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Abstract 40 

Purpose: Progressively overloading the body to improve 41 

physical performance may lead to detrimental states of 42 

overreaching/overtraining syndrome (OTS). Exercise-induced 43 

cortisol and testosterone have been suggested as overreaching 44 

markers with blunted cycle-induced concentrations found 45 

following an intensified-training period. To be inclusive for a 46 

running population, this study develops two 30-min running 47 

bouts: the 50/70 (based on individualized velocity at maximal 48 

oxygen uptake) and the RPETP (self-paced bout) and examines 49 

the reproducibility of plasma cortisol and testosterone 50 

responses to these bouts. Methods: Thirteen recreationally 51 

active, healthy males completed each running bout on three 52 

occasions, respecting time of day and blood was drawn Pre-, 53 

Post- and 30 min Post-Exercise. Results: Cortisol did not 54 

change in response to 50/70 or RPETP (p > 0.05, η2 = 0.090 and 55 

η2 = 0.247, respectively). Elevated (both p < 0.01) testosterone 56 

(50/70: 35%, η2 = 0.790; RPETP: 42%, η2 = 0.876) was 57 

observed, with good intra-individual coefficients of variation 58 

(CVi) as mean ± standard deviation for cortisol (50/70: 13 ± 59 

10%; RPETP: 12 ± 7%) and testosterone (50/70: 7 ± 5%; 60 

RPETP: 12 ± 9%). Heart rate and rating of perceived exertion 61 

were unchanged across trials (all CVi < 5%, p < 0.05). 62 

Conclusions: Both tests elicited reproducible physiological and 63 

hormonal responses. Advantageously for the practitioner, 64 

RPETP does not require a priori determination of exercise 65 

intensities, unlike the 50/70, enhancing its potential integration 66 

into practice. Additionally, RPETP induces greater disturbances 67 

to OTS-implicated hormones compared to 50/70 and may 68 

therefore provide a more sensitive tool to highlight 69 

NFOR/OTS. 70 

Keywords: Performance, running test, stress, overreaching, 71 
prevention. 72 

 73 

  74 
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Introduction 75 

 76 
Successful athletic training requires balanced overload and 77 
recovery, without which short-term performance decrements 78 

can occur (e.g. overreaching) in as little as 7 days.1 Importantly, 79 
whilst overreached athletes can experience performance 80 
decrements in the short-term, sufficient recovery (days to 81 
weeks) facilitates a “supercompensatory” performance 82 
enhancing effect [e.g. functional overreaching (FOR)2]3. 83 

Without sufficient recovery from periods of overload, “non-84 
functional overreaching” (NFOR) can occur (requiring 85 
weeks/months to recover from fully) with NFOR complicit in 86 
the more protracted overtraining syndrome (OTS; requiring 87 
several months or even years to recover from fully).2 88 

 89 

Resting concentrations of cortisol and testosterone were 90 

suggested as markers of overreaching/NFOR/OTS yet their 91 
efficacy in these regards is inconclusive with increases, 92 
decreases and no changes in concentrations under examination 93 
before to after intensified-training periods.4–6 Exercise-induced 94 

responses appear to have greater utility, with blunted ACTH 95 
and cortisol responses to 2 consecutive continual incremental 96 

cycles to fatigue identified following a 10-day intensified-97 
training period, compared with pre-training.7 Following on 98 
from these findings, robust elevations of salivary cortisol 99 

(~120%) and testosterone (~33%) to a continuous, 30-min 100 
cycle bout, consisting of alternating blocks of 1 min at 55% 101 

maximal workload (𝑊̇max) and 4 min at 80% 𝑊̇max (i.e. the 102 

55/80) were reported,8 with blunted exercise-induced salivary 103 
cortisol and testosterone in response to the 55/80 shown 104 
following an 11-day9 and salivary testosterone after a 10-day10 105 

intensified-training period.  106 
 107 
However, despite some utility for the 55/80 to highlight 108 

exercise-induced overreaching-related hormonal imbalances in 109 
cyclists, its application within other athletes (e.g. runners) is 110 

