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ABSTRACT 

In contrast to composites and woven fabrics, nonwoven materials have a unique web 

structure, which is composed of randomly oriented fibres bonded in a pattern by 

mechanical, thermal or chemical techniques. The type of nonwovens studied in this 

research is a thermally bonded one with polymer-based bicomponent fibres. Such 

fibres have a core/sheath structure with outer layer (sheath) having a lower melting 

temperature than that of the core. In thermal bonding of such fibres, as the hot 

calender with an engraved pattern contacts the fibrous web, bond points are formed 

thanks to melting of the sheath material. Molten sheath material acts as an adhesive 

while core parts of the fibres remain fully intact in the bond points. On the other 

hand, web regions, which are not in contact with the hot engraved pattern, remain 

unaffected and form the fibre matrix that acts as a link between bond points. With 

two distinct regions, namely, bond points and fibre matrix, with different structures, 

nonwovens exhibit a unique deformation behaviour. This research aims to analyse 

the complex mechanical behaviour of thermally bonded bicomponent fibre 

nonwoven materials using a combination of experimental and numerical methods. 

A novel approach is introduced in the thesis to predict the complex mechanical 

behaviour of thermally bonded bicomponent fibre nonwovens under various three-

dimensional time-dependent loading conditions. Development of the approach starts 

with experimental studies on thermally bonded bicomponent fibre nonwovens to 

achieve a better understating of their complex deformation characteristics. 

Mechanical performance of single bicomponent fibres is investigated with tensile 

and relaxation tests since they are the basic constituents of nonwoven fabrics. The 

fabric microstructure, which is one of the most important factors affecting its 

mechanical behaviour, is examined with scanning electron microscopy and X-ray 

micro computed tomography techniques. At the final part of experimental studies, 
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mechanical response of thermally bonded bicomponent fibre nonwovens is 

characterised with several mechanical tests. 

Numerical studies begin with the assessment of mechanical properties of 

regions of bond points and fibre matrix of nonwovens considering mechanical 

anisotropy in their microstructure due to randomly oriented fibres. In order to 

accomplish this assessment, firstly, mechanical anisotropy of nonwovens is analysed. 

A digital image processing algorithm is developed to compute an orientation 

distribution function of fibres in the material and assess its anisotropy. Furthermore, 

the effect of deformation on mechanical anisotropy of nonwoven fabrics is studied. 

Secondly, assessment of anisotropic viscoelastic-plastic mechanical properties of 

bond points and a fibre matrix is performed. A second algorithm, based on a single-

fibre behaviour and manufacturing parameters of fabric, is developed for this 

assessment. 

After developing two new algorithms to analyse mechanical anisotropy and 

orthotropic viscoelastic-plastic mechanical properties of regions of bond points and 

fibre matrix of nonwovens, thermally bonded bicomponent fibre nonwovens are 

modelled in the finite element software with shell elements having thicknesses 

identical to those of the bond points and fibre matrix. Unlike the existing numerical 

models in the literature, the model developed in the thesis is capable of simulating 

3D loading conditions of thermally bonded nonwovens as well as their time-

dependent anisotropic behaviour. Finally, finite element simulations of several 

nonwovens are compared with respective experimental results to evaluate the 

efficiency of the proposed numerical modelling approach. 

Keywords: Thermally bonded nonwoven; Bicomponent fibre; Orientation 

distribution function; Mechanical anisotropy; Digital image processing; Finite 

element; Viscoelastic-plastic properties 

 



~ III ~ 
 

 

 

 

 

 

 

 

 

 

To my home city, TRABZON, 

 

 

 

 

 

 

 

 

 

 



~ IV ~ 
 

ACKNOWLEDGEMENTS 

I would like to express my gratefulness and appreciation to Prof. Vadim V. 

Silberschmidt for guidance and insight in supervising the research, his invaluable 

help, and kindness. His knowledge, patience and understanding made possible the 

successful completion of the thesis. 

I would like to express my deepest gratitude and appreciation to my supervisor 

Prof. Memiş Acar, who inspired, encouraged and supported me for this study. He 

helped me improve my communication and presentation skills. 

I would like thank my supervisor, Prof. Behnam Pourdeyhimi, for consistent 

guidance, encouragement and support at all levels from the other side of the Atlantic. 

Many thanks to the members of Mechanics of Advanced Materials Research 

Group at Loughborough University for their great support and invaluable friendship. 

Special thanks to the most skilled technician, Mr. Andy Sandaver, for his unique 

friendship and assistance in experiments. 

Support of Nonwovens Cooperative Research Center of North Carolina State 

University, USA is appreciated. I would like to thank my industrial advisors, Mr. 

Carl Wust from Fibervisions Corp. and Mr. Ray Volpe from Ahlstrom Corp., for 

their support and feedbacks during the research.  

My best wishes to Loughborough and Leicester Turkish communities for their 

strong fellowship and enthusiasm. 

Finally, I would like to appreciate my parents, Hasan Fahri & Aynur Demirci, 

for their patience, love, encouragement and unique support during my studies. To my 

brother, Erman, for his patience and endless support. You are loved deeply. I would 

like to thank my wife, Fatma, for her precious support, kindness, and being in my life 

with her endless love.  



~ V ~ 
 

PUBLICATIONS & AWARDS 

Journals 

Demirci, E., Acar, M., Pourdeyhimi, B., Silberschmidt, V.V. (2011), “Finite 

element modelling of thermally bonded bicomponent fibre nonwovens: Tensile 

behaviour”, Computational Materials Science, 50 (4), 1286-1291. 
 

Demirci, E., Acar, M., Pourdeyhimi, B., Silberschmidt, V.V., “Computation of 

mechanical anisotropy in thermally bonded bicomponent fibre nonwovens”, 

Computational Materials Science (2011),  

http://dx.doi.org/10.1016/j.commatsci.2011.01.033 

 
 

Conferences 

Demirci, E., Acar, M., Pourdeyhimi, B., Silberschmidt, V.V., “Modeling the 

Mechanical Behavior of Thermally Bonded Bicomponent Fiber Nonwoven 

Materials”, Semiannual International Advisory Board Meetings, Nonwovens 

Cooperative Research Center, NC State University, Raleigh, NC State, USA, 2007-

2010. 
 

Demirci, E., Acar, M., Pourdeyhimi, B., Silberschmidt, V.V., “Numerical 

Modelling of Thermally Bonded Bicomponent Fibre Nonwovens”, 8
th

 World 

Congress on Computational Mechanics (WCCM8), Venice, ITALY, 30 June - 5 July 

2008. [ISBN: 978-84-96736-55-9] 
 

Demirci, E., Acar, M., Pourdeyhimi, B., Silberschmidt, V.V., “Finite Element 

Modelling of Thermally Bonded Bicomponent Fibre Nonwovens for Elastic-Plastic 

Response”, 19
th International Workshop on Computational Mechanics of Materials 

http://dx.doi.org/10.1016/j.commatsci.2011.01.033


~ VI ~ 
 

(IWCMM19), Constanta, ROMANIA, 1-4 September 2009. [ISBN: 978-973-614-

503-2] 
 

Demirci, E., Acar, M., Pourdeyhimi, B., Silberschmidt, V.V., “Anisotropic 

Elastic-Plastic Mechanical Properties of Thermally Bonded Bicomponent Fibre 

Nonwovens”, ASME 2010 10
th

 Biennial Conference on Engineering Systems Design 

and Analysis (ESDA 2010), Istanbul, TURKEY, 12-14 July 2010. [ISBN: 978-0-

7918-4918-7] doi: 10.1115/ESDA2010-24664 

 

Demirci, E., Acar, M., Pourdeyhimi, B., Silberschmidt, V.V., “Finite Element 

Modelling of Thermally Bonded Bicomponent Fibre Nonwovens: Viscoelastic 

Behaviour”, 20
th International Workshop on Computational Mechanics of Materials 

(IWCMM20), Loughborough, UNITED KINGDOM, 8-10 September 2010. 
 

Demirci, E., Acar, M., Pourdeyhimi, B., Silberschmidt, V.V., “Assessment of 

Anisotropic Viscoelastic-Plastic Mechanical Properties of Thermally Bonded 

Bicomponent Fibre Nonwovens”, Innovative Nonwovens Conference 2010 (2010 

NET INC.), Raleigh, North Carolina, USA, 10-12 November 2010. 

 
 

Awards 

 East Midlands Engineering and Science Professionals (EMESP), Masters Prize 

Winner (2009), Loughborough University, UK. 

 Nonwovens Cooperative Research Center (NCRC), Industrial Advisors Board, 

Best Paper Award (November, 2009), North Carolina State University, USA.  

 



~ VII ~ 
 

CONTENTS 

ABSTRACT ................................................................................................................. I 

ACKNOWLEDGEMENTS ..................................................................................... IV 

PUBLICATIONS & AWARDS ............................................................................... V 

CONTENTS ............................................................................................................ VII 

LIST OF FIGURES ............................................................................................... XII 

LIST OF TABLES ................................................................................................ XXI 

1. INTRODUCTION .............................................................................................. 1 

1.1. Motivation ..................................................................................................... 3 

1.2. Aims and Objectives ..................................................................................... 5 

1.3. Methodology ................................................................................................. 6 

1.4. Outline ........................................................................................................... 8 

2. INTRODUCTION TO NONWOVEN MATERIALS ................................... 10 

2.1. Application Areas ........................................................................................ 11 

2.2. Production Stages of Nonwoven Fabrics .................................................... 13 

2.2.1. Web Forming ....................................................................................... 14 

2.2.2. Web Manipulation ................................................................................ 15 

2.2.3. Bonding ................................................................................................ 15 

2.2.4. Finishing ............................................................................................... 16 

2.3. Raw Materials .............................................................................................. 18 

2.4. Properties of Nonwovens ............................................................................ 19 

2.4.1. Geometrical properties ......................................................................... 19 



~ VIII ~ 
 

2.4.2. Mechanical properties .......................................................................... 20 

2.5. Thermally Bonded Bicomponent Fibre Nonwoven Materials .................... 21 

2.6. Summary ..................................................................................................... 28 

3. MECHANICS OF NONWOVEN FABRICS ................................................ 29 

3.1. Characterisation of Nonwoven Fabrics ....................................................... 30 

3.1.1. Mechanical Properties of Fibres........................................................... 31 

3.1.2. Orientation Distribution of Fibres ........................................................ 32 

3.1.3. Physical Properties of Nonwoven Fabrics ........................................... 37 

3.2. Mechanical Behaviour of Nonwovens ........................................................ 38 

3.3. Summary ..................................................................................................... 43 

4. MODELLING OF MECHANICAL BEHAVIOUR OF MATERIALS ..... 44 

4.1. Basics of Mechanical Properties ................................................................. 45 

4.1.1. Material Symmetry and Corresponding Tensor Structures .................. 45 

4.1.2. Scale Concept in Mechanics ................................................................ 49 

4.2. Modelling of Plastic Behaviour ................................................................... 51 

4.2.1. Yield Criterion ..................................................................................... 51 

4.2.2. Flow Rule ............................................................................................. 55 

4.2.3. Strain Hardening .................................................................................. 57 

4.2.4. Extensions to Anisotropy ..................................................................... 58 

4.3. Modelling of Viscous Behaviour................................................................. 62 

4.4. Review of Finite Element Method .............................................................. 66 

4.4.1. Basic Procedure of FEM in Solid Mechanics ...................................... 66 

4.4.2. Finite Element Approach for Large Plastic Deformation .................... 67 

4.4.3. Types of Formulation Regarding the Coordinate Frame ..................... 68 

4.4.4. Solution Methods ................................................................................. 72 



~ IX ~ 
 

4.4.5. Convergence Controls .......................................................................... 74 

4.5. Existing Finite Element Models for Nonwoven Materials .......................... 76 

4.6. Summary ..................................................................................................... 81 

5. MECHANICAL BEHAVIOUR OF THERMALLY BONDED 

BICOMPONENT FIBRE NONWOVENS: EXPERIMENTAL STUDIES ....... 83 

5.1. Mechanical Behaviour of Bicomponent Fibres ........................................... 84 

5.1.1. Simple Tension Tests ........................................................................... 88 

5.1.2. Cyclic Loading Tests............................................................................ 92 

5.1.3. Relaxation Tests ................................................................................... 95 

5.2. Microstructure of Thermally Bonded Bicomponent Fibre Nonwovens ...... 97 

5.2.1. Examination with Scanning Electron Microscopy ............................... 98 

5.2.2. Examination with X-Ray Micro Computed Tomography ................. 101 

5.3. Mechanical Behaviour of Thermally Bonded Bicomponent Fibre 

Nonwovens ........................................................................................................... 104 

5.3.1. Simple Tension Tests ......................................................................... 105 

5.3.2. Compression Tests in Thickness Direction ........................................ 110 

5.3.3. Cyclic Loading Tests.......................................................................... 112 

5.4. Effect of Calendering Temperature on Mechanical Performance of 

Nonwovens ........................................................................................................... 114 

5.5. Conclusions ............................................................................................... 118 

6. ASSESSMENT OF MECHANICAL PROPERTIES OF THERMALLY 

BONDED NONWOVENS ..................................................................................... 119 

6.1. Analysis of Anisotropy in Thermally Bonded Nonwoven Fabrics ........... 120 

6.1.1. Orientation Distribution Function ...................................................... 121 

6.1.2. Anisotropic Parameters ...................................................................... 128 

6.2. Analysis of Orthotropic Mechanical Properties ........................................ 132 



~ X ~ 
 

6.2.1. Elastic Properties ................................................................................ 135 

6.2.2. Plastic Properties ................................................................................ 138 

6.2.3. Viscous Properties .............................................................................. 140 

6.3. Conclusions ............................................................................................... 143 

7. FINITE ELEMENT SIMULATIONS OF THERMALLY BONDED 

BICOMPONENT FIBRE NONWOVENS .......................................................... 144 

7.1. Models ....................................................................................................... 145 

7.1.1. Models A and B ................................................................................. 147 

7.1.2. Model C .............................................................................................. 149 

7.1.3. Model D ............................................................................................. 151 

7.2. Microstructure and Manufacturing Parameters ......................................... 154 

7.2.1. Models A and D ................................................................................. 155 

7.2.2. Model B .............................................................................................. 158 

7.2.3. Model C .............................................................................................. 160 

7.3. Assessment of Mechanical Properties ....................................................... 162 

7.3.1. Models A and D ................................................................................. 163 

7.3.2. Model B .............................................................................................. 165 

7.3.3. Model C .............................................................................................. 167 

7.4. Boundary Conditions ................................................................................. 169 

7.4.1. Models A, B and C ............................................................................. 169 

7.4.2. Model D ............................................................................................. 170 

7.5. Results and Experimental Verification ...................................................... 172 

7.5.1. Model A ............................................................................................. 172 

7.5.2. Model B .............................................................................................. 175 

7.5.3. Model C .............................................................................................. 177 



~ XI ~ 
 

7.5.4. Model D ............................................................................................. 180 

7.6. Conclusions ............................................................................................... 183 

 

8. CONCLUSIONS ............................................................................................ 186 

8.1. Outcomes ................................................................................................... 188 

8.2. Future Work .............................................................................................. 189 

REFERENCES ....................................................................................................... 192 

 



~ XII ~ 
 

LIST OF FIGURES 

Figure 1.1. SEM image of thermally bonded mono-component fibre nonwoven....... 2 

Figure 1.2. Magnified SEM image of bond point in Figure 1.1 .................................. 3 

Figure 1.3. Research methodology for developing 3D finite element model of 

thermally bonded bicomponent fibre nonwovens (Red and black boxes designate 

numerical and experimental studies, respectively.) ..................................................... 8 

Figure 2.1. Nonwoven parts in the design of an automobile (Fibertex A/S, 2008) .. 13 

Figure 2.2. Nonwoven production facility (Hietel, 2006) ......................................... 14 

Figure 2.3. Simulation of web formation from individual fibres (Hietel, 2006) ....... 14 

Figure 2.4. SEM image of polypropylene fibres before bonding (Wei et al., 2007) 15 

Figure 2.5. Bond pattern of thermally bonded nonwoven material .......................... 16 

Figure 2.6. Schematic diagram of nonwoven production (spunbond) (Fedorova, 

2006) .......................................................................................................................... 18 

Figure 2.7. Load-extension graphs for unstabilised and stabilised polyester 

(Albrecht et  al.,  2003) .............................................................................................. 20 

Figure 2.8. (a) Deformed fibres at the edge of a mechanical bond point. (b) 

Deformed single fibre in a mechanical bond point (Chidambaram et al., 2000). ...... 22 

Figure 2.9. Several types of bicomponent fibre cross-sections (different colours 

represent different materials) ..................................................................................... 22 

Figure 2.10. Cross-section of core/sheath bicomponent fibre ................................... 23 

Figure 2.11. Bond points of bicomponent fibre nonwoven (a) and mono-component 

fibre nonwoven (b) ..................................................................................................... 23 

Figure 2.12. Schematic diagram of bicomponent spunbond process with belt 

collector (Fedorova, 2006) ......................................................................................... 24 

Figure 2.13. Hot calendering process of thermally bobded nonwovens ................... 25 

Figure 2.14. Schematic of through-air bonding process (Gao and Huang, 2004)..... 26 



~ XIII ~ 
 

Figure 2.15. Effect of bonding temperature on stress-strain behaviour of nonwoven 

fabrics (Kim et  al., 2002) .......................................................................................... 27 

Figure 2.16. Effect of heat treatment time on shrinkage of PET and PP/PET webs at 

different temperatures (Zhao et al., 2003) ................................................................. 27 

Figure 3.1. Bond points and fibre group distribution (Limem and Warner, 2005) ... 32 

Figure 3.2. Typical ODF of nonwoven fabric (Kim et al., 2000) ............................. 33 

Figure 3.3. Device for characterizing structural changes in nonwoven materials 

during tensile tests (Kim et al., 2000) ........................................................................ 33 

Figure 3.4. SEM image of web matrix of thermally bonded nonwoven fabric which 

can be used for ODF detection ................................................................................... 34 

Figure 3.5. SEM image of nonwoven (a) and FFT spectrum of this image (b) 

(Ghassemieh et  al.,  2002a) ....................................................................................... 35 

Figure 3.6. Binarized image of nonwoven fabric (a) and Hough space of this image 

(b) (Ghassemieh et al., 2002a) ................................................................................... 37 

Figure 3.7. MD and CD with respect to bond pattern and geometry (Kim, 2004b) . 38 

Figure 3.8. Angular mechanical properties and failure behaviours of thermally 

bonded nonwovens; 0° and 90° represent MD and CD, respectively (Michielsen et 

al., 2006) .................................................................................................................... 39 

Figure 3.9. Secant modulus of nonwovens with 15% and 40% bond area ratio for 

varying loading directions; 0° and 90° represent MD and CD, respectively (Kim, 

2004b) ........................................................................................................................ 40 

Figure 3.10. Images and deformation mechanisms of nonwoven fabric after 50% 

elongation in CD (a) and MD (b) (Kim et al., 2000) ................................................. 41 

Figure 3.11. Schematics of variation in fibre curl in typical fibrous web (Rawal, 

2006) .......................................................................................................................... 42 

Figure 3.12. Rupture images of nonwovens for various tensile directions (Kim, 

2004b) ........................................................................................................................ 43 

Figure 4.1. Principal directions in orthotropic material model ................................. 47 

Figure 4.2. Mechanical behaviour of a material........................................................ 52 

Figure 4.3. Comparison of Tresca and von Mises yield criteria in plane stress 

condition ..................................................................................................................... 55 



~ XIV ~ 
 

Figure 4.4. Demonstration of normality rule in plane-stress conditions for von Mises 

yield function ............................................................................................................. 57 

Figure 4.5. Axes of anisotropy in a cold-rolled sheet ............................................... 59 

Figure 4.6. Comparison of normalized yield loci of isotropic (von Mises) and 

anisotropic (Hill) yield functions ............................................................................... 61 

Figure 4.7. Stress-strain curves of purely elastic (a) and viscoelastic (b) materials 

(The red area represents the amount of energy lost in a loading-unloading cycle.) .. 62 

Figure 4.8.  Creep strain (  ) vs. time (uniaxial test at constant stress and 

temperature) ............................................................................................................... 63 

Figure 4.9. Relaxation curve (uniaxial test at constant strain and temperature) ....... 63 

Figure 4.10. Perfectly elastic (a) and viscous (b) elements (E-modulus of elasticity, 

Viscosity of the dashpot) ....................................................................................... 63 

Figure 4.11. Maxwell model ..................................................................................... 64 

Figure 4.12. Kelvin-Voigt model .............................................................................. 65 

Figure 4.13. Generalized Maxwell model (Kaliske et al., 2005) .............................. 65 

Figure 4.14. Convergence of Newton-Raphson method (Tekkaya, 2003) ................ 74 

Figure 4.15. FE model of adhesively point-bonded spunbond nonwovens 

(Limem and Warner, 2005) ........................................................................................ 76 

Figure 4.16. Equivalent stress-strain behavior of PP filaments in 

tension/compression (Limem and Warner, 2005) ...................................................... 77 

Figure 4.17. Base cell with bonding points and boundary (Mueller and Kochmann, 

2004) .......................................................................................................................... 78 

Figure 4.18. FE model of thermobonded nonwoven with square bond points 

(Mueller and Kochmann, 2004) ................................................................................. 79 

Figure 4.19. Models containing 50 lines (a) and 150 lines (b) (Kim and 

Pourdeyhimi, 2001) .................................................................................................... 80 

Figure 4.20. Model and experimental unloading behaviour of paper in CD 

(Ramasubramanian and Wang, 2007) ........................................................................ 81 

Figure 5.1. Structure of bicomponent fibre ............................................................... 84 

Figure 5.2. Unbonded region of thermally bonded nonwoven fabric ....................... 86 



~ XV ~ 
 

Figure 5.3. Tensile test rigs for bicomponent fibre experiments: Textechno Favimat 

(a) and Instron Micro Tester 5848 (b) ........................................................................ 86 

Figure 5.4. Instron 2530-436 load cell (±5 N) used for single fibre testing.............. 87 

Figure 5.5. Gripping system for single fibre testing ................................................. 88 

Figure 5.6. Simple tension test results for five specimens of PP/PE fibres 

(strain rate:  0.01  s-1) ................................................................................................. 89 

Figure 5.7. Variations in fibre diameter (all units in µm; fibre: PP/PE, planar density: 

50 g/m2) ...................................................................................................................... 90 

Figure 5.8. Mechanical behaviour of PP/PE (a), PA6/PE (b) and PET/PE (c) fibres 

for three deformation rates (scatter: ±6%) ................................................................. 91 

Figure 5.9. Cyclic loading test results for PP/PE fibre (b) and corresponding loading-

unloading control graph (a) ........................................................................................ 93 

Figure 5.10. PET/PE fibre undergoing a load cycle with a hysteresis loop .............. 94 

Figure 5.11. Relaxation behaviour of PP/PE fibre for various applied strains    

(scatter: ±6%) ............................................................................................................. 95 

Figure 5.12. Relaxation rate curves of PP/PE fibre for various applied strains 

(scatter: ±6%) ............................................................................................................. 96 

Figure 5.13. SEM image of thermally bonded nonwoven fabric composed of bond 

points and fibre matrix (fibre: PA6/PE, planar density: 150 g/m2) ............................ 98 

Figure 5.14. Fibre matrix region of thermally bonded nonwoven fabric (fibre: 

PA6/PE, planar density: 50 g/m2) .............................................................................. 99 

Figure 5.15. Fibre matrix region of thermally bonded nonwoven fabric (fibre: 

PA6/PE, planar density: 150 g/m2) ............................................................................ 99 

Figure 5.16. Bond point of thermally bonded nonwoven fabric with the illustration 

of principal directions (fibre: PA6/PE, planar density: 150 g/m2) ........................... 100 

Figure 5.17. X-ray micro computed tomography device, Loughborough University, 

UK ............................................................................................................................ 101 

Figure 5.18. 3D micro CT model of thermally bonded nonwoven fabric (fibre: 

PP/PE, planar density: 150 g/m2) ............................................................................. 102 

Figure 5.19. Through-thickness image of thermally bonded nonwoven fabric 

obtained with X-ray micro CT (fibre: PP/PE, planar density: 150 g/m2) ................ 103 



~ XVI ~ 
 

Figure 5.20. Hounsfield Benchtop Tester with pneumatic grips ............................ 105 

Figure 5.21. Bond pattern of nonwoven fabrics given in Table 5.5 (fibre: PA6/PE, 

planar density: 150 g/m2) ......................................................................................... 106 

Figure 5.22. Simple tension test results for nonwoven fabric tested in MD (a) and in 

CD (b) for three deformation rates (fibre: PP/PE, planar density: 50 g/m2, specimen 

dimensions: 30 mm x 15 mm, scatter: ±10%).......................................................... 107 

Figure 5.23. Nonwoven fabric under tension (fibre: PA6/PE, planar density: 

100 g/m2, initial specimen dimensions: 30 mm x 15 mm) ....................................... 108 

Figure 5.24. Graphical definition of tangential modulus ( tE ) ................................ 109 

Figure 5.25. Tangential modulus curves of nonwoven fabric in MD and CD (fibre: 

PA6/PE, planar density: 150 g/m2) .......................................................................... 109 

Figure 5.26. Mechanical behaviour of thermally bonded nonwoven fabric in MD and 

CD and TD (fibre: PA6/PE, planar density: 150 g/m2, strain rate: 0.01 s-1, scatter: 

±10%) (Absolute magnitude of true strain is used for TD) ..................................... 111 

Figure 5.27. X-ray micro CT image of through-thickness cross section of thermally 

bonded nonwoven (fibre: PA6/PE, planar density: 150 g/m2) ................................. 111 

Figure 5.28. Cyclic loading of nonwoven fabric in MD (strain range: 0-1) (fibre: 

PA6/PE, planar density: 100 g/m2) (b) and corresponding loading-unloading control 

graph (a) ................................................................................................................... 112 

Figure 5.29. Cyclic loading of nonwoven fabric in MD (strain range: 0-0.1) (fibre: 

PA6/PE, planar density: 100 g/m2) .......................................................................... 113 

Figure 5.30. Mechanical behaviour of hot and cold calendered nonwoven fabrics in 

MD (a) and CD (b) (fibre: PA6/PE, planar density: 150 g/m2, strain rate: 0.01 s-1, 

scatter: ±10%) .......................................................................................................... 114 

Figure 5.31. Damage behaviour of nonwoven fabrics manufactured with hot 

calendering (a) and cold calendering (b) (fibre: PA6/PE, planar density: 150 g/m2)

 .................................................................................................................................. 115 

Figure 5.32. Mechanical behaviour of nonwovens manufactured with various 

calendering temperatures in MD (a) and CD (b) (fibre: PP/PE, planar density: 50 

g/m2, scatter: ±10%) ................................................................................................. 116 



~ XVII ~ 
 

Figure 5.33. Normalized flow stress graph of the flow curves in Figure 5.32 (fibre: 

PP/PE, planar density: 50 g/m2) ............................................................................... 117 

Figure 6.1. GUI of Nonwovens Anisotropy V1 for computing ODF and mechanical 

anisotropy of fibrous materials ................................................................................ 121 

Figure 6.2. Image processing steps followed in Nonwovens Anisotropy V1 

algorithm .................................................................................................................. 122 

Figure 6.3. Binary image containing randomly oriented twelve lines (a) and their 

ODF computed with Nonwovens Anisotropy V1 (b) .............................................. 123 

Figure 6.4. SEM image of nonwoven fabric (a) and its ODF computed with 

Nonwovens Anisotropy V1 (b) ................................................................................ 124 

Figure 6.5. SEM image of nonwoven fabric (a) and its ODF computed with 

Nonwovens Anisotropy V1 (b) ................................................................................ 125 

Figure 6.6. X-ray micro CT image of nonwoven fibre matrix region (fibre: PP/PE, 

planar density: 50 g/m2) ........................................................................................... 126 

Figure 6.7. Subdomains of fibre matrix image (Figure 6.6) processed with 

Nonwovens Anisotropy V1 ...................................................................................... 127 

Figure 6.8. ODF of each subdomain in Figure 6.7 .................................................. 128 

Figure 6.9. Resultant ODF obtained from subdomain ODFs in Figure 6.8 ............ 129 

Figure 6.10. Experimental orthotropic ratio of nonwoven fabric (fibre: PP/PE, planar 

density: 50 g/m2) ...................................................................................................... 131 

Figure 6.11. GUI of Nonwovens V4 for analysing orthotropic viscoelastic-plastic 

mechanical properties of thermally bonded bicomponent fibre nonwoven materials

 .................................................................................................................................. 133 

Figure 6.12. Truss elements oriented along principal directions (b) representing 

orthotropic behaviour of randomly oriented ones (a) .............................................. 135 

Figure 6.13. Assessment of flow curves of bond points and fibre matrix of PP/PE 50 

g/m2 nonwoven ........................................................................................................ 139 

Figure 6.14. Tensile (a) and shear (b) relaxation moduli curves of bond points and 

fibre matrix of PP/PE 50 g/m2 nonwoven ................................................................ 142 

Figure 7.1. Form of shell element used in FE modelling of nonwovens 

(MSC.Marc®, 2008r1) .............................................................................................. 147 



~ XVIII ~ 
 

Figure 7.2. Nonwoven tensile test sample (a) and corresponding FE model 

(Models A and B) (b) ............................................................................................... 148 

Figure 7.3. SEM image of thermally bonded bicomponent fibre nonwoven (a) and 

corresponding FE model (Models A and B) (b) ...................................................... 149 

Figure 7.4. FE model of nonwoven tensile test sample (Model C) ......................... 150 

Figure 7.5. SEM image of 35 g/m2 PP/PE 50/50 thermally bonded nonwoven (a) and 

corresponding FE model (Model C) (b) ................................................................... 151 

Figure 7.6. Test setup of Model D (a) and corresponding FE model (b) ................ 152 

Figure 7.7. X-ray micro CT image of fibre matrix region of 50 g/m2 PP/PE 75/25 

thermally boned nonwoven simulated with Models A and D .................................. 154 

Figure 7.8. Experimental flow (strain rate: 0.01 s-1) (a) and relaxation (constant 

strain: 0.1) (b) curves of PP/PE 75/25 fibre ............................................................. 156 

Figure 7.9. SEM image of fibre matrix region of 150 g/m2 PA6/PE 75/25 thermally 

boned nonwoven simulated with Model B............................................................... 157 

Figure 7.10. Experimental flow (strain rate: 0.01 s-1) (a) and relaxation (constant 

strain: 0.1) (b) curves of PA6/PE 75/25 fibre .......................................................... 159 

Figure 7.11. SEM image of fibre matrix region of 35 g/m2 PP/PE 50/50 thermally 

boned nonwoven simulated with Model C............................................................... 160 

Figure 7.12. Experimental flow (strain rate: 0.01 s-1) (a) and relaxation (constant 

strain: 0.1) (b) curves of PP/PE 50/50 fibre ............................................................. 162 

Figure 7.13. Flow curves of 50 g/m2 PP/PE 75/25 nonwoven regions used in 

Models A and D ....................................................................................................... 164 

Figure 7.14. Orthotropic tensile (a) and shear (b) relaxation moduli of 50 g/m2 

PP/PE 75/25 nonwoven regions used in Models A and D ....................................... 164 

Figure 7.15. Flow curves of 150 g/m2 PA6/PE 75/25 nonwoven regions used in 

Model B .................................................................................................................... 166 

Figure 7.16. Orthotropic tensile (a) and shear (b) relaxation moduli of 150 g/m2 

PA6/PE 75/25 nonwoven regions used in Model B ................................................. 166 

Figure 7.17. Flow curves of 35 g/m2 PP/PE 50/50 nonwoven regions used in Model 

C ............................................................................................................................... 168 



~ XIX ~ 
 

Figure 7.18. Orthotropic tensile (a) and shear (b) relaxation moduli of 35 g/m2 

PP/PE 50/50 nonwoven regions used in Model C ................................................... 168 

Figure 7.19. FE model of tensile-test specimen with boundary conditions ............ 170 

Figure 7.20. Components of Model D with boundary conditions ........................... 171 

Figure 7.21. FE results for deformed nonwoven in Model A after 60% extension in 

MD: (a) regions in deformed model; (b) equivalent von Mises stresses (MPa) ...... 173 

Figure 7.22. FE results for deformed nonwoven in Model A after 60% extension in 

CD: (a) regions in deformed model; (b) equivalent von Mises stresses (MPa) ....... 173 

Figure 7.23. Force-extension curves from tensile tests and FE simulations in MD 

and CD for 50 g/m2 PP/PE 75/25 thermally bonded bicomponent fibre nonwovens

 .................................................................................................................................. 174 

Figure 7.24. FE results for deformed nonwoven in Model B after 70% extension in 

MD: (a) regions in deformed model; (b) equivalent von Mises stresses (MPa) ...... 175 

