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Abstract: 

Our understanding of handbike configuration is limited, yet it can be a key determinant 

of performance in handcycling. This study explored how fourteen handcycling experts (elite 

handcyclists, coaches, support staff and manufacturers) perceived aspects of recumbent 

handbike configuration to impact upon endurance performance via semi-structured interviews. 

Optimising the handbike for comfort, stability and power production were identified as key 

themes. Comfort and stability were identified to be the foundations of endurance performance 

and were primarily influenced by the seat, backrest, headrest and their associated padding. 

Power production was determined by the relationship between the athletes’ shoulder and 

abdomen and the trajectories of the handgrips, which were determined by the crank axis 

position, crank arm length and handgrip width. Future studies should focus on quantifying the 

configuration of recumbent handbikes before determining the effects that crank arm length, 

handgrip width and crank position have on endurance performance. 

 

Keywords: Recumbent Handcycling, Elite Athletes, Qualitative Methods, Disability 

Ergonomics and Sports Ergonomics 

 

Practitioner Summary: 

To gain a greater understanding of the impact of handbike configurations on endurance 

performance the perceptions of expert handcyclists were explored qualitatively. Optimising 

the handbike for comfort and stability, primarily via backrest padding, and power production, 

the position of the shoulders relative to handgrips and crank axis, were critical.  
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Introduction  

Handcycling has become a popular recreational and sporting exercise modality for 

individuals with lower limb impairment (van der Woude et al. 2008). There has been a focus 

on the handbike as a form of mobility for rehabilitation (Hettinga et al. 2010; Hettinga, 

Hoogwerf, and van der Woude 2016), for daily ambulation (Arnet, van Drongelen, Veeger, & 

van der Woude, 2013) and as a vehicle for recreational (Janssen, Dallmeijer, and van der Woude 

2001) and competitive sport (Abel et al. 2006, 2010; Fischer et al. 2014). In a sporting context, 

handcyclists compete in either arm-powered recumbent handbikes or arm-trunk-powered 

kneeling handbikes depending on their type and level of impairment (Krämer et al., 2009; 

Litzenberger et al., 2016). The current study will focus on the recumbent handbike (Figure 1), 

as four (H1-H4) of the five handcycling classifications (H1-H5) use this style of handbike for 

racing (UCI 2018). 

Since the inception of handcycling at the Paralympic Games in 2004, there have been 

considerable performance developments in the sport. The physical conditioning, training 

strategies and preparation of elite handcyclists has improved substantially (Perret 2017). In 

conjunction with these physiological advancements, the racing handbikes are becoming 

increasingly lightweight, aerodynamic (Fischer, Figueiredo, and Ardigò 2015) and tailored to 

meet the specific requirements of each athlete (Litzenberger, Mally, and Sabo 2016). The 

improvements in the physical conditioning of the athletes and the evolutions in handbike design 

have contributed to the improved performance levels in handcycling (Perret 2017). 

Handcycling performance is dependent upon three factors: the capabilities of the athlete, 

the design and construction of the equipment (handbike)  and the interaction between the athlete 

and their equipment (Mason, van der Woude, and Goosey-Tolfrey 2013), termed the handbike-

user interface. The physiological capabilities of elite handcyclists and the determinants for 

success in handcycling have previously been investigated (Abel et al. 2006, 2010; Groen, van 
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der Woude, and De Koning 2010; Lovell et al. 2012; Fischer, Figueiredo, and Ardigò 2015). 

Few studies, however, have investigated the impact of the handbike-user interface or handbike 

design and construction on endurance performance. Research exploring the impact of the 

handbike-user interface on performance has focussed on the position and configuration of the 

cranks in ambulatory (Arnet et al. 2014; Bafghi et al. 2008; Faupin et al. 2006; van der Woude 

et al. 2008) or recreational handcycling (Abel et al. 2003, 2015; Goosey-Tolfrey, Alfano, and 

Fowler 2008; Krämer, Hilker, and Böhm 2009; Krämer et al. 2009). Here, the configuration of 

the handbikes and demands on the participants differ considerably from elite handcycling thus, 

the influence that specific areas of racing handbike configuration have, on endurance 

performance, are unknown. 
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The configuration of a racing handbike is complex as numerous components can be 

manipulated under International Cycling Union (UCI) regulations, all of which potentially 

affect performance. One gap in the literature lies in understanding how handcycling experts 

(defined as elite handcyclists, their coaches, support staff and handbike manufacturers) would 

configure a racing handbike to maximise endurance performance. Adopting a qualitative 

methodology would allow the opinions and experiences of expert handcyclists, who have the 

experience of configuring numerous racing handbikes, to be considered and understood. 