evidently lacking. Given a 30-min running bout at 80% of 111 

maximal oxygen uptake (V̇O2max) has been reported to elevate 112 
plasma cortisol by ~20%,11 and a running test to exhaustion at 113 
100% ventilatory threshold increased plasma cortisol (~97%) 114 

and total testosterone (31%),12 it was hypothesized that a short 115 
duration running protocol variant of the cycling 55/80 may be 116 

viable. This running variant, theoretically, could induce an 117 
acute elevation in plasma cortisol and testosterone when in a 118 

healthy state and also detect alterations in the exercise-induced 119 
responses of these hormones as a consequence of intensified-120 
training period. To be of value in practice, this variant protocol 121 
must demonstrate reproducible hormone and physiological 122 
responses when participants are in a rested healthy state.  123 
 124 
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The aim of this study is to therefore examine whether the acute 125 

plasma cortisol and testosterone responses to two novel, 126 
continuous, 30-min treadmill-run protocols are reproducible, 127 
within rested yet active healthy participants, aiming to design a 128 

short-duration running bout that could be practically used to 129 
prevent the incidence of NFOR/OTS. 130 
 131 

Methods 132 
 133 
Subjects 134 
 135 

In a randomized crossover design, 13 recreationally active 136 
males13  volunteered to participate (Table 1). This study was 137 
granted ethical approval by the University of Bedfordshire 138 

Research Ethics Committee (2014ISPAR003) in accordance 139 
with the 2013 Declaration of Helsinki. After comprehensive 140 
verbal and written descriptions of the study, written informed 141 
consent was provided by participants. 142 

 143 
(*** Insert Table 1 near here ***) 144 
 145 

Design 146 
 147 

On the first visit to the laboratories a submaximal and a 148 

V̇O2max tests were completed on a motorised treadmill (PPS55 149 

Med-i, Woodway, Weil am Rhein, Germany). On the following 150 
visits, 7 separate trials were completed – 6 main experimental 151 
trials and one control, resting trial (CTL). All trials were 152 

completed at 12:00 to avoid the influence of diurnal variation 153 

of the hormones being examined (Figure 1). To avoid baseline 154 
peak circulating cortisol levels due to circadian rhythm, all 155 

participants were asked to wake up no later than 08:00 on the 156 
morning of the trial. A standard breakfast chosen by the 157 
participant was consumed before 09:00 and was replicated 158 

before each main trial. Participants were requested to drink 159 
~500 mL of water in the morning of the trial and euhydration 160 

was confirmed by a urine osmolality of ≤ 700 mOsm.kg.H20
-1.14 161 

All participants reported to the laboratory at ~11:30 and 162 
completed a 76-statement recovery-stress questionnaire 163 
(RESTQ-76). The RESTQ-76 discriminates 48 nonspecific and 164 
28 sport-specific areas of stress and recovery, consisting of 19 165 

main scales in total.15 Each of these subscales includes specific 166 
statements. The sum of scores (answer to each statement) in 167 

each of the subscales is used to examine the overall responses 168 
to the questionnaire. Each answer ranges from never (0) to 169 
always (6) and covers the participants’ past 3 days. Participants 170 
did not consume any food until the end of each main 171 
experimental trial but were allowed to drink water ad libitum 172 
throughout the exercise bouts. Body mass was measured pre- 173 
and post-exercise and heart rate (HR) and rating of perceived 174 
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exertion (RPE) were measured in the last 15 s of each stage 175 

during the exercise bouts via short-range radio telemetry (Polar 176 
FT1, Polar Electro Oy, Kempele, Finland) and the 6-20 Borg 177 
scale, respectively. 178 

 179 
A similar diet was consumed during the 24 hours preceding 180 
each trial and measured via a weighed food diary. A nutrition 181 
analysis software (Dietplan, Version 6.70.74, Forestfield, West 182 
Sussex, UK) was used to determine mean energy (9439 ± 3954 183 

kJ), carbohydrate (58% ± 12%), fat (27 % ± 13%), and protein 184 
(14% ± 2%) intake. 185 
 186 
Methodology 187 
 188 

