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SYNOPSIS 

This thesis reports on research undertaken to investigate how to advance the current practices of 

resource efficiency and sustainability consideration in manufacturing business through the 

simultaneous design of Product and Production System (P&PS). The primary objective of this 

research is the development of a framework and methods to support a manufacturer to transform 

the current independent design processes into a single design process facilitating designs of 

resource-efficient P&PS.  

The research contributed in this thesis is structured into three major parts. The first part reports 

the literature reviewed to define and refine the key objectives of this research. In this review part, 

the basic knowledge and current practices of Product Design (PD), Production System Design 

(PSD), Integrated Design (ID) and Sustainable Design (SD) are explored in order to understand 

the shortcoming of ID and SD. It has been discovered that current ID practice was to facilitate 

information exchange between the design process. In which majority of the integrated 

consideration was conducted to succeed the conventional design targets (i.e. reducing design cost, 

shortening development time and improving manufacturability of design) than the contemporary 

targets such as increasing resource efficiency through sustainability consideration. While the 

current practices of SD often return only an incremental benefit because of the inabilities to access 

information and to assess sustainable decisions between PD and PSD processes. Moreover, the 

current practice of ID through information exchange is not sufficient to initiate these abilities 

which can be performed via a collaborative design process. Thus, there is a need to shift a current 

integrated practice between individual design processes into a single combined process for 

designing resource-efficient P&PS at once.   

In response, the second part of this research introduces a framework for co-designing product and 

production system, which assist companies in transforming their current independent design 

process into a single process for designing resource-efficient products and production systems 

simultaneously. The framework offers methods to study the feasibility of collaborative design 

adoption and to specify the potentially collaborative decisions within PD and PSD processes. 

Based on the identified decisions, the optional strategies are recommended to create a customised 

P&PS design process for the companies with the different design needs.  
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Lastly, the third part of the thesis describes the case studies conducted to demonstrate the 

implementation and refine the applicability of this framework. These are demonstrated through a 

simple product designed by an in-house designer and a complex product designed by internal and 

external designers. The results were used to improve the framework and methods for the wide-

ranging implementation. 

In summary, this research reported in this thesis has concluded that the present ID practice via 

individual design processes is insufficient to deal with the recent requirement of sustainability. 

This highlights the importance of enabling a collaborative process for designing and assessing 

both P&PS together in order to improve environmental benefit. A systematic framework to 

visualise the benefit of collaborative design, to identify the collaborative consideration and to 

create a single design process provides to offer opportunities to create P&PS with more efficient 

use of resources. 

 

.
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ABBREVIATIONS 

AE Auxiliary Energy  

C Consumed water  

CAD Computer-Aided Design  

CAM Computer-Aided Manufacture  

CAPP Computer-Aided Process Planning 

CE Concurrent Engineering 

CPD Collaborative Product Development  

DE Direct Energy  

DfA Design for Assembly  

DfM Design for Manufacturing  

DNR Discharged Non-Renewable water  

DRW Discharged Renewable Water  

DSM  Design Structure Matrix 

EMI Early Manufacturing Involvement  

EMS Environmental Management System 

EPE Embodied Product Energy  

FPD Frequency of Product Design  

FPSD Frequency of Production System Design  

GPDP Generic Product Development Process 

ID Integrated Design 

IDEF Integrated computer-aided manufacturing DEFinition  

IDPPP Integrated Development Process of Products and 

Production systems  

IE Indirect Energy  

IM Information Modelling or language tools  

IP2D2 Integrate Product and Process Design and 

Development  

IPD Integrated Product Development  

IPPD Integrated Product-Process Development  

MFAM Material Flow Assessment  

NPW Non-Production Water  

P&PS Products and Production Systems  
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PD Product Design 

PDM Product Data Management systems 

PDMA Product Development and Management Association 

PDU Product Design Update rate 

PDW Production Water  

PPC Product and Production system Co-design software 

tool 

PSD Production System Design 

PW Process Water  

QFD Quality Function Deployment  

REM Resource-Efficient Manufacturing 

SD Sustainable Design or design for sustainability  

SE Simultaneous Engineering  

STEP  STandard for the Exchange of Product model data  

SW System Water  

TE Theoretical Energy  

WER Water usage Efficiency Ratios  

WI Water Intensity  

WWE Waste Water Efficiency  
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TERMINOLOGY 

P&PS Co-design / Co-design of P&PS 

In this thesis, the term ‘P&PS Co-design’ is defined as ‘a single combined process to 

simultaneously design the product and production system required to manufacture them’. This 

term denotes to a future for current integrated design concept when designs of product and 

production system are equally, simultaneously and collaboratively considered by both product 

and production system designer with the interest of attaining the maximum environmental 

benefits. The detailed description is also provided on Page 3 and 81. 

Production system change 

Production system change in this thesis refers to a change within the production system which 

can be a process flow/layout change, a production process changes and/or a machine tool change. 

The detailed explanation is provided in section 8.2.3 (see Page 93).  

Environmental/Ecological aspect 

This work intended to develop a framework for supporting and improving the collaboration 

between product and production system design in terms of information exchange and interaction 

for improving environmental/ecological consideration. However, based on the limited study time 

and the complexity of the developed steps within the framework, resource efficiency was selected 

and applied as the environmental/ecological constraints in this thesis.  