Understanding how and why handcycling experts select certain types of equipment and 

configurations for a racing handbike along with their perceived effects on performance, is a 

critical step in optimising the performance of a handbike.  

The objective of this study was to employ a qualitative methodology to identify the 

components of handbike configuration and set-up that handcycling experts perceived to have 

the greatest impact on endurance performance. Similar qualitative approaches have successfully 

identified priority research areas in power assisted wheelchairs (Giacobbi et al. 2010; Rushton 

et al. 2017), wheelchair racing (Bundon, Mason, and Goosey-Tolfrey 2017) and wheelchair 

court sports (Mason et al. 2010; Bundon, Mason, and Goosey-Tolfrey 2017). The findings of 

this study are intended to inform future research, aiming to optimise recumbent handbike 

configuration for endurance performance.  

 

Methods  

Participants 

Maximum case sampling was employed to select the handcycling experts to be 

interviewed in the current study (Sparkes and Smith 2014). As noted by Sparkes and Smith 

(2014), this sampling method requires the research team to define, before recruitment, 

dimensions most relevant to the topic under investigation and then systematically recruit 
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participants who represent the variants within these dimensions. In this instance, informed by 

the existing literature and our own experiences of working in disability sport (Bundon, Mason, 

and Goosey-Tolfrey 2017), the research team focused on the following dimensions: role in 

sport, time involved in the sport, gender and classification. The final sample included 14 

handcycling experts (Table 1).  

Table 1: Participant Information 

Gender Role in Handcycling 
Handcycling 
Experience 

(years) 
Male Athlete - H4 6 

Female Athlete - H3 3 
Male Athlete - H3 8 

Female Athlete - H3 21 
Male Athlete - H1 11 
Male Manufacturer 4 
Male Manufacturer 10 
Male Manufacturer 16 
Male Coach 2 
Male Coach 6 
Male Coach 15 
Male Support Staff 3 

Female Support Staff 9 
Male Support Staff 17 

UCI (2018) classification: H1 Quadriplegia, H3 - H4 
paraplegia or severe lower limb impairments  

 

Procedures 

Semi-structured interviews were employed because it allowed the research team to 

identify specific avenues of inquiry a priori, while still allowing the flexibility for participants 

to raise new topics and for the researcher to further probe these ideas (Sparkes and Smith 2014). 

Semi-structured interviews have also proven valuable in that they are first and foremost 

opportunities for conversations and, as Smith and Sparkes (2016) explain, humans are 

conversational beings. It is through the social encounter of the conversational interview that we 
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get to know each other and gain rich knowledge about the other’s world. In this project, we 

were seeking to better understand not only what ‘handcycling experts’ knew about the design 

and construction of handcycles but how they came to know this and the experiences that led 

them to develop this knowledge. Semi-structured interviews provided the opportunities to 

explore questions from our prior research and our reading of the academic literature but also 

allowed the conversation to develop in new and unexpected ways based on what participants 

shared with us. The interview guide was developed by the research team, two who have 

extensive knowledge of physiological and biomechanical testing and one with expertise in 

qualitative methods and methodologies. All team members had considerable prior experience 

researching and working in disability sport. An experienced handcycling coach reviewed the 

guide which, following a successful pilot interview, was employed throughout the 

investigation. The final interview guide covered topics including: performance determinants, 

the configuration of the handbike-user interface, components of the handbike (Figure 1) and 

the current process of fitting a recumbent handbike. A conversational interview style was 

adopted, with participants being encouraged to broadly discuss aspects of racing handbike 

configuration and design, with the interviewer prompting if a topic identified in the interview 

guide was not discussed.  

