures used is to store the elements of the lower triangle of A,

including the zeros that later will be filled in, in a vector v. A

separate vector r is used to record the row number of the corresponding

Thus if a" is stored in v(k) then r(k)=i.
~J

element of array v. A is

stored co1umnwise i.e. elements of the same column are stored in

contiguous elements in v. Thus we need to keep in another vector c,

the diagonal elements of A as stored in v. e.g. if v(6) holds aSS then

c(S) will be 6.

162

To illustrate, consider the following example:

all

0 a
22

A =
a 3l

a
32

a 33

a4l
0 a 43

a
44

then the v, r and c vectors will be

: : lal~l
c =

A survey of 36 of the most well known FE systems in the marketplace

[Noor, 1981] indicates that none of them use general sparse methods to

solve FE equations. This may be due to: (i) The sparsity structure of

the resulting FE equations from general purpose FE software in practical

use differs greatly from one problem to another and it is very difficult,

if not practically impossible, to tell in advance which solution

strategy should be followed: banded, frontal or general sparse. (ii)

unless the matrix of coefficients is greatly spar sed , banded algorithms

are normally faster and require less computer memory. (iii) If A, the

matrix of coefficients is not symmetric positive definite, there is

no algorithm known to find a good permutation matrix. (iv) General

software for sparse matrices are relatively new compared to banded

algori thms.

Howeve4 high quality software packages for sparse matrices exist

since the mid-seventies. Among these are; the Yale Sparse Matrix

Package: YSMP [Eisenstat, et al., 1976] and the SPARSPAK [George and

Liu,198l]. These two packages have similar general structure and

solution philosophy. However, they have different data structures.

163

Consider the system of equations to be solved is Ax=b where A is a

sparse symmetric positive definite matrix. In these packages the basic

solution steps are:

(i) Input structure of A.

(ii) Permuting A according to one of the available methods in

the system library to reduce the fill-in's. At the end of

this step, the data structure needed for L is allocated.

(iii) Input of the numerical values of non-zero elements of A.

(iv) Factorise A into LLT.

(v) Input of righthand side.

(vi) Final solution for x and output of results.

The factorization is done in two steps in the YSMP: symbolic factor­

ization by the subroutine SYMFAC and numerical factorization by the

subroutine NUMFAC. The SYMFAC routine determines the fill-in's in

the factor L of A while the routine NUMFAC uses this structural

information to do the actual numerical computations. In the SPARSPAK

package the user allocates a vector of the total memory allocated to

the problem and interface subroutines use this vector to allocate

memory for different modules during the computation.

4.5.3 The Frontal Algorithm

The other widely used method for the solution of linear equations

resulting in FE analysis is the frontal technique. It is a fact that

the majority of FE systems available use either banded algorithms

(simple or profile) or the frontal technique. The frontal solution

technique was originated independently from Irons [1970], Melosh and

Bamford [1969] and Bellen [1969]. In this method, the assembly

164

procedure for the stiffness matrix and nodal forces and the solution

of the unknown displacement by means of the Gaussian elimination method

are all done in one application. The main and important idea is to

assemble the equations and eliminate the variables at the same time.

As soon as the coefficients of an equation are completely assembled

from the contributions of all relevant elements, the corresponding

variable can be eliminated. Therefore, the complete master matrix is

never formed as such, since after elimination the reduced equation is

immediately transferred to backing storage. So, the frontal method is

basically an out-of-core technique. To explain the method we consider

the system of linear equations defined by Ax=b. In the Gauss elimination

method the elimination of the unknown x. (i=1,2, •.• ,n) is done by
l.

modifying the elements of the coefficient matrix A and the vector b as

follows:

a jk = a
jk - a, ,

Jl. * aiklaii (4.10)

b, = b, - a, , * b/aii J J Jl.
(4.11)

for j=i+l to n

and k=i+l to n.

The last equation will be in the form x =b la which gives x directly,
n n nn n

while the remaining unknowns xl ,x2 , ••• ,x
n

_
l

are determined by backward

substitution using:

= (b, -
l.

for i=n-l to 1.

n

I a ..
j=i+l l.J

(4.12)

If the matrix A is symmetric, then equation (4.10) can be written

in the form:

a jk = a jk - a ij * aik/aii

for j=i+l to n

and k=i+l to n.

(4.13)

165

Now it should be noted that:

(i) At the time of elimination a'
k

and b. need not be fully
J J

assembled provided all the other terms are.

(ii) If either a ij or a
ik

is zero, then a
jk

will not be changed

by the elimination process. Similarly, b
j

is unchanged if a
ij

is o.

The frontal algorithm takes advantage of these points by alternating

assembly and elimination. A variable x. is eliminated as soon as all
l.

the elements that contribute to 'any of the terms a .. or b, have been
l.J l. n

assembled. After the elimination of x. its row equation ~ a .. x.=b.
l. j=l l.J J l.

will not be needed in the elimination process and thus this row can be

swapped to out-of-core backing storage. Only the terms of A and b that

correspond to "active" variables need to be kept in main melOClry. By

active variables we mean those variables Xj for which some a jk or b
j

has been affected by assembly but are not yet ready for elimination.

In the backward substitution phase, the reduced rows of the matrix with

the corresponding terms of b are read from the backing storage in the

reverse order. This could be done by backspacing through the backing

storage device. It is worthwhile to mention, however, that usually

direct access storage devices (DASD) like disc devices are used as

working files during the frontal operation. For these devices, back-

spacing is not done physically by repositioning the file one record

in the reverse direction as the case in magnetic tapes, but the hardware

record address is decremented by one. This makes the execution time

for a frontal solver competent and superior, in many cases, to other

comparable techniques.

In implementing a frontal solver the symmetric coefficient matrix

166

A of dimensions (nxn) is considered as a vector v of length n{n+l)/2.

Thus, any term a ij is to be mapped to location in v defined by the

function:

f{i,j) = i{i-l)/2 + j for i~j to store lower triangle

and f{i,j) = j{j-l)/2 + i for i~j to store upper triangle (4.14)

In the frontal technique, however, we do not store the whole matrix A

in core, rather only the active nodes. So the size of the vector v can

be decreased to w(w+l)/2 only, where w is the maximum frontwidth. For

each variable x. in the set of equations to be solved, which corresponds
l.

to a degree of freedom, we should calculate a destination d. which
l.

determines where the terms associated with the variable will be placed

in the vector v. Thus, the terms can be accessed while they are

active by applying the function f to their destinations. In other words,

if both xi and Xj are active, the current value corresponding to a ij

will be held in v(f(d.,d.». The destinations are calculated by pre­
l. J

processing the elements' nodal connection data i.e. the connectivity

matrices. At the end of the assembly/reduction process, a work file

has a size of n records and equal to the number of degrees of freedom

in the structure is created. One record corresponding to an eliminated

variable equation. The back substitution phase is considered as a frontal

process in reverse. The details of the frontal algorithm with the

necessary housekeeping and Fortran coding can be found in Hinton and

OWen [1979], Cheung and Yeo [1979] and Irons and Ahmad [1980]. However,

we give here a brief description of the implementation details on a

computer as follows.

The first step in the frontal routine is to determine the last

appearance of each node during the assembly/elimination process. This

167

is known as the pre-front process. The reason why we need to determine

the last appearance of each node is that during the "life" of each node

in the front procedure it moves through three stages: (1) the inactive

status where it is not yet summed; (2) the active status where it is

within the front; and (3) the deactivated status where it has been

eliminated and removed from the front. The main idea is that during

the assembly/elimination process, when an element is to be considered

its matrix is formulated and mapped to the appropriate places in the

existing equations if all the corresponding nodes are active. However,

if some of these nodes were not active then a neW equation is formed to

cater for them. On the other hand, if any node will appear for the

last time, their corresponding equations can be eliminated and moved to

a backing storage thus freeing space in the front for a new equation.

It is now clear from this discussion that we must know the last time a

node will appear during the assembly/elimination process. To do that

a loop is done over all elements in the same order in which they will

be assembled and the last appearance of a node in this list is marked.

An easy way to mark this last appearance is to put a negative sign in

front of it, i.e. the node number is negated. This is best illustrated

by the example shown in Figure (4.6) which is the same as the one

presented in Chapter 2 of this thesis in Figure (2.5).

3
4

1

FIGURE 4.6: sample problem

168

The connectivity matrix for this problem is:

Element Nodes

1 1 3

2 2 3

3 2 4

4 3 4

The last appearance of nodes will be:

-1 3

2 3

-2 4

-3 -4

The second step is to determine the position in the front into which

each degree of freedom of a node is to be assembled (mapped) this is

known as the destination vector and to determine the list of active

variables currently in the front. To determine the destination vector

we note that at the beginning, the front is zeros, thus the degrees of

freedom corresponding to the nodes of the first element to be assembled

are given the first locations in the front. In the considered example,

nodal variables 1,2 corresponding to node 1 will be allocated to the

first two pOSitions in the front while the nodal variables 5,6

corresponding to node 3 will be allocated to the third and fourth

elements in the front. Thus the element destination vector of element

1 is [1,2,3,41. Elimination is done in conjunction to assembly. If any

node of the considered element has a negative sign it means that this

is the last appearance of this node and so it is ready for elimination.

Elimination is virtually the same as explained earlier except that the

equation used for reduction of other equations within the front area is

169

not on the top but may be anywhere in the front. In our example, we

can eliminate equations 1 and 2 which are of node 1. The free space

in the front can be utilised when assembling the second element where

node 2 appears for the first time. Thus, the second element destination

vector will be [1,2,3,4]. After elimination of an equation, its

coefficients are stored out-of-core and its position is zeroed to be

ready to be occupied by a new equation.

Although the frontal algorithm was devised for FE analysis, the

approach is extended to solve sparse symmetric linear equations in

general [Duff and Reid, 1983]. The frontal solution requires elaborate

housekeeping procedures and higher programming skills as compared to a

simple band solver. However, it has many advantages over the band

solvers. The solution is not affected by node numbering as in band

solvers but rather is dependent on the element ordering and their

connectivities. This is very useful for elements with mid-side and

internal nodes that will result in an increase in the bandwidth, while

in a frontal solution such nodes will be active for a very short time

only. A reconstruction of the mesh is not easily implemented for band

solvers as the frontal algorithm where the node numbers are unimportant.

The frontwidth is normally smaller than the bandwidth but it is very

difficult to predict its width. In practice the available memory (core)

is utilised to assemble as much elements as possible to reduce the I/O

operations which can be done in blocks of records rather than one by one.

4.5.4 Software for the Solution of Equations

Many well known software systems have been developed for the

solution of systems of algebraic equations. They differ in their

170

complexity, capabilities, cost and availability. Two major types of

such systems exist: (1) packages which comprise of stand-alone programs

that can be used directly by the user. All what he needs to do is to

supply the input data. (2) Libraries which contain subroutines that

can be called from a user program. The main differences between these

two types can be summarized in the following [Sharaf Eldin, 1984]:

(i) Libraries require programming knowledge (Fortran, say),

while a package user need not do any programming.

(ii) To use a library a host program must be supplied. However,

for a package no host program is required. This host program

is normally the main segment of the whole program.

(iii) Libraries are more flexible, they can be modified by the users

or used to build more sophisticated software. In other words

they can be customised by the user. This is not the case

with packages.

Among the well-known systems of equation solvers one can mention

YSMP [Eisenstat et al., 1976], IMSL [IMSL, 1984], LINPACK [Dongarra

et al., 1979] and MINPACK-l [More et al., 1980]. Here the IMSL which

is a library of Fortran subroutines for mathematical and statistical

analysis is presented. The choice of this library is due to its

availability in source code, its wide spectrum of applications and

being used by many universities and research centres in the world.

The general characteristics of the library are:

(i) Several storage modes of matrices are supported. These

are band, symmetric, band symmetric and Hermitian. These

storage modes will be discussed later.

(ii) All the routines conform to established conventions in coding

and documentation.

171

(iii) Each routine outputs a return code which can be tested to

monitor the results given by this routine. This is a good

means for error detecting.

(iv) Computer readable documentation is available which permits

on-line access to the basic documentation.

(v) Several routines are supplied based on different algorithms

to allow a wider choice for the user.

(vi) All routines are available in single and double precision.

(vii) The order of parameters in the argument list of the routines

is:
Input parameters,

Input and output parameters,

Output parameters,

Work areas, and

Error parameters (return codes).

(viii) Many routines have more than one version, e.g. in-core and

out-of-core versions.

The error detecting facility supplied by the library is based on

the "return code" method.. In other words, one of the arguments in

the routine call (the last one in order) is an integer variable I

namely IER. This variable is set automatically by the routine to a

value that indicates the conditions met while executing this routine.

After the call of the routine it is the responsibility of the user to

test the value of the variable IER to check whether the routine was

executed normally or any abnormal conditions have occurred. To

exemplify, suppose that a system of linear equations are to be solved

using one of the solvers available in this library. After calling the

solver, the return variable IER must be tested. The solver routine

172

will place a value in this variable to indicate whether it succeeded

in obtaining results with the requested accuracy or not. If the

matrix of coefficients was singular another value will be returned by

the routine. Three types of errors can be detected by IMSL routines:

warning, warning with fix and fatal errors. The warning errors are

those which caution the user that, during the course of computations,

certain critical conditions were detected. These are not so severe as

to suspend subsequent computations. For example, if one requires the

solution of a system of linear equations and specify a number of digits

for which the solution is correct but during the computation the routine

discovers that this condition cannot be satisfied, a warning error will

be returned. The value returned is an integer 32<IER~64. The

interpretation of these values can be found in the library manuals.

Warning errors with fix are those encountered during computation but

some attempts have been done by the routine to correct the situation

and the computations are continued. The returned value is 64<IER~128.

Fatal errors are those of critical nature. Once an error of this type

has been detected by the routine it aborts and no further computations

are done. An example of this type is a singular matrix for which an

inverse is required. The value of the returned value is >128.

4.5.4.1 Matrix Storage Modes

Five storage modes for matrices are supported by the IMSL library

routines as follows:

(i) Full storage mode:

This is the normal storage mode of a general matrix. As known

in Fortran a matrix is stored in memory in contiguous area column by

173

column. The adjustable dimensioning feature in Fortran is utilized to

pass a submatrix to an IMSL routine. For example. suppose that an

array is dimensioned in the main (master segment) program as A(lOO.lOO)

and a call to a subroutine is done using the submatrix of A with dimensions

20 X20 only. In order to have the correct elements to be processed in

the subroutine. the row dimension of A must be passed to the routine

and used in the adjustable dimensioning in it. Failing to do that

will result in processing other submatrices of A in the subroutine as

follows:
DIMENSION A(lOO.lOO)

N=20

CALL SUB1(A.20.SUM)

SUBROUTINE SUB1(X.N.TOTAL)

DIMENSION X(N.N)

TOTAL=O

DO 10 I=l.N

DO 10 J=l.N

TOTAL=TOTAL+X(I.J)

10 CONTINUE

RETURN

END

Bearing in mind that matrices are stored in column-wise sequence.

A will be stored in memory as:

all·a2l·a3l·····alOO.l·a12·a22·a32·····alOO.1OO

The array X is declared NXN elements and the value of N passed to

this routine is 20 i.e. 400 elements. Thus the elements of A that will

be used in subroutine SUBl will be:

174

The solution to this situation is to pass the row dimension of A to

the subroutine SUBl and use it in dimensioning X. Thus the correct code

will be:
DIMENSION A(lOO,lOO)

IA=lOO

C lA is the row dimension of A

N=20

CALL SUB1(A,IA,N,SUM)

SUBROUTINE SUB1(X,IA,N,TOTAL)

DIMENSION X(IA,N)

As before

In this case the elements all,a2l, ••• ,a20,1,a12,a22, ••• ,a20,20 will

be used in SUBl which are the correct elements.

(ii) Symmetric Storage Mode:

TO conserve memory space and reduce the arithmetic operations, a

symmetric matrix is stored in vector form. By definition in a symmetric

matrix A. j=A. i' thus all what is stored are the elements on the
1, J,

diagonal and those below it. An NXN symmetric matrix will be stored

2
in symmetric storage mode in only N(N+l)/2 elements as compared to N

elements if it were stored in full storage mode. An element i,j in

. i(i-l) the original matrix A 1S now the element 2 +j, for i>,j in the

vector B which is the symmetric storage mode of A. Figure (4.7)

represents a symmetric storage mode for a 4x4 symmetric matrix.

175

all
",_'do l ra ll

a
2l

a
22 a

2l

a
3l

a
32

a
33 a,J

a
22 = B

a
4l

a
42

a
43 a

3l

A
a

32

a
33

a
4l

a
42

a
43

a
44

FIGURE 4.7: Symmetric storage mode

It is clear that the saving in memory locations is n(n-l}/2.

(iii) Band Storage Mode:

In this mode an nXn banded matrix with i lower codiagonals and j

upper codiagonals is stored in a matrix of dimensions nX(i+j+l}. The

zero elements outside the band are not stored while the non-zero

elements are stored row-wise. Figure (4.8) shows the storage mode of

a banded matrix of size SxS with 1 upper codiagonal and 2 lower co­

diagonals. Note that the diagonal elements are stored in the (i+l}th

column. The savings in memory locations is n(n-i-j-l).

all a
l2 0 0 0 0 0 all a

l2

a
2l

a
22

a
23

0 0 0 a
2l

a
22

a
23 ..

a
3l

a
32

a
33

a
34

0 a
3l

a
32

a
33

a
34

0 a
42

a
43

a
44

a
4S

a
42

a
43

a
44

a
4S

0 0 a
S3

a
S4 aSS a

S3
a

S4 aSS OJ
FIGURE 4.8: Band storage mode

176

(iv) Band Symmetric Storage Mode:

This mode combines the two modes: symmetric and band. Thus it

is suitable for banded symmetric matrices. An nxn symmetric matrix

with semi-band width=i is stored in a matrix of size n(i+l). The

matrix is stored row-wise so that the diagonal is stored in the last

column. Figure 4.9 shows a Sxs symmetric, banded matrix with semi-

bandwidth of 1 and its band symmetric storage mode.

all a
12

0 0 0 0 al~
a
2l

a
22

a
23

0 0 a 2l a 22 1

0 a
32

a
33

a
34

0 .. a 32 ::j 0 0 a
43

a
44

a
4s a43

0 0 0 a
s4 aSS a S4 aSS

FIGURE 4.9: Band symmetric storage mode

(v) Hermitian storage Mode:

Hermitian storage mode for complex matrices is analogous to

symmetric storage mode for real matrices. Thus an nXn Hermitian

matrix is stored in a complex vector of n(n+l)/2 elements.

4.5.4.2 Linear Equation Solvers

There are many subroutines available in the IMSL that can be used

to solve systems of linear algebraic equations. However, they can be

divided into two main categories: space economizers and high accuracy

solutions. The main difference between both versions is that in the

space economizer version the solution is obtained without any attempts

for iterative improvements. In the high accuracy versions, iterative

improvements of the solution can be done if specified by the user.

This is costly in terms of computer memory and time. Two subroutines

will be presented here:

(i) LEQT1F which is a space economizer solver and

(ii) LEQT2F which is a high accuracy solution.

177

These routines are for full storage mode, real matrices of the form,

.Ax = b

where A is the (nxn) matrix of coefficients, x is the vector of

unknowns (nxl) and b is the righthand side (nxl) vector.

(4.15)

In fact these routines can be used to solve several systems of

equations that have the same matrix of coefficients A. In these

routines a working area vector is required. Its size is n in the case

of the space economizer solvers and n
2

+3n in the case of the high

accuracy versions. A good feature of these routines is the accuracy

test that can be specified. This is achieved by specifying a parameter

that determines the number of significant digits to which the elements

of A and b are assumed to be correct. This parameter, IDGT, can be

set to 0 to bypass the accuracy test.

(i) The subroutine LEQT1F

The purpose of this subroutine is to solve systems of linear

equations. It uses a Gaussian elimination (Crout algorithm). Since

the routine decomposes the matrix A, several righthand sides can be

solved simultaneously. If the IDGT parameter is given a value greater

than 0, the elements of A are assumed to be correct to IDGT decimal

digits. The solution, x, will be the exact solution without any round­

off error to a matrix A which agrees with A in the first IDGT decimal

digits.

(ii) The subroutine LEQT2F

This is the high accuracy version of the routine LEQT1F. It uses

178

the Crout algorithm but iterative improvement is performed if the

solution obtained is not correct to the IDGT decimal digits. If IDGT

is set to 0 the accuracy test is by-passed but iterative improvements

are repeated automatically until the answer is correct to the working

precision. In roost mini-computers this is 7 decimal digits in single

precision and 14 in double precision.

4.5.4.3 Test Problems

Some test problems have been designed to test these two subroutines

and to determine the CPU time spent in solving systems of linear

algebraic equations with different levels of accuracies. The number of

equations vary from la to 500 in steps of la. Computations are done

specifying 0,1,2,3,4,5,6 and 7 decimal digits accuracy. The results

of these runs are plotted in Figures(4.10 to 4.17). It is clear that

both routines will take nearly the same time for N (number of equations)

~420. A sharp rise is then noticed in the interval 420~N~Soo.

Note that it is anticipated that this will be true for N>Soo. A

suggested reason for this sharp rise as noticed from the figures is

that the required memory size to accommodate the arrays in the program

when N is ~420 has exceeded the allocated region whence more page

faults occur.

LEOT1F LEOT2F

CPU TIME (SECONDS)
1100 ~~~~~~~~--------------------------~

1000

900

800

700 ~

600 ~

500 ~

400

300

200
-: ..r •••

N

.. .
..

179

FIG. (4.10) CPU TIME FOR ROUTINES LEGT1F&LEGT2F (0 DP)

180

LEOT1F LEOT2F

CPU TIME (SECONDS)

1100 ~~~------------------------------------~
1000 I-

900 I-

800 I-

700

600 I-

500 I-

400 I-

300

200 I-

100 I-

0 ~ . L

0 100

.. ' ,..-. '
j.-"

/,.-.......-..J

I I

200 300

N

.. . "

I

400

.

.' .

500

FIG. (4.11) CPU TIME FOR ROUTINES LEGT1F&LEGT2F (1 DP)

181

LEOT1F LEOT2F

CPU TIME (SECONDS)

1100 ~--------~~----------------------------~

1000

900 r

800 r

700

600 r

500 r

400 r

300 r

200

. '
100 r '7 ..

I I I

100 200 300

N

. .

. • •• 0° .

I

400

. ' .' .
..

500

FIG. (4.12) CPU TIME FOR ROUTINES LEGTIF&LEGT2F (2· DP)

L£QT1F L£QT2F

~C.~~_U __ TI~M.~~~(._S_£C_o.~W.~D_S._~ __________________________ ...
1100 I'"

1000

900

800

700

600

500

400

300

200

100

I

200

N

. ..
p-

I

300
I

400

. " .'
... . .

182

FIG. (4.13) CPU TIME FOR ROUTINES LEGT1F&LEGT2F (3 DP)

LEQT1F LEQT2F

CPU TIME (SECONDS)

1100 ~------~~--~--------------------------~

1000

900

800

700

600

500

400

300

200

N

.'
~ .. '

"

..
• ° •• 0 ••

183

FIG. (4.14) CPU TIME FOR ROUTINES LEGTJF&LEGT2F (4 DP)

LE(}T1F LE(}T2F

CPU TIME (SECONDS)
1100 ~~------~~~-------------------------,

1000

900

800

700

600

500

400

300

200

100

:

N

.... . .' ..

184

FIG. (4.15) CPU TIME FOR ROUTINES LEGT1F&LEGT2F (5 DP)

185

LEQT1F LEQT2F

CPU TIME (SECONDS)
1100 r-----~----~----------------------------_,

1000

900

800

700

600

500

400

300

200

100 F
:f

, I ,
100 200

N

... -.. , . .

I ,

300

:

I , ,

400

.
..

,
500

FIG. (4.16) CPU TIME FDR ROUTINES LEGT1FGLEGT2F (6 DP)

186

LEQT1F LE(}T2F

CPU TIME (SECONOS)

1100 ~----~--~------------------------------~
1000

900

800

700

600 f-

500 f-

400

300

200 f-

100 r
..................

,...-........
j..

:

... "
0"··· .

.-J

",

o ~--~--~'~~~:;~I.--~_.~I~~.~.~_~I--_~.~.
o 100 200 300 400 500

N

FIG. (4.17) CPU TIME FOR ROUTINES LEGT1F&LEGT2F (7 DP)

4.6 MAIN-FRAME COMPUTER IMPLEMENTATION

4.6.1 Historical Background

IB7

The considered model program is the MSAP program. This program

is one of the first computer codes for FE analysis. It originated

from the SAPIV program developed at Berkley, U.S.A. in 1974 by Bathe

et al, which in turn is an advanced version of the SAP program developed

by Wilson [1970]. It has high popularity for two main reasons. First

it is in the open literature and the source code is available which

makes it amenable to modification and adaptation on several different

computers. The second is that it is inexpensive. The program costs

only about $500. This is due to the fact that it was developed under

a grant sponsored by the American Government. The program was developed

on the CDC 6400, 6600 and 7600 range of computers. Later on it was

modified to run on an IBM 370 computer by Kaldjian; [1982] at Michigan

University, Ann Arbor, U.S.A. using the MTS operating system. When

Professor Kalidjian visited our university in Riyadh, MSAP was

implemented on our local computer system, IBM 3033 running under the

MVS operating system where the author participated in that and

assisted in courses about Computer Aided Design (CAD) offered by the

University of Riyadh. Van Fossen [197B] modified SAP IV also and

developed the program FESAP. In this section we present this program

as a model for main-frame implementations of the FEM.

The main features of the main-frame computer implementation of

the FEM can be summarised in:

(i) Rich element library. Typically 10 or more different elements

are expected. Some very big FE systems like MARC [Marcal,

1976] has 50 elements in its element library.

188

(ii) Normally more than one type of analysis is available, e.g.

linear analysis, eigenvalues, non-linear analysis, etc.

The procedure library can go up to 15 procedures.

(iii) Sometimes more than one constitutive behaviour is available

i.e. different D matrices can be defined. This is called the

material library.

(iv) The program size is too big to fit in real storage all the

time. Usually automatic overlaying is used and most of the

modules are kept in virtual memory instead.

(v) The use of backing storage during the solution process is a

must for most practical problems.

(vi) Since most of these packages are developed over a relatively

long time span, some of the most recent advances in computer

graphics and man-machine interface techniques are nob built

inside these programs.

(vii) Most of such programs are propriety codes and expensive.

4.6.2 Program Capabilities

MSAP can be used for static and dynamic analysis of linear

structural systems. The element library in MSAP contains 10 different

elements:

(1) Three-dimensional truss element

(2) Three-dimensional beam element

(3) Plane stress and plane strain elements

(4) Two-dimensional axisymmetric solid

(5) Three-dimensional solid

(6) variable-number-nodes thick shell and three-dimensional

element

(7) Thin plate or thin shell element

(8) Boundary element

(9) Pipe element

(10) contact element.

189

Each nodal point in the system can have from zero to six displace­

ment degrees of freedom (DOF). In the static analysis the program solves

the equations of equilibrium and computes the element stresses. In

the dynamic analysis the frequency calculations are done. It is also

possible to obtain the response spectrum analysis. The program itself

does not include any pre- or post-processors capabilities except a

fairly very simple mesh generation based on equi-dividing element

sides. Several types of loads can be handled, i.e. concentrated loads,

line, axisymmetric, surface, volume, gravity, thermal and hydrostatic

loads. The program has a re-start facility. This enables executing a

very long run partially and then resume execution at another time

without re-solving the whole problem.

4.6.3 Implementation Details

The general flowchart of the program is shown in Figure 4.18.

The first step in the program is the input of the main data. The first

input record is for general parameters, i.e. number of nodes, number of

elements, etc. The nodal points input data are then read. For each

node six boundary conditions codes, 3 coordinates and nodal point

temperature are read. The equations associated with each degree of

freedom at each node are numbered as they are entered. Nodes which are

constrained in any direction are marked and excluded from equation

numbering. Knowing the nodal points data, equation numbers for all

190

START

1
Read nodal
Point data

1
Establish
Equation numbers

L
Read element data

1
store in I I

Compute stress- J
displacement work file
matrices [The \ \
DB matrices]

1
compute element store jrl I

stiffness matrices, r--
mass matrices and ~ork fil", \ '" connectivity arrays '" Q)

~

J;

'" Formation of I I '" ~tore in Q)

structure stiff- ~

ness matrix, mass ~ork file
I"-

matrix and load \ 'l. '" '" vectors Q)

~

I.
-1:

Solve linear
equations for
equilibrium, get
nodal displacements

-!--

Compute element
stresses

1
Print of results

1
END

FIGURE 4.18: General flowchart for static analysis in MSAP

191

degrees of freedom, it is straightforward to compute the element

stiffness matrices, the mass and stress-displacement transformation

matrices for each structural element. This information and the element

connectivity arrays are stored in a work file. In the MSAP program,

all the elements of the same type are entered sequentia1ly and grouped

together. The static analysis involves the solution of the equilibrium

equation f=Kd where f is the load vector, K is the stiffness matrix and

d is the unknown displacement vector. The solution is obtained by

decomposing K to LTDL. It should be noted that such a decomposition

is always possible in the linear static structural analysis problems

where K is always symmetric and positive definite. After the solution

of equations is completed, the stresses are computed using the stress­

displacement matrices which have been stored on the work file. Boundary

conditions in this program are handled as follows: (i) If a displacement

component is zero, e.g. a support condition, then the corresponding

equation is not retained in the structure equilibrium equations, and

the corresponding element stiffness and mass terms are·disregarded.

(ii) If a prescribed displacement component is specified at a node with

non-zero value, e.g. a settlement of support; then the corresponding

component is multiplied by a very big number (lE20) which when solving

the equilibrium equation will yield the prescribed displacement as a

solution to the considered displacement component. This technique has

already been explained in Chapter 2 of this thesis. In the following

problem we will show how the equation numbers are established. Figure

(4.19) is a truss in two-dimensions (i.e. plane truss) to be solved.

The coordinate axes are a right-angled system with x-axis perpendicular

to the plane. Recall the flowchart in Figure(4.18) we notice that the

192

first stage is the input of nodal point data. Nodes are assumed to

be labelled with integers ranging from 1 to the total number of nodes

in the structure, while elements are numbered serially from 1 but

within each element group.

~ _____ -..,4

FIGURE 4.19: A truss example

The nodal points data for the truss example shown in Figure (4.19)

are defined in the ID array where a "1" indicates a fixed condition Le.

a prescribed displacement of zero, while a "0" indicates a free de.gree

of freedom. The 6 degrees of freedom are for displacements and rotations

around the three coordinate axes. Since the considered problem is a

two-dimensional one, the displacement in the x direction is always zero.

Moreover, since the considered elements are the truss elements, no

rotations are allowed in the x,y and z directions. Furthermore, nodes

1 and 2 are fully restrained. Thus ID will be:

ID =

Node
1

2

3

4

1 2

1 1

1 1

1 o

1 o

Degrees of Freedom
3 4 5

1 1 1

1 1 1

o 1 1

o 1 1

6

1

1

1

1

Equation numbering is done by scanning the ID array for the zero

elements. Since each zero element corresponds to an unknown displacement,

193

it is evident that the total number of equations will be equal to the

number of zero elements. Equations are numbered serially from 1.

Since scanning is done row by row, i.e. node by node, it is clear that

equation numbers will be assigned in the same manner. Equation numbers

for the considered sample problem will be:

o o o o o o

o o o o o o
ID ; o 1 2 o o o

o 3 4 o o o

In order to add the contribution of any element to the global stiffness

matrix it is necessary to establish the map between element nodal

points and equation numbers. This is done by specifying the correspond-

ing equation numbers in the mapping vector Q. In our example, the

vector Q for the member 3-4 will be:

0 x,
1

1 Yi

2 zi

Q ; 0 x,
J

3 Yj

4 Zj

Note that x, and x, are always 0 for two-dimensional truss elements.
1 J

Using Q together with the actual element stiffness matrix it will be

easy to add the contribution of each element to the corresponding

equation.

194

4.6.4 Installation Procedure

SAP IV was written in Fortran IV (ANSI66) and implemented on CDC

computers. The program is about 15000 lines and structured in modules

so that it can be easily overlaid. To implement this program on the

IBM 3033 computer operating under the MVS operating system, the

following points are observed:

(i) To have reasonable accuracy, double precision arithmetic

is used.

(ii) To have a good execution speed, a region of 4096K of memory

is allocated to the program. This is accomplished in the IBM

Job Control Language (JCL) as:

II EXEC PGM=MSAP,REGION=4096K

(iii) Since MSAP access backing storage devices sequentially only;

different files are allocated for different types of data,

e.g. mass matrices and element stiffnesses are saved in two

different files which are used temporarily during the execution

of the program.

(iv) It is possible to have a data-check run where no actual

processing took place. In this case all the input records

are checked and saved on a file which could be used as an

input for other programs or for the processing in a subsequent

run.

(v) The JCL statements required to execute the MSAP program and

allocating the necessary data sets are stored in a procedure

in a library.

195

4.6.5 Discussion

MSAP is a general analysis tool for the linear static and dynamic

analysis of complex structures. The root of this program, SAPI, is

one of the first computer implementations of FEM in structural analysis.

The main advantages of MSAP are being in the open literature with the

source code supplied and its modest price. This makes it ideal for

adaptation and modification by several users. However, the program

itself suffers from the lack of pre- and post-processors. Generation

of nodal coordinates is limited to equal increments along a straight

line. No bandwidth reduction is tried. The User interface in SAP is

not adequate. All input data must be formatted and arranged in a

specific manner. The I/O operation on backing storage is done

sequentially. The use of direct I/O will result in more efficient

data transfer and will decrease the number of work files used. However,

MSAP can be considered as a typical model of the first generation of

the main-frame computer implementation of FE.

4.7 MINI-COMPUTER IMPLEMENTATION

4.7.1 Background

196

In the seventies minicomputers were developed. The term mini­

computers as now used covers a wide spectrum of computers that range

from the small size 16 bits computers to the bigger ones of 32 bits

computers with virtual storage capabilities. What we consider here is

a mid-range mini-computers. During the first years of computer

implementation of FE on main-frame computers, the main criteria

thoughts were speed, core storage size, backing storage size and

organisation. However, after the development of mini-computers and

the increased interest in interactive computing, other criteria for

FE software take on more importance such as: pre- and post-processors,

interactive programs and computer ergonomic aspects in general. Two

programs are presented in this section. These are the ELASTIC and the

STRAP programs. The ELASTIC is a FE package which consists of two

programs: a FE analysis program and its interactive pre-processor. The

FE analysis program of ELASTIC is an enhanced version of the coding

given in the excellent book by Hinton and Owen [1979]. An interactive

pre-processor is developed to prepare the input data for this program.

The STRAP program is a simple FE program for beam elements developed

for educational purposes [Turaby and Sharaf Eldin, 1978]. The STRAP

program was developed on the small mini-computer HP2l00S, while the

ELASTIC programs were developed on the medium-size mini-computer HP3000.

The main features of minicomputers implementation are:

(i) Problems of less size can be handled as compared to the main-

frame implementations. This means less element library, material

library and procedure library. Typically, 3 to 5 elements are

197

expected to be supported and single material and procedure.

(ii) Programs are usually interactive with possible pre- and post-

processors.

(iii) Computer graphics are supported as part of the FE system.

(iv) Inputs are usually in free format.

(v) Use of backing storage is limited to 4 work files only.

Sometimes they are used for pre- and post-processing only

while the computations are all in-core.

(vi) Cost is much less than those of main-frame computers.

(vii) Most of the source codes can be obtained. This makes them

easy to be modified and adapted.

4.7.2 The ELASTIC Package

This package consists of two programs for the analysis of linear

structural systems. The first program is a pre-processor developed for

the second program which is the main FE processor. Although the FE

processor is built on the subroutines given by Hinton and Owen [1979].

however. the following enhancements are done:

(i) Critical variables are defined as double precision.

(ii) A full time-log routine is added to the FE processor that

computes the CPU time spent in each step of the solution:

- Data entry and validation

- Element stiffnesses

- Loading data

- Frontal solution of the FE equations

- Stress computation.

(iii) The error handling method is modified to be more versatile

198

by keeping all the error messages on a separate file which

is accessible in read only mode to multi-users. When an

error is detected by the program, the appropriate messages are

read directly using the record number which is set to the

error number and printed. This will shorten the program

length and this decreases the memory required to run this

program. It also provides a more flexible way to modify the

error messages. It is the author's opinion that "hard-coded"

error messages should be, in general, avoided as much as

possible in large systems where a fairly large number of

error messages should be processed.

(iv) A pre-processor program is developed to increase the inter­

action between the user and the program. This pre-processor

is of the ask-and-answer type. It prepares the input data

sets for the ELASTIC processor itself.

(v) A procedure is designed to facilitate the operation of the

whole package.

4.7.2.1 Element Library

Three elements are supported in this package: one-dimensional

beam, 2-D plane stress, plain strain and plate bending elements. All

of them are parabolic isoparametric elements.

In order to develop the stiffness matrices for these elements,

we proceed as explained in Chapter 2, i.e. the interpolation or shape

functions are assumed, the strains are defined in terms of nodal

displacement and relate the stress to strain. For the I-D beam element,

the parabolic isoparametric thick beam element, we have three nodes:

199

one at each end and one inbetween. We need three nodes to allow for

a parabolic element. As shown in Figure 4.20, the shape functions

are defined at each node such that the value of the function is 1 at

the node itself and 0 at other nodes. These functions, in terms of

the natural coordinates are:

Nl(l;) = -H(l-I;)

N2 (I;) = (1-1;) (1+1;)

N3 (1;) = tl;(1+I;).

1;=-1

0

1

1;=0 1;=1

Q 0

2 3

(a) Definition of nodes in the parabolic
isoparametric thick beam element

1 2

(b) The shape function Nl

\
11'----------~--------"

(c) The shape function N2

(d) The shape function N3

FIGURE 4.20: The parabolic isoparametric thick beam element

(4.16)

200

These functions can be easily computed as follows:

Since the shape functions are quadratic then we can write it in the

form,
(4.17)

Consider the case of the NI function, we have Nl~l at ~~-l and Nl~O

at ~~O and at ~~l. Thus,

a l - a
2 + a

3
~ 1

a 3
~ 0 (4.18)

al + a 2 + a 3
~ 0

Solving these equations yields:

which gives:

Similarly, N2 and N3 can be computed.

This procedure is of general nature in the determination of the

coefficients of the chosen shape functions.

At each node i there are two degrees of freedom: the lateral

displacement u
i

and the rotation to the normal 8
i

; thus for the whole

element, i.e., u
l

81

e u2
(4.19) 0 ~

82

u
3

8 3 J

The lateral displacement and rotation at any point can thus be defined

in terms of those at the nodes only using the interpolation functions

as follows:

201

3
u (~) = L N.u.

and i=l l. l.

(4.20)
3

6 (0 = L N. e.
i=l l. l.

Since the element is isoparametric, then by definition, the same

interpolation functions used to define the displacement field within

the element are used also to define its shape. Thus, the x-coordinate

is defined by:
3

x(;j = L N.x.
i=l l. l.

(4.21)

The Jacobian matrix J is computed from:

ax aNl aN
2

aN
3

J = = ~xl + ~x2 + ~x3 a~
(4.22)

i.e. I

(4.23)

In the special case where the second node (node number 2) is

chosen to be at the middle of the element, J will be:

J =
L

=
2

, (4.24)

where L is the element length.

In order to define the strains in terms of the nodal displacement

i.e. to get the B matrix, we notice that according to the thick beam

theory, the lateral displacement ui and the rotation of the normal 6i

are associated with the relation:

or

6l.' = (au). +
ax l.

4>l.' = 6l.' - (au). ax l.

where 4>i is the effective shear rotation.

(4.25)

(4.26)

Since aN,
l.

202

(4.27)

it is possible to express the strain-nodal displacement relationship

in the following equation:

ae aN1 0
aN

2 0
aN 3 r u1

ax 0 ax ax 3x
e1

= u2
(4.28)

~

aN1
aN2 aN

3 92
ax N1 ax N2 - ax N3

u3
93

The last step is to express the stress/strain relationship [the 0

matrix] for the element which is in the form of [see for example Tirooshenko

and Goodier, 1951]

(4.29)

where, M is the bending moment

Q is the shearing force

El is the f1exura1 rigidity

and S is the shear rigidity GA
=-

a

with G is the shear modulus

A is the cross sectional area

a is the warping factor.

e The stiffness matrix of the element K can be calculated from:

(4.30)

Since all the matrices Band 0 are computed, it is possible to write

the expression for K
e

•
T '

The integrand B DB is:

203

'" "'M Z
+

'"
ZMT><
'" '" ~

H
r<I

.... M .
ZMI >< ...

'"
ZMT>< '" '"

'" '" '" ZM ~

'" I

'" M Z
'" ~

'" N'" ZMI >< u z + '" '" '"' '" ZMI >< ...
Z"'T >c I '" '" Z"'I >c
'" '" '" '" '" ~ Z

'" H '" H
r<I I r<I

ZMI >c
ZNI>c '" '" ZNI >c N

z "'T >< '" '" '" '"
'" Z"'I >< '" '" '" '" '" '" M

~

=f =f '" '"

III '" '" M Z Z Z Z
+ +

'" "' Z"'I>< ZMI >c Z
+ '" '" '" '" '" Z"'I >c ZMI ><

Z.-lT >c '" '" z l>C '" '" z 1 ><
'" '" '" '" '" III '" '" ~

H =f H. T H
r<I r<I r<I

z "'I >c Z I>< zMI >c z 1 >c z l>C '" '" '" '" '" '" '" '" '"
z 1 >c '" '" z 1 >c z T>C '" III

III

'" '" '" '" '" '" '" M
L'" =f III =f III U

204

Although it is possible to compute these terms and do the

integration analytically in this particular case, it is customary to

use numerical integration instead. In fact, the use of explicit forms

for the evaluation of the elements of the stiffness matrices is done

in the very simple cases only like the truss elements as explained in

Chapter 2.

One of the methods which are used to do the numerical integration

is the Gauss quadrature method which is employed in this package.

In the case of plane stress and plane strain elements we proceed

in a similar manner but in this case we have a two-dimensional element.

The displacement field and the geometry of the element can be expressed

using the same shape functions as follows:-

Figure 4.21 shows the isoparametric element and its parent

quadratic element. The general form of the interpolation function is:

(4.32)

Substituting the value of N at the a nodes of the element it is possible

to determine the coefficients a l ,a2 , ••• ,aa in a similar manner to that

done for the case of the beam element. The shape functions are found

to be:

Nl = -1/4(1-~) (l-n) (l+~+n)

N2 = 1/2 (1-?) (l-n)

N3 = 1/4(1+~) (l-n) (~-n-1)

2
N4 = 1/2 (l+~) (1-n)

NS = 1/4 (1+~) (l+n) (~+n-l)

2
N6 = 1/2 (1-1;) (1+11)

N7 = 1/4(1-~) (l+n) (-~+n-1)

2 (4.33) Na = 1/2 (1-1;) (l-n)

205

y,v

n
n=l

7
6 ., \

7 5
8 ~=l

8 4 ~=-l

,.......

[2 3

1 3 n=-l

x,U

FIGURE 4.21: Quadratic parent element and isoparametric element

The displacements u and v at·any point within the element can be

expressed in terms of those at nodes using the interpolation functions

as follows:
8

u = L NiUi
i=l

8
v = L NiVi

(4.34)
i=l

The coordinates x(~,n) and y(~,n) of any point (~,n) within the element

will also be expressed as:

The Jacobian matrix

J =

=
8
LN.(~,n).xi

i=l 1

8
= LN.(~,n).y.

i=l 1 1

J (~, n) for this case will be,

~

f~ a1;

~ U
an an

(4.35)

206

aNi aN. y~ l.

a~
.x.

aF,; 8 l.

I = L (4.36) ON. aNi I i=l l.

@n
.x

i an • YiJ

The inverse of the Jacobian matrix [J]-l is,

.£i l!l ~ ~

[J]-l
ax ax 1 an aF,;

= =-- (4.37)

.£i l!l
detJ ax ax

ay ay an a~

The strain matrix B which relates the strain to nodal displacement is:

raNi ol
ax

B. 0
aNi

for i=1,2, ••• ,8 (4.38) = ,
l. ay

aNi aNi

ay ax

The matrix of elastic constants D for the plane stress situation

is defined by,

whereas

D

D =
E

2 (l-v)

for plane strain

E (l-v)
= (l+v) (1-2v)

v

1

o

situations:

1

--.CL
l-v

0

o

o
l-v

2

--.CL
l-v

1

0

(4.39)

0

0
(4.40)

l-2v
2 (1-v)

where E is the Young's modulus of elasticity and v is the Poisson's

ratio.

Finally, the element stiffness matrix K
e

is calculated from:

207

(4.41)

e
A submatrix Kij linking the nodes i and j may be evaluated from the

expression:

K~j = f flBi] TDBj t det J dE;~n
where t is the element thickness and,

dxdy = det J dE;dn

(4.42)

(4.43)

In the case of the plate bending element the interpolation functions

Nl, ••• ,NS are identical to those used in the case of the plane stress/

strain element. The geometry is also expressed using the same functions.

However, the nodal displacement components here are: W: the deflection,

e the average rotation about x-axis and e the average rotation about x y

y-axis. As in the case of the beam element e and e can be expressed x y

in terms of
aw aw

~ and ~ , where ~ and Q . are the shear ax
,

ay
, average x y x y

deformation in x and y directions respectively [Mindlin, 1951] • Thus

we can write:
w w S

° = e = aw +
~x = ~ Nioi x ax i=l

(4.44)

e aw +
~y y ay

.J
The strain matrix B= [B

l
,B2 , ••• ,B

S
] is given by:

10 aNi
0

ax
aN.

0 0
l.

ay

aNi aN.
0

l.

Bi = ay ax (4.45)

aN.
l. - N. 0 ax l.

aN.
l.

0 -N. oy l.

208

[Et
3 Et3

0 0 2 2 0
12 (l-v) 12 (l-v)

3
Et

3
vEt

0 0
12(1,,2) 12(1,,2)

0

0 = (1,,) Et
3

0 0
2 12(1,,2)

0 0

0 0 0
Et

2.4(1+v) 0

0 0 0 0
Et

2.4(l+v)

(4.46)

Thus the element stiffness matrix can be calculated in an identical

manner to that of a plane stress/strain element.

4.7.2.2 Implementation Details

The ELASTIC package consists of two integrated programs: the

ELASTIC pre-processor and the ELASTIC processor. The ELASTIC pre-

processor is an interactive program which prompts the user for the

input data. It validates these data and stores it in a file for

subsequent processing by the ELASTIC processor. A general flowchart

of the ELASTIC preprocessor is shown in Figure 4.22. The data required

by the preprocessor is as follows:

(i) The menu options displayed by the pre-processor are:

1 = Beam

2 = Plain stress

3 = Plain strain

4 = plate bending

(ii) The control data is:

• The problem title

Figure: 4.22

A Block Flowchart For

the ELASTIC Pre Processor

209

(START)

Display Menu
and Gd user

selection

~

Get and Validale

Control Oat a

~Ir

Set Element

Characteristics

Ir

Create Control
Records on
output file

.-
Read, vati d ote and
Create Recordsfor
Model Topology and

Material

-r-
Read, validate and
Create Reccrd ~fnr

Loading Data

+
END

210

• Number of nodal points in the structure

• Number of elements in the structure

• Number of nodes where a known displacement is prescribed.

• Number of loading cases

• Number of different materials.

(iii) Elements characteristic parameters are set by the preprocessor

according to the selection done at (i) as follows:

• Number of nodes per element:

3 for beam elements

8 otherwise

• Number of degrees of freedom per nodal point:

2 for beam elements: u and 9

2 for plane stress/strain elements: u,v

3 for plate bending elements: w,9x ,9y •

• Number of material parameters:

3 for beam analysis

5 for plane stress/strain

4 for plate bending

• Number of coordinate components required to define

each nodal point:

1 for beam analysis

2 otherwise.

• Number of independent stress components at any point:

2 for beam analysis

3 otherwise

The ELASTIC process reads the data file created by the preprocessor and

perform the FE analysis. A general block diagram of this program is shown

211

in Figure 4.23. Four work files are used in this program in addition

to the input file which is prepared by the preprocessor. The work

files are referred to as unit numbers 1,2,3 and 4 in the source Fortran

program. The input data file is number 5. File 1 is used to store the

element stiffness matrices. File 3 is used to store the stress matrix

and the Gauss point coordinates for the elements. Files 2·and 4 are

used in the frontal subroutine: file 2 is used to store the reduced

equations; while file 4 is used to hold the righthand sides of the

equations. To facilitate the execution of this program, the following

procedure has been designed:

1. GOELASTIC Indata

2. PURGE WORKl,WORK2,WOruO,WORK4

3. Build WORKl, WORK3 on LDN 1

4. Build WORK2, WORK4 on LDN 2

5. FILE FTN01=WORKl,OLD

6. FILE FTN02=WORK2,OLD

7. FILE FTN03=WORK3,OLD

8. FILE FTN04=WORK4,OLD

9. FILE FTN05=!Indata,OLD

10. RUN ELASTIC

11. RESET Fl'NOl ,FTN02 ,FTN03 ,FTN04 ,Fl'N05

• Line 1 of this procedure specify the procedure name and

the required argument. The name given to this procedure is

GOELASTIC, the required argument is given the symbolic name

Indata which is the file name of the input data that has

been created by the pre-processor.

File 5

File 2

File 4

Figure: 4.23

A Ganeral Flow chart of
the ELASTIC Processor

yes

Read Control.
Elements and

nodes data

Compu te Element
Stiffnesses

and Gauss point
Coordinates

Read Load Data

Merge and Solve

File 1

File 3

the resulting Equation ------....

by Frontal Method

Compule Slresses
in Elements

212

213

• Line 2 purges the four work files needed by this program.

This is done so that any old files used in a previous

problem will be purged out.

• Line 3 builds (creates) the new files work 1 and work 3 on

a logical device number different from those of the other

two work files work 2 and work 4. This "trick" is found to

be useful in speeding up the turn around time of the run.

• Line 4 is the same but for building files wor~ 2 and work 4.

• Lines 5 to 9 set the necessary file equations required by

the operating system in order to allocate actual files to

Fortran unit numbers.

• Line 10 is running the ELASTIC program.

• Line 11 is to cancel the file equations previously defined

in lines 5 to 9.

4.7.2.3 The ELASTIC Program Structure

The ELASTIC program has a modular structure. It consists of a

main segment which drives the whole subroutines in the program. The

basic FE steps are performed by primary subroutines which in turn call

auxiliary subroutines to carry out secondary operations. In addition

to that, utility subroutines are added which do general utility operations.

These routines and their functions are as follows:

INPUT: reads the input data which has been prepared by the preprocessor.

STIFB: calculates the stiffness and stress matrices for the beam element.

STIFPS: calculates the stiffness and stress matrices for the plane stress/

strain element.

214

STIFPB: calculates the stiffness and stress matrices for the plate

bending element.

LOADB: calculates the equivalent nodal loads for beam elements.

LOADPS: calculates the equivalent nodal loads for plane stress/strain

elements.

LOADPB: calculates the equivalent nodal loads for plate bending elements.

FRONT: solves the FE equations by the frontal algorithm.

CPU TIME: a function to give the total CPU time consumed so far from the

start of computation.

STREB: computes the stress components for the beam element.

STREPS: computes the stress components for the plane stress/strain

element.

STREPB: computes the stress components for the plate bending elements.

NODEXY: calculates the coordinates of midside nodes in plane stress/strain

or plate bending elements.

GAUSSQ: sets up the sampling point position and weighting constants for

numerical integration by Gaussian quadrature.

MODB: calculates the elements of the D matrix for beam elements.

MODPS: calculates the elements of the D matrix for plane stress/strain

elements.

MODPB: calculates the elements of the D matrix for plate bending elements.

SFR1: computes the shape functions and their derivatives in one

SFR2:

dimension in natural coordinates for the beam element.

computes the shape functions and their derivatives in two­

dimensions in natural coordinates for plane stress/strain and

plate bending elements.

215

JACOB 1: computes the Jacobian matrix, its inverse and the Cartesian

derivatives of the shape functions for the one-dimensional

case, i.e. for beam elements.

JACOB 2: computes the Jacobian matrix, its inverse and the Cartesian

derivatives of the shape functions for the two-dimensional

case i.e. for plane stress/strain and plate bending elements.

BMATB: computes the B matrix for beam-elements.

BMATPS: computes the B matrix for plane stress/strain .elements.

BMATPB: computes the B matrix for pIa te bending elements.

OBE: performs the matrix multiplication DB.

ERRORMSG: writes error messages specified by their numbers.

To facilitate the communications between different segments of

the program, common blocks are used. Three common blocks are used:

CONTROL: which contains the control parameters of the problem

being solved as has been explained in the pre-processor

earlier like number of elements, number of nodal points,

etc. This common block is required in all subroutines

(except the error messages one) and in the master segment

as well.

LGDATA: which contains arrays needed to hold the FE topology.;

material, loads and boundary condition arrays.

WORK: which contains work arrays used at the element level

e e
e.g. 0 ,B , .•• etc.

4.7.2.4 Numerical Tests

The aims of the following test problems are to verify the correctness

of the ELASTIC package and to try to find out approximate values of the

216

CPU time spent in each phase of the solution process. In addition to

that, the package is a useful educational and analysis tool for some

of the standard structural mechanics problems. In otherwords, it can

be used to solve a fairly wide class of problems in structural mechanics,

structural analYSis and elasticity.

Test Problem 1

This problem is taken from Hinton and Owen [1979] to check the

validity of the ELASTIC package. The problem is shown in Figure (4.24)

It is a simply supported beam of unit length subjected to a uniformly

distributed load of intensity q=l.O. The material properties are: EI=l

and S=looo. The FE model is composed of two beam elements with 5 nodes.

The results obtained are:

q .1.0

NO DES: 1 2 3 4 5

t ~~"'''I'':=7"?t
j. L:l.0 .\

(a)

f
A B C D

t II Q X 0 X e X

-- ------

(b)

FIGURE 4.24: Test problem 1 for ELASTIC

(a) The beam problem
(b) The FE model:

2 Elements: 1,2
5 Nodes: 1,2,3,4,5
4 Gauss points: A,B,C,D

217

• Reactions at nodes 1 and 5 are -.5 and -.5.

• Displacements at different nodes are:

Node Displacement Rotation

1 0.0 .041667

2 .0091240 .02865

3 .013033 o .

4 • 0091240 -.02865

5 0 -.041667

• Stresses are computed at Gauss points:

Point Moment Shearing Force

A -.04725 -.3943

B -.1194 -.10566

C -.1194 .10566

D -.04725 .3943

These results are almost identical to those quoted in the stated

reference and are in excellent agreement with those predicted by simple

beam theory.

The distribution of the CPU time required to solve this problem on

the minicomputer HP3000 series II is as shown in Table 4.1.

218

Phase CPU time Percentage %
in seconds to total time

Data entry and Validation .43 24.4

Element stiffnesses .16 9.0

Loading .OS 4.5

Frontal solution .94 53.1

Stress computation .16 9.0

TOTAL 1.77 100.0

TABLE 4.1: CPU time distribution for test Problem 1

It is clear from this table that more than 50\ of the CPU time required

to solve this problem is spent in the solution of the FE equations.

This demonstrates the critical role played by equation solvers in FE

analysis. The other interesting result is that about 25\ of the total

time is spent in data entry and validation. This in turn emphasises

the importance of preprocessors.

However, since this problem is fairly Simple, we consider a series

of test problems that vary in the number of elements, nodes and

dimensionality. We start by one-dimensional problems, i.e. beam

elements. The test problems are all similar in structure but with

different number of elements. We notice that in these problems the

number of nodes n and the number of elements n are related by the
n e

following equation,

n = 2n + 1 , n e (4.47)

The results are summarized in Table 4.2. These results show that more

than half of the total CPU time is spent in the frontal solution

algorithm irrespective of the number of nodes (and elements). The

219

st1ffnesses computation takes relatively less ratio of the time that

increases with the increase in the number of nodes. This is due to the

simplicity of I-D element stiffness. The Jacobian in this case is a

scalar rather than a matrix. Also the number of Gauss points is two

only in each element .
5 nodes 11 nodes 21 nodes 41 nodes

Phase Time Time Time Time
% % % % (sec.) (sec.) (sec.) (sec.)

Data entry .43 24.4 .650 20.1 1.014 17.2 1.631 14.5
and validation

Element
stiffness

.16 9.0 .397 12.3 .794 13.5 1.604 14.3

Loading .08 4.5 .166 5.1 .343 5.8 .765 6.8

Frontal solution .94 53.1 1.688 52.2 3.081 52.4 5.947 53

Stress .16 9.0 .331 10.3 .653 11.1 1.264 11.4 computation

TOTAL 1.77 100.0 3.232 loo 5.885 100 11.211 lOO

TABLE 4 2· CPU time distribution for problems of one dimensional elements . .
13 nodes 28 nodes 53 nodes 103 nodes

Phase
Time

%
Time

%
Time

%
Time

% (sec.) (sec.] I (sec.l (sec.)
Data entry .615 8.2 1.140 6.5 2.050 5.9 3.413 5.1
and validation

Element
2.870 38.3 7.414 stiffness 42.1 14.933 43.1 29.314 43.6

Loading .414 5.5 1.042 5.9 2.055 5.9 4.009 6.0

Frontal solution 2.683 35.8 5.972 33.9 11.485 33.2 22.536 33.5

stress
.915 12.2 2.060 11.6 4.099 11.9 7.925 11.8 computation

TOTAL 7.497 100 17.628 100 34.622 100 67.197 100

TABLE 4.3: CPU time distribution for problems of 2-D elements

220

In the case of two-dimensional problems there is no general

equation that relates the number of elements to the number of nodes

in general. However, in the considered problem of plane stress/strain

the domain is assumed to be a rectangle [Figure 4.25] which is discretized

systematically into smaller two-dimensional plane stress/strain elements.

In this particular case, the number of nodes n and the number of
n

elements n are related according to:
e

n = 5n + 3 • n e (4.48)

The results of these test problems are summarized in Table 4.2. It

indicates that the frontal solution's share of total time is no more

dominant as the case in 1-0 problems, but rather, the element stiffness

consumes more CPU time. The ratio of the frontal solution is around

1/3 of the total time. The element stiffness consumes little more than

40% of the total time. The data entry and validation share is around

5% or 6% only. The main reason is that element stiffness in 2-D are

much more complicated in comparison to that in 1-0. The Jacobian is

no longer scalar but rather a matrix that needs to be inverted.

Numerical integration is in two dimensions rather than one with 3 Gauss

points instead of 2.

It is possible to conclude that most of the CPU time in 1-0 problems

is expected to be spent in the solution of the FE equations while in the

2-D problems both the solution of the FE equations and the element

stiffness consume most of the time. It seems, however, that computation

of element stiffness may need more research efforts to reach an optimal

strategy with sufficient generality for implementation.

These results are shown graphically in Figures 4.26 to 4.39.

221

10 m

Figure4.25 Test Problem 41: 2

HO

100

90

80

70

60

50

40

30

20

10

0

NNOD

................

.................
.. " ...

0 5 10 15

NEL

FIG. (4. 26) RELATIONSHIP OF NEL

222

.
.

20

NNOD

4

3

2

. ' . . '

.... "

0" ...

. ...
0"· ."

DIH-J

.....
....

0 0 ° • . ' .

. ' '
........

NEL

.....................

FIG. (4.27) EFFECT OF NEL ON DE TIME

223

20

15

10

5

'. '. '. " . .. ".
' .

224

DI~2

................. :

NEL

FIG. (4.28) EFFECT DF NEL ON DE X TIME

225

DIM-l

25

20 ~

15 t-

10 ~ -

5 -

NEL

FIG. (4. 29) EFFECT OF NEL ON STIFF TIME

50 ,.

40

30

20

10

.. -
..

-

... ...

NEL

FIG. (4)0) EFFECT OF NEL ON STIFF X TIME

226

4

3

2

J

DIM-J

••••• 0"

............. /

.........

...

0°' •••••

NEL

DIM-2

...........
.

.....
...

..... ..

FIG. (4.31) EFFECT OF NEL ON LOAD TIME

227

228

DIH-2

7

6

5

4

3

2

J

NEL

FIG. (4. 32) EFFECT OF NEL ON LOAD X TIME

25

20

15

10

5

...
0° .0· 0°·

.. '

....

0° 0"

........
....

NEL

... .. .
.......

... ...
.

..
...... ..

229

...
.......

FIG. (4. 33) EFFECT OF NEL ON FRONT TIME

50

40

30

20

10

....
0 ••••

230

.

0 ••

o ~--------~I~~--.----~I~~--~~~I--._.--.~.~ o 5 10 15 20

N£L
FIG. (4. 34) EFFECT OF NEL ON FRONT X TIME

231

STRESS
8 ~~~~~-~IP-~~~~I~~~P-P-'~I~~~~-'

7
.

6

.
5 .

.
4

.
3 .

.
. . ' .

1 .

NEL

FIG. (4. 35) EFFECT OF NEL ON STRESS TIME

232

OIH-2

STReSS K
J4 • .. I I • • I •• • •

J2
• I •• '0 .. '"

JO I-

8 ·

6 I-

·

2 ·

N£L
FIG. (4.36) EFFECT OF NEL ON STRESS K TIME

233

TOTAL
70 ~~~~-~'~I~~~'~'--~'~I~'~~'~~'--~I~'~'--~'~~

60

50

40

30
0° ••••

......... ' .. '

20 ... ' '

JO

..........
.....

.....

..............
.....

..........................

" ."

-

o ~ -...............~_~l~_.__.... ..._.___._~L ... _'-..............._'-_~I_........ __ .___.....~
o 5 JO J5 20

NeL

FIG. (4.37) eFFeCT OF NeL ON TOTAL TIMe

TOTAL

•.....•.•

STRESS
COMPUTATION

FRONTAL
SOLUTION

LO.4DING

234

CPU TIME (SEC.)
12 ~'~~~"~I~~~~I~-~.~ •• -T-I~'~-'~I~-~'~'-'

10

9

8 t-

7 t-

6

. .

.

.

.

.

,/"

·

ELEMENT
STIFFNESSES 4

.
/

,,/'

,,/

DATA
ENTRY

3 I-

2

1

. ,
,/' ,

,,/'/

,/"
/'

~­,......;;.- .. -_. -- -------- ---
~ --.. --- -----::------... ..------

..,:""'- ;:-::-- ... - -.--.. --

·

·

--:::,':...,--,--- '- _~ _. _. I, I

o ~O--~~--------~--.... --~~~~~~ 10 20 30 40 50

No. OF ELEMENTS

FIGURE 4.38: CPU TIME DISTRIBUTION FOR 1-D PROBLEMS.

TOTAL 60

.........

STRESS
COMPUTATION 50

FRONTAL

SOLUTION 40

LOADING

ELEMENT

STIFFNESSES

30

__ 20

DATA

ENTRY

10 .

.
.

.

No. OF ELEMENTS

.

.
.

235

FIGURE 4.39: CPU TIME DISTRIBUTION FOR 2-D PROBLEMS.

236

Note that the following abbreviations are used:

NEL

NNOD

DIM

DE

DE%

STIFF

STIFF%

LOAD

LOAD%

FRONT

FRONT%

STRESS

STRESS%

TOTAL

number of elements

number of nodes

number of dimensions: 1 or 2

data entry CPU time

percentage of CPU time spent in data entry compared

to total CPU time for the problem

stiffness computation CPU time

percentage of CPU time spent in stiffness computation

compared to total CPU time for the problem

equivalent nodal loads computation CPU time

percentage of CPU time spent in load computation

compared to total CPU time for the problem

frontal solution CPU time

percentage of CPU time spent in frontal solution

compared to total CPU time for the problem.

stress computation CPU time

percentage of CPU time spent in stress computation

compared to total CPU time for the problem

the total solution time for the problem

All times are in seconds.

A statistical analysis was performed using the well-known Statistical

Analysis System - SAS [SAS, 1982] to correlate the CPU time in these

problems to the other parameters.

Table 4.4 shows the correlation matrix between all the considered

parameters. In this table, each cell (i,j) contains two numbers. The

237

upper one is the correlation coefficient between the two variables i

and j. The lower number is the probability that this value of

correlation is insignificant i.e. the null hypothesis is:

P .. = 0 ,
1,)

(4.49)

where P .. is the correlation coefficient between the two variables i
l.,)

and j.

The diagonal elements are, of course l's for correlation coefficients

Pi . and its associated probability is O. Examination of other elements
,J

in the correlation matrix shows that all correlation coefficients are

positive and that all of these coefficients are highly significant.

This seems to be natural since the CPU time consumed in any phase

of the solution phases will certainly increase as the number of elements

or other parameters are increased. Perhaps the notable fact from this

table is that the correlation coefficients with the number of nodes is

bigger and more significant compared to the corresponding correlation

coefficient with the number of elements.

On the other hand, Table (4.5) shows the correlation matrix between

the number of nodes, number of elements and the percentage of the CPU.

time spent in each step of the solution. Here about half of the

correlation coefficients are -ve. However, considering only the

significant correlation coefficients as those have a probability value

~.lO we can conclude that:

(i) The percentage of time for data entry will decrease as the

number of nodes are increased. The same is true with the

percentage of CPU time for stiffness matrix computations.

238

(ii) The percentage of loading time is increasing with the

increase in the number of elements. Here the correlation

is much stronger with the number of elements.

(iii) The percentage of frontal time is increasing as the data

entry time is increased. The same is true with the stiffness

formulation and stress computation ,.

Similar tables are done for each individual class of problems, namely:

1-0 and 2-D. These results are shown in Tables (4.6) and (4.7) for 1-0

problems and in Tables (4.8) and (4.9) for 2-D problems.

A regression analysis that relates the total CPU time in seconds

to the main parameters shows that we can write:

T = .8966 NNOO - 1.217 NEL - .9306

where:

T is the total CPU time

NNOO is the number of nodes

NEL is the number of elements.

(4. SO)

When considering 1-0 problems only, the correlation between CPU time

and NEL can be:

T = .527 NEL + .6524 (4.51)

and with number of nodes:

T = .263 NNOO + .3891 (4.52)

In case of 2-D problems alone, the corresponding equations will be:

and

T = 3.3149 NEL + 1.07296

T = .663 NNOO - .91599

(4.53)

(4.54)

It is worth mentioning that an abstracted form of some of these results

has been given in [Sharaf Eldin and Evans, 1987}.

VARIABLE N MEAN STD.DEV. SUM

NEL 8 9.25000000 7.30459738 74. OOOOOOOO

NNOD 8 34.37500000 32.03987471 275.00000000

DE 8 1. 36/87500 0.98966047 10.94300000

STIFF 8 7.18575000 10.25263602 57.48600000

LOAD 8 1.10925000 1. 33339585 8.87400000

FRONT 8 6.78050000 7.20259201 54.24400000

STRESS 8 2.17587500 2.64499692 17.40700000

TOTAL 8 18.63025000 22.29118928 149.04200000

TABLE 4.4: Correlation matrix of all parameters (l-D and 2-D)

MINIMUM

2.00000000

5.00000000

0.43000000

0.16000000

0.08000000

0.94000000

0.16000000

1.77000000

MAXIMUM

20. OOOOOOOO

103.00000000

3.41300000

29.31400000

4.00900000

22.53600000

7.92500000

67.19700000

IV
W
\0

NEL NNOD DE STIFF LOAD FRONT

NEL 1.00000 0.79795 0.81689 0.55127 0.65127 0.70236

NO. OF ELEMENTS 0.00000 0.0176 0.0133 0.1567 0.0802 0.0521

NNOD 0.79795 1.00000 0.99749 0.94249 0.97692 0.98936

NO. OF NODES 0.0176 0.0000 0.0001 0.0005 0.0001 0.0001

DE 0.81689 0.99749 1.0000 0.92913 0.96752 0.98176

DATA ENTRY TIME 0.0133 0.0001 0.0000 0.0008 0.0001 0.0001

STIFF 0.55127 0.94249 0.92913 1.00000 0.00202 0.98098

STIFFNESS TIME 0.1567 0.0005 0.0008 0.0000 0.0001 0.0001

LOAD 0.65127 0.97692 0.96752 0.99202 1.00000 0.99750

LOADING TIME 0.0802 0.0001 0.0001 0.0001 0.0000 0.0001

FRONT 0.70236 0.98936 0.98176 0.98098 0.99750 1.00000

FRONTAL SOLUTION TIME 0.0521 0.0001 0.0001 0.0001 0.0001 0.0000

STRESS 0.62398 0.96880 0.95829 0.99587 0.99928 0.99443

STRESS COMPUTATION TIME 0.0982 0.0001 0.0002 0.0001 0.0001 0.0001

-
TOTAL 0.62943 0.97043 0.96013 0.99529 0.99952 0.99515

TOTAL CPU TIME 0.0945 0.0001 0.0002 0.0001 0.0001 0.0001
____ 1--.-. ___ .

TABLE 4.4, Correlation coefficients - Prob > I R I under HO,RHO=O - N=8

STRESS

0.62398
0.0982

0.96880
0.0001

0.95829
0.0002

0.99587
0.0001

0.00028
0.0001

0.99443
0.0001

1.00000
0.0000

0.99994
0.0001

--

TOTAL

0.62943
0.0945

0.97043
0.0001

0.96013
0.0002

0.99529
0.0001

0.99952
0.0001

0.99515
0.0001

0.99994
0.0001

1.00000
0.0000

IV

"" o

VARIABLE N MEAN STD.DEV. SUM MINIMUM MAXIMUM

NEL 8 9.25000000 7.30459738 74.00000000 2.00000000 20. OOOOOOOO

NNOD 8 34.37500000 32.03987471 275 .00000000 5.00000000 103.00000000

DEP 8 U.73750000 7.34670723 101.90000000 5.10000000 24.40000000

SP 8 27.02500000 15.91986630 216.20000000 9.00000000 43.60000000

LP 8 5.68750000 0.67915389 45 .50000000 4.50000000 6.80000000

FP 8 43.38750000 9.96242046 347.10000000 33 .20000000 53 .10000000

-.

'fP U 11.12500000 1.04437268 89.00000000 9.00000000 12 • 20000000

TABLE 4.5: Correlation matrix of % of all parameters (l-D and 2-D)

NEL NNOD DEP SP LP FP

NEL 1.00000 0.79795 -0.32310 0.11148 0.78110 -0.03215

NO. OF ELEMENTS 0.0000 0.0176 0.4350 0.7927 0.0221 0.9398

NNOD 0.79795 1.00000 -0.65388 0.57976 0.54187 -0.53427

NO. OF NODES 0.0176 0.0000 0.0786 0.1320 0.1654 0.1725

DEP -0.32310 ,..0.65388 1.00000 -0.95651 -0.57338 0.92536

DATA ENTRY" 0.4350 0.0786 0.0000 0.0002 0.1373 0.0010

SP 0.11148 0.57976 -0.95651 1.00000 0.31793 -0.99555

STIFFNESS TIME " 0.7927 0.1320 0.0002 0.0000 . 0.4428 0.0001

LP 0.78110 0.54187 -0.57338 0.31793 1.00000 -0.22911

LOADING TIME " 0.0221 0.1654 0.1373 0.4428 0.0000 0.5852

FP -0.03215 f-o.53427 0.92536 -0.99555 -0.22911 1.00000
FRONTAL SOLUTION TIME " 0.9398 0.1725 0.0010 0.0001 0.5852 0.0000

'l'P 0.31179 0.49791 -0.91805 0.80797 0.65508 -0.76351

STRESS COMPUTATION " 0.4522 0.2092 0.0013 0.0153 0.0779 0.0275

..