Resource efficiency 

Resource efficiency means “using the Earth's limited resources in a sustainable manner while 

minimising impacts on the environment. It allows us to create more with less and to deliver 

greater value with less input” (Commission 2011) 

Resource-Efficient Manufacturing (REM) is currently recognised as manufacturing that aims to 

conserve available resources and minimise environmental impact in order to sustain the future of 

manufacturing (Gould and Colwill 2015).  
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Regarding the timeframe and limited data, the resource efficiency in this thesis includes a 

consideration of energy, material and water efficiency (e.g. material elimination, material 

minimisation, material substitution, material separation, energy minimisation, energy source 

substitution, water minimisation and wastewater treatment) which are the most relevant resource 

used within many manufacturers.  
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 INTRODUCTION 

Manufacturing businesses are currently facing market challenges from changeable customer 

demands, frequent product updates, and shorter service life of products (Huisman et al. 2012, 

Xiong et al. 2016). At the same time, the rapid growth of consumption has contributed to an 

environmental crisis, involving resource scarcity, global warming, and rapid climate change, 

which has been unfolding over the past decade. These challenges will become more critical 

because the world population is expected to reach approximately 9,000,000,000 peoples by 2050 

(WWAP, 2015). Under these circumstances, manufacturing businesses should be flexible and 

instantly responsive to challenges such as these to maintain their competitiveness.  

To become more responsive, for more than two decades manufacturers have attempted to reduce 

time to market through the improvement of product design and development processes. The 

process of production system development, which conventionally starts after product design, is 

now often carried out concurrently with the product design process. In an academic context, this 

approach is often referred to as Integrated Design concept (ID), Integrated Product Development 

(IPD), Simultaneous Engineering (SE), or Concurrent Engineering (CE) (Tomiyama et al., 2009). 

This concept is realised by early and uni-directional information sharing between Product and 

Production System (P&PS) design teams using advanced information technology and information 

exchange through STEP (STandard for the Exchange of Product model data) (Pratt 2001). 

However, through such integrated approaches, product design and production system design still 

operate independently. Besides, design collaboration can occasionally form late, when an 

unexpected problem such as a quality issue is detected and then solved in a limited or provisional 

fashion. This current practice of integration needs to be enhanced to enable flexible responses and 

ways to handle immediate and unavoidable challenges such as resource efficiency. 

In current practice, sustainable manufacturing entails the attempt to reduce resource consumption 

and environmental impacts by using various resource-efficient methods. Most of these reactive 

methods principally improve or replace the installed production facilities during the production 

phase, at which point any changes to product design are limited.  This is because all the design 

ideas and decisions have already been approved, realised and transformed into the physical 

objects. In fact, design changes (redesign) are not preferable, since they require increased 
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investment in resources and time. Consequently, these “sustainable” adaptations have generally 

resulted in only incremental benefits. To achieve the radical improvement, sustainability should 

be considered further upstream, at an early stage of the design process. This is where flexibility 

in designing P&PS is still highly feasible through a proactive approach (Sheldrick and Rahimifard 

2013).  

To successfully apply sustainability early on in the design process, there is a need to instantly 

understand the impact of a decision on one design process on the other one. For example, during 

a conceptual design stage, a designer should be able to consider alternative materials and select 

the material that has the lowest environmental impact. To make an environment-friendly decision 

on this material issue, product designers need to assess the impact of alternative materials on a 

design of the production system. Based on product design background, knowledge and experience, 

production system designers are required to support this sustainable assessment between P&PS.  

In this context, the current practice of integrated design (through information sharing) between 

individual design manners is not sufficient to support environment-friendly decisions because 

such practice could not ensure that all required information to support sustainability 

considerations is shared and/or understood by the user from various background. Similarly, the 

design of the production system should be considered in concert with a sustainable product design 

approach (Ali and Gupta 2010, Ranky 2010, Haapala et al. 2013). These challenges highlight a 

clear need to extend the scope of the current integrated design by combining the two into a single 

collaborative design process that simultaneously considers the product and production system 

design decisions and their impact on each other, a concept referred to as co-design of P&PS in 

this thesis (see Figure 1.1).  

   

Figure 1.1 - The proposed evolution of integrated design toward Co-design of P&PS 
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However, this single collaborative and combined design process is not expected to be suitable for 

all manufacturers. Instead, such a process will provide more potential benefits to a manufacturing 

business which frequently updates the design of their products, in particular, if changing the 

design of the product requires a change of process flow, production process and/or tooling in the 

production system. For instance, the selection of different primary and secondary material during 

every new packaging design leads to the requirement of different production processes. 

The research reported in this thesis aims to create a framework to combine design processes of 

product and production system in order to provide the ability to visualise the interaction between 

the design of the product and its production systems to maximise the potential for resource 

efficiency. This is achieved through: 

1. Identification of key challenges and future drivers for the integration of product and 

production system design. 

2. Identification of the current state of integration between the design processes of P&PS and 

the level of integration needed to support sustainability.  

3. Development of a framework that offers manufacturers support in integrating their 

currently separate design processes into a single co-design process of product and 

production systems to enhance resource efficiency.  

It should be noted that the term ‘co-design’ is used as a participatory design process where 

problems, ideas, and decisions are reflected on by the designer and by other non-designers, such 

as researchers, developers, and especially customers and consumers, in order to better clarify 

product or service requirements (Taffe 2015). 

Nonetheless, in this thesis the term ‘co-design’ implying a future for conventional integrated 

design when designers can collaboratively design product and production system simultaneously 

in the interest of attaining the more benefits of the resource-efficient application.  

This thesis comprises three main sections, namely the research background and overview, 

theoretical research and model development, and research conclusions. The structure of the thesis 

is illustrated in Figure 1.2. 