All interviews were audio recorded and conducted by the first author under the 

supervision of an experienced interviewer in person (n=9) or via a Skype video call (n=5). 

Where possible, participants were asked to bring their recumbent handbike to the meeting as a 

point of reference. Interviews lasted 83 to 192 minutes giving a total of 1753 minutes of 

dialogue. Recruitment stopped when the research team started to observe data saturation, the 

point at which data began to repeat in the interviews and no new trends were emerging (Smith 

and Sparkes 2016). While we acknowledge that the concept of data saturation is widely debated 

amongst qualitative sport and exercise researchers (Smith and Sparkes 2016), our decision was 
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based largely on agreement amongst the research team that the interviews to date, had resulted 

in sufficient data to provide new insights into the topic being considered (without suggesting 

that our work was exhaustive or that speaking with other/more participants would not have 

provided further insights). Ethical approval for the study was obtained from the university’s 

local ethics committee and all participants provided their written informed consent. 

Analysis 

The epistemological framing of the project focused on understanding how recumbent 

handbike configuration and design impacts performance from the participants’ perspective. To 

achieve this understanding, interviews were transcribed verbatim and a hierarchical content 

analysis was conducted. Hierarchical content analysis consists of a set of steps designed to assist 

the researcher(s) in identifying patterns in the data and specifically the interplay between the 

patterns including any ordering or hierarchy that exists (Sparkes and Smith 2014). This type of 

analysis allows for a coherent, succinct description of the data and is particularly useful when 

doing exploratory work (Sparkes and Smith 2014). In this study, the process of analysis 

included immersion in the data (reading and re-reading of transcripts) while tagging and making 

note of potential codes. These included deductive codes identified during the project design and 

inductive codes that arose from field notes taken during the interview process and other codes 

developed when reading and re-reading the transcripts. In total, 18 codes were identified in the 

coding process. These codes were placed into clusters and ultimately refined into five distinct, 

yet interrelated, themes (Table 2). The analysis was performed by the first author and a second 

member of the research team, experienced in qualitative research, acted as a ‘critical reader’ 

throughout the data analyses process to query decisions made and probe for further clarification 

and refinement of codes. 
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Results 

This paper will focus on three of the five superordinate themes; comfort, power 

production and stability. These groups were selected for more in-depth analysis by the research 

team as they contained the nodes with the richest data and the most novel insights into how 

handcycling experts configure a recumbent handbike to optimise endurance performance.  

Comfort  

There was a consensus amongst athletes and manufacturers that feeling ‘comfortable’ 

in the handbike was critical. Comfort was primarily perceived to be the ability to cycle for long 

periods, up to ‘six-hours’ a day, without having to move or re-position to alleviate aches, pains 

or pressure. A lack of comfort was suggested to have a negative impact on performance:  

The comfort of the bike is really important to training. If you are not comfortable on the 

bike you won’t be able to complete the quality of training required to sustain a high 

level of performance. (Athlete) 

Getting them into a seat position where they can sit for a long period of time and not 

suffer discomfort. If you are not comfortable in a position you will struggle to produce 

power. (Coach) 

In addition to not being able to complete the volume of training required, coaches and support 

staff associated discomfort with increased injury risk, principally injury to the cervical and 

thoracic spine and pressure sores. Therefore, discomfort potentially leads to time-off the 

handbike impacting upon training volume and consequently endurance performance.  