TABLE 4.5: Correlation coefficients - Prob > IRI Under HO:RHO=O - N=8

TP

0.31179
0.4522

0.49791
0.2092

-0.91805
0.0013

0.80797
0.0153

-_.
0.65508
0.0779

-0.76351
0.0275

1.00000
0.0000

N ..
N

VARIABLE N MEAN STD.DEV. SUM MINIMUM MAXIMUM

NEL 4 9.25000000 7.88986692 37.00000000 2.00000000 20.00000000

NNOD 4 19.50000000 15.77973384 78.00000000 5.00000000 41. OOOOOOOO

DE 4 0.93125000 0.52499230 3.72500000 0.43000000 1.63100000

STIFF 4 0.73875000 0.63336528 2.95500000 0.16000000 1.60400000

LOAD 4 0.33850000 0.30468618 1.35400000 0.08000000 0.76500000

-
FRONT 4 2.89200000 2.22473324 11 • 56800000 0.94000000 5.94700000

STRESS 4 0.60200000 0.48636406 2.40800000 0.16000000 1.26400000

TOTAL 4 5.52450000 4.15604255 22.09800000 1.77000000 11.21100000

TABLE 4.6: Correlation matrix of all parameters (l-D problems)

NEL NNOD DE STIFF LOAD FRONT STRESS TOTAL

NEL 1.00000 1.00000 0.99899 0.99998 0.99774 0.99938 0.99991 0.99991
NO. OF ELEMENTS 0.0000 0.0000 0.0010 0.0001 0.0023 0.0006 0.0001 0.0001

NNOD 1.00000 1.00000 0.99899 0.00008 0.99774 0.99"38 0.99991 0.99991
NO. OF NODES 0.0000 0.0000 0.0010 0.0001 0.0023 0.0006 0.0001 0.0001

DE 0.99899 0.99899 1.00000 0.99871 0.99381 0.99751 0.99897 0.99847
DATA ENTRY TIME 0.0010 0.0010 0.0000 0.0013 0.0062 0.0025 0.0010 0.0015

STIFF 0.99998 0.99998 0.99871 1.00000 0.99811 0.99949 0.99989 0.99996
STIFFNESS TIME 0.0001 0.0001 0.0013 0.0000 0.0019 0.0005 0.0001 0.0001

LOAD 0.99774 0.99774 0.99381 0.99811 1.00000 0.99889 0.99778 0.99843
LOADING TIME 0.0023 0.0023 0.0062 0.0019 0.0000 0.0011 0.0022 0.0016

FRONT 0.99938 0.99938 0.99751 0.99949 0.99889 1.00000 0.99965 0.99974
FRONTAL SOLUTION TIME 0.0006 0.0006 0.0025 0.0005 0.0011 0.0000 0.0003 0.0003

STRESS 0.99991 0.99991 0.99897 0.99989 0.99778 0.99965 1.00000 0.99993
STRESS COMPUTATION TIME 0.0001 0.0001 0.0010 0.0001 0.0022 0.0003 0.0000 0.0001

-.
TOTAL 0.99991 0.99991 0.99847 0.99996 0.99843 0.999"i4 0.99993 1.00000
TOTAL CPU TIME 0.0001 0.0001 0.0015 0.0001 0.0016 0.0003 0.0001 0.0000

.----~. .-
TABLE 4.6: Correlation coefficients - Prob. > 1nl Under HO:RHO=O - N=4

VARIABLE N MEAN STD.DEV. SUM MINIMUM MAXIMUM

NEL 4 9.25000000 7.88986692 37 .00000000 2.00000000 20.00000000

NNOD 4 19.50000000 15.77973384 78.00000000 5.00000000 41.00000000

DEP 4 19.05000000 4.23674403 76.20000000 14.50000000 24.40000000

SP 4 12.27500000 2.33291663 49.10000000 9.00000000 14.30000000

LP 4 5.55000000 0.98826447 22.20000000 4.50000000 6.80000000

FP 4 52.67500000 0.44253060 210.70000000 52.20000000 53 .10000000

TP 4 10.37500000 0.99121138 41.5000000 9.00000000 11 .10000000

TABLE 4.7: Correlation matrix of % of all parameters (l-D problems)

NEL NNOD DEP ,;P LP FP TP

NEL 1.00000 1.00000 -0.93287 0.83893 0.98966 0.21242 0.79385

NO. OF ELEMENTS 0.0000 0.0000 0.0671 0.1611 0.0103 0.7876 0.2061

NNOD 1.00000 1.00000 -0.92387 0.83893 0.98966 0.21242 0.79385

NO. OF NODES 0.0000 0.0000 0.0671 0.1611 0.0103 0.7876 0.2061

DEP -0.93287 -0.93287 1.00000 -0.97717 -0.97444 0.14312 -0.95845
DATA ENTRY % 0.0671 0.0671 0.0000 0.0228 0.0256 0.8569 0.0416

SP 0.83893 0.83893 -0.97717 1.00000 0.90579 -0.34951 0.98851
STIFFNESS TIME % 0.1611 0.1611 0.0228 0.0000 0.0942 0.6505 0.0115

--
LP 0.98966 0.98966 -0.97444 0.90579 1.00000 0.08003 0.87282
LOADING TIME % 0.0103 0.0103 0.0256 0.0942 0.0000 0.9200 0.1272

FP 0.21242 0.21242 0.14312 -0.34951 0.08003 1.00000 -0.38946
FRONTAL SOLUTION TIME % 0.7876 0.7876 0.8569 0.6505 0.9200 0.0000 0.6105

TP 0.79385 0.79385 -0.95845 0.98851 0.87282 -0.38946 1.00000
STRESS COMPUTATION % 0.2061 0.2061 0.0416 0.0115 0.1272 0.6105 0.0000 .

TABLE 4.7: Correlation coefficients - prob· > IRI Under HO:RHO=O - N=4

VARIABLE N MEAN STD.DEV. SUM MINIMUM MAXIMUM

NEL 4 9.25000000 7.88986692 37 .00000000 2.00000000 20.00000000

NNOD 4 49.25000000 39.44933460 197.00000000 13.00000000 103 • OOOOOOOO

DE 4 1.80450000 1.22529085 7.21800000 0.61500000 3.41300000

STIFF 4 13.63275000 11.57730381 54.53100000 2.87000000 29.31400000

LOAD 4 1.88000000 1.57211810 7.52000000 0.41400000 4.00900000

- -

FRONT 4 10.66900000 8.70497080 42.67600000 2.68300000 22.53600000

STRESS 4 3.74975000 3.07927214 14.99900000 0.91500000 7.92500000

TOTAL 4 31. 73600000 26.15579160 126.94400000 7.49700000 67.19700000

TABLE 4.8: Correlation matrix of all parameters (2-D problems)

NEL NNOD DE STIFF LOAD FRONT

NEL 1.00000 1.00000 0.99129 0.99992 0.99991 1.00000

NO. OF ELEMENTS 0.00000 0.00000 0.0027 0.0001 0.0001 0.0001

NNOD 1.00000 1.00000 0.99729 0.99992 0.99991 1.00000

NO. OF NODES 0.0000 0.0000 0.0027 0.0001 0.0001 0.0001

DE 0.99729 0.99729 1.00000 0.99813 0.99813 0.99720

DATA ENTRY TIME 0.0027 0.002", 0.0000 0.0019 0.0019 0.0028

STIFF 0.99992 0.99992 0.99813 1.00000 1.00000 0.99990

STIFFNESS TIME 0.0001 0.0001 0.0019 0.0000 0.0001 0.0001

LOAD 0.99991 0.99991 0.99813 1.00000 1.00000 0.99989

LOADING TIME 0.0001 0.0001 0.0019 0.0001 0.0000 0.0001

FRONT 1.00000 1.00000 0.99720 0.99990 0.99989 1.00000

FRONTAL SOLUTION TIME 0.0001 0.0001 0.0028 0.0001 0.0001 0.0000

STRESS 0.99992 0.99992 0.99800 0.99996 0.99993 0.99991

STRESS COMPUTATION TIME 0.0001 0.0001 0.0020 0.0001 0.0001 0.0001

-_.

TOTAL 0.99994 0.99994 0.99802 1.00000 0.99999 0.99993

TOTAL CPU TIME 0.0001 0.0001 0.0020 0.0001 0.0001 0.0001
______ L-. __

TABLE 4.8:. Correlation coefficients - Prob > IRI under HO:RHO=O - N=4

STRESS

0.99992
0.0001

0.99992
0.0001

-
0.99800
0.0020

0.99996
0.0001

0.99993
0.0001

0.99991
0.0001

1.00000
0.0000

0.99998
0.0001

-

TOTAL

0.99994
0.0001

0.99994
0.0001

0.99802
0.0020

1.00000
0.0001

0.99999
0.0001

0.99993
0.0001

0.99998
0.0001

1.00000
0.0000

N ...
Cl)

VARIABLE N MEAN STD.DEV. SUM MINIMUM MAXIMUM

NEL 4 9.25000000 7.88986692 37 .00000000 2.00000000 20.00000000

NNOD 4 49.25000000 39.44933460 197 .00000000 13 .00000000 103.00000000

DEP 4 6.42500000 1.31497782 25.70000000 5.10000000 8.20000000

SP 4 41 .77500000 2.39913179 167.10000000 38 • 30000000 43 .60000000

LP 4 5.82500000 0.22173558 23.30000000 5.50000000 6.00000000

FP 4 34 .10000000 1.16904519 136.40000000 33.20000000 35.80000000

TP 4 11.87500000 0.25000000 47 • 50000000 11 .60000000 12 .20000000

TABLE 4.9: Correlation matrix of % of all parameters (2-D problems)

NEL NNOD DF.P SP LP FP

NEL 1.00000 1.00000 -0.89398 0.78232· 0.75737 -0.67219

NO. OF ELEMENTS 0.0000 0.0000 0.1060 0.2177 0.2426 0.3278

NNOD 1.00000 1.00000 -0.89398 0.78232 0.75737 -0.67219

NO. OF NODES 0.0000 0.0000 0.1060 0.2177 0.2426 0.3278

DEP -0.89398 -0.89398 1.00000 -0.97814 -0.96315 0.92588

DATA ENTRY % 0.1060 0.1060 0.0000 0.0219 0.0368 0.0741
.

SP 0.78232 0.78232 -0.97814 1.00000 0.98533 -0.98169

STIFFNESS TIME % 0.2177 0.2177 0.0219 0.0000 <>.0147 0.0183

LP 0.75737 0.75737 -0.96315 0.98533 1.00000 -0.95158

LOADING TIME % 0.2426 0.2426 0.0368 0.0147 0.0000 0.0484

FP -0.67219 -0.67219 0.92588 -0.98169 -0.95158 1.00000
FRONTAL SOLUTION TIME % 0.3278 0.3278 0.0741 0.0183 0.0484 0.0000

TP -0.33376 -0.33376 0.65147 -0.73499 -0.82681 0.71854
STRESS COMPUTATION % 0.6662 0.6662 0.3485 0.2650 0.1732 0.2815

_.

TABLE 4.9: Correlation coefficients - Prob > IRI Under HO:RHO=O - N=4

TP

-0.33376
0.6662

-0.33376
0.6662

0.65147
0.3485

-0.73499
0.2650

-0.82681
0.1732

0.71854
0.2815

1.00000
0.0000

IV
U1
o

251

Although this package is of limited capabilities compared to the

more advanced and complicated packages like NASTRAN or MSAP, it proved

to be a cost effective solution for small to medium size FE problems

which lie within the domain of applications covered by it. The

development of the time log module in this package makes it suitable

for research purposes in addition to the solution of practical

structural mechanics problems.

4.7.3 The STRAP Program

This program was developed by the author as part of a joint project

between the Civil Engineering Department and the Computer Centre at the

College of Engineering, King Saud University [Turaby and Sharaf Eldin,

1978]. The aim is to solve classical skeletal structures such as

continuous beams, frames and trusses. STRAP is a fully interactive

program, the user need only "sketch" the problem on the screen of the

terminal in the same way he would sketch it on paper. In addition, the

output may also be plotted on a small x-y graph plotter together with

the printed results. The system is also offered in batch mode.

Although this program is designed to run on a mini-computer, it is

readily available to run on a micro-computer. The presented program

is for the solution of beam elements only. Despite these fairly simple

elements, the main advantage of this program is the ease of data input.

The user of this program is relieved from the burden of preparing his

problem in the usual manner, i.e. numbering of nodes, elements, etc.

A versatile plotting program is added to STRAP as a postprocessor which

gives additional facilities to STRAP. The. total memory required to run

252

STRAP is only 26K bytes. A disk file is used as a temporary storage

to hold the values of bending moments and shearing forces at different

points. The size of this work file is computed by STRAP.

4.7.3.1 STRAP Capabilities

The major capabilities of the system can be summarized in the

following:

1. Sketching

A continuous beam can be sketched on the alphanumeric screen using

the standard keyboard with the following symbols:

stands for fixed end where both deflection and rotation are

prohibited.

x stands for hinged supports where deflection is prohibited

while rotation is permissible.

stands for beam centre line (spans).

* stands for points of change of rigidity.

Thus a structure like this (Figure 4.40)

EI=l EI=2 EI=1.2

~ :p.;. =tF £r,
2 3 4.5

x lE lE X

(a)

is sketched as:

1 2 1.2
#------ X .---------l(·---------X

2 3 4.5

(b)

FIGURE 4.40: Sketching facility in STRAP
(a) Original structure (b) Sketched model.

253

The values of rigidities are typed above each span, while the span

length is typed under the centre line of the beam. There is no need

for scaling or proportioning the input.

2. Interaction and Batches

STRAP supports both interactive terminals and batch jobs. The

system is designed so that the input could be done through the keyboard

of a terminal by sketching or by preparing data in a batch file. Outputs

can be obtained on the screen, printed and plotted.

3. Plotting

All the results together with the given structure itself can be

plotted. STRAP checks the available size of plotting table together

with the geometry of the structure. If "nice" readable graphs can be

produced in the available plotter space, STRAP plots the graphs,

otherwise the results are printed only. To illustrate this, consider

the structure shown in Figure 4.41. The middle span is too short

compared to the other spans. If the available plotting table is only

30x20 cms, then the middle span will be represented by less than 1 cm.

which is not enough to dimension it. One solution to this situation

is to plot parts of the long spans only.

1 x x
20 20

X lE 1 JE :------~~~--------x

(a) Original structure

a 1\ 7\ 1\ "
20 20

X JEll! :--------*B~--------X

(b) Not-to-scale plotting

FIGURE 4.41: A non-proportional structure
(a) Original structure. Plotting to scale is impossible.
(b) Not-to-scale plotting.

254

The following graphs can be produced:

(i) The input problem: geometry and loading

(ii) The bending moment diagram (B.M.D.) over the whole structure,

stating the maximum and minimum values.

(iii) The shearing forces diagram (S.F.D.) over the whole structure,

stating the maximum and minimum values.

(iv) Influence lines for bending moments and shearing forces at any

section.

Special Problem Handling

STRAP is capable of handling some special problems in structural

analysis. These are:

(1) Influence Lines

Influence lines (I.L.) at different sections for bending moments,

shearing forces and reactions can be obtained. In the interactive

version, the computer displays the structure sketch for the user. Then,

the user marks the letter 'M' or 'Q' on the section for which the B.M.I.L.

or S.F.I.L. is required.

(2) Members of Variable Moment of Inertia

In the case of a member of variable rigidity, it is split into

several members of constant rigidity. This is done automatically by

STRAP by placing an * at the points of variations.

(3) Settlements or Rotations of Supports

STRAP can handle supports with given settlements or rotations,

employing the equivalent joint loads in the same way as external loads.

4.7.3.2 STRAP structure

STRAP has a modular structure. It is coded in Fortran IV. The

general routines for STRAP are:

(1) MSTFM: Formation of member stiffness matrix.

255

(2) RAMAP: computation of the function which splits the overall

structure stiffness matrix into submatrices corresponding to known

and unknown joint displacements.

(3) SMSJ: Mapping the member stiffness matrix into the overall one.

(4) EJLDP: Computation of the equivalent nodal loads for a concentrated

load acting at any distance on a member.

(5) EJLDW: Computation of the equivalent nodal loads for a distributed

load of constant intensity running over part of the member.

(6) EJLDM: Computation of the equivalent nodal loads for a moment

acting at any distance on a member.

(7) EJLDS: Computation of the equivalent nodal loads due to a given

rotation or settlements at any support.

(8) AMAJ: Mapping the member action vector into the overall one.

(9) SJSJ: Re-arranging the overall stiffness matrix using the function

computed by "RAMAP" in place.

(10) MTCPY: Copying a sub-matrix of a larger one.

(11) ZEROS: Zeroizing a sub-matrix of a larger one.

(12) MTADD: Adding two matrices.

(13) MTSUB: Subtracting two matrices.

(14) MATTRN: Transposition of a matrix in place.

(15) MTINV: Inversion of a sub-matrix in place.

(16) AMXIM: Finding the maximum value of a vector.

256

(17) AMNIM: Finding the minimum value of a vector.

(18) BMSF: Computation of B.M. and S.F. at any point of a member due

to a given load.

(19) CLPLT: Plotting the centre line of the structure.

(20) SPPLT: Plotting a support on a centre line previously plotted by

ttCLPLT".

(21) LDWLT: Plotting a uniform load on a centre line previously

plotted by "CLPLT".

(22) LDPLT: Plotting a concentrated load on a centre line previously

plotted by "CLPLT".

(23) LDMLT: Plotting a moment load on a centre line, previously plotted

by"CLPLT".

(24) LDDLT: Plotting B.M.D. and S.F.D. on a centre line, previously

plotted by "CLPLT".

The user interface with STRAP is realized through the sketch

analyzer routine in the interactive mode, while in the batch mode it

is through a job processor routine.

4.8 MICROCOMPUTER IMPLEMENTATION

4.8.1 Background

257

Technological advances in the last few years especially in the

large scale integration (LSI) and the very large scale integration (VLSI)

has made it possible to have microcomputers with increasing power. The

early microcomputers were built around 8-bits microprocessors (e.g.

PDP 8). They had very limited capabilities that would not suit FE

analysis. However, with the introduction of the 16 bit microprocessors

more powerful microcomputers could be used for some of the FE analysis.

With the more powerful new 32 bit micros, it seems that most of the

classical FE analysis for small to medium size problems can be handled

by such machines.

However, many problems should be resolved to have a successful

FE implementation on a m;!ccrocomputer. In what follows the limitations

and problems encountered when using such systems for FE software are

discussed with proposed solutions. The first published FE software on

a microcomputer seems to be that quoted by Yamada et a1 [1980]. It is

based on an 8-bit microprocessor. Its main use was for educational

and experimental purposes rather than practical analysis. A more

general implementation is SAP-80 by Wi1son [1985] which runs on an IBM/PC.

This program can handle medium size FE analysis for linear and some

non1inear structures. B1ake1y et a1 [1985]- introduced their MSC/PAL

program for relatively small size FE problems of about 300 nodes. The

main feature of this program is its graphical package which could be

used to display the FE model (preprocessing) and the deformed shape of

the structure (post-processing). An interactive FE program foraquifer

simulation which is developed by the author is also presented.

4.8.2 Finite Element Programming on Microcomputers

Problems and Solutions

258

There are several problems which should be solved to have a

successful FE system on a microcomputer. It is possible to separate

these problems into two main categories: those related to hardware and

those related to software. Perhaps the first problem is the slow

execution speed of a microcomputer. For a microcomputer system such

as the IBM-PC, the execution time of a moderate size FE problem is

measured in hours. To illustrate consider the sample problem quoted

by Wilson [1985] which is a static analysis of a cooling tower which

has 434 joints and 400 shell elements with a total number of unknowns

of 2600. The solution time for this problem is reported to be 3 hours.

On the relatively faster microcomputer IBM-PC/XT another problem was

solved by Griffin et al [1983] for the solution of a non-linear system.

The reported time is 46 hours.

One solution to the problem of the slow speed is the use of a co­

processor for the floating point arithmetic. However, it seems that

in the near future the promising solution can be in connecting some of

those micros in a network and to have a FE software that utilizes the

distributed power of these micros and synchronize their operations to

solve fairly big FE problems in a reasonable time. Another problem of

microcomputers is their limited main memory. An associated problem

is also the limited address space. This problem with a proposed

solution are explained in details in Chapter 5 of this thesis. A

third problem is the peripherals that can be supported by a microcomputer.

The size of disc drives that are supported is limited. The introduction

of hard Winchester disc drives is one solution though the mean access

259

time is considerably more than those supported by bigger computers.

The low speed of printers and plotters can be enhanced by increasing

the buffer size to these peripherals. Another problem is the bus used

in microcomputers. By the time this thesis is written, the roost

popular bus is the S-lOO bus which is the IEEE-696 standard. One of

the major drawbacks with this bus is that it cannot support full 32-bit

operations.

The other category of problems is that related to software. Two

major problems are considered. First, the Fortran supported on micro­

computers and second, the available software libraries that can be

found on these machines. To exemplify, roost of the versions of Fortran

run on microcomputers allow smaller range of integers than on a main­

frame. This restriction is usually due to the word length. For a 16-

bit microcomputer the maximum integer that can be represented is limited

to 32767 only. Another problem is the depth of nesting. For example,

some Fortran compilers will allow a nesting depth of five only. Thus,

if an arithmetic expression, for example, contains more than five levels

of parentheses, temporary storage locations must be used to lower the

nesting depth. Another potential problem is the limited address space.

Some microcomputers allow an address space of only 32767 words though

the physical memory can be more than that. To overcome this obstacle

it is possible to segment the data space into different data blocks

each of which is less than the allowed maximum. However, some times

it is not possible to split the data space as the case of the master

matrix in FE programs. A complete solution to this problem is given

in Chapter 5 of this thesis. Finally, the available software support

on micros is still limited compared to that available for bigger machines.

For example, very limited mathematical and graphical libraries are

available on these systems.

260

Another approach that can be adopted is to use a bigger computer

in developing the FE program or use a code already developed on a

bigger machine and move this code to the microcomputer for execution.

However, one must realize the problems encountered in this process.

To physically move a program from a bigger computer to a microcomputer

we have to connect both computers through a communication line and

have an emulator with file transfer capability to move the source code

from the bigger to the smaller computer. The source code usually must

be modified. Although Fortran has its standards like ANSI Fortran 77

{ANSI X3.9-l978l but most of the available compilers do not 100% adhere

to these standards. Before doing the actual file transfer from the

bigger computer to a microcomputer it is wise to check the portability

of the code to be transferred and do most of the necessary modifications

while the code is still in the bigger computer. The reason for that

is simply because editing is much easier on bigger computers as

compared to microcomputer editing. Here are the most important things

to note with the solutions:

{ll Statement length:

A Fortran statement can span over several lines. The first one

'is the primary line while the others are continuation lines. In standard

Fortran 19 continuation lines are allowed, i.e. statement length can

be up to 20 lines. Most of the microcomputer Fortran compilers can

allow for only 4 or 5 continuation lines. Thus before doing a file

transfer, statements longer than that must be split to multiple shorter

statements. Practically, it is not common to find Fortran statements

261

longer than 5 lines except in -Format statements.

(2) Variable and subprogram names:

Names in Fortran are limited to 6 or 7 characters only. However,

most of the available compilers, even on some microcomputers will allow

more. If the target machine compiler allows only 6 characters as a

maximum length of a variable, subprogram or common block name, then a

change must be done to conform to this specification. Change can

usually be done by issuing a single Edit command like:

Change "STIFFNESS" to "STIFF" IN ALL

which will change the characters STIFFNESS to STIFF in the whole program.

However, care must be taken to ensure that erroneous situations will

not arise like if we have the string STIFFNESS in a format statement or

if the variable name is split on two lines.

(3) Data types:

Data types must match in calling subprograms and in comparison

operations. For example, if two character variables are to be compared,

the result of a comparison may be different on different computers.

This problem is particularly noticed when comparing Arabic text or a

language other than English where the collating sequence is not the

Same on different computers. These types of problem are usually

discovered at a later stage at compilation or even at execution time

on the target computer.

(4) Subroutines and functions:

When using dynamic dimensionality

expressions should be used. For example:

SUBROUTINE ADD(A,B,C,N,M)
DIMENSION A(N,M)B(N+M,M) ,C(N*M)

in subprograms, no arithmetic

should be avoided and the following code is followed:

SUBROUTINE ADD(A,B,C,N,M,NPLUSM,NM)
DIMENSION A(N,M)B(NPLUSM,M) ,C(NM)

where the variable NPLUSM is set to N+M in the calling segment and

262

the variable NM is set to N*M. Entry statements are usually handled

differently in different compilers and it is a good practice, therefore,

to avoid them. A subprogram with multiple entry points can be substituted

either by multiple subprograms or by adding a switching variable in the

list of arguments that branches to the appropriate entry point.

(5) Common Blocks:

Mixing character and non-character variables in the same labelled

common block may cause problems in many microcomputer compilers. It is

a good practice in such systems to have character common variables in

a separate common block. Length of named common blocks must be the

same in each program unit. Failing to do that may result in

compliation or linkage error.

(6) Format statements:

Non-standard format descriptions should be avoided. It is worth-

while to note that most Fortran compilers do not fully check the details

of the format descriptors until execution time when a formatter routine

is invoked to execute formatted read and/or write statements.

(7) System calls:

Sometimes it is desirable to call some of the service routines

provided by the operating system. Examples are: calls to get CPU time,

calendar, date and time, file handling procedure, etc. Since these

calls are dependent on the operating system they must be fully

documented and when moving a code containing these calls to another

263

machine they must be substituted by the equivalent calls.

(8) Special hardware devices:

Some input/output devices are handled in different versions of

Fortran differently. Also, some Fortran compilers cannot suppcrt some

devices. Usually in.these cases a routine in another programming

language; usually assembly, is written and the required Fortran

interface is established. As an example, consider the use of tablets,

light pens, mouse and soft keys of a terminal. All such devices are

not accessible directly through standard Fortran but rather they

require a particular sequence of instructions that differ from machine

to machine. In these cases, it is a very good practice to isolate

these parts in a few isolated routines and new routines are developed

on the target computer to do the same function.

4.8.3 The Interactive Finite Element Program for Aquifer Simulation

- IFEP

This interactive program is developed by the author [Sharaf

Eldin, 1983a] for aquifer simulation. Although the program was

originally developed and tested on a mini-computer HP3000, yet its

small size and modularity makes it very adequate for microcomputer

implementation [Sharaf Eldin, 1985a]. The considered problem is the

steady two-dimensional flow in a confined aquifer. The aquifer may

be anisotropic and non-homogeneous. The governing partial differential

equation is [Bear, 1979]:

l(-T ah) + .1.. (-T ah) = Q + S ah
ax xx ax ay yy ay at

(4.55)

where T and Tyy are the compcnents of the acquifer transmissivity in xx

the x and y directions, respectively [L2/T];

264

h is the piezometric head [L] ;

S is the aquifer storage coefficient;

Q is the volumetric flux of discharge or recharge per unit surface

area of the aquifer [LIT]; and

t is the time [T] •

In the case of steady flow this equation becomes:

(4.56)

Three types of boundary conditions can be specified:

(a) Dirichlet condition (also called, essential, 1st. type, or

geometric) where the head is known on some boundary, i.e. h=ho(x,y)

on S of the boundary.

(b) Neumann condition (also called force, 2nd. type, or natural) where

the flow across some boundary is known, i.e.,

ah ah q_ (x,y) = -(T -:;- n + T -:;- n)
-0 xx oX x yy oy y

on as of the boundary where n is the unit vector normal to the

boundary.

(c) Mixed conditions of both types (also called 3rd type). The FE

formulation of this problem will be detailed in Chapter 7 of this

thesis and therefore will not be repeated here but the major

aspects of the computer implementation of this problem will be

given.

When designing this program the following objectives are

considered:

(i) Simplicity:

Friendly user interface

Interactive ask-and-answer mode of operation

- Contains a pre- and a post-processor

- Oriented towards microcomputers of small size

(ii) Portability:

- Programmed in ANSI Fortran

- No special hardware or software is required to run the

program. However, the use of a small x-y plotter is

necessary to get a hard copy of plots.

265

- Minimal use of external storage (diskettes) for the larger

problems. The smaller problems can be processed in the

computer memory.

(iii) Maintainability:

Structured programming

Hierarchy input, process, output (HlPO)

- Self documented code

(iv) Accuracy:

- Use of proved techniques for the solution of the resulting

equations.

- On-line validation of the input data

(v) Efficiency:

- Utilization of the banded nature of the master matrix.

Resolution for new well parameters is due without re­

computation of the master matrix.

4.8.3.1 Program Structure

The program contains three major parts: the input, the process

and the output modules. A brief description of each is given below:

266

(l) The Input Module:

This module is responsible for reading all the data needed for

the problem like, problem title, job specifications, number of elements,

number of nodes, number of different soil zones, number of known heads

and number of known boundary flows. Geometry specifications are either

given in detail one by one or prepared by the pre-processor if the

domain is a rectangle. However, the (x,y) values of all the nodal

points, element-material map for all elements and soil properties must

be given. In addition to that, the boundary conditions must also be

given for both types I and II. In case of type I conditions, the head

value of the discharge or recharge and the elem~~t side number must be

given. The sources and sinks data are given interactively. All the

inputs are echoed in the final printout for checking and documentation

purposes. All inputs are also validated for type and range errors.

Some logical errors can be detected by the program.

(2) The Process Modules:

There are three modules:

(i) Checking that the problem can be solved within the current program

capacity. It computes the maximum bandwidth of the master matrix.

This value is a direct function of the nuriber of nodes and their

numbering sequence. In fact, the semibandwidth is the maximum

value between any two node numbers in the same element. If the

data was prepared by the pre-processor, the semibandwidth will

be automatically minimized. However, to keep the program as

simple as possible no inherent re-numbering is done if the data

was given manually.

(ii) Setting up the master matrix in a compact storage mode. Since

the master matrix is known to be symmetric and banded, its

storage mode is as well.

267

(iii) solution of equation using a banded Gauss elimination method.

(3) The Output Module:

This module prints all the computed and prescribed nodal heads

and calculates the pressure heads as well. It is also possible to use

the post-processor to plot the FE model.

Figure (4.42) shows a block flowchart for the IFEP program.

START

'l.

Read problem
parameters

1
Read geometry
data

J
Read soil
properties

1
Read boundary
conditions

1
compute semi-
bandwidth

Within
limits?

YES .,
Formulate master
matrix

-I

Read well
parameters

.I.
Compute r.h.s.
vector

1
Solve linear
equations

1
Compute heads
and pressures

Print output

YES <t> well
arms

"'~ roblems

1- NO

END

NO

FIGURE 4.4

268

2: IFEP Block
flowchart

4.9 PRE-PROCESSORS FOR FINITE ELEMENT PROGRAMS

4.9.1 Introduction

269

The term pre-processor has no definite definition when used in

computer studies. This term is being used with different meanings in

different fields of computer studies. When used in Finite Element

programs it means usually a subprogram, a program or a suite of

programs that are used to aid in data preparation which is required

for a F.E. program. When used in digital image processing applications,

pre-processing means filtering of digital pictures, normalizing grey

levels and/or thinning to skeletonize objects in a picture prior to

recognition which is the main processor in this field of computer studies.

However, since the main processor of different applications are not the

same, a reasonable general definition of a pre-processor may be: it is

a part of the programming system used to do preliminary tasks to relieve

the main processor and to achieve a better global efficiency for the

whole process. The main reasons to split these tasks from the main

processor, in my opinion, is that these tasks could be implemented on

another computer rather than that used for the main processor. Usually

this machine is a smaller one but usually with a better man-machine

interface. For example, it is possible to have a pre-processor to

automate FE mesh generation and then use this data as an input to a

formatter which uses it to create the input data set for a FE processor

like ASKA or MSAP. Of course, the formatter must support as many formats

for the different FE systems it supports. Another reason may be to have

the preprocessing functions independent of the processor itself. For

example, it is possible to have a general preprocessing which is used

mainly for solid modelling with the resulting model to be analysed by

2M

finite elements or other techniques. However, it should be noted that

the existing preprocessors are used exclusively with one method of

analysis only. It is a good idea indeed to have a general preprocessor

for solid modelling that can format the data to different standard

packages in finite elements or even other techniques like boundary

elements or finite differences according to the user choice.

In the literature, in most cases FE preprocessors are used to

assist a user of a FE program in data preparation and/or entry. In

practice, roughly around 80% of the total effort spent in the analysis

of a FE model is spent in the data preparation and input. Since most

of the data input in FE programs are the geometry topology, most of

these pre-processors offer a means for mesh generation. However, in

order to have a more precise determination of the different functions

of FE pre-processors, the following list is proposed [Sharaf Eldin,

1983b]:

1. Automatic or semi-automatic mesh generation:

This means that the user has only to describe the FE region and

let the preprocessor generate the necessary nodes and elements, i.e.

discretize the domain into finite elements. Although there are a

great number of such mesh generators, yet, the employed methods are

different, as explained later and there is no truly complete

reliable automatic mesh generator that can handle a general

arbitrary region and generate a variety of element types with a

reasonable amount of computer memory and execution time [Durocher

and Gasper, 1979]. However, it should be mentioned that the range

of degree of mesh automation is very wide. At one extreme the

fully automatic methods which require a minimum of user input and

271

in which the mesh generator itself determines regions of high and

low element densities. While at the other extreme, we find the

simple methods which require the user to completely define the

element mesh, while the "mesh generator" itself performs only

minor operations like check for consistency, error detection and

simple "numerical book-keeping" functions. However, an lIinbetween"

mesh generator is expected to be able to:

Handle multiply connected regions (e.g. different soils in an

aquifer) •

Handle a variable density of discretization (e.g. more tri­

angulation near wells).

Allow the user to edit the generated mesh.

(2) A good node numbering algorithm:

It is well known that the node numbering scheme is very important

in determining the memory requirements for the master matrix in any

finite element model. Only for simple problems, hand labelling by

a careful inspection of the FE model topology can lead to an

optimum bandwidth. Generally, for large size problems and/or

complex topology, hand labelling becomes tedious and most probably

the optimum or near optimum bandwidth is not guaranteed.

(3) Data formatting for the main FE processor:

The pre-processor itself is only a means to prepare the data

efficiently for the actual FE processor. so, one of the most

important functions of a preprocessor is to format the input data

as required by the host FE processor. It seems from the literature

review that this function has not been given the necessary attention.

This may be due to the fact that each FE processor needs its data

in a different format from others. Most of the existing pre­

processors are "tailored" for particular FE processors.

272

An ideal preprocessor is one that enables the user of generating

the required data by the FE processor with the least amount of effort.

A user friendly preprocessor should have the following basic features

[Pesquera, et al, 1983):

(1) Flexibility: The user should be able to follow any logical path

he wishes in the definition of the FE model. For example, once

the geometry has been defined, the preprocessor should be flexible

enough to allow the user to choose the order he prefers to specify

element and nodes attributes. The user should be able to control

the element density in any part of the region to be modelled.

(2) Previous status recovery: An incorrect user action may have

undesirable, even drastic, effects on the execution of the pre­

processor. A good feature of an ideal preprocessor is to allow

the recovery of the status prior to the last action done by the

user. If a fatal error was detected by the preprocessor then it

is desirable to be able to use the data and the computations

accomplished so far prior to the breakdown of the preprocessor

execution.

(3) Flexible means for data entry: Data entry is usually tedious and

prone to errors. An ideal preprocessor should allow the most

efficient way for data entry. For example, if a digitizer is used

in FE modelling then data entry through a stylus and a calculator­

type keypad may be more appropriate.

(4) Visual feedback: A powerful preprocessor should provide the facility

for visual checking of the FE modelling using a graphic terminal

or a plotter.

273

(5) Transportability: An ideal preprocessor should be portable as much

as possible. This is usually very difficult to satisfy.

(6) Command duplication: The ability to duplicate certain commands

without re-entering them is very desirable in a preprocessor.

Using this facility it becomes possible to assign the same

attribute to several different parts of the FE model.

(7) On-line help: As in most interactive systems, the availability of

on-line help is an asset for an idea preprocessor.

(8) Modularity and expandability: As any other softwar~ modular

structure for a preprocessor is a required feature to faciliate

its maintenance. Expandability features allows the updating of

the preprocessor to incorporate new algorithms or to support new

hardware and/or software.

(9) Economy: An ideal preprocessor should be economical in terms of

computer resources. It should also produce a model which can be

processed by the FE processor economically. For example, if the

FE processor uses a banded algorithm technique to solve the resulting

FE equations, then, the preprocessor should number the nodes in

order to minimize the bandwidth. On the other hand, if the FE

processor utilizes a frontal solution scheme, then, the pre­

processor should ensure minimum front width.

The information that an ideal preprocessor should produce can be grouped

into:

(i) Model topology: this is usually the major task of a preprocessor

and its main product. It usually consumes most of its

processing time. It consists of nodes, elements and connectivity

data.

274

(ii) Attributes and boundary conditions: this includes the properties

of elements, for example, in an aquifer FE model the trans­

misivity, aquifer storage coefficient, etc. While in a

structural analysis problem the attributes may be the cross­

sectional area of elements, Poisson's ratio, Young's modulus,

etc. Boundary conditions are also included in the preprocessor

outputs. For example in a structural analysis problem specifying

a fixed end will result in producing the boundary conditions of

no vertical, horizontal deflections or rotations at this node.

Loading data should also be included in the preprocessor outputs.

(iii) General information regarding the considered problem like:

problem title, date and time of run, total CPU time used in

preprocessing, control parameters used in preprocessing, etc.

4.9.2 Methods of Mesh Generation

Over the last 10 years many mesh generators have been developed.

Most of them are oriented to structural analysis and solid modelling

problems. Nevertheless, the main concepts can be used in other field

problems like groundwater flow problems. In order to use a mesh

generator the user must specify a global mesh to the preprocessor and

the mesh generator, starting from this coarse mesh can refine recursively

the mesh to the desired degree. Mesh generation is usually done in two

steps: (i) Generation of nodes and (ii) Connecting nodes to form

elements. The first attempts of mesh generation were fairly simple.

Among the earliest methods is that used by the SAP IV program and its

brother program MSAP which has been presented in this chapter. In this

program a straight line interpolation technique is used for node

275

generation. A little further step is the division of the region into

equal rectangles for regions which can be approximated by a rectangle.

This method was used by the author in the preprocessor of the IFEP

program [Sharaf Eldin, 1983b]. However, more sophisticated mesh

generation schemes have been developed for regions of general shapes.

Before presenting these techniques it is important to emphasize that

each of the methods used in mesh generation has its merits and dis­

advantages and usually a particular scheme may be the best for certain

applications and geometries only. Haber et al [1981] proposed a list

of the criteria that can be used to evaluate the relative merits of

different mesh generators as follows:

l} Precise modelling of boundaries: The mesh generator should place

the boundary nodes on the boundary precisely. Failing to do so

may result in more severe discretization error in addition to the

"by-definition" discretization error inherent in the FE modelling

itself.

2) Grading capability: It is usually desirable to have a user control

on the grading of the mesh produced by a mesh generator. This

ability can save unnecessary refinement of the whole mesh.

3) Minimal input efforts: Initial triangulation necessary to describe

the FE region and the grading control information should be as

minimum as possible. This saves time and effort and minimizes

probable errors in data input.

4) Editing facility: The capability of editing the generated FE model

produced by the mesh generator will allow the "human touches" to

be added to the FE model. Engineering judgement cannot be totally

substituted by the computer in many cases.

5) Broad range of applications: A mesh generator that covers a

wider spectrum of applications is considered better than that

suitable for particular applications.

276

6) Generality: General topology should be supported by a good mesh

generator. Automatic generation of elements should be done without

user intervention.

7) Favourable element shapes: The elements produced by the mesh

generator should have favourate shapes to avoid ill-conditions that

may arise in the FE model.

8) Computational efficiency: The preprocessor should number the nodes

and elements automatically so that the solution of the FE equation

will be efficient. Usually minimization of bandwidth or front-

width is required according to the method employed in the FE

processor. The method of mesh generation itself should be economical

and efficient.

Now, let us explain some of the most general and efficient methods

for mesh generation.

4.9.2.1 Mapping Techniques

Mesh generation by mapping is a technique where the element

topology is simplified to a square or triangular grid system which is

then mapped into the actual shape of the domain. Several mapping

techniques can be used. Among the earliest and the easiest methods is

the isoparametric mapping [Zienkiewicz and Phil1ips, 1971). The main

idea behind this method is to use an isoparametric curvilinear mapping

of quadrilaterals. A typical parabolic quadrilateral has been shown

in Figure (4.21). However, for convenience we repeat the same element

277

definition here. As shown in Figure (4.43) the x and y coordinates

of a typical point within this element is related to the eight pairs

of nodal coordinates by the equations,

8
x = L N. (Cn)x. (4.57)

y =

1

i=l 1. 1.

8
L N. (Cn)y.
'11. 1. 1.=

4

3

nL~

n=-l

8

n=l
5

FIGURE 4.43: A typical parabolic quadrilateral

(4.58)

Where N. is the shape function associated with each node and is defined
1.

in terms of the curvi-linear coordinates system (~,n). These functions

have been determined before and will not be repeated here. Thus, if

a region is defined by eight sets of nodal coordinates (xi'Yi) for

i=l to 8; it is easy to generate a mesh to any desired size by sub-

dividing the region in the (~,n) with equidistance lines in both

directions and computing the x,y coordinates of the generated points

using the shape functions N. as in equations (4.57) and (4.58). In a
1.

multiply-connected region, a mesh of superelements is specified together

with the required mesh size inside each superelement. One of the major

restrictions of this method is that it requires each of the opposite

sides to have the same number of node points which sometimes may be

278

undesirable. It is possible to generate element types other than

the parabolic quadrilateral provided that the appropriate shape

functions are used as has been demonstrated by Durocher and Gasper [1979].

The other two popular mapping techniques which have been used for

mesh generation are the discrete transfinite mappings [Haber and Abel,

1982] and Laplacian mapping [Akin, 1982].

4.9.2.2 Mesh Generation by Direct subdivision

In these methods a coarse mesh is defined by the user and then the

computer starts partitioning the region into non-overlapping elements.

Rivara [1984] described two general algorithms for the construction of

triangular grids by iterative bisection of the longest side of each

triangle. A similar idea is also implemented in the TWODEPEP package

which will be described later. The algorithm used to subdivide any

initial conforming triangulation DO to a conforming triangulation by

iterative bisection can be stated as follows:

(1)

(2)

01 0 0 Define DO={T. T. € D } where Tl.' are the initial triangles. l. l. 0
o Bisect every T. by its longest side. Generally we obtain a non­
l.

conforming triangulation except in the special case where all sides

are on the boundary. Let k=l, we denote the triangulation thus

obtained by,

(3) Consider the subset S € Dk of triangles where one of its sides

contains a non-conforming node.

(4) Bisect triangles of S by its longest side.

(5) If the obtained triangulation is conforming then stop else increment

k by 1 and go to (3).

The different steps when applying this algorithm to an initial

triangulation is shown in Figure (4.44).

(a) (b)

(c)

FIGURE 4.44: Subdivision of conforming triangles

(a) Initial triangulation 00

279

(b) 01 triangulation. The shaded triangle contains a
non-conforming node

(c) 02 final conforming triangulation.

A simpler version of this algorithm can be as follows:

(1)

(2)

Bisect every T~ by its longest side.
1

Find the subset S of triangles generated in step 1 and contain a

non-conforming node at one of its sides.

(3) For each triangle T E S join its non-conforming node with the

opposite vertex. This will produce a conforming triangulation.

Of course the same procedure may be applied to every triangle of the

new conforming triangles until the desired mesh refinement is achieved.

280

4.9.2.3 Mesh Generation by Quad Trees

A new approach for mesh generation by direct subdivision is the

use of a modified quad tree [Shephard and Yerry, 1983]. Quad trees

were used in digital image processing techniques and computer graphics

as a convenient way for encoding 2-D objects in an integer tree

structure which can be easily and efficiently manipulated by a computer.

In the original quad tree encoding, the two-dimensional coherence is

exploited by recursively decomposing the image into square areas

until a sufficient homogeneous square is reached. Thus the whole

image is the root of the tree and each square is a node in the tree.

These nodes are leaves when the quadrants they represent are homogeneous

otherwise, more refinement is done by decomposition. Operations on

quad tree encoded images are much faster compared to other encoding

techniques as was demonstrated by Oliver and Wiseman [1983]. A

tutorial survey on quad trees and their applications in digital image

processing is found in Samet [1984]. In order to apply these ideas for

finite element meshes, the whole region of interest is considered as

the full image and is placed in a square defined in the integer domain.

The square is then divided into four quadrants. In digital image

processing we usually consider a quadrant as homogeneous if its grey

level is sufficiently homogeneous. In an analogous manner, in mesh

generation, it is possible to consider a quadrant as homogeneous if

it is fully inside the region or empty, i.e. fully outside the region.

For a partially filled quadrant further decomposition is done. A

further point which can be added here is that if the material properties

within a full quadrant is not homogeneous then it must be divided again.

The steps showing a quad tree representation of a circle are shown in

281

Figure (4.45) where one quadrant of the circle is shown in detail.

One of the advantages of this technique is that boolean operations

and translations or rotations can be handled with the simple integer

operations of addition and multiplications by two. It is worthwhile

, 1/ \,

, ,
" I

"." _/
,

(a) (b)

, ,
~ _. ,

\,
HT ~.

t:H '.

./ !

........ _/ "- --" , .

(c) (d)

(e)

FIGURE 4.45: Quad tree representation of a circle (only one quadrant
is shown)

282

to mention that since the tree structure for all objects is similar,

it is possible for it to be implemented by special hardware. Operations

with integer numerics is much faster than with floating point numerics.

However, the direct application of quad tree as such for mesh generation

is not suitable. First, the interior of the region may be represented

by a small number of elements of large size. Secondly, two adjacent

quadrants may be divided to different degrees thus creating non-conforming

nodes. For most irregular boundaries we need too many subdivisions in

order to represent the boundary. Among the solutions to these problems

is to set a maximum size for any quadrant and if a quadrant is homogeneous

and still larger than the stated threshold it is further divided. In

order to solve the problem of non-conforming nodes it is possible to

allow a corner cut-off for a quadrant. This modification to the quad

tree will increase the status of a quadrant from three to four: full,

empty, partially filled without cut and, the new case, partially filled

with cut. The data of the cut edge is saved in another array maintaining

the two end points of the line segment that cuts the quadrant. A

transition mesh configuration could be used to eliminate non-conforming

nodes. Graded meshes can be generated by specifying different levels of

modified quad tree representation in various portions of the region.

4.9.2.4 Duplicate Nodes in Automatic Mesh Generators

It was noticed [wu, 19821 that some automatic mesh generators may

produce duplicate nodes i.e. more than one node number is generated for

the same node. This is believed to happen in multiply connected regions

where in the initial triangulation common nodes are shared by several

super-elements (more than 4). In such cases it was noticed that some of

283

the generated nodes with identical coordinates are assigned different

node numbers. Of course using this wrong information in the FE

processor will have drastic effects on its execution. In a structural

analysis application, for example, an overflow will occur due to the

existence of a member of zero length connecting the duplicate nodes.

The presented technique is quite simple and will eliminate duplicate

nodes. The strategy is divided into three steps:

(i) Renumber the initial triangulation (super-elements) in a manner

that minimizes the probability of having duplicate nodes.

Practically, it is noticed that this can be achieved if super­

elements sharing a common node are numbered in a continuous

sequence. This step is done before using the mesh generator.

(ii) Check the existence of duplicate nodes after the execution of

the mesh generator. This can be done by scanning the generated

nodes to check for duplication.

(iii) If there are duplicate nodes, this step is done otherwise it can

be bypassed. Here node numbers are compressed to eliminate any

false nodes. To avoid unnecessary effort, the elements which

contain a false node number are only corrected while other

elements and nodes are kept unchanged.

4.9.3 Data Input for Finite Element Programs·

Despite the method by which a FE mesh is prepared there should be

some means to feed the data into the computer. In case full automatic

mesh generation is used, the input data is usually prepared by the pre­

processor. However, in other cases several methods are used for data

input which can be classified as follows.

284

4.9.3.1 Interactive Ask-and-Answer

In this method the user sketches on a piece of paper the FE model.

The user determines, based on his experience, the nodes and elements

of the whole domain. Moreover, he assigns numbers to nodes and elements.

Typically, an interactive program is developed which will be run using

a terminal or a micro-computer. The computer starts asking the user,

step by step, for the necessary data and the USer answers the computer

queries. The program formats the user inputs in a file according to

the FE processor for which the preprocessor is designed. Sometimes

plotting of the FE model is provided to check the correctness of the

input data. One of the advantages of this approach is that data is

checked at the time it is entered in the computer. Another advantage

is that these programs are easy to program and maintain. The main dis­

advantage is that this method is time-consuming for large volumes of

data. To overcome this difficulty it is possible to add a mesh generator

within the program. An example of using this method is the pre­

processor program for the MSAP program; PREMSAP [Kalidjian, 1976].

PREMSAP is a format free interactive program to prepare the input data

for MSAP. This approach is also adopted by the author for the program

ELASTIC which has been presented earlier. It is also used in the pre­

processor for the IFEP program. This pre-processor, named PREIFEP

is designed to facilitate the data preparation for the IFEP [Sharaf

Eldin, 1983b]. The typical steps to use PREIFEP are as follows:

The user should define his problem in sketches on paper including

dimensioning and numbering. These data are: indicative title

of the problem, job specifications, soil characteristics,

geometry and boundary conditions.

285

If the domain is a rectangle then an automatic mesh generator

could be used to divide it into equal sized rectangles of that

given dimension.

If the domain is irregular, then, no automatic mesh generation

could be done and the user should submit the details of his

model topology as asked by the computer in step-by-step fashion.

All the data are given in free format, mixed modes are allowed,

i.e. integer and real numbers can be mixed together. However, in the

problem title the character "I" should be avoided because it is sensed

by the operating system as the end of record delimiter. Similarly, the

strings:EOD and :EOJ should be avoided for similar reasons. The process

of requesting information by the computer and the user's responses to

it continue till the last bit of information necessary to complete the

input data required by the IFEP.

Since the IFEP is basically designed to run on a mini- or micro­

computer, no external work files are used and thus all data can be

stored in memory for immediate use by the IFEP or stored into a disc

file in the same format as specified by the IFEP program for subsequent

processing. Although the mesh generation in PREIFEP is fairly simple,

it seems to be practically useful for some of the aquifer management

problems particularly if no sources or sinks exist.

4.9.3.2 Special Definition Language

A special language is designed to describe the FE model. In this

approach the user draws his FE model and fully describes it using a

command language to define nodes, elements, materials, etc. This

method can be implemented in batch mode as well as interactively. The

286

main drawback is, however, the need to learn some commands. Usually

these languages are of free format nature. Examples of this method is

that used in a preprocessor for the finite element program SAP IV

proposed by Haugeneder et al [1981). All the commands of this language

follow the structure of:

(action): (descriptive values): (location);

The action part of the command indicates the type of action to be taken;

while the descriptive values represent the values of attributes required

by the specified action. The location part of the command specifies

the location within the FE mesh on which the action is to be done.

Three groups of commands are available:

(a) Commands to define general information for the problem to be solved.

Among these are: the head command which is used to assign a title

for the problem, the MC (master control) command which defines the

global mesh parameters like number of nodes, .•• etc.

(b) Commands to describe the attributes of the nodal points and the

incidence of the nodal points in the mesh like degrees of freedom,

coordinates and temperature. Among these commands the coordinates

which are used to define the coordinates of a node.

(c) Commands to describe the elements and applied loads. Amongst which

is the PARAMETER command for the description of concentrated load/

mass data. The total number of commands offered by this language

is 22. To show its versatility consider the following command:

X:lo.3:10,14,17-27,120-220/l0;

This command specifies the value of 10.3 as the X-coordinate of the

nodal points: 10,14,17 to 27 inclusive and 120 to 220 in steps of

10, i.e. 120,130, ••. ,220.

287

4.9.3.3 Direct Data Input Through Digitization

In these methods a digitizer or a graphic tablet is used to feed

the topology of a FE mesh drawn to scale on paper directly into the

computer memory. Digitizers are usually operated as a stand-alone system

where a large size digitizing table is controlled by a micro-computer

and the read data are recorded on a magnetic tape which is used

subsequently as an input to a FE processor. On the other hand, a graphic

tablet is connected to a computer directly and is operated on-line.

A description of the Calcomp digitizer/edit system (DIGED) with

different modes of operation can be found in [Sharaf Eldin, 1983d].

There are four types of digitization: point by point, grid, tracking

and incremental digitizing. In the point by point digitizing the

coordinates x,y pairs of the point to be digitized are transferred to

a buffer when pressing the cursor's button. In the grid digitizing

mode, a grid of equal Dx and Dy sizes in the x and y directions is

prepared. Each point is approximated to the nearest grid intersection

point. In the tracking mode; the user can specify the speed of data

sampling i.e. points are digitized every Dt time interval. In the

incremental digitizing mode incremental steps Dx and Dy in both x and

y directions are specified and sampling takes place only if the

absolute difference between two consecutive points is >Dx and/or Dy.

In other words, sampling is based on distance criteria rather than

time criteria as in the tracking mode.

In practice to use a digitizer, the FE model is drawn on paper to

scale and fixed firmly to the digitizer table. The driving software

requires the digitization of three points which do not lie on a straight

line and the corresponding coordinates in user units. This will establish

288

the scale of the mesh and the orientation of the axis w.r.t. the table

axis. Then the actual digitization of nodes begins node by node.

One of the known FE systems that contains a module that can be used

to digitize a FE model is the GIFTS system [Kamel and Navabi, 19801.

In this system a digitizing tablet is used to enter key point positions.

A graphical feedback of what is being digitized is displayed on the

terminal. The output of this step is an input file that can be used

by the BULKM mesh generator which is one of the GIFTS modules. It is

not evident from the available literature that the full capabilities

of a digitizer are utilized in automatic mesh generation. Perhaps

using mixed modes of operations can be a better approach to utilize

these capabilities. For example, using the pcint by pcint mode for the

very critical points in the FE mesh and using the grid mode to define a

rectangular mesh. Although this means seems to be attractive, yet some

restrictions do exist. First, drawing the FE model precisely on a

drawing paper which may not be convenient. Secondly, the digitization

process itself has its own errors due to human error and the A/D

. conversion. In case the digitizing hardware is not available another

method must be thought of.

4.9.4 Numbering Algorithms

For a given FE model the structure of the master matrix depends

not only on the chosen interpolation functions and the element types,

but also on the scheme used in numbering the nodes or elements of the

FE model. Generally, for large size problems and/or complex topology,

hand labelling for nodes is tedious and reaching the optimum node

numbering (or element numbering) is usually not guaranteed. we must

289

indicate, first of all, that the criteria for assessing optimality

of numbering is not unique. For example, an optimal numbering can be

the one which minimizes the main storage requirements. Another one is

that which gives the minimum solution time. Even when considering the

minimum main storage as the governing criteria it is possible to

consider the algorithms which minimizes the fill-in's, maximum band­

width or a profile. From a practical point of view, we usually seek

an algorithm which minimizes the maximum bandwidth if a band solver

is to be used and an algorithm which minimizes the profile size if a

profile technique is to be utilized, and finally a frontwidth

minimization if a frontal solution is thought of. The problem of

optimum numbering in FE models is known to be NP-complete. Accordingly,

there is no efficient algorithm that guarantees the absolute optimum

numbering of a general FE model. The only alternative is, therefore,

heuristics. There are two general approaches for direct solution of

FE equations: those based on banded algorithms and those based on frontal

solutions. The maximum bandwidth is a direct function of node numbering

while in the frontal algorithm the element numbering is the governing

parameter. Since many of these algorithms are based on a graph

theoretic approach, it is convenient to brief some of the basic graph

concepts relevant to bandwidth minimization as follows:

Definition 4.1

A graph G consists of a set of nodes (vertices) V together with a

set B, whose members are unordered pairs of nodes, the edges (branches)

of G. A directed graph is one where the pairs in the set B are ordered.

Two nodes of a graph are said to be adjacent if there is an edge

between them.

Let

Then,

Definition 4.2

v = {vl'v2 , ••• }

E = {(u,v) lu,v E V}

G = (V,E) •

The adjacency set of a node u is defined as:

Adj (u) = {v E (V-U) I (v,u) E E}

where U={ u} •

Definition 4.3

290

(4.59)

(4.60)

(4.61)

(4.62)

The degree of a node u is the cardinality of its adjacent list,

i.e. IAdj(u}l. A path from one vertex to another is formed by a sequence

of Ledges, (vO,vl},(vl,v2}, ••• ,(vL_l,vL)' in which each edge is used

only once. L is the path length. The vertices with which a path

begins and ends are called the terminal vertices.

Definition 4.4

The distance between two terminal vertices u and v, denoted as

d(u,v} is the length of the shortest path joining them.

Definition 4.5

The span of a subset U of V is defined as:

Span(U} = {v E vi 3 a path between v and u, u E U}.

If G=(V,E} is connected, then the eccentricity of a vertex v is

defined to be the longest distance from vas:

e(v} = max{d(u,v} lu E V}

The diameter is the maximum of all eccentricities:

D(G} = max{e(v} Iv E V}

A vertex v such that e(v}=D(G} is called a peripheral vertex.

Definition 4.6

For a graph G(A} corresponding to the matrix A we will have n

(4.63)

(4.64)

(4.65)

291

nodes labelled 1,2, ••• ,n. For each non-zero element a .. , i<j of A
1J

there will be an edge connecting nodes i and j. From that graph it is

possible to determine the location of all off-diagonal non-zero

elements of A. To illustrate consider the matrix.

X

x X

0 0 X Symmetric

A = X 0 0 X

0 0 X X X

0 0 X 0 0 X

0 0 0 0 X X X

Its associated labelled graph G will be:

It should be noted that we can number the nodes of the system in n!

ways. The absolute minimum bandwidth that can be reached is m-I, where

m is the largest degree of the nodes in the system. If the original

matrix A is permuted using a permutation matrix P then the permuted

system PAp
T

will be represented by a graph G'=G(PAP
T

) which is

structurally identical to A but the node labels will be different

according to P.

292

4.9.4.1 Algorithms for Minimizing Bandwidth

Algorithms for minimizing matrix bandwidth became of great interest

in the early sixties. The early methods were time consuming and

impractical. For example, Alway and Martin [1965] proposed a search

of permutations in order to find one which can be used to permute

rows and corresponding columns of the original matrix to minimize the

bandwidth. However, the first very successful and still very widely

used, is the Cuthill and McKee (CM) algorithm [1969] for the reduction

of the bandwidth of sparse symmetric matrices. Later, many numbering

algorithms for minimization of bandwidth and/or profile of a matrix

were developed which have practical value. In what follows the most

well-known methods are presented. Since the numbering algorithm

employed in the FE software used in this thesis is based on the reverse

cuthill-McKee (RCM) algorithm it is convenient to start with the CM

algorithm.

1. The cuthill-McKee Algorithm

The cuthill-McKee (CM) algorithm was primarily designed to reduce

the bandwidth of a sparse symmetric matrix. The scheme makes use of

a simple observation: if x. is a labelled node; then in order to
~

minimize the bandwidth of the row containing x. it is clear that all
~

nodes connected to x. and not yet labelled should be labelled as soon
~

as possible after x .•
~

Thus the CM algorithm may be considered as a method that reduces

the bandwidth of a matrix via a local minimization of the row's band-

widths. The first node to be numbered is called the starting node.

The choice of a good starting node in the CM and many other similar

algorithms is very critical and affects the bandwidth and profile

293

reduction. Based on substantial experience it was discovered that if

the starting node is a peripheral node the better bandwidth can be

achieved. However, since the search of a peripheral node is generally

expensive for a non-trivial graph, it is usually a pseudo-peripheral

node which is searched for as a starting node [George, and Liu, 1981}.

The CM algorithm can be summarized as follows:

(1) Determine a starting node and assign 'it the number 1.

(2) Main loop:

For i=l to N;

Find all the un-numbered neighbours of the node x, and number them
~

in increasing order of their degree until all the nodes are numbered.

To illustrate the CM algorithm consider the FE model assuming one unknown

is associated with each node as shown in Figure 4.46.

b
d

g

f

FIGURE 4.46: A FE model to be numbered

This model is numbered using "a" as a starting node. The step-by-step

numbering is shown in Table 4.10.

294

Un-numbered neighbours
Node Label Node Degree Assigned Number sorted by order of

degree (ascending)

a 1 1 b

b 3 2 c,d

c 3 3 f,e

d 4 4 g,h

f 2 5 -
e 3 6 -

g 2 7 -

h 4 8 -

TABLE 4.10: CM numbering using node "a" as a starting node

The numbered model is shown in Figure (4.47).

2 4

7

5

FIGURE 4.47: Numbering using "a" as a starting node

The associated matrix structure is:

*
* *
0 * *
0 * 0 *
0 0 * 0 *
0 0 * * 0 *
0 0 0 * 0 0 *
0 0 0 * * * * *

295

The profile size in this case is 16 and the semi-bandwidth is 4.

Solving the same example using "e" as a starting node, we reach

a semi-bandwidth = 4 also but an increased profile to 19 as shown in

Figure (4.48) and Table 4.11.

7

FIGURE 4 48· Numbering using "e" as a starting node . .
Un-numbered neighbours

Node Label Node Degree Assigned Number sorted by order of
degree (ascending)

e 3 1 c,d,h

c 3 2 f ,b

d 4 3 g

h 4 4 -
f 2 5 -

b 3 6 a

g 2 7 -

a 1 8

The associated matrix structure is:

296

r *
* 0 *
* 0 * *
0 * 0 * *
0 * * 0 0 *
0 0 * * 0 0 *
0 0 0 0 0 * 0 *

2. The Reverse Cuthill-McKee (RCM) Algorithm

As storage schemes for linear equations moved from banded to

profile, the objective of renumbering methods has changed to minimize

the matrix profile. George [1971] has discovered that the ordering by

reversing the Cuthill-McKee (CM) ordering often turns out to give a

better profile as compared to the original CM algorithm. He called

this the reverse Cuthill-McKee ordering (RCM). Reversing is done by

assigning new node numbers y.=xN . 1 where N is the total number of
~ -1.+

nodes and the x's are the node numbers obtained by the CM algorithm.

To illustrate consider the previous example shown in Figure (4.46),

the numbering using the RCM algorithm will result in the numbering

shown in Figure (4.49) and Table 4.12.

7 5

2

4

FIGURE 4.49: RCM numbering using "a" as a starting node

TABLE 4.12: RCM numbering using "a" as a starting node
for the CM

Node Label CM Numbering RCM Numbering

a 1 8

b 2 7

c 3 6

d 4 5

f 5 4

e 6 3

g 7 2

h 8 1

The associated matrix is:

F
* *
* 0 *
* 0 0 *
* * * 0 *
0 0 * * 0 *
0 0 0 0 * * *
0 0 0 0 0 0 * *

The profile size is 16.

297

When considering the other numbering scheme using node "e" as a

starting node in the CM algorithm, we get the following results

illustrated in Figure (4.50) and Table 4.13 with associated matrix:

*
o

*
o
o

o

o
o

*
0

0

*
*
0

0

*
0 *
0 *
* 0

* *
0 0

and profile size of 16.

*
* *
0 0 *
* * * *

3 6

2

4

FIGURE 4.50: RCM numbering using "e" as a starting node.

Node Label CM Numbering RCM Numbering

e 1 8

c 2 7

d 3 6

h .4 5

f 5 4

b 6 3

g 7 2

a 8 1

TABLE 4.13: The RCM numbering using node "e" as a starting node
in the CM

It is possible to conclude that:

298

(i) Choosing a good starting node can affect the semi-bandwidth

and/or the profile size in the CM algorithm.

(ii) The RCM does not reduce the bandwidth obtained by the CM.

(iii) The RCM often reduces the profile size obtained by the CM

but can never increase it.

3. The Gibbs-Poole-Stockmeyer [GPS] Method

This method, presented by Gibbs et al [1976], is based on searching

299

a spanning tree of the graph of a matrix. This method can be outlined

as follows:

(i) Determine the end points u and v of distance k of a pseudo-

diameter. This is done iteratively to determine a vertex which

is at a maximum distance away from a given vertex.

(ii) Partition the set of other vertices into levels L
l

,L2 , ••• ,Lk

such that adjacent vertices in the graph G are in the same or

adjacent levels and such that max, !L,! is nearly minimized.
L L

(iii) Number vertices of the graph G level by level beginning with the

end point of the pseudo-diameter of least degree and according

to the increasing degree of each node in the same level.

Solving the previous example shown in Figure (4.46) again using the GPS

method with a and h as a pseudo-diameter nodes will result in the

following partition: {a,b},{c,d} and {e,f,g,h}. The numbering is,

therefore, a=l, b=2, c=3, d=4, g=5, f=6, e=7 and h=8. This is shown

in Figure (4.51).

2 4

5

6

FIGURE 4.51: The GPS numbering

300

The associated matrix is:

*

* *

0 * *

0 * 0 *

0 0 0 * *

0 0 * 0 0 *

0 0 * * 0 0 *

0 0 0 * * * * *

This gives a semibandwidth of 4 and a profile size of 16 also.

4. The Span-ponderation-Sum (SPS) Method

This method is an iterative one developed by Akhras and Dhatt [1976).

The main idea is that an optimally ordered FE model possesses three

properties which they called sum, ponderation and span properties.

Thus the SPS method tries to respect these three criteria iteratively.

There is no proof that this method will give minimum bandwidth nor that

it will converge. However, as reported by the authors, it is tested

numerically and proved to be efficient and reliable. To explain what

is meant by span and ponderation consider the following FE model which

is optimally numbered (Figure 4.52).

3 6 9 12

5 8
2 r--------+---------r------~ 11

1 4 7 10

FIGURE 4.52: FE model optimally numbered

We form the connectivity matrix C of each node as shown in

Table 4.14. Note that the last column in this table is the number

of nodes connected to the considered node.

Node connectivity Matrix Number of Nodes

1 1,2,5,4 4

2 2,5,4,1,3,6 6

3 3,6,5,2 4

4 4,1,2,5,8,7 6

5 5,6,9,8,7,4,2,3,1 9

6 . 6,9,8,5,2,3 6

7 7,8,11,10,4,5 6

8 8,9,12,11,10,7,5,6,4 9

9 9,12,11 ,8 ,5,6 6

10 10,7,8,11 4

11 11,8,9,12,10,7 6

12 12,11,8,9 4

TABLE 4.14: The connectivity matrix of the model problem

301

Note that the common nodes in the connectivity matrix are not

duplicated. For example, for node 2, the node number 5 is considered

only once. Note also that the node number of the considered node is

included. The three terms: sum, ponderation and span are defined as

follows:

(i) Sum of node i = sum of node numbers in row i in the

connectivity matrix C. For example sum{l)=12.

(ii) Ponderation of node i = sum of node i t number of nodes

connected to node i.

302

(iii) Span of node i = the sum of the highest node number and

the lowest node number in the ith row in the connectivity

matrix.

These values are computed for the considered problem as shown in Table 4.15.

Node Number of Nodes Sum

1 4 12

2 6 21

3 4 16

4 6 27

5 9 45

6 6 33

7 6 45

8 9 72

9 6 51

10 4 36

11 6 57

12 4 40

TABLE 4.15: The SPS of the model problem

The three noticed properties are:

--

Ponderation Span

3 6

3.5 7

4 8

4.5 9

5 10

5.5 11

7.5 15

8 16

8.5 17

9 18

9.5 19

10 20

(i) The sum of nodes having the same number of nodes in the

connectivity matrix is arranged in an ascending order. For

example, the nodes which have 4 neighbours are: 1,3,10 and 12;

their sums are: 12,16,36 and 40.

(ii) The ponderation of higher numbered node is > that of lower

numbered, i.e. the elements of the ponderation vector are

arranged in increasing order.

~3

(iii) The elements of the span vector are arranged in an

increasing order.

Thus the SPS algorithm is actually a two phase one where in the first

phase the nodes are renumbered based upcn the span criterion and the

ponderation criterion, respectively. This is done iteratively until

no further decrease in bandwidth can be achieved. In the second phase

the ponderation and the sum criterion are satisfied simultaneously in

a similar iterative procedure. Usually, the first phase is re-executed

for a possible further reduction. It should be emphasized, however,

that there is no proof of the convergence of this procedure and for that

reason if at any iterative step number n we find that the bandwidth is

the same as in the (n-l),(n-2) a minimum value is assumed. Despite the

lack of proof for this method some numerical experiments have proved

its validity. However, to illustrate that these three criteria may

be valid without reaching the minimum bandwidth; the same test problem

used in the previous methods will be numbered in a non-optimal way as

shown in Figure (4.53). '

9 10 11 12

5
6 7

8

1 2 3 4

FIGURE 4.53: Test problem for the SPS method

304

The corresponding SPS data for this problem is shown in Table

4.16. Although the three criteria are satisfied in this numbering, we

are sure it is not the optimal, or even near optimal numbering.

Node Connectivity Matrix
No.of

Sum Ponderation Span
Elements

1 1,5,6,2 4 14 3.5 7

2 2,6,7,3,1,5 6 24 4 8

3 3,7,8,4,2,6 6 30 5 10

4 4,3,7,8 4 22 5.5 11

5 5,6,2,1,9,10 6 33 5.5 11

6 6,7,3,2,1,5,9,10,11 9 54 6 12

7 7,8,4,3,2,6,10,11,12 9 63 7 14

8 8,4,3,7,11,12 6 45 7.5 15

9 9,10,6,5 4 30 7.5 15

10 10,11,7,6,5,9 6 48 8 16

11 11,12,8,7,6,10 6 54 9 18

12 12,8,7,11 4 38 9.5 19

TABLE 4.16: The SPS data for the test problem

The following modifications may lead to better results for the SPS

method:

(i) We notice that the maximum semi-bandwidth is a direct function of the

difference between highest and lowest node numbers connected together.

Note also that in the first row of the C matrix, the node number 1 is

always present. OUr aim is to have c
1
max to be as close to 1 as possible.

This implies that the smaller is their sum the better row bandwidth we

obtain, i.e. it is better to have a lesser span for row number 1. on

305

the contrary, for the last row in C, we notice that node number n is

always present in this row and we are sure it is the highest node

numbered in this row. Thus our goal is to have the minimum node number

in this row to be close to n as much as possible.