The first section (research background and overview) contains the first six chapters.  Following 

this introduction, Chapter 2 presents the research justification, research questions, research aim 

and objectives, and research scope. Then, basic knowledge and current practices of product design,  
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Figure 1.2  – The structure of the thesis 
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literature included in Chapter 3 -5 is presented in Figure 1.3. Chapter 6 describes the methodology 

adopted to undertake this research.  

The theoretical research and framework development section consists of five chapters, which 

detail the proposed framework, including its four main phases and implementation toolkit, and 

present case studies for demonstrating framework applications. This section starts with Chapter 

7, which introduces a framework for co-designing product and production systems to support 

resource-efficient manufacturing, itself comprised of four main phases, namely Co-initiate, Co-

specify, Co-create, and Co-implement. Chapter 8 provides detailed steps in the first two phases 

of the framework, which provides support for a manufacturing business to help identify the 

feasibility and benefits of co-design adoption and specify where the potential co-design decisions 

are in current design processes. Subsequently, Chapter 9 documents the third Co-create phase, 

which offers three optional approaches for creating a co-design process with different applications 

based on the specified co-design decisions in the second phase. Chapter 10 explains how the three 

previous phases of the framework can be implemented through a co-design toolkit consisting of 

applicable software tools and the proposed P&PS Co-design prototype software tool. Chapter 11 

demonstrates the application of the proposed framework with two case studies. The final section 

of research conclusions contains two chapters. Chapter 12 discusses the findings and implications 

of this research in relation to the original key research objectives. Finally, Chapter 13 presents the 

final research conclusions and suggests directions for future work. 

 

Figure 1.3 – Main areas of literature review    
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 RESEARCH AIM, OBJECTIVES AND 

SCOPE 

2.1 INTRODUCTION 

This chapter presents the research aim, objectives and scope of this thesis. The chapter begins 

with the research justification and hypothesis as detailed in the next section. Then, the questions, 

aim, objectives and scope of this research are defined in the following sections. 

2.2 RESEARCH JUSTIFICATION AND CONTEXT 

The design and development department is of central importance in all manufacturing businesses 

because decisions made by designers have a bearing on almost every aspect of a product or a 

production system (Pahl et al. 2007). Accordingly, the designer often works under high pressure 

subject to key design challenges such as regulation, cost factor and consumer preferences. In 

addition, reduction of development time is a common goal because of its status as a crucial factor 

leading to company success. As depicted in Figure 2.1, the Product Development and 

Management Association (PDMA) survey reported that the product development best practices 

(88  of 453 firms all over the world which have a high success rate in NPD) commonly involve 

the first-to-market strategy as a key to maximising design achievement (Markham and Lee 2013). 

As mentioned in the introduction, concepts of integrated design have frequently been proposed 

and implemented to speed up design and development. In a research context, most studies in 

 

Figure 2.1 – New product strategy and product development process (Markham and Lee 2013)  
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the field of integrated design has only focused on improving one of its four key characteristics. 

These characteristics are i) encouraging parallel activity, ii) considering critical issues early in 

design, iii) exchanging information, and iv) maintaining collaboration between teams. As a 

foundation of the integrated design concept, the first ‘encouraging parallel activities’ and the 

second ‘considering critical issues’ areas were originally developed in the literature almost three 

decades ago to describe and provide a basic approach or guideline for implementing the integrated 

design. Based on technological advancement, current research focuses more on developing the 

technology or software tools (i.e. information sharing, knowledge management, and design 

simulation tools) to support the third characteristic, information exchange. Likewise, much 

current academic attention has been paid to the improvement of design collaboration instead of 

developing a new integrated design process. Apart from reducing development time, several 

integrated design studies also recommended other goals such as improving product quality, design 

cost, productivity, and flexibility (Rupak et al. 2008, Brown et al. 2012, Jeang and Lin 2014, 

Gopalakrishnan et al. 2015).   

A common observation is that most of these applications were mainly utilised to meet a narrow 

target such as cost and time reduction, rather than satisfying all integrated requirements (Winner 

et al. 1988, Gerwin and Barrowman 2002). More importantly, the present challenges in designing 

products and production systems are becoming increasingly complex due to more changeable 

customer demands, frequent product updates, and requirements for resource efficiency. To tackle 

these rising complexities in P&PS development, Gräßler and Yang (2016) have highlighted that 

“traditional discipline-specific development methods reach their limits because of missing 

interdisciplinary collaboration.” Hence, the current application of an integrated design concept 

which can accommodate integration among separate design processes should be enhanced to 

facilitate the single collaborative process.  

Similarly, the need for an approach involving the integration between product and production 

system has also been raised by various studies in the sustainability area. For example, Haapala et 

al. (2013) mentioned that the need for environmental manufacturing processes could be initiated 

and managed from product design specification; thus, manufacturing must be defined in concert 

with the product design process. Likewise, Ramani et al. (2010) have underlined that 

collaboration between design and manufacturing is essential to cope with the increasing challenge 

of sustainable development.  
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In a sustainable design context, Sheldrick and Rahimifard (2013) have stated that “to maximise 

the potential of sustainable design, there is a need of further investigation of the linking of SD 

practices with other relevant activities within a manufacturing company, such as process and 

plant design”.  

The requirement of considering product and production system design in a concurrent fashion has 

been put forward for the reason that the current sustainability practices still cannot provide a 

radical breakthrough. Current studies of sustainability or resource efficiency in manufacturing 

have tended to focus on identifying and improving resource-inefficient production facilities rather 

than on providing the ability to select improved or newly-emerging processes during product 

design and process planning. This therefore indicates a need for further research based on a 

proactive approach (Ramani et al. 2010). Consequently, many academic studies have proposed 

proactive methods to design sustainable products. Although these have been progressively 

developed, they have largely failed to be successfully adopted and implemented in practice (Short 

et al. 2012). One of the key reasons is that a lack of understanding, concerning the impact on the 

resource efficiency of manufacturing processes (Costa et al. 2015, Dekoninck et al. 2016). 