Figure 7.25. FE results for deformed nonwoven in Model B after 70% extension in 

CD: (a) regions in deformed model; (b) equivalent von Mises stresses (MPa) ....... 176 

Figure 7.26. Force-extension curves from tensile tests and FE simulations in MD 

and CD for 150 g/m2 PA6/PE 75/25 thermally bonded bicomponent fibre nonwovens

 .................................................................................................................................. 177 

Figure 7.27. FE results for deformed nonwoven in Model C after 25% extension in 

MD: (a) regions in deformed model; (b) equivalent von Mises stresses (MPa) ...... 178 

Figure 7.28. Force-extension curves from tensile tests and FE simulations in MD 

and CD for 35 g/m2 PP/PE 50/50 thermally bonded bicomponent fibre nonwovens

 .................................................................................................................................. 179 

Figure 7.29. Equivalent von Mises stress distribution (MPa) of deformed nonwoven 

in Model D at first (a), second (b), third (c) and fourth (d) impacts ........................ 180 

Figure 7.30. Metal sphere at initial height (h0) (a), and its maximum heights at first 

(b), second (c), third (d) and fourth (e) bounces (hi: height of the sphere at ith bounce)

 .................................................................................................................................. 181 

Figure 7.31. Height of sphere in experiment and FE simulations performed with 

Model D ................................................................................................................... 182 



~ XX ~ 
 

Figure 7.32. Procedure of FE simulation of thermally bonded bicomponent fibre 

nonwovens in the research ....................................................................................... 185 

Figure 8.1. FE model of thermally bonded nonwovens with interface region for 

simulating damage behaviour .................................................................................. 190 



~ XXI ~ 
 

LIST OF TABLES 

Table 2.1. European-produced nonwoven deliveries by end use (Russell, 2007) ..... 12 

Table 2.2. Overview of nonwoven manufacturing technologies (Russell, 2007) ..... 17 

Table 4.1. Modulus of elasticity values of some metals in macro-scale ................... 50 

Table 4.2. Modulus of elasticity values for several metals at various crystallographic 

orientations at micro-scale (Callister, 2003) .............................................................. 50 

Table 5.1. Properties of polymer materials used for bicomponent fibre production 

(Brinson and Brinson, 2008) ...................................................................................... 85 

Table 5.2. Specifications of bicomponent fibre specimens ....................................... 88 

Table 5.3. Yield strain values of bicomponent fibres (Ward and Sweeney, 2004) ... 94 

Table 5.4. Average fibre matrix thickness of nonwoven fabrics used in this research

 .................................................................................................................................. 102 

Table 5.5. Physical properties of thermally bonded nonwoven fabrics used in this 

research. ................................................................................................................... 106 

Table 6.1. Experimental and theoretical orthotropic ratios of several nonwoven 

fabrics ....................................................................................................................... 132 

Table 6.2. Input parameters for Nonwovens V4 ..................................................... 134 

Table 6.3. Elastic properties of PP/PE 50 g/m2 nonwoven regions analysed with 

Nonwovens V4 ......................................................................................................... 137 

Table 7.1. Distinctive features of four models developed in this research.............. 146 

Table 7.2. Manufacturing parameters of 50 g/m2 PP/PE 75/25 thermally boned 

nonwoven simulated with Models A and D ............................................................. 155 

Table 7.3. Properties of core and sheath materials for manufacturing 50 g/m2 PP/PE 

75/25 thermally boned nonwoven simulated with Models A and D ........................ 156 

Table 7.4. Manufacturing parameters of 150 g/m2 PA6/PE 75/25 thermally boned 

nonwoven simulated with Model B ......................................................................... 158 



~ XXII ~ 
 

Table 7.5. Properties of core and sheath materials for manufacturing 150 g/m2 

PA6/PE 75/25 thermally boned nonwoven simulated with Model B ...................... 159 

Table 7.6. Manufacturing parameters of 35 g/m2 PP/PE 50/50 thermally boned 

nonwoven simulated with Model C ......................................................................... 161 

Table 7.7. Properties of core and sheath materials for manufacturing 35 g/m2 PP/PE 

50/50 thermally boned nonwoven simulated with Model C .................................... 161 

Table 7.8. Orthotropic elastic properties of 50 g/m2 PP/PE 75/25 nonwoven regions 

used in Models A and D ........................................................................................... 163 

Table 7.9. Orthotropic elastic properties of 150 g/m2 PA6/PE 75/25 nonwoven 

regions used in Model B .......................................................................................... 165 

Table 7.10. Orthotropic elastic properties of 35 g/m2 PP/PE 50/50 nonwoven regions 

used in Model C ....................................................................................................... 167 



~ 1 ~ 
 

CHAPTER I 

1. INTRODUCTION 

A nonwoven material could be defined as a manufactured sheet, web or batch of 

directionally or randomly orientated fibres, bonded by mechanical, thermal or 

chemical techniques, excluding paper and products that are woven, knitted or tufted 

(EDANA, 2009a). Nonwoven materials are engineered fabrics, which could be 

disposable or durable. The properties of these materials such as softness, flame 

retardency, absorbency, strength, stretch etc. could be designed according to their 

specific purposes (hygiene, filtering etc.). Thermal bonding of fibres is one of the 

most popular manufacturing processes of nonwoven materials, resulting in a good 

combination of their properties (Dharmadhikary et al., 1995). Hot calendaring is the 

most frequently used method for thermal bonding of nonwovens in the industry. In 

this method, a raised pattern on a calender roll with controlled temperature is 

transferred under pressure onto the preformed web of polymer fibres, passing 

thorough the calender. This process is responsible for forming a more ordered, 
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macroscopically periodic structure of nonwovens (Figure 1.1) from the loosely 

connected web of fibres. While providing the requested bonding, hot calendering 

changes the state of fibres within bonded areas, as a magnified image of a bond point 

in Figure 1.2 vividly demonstrates. These changes result in deterioration of 

mechanical properties of fibres and, subsequently, of thermally bonded nonwoven 

materials. 

 

Figure 1.1. SEM image of thermally bonded mono-component fibre nonwoven 

The mechanisms underlying thermal bonding have been studied by various 

methods (Bhat et al., 2004; Chidambaram et al., 2000), but quantification of their 

effect on mechanical properties of nonwovens is not fully implemented. Still, even 

without such an implementation there is an obvious way to improve the thermal 

bonding process by transition to fibres that will be less affected by the process. One 

of the possible ways is to use core/sheath bicomponent fibres with the sheath 

material having a lower melting temperature than that of the core. Such a transition 

will undoubtedly change the character of bond points and their mechanical behaviour 

thus affecting properties and performance of nonwoven materials made of such 

fibres. 

This research into mechanical properties of thermally bonded bicomponent 

fibre nonwovens aims at a detailed analysis of both bond points and representative 
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elements of nonwoven fabrics obtained by thermal bonding with various process 

parameters and with various bicomponent fibres. 

 

Figure 1.2. Magnified SEM image of bond point in Figure 1.1 

1.1. Motivation 

The issues motivating this research are mainly originating from industry, related to 

design and manufacturing of nonwoven textiles. Manufacturing of nonwovens is one 

of the fastest growing textile sectors with diverse applications. The total amount of 

nonwovens manufactured in the world in 2007 is 5.75 million tonnes, which 

corresponds to $2 billion (EDANA, 2010). Since nonwovens are lightweight 

polymer-based materials, the annual production rate indicates a large market volume 

of nonwovens. Hygiene is the largest field in nonwoven usage, followed by civil 

engineering, construction and building materials (Russell, 2007). According to 

statistics, a significant part of the nonwoven market‟s share serves to mechanical or 

structural purposes, which require knowledge on mechanical properties of these 

materials. Therefore, one of the main requirements of the nonwovens industry is 

good understanding of mechanical properties of these materials as well as 

mechanisms of their deformation at both microscopic and macroscopic levels. 

Additionally, due to numerous trials taking place during product development and 
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optimization stages, design of nonwovens is an expensive and time-consuming 

process. In order to reduce the design cost of nonwovens linked to expensive product 

development and time-consuming product optimization stages, numerical tools could 

be introduced to predict their mechanical properties determined by manufacturing 

parameters. 

The automotive industry has a low portion of the nonwoven consumption 

compared to other fields. Increasing fuel prices and the resulting demand for more 

economical vehicles make weight reduction one of the key factors for the automotive 

industry today. Therefore, usage of these materials in the automotive industry is 

growing every year (Smith, 2004). At this point, optimization of weight with regard 

to mechanical performance becomes a major topic for lightweight production. Such 

optimization requires a parametric numerical model of nonwoven materials for 

efficient lightweight design. 

Structural design of a product containing a nonwoven part (armband, lab cloth, 

etc.), that is loaded during service conditions, requires mechanical properties of the 

used nonwoven material. Moreover, if the design procedure requires numerical 

simulation of that product, parameters defining the mechanical behaviour of the 

nonwoven part should be known to the designer. Mechanical testing is a costly and 

time-consuming process and, usually, mechanical properties of nonwovens depend 

on their manufacturing parameters. A numerical tool, which can adequately 

reproduce the mechanical behaviour of these materials, is necessary to designers 

dealing with nonwoven parts, which will deform in service. 

Very few studies can be found in the literature concerning numerical modelling 

of nonwovens (Limem and Warner, 2005; Mueller and Kochmann, 2004; Kim and 

Pourdeyhimi, 2001). These studies offer only partial solutions for the prediction of a 

complex mechanical response of these materials to loading in 2D. Introducing a 

complete parametric 3D numerical model of nonwovens, which can represent their 

complicated mechanical behaviour, would be a novel contribution to scientific 

knowledge. 
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Finally, this research is performed within the framework of collaboration with 

the North Carolina State University Nonwovens Cooperative Research Center, which 

is a consortium of industry-leading companies. The progression of the research was 

tracked and evaluated semi-annually by the industrial advisors from well-known 

nonwoven manufacturing companies, such as P&G, DuPont, 3M, Ahlstrom, etc. The 

outcome of this research will help these companies to develop and optimize their 

nonwoven products with regard to the manufacturing parameters using numerical 

simulations rather than a trial-and-error method. 

1.2. Aims and Objectives 

With randomly distributed polymer-based fibres and being composed of two discrete 

regions – bond points and a fibre matrix – nonwovens have a unique mechanical 

behaviour, partially similar to, but distinct from, that of solid polymers and woven 

fabrics. Nonwovens studied in this research have a high planar density (>50 g/m2); 

they are manufactured with bicomponent fibres and bonded with thermal techniques. 

This research aims to analyse the complex mechanical behaviour of thermally 

bonded bicomponent fibre nonwoven materials with experimental and numerical 

methods. Numerical methods developed to study the unique mechanical behaviour of 

nonwovens accounting for their microstructure and manufacturing parameters will be 

a novel contribution to the academia and industry. To achieve the aim of the project, 

its major objectives are formulated in the following way: 

1. To investigate the mechanical behaviour of bicomponent fibres by means of 

various mechanical experiments and to establish a link between the 

mechanical behaviour of the nonwoven fabric and that of its bicomponent 

fibres;   

2. To examine the microstructure of nonwoven fabrics with various imaging 

techniques and to study its effects on their mechanical properties; 

3. To investigate the mechanical behaviour of thermally bonded bicomponent 

fibre nonwovens using several types of mechanical tests and to analyse their 

main deformation mechanisms; 
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4. To develop a relation between the microstructure and mechanical anisotropy 

of thermally bonded high-planar-density nonwoven materials; 

5. To analyse the anisotropic viscoelastic-plastic mechanical properties of bond 

points and the fibre matrix, constituting the nonwoven fabric; 

6. To develop a parametric 3D finite element model of thermally bonded 

bicomponent fibre nonwoven materials to simulate their time-dependent 

mechanical response; 

7. To analyse the efficiency of the introduced numerical model using 

experimental verification for several case studies. 

1.3. Methodology 

This research employs a novel approach to simulate a real-life deformation behaviour 

of high planar density (>50 g/m2) thermally bonded bicomponent fibre nonwoven 

materials utilizing mechanical properties of bicomponent fibres and manufacturing 

parameters such as planar density, core/sheath ratio, fibre diameter etc. In order to 

accomplish the project, several experimental and computational procedures described 

below should be followed. 

Initially, the mechanical behaviour of bicomponent fibres will be acquired 

using tensile and relaxation tests. Since bicomponent fibres are the basic constituent 

of nonwoven materials used in this research, a mechanical behaviour of nonwovens 

will be analysed based on that of the fibres. Not only the mechanical behaviour of 

fibres but also their orientations play an important role in anisotropic mechanical 

performance of nonwovens. Each fibre acts as a truss member in tension between 

two bond points and mechanical response of each one depends on the direction of 

applied force with respect to its orientation. Direction dependent response of 

individual fibres leads to an overall mechanical anisotropy in the fabric. Therefore, 

several imaging techniques will be used to examine the microstructure of nonwovens 

composed of bond points and a fibre matrix. The last part of experimental stage aims 

to analyse mechanical performance of thermally bonded nonwovens, since it will be 

simulated with the developed 3D finite element model at the final stage of this study. 



Chapter 1. Introduction 

 

~ 7 ~ 
 

The numerical part will start with developing a relationship between a random 

microstructure of nonwoven materials and their mechanical anisotropy, which refers 

to their direction-dependent mechanical response. Randomness in the microstructure 

will be introduced in terms of an orientation distribution function of fibres 

determined from images of microstructure of the fibre matrix using digital image 

processing techniques. This novel approach will be performed using a specifically 

developed parametric algorithm for analysing mechanical anisotropy of the material. 

After dealing with anisotropy, assessment of anisotropic mechanical properties of 

thermally bonded bicomponent fibre nonwovens will be performed. The nonwoven 

fabric will be treated as an assembly of two regions having distinct mechanical 

properties: fibre matrix and bond points. The fibre matrix is composed of randomly 

oriented core/sheath type fibres acting as load-transfer links between bond points. On 

the other hand, bond points will be treated as a deformable bicomponent composite 

material composed of the sheath material as its matrix and the core material having 

random orientations as reinforcement. An original algorithm will be developed to 

assess anisotropic viscoelastic-plastic material properties of these regions based on 

properties of fibres and manufacturing parameters such as the planar density, 

core/sheath ratio, fibre diameter etc. 

With anisotropic mechanical properties analysed for two regions, the fabric 

will be modelled in finite element software with 3D shell elements with thicknesses 

identical to those of bond points and the fibre matrix. In this final stage, simulations 

of several nonwovens with various manufacturing parameters and bicomponent 

fibres will be simulated using the proposed numerical modelling approach and results 

of these simulations will be verified with several experiments. The methodology for 

developing a 3D finite element model of thermally bonded bicomponent fibre 

nonwovens is also described in a block diagram in Figure 1.3. 



Chapter 1. Introduction 

 

~ 8 ~ 
 

 

Figure 1.3. Research methodology for developing 3D finite element model of thermally 

bonded bicomponent fibre nonwovens (Red and black boxes designate numerical and 

experimental studies, respectively.) 

1.4. Outline 

The present work incorporates seven other chapters, the summary of which is the 

following: 

Chapter 2 provides general background information on nonwovens related to their 

application areas, manufacturing methods and general properties. Detailed 

information about thermally bonded bicomponent fibre nonwovens is presented in 

this chapter as well. 
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Chapter 3 explains microstructural and physical features and underlying 

mechanisms characterizing the deformation behaviour of nonwoven materials. 

Chapter 4 provides a review of the finite element method and equations used to 

model several mechanical behaviour types in this method. Existing numerical models 

developed to simulate mechanical performance of nonwovens are also presented in 

this chapter. 

Chapter 5 presents experimental studies focussing on mechanical performance of 

thermally bonded nonwovens and their bicomponent fibres. Microstructure of 

nonwoven materials studied in this research is examined using several micro-scale 

imaging techniques. 

Chapter 6 explains the assessment of complex mechanical properties of bond points 

and the fibre matrix using manufacturing parameters of the nonwoven material and 

mechanical behaviour of its bicomponent fibres. This chapter also explains a 

numerical method to assess mechanical anisotropy of nonwoven materials using their 

random microstructure. 

Chapter 7 deals with a 3D finite element model developed to simulate a mechanical 

response of thermally bonded bicomponent fibre nonwoven materials. Several 

experiments are simulated with the introduced finite element model in order to 

compare experimental results with the numerical ones. 

Chapter 8 summarizes the outcomes of the research and its contribution to academia 

and industry. This chapter also suggests future studies based on the results of this 

research.  

 



 

~ 10 ~ 
 

CHAPTER II 

2. INTRODUCTION TO NONWOVEN 

MATERIALS 

According to EDANA (The European Disposables and Nonwovens Association), 

which is one of the main authorities in nonwovens in the world, a nonwoven is 

defined as "a manufactured sheet, web or batch of directionally or randomly 

orientated fibres, bonded by friction, and/or cohesion and/or adhesion, excluding 

paper and products which are woven, knitted, tufted, stitch-bonded incorporating 

binding yarns or filaments, or felted by wet-milling, whether or not additionally 

needled" (EDANA, 2009a). Nonwoven fabrics are engineered fabrics, which could 

be disposable or durable. The properties of these materials such as softness, flame 

retardancy, absorbency, strength, stretch, etc. could be designed according to their 

specific purposes (hygiene, filtering, etc.) (INDA, 2009).  
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In this chapter, basic information about nonwoven textiles will be given in 

terms of application areas, production techniques, raw materials, properties and 

thermally bonded bicomponent fibre type nonwoven materials. 

2.1. Application Areas 

Nonwoven fabrics are designed to serve specific purpose-defined functions. For this 

reason, nonwovens provide a large spectrum of products with diverse chemical and 

physical properties. This is reflected in the large variety of industrial, engineering, 

consumer and healthcare products. The most common products made with 

nonwovens according to EDANA (2009b) are: 

 disposable diapers, 

 sanitary napkins and tampons,  

 sterile wraps, caps, gowns, masks and draping used in the medical field, 

 household and personal wipes, 

 laundry aids (fabric dryer-sheets), 

 apparel interlining, 

 carpeting and upholstery fabrics, padding and backing, 

 wall coverings, 

 agricultural coverings and seed strips, 

 automotive headliners and upholstery, 

 filters, 

 envelopes, 

 tags, 

 labels, 

 insulation, 

 house wraps, 

 roofing products, 

 civil engineering fabrics/geotextiles. 
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The structure of the end-use market for nonwoven textiles is shown in Table 2.1 in 

terms of percentage for each purpose. 

Classification  % of total 

Hygiene  33.1 
Building/roofing  12.5 

Wipes, personal care  8.1 

Upholstery/table linen/household  6.8 

Wipes, other  6.7 

Civil Engineering/underground  5.4 

Automotive  3.9 

Liquid filtration  3.7 

Medical/surgical  2.6 

Coating substrates  2.4 

Air/gas filtration  2.4 

Floorcovering  2.3 

Interlinings  2.1 

Shoe leathergoods  1.9 

Garments  0.8 

Others/unidentified  5.3 
   

Table 2.1. European-produced nonwoven deliveries by end use (Russell, 2007) 

Hygiene is the largest field in nonwoven usage, followed by civil engineering, 

construction and building materials. Therefore, it is clear that a considerable part of 

nonwovens are used for mechanical or structural purposes, which require knowledge 

of mechanical properties of these materials. Although automotive industry has a low 

percentage on the nonwoven consumption as compared to other fields, the use of 

these materials in the automotive industry is steadily growing every year (Smith, 

2004). Increasing fuel prices and the resulting demand for more economical vehicles 

make weight reduction one of the key success factors for the automotive industry 

today (Fibertex A/S, 2008). Nonwovens play an important role in the lightweight 
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design of some automotive parts. As an example, nonwoven materials, which are 

used in different parts of an AUDI A2, are shown in Figure 2.1. 

 

 

Figure 2.1. Nonwoven parts in the design of an automobile (Fibertex A/S, 2008) 

2.2. Production Stages of Nonwoven Fabrics 

Knowledge of the manufacturing processes of nonwoven fabrics is necessary in order 

to have a better understanding of the mechanical behaviour of these textile materials. 

Nonwoven fabrics are mainly manufactured with polymer materials. The mechanical 

properties of polymers can change depending on process conditions such as 

production speed, which affects the cooling rate of the polymer. A typical production 

process of nonwoven materials could be subdivided into four main parts: web 

forming, web manipulation, bonding and finishing (Table 2.2). The machine 

assembly, which performs these four manufacturing operations, is shown in Figure 

2.2; their details are discussed below. 
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Figure 2.2. Nonwoven production facility (Hietel, 2006) 

2.2.1. Web Forming 

At this stage the fibres are produced from the molten raw material(s) and deposited 

onto a surface to form the web. The conditions of the fibres at this stage could be 

dry-laid, wet-laid or polymer-laid (Purdy, 1983). The orientation distribution of the 

fibres determining the anisotropy in the material is formed at this stage. A typical 

web formation formed of free-falling fibres on the surface of conveyor is illustrated 

in Figure 2.3. 

 

Figure 2.3. Simulation of web formation from individual fibres (Hietel, 2006) 
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2.2.2. Web Manipulation 

At this stage, the distribution of the web structure is determined to satisfy the 

geometric requirements of the final product.  The web is spread, scrambled, etc. to 

obtain the required geometrical properties for the nonwoven fabric. 

 

Figure 2.4. SEM image of polypropylene fibres before bonding (Wei et al., 2007) 

2.2.3. Bonding 

During the web bonding process fibres are consolidated in order to attain the 

necessary performance parameters. The degree of web bonding depends on fibre 

characteristics, such as fibre geometry, tenacity and shape as well as the density of 

the web to be bonded (Albrecht et al., 2003).  

The fibre web could be bonded using three main processes: mechanical, 

thermal or chemical (Batra, 1998). More than one bonding process could be used in 

some fabric constructions. Mechanical bonding methods include needle punching, 

stitch bonding and hydroentangling. Chemical bonding processes involve applying 

adhesive materials to the web by spraying, printing, foaming techniques. In thermally 

bonding, heat is used together with pressure to soften or melt fibres in order to weld 

each other as shown in Figure 2.5. Generally, heat is applied to the web employing a 
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hot calendar with an engraved pattern or hot air blown through the web. Thermal 

bonding techniques will be explained further in Section 2.5.  

Bonding is the major factor determining the mechanical properties of a 

nonwoven material (Chidambaram et al., 2000). The shape, type and pattern of bond 

points as well as bonding temperature change the mechanical behaviour of the 

material dramatically (Bhat et al., 2004). 

 

Figure 2.5. Bond pattern of thermally bonded nonwoven material 

2.2.4. Finishing 

Finishing is an additional procedure used to functionalise nonwoven fabrics. There is 

no standard finishing routine for nonwovens. Traditionally, finishing is classified as 

wet finishing (washing, dyeing, coating, etc.) and dry finishing (embossing, 

calendaring, etc.). Due to service conditions, nonwovens could be coated for specific 

purposes such as changing electrical properties (Weia et al., 2008).  
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Table 2.2. Overview of nonwoven manufacturing technologies (Russell, 2007) 
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Each manufacturing stage explained above is performed by a dedicated section 

of the machine assembly designed for nonwoven production. A simple sketch 

describing the production of nonwoven fabrics is given in Figure 2.6. The raw 

polymer material is molten and extruded to produce fibres. Then fibres are 

accumulated on the conveyor to obtain the web assembly. Finally, the web assembly 

is manipulated to have a sheet form in a compaction roll and then bonded with a 

calender.  

 

Figure 2.6. Schematic diagram of nonwoven production (spunbond) (Fedorova, 2006) 

2.3. Raw Materials 

Most of the fibres for nonwoven materials are produced from natural polymers, 

synthetic polymers or inorganic materials (Krcma, 1962). According to (Russell, 

2007), the world usage of raw materials for the production of nonwoven fibres is: 

 Polypropylene - 63%, 

 Polyester - 23%, 
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 Viscose rayon - 8%, 

 Acrylic - 2%, 

 Polyamide - 1.5%, 

 Other speciality fibres - 3%. 

Polypropylene is the most frequently used material for the nonwovens due to its low 

density, low glass transition and melting temperatures, chemical stability, good 

mechanical strength and abrasion resistance. 

2.4. Properties of Nonwovens  

According to (Krcma, 1962) the main parameters of nonwoven fabrics, which affect 

the material properties and manufacturing processes, are: 

a) Geometrical properties, 

b) Mechanical properties of fibres, 

c) Physico-chemical properties, 

d) Chemical properties, 

e) Physiological properties. 

Geometrical and mechanical properties of fibres are the essential factors that 

determine mechanical properties of nonwovens. 

2.4.1. Geometrical properties  

To some extent, the structure of the nonwoven determines its mechanical properties. 

The core factors of nonwovens are:  

 Fibre length and cross-section, 

 Distribution of fibres, 

 Surface characteristics, 

 Bond points (shape, type, pattern and bonding temperature). 
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2.4.2. Mechanical properties  

Deformation mechanisms of nonwovens are important factors with regard to the end-

use properties of final products. Many researches (Adanur and Liao, 1999; Kim, 

2004; Rawal, 2006; Michielsen et al., 2006) have been done to study five basic 

aspects of a mechanical behaviour: 

 Deformation characteristics, 

 Tensile strength, 

 Break length, 

 Elongation properties, 

 Elasticity. 

 

Figure 2.7. Load-extension graphs for unstabilised and stabilised polyester 

(Albrecht et  al.,  2003) 

The mechanical properties of polymer materials change during the production 

stages, especially at the web-forming stage (Datla, 2002). Because the mechanical 

properties of the polymers depend on the temperature variation with respect to time, 

the mechanical properties of the raw material are different from those of the material 

in the nonwoven fabric. For instance, during stretching at the web-forming stage, the 

molecules of a fibre are aligned parallel to one another causing tension in the fibres. 
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Because of this tension, the fibres can shrink when heated, if they are not held tight 

at both ends. The stretched, unfixed fibres are called unstabilised fibres. If the 

molecules of the fibre are parallel to one another with an optimum alignment, the 

fibres will not shrink in subsequent processing. Such fibres are referred as stabilised 

fibres. Figure 2.7 demonstrates the difference between the mechanical behaviour of 

stabilised and unstabilised polyester fibres. During the hot calendaring process 

unstabilised fibres will shrink and their mechanical properties will change (Albrecht 

et al., 2003). 

2.5. Thermally Bonded Bicomponent Fibre Nonwoven 

Materials 

The aim of this research is to model the mechanical performance of thermally 

bonded nonwoven fabrics. These types of nonwovens have outstanding properties, 

which we focus on. This section gives brief information about these nonwovens and 

the features specific to them as compared to other nonwovens. Due to such properties 

thermally bonded bicomponent fibre nonwovens are among the most common 

manufactured types of nonwovens in the industry and usually demonstrate higher 

strength properties than other nonwoven types.  

As explained above, nonwoven fabrics are engineered materials to serve 

specific purposes. For structural or mechanical applications such as geotextiles, the 

mechanical properties of the fabric should be superior with respect to the fabrics for 

disposable usage. Especially, bond points play a very important role in determining 

the mechanical behaviour of the material. As explained in Section 2.2.3, one of the 

methods for bonding fibres is mechanical bonding. In the case of mechanical 

bonding, fibres can be damaged (Figure 2.8) at the boundaries of the bond points due 

to punching (Chidambaram et al., 2000). 

In order to overcome the strength loss due to mechanical bonding, thermal 

bonding could be an alternative. In thermal bonding, bond formation is succeeded 

with melting of fibres at bond points, resulting in discontinuous fibres (Datla, 2002). 
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With this respect, bicomponent fibres retaining their continuity in the fabric 

demonstrate superior properties due to increase in strength of nonwovens (Wang et 

al., 2006). 

    
(a)                                                                    (b)  

Figure 2.8. (a) Deformed fibres at the edge of a mechanical bond point. (b) Deformed single 

fibre in a mechanical bond point (Chidambaram et al., 2000). 

The increase in strength of nonwovens is linked to specific microstructure of 

bicomponent fibres. They have domains of two distinct materials, one of which has a 

lower melting point. When the bicomponent fibres are exposed to a temperature 

between the melting temperatures of two constituent materials, the one with the 

lower melting point melts. With the pressure applied, molten parts of the 

neighbouring fibres combine and then solidify when cooled. In this way, the fibres 

are bonded together with continuous un-melted parts. Different types of bicomponent 

fibres could be seen in Figure 2.9. 

 

Figure 2.9. Several types of bicomponent fibre cross-sections (different colours represent 

different materials) 
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Figure 2.10. Cross-section of core/sheath bicomponent fibre 

The most frequently used bicomponent fibre type is the core/sheath type 

(Figure 2.10), which has the core material surrounded by the sheath material with a 

lower melting point (Xina et al., 2008). Compared to mono-component fibre type 

nonwovens, bicomponent fibre nonwovens have superior mechanical properties due 

to continuous and undamaged shape of the core material after the bonding process. 

The images of the bond points of nonwovens formed by mono-component and 

bicomponent fibres are shown in Figure 2.11. 

         
(a)                                                               (b) 

Figure 2.11. Bond points of bicomponent fibre nonwoven (a) and mono-component fibre 

nonwoven (b) 

One of the most common processes to manufacture bicomponent fibre 

nonwovens is the spunbonding process. Spunbonding involves direct conversion of a 

polymer into continuous filaments, integrated with the conversion of filaments into a 

random-laid, bonded nonwoven (Bhat et al., 2002). During the production of 
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bicomponent fibre nonwovens in spunbonding process, five operations take place: 

filament extrusion, drawing, quenching, lay down and bonding (Fedorova, 2006). 

The facility, which performs these operations, consists of the following elements 

(Figure 2.12): a polymer feed, an extruder, a metering pump, a die assembly, a 

filament spinning, a drawing and deposition system, a collecting belt, a bonding zone 

and a winding unit. Each operation affects the structural parameters of a nonwoven 

such as fibre density, fibre diameter, orientation distribution, porosity, etc. For 

instance, to minimize the pore size in a bicomponent fibre nonwoven filter, thermal 

bonding temperature, air velocity and dwell time should be optimized (Wang and 

Gong, 2006). 

 

Figure 2.12. Schematic diagram of bicomponent spunbond process with belt collector 

(Fedorova, 2006) 

There are several techniques to perform thermal bonding of bicomponent fibre 

nonwoven fabrics. Hot calendaring is the most frequently used method for thermal 

bonding in the industry. Thermal bonding is performed on the nonwoven web with a 

temperature-controlled calender using a combined action of heat and pressure. As a 
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result of this, the sheath material melts and fibres are pressed, forming a bond when 

the sheath material solidifies (Figure 2.13). 

 

Figure 2.13. Hot calendering process of thermally bonded nonwovens 

Compared with other types of bonding, thermal bonding brings significant 

advantages (Albrecht et al., 2003): 

 It has high economic efficiency compared to chemical bonding, since thermal 

bonding process uses less binder agents and need less energy.  

 Generally, the used manufacturing systems are cheaper than those for other 

process.  

 The process can be used for a thick web, and the bonding effect is 

controllable.  

 The material is recyclable, which is good for environment, since it is possible 

to use pure-polymer fibres in the process.  

 The fibre properties are controllable, so there are opportunities to produce 

nonwovens with different functions (e.g. flame-retardancy, high bulk and 

resilience, heat-insulation, etc.). 

Another way of thermal bonding is through-air bonding. This process produces 

bulkier products by the overall bonding of a web containing low-melting-temperature 

fibres. The hot air flows through holes in a plenum positioned just above the 

nonwoven. A negative pressure or suction pulls the air through the open conveyor 
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apron that supports the nonwoven as it passes through the oven (Figure 2.14). 

Binders such as crystalline binder fibres, bicomponent binder fibres, and powders are 

necessary to help the bonding. When using crystalline binder fibres or powders, the 

binder melts entirely and forms molten droplets throughout the nonwoven's cross-

section. Bonding occurs at these points upon cooling. In the case of core/sheath 

binder fibres, the sheath is the binder and the core is the carrier fibre (Gao and 

Huang, 2004; Hoyle, 1990). 

 

Figure 2.14. Schematic of through-air bonding process (Gao and Huang, 2004) 

Ultrasonic bonding is another method used to bond bicomponent fibres 

thermally. When ultrasonic vibration is applied to the material, these mechanical 

excitations are converted into thermal energy via friction and melt the sheath 

material. Upon removal from the source of ultrasonic vibration, the softened fibres 

cool, solidifying the bond points (Gao and Huang, 2004). 