This implies that the bigger their span the better row bandwidth is

obtained. So respecting the span criteria only is not enough to get

better minimum bandwidth. If the stated condition is applied, it is

very probable that a better bandwidth may be obtained. By the same

argument, we can conclude that for the lower sum of the first row and

the bigger sum for the last row better results can be obtained.

(ii) To detect that possible reduction may be obtained we notice that

there are repeated entries in the span vector (11 and 15 in our example) .

There is some sense in considering· that repeated entries may be a sign

of a non-optimal numbering. To illustrate assume that two rows in the

C matrix have the same span and assume the first row is {a
l
,a

2
, ••. ,a

r
}

with a
l

as the minimum node number and a
r

the maximum one within that

row. The second row is assumed to be, in a similar manner {b
l

,b
2

, ..• ,b
r
}.

If b
l

is assumed to be >a
l

and since the span is the same, it implies

that a >b. This implies that a-row bandwidth is larger than b-row
r r

bandwidth.

The validity of these conditions can be visualized by considering

Tables 4.15 and 4.16. The first row span and sum in the first table

which is for optimal numbering, are 6 and 12, respectively. The same

row in the other table, which is for non-optimal numbering, are 7 and

14, respectively. This is evidence that our modifications may improve

the SPS algorithm. The same is for the last row where the sum and span

in the first table are 40 and 20, respectively, while in the other table

306

they are 38 and 19, respectively. It is also noticed that no duplicate

entries exist in the span vector in the first table.

However, it should be emphasized again that this algorithm and the

proposed modifications do not have mathematical proof.

s. Hoit and Wilson Profile-Front Minimization

This is a direct method by Hoit and Wilson [1983]. The main idea

behind it is to renumber the nodes in a manner identical to the equation

solving sequ~nce used in the well-known frontal method. After re­

numbering, the equations are stored in a profile form whence a profile

or frontal solver may be used for the actual solution of the equations.

They called this method profile-front minimization (PFM). The algorithm

can be summarized in the following:

(i) Select a starting node.

(ii) Add all the nodes of the elements connected to this node to

the front.

(iii) Number all completed (in the frontal solver sense) nodes

sequentially using the next available number and remove them

from the front.

(iv) Choose the next element to add to the front. The choice is

based on a frontal sense. In other words, we pick the element

that completes most of the nodes in the front but adds the

minimum number of new nodes to the front. In case more than

one element satisfies this criteria we choose the one of least

weighted element degree [to be defined later].

(v) Repeat steps (iii) and (iv) until all the nodes are numbered.

TwO points must be discussed; the weighted element degree and the choice

of a starting node. The degree of a node is the number of its adjacent

~7

nodes. Element degree is defined to be the sum of its node degrees.

To introduce the effect of rieighbours of an element or a node a

weighted degree is introduced. The weighted node degree is the sum of

the degrees of nodes adjacent to it. The weighted degree of an element

is the sum of the weighted degrees of its nodes. It is clear that this

weighting procedure reflects the connectivity of nodes and elements on a

global basis rather than a local one. The same process can be repeated

further i.e. a weighted weighted element degree and so on. Thus if

multiple passes are made through the weighting process, the hyper­

weighting values begin to reflect the degree on a global structure level

rather than the local level as most of the current numbering algorithms.

As in most of the numbering techniques, the choice of a good

starting node is important irrespective of the numbering technique

itself. Usually the problem of finding a suitable starting node is

treated separately from the numbering problem itself. There is no

algorithm that can give the best starting node directly. Usually

multiple nodes are tried in order to have a better chance of finding

an optimum numbering. Trying all nodes is, of course, prohibitive and

will certainly take time much more than which is needed to solve the

original problem itself. In the PFM method three starting nodes are

tried: (a) the node with minimum global nodal degree. If more than one

satisfies this condition, we choose the one·whose element has the minimum

global degree. If still more than one exist, the last one found is

chosen. This node is used as the root to form a level structure or a

spanning tree L
l

• (b) The second node is chosen from the last level of

the level structure L
l

. It is chosen as the one with minimum nodal and

element global degrees. This node is chosen in a similar manner to that

308

used in the previous one. A level structure L2 is formed using this

node as a root. (c) The third nodeis chosen from the level structure

L2 in a similar manner to that used when choosing the previous two nodes

but from the highest level to contain nodes that were also in the last

level of the primary level structure L
l

. These three nodes are used as

starting nodes, the numbering is performed and the one which results

in a minimum profile is considered. If more than one, the one which

produces minimum bandwidth is considered.

To illustrate this method, the previous example is considered again.

The FE model is shown in Figure (4.54).

9 10 11 12

5
0 6 ® 7 ®

8

~ ~ ~

1 2 3 4

FIGURE 4.54: A sample FE model

Tables 4.17 and 4.18 are for the nodal and element degrees, respectively.

309

Node Adjacent Nodes Nodal Degree Weighted Nodal Degree

1 2,5,6 3 - 18

2 1,5,6,3,7 5 29

3 2,6,7,8,4 5 29

4 3,7,8 3 18

5 9,10,6,2,1 5 24

6 1,5,9,10,11,7,3,2 8 39

7 6,10,11,12,8,4,3,2 8 39

8 11,12,4,3,7 5 24

9 10,6,5 3 18

10 9,11,7,6,5 5 29

11 10,12,8,7,6 5 29

12 11,8,7 3 18

TABLE 4 17- Nodal degrees . .
Weighted

Element Number Its Nodes Element Degree Element
Degree

1 1,2,5,6 21 110

2 5,9,10,6 21 110

3 2,6,7,3 26 136

4 6,10,11,7 26 136

5 3,7,8,4 21 110

6 7,11,12,18 21 110

TABLE 4.18: Element degrees

We notice that the different nodes degrees were three: 3,5 and 8.

However, weighting nodal degrees give four different degrees: 18, 24, 29

and 39. The level structure L1 will be as shown in Figure (4.55).

~

/I~
11 7 8

1\ 1\
10 6 2 4 3

I
9 5 1

FIGURE 4.55: Level Structure Ll

~

,~, ~GJ
/\ /\

11 7 3 2

r
12 8 4

FIGURE 4.56: Spanning tree L2

1

The three starting nodes are, therefore: 12,9 and 5.

310

level 0 (root)

level 1·

level 2

level 3

level 0 (root)

level 1

level 2

level 3

It is clear that using 12 as a starting node and applying the PFM

method in this example will lead to the optimum numbering.

6. Comments on Node Numbering Techniques

Practical node numbering techniques are based on heuristics and

intuition rather than formal methods. This is due to the fact that

techniques which are guaranteed to give the absolute minimum for NP­

complete problems are prohibitive in terms of computer time and the

311

time spent to get such solutions is certainly much more than any savings

which might be gained. Nevertheless, there are some general points

which should be considered in such methods and can be summarized in the

following:

(i) Separation between the two problems of node resequencing and

selection of the starting node as most of the current techniques

do, is not, in my opinion, the most suitable approach. The reason

for this separation may be due to the complexity of the problem

and this approach breakdown the renumbering problem into two

"independent" problems. However, the question of independency is

still an open one.

(ii) Most of the current techniques are based on local minimization.

Except the method of PFM which tries to take the global nature of

the problem into account by recursive weighting of nodes and

elements.

(iii) The criteria of what is the best renumbering technique is not

unique. Although most of the methods consider the minimization of

the width of the band or profile as a criteria, other criteria

should be considered as well, like minimization of the fill-in's

or the minimization of fast memory requirements or the minimization

of the r/o operations with backing storage devices. Since the nodes

are numbered prior to solving a set of FE equations by a Gaussian

312

elimination or a similar technique it is wise to consider the

solution method when designing a numbering algorithm. It is also

important to consider the nature of the problem to be solved.

Time-dependent and non-linear problems may impose requirements

that may differ from linear analysis. As important is the topology

of the domain. For example, it is known that the Cuthill-McKee

(CM) algorithm is not suitable for tree structures [Everstine and

Cuthill, 1983].

(iv) The problem can, therefore, be considered as a decision-making one

and it is a good idea to include multiple methods incorporated in

FE programs and using a starting module to determine which method

is most suitable for the considered problem.

(v) In some simple cases it is usually easy to number the nodes optimally

by inspection. For example, a rectangular region should be numbered

along the shortest side while a connected region or a circular

should be numbered alternately from right and left of the chosen

starting node.

4.9.4.2 Algorithms for Minimization of Frontwidth

It seems that not many algorithms have been developed to minimize

the frontwidth in a frontal solver for FE analysis. This is perhaps due

to the fact that the frontal algorithm is basically an "out-of-core"

technique which does not require a large fast memory as compared to

banded algorithms for example. The problem of determining the assembly

sequence of elements in a frontal solution which result in minimum

frontwidth during the solution process is very difficult and there is

no algorithm known which guarantees absolute minimum frontwidth. It is

313

possible to classify the techniques for frontal minimization into two

major approaches: (i) reducing frontwidth through node renumbering and

(ii) reducing frontwidth through direct element renumbering. Three

different methods may be considered as the most popular techniques for

frontwidth minimization and represent different approaches. The first

one is that by Bykat [1977] who used a technique very similar to the

CUthill-Mckee method for reducing bandwidth of symmetric sparse matrices

which have been explained earlier. This approach seems to be logical in

a sense that at step i during the assembly process we choose the element

which has a greater number of neighbouring elements already assembled,

thus minimizing the increase in frontwidth. As in the CM method, the

starting element is chosen as the one with the smallest number of

neighbours.

Razzaque [1980] develops a method based on node renumbering to

reduce the bandwidth then the elements are resequenced according to their

least numbered node in an ascending order. To illustrate consider the

example shown in Figure (4.57a) which represents a FE model which is

numbered arbitrarily. Figure (4.57b) represents the same mesh after

11 12 13 14 15

10
0 s 8 8 0 7 8 6

0 0 0 8
1 2 3 4 5

FIGURE 4.57a: Original numbering

314

3 6 9 12 15

2

0)
5 8 8 0 11

0)
14

0 8 0 0
1 4 7 10 13

FIGURE 4.57b: Minimum bandwidth numbering

doing bandwidth minimization using CM algorithm (say). Note that element

numbers are unchanged while node numbers are now changed. Now we re­

number the elements according to the least numbered "new" nodes. To do

so it is convenient to establish Table 4.19. The new element numbers

are shown in the same table. The final element numbering is shown in

Element Number Least Numbered Node New Element Number

1 1 1

2 4 3

3 7 5

4 10 7

5 2 2

6 5 4

7 8 6

8 11 8

TABLE 4.19: Element renumbering

Figure 4.57c.

11

Note that original node numbers are retained.

12 13 14 15

10
() 9 8 8 8 7 8

6

8 (] 0 0)
1 2 3 4 5

FIGURE 4.57c: Final element numbering

315

The method developed by Pina [1981] employs the concept of node

degree in order to choose the next elements to be assembled. In this

method the nodes in the front are scanned and those of minimum current

degree are considered. If more than one node is found we use the

current weighted degree of nodes to choose the one of minimum weighted

degree. If still more than one exist, the last one is arbitrarily

chosen. The elements to be assembled are all elements which have this

node amongst their nodes. The starting node is selected on the same

basis, i.e. the one with smallest degree. If more than one exists the

one with minimum weighted degree is chosen.

4.10 POST-PROCESSORS FOR FE PROGRAMS

4.10.1 Introduction

316

Three major problems normally face the sophisticated user of the

FEM. These are: the availability of an adequate computer system

(hardware and software), an efficient means to prepare the input data

and feed it into the computer and finally, an efficient way to extract

the useful information out of the numerous computer outputs. For the

first point, normally, the user needs a mainframe or a super mini­

computer to be able to run realistic FE problems, together with the

necessary software. It should be pointed out that only very few FE

systems are available on small mini- or micro-computers. The feeding

of input data into the computer is another problem. To solve this

problem, preprocessors are used as explained earlier. The outputs of

a FE system are normally huge. It is not uncommon to get thousands

of printed lines as an output of a FE analysis. In practice, the

'analyst or the engineer, skips hundreds of values of the co~puter

outputs and concentrates on only a relatively few figures that are of

interest to him and govern his design. This is a waste of computer

resources, waste of paper and waste of the engineer's time. Moreover,

usually the FE models satisfy some of the physical problem quantities

while the other are not satisfied. To exemplify, usually the

displacement field is satisfied at nodes only while the resulting stress

field is normally not satisfied. Several methods like stress averaging

are proposed to solve this problem. The above mentioned problems were

the motivation behind the evolution of post-processors.

317

4.10.2 The Functions of Post-Processors

In the literature, the term post-processor is used as a synonym

to a plotting or graphical package. This situation has been explained

earlier for preprocessors. It is the author's opinion that the post­

processor definition should be extended to allow for more logical

functions. The following list is proposed for an ideal post-processor

for FE programs [Sharaf Eldin, 1983cl:

(i) Plotting the FE model as described by the user or as a result of

a preprocessor. This function could also be a part of the pre­

processor but, in most cases it is incorporated into the post­

processor. This plotting is useful for the checking of the input

specially in complicated FE models. One mistake in input data

could result in the solution to a completely different problem.

Such mistakes could be easily detected by eye if the FE model is

plotted. This plotting is also useful for FE model editing and

for documentation purposes.

(ii) Making simple refinement of the computed data, if possible. As

explained earlier, the existing FE models usually satisfy only

some criterion of the physical system. The other criteria are

only approximately satisfied. Although, in practice, in many cases

this does not represent a serious problem, it becomes sometimes

very critical.

(iii) Printing of the relevant results only and as required by the user.

It does not make sense to print the displacements at each node

in the region. The nodes, except in a few positions, have no

physical meaning. A user of a groundwater analysis program may

be interested to know the head-drop rather than the actual head

318

and at a relatively few nodes. He may be interested in knowing

the flow among a specified boundary and its direction. So, one

of the most important functions of a post-processor is to print

results only at selected points (and not necessarily the nodal

points) •

(iv) Computing of other relevant quantities as required by the user.

In a structural mechanics problem, the basic unknown solved by a

FE system is normally the displacements. Usually the more

important quantity is the stresses. The computation of other

quantities based on the obtained solution should, therefore, be

a post-processor function.

(v) Plotting of some of the results. Usually a graphical represent­

ation makes the results easier to be understood and interpreted.

Plotting can be done on a graphics terminal or plotter. In case

these facilities are not available, printer plotting can be used

instead.

In the following sections the concepts and facilities required to fu1fill

each of these functions will be discussed.

4.10.3 Stress Smoothing Methods

It seems that this point has not been widely considered in most of

the well-known FE systems. In fact, none of the 36 well known FE

programs presented by Noor [1981] has a postprocessor that tries to

smooth the resulting stress field. It is known that, the stress field

a is usually discontinuous across interelementboundaries in an FE

analysis based on the displacement method. Recall the fundamental FE

equation:

319

Kd = f , (4.66)

where K is the structure stiffness matrix, d is the unknown displacement

vector and f the vector of nodal loads. The computed displacements d

are then used to compute the stress vector cr. In order to have a

continuous stress field, many methods have been proposed. The oldest

of these methods was based on simple averaging technique [Wilson, 1963).

The most successful method, and yet easiest to implement and of a

general nature, seems to be that of Loubignac and is known as Loubignac

iterative procedure [Loubignac, et al, 1977 and Cook, 1982). This method

can be summarized as follows:

(i) The average nodal stresses are computed by simple averaging:

(0) 1
°i = m (4.67)

where m is the number of elements sharing node i, cr~O) is the average
l.

e nodal stresses and cri are the stress values computed from the solved

nodal displacement by FEM. cr~ is related to the nodal displacements de
l.

by:

(4.68)

where D is the matrix of elastic properties in the constitutive law

and B is the transformation matrix between strains and nodal displacements.

(ii) A continuous stress field can be obtained within an element by:

(4.69)

where -(0) is the continuous stress field in element j and N are the cr,
J

usual shape functions used in the displacement analysis.

(iii) The nodal forces q corresponding to the continuous stress field

are: (4.70)

320

(iv) If the q(O) is equal to f, the external loads, then the computed

stresses are accepted and the iteration is stopped, otherwise, the load

. mb 1 (0) f' d . . l' h 1 i 1 i d 1 a ance q - 1S use to 1terat1ve y 1mprove t e so ut on as exp a ne

in the following steps.

(v) Denote d(O) to be:

d(O) = K-lf

i.e. the displacement vector without any corrections.

(4.71)

(vi)
(0)

The difference between q and f; i.e. the load imbalance is

(0)
denoted by ~q , i.e.,

~q(O) = f_q(O) (4.72)

(vii)
(1)

Compute a correction displacement vector ~d that corresponds

to this load imbalance:

M(l) = k -l{~q(O)} (4.73)

or M (1) = k -1 {f-q (O)}

= dO_k-lq (0)

Since d (1) = d(Ol+M(l)

then: d (1) = 2d (0) -k -lq (0)

= 2k -If_k -lq (0)

d (1) = k-l {2f_q(0)} (4.74)

(viii) Similarly (2) (3)
d ,d , ... , etc. can be computed. For example,

d (2) will be:
d(2) = k-l {3f-q(0)-q(1)} (4.75)

(ix) If the load difference in two consecutive steps is sufficiently

small the computed values for displacements, stresses and loads are

retained and the iterations are stopped.

It should be noted that k is formed and reduced only once while

321

new load vectors are repeatedly formed and operated upon which makes

this method computationally attractive.

Although this method was developed for elastostatic problems, the

main idea can be applied to other similar problems. It is a good idea

also to incorporate such a module in any of the.well-known post­

processors, so that, the computed stress field will retain continuity

in cases it has to be so.

4.10.4 Hardware for Interactive Graphical Postorocessors

There are many different devices which can be used for graphical

postprocessors. They differ in their complexity and cost. In its

simplest form where no special hardware is available the use of a

printer for alphanumeric "plotting" can be used to represent the FE

model or for contour plotting. However, this type of "plotting" is

useful only for fast checking of the FE model at low cost. Many problems

are encountered in this type of plotting. First, the scaling of most

printers is not the same in horizontal and vertical directions. Usually

6 lines per inch are printed in the vertical direction while 10

characters per inch could be printed in the horizontal direction which

should be considered when scaling the x-y values. A second problem is

the element sides. Since continuous lines are not possible on printers,

the resulting drawing usually suffers distortions in boundaries which

are not parallel to the x or y directions. If element numbers are to

be printed inside centroids of elements, the resulting drawing will

usually be too crowded. An example of an alphanumeric FE mesh plotting

is that by Felippa [1972]. A similar routine is adopted by the TWODEPEP

package [IMSL, 1983]. To have better plotting capabilities in FE post

322

processors, we need plotters, graphics terminal or workstations. These

are briefly reviewed in the following subsections.

4.10.4.1 Graphics Terminals

It is a fact that the computer graphics terminals in use today

use the cathode ray tube - CRT - as their displaying device. The main

idea is that a heated cathode emits a high-speed electron beam into a

phosphor-coated glass screen. The electrons energize the phosphor

coating, causing it to glow at the points where the beam makes contact.

So, by changing the beam contact points, its intensity and focusing,

it is possible to generate pictures on the CRT screen. Two basic

techniques are used to generate these pictures. They are known as (i)

stroke writing or vector writing, and (ii) raster scan. In the vector

writing technique the electron beam is operated much like a pencil to

create a line segment on the CRT screen. The whole picture can be

constructed out of a sufficient sequence of these straight line segments.

In the raster scan technique, on the other hand, the screen is divided

into a large number of discrete phosphor picture. elements (pixels or

pels). The matrix of pixels constitutes the raster. The intensity

of a CRT screen usually ranges from the low resolution of 256x240 to

the high resolution screens of 1024 x2048 pixels. A refresh rate of

30 to 60 per second is usually used in these terminals. Three types

of graphics terminals seem to be the most widely used: (l) Directed­

beam refresh, (2) Direct-view storage tube (DV5T) and (3) Raster scan

(digital TV). A brief discussion of these types follows [Groover and

Zimmers,1983].

(l) Directed-Beam Refresh: These utilize the stroke-writing approach

323

to generate the image on the CRT screen. The image is regenerated

many times per second in order to avoid noticeable flicker of the

image. Because the image is being continually refreshed, selective

erasure and alteration of the image is easily done. It is also possible

to provide animation of the image with a refresh tube. This technology

is considered as the oldest of the modern graphics terminals. They are

referred to as vector refresh or stroke-writing refresh systems.

(2) Direct-View Storage Tube (DVST): In these displays an electron

flood gun is directed at the phosphor coated screen which keeps the

phosphor elements illuminated once they have been energized by the

stroke-writing electron beam. The resulting image, is therefore,

flicker free without the need to continuously rewrite the image. The

main disadvantages of this technology is that erasing particular parts

of the image is not possible unless the whole picture is regenerated.

It also lacks animation, colour and the ability to use a light pen as

a data entry device. The main advantage of this technology is the

low price compared to other technologies and the ability of displaying

large amounts of data without any flickering.

(3) Raster Scan Terminals: due to the recent developments in memory

technology the raster scan terminals become a reality. To illustrate,

consider a low resolution raster scan terminal of 256x256 pixels. This

requires 64K bits for the memory if each pixel is either on or off i.e.

2-state pixels or black and white display. This memory, known as frame

buffer or refresh buffer also, would be I megabits for a higher

resolution screen of I024xl024 pixels. If colour is required then

more than I bit/pixel would be needed to store the grey level of each

pixel. Usually 8-24 bits are required to have continuous grey level in

coloured raster scan displays.

324

Table 4.20 shows the main characteristics of these three types of

graphics terminal techniques.

Display Type

Attribute Directed-beam refresh DVST Raster scan

Method of Vector writing Vector Raster
generation writing scan

Picture Excellent Excellent Good to
continuity excellent

according to
the number
of pixels

Flickering May occur for None None
high data
content

Grey levels Many Binary Many

Colour Yes No Yes
capability

Animation Yes No Yes
capability

-
Selective Yes No Yes
Erase

TABLE 4.20: Characteristics of graphical displays

4.10.4.2 Input Devices for Interactive Graphical Postprocessors

Following our definition of the functions of a FE postprocessor,

input devices are most required at the preparation stage of a FE model.

As explained earlier, in order to construct a FE model and prepare

input data sets for a FE processor, interactive techniques may be used.

On the other hand, it is often desirable to be able to edit produced

plots of a postprocessor before final output. Input devices are thus

provided for the convenient communication between the user and the system.

325

In addition to the classical keyboard which exists with almost all

types of interactive graphical terminals, other input devices are more

convenient for the user-computer interaction in graphics. Keyboards

are more convenient for commands and entering alphanumeric data, while

picture handling is better done using other devices. Two main types

of interactive input devices are in use: (1) cursor control devices

and (2) digitizers.

(1) Cursor control devices (CCD): these devices are used to control the

location of the cursor on the CRT. A typical use of CCD is to input a

FE model interactively using a light pen, for instance. A more

advanced application is to select an element from a menu of elements

already displayed on the screen or printed on an electronic tablet.

CCD include: light pen, joysticks, tracker ball (mouse), thumbwheels,

electronic tablet/pen.

(2) Digitizers: these are large, smooth boards with an electronic

tracking device. In fact digitizer use has been explained earlier and

no need to be repeated here.

4.10.4.3 Output Devices for Interactive Graphical Postprocessors

Since the plots displayed on the CRT are "soft" plots it is

usually desirable to have "hard" copy plots. This can be achieved by

the use of pen plotters, hard-copy units, electrostatic plotters and

computer output microfilm (COM) units among the most well-known output

devices for graphics.

(1) Pen plotters: There are various types of pen plotters that differ

in accuracy, repeatability, tolerance, pen thickness, pen types and

precision. Two major types of pen plotters are the drum type plotters

326

and the x-y flat-bed plotters. In general, a plot produced by pen

plotter is better than that displayed on the CRT which is limited by

resolution and physical size. In the drum plotters, a round drum to

which the paper is attached is rotated while the pen is sliding along

a slide part. The relative motion between pen and paper is achieved

by coordinating the rotation of the drum with the motion of the slide.

Drum plotters are faster and virtually an unlimited length of paper

ban be used. In addition to that, they are less expensive compared to

flat bed plotters. Flat-bed plotters use a flat drawing surface to

which the drawing paper is attached. Parallel tracks are located on

two sides of the flat surface. A bridge is driven along these tracks

to provide the x-direction motion. Attached to the bridge is another

track, on which rides a writing mechanism. Movement of the writing

mechanism relative to the bridge produces the y-direction motion.

These plotters are more expensive but more accurate compared to drum

plotters. They are, however, limited in paper size in both directions:

length and width.

(2) Hard-copy units: these machines are used to have an instant screen­

image on paper. Sometimes it is called snap-shot of the screen. Most

hard-copy units are dry silver copiers that use light-sensitive paper

exposed through a narrow CRT window inside the copier. The main

advantage of these machines are low price and speed. It is a matter

of seconds to get a snap-shot of the graphical CRT. However, the

produced plots are of poorer quality compared to those of pen plotters.

(3) Electrostatic plotters: they represent a compromise between hard­

copy units and pen plotters. They are faster than pen plotters but

slower than hard-copy units. They are also of less accuracy compared to

327

pen plotters but little better than hard-copy devices. A virtually

unlimited length of paper can be used in electrostatic plotters as in

the case of drum plotters. A limitation of the electrostatic plotters

is that the data must be in the raster format in order to be readily

converted to hard-copy using the electrostatic method. If the data is

not in raster format, a type conversion is required which is called

banded vector to raster converter (BVRC). This is a combination of

hardware and software. Electrostatic copier consists of a series of

wire sty1ii mounted on a bar which spans the width of the change­

sensitive paper. The sty1ii have a density which differs according to

the type of the copier. It can go up to 200 per inch. The paper is

gradually moved past the bar and certain sty1ii are activated to place

dots on the paper. The plot is, therefore, generated by coordinating

the generation of the dots with the paper movement (advance).

(4) Computer-output-microfi1m (COM) units: these units are used to

produce the plots on microfilm rather than as a full-size drawing on

paper. They are expensive and usually used in production-type CAD

(Computer-Aided Design) systems.

4.10.5 Software for Interactive Graphical Postprocessors

In the previous part the hardware elements of interactive computer

graphical postprocessors have been presented. In this part the software

elements of these systems are discussed. The prime function of graphics

software is to transfer data between the applications program and the

display hardware. The FE processor produces, for example, the stress

values at various nodes within the FE model. An application program

may be used to produce the contour lines of constant stress. This

328

application program is usually designed to output data by issuing

commands or by creating some sort of data structures that are used

by the graphics software for the physical generation of the plots on

the hardware devices. The applications-dependent part of the graphics

software accepts commands from the applications program, or scans a

data structure produced by the applications program and generates a

description in two-dimensional space. Thus, in fact, there are three

elements required to produce a graphical plot as a postprocessing

function of a FE processor: (i) the graphics software, (ii) the

applications program and (iii) the hardware for graphics. When designing

a graphical software there are some general rules that should be

considered [Newrnan and Sproull, 1982]:

1. Simplicity: The graphics software should be easy to use.

2. Consistency: The package should be operated in a consistant and

predictable way.

3. Completeness: There should be no inconvenient omissions in the set

of g~aphics functions.

4. Robustness: The graphics system should be tolerant of minor

instances of misuse by the user.

5. Performance: Graphics programs should be efficient and the speed

of response should be as fast as possible within the limitations

imposed by hardware.

6. Economy: Graphics programs should not be so large or expensive as

to make their use prohibitive.

In the following sUbsections a brief discussion of some of the most

important problems in computer graphics software is given.

329

4.10.5.1 Representation of Graphical Entities

There are two approaches in representing graphical entities in

graphics software. These are known as (1) display procedures and (2)

graphical structures. In the display procedures approach, the application

program generates the plot by issuing specific display commands. A full

graph is generated by issuing a nested display procedure. To exemplify,

assume that a FE postprocessor has to plot the FE model itself. In the

display pl:"ocedures approach it is then possible to define the various

elements that have been used in the modelling. For example, it is

possible to define a parabolic isoparametric element, a brick element

or a shell element. The definition of any of these elements is actually

Some calls to locate points and connecting lines. Using these entities

it is possible to build higher order entities using the original

primitives in addition to the previously defined elements and so on.

It is even possible to define complete substructures that can be used

to produce a new structure. The main drawback of this approach is that

it requires either language extensions or a special callable software

library of graphical procedures. This in fact will not give clear line

cuts between the application program and the graphical software, in

other words, they will be intermixed. The other alternative of handling

graphical entities is to represent them by data structures rather than

procedures.. In this case, the data structure is built using the

facilities provided by the programming language. For example, a linked

list can be used to represent graphical entities in a FE postprocessor.

The actual display or plotting occurs by calling a system-display

routine which scans the data structure. It is a common practice to store

the graphical structures as display files. The main difficulty in this

330

approach is that the data structure used for graphics is limited by

the available data structures supported by the host programming

language. Since most FE postprocessors are programmed in Fortran

which lacks the variety of data structures it implies that the use of

display procedures is usually more appropriate in this case. However,

if the Fortran extensions proposed earlier this chapter are adopted it

is probable that using graphical structures may be much easier.

4.10.5.2 Programming Languages for Interactive Computer Graphics

There are three approaches used for programming languages in

interactive computer graphics: (1) the use of a standard high-level

language and a plotting library, (2) the use of a totally new programming

language for graphics, and (3) the use of language extensions to a high­

level programming language. In the first approach, the application

program is written in a standard high-level language like Fortran,

Pascal or Algol. The program calls a series of subroutines and functions

using the standard calling procedures supported by the programming

language in order to do the actual graphical outputs. This approach

seems to be the one most widely used. This may be due to its

simplicity and there is no need to modify the host language compiler.

Certain graphical libraries are built which are callable from Fortran

. and Basic programs. These libraries are referred to as Host Computer

Basic Software (HCBS). They are usually machine dependent. The second

approach, building a totally new programming language, is rarely used.

It can only be used to do the most primitive functions in graphics and

is usually machine-dependent. A compromise between these two approaches

is the use of language extensions. In this case the compiler of the

331

host language must be modified to take care of the graphics extensions.

An example of the first type is the plot 21 package which is a library

of Fortran subroutines used to drive Hewlett-Packard plotters. An

example of the second approach is that by Kulsrud [1968] who devised a

general purpose graphic language. An example of the third approach is

that by Hurwitz et al [1967] who described graphical extensions to

Fortran. They called it GRAF. In addition to these approaches there

are several language-independent graphics packages that can be used

for plotting of pre-prepared values in flat files. Although these

packages do not possess the greater flexibility of the other approaches,

they proved to be useful for many direct applications. An example of

these packages is the GINO-F package developed at the Computer Design

Centre at Cambridge [1976]. The main functions that should be supported

by a graphics package are:

(1) Generation of graphic elements: dots, lines, etc.

(2) Transformations: to reposition a graphic element in different

locations and orientations.

(3) Display control and windowing functions: to enable the user of

zooming parts of the FE model, removing hidden lines, etc.

(4) Segmenting functions: to selectively replace, delete or modify

portions of the model only.

(5) User input functions: to enable the user defining other parameters

through input devices like giving the material properties in

structural mechanics applications or issuing commands to the

package itself.

It is possible to set an analogy between the hierarchy of programming

languages and graphics software as shown in Table 4.21.

332

Programming Language Graphics Software

Machine language Graphics commands in hexdecima1 codes

Assembly language Mnemonic graphics commands

High level languages Ca11ab1e graphics libraries

Fourth generation Graphics packages
languages

TABLE 4.21: Analogy between programming languages and graphics software

4.10.5.3 Geometry Modelling

Geometry modelling is used to build a FE model of a problem

interactively utilizing graphics terminal capabilities. It is concerned

with the computer-compatible mathematical description of the geometry

of the domain to be modelled. This mathematical description allows the

displaying and the editing of the model on a graphics terminal easily.

Typically, there are three levels of commands used in geometry modelling.

The first level allows the creation of the basic elements e.g. points,

lines and circles. The second one is used to handle these elements

using standard utility operations like scaling or transformations in

general. The third level is used to build the total model from the

basic and the transformed elements. The wire frames method is usually

used to represent the model. In this method the model is displayed

and plotted by connecting lines. If the original model is a two-

dimensional one the resulting wire frame model will be two-dimensional

too. On the other hand three-dimensional geometries are represented by

3D wire frames. However, for complicated shapes wire frame models may

not be adequate as such. This is mainly due to the excessive line

interconnections. To enhance this,hidden lines may be removed. A more

333

recent and advanced technique is to use solid modelling to represent

the object to be modelled.

Geometry modelling can be enhanced utilizing multi-coloured

images. For example, a FE postprocessor can display the original

structure in a colour superimposed by the deformed shape in another

colour. If the boundary conditions of the problem are not the same

then it is possible to display each type in a different colour.

Different element types can also be displayed in different colours for

ease of visualization. Colour graphics displays allow, no doubt, more

information to be clearly given to the user. In a typical colour CRT

three electron beams and a triad of coloured dots on the phosphor

screen are used to provide the basic three colours: blue, green and

red. By combining these three colours at different intensity levels

a variety of colours can be obtained.

Another feature that can enhance FE postprocessing is computer

animation. This is particularly useful in problems like dynamical

. analysis of structures, linkage mechanisms and many mechanical systems.

A major requirement for computer animation is that redrawing must be

done fast enough. Usually a workstation powered by local CPU is used

in order to do most of the processing locally to relieve the host

processor from this overhead.

4.10.5.4 Removal of Hidden Surfaces

As explained earlier, geometry modelling can be greatly enhanced

if hidden parts are removed. Removal of hidden lines in wire frame

models and of hidden surfaces in solid ones is one of the most difficult

and time consuming tasks in graphical postprocessors and in computer

334

graphics in general. Many algorithms have been designed to do this

task. They differ in complexity, speed and success. However, they

share a Common characteristic. They all use some sort of geometric

sorting to distinguish visible parts from hidden ones. By geometric

sorting is meant locating objects that lie near to the viewer and those

that lie far away. The former will be visible and should be kept while

the latter will be hidden and should be removed. There are two approaches

for hidden surface elimination: object space oriented and image space

oriented. In the object space oriented algorithms, concern is with

the geometrical relationships amongst the objects in the model in order

to determine which parts are to be removed. On the other hand, the

image space oriented algorithms concentrate on the final image and

determine which pixels will be visible. While object oriented

algorithms are primarily used for hidden line removal, image space

oriented ones are for hidden surface removal. The main difficulty

with image space oriented algorithms is to handle all the pixels in

the screen which might be as big as 2,000,000 in high resolution

terminals. A survey of some of these algorithms can be found in

[Sutherland et aI, 19741. Here two algorithms are presented one for

hidden surface removal and the other for hidden line removal.

(i) The depth-buffer algorithm:

This is the simplest one among image space oriented algorithms for

the removal of hidden surfaces. It can be considered as an extension

to the normal frame buffer of an image where depth is considered and

hence the name depth-buffer. The main idea is to keep a record of the

depth of the object within the pixel that lies closest to the viewer.

The intensity of each pixel is also determined to be used when displaying

335

the object. This algorithm can be summarised as follows [Newman and

sproull, 1982]:

(1) Set data structures: Int and Depth arrays each is array of nxm

elements where n and m are the screen dimensions in pixels. For

example a 2048xl024 pixels CRT will require the two arrays to be set

each of that size.

(2) For every pixel on the screen (x,y) the elements: Depth (x,y) is

set to land Int (x,y) is set to the background value.

(3) For each polygon in the scene, find all pixels (x,y) that lie

within the boundaries of the polygon when projected onto the screen.

(4) For each of these pixels do.

(5) Calculate the depth z of the polygon at (x,y).

(6) If z< Depth (x,y); this polygon is closer to the viewer than others

already recorded for this pixel. In this case, set Depth (x,y) to

z and Int (x,y) to a value corresponding to the polygon's shading.

If z > Depth (x,y), the polygon already recorded at (x,y) lies closer

to the viewer than does this new polygon, and no action is taken.

(7) Repeat steps3 through 6 for all polygons in the scene. The solution

is in the Int array.

The main drawback of this algorithm is the great amount of storage

required to hold tlle two arrays "Depth" and "Int". To reduce this

excessive amount of memory, image segmentation may be used which is more

or less a substructuring technique. In this case, the screen can be

divided into smaller windows and each one is processed in sequence.

However, the processing time will be increased since each polygon

will be processed several times. Despite that, coherence of neighbouring

pixels and scan lines can be utilized to greatly speed up the processing.

336

Examples of algorithms which utilize such a property are: the scan-line

coherence [Watkins, 1970] and area-coherence algorithm [Warnock, 1969].

(ii) Janssen's hidden line algorithm:

This simple and efficient hidden line removal algorithm was

developed by Janssen [1983]. Its main advantages are the minimal computer

storage required and being easily incorporated in general FE graphical

postprocessors. The basic idea is to compare each unique line to be

plotted against potential planar surfaces which may hide all or a

portion of the line. Each planar element is decomposed into triangles.

Triangular area coordinates are then used to determine the intersection

point of the line and the triangle. Using area coordinates, no angle

determination or trigonometric functions evaluation is required. This

results in speed of execution. The algorithm can be summarized as

follows:

(1) Preliminary operations:

Transform all nodes to be plotted in the FE model from the (x,y,z)

cartesian coordinate system to the plotter coordinate system (R,S,T)

where the picture plane is the (S,T) plane and the viewpoint is on the

positive R-axis. Depending on the form of this transformation a

perspective or orthographic view can be obtained. These two coordinate

systems are shown in Figure (4.58).

(2) Loop on each line in the mathematical model.

(3) If the line is l to the view plane goto (2) directly to consider

the next line.

(4) Loop on each polygon in the mathematical model.

(5) If the polygon~ the view plane goto (4) directly to consider the

next polygon.

337

z

~~---+------------~y

view point

x

FIGURE 4.58: Cartesian and plotter coordinates

(6) If the line is totally in front of the polygon or totally in one

side of the polygon (above, below, right or left) goto (4).

(7) The line is interesecting the polygon. If the polygon is quad­

rilateral, it is divided to two triangles and for each one the hidden

portion of the line is determined.

(8) If the line is totally covered goto (2) else goto (4).

(9) After all polygons are considered, plot the visible portion of the

line and goto (2).

4.10.6 Design of User Interface in Graphical postprocessors

Success of FE graphical postprocessors is highly dependent on the

user interface. Software acceptability is, in fact, a function of its

338

user interface. Bad user interface not only makes software operation

difficult, but also may lead to inefficient, erroneous and unreliable

results. Moreover, user training becomes more difficult in case of

bad user interface. It is, therefore, very important to pay careful

attention to the design of interactive user interfaces.

It is possible to divide the user interface into four major

components [Newman and Sproull, 1982]:

(i) The user's model;

(ii) The command language;

(iii) The information display; and

(iv) The feedback.

In what follows a short discussion of each of these components is given.

4.10.6.1 The User's Model

In order to build a good user interface it is very important to

have a conceptual understanding of the software and to convey this

understanding to the user. Very short notices to the user, a thing

which is frequently noticed in bad user interfaces, tend to discourage

the user from developing any understanding of the software he is using.

In designing the user's model it is important to consider:

(i) The user's model is a mental model and acts as a framework for

the development of strategies for operating the software;

(ii) The user's model should employ familiar concepts to the user.

For example, for a structural engineer concepts like: beam,

column, slab, ••• etc. are among his daily "language". The model

should use these concepts in order to be more intuitive and

easier to learn and use.

339

(iii) There are some constraints imposed by the available hardware and

software that must be taken into consideration.

It is customary to represent a user's model as a set of objects

and a set of actions which the user can apply to the objects. Each

object is an item of information over which the user has some control.

For example, a set of objects can be an element, node or support in a

structural FE postprocessor. A set of actions can be: delete, move,

copy or rotate. Objects can be classified into two classes: those

which are intrinsic to the application and those whose purpose is to

assist in the control of the program.

4.10.6.2 The Command Language

In contrast to batch-oriented command languages, graphical

interaction is much complicated. It involves the use of 'different

devices, many functions must be supported and the objects are generally

a mixture of alphanumeric and graphical data. A good command language

should have a clear syntax and semantics which reflect the user's model.

The key issues which must be considered in designing a command language

for graphical postprocessors are:

(i) Command modes: It is highly desirable to have one command mode

only. If this is not possible, then keeping these modes to the

absolute minimum should be tried. To, exemplify, it is customary

to find in text editors two modes: - insert mode and edit mode.

It is also possible to have the same command abbreviation with

more than one meaning according to the mode into which it was

issued.

(ii) Selection sequence: Command operands must be specified either

340

before or after the specification of the command. In each case,

the resulting sequence should not be ambiguous.

(iii) Command abort mechanism: Some commands may be containing other

commands e.g. macro commands contain several commands. If for

some reason the macro-command was aborted, then a correct and

clear mechanism must be available to handle this action and

provide the user with clear information about the current status

of the program in this situation.

(iv) Error handling: The command language must handle erroneous data

or meaningless commands supplied by the user. The user must be

informed if such a situation occurs and clear error messages with

possible correction actions should be displayed.

The design and structure of the command language depends on the

hardware to be used in the user dialogue. For example, a keyboard-based

dialogue will normally be done through the use of short alphanumeric

commands typed on the keyboard. It is usually started by a computer

prompt to accept the user command, validate it and then do the required

actions accordingly. An example of this approach may be the program

development system - PDS by the author [Sharaf Eldin, 1985b]. For

simple graphical interaction it is possible to use the function keys

which are usually accessed and can be modified by the user. For more

sophisticated operations menu-driven command languages can be used.

4.10.6.3 Information Display

The main advantage of using graphics terminals are their abilities

in displaying information graphically on the CRT. The power of. the

graphical display is not only in displaying the results on the screen

341

but also in its flexibility and speed. Many facilities must be

supported in order to have flexible information display. Among these

are the primitive parameter selection like: line type, colour,

position of text, font type for alphanumeric texts, ••• etc. More

advanced operations involved in information display may be zooming and

pan. A careful layout of the CRT which can be controlled by the user

is imperative in order to have a successful display of information.

4.10.6.4 Feedback

The purpose of feedback is to supplement the response provided by

information display so as to permit more effective interaction. It is

possible to classify the feedback to three components or types:

(i) Feedback received from the command interpreter. This will inform

the user whether his command has been accepted or not. If it is

accepted, then it should give the user an indication about the

execution progress or any error conditions that might occur.

Although printed text messages on the screen are the standard

feedback received from the command interpreter, it can be enhanced

by audio effects (beeps) or cursor blinking at the erroneous place

or both.

(ii) Feedback from the application database, principally for selection

feedback. This usually is not easy to implement. Moreover, it

may take a relatively long time in order to be done. For example

if the user selects a particular element and ordered the system,

by command language commands, to place it at a particular place,

it may take some time before being fed back by the new image on

the screen.

342

(iii) Feedback from the system which is cursor feedback or character

echoing. This is very useful and very easy to implement.

Echoing the commands, in particular critical commands, for user

verification is very effective in perfecting user interface.

To exemplify, if a user starts modifying a FE model on the screen

and then he issued a quit command, then a good feedback is to

repeat the same command and a confirmation should be requested

from the user. Modifying the cursor position must have immediate

feedback with the cursor moved to the new location.

4.10.7 Examples of FE Postprocessors

There are many types of FE postprocessors. They are primarily

graphical postprocessors and the vast majority of them are for structural

analysis and mechanics applications. They differ in their hardware/

software requirements. Most of them are based on either mainframe or

super mini-computers although some new programs are available on micro­

computers. In what follows some of these programs are briefly presented.

They are chosen to represent a mainframe, mini-computer and micro­

computer implementation of FE postprocessors.

(i) Kaldjian [1977], developed MSAPLOT which is a postprocessor for the

MSAP FE processor which has been presented before. It is a graphical

postprocessor that can be used to display the initial-FE model, view

the deformed structure and producing ink drawings of both on a plotter.

It is a stand-alone program that utilizes the same inputs as MSAP itself.

The outputs of MSAP are passed to MSAPLOT to plot the deformed shape.

MSAPLOT is implemented on a mainframe computer and requires graphic

display terminals. It utilizes two software plotting libraries developed

at Michigan University in USA. The screen is divided into two display

343

regions. Region 1 is used as a reference picture region where the

first display is drawn. Region 2 is the main display area where the

user can blow-up part of the structure or rotate the structure to

obtain a different view with region 1 coordinate axes as reference.

After display of the initial FE model, commands can be issued to allow

the zooming of particular regions of the structure, rotate the view

angle to get a 3-D plotting if required, obtain hard copy plots of the

displayed pictures and so some other utility operations like filing of

plots.

(ii) Kalkani [1976] presented a contour plot program for stresses in 2-D

slopes. This program is one of the rare postprocessors for geotechnical

problems where the stresses calculated by a 2-D FE analysis for stresses

in rock slope are plotted prior to locating critical regions for the

slope stability. This is particularly important for highways design and

construction. Input data to this program are the FE model topology and

the computed prinCipal stresses at centroids of the FE elements. The

program is mini-computer-based and produces hard copy plots only.

(iii) Kamel and McCabe [1976] developed the GIFS system which is a

graphics oriented interactive finite element package for time-sharing.

This comprehensive system is, in fact, a pre- and post-processor for

FE analysis. Moreover, it can be used for solving relatively small size

FE problems in structural analysis and mechanics. It is mini-computer­

based that utilizes overlaying techniques to minimize the main memory

requirements. It supports graphics terminals in addition to hard copy

plotters. The GIFTS system has been upgraded several times since then.

utilization of digitizing techniques has been previously discussed

[Kamel and Navabi, 1980]. More recently, a smaller version which can

344

be implemented on a micro-computer has been released [Kamel et al 1985].

(iv) Stafford [1983] utilizes a simple technique for complementing the

FE postprocessing of the large-scale program ADINA. This program, ADINA,

is a mainframe FE processor for non-linear analysis of structures. A

low-cost means to make simple postprocessing of the outputs of ADINA

(and similar programs) is to move parts of their outputs to a micro­

computer and use one of the many standard spread sheets available for

minimal cost. Stafford used the well-known Visicalc software for

tabulation and simple graphical representations of the results. The

hierarchy of computations can be summarized as follows:

(1) A mini-computer is used for solid modelling and preprocessing of

the FE model. The model data are then transferred to a mainframe

computer for processing.

(2) A mainframe computer is used to do the FE analysis. Parts of the

outputs are downloaded to the micro-computer storage devices

(floppy diskettes or hard disk) •

(3) The micro-computer is used for low resolution graphics and data

tabulation.

As many graphics software are now available on micro-computers it seems

that the more advanced graphics software like A.uto-CAD will be more

useful than spread sheets.

(v) Sharaf Eldin [1983c] developed IFEPLOT which is a postprocessor for

the IFEP FE processor which has been presented earlier. It is a graphical

postprocessor which can be used to plot the original FE model and the

contours of the hydraulic head for flow in aquifer problems. It is

programmed in Fortran and uses the PLOT21 basic plotting software to

support the operation of the small size x-y plotter. Linear interpolation

345

is used and 10 contour lines can be plotted.

4.10.8 Recent Trends in Graphical Postprocessors

Although computer graphics were first recognised as a man-machine

interface in the mid-60's, their applications in FE postprocessing can

be dated to the mid-70's, where general graphical postprocessors started

to exist. Computer graphics became increasingly sophisticated, allowing

more and more postprocessing of FE outputs. However, the needs of

engineers and scientists still exceed the abilities of current computer

graphics systems. To exemplify, an aeronautical laboratory may take

several days of supercomputer processing time to solve hypercomplex

problems and many months to interpret the generated data. The require­

ments of more powerful computer graphics are particularly noticed in

areas of: man-machine interface, computational geometry, animation~

workstation hardware and more important: standardization and integration.

In this section some of the recent advances in FE postprocessing and

computer graphics in general are reviewed. The treatment follows the

arguments of Plunkett [1985] and Kirk [1986].

(i) The display of FE model of curved surfaces in 3-D interactively

involves the 3-D transformations, shading, hidden surface removal among

many other computations. These computations are heavy and traditionally

they have to be done on the host computer which is a mainframe or a

super-minicomputer in order to have an acceptable turn-around time. In

earlier graphics systems, it was a common practice to let the user

interactively create and manipulate the model as a wireframe and then

have the host computer to make a solid image in the background processing

mode for later displaying. In the new generation of graphics workstations,

~6

the display controller has to remove the hidden surfaces and shade the

surface polygonal patches thus relieving the host to do other tasks of

graphics display that are beyond the capabilities of the display

controller like decomposition of the surface into polygonal patches.

As microprocessor technologies improve, more and more tasks can be

performed locally by the display controller. Ultimately, a display

controller will be in the future capable of handling all display­

related processing.

(ii) Many new software systems and hardware devices for graphics are

introduced every year. There is no comprehensive general standards for

graphics. This has several consequences. First, the software developed

for one hardware device cannot be moved easily to another one without

extensive modifications and sometimes rewriting the software becomes the

only alternative. In otherwords, there is a lack in graphics software

portability. Second, the same argument applies to programmers. It is

a fact that graphics programmers spend more time in learning new graphics

systems rather than developing applications. Most graphics programmers

are still computer specialists rather than specialists in other fields.

Thus introducing graphics standards will not only ensure program

portability but also programmers portability. Third, different devices

of similar capabilities usually do not display the same drawing in an

identical manner, i.e. there is device dependence for the produced

graphics.

The first step towards graphics standardization was realized during

the late 70's where the graphics problem was separated into two distinct

sections: modelling the problem and drawing that model. Later on two

major efforts towards drawing standardization emerged. The first is the

core graphics system by the Graphics Standards Planning Committee (GSPC)

347

of the ACM special interest group on computer graphics in the USA. The

second is that by the West German standards organization which is called

the Graphical Kernel System (GKS) which has be,"" submitted to the

International Standards Organization (ISO).

At present, there are five "general standards" on graphics:

(1) Graphical Kernel System (GKS) which is a set of software subroutines

that describes the interface between an application program and a

set of graphics devices.

(2) Programmer's Hierarchical Interactive Graphics Standard (PHIGS)

which provides some additional capabilities not covered by GKS.

PHIGS is concerned solely with 3-D data and allows more inter­

activity in viewing dynamic changes in a model. It provides for

a hierarchical description of separate components of a single

object, which can be useful in the construction of complicated

drawings.

(3) Virtual Device Interface (VDI) specifies the interface between

device-independent software and device-dependent code. It specifies

an interface to a virtual ideal device. Conversion to a real device

is then done either in the host computer via a device driver or in

the firrnware of the device itself. The VDI is scheduled for

adoption as a standard during 1987 [Plunkett, 1985].

(4) Computer Graphics Metafile (CGM) which can be considered as the

counterpart of VDI. It allows drawing descriptions to be stored

in a device-independent manner.

(5) Initial Graphics Exchange Specification (INGES) which was originated

for standardization of Computer-Aided Design/Manufacturing (CAD/CAM)

databases which allows the transfer of CAD/CAM files between

different systems.

348

4.11 SPECIAL TOPICS IN COMPUTER IMPLEMENTATION OF FE

In this section some special topics in the computer implementation

of FE will be discussed. The discussion is by no means complete but the

main reason of adding this section is to complete the whole picture which

has been presented within this chapter. It also reflects the author's

views of some of the areas that will be of active research in the

coming years in the computer implementation of FE.

4.11.1 FE on Parallel Computing Systems

Due to the limited rate of speedup of serial processors from

technology alone and obtaining better cost performance, parallel

computing systems have recently emerged. In its most general sense,

the term parallelism refers to the simultaneous execution of two or

more operations by a computer system. So, in fact, parallel computing

systems try to solve the bottlenecks found in classical Von Neumann

systems. In Von Neumann computer systems the programs are stored with

data in the memory unit. One instruction at a time can be executed in

a sequential fashion. In parallel systems this is solved by different

architectures. A frequently used classification of parallel processors

is that shown in Table (4.22).

I~n Data Stream
Single Multiple Stream

Single SISD MISD

Multiple SIMD MIMD

TABLE 4.22: Classification of Parallel Systems

where the terms:

349

SISD stands for Single Instruction Single Data Stream which is the

classical Von Neumann architecture.

SIMD stands for Single Instruction Multiple Data streams

MISD stands for Multiple Instructions Single Data Stream

MIMD stands for Multiple Instructions Multiple Data Streams.

Figures 4.59 to 4.62 show the structure of these different architectures.

Note that a processor (p) stands for central processing unit (CPU), i.e.

the arithmetic logic unit and the control unit.

FIGURE 4.59: von Neumann Model

1 Memory Unit (M)
1 CPU (p)

'l-___ -"L __ __ a.""-______Y

FIGURE 4.60: SIMD Model

n Arithmetic logic units (A)
n Memory units (M)
1 Control unit (C)

--1

"---_--"- . " .. _ SJ

FIGURE 4.61: MISD

n Arithmetic logic units (A)
1 Memory unit (M)
1 Control unit (C)

FIGURE 4.62: MIMD

n Processors (P)
n Memory units (M)

SIMD systems were designed in the early 70's to achieve high

350

computing speed without the need to replicate the relatively expensive

351

control units [Vemuri and Karplus, 19811. With the introduction of

the low-cost mini- and micro-computers and the drop of cost of hardware,

MIMD systems have been realized. In pipeline processing, a sequential

computational procedure is broken down into stages, the separate

hardware units are provided for carrying out the computations of each

stage. When the pipeline is full, each hardware unit is engaged in

processing different data, and as each computes its task, it passes the

results of its computation to the next unit.

Since the FEM is a technique which depends on computers for the

solution and which needs heavily computations for large-scale non­

linear problems, it is natural to utilize these new architectures in the

computer implementation of FE. In fact, the need to s~lve large-scale

computational problems was behind the motivation for the development of

parallel computing systems. In what follows, some of the most well

known efforts in this context are presented.

(i) Jordan and Sawyer [19791 proposed a multi-microprocessor system for

the solution of structural analysis problems by finite elements. They

called this architecture "the finite element machine". This machine is

a MIMD system which utilizes the current single chip microprocessor

technology. Each processor in the machine represents a node in the FE

model. The processors are arranged in an array and the FE model is

mapped onto the hardware. The processors will communicate data by

explicit transmissions through a multiplexed bus connecting all processors.

Thus processor i, for example, can communicate to processor j in the

array. The major steps in the FE analysis are the formation of the

stiffness matrix K and the solution of the resulting equations.

Therefore, new techniques must be used to exploit parallelism in their

352

computations. Indeed many efforts have been done for the solution of

linear equations on parallel systems e.g. Evans [1982]. It seems,

however, that less attention has been paid to the parallel algorithms

for stiffness matrix computations. In the finite element machine the

computational work is partitioned into the processors and the element

stiffnesses are performed in a way isomorphic to the interconnection

of nodes by elements of the structure. Each individual processor is

assumed to be 16 bit, single chip microprocessor with hardware

multiply and divide, coupled to a read/write memory, RAM for programs

and data and a ROM for the startup algorithm. Careful mapping of these

processors on the nodes of the FE model can result in minimal use of

the connecting bus which has a great influence in the total system

performance.

(ii) Zave and Cole [1983] presented an experimental implementation of

a design for the adaptive parallel finite element system. The

implementation was used to simulate the performance of this design on

several microprocessor-based multiprocessor architectures. Thus this

implementation is essentially a MIMD architecture. Each processor is

assigned a process and the various processes of a system can communicate

only by sending messages. This process-level parallelism is completely

independent of instruction-level parallelism which is used by pipeline

processors, for example. However, it is possible to exploit at the

process-level the instruction level parallelism. Experiments were

conducted using the FEARS (Finite Element Adaptive Research Solver]

system of the University of Maryland, U.S.A. However, since the machine

itself was not built, they used a technique to evaluate the antiCipated

time on the proposed architecture. This technique is to measure each

353

task time run on the available mainframe computer - a Univac machine -

then multiply this time by a constant factor to reflect the relative

slowness of the microprocessor. These constant factors were computed

by counting and grouping machine instruction and determine conversion

factors for each group and then computing a weighted average of the

conversion constant. Of course, these factors are only rough approx­

imations but there seems no other alternative except the actual running

of the code on the target machine itself. The presented results show a

speedup factor that ranges from 4:89 to about 1. In some test problems

the speed factor was even around .99 (i.e. negative gain). The reason

for these modest speedups was probably due to the computation and

waiting times of the processors.

(iii) Strohkorb and Noor [1984] used a different approach based on a

mini-computer-array processor system for the non-linear FE analysis of

structures. The idea behind this choice is that its elements are readily

commercially available and the system can be built by much less cost as

compared to the class of supercomputers like Cray or CDC Cyber 205,

for example. A Prime 750 is used as the host computer with AP array

processor as an attached processor. A software simulator residing on

the Prime is employed to assess the performance of the floating point

system AP array processor. Array processors are high-speed special­

purpose computational devices which cart perform repetitive computations

on well-structured data sets at effective speeds far beyond those achieved

by current minicomputers. The array processor used in this study is

AP-120B. The main features of which are [Karplus and Cohen, 1981]:

(1) It is designed and accessed as a peripheral to the host minicomputer.

(2) It achieves high performance through both parallelism and pipelining.

354

Its arithmetic unit contains one floating point adder and has two

stages. It also has one three-stage pipeline multiplier. Each

can perform up to 6 million floating point operations per second

(MFLOPS). practically a maximum speed of about 4 MFLOPS only can

be realized as compared to a theoretical maximum of 12 MFLOPS if

both pipelines are always full.

(3) It can be programmed in Fortran or assembly languages to perform

many computational tasks. Parallelism on the AP-120B can be

exploited only by the software. Thus, the programmer (or the

compiler) must explicitly code all parallelism into the program.

However, extensive libraries of micro-coded routines are supplied

to support software development on this device.

The host computer, Prime 750, is a supermini-computer with BM bytes of

central memory. In this machine resides two distinct operating systems:

the Primos operating system of the host computer and the APEX which

the array processor executive useS to drive the AP-120B.

Two benchmark problems were used to assess this architecture. The

execution speed using simulation was 5.2 and 9.9 times faster for the

two problems compared to the sequential processing. The major hardware

characteristics of the system that affect the speed are:

(1) Virtual memory on the host computer.

(2) Pipeline processing in the AP

(3) Parallel Processing achieved inside the AP

(4) Distributed processing where computationally heavy portions of the

program are allocated to the AP, while other tasks like data

management, AP control and user interface are allocated to the host.

On the other hand, the major software characteristics that must be noticed

355

to get benefits of this hardware are:

(1) Proper selection of the computational algorithm.

(2) Minimization of I/O operations on the host and between the host

and the AP. Techniques like buffering and merging smaller arrays

into larger ones can be useful in this context.

(3) Vectorization of the chosen numerical algorithm.

(iv) Romo and Burns [1986] used the Alliant FX/8 parallel processing

mini-supercomputer system. In this system up to 8 processors used for

computational work and called computational elements (CE) can be

connected. In addition to that, up to 12 interactive processors (IP)

can be used for handling user jobs, system I/O and other operating

systems functions. Synchronization is achieved by built-in hardware

concurrency control bus. A CE simultaneously supports up to five

instructions in different execution stages in its pipeline. It can

reach a speed of up to 11.8 MFLOPS. The FX/Fortran compiler examines

Fortran-77 programs and compiles them to work with up to 8 general

purpose vector processors operating in parallel. It also does code

vectorization. One of the best features of the FX/Fortran compiler

is the handling of nested loops which is normally a common bottleneck

on sequential machines. The compiler translates these loops such that

the innermost loop runs in vector mode and the next outer loop runs in

concurrent mode. This is termed as Concurrent Outer, vector Inner (COVll

mode. For example, in the following code, the J loop iterations run

concurrently while the I loop iterations within each J loop are

vectorized:

DO 100 J=l,M
DO 50 I=l,N

50 A(I,J)=A(I,J)+P
100 CONTINUE

356

COVI implementation for nested loops is of great advantage when solving

simultaneous linear equations which in turn are among the most time

consuming tasks in FE analysis. The COVI mode operates most quickly

when,the number of iterations of the inner loop is a multiple of 32 which

is the maximum length of a vector on one CE and the number of iterations

of the outer loop is a multiple of the number of the available CE's.

Some experiments have been performed to test this architecture.

The Abaques FE analysis program was chosen and modified to take advantage

of the FX/8 hardware. Also matrix factorization problems were considered.

The experiments were done using different number of CE's. They concluded

that for an eight CE's with only 10% serial code, the best that can be

expected is a five-fold increase in processing speed.

4.11.2 Data Base Technology for FE Software

The concepts of database management systems (DMS) has grown during

the 70's in business-oriented applications. These concepts, however,

were not realized in scientific computation except in the late 70'S.

This may be due to the sheer growth of large-scale codes, the appearance

of integrated program networks that share a common project database and

the introduction of interactive CAD/CAM systems. It is a fact that

many large-scale computational software, in general, and FE software

in particular have a good deal of data management. As a FE program

increases in size and its capabilities, the data management portion

becomes relatively more important in relation to the original processing

357

functions. A large-scale FE software is usually developed by a group

of people working together. It usually contains many modules and

independent programs that need to be interfaced. This interfacing can

be done using any of the following approaches or a combination of them

[Felippa, 1979]:

(i) Direct link approach:

In this approach programs communicate directly and there is one

interface only for every possible connection path.

(ii) Super-executive" approach:

The components are linked to an executive program that functions

as an executive or supervisory control program. This organization

generally results in a tightly coupled program network.

(iii) Database approach:

The components communicate through a database management system.

Streams of data flowing between components go in and out of the

database through the DBMS. This organization generally results

in a loosely coupled programs network as each one can retain his

own structure and control.

These three approaches are shown schematically in Figure 4.63.

It seems that the current trend in large-scale FE software is

being moved towards the database approach. However, since many well

established software had been developed in the past and is still in use

in different places, many of the current software will continue to

survive despite their inflexible interfaces. There are 3 different

approaches for organizing the data model in a DB system. They are:

the hierarchical approach, the network approach, and the relational

approach. Principles and details of these approaches can be found in

358

(al Direct link structure

(bl Executive-based structure

DB

(cl Database structure

FIGURE 4.63: Interfacing programs network

standard textbooks, e.g. [Date, 19821. One of the first engineering

analysis systems which uses the DBMS approach is the ICES [Christ, 1982)

which is "Integrated Civil Engineering System". The system was originally

359

developed at the MIT during the mid-60's as a structural analysis

program. Many developments and enhancements occurred since then and

now this system is one amongst the most comprehensive and popular systems.

ICES is a supervisor program for its subsystems. The user communicates

with a subsystem through a problem oriented language composed of words

and phrases based on the normal engineering terminology. ICES uses

fully integrated super-elements [Jacobsen, 1983].

As the relational approach in DBMS is getting more popular some

new relational-based systems are being developed. It is possible, for

example, to define a FE data model in the following sets of relations:

Relation nodes={node number, x,y,z}

Relation elements={element number, element type, material type ID,

node i, node j, node k}

Relation materials={material type ID, E,v,a}

Relation constraints={node number, prescribed x-disp, prescribed y-disp,

prescribed z-disp., prescribed x-rotation,

prescribed y-rotation, prescribed z-rotation}

Relation loads={node number, load value, load type ID, load direction}.

One of the first projects to assess the use of a relational engineering

data management system by integrating various application programs is

the Pride system developed at the NASA Langley Research Centre in the

U.S.A. [Blackburn et al, 1982]. The system can do FE analysis with pre­

and post-processing. Since the engineering analYSis/design task is

usually an iterative one where a preliminary design is proposed, then

analysed and then the design is modified and a re-analysis is done and

so on, it is important to provide the engineer with a private database

to do the initial work and at the end of the design these data are then

360

moved to the global database. In the Pride system the private data

areas reside in various mini-computers and are generally associated with

specific functions, and often specific engineers. The global shared area

contains the data necessary to form a model (e.g. of an entire aircraft) •

4.11.3 Standardization for FE Software

Because of the long time needed and the high cost required to

develop FE programs, many FE users try to use available packages to

solve their problems. However, available packages are developed by

several organizations and are of varying reliability. The lack of

standards for FE codes makes the FE user in the hands of the software

developer. Most of the test problems in many cases which have been

used to check the commercially available FE packages are more or less

"trivia1"prob1ems and they are usually supplied by the developer himself

in the so-called "Automatic Test Problems - ATP". Up till now there

have been no FE standards that have to be followed by FE developers.

However, some trials are initiated and may lead to set specifications

for FE software. Of course some people are against the FE standards,

while the others are suppcrtive of these standards. Their arguments

can be summarized in the following.

(i) Against:

- Standards may impede research and development.

- standards are difficult to set and to maintain.

- Standards could cause great hardship if adopted as law and used

to avoid a meaningful model validation effort.

(ii) With:

- No FE code is bug free and it is not pcssib1e for every user to

check the code validity in all aspects.

- Standards can help in training and maintaining of software.

- Standards will improve communications among the FE community

and unify the used terminology.

As in other similar cases, the key to successful FE standards is to

determine general sets of rules to be followed, determine standard

benchmark problems that are to be passed by the candidate code and to

define certain rUles for terminology and documentations. Meanwhile,

the standards must be flexible enough to allow the greatest possible

freedom and initiation within the specified framework. Fong [1984)

surveyed the attempts done to set standards for FE codes. The major

noticed efforts are those by the American Institute of Aeronautics and

Astronautics (AIAA) in the USA, the National Agency for Finite Element

Methods and Standards (NAFEMS) in the U.K. and the Japan Society of

Mechanical Engineers (JSME) in Japan. These efforts are briefly

reviewed as follows:

(i) The AIAA program was initiated during 1982 as a sub-committee of

the AIAA. The members of this sub-committee started their work by

proposing developing standards for linear general-purpose codes. Some

FE benchmark problems were developed. This set includes: straight

cantilever beam, curved beam, twisted beam, rectangular plate, thick­

walled cylinder and spherical shell. The patch tests are performed

for different element types and the set of problems was tested with

these element types for particular cases of loading. The beam,

membrane plate, bending plate, shell and solid elements were chosen.

These problem-element combinations were tested on the well known FE

program MSC/NASTRAN. The results show that these elements do not

perform well in every test.

(ii) The NAFEMS was formed by the U.K. Department of Trade and

Industry in 1983. The aims of the NAFEMS are to:

(1) Set FE standards and testing procedures.

(2) Coordinate and sponsor evaluations and studies of codes.

362

(3) Create a forum for users, developers, universities, government,

and research organizations.

(4) Establish a central office. This has been located at the National

Engineering Laboratory in East Kilbride, Glasgow.

(5) Develop and maintain databases for FE systems and users. This

will help users in searching these databases for information on

code capabilities.

(6) Consider the legal implications of using FE codes.

(7) Publicize requirements for education and training.

Documents that are near completion or already produced according to

Fong include: Guildelines to finite element practice, NAFEMS Benchmark

Tests and Finite Element Primer.

(iii) The JSME participated in two benchmark tests to compare nonlinear

general and special-purpose FE as well as finite difference (FD) codes.

Each problem was tested against 10 of the well-known FE and FD codes.

The results of these tests showed that for impact problems under step

loading, explicit time integration scheme is more popular than implicit

schemes. An important result of these tests is that a great discrepancy

in results occurs when the FE or FD model composed ofaxisymmetric body

of several materials with quite different Young's moduli and more

efficient time-marching schemes are needed.

Despite these efforts, it seems that the best chance of success

for FE standards are those for linear static problems as a starting

363

point. Upgrading to other problems may be done after community

acceptance of the first standards. However, it seems that it will not

be before several years that the first complete standards for FE codes

will be born.

4.12 SELECTION OF FINITE ELEMENTS SOFTWARE

4.12.1 Introduction

364

Many finite element packages (FEP) are now available in the market­

place which can be used to solve a fairly wide spectrum of applications.

Moreover, many new computer codes are developed every year. The

sophisticated user of FE software is faced with a flood of packages

amongst which he tries to select the one that best fits his requirements,

subject to some constraints. Since the cost of such software is usually

high, it is wise to do a careful examination of the alternative FEP

to choose the best of them. Such a complex decision problem can involve

multiple conflicting objectives. It is often true that no dominant

alternative will exist that is better than all other alternatives in

terms of all of these objectives. Consequently, we make use of decision

methods to evaluate the relative ranking of the available alternatives

amongst each other. There are several methods used for decision making.

It is possible to classify these methods into three major categories:

(1) Deterministic approaches, (2) Probabilistic approaches: and (3)

Fuzzy set and multi-attribute utility approaches.

In the deterministic approach, numerical ratings are assigned to

the considered variables and a final "measure of merit" is formulated

for each alternative. Such a "measure of merit" can be a simple

average or a weighted average among other measures. In order to

measure the sensitivity of the final measure of merit to each variable,

the assigned value of variables are changed one at a time and the

effect of each individual variable on the final result is studied.

In the probabilistic approach, probabilities are assigned to

each variable which reflects the relative certainty of giving the

365

estimated outcome. Usually simulation and Monte Carlo techniques are

used for complex problems. A more detailed treatment of these methods

can be found in [Raiffa, 1968 and Cornell, 1980).

More recently, two new approaches have been introduced in decision

making, the fuzzy sets approach and the multi-attribute utility analysis.

Although the theoretical foundations of the fuzzy sets was introduced by

Zadeh [1965), its application in engineering analysis is very recent

[Brown and Yao, 1983). The same is true for the multi-attribute utility

analysis.

In the following sections a novel approach based on simple matrix

operations in addition to the fuzzy sets and multi-attribute utility

approaches are utilized in order to give a framework for selecting the

'best fit' finite element software based on quantitative approaches.

These ideas in fact have been introduced in [Sharaf Eldin and Evans,1986) •

4.12.2 Attributes of Finite Element Packages (FEP)

The definition of the suitable attributes of a FEP and their

relative importance depend on the function for which the package is to

be used. To illustrate, consider the availability of the source code

of the FEP. This is considered much more important if the FEP is to

be used for research and educational purposes. However, its importance

will be less if the FEP is to be used in a business environment. Here

we list in Table (4.23) the most relevant attributes and sub-attributes

for a general purpose FE package used in the practical analysis of

structures. We notice that all attributes are decomposed into sub­

attributes, however, it is not necessary to breakdown all attributes

to sub-attributes.