Designers can easily select a familiar solution that might not be environmentally friendly because 

of the inability to visualise the effect of changes between the P&PS.  

For these reasons, integrated design currently needs to be able to satisfy not only conventional 

challenges such as development time but also critical challenges like sustainability, especially its 

environmental aspect. In response to this, to attain the more benefit of sustainable design, several 

studies have recently sought to apply integrated consideration of product and production systems.  

Examples include studies concerning an ecological policy for chemical product development and 

production planning (Choy et al. 2016), the Enterprise Sustainability Index for products and 

processes evaluation (Huang and Badurdeen 2017), and incorporation of resource consumption 

of production processes and LCA into product design (Lacasa et al. 2016).  

This research therefore extends the scope of previous ID research by focusing on the co-design 

process of product and production system for supporting resource-efficient manufacturing. 

Through an examination of current integrated design concepts, this research seeks to determine 

ways to combine P&PS design processes through right information at the right time. As such, the 

scope of the research reported in this thesis focuses on the product design, production system 

design and production operation phases, as depicted in Figure 2.2.   
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Figure 2.2 – The product realisation process: part of the innovation process (adapted from Säfsten 
and Johansson 2005) 

It is hypothesised that a systematic P&PS Co-design framework will support manufacturers to 

consider designs of product and production system equally through a new combined design 

approach based on the consideration of resource efficiency.   

2.3 RESEARCH QUESTION 

In this research, the main research question is as follows: “How can we support manufacturing to 

move forward from their current separated design processes into a single co-design process of 

product and production system in order to enhance resource efficiency?” In addition, the 

following questions can provide a more detailed overview of research challenges. 

• What are the existing drivers, barriers, methods, and practices of the integrated design 

and environmental design of products and production systems? 

• Which design decisions regarding the product and production system need to be 

collaboratively considered to promote resource efficiency effectively?  

o At what stages do these design processes need to be linked to promote resource 

efficiency effectively?  

o What information needs to be shared between product design and production 

system design?  

• How can we best facilitate collaborative decision-making in a framework that combines 

the design of product and production system into a single process? 

2.4 RESEARCH AIM AND OBJECTIVES 

This research aims to investigate the current integration between the design processes of product 

and production system and to develop a framework for combining these processes in order to 

maximise the potential for resource efficiency. To meet this aim, the following objectives have 

been identified:  
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1. To review the state-of-the-art and current practices (including the sustainability and 

resource efficiency consideration) of product design, production system design, and 

integrated design processes.  

2. To examine the ways ID are interrelated and interacted and review the most relevant 

research in integrating design processes of product and production system.  

3. To produce a framework for supporting manufacturers to combine their current 

independent design processes into a single co-design process for both the product and 

production system to improve their resource efficiency.  

4. To develop a toolkit supporting the implementation of the proposed framework for          

co-designing product and production system.  

5. To demonstrate and refine the applicability of the framework through case studies and 

refine the framework based on case studies finding.  

2.5 RESEARCH SCOPE 

In line with the objectives, the scope of this research is defined in the following sub-sections.   

 Review the state-of-art and the current practices of product design, production system 

design, and integrated design  

Chapter 3 and 4 will review the literature to achieve Research Objective 1. Chapter 3 entails a 

detailed review of approaches and methods for designing product and production system as well 

as examining the basic knowledge and concepts related to integrated design processes of product 

and production system. This also identifies the critical issue of current practices in these design 

areas. In Chapter 4, the state-of-the-art review of the sustainable design, especially, a 

consideration of resource efficiency, will be further investigated to identify its current practices 

during the manufacturing phase. The findings from these two chapters will then be utilised to 

address the Research Objective 2.  

 Review the most relevant research in integrated design and examine the current state 

of the integration between design processes and their interrelation and interaction 

To address Research Objective 2, Chapters 5 will examine the current state of integration between 

product and production system design teams. This is to model the information flow between 

design processes of products and production systems and to investigate how various design teams 
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integrate based on aspects of interrelation (information requirement and exchange) and interaction 

(collaboration). Moreover, based on these two aspects of integration and key characteristics of ID, 

the review of the most relevant research regarding integrated consideration of product and its 

production system and environmental consideration will be provided. Then, the future 

requirements for design processes from both conventional and resource efficiency viewpoints will 

be identified based on the findings of the reviewed literature.  

 Produce a framework for co-designing product and production system to support 

resource-efficient manufacturing 

Chapters 7, 8 and 9 will address Research Objective 3. The mixed approaches and information 

from the investigation phase will be utilised and applied to develop a framework for improving 

the resource efficiency of production system through equal and collaborative consideration of 

product and production system within a single design process. This will be developed to support 

the current manufacturing businesses which have different products, production systems and 

design practices (e.g. product type, resource use in a production system, design process, design 

control and organisational size). Hence, this will help manufacturers and designers to clarify their 

benefit from adopting a new process. A set of design methods will be generated to assess the 

existing design processes and to transform and apply a new design process which improves design 

consideration, interaction and integration in order to improve resource efficiency.  