The type and parameters of the thermal bonding process are very important for 

mechanical properties of nonwovens due to the effect of temperature on the polymer 

structure. The most important parameter in the thermal bonding is the bonding 

temperature. Although the temperature window is relatively narrow between the 

melting points of the two polymers, the tensile behaviour of the nonwoven is affected 

significantly (Figure 2.15) by any change in the bonding temperature (Michielsen et 

al., 2006). In addition to bonding stage, heat could be applied during finishing 

process as well. 
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Figure 2.15. Effect of bonding temperature on stress-strain behaviour of nonwoven fabrics 

(Kim et  al., 2002) 

Finishing process could be applied to nonwoven fabrics to serve specific 

purposes. One of them is to improve the dimensional stability of 

polypropylene/polyester (PP/PET) fibres by increasing the crystallization rate of PET 

by heat treatment. Due to the heat treatment, fibres shrink (Figure 2.16) and their 

mechanical properties change (Zhao et al., 2003).  According to Figure 2.16, 

inclusion of 25% PP to fibres significantly stabilizes the heat shrinkage to 

approximately 5% under conditions of 150˚ for 9 min. This is due to the fact that the 

crystallization of PP develops faster than that of PET. The shrinkage increases with 

the treatment time and becomes stable after 7 min. 

 

Figure 2.16. Effect of heat treatment time on shrinkage of PET and PP/PET webs at 

different temperatures (Zhao et al., 2003) 
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2.6. Summary 

Brief information about application areas, manufacturing techniques, raw materials 

and general properties of nonwoven fabrics is given in this chapter. Having unique 

properties and significant usage and manufacturing advantages, such as cost-

effectiveness and fast production rate, compared to other types of fabrics, nonwovens 

have wide range of applications. Since nonwovens are engineered materials, 

mechanical properties of these fabrics could be modified depending on the 

application areas. This research focuses on modelling the mechanical performance of 

nonwoven fabrics. The study is closely related to their mechanical and structural 

properties, which will be explained in the next chapter. 
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CHAPTER III 

3. MECHANICS OF NONWOVEN 

FABRICS 

The research field of mechanics of fabrics mainly focuses on mechanics of woven 

fabrics rather than mechanics of nonwovens. The reason is that, due to their higher 

strength properties and recoverability, woven materials are preferred as 

reinforcement in composites and in military applications which are the main fields 

using textiles for mechanical purposes (Backer and Petterson, 1960). Therefore, few 

researches have been done on the mechanics of nonwoven materials.  

The increasing usage of nonwoven textiles (Russell, 2007) requires a better 

understanding on mechanics of these materials. As explained in the previous chapter, 

nonwoven fabrics are frequently used in the civil engineering applications such as 

geotextiles for structural purposes. In order to use nonwoven fabrics in engineering 

design, knowledge on mechanics of these materials is necessary.  
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Based on a through literature survey, this chapter aims to explain mechanics of 

nonwovens with regard to two aspects: characterisation of nonwovens and their 

mechanical behaviour. 

3.1. Characterisation of Nonwoven Fabrics 

Mechanical, physical and chemical properties of nonwoven fabrics, which define 

their suitability for specific applications, depend on the properties of the fibre 

composition and the fabric structure. The fibre composition refers to the materials 

forming fibres and the mechanical behaviour that they exhibit. The fabric structure is 

linked to the bond pattern and geometry, orientation distribution and planar density 

of the fibre web. 

A nonwoven structure is different from other textile structures due to the 

following features (Russell, 2007): 

 Nonwovens are composed of individual fibres or layers of fibrous webs rather 

than yarns. 

 The material is anisotropic in terms of structure and properties because of the 

fibre orientation distribution and bond pattern. 

 Nonwoven materials are non-uniform structures in terms of both weight and 

thickness distributions. 

 The material is highly porous and permeable. 

Additionally, both physical and mechanical properties of nonwovens are 

affected by the web formation, bonding and fabric finishing processes. Although 

chemical properties of the nonwoven materials are important from the manufacturing 

point of view, only physical and mechanical properties of the nonwovens, which are 

related to their deformational behaviour, are going to be utilized for the 

characterisation of nonwoven materials in this study. 
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3.1.1. Mechanical Properties of Fibres 

A thermally bonded nonwoven fabric is composed of two regions: bond points and 

the fibre matrix. Bond points are composed of fibres joined via mechanical, thermal 

or chemical methods. On the other hand, the matrix is the web of fibres connecting 

bond points together. In order to understand the mechanical behaviour of the matrix, 

mechanical properties of the fibres forming the web assembly should be known.  

There are important parameters defining the mechanical behaviour of a fibre: 

the breaking force, tenacity, initial modulus, chord modulus (secant modulus) at 

break, and elongation at break (Gusick et al., 1963). The breaking force is the 

maximum force applied to a fibre to cause its rupture. The elongation is the ratio of 

the extension of a fibre to its length prior to stretching. The tenacity is the breaking 

force divided by the linear density of the fibre. The initial modulus is a measure of 

the resistance of the fibres to extension under an applied force below the fibre yield 

point and defined as the maximum slope of the tangent line to the stress-strain curve 

at the initial stage of deformation. The chord modulus is the ratio of stress to strain at 

any point on the stress-strain curve (Saville, 1999). 

The mechanical properties of a fibre are determined with the use of tensile 

testing. On the other hand, the dimensional stability of polymer fibres could be 

established by determining the molecular orientation of the material. The latter can 

be measured by using an interference microscope equipped with a polarizing filter 

(Barakat, 1971; Hamza et al., 1986). 

Due to the nature of polymer materials, mechanical properties of the nonwoven 

fibres at the raw form, hot calendered and heat treated form are different due to the 

effect of temperature playing an important role on their molecular structure and 

dimensional stability (Michielsen et al., 2006; Zhao et al., 2003). This will be 

considered in determining the mechanical properties of nonwoven fibres in Section 

5.1. 
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3.1.2. Orientation Distribution of Fibres 

The distribution of fibres in a nonwoven media is a major concern of researchers 

dealing with their randomness. This factor affects the relation between a given bond 

and the bonds within its neighbourhood (Figure 3.1). 

 

Figure 3.1. Bond points and fibre group distribution (Limem and Warner, 2005) 

The fibre distribution is inherited from the web formation and bonding 

processes. Orientations of fibre segments can be controlled partially at these 

production stages. Due to shrinkage, fibres tend to curl during any stage requiring 

thermal or chemical processing (Hearle and Ozsanlav, 1979). 

In order to represent randomness of the fibre distribution in a fibrous media 

mathematically, a concept of “distribution function” was introduced in 1952 (Cox, 

1952). Then determination of the orientation distribution function (ODF) became a 

major interest in the field of textiles. 



Chapter 3. Mechanics of Nonwoven Fabrics 

 

~ 33 ~ 
 

An ODF is a histogram defining the angle of fibres with respect to a reference 

direction (Figure 3.2). Detection of the ODF is necessary not only for nonwovens but 

also for woven textiles to detect the weave pattern and identify the structure (Wood, 

1990; Xu, 1996). Nonwoven materials have two principal directions: machine 

direction (MD) and cross direction (CD). MD is the flow direction of the web 

assembly on the conveyor during manufacturing. CD is perpendicular to MD on the 

plane of conveyor, where the web assembly forms the sheet geometry. 

 

Figure 3.2. Typical ODF of nonwoven fabric (Kim et al., 2000) 

 

Figure 3.3. Device for characterizing structural changes in nonwoven materials during 

tensile tests (Kim et al., 2000) 
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The ODF is detected via optical methods combined with image processing 

techniques. The apparatus in Figure 3.3 uses a CCD camera to detect the ODF under 

deformation. Not only camera images, but also SEM images (Figure 3.4) are used to 

compute the ODF (Ghassemieh et al., 2001). 

 

Figure 3.4. SEM image of web matrix of thermally bonded nonwoven fabric which can be 

used for ODF detection 

The initial work for computing the ODF of nonwoven materials was performed 

for adhesively bonded nonwoven fabrics by expressing the ODF in powers of the 

cosine function (Hearle and Ozsanlav, 1979). Today there are two main methods for 

computing the ODF from the textile images: Fast Fourier Transform (FFT) and 

Hough Transform (HT). 

3.1.2.1. Fast Fourier Transform 

The FFT has been used as an efficient computational tool in a wide range of 

applications. In the field of image processing, it is one of the most useful techniques 

used for image enhancement and measurement (Xu and Ting, 1995). An image, a 2D 

function in a spatial domain, often contains periodic structures, non-periodic 

elements, noise and background. It is, sometimes, difficult or even impossible to 

separate and analyse these image components in the spatial domain since they are 
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often embedded and entangled together. A 2D FFT decomposes an image from its 

spatial domain of intensities into spatial frequency domain (Figure 3.5). The spatial 

frequency domain is important because it highlights periodic relationships in the 

spatial domain and some image processing is more efficient in the frequency domain 

(Ghassemieh et al., 2001). A higher rate of change in the greyscale intensity is 

reflected in higher amplitudes. A function ),( yxf  in the spatial domain could be 

defined in the frequency domain as; 

 








 yxeyxfvuF yvxui dd),(),( )(2  ,                                  (3.1) 

where ),( vuF  is the Fourier transform of the function, u  and v  are the variables in 

the frequency domain. As observed, ),( vuF  is a complex function with phase and 

magnitude. 

    
(a)                                                                 (b) 

Figure 3.5. SEM image of nonwoven (a) and FFT spectrum of this image (b) 

(Ghassemieh et  al.,  2002a) 

When the FFT method is used to process nonwoven images, the frequency of 

fibre orientations could be calculated. Commercial software based on the FFT 

method for ODF detection was introduced to the industry (Pourdeyhimi et al., 1997; 
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Pourdeyhimi et al., 1999; Pourdeyhimi and Ramanathan, 1997; Pourdeyhimi et al., 

1996a; Pourdeyhimi et al., 1996b). 

The use of this method in ODF detection has several disadvantages.  Lighting 

conditions (brightness) and scope of the nonwoven area affect the results. The scope 

of the nonwoven image should be representative for the whole fabric. Since the FFT 

algorithm uses grey scale images, binarized or skeletonized images of fibres can give 

different ODF outcomes (Ghassemieh et al., 2002a). Finally, in the denser structures, 

as the number of cross-over points increases, the efficiency of the FFT method 

decreases (Xu, 1996). 

3.1.2.2. Hough Transform 

The Hough transform is one of the most effective methods for object detection in an 

image. The HT requires the desired features to be specified in a parametric form, 

such as line, circle, and ellipse. In most of the cases, it is necessary to know the type 

of geometry that is to be fitted to the data.  To determine ODFs of nonwovens, 

straight-line segments of fibres are detected via HT (Xu and Yu, 1997). 

A straight line passing through the origin could be defined with two parameters 

in polar coordinates as 

)sin()cos(  yxr  ,                                              (3.2) 

where r  is the distance of a second point to the origin and   is the angle of the line 

with respect to the x -axis. In the binarized image, after the edge detection is 

performed on the objects, collinear points ),( ii yx  with N,....,1i  are transformed 

into sinusoidal curves  sincos ii yxr   in the Hough plane, which intersect at 

the point ),( r . For a certain range of parameters r  and  , each ),( ii yx  is mapped 

onto the Hough space and the points that map onto the locations ),( mmr   are 

accumulated in a 2D histogram (Figure 3.6). Local maxima of the intensity in the 

Hough space identify straight line segments in the original image (Ghassemieh et al., 

2002a). 
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(a)                                                                    (b) 

Figure 3.6. Binarized image of nonwoven fabric (a) and Hough space of this image (b) 

(Ghassemieh et al., 2002a) 

Application of the HT technique to determine ODF is more recent than that of 

the FFT method. These methods were used to obtain the ODF of hydroentangled 

nonwoven fabrics, and the results of HT were closer to the experimental results than 

those of the FFT (Ghassemieh et al., 2002b). Each method has several advantages 

depending on the noise, lighting conditions and web structure (Pourdeyhimi and 

Kim, 2002). Main advantages of the HT method are that it is tolerant to gaps at 

object edges and relatively unaffected by the image noise (Ghassemieh et al., 2002b). 

3.1.3. Physical Properties of Nonwoven Fabrics 

Basis weight is the most important parameter for defining a nonwoven textile and 

represents the mass per area unit. Many properties including strength, thickness, 

porosity, tearing strength, etc. are influenced by changes in the basis weight of the 

fabric (Rawal et al., 2008).  

The thickness of fabrics is determined as the distance between the upper and 

the lower surfaces of the material, measured under a specified pressure (Fedorova, 

2006). The bulk density of the samples is determined by dividing the fabric basis 

weight on its thickness.  
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Finally, the fibre diameter is measured with SEM. In order to consider 

shrinkage of polymers due to thermal effects, the fibre diameter is measured after the 

web-finishing process. 50 to 100 fibres are measured to account for fluctuations in 

their diameter. 

3.2. Mechanical Behaviour of Nonwovens 

Nonwoven fabrics have a unique mechanical behaviour, which has not been defined 

completely in the literature. The deformational behaviour of nonwoven fabrics 

resemble to some extent the behaviour of different materials; e.g. they are anisotropic 

similar to woven textiles and exhibit viscoelasticity similar to polymers. In fact, the 

mechanical response of a nonwoven fabric is a mixture of the behaviours of bond 

points and the fibre matrix, which exhibit distinct mechanical performances. 

 

Figure 3.7. MD and CD with respect to bond pattern and geometry (Kim, 2004b) 

There are many aspects of the mechanical behaviour of nonwoven fabrics, but 

one of them – anisotropy – is the most prominent one. Nonwoven fabrics exhibit an 

anisotropic mechanical behaviour due to a random distribution of fibres and a pattern 

of bond points. The deformation characteristics of these materials depend on the 

direction of loading. Two principle directions having different mechanical properties 
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in woven fabrics, namely, warp and weft, enable them to be modelled as orthotropic 

(Price et al., 2006). In the case of nonwovens, due to the random distribution of 

fibres characterised by the ODF, the level of anisotropy is higher than in the woven 

fabrics. In order to simplify the anisotropy of the nonwovens, two principle 

directions - MD and CD - are used (Figure 3.7). 

The microstructural randomness of the fabric and the pattern of bond points 

yield a dependence of a stress-strain curve on the loading direction. The effect of 

loading direction on the mechanical performance of a nonwoven material could be 

observed in Figure 3.8. 

 

Figure 3.8. Angular mechanical properties and failure behaviours of thermally bonded 

nonwovens; 0° and 90° represent MD and CD, respectively (Michielsen et al., 2006) 

The geometry and pattern of bond points contribute to the level of anisotropy 

in addition to the distribution of fibres (Lin et al., 1973). For instance, the ratio of the 

area of bond points to that of fibre matrix is a major concern in the mechanical 

performance due to their distinct microstructure (Figure 3.9). 

Obviously, the strength along MD is more than that along CD according to 

Figures 3.8 and 3.9. In a typical ODF curve the density of orientation of fibres is 

concentrated near the MD due to the fact that in the web-forming process fibres are 
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laid along the conveyor direction. Due to this fact the deformation behaviour of 

nonwovens along MD and CD differs. Deformation of the web and bond points 

under loading along MD and CD is presented in Figure 3.10. Obviously, the 

nonwovens possess higher mechanical properties for MD than for CD. 

 

Figure 3.9. Secant modulus of nonwovens with 15% and 40% bond area ratio for varying 

loading directions; 0° and 90° represent MD and CD, respectively (Kim, 2004b) 

Although the type of anisotropy differs from orthotropy, some simplified 

models based on orthotropy are introduced for prediction of the mechanical 

behaviour of these materials (Kim, 2004a). Despite some interesting assumptions 

such as a Poisson‟s ratio larger than 0.5, the model is consistent with the 

experiments. Although a main source of anisotropy is the random orientation of 

fibres, there are other sources contributing to this phenomenon. 



Chapter 3. Mechanics of Nonwoven Fabrics 

 

~ 41 ~ 
 

            
(a)                                                                        (b) 

Figure 3.10. Images and deformation mechanisms of nonwoven fabric after 50% elongation 

in CD (a) and MD (b) (Kim et al., 2000) 

In addition to random orientation of fibres and bond pattern properties, crimp 

of fibres contributes to an anisotropic behaviour of nonwoven fabrics.  Due to the 

curly character of fibres, not all the fibres are loaded at the initial stage of loading. 

This phenomenon was deeply investigated and the curl factor was introduced to 

calculate the mechanical properties of nonwoven fabrics (Adanur and Liao, 1999). A 

micromechanical model for prediction of the tensile behaviour of nonwoven 

materials was developed based on modification of the model introduced by Adanur 

and Liao (1999). In that model due to curliness of fibres, a fibre curl factor was 

introduced to improve the understanding of the loading behaviour of a single fibre 

(Rawal, 2006). The fibre curl factor (  ) is defined as the extent of curvature:  
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where    and    are the curve and straight lengths defined between two points. In a 

fibrous web, curl factor varies widely; the curl factor of a fibre similar to segment A 

(Figure 3.11) is higher than that of other segments. As seen in Figure 3.11, the curl 

factor in fibre segment E is zero. 

 

Figure 3.11. Schematics of variation in fibre curl in typical fibrous web (Rawal, 2006) 

The final issue related to anisotropy of nonwovens fabrics is the failure 

mechanism. Due to randomness in the structure, nonwovens exhibit complex damage 

behaviour. As shown in Figure 3.12, damage characteristics of nonwoven fabrics 

differ depending on the direction of load with respect to MD. A few studies were 

made on the failure mechanism of nonwovens. A damage criterion based on fibre 

failure and bond rupture was introduced to predict damage in nonwoven fabrics 

(Britton et al., 1983). The failure model was implemented in a numerical simulation 

(Britton et al., 1984a; Britton et al., 1984b). 
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Figure 3.12. Rupture images of nonwovens for various tensile directions (Kim, 2004b) 

3.3. Summary 

To sum up, from the established point of view of computational mechanics, a 

material model based on mechanical and physical properties of nonwoven materials 

has not been developed yet. Most of the research performed up to now on the 

mechanical behaviour of nonwovens aims to explain a partial phenomenon with 

respect to the textile engineering point of view. For instance, only a few studies in 

the literature consider plastic deformation of nonwoven materials (Mishakov et al., 

2006). Therefore, a thorough investigation of the mechanical behaviour of these 

materials from the computational mechanics point of view should be implemented. 

Basic characteristics and mechanical behaviours of nonwovens are explained in 

this chapter. These materials are different from woven fabrics and composites in 

terms of microstructure and mechanical performance. Their mechanical behaviour is 

complicated due to their microstructure and polymer-based constituent materials 

leading to anisotropic nonlinear viscoelastic-plastic deformation. This complex 

behaviour should be investigated and incorporated in models used to analyse the 

performance of thermally bonded bicomponent fibre nonwoven fabrics, which are 

the main topic of this study. Despite the complex behaviour, there are some 

simplified numerical models of these materials in the literature, which will be 

explained in the next chapter. 
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CHAPTER IV 

4. MODELLING OF MECHANICAL 

BEHAVIOUR OF MATERIALS 

A need to improve properties and performance of nonwovens leads companies to use 

simulations in order to design and manufacture products faster and cost-effectively. 

A realistic simulation requires a material model, which represents the deformation 

characteristics of the material in real-life applications such as sports and automotive 

industry (Smith, 2004). The most prominent deformation characteristics of 

nonwovens to be accounted in models are anisotropy in their mechanical properties 

and a viscoelastic-plastic mechanical behaviour. 

Anisotropy is the dependence of the mechanical response of material on the 

direction of applied load. As explained in Section 3.2, nonwoven fabrics possess 

anisotropic mechanical properties due to randomly oriented fibres and 

manufacturing-induced pattern of bond points. In order to implement direction 
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dependence of mechanical properties in numerical modelling, brief information 

about anisotropy and related topics will be given in this chapter. 

Additionally, nonwovens made of polymer-based fibres possess viscoelastic-

plastic behaviour. Due to viscous effects, mechanical properties of nonwovens 

depend on time. On the other hand, they can exhibit plasticity, i.e. which means 

irreversible deformation. In order to introduce a complete mechanical model, these 

behaviours should be considered. This chapter provides mathematical 

characterisation of these behaviours, which could be utilized in numerical modelling. 

Finite element (FE) is one of the most suitable computational tools to simulate 

the deformational behaviour of nonwovens under service loadings since it is 

commonly available as commercial software packages. In this chapter, a brief review 

of nonlinear finite element analysis and the existing finite element models of 

nonwovens in the literature will be given. 

4.1. Basics of Mechanical Properties 

Mechanical properties of a solid material can be represented in mathematical terms 

illustrating the behaviour of that material in a specific direction. These properties 

may change with varying scales and microstructure. This section discusses material 

symmetry and a scale concept, which affect the mechanical properties used in 

numerical modelling. 

4.1.1. Material Symmetry and Corresponding Tensor Structures 

Material symmetry is related to substructure of a material. The basic concept to 

describe the substructure is to define its motif where a motif is the periodically 

repeated arrangement of substructure elements in space to generate the pattern 

(Newham, 2005). The periodic spatial arrangement of the motif is mathematically 

described by a space lattice. There are symmetry planes in these motives where 

mechanical properties do not change such as infinite numbers of symmetry planes 

exist in the materials which are assumed as isotropic. 
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Material symmetry can be defined at a single material particle and/or within a 

region of material and can change from particle-to-particle and/or region-to-region. 

Any symmetry in material structure will be reflected by symmetry in mechanical 

properties. An inhomogeneous mechanical behaviour is characterized by changing 

symmetry and/or properties throughout the material. The change in mechanical 

properties due to material symmetry is introduced in three material models: 

anisotropic, orthotropic and isotropic material models (Ting, 1996). 

4.1.1.1. Anisotropic Material 

An anisotropic material lacks any material symmetry. Its 4th order elasticity tensor 

(or tensor of elastic constants) 
ijklC , that relates the stress tensor to the strain tensor, 

is fully populated and contains 34=81 terms. 
ijklC  is found according to (Asaro and 

Lubarda, 2006)  

ee

e2

klij

ijklC







                                                      (4.1) 

where eΨ  is the elastic potential and e  are the elastic strains from strain tensor. 

However, due to symmetry of the stress and strain tensors and due to the 

existence of the strain energy function, the number of independent elastic constants is 

reduced to 21 for the fully anisotropic material (Newham, 2005). Therefore the 

fourth order indices, ijkl , are mapped to their matrix counterparts as follows 

,6][1,2,3,4,512,13,23][11,22,33,                                     (4.2) 

(for instance, 1123C  reduces to 16C ) and the elastic constants reduce to the form 
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Let also note that 
jiij CC  . 

4.1.1.2. Orthotropic Material 

An orthotropic material has three principal directions as shown in Figure 4.1. 

Properties of the material are symmetric with respect to three orthogonal planes 

defined by these directions. 

 

Figure 4.1. Principal directions in orthotropic material model 
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Due to symmetry conditions, orthotropic elasticity tensor (Equation 4.4) is 

symmetric with respect its diagonal. Therefore, elasticity tensor has 9 independent 

constants in orthotropy. These constants could be stated in terms of Young‟s 
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modulus (
iE ), Poisson‟s ratio (

ij ) and shear modulus (
ijG ) with respect to three 

principal directions as follows (Roesler et al., 2007): 
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                        (4.5) 

4.1.1.3. Isotropic Material 

An isotropic material has the same mechanical properties in all spatial directions. 

Therefore, the elasticity tensor must remain unchanged by arbitrary rotations of the 

material or the coordinate system. The elastic constants must be invariant with 

respect to rotations. As a result of infinite number of symmetry planes the number of 

independent elastic constants in isotropic elasticity tensor reduces to 2: 
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(4.6) 

The relations between isotropic elastic constants ( 11C  and 12C ) and Young‟s 

modulus ( E ), Poisson‟s ratio ( ) and shear modulus ( G ) are 
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                                                (4.7) 

Three material models described in this section represent direction dependent 

mechanical properties for three levels of material symmetry. As explained, material 

symmetry, which can change from particle-to-particle and/or region-to-region, is 
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affected by the substructure of the material. This effect is related to the scale of 

substructure in a way that inhomogeneity in mechanical properties increases with 

substructure size. 

4.1.2. Scale Concept in Mechanics 

4.1.2.1. Representative Volume Element Concept 

Representative Volume Element (RVE) is a model of the material that can be used to 

determine the corresponding effective properties for the homogenized macroscopic 

model. RVE is the minimal material volume, which contains statistically enough 

mechanisms of deformation processes. The increase of this volume should not lead to 

changes in parameters of evolution equations for field values, describing these 

mechanisms. For instance, RVE is a unit cell for a periodic microstructure and 

volume containing a very large set of grains, possessing statistically homogeneous 

properties (Gitman et al., 2007). 

The micro-scale is characterized by a statistically representative volume, which 

contains micro-structural information such as crystallographic texture in metals 

(Miehe et al., 1999). RVE should be large enough to contain sufficient information 

about the microstructure in order to be representative; however, it should be much 

smaller than the macroscopic body because it is the smallest possible volume that 

reflects its macroscopic properties. For instance, RVE for metals is highly dependent 

on the grain size. If the metal part is fine grained, the material may be assumed as 

homogeneous and isotropic material properties could be used for RVE. On the other 

hand, if the metal part is coarse grained, it may be assumed as inhomogeneous and 

anisotropic material properties could be used for RVE. 

4.1.2.2. Homogenization and Its Use in Meso-Modelling 

The mechanical behaviour of materials within structures under mechanical load is the 

result of mechanisms active at a micro-scale within their constituents and at their 

interfaces, and of the spatial distribution of these constituents. The prediction of the 

macroscopic behaviour, based on these data, requires complex scale-transition 
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operations representing the interaction phenomena between the constituents. Instead, 

some mathematical constituents in the form of mechanical properties such as 

modulus of elasticity and in the form of field variables such as stress and strain are 

introduced to illustrate the mechanical behaviour. This approach is called 

homogenization. Homogenization intrinsically includes volume averaging of micro-

scalar properties to represent them in the macro-scale (Miehe et al., 1999). 

For an isotropic material, RVE is a very large set of constituents. As a result of 

homogenization, elastic behaviour of a very large set of constituents, e.g. grains for 

metals, is represented by a single modulus of elasticity value. Homogenized moduli 

of elasticity values for several metals are shown in Table 4.1. 

Metal Modulus of Elasticity (GPa) 

Aluminium 68.0 
Copper 200.0 
Iron 110.0 
  Table 4.1. Modulus of elasticity values of some metals in macro-scale 

As the scale gets smaller, the data starts to scatter with respect to the 

crystallographic texture in these metals (Table 4.2). Therefore a single modulus of 

elasticity term loses its validity for representing the elastic behaviour in the micro-

scale. 

 Modulus of Elasticity (GPa) 

Metal [100] [110] [111] 

Aluminium 63.7 72.6 76.1 
Copper 66.7 130.3 191.1 
Iron 125.0 210.5 272.7 
  Table 4.2. Modulus of elasticity values for several metals at various crystallographic 

orientations at micro-scale (Callister, 2003) 

The effect of material size with respect to its constituent elements on the 

mechanical properties is explained using an example of metals (Tables 4.1 & 4.2). 

This phenomenon is similar in nonwovens in a way that homogenized mechanical 
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properties could be assigned to the fabric‟s size significantly larger than its 

constituents‟ (bond points & fibres) size. Basically, these macro-scale properties will 

be results of homogenization of mechanical properties of bicomponent fibres 

constituting fibre matrix and polymer composite bond points. Homogenized 

properties will scatter with decreasing material size; on the other hand, numerical 

model becomes more complicated when it is built with sub-models of the material‟s 

negligibly small substructures. 

Plastic deformation in macro-scale is a result of dislocation movement in the 

grains of a metal or reorientation of molecular chains in a polymer in micro-scale. 

Instead of grain-by-grain or molecule-by-molecule modelling plastic behaviour in 

macro scale, homogenization approach is facilitated to avoid vast computational 

power requirements. As a result of this approach, several equations are developed to 

model characteristics of this behaviour. Next section explains these equations, which 

are used to model plastic behaviour of a material. 

4.2. Modelling of Plastic Behaviour 

Plasticity, which refers to irreversible deformation, plays an important role in the 

mechanical behaviour of polymer-based materials. This behaviour should be 

included in the numerical modelling of nonwoven materials. This section gives 

background information about theory of plasticity, which explains the relationship 

between stress and strain in plastically deformed solids. Four main aspects are 

covered briefly: yield criterion, flow rule, strain hardening and extensions to 

anisotropy. 

4.2.1. Yield Criterion 

Yield strength or yield point (Figure 4.2) is the stress at which a material starts to 

deform plastically. Prior to the yield point the material will deform elastically and 

will return to its original shape when the applied stress is removed. Once the yield 

point is passed some fraction of the deformation will be permanent and irreversible. 
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Figure 4.2. Mechanical behaviour of a material 

A relation defining the limit of elasticity under any possible combination of 

stresses is known as a yield criterion (Hill, 1950). The first step of plastic flow 

analysis is to determine a yield criterion. When the material is supposed to be 

isotropic, plastic yielding depends only on the magnitudes of the principal applied 

stresses, not on their directions. Any yield criterion is expressible in the form 

(Hosford, 2005) 

CIIIf ),,( 321 ,                                                   (4.8) 

where 1I , 2I , 3I  are the first three invariants of the stress tensor 
ij  and C  is a 

constant (Hill, 1950). The invariants are defined in terms of the principal components 

of stress ( 1 , 2  and 3 ) by relations; 

3211  I ,                                                  (4.9) 

)( 3132212  I ,                                      (4.10) 
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3213 I .                                                    (4.11) 

The principal stresses are the roots of the characteristic equation of the 

eigenvalue problem: 

0λλλ 32
2

1
3  III .                                          (4.12) 

Apparently, any function of the invariants can be expressed in terms of the principal 

stresses. 

A simplification of Equation 4.8 is possible using a fact that the yielding of an 

ideal plastic body is unaffected by hydrostatic stress. Therefore, yielding depends 

only on the deviatoric principal stress components ( 1  , 2  , 3  ) which are derived 

as  

,h ijijij                                                    (4.13) 

 ,
3h

zzyyxx 



                                              (4.14) 

where h  is the hydrostatic component of the stress and 
ij  is Kronecker‟s function. 

Since 0321   , the yield criterion in Equation 4.8 reduces to the form 

CJJf ),( 32 ,                                                   (4.15) 

where 

)( 3132212  J ,                                     (4.16) 

3213  J .                                                    (4.17) 

Numerous criteria have been proposed for yielding; two of them – Tresca and von 

Mises – are going to be explained briefly. 
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4.2.1.1. Tresca Yield Criterion 

This criterion was proposed by Henri Edouard Tresca (1864). According to the 

criterion yielding occurs when the maximum shear stress reaches a certain value; it 

could be given in the form: 

k2yminmax   ,                                           (4.18) 

where k  is the yield stress in shear, y  is the yield stress in tension and  max  and  

min  are the maximum and minimum principal stresses. According to Tresca, yield 

stress in pure shear is half of the yield stress in simple tension (Mendelson, 1968). 

4.2.1.2. Von Mises Yield Criterion 

This criterion was proposed by Richard von Mises (1913). According to the criterion, 

yielding occurs when 2J  reaches a critical value; 

22
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12 2)()()(2 kJ                                     (4.19) 

or 

22
31

2
32

2
21 6)()()( k  .                         (4.20) 

A physical interpretation of von Mises criterion is: yielding begins when the 

elastic energy of distortion reaches a critical value. Thus, a hydrostatic pressure does 

not cause yielding since it produces only elastic energy of dilatation. According to 

von Mises, yield stress in pure shear is 3/1  times the yield stress in simple tension 

(Mendelson, 1968). 

Comparison of Tresca and von Mises criteria is shown in Figure 4.3. 

Apparently, Tresca criterion is more conservative than von Mises criterion, but the 

normal of the Tresca's yield locus is discontinuous at the corners (each having two 

normal directions) leading to instability in numerical calculations of flow direction. 



Chapter 4. Modelling of Mechanical Behaviour of Materials 

 

~ 55 ~ 
 

Due to this fact, von Mises yield criterion is mostly preferred in numerical simulation 

tools. 

 

Figure 4.3. Comparison of Tresca and von Mises yield criteria in plane stress condition 

Material starts to deform plastically after the yield point determined by either 

of the two criteria explained in this part. Due to irreversible nature of plastic 

deformation, stress-strain relations for modelling this behaviour are quite different 

than the ones for modelling elastic behaviour. These relations will be explained in 

the next part. 