CRITERIA

1. Package global capabilities

2. Solution strategy

3. Preprocessors

4. Post processing

5. Cost

6. Ma intenance

366

SUBCRITERIA

1.1 Element library

1.2 Material library

1.3 Procedure library

1.4 Loading library

2.1 FE formulation

2.2 Solution of FE equation~

2.3 Numerical integration

2.4 Error estimates

3.1 Methods of data input

3.2 Mesh generation capabilities

3.3 Availability of an interface
from a general purpose pre­
processor

3.4 Nodes or elements re-ordering
for minimizing storage
requirements

4.1 Methods of presentation of
output

4.2 Stress smoothing

4.3 plotting and graphics
capabilities

4.4 Availability of an interface
to a general purpose post­
processor

5.1 Initial cost

5.2 Running cost

5.3 Upgrading cost

6.1 Availability

6.2 Cost

continued ••••••

367

CRITERIA SUBCRITERIA

7. User support 7.1 Methods of support

7.2 Cost of support

7.3 Documentation

7.4 Training courses

7.5 Test problems

7.6 Source code availability

7.7 On-site problem solving

8. Vendor credibility 8.1 Vendor past experience

8.2 Financial pcsition

8.3 User group support

8.4 Software reliability

9. Package requirements 9.1 Hardware requirements

9.2 Software requirements

10. Special features 10.1 Error recovery

10.2 Re-start capabilities

10.3 Substructuring

10.4 Portability

10.5 Error checking run

TABLE 4.23: List of criteria and subcriteria for FEP

4.12.3 The Simple Matrix Method

This fairly simple method is essentially a normalized form of a

weighted average method. Weights are given to each attribute and to

all its subattributes. The different FEP to be compared and the

alternatives are given numerical values for each subattribute according

to their relative merits. Assume that we have n attributes and that

the number of subattributes for attribute i is m.. Assume further
~

that the number of alternatives to be compared is q. Let us define

the following:

368

• The vector T of n elements which represents the relative weights

given to each attribute. To have normalized values the first

element of T, i.e. T(l), is always assigned the value of 1 and

all other elements of T are given values >-1. In other words,

the attributes are arranged in ascending order according to

their relative importance.

• The vector S for the subattributes is similar to T. The size
n

I of this vector is k = m ••
~

The number of subattributes per
i=l

attribute should be the same whenever possible.

• The overall vector of relative importance U of k elements is

computed as follows:

• Consider attribute i, the elements of U which correspond to this

attribute are computed as:

U, = t. * s./Es, V j E i
J ~ J J

(4.76)

• Consider the alternatives we assign relative weights among them

for every subattribute which results in a matrix W of kXq elements.
q

To be normalised we must keep I w(i,j) the same for Vi.
j=l

• Compute R=UTW which gives the final rating vector R. The best

FEP is the element of the maximum value in R.

Although this method is very simple it gives good rough results and can

be calculated by hand. However, for more accurate results it is

recommended to use other methods for verification.

369

4.12.4 The Multi-Attribute Utility Theory (MAU)

Multi-attribute utility (MAU) is based on the idea that complex

decision alternatives can be decomposed into structurally-related parts

(attributes and subattributes), the values (utilities) of these

attributes are assessed and the assessments recomposed to obtain the

overall weighted utility of each of the alternatives. The utility of a

consequence is a quantitative measure of a person's subjective feelings

about the consequence. A consequence with a higher utility is preferred

to one with a lower utility. A detailed study of the theoretical basis

of the MAU theory can be found in [Keeney and Raiffa, 1976). Here we

give only a brief outline of the technique as follows:

(1) The specification of assessments is done in a hierarchical fashion:

categories, attributes and subattributes. For each of these, three

estimates·of "cost" are considered: best, worst and certainty equivalence

(CE). For example, the total cost for a FEP is estimated to be at best

£20,000 and at worst £50,000. While the most probable estimate is

£30,000, respectively. Thus the three estimates for this attribute are

20,000, 50,000 and 30,000, respectively. In case of subjective

attributes, we use relative numerical values. For example, the element

library of a FEP could be given estimates as 1 for the best estimate,

0.2 for the worst and 0.5 for the CE.

(2) The utility function model is assumed to be:

cx
u(x) = a+be (4.77)

where u(x) is the utility of attribute at value x. a,b and care

constants that should be determined. TO determine these constants, we

utilize the three estimates done in the previous step (1) bearing in

mind that u(best)=l, u(worst)=O and u(CE)=0.5.

370

Assuming that the three values of x are xl for the best estimate,

x
2

for the worst and x3 for the CE and substituting in the utility

function (4.77), then,

(4.78)

The trivial solution C=O is excluded and this equation is solved by a

Newton-Raphson iterative procedure for c whence a and b are determined

by back substitution. Practically, 3 or 4 iterations usually give good

results. The computation starts by determining the utility function of

each subattribute, attribute and category. We denote categories by Z;

attributes by Y and subattributes by X.

(3) The values of the alternatives corresponding to each subattribute

are mapped onto a utility value using the appropriate utility function.

(4) According to personal preference and experience one of the X's is

chosen as the reference subattribute within each attribute. This is

used as a reference entity. For example, if for an attribute there are
~

3 subattributes, then we choose the most important one among them, say,

subattribute 1 as the reference entity in this case. This reference

subattribute is given a "k" value which is a utility <0,1>. The other

k values correspond to other subattributes which belong to the same

attribute are calculated from:

where,

= k, .• U,. (x)
l.Jm l.Jm

k .. , is the required k value of the subattribute t of
l.J~

attribute j of category i.

(4.79)

k.. is the chosen value for subattribute m, the reference
l.Jm

subattribute, of attribute j of category i.

u.. is the utility function of the reference subattribute m of
l.Jm

attribute j of category i.

371

x is the value of the subattribute ~ of attribute j of category i.

(5) To compute the utility values of all alternatives of attributes

from those calculated subattributes, we do the following for each

attribute y.

(6) compute

(4.80)

where n is the number of sub attributes in attribute j of category i.
s

(7) If kij~l, the utilities of the attributes are computed from:

n
s

L kij~ .uij~
1,=1

V alternatives (4.81)

(8) If kij~l the following equation is solved iteratively for Q:

n
s

l+Q = -rr (l+Qkij~)
1,=1

(4.82)

This is solved by simple iteration. The initial guess Q
o

is in the

interval <0,1> if k .. <1 otherwise an initial guess <-1,0> is chosen.
~J

After the value of Q is determined the utility value of attribute u(y ..)
~J

is computed from:

(4.83)

(9) If one of the y's has no subattributes, these values are mapped to

the utility domain directly.

(la) To compute the z utilities we repeat the same procedures used to

compute the utilities of attributes from their subattributes.

(11) The final utilities, the Z utilities, are sorted in descending

order (high to low) and the best alternative is the one with highest

utility value.

A computer package for the analysis of the MAU has been developed

372

which can be used for general decision making (sharaf Eldin, et al,

1986). This package consists of two programs: the UTILITY program and

the UTILPLOT program. Both programs are implemented on a small-sized

mini-computer and can be easily run on micro-computers. The UTILITY

program is the main processor which performs the actual MAU analysis,

while the UTILPLOT program is a graphical postprocessor which plots

the utility functions if so desired. The UTILITY program is an inter­

active one where the user is prompted step by step for each bit of

information required to do the MAU analysis. On-line validations of

all inputs are done and thus the validity of input data is ensured.

All data are input in free format.

There are four types of data which are:

(i) Problem definition parameters:

These are the main parameters of the problem:

number of categories,

number of attributes in each category;

and number of subattributes in each attribute.

(ii) Basic utility values: These are the three values that correspond

to the best, worst and CE values. These data are read for every

category, attribute and subattribute.

(iii) Alternative values: The value of each alternative is given.

These values are checked to be ~ worst estimate and ~ best one.

(iv) K analysis: Choosing one of the subattributes of an attribute as

the reference one and its value which must be <0,1> and getting

values of other subattributes. These values must be in the

range <worst,best>. The same is repeated in the higher level,

i.e. from attributes to categories.

373

The outputs of the MAU package are comprehensive. It includes the echo

of all types of inputs plus:

(1) The utility function coefficients for all subattributes,

attributes and categories.

(2) The k-analysis values and results.

(3) The utilities of all alternatives.

4.12.5 The Multi-Attribute Fuzzy Decision Analysis (MFDA)

One of the difficult tasks in the MAU method is the determination

of the estimates for the subjective attributes. To overcome this in the

multi-attribute fuzzy decision analysis (MFDA) we use verbal ratings to

the attributes and subattributes. In fuzzy sets an event x. is a member
l.

of the fuzzy set according to its membership function ~A(xi) which is in

the interval <0,1>. To utilize this technique in the considered problem

we have to assign weights to attributes and subattributes and ratings to

alternatives all based on membership functions. We assume the following

membership functions for different weights and ratings:

(i) Weights for Attributes

VI:Very important:{(.B,O) ,(.95,1),(l,O)}

I=Important={ (.6,0) , (. B,l) , (1,0) }

MI=Moderately important={ (.3,0) , (.5,1) , (.7,0) }

UI:Unimportant:{(0,0),(.2,1),(.4,0)}

VUI:Very unimportant: { (0,0) , (.05,1) , (• 2 ,0) }

(ii) Ratings for Alternatives

E:Excellent:{(.B,o) ,(.95,1) ,(l,o)}

VG:Very good:{(.7,0),(.9,1),(l,O)}

G:Good:{ (.6,0), (.B,l), (l,O)}

F=Fair={ (.3,0) , (.5,1) , (.7,0) }

p=poor={(0,0),(.2,1),(.4,0)}

VP=Very poor={(0,0),(.05,1),(.2,0)}

374

The three steps in the MFDA are: (1) assign weights to all attributes

and subattributes which reflect their relative importance, (2) assign

ratings for each alternative with respect to each criteria and sub­

criteria alone, independently of all other alternatives; and (3)

calculate the global membership function of each alternative starting

from subattributes to attributes and obtain the final ranking of

alternatives. More details of the technique can be found in [Zadeh,1976).

4.12.6 A Case Study

In [Noor, 1981) 36 FEP for non-linear structural analysis were

reviewed. We choose four of them to illustrate the stated techniques

without any reference to their names, some missed data are assumed.

Tables (4.24),(4.25) and (4.26) show the steps of the solution using

the simple matrix, the MAU and the MFDA methods. Note that only parts

of the attributes and subattributes are shown.

The methods described in this section give three quantitative

approaches for the selection of finite element software. Obviously, the

personal attitude and the experience of the user of sophisticated FE

software affect the preference structure and the values assigned to

attributes which influence the final result. It is also of great

importance to select the attributes and subattributes which are

relevant to the thought application.

Attributes Subattributes

Name Rating Name

Vendor Credibility 1 Vendor experience

Financial Pos.

User group support

Software re1iabi1.

E S = 1

cost 2 Initial cost

Running cost

Upgrading cost

E 5 =
2

package 5 Element lib.
Capabilities

Material lib.

procedure lib.

Loading lib.

E S =
3

T={t};ST=[2.5,2.5,l'4'2'2'l,2,2,3'11

T U =[.25,.25,.1,.4,.8,.8,.4,1.25,1.25,1.875,.6251

T U W=[19.125,17.625,17.975,25.0251

The final ranking of FEP is: D,A,C then B.

TABLE 4.24: The simple matrix method

Rating

2.5

2.5

1

4

10

2

2

1

5

2

2

3

1

8

375

Alternatives

A B C D

5 2 1 2

3 3 2 2

4 1 5 0

5 1 2 2

3 1 2 4

2 3 1 4

4 2 1 3

2 2 3 3

2 2 3 3

2 3 2 3

1 2 3 4

reference
entity
given a
wt. of .5

-'

Subattribute Best Value worst Value CE Value

Initial Cost 8 44 18

Running Cost 2 8 5

upgrading Cost .6 3 1.5

(a) Estimates of subattributes

Values of Alternatives

Subattribute
A B C D

Initial Cost 9.604 43.24 42.98 9.36

Running Cost 4.46 3.51 6.298 3.2

Upgrading Cost 2.69 1.69 .77 2.04

(b) Values of alternatives

Utility values of alternatives
Subattribute

A B C D

Initial Cost 1.0 .5 .5 1.0

Running Cost .5897 .7482 .2833 .7998

Upgrading Cost .0784 .4172 .8899 .2816

(c) Utility values of alternatives/subattributes

Final utility considering all subattributes = .7496, .7255, .6997

and .8572. The ranking considering this attribute only = {D ,A,B ,C}

TABLE 4.25: The MAU method

376

377

Alternatives
Attribute wt. Subattribute wt. A B C D

Cost VI Initial Cost VI VG VP VP VG

Running Cost I F FG P G

Upgrading Cost MI P G VG FP

The ranking membership function of each alternative for the attribute

cost is:

[.9018, .641, .6175, 1.0]

The ranking is {D,A,B,C}.

TABLE 4.26: The MFDA method

CHAPTER 5

THE VIRTUAL STACK FACILITY

TABLE OF CONTENTS

5.1 In troduation

5.2 The Staak Architeature

5.3 The VSF Source Language

5.3.1 The DeaZaration Bloak

5.3.2 The VSF Compiler Commands

5.3.3 The VSF Statements

5.3.4 Use of Virtual Arrays

5.4 The VSF Compiler

5.5

5.6

5.?

5.8

5.9

5.4.1 Implementation Considerations

5.4.2 The VSF Compiler Struature

5.4.3 Compiler Diationaries

5.4.4 Translating the Assignment Statement

The Run-Time Library

The VSF Error Messages

Replaaement Algorithms

VSF Proaedures

Test Problems

5.10 Conclusions

378

5.1 INTRODUCTION

It is clear that FEM requires extensive computer resources. One

of the many restrictions when implementing these methods on a computer

is the limited size of the random access memory (RAM). Although it is

not unusual to find a microcomputer of 0.5 Megabytes RAM, yet for

moderate size FE systems, this size is not as big as it might be thought.

Moreover, most of the available microcomputers and many of the mini­

computers have a limited address space to only about 64K bytes which

could only be used for fairly small FE systems. Even for medium mini­

computers, like the HP3000 series, the address space for the data stack

is limited to 1 binary word of 16 bits i.e. 32,767 words [HP3000, 1979].

Many of the micro- and mini-computers operating in a time-sharing

environment possess a stack architecture. In these computers there is

a separation between the code and data. Each process is allocated a

variable length code segment, which may be shareable, and a private

data segment. Although FE packages have normally large code size the

actual challenge is in the very large size of the data segment. This

could be due to the modularity of programming in such systems. For that

reason it is enough to have a code segment size that can fit the largest

module in the FE package. OVerlaying techniques are then used to store

the mostly used modules in the RAM while swapping other modules to a

DASD [Direct Access Storage Device]. Since the code is not modified

during execution, we need not restore an overlayed module again onto

the DASD. However, for the data segment the problem is not that simple.

First, the segmentation of the data stack is not straightforward. To

illustrate, assume that we have a double precision array of 200x200

elements and assume that a double precision variable occupies 8 bytes,

379

then we need about 320,000 bytes just to store this array. If the

available RAM is only 64K bytes then we cannot store the whole array

in it. Meanwhile, the program is dealing with the array's elements as

one entity. So we cannot split the array into parts at random and store

only one or two rows in the RAM. Moreover, since data could be changed

due to the execution of the code, it implies that parts to be swapped

cannot be overwritten before being copied to a backing storage media

like DASD.

In this chapter we present a solution for this problem of limited

stack size. This is done through the evolvement of a virtual stack

facility (VSF) to the computer system. By the use of VSF, arrays (or

data segments in general) of practically unlimited size can be

manipulated though the computer will still have the hardware limitation

of the maximum stack size. The VSF is a software aid which uses a stack

management scheme in a similar sense to that of virtual storage already

adopted in most of the main-frame computers. The computer used in this

study is the HP3000. The choice is due to the availability of this

machine and because the HP3000 is considered as a mini-computer which

has the attributes of a stack computer [Baer, 1980). A special language

is designed to declare the VSF. Consequently a translator is designed

that maps this source language into a host one for compilation and

execution. Different algorithms for the execution of the VSF are

studied in order to choose those which best fit FE packages. Some

numerical experiments are done in order to measure the effect of the

VSF on the speed of execution of particular operations frequently

required in FE analysis.

380

5.2 THE STACK ARCHITECTURE

Before presenting the details of the stack architecture for the

considered model computer, the HP3000; let us give first some

preliminary definitions of the terminology used:

(a) Process:

A process is the unique execution of a program by a particular

user at a particular time. Thus, a process is an execution of a

program. The process is the basic executable entity.

(b) Code and Data Segments:

Any program could be divided into code and data segments. A code

segment consists of the information that is not to change during program

execution. This includes the program instructions and constants. The

data segment contains the values, variables and arrays used by the

program. The code and data are maintained in strictly separate

domains. The data for each process is organised into a data stack.

The code segment could be shared between more than one process, while

the data segment is private as shown in Fig.(5.l).

C
Data Data
Stack 0 Stack

A
D
E B

Process B

Process A

FIGURE 5.1: Code Sharing and Data Privacy

381

(c) Stack

In general, a stack is a data structure where the last item stored

in is the first item to be taken out. The stack structure provides an

efficient mechanism for parameter passing, dynamic allocation of

temporary storage and efficient evaluation of arithmetic expressions

and recursive subprogram calls.

The HP3000 instruction set (more than 200 instructions) is biased

towards stack rather than general register operations. All the features

of the stack including: automatic transferring of data to and from the

CPU registers, checking for stack bounds (overflow and underflow) and

the top of stack manipulation are implemented in the hardware.

The general structure of a data stack is shown in Fig.(S.2}. The

beginning of data is referred to as DB. The stack pointer is referred

to as S. The address of DB and S are retained in dedicated CPU registers.

The data in the DB location is the oldest element on the stack. The

data in the S location is the most current element. The area from S+l

to Z is available for adding more elements to the stack. The Q register

separates the data of a calling program or subprogram from the data of a

called subprogram. The top four elements of the stack are the most

frequently used. Therefore, four CPU registers (RA, RB, RC and RD) are

dedicated to them. The use of CPU registers in this way increases the

execution speed of stack operations by reducing the number of memory

references needed when manipulating data at or near the top of the stack

(TOS). The maximum size of the data stack is limited to 64K bytes. As

shown in Appendix,AI sample Fortran programs are given to demonstrate

the existing problem of limited stack size and three different cases are

illustrated. These are when the integer constant defining array limits

382

in a DIMENSION statement exceeds 32767, a single array requires more

than this amount of storage or when all arrays require more than that,

the compiler detects these errors and is aborted.

Data beginning DB

Q

Stack Pointer
S or Top of Stack

Stack limit Z

--_t r-------,

,

)

,

Global
variables

Global
Arrays

Parameters

Local
variables

Local
Arrays

Temporaries

FIGURE 5.2: The HP3000 Data Stack

DB-plus direct
relative addressing
(up to DB+255)

DB-Plus indirect
relative addressing

Q-Minus relative
addressing (up to Q-63)

Q-Plus direct relative
addressing (up to Q+l27)

Q-Plus indirect relative
addressing

S-Minus relative
addressing (up to S-63)

5.3 THE VSF SOURCE LANGUAGE

5.3.1 The Declaration Block

383

In order to declare the use of the VSF within a program, a special

simple language is designed that must be used to write special

statements and commands. This language is very similar to FORTRAN

type statements in order to be easily remembered and compiled. It is

a fact that most of the FE packages are programmed in FORTRAN and this

is another reason why the VSF source language is FORTRAN-like. The

part of the program which declares the VSF is called the VSF declaration

block (VSFDB). The VSFDB is thus a block of statements and commands

written in a specific syntax to declare that the VSF is required and to

define the arrays to be manipulated in the virtual stack. These arrays

are called virtual arrays. The VSFDB consists of two types of

instructions: the VSF compiler commands and the VSF statements. Both

of them must be coded from column 1 of the source record. It must be

the first segment in the source program. In order to have a formal

definition, the VSFDB is defined using the Backus-Naur form (BNF). The

BNF notation consists of a number of productions each of which has the

form:

<entity>::=<expression>

where the syntactic entity on the left hand side is defined by or may

be replaced by the syntactic expression on the right hand side. The

expression may be a sequence of syntactic terms or several of these

sequences separated by the symbol "I". Thus, the object "digit" may

be defined as,

<digit>::=<O/1/2/3/4/5/6/7/8/9>

Note that when more than one sequence appears, it means that the entity

384

may be replaced by one, and only one, of the sequence of syntactic

terms. In addition to the 'I', the symbol * is used to indicate the

repetition of the symbol many times (including 0). Thus, an integer

could be defined as:

<integer>::~<digit,digit*>

The maximum number that symbol can be repeated is usually explained in

English rather than in the grammatical notation.

<VSFDB>::~<VSF compiler commands)(VSF statement>

<VSF compiler command>::~ p~compiler keyword>

<compiler keyword>::~LIST/NOLIST/MAP/ARRAY/CROSSREF/cOMMENTI

INITIALIZE/END'

<VSF statement>::~<VSF keyword><virtual array definition/integer>

<VSF keyword>::~ .INTEGER/REAL/OOUBLE/SIZE

<virtual array definition>::~<virtual array name~<dimension

specification>

<virtual array name>::~<alphabeti~~lphanumeric*>

<dimension specification>::~«,integer, ',integer'~»

<alphabetic>::~ A/s/c/D ••• /z·

<alphanumeric>: : ~<alphabetic.><,digit>

<digit>::~ 0/1/2 ••• /9'

It should be noticed that the manifest data type used in FORTRAN

[the IJKLMN rule] is not applicable for the virtual arrays.

5.3.2 The VSF Compiler Commands

The VSF compiler commands (VSFCC) are used to direct the VSF

compiler to choose some of its options. Each command is one keyword

preceded by a $. No blanks are allowed inbetween.

The available VSFCC's and their effect are as follows:

(a) $ARRAY

385

This command must be the first statement in the VSFDB and

consequently in the source program. It tells the compiler that the

next statements are the VSFDB body coded according to the rules of the

VSF source language rather than FCRTRAN. If the VSF compiler does not

find the $ARRAY command as the first record it will be aborted.

(b) $LIST

This command is used to get a list of the VSFDB until the end of

the VSFDB unless the list is suppressed by a $NOLIST command. The

$LIST command can be inserted anywhere in the VSFDB. If neither $LIST

nor $NOLIST is specified, the VSF compiler will default to $LIST.

(c) $NOLIST

This command is used to suppress the listing of the VSFDB. This

command can be inserted anywhere in the VSFDB. Any combination of the

$LIST and $NOLIST commands can be used within the VSFDB as required.

(d) $MAP

This command is used to produce a map of the VSFDB. The map

contains a full description of all the virtual arrays declared, type,

size, bounds and total size in bytes. The default of the VSF compiler

is 'NOMAP'.

(e) $ COMMENT

This command is used to insert comments in the VSFDB. Any text

can be inserted after the keyword $COMMENT. If multi-line comments

are required, the $COMMENT must be repeated in each line.

(f) $CROSSREF

This command is used to get a cross reference of the virtual

386

arrays as referenced in the main FORTRAN program and its subprograms.

The default is NO CROSS REFERENCE.

(g) $INITIALIZE

This command is used to set the declared virtual arrays initially

to zeros. The actual value initialized in each array is compatible

with its type. Initializing virtual arrays through the $INITIALIZE

command is faster than using nested DO loops in the program. No

initialization will take place if $INITIALIZE is not specified.

(h) $END

This must be the last statement in the VSFDB. It tells the VSF

compiler that the VSFDB is finished and the main FORTRAN program will

start.

5.3.3 The VSF Statements

VSF statements are very similar to the standard FORTRAN IV type

statements. All these statements must start from column 1 with a

keyword followed by at least a single space. No continuation lines are

allowed in order to conform with the VSF coding rules. The VSF statements

are used to define the virtual arrays used in the FORTRAN program.

A virtual array name must be of six alphanumeric characters as

maximum. The first of which must be an alphabetic as in standard

FORTRAN IV. No special characters or symbols are allowed within

virtual array names. The name must not be a "reserved" FORTRAN or

VSFDB keyword. The number of dimensions is limited to three only.

The virtual array-bounds must be positive and a dimension must be given

to allocate storage. A maximum of 100 virtual arrays could be delcared.

However, the total number of declared arrays (virtual or real) should

387

not exceed 255 arrays. The following are the allowable VSF statements:

(a) INTEGER

Syntax:

INTEGER namel,name2, •••

where namel,name2, ••• are the virtual array names and dimensions. The

names must conform to naming rules. The maximum number of elements of

a virtual array in one dimension is 2
32

_1 i.e. 2,147,483,647.

Example:

INTEGER IM(30000) ,X (100000)

Note that although IM starmwith the letter 'I', it will not default to

integer. Note also that each element occupies one computer word of 16

bits. The range of integer values is from -32768 to 32767. The internal

representation of integers is shown in Fig.5.3.

F

bits o 1 IS

S is the sign bit

S is 0 for positive numbers and 1 for negative ones

FIGURE 5.3: Internal representation of an integer

E F word 1

bits: 0 1 9 10 15

F word 2

bits: 0 15

S is the sign bit: 0 for positive

1 for negative

E is the exponent value

F is the fixed number

FIGURE 5.4: Internal representation of a real

388

(b) REAL

Syntax:

REAL namel,name2, •••

where namel,name2, ••• are the virtual array names and dimensions.

Example:

REAL YA(40000)

Each real element occupies two computer words (4 bytes) as shown in

Fig.s.4. The range of a real number is from .863617XI0-
77

to

.1157921xl0
78

• The decimal value of a real number is

(_l)s * 2(E-256) * F

(c) DOUBLE

Syntax:

DOUBLE namel,name2, ••.

where namel,name2, ••• are the virtual array names and dimensions.

Each element occupies four computer words as shown in Fig.s.s. The

-77
range of a double number is from: .8636108555094445xl0 to

.1157920892373162xI0
78

•

Example:

DOUBLE Z(l0000) ,MAT(30000)

I S I E F word 1
bits: o 1 9 10 15

F
11

word 2
o

F I word 3
o 15

S is the sign bit: 0 for lSitive F
word 4

15

1 for negative

E is the exponent value and F is the fixed number

FIGURE 5.5: Internal representation of a Double

389

(d) SIZE

Syntax:

SIZE integer

where integer is the available real stack size in binary words.

The minimum value is 128 binary words (256 bytes) which is the size of

one sector of the DASD. The maximum value is 32767 minus the size

occupied by real arrays in the main program. The default value is 128.

The VSF compiler will build a buffer in the real stack with the defined

size to store in it the active parts of the virtual arrays.

5.3.4 Use of Virtual Arrays

There are some considerations and restrictions in the use of

virtual arrays. These can be concluded in the following:

(1) Each virtual array declared in the VSFDB must be declared in the

main FORTRAN program and its units as a type statement with the same

number of dimensions but with one element only. The following example

illustrates the above mentioned rule:

$ARRAY

$MAP

INTEGER MKATI(30000)

REAL STIFF(40000,40)

DOUBLE SEED (100, 100,100)

$ END

PROGRAM MAINl

INTEGER MKATI(l)

REAL STIFF(l,l)

DOUBLE PRECISION SEED(l,l,l)

END

SUBROUTINE XYZ(A,B,C,D}

C A subprogram referencing any of the virtual arrays

INTEGER MKATI(l}

REAL STIFF(l,l}

DOUBLE PRECISION SEED(l,l,l}

EOO

390

(2) Virtual arrays are available to all subprograms provided that they

are declared as indicated in (I).

(3) Virtual arrays could appear in simple assignment statements only.

This is a VSF compiler constraint to keep its design as simple as

possible. To overcome this constraint, temporary storage locations

could be used. The following examples clarify this:

(a) I/O statements:

READ(S,ll}A(l,lOOOO}

is converted to

READ(S,ll}X

A(l,lOOOO}=X

(b) IF,GOTO,DO statements:

IF(A(l,Sooo}.LT.A(I,I}} GOTO 1000

is converted to

X=A(l,SOOO}

Y=A(I,I}

IF(X.LT.Y} GOTO 1000

Similar conversions could be used for GOTO,DO, ••• statements.

(c) Using subroutines and functions

Since all virtual arrays are available to all subprograms (as if

they were common), virtual arrays are not passed as parameters to

subroutines or functions.

CALL COMPT(A,B,X)

where A is a virtual array converted in the VSF Fortran to:

CALL COMPT(B,X)

(4) File numbers 98 and 99 (unit numbers 98 and 99) in VSF Fortran

programs should not be used. These unit numbers are reserved for

virtual arrays only.

391

392

5.4 THE VSF COMPILER

5.4.1 ,Implementation Considerations

There are three methods of language implementation in use. These

are: compilation, interpretation and pre-processing into another

language. Interpretation is not convenient for the present work since

the VSFDB is an extension to a FORTRAN program and FORTRAN is usually

compiled rather than interpreted. Efficiency of execution is another

reason to rule out the interpretation method. Writing a full compiler

for the VSFDB is time consuming and not related to other parts of the

thesis. So, pre-processing seems to be the logical alternative. In

fact, the pre-processing technique could be defined as a mapping

procedure from the source language, VSFDB, to another source language -

FORTRAN, for which a compiler already exists. This approach is sometimes

referred to as cascading [Brown, 1981J. The major advantage of this

approach is that portability is ensured and the produced programs are

portable as FORTRAN. On the other hand, full syntax and type checking

should be performed by the pre-processor otherwise errors will be

detected by the FORTRAN compiler. For that reason, the VSF compiler

requires that the FORTRAN program must be error free.

Another consideration is the language in which this pre-processor

is coded. There are three basic different approaches in encoding a

translator [Brown, 1981J:

(a) Writing it in the assembly language of the machine on which

it is to be run.

(b) Writing it in a high-level language.

(c) Writing it using some special compiler-building tool or

compiler-generators.

393

Approach (b) is chosen in this work. The reasons for this are:

(i) Ease of implementation, debugging and maintainance.

(ii) Portability is ensured through high level languages

for which standards exist.

(iii) Since our compiler is a pre-processor rather than 'true'

compiler and the VSFDB is fairly simple, it seems to be

logical to use the same high level language of the target

code i.e. FORTRAN.

5.4.2 The VSF Compiler Structure

It is well known [Bornat, 1979] that the compilation process can be

divided into a sequence of phases. Each phase carries out one of the

compilation sub-tasks. If the compiler goes through all the phases for

each part of the program it is called a single-pass compiler. On the

other hand, if the compiler goes through the entire program for each

phase before starting the next phase, it is termed a multi-pass compiler.

The phases of the VSF compiler are schematic ally shown in Figure

5.6. In the first phase, a record of the source program is read and a

lexical analysis is performed to partition the input character stream

into tokens. The resulting tokens are then passed and syntactically

checked. The result of this phase of the compilation is to create a

symbol table showing the virtual array names with their attributes:

type, number of dimensions and bounds. At the end of this phase, if

any errors were flagged then the compiler will be stopped to correct

these errors. If no errors were encountered, then the compiler will

start scanning the FORTRAN program to identify the virtual array names

that are used within the main body of the program or in one of the subprograms.

394

VSFDB
lexical and syntax

analysis

1
Generate equivalent
FORTRAN code

1
Scan original
FORTRAN program for
virtual arrays

.1
Generate new
FORTRAN program with
system calls

1
Use FORTRAN compiler

i
Object module VSF

I.
Library

Use link editor

1
Load module

FIGURE 5.6, Processing of VSF FORTRAN

If a virtual array name is found in statements other than assignment}

errors are flagged. The necessary FORTRAN code is generated for

assignment statements as explained later. All of these phases are done

in one-pass. The final produced FORTRAN program is then compiled using

the standard FORTRAN compiler and an object code is produced. The binding

of this object code with standard FORTRAN Library and the VSF Library

is done using the standard link editor to produce a load module

(executable code).

5.4.3 Compiler Dictionaries

395

During the execution of the VSF compiler, it uses two types of

dictionaries; static and dynamic. Both types of dictionaries consist

of a sequence of entries each consisting of the entry name together with

its attributes. The static dictionaries contain the commands and

statements keywords like INTEGER, MAP, •••• The dynamic dictionary is

usually called the symbol table. It contains the user invented names

for virtual arrays. For each entry, the following items of data are

maintained: six characters for the virtual array (VA) name, 2 bits for

its type, 2 bits for the number of dimensions and four double words

(integer*4) three for array bounds in each dimensi6n and the fourth to

mark the initial record number in the DASD at which the elements of this

array will be stored which is automatically computed by the VSF compiler.

The look-up procedure within these dictionaries is done by

sequential search. Although other types of searches like binary search

and hash addressing [Knuth, 1975J are usually used in practice for their

efficiency as compared to linear search, but in the case of the VSF

compiler since we have a very limited number of keywords and on the other

side usually a fairly small number of virtual arrays are used in a FE

system [probably only the master or the global stiffness matrix need to

be defined in the VA domainJ which justifies the simple linear search.

5.4.4 Translating the Assignment Statement

A simple way to recognise an assignment statement [Hopgood, 1974J

396

is that it has no zero-level commas on the righthand side of a zero

level u=u sign. Virtual arrays when appearing on the righthand side

of an assignment statement are substituted by a function call with the

subscripts passed as arguments in the function call. To illustrate

consider the following assignment statement in which the virtual array

STIFF appears on the righthand side,

X = A + B * STIFF(I,J) + C

This FORTRAN statement will be translated to,

where I

X = A + B * GETVSFELEMENT(array name, line no., start

address, type, Ndim,boundl,bound2,bound3,I,J,J) + C

* the function GETVSFELEMENT is a library function that will retrieve

a particular virtual array element. Fetching a virtual array element

may result in a DADSD reading if it was not already in the real stack.

* array name is a character variable containing the virtual array name.

* line number is the source line number of this statement.

The array name and the line number are used for error reporting.

* start address is the record number that identifies the start of the

virtual array in the backing storage file (DASD). This is a double

word integer.

* type is an integer that identifies the type of the array. An integer

is of type 1, a real is given type 2 and a double precision is given

type 3.

* Ndim is the number of dimensions of the considered virtual array.

* boundl, bound2 and bound3 are the virtual array bounds. These

parameters are passed in order to compute the actual offset of any

element from the first one. It is also useful to check that the

397

referenced element is within the array bounds, i.e. to check that

bounds in each dimension are not violated. Note that I,J are passed

to identify the particular element to reference. Note also that a "0"

is inserted to have compatibility when using the GETVSFELEMENT function

in case a three dimensional array is referenced. It is clear that the

length of the assignment statement will be increased and this is the

reason why assignment statements containing virtual arrays are limited

to one line length only.

If a virtual array appeared in the lefthand side of an assignment

statement it is translated as follows:

The lefthand side is replaced by a system variable VSF VAR 01 and

a new CALL statement is inserted immediately after the assignment

statement to store the computed value in the actual referenced element.

Tc illustrate consider the following statement which assigns a value to

an element of the virtual array STIFF:

STIFF(I,J) = 100.0 * El

This will be translated to:

VSF VAR 01 = 100.0 * El

CALL SAVE VSFELEMENT (VSFVAR01, array name, line no., start addres, type,

Ndirn, boundl, bound2,0, I,J ,0), where the arguments are similar to those

used in the GETVSFELEMENT.

398

5.5 THE RUN-TIME LIBRARY

Two main library subprograms are used namely: The GETVSFELEMENT

function and the SAVEVSFELEMENT subroutine. The syntax and the use of

these two subprograms was given in the previous section. The internal

structure of both of them is very similar. While the GETVSFELEMENT

fetches a virtual array element,. the SAVEVSFELEMENT does the opposite

and stores a virtual array element. To access the (I,J,K) element of

a three dimensional array these subprograms in the first instance will

check that:

HI~boundl

1~J~bound2

1~K~bound3

Although the formal definition of the FORTRAN prohibits only accessing

elements that are outside the whole space allocated to an array, it is

felt that making bounds checking for each individual dimension is very

useful particularly in large computer programs like those of FE systems.

If the subscripts I,J and K are within the declared bounds then

the actual element location is calculated as follows:

S = [(K-l) * dl * d2 + (J-l) * dl + IJ * F (5.1)

where dl, d2 and d3 are the dimensions of the virtual array as

declared in the VSFDB, and F is 1 if the array is integer, F=2 for real

arrays and F=4 for double arrays.

The sector number that contains this particular element is computed

according to:

IS-ll r = 128 + v (5.2)

where, r is the sector number

s is the element displacement relative to the first one in

the considered array. s is computed as in (5.1).

399

v is the sector number of the first element in the array which

is determined by the VSF compiler.

Note that the sector length is 128 words.

The offset of the element within the sector is given by:

f =
s-(r-v)*128

F

where: f is the offset in words

s,r,v and F as before.

(5.3)

At last, the location of this element is checked for existence in

the real stack. If it is there then the required operation is performed

(storing or fetching). Otherwise, the element is retrieved from the

virtual stack [i.e. from the DASDj and placed in real stack. If there

is no room in the real stack for the referenced element, then parts of

the real stack must be swapped to leave space for the required element.

The replacement algorithms will be explained in a later section. A

library routine which is the error handler will be explained in the

next section. For the implementation of a new proposed replacement

algorithm a library routine is explained in Section 5.7.

There are three versions of the main library subprograms:

GETVSFELEMENT and SAVEVSFELEMENT. The returned value could be integer,

real or double precision according to the type of the VA.

When initialization is required for VA, a library routine ZERIOZEVSF

is used to initialize the sectors on the DASD which correspond to a

virtual array with the appropriate zeros according to the type of the VA,

i.e. either a 0 or O.OEO or O.ODO is moved to all the sectors allocated

for the VA to be initialized.

400

5.6 THE VSF ERROR MESSAGES

Since programs are man-made we expect errors. It is very important

to have good error checking with suitable error reporting to ensure

that the generated code is correct. Three types of errors could be

classified: syntax, semantics and execution. In the following we consider

the VSF errors only. The FORTRAN errors are detected by the FORTRAN

compiler. Other run-time errors are detected either by the hardware

(like arithmetic overflow) or by the operating system (like addressing

a location outside the user data domain). The VSF syntax errors are

flagged if a token cannot be recognised. To illustrate, if the $MAP

command was misspelled as $MOP then a syntax error is flagged as the

compiler cannot identify the keyword. Another type of error that can be

found is the declaration of an array twice. A third type is that of

referencing an element outside the array bounds. The error messages of

the VSF are given in the Appendix.

The main concepts in designing the error messages could be

summarized in the following:

(i) The whole error messages are saved on a file which could be

accessed directly and concurrently by many users. A special

routine is written than accesses that file. This routine is

called the VSFERRORMESSAGE. The arguments of this routine are

the start record number and the end record number of the records

that contain the relevant error messages. To illustrate, if an

error message is stored in the sixth and seventh records of the

error message file, then, the call statement will be:

CALL VSFERRORMESSAGE(6,7)

(ii) Error messages are written in an eye-catching fashion to be easily

found. Moreover, an audio-alarm (Bell) is produced on the

terminal to get the users attention.

401

(iii) Run-time errors like the reference of an element outside array

bounds (i.e., bounds violation) are supplemented by run-time

information giving the current values of the relevant parameters.

402

5.7 REPLACEMENT ALGORITHMS

If an element of a virtual array is referenced, the VSF library

subroutines will check that this element is in the real stack. If it

is not the case, then the sector of the DASD that contains that element

will be read and stored in the real stack. If there is no room in the

real stack, then one of the existing sectors should be removed from the

real stack and swapped to the virtual stack (if necessary) to leave

space for the new one. The policy by which a sector is chosen to be

removed from the real stack is called the replacement algorithm.

Different replacement algorithms are already known and implemented in

mainframe computers. Perhaps the four most well known algorithms are,

[Belady, 1966 and Coffman, 1973J:

(a) First-in-First-out: The FIFO algorithm, i.e. the oldest

pages are replaced.

(b) Least recently used item replacement (LRU)

(c) Last-in-First-out: The LIFO algorithm, i.e. the newest pages

are replaced.

(d) Working set method: only locations which are not part of

current working sets may be replaced. A working set of pages

referenced by a program during the previous t seconds.

However for micro-computers, it is only recently that similar ideas have

evolved. Odgen (1979) described the memory mapping implemented in four

microprocessors. The mapper is implemented in hardware and the logical

address is limited to 16 bits in the Intel 8086 while the physical

address can be as big as 1MB using 20 bits. The concept of virtual

memory for microcomputers was introduced later by Schmitt [1983J. Using

memory-management units (MMU's) designed to do the hardware functions

403

required for a virtual memory computer system it will be possible to

build a virtual memory system based on a microprocessor like the

MC68000 [Motorola, 1981] or the Intel 8086 [Intel, 19811.

The hardware implementation of the VSF is not possible within the

course of this work. First, it needs resources that are not available,

i.e. like the memory management unit which are not available for the

HP3000 computer used in this work. Second, it is a time-consuming

process. The other alternative is, therefore, to use software to

implement such algorithms, although the exeuction will be much slower.

The optimal replacement algorithm is only possible if the computer

can look ahead at the future references and throw out the pages which

are referenced furthest in the future [Martin, 19771. This cannot be

achieved in practice. However, the situation may be different between

mainframe computers and mini and micro-computers. In a mainframe computer.,

many processes are running concurrently and doing different applications.

So, thinking of a replacement algorithm for such big computers will be

independent of the running applications since they do not have common

features. On the other hand, for small computers the running

applications are either one at a time in single user machines or related

to each other in multi-user systems. To illustrate, consider an·

engineering design office with a mini-computer installed. It is very

probable to find two or. three processes running concurrently and all of

them use a finite element package like MSAP to solve different problems.

For that reason it may be logical to think of a replacement algorithm

that best suits the running application rather than use one of the well­

known general replacement algorithms which do not consider the running

applications altogether. To illustrate, if a process is doing matrix

404

addition then it is preferable to keep the corresponding rows in the

operands of the matrix addition operation in the real stack. After the

addition is done we do not need these rows in real stack any more.

On the other hand for matrix multiplication it is desired to keep a row

of the first operand of the matrix multiplication and a column from the

second operand. In a Gaussian elimination operation it is suitable to

keep the pivot roW and column in real stack.

To implement such ideas two approaches could be considered. First,

it is possible to use some modified version of the working set method,

where the set of sectors referenced by the program during the previous

t time units are not considered for replacement. The other approach is

more simple and seems that it may give better results but it needs some

programming skills. Let us call it the "Keep-Release Technique" (K-R

method). In this method two system calls are used to keep portions of

virtual arrays in the real stack and vice versa. The calls have the

format:

and

KEEP REAL idl,id2, •.•

RELEASE REAL idl,id2, •.•

where idl, id2, ••• are virtual array identifiers as shown in the

following examples.

The effect of these statements is to set or unset a bit for each

sector in the real stack to identify whether it is to be kept in the

real stack or it may be replaced.

Example 5.1: Matrix addition

C = A + B

where A,B and C are virtual arrays. The VSF FORTRAN code could be:

DO 20 I=l,N

KEEP REAL A(I,*) ,B(I,*) ,C(I,*)

DO 10 J=l,N

10 C(I,J)=A(I,J)+B(I,J)

RELEASE REAL A(I,*),B(I,*),C(I,*)

20 CONTINUE

Example 5.2: Matrix Multiplication

DO 100 I=l,N

DO 100 J=l,P

C(I,J)=O

KEEP REAL C(I,J) ,A(I,*),B(*,J)

DO 50 K=l,M

50 C(r,J)=C(I,J)+A(I,K)*B(K,J)

RELEASE REAL C(I,J) ,A(I,*) ,B(*,J)

100 CONTINUE

Example 5.3: Simple Gauss-Jordan method

The coefficients are in an NXM array

DO 100 I=l,N

PIVOT=X(I,I)

KEEP REAL X(I,*),X(*,I)

DO 10 J=I,M

10 X(I,J)=X(I,J)/PIVOT

DO 20 K=l,N

PIVOT=X(K,I)

IF(I.EQ.K) GOTO 20

DO 15 J=l,M

15 X(K,J)=X(K,J)-PIVOT*X(I,J)

20 CONTINUE

RELEASE REAL X(*,I),X(I,*)

100 CONTINUE

405

The actual implementation of the above mentioned methods requires

the modification of a Fortran compiler. However, since the source code

406

of FORTRAN/3000; the HP3000 FORTRAN compiler; is a proprietary code

and not available a simulation is used to study the effectiveness of

the K-R method compared to a FIFO algorithm as shown in 5.9.

Four tables are kept in a common block called VSF TABLES in order

to implement the VSF. These tables are:

(a) Real Stack which contains the values kept in the computer memory.

The size of this table is dependent on the real stack size defined in

the SIZE statement within the VSFDB. Since the physical size of a

sector on the DASD used in this work is 128 words and since we need

three words for each sector to hold its address and two flags to

indicate whether it has been modified and to indicate whether it is

kept in real stack, it follows that the number of sectors that could

be kept in real stack is given by,

n = ISizel
1131

Read and write of sectors are done using unformatted binary transfer

to achieve faster execution, e.g. READ(99@record no.)BUF where record

(5.4)

no. is the address of the sector to be read and BUF is a real array of

64 elements which occupies that sector.

(b) Sector table which contains the sector addresses of those sectors

stored in the real stack. The length of this integer vector is n as

given by (5.4).

(c) Modification bit which is a vector of flags used to indicate whether

a sector has been modified or not. The importance of this flag is that

~lhen replacing a sector from the real stack if this flag was set, then,

the sector to be replaced is copied again to the virtual stack before

being overwritten.

(d) Replacement bit table which is used for the K-R algorithm to indicate

407

whether a sector is to be kept in real stack or is released.

In addition to these tables, other common pointers are used to

indicate the current and maximum size of the sector table; the type

of replacement algorithm and the sector to be replaced in the FIFO

algorithm.

Figure (5.7) gives the steps used to store a virtual array element.

Assume that element I of virtual array x is to be assigned the value y

which is in real stack, i.e. executing the statement X(I)=y. Note that

y may be any arithmetic expression. A similar process is used to fetch

a VA element i.e. to execute a statement like y=X(I) where X is a

virtual array.

START)
"'---r----'

compute sector
n and offset f

X (I)

number
for

Scan the sector table
for n

Exist?

Real
stack
full?

Yes

Yes

No

Choose a sector for
replacement

Mod No r---==--------JI

sector to DASD

Read sector nand
move it to real stack

Update sector table,
pointers, ••.

Store y in sector N
with offset f

END

FIGURE 5.7: Storing a VA element

408

409

S.S VSF PROCEDURE

The VSF compiler is saved as a load module in the computer system

library under the name VSF.PUB.SYS. Every user is to get the execute­

access to that program. The VSF library routines (problem independent

subprograms) are saved in compiled form under the name VSFLIB and read­

access is granted to all users. The error messages file is saved in

ASCII form under the name VSFERROR.PUB.SYS and all users are given the

read-access to that file. The file which contains the VA is a temporary

one built in the user file' domain under the name VSFARRAY and its size

is computed by the VSF compiler.

In order to facilitate the invokation of the VSF compiler, a

procedure is defined and added to the system procedures. Since the name

given to the standard Fortran compilation, link and go procedure is

FORTGO we used a similar name to the VSF procedure: VSFGO.

410

5.9 TEST PROBLEMS

In order to get some benchmarks of the speed of the VSF, numerical

experiments were conducted. Three test problems are considered as

follows:

(a) Addition of two matrices each of 64x64 elements.

(b) Addition of two matrices each of l28xl28 elements.

(c) Multiplication of two matrices each of 64x64 elements.

In each problem different cases are considered: different real stack

sizes, different replacement algorithms and different orders of execution.

We considered real stack sizes range from 0 to a maximum value of 25600

words which corresponds to the size of 200 sectors on the disc.

Three replacement algorithms are considered: FIFO, LIFO and K-R. The

first two problems of matrix addition are solved in two different orders:

row by row and column by column addition.

Test Problem (a)

Two matrices A and B are added and the result is stored in a third

matrix C. All matrices are of type real. Before giving the results of

this test problem we notice that:

(1) It is possible to have all the three matrices in real stack

and thus one of the runs will be with all the three matrices

in real stack.

(2) Since virtual and real arrays are stored columnwise it is

expected that execution time will be less if the program is

coded such that matrix addition is done column by column

rather than row by row. In other words code X will be

executed faster than code Y as follows:

Code X:

DO 100 J=l,N

DO 100 I=l,N

100 C(I,J)=A(I,J)+B(I,J)

Code Y:

DO 100 I=l,N

DO 100 J=l,N

100 C(I,J)=A(I,J)+B(I,J)

where any or all the arrays is virtual.

411

(3) Real stack allocated, using the VSF size statement, is an

important factor. Various stack sizes are tested as follows:

0, 128, 256, 384, 1280, 2048, 2560, 4096, 8192, 16384, 20480,

24576 and 25600.

(4) Three different replacement algorithms are tested: FIFO, LIFO

and K-R. However, since the K-R algorithm requires the allocation

of a column of each A,B and C in real stack and since each column

requires 128 words; it implies that the K-R method requires 384

words at least as a real stack size.

Table 5.1 gives the results of this test problem. These results show

that the processing sequence has a very significant effect on execution

time particularly for small sizes of stack. It is also evident that the

K-R algorithm gives better results than LIFO and FIFO provided that

processing is done column by column. No gain in execution time is

noticed for larger stack sizes in the case of the K-R method.

It is also clear that the FIFO algorithm is faster than LIFO.

The time required to do the matrix addition without real stack is more

in the case of using row-wise addition as compared to column-wise

ordering. This is due to the fact that matrices are stored column-wise.

This implies that accessing the elements of the same column of any of

412

the considered arrays will be done without the repositioning of disc

heads since elements of the same column are stored in the same sector.

In case of row-wise computation the time required to access elements

of the same row consists of head positioning plus latency because

these elements are stored in different sectors.

Test Problem (b)

This is a similar problem to the one just considered. The only

difference is that matrices of 128x128 elements are considered rather

than 64x64 elements. These matrices cannot be saved in real stack

together. In otherwords, this problem cannot be executed on the

considered class of computers. Consequently, no timing data is

available when the three arrays are kept in real stack. The results of

this test problem are shown in Table 5.2. It is noticed that the

superiority of the K-R method compared to other techniques is evident.

It is also clear that since in matrix addition the last-in sector is

that of C elements which are always modified then the LIFO algorithm

will take more time than FIFO.

Test Problem (c)

This problem considers matrix multiplication. In this case two

matrices A and B of 64x64 elements are multiplied to give a third

matrix C. The elements of C are computed one by one in column-wise.

form. Different stack sizes are considered. The three replacement

algorithms are considered: LIFO, FIFO and K-R. However, since matrix

multiplication requires a row and a column from both A and B and since

A and B are stored column-wise it is evident that getting a row from A

413

is very expensive due to the many readings to be done. Keeping a row

of A will result in reading all sectors of A. Since A is a 64x64

array and a real element occupies two words, then each column of A

needs 128 words, i.e. one sector on the disc. It is most convenient

in this case to keep the whole of A in real stack to avoid "thrashing".

To keep the two columns of Band C we need only two sectors. The

results of this problem are shown in Table 5.3. Note that we considered

the case of real stack size = 8448 words which is the size necessary

to keep A in full, a column of B and a column of C. Again, the K-R

algorithm gives better results than the two others.

414

Real Col. by Col. Row by Row
stack
Size FIFO LIFO K-R FIFO LIFO K-R
(words)

0 185.1 187.2 NA 227.2 227.2 NA

128 192.5 187.8 NA 227.4 227.3 NA

256 179.7 188.7 NA 231.2 226.8 NA

384 6.7 182.6 5.6 231.2 226.0 224.8

S12 6.8 185.0 5.6 231.3 224.2 224.2

640 6.9 183.1 5.6 191.1 182.0 223.5

768 6.9 181.6 5.6 190.9 181.4 180.5

896 6.9 180.9 5.6 187.7 182.2 181.9

1024 7.1 180.5 5.6 186.3 179.5 179.7

1152 7.0 176.1 5.6 186.7 179.0 177.8

1280 7.2 179.9 5.6 189.3 179.0 180.0

1408 7.1 181.6 5.6 187.0 177 .0 177.1

1536 7.2 177.3 5.6 192.9 176.7 175.5

2048 7.4 175.3 5.6 188.0 174.9. 171.6

2560 7.5 171. 7 5.6 189.8 169.4 169.6

4096 8.4 162.5 5.6 190.6 159.4 159.5

8192 10.0 133.9 5.6 196.0 131.8 132.2

16384 12.1 77.3 5.6 205.7 76.2 76.7

20480 13.9 48.6 5.6 210.3 50.9 47.8

24576 16.7 16.7 5.6 17.0 17 .0 16.9

25600 16.7 16.7 5.6 17.0 16.8 17.0

TABLE 5.1: Time of adding two matrices 64 x64 in seconds

Time in case of using real stack only = 1.2 seconds

Real Stack FIFO LIFO K-R
Size in words

0 903.1 909.2 NA

128 9l0.3 909.5 NA

256 836.3 908.6 NA

384 28.7 905.6 NA

512 29.0 902.7 NA

640 29.3 901.8 NA

768 29.4 898.8 24.2

896 29.7 895.7 24.2

1024 30.0 894.9 24.2

1152 30.1 892.1 24.2

1280 30.4 888.9 24.2

1408 30.7 888.0 24.2

1536 30.8 884.9 24.2

2048 31.8 874.8 24.2

2560 32.7 866.9 24.2

4096 35.6 838.9 24.2

8192 43.0 761.4 24.2

16384 57.7 607.2 24.2

20480 63.8 526.3 24.2

24576 61.0 446.6 24.2

25600 63.,7 418.8 24.2

TABLE 5.2: Time of adding two matrices 128x128 in seconds

• Processing is done column by column

415

416

Real Stack
Size in words

FIFO LIFO K-R

0 4743.6 4742.6 1
128 4765.2 4751.4

256 4703.6 4710.6

384 4248.1 4693.4

512 3073.4 4220.9

640 2956.2 4153.6

768 2932.1 4001.3 I

896 2864.8 4088.4 NA
1024 2823.2 3913.5

1152 2834.0 3934.3

1280 2771.2 3882.3
I 1408 2804.8 3732.4

i
1536 2761.9 3818.9

2048 2721.9 3504.8

J
2560 2796.8 3237.4

4096 2718.2 2480.9

8448 2764.4 684.8 402.4

16384 719.1 603.4 441.5

20480 781.1 596.8 492.3

24576 561.4 559.9 563.9

25600 559.8 561.0 563.6

TABLE 5.3: Time of multiplication of two 64x64 matrices in seconds

Time in case of using real stack only = 57.5 seconds

417

5.10 CONCLUSION

A solution is presented for the problem of limited stack size in

mini- and micro-computers. A virtual stack facility (VSF) is developed.

No additional special hardware is required for the implementation of

the VSF. A new simple replacement algorithm is given which requires

some programming skills but gives better results for the considered

test problems than classical replacement algorithms. The VSF could be

used in FE packages without excessive housekeeping procedures. Further

studies could be done in this direction. Among them is the development

of new algorithms to implement the VSF, using hardware orfirmware to

perform the VSF functions which will speed up its operation by an order

of magnitude and finally, the use of dedicated microprocessors to perform

VSF thus relieving the operating system from the burden of VSF

overheads.

CHAPTER 6

GENERAL PURPOSE MATHEMATICAL SOFTWARE

FOR THE FINITE ELEMENT METHOD

TABLE OF CONTENTS

6.1 Introduation

6.2 Requirements of a General Purpose Mathematiaal FE
Software Paakage

6.3 The Problem Definition

6.4 Domain of Applioations

6.5 The Paokage Struature

6.5.1 The Preprooessor

6.5.2 The Mesh Generation

6.5.3 Node Numbering

6.5.4 Solution Methods

6.5.5 Subprograms

6.5.6 The Postprooessor

6.6 Input Data Sets

6.6.1 The Global Variables

6.6.2 Speoifying the Equations

6.6.3 Speoifying the Element Parameters

6.6.4 Speaifying Computational Parameters

6.6.5 Speoifying the Topology

6.6.6 Speoifying the Boundary Conditions

6.6.7 Speoifying the Outputs

6.6.8 Inputs of the Postprooessor

6.6.9 Examples

6.7 Speoial Teohniques

6.7.1 Utilization of Symmetry

6.7.2 Mixed TYpe Boundary Conditions

6.7.3 Solving a Single Equation

6.7.4 Solving Several Simultaneous Equations

6.7.5 Non-Uniform Distribution of Elements

6.7.6 updating the Master Matrix

6.7.? Accessing the Solution Stored by an Earlier Run

6.8 Computer Implementation

6.8.1 Implementation on a Mainframe Computer

6.8.2 Implementation on a Mini-computer

6.9 Enhancements to the Package

6.9.1 Performance Optimization

6.9.2 Definition of User Variables

6.9.3 Supercomputer Implementation

418

6.1 INTRODUCTION

It has been shown in Chapter 4 that FE software can be classified

into two main categories: Engineering and Mathematical. In Chapter 4

some FE programs of engineering type have been developed and presented

and used to solve some engineering problems. In this chapter, a general

purpose mathematical software program for the FEM is presented. This

package will be used to solve some groundwater problems in the next

chapter. In mathematical FE software the starting point is the partial

differential equation (PDE) itself with the boundary conditions specified

on a 2-dimensiona1 domain. The early mathematical software for PDE was

based on finite differences. However, after the FEM became more popular,

much FE-based mathematical software was developed. Among these is the

TWODEPEP package which is now available as one of the IMSL products

[IMSL, 1983). This package was originally developed by G. Sewe11.

The original version was capable of solving a single linear elliptic

equation in a polygonal region with simple boundary conditions. Since

then, many enhancements have taken place. The capabilities of the

TWODEPEP preprocessor will be detailed in a later section but to

mention, the package is now capable of handling non1inear, time

dependent problems, more than one equation can be solved simultaneously,

irregular and curved boundaries are accommodated and even more involved

boundary conditions can be considered.

419

6.2 REQUIREMENTS OF A GENERAL PURPOSE MATHEMATICAL FE SOFTWARE PACKAGE

It has been shown in Chapter 4 that FE software attributes are

numerous and their relative importance are dependent on the purpose

for which they will be used. Despite this, there are general require­

ments which are desirable in any computer software in general, and for

mathematical FE software in particular. These can be listed as follows:

(i) Generality: Since many of the physical phenomena can be modelled

using the same PDE, it implies that the more general the mathematical

FE software (MFES) is, the wider the range of applications which can

be handled. Since it is impossible to have a single MFES that can handle

all types of PDE's, a wise choice is to select the class of PDE's that

covers many applications. Further it can be safely said that the class

of second order PDE's satisfy this requirement and in fact the TWODEPEP

program handles a wide class of these problems. However, it is possible

that by reformulating the original model, problems that cannot be

handled directly may be tackled by the MFES.

(ii) Easy user interface: One of the most critical points to the

success of a MFES is its user interface. This can be realised through

efficient easy-to-use pre- and post-processors. Since the main model

to be solved by MFES is a DE, the input data sets should be better

specified in equation-like form. This requirement is satisfied by the

presented package as will be demonstrated when describing the method

to specify the governing equation(s}, its boundary conditions together

with other relevant parameters.

(iii) Expandability: Software is a dynamic process which means that

the developed MFES will normally be upgraded and extended to handle more

problems which were not originally be handled. This requires that the

420

MFES be expandable and has an open-ended design. Features like

modularity and top-down design are likely to allow for more expandability.

Expandability can be realized also by allowing the user to program

within the environment supplied by the MFES. In fact, the presented

software do possess many features of expandability. It allows the user

definition of Fortran subprograms within the TWODEPEP.

(iv) Portability: Due to the numerous hardware available, MFES must

be portable so that it can be moved from one machine to another.

Portability is usually realised through the use of a high level

programming language like Fortran. However, since MFES are usually

complicated, many of these packages require the accessing of some

supporting libraries which may not be available on all machines. TO

limit the effect of this feature and other similar ones, the parts of

codes which contain these particular features must be isolated. Some

special features of some computers can be utilized to increase the

efficiency of the MFES at the expense of portability. Such features

should not be utilized unless the increase in efficiency is considerable.

(v) Efficiency: MFES is one of the heaviest computational software.

It is not abnormal for an analysis of a time-dependent complex problem

-to consume several hours of processing time. Efficienct algorithms and

the efficient implementation of them is thus a critical requirement for

a MFES. It should be noted, however, that usually special purpose

packages are more efficient for the class of problems they can handle

as compared to general purpose ones. Efficiency can be increased also

if special features of the hardware can be utilized. Again this is in

conflict to portability.

(vi) Reliability: This very important requirement can be realized if

421

sufficient test problems have been tested against the considered MFES

and the results are compared with other methods. This in turn indicates

the importance of setting standards for FE software in general as

explained in Chapter 4. Since any complicated software is normally

not 100% error free, a reliable software must be capable of detecting

error conditions and implement some error indicators inside it.

Unfortunately, this capability is not implemented in most of the known

MFES. The TWODEPEP is not an exception.

Considering the above-mentioned requirements it is clear that the

TWODEPEP satisfies most of them. Two exceptions are noticed: the

dependence of the TWOPLOT, which is the post processor of the TWODEPEP,

ana plotting supporting library as will be indicated later, and the

second is the lack of error measures of the computed solutions. However,

we must notice that it seems that the vast majority of FE software have

the same situations.

422

6.3 THE PROBLEM DEFINITION

The TWODEPEP is a small, easy-to-use finite element package which

can be used to solve a large class of elliptic (steady-state),

parabolic (time-dependent) and eigenvalue partial differential equations

problems in general two-dimensional regions. Moreover, some hyperbolic

equations can be solved provided that they possess smooth initial and

boundary conditions. In fact, this package satisfies most of the

requirements of the general MFES as illustrated earlier. It contains

a pre-processor, a FE processor and a post-processor. Its structure

will be explained later, but now the problem definition will be

explained. Considering two PDE's in a general 2-D region it is possible

to write these equations in its general form as:

au
Cl(x,y,u,v,t)at =

a
~ OXX(x,y,u ,U IV IV ,u,v,t)
oX X y x y

and,

a
+ ~ OXY(x,y,u III IV IV ,u,v,t) +

ay X y X Y

+ Fl(X,y,u ,U IV IV ,u,v,t)
x Y X Y

av
c2 (x,y ,u ,v, t)iit a

= ~ OYX(x,y,u ,U ,V ,V ,U,v,t)
oX X y X Y

a + ~ OYY(x,y,u ,U ,V ,V ,u,v,t)
ay X y X Y

+ F
2

(X,y,u ,U ,V ,V ,u,v,t)
X y X Y

for (x,y) in the region R with:

u = FB1(s,t)

and v = FB2(s,t)

for s on part of the boundary (aR
l

)

and OXX.n + OXY.n GBl (s,u,v ,t)
X Y

and OYX.n + OYY.n GB2(s,u,v,t)
x y

(G.l)

(G.2)

(G.3)

(G .4)

(6.5)

(G. G)

on (aR
2

)

and

for t=T • o

where (n ,n)
x y

u =

v =

423

is the unit outward normal to the boundary and:

Uo(x,y) (6.7)

Vo(x,y) (6.8)

The package can be used to solve up to five simultaneous equations

per set of equations and up to five of these sets is allowed as will be

explained later. For the sake of simplicity and readability, the case

of two equations will be used in other parts of this chapter. Simpler

forms of these equations are used in special cases, for example, in

elliptic equations (steady-state) the derivatives with respect to t

will vanish with the initial conditions expressed in (6.7) and (6.8).

These will be explained later when solving steady-state equations,.

424

6.4 DOMAIN OF APPLICATIONS

This general purpose MFES can be used to solve a wide range of

applications in Applied Mathematics, Physics and Engineering. Some

of these applications are listed here:

(i) Elasticity problems in two dimensional regions. The 2-D elastiCity

equations may be written as:

and

a a -- 0 + -- 0 + Fl(x,y,u,v) = 0
ax x ay xy

o ax xy
a + -­

ay
o + F2(x,y,u,v) = 0

y

(6.9)

(6.10)

where (u,v) is the displacement vector, Fl and F2 is the body force

vector (force per unit volume) and 0 ,0 and 0 are the tensile stresses
x y xy

in the x,y directions and the shear stress, respectively. Stresses can

be related to strains as explained in Chapter 2. For completeness, in

case of plane stress, the relationship between stresses and strains can

be expressed as:

2
o = E(e +ve)/(l-v)

x x y

o = E(e +ve)/(1_v
2)

y y x

o =Ei.2e /(l+v)
xy xy

(6.11)

(6.12)

(6.13)

where V is the poisson's ratio, E is the modulus of elasticity, e , e
x y

and e are the strains in x,y and shear strains, respectively. The
xy

boundary conditions may be specified in terms of boundary displacements

on part of the boundary:

u = FB1(s) (6.14)

v FB2(s) (6.15)

On the other part, boundary forces may be specified as:

o n + 0 n = GB1(s,u,v)
x x xy y

(6.16)

and o n + 0 n = GB2(s,u,v)
xy x y y

(6.17)

425

where (GB1,GB2) is the boundary force vector (force per unit area) •

It is worth mentioning that some 2-D elasticity problems have been

solved using an engineering FE software; the ELASTIC package in Chapter

4.

(ii) Diffusion and Heat Conduction:

The diffusion equation may be written as:

au I -- = a(-J) ax + a(-J)/ay + Fl(x,y,u,t)
at x y

(6.18)

where u is the concentration, (J ,J) is the flux vector and Fl is
x Y

the generation rate for u due to sources and sinks. The flux may be

a function of x,y,t,u and the gradient of u. In case of steady-state

problems, the left-hand side of the differential equation becomes o.

On part of the boundary, the concentration may be given by:

u = FBl (s,t) (6.19)

and on the other part, the boundary flux may be given by:

-J n - J n = GB1(s,u,t) x x y y
(6.20)

where GBl is the inward boundary flux of u.

(iii) Minimal surface problem:

If U(x,y) is the vertical height of a surface above the point

(x,y), then the surface which has height FBl(s) above the boundary and

which minimizes its surface area satisfies:

a
ax

u = FBl (s)

= 0 (6.29)

In addition to these sample applications, many other applications

can be solved using this package. Some groundwater flow problems will

be solved in the next chapter using this package.

426

It should be noticed, however, that although this package has a

wide range of applications, it has some limitations as the case with

similar MFES. Some of the main limitations can be summarized as:

(i) problems in 2-D can be solved but in general 3-D cannot except

if they are axisymmetric whence they can be considered as 2-D problems

in r-z geometry.

(ii) Models based on other equation-types like integral equations

cannot be solved directly unless a transformation can be found to

convert them to the standard TWODEPEP form.

(iii) If the boundary conditions are functions of u ,u ,v or v , then
x y x y

the package cannot solve the problem, i.e. the boundary conditions must

not be a function of the derivatives of u or v to be handled by the

package.

(iv) The boundary conditions on a particular arc may be of one type

only but not mixed. This difficulty can be overcome by converting

Dirichlet conditions into equivalent Neumann conditions on these arcs

where the condition u=FB1(s,t), (say) can be written as:

OXX.n + OXY.n = -BETA*(u-FB1(s,t))
x y (6.22)

20
where BETA is a very large number 10 say, which can be handled by

the package.

(v) Only one type of triangle can be used throughout the whole region

at a time. It is not possible to have higher order elements in parts

of the region (p-refinement) but rather, element condensation (h-

refinement) can be specified only.

427

6.5 THE PACKAGE STRUCTURE

The package consists of three major parts: the pre-processor, the

FE processor and the post-processor. The pre-processor accepts the

user input and generates a driving main program and some problem­

dependent subprograms. These when compiled and linked with other

problem-independent modules result in the FE processor which in fact

includes some of the pre-processing functions like mesh generation and

node numbering. So, it is actually more convenient, in my opinion, to

call the pre-processor as an interpreter or preprocessor compiler since

its function is not exactly as understood by classical FE pre-processors.

However, the outputs of the FE analysis can be plotted using the

TWOPLOT program which is a member of this package that can be used for

plotting some of the results. In what follows, the structure of this

package is detailed. Much of this material is derived directly or

indirectly from the TWODEPEP manual [IMSL, 1983] or from the listing

of the source modules.

6.5.1 The Pre-Processor

The pre-processor used in this package allows the user to write

the problem definition in an easy readable manner. It is used to control

the dimensions size so that the required core is allocated to the problem.

This pre-processor is a Fortran program which reads the input supplied

by the user in the specified format and creates a Fortran program

which consists mainly of the main segment (the driver) and any user

supplied functions plus some additional functions which are problem

dependent. This new Fortran program has then to be compiled ·and linked

with other general problem independent modules to form the final program

428

to solve the required problem. Thus, in fact this preprocessor is of

the type used in Chapter 5 to compile the VSF programs. It is customary

to call these type of "compilers" as: interpreters, pre-processors or

cascade compilers as has been detailed in Chapter 5. The FE pre­

processors functions, like mesh generation and node numbering are in

fact an integral part inside the generated Fortran program.

6.5.2 The Mesh Generation

The user supplies an initial triangulation with only enough

triangles to define the region and associated boundary conditions. The

mesh consists of triangles which may be quadratic, cubic or quartics.

Only one type can be used throughout the whole region. The user

specifies the maximum number of triangles to be created and a particular

optimal function to guide the refinement of this triangulation is

explained later. Triangulation is done by dividing each triangle by a

line from the midpoint of its longest side to the opposite vertex. If

this side is not on the boundary, the triangle which shares that side

must also be divided to avoid nonconforming elements and discontinuous

basis functions.

The element library of this package consists of three different

element types only: the standard six nodes triangle with quadratic

basis functions, the ID-nodes cubic triangle and the l5-nodes quartic

triangle. In all cases one of the edges may be curved when adjacent

to a curved boundary. These elements have been described in Chapter 3

and will not be repeated here.

For the time dependent problems, either the implicit or Crank­

Nicolson scheme may be used to do time discretization. Optionally, a

429

Richardson extrapolation may be done to double the order of convergence

of the time discretization. All these techniques have been developed

and presented in Chapter 3.

6.5.3 Node Numbering

As explained earlier, node numbering is very important in the FEM.

solution time of FE equations is highly dependent on the master matrix

bandwidth which in turn is proportional to the maximum difference

between two node numbers in the same element. The node numbering used

in this package is a modified version of the well-known Cuthill-McKee

(CM) strategy which has been presented before. The first step, is

therefore, to number the nodes according to the CM algorithm. Assume

that the Jacobian semi-bandwidth is M. Then, compute the local semi­

bandwidth of each triangle K which is the maximum difference between

any two node numbers inside each triangle. Assume that there are N

triangles of local semi-bandwidth equal M. The algorithm proceeds

then, as follows:

(I) Look at each of the N triangles. These "critical" triangles are

considered since any decrease in their local semi-bandwidth may result

in a similar decrease in the Jacobian semi-bandwidth. Consider the node

with the highest number in each of these triangles and start switching

this node number with the nodes which number are less than this by 1,2

and 3 and determine whether this will result in any advantage or not.

By advantage we mean that either M will be decreased, or, the number N

will be decreased, i.e. the number of critical elements will be decreased.

(2) The same procedure may be repeated in the opposite direction, i.e.

look to the lowest node number in the critical triangles and consider

~30

the switching with the nodes which numbers are +1, +2, and +3 to test

whether it is advantageous or not. The following is an example for

illustration of the node number switching concept: Consider the part

of the FE mesh shown in Figure (G.l). Assume that the critical triangle

is {95,100,105} i.e. the semi-bandwidth of the Jacobian=lO [Figure

G.l(a)]. Switching nodes 105 and 104 will result in decreasing the

semi-bandwidth to 9 which is advantageous as shown in Figure G.l(b).

This heuristic usually can decrease the semi-bandwidth of the Jacobian

by up to 20%.