 Develop a toolkit supporting the implementation of the proposed framework  

In Chapter 10, the proposed P&PS Co-design framework will be further refined. In parallel, a 

toolkit supporting the implementation of P&PS Co-design framework will be generated. In 

addition, to support the identification of co-design candidates during the Co-Initiate phase, a 

simple tool helping the manufacturer to prioritise and visualise the resource efficiency, the design 

update rate and the effects overall of changes in P&PS will need to be developed. Besides, there 

also needs for a tool supporting the identification of the influence of design decision on resource 

consumption and the assessment of interrelation between product and production system design 

process.    
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 Demonstrate the applicability of the proposed framework through case studies 

In Chapter 11, the proposed framework will be examined via a case study method. Tests will be 

carried out to determine how the proposed framework could be applied in practice. The 

implementation of the proposed developments will be applied in two case studies at industrial 

partners, producing simple and complex products using central design control and distributed 

design control. Finally, the test results will be utilised in refining and optimising the proposed 

framework. 

2.6 CHAPTER SUMMARY 

This chapter described the context of the research regarding the need to consider the production 

system in concert with product design, especially in light of the sustainability and resource 

efficiency aspect. Various research findings have also highlighted the need to support 

manufacturers in developing sustainable practices by collaborative P&PS design. Based on these 

considerations, the research questions, aim, objectives and scope of the thesis were identified. 

The following two chapters address research objectives 1 and 2 respectively. There, the state-of-

the-art of the integrated design of P&PS is explored, as well as the individual areas of product 

design and production system design. This also covers the literature related to the sustainable 

design of P&PS 

 

 

 

.
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 STATE OF THE ART IN THE DESIGN OF 

PRODUCT AND PRODUCTION SYSTEMS 

3.1 INTRODUCTION 

This chapter examines the state-of-the-art in design processes which have been proposed to create 

a product and its production systems in order to understand design in theory and industrial practice. 

The three main sections cover the details of Product Design (PD), Production System Design 

(PSD), and the Integrated Design (ID). As the foundation of this chapter, these overviews include 

definition, methodology, and current practice for each design concept.   

3.2 PRODUCT DESIGN  

In light of the research focus, it is fundamental to understand the current state of research and 

industrial practice in the PD. The following sub-sections present a review of the literature related 

to existing concepts, models, methods, and industrial practices of PD.   

 An Overview of Product Design  

The term “product design” is widely understood as referring to “the systematic activity necessary, 

from the identification of the market/user need to the selling of successful product to satisfy that 

need – an activity that encompasses product, process, people and organisation” (Pugh 1991). 

Ulrich and Eppinger (2003) have also defined “product design and development” as “the set of 

activities beginning with the perception of a market opportunity and ending in the production, 

sale, and delivery of a product”. 

Moreover, various studies have also similarly defined PD, and generally, it could be described as 

‘a systematic process for guiding designers to transform customer requirements into a satisfying 

product or service’. According to these definitions, a traditional PD approach was commonly 

presented as a systematic process consisting of a step-by-step guide for designing a product. For 

example, a “total design activities model” consists of six main stages as shown in Figure 3.1 (Pugh 

1991).   
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Figure 3.1 – Pugh’s Total Design Activities Model (Pugh 1991) 

Firstly, product designers start to transform customer needs into product specifications at the 

specification stage.  Based on the clarified product specification, various product concepts are 

generated and evaluated during the concept design stage. After that, one of the product concepts 

is selected subject to the result of the evaluation. Then, design specifications of this selected 

design are defined and refined at the detailed design stage.  Lastly, information about the 

completed product design is shared with manufacturers and retailers at the manufacture and sell 

stage, respectively.   

In the same way, many PD approaches were also proposed in this stage-based manner.  They have 

a generic core of stages because this provides clear boundaries for the design process and supports 

effective process management (Howard et al. 2008, Gericke and Blessing 2011). Examples of 

these approaches are shown in Table 3.1.  
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Besides this, a product design process can also be applied in different ways, based on the different 

aspects of a product (Ulrich and Eppinger 2003). For instance, in comparison with a simple 

product, a complex product which is comprised of various product parts is generally designed by 

multiple designers from various technical backgrounds. Therefore, the process for designing a 

complex product is considered as a complex design process that various activities are parallelly 

processed to design each product part. In the context of development time, a highly competitive 

market for technology products, such as software or mobile, also causes a differential application 

of design processes. Such a fast design and development process commonly has many repetitive 

prototypes and test cycles. These simple, complex and spiral design processes are illustrated in 

Figure 3.2.  

In a context of the originality of the design,  Pahl et al. (2007) have described a different 

application of embodiment design between original and adaptive design. For an original PD, 

embodiment design is regularly considered at the conceptual phase. This is to figure out how the 

physical product should appear through product architecture. In contrast, for adaptive design, the 

embodiment design has already been considered, and the interaction and interrelation of product 

parts are established in the original design. In this case, the embodiment of the adaptive design 

involves only some changed parts, and this is generally considered after the product concept is 

selected (See Figure 3.3). Such an adaptive design can still be very innovative, but it is not 

massively restructured (Otto & Wood, 2001).  

 

Figure 3.2 – Process flow diagrams for three product development processes (Ulrich and Eppinger 
2003) 
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Figure 3.3 – Different design processes for original and adaptive product design 

In addition to a stage-based approach, the focus of research in the PD expanded from descriptive 

approaches (basic process/model) to prescriptive ones, which had the purpose to not only organise 

the basic design, but also to improve the specific performance of a product or a design process 

(i.e. reducing development cost and time). For instance, a medical device is a safety product which 

is expected to work correctly without any errors. The PD process of a safety product therefore 

needs to support the final design’s assurance. With this aim, NASA has developed the “Vee” 

model which focuses on product verification and validation for the software development 

(Forsberg and Mooz 1991), as presented in Figure 3.4.  