4.2.2. Flow Rule 

A material-dependent relationship between stress and strain in plasticity is termed as 

flow rule (Tekkaya, 2002). A general relationship between the ratios of components 

of the strain increment and the stress ratios was suggested by Levy (1871) and von 

Mises (1913). The Levy-Mises equations are expressed in the form 
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or 
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λijij dd p   ,                                                     (4.22) 

where pd ij  is the plastic true strain increment, λd  is a non-negative real number and 

ij   is the deviatoric true stress. According to the Levy-Mises flow rule, the material 

is assumed to be rigid plastic (Chakrabarty, 2006). Hence, the first invariant of the 

strain increment tensor is zero.  After derivations, Levy-Mises rule for non-hardening 

(perfect plastic) case can be rewritten as 
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where f  is the flow stress and pd  is the equivalent plastic strain increment which 

can be formulated as 

 ppp dd
3
2d ijij   .                                              (4.24) 

The Levy-Mises rule can be considered as an application of the plastic 

potential theory in the form 

ij

ij

ij

f
λ






)(
dd p 

 ,                                                (4.25) 

where )( ijf   is the plastic potential, corresponding to the yield function in 

plasticity.  Equation 4.25 indicates that the strain increment vector is normal to the 

yield function in the stress space (Figure 4.4); this is termed as normality rule. 
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Figure 4.4. Demonstration of normality rule in plane-stress conditions for von Mises yield 

function 

For materials with strengthening, the yield locus enlarges with their plastic 

deformation according to the normality rule. The yield surface must be convex in 

order to attain a stable material flow. As explained, the Tresca yield surface has 

instabilities at the corner points since each corner point has more than one normal 

vector. In order to use the Tresca yield criterion with normality rule, corners must be 

smoothened. 

4.2.3. Strain Hardening 

Evolution of the yield surface with plastic deformation is named as hardening. Plastic 

deformation leads to the hardening of a material and the increase of its elastic limit 

(in the direction of the deformation). The evolution of the yield surface is governed 

by one scalar variable, either the dissipated plastic work, or the accumulated plastic 

strain. If the evolution of the yield surface is correlated with dissipated plastic work, 

the hardening is termed as work hardening. The dependence of the yield surface on 

the plastic strain history called strain hardening (Kachanov, 1971). 

A flow curve (plastic strain vs. true stress) of a material could be found with a 

simple tension or compression test. In the cold plastic deformation case, the 

governing scalar variable on the hardening behaviour is the plastic strain. Therefore, 
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the flow stress ( f ) could be presented as a function of equivalent plastic strain ( p ) 

in many forms such as 

  )expression(Ludwik p
f

n

K   ,                                (4.26) 

or 

  law)(power p
0f

n

A   ,                                    (4.27) 

where n  is the strain-hardening exponent, K  and A  are constants. For a hardening 

material, according to the flow curve )( p
f  , the local slope H  (hardening slope) is 

defined as 

p
f

d

d




H .                                                      (4.28) 

Inserting Equation 4.28 in to the Levy-Mises rule for the perfect plastic case in 

Equation 4.23 gives 











f

fp

 2
d 3

d





H
ijij .                                              (4.29) 

According to Equations 4.24 and 4.29, a definite contribution to the hardening is 

made by every plastic distortion because equivalent plastic strain increment is always 

positive (Hill, 1950). 

4.2.4. Extensions to Anisotropy 

This part is a brief explanation of the Hill's anisotropic flow theory based on (Hill, 

1950), which offers a numerical solution for the anisotropic plastic deformation 

problem of nonwoven materials. This theory considers states of anisotropy that 

possess three mutually orthogonal planes of symmetry at every point; the 
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intersections of these planes are known as the principal axes of anisotropy. These 

axes may vary in direction throughout the specimen. For instance, a strip cut from 

the centre of a cold-rolled sheet provides an example of uniformly directed 

anisotropy with the principal axes coinciding with the rolling direction, transversely 

in the plane of the sheet, and normal to this plane (Figure 4.5). The principal axes in 

a given element can also vary relative to the element itself during continued 

deformation such as in the case of simple shear test. 

 

Figure 4.5. Axes of anisotropy in a cold-rolled sheet 

Here it is assumed that the principal axes of a material are set as Cartesian axes 

of reference. The criterion describing the yielding of isotropic material is that of von 

Mises. The simplest yield criterion for anisotropic material is the one, which reduces 

to von Mises' law when the anisotropy disappears. According to this, the yield 

criterion can be given in the form 
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where N, M,F, G, H, L  are characteristic parameters of the current state of 

anisotropy. The yield criterion has this form when the principal axes of anisotropy 

are the axes of reference; otherwise the form changes in a way that can be found by 

transforming the stress components. 
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If X, Y, Z  are the tensile yield stresses in the principal directions of anisotropy, 

it could be shown that (Hill, 1950) 
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If R, S, T  are shear yield stresses with respect to the principal axes of anisotropy, 

then (Hill, 1950) 
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If there is rotational symmetry of anisotropy in an element about the z-axis, the 

form of Equation 4.30 remains invariant for arbitrary x  and y  axes for reference. 

The rotational symmetry about z-axis changes the Equation 4.30 to the form 
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If there is a complete spherical symmetry, or isotropy, 

NMLHGF 333   and Equation 4.30 reduces to von Mises criterion when 

F2  is equated to 21 Y . 

To describe fully the state of anisotropy in an element, the orientations of the 

principal axes and the values of the six independent yield stresses , S, TX, Y, Z, R  
must be known. These values could be determined via tensile and torsion tests. 
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The strain increment relations, referred to the principal axes of anisotropy are 

  λLτdGHλ yzyzzxyxx d,)-()-(dd   ,                (4.36) 

  λMτdHFλ zxzxxyzyy d,)-()-(dd   ,               (4.37) 

  λNτdFGλ xyxyyzxzz d,)-()-(dd   .                (4.38) 

It should be noticed that 0ddd  zyx   identically. If the principal axes of 

stress coincide with the axes of anisotropy, so do the principal axes of strain 

increment. As seen in Figure 4.6, the elastic region of the Hill's yield function differs 

from the one of von Mises' function due to imposed anisotropic parameters. 

 

Figure 4.6. Comparison of normalized yield loci of isotropic (von Mises) and anisotropic 

(Hill) yield functions 
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4.3. Modelling of Viscous Behaviour 

Fundamental deformation of materials can be classified into three main types: elastic, 

plastic and viscous. Polymer-based materials show time-dependent properties even at 

room temperature due to their low melting points (Ferry, 1980). As explained in 

Section 2.3, polymer fibres are mainly used for the manufacturing of nonwoven 

fabrics. Due to the nature of polymer materials, nonwovens exhibit a viscous 

behaviour, which should be considered in their numerical models.  

The relationship between stresses and strains in viscoelastic materials depends 

on time. Normally, viscoelasticity is observed in many structural materials (steel, 

aluminium, etc.), but the deviation of the elastic portion of stress-strain curves from 

straight lines is usually neglected. However, in polymers, this effect is very 

important. The rate of loading affects the deformation behaviour dramatically and 

energy is dissipated during spring back (Figure 4.7). 

                                                                      
(a)                                          (b) 

Figure 4.7. Stress-strain curves of purely elastic (a) and viscoelastic (b) materials (The red 

area represents the amount of energy lost in a loading-unloading cycle.) 

There are some phenomena, which are attributed to viscoelasticity, such as 

creep and relaxation. Creep is the increase of strain with time at constant stress 

(Figure 4.8); on the other hand, relaxation is the decrease in stress with time when 

strain is held constant (Figure 4.9) (Shaw and MacKnight, 2005).  
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Figure 4.8.  Creep strain (  ) vs. time (uniaxial test at constant stress and temperature) 

 

Figure 4.9. Relaxation curve (uniaxial test at constant strain and temperature) 

Purely elastic materials can be modelled with springs, whereas the time-

dependency of the stress-strain curve requires an additional element such as a 

dashpot in structural mechanical models. Spring and dashpot elements shown in 

Figure 4.10 are used to represent elastic and viscous deformation, respectively, in the 

numerical models of viscoelasticity. 

                                                                              
(a)                                        (b)  

Figure 4.10. Perfectly elastic (a) and viscous (b) elements (E-modulus of elasticity, 

Viscosity of the dashpot) 
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The constitutive equations between stress ( ) and strain ( ) of the spring and 

dashpot elements are, respectively, as follows: 

 E                  and                  td
d

  ,                         (4.39) 

where   and   are the modulus of elasticity of the spring and viscosity of the 

dashpot, respectively. Stress of a spring element is linearly related with its strain. On 

the other hand, stress of a dashpot element is related with a strain rate making the 

constitutive relation time-dependent. Linear viscoelastic deformation can be 

described by the constitutive equations describing combinations of spring and 

dashpot elements. Two simplest models that are commonly used to relate stress and 

strain are the Maxwell and Kelvin-Voigt models (Ikegami, 2001). 

The Maxwell model introduces viscoelasticity by combining a spring and a 

dashpot in series (Figure 4.11). The constitutive equation of this series model is 

tEt d
d

d
d 

  .                                               (4.40) 

 

Figure 4.11. Maxwell model 

The Kelvin-Voigt model uses a spring and a dashpot in parallel to represent the 

viscoelastic behaviour of a material (Figure 4.12). The constitutive equation of the 

parallel model of a spring and a dashpot element is 

t
E

d
d

  .                                                  (4.41) 
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Figure 4.12. Kelvin-Voigt model 

There are some deficiencies of Kelvin-Voigt and Maxwell models (Ikegami, 

2001), e.g. an instantaneous strain cannot be imposed on the Kelvin-Voigt model. 

Due to this reason, many variations of spring and dashpot configurations are 

available in the literature to model viscoelastic deformation of various materials such 

as the Generalized Maxwell model, which combines a spring and a finite number of 

Maxwell elements in parallel (Figure 4.13). In order to avoid disadvantages of 

Kelvin-Voigt and Maxwell models, this model could be used to model viscous 

behaviour of nonwoven materials. 

 

Figure 4.13. Generalized Maxwell model (Kaliske et al., 2005) 
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4.4. Review of Finite Element Method 

In solution of complex engineering problems, application of the conventional 

analytical methods may be impossible or impractical. The engineering approach in 

these cases is to approximate the solution of the problem by replacing the continuum 

with an appropriate model with finite degrees of freedom (DOF). This is the main 

aim of the finite element method (FEM). With this method, the exact solution can be 

approximated with an acceptable degree of inaccuracy in a reasonable time. This 

section explains FEM briefly in five parts. 

4.4.1. Basic Procedure of FEM in Solid Mechanics 

The analysis procedure should start with a detailed identification of physics of the 

problem, i.e. determination of constraints. The general procedure is composed of 

seven main steps (Tekkaya, 2002): 

Idealization: The continuum is divided into a finite number of elements, which can 

be described as the parts of the actual structure, capable to reproduce a local response 

of the system to an excitation. 

Discretization:  The infinite number of unknowns (DOF) is reduced to a finite 

number in this step. 

Determination of the Stiffness: In this step, the response of the elements to an 

excitation is determined. In solid mechanics, the relationship between unknown 

displacements and the known loads is established and it is indicated by 

}]{k[}{ uf  ,                                                    (4.42) 

where }{ f  is the load vector, }{u  is the displacement vector and ]k[  is the element‟s 

stiffness matrix. 

Assembly of the Element Stiffness to Discretize the Whole Continuum: The assembly 

process is realized by formulation of the conditions of compatibility. The first 
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condition is equality of nodal displacements of the coinciding nodes. It is a necessary 

condition to satisfy the continuity within a solid body. The second condition is the 

equilibrium of nodal forces that act at a single node. Application of these two 

conditions to the system nodes ends up with a set of equations for the whole system, 

which is expressed as   

}{}]{K[ Fu  ,                                                   (4.43) 

where ]K[  is the overall, or global, stiffness matrix of the system and }{F  is the 

global load vector including all the forces applied on the system.  

Introducing Boundary Conditions: In this step, the known constraints on the nodes 

are introduced. External forces and displacements are inserted to Equation 4.43. 

Solution of the System Equations: The unknown quantities (displacements in 

Equation 4.43) are determined by using standard methods such as Gauss elimination, 

etc. 

Computation of the Dependent Variables: The quantities defined for the problem are 

solved. In solid mechanics, they are the stresses and strains. 

4.4.2. Finite Element Approach for Large Plastic Deformation 

In solid mechanics, the nonlinearity in finite element analysis can simply be defined 

as the dependence of the stiffness matrix on displacement and/or force. There may be 

three main reasons of nonlinearity. 

Geometric nonlinearity may be observed in various situations. Large rotations 

and displacements in the system with small strains cause geometric nonlinearity. The 

distribution or magnitude of the applied forces may also be altered as a result of 

shape changes. Nonlinearity may also be observed in case of relatively small 

displacements, with displacements exceeding the dimension of the deforming body 

as in the case of thin-sheet metals (Cook, 1995). 
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Material Nonlinearity is described as a nonlinear relationship between strains 

and stresses. Among many possible cases, it is observed in metal forming 

applications when the material starts to flow plastically under the applied loads. 

Some hyperelastic materials, such as rubber, exhibit nonlinear behaviour in the 

elastic region. 

Contact Nonlinearity is observed when the portions of a deforming body come 

gradually in contact with other bodies during the deformation process. Also, friction 

may be a cause of contact nonlinearity. 

Two main approaches are available for the solution of nonlinear problems, 

namely, the elastic-plastic and the rigid-plastic procedures (MSC.Marc®, 2008r1). In 

the elastic-plastic approach, the elastic deformation of the material is included in the 

solution. In the rigid-plastic approach, the effects of elasticity are not included. The 

latter is widely used for applications, in which plastic deformation significantly 

exceeds the elastic strains. In this case, the computation time decreases since the 

formulation does not require consideration of elastic strains. Furthermore, numerical 

implementation is simple and the solution procedure is robust and reliable. Besides 

the advantages, the rigid-plastic formulation has some disadvantages. A physical 

behaviour that depends on elasticity, such as spring back or residual stresses, cannot 

be obtained in the solution. The exact final shape and characteristics of the specimen 

may not fulfil the accuracy requirements. Furthermore, the regions that deform 

within the elastic range are regarded as rigid and this may lead to incorrect results. 

On the other hand, both approaches could be utilized to model a time-dependent 

behaviour, such as viscous behaviour. The elastic strain range of polymers may 

extend to more than 5%. In order to reflect the characteristics of the deformation 

accurately, the elastic-plastic approach is preferred for polymer-based materials.   

4.4.3. Types of Formulation Regarding the Coordinate Frame 

There are two main types of formulations to define kinematics of deformation, 

namely, the Eulerian and Lagrangian approaches. In the Eulerian approach, the 

coordinate frame is fixed in space, and the material flows through this fixed mesh. It 
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is suitable in cases, where the process is steady-state. In Lagrangian approach, the 

mesh is considered to be attached to the body and displaces in space with the 

material (Cook, 1995). The Lagrangian formulation is more appropriate for this 

study. 

The Lagrangian formulations can be divided into two types, namely, the total 

Lagrangian and the updated Lagrangian methods. In the total Lagrangian approach 

the initial state of the body serves as a reference state, whereas in the updated 

Lagrangian approach the reference state is altered considering the current 

configuration. The updated Lagrange procedure is applicable to problems of plastic 

deformation with large strains such as deformation of nonwoven materials. Due to 

this fact, updated Lagrange formulation is will be explained. 

The Lagrangian approach is used in applications, in which the initial coordinate 

frame has a little physical significance due to the nature of the problem because the 

reference frame is redefined in each iteration of an increment (MSC.Marc®, 2008r1). 

In the updated Lagrangian approach, the principle of virtual work is used to 

define the equilibrium condition: 

 

000

ddd 00

A

ii

V

ii

V

ijij AtVbVES  ,                                (4.44) 

where 
ijS  is the second Piola-Kirchhoff stress tensor, 

ijE  is the Green-Lagrange 

strain tensor, 0
ib  is the  body force in the reference configuration, 0

it  is the traction 

vector in the reference configuration and 
i  refers to virtual displacements. 

The second Piola-Kirchhoff stress tensor is expressed by the relation 

(Belytschko et al., 2000) 

T1 -Fσ-
FS J ,                                                   (4.45) 

where F is the deformation gradient and σ  is the Cauchy stress tensor. J  denotes 

the Jacobian of the deformation gradient and defined by 
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)det(FJ .                                                      (4.46) 

The Green-Lagrange strain tensor is defined as (Cook, 1995) 


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where 
iu  is the displacement and 

iX  refers to position in a  reference configuration. 

The Cauchy stress tensor (
ij ) is formulated as 

jnmnimij FSF
J

1
 ,                                                (4.48) 

which is an important parameter used in characterisation of deformation. The 

deformation gradient is the Jacobian matrix of the motion described by (X,t) 

(Belytschko et al. 2000). It is expressed as 

j

i

j

i

ij
X

x

X
F









 ,                                                (4.49) 

where 
ix  is the position of a point in the deformed current configuration. 

The deformation gradient is used to describe an infinitesimal line segment dx 

in the current configuration that corresponds to a line segment in dX in the reference 

configuration. This is expressed as   

jiji dXFdx  ,                                                   (4.50) 

In the updated Lagrangian approach, the direct linearization of the left-hand 

side of Equation 4.44 yields 



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ijij VuLVEdS  .                              (4.51) 
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where n  refers to the increment number. 

In this approach, the reference state is the current state; therefore, the following 

set of equations is valid: 

ij ij
F  ,  

ijij dE   ,  
i i

X x

 


 
,  

ij ij
S  ,                          (4.52) 

where F is the deformation tensor and d is the rate of deformation. Hence, 
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where 
ib  represents the body force and 

it  represents the surface traction in the 

current configuration. The Truesdell stress rate ( T

ij

 ) that appears in Equation 4.53 

is defined as (Belytschko et al., 2000) 
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where 
Dt

D ij
 is the material rate for the Cauchy stress tensor. 

If a rigid-body rotation is applied to the body, the usual material rate does not 

vanish but the Truesdell rate vanishes. Therefore, it has a crucial importance in 

solution of problems, in which large rotations are present. The constitutive equations 

can be written in terms of the Truesdell rate of Cauchy stress as 

 klijkl

T

ij DL ,                                                   (4.55)                                               

where 
ijklL  is the tensor of material‟s moduli in the current configuration in terms of 

material moduli tensor in the reference configuration. On the other hand, in the 
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small-strain problems, the classical elastic-plastic modulus is used. It is used to 

describe the Jaumann rate of Cauchy stress tensor by 

kl

ep

ijkl

J DL .                                                   (4.56)                                          

The Jaumann rate of the Cauchy stress tensor is defined as 

T
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where W is the spin tensor given by 
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Using Equations 4.56, 4.57 and 4.58, the Truesdell rate of Cauchy stress tensor is 

written in term of the Jaumann rate by 

kkijkjikkjik

J

ij

T

ij DDD    .                              (4.59) 

Thus the relation between the large-strain moduli and the classical elastic-plastic 

moduli is  

klijkjilkjil

ep

ijklijkl LL   .                                   (4.60) 

4.4.4. Solution Methods 

Analyses of large-strain applications require solution of nonlinear equations. There 

are various solution techniques, such as the Euler method, self-correcting Euler 

method, direct iteration method, Newton-Raphson method and modified Newton-

Raphson method (Tekkaya, 2003). The Newton-Raphson method is used in the 

study. 
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The Newton-Raphson method is an iterative procedure - the displacement 

value is recalculated until a certain amount of accuracy is reached. For the nonlinear 

equation 

      fuuk  ,                                                 (4.61) 

                                             

{u
i-1} is calculated, which in turn yields a residual force {R} defined by (Tekkaya, 

2003) 

 

          111   iii uukfuR .                                    (4.62) 

The aim of the procedure is to minimize the value of residual at the end of a 

number of iterations. The residual force at the i
th iteration can be approximated 

at  {u
i-1} by means of the Taylor series expansion: 
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In the last iteration the residual force should approach zero, therefore Equation 4.63 

can be rewritten as 
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Defining the tangent stiffness matrix (kt), Equation 4.64 is rewritten as follows 

        11
t

  iii uRuuk .                                        (4.65) 

The solution method is presented in Figure 4.14. The stability of the process 

depends on the initial state. It has quadratic convergence properties; in other words, 
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the error decreases quadratically in each subsequent iteration. In the nonlinear 

problems, the Newton-Raphson method is useful; however it may require high 

computational efforts in three-dimensional problems (Cook, 1995). 

 

Figure 4.14. Convergence of Newton-Raphson method (Tekkaya, 2003) 

4.4.5. Convergence Controls 

The convergence criteria are assigned in the calculations in order to conclude the 

iterations when a desired value of accuracy is reached. In the commercial FE 

software, the convergence criteria are based on a relative and/or an absolute value of 

residual forces and/or displacements. 

Using residual forces as a convergence criterion depends on minimization of 

the residual forces. Either the absolute value of residuals or the ratio of the maximum 

residual load to the maximum reaction force is selected as the convergence criterion. 

The convergence is defined by the following equations (Cook, 1995): 

Tolerance
F

F

reaction

residual




                                             (4.66) 

and 
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ToleranceFresidual 


,                                           (4.67)  

where 


F  denotes the force with the highest absolute value. The displacements 

may constitute a criterion for checking the convergence of the solution. The 

convergence is described by the following equations: 

Tolerance
u

u



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


                                               (4.68) 

and 

Toleranceu 


 ,                                               (4.69) 

in which u denotes the displacement increment vector, u denotes the correction to 

the incremental displacement vector. In this method, convergence is satisfied if the 

maximum of the last iteration within an increment is small compared to the 

displacement change in the increment.  

One or more of the convergence criteria described above can be used in the 

solution. If the tolerance intervals decrease the solution becomes more accurate, 

however, the calculation time increases. There is a compromise between the accuracy 

of the solution and the time; therefore, the convergence criteria should be arranged 

carefully to obtain the sufficient accuracy in the least possible amount of time. 

Due to sufficient accuracy in a reasonable time, FEM could be an appropriate 

approach for modelling the mechanical response of nonwoven fabrics. Several 

attempts were made to model nonwovens with FEM. Next section will give brief 

information about the existing FE models of nonwoven materials. 
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4.5. Existing Finite Element Models for Nonwoven 

Materials 

Because of strength concerns, woven fabrics are modelled for various loading 

conditions, e.g. in impact simulations for ballistic purposes (Barauskas and 

Abraitiene, 2007). Very few studies could be found concerning FE modelling of 

nonwoven textiles. In this section, a brief overview of researches based on FE 

modelling of nonwoven textiles in the literature will be given. 

A first FE model deals with simulations of adhesively point-bonded spunbond 

nonwovens (Limem and Warner, 2005). This model treats the nonwoven media as a 

structure composed of fibres acting as truss links between bond points (Figure 4.15). 

 

Figure 4.15. FE model of adhesively point-bonded spunbond nonwovens 

(Limem and Warner, 2005) 

The fibres simulated in this model are polypropylene, which is the most 

frequently used polymer in the nonwovens industry (Russell, 2007). In the truss-

based model, all fibres are straight between consecutive bond points, have a 
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cylindrical shape, and demonstrate the same stress-strain behaviour, similar to that 

shown in Figure 4.16. All bond points in the model are identical, square-shaped 

isotropic with an elastic behaviour. The distribution of adhesive weight is uniform. 

Fabric failure is mainly due to fibre breakage. Fibres located in the fabric cross-

machine direction have a negligible effect on the tensile behaviour of spunbond 

fabrics in the machine direction. Every fibre is bonded at least to its third neighbour, 

if not to a closer one. Engineering strain is used in all models. 

 

Figure 4.16. Equivalent stress-strain behavior of PP filaments in tension/compression 

(Limem and Warner, 2005) 

The main disadvantage of this model is that the fibres in this model are linear 

elastic which represent a very small portion of deformation. For most of the 

polymers, the elastic region is nonlinear. Moreover, time dependency of the 

mechanical behaviour (viscoelasticity) is not mentioned. In addition to these 

deficiencies, this model is developed for 2D applications being far from real-life 

ones. 
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The second model is a FE model for thermobonded nonwovens by Mueller and 

Kochmann (2004). The used approach is based on the modelling of single fibres as 

trusses. The representation of a fibre by a single element allows a significant 

reduction in computational efforts. The behaviour of a number of single fibres is 

combined and mapped onto elements representing fibre bundles. These bundles are 

used to model the nonwoven. The bond points are composed of two regions: bond 

core and boundary zone (Figure 4.17). The boundary zone of the bond points 

represents the deformed fibres and partly-bonded regions (Mueller and Kochmann, 

2004). The area of the nonwoven, which lies outside the bond points, is mapped onto 

the model using sets of fibre bundles. The elements connect the boundary of 

neighbouring bond points within a base cell (Figure 4.17). 

 

Figure 4.17. Base cell with bonding points and boundary (Mueller and Kochmann, 2004) 

Different shapes of bond points are investigated in that study and the effect of 

bond geometry on the mechanical response of the nonwoven fabric is simulated with 

the model (Figure 4.18). However, implementation of ODF of fibres is very difficult 

in this approach because the unit cell is symmetric and the number of nodes on one 

bond point is limited. Moreover, similar to the previous model (Limem and Warner, 

2005), this one is only applicable to 2D problems as well. 
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Figure 4.18. FE model of thermobonded nonwoven with square bond points 

(Mueller and Kochmann, 2004) 

The third approach is not a FE model, but was developed to predict the 

mechanical performance of thermally point-bonded nonwovens (Kim and 

Pourdeyhimi, 2001). This model is based on the calculation of deformation of fibre 

individuals incrementally. Each fibre is treated as a truss element, which is straight 

and continuous throughout the model (Figure 4.19). 

The elements are oriented following the ODF measured for real nonwoven 

materials. The implementation of the ODF in the model is perfect. In terms of 

modelling the micromechanical behaviour and illustrating the anisotropy of the 

structure, the model is very successful. However, the dimensional range of the model 

is limited and the representation of the bond points is poor. 
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(a)                                                 (b)    

Figure 4.19. Models containing 50 lines (a) and 150 lines (b) (Kim and Pourdeyhimi, 2001) 

The final model to review is a FE approach modelling paper, which is basically 

a nonwoven material (Ramasubramanian and Wang, 2007). A material subroutine is 

generated to reproduce the elastic-plastic behaviour of papers. The unloading 

behaviour of paper is investigated using the material-specific subroutine in that 

research. Introduced FE model is effective in modelling the deformation performance 

of paper including unloading (Figure 4.20). However, due to its dense structure, the 

mechanical behaviour of paper does not resemble that of nonwovens. Although 

papers do not exhibit viscoelasticity and large-strain deformation due to its dense 

structure, their anisotropic behaviour resembles nonwovens. 

In conclusion, four models explained above are successful in representing 

some practical features of the complex mechanical behaviour of nonwoven materials. 

They are not suitable for modelling large-scale materials, since the number of 

elements can become prohibitive due to unreasonable computation time when the 

specimen size gets larger. Furthermore, 3D deformation conditions, such as out-of-

fabric-plane loading, are difficult – if not impossible – with these models due to 

contact problems induced by truss elements. A ballistic fabric simulation might be an 

example where the fabric‟s model should be capable of handling 3D out-of-plane 

loads. 
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Figure 4.20. Model and experimental unloading behaviour of paper in CD 

(Ramasubramanian and Wang, 2007) 

4.6. Summary 

Due to the nature of this research, with an aim to model the mechanical behaviour of 

nonwoven fabrics in the FE environment, background information about numerical 

modelling of the mechanical behaviour of materials is given in this chapter. 

Mathematical formulations, helping to model various deformation characteristics of 

the material, are explained. These formulations are vital for defining the deformation 

characteristics of material in a numerical environment. 

The concept of anisotropy is discussed to demonstrate representation of the 

direction-dependant performance of nonwoven materials. Additionally, formulations 

for plastic and viscous behaviours are explained, since these studied materials 

possess them and none of the FE models in the literature consider these behaviours. 

A brief review of nonlinear finite element analysis is given to have a better 

understanding on the most frequently used numerical tool for simulating real-life 



Chapter 4. Modelling of Mechanical Behaviour of Materials 

 

~ 82 ~ 
 

problems. The basic information given in this chapter plays an important role on the 

modelling approach followed in Chapters 6 and 7.  

In order to assess closeness of the developed numerical model to a material‟s 

behaviour, necessary mechanical tests should be performed. Basic mechanical tests, 

which are necessary to clarify the time-dependent mechanical behaviour of a 

material, are tensile and creep/relaxation tests. The next chapter is dedicated to 

experimental studies on thermally bonded nonwoven fabrics and their bicomponent 

fibres to identify their deformational characteristics. 
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CHAPTER V 

5. MECHANICAL BEHAVIOUR OF 

THERMALLY BONDED 

BICOMPONENT FIBRE 

NONWOVENS: EXPERIMENTAL 

STUDIES 

As described in Chapter 2, having randomly distributed polymer-based fibres and 

being composed of two discrete regions – bond points and matrix – nonwovens have 

a unique mechanical behaviour that is partially similar, but still differs from that of 

composites, polymers and woven fabrics. Nonwovens focussed in this thesis are 

manufactured with bicomponent fibres and bonded using thermal techniques. Due to 

a core/sheath structure of fibre, during the thermal bonding process a sheath material 
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melts and acts as an adhesive for the core part of the fibres, which remain fully intact 

throughout the fabric. The continuity of the core regions throughout the nonwoven 

fabrics having bicomponent fibres increases the strength of the material when 

compared with the ones having monocomponent fibres (Albrecht et al., 2003). 

Therefore, it is advantageous to use bicomponent fibres in nonwoven materials to 

improve their strength. 

The major aim of this study is to simulate the real-life deformation 

performance of thermally bonded bicomponent fibre nonwoven textiles in the finite 

element (FE) environment. A deep understanding of the mechanical behaviour of 

these fabrics is necessary to develop a realistic FE model. As a starting point, 

mechanical performance of single bicomponent fibres will be investigated since they 

are the basic constituents of nonwoven fabrics. Secondly, the fabric microstructure, 

which is one of the most important factors affecting its mechanical behaviour, will be 

examined. Finally, mechanical characterisation of thermally bonded bicomponent 

fibre nonwovens will be performed applying several mechanical tests. 

5.1. Mechanical Behaviour of Bicomponent Fibres 

Fibres are the basic constituents of nonwoven fabrics and play an important role in 

determination of their mechanical properties. In our case, the type of fibres is a 

core/sheath bicomponent one, i.e. they are composed of a sheath material having a 

lower melting temperature with respect to core material (Figure 5.1). 

 

Figure 5.1. Structure of bicomponent fibre 
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As explained in Chapter 2, polymers are the raw materials for manufacturing 

nonwoven fibres. For bicomponent fibres, polyethylene (PE) is frequently used as 

sheath material, whereas polypropylene (PP), polyamide 6 (PA6) and polyester 

(PET) are the most commonly used polymers as core material (Russell, 2007). 

Polymers are graded with respect to their usage such as moulding, extrusion, etc., 

and their mechanical properties change accordingly. The type of polymers used for 

the manufacturing of fibres is called the fibre grade referring to their manufacturing 

purpose. Basic mechanical properties at room temperature of the polymers used to 

manufacture the bicomponent fibres for this research are given in Table 5.1. The 

polymers used for core region have higher values for the modulus of elasticity and 

melting point than the ones used for sheath region (Table 5.1), and the cross-

sectional area of core is usually larger than or equal to that of sheath. 

Material PE PA6 PP PET 

Density (g/cm
3
) 0.955 1.13 0.89 1.3 

Modulus of Elasticity (MPa) 250 3000 1450 3500 

Shear Modulus (MPa) 110 760 680 1400 

Poisson’s Ratio 0.42 0.42 0.42 0.25 

Yield Strain 0.02 0.013 0.06 0.014 

Melting Point (°C) 131 220 165 265 
     Table 5.1. Properties of polymer materials used for bicomponent fibre production (Brinson 

and Brinson, 2008) 

In order to have a better understanding of the mechanical behaviour of 

thermally bonded nonwovens, constituent fibre behaviour should be examined first. 

Bicomponent fibres extracted from the free edges of nonwoven fabrics are tested to 

determine their mechanical behaviour. Figure 5.2 shows an unbonded free edge of a 

thermally bonded nonwoven fabric, which is used for fibre extraction. Extracted 

fibres are subjected to several mechanical tests such as tensile, ramp loading and 

relaxation for various test parameters. Each fibre is tested several times to examine 

variability of test results. Initial tensile tests were performed at the facilities of 

Nonwovens Cooperative Research Center (NCRC) in North Carolina State 
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University (Figure 5.3a) and all the remaining ones at Loughborough University 

(Figure 5.3b). 

 

Figure 5.2. Unbonded region of thermally bonded nonwoven fabric 

                       
(a)                                                                 (b) 

Figure 5.3. Tensile test rigs for bicomponent fibre experiments: Textechno Favimat (a) and 

Instron Micro Tester 5848 (b) 
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Textechno Favimat (Figure 5.3a) is specifically designed for polymer fibre 

testing. This machine has a 2.10 N capacity high-precision load cell and a 0.1 μm 

resolution linear encoder to measure force and displacement during tensile testing. 

Due to limitations of its software, only simple tension test with a prescribed loading 

speed could be performed.  On the other hand, Instron Micro Tester 5848 (Figure 

5.3b) is a high-precision electromechanical universal tester for miniature components 

and specimens. It is equipped with an Instron 2530-439 high-precision load cell 

having ±5 N capacity (Figure 5.4) and an incremental encoder with a displacement 

resolution of 0.02 μm. Due to the capabilities of its software, Bluehill®, not only 

simple tension but also cyclic loading and relaxations tests can be performed with 

Instron Micro Tester 5848. 