104

97/------7'\

95

(a) Original CM numbering, semi-bandwidth = 10

105

97f-----~

95 104

(b) Switch nodes 105 and 104, semi-bandwidth = 9

FIGURE G.l: Node numbering switching

431

6.5.4 Solution Methods

The resulting algebraic equations, which may be linear or non-

linear, are solved by Newton's method. One iteration is done. The

system of linear equations which must be solved in each iteration cycle

is solved directly by block Gaussian elimination. The core store

required to solve the equations is given by (approximately),

1.5 2
Ndim = 12 (ntf) (Neq) (Nsym) (Ndeg) (6.23)

where:

Ndim is the size of required core store,

ntf is the final number of triangles in the FE model,

Neq is the number of simultaneous PDE's being solved,

Nsym is a factor = 1 if the problem is symmetric and

= 2 otherwise,

Ndeg is a factor dependent upon the chosen triangles:

= 1 for quadratic triangles

= 5 for cubic triangles

= 16 for quartic triangles.

However, if the available core is not enough, ~~en a standard frontal

algorithm is used to efficiently solve the equations.

The core store required in this case is given by:

2
Ndim = 20(ntf) (Neq) (Nsym) (Ndeg) (6.24)

It should be noted that, assuming 100 triangles are created in the

final triangulation, the ratio of core store required in the case of

using an in-core solver to that of out-of-core is 6:1 which reflects

the great savings in memory requirements. This saving is countered by

more execution time and the use of auxiliary devices (disc files) for

the frontal process. During the frontal solution process the triangles

432

are assembled in an order such that the minimum node number of a

triangle K, written as MNN
k

, is a non-decreasing sequence. For

example, if we assemble the triangle {95,lOO,105}, then in the next

step we assemble a triangle with minimum node number ~95. Thus during

the assembly of triangle k, then only those elements (I,J) of the

Jacobian with MNNk~I~J~MNNk+M need to be stored in core where M is

the semi-bandwidth. This is obvious since that triangle makes

contributions only to those elements assuming a symmetric Jacobian.

2
Thus, only about!M storage locations are required in main memory at

any time. To illustrate, we assume that the last assembled triangle is

{95,lOO,105}, and we assume that the next triangle to be assembled is

{96,102,106}. It is clear that the elements of the Jacobian to be

affected by the assembling of this triangle are: (96,96), (96,102),

(96,106), (102,102), (102,106) and (106,106). After assembly of the

triangle number k, the rows (MNN
k

) to (MNNk+l-l) are eliminated and

written to a disk file. This is logical since no more contributions

to these rows will occur due to the assembly of the remaining triangles.

In fact, the package uses a buffer array to decrease the number of I/O

actually needed by the frontal algorithm.

6.5.5 Subprograms

The package consists of a preprocessor which generates a Fortran

program. This generated Fortran program is linked with a set of

problem-independent routines to form the final program that is executed

to solve the required problem. The main generated program is the

subroutine TDPA which calls, directly or indirectly, most of the other

subroutines. The subroutines and their functions are briefly given in

Table 6.1.

NAME

TDPA

TDPB

TDPC

TDPD

TDPE

TDPF

TDPG

TDPH

TDPI

TDPJ

TDPK

433

FUNCTION

Assigns default values, checks input parameters and does

the major solution steps by calling other subroutines.

Assembles and performs elimination on the Jacobian matrix

by Newton's method. It also determines whether the

Jacobian can be stored internally or not.

Renumber the free nodes starting from a corner to reduce

the Jacobian bandwidth using the algorithm described in

Section 6.5.3.

Calculates the parameters associated with the final

triangulation.

Splits a triangle Kl, and also K2 if necessary to preserve

conformity.

Calculates some parameters associated with the initial

triangulation.

Evaluates the functions at the nodal points

Plots, on the printer, the initial triangulation and the

vertices and centers of the triangles in the final

triangulation.

Stores several rows of the Jacobian matrix and writes them

together, or reads several lines together, to reduce the

input/output counts and thus the computational cost.

Checks for non-symmetry and incorrect user-supplied partial

derivatives.

Calculates Ainv which is the inverse of the matrix A.

continued .•••

N~E

TDPL

TDPM

TDPN

TDPO

TDPP

TDREAD

FUNCTION

Copies a vector or sets the values of its entries to

zeros according to the IJOB parameter.

Updates the matrix A.

434

Calculates the values and derivatives of the inter­

polation functions and isoparametric mapping functions.

Calculates the next step size based on the user-supplied

function DTINV.

Calculates the integral of the function DTINV.

Reads data stored by a previous run of the package.

This routine is called only by the user and thus need not

be loaded unless referenced in the input data set.

TABLE 6.1: Package subroutines

6.5.6 The Postprocessor

A simple plotting program can be used to draw some of the outputs

produced by the FE processor. The name of this program is TWOPLOT

which is also programmed in Fortran. It requires Calcomp's host

computer basic software - HCBS - which is a library of Fortran sub­

routines used to derive the plotter. TWOPLOT produces the required

plots on a file with unit number equal 19 which is the plot file. This

is usually a magnetic tape file with plotting commands which is used to

produce the required plots. Specifications of the inputs to this

program and the type of plots which can be produced will be given later.

435

6.6 INPUT DATA SETS

Input data are entered in free format except in function and

parameters definitions where the line is divided to zones. The order

of the lines is unimportant 'except as expressly specified. No

continuation lines are required or allowed except in topclogy definition

as will be explained. Arithmetic expressions are coded in Fortran style

and the default type for Fortran variables (the IJKLMN rule) applies to

all user defined variables except if the double precision version of

the package is used where all real variables are defaulted to double

precision. Comment lines are identified by **** in the first four

columns. Lines can extend to column 72 as usual. The last line in

the input must have 'END.' in the first four columns.

6.6.1 The Global variables

The first line of input data is defining the global variables of

the problem to be solved. There are 5 integers required and are given

in free format. Those are in the following order:

NEQ: number of simultaneous PDE's to be solved.

NT: number of triangles in the initial triangulation.

NV: number of vertices in the initial triangulation. Note

that each is counted only once.

NTF:

NDIM:

number of triangles desired in the final triangulation.

the storage reserved for the Jacobian matrix.

NDIM could be either an integer number giving the size of the matrix as

defined by the user or it can be set to 1 or 2 to default to in-core

evaluation or out-of-core as defined by equations (6.23) and (6.24). It

is important to notice that the processing time is increased considerably

436

when using the out-of-core algorithm. However the total cost may

still be less due to the fact that memory cost may sometimes exceed

the processing time cost. The NEQ value may be 1 or 2, but for solving

more equations NEQ is coded as will be explained in 6.7.2. In

recent versions of the package (5 and later), the variables NT and NV

are omitted from the first line and computed by the package automatically

from topology data.

6.6.2 Specifying the Equations

The PDE's are described in a series of lines according to the

following rules:

(i) A variable name, as given in TWODEPEP notation, starts from

column 1.

(ii) In columns 9-72, the definition of that variable or function is

coded in standard Fortran syntax.

(iii) All the functions or variables given below should be defined or

defaulted.

(iv) The sequence of lines is unimportant.

(v) No continuation lines are allowed. If any function definition

is too long to fit onto a single line, Fortran functions (sub­

programs) could be used within that definition. These functions

are then defined as a subprogram after the 'ADD.' command.

(vi) If any function of the form A/B is defaulted, it means that the

actual value will be computed by the package if aA/aB is

independent of B. This is denoted by * in the following table.

The definitions of these functions are:

NAME DEFAULT MEANING

OXX 0 OXX(X,Y,OX,OY,VX,VY,U,V,TI
OXX/UX * 3/3(OXI*OXX(X,Y,OX,OY,VX,VY,U,V,TI
OXX/DY * 3/3(OYI*OXX(X,1,OX,OY,VX,VY,U,V,TI
oxx/vx * a/3(VX)*OXX(X,1,OX,OY,VX,VY,U,V,T)
OXX/VY * 3/3(VY)*OXX(X,Y,ux,OY,VX,VY,U,V,T)
OXX/U * a/3(U)*OXX(X,l,UX,OY,VX,VY,U,V,T)
OXX/V * a/3(V)*OXX(X,l,UX,DY,VX,VY,U,V,T)
OXY 0 OXY(X,l,UX,DY,VX,VY,U,V,T)
OXY/UX * 3/3(UX)*OXY(X,l,UX,OY,VX,VY,U,V,T)
OXY/OY * 3/3 (OY) *OXY(X,l,UX,OY,VX,VY,O,V,T)
OXY/VX * 3/3 (VXI *OXY(X,Y,UX,OY,VX,VY,U,V,TI
OXY/VY * a/3(VY)*OXY(X,Y,OX,OY,VX,VY,U,V,T)
OXY/U * a/3(O)*OXY(X,Y,UX,OY,VX,VY,U,V,T)
OXY/V • a/a(V)*OXY(X,Y,ox,OY,VX,VY,U,V,T)

on 0 OYX(X,Y,UX,UY,VX,VY,U,V,T)
on/UX * a/a(UX)*OYX(X,Y,UX,UY,VX,VY,U,V,T)
oyx/oy * a/a(oy)*oYX(X,Y,UX,UY,VX,VY,U,V,T)
oyxm * 3/a(VX)*oYX(X,Y,UX,UY,VX,VY,U,V,T)
oyx/vy * a/a(VY)*OYX(X,Y,UX,UY,VX,VY,U,V,T)
oyx/u * a/a(O)*OYX(X,Y,UX,UY,VX,VY,U,V,T)
oyx/V * a/a(V)*OYX(X,Y,UX,UY,VX,VY,U,V,T)
OYY 0 OYT(X,Y,UX,UY,VX,VY,U,V,T)
OYY/UX * a/a (UX) *OYT (X,y,ux,uy,vx,vy,U,V,T)
OYY/uy * a/a (UY) *OYT(X,Y,UX,UY,VX,VY,U,V,T)
Oyym * a/3(VX)*OYT(X,Y,UX,UY,VX,VY,U,V,T)
OYY/vy * a/a (VY) *OYT(X,Y,UX,UY,VX,VY,U,V,T)
OYY/U * alae U)*OYT(X,Y,UX,UY,VX,VY,U,V,T)
OYY/V * alae V)*OYT(X,Y,UX,UY,VX,VY,U,V,T)
Pl 0 Pl(X,Y,UX,UY,VX,VY,U,V,T)
Fl/UX * a/3(UX)*Fl(X,Y,UX,UY,VX,VY,U,V,T)
Fl/OY * a/a (UY) *Fl(X,Y,UX,UY,VX,VY,U,V,T)
Flm * a/3(VX)*Pl(X,Y,UX,UY,VX,VY,U,V,T)
Pl/vy * a/3(VY)*Fl(X,Y,UX,UY,VX,VY,U,V,T)
Fl/U * alae O)*Fl(X,Y,UX,UY,vx,VY,U,V,T)
Pl/V * alae V)*Fl(X,Y,UX,UY,VX,VY,U,V,T)
F2 0 F2(X,Y,UX,UY,VX,VY,O,V,T)
F2/UX * 3/3 (UX) *P2(X,Y,UX,UY,VX,VY,U,V,T)
P2/oy * a/a (UY) *F2(X,Y,UX,UY,VX,VY,U,V,T)
F2/VX * a/a (VX) *F2 (X,Y,UX,UY,VX,VY,U,V,T)
F2/VY * a/a (VY) *F2 (X,Y,UX,UY,VX,VY,U,V,T)
F2/U * 3/a(O)*F2(X,Y,UX,UY,VX,VY,U,V,T)
F2/V * alae V)*F2(X,Y,UX,UY,VX,VY,U,V,T)
Cl 0 Cl(X,y,U,V,T)
C2 0 C2(X,Y,O,V,T)
uo 0 UO(X,T)
vo 0 VO(X,Y)

Hint: (For the elliptic case, UO, VO are used as
initial values for Newton's ~thod. They
may be defaulted for linear elliptic
problems.)

437

438

6.6.3 Specifying the Element parameters

Three different parameters can be specified for the elements:

(i) D3EST which is a function of x,y that determines the distribution

of the final triangulation over the region. This is defaulted to 1.

More discussion will be given later. This function is specified by

writing the keyword D3EST in the name field (columns 1-5) and the

function definition in Fortran in columns 9-72.

(ii) The triangle ratio ~y (height) to width ~x. This ratio is defaulted

to 1, however, it may be defined as a function of x,y using the SHAPE

definition on a single line.

(iii) The default element type is the quadratic elements. To define

other types, the keywords CUBICS or QUARTICS can be used.

6.6.4 Specifying Computational Parameters

These are some computational parameters and options that can be

specified as follows:

(i) NUPDT: which is the number of time steps (iterations) between

updates of the Jacobian matrix. The default is 1 which is normally

required for elliptic problems. For eigenvalue problems, this parameter

should be set to o. If the problem is linear and all the functions are

independent on time, then NUPDT is set to o.

(ii) ALPHA: This is a variable used to specify the method to be used

for handling the time variable. This can be set to 1 (as defaulted)

if the problem is elliptic or if the implicit method is used to solve

a parabolic problem. ALPHA is set to .5 if the Crank-Nico1son method

is used to solve a parabolic problem. Although the Crank-Nicolson

method has a higher accuracy, it can lead to oscillation in a few

problems initially.

439

(iii) INTEGRAL: this can be a function of x,y,u,v,u ,U ,V ,V and t x y x y

whose integral over the region R is to be computed and output each

NOUT steps. The default value is 0, i.e. no integration is to be done.

(iv) DTINV: this function can be used to define a variable time step

at each time value, T. Thus, at time T, the step size will be DTI~(T)

The integral of DTINV from to to t
f

, i.e. over the whole time span must

be finite. DTINV is defaulted to 1.

6.6.5 Specifying the TOpology

To define the topology, initial triangulation information should

be given that covers the whole domain without overlapping. The first

step is, as usual, to divide the region into triangles (even if one

side of the boundary is curved). Practically, one should proceed as

follows to discretize the FE model and to define the topology in TWODEPEP

notation.

(i) The boundary of the region R should be divided into distinct arcs,

each of which is smooth with smooth boundary conditions. Consequently,

at every corner or point at where the boundary conditions have a

discontinuity or change type, a new boundary arc must begin.

(ii) Each arc is assigned an ID-number which should be an integer.

This number must be positive if the boundary conditions applied on that

arc are of the Neumann type i.e. if the arc belongs to aR
2

(i.e. free

boundary conditions with GBl and GB2 given along the arc). Arc number

should be negative if a Dirichlet type boundary condition is specified

on that arc, i.e. if the arc belongs to aR
l

(i.e. fixed boundary

conditions with FBl and FB2 given along the arc).

440

(iii) Each arc (if not a straight line) is described by a parameter S,

varying from 0 to 1 to define its shape. The orientation of the arc

is unimportant. For example, a circle can be specified by the parametric

equations: x=cos(2rrs) and y=sin(2rrs).

(iv) Then an initial triangulation of R which possesses the following

properties should be done:

• Each point where two of the boundary arcs meet should be

considered a vertex in the triangulation.

• Triangles should meet at vertices only, i.e. conforming

triangulation is done.

• No triangle may have all three vertices on the boundary.

(v) Now, to pass the above mentioned information to the package we

specify the following three arrays:

(1) The vertices array VXY which contains the coordinates of all the

vertices of the initial triangulation. Data are given in free format

and if more than one line is needed to specify the data, the array

name should be repeated on each continuation line. The vertices may

be listed in any order, but that order will define the vertex numbers

as referred to in the IABC array. The VXY array is coded as follows:

VXY VX(l) ,VY(l) ,VX(2) ,VY(2), ••• VX(NV),YY(NV)

(2) The triangles array IABC which is coded as follows:

IABC IA(l), IB (1) ,IC(l) ,IA(2) ,(B (2) ,IC (2) , •••

IA(NT),IB(NT),IC(NT)

where IA(K) , IB(K), IC(K) are the numbers (as listed in VXY) of the

vertices A,B,C of the triangle K. A,B,C must be ordered counter­

clockwise and such that C is not on the boundary.

(3) The arc-triangle array I which is coded as follows:

441

I I(1),I(2), ..• ,I(NT),

where I(K) is the boundary arc number cut-off by the base AB of the

triangle K. If the whole triangle K does not cut any arc, then I(K)

is set to o.

(vi) If the region R is a rectangle, bounded by only 4 boundary arcs,

X=Xl, X=x2, Y=Yl and Y=Y2, then the initial triangulation may

alternatively be specified by superimposing a rectangular grid over R.

TWODEPEP will automatically generate 4 equal area triangles in each grid

cell. In this case, we define the following arrays:

XGRID xgrid(l), ••• ,xgrid(NT)

YGRID ygrid(l), ••• ,ygrid(NV)

IX Ix (1) , Ix (2) only

IY Iy(l) ,Iy(2) only

In this case NT and NV on the first input line, will give the number

of elements in arrays XGRID and YGRID, respectively, rather than the

number of triangles and vertices in the initial triangulation. This

is particularly useful in case of problems of only one space dimension.

XGRID(l) is the X coordinate of the vertical grid line number i. Note

that XGRID(l)=Xl and XGRID(NT)=x2. YGRID(l) is the Y coordinate of the

horizontal grid line number i. Note that YGRID(l)=Yl and YGRID(NV)=Y2.

Ix(l) and Ix(2) are the identifying integers of the boundary arcs

X=Xl and x=X2. Similarly Iy(l) and IY(2) are for the boundary arcs Y=Yl

and Y=Y2.

6.6.6 Specifying the Boundary Conditions

To define the boundary conditions of the considered problem, we

should give the arc number on a separate line started by ARc=arc number

and follow that line by lines that define the x,y,FBl,FB2,GBl,GBl/u,

442

GBl/v, GB2, GB2/u and GB2/v. The internal sequence of these lines is

not important. Any of these boundary functions can be defaulted if

this is applicable. These can be defined as follows:

NAME DEFAULT MEANING

x
Y
FBl
FB2
GBl
GB1/O
GB1/V
GB2
GB2/tJ
GB2/V

iine
line
o
o
o
*
* o
*
*

X-X(S)l (O.LE.S.LE.l) parametric equations of arc
y.y (SU number I. Defined for curved arcs only.
FBl(S,X,Y,T) on arc number I (I negative)

. FB2(S,X,Y,T) on arc number 1 (I pegative)
GB1(S,X,Y,tJ,V,T) on arc number I (I positive)

3/o(O)*GB1(S,X,Y,O,V,T) on arc number 1 (1 positive)
3/3(V)*GB1(S,X,Y,O,V,T) on arc number I (I positive)

GB2(S,X,Y,O,V,T) on arc number 1 (I positive)
a/~(tJ)*GB2(S,X,y,tJ,V,T) on arc number I (I positive)
o/.(V)~GB2(S,X,y,U,V,T) on arc number 1 (I positive)

6.6.7 Specifying the outputs

Several types of data are required to fully describe the outputs.

These are:

(i) Specification of output steps:

(1) For the time variable three parameters should be defined (or

defaulted); TO, TF and DT where:

TO is the initial time value, default is 0

TF is the final time value, default is 1

DT is the average time step size, default is 1

For elliptic problems, Newton's method will be iterated (TF-TO)/DT times.

Here, TO and DT are normally defaulted (i.e. TO to 0 and DT to 1). TF

will be, in this case, the number of iterations desired. If convergence

had occurred earlier, then iteration will be stopped unless DT is given

443

a value other than 1. Note that, however, if the elliptic problem is

linear, then only 1 iteration will be needed. The output will be done

each NOUT time steps. NOUT is defaulted to 1.

(2) For the x-y variables, the following parameters should be defined:

XA is the first value of x at which the solution is required.

YA same as XA but in the y direction.

The default values for XA and YA are X. and Y . •
m1n m1n

NX is the number of points at which the solution is required

after the first one.

NY same as NX but for the Y direction.

The default values for NX and NY is 4.

HX interval in X direction

HY interval in Y direction

HX is defaulted to

HY is defaulted to

x -x
max min

NX

Y ~
max min

NY

Note that the solution will be given at the grid points:

X = XA + iHX,

Y = YA + jHY, j=O,1,2, ••• ,NY

(ii) Specification of unit number:

The logical unit number for output is defaulted to 6 which is the

line printer in most operating systems for Fortran programs. However,

it may be changed if, for example, the outputs are to be kept on a

disc file for subsequent postprocessing. This can be done using the

variable MWR which can be coded as:

MWR 8,9

(iii) Optional printer plotting

It is possible to produce printer "plotting" for the initial

triangulation (for input checking) and for the centres and vertices

of the triangles in the final triangulation. This is specified by:

PLOT 1

The default is PLOT 0, i.e. no plotting.

(iv) Variables to be printed

444

By default the variables u,V,OXX,OXY,OYX and OYY are printed for

each grid point at each time step. In other words for time t=t
l

, all

the values are printed for all the points required in the region and

then, the time is incremented and printouts are produced for the second

time step and so on. To override these printed values, we can define

the following variables in terms of all variables and print them instead

of the defaulted values. These are:

UPRINT

VPRINT

OXXPRINT

OXYPRINT

OYXPRINT

OYYPRINT

for U

for V

for OXX

for OXY

for OYX

for OYY

It is worthwhile mentioning that the package outputs consist of:

(1) A listing of the input data as specified by the user except that

the first line is printed in a formatted form.

(2) Some boundary data to be used by the postprocessor.

(3) Initial triangulation plotted on the printer for checking purposes

and triangle vertices and centres for the final triangulation

provided that "PLOT 1" is coded as explained earlier.

(4) For every NOUT time step; the x,y of each point as specified earlier

445

together with the values of the function and its derivatives are

printed unless other variables are specified for printing instead.

6.6.8 Inputs of the Postprocessor

The TWOPLOT postprocessor requires the initial data to be read

from unit number 5 which is the standard input device in Fortran in the

vast majority of operating systems. This data is 2 lines for each plot

required while the last line in.the input data set for this program is

simply a blank line. The first line of the input contains 4 items in

free format as follows:

IFILE which is the logical unit number of the file containing the

TWODEPEP solution that is to be plotted by TWOPLOT. This file (unit

number is 8 or 9) was defined in the TWODEPEP operation by the statement:

~R 9

or MWR 8.

Note that if we put IFILE preceded by a minus sign, then, the output of

TWOPLOT will not be distorted i.e. an equal scale is adopted. Otherwise,

if IFILE is positive and the X range is not equal to the Y range, then,

the output will be distorted, i.e. scaling in X direction is different

from that of the Y direction.

ISKIP. This command tells the TWOPLOT where to find the records which

contain the solution to be plotted from the file IFILE. This is simply

the number of output units (corresponding to each NOUT time step) that

should be skipped to reach the requested solution.

(PLOTI,PLOT2) these are two values between parenthesis to define the

variable to be plotted and the type of plot required. These can be

any of the following symbols:

446

*,U,V,OXX,OXY,OYX,OYY,-U,-V,-OXX,-oXY,-OYX,-OYY and 3Dnn.

If (PLOT1,PLOT2) is =(*,*) it implies that plotting of the principle

stresses are required. If (PLOT1,PLOT2)=(*,PLOT2) then vertical arrowS

will be plotted with magnitudes proportional to the scalar PLOT2

[similarly for (PLOT1,*)).

If (PLOT1,PLOT2)= (3Dnn,PLOT2) , then, a three dimensional perspective

plot of the scalar PLOT2 will be generated with longitudinal view angle

of nn degrees. Note that nn must be between 10 and 80 - a suggested

value is 45. The latitudinal view angle is always 45.

The second line of input data for the plot is its title written in

the first 40 characters.

TWOPLOT produces the required plots on output unit 19 which is the

plotfile. This is typically, a magnetic tape file with standard plot

characteristics. This file is handed to the computer operator for off-

line plotting. It should be noticed that this postprocessor is, in fact,

of fairly limited capabilities compared to the general FE postprocessors

as explained in Chapter 4.

6.6.9 Examples

Here some illustrative examples are given to demonstrate the simplicity

of input data sets of the package in addition to its reliability.

Example 6.1

Solve,
(6.25)

over a 0.5xO.5 square for the w values: 1,10 and 100, with boundary

condition u=O along all sides.

447

Solution:

The initial triangulation is shown in Figure 6.2 which consists

of 4 triangles,

(0,.5)4
-3

,..-________ ...", 3 (.5, .5)

III

-4 IV 5 II -2

I

1~--------------~2

(0,0) -1 (.5,0)

FIGURE 6.2: Initial triangulation for Example 6.1.

Note that nodes are numbered 1,2,3,4 and 5 while elements are

numbered I, II, Ill, and IV. Arcs are given negative numbers as the

boundary condition is a Dirichlet type. The input data set is:

1 4 5 50 1

OXX UX

OXY UY

OXX/UX 1

OXY/UY 1

Fl -1

NX 5

NY 5

XA 0.

HX .1

YA 0.

HY .1

PLOT 1

SYMMETRY 1

VXY 0,0 .5,0 .5,.5 0, .5 .25,.25

IABC 1 2 5 2 3 5 3 4 5 4 1 5

I -1 -2 -3 -4

END.

448

The solution is given in Table 6.2 which is a direct output of the

computer run for the case W;l. Figures 6.3 and 6.4 show the initial

and final triangulation plots.

Example 6.2

The laminar flow around a circular obstable in a channel is

governed by:

(6.26)

Due to symmetry only one quarter of the region is considered, the

boundary conditions and dimensions are shown in Figure 6.5.

y

a 21/1 a
2

1/1
~ =0

0 an --+ -2 ;

ax
2

ay

2 1/I;y
1/1=0

,
r=l

I

1/1=0
x

4

"
FIGURE 6.5: Laminar flow around a circular obstacle

The initial triangulation of this problem consists of 5 elements as

shown in Figure 6.6.
y

-4 5k-______________ ~

6 IV III
-5 V

II
-2 I

1 -1 2

4

3

3

FIGURE 6.6: Initial triangulation of Example 6.2.

x

The input data set is as follows:

1 5

OXX

OXY

OXX/UX

OXY/UY

NX

NY

XA

HX

YA

HY

PLOT

CUBICS

ARC~-l

FBl

ARC~-2

X

Y

FBl

ARc~3

GBl

ARC~-4

FBl

ARC~-5

FBl

YXY

IABC

I

END.

6 50 1

UX

UY

1

1

10

10

0.0

.4

0.0

.2

1

1

°
4-COS(1.57079*S)

SIN(1.57079*s)

°

°
2

Y

0.0, 3.,0.,4.,1.,4.,2.,0.,2.,2.,1.

1,2,6 2,3,6 3,4,6 4,5,6 5,1,6

-1 -2 3 -4 -5

449

The solution of this problem is shown in Table 6.3. Plotting of

initial and final triangulations are shown in Figures 6.7 and 6.8.

NEQ= 1 NT=
UX
U1
1

4 NV= 5 NTF= 50 NolM= 1
OXX =
OX1 =
OXX-UX =
OX1-UY =
Fl =
NX =
NY =
XA =
HX =
1A =
HY =
PLOT =
SYMMETRY=
VX1 =
l" BC =
1 =
END.

1
-1
5
5
o.
.1
o.
.1
1
1
0.0
125

-1

.5.0
2 3
-2

BOUNDARY DATA FOR rWOPLOr
0.0 0.5000-01 0.1000-00
0.0 0.0 0.0
0.5000-00 0.5000.00 0.5000-00
0.0 0.5000-01 0.1000+00
0.5000+00 0.4500+00 0.4000.00
0.5000.00 0.5000.00 0.5000+00
0.0 0.0 0.0
0.5000-00 0.4500+00 0.4000+00

0 •• 5
3 4 5

-3

0.1500'00
0.0
0.5000'00
0.1500.00
0.3500-00
0.5000.00
0.0
0.3500·00

.25 •• 25
415

-4

0.2000-00
0.0
0.5000·00
0.2000.00
0.3000-00
0.5000.00
0.0
0.3000.00

0.2500·00
0.0
0.5000·00
0.2500·00
0.2500·00
0.5000+00
0.0
0.2500+00

TABLE 6.2(a)

0.3000-00 0.3500'00 0.4000'00
0.0 0.0 0.0
0.5000·00 0.5000.00 0.5000+00
0.3000·00 0.3500·00 0.4000-00
0.2000-00 0.1500-00 0.1000·00
0.5000+00 0.5000·00 0.5000+00
0.0 0.0 0.0
0.2000+00 0.1500·00 0.1000+00

0.4500+00
0.0
0.5000+00
0_4500+00
0.5000-01
0.5000-00
0.0
0.5000-01

0.5000+00
0.0
0.5000+00
0.5000+00
0.0
0.5000·00
0.0
0.0

'" lJ1
o

., ... - .

K V I) V f)XX UH ltX ~1"

0.0 0.0 0.0 0.0 -O.HZSOO-OI 0.0 n.n 0.0
C.l00000·00 0.0 0.0 0.0 ('.0 -().IZI7bO-"0 o.n 0.0
c..ZlJuOun- 00 O.v 0.0 0.0 n.n -O.1~9'5ZI)-OIl 0.0 ~.o
'.300l')uO·OO V.O O.n 0.0 0.0 -O.lbOI)0-00 O.n ~.O
C.c.OOl')orhOt..l v.O 0.0 0.0 o.n -O.lZ11tZ'O·OtJ I).J u.1)
O."r)IJI')QrhOO u.O 0.0 0.0 0.0 -0.31 Z'OO-Ol 0.0 o.v ~nr I~ • c.o v.IOOOc,O_Ou 0.0 0.0 -n.111770-00 0.0 n.n 0.0 c. 1 'h.lnf)O_ 1")0 0.100000· (I" -O."~b6IU-1.1Z v.o _.l. 'ja~., 10-ul -0.5010Z0-('I1 0.'> 0."
1..l • .lOQOU!hQu IJ. 1('JI,)Olilh ot.) -0.111)')00-01 0.0 -0.170?bl)-01 -0.801511)f)-01 f) ." 0.0
O.l')dl)UI)·OI) Q.IO\JOon·('\o "'O.IZO'\Of)-CI C.O 0.""10-01 -O.~117!1{)-Ol n." I).CI
o. ~(\(JIJUI)- (\,) 0.10000''''01.1 -1} •• 10)Q4t)-U? U.I) u."iun700-01 -0.II)'1tJ470-01 0.0 o.u
O.lI)l)onut)_OJ U.I O",lJlJfh 0 0.1c.c.7CtO-07 0.0 1).IZ1"ZO·00 CJ.lf)rt.9n-Ob n.o o.v ~or I~ • C.O (I. .l000un - Ov 0.0 0.0 -n.ll1)?Sl~-uO 0.0 o.n I,) .ll
C.1CO'lU""-l}(, lJ.Z,ltJ'lvn-ov -')'120f')lO-,H o.u - .. l. "(j;' 1)00-01 -0.171 b't'J-nl Q_o O.~
U ., .101) •. :)1). Ov O.")U:)l\lI·I)O -0.1710101)-01 0.0 -O.14'1tlW-Ol -0.245100-01 n.n 0.0
C.iOtJIJQI)-CO I).louooo.nl) -0.1117QO-C 1 1'::.0 rI.Z"Z"'n,n-ul -u.2"~1)n-Ol 0.':'1 I).'J
O ... oUfll)''-I)I, O.ZOooou-PU -\}.I.!J7~U"UI J.U 1).~1·'1 ~n-"'l -l).14 n~U-Ql 11.('J o,i.o
O.~OOn'Jn·o,; u.,c· r)1,)(HH, - Ou o. BO'11oU-u7 0.0 0.10"17;)+00 (I. Z'i 7 7Z0-0 7 0.0 ~.o ~Ol 'N " c.e 1).~Ol)oon·ov O.n I).' -O.l!J'ulO-OI) V.O " ..) U.O
C.ll")"Iun-00 u. Y'lOOUI)-Ov -('1.121('50-(11 0.0 -n.tlLt;I)O-ul 'J.17Z'jc,o-nl .,. (I 0.0
C.2I)O"uo·oO o.)1),;"'11.)0 .1');; -0.171ZQI)-lJI 0.0 -0.Z2163;.I-OI 0.21'''61"'1-01 0.0 O.~
C • .3 ,)·)flOr'l. ("0 u.~OOOOO-OO -0.111) 7!)-0 1 0.0 0.131)470-01 0.215190-"1 0.1')· O.V
C.t. C'Cl'''hJI). (h) O.):)OOur:hOv -0.1,l1)900- IJl 0.0 o.qZIZ'O-ol U.l .. ~qzn-nl I) .0 0.0
C .!Jouour). 01,) o. ~I)I)OUO - 1)0 O.I~09bl)-07 0.0 O. 10("'11 l'JU-OO -O.ZCir?l"'-OI 0.0 u.v Nr.l I~ R
c.o L.0400Q0n·OIJ o.n 0.0 -(\.111 71:hon iJ.lI n.n O.v
G. 11')1)'101')·00 V.~"o:"'lIJ'l·nv -O.'!b~)50-t)2 v.u _It. c;,~ lit)0-4.1. O ... Q7'10-01 0.0 0.0
O.lOOOOO·OO O.0400')On.01.J -0.1210)U-Ol 0.0 -'1.111160-01 O.U'lSl?n-Ol 0.1 0.0
0.3I)uI)01)·Ou u."OQ1vO·I)O -0.IZ1010-01 0.0 O.'7)U~n-Ol o. tln"j7'40I')-O I n.n 0.0
I,).Iof')UOOO-OO u.IoJOO(;I).OO -0.Ab040 7U-U2 0.0 ".Sdl 7);;-01 O.04Qblc.n-~l 0.1) J.O
C. !JI)OOOI)- Cl' ,,~ .040IJOOO·C'J 0.1 .. 41'1.)-0 7 u.o fl.1Zl'rb!J-on -0. 1 "'7'jlon-l)6, 0.1) v.O NO '" " C."; O.SOOO,Jn·OIJ I). {"I v.v -0.11Z';00-Ul v.u 0." 0.0 ~~r '" •
Q.IOUI)\Jf)·OCl O.~OUI)OO·ClO o. t"")ORO-\l7 0.0 0.10783')-Ob 0.171700-('10 n.o u.o "'wC, " R
C.olOOI')\JO·CU U.")OOOOf")·l'JJ (I.1?("'I490-07 0.0 'l.1~lt.l"-C.7 0.1 'i'JI\O:-hf)U ".0 f).v ~nr " R
~. 300')1,)1). Oil ('I. 5;00000. O'J ".II'JU~?!)-1J7 O.iJ -.). ":'0'." '!)O-I..\ 1 1.1.1 c;, ~·J..in.I')O I). '"'I 0.0 NCI " • 0.40000 3'hO(; li • .,Our'lOI).Oli n.t""'H\U-07 1).0 -Cl.' U 7 7)n-()h O.I~l~ln.oo o.n 0.0 ~nl '" • C.I),w",;n.Ot: O.';t°,;i.1ur:_l")u O.Hl:.ilU-(lQ 0 n. 11} !.OO- l -0. 1 "'7Ci"'l-('\b 0.'"'1 0.0 NCI " R

TABLE 6_2(b): Solution of Example 6.1

NEO= 1 IIIT= 5 NV= 6 NTF= 50 Nol~=
OXX =
OXf =
OXX-UX =
OXf-UY =
NX =
IIIf =
Xl =
HX =
YA =
Ht =
PLOT =
CUBICS =

ARC=-l
FBI =

ARC=-Z
X •
Y =
FBI =

ARC=3
GBl =

ARC=-4
FBI =

ARC=-5
FBI =
vxt •
IASC =
I =
ENO.

UX
Uf
1
1

10
10
o.
.4
O.
.Z
1
1

0

4-0C0511.57079000SI
OSINll.57079000SI
0

0

Z

Y

0.0
126

-1

3.,,0
Z 3 6

-Z

4.1
3 4

3

BOUNOARY
0.0

OA TA FOR TWOPlOT
0.3000·00 0.6000-00

0.0
0.3000·01
0.0
0.4000·01
0.1000.01
0.4000·01
O.ZOOO.Ol

0.0
0.3010-01
0.1560·00
0.4000·01
0.1100-01
0.3600·01
O.ZOOO-O 1

0.0 0.0
O.ZOOO-OI 0.1800-01

0.0
0.3050·01
0.3090-00
0.4000-01
0.1200-01
0.3200-01
0.2000.01
0.0
0.1600-01

4.2 O.Z
b 4 5 b

-4

0.9000-00
0.0
0.3110·01
0.4540-00
0.4000-01
0.1300-01
0.2800-01
O.ZOOO·Ol
0.0
0.1400-01

Z,l
511>
-5

0.1200-01
0.0
0.3190+01
0.5880+00
0.4000.01
0.1400+01
0.2400·01
0.2000-01
0.0
0.IZ00'0 1

1

0.1500-01 0.1800-01 0.2100-01 0_2400-01 O.Z 700.01 0.3000-01
0.0 0.0 0.0 0.0 0.0 0.0
0.3Z90-01 0.3410-01 0.3550-01 0.31>90·01 0.3840-01 0.4000-01
0.7070-00 0.8090-00 0.6910-00 0.9510-00 0.9680-00 0.100D-Ol
0.4000-01 0.4000-01 0.4000 -0 1 0.4000-01 0_4000-01 0.4000-01
0.1'500+01 0.1600-01 0.1700-01 0.1800_01 O.lQOO-Ol 0.2000-01
0.2000+01 0.11>00-01 0.1 ZOO.Ol O.dOOO-OO 0.4000'00 0.0 ...
0.2000- 01 0.2000·01 O.ZOOO-Ol O.ZOOO-Ol 0.2000_01 O.ZOOO-Ol lJl

'" 0.0 0.0 0.0 0.0 0.0 0.0
0.1000- 01 O.BOOO-OO O.bOOO·OO 0.4000-00 0.2000-00 0.0

TABLE 6.3(a)

453

•• r",,~r;lES, '\IlJl~ (OUlLl "' m.(I(F "HO 10 "HI, T I"'f. O.IOOOO~·Ot

, , .j y oxx a .. 0," J"

0.0 0.0 O. \11')0;")-1 \ 0.0 .n."l?4tl!O-Oft O.I')OIlGI)·l')l 0.0 0.0
C,"'I')OOtl)(\ 0.0 0.0 0.0 1'1." Od'21"OtQ.:! n.o 0.0
c. ecal'),J:h OV c.u 0.0 c.o .) .1'1 O.q"l"j.~O·()O 0.0 u.v
,hllOQOO' 'H 0.0 0.0 0.0 0." O. ~"H~O.t)O 0.0 0.0
O.lttODJ!) .. Jt v.o 0.0 0.0 I} .'1 tJ.H7~40.1'I0 0.0 0.0
C.2I)OOI,)!:'IoCl 0.0 J.o ". " ').~ u. tt"l nn. 1)0 0.0 0.0
C.2"0000-01 0." 0.0 0.0 ., .'1 D.ll) ?Ol'}.,,·) '.0 0.0
(.2"01)01)'01 0." 0.0 c.C '.0 0.)H)70·00 f).I) ".0
O. POO\lo.Q 1 0.0 0.0 0.0 0.0 -0.)(. 80.00 0 •• 0.0 ,01 I' ,
o.)bOOOj)'1)1 c.o 0.0 0.0 0." -O.I12"~O.fH 0.0 0.0 ,0T "

,
\i.40G('I,)OtOl V.O -0.1121-;0-0\ C.O .. t).~Uq8'J·OO O.SlS~)O·Ol 0.0 0." ,Cl I' •
0.0 c..zt>o:)on·oo o.lOnQOOton 0.0 -.,.l"~l:)-"2 0.100000."', 0.0 0.0
.. :,. ... :"10'1,)". et.. O. znlJ!~O·)' OG Q.IQe/tl0·OO \.1 -\).1t29U"O .. a Z o.91ZUO·OU 0.') 0.0
O.11)onIJU-OIl ~.l",ooun.l)u 0.1 ~"'H 'JeOO 0.0 -O.6q"~HIO-OZ o.'nzlfoO,OO 0.0 0.0
C .1lul)!jO. ~ 1 zOOO.;il·O:J O.l~ZS~C'CO t.C -0.11"110-01 O.9bltHOtOO 0.0 0.0
c..lhonOn·ra C.,looOOO·Ou .. J.l"J!,jZo·o'J u.u ~O.Z''1080-~1 u.9)0410-00 0.0 0.0
C u!l)onOI'J.J]1 O.l'O)u"·co O.llIi 10'00 0.0 ~O.fo81420-01 O.a6SI60·OO 0.0 0.0
C.lc,vI')On·Cl tJ.it)uI')QO.C..i 0.1" l) 10-GO 0.0 -O.9HO)0-Dl Ci.7266)0·00 0.0 0.0
,).Z30"luC t "H o.,lt:JlJOIl')·Ch) ->.1~~"~O-vl ".0 ~1l,.!""41D-uO o.428lttO·OO 0.0 0.0
0.)20(\Q:)tOI 0.200010·01.1 o. U";30-0.? 0.0 O.lt,.~qqO-Ol -lI.l'58HO·OO 0.0 0.0 ,01 '" • C.)6UI'I)O·01 ",.ZI')I,)OCI")·O", -1).I'J6~10·Cl O.C -0.1 Se 1)0_01 0.15UOO·Ol 0.0 O.U ... er I" •
".ltOOOvU·~1 l,I.ZI)OOCO·OO -O.:!lfo~'5tJ'Ot 0.0 ~O."9 3lbO.ue O.lt'5U80·Ol Il.Q 0.0 .01 .. •
0.0 C.IoOOJO/").Ou 'l.It'JOQOI)'OO 0.0 ~O,"7qq80-02 0.10000':)·01 0.,) 0.0
1.1 ... oo,",o''h nu (1.1000")00'00 /). H1l0U'OO O.t -O.HZllO-G2 O.q~H50·Ou 0.0 0.0
c. 8001l0')' Cv O.ct'JO~~O·Ou 'J. 3~Z-1qil' un u.v -0.I)IZ60-01 o.QI3S0S0·00 .1).0 u.o
"'.I~O"l,,~)·nl "" ... OO:luO.Ou o.)~'5qZD'Ol') 0.0 ~!).1l5qbO-OI 0.Q69'10·(l0 0.0 0 ••
0.1 flOo')OO' 0)) O."OuOOI')·OO ('I.)lHlo,OO 0.0 -0.lt4'HflD-OI 0,'''1110·00 0.0 0.0
C .10uOUO' n tJ.ltO'='O()r'I.O..i O.)c,1UOIJ'OO 0.0 -0.1389Z10-01 0.890880·00 1.0 0.0
C.Z4\)OC;'l·OI u.ItOOIJO"·(lu IJ.Zq4;'")~·OO C.t. -n.1S19S0·OO O.lQ2ftll')·CIt) o.n • .ltU

lJeZ'\OOvi>.':11 IJ.1t Ou,)IJO' (,(j I).llIlS~O·Of) 0.0 ~0.1t 301'50'00 0.b-06110'Oll 0.0 0.0
v.310"ull·OI l.I.ftOOOuO'OI.i -').hl·l10·CO O.U -t"I.lb6190_01 1J.8")8!»O!'.O-J o.n 0.0 ,OT I' •
C.JbOO\JO·'), o.It1J()oJ1JIJ·CO -0.1)·)3110_0::1 0.0 -oJ.153SS0-01 0.1106;20'01 t'.,J 0.0 NOI " • 1,),1tl')oO"D'OI o.ftl')OO,-,O·oo -O.IIJ·H10·01 0.0 -O.lblbBO·OO O. HlllO-OI 0.0 0.0 ,"T " • 0.0 l/.e.OOOOO'OU 0.600000'0::1 0.0 -o.~lt 190-02 0.100001)·01 1).1) 0.0
O.ftOOO.oo·OI) 1_. "Of.lOc,I')' OU O. S'lbv1J.CO C.O -0.112620-01 0.QQ'5"60·00 0.0 0.0
Q.800I')cn·oo u.oOul')OO.OO O.S"i')H~·OO 0.0 -0.118960-01 O.9'~OIO·OO n.o 0.0
a.11DOl/O,CI iJ.bOIJO\jt)·OO 1J.'i10rtO·OO 0.0 -0.319280"01 a.UBarO_OO 0.1 0.0
0,161")0UO'/)1 l).e.0l)1~O"Ov O. S(,Z :JOO.uO C.O "11,"01060-01 O. 9S9 3)1'1- 00 •• 0 u.o
v.1OIJI)(,J·/H O.~~JOOOtOC 0.SZ9IoSO'00 0.0 -0.1 Ut 00.01) 0.92S0 .. 0·00 0.0 0.0
C.lftO·NO·"1 u.~O:'I)IJ" .. O·J n'''bOZ~D·OO 0.0 -1"1.2)S9 10_01) C.866130·00 0.0 0.0
O.Z"u()';'O· ::11 O.bl)u,J\JO·O", O.lll!!OO·O(\ 0.0 -0.~113qD_OO O.7 Qul61)·OO 0.0 0.0
1l.11COv')·QI O.oOl)J.;)n·ol) o. So~nt:l-u) 0.0 -0.11016,,.01 u.~08"ID·01) 0.0 0.0
(,I.)bIJI')I,):')'OI l".bOOOOO·CO -O.S·)) 17:)'00 0.0 -r'l.IS,lZlO_,H 0.138010·01 ".0 0.0 NOT I' 0

1.1,ftOvQOO·OI ij.t.OOI)IJO·O() "1).11,,".11)0'1)1 C.O -1l.lS11)i)·OO o.n "00'('\1 O.l ,le ... ,Cl IN 0

0.0 O. ~O\JOC.O 'O'J O.~OO,)t)u·oo 0.0 -1).10Hl0-01 0.11)0000·01 0.0 0.0
O.ft')ot"Jl)o')·CIJ u.oOOOOI'l"O'" O. 11'i))')'01') 0.0 -0.1 H 640-C 1 O. 9'H 11 0.00 n.n 0.0
C.~f\u-)ut"J·CO lJ.oOIjOOO .. t"JO 0.1"'I7Z;,.I·00 0.0 -~.?(:J'53~vl O.9Q .. ft6n ·OO 0.0 u.U
0.IZ000·)l01 O.SOOOOO·Ou t"J. rl1Hj.Q·' 0.0 -t).h~"a ... ct 0.9'9")01)·00 0.0 0.0
0.,,>00\.10·01 l.-. tinl,)l'),.O~ O.lHslO·OO U.O -C • .,q"'lOO-OI O.9'or~Ot('lO o.n 0.0
C.100"'0,·Ol o.I;)OUoul)·I')v O. '1. l;~:)tOl') U.O -Cl.l)"~60·OO O.9~1"OI)·OO 0.') .;.u
0.2ctI.lOu l'·;)1 ",.:tI'lOl')u') .. ot. 0 1t H eU.Of) 0.0 -O.l~'llO,OO O.i~"~On'''o 0.0 J.O
\l.l"l'Inu')·'H t... ,,')1)0';1.1.00 0.ft1ft-51:>·0(' U.O -I)."'J~ r ZO'OO O.9all)o.n,) 0." 0.0
C. JZIJ'lun. I) 1 O.~:Q.,O I"O\l Il. 21 H"")'C.J O.U -(\.'H?blJ·UI) O,,:I11Z'I'HOl '1 • . , v.u
C.)'JOl)uf)·"l O.cl')ul')~Il_0~ -O.i'ltH"O·CO O.U -1'I.1lt)b'SO.01 0.1 H'SOO.OI 1.0 0.0 ,eT I'
\l.-." ·),,1·01 .;.dOU/)O')·OO -/).'iIt?)l')r)·oo u.c -t'I.lbC'';ZO·Ot:' 0.Z91111)·01 0.0 0.0 .CI I"
0.0 O.IOv~~I'J·"1 3.)001.100'01 J.o -0.111)210-01 0.100000 .. 01 0.0 0.0
u .. "OOCO:-" ~.:, (,.1)Ol'u[l_O 1 0.9·~'Hno·C" 0.0 -~.IH1f10-"1 ",.100.,.0·01 o.n 0.0
v. ~nO"I)()' 0'.; ().l:'lol),·t)1 O.qitUI')·...,·) u •• ~O.?11'5q')-OI U.l~uO)O·f'tl 0.0 0.0
0.)20'")0')·1')1 (,.1 t"j·JOI,)Ll.':'Il 0.1 '~")"'O'O') 0.0 ~o. 'S'>~~O·OI O.lOOOFoO.OI 1").0 0.0
c.l.,O/),Jht:1 l..1 CI)I'")"I"_O 1 J.');")!I"lD·O" 0.1) -fl.lIi'llO-ul 0.100)0~·,)1 1.0 0.0
'.ZO(';O·)'")·~l l.1t)u00·)·Cll 'J.?I")Qo,l)·ulJ 0.1) ~·).13,)4B~hOO u.l')ll1D·~1 0.0 0.0
O.ZIoO"I,)O·('\1 O.I·)GOvrltnl O ,?)O~. O!l 0.0 -o.z",}r/ltO·OO (,.11}3bln·OI 0 •• 0.0
t,;.i"iJ'JO'lt:'l1 o.lOIlJO·hCl Q. 'O·~.,IO·cn 0.0 -O.1t31~ 30.00 0.1156.,:'1·01 'l.t') 0.0
o .lZul)u')· "1 C.l"){jC~'·Ol)."~ltl1!J·"") \i.l' -.,j.l)10 1Q·v() O.I'H''iI)·OI ') t'" 0.0
O.hC")C"·01 Q.looxn·1)1 0.111 !)ZC'J" 0.0 -0. 'ZO H<>.OO O.I" .. '!»I"·'" l.O 0.0
.).ftt"J n"',.,.1.11 ~.IOOO:)"·"'1 t").lil')I:.J-C9 C.U -11. Z)t. j.bO-C,1 Q .. 5~S7qO-Ol 0.4" u.o ... ~l I'
v.o C.IZ'JOCr)·"l I).)iOJ("IO·1.I1 o.u -).\On18'J~JI "".100.>00.") (Io.~ C.O
I' .1t001)0,),00 O.IZ·J.1t:l!"}·~l o.IlQSIo,"Jl 0.0 -O.l)!)~O.)-Ol O.ll')uZlon·1)1 0.0 0.0
Q • .,'I)·)oj1.·)1j (\.I'(J~O(\.Ol O.llH·jrJ.c 1 0.0 -0.1071j(\J , 1 lI.I0":',;:::0·1'1) ~.o U.IJ
J.IZOOOn·OI 0.1 ~·JO;j').t'H 0.11 "~()'Ol C.O -1').)" lalo'·Cl o. 101) ~'·0-1 (1.0 0.0
C.I~tlnul')·o')l 1~.l'?IJ')u')·f't1 l'.11'ij";·01 c.O -O."'~~,t.O:;O-L.l ~.I""lc,,.r."\ ".' 0.0
·:.::Ov"1.. ""1 ".lZ,}}J!hi~l O.Il?IQ)·l.:l c.o -1').II"J7)·0'- lI. F~ .. 'lCn·""1 .,. :l "U
V.i41,)1)0')"'1 l,.I?t.lO')"·I'1 n. I .. • .. :..~').I) I O.V -0.!111~·"..;-t) C.llt';'':.~,''·!'1 (10.'1 0.0

continued

TABLE 6.3(b) Solution of Example 6.2

454

.... 2~v"(.·n·,.,1 0.1200')')_('11 r:l." .. w.'za-o" 0.0 -0. \'Y'ZIo0_00 C.lll1 .. :'*N 0.0 0.0
c.)10('lu').1"I1 C.IZ OOO.Ol 1'). 111',,,1\11_0n 0.0 -O.ltQ6;)0_01] loa 1,,0 l20. n l 0.' 0.0
..... 3"01)' .. 1·01 1J.11OOQ"!tOl IJ.t;n"IJ·IJ ~.u -0.410 l';IriO.OI,} O.ll~blJf)·nl 0.0 0.0
13 ... 00·,,,:>-01 ,).11011.10.01 O.4n'iblJ·O~ 0.0 -0. '''b8 m-Ol a.l2U ,o.nt o.n 0.0
<.0 IJ.140JuO.I')l I).HnOI)O·Cl 0.0 -O.~Jl)bli')-rH O.lOCI)OOf(\1 1')." 0.0
.:.ltll\iI),)1·r;c ('.141):)0,)+('11 a.llqb 1 OtC I u.o -O.lll B.)-;'l U.I?;.I1040*01 0.0 0.0
,J. dnUnJu·'Jo Q.alouD",I)_!'1 0.13 0 1,),),'-01 0.0 -!'If I 1101 }\)·Ol u.lOIIll)·Ol 0.0 0.0
C.I~l'''.)!j!'·:)1 l...1400,-,{h:)1 1).1 JH lUtoa 0.0 -o.1t.:.neO-ul O.l"ilftl'hnl 0.0 0.0
v.l')O"OI")+l)l C.t"u')'Jl)tOl lJ.tlb470 f lJl O.u -·) ... ~,:· ..)I) ... "'l u.lI}4lsn·Ol 'l." 0."
C.1OO')'J')·"1 0.1"1.11),)0.'1. 0.1 J ,.,00.01 0.0 -O.lb~l2"J-Ol O.ln~1)1O·r.l 0.0 0.0
';.140')".,·" Ih llotOfJJI)'l)l '>'12'))10'01 0.0 -"'.1 M·lln.el) (J.l\5HC'.nl '.0 0.0
C.1-'O,)I,;;}·/')1 c;.1 t.O''ll,lO·C a n.lllll~'1t)·Lll 0.0 -U.~,)11,3:)·~ll t..ll 1 tan·CII o.n 0.0
O.)ZO(\UL).,')t O.IIoLlOJO·OI O.I<ll~'~)·Ot 0.0 -n. Hlll').(I~ O.l')Oln.nl n.n 0.0
f).)~OI)OO· ') I O.l lo vOuO·Cl 1J.9o;.11lO·OO 0.0 -0.'7I)11:.0·0r) CI.lttnb~·Ol o.n 0.0
C.IoOJOIjI)·1)1 ".140:)\.00'01 'J.·H421)O·(JtJ u." -r:.21Hl;>-CJ O.lH'JtO·f)1 0." 0.0
l..c O.I"ul)(JIhrl 0.1 !)OOOU'O 1 0.0 -O.-"HJq!)-f,Z O.lf}OO(.O·Ol 0.0 0.0
,J.100VO'Jr)·Ou u.l~,:,,')ul).nl O.'''I'Ul')·Cl 0.0 -('.qO~Bf}-Ol ·O.II)Ol)ZO·OI 0.0 0.0
",.60(11)1,)')·0(, O.lb\H)OO·Ol 1).15'1HO·0' 0.0 -O.IZ~d1J-Ol ·i.I.1ClIt. c'IQ.Ol 0.0 0.0
\).lll1!i\}I)·OI CI.l~unl.il')·Oi. O.)';81)1j0.Ol 0.0 ·(l.211c;~~·C.·1 0.1""2Q)"l.nt o.n 0.0
:...ll)IJOI) ... ·nl O.lbllI')OO·l)l fJ.l:i7ltl,)·",t 0.0 -v.'Y'I"OO- .. l L1.1USbbr'!·OI 0.0 0.0
Ct.1OC"iJO·r)1 O.I!~Of}O"l.nl 0 •• ,,1j)&1)·01 0.0 -0." lAI "1)-1.11 0.1' o 111'). n 1 o.n 0.0
C.2",onO'h", O.lbI"Our'l·Ct 0.1"'1770·01 0.0 -0.I1J110·00 0.1187b(\·nl n.o 0.0
":.2 q(,;l)v;)· 0 1 O.I"Ol')ul'''OI 0.11o"15:>·Ul o.a ··'.l,...7'12Q·U'J C.I HI 10.01 o.n 0.0
0.520/')0')·')1 0.1 ~u')'JO.~'ll 0.1 J"~"I}.O' 0.0 -(l.ltl20)O_UO (,.l'j)\SO·('Il 0.0 0.0
C.j",ClQO"-Ol 1l.1bCJU'l_'l, 0.1 HoZU.Ol 0.0 -0. h,Zd"l).on u.llSUin·"l ~.~ 0.0
u.ltOuOOt)·l)l v.l"'00uO-1)1 ').Ilhl')-Ul 0.\.1 'l. 1501J6!)-C 1 U.l'~IoIoO·Ol n.l) 0.0
V.O 0.1 ~a,)ol}to I 0.1 tSOOt)U-Ol 0.0 - O. Jb'"lZOU-02 0.100000·01 0.0 0.0
""."OO'lOf'J·Oo 0.1 "a,}ul).OI 0.1"''''0·01 0.0 -0.""S80-01 0.100.,,,0.01 o.n 0.0
c. ISOI)"),,'}- Ou c. UoOIlO'1"l ').lrQb"IJ'''' 0.0 .. n ·H1SO-l.Il C/.ltll1!iO·t:ll tl." 0.0

'u.l~IJOv,l-1')1 U.l'hJOI)O·'l1 O.I'~Z~I)·OI 0 •• -1).11 JOOO-C I 0.11)54110·01 0.0 0.0
1J.1,:»00 ')·01 u.l i\.)IJvIJ.OI I). I '",, 10.01 0.0 ""O.?lill,O-rt O.I:"I6"'ln.nl n.o 0.0
4...100("')0'01 l).liuO"".OI 'l.I1lS"lU·ut 0.0 -'l. '5)!oIjU-01 O.11Pt-D·OI 'hO \.I.v
u.1"uO.>O·OI 0.11\01)00.01 0.U'51t.O·CI 0.0 -1'I."i,."'1O-(11 0.120'00_nl 0.0 0.0
(,;.lqO~'h.O·OI (',.1 ROO ... O·O 1 0.11210;0-01 0.0 -t:l. !'IIZ~.)"'O-C I ('.1 H "",:'hnl 0.0 0.0
G. JlO(lO~ltOl O.l')uo(.n.o 1 0.16')Z 10_01 o.e -I). ''Ill It.., 20-(H O.l"ill""·Ol ~.O 0.0
",.)~c,)OuO·Ol O.IIJOOOO·(l1 0.1-,'\10;:,)'01 0.0 -0. 71tolo 20-lJ 1 O. 11)')50.0l 0.0 0.0
O ... OoJO O·OI O.l~\lOu.,·OI I). hit. ""0'01 0.0 o. t 11 ~lO-l~1 CI.l1QU ~.Ol :')." 0.0
c.o 0.200000.1:' 1 O.lQl)ut)!)·Ol 0.0 oJ.ltlO1So-Ct1 0.1 ')(JOOil' ('Jl 0.0 o.v
0.1000001)'00 O.l:)Ooon.Ol O. 200uoO' 0 1 0.0 .. n.11l1 bD-Oe O.lOOrsn·f)1 0.0 0.0
~ .'l000vo,). Oll 0.20001..'0'01 0.2001)00' OJ 0.0 -0. U~ll'O"'OIj O.Ii)llll~n'N o.~ 0.0
0.120I)OI)-Jl O.ZO\JoJJIJ·Ul 0.2001)0')'01 0.0 -n.bMblD-OI!I O.lI'1HItI)-Ol 0 •• 0.1)
,).1~UI)L10·01 ll.tuCOO"l·Ol o.?o/)aOO-Ol 0.0 -C'.IZ7Hm-0., 0.10bHO.Ol I).,) 0.0
0.201.1000·01 u.ZOoJOOQ.Ol O.,?uI)OOG·Ot 0.0 -o."H ,q()-O) O.lIZlZI')_{Il n." 0.0
.... 2ltOO\JI)·01 !j.~I.l,-,·JJO·Ol ;,J.21JI)JOO·Ol 0.0 -0.HIt1~O-07 O.}?ll.,O.Ot n.O 0.0
O.ZIlOOLlO.Ol O.ZIlvOJO·Ol U.1Onl)f)O·OI 0.0 -O.4?lblU,7 0.1 J·)(oZI).OI 0.0 0.0
C.120/)e"I)·OI O • .?O\lOv:')·OI 0.200000' 0 1 0.0 -'.'596j.5'}o-07 O.l~lthn.Ol O.~ 0.0
1l.)bCO;J·"·/,)1 0.Z01l1)1J~·"1 'J. ZuO)00· cH 0.0 -ll.l'5 Q)TO-Ol U.tlUltIO·Ol o.n o.e
O.Iof}\.iI'lOO·Ot Ou?OJIJOD.OI O.lOOOOO·Ol 0.0 -0.1181'}JaCI O.l"USZt)·Ol 0.0 0.0

TABLE 6.3(b) continued

455

l.''>J'''~ ••••••••• ~ ••• ·.·.~ ... ,·".~ •• ' l ~ •••• ,.

IIIH UUI U I UUUUUHU III iUUl1 U U U UIHI $I UII' ~I H HI I UU I" IlIU". UU"
IS ..

..,., ... ,). lJ • • I •

•
0." J').O·) •
Ij. I rn. fl", •
".HOo!')!) •
O.I~O·OO • 1,).1 '-"I. Cl) •

• • • •
• • • • • • •

'le 1)'). CO • n. 'v·,-al •
• • • •

• • •
'hl u!)··jl • • • •

ual.lu~".HHuuu.nuuln".luu"U •• "U'UI'H'I"";II".IHu'Hluun
•
•

•• 1.")'1-01 •• ~ ••• ~ ~ ••• o ••• c •••••••• ~ ••••••••••••••••••••••••••• ,
- ~,,;.lJ-ul 1l.1r'l-)_ .. 1 ;.1""'..,0 U.SiLl';')) 1U.CO C.~".J·O·)

(.'US

FIGURE 6.3: Initial triangulation of Example 6.1

456

Il.'" ",,'" .•• ~ ... ~.~ •.•••••••••.•••••••• , .• ~ •••••••.•••••••••.••• ...
• •

JH" IHI, ,.,,' I 1\1111;'" II H U UII U HI UOUIIII U'" U" U U 1r.11 '''''' Ill" U 'In.o

• • ".4 m,,=-, , ,

•

.
-n.'vO-OI •••••••• ~ •• e •••••• ~ ••••• o •••• ~ •• ~.o •••••• o ••••••••••••••••••••• ~ ••••• ~ ••••••••••••••••••••••• ~ •••••••

• f) OU.vl ;',11)0-.11 L·.I~I.I'OO C.)Ir>'Ot'i ".410·Ot') """~'I'"

FIGURE 6.4: Vertices (0) and Centers (x) in final triangulation
of Example 6.1

457
'~I ••••••••• , •••• ~ ••

•
•
• •

• •
•

''::1

• •
• •
• •

·CI
•
0

•
0

•
0

0

• ."
0

0

•
0

0

•
• .,.
• • • • •
0

• • •
·01

• • • • •
• • .. " • • • • • • • •

·0.
0

•
•
0

• • • • •
·0:.1

•
•

•
-':I

• • •

• •

•
"~""""'.""'." ••• f."".,\\ •••••••• "'.\ •• \ •• '1 ., •••• ", •••••••••• '.1 ••• '..... •
U 11 · . . , · . , , · , ,. .
\ , , . · , , , . · . . \ . , , . .

• • • . . , .
• • • • • , , ". , , \. , , \, ., '\ .

• I " • •• ., ,. . ., .., . ., " " .. .' . ,. , , . , · , .. , . · . .. , . • • • • • •

• • • • • •

• • • • • • • •
I

•
I

• I
I
I

• • • •
I
I

• I

• •
I

•
I

I
I

I
I

I
I

I

•

, ,
I ,

I
I

•
I

I

I , ,

,
I

• •
• • •

• •
• • • •

• • • • •• • • • • • • • • • • • • • • • • .,', ..••...... ,.,', .. ,",." , .. ,", .. ,
II ,I, . , " • • • • • • , , "

•• • •• • •• • •• •
,
• • • ,

• • , ,
• •

I
I
I

,
• I

I ,
I

I

• I

•
I

•

• • • • • • • •

• I
I I

I ••

• • U .. I , ••••••• '1'.'1 •••• '1 ••• ' •• ,', •• ,\\,.,""",."., •• ,","'1"'"

• •
• • •
• • • • • •
•
• •
•
• •
o

•
• •
•
• • •
• •
•
o
o

• • •
•
•

•
•

.0Q) •••••• ~, •••••••• , •••••••••••••••••••••••••••• , •• ~ ••••••••••••••

·o ... ~lJ.')O .).SbOoO/) O.lc~:h\Jl eJ.Zo;OoOt 0.) .. 1,1001 v.~~J'l.ol

X ,101 n

FIGURE 6.7: Initial triangulation of Example 6.2

)0 '1' , ,•..•.•............................•..•..........•••.. 458
• • • • • •

• •
,U IS I' ut" U, UI" ~'H' l\ HUU ". It ''''','" "" u." u.". U, H""IS lUll U""U) • • • • •

.JI • "
, 'I , 0 , 0 • • ." • • • • • • • • , • • • • • • • • • • • •

• • , • • • • • • • • 0 • , , •
'01 • • • • • • • • • • • • , • • • • • • • • • • • • , • • • • • • • • • • • • • •
'0, • n c 0 0 • • • • • • • • • • , • • • • • • • • • • • • • • • , • • • • • • • • • •

"'H • u , , 0 ."u • • .. • • • .. • • • , • • • • , • • • • • • • • • • • , , • • • • • • • • •
·ou • • 0 ,

• • • •
• • 0

• • •
• • •
• • •
• •
• •
• • • •
• • • •

"DU • • • • , , c , 0 , ..
• • • •
• • • •
• • , • •
• • • •
• • •
• • •
• • • •
• • • •

")'C\J • •
• • n • •
• • •
• • •
• • •
• • • • •
• • • •
• • • •
• • • • • •

'. '~CI • •
• • • •
• ~ ••••••• I'I\ •• \.C'I'.'.' •• II'.IIOI' •• ".'."I •• ".I ••• ••••••••• 0 •
• •
• • •
•
• • •
• •

. '''h')~ •••••••••••••••• ~ ••••••••••••••• o •••••• , •• o ••••••••••• ••••••••••••••• , •••••••••••••••••••••••••••••••

-0."'/';0'00 (),~"c·\)1') (jol~O'Ol C.~lO;u·vl -0. '100'01 COD·OI

• 1 S

FIGURE 6.8: Vertices (0) and Centers (x) in final triangulation
of Example 6.2

459

6.7 SPECIAL TECHNIQUES

6.7.1 Utilization of Symmetry

If the following two matrices are symmetric at every point, then,

the storage required for the Jacobian will be halved since elements

above the diagonal need not be stored. To tell the package that

symmetry exists, a statement: SYMMETRY is coded. The matrices are:

-Fl/U -Fl/UX -Fl/UY -Fl/V -Fl/VX -Fl/VY

OXX/U OXX/UX OXX/UY OXX/V OXX/VX OXX/VY

OXY/U OXY/UX OXY/UY OXY/V OXY/VX OXY/VY

-F2/U -F2/UX -F2/UY -F2/V -F2/VX -F2/VY

OYX/U OYX/UX OYX/UY OYX/V Oyx/Vx OYX/VY

OYY/U OYY/UX OYY/UY OYY/V OYY/VX OYY/VY

and GB1/U GB1/V

GB2/U GB2/V ,

where
aA

A/B, as usual, means aB

6.7.2 Mixed Type Boundary Conditions

This package does not, in general, allow the specification of mixed

types of boundary conditions on the same arc. However, if these

boundary conditions can be written in the form:

u = FB1(s,t) (6.27)

and v = FB2(s,t) (6.28)

then, it is possible to convert them to Neumann type boundary condition

approximately by:

OXX*n + OXY*n = -BETA*(u-FB1(s,t» x y
(6.29)

OYX*n + OYY*n = -BETA*(v-FB2(s,t» x y
and (6.30)

where BETA is a very large number (computer infinity). This will

460

force the terms u-FB1(s,t) and v-FB2(s,t) to be zeros which satisfies

the boundary conditions (6.27) and (6.28) approximately.

6.7.3 Solving a Single Equation

It is possible to solve a single equation, simply, by ignoring

the second equation in specifying the input data set as demonstrated

in previous examples. However, if the problem considered is a one­

dimensional problem, then, the execution time of the package can be

considerably decreased if it is handled as follows:

(1) Let the region be xl~x~x2' We assume that R is in two dimensions

with ~~l and the normal derivatives of all unknowns are 0 at

y=O and at y=l.

(2) The grid option is used to define the initial and final triangulation

with only two grid lines in the y direction i.e. ygrid(l)=O and

ygrid(2)=1. Grids in the x-direction are done as usual. Adopting

this technique, the execution time is considerably decreased

compared to that required if grid lines in both directions were

done.

6.7.4 Solving Several Simultaneous Equations

The package can solve up to 5 equations per set. In this case,

the variables and their derivatives are called Ul,U2, ••. ,US,Vl,v2, •.. ,VS,

U1X, ••• , etc. If we have more equations and we can divide them into

sets with maximum number of sets of 5 and maximum number of equations

per set is 5 and such that the coupling between sets is low, i.e. such

that the unknowns in each set are not highly dependent on the unknowns

outside that set, then, the TWODEPEP package can handle these sets.

461

To define a set the keyword 'SET=n' is coded at the top of each set

where n is a sequence number i.e. 1,2, ••• ,5. Then, inputs of each set

are coded immediately after the 'SET=' statement. In the first line of

the whole input data, the NEQ parameter will be coded as an integer each

digit of which gives the number of equations in each set starting from

the most significant digit as for set number 1 and so on, e.g. 234

means 3 sets with 2 equations in the first, 3 in the second and 4 in

the third. The package handles each set independently of the others

and substitutes the most updated values for computation iteratively.

6.7.5 Non-Uniform Distribution of Elements

The package distributes the number of triangles evenly over the

region. In some applications it is desired, to get correct solutions,

to have element condensation or a finer mesh in particular parts of R.

Examples can be a crack tip problem or flow around an obstacle. It is

also desired to have the elements properly graded, i.e. gradually

graded. This can be done by specifying in the input data a function

with the keyword D3EST as a function of (x,y). The package will use

this function to distribute D3EST(x,y)**(2/3)*A(j) evenly over the

final triangulation where A(j) is the area of triangle j. Practically,

we choose D3EST to be largest where we want the triangulation most dense.

6.7.6 Updating the Master Matrix

If the user is in some doubt whether the master matrix should be

updated or not, he can make a simple run with only a few elements and

constant time step and default NUPDT to 1, i.e. updating the master

matrix each time step. If the message "NOTE - Jacobian updated

unnecessarily" is printed, then, he can run the actual run with the

true number of elements with NUPDT=O. This will result in a big saving

in processing time.

6.7.7 Accessing the solution Stored by an Earlier Run

If the problem to be solved requires the solution of a previous

problem which has been obtained by the package in an earlier run and

stored by the package using the MWR parameter, then, it is possible to

access and obtain that solution by the calling of the TDREAD subroutine

as follows:

CALL TDREAD(Ifile,Iskip,ICl,WSTO,X,Y,W,WX,WY}

where:

• Ifile is the logical unit number of the file containing the

solution.

• Iskip is the number of output units that must be skipped from

the start of the file to reach the desired stored solution.

One output unit = (NX+l) * (NY+l) solution lines.

• ICl if Iel=l then the values of U, UX and UY are to be returned.

if ICl=2 then V,VX and VY are returned.

• WSTO is a real 2D array of at least {(NX+l},(NY+l}} elements.

WSTO(l,l} must be initialized to -75.75 by a data statement.

TDREAD will store the returned values of U or V in WSTO. WSTO

should not be altered by the user between successive calls of the TDREAD

subroutine.