 

Figure 3.4 – Overview of the Technical Aspect of the Project Cycle (Forsberg and Mooz 1991) 
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In addition to this, Wynn & Clarkson (2005) have extensively studied existing PD processes, and 

some popular approaches have been classified based on different focuses as follows: 

i. Pahl, Beitz, Feldhusen, & Grote (2007) presented a systematic approach which focuses 

on mechanical engineering design. 

ii. With a similar emphasis, Ullman (2003) presented another mechanical engineering-

focused approach which also included many examples of practical application in order to 

visualise a real-life design  (Tomiyama et al. 2009) 

iii. With focuses on the personal and disciplinary aspects, Ulrich & Eppinger (2012) 

presented a generic development process (see Figure3.5). This is to facilitate logical 

problem-solving in various backgrounds.  

 

Figure 3.5 – A generic development process (Ulrich and Eppinger 2003) 
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In Figure 3.6, the axiomatic design was established as a scientific design process which focuses 

on information and a relationship of function (Suh 1998, Tomiyama et al. 2009). 

In this overview, many PD approaches have been proposed to support various applications based 

on different aspects of product and process performance. However, while these approaches have 

shared a similarity of definitions and the nature of the design process, they are far too general to 

support daily applications (Wynn and Clarkson 2005). Therefore, the following section further 

investigates PD in current practice.   

 Product Design in Practice 

various design dimensions such as success factors and tools should also be considered to 

implement PD successfully. This section therefore discusses the current practices of the PD 

through the application of design approaches, design tools and design success factors.   

At present, many innovative companies still struggle in applying and improving their product 

design and development process. According to a Product Development and Management 

Association (PDMA) survey in 2012, there were only 24.6% of the companies whose design 

process performance was considered as the best practice and which successfully launched more 

than 82% of the new products on average during the last five years (Markham and Lee 2013). By 

contrast, all other companies (75.4%) were able to launch only 52.9% of new products on average. 

This research also found that the best-performing companies regularly deploy formal and cross-

functional processes significantly more often than the rest (67% in the Best and 41.8% in the 

Rest).  Therefore, the "lack of process vision" and "lack of knowledge of new product 

development best practices" were highlighted as the main problems in most design organisations 

(Costa et al. 2013). Besides, even though various design processes/approaches (mentioned in the 

 

Figure 3.6 – Four domains in axiomatic design (Suh 1998)  
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the previous section), which have been proposed to support the adoption of a formal and structural 

design process, expected to mitigate these problems, these idealistic linear approaches were often 

used in education instead of industry practice (Wynn and Clarkson 2005, Howard et al. 2008, 

Tomiyama et al. 2009).   

In order to identify the problems of the currently proposed approaches, the best-known design 

models have been analysed based on seven aspects Costa et al. (2015). In Table 3.2, the result 

shows that the existing models are unable to respond to sustainability (lack of consideration of 

factors such as eco-design, product service systems, and end-of-life).   

Table 3.2 – Design process exploration (adapted from Costa et al., 2015) 

Aspects Design process analysis The potential improvement needed 

Discipline 

Most existing design models and 
approaches were proposed for 
designing a physical product in 
mechanical and electrical 
engineering areas 

There are only a few approaches in 
the product service system area, 
which has become a trend at present 

Knowledge Area 

Addition to design knowledge, 
process design/engineering is often 
provided, and only some 
approaches give suggestions for 
managing a project, quality, 
marketing, communication, people 
and organisation 

Most of the current approaches 
rarely include the management of 
the business process, supplier, 
service and sustainability 

Design stage 
Most of the approaches heavily 
detail the front-end stage until 
detailed design 

There is a lack of knowledge 
regarding the last stage (end-of-life) 

Scope of 
development 

Product development focus Lack of technology, service, and 
business development 

Design approach 
(i.e. Lean, Eco-

design, IPD) 

IPD is the most popular approach There still is a need for eco-design 
and product service system  
integration, which are rarely in 
existence 

Level of detail 

Most models provide high-level 
and basic information covering 
activity, method/technique, 
example and information 

There is a lack of information about 
roles and metrics for measuring the 
performance of the product and 
process itself 

Implementation 

Most design approaches focus on 
designing an original product and 
exclude guidelines for 
implementation and maturity 
measurement 

The future model should include a 
consideration of adaptive design, 
flexibility, implementation guide and 
maturity model 
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This finding is consistent with that of Howard et al. (2008) who also pointed out that current 

approaches commonly focus on development projects initiated by market pull, excluding current 

circumstances like technology push.  

Moreover, another difficulty in implementing design approaches has been raised for more than 

two decades. It has been stated that the challenge of design approach application is the focus on 

original design, although design practice needs support for the more frequent task of adaptive 

design (Maffin 1998, Wynn and Clarkson 2005).  Therefore, the usefulness of the existing design 

approaches is very limited since they focus more on the development of an original design’s 

functions instead of the improvement of an adaptation design based on essential factors such as 

available resources and management conditions.  

Besides, a lack of the management aspect in PD approaches has been agreed by many studies. For 

instance, Wynn and Clarkson (2005) mention that many product-focused approaches limit their 

usefulness because they exclude management aspects which are of significant importance for 

designers. These approaches do not explain the rationale of the proposed processes and don't 

provide enough support on how to perform design activities, only what to do (Gericke and 

Blessing 2011). Besides, an absence of a detailed guideline in these models leads to an 

inflexibility for a specific implementation at different companies (Costa et al. 2015). Hence, most 

of the well-known PD approaches are more suitable for providing basic design knowledge like 

product function than for representing the creative process in sufficient detail to support design 

activities (Maffin 1998, Wynn and Clarkson 2005, Howard et al. 2008, Tomiyama et al. 2009, 

Costa et al. 2013). In addition to these, some design approaches such as axiomatic design are too 

complicated and require substantial training to apply in practice (Meljer 2003, Thompson 2009).  