A 3-min warm-up run at 7 km.h-1 and 1% gradient was 189 

undertaken prior to the submaximal test. A 4-stage, 16-min, 190 

incremental treadmill-run test was then completed in order to 191 

determine the running speed/oxygen consumption (V̇O2) 192 

relationship.16 The initial speed was self-selected between 6.5 – 193 

12.0 km.h-1. Speed was then increased by 1 km.h-1 every stage. 194 

A 20-min resting recovery was then undertaken. V̇O2max was 195 

assessed using an incremental incline-ramped test.16 The 196 
gradient was increased by 1% every minute until volitional 197 

exhaustion. The initial speed was set at the speed corresponding 198 
to a HR of ~150 beats.min-1 (range: 9.5 – 13.0 km.h-1) on the 199 
submaximal test and remained constant throughout. Expired 200 

gas was analysed by using a breath-by-breath ergospirometry 201 
system (MetaLyzer 3B, Cortex, Leipzig, Germany). The 202 

vV̇O2max was determined by regressing V̇O2 exercise intensity 203 

for submaximal exercise and extrapolating this relationship to 204 

V̇O2max.17 205 
 206 
(*** Insert Figure 1 near here ***) 207 
 208 
In the 6 main exercise trials the participants completed each of 209 
the 2 designed running bouts on 3 separate occasions - 1 210 
familiarisation (FAM) and 2 main trials (T1 and T2), to avoid 211 
any learning effects. All trials were randomly assigned. 212 

Participants abstained from exercise, caffeine and alcohol 213 
intake 24 hours before each main trial. Blood samples were 214 
drawn Pre-, Post-, and 30 min Post-Exercise in T1 and T2. The 215 
tests were both 30-min, continuous treadmill-running and were 216 

designed as follows: (a) alternating blocks of 1 min at 50% 217 

vV̇O2max and 4 min at 70% vV̇O2max (50/70); (b) alternating 1 218 
min at an RPE of 11 (fairly light) and 4 min at 15 (hard) on the 219 
6-20 Borg scale (RPETP), where the treadmill speed could be 220 

adjusted but not seen by the participant to maintain the RPE in 221 
the target range; (c) a 30-min no exercise, control trial (CTL) 222 
(Figure 1). In all exercise trials, the treadmill slope was set at 223 

1% gradient. 224 
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Analytical Procedures: Whole blood samples were collected by 225 

venepuncture from an antecubital vein into 5 mL tri-potassium 226 
ethylenediaminetetraacetic acid (K3EDTA) vacutainers 227 
(Vacuette, Greiner Bio-One, Stonehouse, UK). Blood was 228 

centrifuged at 1500 g for 10 min at 4°C (Heraeus Multifuge 229 
X3R, Thermo Scientific, Loughborough, UK) and plasma was 230 
transferred into 1.5 mL aliquots (Eppendorf, Hamburg, 231 
Germany) to be stored at -80°C. Plasma cortisol and 232 
testosterone concentrations were determined by using 233 

commercially available enzyme-linked immunosorbent assay 234 
(ELISA) kits (IBL International, Hamburg, Germany). All 235 
samples were analysed in duplicate and average concentrations 236 
were used. The sensitivity of the plasma cortisol and 237 
testosterone kits is 6.8 nmol.L-1 and 0.29 nmol.L-1, respectively 238 

and the mean intra-assay CV were 3.0% (cortisol) and 4.6% 239 

(testosterone), according to the manufacturers specifications. 240 

The mean inter-assay CV were 3.5% and 5.7% for cortisol and 241 
testosterone, respectively. 242 
 243 
Statistical Analysis 244 