Table 2: Description of the identified themes and codes    
Aerodynamics and 

Mechanical 
Components 

Comfort Manoeuvrability Power Production Stability 

Footpods Fitting Breaking Athlete Position Classification 
Gearing System Injury/Pain Clearance Crank Axis Position Strapping 

Handbike Design Padding Handbike 
Dimensions 

Crank Length Backrest and 
Seat Shape Materials  Handgrip Width 

Wheels         
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Comfort was frequently discussed in relation to configuring or ‘fitting’ a recumbent 

handbike. The primary components of the handbike that contributed to athlete comfort were the 

backrest, headrest and seat, referred to as the supporting structures. Participants explained that 

the backrests are manufactured in standard shapes and sizes (e.g. small, medium or large) and 

commented that the current padding solution was inadequate: 

I think there is also scope to do some work on the backrest padding. Currently, it is just 

a sheet of foam, there is no finesse to it at all. (Athlete) 

Creating an optimal set-up for comfort was also thought to be time-consuming and, in some 

cases, impossible: 

Everybody’s backs are shaped differently and with spinal injuries, backs can be fairly 

strange shapes and unsymmetrical. Additionally, because we do not have sensation it is 

difficult to know where you need the padding. (Athlete) 

I never really found the position that I was comfortable in, I would get backache and I 

found myself tweaking the backrest for a couple of months after I received it to get into 

a comfortable position. (Athlete) 

Inexperienced athletes, in particular, encountered difficulties altering the shape or size of the 

backrest or associated padding to maximise comfort. Furthermore, athletes with spinal lesions, 

causing a lack of sensation, found optimising comfort difficult. These views were reiterated by 

coaches and support staff who explained the time-consuming trial and error process of adding 

and removing padding to improve comfort. An individualistic approach appeared essential 

when optimising the comfort of a handbike. 

Stability  

Stability was consistently described as providing the base from which power could be 

generated. The athletes felt stable in the handbike if their legs, torso and head remained 



11 
 

‘relaxed’ or still when they were propelling the handbike. Athletes valued stability, describing 

it as being ‘attached to’ or ‘at one with’ the handbike: 

You want to be as compact and as firm in the bike as possible. You don’t want any 

unnecessary movement or sliding up and down on the frame. (Athlete)  

A coach identified that stability was one of the main differentiating factors between elite and 

sub-elite handcyclists: 

There will be less body movement, no head wobble, no shoulder movement, the chest 

will be open, and it will look smooth and glide rather than looking under pressure. There 

is no loss in efficiency in the delivery of power throughout the whole pedal cycle. 

(Coach) 

There was a consensus amongst participants that while comfort enabled athletes to complete a 

high training volume, stability in the handbike was the foundation for power generation and 

ultimately performance. 

 The principal areas of the handbike that were perceived to impact on stability were the 

supporting structures and abdominal strapping. To maximise stability participants reported that 

the backrest and headrest should be positioned and shaped in such a way so that the head and 

torso were always in ‘full contact’ with the supporting structures. These supporting structures 

needed to be rigid as the athletes stated that they would use the backrest and headrest to push 

off when propelling the handbike. The athletes perceived that the shape and rigidity of the seat, 

backrest and headrest were critical for stability, facilitating power production. 

Participants unanimously stated that an individual’s anthropometry and classification 

also impacted upon the stability of a handcyclist. Athletes with high spinal lesions (H1- H3) are 

inherently less stable than athletes with lower lesion levels (H4 – H5). To improve stability, 

H1- H3 athletes used additional abdominal strapping, such as thicker or multiple straps. A 
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number of participants proposed the use of bespoke backrests and seats. One participant had a 

customised seat and backrest:  

I can feel benefits from having a little bit more lateral support. Effectively it has given 

me a bit more core stability which I am lacking because of the lack of available muscle 

function. (Athlete) 

Participants agreed that additional lateral support would be highly beneficial, particularly for 

the athletes in the H1- H3 classes, and that current solutions are inadequate. However, a number 

of athletes were concerned about the cost of such bespoke equipment.   