Moreover, designing in industry practice which is routine in nature generally aims to achieve 

concrete performances such as cost, time and quality, rather than complete a new design. Hence, 

design methods that support decision making or design process modelling were more applied in 

industry practice because they are more flexible for different uses and able to satisfy a concrete 

goal (Clarkson and Eckert 2005, Tomiyama et al. 2009). Examples of these methods are Quality 

Function Deployment (QFD) or House of Quality, Design for X, IDEF0, Design Structure Matrix 

(DSM), and concurrent engineering. 
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In addition, although some of these methods were recognised to be useful in practice, they are not 

widely used in comparison to other design methods and tools. Fujita & Matsuo (2005) has 

investigated the implementation of the existing design methods and tools used in 118 industrial 

companies. The results revealed that these design methods (i.e. Failure Mode Effect Analysis, 

QFD and Design for X) are generally adopted in research and industrial practice because of their 

flexibility and simplicity in application. However, product designers are likely to apply support 

tools that can store, real-time update, and share product data and are also comfortable and flexible 

to use (Lutters et al. 2014). Therefore, design tools such as CAD, CAE, and simulation system 

tools are judged the most effective (see Figure 3.7).  

 

Figure 3.7 – Effectiveness of tools and methods under their utilisation (Fujita and Matsuo 2005) 



CHAPTER 3 | 23 

 

In conclusion, to implement PD effectively, many companies currently confront the four main 

difficulties as listed in Table 3.3. To mitigate these, a company was suggested to follow a best 

practice PD process which (O’Donovan et al. 2005, Nicholas et al. 2011, Barczak and Kahn 2012, 

Kahn et al. 2012):  

i. “cuts across organisational groups” and has clear go/no-go criteria for each design review 

ii. is flexible and adaptable to apply to the different needs, size, and risk of each individual 

project 

iii. is visible, well documented, and provide information- and knowledge-related design 

projects which are available to all designers and related stakeholders 

iv. To achieve this, a manufacturing company was also recommended to focus on the critical 

success factors for PD implementation have been defined. These factors involving design 

organisation and management are communication, collaboration, information and 

knowledge distribution, performance measurement, and company culture (Nicholas et al. 

2011, Kahn et al. 2012, Sheldrick 2015). 

Table 3.3 – Difficulties in Product design practice 

Difficulties in Product design practices Authors 

Original design focus instead of an 
adaptive model 

Maffin (1998),  

Tomiyama et al. (2009),  

Wynn and Clarkson (2005) 

Lack of knowledge such as best practice, 
team-work, and legislative 

Costa et al. (2013),  

Costa et al. (2015),  

Gericke and Blessing (2011),  

Wynn and Clarkson (2005) 

Lack of flexibility, implementation and 
management guidelines to serve a 
particular application (for a specific 
product, designer and company) 

Costa et al. (2015),  

Gericke and Blessing (2011),  

Howard et al. (2008),  

Maffin (1998),  

Meljer (2003), 

Thompson (2009), 

Tomiyama et al. (2009),  

Wynn and Clarkson (2005) 

Exclusion of sustainability and technology 
consideration  

Costa et al. (2015),  

Howard et al. (2008) 
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3.3 PRODUCTION SYSTEM DESIGN 

Meyers and Stephens (2005) consider the term “manufacturing facility design” to refer to the 

activities (plant location, building design, plant layout, and material handling) for organising the 

company’s physical facilities to promote the efficient use of resources such as human resource, 

equipment, materials and energy. In similar fashion, “production development” was defined by 

Bellgran and Säfsten (2010) as a concept for creating effective production processes and 

developing production ability to either improve existing systems or develop new ones. Many 

similar design concepts have used the  term “production” and “manufacturing” as synonyms of 

one another.  However, the concept of “manufacturing” is broader than “production” because it 

also involves managerial functions. As a part of the supply chain, the boundary of manufacturing 

is located between the suppliers and customers of a manufacturing company (Segreto and Teti 

2014).  

Therefore, the definition of “manufacturing” can be formulated as  “all activities within a 

company for design, material, supply, planning and production, to quality assurance, distribution, 

management, and marketing” (Bellgran and Säfsten 2010).  

Whilst, the term “production or manufacturing production” refers to “the act or process (or 

the connected series of acts or processes) of actually physically making a product from its 

material constituents, as distinct from designing the product, planning and controlling its 

production, assuring its quality” (Alexopoulos et al. 2014).  

Based on the scope of this research, this section reviews research papers related to Production 

System Design (PSD) which address approaches for designing and developing production 

systems as an organisational unit of manufacturing dealing with parts production (fabrication) 

and the assembly of products (see Figure3.8).  

 

Figure 3.8 – A hierarchical perspective on a production system (Bellgran and Säfsten 2010)  
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 An Overview of Production System Design 

The key reason for developing a new production system is the introduction of new products or 

product families which, for various reasons, it was not possible to produce in the existing systems.  

Moreover, the changes might be caused by an improved working environment, increases in 

capacity, new environmental legislation, market change or technology development (Bellgran and 

Säfsten 2010). Whatever the motivation for development, a newly developed production system 

should contribute to the effective interaction and information flow of materials, human resources, 

equipment, and investment in order to achieve the manufacturing business’s goal. In this light, 

the purpose of the PSD process is to enhance system quality, system design, reduce system cost 

and cycle time, verify all system requirements, and validate the design outcome (Wu 1992).  