Statistical analyses were accomplished by using the IBM 245 
Statistical Package for Social Sciences® (SPSS) Statistics 246 

version 23.0 (SPSS Inc., Chicago, IL). Raw data were checked 247 
for normality and homoscedasticity, using the Shapiro-Wilk 248 
test and scatter plots, respectively. Non-normally distributed 249 

data sets were log transformed (to base 10) and rechecked for 250 
normality. Normally distributed data sets (plasma cortisol and 251 

testosterone) were analysed using a two-way repeated measures 252 

analysis of variance (ANOVA). On finding an effect, paired 253 

sample t-tests were used with Bonferroni adjustments. Partial 254 
eta squared (η2) values were used to examine the size of the 255 
effect when examining the exercise-induced response of plasma 256 
cortisol and testosterone. A one-way repeated measures 257 

ANOVA with paired-sample t-test with Bonferroni corrections 258 
was used to examine HR and speed in CTL and exercise trials, 259 
and hormonal responses during CTL. Reproducibility analysis 260 
was accomplished by determining the CVi of all physiological 261 
and hormonal measurements. The CVi were presented as a 262 

percentage and were calculated by hand using the equation CVi 263 

= (SDt/X̅t)*100, where SDt is the standard deviation of the 264 
hormone responses to the main experimental trials averaged, 265 

and X̅t is the average of the hormone concentrations at Pre-, 266 

Post- and 30 min Post-Exercise averaged18. The ICC used was 267 

a two-way model, based on the examination of single measures, 268 
i.e. ICC (2,1). Cohen’s d effect sizes (ES) were used to 269 
examine the magnitude of hormonal change between trials,19 270 
were calculated by hand as detailed in Vincent and Weir,20 and 271 

were categorized using standardized thresholds of < 0.2 trivial, 272 
0.21 – 0.60 small, 0.61 – 1.20 moderate, 1.21 – 2.0 large, and > 273 

2.0 very large.19 The alpha level of significance was set as p < 274 
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0.05. Data is reported as mean ± SD. All results were presented 275 

as raw data to facilitate its comprehension. 276 
 277 
Results 278 

 279 
Hydration status: Urine osmolality did not differ across all 280 
trials and was 348 ± 204 mOsmol·kg-1 H2O in T1, 351 ± 200 281 
mOsmol·kg-1 in T2 (50/70), 345 ± 198 mOsmol·kg-1 H2O in 282 
T1, 310 ± 168 mOsmol·kg-1 in T2 (RPETP) and 301 ± 166 283 

mOsmol·kg-1 H2O in CTL (p > 0.05). 284 
 285 
Recovery-Stress Questionnaires: No changes in the RESTQ-76 286 
Sport scores were found in any of the stress or recovery scales 287 
across all trials (p > 0.05). 288 

 289 

Physiological Responses to Exercise: No differences in HR or 290 

speed were found when comparing FAM, T1 and T2 in any of 291 
the exercise bouts (p < 0.05). When comparing both exercise 292 
bouts, a significant trial effect for speed, HR and RPE was 293 
found (p < 0.01). Average speed and HR were 21% and 9% 294 

higher in the RPETP compared with the 50/70, respectively. The 295 
RPE scores in the RPETP were ~17% higher than in the 50/70. 296 

Reproducibility data for speed, HR and RPE and average HR 297 
and speed in response to the 50/70 and RPETP are presented in 298 
Table 2. 299 

 300 
(*** Insert Figure 2 near here ***) 301 
 302 

Hormonal Responses During CTL: Plasma cortisol decreased 303 
from Pre- to Post-CTL (p < 0.01) by ~18% ± 16%. Plasma 304 
testosterone did not alter over time (p > 0.05 for all). 305 