Power Production 

 The analysis identified four components of the handbike that were unanimously 

perceived to have a critical effect on power output and efficiency: crank axis position 

(horizontal and vertical), crank length, handgrip width and the position of the athlete (shoulder 

and abdomen). These components were thought to determine the propulsion technique of a 

handcyclist:  

It is the relationship between the position of your shoulders, arms and the crank because 

that is where all the power comes from. If you can get that in exactly the right position 

so that you can deliver the most power all the way through the crank cycle. That will 

give you the best performance. (Mechanic) 

A clear rationale was presented by participants when discussing the position of the crank axis 

relative to the shoulders and abdomen. It was stated that the horizontal position of the cranks 

should result in the elbows being ‘slightly bent’ when the handgrips are at the furthest point 

from the shoulders, ‘probably 15 ° of elbow bend’. If the elbow fully extended or the shoulders 

protracted it was a sign for coaches and manufacturers that the cranks were too far away from 

the shoulders. The height of the crank should be as low as possible, ‘12 mm clearance between 

the handgrip and my stomach’, without having an impact on manoeuvrability. The position of 
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the athlete’s shoulder, manipulated by the backrest and seat position, should be below the height 

of the crank axis. This configuration was suggested to be optimal for both reducing air 

resistance and maximising power output. 

The trajectory of the handgrips, primarily influenced by crank arm length and handgrip 

width, in relation to the shoulders and abdomen, was also crucial. Athletes used crank arms that 

ranged between 160 mm and 175 mm in length because these were the crank lengths provided 

by the manufacturers. Two athletes had experimented with crank lengths ranging from 160 mm 

to 175 mm and, in agreement with the other participants, felt that changing crank length had a 

substantial impact on performance. Participants expressed an interest in reducing rather than 

increasing crank length. All the participants stated that the optimal handgrip width was in line 

with, or just inside, the line of the shoulders: 

Crank width is related to my shoulder width. We decided that as narrow as possible but 

without getting pressure sores from inside the frame is best. It is aerodynamic and puts 

you in a biomechanical position that allows you to pedal naturally. (Athlete) 

Furthermore, a handgrip width equal to or slightly less than shoulder width was frequently 

suggested to reduce the incidence of shoulder injury and pain. There was consensus amongst 

the participants regarding the selection of handgrip width and crank length. However, unlike 

handgrip width, it was evident that decisions concerning crank length were not based upon a 

clear logic rationale, such as injury prevention, aerodynamics or maximising power production, 

but dependent on the crank lengths provided by the manufacturers as they ‘work’.  

To improve their endurance performance athletes, especially inexperienced ones, 

frequently changed the configuration of their recumbent handbikes. It was acknowledged that 

the athletes were involved in a ‘trial and error’ process based on individual observations, citing 

‘feel’ as a point of reference, or by comparison with other handcyclists. These constant 

manipulations were seen by coaches, support staff and manufacturers to negatively affect 
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performance and potentially cause injury. However, it was accepted that athletes would keep 

‘fiddling’ with their handbike set-up until an optimal set-up was identified objectively, with 

measures such as cycle kinetics, economy or efficiency being suggested. Additionally, the 

participants stated that athlete anthropometry, strength, cadence and aerodynamics were also 

key factors that need to be considered in any future research to ensure that the findings are 

transferable.  

 

Discussion 

Handcycling experts perceive the configuration of the handbike and handbike-user 

interface to have a significant impact on endurance performance. The research team identified 

three themes so that meaningful and novel data could be acquired, these were comfort, stability 

and power output. It was evident that participants considered the comfort and stability of the 

structures supporting the torso and head as the foundations for successful performance. 

Handcycling performance is dependent on maximising power output and efficiency, which was 

thought to be primarily affected by the position of the athlete about the crank axis and 

handgrips. 

The themes stability and comfort primarily concerned how athletes lie and fit into their 

recumbent handbikes and were influenced by padding and the supporting structures. The 

headrest is designed to support the head and cervical spine while the backrest is designed 

primarily to support the thoracic and lumbar spine. The seat provides support for the pelvis and 

legs with strapping securing the abdomen. The backrests tend to be manufactured from a single 

piece of aluminium or carbon fibre, in a small range of sizes, which are then covered with a 

thin foam cushion, attached by Velcro, providing padding for the athlete. Recumbent 

handcyclists have a range of disabilities affecting their individual needs for comfort and 

stability. To improve comfort or stability athletes have to source their own materials, 
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considering cost, rigidity, weight and durability, and then design and construct their own unique 

solution which can be time-consuming and technically challenging. At present the most 

effective solution is to manufacture a bespoke carbon fibre backrest, moulded to the athletes’ 

torso, however, such components are expensive and will not be available to all competitors. 