• X and Y are the coordinates of the interpolation point at which

the solution is required. The output of that routine is W,WX and WY

where W will hold U(x,y} or V(x,y} [according to ICl=l or =2, respectively].

463

a a
WX is axu(x,y) or a;v(x,y)

WY is ~(X,y) or ~(x,y) .

TDREAD performs a quadratic interpolation scheme to compute W, WX and

WY •

4M

6.8 COMPUTER IMPLEMENTATION

6.8.1 Implementation on a Mainframe Computer

Since this package, as most of the similar ones, is a CPU bound

job, it is wise to be run in the background as a batch job for medium

size and large problems. It has been modified, as will be described

later, to run on the mainframe computer IBM 3033 running under the

operating system MVS. Moreover, it has been modified to run on the

small size mini-computer HP3000 for small size jobs. The main outlines

for implementing this package on the IBM machine is as follows:

(i) The pre-processor program is compiled and linked to produce a

load module, i.e. an executable program. Since two versions:

single precision and double precision are available, two programs

are produced. They have been given the names: PRESNGL and

PREDBLE.

(ii) The problem independent subroutines are compiled only and saved

in another separate file.

(iii) The input data set for the problem to be solved is run as an

input to the pre-processor program. In other words, either the

program PRESNGL or PREDBLE is run with input the PDE description

and data in TWODEPEP notation.

(iv) The output of the previous run (logical unit number 4) is the

problem dependent Fortran subroutines plus the main program

driver.

(v) This file is compiled and linked with the file containing the

problem-independent routines into an executable program which

will, in fact, solve the problem and print the required results

and store them, if so desired, on a file for postprocessing or

a subsequent run of the package.

(vi) During the execution of the program some work files may be

needed with logical unit numbers 12, 13, 14 and 15.

465

(vii) Since the package is used within this Ph.D. programme as a

research tool, it is desired to be able to fetch the generated

Fortran program; this is done by reading the problem-independent

routines and appending them to the source program file generated

by the pre-processor.

(viii) A procedure has been designed and implemented to do the whole

job by one statement only. The details of which are as follows:

466

111l)I'~N(,L PkUC

11. PROC-NAM~: 1uP~~GL MAINT.-RESP.: A. SHAkAF EL!)IN 1,. ======~==~ LAST UPDATE : 09/0S/1963

".--
". DESCRIPT.: THE TWODEPEP PACKAGE IN SINGLE PRECISION 1,. ======:.:.==
1,. SPECIFY YOUR INPUT DATA ON PRESNGL.FTOSFOOl
". THIS IS THE SINULE PRECISID'I VERSION

IIPRE:.NGL
IISTEPLJB
IIFTOSFOOl

EXI:C
(J()

UU

PGM=PkESNGL
DSN=RUC. Tc~ T .LOADL IIl.DI SP=S·HR
DUMMY

IIFTObFOOl 00 SYSOUT=* .
IIFT04FOOl UU UNIT=SYSDA,OISP=(NEW,PASSI,SPACE=(TRK,(25,SI ,RLSEI ,
11 OSN=&&SV,OC6=(LRECL=60,BLKSIZE=BO,RECFM=FI
IIFT09FOOI OU O~N=F4SL005. TWDDEP'.DATA(TDPASNGLI ,DJ SP=SHR
I/FURT LXLL I'GM=JGJFORT,PARH=(NOSOURCEI
IISYSPRINT DU DUMMY
IISYSLJN UU USN=&ObJ,SPACE=13040,(40,40I",ROUNOI,UNIT=VIO,
11 UISP='MOD,PASSI,
11 0C&='BLKSIZE=3040,LRECL=60,RECFM=FBS,BUFNO=11
IISYSJN .00 OSN=&&SV,DJSP=IDLO,OELETEI
II*======================:.~===,
IILKEO EXEC PGH=IEWL,CUND='5,LT,FORTI,pARM='LIST,LET'
IISYSPR1NT DU UUMMY
IISYSLMOO OD SPACE='CYL,(I,I,ll',DSN=&LOO'XI,DISP="PASSI,
11 UNIT=VIO,DC&=bUFND=l
IISYSUTI 000SN=&SYSUTl,SPACE='I024,1120,120I",ROUNDI,UNIT=VIO,
11 UC6=BUFNO=1
IISYSLIN 00 OSN=&OBJ,DI~P=(OLO,OI:LI:TLI
11 uU UUNAME=SYSIN
IISYSLIB vU USN=SYSI.FORTLIB,OISP=SHR
II*==~===:.===:.================================:.====================,
IIGO EX~C PGH= •• LKED.SYSLHOO,CONO=(IS,LT,LKEDI,'S,LT,FORTII
IIFT06FOOl 00 SYSOUT=Y
IIFT02FOOl 00 UNIT=SYSOA,DISP=INEW,OELETEI,DSN=&&FILE2,
11 SPACt=(TRK,(IOO,lOI,RLSEI
IIFT08FOOl vv UNIT=SYSUA,UISP='NEW,OELETEI.DSN=&&FILE8,
11 SPALE=llkK,(S,S),RLSLI,uCB=(LklCL=120,6LKSIZE=120,RlCFH=PI 1,. NOTE 1HAT ~ILES 8 ANU 9 ARE: MODIFieD HeRE FOR THE 'OISP' PARH
". TU £SE. (~E.,OcLLIEI IN~TLA() OF (NE",LAILG)
IIFT09FUOI vU UNIT=5YSUA,UISP=(NEw,DELETll.DSN=&&FILL9.
/ / ~P~l.t..':'" (' .?K,. l ~ ,5). FcL!;,c.) .lJlob= (LRliCL= 120. BLK!>J ZE.= 120. HEc..,-M=-F)
IIFTI2FOOI Uu u~IT~~Y~DA,UISP=I~cW.~[LETEI.DSN=&&FIL~12.
'/ ~P~~~~'lH~.(100.10).~L~E)

IIFrl3f-VUI vlJ U"'IT=:'Y:'OA.OISP=(NEW.UE.LETE I.DSN=l.4FILE.13,
/' !..P,",LL~(lk",.(l()O.ltJJ.hL~l)

//F114FuUl L'~ U~lT=~Y~UA.~l~~:(~E~,JcLtT~).O~N=A&~JL~l~.

// SPA<"L:..(lRI\, (luO,lO),t\L!:..t)
IlrTl~FOOI ~~ UNI1=~Y:'OA,ul&P=(N~W'~LLE1EI,OSN=b&FILLI5,

~ :'~i:Sb ~ (IRK. (10001 0) .hL!.t)

467

6.8.2 Implementation on a Mini-Computer

It is possible to implement the package on a mini-computer. In

fact, the package can run on relatively big mini's, or super mini's

like the V;.;A 11/785 or the Prime computer family. On the relatively

smaller mini-computers like the HP3000, the package was modified to

run by defining all integer variables to be integer*4 and all other

real variables are defined as double precision. The most severe

problem on this machine is the limited address space for any executable

process which is less than 32K words as explained in detail in Chapter 5.

Although it is possible to use the out-of-core option (NDIM=2), the

processing time is increased rapidly.

468

6.9 ENHANCEMENTS TO THE PACKAGE

Many enhancements have been done to the package since its first

release. Some of them are implemented by the author, while others are

by the original developers.

6.9.1 Performance Optimization

The original package was written in ANSI66 Fortran. When

implementing it on the IBM mainframe computer we noticed that there

are many Fortran compilers available. These are: the H, Gl,WATFIV

and VS Fortran compilers. The first two, the Hand Gl compilers are

based on the old Fortran i.e. ANSI66 while the last two are based on

the ANSI78 (popularly known as Fortran 77). The WATFIV compiler is

developed by the University of Waterloo in Canada and is mainly used

for educational and teaching purposes. It is very useful during the

testing and debugging stages but at execution and actual 'production'

stage it is too slow. The VS-Fortran compiler is the IBM implementation

of the 1978 ANSI Fortran. Its first release was in the year 1981.

When implementing the package on the IBM machine, it was first run uSing

the Gl compiler. Afterwards, it was locally modified to run under the

relatively new VS-Fortran compiler. In this compiler an optimization

feature exists [IBM, 1981]. It has 3 levels: 1,2 and 3. Although the

compilation time is increased when using the optimization feature, it

is usually profitable to use optimization since the savings in execution

time are usually more than the increase in compilation time. The first

level of compiler optimization is optimize (1). This is the lowest

level of optimization and involves register and branch optimization.

Optimize (2) specifies, in addition to that, partial code-movement

469

optimization, but it will not relocate any code when it has been

determined that relocating the code under consideration would cause

unplanned or unexpected interrupts. Optimize (3) specifies full code-

movement optimization in addition to the optimize (1) functions. The

main goal of optimization performed by the compiler is to produce a code

that will be executed faster. Reducing the size of the object code is

usually a secondary goal in this context. In principle, there are many

rules that must be followed by the programmer in order to be able to

make use of the compiler optimization. As a simple example consider

the two codes A and B below:

Code A

COMMON/X/A

COMMON/Y/B

COMMON/Z/C

C=A+B

Code B

COMMON/W/A,B,C

C=A+B

In code A, 3 registers are required while in code B only one register

is required. This is due to the fact that each reference to a variable

in a COMMON block requires that the starting address of that common

block to be placed in a register.

Since the source code of the package was not written in accordance

with many of these rules and since it will be a very time-consuming

task to re-write the whole source again, we used the optimization feature

in the code 'as it is'. Some of the most important tasks done by the

compiler to optimize the code can be stated as follows:

(i) Removal of unnecessary operations from the program. Here are

some examples to illustrate this:

Example (1)

Normal Code

Parameter (N=lOO)

K=N/2

Optimized Code

Parameter (N=lOO)

K=50

470

In this example, the compiler will translate the statement K=N/2 as an

assignment statement K=50 which is much faster than the first one at

execution time.

Example (2)

Normal Code

X=Y*Z+R

A=X+B+C+Y*Z

B=Y*Z+Q

Optimized Code

Temp=Y*Z

X=Temp+R

A=X+B+C+Temp

B=Temp+Q

Here, the compiler assigns the valye y*Z to a temporary location Temp

thus this multiplication is evaluated only once instead of 3 times.

Example (3)

10

Normal Code

DO 10 I=l,N

X=X+lO*Y*A(I) 10

Optimized Code

Temp=lO.O*Y
DO 10 I=l,N
X=X+Temp*A(I)

In this case, the compiler moves the calculation of 10*Y outside the

loop. Moreover, it does the code conversion from 10 (integer) to 10.

(real) at compilation time. This code motion is, however, not always

safe as shown in the following example.

Example (4)

5

10

Normal Code

DO 10 I=l,N

DO 5 J=l,M

IF(X(I).LT.O) GOTO 10

Y=SQRT(X(I))

CONTINUE

Optirnized Code

DO 10 I=l,N

Temp=SQRT(X(I))

DO 5 J=l,M

IF (X(I) .LT.O) GOTO 10

5 Y=Temp

10 CONTINUE

471

In this case, the optimized code will work fine if X(I) is ~O.

However, execution error will result if X(I) is <0 since the SQRT

function argument will be negative and the program will abort. To

overcome such a situation, optimize (2) is used or the code is manually

changed.

(ii) Replacing some operations with more efficient ones. This occurs

most frequently in arithmetic expression evaluation where the compiler

tries to use registers rather than ordinary memory locations. This

results in faster execution time since operations using the hardware

registers are much faster than those referencing memory locations.

This is usually done by storing intermediate results in registers

rather than temporary memory locations. Another situation for register

usage is that of indexing arrays and storing the start address of a

common block.

(iii) Optimizing execution of logical expressions. The compiler

optimizing the execution of logical IF statements in some situations

by evaluating only the necessary logical expressions. For example, a

statement like: IF(El.AND.E2) ••• will be executed by evaluating El first,

if it was false, E2 will not be evaluated since the final result of the

expression is obviously false. Another example is: IF(X(I,J,K) .LT.Y(I.J.K)

OR.A.EQ.B) ••• Here, the logical expression A.EQ.B is first evaluated

and if it is true, the first logical expression will not be evaluated.

This re-ordering is beneficial since a comparison of simple variables

is faster than subscripted ones.

The generated Fortran program by the package was compiled using

the optimize (2) option and the CPU time for two test problems was

compared. Approximately around 10% improvement in speedup factor was

noticed. It is believed, however, that careful rewriting of some

portions of the code may result in more savings.

6.9.2 Definition of User Variables

472

Recall Example 6.1, where the equation (6.25) is to be solved for

three different values of the parameter w. The package in its original

design cannot handle this and similar situations efficiently. To solve

this problem one has to solve the three cases as if each one is a stand­

alone problem. It is obvious however, that considerable part of the

processing is independent of the value of w. For example, the

discretization process and the node renumbering are both the same in

all the three cases unless the parameter NTF is intentionally changed

from one run to the other. To overcome this difficulty, it was proposed

by the author to fetch the generated Fortran program and modify it

manually at the correct places. In the considered example this can be

done easily by specifying a greater outer loop of the form:

DIMENSION OMEGA(3)

DATA OMEGA/1.0,lO.O,lOO.O/

Normal code up to the point of renumbering of nodes

DO 888 IOMEGA=1,3

W=OMEGA(IOMEGA)

Rest of code

888 CONTINUE

This technique is useful in problems where the same domain and topology

is repeatedly used with different parameters. However, later on, IMSL

released the new software product PDE/PROTRAN in 1985 which is one further

473

step above TWODEPEP. It allows the mixing of Fortran statements with

TWODEPEP keywords. To illustrate this consider the following example:

$ PDE2D

UNKNOWNS= (U, V)

NTRIANGLES=250

FRONTAL

A=(El*UX+E2*VY,E3*(UY+VX))

B=(E3*(UY+VX) ,El*VY+E2*UX)

DEFINE

===::::

EM=10.6E6

VNU=.3

El=EM/(1.-VNU**2)

E2=El*VNU

E3=EM/(1.+VNU)/2.

====
SYMMETRIC

SAVEFILE=PLOT

GB=(1,0,-1./2.08) (6,0,1./2.08)

VERTICES=(7 ,1,8,1) (1,2,8,2) (2,3,8,3)

* (3,9,8,0) (9,7,8,4) (9,3,10,0) (3,4,10,3) (4,5,10,5)

* (5,6,10,6) (6,9,lO,7)

$ PLOTS TRESSES

$ END

6.9.3 Supercomputer Implementation

In a very recent paper [Sewell, 1987) the package was released on

the Cray-l supercomputer. In fact, the advent of supercomputers and the

highly concurrent systems in general has stimulated the analysts to

review, redesign and even invent new algorithms that take advantage of

the new capabilities provided by these machines. Since a significant

portion of the solution time in the FEM is spent in solving the resulted

474

systems of linear algebraic equations, vectorization in the equation

solver is most critical. A set of experiments have been done using the

Fortran compiler vectorization switch alternately on, to activate the

vectorization, and off to execute sequentially in scalar mode. In the

stated reference a speedup factor of up to 2.49 was obtained. However,

it is well known that the actual performance of supercomputers is very

different from the peak performance theoretically calculated. In order

to get realistic results,benchmark tests must be actually run on the

supercomputer. If the package is to be run efficiently on a vector

computer, some portions must be rewritten to be more amenable for

vectorization.

CHAPTER 7

FINITE ELEMENT SOLUTION TO SOME GROUNDWATER

FLOW PROBLEMS

TABLE OP CONTENTS

7.1 Introduation

7.1.1 Types of Aquifers·

7.1.2 FUnations of Aquifers

7.1.3 Effect of Human Aativities on Groundwater

7.1.4 Groundwater ProbZems

7.2 ModeZZing of Groundwater FZow

7.2.1 The Basia Equations

7.2.2 Boundary Conditions in Aquifers

7.2.3 SoZution Methods

7.2.4 SOftware for Groundwater Plow ProbZems

7.3 The Pinite EZement Formulation

7.4 Steady pZow in Aquifers

7.4.1 SteadY FZow in Confined Aquifers

7.4.2 Steady FZow in Unaonfined Aquifers

7.4.3 SteadY FZow in a Confined Aquifer with Leakage
from an Adjaaent One

7.4.4 ModeUing of Souraes/Sinks in Aquifers

7.5 Unsteady pZow in Aquifers

7.5.1 The Time IntervaZ

7.5.2 Unsteady pZow in Confined Aquifers

7.5.3 Unsteady pZow in an Unaonfined Aquifer

7.6 Free Surfaae ProbZems in Aquifer FZow

7.7 MisaeZZaneous ProbZems in Groundwater PZow

7.7.1 ProbZem 7-9: SmaZZ Watershed

7.7.2 Problem 7-10: Transient Well Flow

7.7. :3 Problem 7-11: Transient Well Flow with Leakage

7.7.4 Problem 7-12: Anisotropic Aquifer Flow

7.7.5 Conclusions

475

7.1 INTRODUCTION

Groundwater is an important source of water. In arid zones, it is

usually the only available source of water. Studying the groundwater

flow is, therefore, very important in order to optimize the exploitation

of this vital resource. Before studying the groundwater flow problem

it is convenient to give some preliminary definitions as follows

[Bouwer, 1978]:-

Aquifer: An aquifer is a groundwater-bearing formation which is sufficiently

permeable to transmit and yield water in significant quantities.

The most common aquifer materials are sands and gravels.

Aquiclude: This is a saturated but essentially impermeable formation that

does not yield significant quantities of water. Typical material

of which may be clay or solid limestone.

Aquitard: This is a formation which is sufficiently permeable to

transmit water vertically to or from an adjacent aquifer, but not

permeable enough to laterally transport water like an aquifer.

Sandy clay is a typical material for aquitards.

Aquifuge: It is an impermeable formation that does not contain ground­

water at all like solid granite. It does not have the ability to

contain or transmit water.

7.1.1 Types of Aquifers

Aquifers can be classified into:

(i) Confined aquifers: where the aquifer is bounded from above and

below by impervious formations. They are termed pressure aquifers

since there is no watertable. If a well penetrates such an aquifer,

the water level will be above the base of the upper impervious stratum.

476

The water levels in a number of such wells will define an imaginary

surface called the piezometric surface. If the piezometric surface for

a confined aquifer is above the ground surface, the aquifer is called

an artesian aquifer.

(ii) Unconfined aquifers: where the watertable is the upper boundary

of the aquifer. They are called watertable aquifers or phreatic

aquifers.

Aquifers that can gain (or loose) water through the formations

above and/or below (i.e. vertically) are called leaky aquifers.

Accordingly, a confined aquifer which has at least one semi-pervious

confining stratum is called a leaky confined aquifer, and a phreatic

aquifer which rests on a semi-pervious layer is called a leaky phreatic

aquifer.

Figures 7.1, 7.2 and 7.3 are schematics for different aquifer types.

7.1.2 Functions of Aquifers

The main function of an aquifer is, of course, as a source of

water for various purposes. However, many other functions may be

achieved by managing aquifers [Bear, 19791. The main functions can be

summarized as follows:

(i) water supply: This is usually the major function of an aquifer.

In general, an,aquifer is replenished annually from precipitation.

However, it is a fact that some aquifers are not renewable and contain

water stored inside from the far past. Usually, under natural conditions,

a quasi-equilibrium situation is maintained with inflow equal to outflow.

(ii) Storage reservoir: By using the technique of artifical recharge,

large quantities of water can be stored in a phreatic aquifer. In this

piezometric surfa~ - - - -.- ------- ~~ .-. ground surf~
<7/ ,,~-.~---.-.-' - X '_.,J I.) 1r.,'<:lo'7/.~..... ""V,', .. \. \ ")r/:".i" "-/'./' '-. //. I

--r--:;"--/£;~ / / - mpermeable

confined aquifer

Impermeable

FIGURE 7.1: A schematic of a confined aquifer

ground surface

/
/ Unconfined aquifer

I { \

Impermeable

FIGURE 7.2: A schematic of an unconfined aquifer

- - piezometric surface ---- ... _--
adjacent aquifer

~ semi-pervious
/"--<--- .----'-~~--

-

leaky confined aquifer

--I---r--r-r~/17 777
Impermeable

- I
-I

FIGURE 7.3: A schematic of a leaky confined aquifer

477

478

case. the aquifer is used as a storage reservoir. This can be helpful

for either as time storage or for long term storage. e.g. from a wet

sequence of years to a dry one.

(iii) Conduit-like: It is possible to introduce water into an aquifer

by artificial recharge at one point and withdraw water by pumping at

another point or set of points, The injected water will flow through

the aquifer which is used as if it was a conduit. This technique may

be .used in place of a distribution system provided that certain hydraulic

constraints are observed.

(iv) Filter plant: It is possible to use the techniques of artificial

recharge to filter and purify water of inferior quality injected into

an aquifer. In this sense. the aquifer acts as a filter plant. This

may take several forms like: ion exchange phenomena on the solid

surface of the porous material. chemical reactions. absorption •••• etc.

Generally. the ability of an aquifer to upgrade the quality of water

depends on the chemical and physical properties of the aquifer material

and on the type of mineral and organic impurities contained in the water.

7.1.3 Effect of Human Activities on Groundwater

Many human activities affect the groundwater level and/or quality.

These can be summarized as follows [Bredehoeft. et al. 1982]:

(i) Activities that raise the water level:

The most important activity that raises the groundwater level is

irrigation. Although there is usually a drainage system with every

irrigation activity. but such drainage systems usually try to limit only the

rise of the watertable. Dams and similar l¥draulic structures which

create reservoirs and lakes may also change patterns of groundwater

479

recharge and discharge. The change in surface-water level alters the

boundary conditions for the groundwater system.

(ii) Activities that lower the water level:

Developments of groundwater lower the water level. Any structures

that extract groundwater must create a gradient in the system which

lowers the water levels. As an example, a production well will create

a cone of depression. Continued declines in water levels are common in

many areas of the world due to the excess of pumping from the aquifer

or due to the mining of groundwater. Mining means extracting water as

if it were a mine like gas or oil, i.e., in a non-renewable fashion.

(iii) Activities that change water quality:

waste disposal is usually done to atmosphere, streams or other

surface-water bodies on or into the earth. Waste disposal either

as solids or liquids into the solid earth has associated hazards of

contamination and transport by groundwater. Even disposal to the

atmosphere or streams may indirectly affect the groundwater quality.

Increased use of chemicals both in agriculture and other municipalities

may also cause aquifer contamination.

7.1.4 Groundwater Problems

It is possible to classify the different types of problems

concerned with groundwater into three major categories as follows:

(i) Prediction problems: these are the most commonly solved problems

and indeed most of the research done so far in the groundwater field

is concerned with prediction problems. In these problems, we are

interested in studying physical phenomena associated primarily with

the aquifer. Four types of problems may be identified as prediction

480

problems. These are: flow, land subsidence, mass transport and heat

transport predictions. In the flow prediction problem, the data about

the aquifer parameters, boundary conditions and sources or sinks in the

domain are utilized to solve the PDE's, of flow in order to determine

quantitative parameters of groundwater flow such as direction and rate

of flow, changes in water level and the pressure at different points.

In fact this class of problems is considered within this thesis. Land

subsidence caused by withdrawals of groundwater is another type of

prediction problem where the deformations and stresses are to be

determined. A third type of prediction problem is that concerned with

mass transport in groundwater. This is primarily associated with

groundwater quality problems where the movement and concentration of

various pollutants is predicted. Among the problems of this type is

that of the sea water intrusion in coastal aquifers. In heat

transport problems, the flow of heat is coupled with water or steam.

An example of this type of problem is the analysis of hot springs, heat

pumps and geothermal reservoirs. It should be noticed, however, that

it is possible to have prediction problems of more than one type.

Prediction problems can be solved either analytically, using analog

techniques or numerically.

(ii) Resource management problems: these are concerned by the utilization

of the groundwater as a resource which has to be optimized in a particular

sense subjected to constraints.

So, the target is to determine the courses of action which will

be consistent with predetermined management objectives and constraints.

This system approach to groundwater management is relatively new

compared to prediction problems. The management objectives may be, for

481

example, cost minimization or ensure a minimum of water supply; while

the constraints may be legal, technological or economical.

(iii) Identification problems: these can be viewed as the inverse of

the prediction problem. Here, we seek to determine the values of the

parameters of the aquifers, e.g. transmissivity, based on actual data

gathered from the field tests.

482

7.2 MODELLING OF GROUNDWATER FLOW

7.2.1 The Basic Equations

1. Darcy's Law

The generalized Darcy's law which relates the specific discharge

to the hydraulic head can be written as tWang and Anderson, 1982]:

where:

q = -Kgrad h

q is the specific discharge or Darcy's velocity vector.

It is the volume rate of flow per unit area, its unit is

LIT i.e. length per time

Q = [CI,.

K is the hydraulic conductivity or the permeability tensor

its unit is LIT and,

h is the piezometric head. Its unit is L

h or 'Jh is the vector [ah ah ah]:­
ax ay az grad

Equation (7.1) can be written in its expanded form as:

CI,.1
K K K

I~ xx xy xz

~r = K K K ~~J yx yy yz

K K K ah
qz} zx zy zz ,a;

(7.1)

(7.2)

Of the nine components of K there are only six different permeability

coefficients since K is symmetric. This is due to the fact that for

any soil, the flow in any direction is equal and opposite under an

equal and opposite pressure gradient. If the cartesian coordinates are

chosen to coincide with the principle axes of the hydraulic conductivity

tensor K, then K will be a diagonal matrix, i.e.,

K =

K xx

o

o

o

K yy

o

(7.3)

483

Although Darcy demonstrated his law experimentally in one

dimension only, it has been proved theoretically from the general

Navier-Stokes equations for viscous flow [DeWiest, 1965). It is

also important to notice that Darcy's law is valid only for laminar

flow. For most cases of groundwater movement, the flow is laminar with

low Reynolds number (Re)'

2. Aquifer transmissivity:

Assuming an aquifer of thickness B at any point, the quantity T

is called the transmissivity and defined by,

(7.4)

2
The unit of T is L IT. The transmissivity of the aquifer is a characteristic

of it which gives the rate of flow per unit width through the entire

thickness of the aquifer per unit hydraulic gradient [Bear, 1979). The

concept is valid only in 2-D flow which, in fact, is usually encountered

in aquifers.

3. Storage coefficient:

The storage coefficient of an aquifer S (also called storativity)

is defined as the volume of water yielded per unit horizontal area and

per unit drop of watertable (for unconfined aquifers) or piezometric

surface (for confined aquifers). For example, if an unconfined aquifer

released 4m
3

water for a watertable drop of 2m over a horizontal area

2
of lOm , the storage coefficient is .2. For unconfined aquifers, the

storage coefficient is called also the specific yield, which is the

volume of water released from a unit volume of saturated aquifer material

drained by a falling watertable [Bouwer, 1978). Both Sand Tare

determined by pumping tests in the field. S normally varies directly

with aquifer thickness and as a thumb rul~ it is given by:

484

-6
S = 3xlO B , (7.5)

where B is the saturated aquifer thickness in meters.

Note, however, that S is a dimensionless quantity involving a

volume of water per unit volume of aquifer. It is customary to define

the specific storage S as the ratio of S to the thickness B, i.e.,
e

S = SiB. (7.6)
e

4. The Dupuit Assumption:

Groundwater flow is assumed to be essentially horizontal, i.e.,

the vertical flow components are neglected. It is also assumed to be

uniformly distributed with depth. This is called the Dupuit assumption.

Its validity is noticed since the depth of aquifer is usually too small

compared to its area and due to the very slow velocity of flow.

5. The fundamental equation of aquifer flow:

Assuming that the averaged flow field can be considered as a

continuum and applying the principle of mass conservation, the following

equation can be written [Liggett and Liu, 19831:

where S
aq" e

q = -- + ax

is the

~+
ay

ah
-se at = v. (q)

specific
aqz

az

storage and V.(q) is the divergence of

(7.7)

Now, assuming the flow is essentially horizontal, i.e, the Dupuit

assumption is valid, Equation (7.3) will be:

[:" ol
K =

KyyJ
(7.8)

substituting in (7.1) gives:

485

10.)- [~ °l
~alr
ax

(7.9) 1\ -- ° Kyyl
ah
ay

Substituting in (7.7) for q from (7.9) yields:

Using equation (7.6) we get:

S ah = 2- (T ah) + 2- (T ah)
at ax xx ax ay yy ay (7.10)

This equation describes the flow in aquifers under the previously

stated assumptions Le. assuming that Darcy' s law and the Dupuit

assumption are both applicable and valid and considering the water to be

an incompressible homogeneous fluid with constant density. If there

are sources or sinks in the flow domain i.e. inputs and/or outputs,

we add their effect in equation (7.10) to get:

ah a ah a ah
S - = - (T -) + - (T -) - Q

at ax xx ax ay yy ay (7.11)

where Q(x,y,t) is the net groundwater withdrawal or recharge including

pumping with unit L/T.

In the case of steady conditions we get:

.1.. (T ah) +.1.. (T ah) - Q = °
ax xx ax ay yy ay

(7.12)

If the aquifer is homogeneous isotropic i.e. T is independent on the

position, then (7.12) will be further simplified to:

a2
h a2

h
--r+-2=Q
ax ay

(7.13)

In the case of no inputs or outputs, i.e. Q=O, equation (7.13) will be:

2 2
ah+L!!._

2 2 - 0 ,
ax ay

(7.14)

which is the Laplace equation.

486

7.2.2 Boundary Conditions in Aquifers

In managing and analyzing any aquifer, the boundary conditions

must be carefully evaluated. The boundaries may be physical such as

bedrock contacts, or they may be hydraulical, such as limited pressure

areas. They may even be political boundaries such as boundaries

between different countries if the aquifer passes through them [ASCE,

1972] •

As usual, there are three types of boundary conditions:

(i) The prescription of the piezometric head h on part of the boundary,

i.e. ,
(7.15)

This is called: 1st type (I) Dirichlet, geometriC or essential boundary

condition.

(ii) The prescription of the flux, q, normal to some part of the

boundary, 1. e • ,

q= -(T 3h ~ +T 3h ~) =q~(x,y,t)
xx 3x x yy 3y y ~

(7.16)

where ~ and ~ are the direction cosines between the normal to the
x y

boundary surface and the x and y directions, respectively. This is

called the Neumann, natural, 2nd type (11) or forced boundary condition.

(iii) The prescription of a boundary flux which is proportional to the

aquifer piezometric head on some part of the boundary. This is called

the mixed or· the 3rd type (Ill) boundary condition.

In addition to these boundary conditions, for unsteady problems,

i.e. time dependent ones, the initial condition of the piezometric head

should be specified over the entire aquifer domain atthe initial time value

t=t
o

(usually at time 0), i.e.,

h = ho(x,y,tO) (7.17)

487

In reality, examples of these boundary conditions can be:

(i) First type boundary condition may be encountered when an aquifer

is in direct hydraulic contact with a river or a lake in which

the water level is known.

(ii) Second type boundary condition may be encountered in the case where an

impervious strata is above or/and below the aquifer.

(iii) Third type boundary condition may be encountered in the case of

induced infiltration from a lake or a stream into the aquifer.

These three types are shown schematically in Figure 7.4.

Aquifer

Large lake

Impervious
layers

FIGURE 7.4: A schematic of boundary conditions in aquifers

488

7.2.3 Solution Methods

Solution methods for groundwater flow problems can be divided into

three categories [Prickett, 1975]: sand tank models, analog models and

mathematical models. Sand tank models are physical scale models used

to simulate the actual flow systems. In these models a sand box is

utilized and water or another liquid is allowed to flow through the sand.

By measuring the actual flow in the mOdel, the flow in the prototype

can be calculated from [Bouwer, 1978]:

and,

K
....£
K

m

S = L /L
L P m

S~

where, SL is the scale factor

(7.18)

(7.19)

Land L are the prototype and model length, respectively,
p m

K and K are the hydraulic conductivity of the aquifer and
p m

model materials, respectively,

and Q and Q are the prototype and model flow rates, respectively.
p m

It is assumed that the model is a true scale model of the prototype,

i.e. all dimensions, including the head h, are reduced by the same scale

factor SL. Sand tank models were among the first models built to study

groundwater flow problems. However, one of the major difficulties in

these models is that the height of the capilliary fringe may be out of

proportion to the height of the flow system below the watertable if a

free watertable is modelled.

In the electrical analog models, the similarity between Ohm's law

and Darcy's law is utilized to build an electrical network model that

simulates the groundwater flow system. Measuring electrical quantities:

currents, volts, ••• etc., actual physical quantities in the aquifer can

489

be computed. Two types are usually used: the resistance-network analogs

and the resistance-capacitance ones.

Mathematical models, which are in the form of sets of differential

equations, are solved either analytically or numerically. Analytical

solutions are available for many groundwater flow problems but only for

simple geometries and idealized situations and hence, in otherwise.

cases, numerical techniques are the logical alternative. The three

methods that can be used in this case are the finite difference methods

(FDM) , the finite element methods (FEM) and, more recently, the boundary

integral equation methods (BIEM). Though the FDM were traditionally

used to solve groundwater flow problems, the FEM is becoming more and

more popular. Application of the BIEM for aquifer flow problems has

recently started for some problems. In this work, the FEM is used to

solve some of the aquifer flow problems. In fact, the software given in

Chapter 6 will be used. Since some of the problems are time-dependent

we use the FEM for the spatial analysis while the resulting set of

ordinary differential equations are solved by the FDM.

7.2.4 Software for Groundwater Flow Problems

Several programs for the analysis of groundwater flow problems

exist. Some of these have been developed by academics in universities and

research centres while the others are developed by private firms and

usually are licensed to users only. Since these firms make money from

royalties paid by users, their programs are usually delivered in binary form

only, i.e. no source code is given to the users. Scanning some of the

most well known software programs for fluid flow it can be safely said

that they are mostly based on FDM and FEM only. Here, we list some of

the software which may be used to solve SOme of the aquifer flow

problems.

(i) Programs that require a mainframe or a super-minicomputer:

490

1. In the Australian Water Resources Council project 71/25, 8 programs

for analysis of flow towards wells in an aquifer was developed

[Huyakorn and Dudgeon, 19741. These programs seem to be amongst the

earliest FE programs used to solve well-flow problems of considerable

complexity. They handle partial penetration, partial screening,

gravel packing and the occurrence of non-Darcy flow. It can solve

1 and 2 dimensional flow towards a pumped well constructed in

unconsolidated materials. The formation materials are assumed to be

isotropic. Also, modifications of the programs to deal with

anisotropy were outlined within the documentation of these programs.

It is evident that these programs are useful only for a detailed

study of well flow. On the regional level, these problems are of

relatively less importance.

2. Four mainframe-based programs for general flow dynamics are

quoted in [Johnson and TOrok, 19851. TWo of these are: "Fidap" and

"Flodyn" which are based on FEM for incompressible fluid flow. The

other two are: "Phoenics" and "Fluent" which are based on FDM.

These programs are usually used for general continuum problems

described by the Navier-Stokes equations for fluid flow and are

mathematically oriented based software. Their use for groundwater

problems was not demonstrated but there is no reason to

believe that they cannot be used for such problems.

(ii) Programs that require small size mini-computers or micro-computers:

1. The "IFEP" program developed by the author has already been presented

491

in Chapter 4 and is a FE based program for the analysis of steady

flow in aquifers.

2. The "AQUIFER/1OOO" program was initially developed by Dr. E.O. Frind

of the University of Waterloo in Canada in 1972. Later it was

adopted by Compeng Computer Systems, Ltd. in Canada and implemented

on the mini-computer HP1OOO. It can be used to compute the transient

piezometric surfaces for two dimensional confined aquifers. It is

now based on linear triangular finite elements.

3. Another aquifer simulation program for micro-computers is that

developed by Briz-Kishore and Avadhanula [1981]. This program is

based on the FDM and can be used for steady-state and dynamic

conditions for both homogeneous and heterogeneous aquifer systems.

Two versions of this program have been developed, one in Fortran and the

other in Basic.

4. Two programs, one for aquifer flow [Wilson, et al, 1979] and the

other for seawater intrusion [Sa Da Costa, 1980] have been developed

at the MIT in the USA. They can be run on a small size computer and

are based on the FEM.

492

7.3 THE FINITE ELEMENT FORMULATION

In this section the FE formulation of the general aquifer flow

problem defined by Equation (7.11) is given. The formulation is based

on the Galerkin's method. Since this problem is a time-dependent one,

the second approach described in 3.10.1 is used, i.e. the nodal values

are considered functions of time and the space variables are used in the

FE analysis. This leads to a system of ordinary differential equations

which can be solved by the finite difference method.

Since the method of weighted residuals (MWR) and the Galerkin's

FEM formulation were discussed in detail in Chapter 3, unnecessary

details will not be repeated again.

'" Assuming the trial solution for equation (7.11) to be h, then:

A
h(x,y,t) • N(x,y)H(t) , (7.20)

where N(x,y) are the interpolation functions and H(t) are the nodal

" values of the piezometric head at time t. Since h is an approximate

solution to equation (7.11), then this equation will not be satisfied

exactly and hence a residual or error will be created. In other words,

the expression,

" " A

ah a (T ah) a (T ah) + Q sa-t- ax xx ax ay yy ay

will not be zero.

In the method of weighted residual (MWR) the integral of the

weighted residual is equated to zero, i.e.,

J
A

A

[S ah
at

A

a (T ah)
ax xx ax

a
- -(T

ay yy

where w. are the weighting functions.
1.

Rewriting equation (7.21) we have:

A

ah)
ay

dA • 0 (7.21)

A

J
a ah - [- (T -)

ax xx ax
A

"
+ .1...(T ah)] W dA = 0

ay yy ay i

By using Green's theorem for the second term we get:

J [S a1, + Q]widA -
A at

" "-[J (T ah R.
S xx ax x

+ T ah R.)w.dS
yy ay y ~

aw.
(T xx ax

--~
ax

A

493

(7.22)

(7.23)

where S represents the boundary segment of the region. Assuming this

boundary is divided into two parts Sl and S2 where Sl represents a

boundary of known head and S2 a boundary of known flux then:

(7 .24)

If the weighting functions are restricted so that they vanish along Sl'

then the integration over S in equation (7.23) will be over S2 only. If we

recall equation (7.16) which defines the 2nd type boundary condition

i.e., the prescribed flux boundary condition qo(x,y,t) then equation

(7.23) will be:

" ah
- + Q)w dA at i

(T xx
a1, aW i ---+
ax ax

Now,since, the weighting functions w. are chosen to be the same as
~

(7.24)

the interpolation functions in the Galerkin's method i.e. wi=N
i

, then

(7.24) will be:

(T xx
a1, aNi
---+
ax ax

" aN
T ah _i)dA = 0
yy ay ay

(7.25)

Since in the FEM the domain is discretized to elements, then

equation (7.25) is valid in fact for each element in the domain.

494

Assuming the elements to be linear triangular, then, we, should obtain

the element characteristics. Although these have been derived previously in

Chapter 3 [see equations (3.190) to (3.210) for details] ,

to complete the analysis here, they are summarized in the following:

(7.26)

which relates the piezometric head at any point in the element to the

nodal values. The shape functions NI' N2 and N3 can be expressed as:

1
(alx + bly + cl) (7.27) NI =

2A

N2
1 (a2x + b 2y + c 2) (7.28) = 2A

1 (a
3
x + b

3
y + c

3
) (7.29) N3 =

2A

where (xl'Yl) , (x2 'Y2) and (x3 'Y3) are the coordinates of the vertices

of the triangular element and the coefficients al ,a2 , ••• , etc. are given

by:

a l
= Y2-Y3 '

a 2 = Y3- Yl' a 3 = Yl -Y2
(7.30)

bl
= x3-x2 ' b2 = xl -x3 ' b3 = x -x ,

2 1
(7.31)

cl = x2y 3-x3Y2' c2 = x 3yl -x l Y3 and c
3

= xl y2-x2Yl
(7.32)

and A is the area of the triangle given by:

1

A = t 1 (7.33)

1

It should be noted that in the natural coordinate system (area

coordinates) the shape functions are given by,

Al A2
and N3

A3
NI = N2 = = A A A

(7.34)

where A
l

,A2 and A3 are the areas of the subtriangles formed by any

point inside the triangle [see Figure 3.11].

495

It is possible now to evaluate the derivatives in equation (7.25).

For example,

ah aN l
ax = a,z- Hl

Similarly,

and

"
ah = l:....[b b

2
b

3
] He

ay 2A 1

1
= -[a

2A 1
(7.35)

(7.36)

(7.37)

It is also known that [Davies, 1980] the area and arc segment integrals

of the forms in equation (7.25) are:

and

2Am!nlpl
(m+n+p+2) I

dS = s:=m:..:!~n:..:!-:-.,...,..
(m+n+l) !

Substituting in equation (7.25), we get:

J
(~ e a e

+ T (LH.'d:;N.)
xX·1JX J

J= A

= 0

This equation can be written in a matrix form as:

e
edH e e e K--+BH+F 0 dt = ,

where, the matrix K
e

has the elements k~j defined by:

(7.38)

(7.39)

(7.40)

(7.41)

496

(7.42)

(7.43)

and (7.44)

where FQ stands for the contribution of source/sink flow and Fb stands

for the boundary flow with elements

e fee dA (7.45) fiQ = Q Ni
Ae

e r b
dS and fib = J qch (7.46)

se
2

By summing the element contributions, the overall equation for the

whole domain will be,

e dH
e

L (K dt + BeH
e

+ F~)
V elements

or globally as:

KdH+BH=F
dt

+ L (Fe) = 0
~ bounll.ary

arcs

(7.47)

(7.48)

which is in fact, a set of ordinary differential equations to be solved for

each time step. In the case of steady state flow, this will be:

BH = F , (7.49)

which is indeed similar to the standard FE equation in structural

analysis with B as the stiffness matrix, H is the unkknown vector of

displacements and F the known vector of loads. The elements of these

matrices may be obtained analytically in this particular case of linear

triangular elements. To exemplify, equation (7.42) for the computation

(7. SO)

497

f 2 r r
NI J NIN2 J NIN3

e Se
r

f 2 r
K =

J N2Nl N2 J N2N3 (7.51)

f
r r

N
2

N3Nl J N3N2 J 3

e where all the integrals are over A. These integrals can be evaluated

using equation (7.38). For example,

Similarly, other integrals can be evaluated and thus:

1 1

2 1 (7.52)

1 2

498

7.4 STEADY FLOW IN AQUIFERS

In steady flow conditions, the governing equation will be,

2... (T ah) + 2... (T ah) _ Q = 0 ,
ax xx ax ay yy ay (7.53)

In the special case where no sinks or sources exist, this is further

simplif ied to:

a (T ah) + 2... (T ah) =
ax xx ax ay yy ay o . (7.54)

In the one-dimensional case, this will be:

d (T dh) = 0 •
dx xx dx

(7.55)

In this and the next section, some problems of flow in aquifers are

solved. The results are compared with known solutions, if any. The

modelling of the aquifers is done in several ways, e.g. increasing the

number of triangles (h-refinement) or increasing the order of the elements

used (p-refinement) in order to study the effect of these parameters

on the accuracy of the obtained solutions and the computational cost.

7.4.1 Steady Flow in Confined Aquifers

We start with a very simple problem of I-D flow in an homogeneous

aquifer. In this case, T is independent of h or x, and thus equation
xx

(7.55) can be integrated directly twice. Consider the case of prescribed

head boundary of values: h=ho at h=h at x=L, the solution is:
L

h = h + o x • (7.56)

Although the head is independent on the transmissivity, T ; the flux xx

per unit width of

~=

the aquifer, ~ is given by,

dh
-Txx dx = Txx (ho -~) /L ,

and thus is directly proportional on T xx

(7.57)

499

For 2-D problems of flow in homogeneous aquifers where T and
xx

T are both independent of h, x or y, the governing equation will be:
yy

o , (7.58)

which is Lap1ace's equation.

Problem 7.1

In this problem, a rectangular confined aquifer under steady state

conditions with constant transmissivity is considered as shown in

Figure (7.5). The model data is:

Aquifer length = 10,000 m

" width = 1,000 m

" thickness = 20 m

"
2 transmissivity T = T = T = 20,000 m/day. xx yy

No flow conditions are assumed on the long sides while on the other sides

the head is assumed to be lOOm on one of them and 50m on the other. This

problem has been solved with an increasing number of triangles (NTF) of

8, 16, 32, 64, 128 and 256. Other factors tested are: the out-of-core

versus the in-core computation, the shape of the triangles and the degree

y

h =100 o

/

-------;ot"

FIGURE 7.5: Aquifer of Problem 7.1

=50 1,OOOm
L

500

of interpolating polynomial. The results can be summarised as follows:

(i) Since the aquifer geometry has a high ratio of length to width

(=10:1) with no flow boundary conditions across the long Sides,

the flow can be approximated by a l-D flow and hence equation

(7.56) can be used for comparison purposes. The results obtained

show an accuracy of 5 significant digits using double precision

arithmetic with the number of quadratic triangles >.32. Use of

higher order elements results in an increase in the processing

time without a corresponding increase in the accuracy.

(ii) Since the number of triangles is relatively small, the required

memory is very small, in fact the NDIM parameter is only 1380

words. Thus, the in-core solution is always preferred to out-of

core due to the limited size of the memory required.

Figures (7.6) and "(7.7) show the initial and final triangulation of

this problem. Note, however, that they are reduced to A4 size which

results in dimensions distortion. Moreover, since these are printer

plottings, more distortion occurs. The results are shown in Table (7.1).

7.4.2 Steady Flow in Unconfined Aquifers

We follow the same line as that in 7.4.1 where confined aquifers

were considered. In the unconfined (or phreatic) aquifers, the

transmissivity is dependent on the head h which is now the water surface

elevation. Thus, the governing equation for the flow will be:

or

-E..(K h oh) + -E..(K h ah) = 0 ,
oX xx ax ay yy ay

K
xx

K
yy

In the case of homogeneous aquifer K =K =K and (7.59) will be: xx yy

(7.59a)

(7.59b)

501
I~J'I.~ 'RIANGUl.'IO~

O.l10'O~ •••
• •

D.'lIIO-O)

O.8bO-O)

O. hO-03

O.6l0 t Ol

O.~OO.O J

0.380_0)

• • •
• • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •

O.lbO-C) •

• • • • • • • • •
0.1 .. 0-0) •

O.ZOO_Ol

• • • • • • • • •
• • • • • • • • •

• • • • • • $1"",1'1111"""""""'1"""".,11"""",,"1I""S"""""""""""'" • U 11 • , . , . · . " . • • •• • , , ,. . · . . , . · , , , . · . , , . , , , , . , , , , . , , , , . .. , , ,. , , , ,. , , , ,. , , . ,. ,.. " .
'" " . " " . " ,. . " ., . " ,. . ., " .
" " .
" I ,. , , , ,.
, , to , • , , , , . · , . , . , , , , .
• , I , •
, I I , •
I I' , •
, ,I , •
, ,I I • , '" , .
I ., , •
, I • I • , , . , . , , " , .
I , I • , , , . .
, , I •
, • I I •
, , I , • , , , , .
I , • , •
I , , I • , ,. , .
I I' I • , " , .
I ,. • • · " . , I , I , . . . " , . .
, I • I
, I • I · , . ,
, , , I ,. , ,
" • I " ., " .. ., I"
I' " ,. "
" " " " ,
, , S , , , , , , , , , , , , , , , , ,
" SI """"S,"""""""""""""""""', •• ,"'""",.,.,"""""""""',.,

•
• • • • • • • • •
• • • • • • • • •
• • • • • • • • • • • • • • • • • • •

-0.100·0) •••
-O.IOO.O~ 0.1 .. 0.0. o. leO.Ott 0.620.0\ 0.860.0. 0_110-0'

le: AlCIS

FIGURE 7.6: Initial triangulation for Problem 7.1

". I IJ' ."

""'.'t,,'

J. '~'tl)t

"' •• 2«:'" •

I). '!lOOt I)"

I).JlP''''

I).ne·",

~ •. 11 •.• I I wl,. (·".1,_, '0' I. 'I·.~. ", ,:".
................................. 1. tt ," to •• 0· ••••••••••• ...•.•.••

• •

• • •

• • • • •
• • • • •

•
• • • •
• • •
• • • • •
• •

• • • • •

• •

-If.hID·"1 .. .
-001)Ut"_ u.I"loIt\J. ".IIIU'''~ ~"'" '0"

.. A. I ~

FIGURE 7.7: Final triangulation for Problem 7.1

502

• •

x y h

0.0 0.0 0.100000+03 503

0.500000+03 0.0 0.97>000+02

0.100000+04 0.0 0.~50000+02

0.150000+04 0.0 0.725000+02

0.200000+04 0.0 0.90vOuO+1I2

0.25000C+04 0.0 0.875000+02

0.300000+04 0.0 0.85000u+J2

0.350000+04 0.0 0.825000+02

0.400000+04 0.0 0.800000+<12

0.450000+04 0.0 0.175000+02

0.500000+04 0.0 0.750000+02

0.550000+04 0.0 0.125000+02

0.600000+04 0.0 0.100000+02

0.650000+04 0.0 0.675000+02

0.100000+04 0.0 0.650000+02

0.750000+04 0.0 0.625000+02

0.800000+04 0.0 0.60000l)+02

0.850000+04 0.0 0.515000+02

0.900000+04 0.0 0.550000+02

0.950000+04 0.0 0.525000+02

0.100000+05 0.0 0.500000+02

0.0 0.500000+03 0.100000+03

0.500000+03 0.500000+03 0.915000+02

0.100000+04 0.500000+03 0.950000+02

0.150000+04 0.500000+03 0.925000+02

0.200000+0'0 0.500000+03 0.900000+02

0.250000+04 0.500000+03 0.875000+02

0.300000+04 0.500000+03 0.850000+02

0.350000+0'0 0.500000+03 0.825000+02

0.400000+04 0.500000+03 0.80JOOO+02

0.450000+0'0 0.500000+03 0.175000+02

0.500000+04 0.500000+03 0.750000+02

0.550COO+O'o 0.500000+03 0.125000+02

0.600000+04 0.500000+03 0.100000+02

0.650000+04 0.500000+ 03 0.615000+02

0.100000+0'0 0.500000+03 0.650000+02

0.150000+0'0 0.500000+03 0.625000+02

0.800000+0'0 0.500000+03 0.600000+02

0.850000+04 0.500000+03 0.515000+02

0.90:)000+0'0 0.500000+03 0.550000+02

0.950000+0'0 0.500000+03 0.525000+02

0.100000+05 0.500000+03 0.500000+02

0.0 0.100000+0'0 0.100000+03

0.500000+03 0.100000+0'0 0.915000+02

0.100000+0'0 0.100000+0'0 0.950000+02

0.150000+0'0 0.100000+0'0 0.925000+02

0.200000+04 0.100000+04 0;900000+02

0.250000+"'4 0.100000+04 0.873000+02

0.300000+04 0.100JOO+04 0.d50000+02

0.350000+04 0.10000u+04 o .825000H'2

0.400000+04 0.100000+04 0.80JOOO+02

0.450000+04 0.100JOO+04 :). 7150ilO+ J2

0.5JOOCO+04 0.100000+04 0.750000+02

0.550000+04 0.100000+04 J.725000+J2

0.600000+04 0.100000+04 0.700000+.12

0.650000+04 0.100000+04 J.615000+02

0.700000+ 04 0.100000+04 0.650000+02

O. HOOOO+04 0.100000'J4 0.625000+02

0.800000+04 0.100000+04 0.600000+u2

0.85JOOO+04 0.10JJOJ+04 0.575000+02

0.900000+04 0.100JOO+04 0.55JCOO+()2

0.950000+04 0.100000+·)4 0.52S00D+()2

0.100000+05 0.100000+04 0.500000+02

TABLE 7.1: Results of Problem 7.1

504

~(h ah) + ~(h ah) =
ax ax ay ay o . (7.60)

In the case of I-D flow with water surface elevation of hO at x=o

and hL at x=L, the equation will be:

~(h dh) = 0
dx dx • (7.61)

By integrating twice and imposing the boundary conditions will give the

solution as follows:

(h2 _h2)
h2 = h2 + (L 0)

o L

The flux q will be:

x •

~= -K xx
h ah = -K h dh = k

ax dx

Problem 7.2

(7.62)

(7.63)

Consider an unconfined aquifer with dimensions of 10,OOOm x 1,OOOm

and thickness of 120m. The permeability is assumed to be constant and =

lOOOm/day. The boundary conditions are identical to those in Problem 7.1,

i.e. no flow across the long sides and the head (=water elevation) is

lOOm at one of the short sides and SOm at the other. The problem is

solved using a different number of triangles as before. In fact, all

the considered problems have been solved using this strategy. This is

particularly useful not only to study the effect on computational costs

but also in the case of difficult problems where no known analytical

solution exists. In this case, solving the same problem with doubling

the number of triangles and observing the obtained solution may be an

indicator to decide whether the obtained solution is satisfactory or

not. "Stability" of the results can be used as a pointer to the

convergence to the correct solution. It should be noted that the region

x y h
505

0.0 0.0 0.100000.03
O.~OuOOO·Jj 0.0 0.'81070'02
o.10uOui)·u~ 0.0 0." 1770.02.
0.ISU000·0. 0.0 0.q~107D'OZ

0.l000uO.O. 0.0 0.92 1950'02.
0.l50uui).J. 0.0 0.901390'02-

0.300000-0" 0.0 0.880340- 02

().J500u,,·0~ 0.0 0.85&780'02

O.~OOOOO·O, 0.0 O. U6660.02

O."SuOuO·O .. 0.0 0.813HO·02

0.50uOCLl·0~ 0.0 0.790570-02

0.S50000·0" 0.0 0.766.90'02

0.600000'0" 0.0 0.74161.0+02

0.650000-0" 0.0 0.71 5490-0l

0.100000·0., 0.0 0.689.200 - Ol

0.150000-0~ 0.0 0.661440·02

O.bOOOuO-C. 0.0 O.63h6D·02

0.8S0000·0" 0.0 0.60Z080-02

0.90<)000- O~ 0.0 0.5"70090-02

0.950000'0 .. 0.0 0.536190-02

0.100000·0; 0.0 0.500000- 02

0.0 O. Sooooo.o~ 0.100000·01

0.500000-03 C.SOOOOO-01 0.981070-0l

0.100000)'0 .. O.S()()00O·03 0.961770.02

0.1500,,0-0, 0.500000005 0.94%070-02

O.lOc/OOO·O .. 0.500000·05 0.'2.1950-02

o.lSOOOO"O~ 0.500000.03 0.901390-02

0.300000-0., 0.500000-03 O. 880 no. 02.

0.35uOOO-0. 0.500000-05 0.858740.02.

0 ... 00000' 0 .. 0.500000-03 0 •• '16660-02

O ... SOOOO'O .. 0.500000'03 0.8139,<0'02

O.SOOOOO-O .. 0.500000-03 0.790570'02

O.SSOOuo-O~ 0.500000+03 0.766490.02

0.600000·0 .. 0.500000-01 0.74162.0'02

0.b5<iOOU·0~ 0.500000.0\ 0.715490+02

O.10uOOO-0" 0.SOoooo+01 O. '89200_02.

O.15001l0-0 .. O.SOOOOO-Ol 0.661 HJ).02.

O.dOOllUO-O. 0.5000000103 0.612.460.02

0.d5UO(,U·O, 0.500000-0) 0.602080- 01

O.~OUO<.iU·O~ 0.500000-0') 0.57oo9D-02

O.9SU:J,.,,)eO .. 0.500000.01 0.5)6191> - 02
O.10UJuJ.0; 0.500000'01 0.500000. 02.

u.lI 0.100000·010 0.100000-03
u.;oooo:)-o, 0.100000<0" 0.981070. 02

O.10IJCuO'C .. 0.100000.010 0.9bl 77 O'02

U.1S0000·Ci. O. J 00000' 04 0.9 .. 2071)'02.

0. ~OOO(iO· 0 .. 00100000f04- O. 9219~O'02

CieZ50"OOtO" 0.100000-04- 0.901 ~90'OZ

0 •• 0"0('0' ~, 0.100000.0 .. O.880HOtOl

u.)5""';;'''·0'1 0.100000-04 0.858780-02

\".It ;;'",O:J.:... Ch 0.100000'04 0.836660'02
v.4S00Qjj.r,; .. 001 00000 tOt. O. 61 39~ 0' Ol

C.:.OOOOO·'J"t 0.100000.04 O. 790S 70.02

v.~~uOvo·(J" 0.1000c0·0C. O. 7~6490 -02

C,tcOODuOtO .. 0.100000.0.. 0.741620.02

"".tt')CJOvo·C~ 0.1 OcOOO .. 0.. 0.715S9D'02

·..J.IOOOOo· C, O. 100000' O~ O· 689200- 01

V. 7 ~()U(;O. 01 00100000_04 0.6611040.02

l.i.dOOVC.t)·')., 001 00000.04 0.632'60'02

'-h C,$VC<-Of 0" 0·100000,0 .. 0.&02090'02

C.'iOQ~vc.·O" 0.100000.0tt. 0.57009b_02.

u.'1SvO'::;O.(,1.1 O"OOOOD~Olo 0.5>&190'Ol

(;'.l'.)"V':;U.'J;' C.IOOOOO-OY 0·500000·02

TABLE 7.2: Results of Problem 7.2.

506

is identical to that of Problem 7.1, so the initial and final triangulations

will not be repeated again. The problem is basically non-linear but using

the form of equation (7.59b) it can be considered as linear in h
2

• The

results of this problem are shown in Table (7.2) which compares very well

with the approximate values obtained by equation (7.62).

7.4.3 Steady Flow in a Confined Aquifer with Leakage From an Adjacent One

The governing differential equation for steady flow in a confined

aquifer with leakage from an adjacent one is [Bear, 19791:

where:

o ,

T is the aquifer transmissivity in the x-direction xx

T is the aquifer transmissivity in the y-direction yy

h the piezometric head

K' (x,y) is the vertical permeability of the semi-pervious

leaky layer

b' (x,y) is the thickness of the semi-pervious leaky layer.

h
t

is the piezometric head in an adjacent aquifer separated

from the main aquifer by a semi-pervious, leaky layer.

(7.64)

In the case of an homogeneous aquifer, T =T =T and equation (7.64) will
xx yy

be:

K'
- - (h-h) =

b' t
o ,

since T=KB in confined aquifers, then:

K'
b'KB (h-h t) = 0 •

In the case of l-D flow, this is further simplified to:

ih
dx2 =

(7.65)

(7.66)

(7.67)

Assuming further that the boundary conditions for the aquifer are:

and

then the

h

where,

h = ho at x=o

h = hL at x=L
}

analytical solution of (7.67)

hR. + (ho -hR.)
sinh [cl (L-x) 1

=
sinh(cIL)

The flux q =-T ah will be,
"'X xx ax

is given by:

+ (hL -hR.)
Sinh(clx)

sinh(cIL)

cosh [cl (L-x) 1
'Ix = CIT[(hO-hR.) sinh(cIL) - (h -h)

L R.

cOSh(clx)

Sinh(CIL)

Problem 7.3

507

(7.68)

(7.69)

(7.70)

(7.71)

A confined aquifer of lO,ooom length, l,OOOm width and 20m thickness

is considered. The value of T is assumed to be 20,000 m
2
/day. The

leaky aquifer permeability is assumed to be .0015 m/day. The thickness

of the semi-pervious leaky layer b' is assumed to be lOm. The head in

the adjacent aquifer hR. is 95m. The prescribed boundary head values

are ho=loOm and hL=9Om. The solution of this problem is obtained in a

similar way to that of Problem 7.1. The results can be summarized as

follows:

(i)' The function Pl is set to be: .00015* (95-U) where the factor

K'/b'=.OOOlS.

(ii) The results obtained are of high accuracy giving 5 decimal places

using 32 triangles only as shown in Table 7.3.

508

X Y h

0.0 0.0 0.IOOOOD'03 0.500000.0) 0.0 O.~947SD'02 00100000.0 .. 0.0 0.989561>'02 0.1 SOOOO·O~ 0.0 O. 'la 44 so. 02-o.ZOoooo.O~ 0.0 0.979401)'02-O.l50000·04 0.0 0.97 4HO'02 0.100000.04 0.0 0.969490'02. 0.150000.04 0.0 0.904590+ OZ 0.400000'04 0.0 0.9S97oo~02 0 ... 50000+04 0.0 0.9548~D+02 0.500000+04 0.0 0.950000_02 0.550000+0" 0·0 0.945160'02-
0.600000.04 0.0

0.9<t()300+02 0.650000.04 0.0
0.935"'0'02 0.700000'0" 0.0 O. 930S, t>t02. O. TSOOOO.04 0.0 O.92558p.Cll. 0.800000.04 0.0
o • 920600'02 0.850000.0 ... 0.0
0.9ISSS0~2. 0.91»0000.04 0.0 0.91 044{)+ 02 0.9Sooo0+0'o 0.0
0.905250+02 0.100000'05 0.0 0.900000'02 0.0 0.500000.01 0.100000'03 0.500000.03 0.500000'01 0.994140_02 0.100000-04 0. 5 00()(J(). 01 0.989560'OZ 0.1 SOOOO.04 o.Sooooo.O! 0.98 50<02-O. 20000lDt Olt- 0.500000' 0\ 0.9)9400,02 0.250000-0 ... O. 5 OOOOO"O~ 0.9H430'02 o. 3000O()t 04- o.sOooOO+Oj 0.969490'01 0.350000-04- 0.500000.03
0.904S90·02-0.400000.0" 0.500000'03 0.9s'nOO·02 0."50000,04 O.!iOOOOO.Ol 0.954840'02 O.~OOOOO~04 0.500000'0]
o.~0000'02 0.550000004 o.§OOOOOt01
0.94S 160'02 0.600000.04 0.500000'0} O. q <t0300'02 O.b50000·04 0.500000'0)
0·935410'02 0.700000'04 0.500000·03 0.930510+02-0.150000004 0.500000.01 0.925570+02 0.1100000'04 0.500000+01 0.920boo.02 0.950000+0" 0.sOOooo.03 O.C)ISSSO.02 o • 900000. Ott 0.500000.0"3 0.QIO<040'02 0.9 50000+ or. 0.500000'03 0.90S260+02 0.100000.05 0.500000.03 0.900000'02 0.0 0.1 OOOOO'O~ 0. 100000. 03 0.500000.03 0.100000004 0.9'1<0750'02 0.100000,04 0. 1 00000. 0 \. O.9&95bO'QZ 001 SooOOt04 0.100000'0"" C.Q84~50'02 0.200000.04 O.IOOOOOtOc, 0.979400' 02 0.250000,0<. 0.100000.0 ..
0.97"430+02 0.300000.0 .. 00100000' 0<0 0.96950<:>'02 0.'500oo~" O.IOOOOOtO ... 0.96,<590.02 0.,,00000.0,," 0. I OOOOOtc.,. 0.'>S9700.C\2 O.;.SOOCO'OIt 0.100000.04- 6. ~ ~8t.Ot02 0.500000+04- 0.100000. o~ 0.9S0000' 01. 0.55000Q+04 0.100000<Q4. 0.945160'02 Q.bOOOOOoo .. O. I OOClOOt o~ 0.9<.' 3CO'02 O. ~500Po'0" O. I 00000+ 04
0.9~S4(0·02 O.70000Ot04 0.100000.04- 0.930510<02-O.7S000CH04 0.1 OQOOOt 04 0.925570'02-O. eooooo. C4- 0.100000'0,," O·'nOboo, 02 0.a5GOOOt04- 001 000 co 004- 0."11 SSSo<02 O. ,oOOOD 0 01. 6.100000.0 .. O.910 .. ~".O2 O.q500COt04 O.IOO=.~ O. qoS250+ 02 o.IOCOOO'05 o .[oocoo.q..
0.900000' 02

TABLE 7.3: Solution of Problem 7.3

509

7.4.4 Modelling of Sources/Sinks in Aquifers

Often pumping and recharge wells are represented by sources and

sinks in the flow domain. This is acceptable if the details of the flow

patterns near the well and at its wall are not required. In the early

groundwater models, the FDM was used.to solve the flow problems. A well

is modelled at the nearest mesh intersection point. In the FEM, and

also in some FDM techniques, the well is represented by a small size

element ~x*~y. The well flow is assumed to be uniformly distributed

over the element area. After several experiments to determine the best

size of ~x and ~y, it seems that for large aquifers a value of lOOm

for ~x and ~y may be suitable. This is best illustrated by the following

problem for a confined aquifer with pumping well.

Problem 7.4

2
A confined infinite aquifer whose transmissivity is 400 m /day has

a static piezometric head of 20m and a thickness of SOm. A well is

3 pumped at the rate of 2,000 m /day. We assume that a steady state

situation is reached after a sufficiently long time of continuous

pumping. In fact, theoretically, true equilibrium will never be reached,

but practically it is considered to be reached after some days of pumping.

The drawdown of the piezometric surface extends to a limited area around

the well. We aSSume that this area is a circle with its centre at the

well and of radius 4,OOOm. Note that the PDE in this case is (7.53).

Assuming an homogeneous isotropic aquifer this equation will be

(7.72)

This is to be solved in the circle centred at the origin and of radius

4,ooom. The function Q has a value of 0 elsewhere except in the

510

vicinity of the well, i.e. near (0,0). The considered "small" area

-2000
is taken to be looxlOO; thus the flux will be lOOxlOO = -0.2 m/day and

n -4
A will be -5xlO The head is assumed to be constant at the whole T •

boundary and equal to 20.

The modelling of this problem is shown in Figures (7.8) and (7.9)

for the initial and final triangulations. The obtained solution shown

in Table 7.4, compares well with that obtained by the Thiem equation

[Bear, 1979] which relates the piezometric head h at any radius r to

that initially in the aquifer. The Thiem equation is:

(7.73)

In the considered problem Q=2,ooo; r = radius of the cone of depression
e

after which the effect of pumping in the piezometric head is negligable

(also called tile radius of influence of the well) = 4,000 and h(r)=20. e

Therefore we have,

h(r) = 20 + 2~~ log 40~ (7.74)

An important point that should be considered when solving problems with

point sources/sinks (we11 springs, •..) is to have a finer mesh near

these singular pOints. This can be specified by the D3EST parameter

in TWODEPEP. Experimentally, it is found that the following equation

gives a gradual transition of the element density from the singular

point to the outer boundary, i.e. most dense triangulation at the

origin (at the well position) and a less dense triangulation as we go

far from the well. The equation is:

D3EST = 1.0/(1.0+x**2+Y**2) • (7.75)

It is worth mentioning that this equation is valid for steady and unsteady

o. HO_Il"

0.,,,0-0,,

0.) 0·0 ..

0.2)0+0 ..

O.luO")<'

0.1>0*0 ..

O.l,,;U·O ..

O.~t»O·OJ

O.th",OtJl

l'II'I~l '~ll~Gul~Tl~~
•••••••••••••••••• , •••••••••••• o.o ••••• ~t ••••••••••••• •• :

• • • • • • • • •
• • •
• • • • • •
• • • • • • • • • •
• • • • • • • • •
• • • • • • •
• •
• • • • • •
• • •
• • •
• • • • • •
• • • • • • • • •
• • • • •
• •
• •

• • •
• • • • •

, , , ,
• ,
• ,
• • ,
• , ,
•

, , , ..
• ,

• • U U

• ,

•

• ,
• ,
• • • • • ,
• •

•

• ,

•
• • • •

• •

" .

•

• ,
• • •

, .

•

. "

• • ...

" ..
" , , ,

" • , , ,
• ,

,
• • •

• • ,
• • • ,

• , ,
• • •

• •
• • • ,

•
• • • , ,

• •
• • "t ,

•
• •

'I' ,
'SS 'S, ,

tU ,
SS.

S" ,
US S

" SS. ...
". ...

nu ,s, ,
,s, , ...

ns ,
us ,

SS.

• • • • • • • • •
• • • • • • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • •
• • • • • • • • •
•
• • ••• ~ •••• \.,.\ •••• " •• ,\.,~"' ••)"' ••• ,., ••• "'.1"" ,"'SS"""",.""""""", •
• • •
• • • • -O.4uO'OJ •••••••• ~o •••••• ~o.o •••••••••••••••••••• t ••••••••••••• •••

511

-1,) ... 0"'0"') ;",S"Otv] 0.1"'0-04 O.2~IJ'O" O.)t,D'O~ O.t,40tO~

FIGURE 7.8: Initial triangulation for Problem 7.4

If"I(I\ f./I a'.n (1"10 • .,, III P. 't .. lt '_'1"(' .. 01..""'"
O._~U'Q_ •••••••••••• ~ ••• ~.~ •• ,~ ••• :

O. ttO.O"

0."..0-0-.

•• 1 ·""

D.' •• • ••

"'"OoOl

•
• • • •
•

• • • • • • •
• • •

•

• • • •

I !
• •
• • • • • • • • • • •
• • • • • • • • • • • •
• • • • •
• • • • • • • • •

IhUU"
11111

1111

.. ..
• ..

• • • • ..
• • ..

•

•

• • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • • • • • • • •

I
• • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • •

•
·O.'IIVOoO, •••••••••••••••••• ~ ••••••••••••••••••••••••••••••••••• •••

.,l"' ... J .0.,1 . . ,', . ,~

FIGURE 7.9: Final triangulation for Problem 7.4

512

x y h 513
0.100000+03 0.0 0.173570+0l
0.200000+03 0.0 0.178340.02
0.300000+03 0.0 0.181160+0l
0.'100000+03 0.0 0.183300·0l
0.500000+03 0.0 O.18't910+0l
0.600000+03 0.0 0.186200+02
0.700000+03 0.0 0.187350+02
0.800000+03 0.0 0.188360+02
0.900000+03 0.0 0.1B9210+02
0.100000+04 0.0 0.189950+02
0.0 0.100000+03 0.173570+02
0.100000+03 0.100000+03 0.175520+02
0.200000+03 0.100000+03 0.179130+02
0.300000+03 0.100000+03 0.1816.30+02
0.'100000+03 0.100000+03 0.183500.02
0.500000+03 0.100000.03 0.185120+02
0.600000+03 0.100000+03 0.186350+02
0.100000+03 0.100000.03 0.187450+02
0.800000+03 0.100000+03 0.1B8410+02
0.900000+03 0.100000+03 0.189230+02
0.100000+04 0.100000+03 0.190000+02
0.0 0.200000+03 0.178340·02
0.100000+03 0.200000+03 0.119130+02
0.200000+03 0.200000+03 0.180180+02
0.300000+03 0.200000+03 0.182620+02
0.'100000+03 0.200000+03 0.184120+02
0.500000+03 0.200000+03 0.185490·02
0.600000+03 0.200000.03 0.186blO·02
0.100000+03 0.200000.03 0.187640+0l
0.800000+03 0.200000+03 0.188560+0l
0.900000+03 0.200000+03 0.189)70+02
0.100000+04 0.200000+03 0.190100+02
0.0 0.300000+03 0.181160+02
0.100000+03 0.300000+03 0.181030+02
0.200000+03 0.300000+03 0.1821>20+02
0.300000+03 0.300000+03 0.1831>60+02
0.400000+03 0.300000+03 0.184~OO+02

0.500000+03 0.300000+03 0.186000+02
0.600000+03 0.300000+03 0.181020+02
0.700000+03 0.300000.03 0.181950+02
0.800000+03 0.300000+03 0.18'3800+02
0.900000+03 0.300000+03 0.189570+02
0.100000+0-. 0.300000+03 0.190260+02
0.0 0.400000+0) 0.183300+02
0.100000+03 0.400000+03 0.183500+02
0.200000+0) 0.'f00000+03 0.184120+02
0.300000+03 0.400000+0) 0.184~00+02

0.400000+03 0.400000+03 0.185320+02
0.500000+03 0.400000+03 0.16661>0+02
0.600000+03 0.400000+03 0.1B7580+02
0.100000+03 0.400000+0) 0.166360+02
0.800000+03 U.400000+0) 0.18Q110+02
0.900000+03 0.400000+03 0.189830+02
0.100000+04 0.400000+03 0.190480+02
0.0 0.500000+03 0.18491::)+02

TABLE 7.4: Solution of Problem 7.4

514

problems since the topology in the FE modelling is essentially the same.