 306 

Hormonal Responses to Exercise: No trial effect was observed 307 
in the 50/70 (p = 0.65) or the RPETP (p = 0.72) when examining 308 
plasma cortisol responses. A time effect was observed in the 309 
50/70, with cortisol decreasing from Post-Exercise to 30-min 310 
Post-Exercise (p < 0.01, η2 = 0.090). No time effect was found 311 

in the RPETP (p = 0.07, η2 = 0.247). Cortisol levels changed 312 
from Pre- to Peak Post-Exercise by -3% and +29% (50/70), and 313 
by +34% and +47% (RPETP) in T1 and T2, respectively. 314 
Individual exercise-induced changes are presented in Figure 2. 315 
Pre-Exercise cortisol samples did not differ (p = 0.89) across 316 

trials. No trial effect was observed when comparing the 50/70 317 
with the RPETP (p = 0.35). For plasma testosterone, no trial 318 

effect was found when comparing T1 and T2 in the 50/70 (p = 319 
0.51) and the RPETP (p = 0.49). However, a significant time 320 
effect was shown in 50/70 (p < 0.001) and the RPETP (p < 321 
0.001). Pairwise comparisons showed testosterone acutely 322 
elevated in all exercise trials and remained elevated at 30 min 323 
Post-Exercise in the RPETP (both p < 0.01, η2 = 0.790 and η2 = 324 
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0.876 in the 50/70 and RPETP, respectively). Testosterone levels 325 

changed from Pre- to Post-Exercise by +30% and +39% 326 
(50/70), and by +46% and +38% (RPETP) in T1 and T2, 327 
respectively. Individual exercise-induced changes are presented 328 

in Figure 2. Pre-Exercise testosterone samples did not differ (p 329 
= 0.66) across trials. No trial effect was observed when 330 
comparing the 50/70 with the RPETP (p = 0.11). All 331 
reproducibility data and average plasma cortisol and 332 
testosterone concentrations for T1 and T2 are presented in 333 

Table 2. 334 
 335 
(*** Insert Table 2 near here ***) 336 
 337 

Discussion 338 
 339 

This study aimed to examine the responses of plasma cortisol 340 
and testosterone responses to 2 different continuous, 30-min, 341 
high-intensity running bouts and the reproducibility of these 342 
responses. It was hypothesized that the hormonal 343 

concentrations would acutely elevate in response to all bouts 344 
and that these responses would be reproducible. The intra-345 

individual variability in plasma cortisol and testosterone 346 
observed in this present study are within the normal variability 347 
associated with these hormones, and therefore support the 348 

reproducibility of the hormonal responses to the 50/70 and the 349 
RPETP. In fact, the RPETP (a potentially more practically 350 

applied field test due to its self-paced design) has shown to 351 
elicit greater physiological responses than the 50/70 bout, as 352 

well as reproducible plasma cortisol and testosterone responses. 353 
However, only plasma testosterone markedly elevated in 354 
response to this running tool, suggesting testosterone may be a 355 

better indicator of an exercise-related stress reaction.  356 

 357 
Cortisol is known to be a stress-related hormone that rises 358 
during and after psychological stress.21 Analysis of the scores 359 
to the RESTQ-76 showed no disparities in any of the scales, 360 
detailing the participants were in a similar state of 361 

predisposition to undertake physical activity on every trial and 362 
therefore the hormonal responses reported have not been 363 
influenced by a change in wellbeing. 364 
 365 
The reproducibility of the physiological responses to both tests 366 

was examined. Being a self-paced tool, the RPETP could 367 
provoke different HR responses if the speeds chosen by the 368 

participants were different when completing the bouts on 369 
different occasions. In this study, HR and speed did not alter 370 
across all exercise trials. These results are important, as an 371 
alteration in the speeds would be indicative of a subsequent 372 
alteration in exercise intensity, and therefore influence the 373 
response of both cortisol and testosterone. Additionally, the HR 374 
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and speed responses were shown to be reproducible to both 375 

tests with CVi of 2.9 ± 2.1% for HR (50/70), and 1.8 ± 1.3% 376 
and 2.2 ± 1.8% for HR and speed (RPETP). These data suggest 377 
that both bouts induced a similar physiological strain, hence the 378 

similar HR, RPE and running speeds. 379 
 380 
Similar studies to this one have reported a significant elevation 381 
of salivary cortisol and testosterone in response to a continuous 382 
30-min, cycle bout when in a healthy state.8–10 Duration and 383 

intensity of exercise sessions are two important factors known 384 
to cause an exercise-induced increase in plasma and salivary 385 
cortisol concentrations,22 with exercise intensity above 60% 386 