While an athlete may benefit from a bespoke backrest they need to know the type of support 

they require, a challenge for inexperienced handcyclists, as once built these backrests are not 

adjustable. Although bespoke solutions are effective the costs are prohibitive, therefore 

manufacturers need to develop a wider range of sizes and shaped supporting structures and 

provide more sophisticated customisable padding solutions. This would particularly benefit 

inexperienced handcyclists who, due to their lack of knowledge, changing fitness levels and 

potentially changing technique, are potentially more likely to change their handbike set-up more 

markedly and more frequently than experienced handcyclists.   

In the current study, comfort and stability were identified as separate themes. Comfort 

primarily related to injury reduction while stability facilitated power production. It was apparent 

that a handcyclist could be comfortable and unstable or vice versa, hence the separation of the 

themes. A lack of comfort was associated with an increased injury risk, primarily pressure sores 

or neck injuries, which could affect training and therefore performance. Conversely, a lack of 

stability, through flexible supporting structures and ineffective lateral support or abdominal 

strapping, was thought to compromise power production. Optimising comfort was a particular 

challenge for athletes with spinal lesions, due to their lack of sensation. Similarly, stability was 

deemed critical for athletes with spinal lesions, especially those with higher lesions (classes H1 

– H3), who due to their limited trunk musculature, are less able to stabilise themselves in the 

handbike. Optimising stability and comfort is an essential and necessary first step in the process 

of setting up or configuring a handbike. This process was the primary cause of frustration for 
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the athletes, especially inexperienced handcyclists, potentially leading to injuries, discomfort 

and athlete drop-out.   

This study provided an initial understanding of the handbike-user interface and its 

perceived effect on power production. It was revealed that the trajectories of the handgrip, 

determined by crank axis position, crank length and handgrip width, relative to the athlete's 

shoulder and abdomen, were identified as the critical components of the handbike-user 

interface. Positioning and configuring the cranks so that the force-length characteristics and 

moment arms of the elbow and shoulder are optimal would be logical, as suggested by the 

coaches and support staff, affirming the suggestion of van Drongelen et al. (2009). Currently, 

athletes are continually changing and adjusting their handbikes through a subjective ‘trial and 

error’ process, with ‘feel’ consistently being used as an indicator of performance.  

Consequently, in a population of elite handcyclists, it is likely that there will be a reasonable 

degree of variation in the position and configuration of the cranks. Thus, quantitative studies 

need to initially identify the configuration of the handbike-user interface employed by elite 

recumbent handcyclists.  

 The position of the athlete’s shoulders relative to the crank axis and the handgrip was 

perceived to determine the technique of a handcyclist. In agreement with participants’ 

responses, the movement of the upper limbs are constrained by the circular path of the handgrips 

(Gorce and Faupin 2008; Litzenberger Mally, and Sabo 2016).  These kinematic investigations 

have found that the fore-aft position of the crank influences elbow motion, while the height of 

the crank and the width of the handgrips influence shoulder and wrist kinematics. Crank 

position also influences upper limb muscle activity (Litzenberger, Mally, and Sabo 2016), but 

the effects on mechanical efficiency and shoulder load are inconclusive (Arnet et al., 2014; van 

Drongelen et al. 2009). Quantitative studies manipulating handgrip width have been more 

conclusive, a handgrip width of 85 % of shoulder width was found to be optimal in a 4-second 
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sprint (Krämer, Hilker, and Böhm 2009). Backrest inclination, affecting shoulder height and 

aerodynamics, has also been investigated by Arnet and her colleagues (2012; 2014). A more 

reclined position (recumbent position 15°) increased shoulder load (Arnet et al. 2014) but 

reduces air resistance which would lower power output, reducing shoulder load (Arnet et al. 

2012), for a given speed on the road. Participants presented a clear, logical and consistent 

rationale when describing the position of the cranks and width of the handgrips. The cranks 

should be positioned as low as legally possible, the elbows should be slightly bent when the 

arms are fully extended and the handgrip widths should be equal to or slightly less than the 

width of shoulders. Therefore, it is recommended that future studies identify the optimal 

handgrip width, ‘roughly shoulder width’, and crank fore-aft position, ‘arms slightly bent at full 

extension’, for endurance performance as the current descriptions are vague.  