It should be noticed also that when modelling this problem, no

flow conditions are specified along arcs 1 and 3. This is justified by

symmetry since the flow is radial towards the well.

515

7.5 UNSTEADY FLOW IN AQUIFERS

The unsteady flow in aquifers is governed by the basic equation

(7.11) which for homogeneous isotropic aquifers is simplified to:

S ah --=
T at

lh +
2

(7.76)
ax

In the case of no sources or sinks this will be:

T at
2 2

a h + ..L!!.
2 2 ax ay

(7.77)
S ah --=

As stated before, this type of equation can be solved by FEM in

two ways. In one of them, the FEM is used for the spatial and temporal

analysis, while in the other, FEM is used for the spatial analysis while

FDM is used for the temporal one. This second approach is used in our

analysis. However, as expected, care must be taken for the proper choice

of the time step.

7.5.1 The Time Interval

In linear problems it is advantageous to keep fixed time steps.

The main reason is that the master matrix will be constant for all time

steps. However, since it is not always possible to keep the time step

fixed, it seems that variable time steps with a reduced number of master

matrix reformulation is the logical alternative choice. If the master

matrix is the same, it will be factored only once. In non-linear time-

dependent problems (unsteady or transient state) , the master matrix must

be formed and factored several times in each time step. This will make

the computational cost very high. One of the possible solutions to

this situation is to update the master matrix every n time steps.

Usually n is 2 or 3. Indeed this approach is the one used for the

516

solution of unsteady problems. The maximum initial time step that is

used is from the following emperical equation by Wilson et al [1979):

(7.78)

2
where L , T and S are the characteristic values of the element area,

transmissivity and storativity, respectively. Of course, after a

reasonable time, this time step can be increased considerably. The

parameters NUPDT, TO, TF, DT can, therefore, be specified in a manner

that keeps the time step in the correct range without excessive

computations. In linear unsteady, symmetric problems, NUPDT is set to

0, in other problems, values of 0,2,3 were used and tested. It seems

that a value of 2 or 3 may be sufficient. The value of DT used varies

from .0005 days to 10 depending upon the value of t itself. A function

is defined which give.s the correct time step at each time. This is the

FUNT (T) function. The details of which are shown in the programs of

the following problems which deal with unsteady flow in aquifers.

7.5.2 Unsteady Flow in Confined Aquifers

We start with the case of I-D flow in an homogeneous aquifer. In

this case, T is constant and equation (7.77) will be:
xx

sah =
at

Boundary conditions are:

h = ho at x = 0, t>o ,

h = h
o

/2 at x = L; t>o

and h = ho \fx at t = 0

(7.79)

(7.80)

(7.8l)

(7.82)

The analytical solution of this problem is [Wilson et al, 1979) given by:

h = h -o

Problem 7.5

h
x 0 !h - +-o L 11

(_l)i-l

i
T

exp(-
,2 2t
1 11 _)

2
SL

, (iTrx)
S1n L'

Consider a confined aquifer of dimensions 10,000 ,lOOm. The

517

(7.83)

thickness of the aquifer is 2Om.
2

The transmissivity T=20,000 m/day

and storage coefficient S=.OOl. Initially the head is assumed to be 95

m at all points. Then at x=lO,OOO, the head is lowered to 9Om.

Thus, the problem is mathematically:

P.D.E.: S ah a2h a
2
h (7.84) --= --+--T at ax2

a/

h = '\5 'I x at t = 0 , (7.85)

h = 95 at x = 0, t > 0 , (7.86)

h = 90 at x = 10,000, t >0 (7.87)

ah
and - = 0 ay at y = o and y = 100 (7.88)

The final and initial triangulations are similar to those in

Problem 7.1. The function of time interval is designed so that the

initial time steps are small enough and, then, increased gradually.

The following function gives good results for the considered problem:

DOUBLE PRECISION FUNCTION FUNT(T)

Double Precision T

IF(T.EQ.O.) goto 10

IF(T.LT.l) goto 20

IF(T.GE.l.AND.T.LT.2) goto 30

IF (T.GE.2.AND.T.LT.IO) goto 40

IF(T.GE.IO.) goto 50

10 FUNT=0.0005
return

20 FUNT=.005
return

30 FUNT=.05
return

40 FUNT=.5
return

50 FUNT=lO
return
end

51S

If a Fortran 77 compiler is available to a user, this function can

be rewritten in an improved form using IF-THEN-ELSE constructs.

The time step according to equation (7.7S) is dependent on the

number of elements in the final triangulation. It is noticed that the

final triangulation does not contain any vertices of intermediate

triangles along the side in the y direction (lOOm length) if NTF is ~64

triangles. Thus, in these runs equation (7.7S) gives a time step of

~.05 days. It is clear that the value returned by the function FUNT

is on the safe side for a wide range of practical problems.

The obtained results are in good agreement with those evaluated

by (7.S3). The steady state situation is reached (approximately)

after around 1 day. Note that in order to have a reasonable size of

printed outputs a large spacing of Hx and Hy and small values of Nx

and Ny are used. Some of these values are shown in Table 7.5.

x
0.0
0.250000+04
0.500000+04
0.750000+04
0.100000+05
0.0

0.250000+04
o . 5000c Dl-04
0.750000+04
0.100000+05
0.0
o • 25000 0+04
o. 500000+04
0.750000+04
0.100000+05

y

0.0
0.0
0.0
0.0
0.0
0.500000+03

o . 50000 Dl-03
0.500000+03
0.500000+03
0.500000+03
0.100000+04
0.100000+04
0.100000+04
0.100000+04
0.100000+04

h
0.95oooDlf.02
0.949100+02
0.941510+02
0.924210+02
o . 90000Dl-02
0.950000+02

0.949090>02
0.941550+02
0.927200+02
0.900000+02
0.950000+02
o. 9490S 0+02
0.941700+02
0.924200+02
0.900000+02

TABLE 7.5: Solution of Problem 7.5 at t=l

519

7.5.3 Unsteady Flow in an Unconfined Aquifer

The main problem when dealing with unconfined aquifers is the

location of the phreatic surface at each time step. This free surface

problem is extremely complex and, in fact, even for the simplest cases,

no exact analytical solution is known. The available solutions are

mostly numerical or empirical formula based on greater approximations.

It should be noted that T and T are dependent on the head h, this
xx yy

makes the PDE non-linear. Thus, in solving unsteady or transient flow

in phreatic aquifers attention must be paid not only to the time

interval, but also, for the iterative procedure required at each time

step to get the solution to converge at this particular time.

Problem 7.6

Consider a phreatic aquifer of lO,OOOxloom and thickness of lOOm.

4
The permeability K=lxlO m/day while 5=.1. The boundary conditions are:

initial head = lOOm at time = 0 along the short sides. No flow is

assumed across the long sides. The head is maintained at lOOm at one

end while at the other end it was lowered to SOm. Approximate solution

to this free surface problem is usually done by iterative procedures as

explained later. As a rough approximation, the free surface is assumed

to be a plane. The results obtained are, in fact, approximate and can

be used in a qualitative sense rather than rigorous quantitative values.

Some of the results are shown in Table 7.6.

520

x y h

0.0 0.0 0.100000+03
0.250000+04 0.0 0.917850>02
0.500000+04 0.0 0.818140+02
0.750000+04 0.0 0.686110+02
0.100000+05 0.0 0.500000+02
0.0 0.500000+02 0.100000+03
o . 25000D+04 0.500000+02 0.917850+02
0.50oooD+04 0.500000+02 0.818140+02
o . 750000+04 0.500000+02 0.686110+02
0.100000+05 o . 500000+02 o . 500000+02
0.0 0.100000+03 0.100000+03
0.250000+04 0.100000+03 0.917850+02
0.500000+04 0.100000+03 0.818140+02

0.75oooDt04 0.100000+03 0.686110+02
0.looo0Dt05 0.100000+03 o . 50000,0+02

TABLE 7.6: Solution of Problem 7.6 at time t=3

521

7.6 FREE SURFACE PROBLEMS IN AQUIFER FLOW

In free surface problems, some part of the boundary of the
, ,

considered region is not known a priori and the determination of which

is part of the solution. This occurs, for example, in phreatic aquifers

where the upper surface of the aquifer is a free surface. Its position

is not known precisely beforehand, all that is known is the boundary

conditions that must be satisfied on the free surface. There are very

few analytical solutions for the time-varying location of the phreatic

surface in a phreatic aquifer. In fact, the available solutions are

either exact solutions of gross physical approximations, or approximate

numerical solutions of more realistic physical approximations. Standard

FEM cannot be applied directly to solve free surface flow problems since

these methods deal with known domains of fixed boundaries. Therefore,

iterative procedures are used where a tentative position of the free

surface is assumed, the problem is solved and the boundary conditions

on the free surface are checked. This cycle is repeated until the

boundary conditions are satisfied within a predetermined tolerance. This

method is called the trial free boundary method. It can be implemented

in different ways as will be explained later. Another approach is

based on variational inequalities. In this section, the trial free

boundary method is employed for the solution of a seepage through an

earth dam problem. However, the same ideas apply to other similar

problems like sluice gate flows and flows over weirs. The following

example [Connor and Brebbia, 1976) gives a typical free surface 9round-

water problem. The considered problem is shown schematically in Figure

(7.10) which represents seepage through a porous media.

522

-1l"<,-·-~ __ ·_·_b ~--

hu I
I

FIGURE 7.10: The dam problem

In this problem, the boundary conditions are as follows:

(i) on the line ab which is a water boundary, the potential head is

hu' while on the down stream side, the potential head is hd on the

water boundary de, i.e. h=h or =hd on ab and de.
. u

(ii) on the free surface, bc, the potential head is the elevation y

itself since there is no pressure on this phreatic surface (i.e.

atmospheric pressure only). Also no water seeps out from the free

ah
surface Le. an = o.

(iii) the seepage face, cd is a boundary where the water seeps out of

the soil into air, i.e. h = y.

(iv) the impervious boundary, ae is a boundary where t; = 0 as usual.

The governing equation in the steady case for the dam problems is

Laplace. The main difficulty is that the location of the line bc is

not known in advance and its position must be determined as part of the

solution. However, in the FEM the domain must be known beforehand. To

overcome this difficulty using the trial free boundary method several

523

strategies have been proposed. It is possible to classify them in the

following categories:

(i) Variable domain method:

In this method a tentative location is assumed for the free surface.

The problem is then solved. The computed heads on the free surface are

compared to their elevation. Generally, there will be some difference.

In the next step, the free surface is moved, according to a specific

strategy. The problem is resolved again and the whole process is

repeated until the difference between the computed heads on the free

surface and the elevations are small enough whence the problem is solved.

Several strategies for moving the free surface have been proposed. For

example, the free surface is moved according to the computed heads.

The main drawback of the variable domain method of locating the free

surface is that the domain is always changing from one iteration to

another, and thus, the computation of many of the element matrices are

repeated in every cycle. The global matrix, of course, is reformulated

every time •

(ii) Variable element properties:

In order to avoid the changing of the FE mesh every cycle of

iteration as in the variable domain method, the elements are assumed

fixed and the "critical" elements properties are changed in order to

satisfy the free surface conditions.

(iii) Variable boundary conditions:

In this approach the FE mesh is fixed and the solution is performed

on the assumed position of the free surface as before. However, the

boundary conditions on the assumed free surface are changed according

to the actual computed values. In other words, since the position of

524

the free surface is unknown within the elements on the free boundary,

it is possible to express the boundary conditions on the assumed free

surface in terms of the actual free surface [France, 1975].

In order to solve a free surface problem using the TWODEPEP

software, we must notice that this package is not designed to handle free

surface problems. Moreover, it seems that there is no general software

available for general free surface problems. However, it is possible to

set a strategy that will, hopefully, minimize the inconveniences in

solving free surface problems by software which is primarily designed

for fixed domain applications. The steps can be summarized as follows:

(i) Perform the initial triangulation as usual but locate some (3 to 5)

initial nodes on the assumed free surface.

(ii) Write the problem description as usual.

(iii) Solve the problem, obtain the outputs for the head at the free

surface.

(iv) Modify the problem description by considering the computed values

of the free surface. Thus, only parts of the VXY array will be

changed. All other parameters will be unchanged.

(v) The procedure is repeated until the relative difference between

the computed head and elevation is ~.l% (say).

Problem 7.7

This problem represents a rectangular dam as shown in Figure (7.11).

The soil is assumed to be homogeneous. This problem has been solved by

several researchers by different methods. Thatcher and Askew [1982]

used a complementary energy approach based on a stream function

formulation, while Aitchison [1977] used a variational inequality solution.

525

b

1

1/6

Impermeable

FIGURE 7.11: Schematic of Problem 7.7.

The modelling of this problem is shown in Figure (7.12).

y

8
7

6

-8 4

4

~~ ______ ~~~3

-2

~~ ______________________ ~ ______ ~X

112

FIGURE 7.12: Nodes and elements for Problem 7.7

526

Note that initially, the free surface is assumed to be linear, node

number 4 is assumed to be (2/3,.5). The condition of no seepage across

the free surface is satisfied in this triangulation while the other

condition of h=y is to be checked. The program of this problem is as

follows:

OXX

OXY

PLOT

XA

XH

NX

YA

HY

NY

D3EST

VJ(y

1 8 9

Classical dam problem

A free surface problem

60 1

Solved iteratively by the trial free boundary method

UX

UY

1

0.0

.166667

4

0.0

.125

8

1.0/(1+(X-.6667)**2+(y-.5)**2)

.66667,0.0 .666667 •• 166667 .666667 •• 5

VXY

0.0,0.0

•. 5 •• 625 .333334,.75 .166667, .875 0,1 .3333, .5

IABC 129

I 1

IABC .6 7 9

I

ARC=-2

FBI .166667

ARC=-3

FBI Y

ARC=-8

FBI 1

END.

2 3 9

-2

7 8 9

7

3 4 9 4 5 9 5 6

-3 4 5

8 1 9

-8

Figures (7.13) and (7.14) give the initial and final triangulations.

9

"''''1((\ .'It ,Ot'" (, .. , "' 1', "'Ill UI'''' .. ".,,'''1 ..•................•..•..
• • • •
• • • •

0.'.0.01.1
• • • • • ..
• ...
• ..
• •

0 1)·011

• • • • • • • • • O. hD'OU •

• • • • • • • • • • • • • O •• lOoOO • • • • • • •

O.t.-.OO

• • • • • • • • • •

."N.~-I I
• • • • • • • • •

0.'.1>'0..

• • • • ,
••• .0.11 • • •

o.zoo-oa

•

.. ..
• ..

0'
•

• • •

• • •

• • • •

• • • • • • • • •
• •

•
• •
• • •

• •
• •
• • • • • • • •

• • • • • • • •
• • • • • • •
• •

• • • •
·o.,~.ou •••••••••.•••••••••.•••••••••••••••••••.•••••••••.•••••••••.•••••••••••••••••••.••••••••••••••••••••

528

ooO •• 'U-.H ... 1\,,-'>1 I.:""""" \ ... I""u" ...)'0'\,11'1 ",',O'OCl

FIGURE 7.14: Final triangulation for Problem 7.7

'The results after the first iteration at these particular points:

4,5,6 and 7 are shown in Table 7.7.

Point Assumed head Computed head

4 ,50 .5

5 .625 .67571

6 .75 .83666

7 .875 .94950

TABLE 7.7: Computed heads after 1 iteration

Now the problem is resolved using the new coordinates for these

points in the VXY array. Note that in the 2nd and later iterations,

529

the head at these points is computed by interpolation since the outputs

specified by the XA, HX, NX, YA, HY and NY parameters will not coincide

exactly on these points. Table 7.8 shows the computed head after the 2nd

iteration. The steady state solution is arrived at after 5 iterations

Point Assumed head Computed head

4 .50 .52

5 .67571 .69305

6 .83666 ,86279

7 .94950 .94347

TABLE 7.8: Computed heads after 2 iterations

where the final results are shown in Table 7.9. A tolerance of .1% is

allowed.

Comparing these results with those by Thatcher and Askew [1982]

and Aitchison [1977] shows good agreement. It should be noticed that

the final triangulation in this problem is done most dense in the vicinity

530

Point Head Thatcher solution Aitchison solution

4 .53 .5382 .5356

5 .72 .7312 .7290

6 .86 .854 .8515

7 .95 .944 .9412

TABLE 7.9: Solution of Problem 7.7

of the seepage face. This is realised by the function D3EST defined by:

2 2 2
D3EST = l/[l+(x- 3) + (y-.5) 1 (7.89)

Another important point is that the determination of the seepage

point, i.e. point c or node 4. Since at all times, the condition of

free surface will be automatically realised at this point. The most

known satisfactory algorithm is to move this node according to the moving

of other related nodes on the free surface.

Problem 7.8

Consider a radial flow to a well in an unconfined aquifer. The well

is completely penetrating the aquifer. The water level in the well is

maintained, by pumping, at 20m above the impermeable bed. The permeability

of the aquifer is k=l,OOO m/day. The assumed radius of influence of the

well is lOOm above the impermeable bed. The problem is schematically

drawn in Figure (7.15). Such problems can be approximated utilizing the

Dupuit assumptions and an analytical solution can be found. However, in

this case, the seepage face bc is neglected and the free surface is

assumed to be db rather than dc. The obtained solutions can be accepted

far from the well, but near the well, the approximation is poor. This

problem is solved using the same strategy used in the previous problem.

531

seepage
face

Free su f race ~~~ __ ~ __ ~--~----~--~~--------------I(l~OO~)~~
- '

--:;~~~/"~I:mp:e~::~e~ab~l--e~~----~r----,--~~e
stratum

FIGURE 7.15: Schemat1' c of Problem 7.8

The FE modelling is shown ' 1n Figure (7.16) where 15 nodes and 14 elements

are done. The fUnction D3EST ' 1S def' 1ned in thi s example so as to produce

y

gQGii)8 8 (0 (0 (] C0
1-__ ~1~2~ __ 1~1~~1~0~~~9----18----~7-----1~6~--~S~~;/4~--:;;/13

13

14

14
1

1

FIGURE 7.16: FE modelling of p roblem 7.8

the most dense triangulat' 10n in the vicinity

used is
D3EST = 1/[x

2
+

The progr (y-20) 2+11

am for th' 1S problem is as follows'

2

2

of the well. The function

(7.90)

532

1 14 15 250 1

flow towards a well in phreatic aquifer

a free surface problem

OXX

OXY

PLOT

XA

HX

solved iteratively by the trial free boundary method

UX

UY

1

0.0

100

NX 10

YA 0.0

HY 10

10 NY

D3EST

ARC=-2

1.0/(x*x+(y-20)**2+1)

FB1 100

ARC=-13

FB1 Y

ARC=-14

FB1 20

V'Xy o. ,0.

V'XY ,700. ,85.

V'XY l-OO. ,60.

IABC 1 2 15

I 1

IABC ,6 7 15

I ,6

IABC ·,12 13 15

I

END.

,12

1000. ,0.0

600.,80.

100.,55.

2 3 15

-2

7 8 15

7

13 14 15

-13

1000. ,100. 900,95.

500.,75. 400.,70.

0.0,50. 0.0,20.0

3 4 15 4 5 15

3 4

8 9 15 9 10 15 10

8 9

14 1 15

-14

800. ,90.

300. ,65.

500. ,20.

5 6 15

5

11. 15

10

The initial and final triangulations for this problem are shown in

Figures (7.17) and (7.18). After the first iteration, the solution

obtained is as shown in Table 7.10.

11 12

11

L

i"liflAl rl(,,:.r .. ;t~'I"·'
O.ll v~ •• 9.~09 •• 0'."."'~.''''' ••••••• ''' ••••••••• • •••• O •••••••• • 00 ••••••• - ••••••••••••••• • ••••••••••••• ··.··.·53

• • • •
• • • •

•

• • • • • • • •
• • • • • • • •
•
• •
• • • • • •
• • • •
• • • • •
• • • • • • •
• •
• •
• •
•
•
• • •
•
•
• • •
• • •
•
•
• • • •
• •
•

o.
.. ..

.. ..
SI , .. ,

I

• o
• • • •

,
• , ,
• •

.. ..
• ..

"

..
• • • ..
.. ..

•

..
• • •

• ..

..

• • ,
• o

I

I

•
I

• •

• •

• •

..

I
I

•

..
•
•

•
I

..
• ..

.. ..
.. ..

o

• o

.. , ..

• • •

• •

•
I
I

•
I

•
I

•

o

.. ,
.. I

.. 0
o

..

•

• • • • • •
.. I .. • • I

• o .. • •

• • •

..

• o
o
o
•

I

o
•
I
o
•
o
•
• • o

• • •

I
o
• • •

I

• •

• • •

•
I

• • • •
I
o
• • • • I •

I

•

• o

•

• • ..
• • • •

•
I

I
I

•
I

• I I I

• 0 I I
I I .. , • o

o
• o
o

• • • •
• • •

I
o •

o • ..
, , 'SS , , ,'"

, , , U,

"~"~I' , , 'SS,
" "'ss " "'" , , nn"
, "~'SI'

, """ , , 'U'
""",

, .. " HU' ",,,,,,,
" , """"
" """" s, "~"~I'
" , , "~SS"~

.. , """
'"'''''' lSH"

n" ",.,"""', .. "s,""""""',.,""',.,"
~ S, H

H.
,n

"0 ..
..0

.. ...
IS •

• •
I ..

I
o

• •

• • • ,

•

• •

• • •
o

• • • • •

• • •

• •

• ...
'SI ,

" " " , ,
" " 'u " '" , , '" , , • • • • • • • • • • • • • • • • •

• • • •

• I

• o
• •

•
I

•

• o
o
• • ,
o
• • o
o

• , , ,
• • o
I

• o
I
I

•
I

.. .. • • •
I

.. , · " un

.. '"
'" u • ... o

• .. .
'U , ..

0"
.. I

ss SS

• • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • • o

• • • •
• • • • • o

• • • • • • • • •
o

• • • • • • • • •
• • • • • • • • •
o

• • • • • • • • •
o

•
~,.\.\".,.\.,~\'S,"'.,~~\\\""""""'\\"\""'" ""'S'S,,"""""""""',' .. • •

• • • • • • •
• • • •

-O.lu~'0~ •• ~o~~~,,~ ••• ~.~o~~~~.~o.oooooo~·.oooo~ •• ~o.~.oo •••• ,,· ••• •••
-v. HI) ~.t:dJ'Ul "."".,;, C.~7U'Ol O.8~O'Ol O.110'O~

FIGURE 7.17: Initial triangulation for Problem 7.8

0.110.0.

0."'.'"41

0.1110'041

O. '"O'Ol

0,.'0'041

0'~'04

"(IIItL~ 101 (ltc""\ III I ... ""''' ,.,."'r.."."••..•....•..........•...•..•..•....•...•.••.
• • • • •

• •

•
•
• • • • •
• • • • •
• • •
• • • • • • • • •
• • • • • • • • • • • • • • • • • •

• • •
• • •
• • •
• • • • •

• •
•
• • •
•
• •
• • • •
• • • •
• • • •
• • • • • • •

~IN.J 1 •

.. ,,
• • • • • • O.'U." • • • • • • • • • •

0.1I0I0·0,
•
• • •
•

• • • • • • • • • • • • • • • • • •
• • • • • • • • •
• • • •
•
•
• • .O.IWO.OI •••••••••••••••••• _ •••••••••••••••••••••••••••••••• a •••

-Uo&IlU> .. oI .I""'''''' I.Pllt L\ .••...• (•• ", tl.S"Chu) Q.IIO.O'

FIGURE 7.18: Final triangulation for Problem 7.8

534

X '(h 535

0.0 0.0 0.200000-02
0.100000-03 0.0 O.)8~010-02
0.200000-03 0.0 0.419160-02
0.300000-03 0.0 0.559HO-02
0.1t00000-03 0.0 0.635820+02
0.500000+03 0.0 0.J05920-02
0.600000+03 0.0 0.771550+02
0.100000-03 0.0 0.93)620-02
0.800000-03 0.0 0.892260002
0.900000-03 0.0 O. 9ft 77ftO-02
0.100000-01t 0.0 0.100000003
0.0 0.100000-02 ~.200000-02
0.100000+03 0.100000-02 0.369050+02
0.200000003 0.100000-02 0.ftJ8210002
0.300000-03 0.100000-02 0.5b0010-02
0.1t00000003 0.100000+02 0.635850+02
0.500000-03 0.100000002 00JJ5~2o-02
0.600000-03 0.100000-02 o. H1600002
0.100000-03 0.100000-02 0.83)630-02
0.900000-01 0.100000002 0.892270-02
0.900000.03 0.100000002 0.91t nOO-02
0.100000001t 0.100000-02 0.100000+03
0.0 0.200000+02 0.200000+02
0.100000+03 0.200000 002 0.389550-02
0.200000-03 0.200000+02 0.1t18320+02
0.300000-03 0.200000-02 0.560100+02
0.1t00000003 0.200000-02 0.635~00-02
0.500000003 0.200000 002 0.106010+02
0.600000+03 0.200000002 0.111660+02
0.100000-03 0.200000-02 0.931120+02
0.800000+03 0.200000+02 0.892310-02
0.900000-~ 0.200000+02 0.9ft 1690+02
0.100000+01t 0.200000 0 02 0.100vOO o 03
0.0 0.300000+02 0.300000+02
0.100000003 0.300000+02 0.390110-02
0.200000+03 0.300000+02 0.4113500-02
0.300000+03 0.301.1000+02 0.510027,)-02
0.ftOOOOO+03 0.300000-02 0.bl~J20002
0.500000+03 0.300000-02 0.106130002
0.600000-03 0.lOo)000-02 0.111110- 02
0.100000- 03 11.300.)00-02 0.i1l3BO-C2
0.600000-03 0.300000-0" I). 'lnl'lO- 01
0.900000003 O.lOIlOUO-02 o.~~ 11bJ-02
0.10000000ft O.lOOOOO-O~ O.lJQOoo+.:n
0.0 0 ... OuOuO-02 0.400\)00-02
0.100000+03 o ... ooouo-n o. H0100-C2
0.200000+03 0 ... 0001.10-02 0.416750-02
0.lOOOOO-03 0.40000;)-02 0.%0490·02
0.400000-03 O ... 000uO-02 0.631>190-02
0.500000-03 0.400000-02 0.lJbZ9')-0!
0.600000-03 0.40001l0-02 0.111920-02
0.100000-03 0.40\)0\)0-02 O.'HB1)-02
0.600000+03 c..<tO<iJuO-OZ J.,.2;CJ-CZ
0.900000-03 1J."OIlOJJ-C~ ').~41:l'>J·C?

TABLE 7.10: Solution to Problem 7.8, first iteration

7.7 MISCELLANEOUS PROBLEMS IN GROUNDWATER FLOW

Here some problems in groundwater flow are solved utilizing the

FEM. In Problem 7.9, a small watershed is considered. Problems 7.10

and 7.11 are concerned with radial flow towards a well in a confined

aquifer, without leakage and with leakage, respectively. Finally, in

Problem 7.12 a case study of the Yun-Lin aquifer on the island of

Taiwan is considered.

7.7.1 Problem 7.9: Small watershed

536

A small watershed is bounded on three sides by a no flow condition,

while the upper bound is approximated by a horizontal line with the head

= .02x+1OO. The problem is modelled in Figure (7.19).

y

h = .02x + 100

;h=O r~ ~

--~~~~~--~::::::Z:::2:~2~oo;:m~~::~~;;~;:~;;~·~~------------------~ x

Impermeable

FIGURE 7.19: FE modelling of Problem 7.9

In fact, this problem has been introduced by Wang and Anderson [1982]

where it was solved by the FDM. This problem is solved here by the FEM

and the results are compared with their solution. The initial and final

triangulations for this problem are shown in Figures (7.20) and (7.21),

respectively. The results are given in Table 7.11.

537
O.tl~.w~ .O~9~O~OOO.'O~O'~""'~""""""""O.""""""O •••

• •
• •
• • •
•

•
•
• • • • • •
•
•
• •
•
• • •
•
• • • • •
• • •
•
• •
•
• • •
•
•
•
• •
• • • • • • •
•
• • • • • • •
•
• •
• • • • • • •
• • • •
• • • •
•

.,~,~,,,"'\J".""""'\"'\"""""'\,\""""'"~""""',"""',""""""
" U
, " , S

, ,
•
• ,
,

• • • • ,
• ,
• , ,
,
• •

• • • •
• •

• • ,

• , ,

• •

..

, , , . , , . , ,

• •

• ,
,

• •

, ,
• ,

•

, ,
•

,
• ,
• ,

, , ,
,

, .

, ,

, , , ,

, ,

, , ,

,

, ,

,

, .
, ,
,
• , , , , , , , , , . ,

,
•

, , , . ,
, , , ,

,
, , ,

, , ,

, ,

, , ,

,

,

, , , ,

,
• , ,

, , , , ,

, , , , ,

, , ,

, , ,

, , ,

, , ,

,
,

, , , , , , , ,
"

• • • • • • • •
•
• • • • • • • •
• • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • •
•
• •
• • •
• • • •
•
•
• • • • •
• • •
•

. ~. ,.,;. ~ ~. ILL' II'~' .1' \, L~' \t tt t.\ .. ,,' '''' """""" ,"~'I' "'" """"" """" • • • • • • • • •
• •
• •

-O.I~~'J~ •• o.~o~O~o.O~O~~:~)).$~$~~O.O~.$OOOO.$O~.o.~~.ooo~ •• C$ •••
-~.~C: :~(h,Jl ·l.,.,.,. j2 11.1."n.f)\ O.l7UoO\ 0.2

.I. "r; I ~

FIGURE 7.20: Initial triangulation for Problem 7.9

WI .. IHI' I" ""'11'1 (1"'1"'\ 'I' "0 ,,"'It ,.,t,".,.t""" ••••••••••••••••••••
•• I,g·O ••• , •••••••••••••••••••••••••

•

"''''''Ol

""0.0"

•
\,I. hthvl

• • • • • • • • • • • • • • • • • 0",,""0'

o.~.o"

• • • • • • •

"·"'41
[·1
• • • • • • • • • • •

0.'100'04 • • • • • • • • • • • • • 0.1.0.0. •
• • • • • • • • • • • •

o..leo·Ol
• • • • • • •
• •

• • • • • • • • • • • • • • • • •

• • ,

l
•

• • • •
• • • • • • • • •
• • • • • • • • •

• • • ,

• • • • •
• • •
• • • • • • • • •
• • • • • •
• • •
•
•

.... ,, .----... , ,.,
--0.,00'0' 0.'10'01 :".'''O.ul "."UoO' O,,'o.ut l.ll..,·,,;'

I HI"

FIGURE 7.21: Final triangulation for Problem 7.9

538

X 1 h
539

0.0 0.0 0.IOU50.0)
0.200000. OZ 0.0 0.IOU80-0)
O.~OOOOO·OZ 0.0 O.IOIUO-O)
0.600000-0Z 0.0 0.101/»0~0)

0.800000·0Z 0.0 0.101800-0)
0.100000-03 0.0 0.10ZaOO·0)
0.IZ0000·03 0.0 0.102200-0)
0.140000'03 0.0 0.102370-0)
0.160000'03 0.0 0.102520'03
0.180000'03 0.0 0.102620·0)
0.ZOOOOO'03 0.0 0.102650'03
0.0 0.200000-0Z 0.10U20·0)
O.ZOOOOO·OZ 0.ZOOOOO.02 0.10U50-03
0.1000000'02 0.200000-02 0.10H50·0)
0.600000'02 0.ZOOOOO.02 0.101610·0)
0.800000'02 0.200000'02 0.101190'03
0.100000'0) 0.200000.02 0.102000'0)
0.120000'03 0.200000.02 0.102210'0)
0.140000'03 0.200000.02 0.102390'0)
0.160000·03 0.200000.02 0.102550.0)
0.180000'03 0.200000- 02 0.102650' 0)
0.200000'03 0.200000-02 0.102680.0)
0.0 0.1000000.02 0.101210-0)
0.200000'02 0.~00000-02 0.101250-03
0.~00000·02 0.~00000-02 0.101380'03
0.600000'02 0.~00000-02 0.101560'0)
0.800000·02 0.~00000.02 0.101170-0)
0.100000'03 0.~00000.02 0.102000'0)
0.120000'03 0.1000000-02 0.102Z30' 0)
0.1~0000·03 0.'000000.02 0.102~50·0)
0.160000'03 0.1000000.02 0.102630'03
0.180000'03 0.~00000.02 0.10U50·0)
0.200000'03 0.1000000.02 0.102790'03
0.0 0.600000·02 0.1010~0·0)

0.200000'02 0.600000.02 0.101080'0)
0.~00000·02 0.600000.02 0.1012100'03
0.600000'02 0.600000.02 0.1011060.03
0.BooooO·02 0.600000.02 0.101130-03
0.100000'03 0.600000.02 0.102000'03
0.120000'03 0.600000.02 0.102270'03
0.1100000'0) 0.600000'02 0.102530'03
0.160000'03 0.600000.02 0.102760'0)
0.180000·03 0.600000.02 0.102920-03
0.200000'03 0.600000.02 0.102960'03
0.0 0.BOOOOO·02 0.100660.03
0.200000'02 0.800000.02 0.100800'03
0."00000'02 0.800000.02 0.101040-03
0.bOOOOO·02 0.800000'02 0.101340-03
0.800000'02 0.800000-02 0.101610-03
0_100000'03 0.800000'02 0.102000-03
0.120000-03 0.800000.02 0.102330' oJ3
0.HOOOO-03 0.800000.02 0.102b60-03
0.160000-03 0.800000-02 0.I02~60-0)

0.180000'03 0.800000·02 0.1031'10-0)
0.200000'03 O. 80u 000-02 0.101340.0)
0.0 O.IOuOOO-Ol O.IOOJOO-Ol

0.200000-02 O.IOOOOO-O} 0.100~t)0'O)
0.400000-02 O.IOuOOO-Ol 0.100300-0)
0.600000-02 O.IOOOOO-O} O.lJl::0:;)·O~
0.800000-02 o.loooeo.O} J.IOb~~·O)
0.100000'03 0.lJuJOO'03 ~.I.)lJOJ-Ol
0.1200UO·0} O.IOuOOO.O} Q.lOHOO-Ol
0,140000'03 0.IOO~OO·03 0.IJZdOO·03
0.160000,03 1,).IOuOI,)0·03 O.IOHCO·O)
0.18001,)0'03 1j.1OvJuO.Q,) O.I')}oOJ'()3
0.200000'03 0.IOuOOO·03 0.1~4000'01

TABLE 7.11: Solution of Problem 7.9

540

It is obvious that these results are approximate in nature, since the

problem is, in fact, a free surface one. Apart from a few points the

results are generally in good agreement with those computed by the FDM

given in the cited reference.

7.7.2 Problem 7.10: Transient well flow

In this problem, radial flow towards a well in a homogeneous

confined aquifer is considered. The aquifer is assumed to extent to ~

This problem is described by the following P.D.E.:

+ Q V x,y (7.91)

Since this problem possesses radial symmetry, it is usually described by

the following P.D.E. [Wilson et aI, 19791

or

where r>O.

S ah = 1 a ah
at r ar (rT ar)

S ah 1 ah a
2

h
T at = r ar + ar2

The initial condition is

At time t = 0, h = hO ~ x,y ,

and the boundary conditions are

h = hO as r+oo, t > 0 ,

and lirn
r->O

where Q is the well discharge.

., t > 0 .,

(7.92)

(7.93)

(7.94)

(7.95)

(7.96)

The analytical solution to this problem is given by Theis [19351 as:

where:

h = h _.JL * W(u) o 41fT

u =
2

r S

4Tt

(7.97)

(7.98)

541

and the Theis well function W(u) is given by:

-v
W(u)

e
--dv

v
(7.99)

The values of the Theis well function w(u) are tabulated in many textbooks

on groundwater flow e.g. Bear [1979]. This equation relates the head at

any radius r at any time t. The numerical values considered in our

problem are as follows:

Aquifer transmissivity T = lXl05 2
m/day

Aquifer storativity S = .001

Aquifer thickness B = lOOm

Initial head ho = lOOm

Well pumping rate Q
6 3

= lXlO m/day

Radius of influence R = 10,OOOm

Since this problem possesses radial symmetry, only one quadrant of the

region needs to be considered in the FE modelling. The well is handled

as stated earlier. The finite elements distribution is also based on

the D3EST functions given before and finally the time interval is

computed subjected to the constraints given in (7.5.1). The obtained

results compare very well with those obtained by the Theis equations.

The initial and final triangulations are shown in Figures (7.22) and

(7.23) .

7.7.3 Problem 7.11: Transient well flow with leakage

This problem is similar to Problem 7.10 but there is a leakage

from an adjacent aquifer through a leaky layer. The P.D.E. is given by

2 2
S ~ = T(.L!:l + .L!l) +

K'
(h-h) (7.100) at 2 2 b' a + Q ,

ax ay

O.lIlhO~
I,,(ftal IIf.'tGlJl'flO~ •••••••••• •• •••••••••• •••••••••• ••••••••••••••••••••• •

•

· .. it , ... tI
0.'1000.

• • • o

o

• • • • • • • •
O.,~ ...

•

• • • • o

• o
o

• •• WO<>" •

• • • • • • • • • ... ,... ...
• • • • • • •

• • • •

--! I • • • • • • • • • • • • • • • • .. ,
• • • • • • • • • "t- o

• • •

• • • • • • • • • • • • • •
• • • • • •

...
••

• • • • • • • • • • •

. "

..
• • • • •

" •

• • • • • •

..

• • •

..
•

• •
f

• f

• • • • • •

..

• • • • •

• •

...

..

.. ..
n ..

• •

.. It

•

U ..

• •

.. "

• • •

.. .,
U U

•

• •

• • •

II ,.

• •

I" U'

• •

I. .,

• •

n ..

• • • •

0
• .. It

• • •

• • n " • • .. It

• •
• • •

• • I. I'

•

•

• t " ,.

• •

• •
• •
• •
• •
• •
•
• •

• I It at •
0.1(1000, • • It It •

• • 1' I'
• , •••••••••••••••••••••• 1" •••• ' ••• 11 ••• • ••••••••••••• , •••••••••••• ,', ••••••••••••••••

• • • • • •
0

•
o

o

• •
• • • • o

• • • • • • • • • • • • • •
• • • • • • • • •
• • • • •

I

• • • o
• •
•
o

o

•
•

·0.100-04 , •••

542

~.IOO·O.. u.\,\ho.. ".l"uoJ" \ .• ""-'0"" (j •• ~O.IJ. \...lIoou"

• ul\

FIGURE 7.22: Initial triangulation for problem 7.10

.......... ft.fICl' tOt 1110 (f"H'~ lit ,,, ""'\' nU"""""I"" •• · ·· ···t······ .. ··•··························•···.................................... :
• • • • • • • • •

•• t

• • • • • • • • •
0.1.0'0"

• • • • • • • • • ,.'.0'"
• • • • • • • • • ,.u...M·
• • • • • • • • •
• • • • • •

• • • • •

• • • • • • • • •
• • •

• • • •

······1 1
,,''''040

,.1\0.0.

• • • • • • •

• • • • • • • ,.,oo..U .
• • • • • • • •

.....
• ..

• ..
• • • •

..
•

• •

•

• • • • • • •
• • • • • • • •

1
•

•
• •

-0,100'0' ••••••••••••••••.•• 4 •• A~ ••••• _ ••• ~ •••••••••••••••••••• •••

543

·O.IOu.U' 'oI~ • I. ,."r.,', < ,',"/'V' o").s .. n,,,. 00110'0'

•• Of',

FIGURE 7.23: Final ,triangulation for Problem 7.10

where K' and b' are the permeability and the thickness of the semi-

pervious layer. h is the piezometric head in an adjacent aquifer
a

separated from the main aquifer by the semi-pervious layer. The

boundary conditions are as in Problem 7.10. In the special case where

h =h Hantush and Jacob [1955] solved the problem analytically:
a 0'

544

h = ho - ~ W(u,r/a) (7.101)

where:

and,

u =
2

r S
4Tt

a=/K'~b'
The leaky well function W(u,r/a) is given by

W(u,r/a)
1
- exp(-v­
v

2
r)

2
4a v

(7.102)

(7.103)

dv (7.104)

The values of this function ar.e also tabulated in several text books

on groundwater.

The problem which is solved numerically is identical to that of

Problem 7.10, but now the adjacent head h =95
a

and ho =lOOm and the

-1
leakey layer parameter K'/b' = .1 day The obtained results by the

FEM are in good agreement with those obtained by the Hantush e~ations.

7.7.4 Problem 7.12: Anisotropic aquifer flow

This problem is concerned with the analysis of the Yun-Lin aquifer

on the island of Taiwan. This problem has been solved by Liggett and

Liu [1983] using the boundary integral equation method. It is assumed

that the aquifer is non-leakey and anisotropic, however, the global

axes are selected to coincide with the principal axes of the trans-

missivity tensor. The aquifer is shown schematically in Figure (7.24)

which is essentially as given in Liggett and Liu [1983]. The properties

of the different zones are given in Table 7.12.

Zone number T T
x Y

1 542.88 5428.8

2 112.3 1123

3 185.76 1857.6

4 764.64 7646.4

5 290.88 2908.8

6 69.12 691.2

7 120.96 1209.6

TABLE 7.12: Zones properties of Problem 7.12

Table 7.13 gives the coordinates of the different nodes in the

aquifer measured in Km. A well is located at node 44 with discharge

of 100 m
3
/h, i.e. 2,400 m

3
/day. The initial FE modelling is shown in

Figure (7.25).

The boundary conditions are as follows:

(i) No flow condition along the sides:

1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9,

14-15, 15-16, 16-17 and 17-18

(ii) Specified head on the remaining boundary. These specified heads

are given in Table 7.14.

In order to express these boundary conditions in the TWODEPEP

notation, they should be expressed as a function of (x,y). This is

done assuming a linear variation of the head. The boundary conditions

are thus expressed in the following equations where x and y are in Km.

Y.,.
I 18 17 16
I ,"

I
20 19 43 42 ® 41 14 I

I 15
I 35 36 ® 39 I 40
I
I

21 12 I 34 37 38 ® '." . 22 13

CV 33 32 31 30 ;-

CD v
10 v11 44. W 28 29 v' '1'//7.

27 7 ~ v
" ''',,,,, 8 '.

® ~
9

CD 5 6
.,>'.

23

3 ~

26 ~4 24
I 25
I ~
L_~ ---------~ X 2

FIGURE 7.24: Schematic of Problem 7.12

FIGURE 7.25: FE modelling of Problem 7.12

548

Node X Y Node X y

1 4 0 23 0 12

2 12 0 24 0 4

3 12 4 25 4 4

4 16 4 26 8 4

5 16 8 27 8 12

6 20 8 28 36 16

I
7 20 12 29 40 16

8 40 12 30 36 20

9 44 12 31 32 20

10 44 16 32 20 20

11 48 16 33 12 20

12 48 24 34 8 24

13 52 24 35 8 28

14 52 32 36 12 28

15 44 32 37 20 24

16 44 36 38 32 24

17 16 36 39 32 28

18 12 36 40 40 28

19 12 32 41 40 32

20 4 32 42 20 32

21 4 24 43 16 32

22 0 24 44 8 16

TABLE 7.13: coordinates of the nodes of Problem 7.12.

Node No. Head Node No. Head

1 1.5 18 3

9 60.28 19 2.8

10 60.0 20 0

11 70 21 0

12 57 22 0

13 59 23 0

14 55 24 0

25 2

TABLE 7.14: specified heads

(1) along the line 9-10 (i.e. arc=-9)

h = 60.28 - .07(y-12)

(2) along the line 10-11

h = 60 + 2.5(x-44)

(3) along the line 11-12

13
h = 70 - S(y-16)

(4) along the line 12-13

h = 57 + .5(x-48)

(5) along the line 13-14

h = 59 - .5(y-24)

(6) along the line 18-19

h = 3 + .05(y-36)

(7) along the line 19-20

2.8(h = - x-4)
8

(8) along the lines 20-21, 21-22, 22-23 and 23-24

h = 0

(9) along the line 24-25

h = .5x

(10) along the line 25-1

h = 1.5 + y/8

549

(7.105)

(7.106)

(7.107)

(7.108)

(7.109)

(7.110)

(7.111)

(7.112)

(7.113)

(7.114)

Some of the important notes to be mentioned when modelling this problem

are as follows:

(i) The coordinates must be entered in metres to have consistent units.

(ii) The triangulation near the well is more dense than other places

by the definition of the D3EST function as explained earlier.

The initial and final triangulations are given in Figures (7.26)

and (7.27).

1'Ilfl" '~I.,,(."UII'l" 550
O.4~O.~) ••••• , •••

• •
• • • • • •

o.no.",
• • •

• o.uu·",
• • • • • • •
•

0.1 'O'V~ • •
• • •

o.uo.o,

• • 0.110.0. • • • • • • • • •

•

•
• • • • •

H'" ''',. HI' \""""" f' t'"'' ",$1" It. UI' • • •• ,'11." ., ,. 1'" .,
U ., " •
,. ,. UU' • •
• It , It • • .,
•• U.. • • • · " .. ,.. . . ,.,"',., ".,"',.,', .. ".,.,"",." ,., .. ,•.•

tI ,..., ,$I tI. •• " •
It ...U 'U ••• •
.t • " It' It.... . It •
•• , •• ,. • It It. • It •
• .. U ••• •• • It...
• I • '" • • .. ".. ." • • •• ... • • • It • · · ". "

• ,.. • I
... , ••• •• .Ult
• .. .,. ••• It
.... •• • • •• It •
• I, I' •

• • • • •• • " ••• It It ". •
... • •• ••••• •• I
, • • ... •• • • • .. .t • • U...

It • ., , • ,.. •• • •• • .. . "."... · U...
•• • • I. U' , .. • ••• •
• " • It '" ••• •

• • • • • • • •
• • • •

·
• • • ... U .. •••• •• •
H

• •
"'.... " . •• ••••••••••••••••••••••••••••••••• •••••• ••• • ..." I"'" • • •• · · I.' ... • • ••
'" It It • • •• 11..", ., ••

• • • • It · ". ..
• •

• •

.. I ..
H •

1
I · " • • •

........ , , , , ... , .. " ,.".,., .. """""""'"
• '''I • · ., ... ,
• • • • • • • • • • • • H.

• • •

...... ,,' .. , ..
• •

IU .,

• • •

• •• •• • • • • • • • •
•

• • •

H.
• • • • • • • • • • • • • •

..
•

H .. • .u •, .. ,,'
• • • • • • • • • H ... , "., .. " · ,. . · ,. . · . . , , . . , , . .,

" ..
It , • · .. "''''"''''''

• • •
• • • • • • •
•
• • • • • • • •

• •

•
-O.Sb"-04 ••••••••••••••••••••••••••• J\ •••••••••••••••••••••••••• ••• :

-u.,lu·" • •. /1 ·..,I, •• ·~ 1.,\.-" ... ' 'J.\'O'll' 1,\'1).1"0.

••• 1',

FIGURE 7.26: Initial triangulation for Problem 7.12

-I' .. IIC " ,.1 "." '·Ofl·.·. ,,' ",11"', ,_.".',u"'I""
O.~w~'Q~ •••••••••••••••• ~ ••••••••••• _A .. ~ .. , ;

•

•

O. tIU'~' ·
• •

• •
0.110'0»

• • • • • •
O.UO.ot • • • • • • • • • •
O."O·Ot

• • • • • • • •

0.'4100.0, 1
• • • • • • •

O •• 'O.U ..

• · •

•

O.hol,l

• • • • •
• • •

O."'U.IIS

• • • • • • •
• •

• • • • • • • • • • • • • •

.. ..

• • •
•
• • •
• • • • • • • • • • • • • • • •
• •
• • • • • • • • •

• •

I
• • • • •
• • • • • • • •

• • •

• •
·o.t.u.~ ••• ·)lu...... ,.1'1·.·.. .l"....... ., .. ,..... .,;.' .. 0..... U.'IHIO".

l .t1.,

FIGURE 7.27: Final triangulation for problem 7.12

551

552

(iii) Since the transmissivity is not constant, a function is defined

TRANSX(x,y) which returns the value of T at any point. Similarly
x

the function TRANSY(x,y) is defined for T The zone number of
y

any point is defined by the integer function IZONE(x,y) •

The following boolean expressions determine the zone number according

to the (x,y) coordinates (in Km) of any point:

(1) Zone~l if:

x ~ 4 and x ~ 12 and y ~ 4

or
~ 8 and y ~ 4 and y ~ 12 x

(2) Zone~2 if:

x >, 8 and x ~ 16 and y >, 4 and y ~ 12

or
16 and x ~ 20 and y >, 8 and y ~ 12 x >,

(3) Zone~3 if:

x >, 20 and x ~ 32 and y >, 12 and y ~ 24

or 32 x >, and x ~ 36 and y >, 12 and y ~ 20

or
36 x >, and x ~ 40 and y >, 12 and y ~ 16

(4) Zone~4 if:

x >, 40 and x ~ 44 and y >, 12 and y ~ 16

or
36 x >, and x ~ 48 and y >, 16 and y ~ 20

or
32 and x 48 and 20 and 24 x >, ~ y >, y ~

or
32 and x 52 and x >, ~ y >, 24 and y ~ 28

or 40 and x 52 and y 28 and 32 x >, ~ >, y ~

(5) Zone~5 if:

x >, 20 and x ~ 32 and y >, 24 and y ~ 28

or x >, 20 and x ~ 40 and y >, 28 and y ~ 32

or
x ~ 16 and x ~ 44 and y ~ 32 and y ~ 36

(6) Zone=6 if:

x ~ 4 and x ~ 8 and y ~ 24 and y ~ 32

or
x ~ 8 and x ~ 12 and y ~ 28 and y ~ 32

or
x >- 12 and x ~ 20 and y ~ 20 and y ~ 32

or
x >- 12 and x ~ 16 and y ~ 32 and y ~ 36

(7) Zone=7:

otherwise.

However, the boo1ean expressions for the 7th zone are:

x ~ 20 and y ~ 12 and y ~ 20

or
x ~ 12 and y ~ 20 and y ~ 24

or
x >- 8 and x ~ 12 and y ~ 24 and y ~ 28

(iv) The results are computed for the points of intersection on a 4x4

grid.

(v) The well is modelled as explained earlier.

The computed heads at selected nodes are shown in Table 7.15,

where the solution by the BIEM is also shown.

It can be seen that generally, good agreement exists.

553

Node Number FEM BIEM

1 1.5 1.5

2 6.419 6.8

3 7.099 7.4

4 15.759 18.2

5 17.866 19.0

6 27.497 30.6

7 29.931 31.9

8 58.009 59.7

9 60.28 60.3

14 55 55

15 59.03 60.3

16 58.892 60.4

17 24.67 26.3

18 3 3

26 4.2317 3.9

27 4.0516 3.7

32 32.132 32.4

33 9.4852 9.7

35 2.8733 3.2

36 7.0657 7 ;0

TABLE 7.15: Computed head for Problem 7.12

7.7.5 Conclusions

Several problems in groundwater flow have been presented in this

chapter. All of these problems have been solved with a varying number

of triangles (elements) and of different degrees, namely, quadratic,

cubic and quartic elements. The total memory required for the whole

job and the CPU time spent in each run are observed for different

problems. Although other parameters like shape were tested, if seems

that their effect on these two factors (i.e. memory and CPU time) is

not significant. So only the number triangles and the degree of the

554

555

interpolating polynomials are considered. The following results are

typically found:

(i) The relationship between the number of triangles (NTF) and CPU

time and between the memory required and NTF are shown in Figures

(7.28) and (7.29). It is obvious that the CPU time increases

rapidly with the NTF parameter. The relationship may be approx-

imated by a quadratic equation. The same seems true for the total

memory required.

(ii) By performing a statistical analysis using the SAS [1982] system,

the following empirical equations can be written for quadratic

triangles:

(l)
2

M an + bn + c , (7.115)

where: M is the memory (Kbytes)

a = .00347

b = .8277

c = 132.56

and n is the number of final triangles (NTF) .

(2)
2 T = an + bn + c , (7.116)

where: T is the CPU time (seconds)

a = .0000337

b = .0139

c = 16.116

and n is the number of final triangles (NTF).

a ..

t.i

..
a
a

W
Ul
~a

N

Wo!
::L -I-
::la a..
Wo!

:l
~+-----r---~----'-----rl----~---'----~----~---'----~I----~I----~I'-=-~

1L!Ia 211. IJII 411.1J11 !la.1JII 811.1J11 1& III 1211. III UI.IJII lealJll I_Ill 2lIIL III ZZIL III 2'1. III __ III
NTF

FIGURE 7.28: Relationship between the CPU time and number of elements U1
U1
Cl'

I
~
Cl

ILIIII 211.l1li 41L l1li lOlL • !IlL • I". 128.. 141L. I lOlL • 18iL • 2IIIL • 22IL.
NTF

FIGURE 7.29: Relationship between the memory required and number of elements

CHAPTER 8

CONCLUSIONS

TABLE OF CONTENTS

8.1 ConcZusions

8.2 Scope of Further Research

558

8.1 CONCLUSIONS

The objective of this research was to study in detail and develop

software for the FEM and to try to solve some of the computational

problems encountered in the computer implementation of this method. In

addition to that, several applications of the presented software have

been solved. The research presented in this thesis is essentially of

a software nature. However, it has two "wings"; one is mathematical

while the other is engineering. This can be observed in the structure

of the thesis where the FEM has been presented from both engineering

(in Chapter 2) and mathematical (in Chapter 3) approaches and where

engineering software (in Chapter 4) and mathematical software (in

Chapter 6) has been given.

In addition to that, the solution to the problem of limited stack,

which exist in many mini- and micro-computers, is given (in Chapter 5),

and several groundwater problems using the FEM software were solved

(in Chapter 7). Several programs for the FEM have been included:

MSAP, STRAP, ELASTIC, IFIP and TWODEPEP. They, in total, represent

the software of the FEM on computers of varying capabilities that range

from the main-frame large computers to the small-size microcomputers.

As a result of this research, the following conclusions can be

drawn:

(i) Theory and fundamentals of the FEM

• In many problems, the FEM formulation based on a variational

principle will lead to an identical set of equations to that

produced by a Galerkin MWR approach.

• The h- and p- versions of the FEM were tested in several

problems. Although it is generally accepted that the p-version

559

will give better results, there are some situations where the

use of the p-version will result in unnecessary additional costs.

In fact, the accuracy of the FEM depends on how close the chosen

trial functions simulates the actual behaviour of the field

variable in the considered problem.

• Although it is not possible to compute the round-off errors in

the FEM computations, there are some guidelines that, when

followed, will minimize the effect of round-off errors. The two

most important points are the use of computers of greater word

length (like the CDC computers) and using double or higher

precision arithmetic. Avoidance of a too refined FE mesh is also

recommended since the relative round-off error may be increased.

(ii) Programming of the FEM

• The requirements of a programming language for the large-scale

computational software, like FE, are established. Since Fortran

is the most widely used language for FE programming, it was

examined in view of these requirements. It was concluded that

Fortran lacks some of these requirements and extensions to

Fortran were proposed to overcome this situation. This, undoubtly,

will make FE programming easier.

• The solution of equations in the FE analysis consumes a major

part of the total solution time. However, in higher dimensional

problems, it was observed that the stiffness matrices computation

and the assembly process (if it has to be done) consumes a

considerable amount of time. This raises the need for more

investigations in this area.

• The FE equations are usually solved either by a banded or

560

frontal algorithm. If the available computer's fast memory is

large enough, then the use of the banded algorithm will normally

result in faster turn-around time. This is due to the relative

slowness in file handling in the frontal algorithm. Generally,

a trade-off should be done between the computer fast memory

and the execution time.

• There are two versions of routines for the solution of equations:

space economizer and high accuracy. For medium size of equations n

(n~400) both will consume the same time approximately. However,

for larger values of n, the high accuracy routines will spend

much more time.

• Many of the mainframe-based FEM programs lack adequite user

interface. This may be due to the fa~t that most of the known

large-scale FE programs, like SAP IV, ASKA, NASTRAN, etc., have

their roots in the early 70's. This is not the case with mini­

and micro-based systems. One of the recommended strategies to

solve this problem is to use one of these smaller systems for the

preparation of the FE model and to do the actual processing on a

larger computer.

• There are three major problems that face a sophisticated FE user

on a micro-computer: the limited memory size, the slow processing

speed and the lack of supporting libraries. The problem of

limited address space can be removed by the use of the virtual

stack facility (VSF) presented in Chapter 5. While it is

recommended to install mathematical co-processor to speed-up

the floating pcint arithmetic.

• The definitions and functions of FE pre- and post-processors

•

561

have been established and demonstrated. Their importance have

also been emphasised. In fact, more work is needed in this direction.

The direct subdivision methods for mesh generation proved to be

the most efficient among the presented methods of mesh

generation. They are usually easier to program compared to other

competitive methods. The only exception to this was the method

of isoparametric mapping which is easily programmed. The reversed

Cuthill-McKee (RCM) algorithm is also the most popular node

numbering algorithm.

• The selection of the 'best fit' FE software depends upon the

purpose for which this software is going to be used. For large­

scale FE programs, it is recommended to use one (or more) of the

three quantitative approaches presented in Chapter 4.

• The proposed solution of the limited stack size, namely, the

virtual stack facility, proved to be an effective means to over­

come some of the problems associated with mini- and micro-computers.

• The proposed K-R replacement algorithm also proved to be more

efficient than some of the well-known replacement algorithms.

• The use of optimized compilers for FE programs can speed up the

execution of the compiled program by a factor of up to 10%. So it

is highly recommended to modify existing FE programs to make use

of this feature.

(iii) Applications of the FEM

• Tne applicability of the FEM to solve a very wide-range of

problems has been proved. In fact, the fields of applications

are ever increasing with greater success in most of them.

• FE modelling of the considered groundwater problems proved the

562

versatility of the method. The results obtained when compared

with analytical solutions, when they exist, showed very good

agreement. In other problems, comparisons with other numerical

methods support the evidence that the FEM mocelling is generally

better compared to other numerical methods.

• The mesh refinement in regions where a singularity occurs is

necessary. This has been done automatically by specifying the

mesh refinement functions presented within the thesis. There is

no formal way to formulate this function, but rather it can be

formulated by experience according to the topology of the FE

model. The given functions within the thesis proved to be

efficient and produce well graded meshes.

• The strategy given to handle free surface problems is of a

general nature and can be used in other fields. It can be

automated by modifying the existing software.

563

8.2 SCOPE OF FURTHER RESEARCH

There is a good deal of work to be done in the FEM. However, here,

we list some of the points that directly relate to our work and which

seem to be of immediate need:

1. The use of multiple microprocessor-based systems for the FE analysis.

This will open a new trend in FE analysis where complicated problems

can be handled by distributing processor systems of cheap processors.

2. The efficient use of the parallel computing systems for the matrix

computations and element assembly in FE analysis. It is clear that

greater attention has been paid to the solution of equations while

very little attention has been paid to the stiffness matrix

computations and element assembly. In fact, even for single

processor systems, there is a need for more "elegant" methods for

the formulation and computation of element stiffnesses.

3. The development of new data structures, programming languages (new

or extensions to an existing one) is a major area of research, the

basis of which has been given within this research. Designing an

efficient compiler for the extended Fortran given in Chapter 4 will

no doubt be an asset in FE programming.

4. Implementing of the VSF with Fortran compiler modifications and

implementing the K-R algorithm within existing operating systems

environment.

5. Design of a FE software of general nature than can handle free

surface problems automatically.

REFERENCES

564

Aitchinson, J.M. [1977), The Numeriaal Solution of a Minimisation Froblem

Assoaiated with a Free Surfaae Flow,

J.Inst.Maths.Applics., 20, pp.33-44.

Akhras, G. and G. Dhatt, [1976), An Automztia Node Relabelling Saheme for

Minimizing a Matrix or Network Bandwidth,

International Journal for Numerical Methods in Engineering, Vol.lO,

pp.787-797.

Akin, J.E. [1982), Appliaation and Implementation of Finite Element

Methods,

Academic Press.

Alway, G.G. and D.W. Martin, [1965), An Algorithm for Reduaing the

Bandwidth of a Matrix of Symmetriaal Configuration,

computer Journal, 8, pp.264-272.

ANSI [1978), Ameriaan National Standard Frogramming Languages,

ANSI Publication X3.9-1978, American National Standards Institute,

New York, U.S.A.

Argyris, J.H. [1964), Reaent Advanaes in Matrix Methods of Struatural

Analysis,

Progress in Aeronautical Science, Vol. 4.

ASCE [1972), Manuals and Reports on Engineering Pnzatiae,

No. 40, Ground Water Management.

Axelsson, 0. and U. Navert [1977), On a Graphiaal Paakage for Nonlinear

Partial Differential Equation Problems,

Information Processing 1977, Ed. B. Gilchrist, pp. 103-108.

Babuska, I. and B. Szabo [1982), On the Rates of Convergenae of the

Finite Element Method,

International J. for Numerical Methods in Engineering, Vol. 18,

pp.323-341.

565

Babuska, I., B. Szabo and I. Katz [1981], The p-Version of the Finite

Etement Method,

SIAM, J.Numer.Ana1., 18, pp.515-545.

Babuska, I. and M. Dorr [1981], Error Estimates for the Combined hand p

Versions of the Finite Element Method,

Num.Math., 37, pp.257-277.

Babuska, I., R.B. Ke110gg and J. Pitkaranta [1979], Direot and Inverse

Error Estimates for Finite Elements with Mesh Refinements,

Num.Math. 33, pp.447-471.

Baer, J-L. [1980], Computer Systems Arohiteoture,

Pitman Publishing Limited.

Bathe, K·J, [1978], ADINA -A Finite Element Program for Automatio

Dynamio Inoremental Non-Linear Analysis,

Report 82448-1, MIT Press.

Bathe, K.J., E.L. Wi1son and F.E. Peterson [1974], SAP IV - A Struotural

Analysis Program for Statio and Dynamio Response of Linear Systems,

Publication No. EERC 73-11, College of Engineering, University of

California, Berke1ey, U.S.A.

Bear, J. [1979], Hydraulios of GroundW2ter,

McGraw-Hi11 Pub1.

Becker, E.B., G.F. Carey and J.T. Oden [1981], Finite Elements - An

Introduotion,

Vol. I, Prentice-Ha11.

Beckmann, P. [1971], The History of ~

St. Martin's Press, New York.

Be1ady, L.A. [1966], A Stuay of Replaoement Algorithms for a Virtual­

Storage Computer,

IBM Systems Journal, Vo1.5, No.2.

566

Bettess, A.J. (1977), A Data Structure for Finite ELement Analysis,

International Journal for Numerical Methods in Engineering, Vol.

11, pp.1779-1799.

Bettess, P. (1977), Infinite Elements,

International Journal for Numerical Methods in Engineering,

Vol. 11, pp.53-64.

Blackburn, C.L., 0.0. Storsli and R.E. Fulton (1982), The RoLe and

Application of Data Base Management in Integrated Computer-Aided

Design,

Presented at the AIAA/ASME/ASCE/AHS 23rd. Structures, Structural

Dynamics and Material Conference, New Orleans, L.A.

Blakely, K., R. Lahey and D. Mclean (1985), MSC/PAL: An FE Companion

for the PC,

Computers in Mechanical Engineering, Vol. 3, No.4, pp.32-41.

Bornat, R. (1979), Understanding and Writing CompiLers,

The Macmillan Press Ltd.

Borsetto, M., G. Carradori and R. Ribacchs (1981), Coupled Seepage, Heat

Transfer and Stress Analysis with AppLication to GeothermaL Problems,

In Numerical Methods in Heat Transfer, pp. 233-259, Editors: R.W.

Lewis, K. Morgan and O.C. Zienkiewicz, John Wiley.

Bouwer, H. (1978), Groundwater Hydrology,

McGraw-Hill.

Brebbia, C. and J. Dominguez (1978), Boundary Element Method Versus

Finite Elements,

In Applied NUmerical Modelling, Ed. C.A. Brebbia, Pentech Press,

pp.571-586.

Bredehoeft, J.D. and P. Betzinski [1982J, Ground-water Models, Vol.I:

Concepts, Problems and Methods of Analysis,

The Unesco Press.

567

Briz-Kishore, B.H. and R.V.S.S. Avadhanulu [1981J, Aquifer Simulation

Program for Micro-Based Processors,

Ground Water, Vol. 19, No. 4, pp.400-406.

Brown, C.B. and J.T. Yao [1983J, Fuzzy Sets and Structural Engineering,

J. of Structural Engineering, Vol. 109, pp.1211-1225.

Brown, P.J. [1981J, Writing Interactive Compilers and Interprete~s,

John Wiley.

Browne, J.C. [1976J, Data Definition, Structures, and Mbnagement in

Scientific Computing,

In Computer Science and Scientific Computing, Ed. J.M. Ortega,

pp. 25-26, Academic Press.

Broyden, C.G. [1965J, A Class of Methods for Solving Non-linear

Simultaneous Equations,

Mathematics of Computation 19, pp.577-593.

Bykat, A. [1977J, A Note on an Element Ordering Scheme,

International J. for Numerical Methods in Engineering, Vol. 11,

pp.194-198.

Cavendish, J.C. [1974J, Automatic TrianguZation of Arbitrary PZanar

Domains for the Finite Etement Method,

International J. for Numerical Methods in Engineering, Vol. 8,

pp.679-696.

Cheung, Y.K. and M.F. Yeo [1979J, A Practical Introduction to Finite

Element Analysis,

Pitman International Text.

568

Christ, W. [1982], ICES on VAX-Computers, An Introduction to the ICES

Basic System for VAX,

ICES J., Vol. 14, pp.45-57.

Christiansen, H.N. [1976], Computer SimuU2tion of Distorted StructuraL

Frameworks, Computers & Structures, Vol. 6, pp.497-501.

Christiansen, H.N. and M.B. Stephenson [1979], MOVIE.BYE - A Computer

Graphics Software System,

Journal of the Technical Councils of ASCE, Vol. 5, No. TCI, pp.3-12.

Clough, R.W. [1960], The Finite Element in PU2ne Stress AnaLysis,

Proceedings 2nd. ASCE Conference on Electronic Computation,

Pittsburg~pp. 345-378.

Coel, C.M. [1984], The Big Squeeze: Moving Mainframe Fortran to a Micro

Computer,

Computers in Mechanical Engineering, Vol. 3, No.2, pp.57-60.

Coffman, E.G. and P.J. Denning, [1973], Operating Systems Theory,

Prentice-Hall Inc.

Collins, R.J. [1980], A Programming Language for the Finite ELement Method,

A Ph.D. Thesis, The City University, London.

Computer Aided Design Centre [1976], GINO-F User ManuaL,

Issue 2, Computer Aided Design Centre, Cambridge, England.

Connor, J.J. and C.A. Brebbia, [1976], Finite ELement Techniques for

Fluid FLow,

Newnes-Butterworths.

Conte, S.D. and C. De Boor, [1980], ELementary NumericaL AnaLysis, An

AZgorithmic Approach,

3rd. Ed., McGraw-Hill, New York.

Cook, R.D. (1982), Loubignaa's Iterative Method in Finite Element

Elastostatias,

569

International J. for Numerical Methods in Engineering, Vol. 18, pp.67-75.

Cornell, A. (1980), The Deaision-Makers Handbook,

Prentice-Hall.

Cuthill, E. and J.M. McKee (1969),Reduaing the Bandwidth of Sparse

Symmetric Matriaes,

Proc. 24th National Conference, Association for Computing Machinary,

ACM Pub. P69, New York, pp. 157-172.

Date, C.J. (1982), An Introduation to Data Base Systems,

4th Edition, Addison-Wesley, Reading, Massachusetts.

Davis, A.J. (1980), The Finite Element Method: A First Approaah,

Clarendon Press, Oxford.

DeWiest, R.J.M. [1965, Geohydrology,

John Wiley and Sons.

Dongarra, J.J., C.B. Moler, J.R. Bunch and G.W. Stewart (1979),

Linpaak User's Guide,

SIAM, Philadelphia.

Duff, I.S. and J.K. Reid (1983), The MUltifrontal Solution of Indefinite

Sparse Symmetria Linear Equations,

ACM Transactions on Mathematical Software, Vol. 9, No.3, pp.302-325.

Dunavont, D. and B. Szabo (1983), A Posteriori Error Indiaators for the

p-Version of the Finite Element Method,

International J. for Numerical Methods in Engineering, Vol. 19,

pp.1851-1870.

570

Durocher, L.L. and A. Gaspar [1979], A Versatile Two-Dimensional Mesh

Generator with Automatio Bandwidth Reduotion,

computers & Structures, Vol. 10, pp.56l-575.

Eisenstat, S.C., M.C. Gursky, M.H. Schultz and A.H. Sherman [1976],

Yale Sparse Matrix Paokage: I. The Symmetrio Codes,

Research Report 112, Yale Computer Science Department, Yale

University, New Haven, Conn., U.S.A.

Ergatoudis, J., B.M. Irons and O.C. Zienkiewicz [1968], Curved Iso­

Parametrio Quadrilateral Elements for Finite Element Analysis,

Int.J. Solids Struct., Vol. 4, pp.3l-42.

Evans, D.J., [1973], The Analysis and Applioation of Sparse Matrix

Algorithms in the Finite Element Method,

In the Mathematics of Finite Elements and Applications, Ed. J.R.

Whiteman, Academic Press, pp.427-447.

Evans, D.J. [1982], Parullel Numerioal Algorithms for Linear Systems,

In Parallel Processing Systems, Ed. D.J. Evans, Cambridge University

Press, pp. 357-383.

Everstine, G.C. and E.H. Cuthill [1983], The Optimal Ordering of Tree

Networks,

Computers & Structures, Vol. 17, No. 4, pp.62l-622.

Faust, C.R. and J.W. Mercer [1980], Ground Water Modelling: Numerioal Models,

Ground Water, Vol. 18, No. 4, pp.395-409.

Felippa, C.A. [1972], An Alphanumerio Finite Element Mesh Plotter,

International J. for Numerical Methods in Engineering, Vol. 5,

pp.2l7-236.