 

Figure 5.4. Instron 2530-436 load cell (±5 N) used for single fibre testing 

Mechanical testing of single fibres is a cumbersome process due to handling 

issues related to size and softness of the specimens. In order to ensure that the 

polymer-based single fibre is not damaged by the grips and do not slip or dislocate 

during the tests, sticky colour-coding labels with a diameter of 6.35 mm are used at 

each grip region of a fibre specimen (Figure 5.5). A label is stuck and folded at each 

end of a fibre, and then the labels are placed between the grips of testing rig (Figure 

5.5). Peg type grips with sticky rubber contact surfaces are used to enhance the 
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handling and gripping efficiency. This method is commonly used by Nonwovens 

Cooperative Research Center and its industrial members for mechanical testing of 

polymer-based single fibres. 

 

Figure 5.5. Gripping system for single fibre testing 

5.1.1. Simple Tension Tests 

As a starting point for testing the bicomponent fibres, a tension test is performed 

since it is the basic mechanical test to characterize the material„s behaviour. Three 

types of bicomponent fibres (Table 5.2) having different core materials are tested for 

various deformation rates in this stage. 

 Bicomponent Fibre 

Material (Core/Sheath) PP/PE PA6/PE PET/PE 

Cross-Section Fraction (%) (Core/Sheath) 75/25 75/25 75/25 

Mean Fibre Diameter (µm) 20 18 16 

Gauge Length (mm) 14 14 14 

    Table 5.2. Specifications of bicomponent fibre specimens 

Each fibre is tested several times (>10) under the same test. Fibres are loaded 

up to true strain of 1 which corresponds to 172% extension during the tests. This 

extension value is adequate since damage strains of the nonwoven fabrics studied in 



Chapter 5. Mechanical Behaviour of Thermally Bonded Nonwovens: Experimental Studies 

 

~ 89 ~ 
 

the research are less than it. Due to large strain values (strain >> 10%), true stress vs. 

true strain data based on current length and cross-sectional area of test specimen is 

utilized. Tensile test results for PP/PE fibres for deformation rate of 0.01 s-1 are given 

in Figure 5.6. 

 

Figure 5.6. Simple tension test results for five specimens of PP/PE fibres 

(strain rate:  0.01  s-1) 

According to Figure 5.6, the mechanical behaviour of bicomponent fibres do 

scatter significantly. This phenomenon could be a result of some local shape 

irregularities of the fibres due to the effect of heat or physical contact during web 

forming or hot calendering stages. In addition to shape irregularities, a fibre diameter 

is not constant along its length (Figure 5.7). Furthermore, diameters of various fibres 

are not the same (Figure 5.7) but vary for several reasons such as slight variations in 

cooling conditions or shrinkage behaviour. Diameters of the fibres are measured with 

scanning electron microscopy (SEM) as shown in Figure 5.7. 

A representative stress-strain curve of bicomponent fibre is necessary for 

computation of mechanical properties of nonwoven fabrics, which will be explained 

in Chapter 6. To do that, a mean curve of each tensile test is utilized. On the other 
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hand, a representative diameter of each fibre is determined based on the average 

value of SEM image measurements (Figure 5.7). According to these statements, 

stress-strain diagram of PA6/PE, PP/PE, PET/PE bicomponent fibres with the 

specifications shown in Table 5.2 are given in Figure 5.8 for various strain rates. 

 

Figure 5.7. Variations in fibre diameter (all units in µm; fibre: PP/PE, planar density: 

50 g/m2) 

Figure 5.8 shows that the bicomponent fibres tested at different strain rates 

exhibit a typical polymer behaviour characterised by a high level of strain and 

nonlinearity.  The difference between the curves (Figure 5.8) is due to strain-rate 

sensitivity linked to viscous effects in the material that will be explained in Section 

5.1.3. Moreover, the stress-strain curves indicate that hardening, i.e. material‟s 

strengthening with plastic deformation, occurs throughout the whole deformation 

range. Due to superior strength of PA6 and PET compared to PP (Table 5.1), 

bicomponent fibres with PA6 and PET cores can demonstrate larger stress values 

than those with PP core. Finally, as indicated before fibres are extended up to 172% 

of their original length during tensile testing. These curves will be used to assess the 

mechanical performance of nonwovens having rupture strain less than the maximum 

strain implemented in the tensile tests of their fibres in Figure 5.8. 
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Figure 5.8. Mechanical behaviour of PP/PE (a), PA6/PE (b) and PET/PE (c) fibres for three 

deformation rates (scatter: ±6%) 
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A simple tension test is inadequate to figure out the elastic behaviour of 

bicomponent polymer fibres. In order to have an idea about the elastic behaviour of 

these fibres, cyclic loading-unloading tests at small strain levels should be carried 

out. 

5.1.2. Cyclic Loading Tests 

Cyclic loading test is the repetitive application of consecutive loading and unloading 

with increasing tensile displacement or force in each cycle. This test can reveal the 

elastic behaviour of bicomponent fibres, i.e. large-strain or small-strain, linear or 

nonlinear. An identified elastic behaviour of fibres as a result of cyclic loading tests 

will play an important role in modelling strategy for thermally bonded nonwoven 

fabrics in this research. Bicomponent fibres with specifications indicated in Table 5.2 

are exposed to this test to identify their elastic behaviour. Fibres are loaded and 

unloaded repetitively with an increasing tensile extension at each loading stage up to 

a total strain value of 0.04. Typical cyclic loading test results for a bicomponent fibre 

are given in Figure 5.9.  

A practical way to decide on the elastic behaviour of fibres according to their 

cyclic loading data is to interpret unloading stages. As the load is removed from the 

specimen, recovery of the elastic portion of deformation, which is defined as spring 

back, takes place and a pure elastic behaviour is observed. As seen from unloading 

portions in Figure 5.9, bicomponent fibres possess a nonlinear elastic behaviour. On 

the other hand, due to this nonlinear behaviour, it is hard to determine their yield 

point. The difficulty of determining the yield strain of fibres arises from the fact that 

an infinite number of loading and unloading cycles without scatter in the 

experimental data is required to identify a sharp strain point to separate elastic region 

from the plastic one. Due to this fact, yield strain of a bicomponent fibre is assumed 

as that of its constituent polymer with smaller yield strain, e.g. yield strain of PA6/PE 

fibre is 0.013 which is the yield strain of PA6 (Table 5.1). According to this 

assumption, yield strains of bicomponent fibres used in this study are listed in Table 

5.3. 
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Figure 5.9. Cyclic loading test results for PP/PE fibre (b) and corresponding loading-

unloading control graph (a) 

A plastic behaviour of bicomponent fibres is distinguished after examining 

their elastic behaviour. When their yield strain (0.013 - 0.02) is compared to their 

rupture strain (>1.2), it is obvious that the governing deformation type is plastic 

during a large-strain deformation, i.e. the portion of irreversible deformation is more 

than that of reversible one. Plastic behaviour is nonlinear similar to elastic one. 
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Fibre (Core/Sheath) PA6/PE PP/PE PET/PE 

Yield Strain 0.013 0.02 0.014 
    Table 5.3. Yield strain values of bicomponent fibres (Ward and Sweeney, 2004) 

As mentioned in Section 5.1.1, mechanical performance of polymer fibres are 

influenced by viscous effects. Deformation behaviour of these fibres is time-

dependent due to these affects. Furthermore, nonlinear behaviour in the elastic region 

originates from these viscous effects. Elasticity combined with viscous effects is 

termed viscoelasticity. One typical symptom of viscoelasticity is a hysteresis loop on 

stress-strain curves, which is a deviation of unloading path from a loading path 

during spring back as seen in Figure 5.10. Each hysteresis loop is an indication of 

energy dissipation during unloading. Next section deals with a relaxation behaviour, 

which is another symptom of viscoelasticity and used to determine viscoelastic 

properties of a material. 

 

Figure 5.10. PET/PE fibre undergoing a load cycle with a hysteresis loop 
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5.1.3. Relaxation Tests 

Viscoelasticity is a typical deformation behaviour of polymers, and it should be 

included in numerical modelling of these materials. Viscoelastic parameters of time-

dependent viscoelastic material model should be obtained experimentally. There are 

two types of tests – creep and relaxation – used to characterize viscoelastic properties 

of a material. As explained in Section 4.3, the creep test records strain vs. time while 

a specimen is kept at constant stress; on the other hand, relaxation test records stress 

vs. time for a specimen at constant strain. In this study, a relaxation test is preferred 

to identify viscoelastic properties of bicomponent fibres. 

PP/PE, PA6/PE and PET/PE fibres with specifications shown in Table 5.2 are 

exposed to relaxation tests performed at various constant strain levels: 0.05, 0.1, 0.2, 

0.4 and 0.8. The test duration is 20000 s (5.5 h). A typical relaxation behaviour of 

these fibres is illustrated in Figure 5.11 for first 60 s in which major portion of the 

stress is dissipated. The graph is plotted for normalized stress for better comparison 

since we are interested in a character of stress decay rather than in stress values 

which vary with fibre material. 

 

Figure 5.11. Relaxation behaviour of PP/PE fibre for various applied strains (scatter: ±6%) 
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Relaxation curves in Figure 5.11 prove that polymer-based bicomponent fibres 

exhibit viscous behaviour since stress level decreases with time. Normalized stress 

value for a non-viscous material should remain 1 because the stress level does not 

change with time (Figure 5.11). Deviation of relaxation curves from the non-viscous 

value indicates that deformation performance of these materials is time-dependent. 

According to Figure 5.11, which shows the relaxation behaviour of the PP/PE fibre 

for 60 s period, approximately 35% of the stress is attenuated by the material in this 

period. Such a large amount of stress dissipation in a short time should be considered 

in numerical modelling of fabrics made of these fibres. 

 

Figure 5.12. Relaxation rate curves of PP/PE fibre for various applied strains (scatter: ±6%) 

Another interesting point in the relaxation behaviour of bicomponent fibres is 

that their viscous behaviour depends on the applied strain level. Relaxation 

performance is affected by the level of applied strain regardless of polymer material 

type. In the relaxation rate graph (Figure 5.12), based on the time differentiation of 

relaxation curves, the effect of applied strain on stress is more apparent. According to 

Figure 5.12, as the applied strain increases, the magnitude of initial relaxation rate of 

the material increases. Additionally, the relaxation rate at the initial stages of tests is 

significantly large. Especially for the applied initial strain of 0.8, the relaxation rate 
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starts with -18 MPa/s, which is a very high value. In 15 s, the magnitude of 

relaxation rate of fibres falls below 1 MPa/s and in 60 s it becomes less than 0.1 

MPa/s. As a result, time is an unavoidable parameter for determining the mechanical 

behaviour and performance of bicomponent fibres. 

To sum up, polymer-based bicomponent fibres used for manufacturing 

nonwoven fabrics have a complicated mechanical behaviour, which could be 

described as nonlinear large-strain viscoelastic-plastic. Deformation of such fibres is 

mainly governed by the non-elastic stage because their yield strain is negligibly 

small when compared to their rupture strain. Another complexity regarding to their 

performance is its scatter. Due to several imperfections related to the manufacturing 

process explained in Section 5.1.1, the experimental results scatter significantly. 

Therefore, the representative mean curve is facilitated in each experiment type to 

characterize the fibre behaviour. Numerical parameters, obtained for these 

representative curves, will be used as input data for numerical modelling of 

nonwoven fabrics made of such fibres. This topic will be discussed further in 

Chapter 7. 

As the basic element of nonwovens, bicomponent fibres play an important role 

in determining their deformation behaviour. In addition to fibres, microstructure of 

thermally bonded nonwovens is a prominent factor influencing their deformation 

performance. Microstructure of these fabrics should be examined to better 

understand their mechanical behaviour and to develop accurate numerical models. 

5.2. Microstructure of Thermally Bonded Bicomponent 

Fibre Nonwovens 

Characterisation of thermally bonded bicomponent fibre nonwovens requires a 

detailed study of their microstructure since it is the key to understanding the 

dependence of material's mechanical response on the direction of applied force as 

well as their damage behaviour. Hence, their microstructure should be examined to 

understand specific features of unique mechanical behaviour of these materials. In 
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order to observe the microstructure of these materials, scanning electron microscopy 

(SEM) and X-ray micro computed tomography (micro CT) facilities of 

Loughborough University are used. SEM is used to obtain 2D surface images 

whereas a micro CT system is utilized to acquire detailed 3D images of nonwoven 

materials. Each technique is used to examine the structure of nonwoven fabrics to 

reveal a particular feature. 

5.2.1. Examination with Scanning Electron Microscopy 

SEM technique enables us to examine surface images of nonwoven fabrics. 

Dimensions of structural entities observed on a planar surface could be measured 

with it. A thermally bonded nonwoven fabric shown in Figure 5.13 has a planar 

density of 150 g/m2 and manufactured with bicomponent fibres. The fibres in this 

case are composed of PE as sheath and PA6 as core material. The fabric is composed 

of two regions, namely, bond points and the fibre matrix.  Bond points are composed 

of core (PA6) fibres surrounded by molten sheath (PE) while the matrix is composed 

of distinct PA6/PE bicomponent fibres connecting bond points together as shown in 

Figure 5.13. 

 

Figure 5.13. SEM image of thermally bonded nonwoven fabric composed of bond points 

and fibre matrix (fibre: PA6/PE, planar density: 150 g/m2) 

A typical fibre matrix structure of a thermally bonded nonwoven fabric is 

shown in Figure 5.14. The matrix region is composed of randomly oriented 
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bicomponent fibres acting as links between bond points. Most of them are straight 

meaning that they carry load whenever the fabric is exposed to deformation acting 

along their axes, whereas a small portion of them are slightly curly and can only 

contribute to the strength of fabric after being straightened which requires 

deformation of the fabric. Due to the core/sheath structure, the core part of fibres is 

continuous throughout the fabric, contributing to its mechanical strength. 

 

Figure 5.14. Fibre matrix region of thermally bonded nonwoven fabric (fibre: PA6/PE, 

planar density: 50 g/m2) 

 

Figure 5.15. Fibre matrix region of thermally bonded nonwoven fabric (fibre: PA6/PE, 

planar density: 150 g/m2) 



Chapter 5. Mechanical Behaviour of Thermally Bonded Nonwovens: Experimental Studies 

 

~ 100 ~ 
 

Unlike the distinct fibres shown in Figure 5.14, a significant amount of surface 

regions of matrix have fibres stuck to each other due to the effect of heat used to 

form bond points during the hot calendering stage (Figure 5.15). As a result, a 

portion of the matrix region shown in Figure 5.15 contains the molten sheath 

material. These molten parts in the fibre matrix surface increases the bending 

stiffness of the fabric. 

Bond points are continuous regions, and their structure is similar to that of 

fibre-reinforced composites composed of sheath material as matrix and core material 

as fibres. When a hot calender with a pattern contacts and compresses the fibre 

matrix, the sheath part of bicomponent fibres melts and acts as an adhesive for the 

core parts of fibres, forming bond points. Unlike the fibre matrix, bond points are 

solid, continuous and thinner. Their bending stiffness is more than that of the fibre 

matrix. The shape and pattern of bond points vary according to the application area. 

A typical bond point shape of a thermally bonded nonwoven is shown in Figure 5.16. 

As explained in Section 3.1.2, nonwovens have two principal directions, namely, the 

cross direction (CD) and the machine direction (MD). These principal directions are 

shown in Figure 5.16 with respect to the orientation of the bond point. 

 

Figure 5.16. Bond point of thermally bonded nonwoven fabric with the illustration of 

principal directions (fibre: PA6/PE, planar density: 150 g/m2) 
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5.2.2. Examination with X-Ray Micro Computed Tomography 

X-ray micro CT scanning of nonwoven fabrics is performed using the facilities of 

Loughborough University with XTEK XT-H 160Xi device (Figure 5.17) capable of 

submicron scanning resolution. Unlike SEM, micro CT is capable of obtaining 3D 

models, which can supply structural information about the material‟s inner volume. 

Since this method is completely non-destructive, it is possible to use analysed 

specimens in further tests.  

 

Figure 5.17. X-ray micro computed tomography device, Loughborough University, UK 

A 3D model of a thermally bonded nonwoven fabric obtained with X-ray micro 

CT technique is shown in Figure 5.18. Due to the periodic bond pattern generated by 

engraved hot calender, surface topology is in the form of consecutive hills and 

valleys. Random orientation of fibres acting as links between bond points is 

identifiable in 3D space. Thickness decreases significantly at bond point regions due 

to pressure and heat applied during calendering stage, therefore near-surface fibres 

linking two neighbour bond points are stretched. As explained in the previous 

section, curly fibres do not contribute to strength of fabric at initial stage of 

deformation before they are stretched. This is one of the main reasons for a different 
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mechanical behaviour of low-density nonwovens (Hou, 2010) compared to that of 

high-density ones. 

 

Figure 5.18. 3D micro CT model of thermally bonded nonwoven fabric (fibre: PP/PE, planar 

density: 150 g/m2) 

In this study, the micro CT device is also used to obtain a very important 

parameter necessary for a numerical model and computation of mechanical 

properties of nonwoven fabrics. Average thickness of fibre matrix regions is 

measured with the X-ray micro CT system using images of through-thickness 

sections crossing the centre of bond points (Figure 5.19). Average thickness values 

for fibre matrix of various nonwoven fabrics shown in Table 5.4 will be used to 

compute their mechanical performance in Chapter 6. 

 Planar Density (g/m
2
) 

Fibre (Core/Sheath) 50 100 150 

PP/PE 0.35 mm 0.47 mm 0.55 mm 

PA6/PE 0.3 mm 0.42 mm 0.50 mm 

PET/PE 0.28 mm 0.40 mm 0.45 mm 
    Table 5.4. Average fibre matrix thickness of nonwoven fabrics used in this research 



Chapter 5. Mechanical Behaviour of Thermally Bonded Nonwovens: Experimental Studies 

 

~ 103 ~ 
 

Due to compressible structure of fibre matrix, micro CT technique is very 

suitable for obtaining through-thickness images without deforming nonwoven 

specimens. The difference between the porosity of matrix and that of bond points 

could be seen in Figure 5.19. During the bonding stage, as a result of pressure and 

melting of sheath part of fibres, bond points are formed as solid and continuous. Due 

to this difference, fibre matrix region is highly compressible compared to bond 

points. This is the main reason for differences between the mechanical characteristics 

of bond points and the fibre matrix. Mechanical performance of a porous and a 

nonporous structure will be definitely different, at least their compressive behaviour. 

 

Figure 5.19. Through-thickness image of thermally bonded nonwoven fabric obtained with 

X-ray micro CT (fibre: PP/PE, planar density: 150 g/m2) 

Principal directions MD and CD are defined on the fabric plane (Figure 5.16) 

with respect to the direction of fibre flow on the conveyor during production. In 

addition to these principal directions, the thickness direction (TD) is introduced to 

complete a 3D principal coordinate system for a nonwoven fabric. As seen in Figure 

5.19, TD refers to a principal axis normal to the fabric plane. Mechanical properties 

of nonwoven fabrics will be calculated based on these three principal directions in 

Chapter 6. 

As a result of examinations performed with SEM and X-ray micro CT 

techniques, it is concluded that thermally bonded nonwoven fabrics are composed of 

two distinct regions having different microstructures, which are the source of 
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different deformation behaviours of constituents. The fibre matrix does not have 

compressive strength due to a low threshold for buckling of individual fibres under 

compression. This region has also negligible bending stiffness that causes the fabric 

to behave like a membrane. On the other hand, bond points are similar to reinforced 

composite materials having randomly distributed fibres of core material. Bond points 

are solid and continuous regions of nonwoven fabrics. Hence, the bond pattern and 

shape will affect the mechanical performance of fabric significantly. As a result of 

differences in the microstructures of these regions, they will be handled separately in 

numerical modelling. 

Another important point about the microstructure of nonwoven fabrics is the 

random orientation of fibres. Random orientation of fibres could be observed with 

both examination techniques in 2D as well as in 3D. As explained in Chapter 3, due 

to this randomness, the deformation behaviour of nonwoven fabrics depends on the 

direction of applied load. Therefore, results of tensile tests applied on fabric samples 

in different loading directions will differ. This behaviour could be observed in 

mechanical test results given in the next section, which is about mechanical 

performance of thermally bonded nonwovens. 

5.3. Mechanical Behaviour of Thermally Bonded 

Bicomponent Fibre Nonwovens 

Mechanical performance of thermally bonded nonwoven fabrics should be exposed 

via mechanical experiments in order to understand and represent their behaviour in 

numerical modelling. An adequate numerical model should include deformation 

characteristics obtained in this section. Furthermore, experimental results of this 

section will be used to improve and verify the numerical model introduced in this 

study. Experimental results introduced in this section will be considered from the 

computational mechanics point of view rather than textile engineering one. 

Tensile testing is the first step of mechanical experiments in order to have an 

initial insight into the deformation behaviour. Bicomponent fibre nonwoven samples 



Chapter 5. Mechanical Behaviour of Thermally Bonded Nonwovens: Experimental Studies 

 

~ 105 ~ 
 

are subjected to tension tests with Hounsfield Benchtop Tester (Figure 5.20) having 

±800 N load cell and pneumatic grips. Samples are loaded in tension along various 

directions with various loading rates to observe their rate-dependent anisotropic 

behaviour. Apart from tension tests, nonwoven samples are subjected to compression 

tests in thickness direction (TD) to observe their behaviour along TD. Finally, cyclic 

loading tests are performed on nonwoven fabrics to study their elasticity. 

 

Figure 5.20. Hounsfield Benchtop Tester with pneumatic grips 

5.3.1. Simple Tension Tests 

Thermally bonded bicomponent fibres are subjected to simple tension tests to analyse 

their deformation behaviour. Physical properties of nonwoven fabrics tested in this 

stage are given in Table 5.5. In addition to these properties, the bond shape and 

pattern are important factors affecting mechanical performance of these fabrics 

(Section 5.2). Bond points of fabrics tested in this section have a diamond shape, and 

their pattern is given in Figure 5.21. Dimensions of the specimens tested along MD 

and CD are 30 mm in length and 15 mm in width. These dimensions are large 
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enough to capture a typical behaviour of thermally bonded nonwovens free of edge 

effects (Hou, 2010) since they cover a fabric area of approximately 15 x 8 bond 

points, and are convenient for mechanical testing. 

 Nonwoven Fabric 

Fibre Material (Core/Sheath) PP/PE PA6/PE PET/PE 
Fibre Cross-Section Fraction 

(%) (Core/Sheath) 

75/25 

Fibre Diameter (μm) 20 18 16 
Fabric Planar Density (g/m

2
) 50 100 150 50 100 150 50 100 150 

Matrix Thickness (mm) 0.35 0.47 0.55 0.30 0.42 0.50 0.28 0.4 0.45 

Gauge Length (mm) 30 
Width (mm) 15 
    Table 5.5. Physical properties of thermally bonded nonwoven fabrics used in this research. 

 

Figure 5.21. Bond pattern of nonwoven fabrics given in Table 5.5 (fibre: PA6/PE, planar 

density: 150 g/m2) 

As explained in the previous section, nonwoven fabrics are manufactured with 

fibres having random orientations. Due to the manufacturing technique, these fabrics 

are expected to possess anisotropic mechanical properties. In order to observe this 

mechanical anisotropy, fabric samples are tested with respect to their planar principal 
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directions which are MD and CD. Various deformation rates are applied in tension 

tests to observe strain-rate sensitivity in their mechanical performance. 

   
(a)                                                                 (b) 

Figure 5.22. Simple tension test results for nonwoven fabric tested in MD (a) and in CD (b) 

for three deformation rates (fibre: PP/PE, planar density: 50 g/m2, specimen dimensions: 

30 mm x 15 mm, scatter: ±10%) 

Simple tension tests for thermally bonded nonwoven fabrics described in Table 

5.5 are performed and curves of 50 g/m2 PP/PE thermally bonded nonwoven fabric 

are shown in Figure 5.22 as typical examples. These curves are given in terms of 

force vs. extension to compare with their numerical model results. Here, it is obvious 

that direction of applied load affects the deformation performance of these fabrics. 

As explained in Section 3.1, a majority of fibres in nonwovens tend to orient along 

MD rather than CD. This phenomenon could be observed in a typical ODF graph 

shown in Figure 3.2. As a result of this, strength of nonwoven fabrics in MD is 

higher than that in CD. Tension curves in Figure 5.22 reflect this anisotropic 

behaviour. 

In addition to mechanical anisotropy, nonwoven fabrics exhibit strain-rate 

effects. As seen in Figure 5.22, as the strain rate increases, the force required to 

deform material increases as well. This behaviour originates from time-dependent 

viscous deformation performance of polymer-based fibres (Section 5.1). Another 

interesting point is the damage behaviour, which is related to fabric‟s microstructure. 
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According to tension test results, rupture strain of fabrics is significantly lower than 

that of their fibres. The main reason for this is premature failure of fibres at the fibre-

bond interface (Michielsen et al., 2006). 

 

Figure 5.23. Nonwoven fabric under tension (fibre: PA6/PE, planar density: 100 g/m2, initial 

specimen dimensions: 30 mm x 15 mm) 

A tangential modulus curve could be plotted based on homogenized stress vs. 

strain curve of fabrics for better understanding of their behaviour. In order to 

evaluate experimental data regardless of specimen‟s dimensions, homogenized stress 

vs. strain curve is utilized. During the calculation of homogenized stress, nonwoven 

fabrics are assumed as homogenous materials, and matrix thickness in Table 5.5 is 

assumed as fabric thickness for calculating current cross-sectional area at each data 

point. The tangential modulus is the slope of stress vs. strain curve at a specified 

strain (Figure 5.24). This information is important for predicting stress evolution 

during deformation; it can inform us about the linearity of deformation behaviour. 

The tangential modulus ( tE ) is calculated as 





d
d

t E .                                                          (5.1) 
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Figure 5.24. Graphical definition of tangential modulus ( tE ) 

 

Figure 5.25. Tangential modulus curves of nonwoven fabric in MD and CD (fibre: PA6/PE, 

planar density: 150 g/m2) 

Apparently, for linear portions of the graphs, such as elastic region of metals, 

the tangential modulus remains constant. According to Figure 5.25, nonwoven 

fabrics have a highly nonlinear deformation behaviour similar to that of their fibres. 

The tangential modulus decreases up to strain of 0.1 and starts to increase thereafter. 

The expected behaviour of fibres in the fabric during the initial stage of deformation 

is their reorientation to diminish their angle with respect to the loading direction. 
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Besides, some curly fibres start to carry load as they get straightened at the beginning 

of deformation. These expected performances should increase the tangential modulus 

of material in the loading direction. However, Figure 5.25 demonstrates the opposite 

trend up to 0.1 strain value. Therefore, nonlinearity of the material cannot be 

explained by the mentioned deformation mechanisms linked to individual fibres 

leading to geometric nonlinearity. Therefore, it is concluded that this nonlinearity 

originates from the behaviour of polymer-based bicomponent fibres. This conclusion 

will play an important role in developing the methodology for computing the 

mechanical properties of nonwoven fabrics based on their single-fibre behaviour. 

5.3.2. Compression Tests in Thickness Direction 

Fabrics are membrane-like structures and they can only carry loads in tensile 

direction in their plane. The main reason for applying compression along TD is to 

verify the poor performance of fibre matrix in this direction. Mechanical properties 

for this direction are also necessary in numerical modelling. In order to compare 

mechanical performance in TD with that in MD and CD, homogenized stress vs. 

strain data is used. As explained before, the term “homogenized” is used because 

nonwovens are not homogeneous materials. For the sake of dimensionless 

comparison, thickness of fibre matrix is assumed to be representative thickness of the 

homogenized nonwoven material. A cross-sectional area is recalculated for each 

strain level based on this assumption. Dimensions of specimens subjected to 

compression tests are 10 mm x 10 mm; thickness of the fabric is used as the gauge 

length (Table 5.5). Deformation rate is the same as used in tensile tests performed 

along MD and CD. 

As explained in Section 5.2, due to porous and highly compressible structure of 

the matrix region, strength in TD is negligibly low when compared to that in MD and 

CD (Figure 5.26). Due to the type of applied displacement in compression test, stress 

values of TD curve in Figure 5.26 are negative. In the compression test, it is the 

matrix region that is exposed to compression rather than bond points because 

thickness of the bond points is approximately 30% of that of the matrix (Figure 
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5.27). In fact, bond points are solid regions with higher yield strength with respect to 

matrix region in TD. Therefore, mechanical performance of matrix region up to the 

compression distance, which is approximately 70% of the matrix thickness, is 

obtained from compression tests. This distance varies with planar density and fibre 

diameter. 

 

Figure 5.26. Mechanical behaviour of thermally bonded nonwoven fabric in MD and CD 

and TD (fibre: PA6/PE, planar density: 150 g/m2, strain rate: 0.01 s-1, scatter: ±10%) 

(Absolute magnitude of true strain is used for TD) 

 

Figure 5.27. X-ray micro CT image of through-thickness cross section of thermally bonded 

nonwoven (fibre: PA6/PE, planar density: 150 g/m2) 



Chapter 5. Mechanical Behaviour of Thermally Bonded Nonwovens: Experimental Studies 

 

~ 112 ~ 
 

5.3.3. Cyclic Loading Tests 

The aim of this section is to investigate the elastic behaviour of thermally bonded 

nonwoven fabrics. Each specimen with dimensions 30 mm x 15 mm is subjected to 

consecutive loading and unloading cycles with increasing force amplitude in each 

loading stage. As explained in Section 5.1.2, in such tests spring back reveals pure-

elastic deformation characteristics of a material. In order to evaluate experimental 

data regardless of specimen dimensions, homogenized stress vs. strain data is utilized 

as above. 

 

Figure 5.28. Cyclic loading of nonwoven fabric in MD (strain range: 0-1) (fibre: PA6/PE, 

planar density: 100 g/m2) (b) and corresponding loading-unloading control graph (a) 
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Cyclic loading tests reveal viscoelastic behaviour of the material, which could 

be observed during the unloading stage of each cycle (Figure 5.28). Similar to the 

constituent fibres, nonwovens exhibit time-dependent mechanical properties 

generating hysteresis loops during each load cycle. Due to these properties, a portion 

of elastic energy is dissipated by the material. According to the results of relaxation 

experiments performed with bicomponent fibres, we can conclude that the viscous 

behaviour of these fabrics is originating from their bicomponent fibres. 

 

Figure 5.29. Cyclic loading of nonwoven fabric in MD (strain range: 0-0.1) (fibre: PA6/PE, 

planar density: 100 g/m2) 

Figure 5.29 is the magnified version of Figure 5.28 to analyse the yield 

behaviour at early stages of deformation. The nonwoven fabric deforms plastically, 

even extended to 0.01 strain level, according to Figure 5.29. Therefore deformation 

of such fabrics is mainly governed by plasticity. To sum up, deformation 

characteristics of polymer-based bicomponent fibres is retained for the nonwoven 

fabrics manufactured with them. As explained in Chapter 2, one of these 

characteristics is temperature-history-dependent mechanical properties which will be 

explained in the next section. 
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5.4. Effect of Calendering Temperature on Mechanical 

Performance of Nonwovens 

Mechanical properties of polymer materials are influenced by the temperature history 

they are exposed to. Therefore, any temperature change during the hot calendering 

stage affects the mechanical behaviour of thermally bonded nonwovens by affecting 

bonding between fibres. In order to investigate this effect, hot and cold calendered 

nonwoven specimens having identical physical properties are subjected to tension 

tests.  

(a)                                                                  (b) 

Figure 5.30. Mechanical behaviour of hot and cold calendered nonwoven fabrics in MD (a) 

and CD (b) (fibre: PA6/PE, planar density: 150 g/m2, strain rate: 0.01 s-1, scatter: ±10%) 

According to Figure 5.30, effect of heat during calendering is very important 

for bonding of fibres and the resultant mechanical response of the fabric. When 

fabrics are manufactured with cold calendering, contribution of bond points to the 

mechanical response of structure decreases significantly. The change in damage 

behaviour is a result of this decreased contribution. Due to heat generated during hot 

calendering, the sheath material is melted not only in the bond regions but also in 

some parts of matrix (Figure 5.15). As described before, this phenomenon increases 

the material‟s macroscopic continuity and stiffness of fabric. Figure 5.31 

demonstrates how this continuity affects the damage behaviour of nonwoven fabrics. 
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Apparently, failure of the hot calendered specimen corresponds to premature failure 

of fibres at the fibre-bond interface, and due to the macroscopic continuity, damage 

is localised based on stress concentration (Figure 5.31).  On the other hand, the cold 

calendered specimen in Figure 5.31b deforms in an inhomogeneous way as if it has 

no bond points. Hence, damage is not localised as a result of the stress distributed on 

individual fibres. 