In contrast to crank width and crank axis position, no clear rationale was provided when 

selecting crank arm length. The crank arm lengths used in handcycling, 160 mm to 175 mm, 

are typically the same as those used in leg-powered cycling (Ferrer-Roca et al. 2017). The 

human arm is approximately 30 % shorter than the leg (Gordon et al. 1989), yet, the same crank 

arm lengths are used. Crank arm length determines the length of the handgrip trajectory (de 

Vey Mestdagh 1998) and, in conjunction with drive wheel diameter and gear ratios, determine 

the resistance at the handgrip (Martin and Spirduso 2001). Goosey-Tolfrey, Alfano, and Fowler 

(2008) found that shorter crank arms improve efficiency in handcycling, however, the crank 

lengths used, 180 mm to 220 mm, and exercise intensity, 70 W and 90 W, are not applicable to 

elite recumbent handcycling. All the participants expressed an interest in shortening crank arm 

length but, due to cost and difficulties associated with gearing and leverage, it was challenging 

to manipulate crank arm length in an applied setting. If the crank arm lengths were reduced by 

30 % (5 cm) the crank height and position of the athletes could be lowered potentially improving 

the aerodynamic situation.  
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The findings of the current study can inform the configurations and experimental 

designs used in future research aiming to optimise the handbike-user interface. Quantitative 

studies should design methodologies aligning with our handcycling experts’ descriptions of 

handbike configuration. Expert handcyclists unanimously defined handgrip width, crank height 

and crank fore-aft position relative to shoulder width, shoulder height and elbow angle 

respectively, considering the participant’s anthropometry and position in the handbike. For 

example, Arnet et al. (2014) manipulated crank height relative to shoulder height while Krämer, 

Hilker, and Böhm (2009) determined handgrip width relative to shoulder width. Future 

qualitative studies could also be used to understand what makes an athlete feel comfortable, 

stable and ‘at one’ with their handcycle.  

Before manipulating the configuration of the handbike-user interface, studies should 

focus on gaining an understanding of recumbent handcycling set-up. The research focus can 

then shift to optimising the handbike-user interface for endurance performance, specific in 

anthropometry and impairment of the individual. It is imperative that these critical components 

of the handbike-user interface and other contributing factors, such as aerodynamics, 

manoeuvrability, cadence and mechanical components are controlled and standardised in future 

experimental studies. Furthermore, researchers need to be attentive to UCI regulations to ensure 

that the findings, performance or health-related, can be used to support or challenge these 

regulations. A great deal of sport-specific research is required, as currently, athletes are making 

decisions regarding their handbike configuration based on trial and error. 

 

Limitations 

Homogeneity of the sample regarding classification range could be viewed as a 

limitation (H1, n=1; H3, n=3; H4, n=1) despite the depth of experience. Therefore, an increased 

number and greater spread of athletes across the classes (H1 and H2) would have been 
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advantageous. However, given that this is the first study of its kind to investigate handbike 

configuration in a sporting context the results should lay the platform for future research to 

build on. 

 

Conclusions 

It is critical that the configuration of a recumbent handbike facilitates the efficient 

production of power, from a stable and comfortable position. The study identified comfort and 

stability as critical considerations for recumbent handcyclists and that the current supporting 

structures and padding solutions are inadequate and require urgent attention from handbike 

manufacturers. The research revealed that expert handcyclists unanimously agreed that power 

output was primarily affected by crank axis position, handgrip width and crank arm length. 

Currently, athletes’ selections, when configuring a recumbent handbike, are based on trial and 

error potentially limiting performance and increasing injury risk. Therefore, it is essential that 

further research is undertaken to help handcyclists, particularly inexperienced athletes, optimise 

their handbike configuration relative to their anthropometry and disability. The current study 

has identified crank position and crank length as key components worthy of future quantitative 

investigation. 
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