V̇O2max for at least 20-30 min being required for cortisol to 387 
elevate.23 In this current study, plasma cortisol did not 388 
significantly increase to either the 50/70 or the RPETP. There 389 

was, however, a percentage-elevation from Pre- to Post-390 
Exercise in both trials in the RPETP (34% and 47%) and in T2 391 
in the 50/70 (29%). Individual cortisol levels show contrasting 392 

responses, ranging from moderate decreases to robust 393 

increases. As the RPETP is a self-paced bout, each participant 394 
exercised at an intensity dependant of an individual perceived 395 

exertion. Although the RPETP bout was designed to elicit an 396 
RPE of 15 (hard) for the majority of the test (24 min), it was 397 
not confirmed whether this would provoke an exercise intensity 398 

stressful enough to acutely elevate cortisol levels. However, a 399 
consistent exercise-induced elevation in plasma testosterone 400 

was seen in all exercise trials. Furthermore, testosterone levels 401 
did not change with time during CTL, whereas cortisol 402 

significantly decreased from Pre- to Post-CTL. It may be 403 
reasonable to suggest that the circadian rhythm of cortisol is 404 
likely to have led to 50/70 and RPETP being unable to induce 405 

the hypothesised acute elevation, which was not assumed due 406 
to Hough et al.8 reporting no alteration in resting plasma 407 
cortisol between 12:00-13:00. Cortisol is known to have a high 408 

intra-individual variability.24 When examining the intra-409 
individual variation across trials this study shows an intra-410 

individual variation of ~13% and ~12% in plasma cortisol in 411 
the 50/70 and RPETP, respectively. At first examination, these 412 
data may seem a little high, however, the within-subject 413 

variability in cortisol has been reported to be ~21.7%.25 The 414 
CVi for testosterone is also within the 12.6%25 and the 11.8%26 415 
intra-individual variability, suggesting the variability found 416 

falls within normal biological variability values reported 417 

previously. Any shift from the reported variation may be due to 418 
the fact these studies have examined the variability of resting 419 
levels, while the present study has looked at the exercise-420 
induced responses. ES were used to examine the magnitude of 421 

change between trials, with Cohen27 proposing that small 422 
differences would be described if presenting an ES value of 423 

0.21. The ES for cortisol and testosterone were 0.07 and 0.04 424 
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(50/70) and 0.03 and 0.04 (RPETP), respectively. These data 425 

support the trivial changes in the hormones examined in this 426 
study when compared across trials. 427 
 428 

Practical applications 429 
 430 

• Testosterone may be a better indicator of a hypothalamic-431 
pituitary activation following short-duration, high-intensity 432 
exercise when compared to cortisol. 433 

• Both tests elicited reproducible plasma cortisol responses 434 
but did not acutely elevate its concentration. This means it 435 
may be inappropriate to measure cortisol as a biomarker to 436 
highlight exercise-induced stress. 437 

• Testosterone elevated in both tests and these responses were 438 
reproducible. The intra-individual variability of testosterone 439 

responses is at a level that suggests that both tests could 440 
highlight blunted acute responses following an intensified-441 
training period, emphasising its usefulness to prevent and 442 

avoid the incidence of NFOR/OTS. 443 

• The RPETP is a self-paced running bout, hence it does not 444 

require preliminary testing for determination of exercise 445 
intensities. Therefore, it may be more practically applied in 446 
an athletic/elite population and its short duration may be 447 
advantageous if incorporating it within a training session. 448 

 449 
Conclusions 450 

 451 
Hypothetically cortisol and testosterone would acutely elevate 452 

in response to both tests and these would provoke reproducible 453 
hormonal and physiological responses. We propose that cortisol 454 

is very individualised, and the exercise-induced responses may 455 

be influenced by a circadian rhythm. Additionally, using the 456 
RPETP may be more practically applied in the field as it will not 457 

require preliminary testing to determine exercise intensities. 458 
 459 
 460 
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