                                                                        
(a)                                            (b) 

Figure 5.31. Damage behaviour of nonwoven fabrics manufactured with hot calendering (a) 

and cold calendering (b) (fibre: PA6/PE, planar density: 150 g/m2) 

The effect of bonding temperature will be considered in the assessment of the 

mechanical properties in Chapter 6. In order to do this, the effect of bonding 

temperature on the mechanical properties of the fabric should be investigated 

experimentally. For this purpose tensile tests are performed on PP/PE 50 g/m2 

nonwoven specimens calendered at temperatures of 110°C, 120°C, 130°C and 

140°C, the last being the ideal bonding temperature and the experimental results are 

given in Figure 5.32. Dimensions of the specimens are 30 mm x 15 mm. 
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According to Figure 5.32, deformation performance of a fabric is correlated to 

its calendering temperature. Not only flow stress, but also damage behaviour changes 

with calendering temperature. Ultimate tensile strength decreases dramatically with 

decreasing calender temperature (140°C is the ideal bonding temperature). Up to a 

strain level between 0.2 and 0.3 (vertical dashed lines in Figure 5.32), flow stress is 

directly proportional to the calendering temperature within the studied range. Beyond 

this strain value proportionality is lost due to gradual damage initiation in samples 

with lowest bonding temperature, i.e. especially the one calendered at 110°C. 

Therefore it could be assumed that, as long as damage is not present in the material, 

there is a correlation between flow curve of a nonwoven and its calendering 

temperature. 

(a)                                                                (b) 

Figure 5.32. Mechanical behaviour of nonwovens manufactured with various calendering 

temperatures in MD (a) and CD (b) (fibre: PP/PE, planar density: 50 g/m2, scatter: ±10%) 

For decreasing temperatures below the ideal one, flow curves and elastic 

moduli of the regions tend to decrease; whereas for higher calender temperatures, 

flow curves and elastic moduli remain at the levels corresponding to those at the 

ideal temperature, but fracture strain of the matrix decreases due to premature failure 

of fibres at the fibre-bond interface (Michielsen et al., 2006). In most cases, 

thermally bonded nonwovens are calendered at ideal temperature which is 

approximately 140°C for the fabrics described in Table 5.5. The ideal calender 

temperature may increase slightly with increasing planar density.  
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A practical way to determine a correlation between mechanical response of a 

thermally bonded nonwoven and its calendering temperature is to derive normalized 

flow stress vs. calendering temperature graph. The normalized flow stress )(T  at a 

specific calendering temperature T  could be defined as 

)(
)()(

idealT

T
T




  ,                                                   (5.2) 

where )( idealT  is the flow stress at ideal calendering temperature idealT  and )(T  is 

the flow stress at a specific calendering temperature. 

A linear relation between the calendering temperature and mechanical response 

of the material is rebuilt in Figure 5.33. The effect of bonding temperature on the 

mechanical behaviour of MD and CD differs slightly. This is due to the randomness 

in the structure. It is assumed that the relationship between calendering temperature 

and the mechanical behaviour of nonwoven materials is linear (Figure 5.33); this 

linear empirical correlation will be included into the numerical model used to 

compute the mechanical properties of nonwoven fabrics in Chapter 6. 

 

Figure 5.33. Normalized flow stress graph of the flow curves in Figure 5.32 (fibre: PP/PE, 

planar density: 50 g/m2) 
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5.5. Conclusions 

To sum up, the mechanical behaviour of thermally bonded bicomponent fibre 

nonwovens is non-trivial and differs from that of conventional structural materials; 

only a few studies related to a similar behaviour were performed (Makela and 

Ostlund, 2003; Cox, 1952). The material behaviour could be summarized as 

anisotropic and nonlinear (elastic-plastic) combined with viscous affects. This type 

of behaviour is not implemented in the standard FE software packages, e.g. 

hypoelastic and hyperelastic (isotropic only) material models are used for nonlinear 

elasticity but they do not support plasticity. Therefore a suitable material model 

should be implemented in FE environment to reflect the real-life performance of 

these materials. 

According to the experimental results presented in this chapter, it is concluded 

that thermally bonded nonwoven fabrics have a unique mechanical behaviour. This 

behaviour is dissimilar to that of composites, polymers, metals and woven textiles, 

but it is a mixture of them. These fabrics demonstrate mechanical anisotropy like 

composites, nonlinear elasticity and viscous effects like polymers, and nonlinear 

large strain plasticity like metals. The most important feature making them unique by 

means of mechanical performance is that they are composed of two distinct regions 

(bond points and the fibre matrix) containing randomly oriented fibres. On the other 

hand, because these fabrics are made of polymer materials their mechanical response 

depends on the temperature history they are exposed to. Any temperature change 

during manufacturing process, such as calendering temperature, affects their 

mechanical behaviour. 

The experimental results obtained in this chapter will be used for the 

computation of mechanical properties of these fabrics. Anisotropic mechanical 

properties of fabrics will be assessed based on the mechanical properties of their 

fibres, which are the sources of characteristic deformation behaviour of fabrics. The 

next chapter aims to explain the procedure for computing mechanical properties of 

thermally bonded bicomponent fibre nonwovens based on the deformation 

characteristics of their fibres, their microstructure and manufacturing parameters. 
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CHAPTER VI 

6. ASSESSMENT OF MECHANICAL 

PROPERTIES OF THERMALLY 

BONDED NONWOVENS 

A numerical model, which aims to reproduce a real-life deformation behaviour of 

thermally bonded nonwovens, requires accurate material properties. The structured 

nonwovens are composed of two regions (bond points and fibre matrix) having 

distinct mechanical properties. As demonstrated in Section 5.2, the main reason for 

difference in mechanical properties of bond points and fibre matrix is their 

microstructures, which are determined by manufacturing parameters. As a 

consequence of difference in their microstructures, bond points and fibre matrix will 

be assigned distinct material properties in the numerical model introduced in Chapter 

7. Therefore, mechanical properties of these regions should be assessed separately.  
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This chapter is dedicated to the assessment of mechanical properties of bond 

points and matrix considering mechanical anisotropy in the microstructure due to 

randomly oriented fibres. In the first section, mechanical anisotropy of nonwovens 

will be analysed. An algorithm is developed to compute an orientation distribution of 

fibres in the material and its anisotropy. Furthermore, the effect of deformation on 

mechanical anisotropy of nonwoven fabrics is studied. In the second section, 

assessment of anisotropic viscoelastic-plastic mechanical properties of bond points 

and a fibre matrix will be explained. A second algorithm based on a single-fibre 

behaviour and manufacturing parameters of fabric is developed for this assessment. 

6.1. Analysis of Anisotropy in Thermally Bonded 

Nonwoven Fabrics 

Mechanical anisotropy is the most prominent feature of nonwoven materials, and it 

should be included in their numerical models. This phenomenon is related to random 

orientation of fibres constituting complex microstructures of nonwovens. 

Nonuniform orientation distribution of fibres in the microstructure leads to a 

direction-dependent mechanical response, which could be observed in the tensile test 

results of nonwovens shown in Section 5.3.  

A novel approach to study the relation between mechanical anisotropy of 

thermally bonded nonwovens and their random structure is developed in this section. 

The procedure to derive this relation starts with obtaining orientation distribution 

function (ODF) that quantifies randomness in the microstructure. Then, anisotropic 

parameters are computed based on the ODF of fibres. Determination of these 

parameters is vital for assessing material properties required for the numerical model. 

Finally, the effect of deformation on the anisotropic parameters is considered based 

on several experimental case studies, to check the validity of these parameters for 

large deformations. 
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6.1.1. Orientation Distribution Function 

As explained in Section 3.1, the character of orientation distribution of fibres is 

represented by ODF in the literature. The ODF of a nonwoven can be computed 

using micro-scale images of its fibre matrix employing digital image processing 

techniques. There are two main methods used in image processing to determine 

ODF: the Fast Fourier Transform (FFT) (Kim and Pourdeyhimi, 2001) and the 

Hough Transform (HT) (Xu and Yu, 1997; Ghassemieh et al, 2002a). As explained 

in Section 3.1, HT gives robust and faster results for dense structures.  

 

Figure 6.1. GUI of Nonwovens Anisotropy V1 for computing ODF and mechanical 

anisotropy of fibrous materials 

Shorter computation times and robustness with regard to image noise lead to 

the introduction of a new code based on HT method to analyse the ODF of 

nonwoven fibrous materials in this study. The new code – Nonwovens Anisotropy 

V1 – is generated in MATLAB® software because of its broad function library for 

digital image processing. The code has a user-friendly graphical user interface (GUI) 



Chapter 6. Assessment of Mechanical Properties of Thermally Bonded Nonwovens 

 

~ 122 ~ 
 

and could be used as a stand-alone application in Microsoft® Windows®-based 

systems (Figure 6.1). 

Nonwovens Anisotropy V1 can compute the ODF of a fibre matrix from its 

micro-scale image obtained with SEM or X-ray micro CT techniques. The code 

acquires the image and transforms it into a 3D matrix containing 8 bits of red (R), 

green (G) and blue (B) colour channels for image processing. Initially, the acquired 

image in RGB (colour scale) format is converted to a 2D grey scale image and 

filtered for several noise conditions, such as salt & pepper (Gonzalez and Woods, 

2002). Then edges of the objects (fibres) in the grey scale image are detected and 

value 1 is assigned to them; 0 is assigned to the rest of the image by the algorithm. 

As a result of this process, a 2D image matrix containing binary values is generated 

for the HT. Finally, pixel coordinates of edge points are converted into a Hough 

domain in order to calculate the connectivity and continuity of fibre lines. The image 

processing steps followed for detecting fibres and their orientations in a fibre matrix 

from its micro-scale image are illustrated as blocks in Figure 6.2. 

 

Figure 6.2. Image processing steps followed in Nonwovens Anisotropy V1 algorithm 

When a line is detected in the algorithm, a red line is drawn on it to verify its 

detection (Figure 6.3a). Once the line is detected, its orientation is calculated based 

on its start and end points. Curvature on the lines is tolerated up to a threshold value, 

which could be changed depending on the microstructure. This code could detect the 
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ODF of fibres in any type of fibrous material with distinguishable fibres, e.g. fibrous 

metal networks, fibre-reinforced composites. MATLAB® digital image processing 

functions used in the algorithm are robust in a way that critical parameters, such as 

thresholds, are automatically determined by the program and the process is not 

entirely dependent on the user‟s specific choices. The parameters in the GUI (Figure 

6.1) either define limits for functions or enhance configurability. Following four 

images with different characteristics are analysed in this section with the same GUI 

parameters except for image division ones to justify the robustness of the developed 

software. 

  
(a)                                                                       (b) 

Figure 6.3. Binary image containing randomly oriented twelve lines (a) and their ODF 

computed with Nonwovens Anisotropy V1 (b) 

An image containing twelve artificial white lines with random orientations is 

used to demonstrate the algorithm (Figure 6.3a). In the image are there red lines 

drawn on the white ones by the code indicating their detection. In this way, a user 

can calibrate the digital image processing parameters of the code regarding light and 

noise conditions, and a size of fibres. The ODF of lines in Figure 6.3a is given in 

Figure 6.3b in the form of frequency of fibres (%) vs. fibre orientation (degrees) 

graph. The frequency of fibres for an angle refers to the ratio of number of fibres 

aligned along the direction with an angle from the respective range to the total 

amount of fibres: hence the sum of the frequency values in an ODF graph yields 
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100%. In this study, the angle range [0°, 180°] is used for the axes of abscissas for 

ODF graphs, with 90° corresponding to the MD of nonwoven fabric. Therefore, 

vertical and horizontal directions of the image, which will be processed by the code, 

should coincide with MD and CD of fabric, respectively. 

Nonwovens Anisotropy V1 is tested with two fibre matrix images (Figures 6.4a 

and 6.5a) having distinct ODF characteristics. In the first case, a micro-scale image 

of a nonwoven‟s matrix region – Figure 6.4a – containing fibres parallel to MD is 

processed with the code. According to its ODF graph (Figure 6.4b), the majority of 

fibres are oriented along angles close to 90°, as can be observed in the image of fibre 

matrix (Figure 6.4a). In the second case, orientation of fibres in the image (Figure 

6.5a) is nearly random. Randomness in the microstructure is reflected in its ODF 

graph (Figure 6.5b) determined by the code. The character of ODF is confirmed by 

the micro-scale image shown in Figure 6.5a. Thus, Figures 6.4 and 6.5, showing fibre 

matrix images and their ODF graphs, demonstrate effectiveness of the developed 

code. 

    
(a)                                                                (b) 

Figure 6.4. SEM image of nonwoven fabric (a) and its ODF computed with Nonwovens 

Anisotropy V1 (b) 

Another feature of the code is subdomain processing, which improves the 

results by dividing the image into a user-defined number of subdomains for 
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processing. In this technique, the ODF of each subdomain is computed separately 

considering its own noise and light conditions. A weighted mean of subdomain 

ODFs is employed as the resultant ODF of the complete image. This homogenized 

approach yields a more adequate ODF for the nonwoven fabric, since it considers 

local deviations in orientation. The most important rule to use this feature is to keep 

aspect the ratio of image subdomains approximately square. This feature is useful not 

only for dense materials, but also for several issues originating in imaging 

conditions, such as local brightness in SEM images or salt & pepper noise in X-ray 

micro CT images. 

  
(a)                                                               (b) 

Figure 6.5. SEM image of nonwoven fabric (a) and its ODF computed with Nonwovens 

Anisotropy V1 (b) 

The subdomain processing feature of the code is tested using an X-ray micro 

CT image of the PP/PE nonwoven fabric having a dense fibrous structure shown in 

Figure 6.6. It is obvious that fibres in Figure 6.6 are less distinguishable than the 

ones in Figures 6.4a and 6.5a due to the image scale and high fibre density. In order 

to increase distinguishability of individual fibres, the image is divided into six sub-

images having aspect ratios closed to that of a square. The code generates these sub-

images (Figure 6.7) each showing a specific region of the main image (Figure 6.6). 

Detected fibres in each subdomain are designated with red lines drawn on top of 
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them (Figure 6.7). Red lines indicating orientations of fibres help a user to optimize 

the outcome with respect to microstructure and imaging conditions. 

An interesting point is that two of the sub-images in Figure 6.7 are brighter 

than the others because each one is processed based on its own brightness and noise 

conditions. In other words, pixel values change as a result of histogram equalization 

applied to the binary form of sub-images for making fibre boundaries more 

distinguishable. In this case, the light source, which increases brightness of nearby 

regions, is located at the right bottom corner of the image in Figure 6.6. 

 

Figure 6.6. X-ray micro CT image of nonwoven fibre matrix region (fibre: PP/PE, planar 

density: 50 g/m2) 

The ODF of each subdomain in Figure 6.7 is computed separately by the code 

and given in Figure 6.8. It is obvious that ODF characteristics of each region are 

different, due to randomness in the microstructure. At this point, it should be 

emphasized that position and size of the input image area of the nonwoven material 

play an important role in determining a representative ODF. The X-ray micro CT 

image in Figure 6.6 covers an area between neighbouring bond points along CD and 

MD that form a periodic bond pattern. Two horizontal boundary bond points along 

CD, which are excluded from ODF computation due to lack of fibre boundaries, 
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could be seen partially at the right and left edges of fibre matrix in Figure 6.6. 

Computation efficiency of the code could be improved by increasing the resolution 

and sharpness of input image. The fibre-detection possibility increases with increased 

sharpness and resolution at pixels located on fibre boundary regions. Additionally, 

the number of image divisions could be increased together with image resolution and 

sharpness to obtain a more adequate ODF for nonwoven material. 

 

Figure 6.7. Subdomains of fibre matrix image (Figure 6.6) processed with Nonwovens 

Anisotropy V1 

The resultant ODF of the PP/PE nonwoven fibre matrix shown in Figure 6.6, 

computed based on ODFs obtained for each subdomain (Figure 6.8), is given in 

Figure 6.9. Based on the number and orientations of fibres computed in each sub-

image, a resultant ODF graph for the complete image is generated by the code. This 

ODF graph reflects the orientation distribution of the overall fibrous network based 

on particular regions. The resultant ODF computed by the code will be used to 

characterize the randomness of the fabric‟s microstructure. 

To sum up, a practical user-friendly code for computing the ODF of fibrous 

materials is introduced in this section. Using the subdomain processing feature with a 
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larger number of image divisions will improve ODF results. Additionally, increased 

image resolution and sharpness contribute to fibre detection capability of the code, 

which improves the computed resultant ODF. This ODF graph will be used to 

determine anisotropic parameters, which are necessary for assessing anisotropic 

mechanical properties of nonwoven materials. The derivation of these parameters 

from the ODF graph will be explained in the next section. 

 

Figure 6.8. ODF of each subdomain in Figure 6.7 

6.1.2. Anisotropic Parameters 

Anisotropy is an unavoidable phenomenon in nonwovens; therefore it should be 

taken into account during the computation of their mechanical properties. The level 

of direction-dependency of the mechanical response is very important for results of 

simulations. As the number of material symmetry planes decreases, the amount of 

parameters defining the direction-dependant behaviour increases significantly, hence 

increasing the complexity of material definition as well as the computation time. 

Orthogonal anisotropy (orthotropy), having three symmetry planes, can sufficiently 

define the level of anisotropy for thermally bonded nonwovens. The principal 
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directions of orthotropy in nonwovens can be assumed as coincident with their 

principal directions – MD, CD and TD – for definition of their viscoelastic-plastic 

parameters. 

 

Figure 6.9. Resultant ODF obtained from subdomain ODFs in Figure 6.8 

The main source of anisotropy is the nonuniform orientational distribution of 

fibres causing a direction-dependent response. The nonuniformity can be quantified 

with the use of the ODF, which will be used to calculate of orthotropic parameters. 

Due to the nature of orthotropy, these parameters are assumed to be symmetric with 

respect to MD and CD on fabric plane. The parameters defining the level of 

orthotropy are calculated from the ODF in Nonwovens Anisotropy V1, according to 

the following equations; 
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where MDC  and CDC  are the parameters defining the level of orthotropy in MD and 

CD (obviously, 1CDMD CC ) that are used to calculate the stress-strain curves of 

the nonwoven material for MD and CD; i  is the angle between the axis of the i
th 

fibre and CD; N  is the total number of fibres accounted by the ODF algorithm. 

Orthotropy of a nonwoven material could be determined with two possible 

approaches: (i) using parameters obtained from the ODF (Equation 6.1) and (ii) using 

the stress-strain results of tensile tests performed along MD and CD. In order to 

compare these approaches quantitatively, two orthotropic ratios – experimental ( ER ) 

and theoretical ( TR ) – are introduced to define the level of direction-dependent 

mechanical behaviour on fabric plane. ER  is defined as 

,
CD

MD
E




R                                                         (6.2) 

where  MD  and CD  are the stresses along MD and CD obtained from the  tensile 

test results. On the other hand, to obtain the level of orthotropy from the constants 

MDC  and CDC , which are computed with Nonwovens Anisotropy V1  using the ODF 

of nonwoven fabric, TR  is introduced as follows 

.
CD

MD
T

C

C
R                                                          (6.3) 

Values of ER  and TR  of the PP/PE nonwoven fabric shown in Figure 6.6 are 

compared using the ODF of the fabric given in Figure 6.9. Here, TR  is found using 

Equation 6.3, which requires MDC  and CDC  parameters. According to Equation 6.1, 

MDC  and CDC  of the PP/PE nonwoven fabric are 0.65 and 0.35, respectively, which 

in turn yield a TR  value of 1.86. On the other hand, tensile test results of the fabric in 

Section 5.3 are used to draw the ER  curve using Equation 6.2. According to Figure 

6.10, orthotropy of the nonwoven varies with deformation due to reorientation of 
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fibres. The mean value of ER  curve – 1.77±22% – is also given in Figure 6.10. For 

an isotropic material, ER  is always 1 due to an infinite number of symmetry planes 

causing direction-independent stress-strain curve.  

 

Figure 6.10. Experimental orthotropic ratio of nonwoven fabric (fibre: PP/PE, planar 

density: 50 g/m2) 

According to Table 6.1, which contains the mean value of ER  curve and TR  
for various nonwoven fabrics, their orthotropic ratios calculated from the ODF are 

close to those determined with tensile test results. Apparently, TR  values are well 

within the variability range of ER  curves. So according to the results in Table 6.1, 

accuracy of Nonwovens Anisotropy V1 in predicting the level of mechanical 

orthotropy using microstructural images of a nonwoven fabric is promising. As a 

consequence of this agreement, MDC  and CDC  parameters computed by the code will 

be used to assess orthotropic mechanical properties of nonwoven fabrics. 

To sum up, anisotropy of nonwoven materials is analysed in this section by 

means of quantification of their random fibrous microstructure. The developed code 

– Nonwovens Anisotropy V1 – is used to perform this analysis using micro-scale 

images of fibre matrix obtained with SEM or X-ray micro CT techniques. 

Randomness in the fabric microstructure is quantified with the ODF, which is 
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computed with the developed code from the microstructural image of nonwovens. A 

relation between the ODF and mechanical anisotropy is suggested introducing 

orthotropic parameters representing a direction-dependent mechanical response of 

nonwovens. These parameters will be a part of the procedure for computing the 

orthotropic mechanical properties of thermally bonded nonwoven materials. 

 PP/PE 50 g/m
2 

PA6/PE 100 g/m
2
 PA6/PE 150 g/m

2
 

RE 1.77±22% 2.55±12% 2.30±7% 

RT 1.86 2.64 2.59 
    Table 6.1. Experimental and theoretical orthotropic ratios of several nonwoven fabrics 

6.2. Analysis of Orthotropic Mechanical Properties 

Nonwoven materials are composed of two regions – bond points and fibre matrix – 

having distinct mechanical properties. As explained in Section 5.2, the main reason 

of this distinction is the difference in their microstructures; with bond points being 

solid and continuous structures whereas the fibre matrix is porous and compressible. 

Besides, due to random orientation of fibres, the mechanical behaviour of these 

regions is anisotropic. Therefore, direction-dependent mechanical properties of these 

regions should be treated separately. 

This section aims to analyse mechanical properties of bond points and fibre 

matrix using several parameters related to (i) manufacturing processes, (ii) 

bicomponent fibre performance and (iii) constituent polymer materials. Mechanical 

properties will be determined based on orthotropic symmetry conditions, which can 

sufficiently define the level of anisotropy for thermally bonded nonwovens. 

Orthogonal directions of nonwovens – MD, CD and TD – will be used as principal 

directions of orthotropy. 

Analysis of orthotropic mechanical properties of nonwoven materials is 

performed with a specially developed algorithm. Similar to the previous one, 

introduced for anisotropy analysis in the previous section, this algorithm is also 

written in MATLAB® software. Having a GUI shown in Figure 6.11, the code could 
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be used as a stand-alone application in Microsoft® Windows®-based systems. The 

code – Nonwovens V4 – was introduced and improved throughout the research 

period for determining the orthotropic viscoelastic-plastic mechanical properties of 

bond points and fibre matrix regions of nonwoven materials. In order to submit the 

analysis results, this code generates two Excel® files; the first one containing all the 

inputs and outputs of the algorithm including orthotropic viscoelastic-plastic 

properties of nonwoven regions, and the second one containing specific input data 

for MSC.Marc® FE software package. 

 

Figure 6.11. GUI of Nonwovens V4 for analysing orthotropic viscoelastic-plastic 

mechanical properties of thermally bonded bicomponent fibre nonwoven materials 

The input parameters required to assess mechanical properties of thermally 

bonded bicomponent fibre nonwovens using Nonwovens V4 are based on several 

types of data such as manufacturing parameters, properties of constituent fibres and 

polymer constituents. Table 6.2 classifies the required input parameters for the GUI 

of the code regarding to their types. The parameters related to manufacturing are set 
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during the production stages of nonwovens (Section 2.2), such as MDC  and CDC  are 

computed based on the ODF which stems from the web-manipulation stage of 

manufacturing. Basically, these are the design parameters of a nonwoven fabric 

according to its application area. On the other hand, the second type of parameters is 

related to a raw form of the polymer materials used for core and sheath parts of 

bicomponent fibres. The last type of parameter is based on mechanical behaviour of 

a single bicomponent fibre, which could be obtained with tensile and relaxation tests 

explained in Section 5.1. 

Manufacturing Parameters 
Properties of Core and 

Sheath Materials
 

Properties of Single 

Fibre 

Nonwoven planar density Density Young‟s modulus 
Sheath cross-sectional ratio Young‟s modulus Flow curve 

Thickness of fibre matrix Poisson‟s ratio Relaxation curve 

MDC  and CDC  Shear modulus  

Fibre diameter Melting temperature  

Calendering temperature   
   Table 6.2. Input parameters for Nonwovens V4 

The parameters listed in Table 6.2 are facilitated in various stages of the 

Nonwovens V4 algorithm. After acquiring these parameters, the algorithm starts with 

calculating the number of fibres per 1 mm2 fabric area using the orthotropic 

parameters and nonwoven planar density. Since fibres act as trusses, and MDC  and 

CDC  represent the mechanical orthotropy on fabric plane, randomly oriented fibres 

could be represented with truss elements oriented along MD and CD with the ratio 

induced by orthotropy (Figure 6.12). With this approach, orthotropy in the material is 

provided by the ratio of the number of truss elements oriented along MD to that 

along CD. This approximation simplifies the problem with regard to the number of 

variables required to define the mechanical behaviour and computation time. Based 

on this approximation, orthotropic mechanical properties of bond points and the fibre 

matrix are computed with homogenizing the mechanical behaviour of fibre elements 
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in these regions based on their volumes. Equations, which are mainly developed for 

composite materials, will be employed for this homogenization due to their structural 

similarity to thermally bonded nonwoven materials. 

                          
(a)                                                            (b) 

Figure 6.12. Truss elements oriented along principal directions (b) representing orthotropic 

behaviour of randomly oriented ones (a) 

Assessment of mechanical properties of bond points and the fibre matrix is 

described here for a case study on PP/PE 50 g/m2 nonwoven fabric. Input parameters 

of this fabric for Nonwovens V4 are present on the GUI image in Figure 6.11. 

Additionally, all the required data for the algorithm including the flow and relaxation 

curves of bicomponent fibres could be found in Chapter 5. The procedure for 

analysing mechanical properties of bond points and fibre matrix in the algorithm will 

be explained for three types of behaviour: elastic, plastic and viscous. 

6.2.1. Elastic Properties 

Elastic properties of bond points and fibre matrix are handled separately due to 

difference in their microstructures causing variations in their mechanical behaviour. 

The algorithm treats the bond points as a composite material and calculates the 

elastic properties using the Rule of Mixtures (RoM) (Roesler et al., 2007) based on 

the properties and volume (area) fraction of the core and sheath materials. RoM is 

not employed in determining the single fibre behaviour due to availability of tensile 

test results, but mechanical tests of bond points are cumbersome due to their small 
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dimensions and random microstructure. A theoretical approach, such as RoM, for 

computing the mechanical properties of bond points could be used. Elastic moduli 

and Poisson‟s ratios in MD and CD are calculated based on the RoM (Roesler et al., 

2007) as 

,BBAA VEVEE                                                  (6.4) 

 ,BBAA VV                                                     (6.5) 

where E  and   are the resultant modulus of elasticity and resultant Poisson‟s ratio; 
BA,E  and BA,  are the elastic moduli and Poisson‟s ratios, and BA,V are volumetric 

fractions of materials A and B, respectively. For bond points, materials A and B 

correspond to core and sheath materials. On the other hand, the parameters in TD, 

which is the transverse direction, are calculated based on Halpin-Tsai equations 

(Chou, 1992) used for composites as follows: 
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where TE  is the modulus of elasticity in the transverse direction (TD) and fV  is the 

volumetric fraction of the fibres in a composite material, which in our case 

correspond to that of the core material of the bicomponent fibres. In-plane shear 

modulus of bond points LTG  is also calculated with Halpin-Tsai equations (Chou, 

1992) as 
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On the other hand, the matrix region behaves as a membrane having negligible 

bending stiffness due to low flexural stiffness of individual fibres. Elastic moduli of 

the matrix in MD and CD are computed with the RoM as in bond points 

(Equation 6.4), whereas it is considered negligibly small in TD (depending on 

convergence conditions, it could be assumed zero). The Poisson‟s ratio in the fabric‟s 

plane is also computed with RoM according to Equation 6.5, but due to compressible 

structure of fibre matrix, other Poisson‟s ratios are assumed to be equal to zero. 

Shear moduli of the fibre matrix are derived from its elastic moduli and Poisson‟s 

ratios, accordingly.  

 Bond Point
 

Fibre Matrix 

EMD (MPa) 604.9 95.3 
ECD (MPa) 325.7 51.3 
ETD (MPa) 892.8 0.8 
MD,CD 0.42 0.42 
CD,TD 0.42 0 
TD,MD 0.42 0 
GMD,CD (MPa) 369.4 58.2 
GCD,TD (MPa) 198.9 31.4 
GTD,MD (MPa) 545.3 0.5 
Density (Mg/mm

3
) 9.0625 x 10-10 1.4285x 10-10 

   Table 6.3. Elastic properties of PP/PE 50 g/m2 nonwoven regions analysed with 

Nonwovens V4 

Finally, thickness of bond points is derived using the fabric‟s planar density 

assuming that these regions are nonporous. Homogenized volumetric densities are 

assessed based on the thicknesses of two regions having the same planar density. The 

orthotropic elastic mechanical properties of the PP/PE 50 g/m2 nonwoven fabric are 

analysed using its input parameters shown in Figure 6.11. The outcome of the 

analysis is given in Table 6.3. 
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6.2.2. Plastic Properties 

Plastic properties define the irreversible deformation behaviour when yield stress of 

the material is exceeded. According to the tensile test results in Section 5.3, a large-

strain deformation behaviour of nonwovens is characterized by the direction of 

applied load. In order to model their anisotropic mechanical behaviour in plasticity, 

the Hill‟s anisotropic flow theory is employed in numerical modelling (Hill, 1950). 

This model requires flow curves (equivalent plastic strain vs. true stress) for principal 

directions of the material (MSC.Marc®, 2008r1). The flow curves of bond points and 

fibre matrix are obtained by normalization of the fibre flow curve using the 

orthotropic ratios obtained from the ODF as normalization factors. According to the 

normalization, the flow curve (
i ) for MD and CD is calculated as follows: 
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where f  and fA  are the flow curve and cross-sectional area of the fibre; n  is the 

number of fibres per 1 mm2 fabric area; 
iC  is the orthotropic ratio related to the 

principal direction of the flow curve denoted by i, and t  is thickness of the region.  

In the suggested computation algorithm the plastic behaviour of the fibre 

matrix in TD is implemented employing a flow curve with very small non-zero 

values. Finally, the flow curve of bond points in TD is assumed proportional to that 

in MD according to 
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where TDb,  and  MDb,  are the flow curves, and TDb,E  and  MDb,E  are the elastic 

moduli  of bond points in TD and MD, respectively. MDb,TDb, EE  represents the ratio 

of tensile performance in TD to that in MD. Flow curves of bond points and the fibre 
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matrix of the PP/PE 50 g/m2 nonwoven fabric assessed with the developed algorithm, 

which uses correlations and assumptions given in this section, are shown in Figure 

6.13. 

 

Figure 6.13. Assessment of flow curves of bond points and fibre matrix of PP/PE 50 g/m2 

nonwoven 

Figure 6.13 shows the flow curves of the constituent regions of the PP/PE 50 

g/m2 nonwoven computed with the algorithm up to the strain level of 1, which is the 

maximum rupture strain of the material. As explained in Section 5.3, the deformation 

behaviour of thermally bonded nonwoven fabrics used for this study is mainly 

governed by plasticity rather than elasticity, so the flow curves generated by the 

algorithm have a plastic strain range up to 1 in Figure 6.13. Obviously, the plastic 

behaviour of thermally bonded bicomponent fibre nonwovens may vary according to 

the type of their core and sheath materials and manufacturing parameters. The 

developed fully-parametric algorithm accounts for this. Besides, a difference in real-

life mechanical performance of bond points and matrix is reflected in the analysed 

ones according to Figure 6.13. Poor mechanical performance of the fibre matrix in 

TD is represented with very small non-zero values, which are negligibly small with 

respect to other curves. These curves can be used to define the plastic deformation 

behaviour of the regions in any numerical scheme using the Hill‟s anisotropic flow 

theory. 
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6.2.3. Viscous Properties 

Viscous properties are necessary to define the time-dependent behaviour of 

materials. The relaxation test results in Section 5.1 reveal the viscous behaviour of 

bicomponent fibres, which characterizes the time-dependent mechanical response of 

thermally bonded nonwovens. This is the reason to analyse viscous properties of 

bond points and the fibre matrix based on the relaxation behaviour of bicomponent 

fibres. 