Felippa, C.A. [1979], Data base Management in Soientifio Computing -

I. General Desoription,

Computers & Structures, vol. 10, pp.53-61.

571

Finlayson, B.A. and L.E. Scriven [1966], The Method of Weighted ResiduaZs -

A Review,

Appl.Mech.Rev., Vol. 19, No. 9, pp.735-748.

Firkins, N.L. and J.Q. Hossack [1977], A Conm:md Struotured Approaoh to

StruoturaZ Objeot PZotting and Automated Line Dimensioning,

Computers & Structures, Vol. 7, pp. 587-598.

Fang, H.H. [1984], Standards for Finite EZement Codes: the Long

Road Ahead,

Computers in Mechanical Engineering, Vol. 3, No. 3, pp.10-14.

Fossen, D.B.V. [1978], FESAP - Design Program for Statio and Dynamio

StruoturaZ AnaZysis,

Computers & Structures, Vol. 9, pp. 371-376.

Fox, L. [1966], An Introduotion to NumerioaZ Linear AZgebra,

Oxford University Press, New York.

France, P.W. [1975], An Improved Finite EZement Teohnique for the

AnaZysis of Free Surfaoe FZow ProbZems,

Computers & Fluids, Vol. 3, pp.149-153.

Gallagher, R.H., B.R. Simon, P.C. Johnson and J.F. Gross [1982],

Finite EZements in Bio Meohanics,

Editors,

John Wiley.

Gattas, M. and J.F. Abel [1983], Three-dimensionaZ Linear Dynamic AnaZysis

of BuiZdings with 32-Bit VirtuaZ-Memory Mini-Computers,

Computers & Structures, Vol. 17, No. 1, pp. 97-104.

George A. and J. W-H Liu [1981], Computer SoZution of Lay.ge positive

Definite Systems,

Prentice-Hall.

George, J.A. [1971], Computer ImpZementation of the Finite EZement

Method,

572

Ph.D. Dissertation, Dept. Comput.Sci., Stanford Univ., Cal., USA.

Gerald, C.F. [1978], AppZied NumericaZ AnaZysis,

2nd edition, Addison-Wesley, PUb.Co.

Gibbs, N.E., W.G. Poole and P.K. Stockmeyer, [1976], An AZgorithm for

Reducing Bandwidth and ProfiZe of a Sparse Matrix,

SIAM J. Numerical Analysis Vol. 13, pp.236-250.

Goetschel, D. [1984], A PersonaZ Look at VirtuaZ Memo~ Micro­

oomputers,

computers in Mechanical Engineering, Vol. 2. No. 4, pp.48-52.

Green, G. [1828] An Essay on the AppZication of MathematicaZ AnaZysis to

the Theo~ of EZectricity and Magnetism,

Nottingham.

Griffin, O.H. and C.R. Wilson [1983], Finite EZement AnaZysis on A

Mioroprocessor-Based PersonaZ Workstation,

computers & Structures Vol. 17, No. 4, pp.617-619.

Groover, M.P. and E.W. Zimmers [1983], CAD/CAM: Computer-Aided Design

and Manufacturing,

Prentice-Hall.

Haber, R. and J.F. Abel [1982], Discrete 1Tansfinite Mappings for the

Description and Meshing of Three-DimensionaZ Surfaoes Using

Interaotive Computer Graphios,

International J. for Numerical Methods in Engineering, Vol. 18,

pp.41-66.

Haber, R., M.S. Shephard, J.F. Abel, R.H. Gallagher, and D.P. Greenberg

[1981], A GeneraZ Two-DimensionaZ GraphicaZ Finite EZement Preprocessor

UtiZizing Disorete Trunsfinite Mappings,

International J. for Numerical Methods in Engineering, Vol. 17,

pp. 1015-1044.

Hantush, M.S. and C.E. Jacob [1955], Non-Steady RadiaZ FZow in an

Infinite Leaky Aquifer,

Am. Geophys. Un. Trans. 36, pp.95-l00.

573

Haugeneder, E., W. Prochazka and P. Tavolato, [1981], A Pre Prooessor

for the Finite EZement Program SAP IV,

International Journal for Numerical Methods in Engineering, Vol.

17, pp.1779-l789.

Hellen, T.K. [1969], A Front SoZution for Finite EZement Teohniques,

Central Electricity Board R & D Dept., RD/B/N 1459.

Hildebrand, F.B. [1965], Methods of AppUed Mathem:2tics,

Prentice-Hall, Englewood Cliffs, N.J.

Hinton, E., A. Razzaque, O.C. Zienkiewicz and J.D. Davies, [1975],

A SimpZe Finite EZement SoZution for PZates of Homogeneous,

Sandwich and CeZZuZar Construotion.

Proc.lnst. Civil Eng. 59, Part 2, pp.43-65.

Hinton, E. and D.R.J. Owen [1979], Finite Element Programming,

Academic Press.

Hinton, E., P. Bettess and R.W. Lewis [1981], Numerioal Methods for

Coupled Problems,

Pineridge Press.

Hitchings, D. [1975], FINEL - A Finite Element Language for Teaohing,

Researoh and DeVelopment,

Proceedings 3rd. Post Conference on Computational Aspects of the

Finite Element Method, pp.59-67.

Hogben, L. [1967], Mathematics for the Millions,

Pan Books, London.

574

Hoit, M. and E.L. Wilson [1983], An Equation Nunbering Algorithm Based

on a Minimum Front Criteria,

computers & Structures, Vol. 16, No. 1-4, pp.225-239.

Hood, P. 11976], Frontal Solution Prog~ for Unsymmetric Matrices,

International J. for Numerical Methods in Engineering, Vol. la,

pp. 379-400.

Hopgood, F.R.A. [1974], Compiling Teohniques,

MacDonald Pub.

Houstis, E.N., R.E. Lynch, T. Papatheodorou and J.R. Rice [1975],

Development, Evaluation and Selection of Methods for Elliptic

Partial Differential Equations,

In Advances in Computer Methods for Partial Differential Equations,

Ed. R. Vichnevetsky, AlCA Publ., pp. 1-6.

HP 3000 [1979], HP 3000 General Information Man~l,

Hewlett-Packard, California, USA.

Hrenikoff, A. [1941], Solution of Problems in E:asticity by the Frame­

lJOrk Method,

Journal of Applied Mechanics, Vol.8.

Huebner, K.H. and E.A. Thornton [1982], The Finite Element Method for

Engineers,

2nd. Edition, Wiley.

Hurst, T.N. and B.A. Ross [1984], Fortran That c~avels: Programming

for Portability,

Computers in Mechanical Engineering, Vol. 3, No. 3, pp.25-27.

Hurwitz, A., J.P. Citron and J.B. yeaton [1967], GRAF • Graphioal

EXtensions to Fortran,

575

Proc. SJCC 1967, Thompson Book Co., Washington, D.C., pp.553-557.

Huyakorn, P.S. and C.R. Dudgeon [1974], Finite Element Programs for

Analysing Flow Towards Wells,

Australian Water Resources Council Project 71/25.

IBM [1981], VS Fortran Application Programming Guide,

IBM,

IMSL [1983], TWODEPEP User's Manual,

Edition 5, IMSL Inc., Texas, U.S.A.

IMSL [1984], International Mathematioal and Statistioal Library,

Edition 9.2, IMSL Inc., Texas, U.S.A.

Intel [1981], IAPX 286 Preliminary User Manual,

Santa Clara, California, Intel Corp.

Irons, B.M. [1966], Engineering Applioation of Numerioal Integration

in Stiffness Method,

AIAA J., Vol. 14, pp.2035-2037.

Irons, B.M. [1970], A Frontal Solution Program for Finite Element

Analysis,

International J. for Numerical Methods in Engineering, Vol. 2,

No. 1, pp.5-32.

Irons, B.M. and A. Razzaque [1973], Introduotion of Shear· Deformations

into a Thin Plate Displaoement Formulation,

AlAA J., Vol. 11, No.l0, pp.1438-1439.

Irons, B.M. and N. Shrive [1983], Finite ELement Primer,

Ellis Horwood Ltd.

Irons, B.M. and S. Ahmad [1980], Teohniques of Finite ELements,

Ellis Horwood Ltd. /

576

Jacobsen, K.P. [1983], FuLLy Integrated SupereLements: A Data Base

Approach to Finite Element AnaLysis,

computers & Structures, Vol. 16, No. 1-4, pp.307-315.

Janssen, T.L. [1983], A SimpLe Efficient Hidden Line ALgorithm,

computers & Structures, Vol. 17, No. 4, pp.563-571.

Jennings, A. [1966], A Compact Storage Scheme for the SoLution of

SYmmBtric Linear SimuLtaneous Equations,

computer Journal, Vol. 9, pp. 281-285.

Jennings, A. [1977], Matrix Computation for Engineers and Scientists,

John Wi1ey & Sons.

Johnson, A.E. and D. Torok [1985], Soft~re for FLuid FLow and Heat

Transfer AnaLyses of ELectronic Packaging,

computers in Mechanical Engineering, Vol. 4, No. 1, pp. 41-46.

Jordan, H.F. and P.L. Sawyer, [1979], A MuLti-Microprocessor System for

Finite ELement StructuraL AnaLysis,

Computers & Structures, Vol. 10, pp. 21-29.

Ka1djian, M.J. [1976], Interactive Data ~eprocessor ~ogram for

Michigan SAP (MSAP),

Computers & Structures, Vol. 6, pp. 405-412.

Ka1djian, M.J. [1977], Three DimensionaL Interactive Graphic DispLay

\ ~ogram for Michigan SAP (MSAP),

~ Computers & Structures, Vol. 7, pp. 183~187.

~a1djian, M.J., M.S. E1-Nashie, o. Yuzugu11u, G. Siddiqui and A.

Sharaf E1din [1982], Computer Aided StructuraL Design,

A Short Course offered by the College of Engineering,

King Saud University from 29 May - 9 June 1982. Published by

King Saud University Press.

Kalkani, E.C. [1976], Computer P~otting of Stress Contours in

EXaavated S~opes,

577

International Journal for Numerical Methods in Engineering, Vol.

10, pp.1261-l280.

Kame1, H.A., A.V. Mob1ey, R. Nagulpally and D. Kumar [1985), A GIFT

for FE Analysis on a Miaroaomputer,

computers in Mechanical Engineering, Vol. 3, No. 4, pp.12-20.

Kame1 H.A. and M.W. McCabe [1976], App~iaations of GIFTS III to

Structu~l Engineering Problems,

computers & Structures, Vol. 7, pp. 399-415.

Kame1, H.A. and Z. Navabi [1980), Digitizing for Computer-Aided Finite

Element Model Gene~tion - Part 2 Use of Digitizing in Mesh Gene~tion,

Transactions of the ASME, Vol. 102, pp.560-565.

Karplus, W.J. and D. Cohen [1981), Arahiteatu~~ and Software Issues

in the Design and App~iaation of Periphe~l Ar~y Proaessors, .

Computer, Vol. 14, No. 9, pp.11-17.

Keeney, R.L. and H. Raiffa [1976], Decision with /1UZtip~e Objectives:

Preferenaes and Value T~deoffs,

John Wiley & Sons, Inc.

Kelly, D., J. Gago, O.C. Zienkiewicz and I. Babuska [1983], A Posteriori

Error Analysis and Adaptive Proaesses in the Finite Element Method:

Part I - Error Analysis,

International J. for Numerical Methods in Engineering, Vol. 19,

pp.1593-l6l9.

Kirk, D.B. [1986), Curved Surfaaes in Solid Mode~ling: New Hardware

Improves the View,

Computers in Mechanical Engineering, Vol. 4, No. 6, pp.lO-14.

Knuth, D.E. [1975), The Art of Computer Programming,

Addison-Wesley.

Kulsrud, H.E. [1968), A General Purpose Graphic Language,

Comm. ACM 11, pp.247.

Liggett, J.A. and P. L-F Liu [1983), The Boundary Integral Equation

Method for Porous Media Flow,

George AlIen & Unwin.

Livesley, R.K. [1964), Matrix Methods of Structural Analysis,

Pergamon Press.

578

Liu, W.H. and A.H. Sherman [1976), Comparative Analysis of the Cuthill-

McKee and the Reverse Cuthill-McKee Ordering Algorithm for Sparse Matrices

SIAM J. Numerical Analysis, Vol. 13(2), pp.198-213.

Loubignac, G., G. Cantin and G. Touzot [1977), Continuous Stress Fields

in Finite Element Analysis,

AIAA J., vol. 15, No. 11, pp.1645-1647.

MacNeal, R.H. [1970), The NASTRAN Theoretical Manual,

NASA Report No. NASA sp-221.

Majid, K.I. [1980), Introduction to Matrix and Numerical Methods for

Civil Engineers,

wood Stock Publishing.

Marc Analysis Research Corp. [1980), MENTAT, Interactive Graphics Finite

Element Mesh Editor, Preprocessor and Postprocessor,

California, U.S.A.

Marcal, P.V. [1976), General Purpose Program for Finite Element Analysis:

Some Computational Considerations,

In Computer Science and Scientific Computing, Ed. J.M. Ortega,

pp. 155-162, Academic Press.

579

Martin, J. [1977]", Data-base Organization,

2nd Edition, Prentice-Ha11 Inc.

Me1osh, R. [1973], Inherited Error in Finite Element Analysis of

Struotures,

computers & structures, Vol. 3, pp. 1205-1217.

Me1osh, R. and R.M. Banford [1969], Efficient Solution of Load

Defleotion Equations,

J. Struct. Division Proc., ASCE, 95, ST 4, pp. 661-676.

Me1osh, R., S. Utku, M. Islam and M. Sa1ama [1984], An Emulator for

Minimizing Computer Resouroes for Finite Element Analysis,

computers & Structures, Vol. 18, No. 4, pp. 567-574.

Mind1in, R.D. [1951], Influence of Rotatory Inertia and Shear on

Flexural Motions of Isotropio Elastio Plates,

J.App1.Mech. 18, pp.31-38.

Mitche11, A.R., G. Phi11ips and E. wachspress [1971], Forbidden Shapes

in the Finite Element Method,

J.Inst.Maths. Applies., 8, pp.260-269.

More, J., B. Garbow and K. Hi11strom [1980], User Guide for MINPACK-1,

Argonne National Laboratory Report ANL-80-74, Argonne, Illinois,

U.S.A.

Motoro1a [1981], MC 68451,

Advance Information, Austin, Texas, Morotola Inc.

Newman, W.M. and R.F. sprou11 [1982], Prinoiples,of Interaotive Computer

Graphics,

Second Edition, McGraw-Hi11 Inc.

Noor, A.K. [1981], Survey Of Computer Programs for Solution of Nonlinear

Struotural and Solid Meohanios Problems,

computers & Structures, Vol. 13, pp.425-465.

Oden, J.T. [1972], Finite Element of Non-Linear Continua,

McGraw-Hill.

580

Oden, J.T. and N. Kikuchi [1980], Theory of Variational Inequalities with

Applications to Problems of Flow Through Porous Media,

Int.J. Energy SCi., 18, pp.1173-l284.

Ogden, D. [1979], Extended Memory Systems for Microprocessor,

International Micro and Mini Computer Conference, Houston, Texas, USA.

Oliver, M.A. and N.E. Wiseman [1983], Operations on Quadtree Encoded

Images,

The Computer Journal, Vol. 26, No. 1, pp. 83-92.

Ortega, J.M. and W.C. Rheinboldt [1970], Iterative Solution of Nonlinear

Equations in Several Variables,

Academic Press, New York.

Papadimitriou, C.H. [1974], The NP-Completeness of the Bandwidth

Minimization Problem,

Report No. 173, Computer Science Laboratory, Department of

Electrical Engineering, Prince ton University, USA.

Pavlidis, T. [1977], Structural Pattern Recognition,

springer-Verlag.

Pesquera, C.I., U. McGuire and J.F. Abel [1983], Interactive Graphical

Preprocessing of Three Dimensional Framed Structures,

Computers.& Structures, Vol. 17, No. 1, pp.1-12.

Pina, H.L. [1981], An Algorithm for Frontwidth Reduction,

International Journal for Numerical Methods in Engineering, Vol.17,

pp.1539-l546.

Plunkett, B. [1985], Portable Pictures: A Case for Graphics Standards,

Computers in Mechanical Engineering, Vol. 3, No.5, pp.37-40.

581

Prickett, T.A. [1975], Mode~~ing Techniques for Groundwater Eva~uation,

In Advances in Hydroscience, Vol. 10, Academic Press, New York,

pp.1-43.

Przemieniecki, J.S. [1968], Theory of Matrix Structura~ Ana~ysis,

McGraw-Hi11.

Quae, L. Vu and J.R. 01eary [1984], Automatic Node Resequencing with

Constraints,

Computers & structures, Vol. 18, No. 1, pp.5S-69.

Raiffa, H. [1968], Decision Ana~ysis,

Addison-Wes1ey Publ.

Rao, S.S. [1982], The Finite E~ement Method in Engineering,

Pergamon Press.

Razzaque, A. [1980], Automatic Reduction of Frontwidth for Finite

E~ement Ana~ysis,

International J. for Numerical Methods in Engineering, Vol.1S,

pp.131S-1324.

Rice, J.R. [1975], A Meta~gorithm for Adaptive Quadrature,

J. ACM, 22, pp.61-82.

Rivara, M.C. [1984], A~gorithms for Refining Triangu~ar Grids Suitab~e

for Adaptive and MU~ti Grid Techniques,

International J. for Numerical Methods in Engineering, Vol.20,

pp.745-756.

Romo, J.B. and D.M. Burns [1986], Para~lelism in Engineering Analysis,

Computers in Mechanical Engineering, Vo1.4, No.S, pp.12-20.

Rose, D.J., G.G. Whitten, A.H. Sherman and R.E. Tarjan [1980], A~gorithms

and Software for In-Core Factorization of Sparse Symmetric positive

Definite Matrices,

Computers & Structures, Vol. 11, pp. 597-608.

Ross, B.A., J.J. Cox, T.N. Hurst and S.E. Benzley [1985], Rosetta

Stone for FE Modelling,

Computers in Mechanical Engineering, Vol. 3, No. 4, pp.43-51.

582

Sa Da Costa, A.A.G. [1980], A Numerical Model of Seawater Intrusion in

Aquifers,

Ph.D. Dissertation, Dept. of Civil Engineering, MIT, Mass., USA.

Sarnet, H. [1984], The Quadtree and Related Hierarchical Data Structure,

Computing Surveys, Vol. 16, No. 2, pp.187-247.

SAS [1982], SAS Users' Guide 1982 Edition.

SAS Institute, USA.

Schmitt, S. [1983], Virtual Memory for Micro Computers. Four New Memory­

Management Chips Pave the Way.

Byte Magazine.

Schreiber, R. [1982], A New Implementation of Sparse Gaussian Elimination.

ACM Transactions on Mathematical Software, Vol. 8, No. 3, pp.256-276.

Schrem, E. [1979], Trends and Aspects Of the Development of Large Finite

Element Software Systems.

Computers & Structures, Vol. 10, pp.419-425.

Sewell, G. [1972], Automatic Generation of Triangulations for Piecewise

Polynomial Approximation.

Ph.D. Thesis, Purdue University, USA.

Sewell, G. [1987], Vectorization and PDE/PROTRAN,

Directions, Vol. 4, No. 1, pp.2-3.

Sharaf Eldin, A. [1983a]. Numerical Simulation of Ground Water Resources

Analysis Using Finite Elements.

Proc. Symposium on water Resources in the Kingdom of Saudi Arabia,

April, 1983, pp.298-3l3.

583

Sharaf Eldin, A. [1983b], Preppooessops fop Finite Element Gpoundwatep

Analysis Progpams,

Proc. Symposium on Water Resources in the Kingdom of Saudi Arabia,

April, 1983, pp.155-168.

Sharaf Eldin, A. [1983c], Postppooessops fop Finite Element Gpoundwatep

Analysis Progpams,

Proc. Symposium on Water Resources in the Kingdom of Saudi Arabia,

April, 1983, pp.144-154.

Sharaf Eldin, A. [1983d], Intpoduotion to Digitizep,

Lecture Notes, King Saud University.

Sharaf Eldin, A. [1984], Intpoduoing the IMSL Softwape,

Lecture Notes, King Saud University,

Sharaf Eldin, A. [1985a], A MioPo-Computep Based Intepaotive Progpam fop

Aquifep Simulation Using Finite Elements,

Proc. 16th Annual Pittsburgh Conference on Modelling and Simulation,

University of Pittsburgh, Pittsburgh, USA, April 25-26, 1985,

pp. 907-910.

Sharaf Eldin, A. [1985b], PDS/JOOO, A Man-Maohine Intepfaoe,

Proc. lUG Conference, Amsterdam, The Netherlands, March 31-5 April,

1985, pp.139-147.

Sharaf Eldin, A., A.R. Abdul-Fattah and W.H. Abulfaraj [1986], A Multi­

Attpibute Utility Paokage fop Deoision Making,

Proc. 17th Annual Pittsburgh Conference on Modelling and Simulation,

University of Pittsburgh, Pittsburgh, USA, April 24-25, 1986,

1839-1844.

Sharaf Eldin, A. and A.S. Nouh [1984], Viptual staok Faoility fop Mini­

and Miopo-oomputeps in Time-Shaping Enviponment,

Proc. 7th NCC, pp.416-426.

584

Sharaf Eldin, A. and D.J. Evans, [1986J, Finite Elements Softwape

Selection fop Computational Mechanics: Thpee Quantitative Apppoaches,

Proc. International Conference on Computational Mechanics, ICCM86-

Tokyo, Japan. 25-29 May, 1986, pp.XII-23 - XII-29.

Sharaf Eldin, A. and D.J. Evans, [1987J, ELASTIC - An Intepactive Finite

Elements Progpam fop the Analysis of IWo Dimensional Elasticity Problems,

Symp. on Concrete and Concrete Structures in the Middle East. Riyadh,

Saudi Arabia 25-29 April, 1987.

Shephard, M.S. and M.A. Yerry, [1983J, Apppoaching the Automatic Genepation

of Finite Element Meshes,

Computers in Mechanical Engineering, Vol~ 1, No. 4, pp.49-56.

Smith, G.D., [1969], Numepical Solution of Paptial Diffepential Equations,

Oxford University Press.

Stabrowski, M.M., [1981], An AlgoPithm fop the solution of VePy Lapge

Banded UnsymmetPic Lineap Equation Systems,

International J. for Numerical Methods in Engineering, Vol. 17, pp.

1103-1117.

Stafford, J.R., [1983], A Desk-Top PepsonaZ Computep for Finite Element

Post-Processing,

Computers & Structures, Vol. 17, No. 5-6, pp.689-695.

Stewart, G. W., [1973], Introduction to Matrix Computations,

Academic Press, New York.

Strohkorb, G.A. and A.K. Noor, [1984], Potential of Minicomputer-Apray

Processop System fop Nonlineap Finite Element Analysis,

Computers & Structures, Vol. 18, No. 4, pp.703-718.

Sutherland, I.E., [1965], SKETCHPAD: A Man-Machine Gpaphical

Communication System,

MIT Lincoln Lab., Tech. Rep. 296.

Sutherland, I.E., R.F. Sproull and R.A. Schumacker, [1974], A Chapactep-

ization of Ten Hidden-Surface Algorithms,

Computer Survey, 6, No. 1, pp.l.

585

Swanson, J.A., [1977], Use of Mini-computers for Large Scale Structural

Analysis Programs,

Computers & Structures, Vol. 7, pp.29l-294.

Taweel, A., A. Sharaf Eldin, A. Nouh and G. Khader, [1978], Numerical

Simulation of Groundwater Resources in Saud~ Arabia,

Proceedings 4th NCC, March, 1978.

Thacker, W.C., [1980], A Brief Review Of Techniq~es for Generating

Irregular Computational Grids,

International J. for Numerical Methods in Engineering, Vol.15,

pp.1335-1341.

Thatcher, R.W. and S.L. Askew, [1982], A Complementary Solution to the

Dam I'r>oblem,

IMA J. of Numerical Analysis, 2, pp.229-239.

Theis, c.V., [1935], The Relation Between the Lo~ering Of the Piezometric

Surface and the Rate and Duration of DischarJe of a Well Using

Groundwater Storage,

Trans. Am. Geoph, Un., 16, pp.5l9-524.

Timoshenko, S. and J.N. Goodier, [1951], Theory of Elasticity,

McGraw-Hill, New York.

Turaby, A. and A. Sharaf Eldin, [1978], Structura: Analysis Package (STRAP)

Proc. 4th NCC, March, 1978.

TWODEPEP, [1980], TWODEPEP User's Manual, Version 1,

IMSL Inc., Texas, USA.

Ungl ss R F [19""3] An Infinite Finite Elemen7;, e , • ., "

M.Sc. Thesis, Dept. of Civil Eng. University of British Columbia,

Canada.

Utku, S. and R.J. Melosh, [1984], Solution Errors in Finite Element

Analysis,

computers & Structures, Vol. 18, pp.379-393.

586

Van Fossen, D.B., [1978], FESAP - Design Program for Static and Dynamic

Structural Analysis,

computers & Structures, Vol. 9, pp.371-376.

Vemuri, V. and W.J. Karplus, [1981], Digital Computer Treatment of

Partial Differential Equations,

Prentice-Hall, Inc.

Walker, B.S., J.R. Gurd, and E.A. Drawnak, [1973], Interactive Computer

Graphics,

Edward Arnold Pub.

Wang, H.F. and M.P. Anderson, [1982], Introduction to Groundwater

Modelling: Finite Difference and Finite Element Methods,

W.H. Freeman and Company, San Fransisco.

Warnock, J.E., [1969], A Hidden-Surface Algorithm for Computer Generated

Half-tone Pictures,

Univ. Utah, Computer Science Dept., TR 4-15.

Watkins, G.S., [1970], A Real-Time Visible Surface Algorithm,

Univ. Utah, Computer Science Dept., UTEC-CSC-70-101.

Wilkinson, J.H., [1965], Rounding Errors in Algebraic Processes,

N.P.L. Notes· on Applied SCience, 32, London.

Wilson, E.L., [1963], Finite Element Analysis of TWo Dimensional

Structures,

SESM 63-2, University of California at Berkely, USA.

Wilson, E.L., [1970], SAP - A General StruaturaZ Analysis Program,

J

SESM Report 70-20, Dept. of Civil Engineering, Uni. of California,

Berkeley, USA.

Wilson, E.L. [1974], The Static Condensation Algorithm,

International J. for Numerical Methods in Engineering, Vol. 8,

No. 1, pp. 198-203.

Wilson, E.L. , [1985] , Tailor Made: Struotural FE Analysis to Suit the

User and the Computer,

computers in Mechanical Engineering, Vol. 3, No. 4, pp.22-28.

587

Wilson, E.L., K.J. Bathe and W.P. Doherty, [1974], Direct Solution of

Large Systems of Linear Equations,

Computers & Structures, Vol. 4, pp.363-372.

Wilson, J.L., R.L. Townley and A.S.D. Costa, [1979], Mathematical

Development and Verification of a Finite Element Aquifer Flow

Model - Aquifem-l,

Report. No.248, Ralph M. Parsons Laboratory for Water Resources

and Hydrodynamics, MIT, USA.

Wu, E-R, [1982], Techniques to Avoid Duplicate Nodes and Relax

Restrictions on the Super Element Numbering in a Mesh Generator,

Computers & Structures, Vol. 15, No. 4, pp.419-422.

Yamada, Y. and H. Okumara, [1980], Micro-computer Systems for Medium­

Sized and Experimental Finite Element Analysis,

In NASA Conference Publication 2147, NASA, pp.277-289.

Yamada, Y., H. Okumara and T. Sakurai, [1980], Microcomputer Systems for

. Medium Sized and Experimental Finite Element Analysis,

NASA Conference Publication 2147, Research in Nonlinear Structural

and Solid Mechanics, Ed. H.G. McComb and A.K. Noor, pp.277-289.

Yettram, A.L. and H.M. Husain, [1966], plane Framework Models for Plates

in Extension,

Journal of the Engineering Mechanics Division, Proc. of ASCE, Vol.92,

No. EMl, pp.157-168.

588

Zadeh, L.A., [1965], Fuzzy Sets,

Information & Control, Vol. 8, pp.338-353.

Zadeh, L.A., [1976], A Fuzzy Algorithmia Approaah to the Definition of

Complex or Impreaise Conaepts,

Int.J. Man-Machine Studies, 8, pp.249.

Zave, P. and E.C. George Jr., [1983], A Quantitative Evaluation of the

Feasibility of, and Suitable Hardware Arahiteatures for, an

Adaptive, Parallel Finite Element System, ACM Trans. on Mathematical

Software, Vol. 9, No. 3, pp.271-292.

Zienkiewicz, a.c., [1977], The Finite Element Method,

McGraw-Hill.

Zienkiewicz, a.c. and D.V; Phillips, [1971], An Automatia Mesh

Generation Saheme for plane and Curved Surfaaes by 'Isoparametria'

Co-ordinates,

International J. for Numerical Methods in Engineering, Vol. 3,

pp.519-528.

Zienkiewicz, a.c. and D.W. Kelly, [1982], Finite Elements A Unified

Problem-Solving and Information Transfer Method,

In Finite Elements in Biomechanics, ed. by R.H. Gallagher et al"

Wiley.

Zienkiewicz, a.c. and Y.K. Cheung, [1965], Finite Elements in the

Solution of Field Problems,

The Engineer, Vol. 22a, pp.5a7-510.

APPENDICES

TABLE OF CONTENTS

Ai Sample Programs that Demonstrate the
EXisting Problem of Limited Stack Size

A2 samples of the Outputs Produoed by the
VSF Compiler

A.3 Error Messages Produoed by the VSF
Compiler

B Programs for the Problems Solved in
Chapter 7

Al. SAMPLE PROGRAMS THAT DEMONSTRATE THE EXISTING

PROBLEM OF LIMITED STACK SIZE

PAGE 0001

00001000
00002000
00003000
00004000
00005000
00006000
00007000
.•.•.• ERROR

589
HP32102B.01.05 FORTRAN/3000 (C) HEWLETT-PACKARD CO. 19130 MON, JI

C EXAMPLE I
C A SAMPLE PROGRAM TO DEMONSTRATE THE LIMITIMG STACK PROBLEM
C THIS PROGRAM WILL NOT BE COMPILED.
C THE DIMENSION OF THE NEXT STATEMENT IS TOO BIG

DIMENSION A(20000)
STOP
END

128 ••• ARRAY EXCEEDS 32767 WORDS

SYMBOL MAP

NAME TYPE STRUCTURE

A REAL ARRAY

•••• I ERROR, NO WARNINGS ••••
PROGRAM UNIT MAIN' FLUSHED

ADDRESS NAME

Q+l:I ,I

PAGE 0001

00001000 C
00002000 C
00003000 C
00004000 C
00005000

..... ERROR
00006000
00007000

SYMBOL MAP

NAME

A

590
HP32102B.01.05 FORTRAN/3000 (C) HEWLETT-PACKARD cn. 1980 MON, JI

EXAMPLE 2
A SAMPLE PROGRAM TO DEMONSTRATE THE LIMITIMG STACK PROBLEM
THIS PROGRAM WILL NOT BE COMPILED
THE DIMENSION OF THE NEXT STATEMENT IS TOO BIG
DIMENSION A(33000)

77 *.. INTEGER EXCEEDS CONTEXTUAL LIMITS
STOP .
END

TYPE

REAL

STRUCTURE

ARRAY

ADDRESS NAME

•••• 1 ERROR, NO WARNINGS ••••
PROGRAM UNIT MAIN' FLUSHED

PAGE 0001

00001000
00002000
00003000
00004000
00005000
00006000
00007000
.• " .• ERROR

591
HP32102B.Ol.05 FORTRAN/3000 (Cl HEWLETT-PACKARD CO. 1980 MUN, Jl

C EXAMPLE 3
C A SAMPLE PROGRAM TO DEMONSTRATE THE LIMITIMG STACK PROBLEM
C THIS PROGRAM WILL NOT BE COMPILED
C THE DIMENSIONS IN THE NEXT STATEMENT ARE TOO BIG

DIMENSION A(10000I,B(6000I,K(20001
STOP
END

212 """ DATA SPACE OVERFLOW

SYMBOL MAP

NAME

A
K

TYPE

REAL
INTEGER

STRUCTURE

ARRAY
ARRAY

""." 1 ERROR, NO WARNINGS ••••
PROGRAM UNIT MAIN' FLUSHED

ADDRESS NAME

Q+1.2 J I B
(;)+;(1 ,I

A2. SAMPLES OF THE OUTPUTS PRODUCED BY THE VSF COMPILER

(C) AhMed
PHASE I:
$ARRAY
$LlST
$COMMENT
$COMMENT
$COMMENT
$COMMENT
$MOP

VIRTUAL STACK FACILITY
V S F

Sharaf Eldin AhMed. APRIL 84
COMPILING OF THE VSF BLOCK.

MON, JUN 29, 1987,

A TEST EXAMPLE WITH AN ERROR IN THE COMMAND
'$MAP' WHICH IS MISSPELLED AS '$MOP'

•• ERROR •• CANNOT RECOGNISE VSF COMMAND.

1:09 PM

AVAILABLE VSF COMMANDS ARE: $ARRAY,$NOLIST,$NOMAP,$INITIALIZE,
$CROSSREF,$COMMENT,$MAP,$LIST AND $END.

$CROSSREF
INTEGER A(10000,200),KLM(20000),AGF(20,1000,2000)
REAL STIFFNESS(2000)
•• ERROR •• ILLEGAL VSF ARRAY NAME.

A LEGAL VSF NAME MUST BE 1 TO b CHARACTERS AND START
WITH ALPHABET,CONTAINS NO SPECIAL SYMBOLS AND NOT A FORTRAN
KEY WORD .

•• ERROR •• ILLEGAL VIRTUAL ARRAY SPECIFICATIONS
DOUBLE DEFLEC(2000)
COMPLEX CSOS(200,100,10)
•• ERROR •• ILLEGAL VSF STATEMENT.

AVAILABLE VSF TYPE DECLARATIONS ARE: INTEGER,REAL,DOUBLE
AND SIZE.

A SPACE MUST BE LEFT AFTER THE KEYWORD.
$END
END OF PHASE I.
CPU TIME FOR VSF COMPILATION: 1.07100 SECONDS

4 ERRORS ARE FOUND IN THE VSF BLOCK.
PLEASE CORRECT THE VSF BLOCK AND RE-COMPILE AGAIN.

592

VIRTUAL STACK FACILITY
V S F

(Cl AhMed
PHASE I,
$ARRAY
$LIST

Sharaf Eldin AhMed, APRIL 84
COMPILING OF THE VSF BLOCK,

$MAP
$CROSSREF
REAL A(640,640l,B(640,640l,C(640,640l
$END
END OF PHASE I,
CPU TIME FOR VSF COMPILATION
NO ERRORS ARE FOUND,

,537000

593
MON, JUN 2'?, 1987, 1,09 PM

SECONDS

VSF MAP

VIIHUAL ARRAY TYPE DIMENSION

A
B
C

VIRTUAL ARRAY

A
El
C

REAL
REAL
REAL

2
2
2

START SECTOR

1
6401

12801

3 VIRTUAL ARRAYS ARE DECLARED.

REQUESTED REAL STACK SIZE =

TOTAL SIZE OF VIRTUAL ARRAYS =

BOUNDS

640
640
640

640
640
640

END SECTOR

6400
12800
19200

o WORDS

2457600 WORDS

o
o
o

594

TOTAL SIZE IN WORDS

819200
819200
819200

· ,
VIRTUAL STACK FACILITY MON, JUN 29,1987, 1:13 PM 595

V S F
(C) AhMed Sharar Eldin AhMed. APRIL B4
PHASE I: COMPILING OF THE VSF BLOCK.
$ARRAY
$LIST
$COMMENT A TEST EXAMPLE
$COMMENT
$COMMENT
$MAP
$CROSSREF
INTEGER A(10000,200),KLM(20000),AGF(20,1000,2000)
REAL STIFNS(2000)
DOUBLE DEFLEC(2000)
SIZE 12000
$END
END OF PHASE I.
CPU TIME FOR VSF COMPILATION .831000 SECONDS
NO ERRORS ARE FOUND.

VSF MAP 596

VIRTUAL ARRAY TYPE DIMENSION BOUNDS TOTAL SIZE IN WORDS

A INTEGER 2 10000 200 0 2000000
KLM INTEGER 1 20000 0 0 20000
AGF INTEGER 3 20 1000 2000 40000000
STIFNS REAL 1 2000 0 0 4000
DEFLEC DOUBLE 1 2000 0 0 8000

VIRTUAL ARRAY START SECTOR END SECTOR

A 1 15625
KLM 15626 15782
AGF 15783 328282
STIFNS 328283 328314
DEFLEC 328315 328377

5 VIRTUAL ARRAYS ARE DECLARED.

REQUESTED REAL STACK SIZE = 12000 WORDS

TOTAL SIZE OF VIRTUAL ARRAYS = 42032000 WORDS

(C) AhMed
PHASE I.
$ARRAY
$LIST
$COMMENT
$COMMENT
$COMMENT
$MAP
$CROSSREF

VIRTUAL STACK FACILITY
V S F

Sharaf Eldin AhMed. APRIL 84
COMPILING OF THE VSF BLOCK.

A TEST EXAMPLE

MON, JUN 29, 1987,

INTEGER A(10000,200),KLM(20000),AGF(20,1000,2000)
REAL STIFNS(2000)
DOUBLE DEFLEC(2000)
SIZE 12000
$END
END OF PHASE I.
CPU TIME FOR VSF COMPILATION .806000 SECONDS
NO ERRORS ARE FOUND.

597
1.13 PM

VSF MAP
598

VIRTUAL ARRAY TYPE DIMENSION BOUNDS TOTAL SIZE IN WORDS

A INTEGER 2 10000 20 C 0 2000000
KLM INTEGER 1 20000 0 0 20000
AGF INTEGER 3 20 1000 2000 40000000
STIFNS REAL 1 2000 0 0 4000
DEFLEC DOUBLE 1 2000 0 0 8000

VIRTUAL ARRAY START SECTOR END SECTOR

A 1 15625
KLM 15626 15782
AGF 1 :;783 328282
STIFNS 328283 328314
DEFLEC 328315 328377

:; VIRTUAL ARRAYS ARE DECLARED.

REQUESTED REAL STACK SIZE = 12000 WORDS

TOTAL SIZE OF VIRTUAL ARRAYS = 42032000 WORDS

A3. ERROR MESSAGES PRODUCED BY THE VSF COMPILER

ERROR MESSAGES FOR THE VSF COMPILER

I !FATAL ERRORII FIRST RECORD IS NOT A '$ARRAY' STATEMENT.
nERROR** CANNOT RECOGNISE VSF COMMAND.

AVAILABLE VSF COMMANDS AREI $ARRAY,$NOLIST,$NOMAP,$INITIALIZE,
$CROSSREF,$COMMENT,$MAP,$LIST AND fEND.

ERROR ILLEGAL VSF STATEMENT.
AVAILABLE VSF TYPE DECLARATIONS AREI INTEGER,REAL,DOUBLE

AND SIZE.
A SPACE MUST BE LEFT AFTER THE KEYWORD.

ERROR ILLEGAL VSF ARRAY NAME.
A LEGAL VSF NAME MUST BE 1 TO 6 CHARACTERS AND START
WITH ALPHABET,CONTAINS NO SPECIAL SYMBOLS AND NOT A FORTRAN
KEY WORD. '

ERROR ILLEGAL NUMBER OF SUBSCRIPTS IN A VSF ARRAY DECLARATION.
NUMBER OF SUBSCRIPTS MUST BE 1 TO 3.

ERROR VSF ARRAY BOUNDS MUST BE POSITIVE INTEGERS.
ERROR DUPLICATE DECLARATION OF A VSF ARRAY.
ERROR NO DIMENSION IS GIVEN FOR A VSF ARRAY.
ERROR INITIALIZED VSF ARRAY IS NOT DECLARED.
ERROR MORE THAN 100 VIRTUAL ARRAYS ARE DECLARED.
ERROR YOUR MAIN FORTRAN PROGRAM CONTAINS ERRORS AND/OR WARNINGS

VSF COMPILER REQUIRES A SYNTAX ERROR FREE MAIN PROGRAM.
I !FATAL ERRORII NO $END IS FOUND.

LAST STATEMENT IN THE VIRTUAL STACK BLOCK MUST BE $END.
ERROR TOO MANY CONTINUATION LINES.

VSF LIMITS THE NUMBER OF CONTINUATION LINES TO 10 IN THE MAIN
FORTRAN PROGRAM.

ERROR ILLEGAL VSF STATEMENT
ERROR ILLEGAL VIRTUAL ARRAY SPECIFICATIONS
ERROR ILLEGAL REAL STACK SIZE
ERROR REAL STACK SIZE IS TOO BIG ()32000 WORDS).
ERROR AN INTEGER IS EXPECTED AS ARRAY DIMENSION.
WARN REAL STACK SIZE IS TOO SMALL TO KEEP REQUESTED SEGMENT

599

B, PROGRAMS FOR THE PROBLEMS SOLVED IN CHAPTER 7

I 4 5 32 I
•••• PROBLEM 1-1.
•••• AQUIFER A~ALYSIS
•••• CASE NO.: I
•••• CO~FINEO AQUIFER, SIEADY SIAIE, CONSIANI IRA~SKISSIYITr
•••• 8.C. PRESCRIBED HEAD O~ BOUNDARY
•••• MODEL DAIA :
•••• AQUIFER LENGTH •
•••• ~IDIH •
•••• THICKNESS •
•••• IRA~SMISSIYlfY !XX •
•••• TRA~SMISSIYITr TYY =
•••• BOUNDARY CONOITIONS :
•••• HEAD O~ SIDE 2 IS 50 M.
•••• HEAD O~ SIDE ~ IS 100 K.

10000
1000
ZO
ZOOOO
20000

•••• ~O FLO~ AtROSS IHE LONG SIDES.

M. ...
KZ/OAY
KZ/OU

600

.... 10 lEST THE EFFECT OF NO. OF TRIANGLES ON CPU TIMEIH-REFINMENTI
•••• SEVERAL RU~S ARE DONE WITH KULTIPLE MlX. ~O. OF TRIANGLES
•••• NIF TAKES IHE VALUES OF 8,16,3Z,64,IZ8.Z56
•••• OTHER fACTORS TESIED ARE :
•••• - THE OUI-Of-CORE COKPUTATION VERSUS IN-CORE IN TERKS OF
•••• TIME.CORE REQUIREMENTS.
•••• - THE SHAPE Of TRIANGLES EFfECT.
•••• - IHE INCREASEO POLY~OKIAL IP-REFINE~E~11 EFFECT ON CPU TIKE
•••• ANO PRECISION.
OX~ lOOvO.OeUX
OX, lOOOO.O.ur
SYMMEtRIC
SHAPE I
PLOT 1
ttx lO
ttY Z
XA 0
U 0
HX 500
HY 500
ARC- 1
GB1 0
ARC- -2
FBI 50.0
ARC-)
GBI 0
ARC- -~
F81 100
'IX' 0 0
IABe 1 Z 5
I 1
END.

1000u.0
235

-2

o
) ~

3

10JOO.0
5 ~ 1 5

-~

1000. O. 1000. 5000. 500.

1
•••• ••••
••••
•••• •••• •••• •••• •••• •••• •••• •••• •••• •••• ••••
•••• •••• •••• ••••
OU
OXY
~X
~Y
XA
YA
HX

It

HY
UPRINT
ARC­
FBl
ARC­
FBI
YU
UBC
I
E~D.

~ 32 1
PROBLEM 7-2 •
AQUIFER A~ALYSIS
U~CO~Fl~ED AQUIFER, STEADY STATE
~O~LI~EAR AQUIFER, THE VARIABLE IS H •• 2 RATHER THA~ H •
B.C. PRESCRIBED HEAD O~ TWO SlOES
B.C. ~O FLUX ON THE OTHER TWO SIDES •
MODEL DAU

AQUifER LENGTH
I/IDTH
THICKNESS
PERMEABILI TV
PERHEABILI TV

BOUNDARy CONDITIONS:

!(XX
KYV

•
•
•
•

HEAD ON SIDE 2 IS 50 H •
HEAD ON SIDE It IS 100 H •

10000
1000
120
1000
1000

M •
H •
M •
H/'OAY

IVOU

TO TEST THE EFFECT OF NO. OF TRIANGLES O~ CPU TIME,
SEYERAL RUNS ARE DONE WITH MULTIPLE HAX. NO. OF TRIANGLES
~TF TAKES THE VALUES OF 8,lb,32,64,128,25b •

1000 •• UX
1000 •• UY
20
2
o
o
500
500
OSQRTlUI
-2
2500.
-It
10000.
o 0
125

1

10000.0
2 3 5

-2

o
3 It

3

10000.0
5 "1 5

-It

1000. O. 1000. 5000. 500.

601

1 " •••• •

••••
••••
••••
•••• •••• •••• ••••
••••
•••• ••••
•••• •••• •••• ••••
•••• ••••

5 32 I
PROBLEM 1-),
AQUIfER ANALYSIS
CASE NO., 3
CONFINED A~UIFER,NO ~ELLS,STEADV STlTE,CO~STANT TRANSI4ISSIVITY
WITH LEAKY INFLOwS FRO~ AN AOJACE~T AQUIFER
B.C. PRESCRIBED HEAD ON BOUNOARV
MODEL OA TA

AQUIFER LENGTH • 10000 14 •
wiDTH • 1000 H,
THICKNESS • 20 H •
TRANSI4ISSIYITV TXK • 20000 H2/DAY
TRA'ISHISSIVITV TVY • 20000 H2/DAY
HEAD IN ADJACENT AQUIFER PHI A IS :

K ,
B DASH :
K OASH/B

• 95 M •
PERMEABILITY OF LEAKY AQUIFER •• 0015
THICKNESS OF THE LEAKEY LAYER. ID M.

DASH I.e. THE LEAKY AQUIFER PARAMETER IS :
• .00015 DAYI-II

•••• BOUNDARY CONOITIONS :
.... HEAD 0'1 SIDE 2 IS 90 14.
.... HEAD ON SIDE ~ IS lOO M.
.... TO reST rHe EFFECT OF NO. OF TRIl'lGLES ON CPU TII4E.
•••• SEVERAL RUNS ARE DONE WITH MULTIPLE "AX. '10. OF TRIA'ICLeS
•••• NTF lAKES THE VALUES OF 9,16,32,64,128,256.
OXX 20000.0oUx
OXlVUX 20000.0
OU/UY 0
OXY 20000.00UY
OXy/ux 0
OXY/UY 20000.
Fl .00015.195-UI
SYMMETRIC
SHAPE I
PLOT I
'IX 20
NY 2
XA 0
YA 0
HX 500
HY 500
ARC- I
GBI 0
ARC= -2
FBI 90.0
ARC= 3
Gal 0
ARC= -4
Fill 100.0
VU 0 0 10000.0 0
I ABC 1 2 5 2 3 ~ 3
I 1 -2
ENO.

IOJOO.O
4 5 4 1 5
3 -4

1000. o. 1000. ~OOO. 500.

602

1)

••••
•••• •••• ••••
••••
•••• ••••
••••
••••
•••• ••••
•••• ••••
•••• •••• •••• ••••
OU
OXT
F1
SHAPE
PlOI
D3ESI
NX
NT
XA
U
HX
HY
ARC-
GBI
ARC-
X
Y
FBI
ARC'
GBI
VIT
UBC
I
ADO.

END.

~ 6~ 1
PROBLEM 1-" •
AQUIFER ANALYSIS
CAse NO.: 5
CONFINEO AQUIFER,RADIAl FLOW 10 A WEll WITH NO
B.C. PHI - PHIO AS R --) INFENITY IS 20 •
MODel DATA

AQUIFER RAOUIS
IHICKNESS
TRANS141 SSI fl Tt
IRANSI4I SSI fl Tt
SIORATlfllY

WEll DISCHARGE IS 2000
BOUNDARY CONDITIONS:

• -T xx ~

TH •
S •

143/0 AY

'000 M.
50 M.
~OO 14~/OAY
'00 I4UJAY
.001

HEAD AI TII4E T IS - 0 IS 20 ...

lEAK ACE

ONLY ONE QUARIER IS CONSIDERED WITH
QIT - 500/400 - 1.25

WEll DISCHARGE' 500

ONLY ONE QUARIER IS CONSIDERED
UX
UY
FU"IIX,YI
1
I
I.O/II.O·X.X·Y.YI
20
20
o
o
200
200
1
o
-2
"OOO •• OCOSll.5109~5.SI
~OOO •• DSINll.5109~5.SI
20.0
)

o
o 0
1 2 ~

1

't000.0 0
2 3 "

-2

o 't000.0
) 1 "

3

1000. 1000.

DOUBLE PRECISIJN FUNCTIO"l FUNIX,YI
DOUBLE PRECISION X,Y
FUN=O.
IFIX.lE.IOO •• ANO. Y.lE. 100IFUN=-.DOOI.l.25
RETURN
END

603

I " •••• •••• ••••
•••• •••• •••• •••• ••••
••••
•••• ••••
•••• •••• •••• ••••
•••• •••• ••••

'
oxx
OXlV'UX
oxx,-\Jr
ou
oxrl'Ux
oxy/ur
Cl
UO
NUPOT
SHAPE
PLOT
TF
DT
DTlNV
"X "r XA
U
HX
Hr
ARC­
GBI
ARC­
FBI
ARC­
GBI
ARC­
FBI
VU
lA BC
I
AOD.

5 bit I
PROBLEM 1-5 •
AQUIFER ANALYSIS
CONFINEO AQUIFER. IRA~SIENT STATE. CO~ST. TRA~S~ISSIVITr
B.C. PRESCRIBED HEAO O~ BOV~OARr
MOOEL OAT 4 :

AQUIFER LE~GTH
WIDTH
THICKNESS
TRANSMISSIVI11
TRANSHISSIVI11
S TOR'" I VI T1

BOUNDARr CONDITIONS:

TU
Tn
S

•
•
•
•
•
•

10000
100
20
20000
20000
.001

M •
M •

1'1 •
I'IZ/UAY
MZ/OU

HE4D ON 4LL SIDES AT TIME T • 0 IS 95 M •
I.E. HEAD H • 95 FOR ALL x.V AT T • O •
HElD = 95 AT X = O. T) O •
HElD = 90 AT X = 10000. T) O •
OH-Dr. 0 AT Y = 0 AND r • lOO •

10 TEST THE EFFECT OF ~O. OF TRI4NGLES WITH CPU TIME •
SEVER4L RUNS ARE DONE wiTH MULTIPLE MAX. NO. OF TRIANGLES
IHF TAKES THE VALUES OF 8.16.32.64.128.256.

20000.0.UX .
20000.0
o
20000.0.ur
o
20000 •
• 001
95.
o
I
I
I
FUNTI TI
I.q/OSQR.I I fI

" 2
o
o
2500
50
I
o
-2
90.0
3
o
-" 95.0
o 0
125

1

10000.0
2 3 5

-2

o
3 "

3

10000.0
5 "I 5

-4

lOO.

OOUBLE PRECISION Fu~crlON Fu~T ITI
OOUBLE PRECISIO~ T
IF IT.EQ.OIGOTOIO
If IT.LI.IIGOT020

O. 100. 5000. 50.

604

IFeT.GE.l .AND. T.lT. ZIGOT030
IFIT.GE.2 .AND. T.lT.IOIGOT040
IF ,T.GE.IOIGOT050

10 FUNTs.0005
RE TURN

ZO FUNTz.005
RE TURN

30 FUNTa.05
RETURN

~O FUNTa.5
RE TURN

50 FUNTzlO.

END.

RETURN
END

605

1
•••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• ••••
•••• •••• •••• •••• OU

"

oxx/ux
OXUUY
OU'
oxr'ux
OXY/UY
Cl
UO
NUPOr
SHAPE
PLOr
rf
or
DUIIV
NX
N't
XA
YA
Hit
H't
ARC·
GBl
ARC­
FBI
ARC·
GBl
ARC·
FBI
vx't
IABC
I
AOO.

S 32 1
PROBLEM 1-6 •
AQUIFER ANALYSIS
PHREArlC AQUIFtR, IRANSIENr STArE •
B.C. PRESCRIBED HEAD ON BOUNOARY
MODEL OAf A

AQUifeR LENGTH
WIDIH
IHICKNESS
PERIIEABllI rr K
STORA TI V IT 't

BOUNOARY CONDITIONS:

•
•
•
•

S •

CONS I. IRANS~ISSIVlr.,

10000
100
100
10000
.1

HEAD O~ ALL SIDES AT liME I • 0 IS 100 M •
I.E. HEAD H - 100 FOR ALL x.'t Ar r • O •
HEAD - 100 Ar x • 0, I> O •
HEAD = 50 AI X = 10000, r> o •
OH/DY • 0 Ar Y • 0 AND Y • 1000 •

ro rEST IHE EFFEcr OF NO. OF rRIANGLES WlrH CPU rl~E,
SEVERAL RUNS ARE DONE WIIH MULrIPLE MAX. NO. OF IRIANGLES
NrF rAKES IHE VALUES OF 8,16,32,6~,128,256 •

10000.0.U"UX
10000.0.U
o
10000.ooUoUY
o
10000 •• U
.1
100.
o
I
1
3
.1
I.O/OSQRfI rl

" 2
o
o
2500
50
1
o
-2
50.0
3
o
-It
100.0
o 0
125

I

10000.0
2) 5

-l.

o
3 "

3

10vOO.0
5 " I 5

-4

100.

~OUBLE PRECISIO~ FU~CIIO~ FUNT ell
DOUBLE PRECIS(~N I
IF er.EQ.OIGOrOIO
IF 11.1I.IIGOr020
IFel.GE.1 .AND. I.ll. ZIGoro30

o. 11)0. 'j000. 50.

606

IFIT.GE.Z .ANO. r.lT.10IGOT040
IF IT.GE.10IGOT050

la FU~T·.0005
RETURN

ZO FUNT=.005
RETURN

30 FUNTa.05
RETURN

40 FUNT·.5
RETURN

50 FUNT=lO.

ENO.

RETURN
END

607

1 8
••••
•••• ••••
••••
OU
OH
SHAPE
PlOT
NK
NY
XA
10\
HX
H1
03EST
ARC­
FBl
ARC:
FBl
ARC­
FBl
VU
VU
IABt.
I
ENO.

9 64' 1
PROBLEM I-I. (FIRST ITERATIONI
A FREE SURFACE PROBLe~
THE CLASSICAL DAM PROBLEM
SOLVED ITERATIVELY 81 THe TRIAL FREE SURFACE METHOD

UX
U1
1
1

" 8
o
o
.1666661
.125
1.0/(1.·IX-.66611 •• Z·11-.51 •• ZI
-2
.166661
-3
Y
-8
1
0,0 .66661,0
,.166661,.615
129 239

1 -2

.66661,.16661 .66661,.5 .5,.6Z5 .33334,.15
0,1 .33333,.5
3'9 <,59 569 61918'1819

- 3 It 5 6 1 -8

608

1 8
•••• ••••
•••• ••••
DU
on
SHAPE
PLOT
"X "Y
XA
YA
HX
HY
03EST
ARt­
FBl
ARt:
F81
ARta
FBl
VU
VU
IABt
I
END.

9 b~ 1
PROBLEM 1-1. 'SECO~O ITERATIO~I
A FREE SURf AtE PROBLEM
THE CLASSICAL DAM PROBLE~
SOLVED ITERATIVELY BY THE TRIAL fREE SURFACE METHOD

UX
UY
1
1
la
10
o
o
.06666661
.1
1.~ll'·'X-.66611··2·IY-.51 •• 21
-2
.166Ml
-3
Y
-8
1
0.0 .66661,0 .6b6.1,.16661 .66661,.5 .5,.67571 .3333~,.B3666
,.166661 •• 9~950 0,1 .33333,.5
129 239 3~9 459 569 619789819

1 -2 - 3 4 5 6 7 -8

609

I H
••••
••••
••••
•••• ou
on
SHAPE
Plor
NX
NY
XA
YA
HX
HY
OlEsr
ARCa
FBI
ARCz
FBI
ARC­
FBI
VU
VU
YU
lA BC
IABC
I
I
END.

IS 120 I
PROBLEK 1-8. CFI~ST IrERArIO~1
A FREE SURfACE PROBlE~
FLOW TOWARDS A WELL I~ PHREArlC AOUIFER
SOLVED IrERATIVELY BY THE rRIAL fREE SURFACE "ErHOO

UX
UY
I
1
ID
ID
o
o
100.0
10.0
1.0/CI.·X.x.CY-20.0100ZI
-2
100
-13 .,
-H
20
0.0 1000 •• Q. 1000 •• 100. 900.,95. 800.,90. 100.,85.
,600.,80. 500.,15. ~Oo.,IO. 300.,65. 200.,60. 100 •• 55.
,0.0,50. 0.0,20. 500.,20.
I 2 IS 2 3 IS 3 ~ IS .. 5 15 5 6 15
,9 10 15 10 11 IS 11 12 IS 12 13 15

6 7 15 1
13 14 15

6

8 15 8
H 1 15

1

q 15

I -2 3 .. 5 8
,9 10 11 12 -\3 -I"

610

1 " •••• •••• ••••
•••• •••• •••• •••• •••• ••••
••••
OXX
OXX/UX
DU
OXYlUY
PLOT
NX
NY
XA
VII
HX
Hr
ARC·
F81
VU
IA8C
I
END.

5 50 1
PROBLEM 7-9 •
A SMALL WAIERSHEO BOU~OEO ON IHREE SIDES 8Y NO FLOW CONDITION
THE UPPER BOUND IS APPRDXI~AIEO BY A HORllONIAl LINE
WITH THE HEAD: ACTUAL HEIGHT OF WATER TABLE
THE REGION ITSELF IS A RECTANGLE OF S.YO SIDES
S • zoo M., y. 100 ~. ANO C-.02

BOUNDARY CONDITIONS:
D~/OX - 0 ON THE TWO VERTICAL SIDES
OH/DY' 0 AT THE GROUNO II~PERHEASLE 8ASE~ENTI •
H • C.X .YO ON THE UPPER BOUND •

UX
1
UI'
1
1
10
5
o
o
ZO
20
-3
0.OZ*X·1DO.0
o 0 200.0
125 235

1 2

200,10D
3 " 5
-3

0,100
" 1 5

"
100,50

611

1
•••• •••• •••• •••• •••• •••• •••• •••• ••••
••••
•••• •••• •••• ••••
DU
OXY
Fl
Cl

3

UO
SHAPE
PLOT
D3ESI
NX
NY
XI.
no
HX
HY
TF
01
DTINV
ARC­
GBI
ARC­
X ,
FBI
ARC­
GBl
VU
IABC
I
ADD.

E~O.

't 6't l'
PROBLEM J-IO •
AQUIFER ANALYSIS

612

CONFINED AQUIFER,IRANSIENI RADIAL FLOW 10 A ~ELL WIIH NO LEAKAGE
B.C. PHI & PHIO AS R --) I~FENIIY IS 100 •
MOOEL DAU :

AQUIFER RADUIS
IHICKNESS
IRANSMISSIVITr
IRANSMISSI VI T1
STORATIVI n

WELL DISCHARGE IS IE6
BOUNDARY CONDITIONS:

TXX
IrY
S

"YOU

•
•
•
•
•

10000 'I •
lOO 11 •
lE, 'I2/0AY
IE5 'IYOAY
.001

HEAD AI TIME T IS • ° IS lOO " •
ONl' ONE QUARTER IS CONSIDERED WIIH WELL DISCHARGE = 250000

100000.0.UX
100000.0.U'
FUNIX,YI
.001
lOO.
1
I
l.onl.OoX.Xo'..,'1
10
10
o

° 'tOO
'tOO
1
.1
I.G/DSQR re TI
1
o
-2
10000.tOCOSll.5J0945tSI
10000 •• DSINI1.5J0945·SI
100.
1

° o 0
12"

I

10000.0 0
2 3 4

-2

o
1 I

3

10000.0
4

5000. 2500.

DOUBLE PRECISIO~ FU~CIIO~ FUNIX,YI
DOUBLE PRECISION X,Y
fUN:tO.
IFIX.LE.IOO •• A~D. r.LE. IOOIFU~=-Z5.
RETURN
E~D

1
•••• •••• ••••
•••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• ••••
oxx
oX'(
fl
Cl

)

UO
SHAPE
PLOT
O)EST
MX
MY
U
YA
HX
HY
TF
aT
OTlMV
ARC­
GBl
ARC'
X
Y
FBI
ARC­
GBl
vX'(
lA BC
I
ADO.

C

END.

"64 1
PROBLEM 1-11 •
AQUifER A~ALrSIS
CONfiNED ~QUlfER,TRA~SIE~T RADI~l FLOW TO ~ WflL
B.C. PHI = PHIO AS R --) INFENITY IS 100 •
MODEL DATA

AQUIFER RAOUIS •
THICKNESS •

10000 11 •
100 M •
IES 112/DAY
IE5 ~2/0AY
.001

WITH LE~KAGE

TRANSMISSIVITr TXX •
TRANSNISSIVITr TYY -
STORATIVIIY S •
LEAKY LArER PARAMETER K
ADJACENT HEAD • 95 ~ •

01. sW'e OA SH •• 1 DAY-I •

WELL DISCHARGE IS lE6 MY:DAY
BOUNDARY CONDITIONS'

HEAD AT TIME T IS - 0 IS 100 M •
ONLY ONE QUARTER IS CONSIDERED WITH

100000.0.UX
100000.oour
FUNIX, YI
.001
100.
1
I
1.\VI1.0·UX·Y.YI
10
10
o
o
500
500
I
.1
1. O/OSQR re TI
1
o
-z
10000 •• 0COSII.510945.SI
10000 •• 0S1NII.5109't50SI
100.
)

o

WELL DISCHARGE· 250000

o 0 10000.0 ;)
2) '0
-2

o
) 1

)

10000.0
'0

5000. 2500.

1 Z "
1

DOUBLE PRECISION FUNCTIO~ fUNIX,Y,UI
DOUBLE PRECISI;)N X,y,U

613

THE LEAKY LAYER PA~A~ErER IS .1, THE AOJACE~r ADUIFER HEAO -lOO
FUN=.loIU-9S. I
IF'X.lE.IOO • • 4~O. Y.LE. lOOJFU~.~UN-IOO.

RErURN
END

1 1>1
••••
••••
•••• •••• •••• •••• •••• •••• ••••
••••
••••
OXX
OXY
F1
PLOT
toIX
toIY
lA
U
HX
HY
03EST
ARC"
GBl
ARC"
GBl
ARC"
GBl
ARC ..
GBl
ARC"
GBl
ARC"
GBl
ARC"
GBl
ARC"
GBl
ARC"
GBl
ARC"
GBl
ARC:
GBl
ARC-
FBl
ARC=
FBl
ARC=
FB1
ARC=
FBl
ARC=
Fill
ARC=
FBI

44 250 2
PROBLEM 1-12 •
A"'ISOI~OPIC AQ~IFER A~ALYSIS
COtolFINED AQUIFER, SIEAOY STATE
B.C. PRESCRleED HEAu O~ PA~f OF 80U~OARY

AND NO FLO. ACROSS THE REST OF ~OUNOARY

MODEL DArA
AQUIFER TOPOLOGY AS I~ IHE TEXT ANn PROGRA~ •

THICKNESS • SO ~ •
TRA"'S~ISSI~ITY IS ACCORDING TO ZONE IX,Y' •

BOUNDARY CDNDITIO~S AS IN THE TEXT AND PROCRAM,
A WELL IS LOCATED Al NODE 44 WITH 0 • 2~OO ~3/DA1 •

TRANSXI X,VloUX
TRANSrlx,rlour
WElLl X, Y'
1
13
9

° o
4000
'tOOO
1.O/ll.o+x.x·r."
1 '
o
z
o
3
o

" o
5
o
t-
o
1
o
8
o
lit
o
15
o
11>
o
-9
60.28-.070CY-12v00.0'O.QOl
-10
I>O+2.50IX-44000,o.OOl
-11
10-13.-8.olr-l~u00,.,OOl

-12
51·.5*IX-4800ul •• GOI
-13
59-.5~(Y-Z4vOO'~.0Gl
-11
l+.05*IY-l~OOO".GOI

614

ARC­
FBI
ARC­
FBI
ARC'
FBI
ARC­
FBI
ARC·
FBI
ARC­
FBI
VU
VU
VU
VXY
VU
VU
VU
VU
VU
VU
IABC
IABt
lABt
IABt
IABt
IABt
I.ABt
IABt
lAst
lAst
IABt
IABt
IABt
I
I
I
I
I
I
I
I
I
I
I
I
I
AOO.

-18
2.8-BoIX-~000IO.001
-19
o
-20
o
-21
o
-22
.50U.00l
-23
1.5'10.001

~OOO.O 12000,0 12000,~000 16000,4000
,20000,6000 20000,12000 ~0000,12000 44000,12000

16000,8000

,44000,11>000 4dOOO,II>OOO ~8000,24000 52000 24000
,52000,32UOO 44000,320JO 44000,36000 16000,36000 12000,36000
,12000,32000 4000.32000 4000,24000 0000.2~000 0000.12000
.0000,4000 4000,4000 8000,~000 8000.12000 36000.16000
,40000,16000 31>000,200JO 32000,20000 20000,20000
,12000.20000 8000.24000 8000,28000 12000.28000
,20000.24000 32000.24000 32000,28000 40000,26000
,40000.32000 20000,32000 16000,32000 8000,16000

01 02 26 02 03 26 25 01 26 24 25 21
,26 03 21 03 04 27 04 05 21 05 06 21
,06 01 21 23 2l ~4 21 01 44 22 23 44
,H2144 2134)5 202135 192035
,36 35 33 35 34 33 34 44 33 44 01 32
.33 32 H 42 33 31 4Z 43 H 43 36 33
.18 19 4t3 17 la 43 11 43 42 16 17 42
.15 16 41 40 41 42 15 41 40 14 15 40
,38 39 U H 38 42 31 32 36 32 H 3a
,13 14 40 36 31 40 31 32 01 H 01 28
.12 13 "0 11 12 40 30 ~O 31 40 30 29
.10 11 '00 26 30 31 28 2'1 30 08 2'1 28
,09 10 29

, ,
• ,
,

-01
o
6
o
o
o

• -11
• 15 , 0
, -13
• -12
, -10
, -09

.02
3
o
o
o
o

11>
C
o
o

-11
o

-23
4
o

-19
o

·0
o
o
o
o
o
o

OOUBLE PRECISION FU~CTIO~ wELLIX,YI
OOUBLE PRECISION X,Y
WELL·O.OO
IflX.GE.1900 .AND. X.LE.B100 .A~O.

1 Y.GE.15900 .A~D. Y.LE.I~IOO IWELlz-.Z4
RETURN
ENO
OOUBLE PRECISIUN FU~CTI0~ T~A~SXIX",
OOUBLE PRECISION X,Y
REAL Iflll
INTEGER 1((

-22
5

-21
-18

o
o

11>
14
o
o
o
o

25 26 21
23 2~ 21
21 22 44
35 36 19
33 44 32
43 1'1 36
11> 42 41
39 40 42
39 38 40
01 08 28
40 29 10
08 09 29

'00
-21
-20

o
o
o
o
o
o
1
o
8

DArA rr~~2.~3.11Z.3tl~S.7~.7~4.~4.~9~.~~.t~.tZ,120.9~

615

C

C

c

C

c

c

c

END.

• •
• •

• • • •

• • • • • • • •

• • • •

• • •
• • •
..

KK=IIONEIX,YI
IRANH=IIIKKI
RElURN
END
OOUBLE PRECISION FU~CrION rRANSYIX,YI
DOUBLE PRECISION X,Y
REAL 11111
INIEGER KK
DAIA IV H28 .8,1123.,1851.6,1646.4,2906 .8,b91.2,1209.b1
KK=1l0NEIX,YI
rRANSV= rrl KKI
RErURN
ENO
INIEGER fUNCIION IZONEIU,VI
OOUBLE PRECISION U,V
REAL X,V
X AND rARE rHE COOROINArES IN KM.
X=.OOIOU
Y=.OOIOV

IFIIX.GE.lo .AND. X.LE.IZ .ANO. Y.GE.O .4NO • Y.LE.H
• OR.

1 X.GE.O .ANO. X.LE.S .ANO. v.GE.4 .4J.{0. Y.LE.121I1l0NE-l

Ifll X.GE.8 .ANO. X.LE.16 .ANO. V.GE.,. .A~D • Y.LE.lll
• OR.

IX.GE.16 .AND. X.LE.lO .ANO. ".GE.S • "'iD. V.LE.llIIIZONE-Z

IFII X.GE. 20.AND • x.LE.3l ... ",0. V.GE.ll .AND. Y.LE.2itl
• OR.

I X.GE.3Z .ANO. X.lE.36 .AND. v.GE.ll .ANO. Y.LE.lOI
.OR.

1 X.GE.36 .AND. X.LE.itO .AND. v.GE.ll .ANO. Y.LE.lbIIIZONE-)

IFIIX.GE. 40.ANO. X.LE.lolo .AND. Y.GE.ll .ANO. Y.lE.lb!
.OR.

I X.GE 036 .ANO. X.lE.lo8 .ANO. v.GE.16 .ANO. Y.lE.lO!
.OR.

IX.GE.3l • ANO. X.lE.lo8 .AND. Y.GE.?O .ANO • Y.LE.lit!
.OR.

IX.GE.3Z .AND. X.LE.52 .ANO. Y.GE.l4 .AND. Y.LE.l81
.OR.

1 X.GE.lo0 .AND. X.lE.52 ."NO. r.GE.l8 .'NO. Y.LE.H!ltZONE·lo

IFII X.GE. lO.ANO. X.lE.3l .ANO. Y.GE.lit • 0 • Y.LE.lS!
• OR.

1 X.GE.20 .""40. X.LE.itO .ANO. Y.GE.l6 .4 ... 0. Y.lE.321
.OR.

IX.GE,lb .A.ND. X.lE.44 • .6.NO. r.GE.lZ .A.~O. r.lE.3611IZ0NE-S

.OR.
I X.GE.06 .AND. X.lE.12 .A'lO. 't'.GE.Z8 .A..,'), r.lE.HI

.OR.
IX.GE.12 .AND. X.LE.za .A.NO. r.GE.lO • A~O_. Y.lE.3ll

.OR.
ex..GE.IZ .AND. X.LE.lb .A.Nn, f.GE.'32 • U~O. r.Lf.36111Z0NE·6

IF((X.Gi:::. OO.A~D. x.LE.za .,~o. V.';E.IZ .I\~D • r.LE.ZO'
• OR •

IX.GE.OO • AND. X.lE.IZ .A.~O • r.GE.le .A.~I) • r.LE. l41
.OR •

• 1~.GE.oa .AND. X.lE.IZ .ANO. Y.GE.24 .AND. r.lE.la"IZONE·1
RETURN
ENO

616

, , , ;

:-~---.