Relaxation curve (time vs. true strain vs. true stress) of a single fibre is required 

for obtaining the orthotropic viscous properties of bond points and the fibre matrix. 

Tensile and shear relaxation moduli of the fibre with respect to time ( )(f tE  and 

)(f tG ), which represent its time-dependent mechanical behaviour, are defined as 

(Ward and Sweeney, 2004) 
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where 0  is the constant strain level in the relaxation test; )(f t  is the fibre 

relaxation curve (stress vs. time) and f  is the Poisson‟s ratio of the fibre. Similar to 

elastic and plastic properties defined above, viscous ones are orthotropic as well. In 

order to define orthotropic viscosity in the numerical model, tensile and shear 

relaxation moduli and Poisson‟s ratio during relaxation in MD, CD and TD are 

required. 

Similar to the normalization approach pursued in the previous part for 

analysing plastic properties, viscous properties of bond points and fibre matrix are 

obtained by normalization of tensile and shear relaxation moduli of fibre with 
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normalization factors composed of elastic and shear moduli of regions and the fibre. 

Equations suggested for the normalization are 
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where )(tEi
 and )(tGi

 are the tensile and shear relaxation moduli with respect to 

time; 
iE
 
and 

iG  are the elastic and shear moduli of the region, and fE
 
and fG  are 

the elastic and shear moduli of the fibre, respectively, i denoting the principal 

directions (MD, CD and TD). It is assumed that the ratio of the elastic modulus of a 

region to that of the fibre is retained for respective relaxation moduli. On the other 

hand, the Poisson‟s ratios of the regions are assumed constant and equal to their 

initial values assessed in the elastic properties. According to Equations 6.12 and 

6.13, tensile and shear relaxation moduli curves of bond points and fibre matrix of 

the PP/PE 50 g/m2 nonwoven fabric determined with Nonwovens V4 are given in 

Figure 6.14. 

Since the relaxation behaviour of regions are obtained from that of the fibre 

using normalization, curves in Figure 6.14 are proportional to the relaxation curve of 

the fibre. According to their microstructure, which plays an important role in energy 

dissipation capacity, bond points attenuate more energy per unit volume than the 

fibre matrix. This phenomenon is reflected in the relaxation moduli results obtained 

with the algorithm. Viscous effects are analysed up to 60000 s (more than 16 hr), 

which is sufficient for observing zero relaxation rate which refers to zero slope in the 

relaxation moduli curves.  These curves could be used in any numerical modelling 

software to define the orthotropic viscous properties of thermally bonded 
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nonwovens. The viscous behaviour will be implemented as a part of viscoelasticity in 

the numerical model of thermally bonded nonwovens in the next chapter. 

     
(a)                                                          (b) 

Figure 6.14. Tensile (a) and shear (b) relaxation moduli curves of bond points and fibre 

matrix of PP/PE 50 g/m2 nonwoven 

Assessment of viscous properties is the last part for defining the mechanical 

behaviour of thermally bonded nonwovens composed of bond points and fibre matrix 

regions. A complete analysis of orthotropic time-dependent mechanical properties of 

the nonwoven regions is explained in this section. Equations and the assumptions 

introduced in this section are implemented in the developed. Several assumptions are 

made in this section to assess particular mechanical properties since mechanical tests 

of bond points are cumbersome due to their small dimensions and random 

microstructure. Mechanical properties of bond points and fibre matrix analysed in 

this section will be used in the numerical models introduced in the next chapter. 

Accuracy of the analysis discussed here will be assessed based on comparison of 

results of the numerical simulations with the respective experimental data in the next 

chapter. 

6.3. Conclusions 

A practical way to determine the viscoelastic-plastic mechanical properties of 

thermally bonded nonwoven materials is presented in this chapter. The procedure 



Chapter 6. Assessment of Mechanical Properties of Thermally Bonded Nonwovens 

 

~ 143 ~ 
 

starts with analysis of the anisotropy induced by randomly oriented fibres using their 

ODF. A numerical relation between ODF and mechanical anisotropy of nonwoven 

material is introduced and verified experimentally. A code – Nonwovens Anisotropy 

V1 – based on the Hough transform technique is developed in MATLAB® to analyse 

the orientation distribution of fibres and the mechanical anisotropy of the fabric. 

Another code – Nonwovens V4 – is introduced to assess the orthotropic elastic, 

plastic and viscous mechanical properties of bond points and fibre matrix using the 

manufacturing parameters of the nonwoven fabric and the mechanical properties of a 

constituting single fibre. In order to calculate these properties, this code uses several 

schemes, such as Halpin-Tsai and RoM, developed for composite materials which 

are partially similar to thermally bonded nonwoven materials. Two codes introduced 

in this chapter may serve industry and research as useful tools for product 

development and optimization as well as numerical modelling. They are based on 

experimentally-acquired input parameters, and their GUIs do not require a deep 

knowledge of computational mechanics. The developed algorithms are fully 

parametric and independent of the bond pattern and shape. In the next chapter, results 

of these codes will be used to generate a parametric FE model of thermally bonded 

nonwoven materials in order to predict their deformation performance. 
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CHAPTER VII 

7. FINITE ELEMENT SIMULATIONS 

OF THERMALLY BONDED 

BICOMPONENT FIBRE 

NONWOVENS 

Numerical simulations of microstructured materials are necessary for predicting their 

behaviour during service since analytical solutions for them are hardly possible. The 

main goal of simulations is to eliminate/reduce the trial-and-error stage of product 

design and development. As Section 4.5 explains, very few studies could be found in 

the literature concerning numerical modelling of nonwovens and these studies offer 

only partial 2D solutions for prediction of a complex mechanical response of 

nonwovens to loading. Therefore, generating a realistic 3D numerical model will be 

a novel contribution to the design and manufacturing of nonwoven materials. 
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Finite element (FE) modelling is the most suitable computational tool to 

simulate the deformational behaviour of nonwovens under service loadings. Having 

distinct anisotropic mechanical properties for two regions analysed in the previous 

stage of this study, the fabric will be modelled in the FE software – MSC.Marc® – 

using 3D shell elements with thicknesses identical to those of the bond points and 

fibre matrix. Unlike the existing numerical models in the literature (Section 4.5), this 

model will be in 3D and capable of simulating a buckling phenomenon. 

This chapter aims to explain the last stage of the research methodology linked 

to introducing the FE model for simulation of thermally bonded bicomponent fibre 

nonwovens. In this chapter, FE simulations of the deformation behaviour of such 

nonwovens will be described using four sample models for various fabrics and 

loading conditions. Each model will simulate a different case, which will be carried 

out experimentally as well. Initially, the modelling strategy for four cases will be 

explained. Then microstructure and manufacturing parameters of the nonwoven 

fabric in each case will be provided. Additionally, anisotropic viscoelastic-plastic 

mechanical properties of the fabric regions computed with the algorithms, which are 

introduced in Chapter 6, will be given. Boundary conditions applied in each FE 

model will be explained as well. Finally, results of the FE simulations and respective 

experiments will be compared accordingly to evaluate efficiency of the proposed 

numerical modelling approach. 

7.1. Models 

A numerical modelling strategy for thermally bonded nonwoven materials is 

illustrated using four case studies in this chapter. Each case represents a different 

scenario in terms of either loading condition or the type of fabric used. Four cases are 

simulated with four corresponding FE models to reproduce the behaviour of 

nonwovens in the numerical environment. Types of fabrics and loading conditions 

utilized in these cases and notation for their corresponding simulation models are 

illustrated in Table 7.1. 
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 Fabric Type
 

Loading Condition 

g/m
2
 

Experimental Case 

Model A 50 g/m2 PP/PE 75/25 Quasi-static Tensile testing (0.01 s-1) 

Model B 150 g/m2 PA6/PE 75/25 Quasi-static Tensile testing (0.01 s-1)

 Tensile testing Model C 35 g/m2 PP/PE 50/50 Quasi-static Tensile testing (0.01 s-1) 

Model D 50 g/m2 PP/PE 75/25 Dynamic Drop-weight testing 
    Table 7.1. Distinctive features of four models developed in this research 

The proposed numerical modelling approach in this research is implemented 

with the four models (Models A, B, C and D) shown in Table 7.1. Validity of the 

modelling strategy is tested via comparing the FE simulation results of these models 

with the corresponding experiments. Multi-variable and significant changes are 

performed between each model to justify the efficiency of the modelling approach 

with reasonable number of models. FE models are generated in the MSC.Marc® 

commercial FE software package due to its broad material behaviour library and 

large-strain simulation capability with orthotropic yield criterion, which are crucial 

for this study. Each model is built to incorporate two regions – bond points and fibre 

matrix – having distinct mechanical properties assessed with the algorithms 

introduced in Chapter 6. 

Proper implementation of orthotropic viscoelastic-plastic mechanical properties 

of the fabric regions in the FE software requires a suitable element type which can 

handle their complex deformation behaviour. The element type preferred in the FE 

software is Element 139 which is sketched in Figure 7.1. This is a four-node, thin-

shell element with global displacements and rotations as degrees of freedom. Bilinear 

interpolation is used for the coordinates, displacements and the rotations. The 

membrane strains are obtained from the displacement field, the curvatures from the 

rotation field. The element can be used in analysis of curved shell as well as of 

complicated plate structures. Due to its simple formulation – when compared to 

standard higher-order shell elements – it is computationally less expensive and, 

therefore, very attractive in nonlinear analysis. Besides, the element is not very 

sensitive to distortion, and an updated Lagrange formulation enables this element 
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type to simulate large-strain plasticity, which is observed in nonwovens. All 

constitutive relations can be used with this element including viscoelasticity. Due to 

these critical capabilities, Element 139 seems an appropriate shell element for 

building FE models of nonwovens studied in this research. 

 

Figure 7.1. Form of shell element used in FE modelling of nonwovens 

(MSC.Marc®, 2008r1) 

Four FE models are built in MSC.Marc® software using four-node shell 

elements (Element 139) to represent mechanical performance of bond points and 

fibre matrix regions constituting the nonwoven sample. Depending on the bond 

pattern and size of the specimen, mesh structure of the FE models vary slightly. 

Detailed information about mesh structure and dimensions of the four FE models is 

given below to illustrate differences in their structure. 

7.1.1. Models A and B 

Models A and B simulate tensile testing of 50 g/m2 PP/PE 75/25 and 150 g/m2 

PA6/PE 75/25 nonwoven fabrics, respectively. These FE models aim to reproduce 

effects of variations in the fabric planar density and bicomponent fibre type on the 

mechanical performance of thermally bonded nonwovens in the numerical scheme. 

Simulating simple tensions tests is the most convenient way to observe these effects 
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with the proposed FE models. In order to simulate real-life behaviour of thermally 

bonded bicomponent fibre nonwovens, their FE models are built accounting for two 

distinct regions (Figure 7.2) – bond points and fibre matrix – since they exhibit 

distinct deformation characteristics. Models A and B are introduced together because 

they have identical bond patterns formed during hot calendering stage. Dimensions 

of the periodic diamond-shape bond pattern in the FE models are identical to those in 

the fabric samples used in experiments (Figure 7.2). FE meshes in Models A and B 

are generated using the geometry of the bond pattern, obtained from the SEM image 

of the fabric shown in Figure 7.3a. Meshing the fibre matrix region takes place after 

that of the bond pattern. Assigning mechanical properties and thickness values of the 

two regions becomes more practical with meshing them separately. As a result of this 

meshing approach, geometry and pattern of the bond points and those of their 

representative numerical elements are identical (see Figures 7.2 and 7.3). 

                         
(a)                                                            (b) 

Figure 7.2. Nonwoven tensile test sample (a) and corresponding FE model 

(Models A and B) (b) 

Nonwoven specimens with dimensions 30 mm x 15 mm are simulated with 

Models A and B having identical bond pattern shown in Figure 7.2. Since these 

models simulate tensile tests in MD and CD, orientation of bond pattern with regard 
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to the principal directions of the fabric is arranged depending on the direction of 

applied extension in the tests. Regions of bond points and the fibre matrix in Models 

A and B are composed of the four-node shell elements (Element 139), which mesh 

the bond pattern geometry accurately (Figure 7.3). Each model consists of 15000 

shell elements (16 elements per bond point) having three integration points through 

thickness. The FE mesh structure of Models A and B is shown in Figure 7.3, which is 

the magnified version of the complete fabric model in Figure 7.2. An average 

element‟s edge length in both regions is 0.188 mm. Thickness parameters of shell 

elements modelling the bond point and the fibre matrix regions match the real 

thickness values of these regions measured from X-ray micro CT images. These 

parameters for the regions will be provided in the next section; they are defined by 

the manufacturing process. 

                                                    
(a)                                                               (b) 

Figure 7.3. SEM image of thermally bonded bicomponent fibre nonwoven (a) and 

corresponding FE model (Models A and B) (b) 

7.1.2. Model C 

Models C is developed to simulate deformation behaviour of a 35 g/m2 PP/PE 50/50 

thermally bonded nonwoven fabric under simple tension tests in MD and CD. This 

fabric and its bicomponent fibres are different from those introduced in Chapter 5. 

Unlike the bicomponent fibres introduced in Section 5.1, cross-sectional core/sheath 

ratio of the fibres of this fabric is 50/50. Besides, the nonwoven web is calendered 
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out with a rectangular periodic bond pattern. On the other hand, although this 

research deals with thermally bonded nonwovens with planar fabric densities more 

than 50 g/m2, behaviour of the fabric with 35 g/m2 planar density is simulated to 

expand the limits of the proposed numerical modelling approach in this study. 

Efficiency of continuous elements (shell elements) in modelling the fibre matrix 

region depends on homogeneity of fibre distribution in this region. Below 50 g/m2, it 

starts to deteriorate with decreasing planar density. Modelling the fibre matrix region 

of low-density nonwovens with discontinuous elements (truss elements) gives more 

accurate results (Hou et al., 2009). As a result of this fact, Model C is introduced to 

examine the limits of the proposed FE modelling approach in terms of planar web 

density, which affects homogeneity of the fibrous microstructure. 

 

Figure 7.4. FE model of nonwoven tensile test sample (Model C) 

Nonwoven specimens with the same dimensions – 30 mm x 15 mm – are 

simulated with Model C having the rectangular bond pattern shown in Figure 7.4. 

The principal axes of the fabric model in Figure 7.4 could be figured out from the 

orientation of the bond points and pattern. Model C consists of 2926 four-node thin-

shell elements (4 elements per bond point) having three integration points through 

thickness (Figure 7.5). Similar to Models A and B, FE mesh is based on the bond-
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pattern geometry obtained from the SEM image of the nonwoven material shown in 

Figure 7.5. An average element‟s edge length for the complete model is 0.5 mm. 

Thicknesses of the fabric regions and that of their corresponding elements are 

identical; their magnitudes will be provided in the next section. 

                          
(a)                                                            (b) 

Figure 7.5. SEM image of 35 g/m2 PP/PE 50/50 thermally bonded nonwoven (a) and 

corresponding FE model (Model C) (b) 

7.1.3. Model D 

Model D simulates dynamical behaviour of 50 g/m2 PP/PE 75/25 thermally bonded 

nonwoven in drop-weight testing. Although a mechanical response of this fabric to 

2D loading conditions on the fabric plane is simulated with Model A, a more 

challenging model with out-of-plane loading conditions is necessary to highlight 3D 

simulation capability of the modelling approach proposed in this research. In 

addition to handling 3D loading conditions, Model D reproduces energy dissipation 

characteristics of the nonwoven material explicitly. In order to build such a model 

and to verify it experimentally, a free-falling metal sphere, bouncing on the 

nonwoven material, is simulated. 

The metal sphere is released to fall free onto the fabric, and it consecutively 

bounces back several times with a gradually decreasing bouncing height after each 

impact due to energy-dissipation mechanisms related to viscoelasticity in the 
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nonwoven material. Model D can replicate dissipation of elastic energy in each 

spring back cycle, which causes a gradual decrease of bouncing heights in the real-

life experiment. On the other hand, as a result of out-plane-loading due to impact of 

the sphere normal to the fabric plane, the material is exposed to complex loading 

conditions including time-dependent variable contact. Obviously, Model D is more 

advanced than Models A, B and C, simulating unidirectional loading of nonwoven 

samples in tensile tests. With these complex 3D loading conditions, Model D aims to 

completely reveal the capabilities of the developed numerical modelling approach. 

                                                                   
(a)                                                                   

                                                                 
(b) 

Figure 7.6. Test setup of Model D (a) and corresponding FE model (b) 
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A metal sphere with a mass of 43.4 g and a diameter of 22 mm is positioned 

100 mm above the nonwoven material with dimensions 200 mm x 200 mm (Figure 

7.6). Except for the average element edge length, Model D is generated using the 

same FE modelling strategy practiced for Model A, e.g. the type of shell elements, 

bond geometry and pattern, since both models simulate the same nonwoven material. 

Due to a large size of the nonwoven material in Model D, the average element‟s edge 

length for the complete model is increased to 0.75 mm (1 element per bond point) in 

order to decrease the computational power required for simulation, since the average 

element‟s length of 0.188 mm corresponds to 1.300.000 elements for Model D. As a 

result of this modification, the total number elements in the model decreases to 

88500. The metal sphere is modelled as a rigid body with weight, since its stiffness is 

much higher than that of the studied nonwoven material. Finally, a contact condition 

between the metal sphere and the nonwoven is provided with “Touching” option of 

the FE software, which guarantees separation of bodies in the absence of combining 

forces when the sphere bounces upwards. Decreasing computation time for Model D 

is crucial since the model incorporates three types of nonlinearity (material, contact 

and geometric) with a highly complicated material behaviour including anisotropy 

and viscosity. This is the main reason to use a bond-point-size shell element and 

modelling the sphere as a rigid body. 

Model D provides a broad view of capabilities of the proposed FE modelling 

approach to simulate complex mechanical behaviours of thermally bonded nonwoven 

materials whereas Models A, B and C concentrate on the mechanical response of 

nonwoven fabrics manufactured with various fibre types, bond shapes, patterns and 

planar densities. Each model has a specific aim for reproducing the effects of these 

particular manufacturing parameters in the numerical scheme. The next section 

provides manufacturing parameters of the fabrics simulated with the developed 

models. 
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7.2. Microstructure and Manufacturing Parameters 

The FE models presented in the previous section requires assignment of mechanical 

properties for regions of bond points and the fibre matrix to the elements modelling 

them. These mechanical properties can be assessed from the manufacturing 

parameters and microstructure of the nonwoven with the algorithms developed in 

Chapter 6. This section provides necessary input data for the assessment of 

orthotropic viscoelastic-plastic mechanical properties for two modelled regions with 

the introduced algorithms. Initially, mechanical anisotropy in the material should be 

determined with the Mechanical Anisotropy V1 algorithm, which requires either 

SEM or X-ray micro CT image of the fibre matrix region. Secondly, orthotropic 

viscoelastic-plastic mechanical properties of the bond points and the fibre matrix 

regions are analysed with the Nonwovens V4 algorithm. The latter requires several 

parameters related to manufacturing parameters of the nonwoven fabric and 

mechanical properties of its bicomponent fibres and core/sheath materials. These 

input parameters and SEM images of fibre matrix regions required for assessing 

mechanical properties of the nonwoven regions for each model are given below. 

 

Figure 7.7. X-ray micro CT image of fibre matrix region of 50 g/m2 PP/PE 75/25 thermally 

bonded nonwoven simulated with Models A and D 
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7.2.1. Models A and D 

Models A and D simulate the mechanical behaviour of 50 g/m2 PP/PE 75/25 

thermally bonded nonwoven material. The material is calendered out with a 

diamond-shape periodic bond pattern shown in Figure 7.3. Assessment of 

mechanical properties of the nonwoven regions starts with analysing anisotropic 

parameters ( MDC  and CDC ) using the Nonwovens Anisotropy V1 algorithm. An X-

ray micro CT image of the fibre matrix region of 50 g/m2 PP/PE 75/25 thermally 

bonded nonwoven, which could be used for the analysis, is provided in Figure 7.7. 

Assessment of mechanical properties of regions of bond points and the fibre 

matrix can be carried out after obtaining anisotropic parameters with the image 

analysis. The manufacturing parameters of 50 g/m2 PP/PE 75/25 thermally bonded 

nonwoven, which are processed by the algorithm, are given in Table 7.2. 

Manufacturing Parameters Models A and D
 

Nonwoven Planar Density (g/m2) 50 
Cross-Sectional Ratio of Sheath (%) 25 

Thickness of Fibre Matrix (mm) 0.35 

MDC  and CDC  0.65 and 0.35 

Fibre Diameter (mm) 0.02 

Calendering Temperature (°C) 140 
  Table 7.2. Manufacturing parameters of 50 g/m2 PP/PE 75/25 thermally bonded nonwoven 

simulated with Models A and D 

In addition to manufacturing parameters, several mechanical and physical 

properties of the polymer materials, which are used in core and sheath parts of 

bicomponent fibres, are necessary for the analysis with the algorithm. These 

properties could be obtained from the manufacturer‟s datasheet for the raw forms of 

the polymers which are used as supply materials for nonwoven manufacturing. Table 

7.3 provides the properties of core and sheath polymers used in the manufacturing of 

the nonwoven fabric simulated with Models A and D. 
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 Core
 

Sheath 

Material PP PE 

Density (g/cm
3
) 0.89 0.955 

Young’s Modulus (MPa) 1450 250 

Poisson’s Ratio (mm) 0.42 0.42 

Shear Modulus (MPa) 680 110 

Melting Temperature (°C) 165 131 
   Table 7.3. Properties of core and sheath materials for manufacturing 50 g/m2 PP/PE 75/25 

thermally bonded nonwoven simulated with Models A and D 

The last input data for the analysis of mechanical properties of nonwoven 

regions is the mechanical behaviour of PP/PE 75/25 fibres obtained with simple 

tension and relaxation tests (Figure 7.8). Flow (equivalent plastic strain vs. true 

stress) and relaxation (time vs. true strain vs. true stress) curves defining the time-

dependent mechanical performance of bicomponent fibres that constitute the 

nonwoven material should be present to finalize the complete set of data used for 

assessing orthotropic viscoelastic-plastic mechanical properties of two modelled 

regions. 

     
(a)                                                                (b) 

Figure 7.8. Experimental flow (strain rate: 0.01 s-1) (a) and relaxation (constant strain: 0.1) 

(b) curves of PP/PE 75/25 fibre 
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The procedures of extracting a sample fibre and making experiments to 

determine its mechanical performance are explained in Section 5.1. The flow curve 

of the PP/PE fibre shown in Figure 7.8 is obtained via a simple tension test 

performed with deformation rate of 0.01 s-1. The flow curve is provided up to the 

equivalent plastic strain value of 1 because the fabric, which is simulated with the 

assessed mechanical properties based on this curve, ruptures approximately at this 

point when extended in CD. According to tensile test graphs of 50 g/m2 PP/PE 75/25 

nonwoven fabrics in Section 5.3, rupture strain in MD is less than that in CD. As a 

result of this fact, maximum rupture strain, corresponding to that in CD, is taken into 

account for the determination of strain range in the flow curve of the fibres used in 

the analysis. On the other hand, the relaxation curve of the fibre shown in Figure 7.8 

is obtained at constant strain level of 0.1. The relaxation behaviour is provided up to 

100 s which is the time scale of a tension test up to the strain value of 1 with 0.01 s-1 

deformation rate. Model D simulates a time-scale of 1 s that is well within the range 

of the supplied relaxation curve. The strain range of the flow curve and time scale of 

the relaxation curve, which are used for the analysis, can vary according to the 

rupture strain of the material and duration of loading conditions in the simulation. 

 

Figure 7.9. SEM image of fibre matrix region of 150 g/m2 PA6/PE 75/25 thermally bonded 

nonwoven simulated with Model B 
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7.2.2. Model B 

Model B simulates the mechanical behaviour of 150 g/m2 PA6/PE 75/25 thermally 

bonded nonwoven material. The material is calendered out with a diamond-shape 

periodic bond pattern shown in Figure 7.3. Assessment of mechanical properties of 

the nonwoven regions takes place after analysing anisotropic parameters with the 

Nonwovens Anisotropy V1 algorithm. MDC  and CDC  in Table 7.4 are determined 

using the SEM image of the fibre matrix region of the nonwoven in Figure 7.9. 

In addition to the anisotropic, the algorithm needs parameters linked to 

manufacturing of the nonwoven fabric. The manufacturing parameters of 150 g/m2 

PA6/PE 75/25 thermally bonded nonwoven processed by the algorithm are given in 

Table 7.4. 

Manufacturing Parameters Model B
 

Nonwoven Planar Density (g/m2) 150 
Cross-Sectional Ratio of Sheath (%) 25 

Thickness of Fibre Matrix (mm) 0.5 

MDC  and CDC  0.72 and 0.28 

Fibre Diameter (mm) 0.018 

Calendering Temperature (°C) 150 
  Table 7.4. Manufacturing parameters of 150 g/m2 PA6/PE 75/25 thermally bonded 

nonwoven simulated with Model B 

Properties of polymer materials, which are utilized as core and sheath parts of 

bicomponent fibres, are also necessary for the analysis of the mechanical properties 

of fabric regions with the algorithm. Table 7.5 provides the properties of core and 

sheath polymers used in the manufacturing of the nonwoven fabric simulated with 

Model B. 
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 Core
 

Sheath 

Material PA6 PE 

Density (g/cm
3
) 1.13 0.955 

Young’s Modulus (MPa) 3000 250 

Poisson’s Ratio (mm) 0.42 0.42 

Shear Modulus (MPa) 760 110 

Melting Temperature (°C) 220 131 
   Table 7.5. Properties of core and sheath materials for manufacturing 150 g/m2 PA6/PE 75/25 

thermally bonded nonwoven simulated with Model B 

Plastic and viscous behaviours of nonwoven regions are analysed based on the 

results of simple tension and relaxation tests of PA6/PE 75/25 fibres (Figure 7.10). 

Flow and relaxation curves of the fibre defining its time-dependent large-strain 

mechanical behaviour are provided in Figure 7.10. 

     
(a)                                                               (b) 

Figure 7.10. Experimental flow (strain rate: 0.01 s-1) (a) and relaxation (constant strain: 0.1) 

(b) curves of PA6/PE 75/25 fibre 

The fibre‟s flow curve shown in Figure 7.10 is obtained via a simple tension 

test performed with a deformation rate of 0.01 s-1. The flow curve is provided up to 

the equivalent plastic strain value of 0.6 because the fabric simulated with Model B 

ruptures approximately at this point. The relaxation test of the fibre is performed at a 

constant strain level of 0.1; the respective curve in Figure 7.10 is given for first 60 s, 
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which is the time scale of the tensile test simulation with Model B up to the strain 

value of 0.6 with the modelled extension rate. 

7.2.3. Model C 

Model C simulates the mechanical behaviour of 35 g/m2 PP/PE 50/50 thermally 

bonded nonwoven material. Unlike the nonwovens simulated with the other models, 

this nonwoven is manufactured with short and crimpled fibres bonded together with 

a rectangular periodic bond pattern shown in Figure 7.5. In order to determine 

anisotropic parameters in Table 7.6, a SEM image of the fibre matrix region of the 

nonwoven in Figure 7.11 is analysed with the Nonwovens Anisotropy V1 algorithm. 

 

Figure 7.11. SEM image of fibre matrix region of 35 g/m2 PP/PE 50/50 thermally bonded 

nonwoven simulated with Model C 

Apart from anisotropic parameters based on the microstructural randomness 

caused by the web manipulation stage, there are several parameters linked to other 

manufacturing stages of the nonwoven; these parameters are provided in Table 7.6. 

Several properties of the core and sheath materials given in Table 7.7 are also 

required to analyse mechanical properties of fabric regions with the Nonwovens V4 
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algorithm. These properties are available in the datasheet of the corresponding 

polymer‟s supplier company. 

Manufacturing Parameters Model C
 

Nonwoven Planar Density (g/m2) 35 
Cross-Sectional Ratio of Sheath (%) 50 

Thickness of Fibre Matrix (mm) 0.4 

MDC  and CDC  0.84 and 0.16 

Fibre Diameter (mm) 0.023 

Calendering Temperature (°C) 140 
  Table 7.6. Manufacturing parameters of 35 g/m2 PP/PE 50/50 thermally bonded nonwoven 

simulated with Model C 

 Core
 

Sheath 

Material PP PE 

Density (g/cm
3
) 0.89 0.955 

Young’s Modulus (MPa) 1450 250 

Poisson’s Ratio (mm) 0.42 0.42 

Shear Modulus (MPa) 680 110 

Melting Temperature (°C) 165 131 
   Table 7.7. Properties of core and sheath materials for manufacturing 35 g/m2 PP/PE 50/50 

thermally bonded nonwoven simulated with Model C 

Results of simple tension and relaxation tests for PP/PE 50/50 fibre provide the 

last data set for defining the viscoelastic-plastic behaviour of the fabric regions. 

Figure 7.12 shows the flow and relaxation curves obtained with these tests. The flow 

curve of PA6/PE fibre is obtained via a simple tension test performed with the same 

strain rate of 0.01 s-1. The flow curve is provided up to the equivalent plastic strain 

value of 0.25 since this is the rupture point of the fabric simulated with Model C. 

During the relaxation test, fibre is kept at strain level of 0.1 constantly. The 

relaxation curve in Figure 7.12 is provided up to 25 s, which is the time scale of the 
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tensile test simulation with Model C up to the strain value of 0.25 with a strain rate 

of 0.01 s-1. 

 

     
(a)                                                               (b) 

Figure 7.12. Experimental flow (strain rate: 0.01 s-1) (a) and relaxation (constant strain: 0.1) 

(b) curves of PP/PE 50/50 fibre 

The necessary input parameters for analysing orthotropic viscoelastic-plastic 

mechanical properties of regions of bond points and the fibre matrix of the 

nonwovens simulated with the four models are supplied in this section. These 

properties are determined in the next section based on the procedures explained in 

Chapter 6 using the Nonwovens V4 algorithm and the input parameters provided. 

7.3. Assessment of Mechanical Properties 

Based on the input parameters related to the nonwovens simulated with the models, 

mechanical properties of bond point and fibre matrix regions of each model are 

assessed in this section. Properties of each model are assigned based on the 

orthotropic symmetry formulation in the FE software. These properties are classified 

as elastic, plastic and viscous, representing various characteristics of deformation. 

The assessed mechanical properties are assigned to the elements generated in 
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MSC.Marc® software, but they could be used with other FE software packages as 

well.  

In this section, computed elastic properties – modulus of elasticity (E), 

Poisson‟s ratio () and shear modulus (G) – are denoted with MD, CD and TD 

indices referring to the principal directions of orthotropy in nonwovens. The plastic 

and viscous behaviours will be delivered in the form of curves defining their strain-

dependent nonlinear characteristics throughout the deformation history. Orthotropic 

viscoelastic-plastic mechanical properties of nonwoven regions analysed with the 

Nonwovens V4 algorithm for each model are provided below. 

7.3.1. Models A and D 

Orthotropic viscoelastic-plastic properties of the bond point and fibre matrix regions 

of Models A and D, which simulate deformation behaviour of the 50 g/m2 PP/PE 

75/25 thermally bonded nonwoven material, are delivered in this part. Parameters 

defining the elastic behaviour of regions in these models are given in Table 7.8. 

 Bond Point
 

Fibre Matrix 

EMD (MPa) 604.9 95.3 
ECD (MPa) 325.7 51.3 
ETD (MPa) 892.8 0.8 
MD,CD 0.42 0.42 
CD,TD 0.42 0 
TD,MD 0.42 0 
GMD,CD (MPa) 369.4 58.2 
GCD,TD (MPa) 198.9 31.4 
GTD,MD (MPa) 545.3 0.5 
Thickness (mm) 0.055 0.35 
Density (Mg/mm

3
) 9.0625 x 10-10 1.4285 x 10-10 

   Table 7.8. Orthotropic elastic properties of 50 g/m2 PP/PE 75/25 nonwoven regions used in 

Models A and D 
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Flow curves (equivalent plastic strain vs. true stress), which define the Hill‟s 

anisotropic yield criterion (Hill, 1950) for the two nonwoven regions, are shown in 

Figure 7.13. These curves could be used with any FE software supporting anisotropic 

yield phenomenon. 

 

Figure 7.13. Flow curves of 50 g/m2 PP/PE 75/25 nonwoven regions used in 

Models A and D 

 

Figure 7.14. Orthotropic tensile (a) and shear (b) relaxation moduli of 50 g/m2 PP/PE 75/25 

nonwoven regions used in Models A and D 

Time-dependent mechanical performance of elements of bond points and fibre 

matrix are introduced with viscous effects, observed in relaxation tests. FE models of 
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nonwovens in this research require curves of orthotropic tensile and shear relaxation 

moduli of the nonwoven regions to simulate their time-dependent deformation 

performance. Tensile and shear relaxation curves shown in Figure 7.14 could be used 

with any numerical scheme supporting orthotropic viscoelasticity. 

7.3.2. Model B 

Orthotropic viscoelastic-plastic properties of the bond point and fibre matrix regions 

of Model B, which simulates the deformation behaviour of the 150 g/m2 PA6/PE 

75/25 thermally bonded nonwoven material, are provided below starting with the 

elastic ones shown in Table 7.9. 

 Bond Point
 

Fibre Matrix 

EMD (MPa) 1411.8 389.9 
ECD (MPa) 549.1 151.6 
ETD (MPa) 1326.1 3.2 
MD,CD 0.42 0.42 
CD,TD 0.42 0 
TD,MD 0.42 0 
GMD,CD (MPa) 390.4 107.8 
GCD,TD (MPa) 151.8 41.9 
GTD,MD (MPa) 366.7 0.9 
Thickness (mm) 0.138 0.5 
Density (Mg/mm

3
) 10.862 x 10-10 3.0 x 10-10 

   Table 7.9. Orthotropic elastic properties of 150 g/m2 PA6/PE 75/25 nonwoven regions used 

in Model B 

Six flow curves, which define the anisotropic plastic behaviour of two 

nonwoven regions, are given in Figure 7.15. These curves are supplied up to 0.6 

strain level, which is the limit of tensile test simulation with Model B due to failure 

of the fabric.  
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Figure 7.15. Flow curves of 150 g/m2 PA6/PE 75/25 nonwoven regions used in Model B 

Tensile and shear relaxation curves shown in Figure 7.16 are used in Model B 

to reproduce the fabric‟s time-dependent behaviour. Stress attenuation during the 

tensile test is implemented in simulations with these curves via the viscoelasticity 

option. 

 

Figure 7.16. Orthotropic tensile (a) and shear (b) relaxation moduli of 150 g/m2 PA6/PE 

75/25 nonwoven regions used in Model B 
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7.3.3. Model C 

Orthotropic viscoelastic-plastic properties of the regions of bond points and the fibre 

matrix of Model C, which simulates tensile testing of the 35 g/m2 PP/PE 50/50 

thermally bonded nonwoven material, are computed in this part. The elastic 

properties of the fabric regions calculated with the Nonwovens V4 algorithm are 

shown in Table 7.10. 

 Bond Point
 

Fibre Matrix 

EMD (MPa) 683.7 64.9 
ECD (MPa) 130.2 12.4 
ETD (MPa) 583.3 0.5 
MD,CD 0.42 0.42 
CD,TD 0.42 0 
TD,MD 0.42 0 
GMD,CD (MPa) 234.2 22.2 
GCD,TD (MPa) 44.6 4.2 
GTD,MD (MPa) 199.8 0.2 
Thickness (mm) 0.0379 0.4 
Density (Mg/mm

3
) 9.225 x 10-10 0.875 x 10-10 

   Table 7.10. Orthotropic elastic properties of 35 g/m2 PP/PE 50/50 nonwoven regions used in 

Model C 

Following the elastic behaviour, the plastic one is provided by means of six 

flow curves in Figure 7.17 defining the anisotropic irreversible deformation 

performance of two nonwoven regions constituting Model C. Since the fabric starts 

to fail at strain level of 0.25, flow curves are provided up to this point. In addition to 

plasticity, the viscous behaviour of the fabric is also considered in Model C. Tensile 

and shear relaxation curves shown in Figure 7.18 are used in the material definition 

used to reproduce the fabric‟s time-dependent behaviour. Energy dissipation due to 

viscous effects during the tensile test is accounted for with these curves via the 

viscoelasticity option in the FE software. 
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Figure 7.17. Flow curves of 35 g/m2 PP/PE 50/50 nonwoven regions used in Model C 

 

Figure 7.18. Orthotropic tensile (a) and shear (b) relaxation moduli of 35 g/m2 PP/PE 50/50 

nonwoven regions used in Model C 

The computed mechanical properties of the regions of bond points and the fibre 

matrix provided in this section are assigned to the elements representing respective 

regions in the models. These properties can define large-strain orthotropic 

viscoelastic-plastic deformation behaviour of nonwovens modelled in any FE 

software package. The structure of FE models and the mechanical properties 

assigned to their elements were explained above. Apart from these, the FE models 

require appropriate boundary conditions to simulate real-life loading cases. 
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7.4. Boundary Conditions 

Boundary conditions in FE analysis can be defined as the set of loading parameters 

required to accomplish a specific numerical solution. In FE modelling, boundary 

conditions are direct links between the simulation and respective real-life problem 

since they represent the applied loads and constraints in the real-life case. There are 

three types of boundary conditions applied in the FE models introduced in this 

chapter: fixed displacement, rate-controlled displacement and constant acceleration. 

The choice of boundary conditions depends on the problems simulated with the 

models. In this study, the FE models can be classified into two groups according to 

their boundary conditions. 

7.4.1. Models A, B and C 

Models A, B and C simulate the deformation behaviour of nonwoven specimens with 

dimensions 30 mm x 15 mm exposed to tensile testing at a specific deformation rate. 

Boundary conditions in these models should reflect loading conditions on nonwoven 

specimens in a tensile testing machine. Tensile test parameters of the nonwoven 

specimens, which are simulated with these models, are identical, so are their 

boundary conditions. 

The boundary conditions in Models A, B and C are applied to the edges A-B 

and C-D of the model shown in Figure 7.19. Except for the degree of freedom, which 

corresponds to the tensile loading direction, along edge C-D, the fixed displacement 

condition is applied to the translational degrees of freedom on the nodes along both 

edges of the model. As a boundary condition in the model, the constant deformation 

rate, which is identical to the one in tensile tests, is applied to the nodes along edge 

C-D in the tensile loading direction. Its magnitude of 0.01 s-1 corresponds to the grip 

speed of 0.3 mm/s for the gauge length of 30 mm in the tensile tests. This 

deformation rate is suitable to minimize the rate effects in the nonwoven materials 

studied in this research. Slower or faster deformation rates in a tensile test may 

amplify particular effects of the viscous behaviour, e.g. the creep behaviour can be 
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observed at very low deformation rates. In order to concentrate on the efficiency of 

FE models in reproducing the elastic-plastic behaviour of the nonwovens, the chosen 

deformation rate is preferred. Model D concentrates on the viscous behaviour of 

thermally bonded nonwoven fabrics in terms of energy dissipation during spring 

back behaviour. 

 

Figure 7.19. FE model of tensile-test specimen with boundary conditions 

7.4.2. Model D 

Model D simulates a free-falling metal sphere released still above the nonwoven 

fabric to attain consecutive bounces with a gradually decreasing height in each 

bounce due to energy dissipation mechanisms related to viscoelasticity in the 

nonwoven material. Due to inertial effects induced by gravity, Model D uses a 

dynamic formulation of the FE software. The total time of the simulation is 1 s. 

There are two sets of boundary conditions in this model: fixed displacement and 

constant acceleration. Translational degrees of freedom on the nodes along four 

edges (A-B, B-C, C-D and A-D) of the square-shaped fabric in Model D are assigned 

with the fixed displacement condition (Figure 7.20). A constant gravitational 

acceleration of 9.812 m/s2 is applied to the rigid body of the metal sphere with a 
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mass of 43.4 g to simulate its free fall in the direction of gravitational force 

illustrated in Figure 7.20. Finally, the initial velocity of the sphere is given as 0, since 

the sphere is released from its steady-state position located 100 mm above the fabric 

plane. 

 

Figure 7.20. Components of Model D with boundary conditions 

The boundary conditions applied to the models are independent of the element 

size, since they are applied to the specimen edges, related to their geometry rather 

than their FE mesh. Besides, these boundary conditions are the most commonly used 

ones in FE software packages and their application is straight-forward. The 

procedure for generating the FE models for simulating time-dependent mechanical 

behaviour of thermally bonded bicomponent fibre nonwovens is finalized with the 

illustration of respective boundary conditions. This procedure could be accomplished 

in any commercial FE software package with a material library capable of 

implementing large-strain orthotropic viscoelastic-plastic material behaviour. 

In order to evaluate the success of numerical modelling approach proposed in 

this research, four sample models introduced in this chapter should be verified with 

appropriate experiments. Results of the FE models and their experimental 

verifications are available in the next part. 
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7.5. Results and Experimental Verification 

With the FE models introduced in this chapter, deformation performance of 

thermally bonded nonwovens with various manufacturing parameters and boundary 

conditions is simulated. As explained in Section 7.1, each model focuses on a 

different material or loading condition in order to observe the capabilities of the 

proposed numerical modelling procedure. The process of developing the FE models 

was illustrated in detail above starting with meshing based on the fabric‟s bond 

pattern and ending with the application of boundary conditions related to modelled 

cases. During this process, the algorithms introduced in Chapter 6 significantly 

reduce the required time for computing mechanical anisotropy and assessing the 

orthotropic mechanical properties of nonwoven regions.  

A novel numerical modelling technique should be verified experimentally for 

further academic and industrial applications. This section provides results of the 

simulations performed with the developed FE models and their experimental 

verifications. The quality of the proposed modelling approach is evaluated by means 

of comparing the material‟s real-life behaviour with the simulated one. For this 

purpose, each FE model is compared with the respective experiment using a 

quantitative result which could be obtained both experimentally and numerically, for 

instance, the force-displacement curve for Models A, B and C simulating tensile tests 

and the bounce height of the sphere for Model D simulating a bouncing metal sphere. 

7.5.1. Model A 

Tensile testing of the 50 g/m2 PP/PE 75/25 thermally bonded nonwovens with a 

diamond-shape bond pattern is simulated with Model A to analyse their mechanical 

performance. Nonwoven specimens with a gauge length of 30 mm and width of 15 

mm are extended with a strain rate of 0.01 s-1. Equivalent von Mises stress 

distribution in the models simulating the tension tests in MD and CD are given in 

Figures 7.21 and 7.22, respectively. Due to stiffer structure of bond points, stresses 

are more concentrated in these regions (Figures 7.21b and 7.22b). On the other hand, 
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deformation of bond points is less than that of matrix reflecting the real-life response 

leading to failure of matrix before failure of bond points in tension. 

                                            
(a)                               (b) 

Figure 7.21. FE results for deformed nonwoven in Model A after 60% extension in MD: (a) 

regions in deformed model; (b) equivalent von Mises stresses (MPa) 

                                            
(a)                                (b) 

Figure 7.22. FE results for deformed nonwoven in Model A after 60% extension in CD: (a) 

regions in deformed model; (b) equivalent von Mises stresses (MPa) 
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The anisotropic mechanical behaviour of nonwovens is also reproduced with 

the proposed numerical model when the FE results in Figures 7.21 and 7.22 are 

compared. Stress values obtained in simulation of the tension test in MD are higher 

than those in CD reflecting the real-life direction-dependant mechanical response of 

nonwovens. Besides, the difference in geometry of the deformed models reflects the 

anisotropic deformation behaviour of nonwovens subjected to tensile tests. For 

comparability, the FE results in Figures 7.21 and 7.22 are illustrated for 60% 

extension where the 50 g/m2 PP/PE 75/25 thermally bonded nonwoven starts to fail 

in the tensile test performed in MD. 

 

Figure 7.23. Force-extension curves from tensile tests and FE simulations in MD and CD for 

50 g/m2 PP/PE 75/25 thermally bonded bicomponent fibre nonwovens 

To compare the obtained FE results with respective experiments, the force-

displacement curve, acquired in real-life tests, is calculated in the FE software based 

on computed stresses (Figure 7.23). As obvious from Figure 7.23, the FE simulation 

results and the experimental data are in good agreement. The slight deviation of the 

numerical results from experimental ones can be explained by the effect of several 

secondary factors not accounted for in the model. Among them are the curliness of 
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fibres, inter-fibre friction in the matrix region, etc. Furthermore, some of the surface 

parts of the matrix region are molten due to heat generated during the calendering 

stage. Apparently, the input data such as the flow curve of a single fibre is crucial for 

providing a representative mechanical performance for the fibres composing the 

nonwoven fabric. Despite some possible sources of deviation, the FE model 

successfully reproduces the response of the nonwoven specimens to tensional load. 

7.5.2. Model B 

Mechanical performance of the 150 g/m2 PA6/PE 75/25 thermally bonded 

nonwovens is analysed with Model B in the FE environment. The nonwoven 

specimen simulated with this model has identical dimensions, bond shape and pattern 

with those of Model A. Simulations of tensile tests performed in MD and CD are 

carried out with Model B, and the resulting distribution of equivalent von Mises 

stresses in the models are shown in Figures 7.24 and 7.25. Stress concentration in 

regions of thin bond points, observed in the FE results of Model B, is similar to the 

case in Model A.  

                                            
(a)                                 (b) 

Figure 7.24. FE results for deformed nonwoven in Model B after 70% extension in MD: (a) 

regions in deformed model; (b) equivalent von Mises stresses (MPa) 
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(a)                                (b) 

Figure 7.25. FE results for deformed nonwoven in Model B after 70% extension in CD: (a) 

regions in deformed model; (b) equivalent von Mises stresses (MPa) 

According to the computed mechanical properties of the regions of bond points 

and the fibre matrix of models in Section 7.3, mechanical performances of the 

regions in Model B are higher than those in Model A due to a three-times-larger 

planar density of fabric and superior fibre strength. As a result of this difference, 

stress values observed in the FE results of Model B are significantly higher than 

those of Model A despite the contribution of 10% increased tensile extension. 

Obviously, the proposed numerical model can reproduce the effects of variation in 

fabric‟s planar density and the type of bicomponent fibre on the overall deformation 

response of thermally bonded nonwovens. Direction-dependent deformation 

behaviour is also captured with Model B which results in distinct geometries shown 

in Figures 7.24a and 7.25a at 70% extension in MD and CD, accordingly. Besides, 

due to increased stress in the neck region as a result of nonuniform cross-section, 

deformation of bond points in this region are higher than that of bond points located 

near the grip regions. The FE results in Figures 7.24 and 7.25 are shown for 70% 

extension, i.e. the moment, at which damage initiates in the tensile tests of 150 g/m2 

PA6/PE 75/25 thermally bonded nonwovens. 
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Figure 7.26. Force-extension curves from tensile tests and FE simulations in MD and CD for 

150 g/m2 PA6/PE 75/25 thermally bonded bicomponent fibre nonwovens 

The force-displacement curves obtained with the tensile tests are compared 

with those obtained with Model B in Figure 7.26. Apparently, tensile test results in 

MD and CD confirm the suitability of the proposed numerical model. As a result of 

the increased fabric planar density and different fibre type constituting the 

nonwoven, the level of load required to deform the nonwoven in Model B is at least 

three times the one in Model A. The numerical model introduced in this study 

analyses these differences successfully due its parametric scheme. As explained 

above, there is a slight deviation of the numerical results from experimental ones that 

can be explained by the effect of several secondary factors not accounted for in the 

model, e.g. curliness of fibres, deviation of manufacturing parameters, etc. Despite 

the slight deviation, results of the numerical model and tensile tests in Figure 7.26 

are in good agreement, proving the efficiency of the FE models developed in the 

research. 

7.5.3. Model C 

Model C simulates the 35 g/m2 PP/PE 50/50 thermally bonded nonwovens with a 

rectangular bond pattern. As explained in Section 7.1, this model is introduced to test 
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the limits of applicability of the developed modelling approach since the nonwoven 

simulated with Model C has a critically low planar density, and its fibres are short 

and crimpled unlike the ones explained in Section 5.1. The FE models developed in 

this research represent the bond point and fibre matrix regions with shell elements. 

Efficiency of these elements in representing the anisotropic behaviour of these 

regions depends on homogeneity in the volumetric distribution of fibres on the fabric 

plane. As observed in the FE results of Models A and B, shell elements are 

successful in representing the structure of regions of bond points and a fibre matrix 

since planar densities of the fabrics are at least 50 g/m2, which could be assumed as 

volumetrically homogeneous. Efficiency of the numerical modelling approach for a 

low planar density is evaluated considering the simulations of the tensile tests 

performed with Model C. A stress distribution in the FE model simulating the 

tension test of 35 g/m2 PP/PE 50/50 thermally bonded nonwoven in MD is given in 

Figure 7.27. 

                                                       
(a)                                  (b) 

Figure 7.27. FE results for deformed nonwoven in Model C after 25% extension in MD: (a) 

regions in deformed model; (b) equivalent von Mises stresses (MPa) 

The FE results of Model C in Figure 7.27 demonstrate the capability of the 

introduced numerical model to reproduce the deformation behaviour of a nonwoven, 

calendered with various bond shapes and patterns. Having a considerably lower 

planar density and being manufactured with short and crimpled fibres, the damage 
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point of the nonwoven simulated with Model C corresponds to approximately 25% 

extension. Stress values shown in Figure 7.27 are significantly lower than those 

observed in Models A and B due to the level of applied extension. Additionally, poor 

mechanical properties of the fabric regions due to low planar density contribute to 

the reduction of stresses observed in Figure 7.27. 

 

Figure 7.28. Force-extension curves from tensile tests and FE simulations in MD and CD for 

35 g/m2 PP/PE 50/50 thermally bonded bicomponent fibre nonwovens 

To compare the FE results of Model C with respective experiments, the force-

extension curves obtained from the tensile tests and assessed in the FE software, 

based on the computed stresses, are illustrated in Figure 7.28. Despite the fact that 

the nonwoven is beyond the limit of simulatability with the introduced modelling 

approach due to its low planar density, results of the FE simulations are still in 

relatively good agreement with the experimental data. Obviously, deviation of the 

numerical results in Figure 7.28 is more than that in Figure 7.23 (Model A) and 

Figure 7.26 (Model B). The main sources of this difference are short and crimpled 

fibres constituting the nonwoven simulated with Model C, e.g. in Figure 7.28 up to 

15% extension the numerical results are higher than the experimental ones since a 

significant portion of fibres  do not contribute to the stiffness of the fabric until they 
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are straightened in the tensile test. As a result, simulating a nonwoven with a planar 

density lower than 35 g/m2 may amplify the deviation of numerical results. Although 

the fibre type, bond pattern and planar density of 35 g/m2 PP/PE 50/50 nonwoven are 

rather different from those of the nonwovens simulated with Models A and B, the FE 

model successfully reproduces the mechanical response of the nonwoven specimens 

simulated with Model C to tensional load. 

 

Figure 7.29. Equivalent von Mises stress distribution (MPa) of deformed nonwoven in 

Model D at first (a), second (b), third (c) and fourth (d) impacts 

7.5.4. Model D 

Model D simulates the time-dependent mechanical behaviour of 50 g/m2 PP/PE 

75/25 thermally bonded nonwoven under drop weight testing. This model focuses on 
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reproducing the viscous deformation characteristics of nonwovens explicitly with an 

out-of-plane loading condition, which is commonly observed in various ballistics and 

sports applications. As explained in Section 7.1, in order to simulate an out-of-plane 

loading with a practical application, a steel sphere located 100 mm above the fabric 

plane is released from its steady-state position to attain a consecutive bouncing 

motion for a period of 1 s on the nonwoven plane, which is fixed at all edges. 

Stress distribution in the nonwoven model as a result of four consecutive 

sphere impacts are given in Figure 7.29. These stresses are obtained for the states 

when the nonwoven starts to spring back and throw the sphere upwards against 

gravity. Each of these states corresponds to maximum deformation of the nonwoven 

in each bounce cycle. As observed in Figure 7.29, the stress level decreases in each 

impact due to a decreased height of each bounce. As a result of viscous effects 

implemented in the model, a significant portion of system‟s energy is dissipated at 

each spring back taking place at loading-unloading cycles. As the energy is absorbed 

by the nonwoven in each bounce, the maximum height, that the sphere reaches, 

decreases. This behaviour is observed in the real-life deformation response of 

thermally bonded nonwovens illustrated in Figure 7.30 and in the FE results of 

Model D. 

 

Figure 7.30. Metal sphere at initial height (h0) (a), and its maximum heights at first (b), 

second (c), third (d) and fourth (e) bounces (hi: height of the sphere at ith bounce) 
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The sphere‟s position at each impact in Figure 7.29 is obvious due to stress 

concentration observed at the contact region between the sphere and the nonwoven. 

Except for the first impact (Figure 7.29a), in which the sphere drops naturally to the 

centre of the fabric, the sphere hits the fabric at different locations rather than the 

centre in the subsequent impacts. Additionally, due to anisotropic mechanical 

properties of the nonwoven, stress evolution in MD is more than that in CD due to 

stiffer behaviour in MD (Figure 7.29). On the other hand, the fabric model is 

inhomogeneous since it is composed of two distinct regions with distinct mechanical 

properties. As a result of these facts, different impact locations are observed in the 

FE results of Model D, which is consistent with our experimental observations. 

 

Figure 7.31. Height of sphere in experiment and FE simulations performed with Model D 

To compare the FE results of Model D with the experiment, evolution of the 

height of sphere obtained in the simulation and the maximum height of the sphere, 

recorded at each bounce in the experiment, are given in Figure 7.31. The height in 

the experiment and simulations corresponds to the distance between the fabric plane 

and the centre of the metal sphere. The maximum height of the sphere at each bounce 

in the experiment shown in Figure 7.30 are recorded with a camera and displayed in 
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Figure 7.31. Besides, in order to illustrate the importance of viscous effects in 

modelling the mechanical behaviour of thermally bonded nonwoven materials, 

simulations with Model D are implemented with and without introduction of the 

viscous parameters defining the material properties of nonwoven regions in the FE 

software. As obvious from Figure 7.31, if viscous effects are switched off in the FE 

simulation, the sphere will bounce endlessly, attaining the initial height in each 

bounce, due to absence of energy dissipation related to viscous effects. In the real 

case, where viscous effects take place, FE results of Model D are consistent with the 

experimental ones confirming the success of the proposed numerical modelling 

approach for simulating the mechanical behaviour of thermally bonded nonwovens. 

The slight deviation of the numerical results from experimental ones is due to 

unaccounted factors, which also contribute to damping mechanism of the material, 

such as inter-fibre friction. In spite of the slight deviation, the FE model reproduces 

the viscous deformation behaviour of nonwoven specimen, which is characterized by 

the changing bouncing height of the metal sphere, successfully. 

7.6. Conclusions 

Detailed explanation of the numerical modelling of thermally bonded bicomponent 

fibre nonwovens is made in this chapter by illustrating the development stages of 

four FE models that simulate various types of fabrics and loading conditions. Due to 

their unique microstructure and polymer-based constituents leading to complex 

deformation mechanisms, the nonwoven fabrics are modelled employing two distinct 

regions with different mechanical properties. These properties are calculated with the 

developed code – Nonwovens V4 – accounting for the manufacturing parameters and 

properties of single bicomponent fibres that provides the data independent of the 

bond shape and pattern (Section 6.2). On the other hand, anisotropy of the material is 

computed with another developed algorithm – Nonwovens Anisotropy V1 – using a 

SEM or X-ray micro CT image of the microstructure of its fibre matrix region 

(Section 6.1). With the FE models composed of regions of bond points and the fibre 

matrix with different anisotropic viscoelastic-plastic material properties, the time-
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dependent 3D deformation response of various nonwovens is simulated in the FE 

software. The procedure followed in this chapter to simulate the complex 

deformation behaviour of thermally bonded bicomponent fibre nonwovens is 

described in the flow chart shown in Figure 7.32. 

 

Figure 7.32. Procedure of FE simulation of thermally bonded bicomponent fibre nonwovens 

in the research 

In order to simplify the numerical modelling scheme, several assumptions are 

made in the procedure for simulating the mechanical behaviour of thermally bonded 

bicomponent fibre nonwovens. The numerical modelling scheme assumes that: 

 Nonwoven fabric is bonded with the ideal bonding pressure that yields 

nonporous bond points, 
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 Length of raw unbonded fibres is significantly more than the largest interval 

between two adjacent bond points, 

 Bicomponent fibres are not damaged at fibre matrix region causing strength 

loss in the fabric, 

 Variation of the thickness at bond points and fibre matrix is negligible, 

 Mechanical properties of a single fibre used in the numerical scheme are 

typical to that of fibres used to manufacture the nonwoven fabric, 

 ODF and mechanical anisotropy are characteristic for the entire fabric, 

 Regions of bond points and fibre matrix possess orthotropic symmetry, 

 Structure of the nonwoven fabric is homogeneous and continuous which are 

generally achieved with a fabric planar density of at least 50 g/m2. 

The novel approach followed in this research to predict the time-dependent 

mechanical performance of thermally bonded nonwovens is promising since results 

of the introduced FE models are in good agreement with the experimental data. The 

numerical model proposed in this study is effective in predicting the real-life 

deformation characteristics of thermally bonded nonwovens, verified with 

experiments and ready to use for several applications, such as ballistics and sports 

applications. It can be built into any commercial FE software package, capable of 

implementing orthotropic viscoelasticity and plasticity procedures such as the Hill‟s 

orthotropic yield criterion, in order to predict response of various nonwoven 

materials under arbitrary loading conditions. 
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CHAPTER VIII 

8. CONCLUSIONS 

A novel approach for predicting the complex mechanical behaviour of thermally 

bonded bicomponent fibre nonwovens under 3D time-dependent loading conditions 

is introduced in the thesis. Development of the approach for predicting the real-life 

deformation behaviour of these materials started with a thorough literature review 

about general characteristics of nonwoven materials including manufacturing 

methods, application areas and physical properties. Background information about 

nonwovens is vital for understanding their mechanical behaviour, which is necessary 

for development of their numerical models. Secondly, general mechanical 

characteristics of nonwoven fabrics were analysed in order to have a better 

understanding of the features affecting their mechanical behaviour. Then, theoretical 

foundation of modelling the mechanical behaviour of materials was given for elastic, 

plastic and viscous behaviours that are observed in nonwoven materials. 

Additionally, a review of the finite element method was provided since it was used as 

a numerical modelling tool in the study; existing numerical models of nonwoven 
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materials were studied as well. After providing general background information 

about the material and respective numerical modelling tools, experimental studies 

related to the thermally bonded bicomponent fibre nonwovens were discussed. Not 

only the fabrics but also their constituent fibres were subjected to tensile, cyclic 

loading and relaxation tests. The mechanical behaviour of nonwovens and of their 

fibres were investigated, since results of the experiments played an important part in 

development and verification of the numerical model. Microstructure of several 

thermally bonded bicomponent fibre nonwovens were examined with SEM and X-

ray micro CT techniques. A stand-alone application code – Nonwovens Anisotropy 

V1 – was written in MATLAB® software to analyse the ODF and mechanical 

anisotropy of the nonwovens based on the images of their random fibrous 

microstructure using the Hough transform technique. Then another stand-alone code 

– Nonwovens V4 – was introduced to determine the orthotropic viscoelastic-plastic 

mechanical properties of regions of bond points and fibre matrix in nonwoven 

materials based on properties of fibres and manufacturing parameters such as the 

planar density, core/sheath ratio, fibre diameter etc. Finally, the nonwovens, having 

distinct anisotropic mechanical properties for two regions, were modelled in the FE 

software – MSC.Marc® – with shell elements having thicknesses identical to those of 

bond points and the fibre matrix. FE simulations and respective experimental results 

were compared to evaluate efficiency of the proposed numerical modelling approach.  

As a result of the experimental and numerical studies carried out in this 

research, it can be concluded that: 

 Polymer-based fibres used to manufacture nonwovens exhibit large-strain 

nonlinear viscoelastic-plastic deformation behaviour. 

 Having randomly distributed polymer-based fibres and being composed of 

two discrete regions – bond points and matrix – nonwovens have a unique 

mechanical behaviour that is partially similar to, but still differs from, that of 

composites, polymers and woven fabrics. 

 The mechanical behaviour of thermally bonded bicomponent fibre 

nonwovens is linked to that of their constituent fibres.  
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 The deformation behaviour of these materials is time-dependent and mainly 

governed by plasticity. 

 The mechanical behaviour of the fibre matrix and that of bond points are 

dissimilar due to their distinct microstructure. 

 Calendering temperature affects the deformation characteristics of thermally 

bonded nonwovens significantly. 

 Random orientation of fibres is the main source of direction-dependent 

mechanical response of nonwovens. 

 Mechanical anisotropy of the structure could be analysed based on the 

orientation distribution fibres. 

 Anisotropic mechanical properties of bond points and fibre matrix of 

nonwoven materials could be assessed based on properties of their constituent 

fibres and manufacturing parameters such as the planar density, core/sheath 

ratio, fibre diameter etc. 

 Regarding the four case studies introduced in Chapter 7, the proposed 

numerical modelling approach for simulating 3D time-dependent mechanical 

performance of thermally bonded nonwovens is promising since results of the 

introduced FE models are in good agreement with the obtained experimental 

data. 

 Shell elements are effective in modelling of nonwoven regions in the FE 

environment. 

8.1. Outcomes 

Main outcomes of the research are: 

1. A better understanding of the deformation behaviours of thermally bonded 

nonwovens and their bicomponent fibres are gained with this research. 

Specific features of mechanical responses of thermally bonded nonwovens 

and their polymer-based fibres are clarified from the computational 

mechanics point of view enabling designers and manufacturers to consider 
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nonlinear large-strain viscoelastic-plastic behaviour of nonwovens in their 

design, manufacturing and usage. 

2. A tool capable to predict the effects of microstructure on the overall 

mechanical properties of thermally bonded nonwoven materials is introduced 

in the study. Nonwoven manufacturers can utilize Nonwovens Anisotropy V1 

code to design and optimize the microstructure of their products.  

3. Accurate prediction of the mechanical properties of thermally bonded 

nonwovens with a new code – Nonwovens V4 – is developed during the 

research through a few assumptions. It can serve industry in design and 

optimization of nonwovens with respect to their manufacturing parameters 

and structural features. 

4. Based on the assumptions stated in Section 7.6, a parametric 3D finite 

element model is developed in the research to simulate the real-life 

performance of thermally bonded nonwovens. Unlike the existing numerical 

models in the literature (see Section 4.5), the model developed in the thesis is 

capable of simulating 3D loading conditions of thermally bonded nonwovens 

as well as their time-dependent anisotropic behaviour. The numerical model 

introduced in this research is a novel contribution to scientific knowledge. 

8.2. Future Work 

The FE model developed in this study is a potential tool for product development and 

optimization. Manufacturers and designers can facilitate the introduced model for 

predicting the real-life deformation behaviour of thermally bonded nonwovens, and 

design and optimize the material accordingly, for instance, design of sports products 

containing nonwoven fabrics could be a field for using the FE model and codes 

developed in the thesis. On the other hand, the model is recently developed and 

therefore its functionality should be tested with further experiments using various 

types of nonwoven fabrics. Besides, the scope of the modelling should be improved 

with additional deformation characteristics of nonwovens, such as damage 

behaviour. 
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Damage is an unavoidable phenomenon when a material is exposed to 

excessive loads or deformations, or a combination of them depending on the loading 

conditions and material‟s deformation characteristics. The next step in modelling the 

mechanical behaviour of the material is the damage behaviour. Characterisation of 

damage behaviour and its effect on the material performance enables us to simulate 

the material‟s failure mechanisms under various loading conditions. To achieve this, 

different relationships known as damage criteria, should be determined based on 

material‟s properties, such as toughness, damage strain, etc.  

 

Figure 8.1. FE model of thermally bonded nonwovens with interface region for simulating 

damage behaviour 

The numerical model introduced in this research offers a practical tool for 

simulation of thermally bonded bicomponent fibre nonwovens covering reversible 

and irreversible deformation types with viscous effects. In order to extend the 

capabilities of the numerical model, the damage behaviour could be implemented as 

one of mechanical properties of nonwovens. This implementation requires 

nonwovens-specific damage criteria, accounting for their manufacturing parameters, 

fibre properties, etc. In order to predict the limits of deformation due to damage in 

real-life applications, criteria of damage initiation and evolution of damage in 

nonwovens should be studied, both experimentally and numerically. 



Chapter 8. Conclusions 
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Damage initiation in nonwovens corresponds to premature failure of fibres at 

the fibre-bond interface (Michielsen et al., 2006). Hence, damage criteria for the 

thermally bonded nonwoven fabrics could be implemented in the developed 

numerical model with introducing a third nonwoven region – interface region – 

where damage initiates (Figure 8.1). As shown in Figure 8.1, the interface region is 

currently modelled with one layer of elements acting as a transition between bond 

point and fibre matrix regions. With the improved numerical model proposed for 

future studies, failure of the fabric commences at the interface region elements 

fulfilling the damage criteria developed for the fabric, and then propagates to other 

regions. On the other hand, various experiments should be performed to develop 

parametric damage criteria for the nonwovens and verify results of numerical 

modelling related to the damage behaviour. The future work illustrated here will 

improve capabilities of the numerical modelling approach to simulate the mechanical 

behaviour of thermally bonded bicomponent fibre nonwovens explained in the thesis. 
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