Most of the traditional PSD methodologies present a holistic process comprised of a set of stages, 

as shown in Figure 3.9. These design processes generally initiate system design by realising 

system requirements. Continuously, the requirements are translated into a conceptual system and 

are structured at the system configuration.  

 

Figure 3.9 – A structure of the product system design approach (Wu 1992) 
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Then, all details of the system, such as the material handling equipment, service unit, and system 

layout, are decided at the detailed design stage.  Before starting production, product quality, 

system accuracy and system efficiency are evaluated and confirmed at the production ramp-up 

step.  With this pattern, it can be seen that there is a similarity in the process structure of PD and 

PSD. This also explains why product design approaches were sometimes applied to the designing 

of a production system (Gräßler and Yang 2016). Likewise, production systems were considered 

to be “complex and long-life products which have to be adapted to the needs of markets, 

production programs and technologies” (Westkämper 2007). 

In addition, other similar PSD approaches which offer the different advantages and drawbacks 

are exemplified in Table 3.4. For instance, Fisher issued AI-based methodologies with the focus 

on economic and currently emerging technologies (Fisher 1986).  Moreover, some approaches 

such as the advanced manufacturing system consider the redevelopment stage after the operation 

phase. This method however has no guidance for tracking emerging technology, considering 

investment, or providing the most suitable type of manufacture (Doumeingts et al. 1987).  

Moreover, Gu et al. (2001) utilised axiomatic design to produce process flow design rather than 

holistic system design. In a different fashion, Meyers & Stephens provide very detailed guidelines 

for manufacturing facility design which is very useful for the first system establishment (Meyers 

and Stephens 2005). In addition to this, Bellgran and Säfsten (2010) proposed the production 

system development process for either creating an original or improving the existing system (see 

Figure 3.10) 

Based on these previous publications, the production system design approaches were not widely 

developed comparing to the product design approaches. This finding was also reported by 

Bellgran and Säfsten (2010) who asserted that  a lack of development in PSD approach was 

because of the limited requirement to improve production system design from relevant 

stakeholders. Besides, these PSD approaches were rarely implemented in industries due to several 

reasons which are described in the next section. 
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Figure 3.10 – Description of a way of working with production system development (Bellgran and 
Säfsten 2010) 
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 Production System Design in Practice  

It has been reported that many of the traditional PSD approaches, as exemplified in the previous 

sub-section, were rarely adopted in industry practice (Alves and Carmo-Silva 2009, Bellgran and 

Säfsten 2010, Rösiö and Säfsten 2013).  

This is due to the limitations of PSD approaches, as the existing approaches lack detailed 

guidelines to simplify implementation (Bellgran and Säfsten 2010, Rösiö and Säfsten 2013). In 

addition, some manufacturers have negative perceptions regarding ineffective and inefficient PSD 

approaches owing to the ways these approaches have been misused. Such implementation 

typically attempted to apply PSD approaches for tackling all complex design problems, despite 

the fact that PSD was designed to show the way to reach design solutions, not to resolve problems 

(Alves and Carmo-Silva 2009).  

Apart from these reasons, current manufacturers in both developed and developing countries seek 

methodologies that adapt existing production systems rather than build new ones (Yang et al. 

2015). In response, various design approaches for configuration were proposed and concluded in 

Alves and Carmo-Silva (2009). For instance, Hyer and Wemmerlov (2001) proposed a thirteen-

step framework for preparing and replacing an existing production system with cellular 

manufacturing. Based on technology advancement, a virtual reality framework was also presented 

to support the adaptation and improvement of the current production system (see Figure 3.11).   

 

Figure 3.11 – Workflow of virtual reality framework and virtual reality-based continuous improvement 
process workshop (Yang et al. 2015) 
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Importantly, it has been underlined by various researchers that many existing PSD approaches 

were unable to respond to all present and future challenges. These challenges are based on the 

increasing requirements of the product, market, and technology aspects. First and most 

importantly, a design of production system needs to respond necessary requirements of products 

and manufacturing business such as product constraints (i.e. function and quality), restrictions 

and legislative requirements (i.e. health and safety) as well as cost and time reduction (Alves and 

Carmo-Silva 2009, Verbeek 2013, Gräßler and Yang 2016). These basic needs used to be 

effectively managed by traditional lean manufacturing (Bi 2011). 

In addition to these requirements and higher market competition, the design of the production 

system was focused on responsiveness. Thus, a reconfigurable manufacturing system was 

presented to support better, faster and inexpensive design and production of high-variety products 

(Mehrabi et al. 2000). This reconfigurable manufacturing system was proposed to provide various 

responsibility, i.e. changeability, flexibility, reconfigurability and adaptability into traditional 

production system (Koren and Shpitalni 2010, Rogalski 2012, Hermann et al. 2016). Moreover, 

these abilities also include the other key characteristics of a reconfigurable manufacturing system 

as depicted in Figure 3.12. It was also highlighted that even though responsiveness has highlighted 

reconfigurability as a key to future manufacturing for more than a decade, a truly responsive 

design process and reconfigurable manufacturing system still does not exist (Garetti and Taisch 

2012). 

Most importantly, under the critical environmental issue at present, manufacturing businesses 

could be able to satisfy all product and production system demands and mitigate the limitations 

on natural resources.  

 

Figure 3.12 – Reconfigurability Characteristics (Rösiö and Säfsten 2013) 
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Attention has been paid to environmental sustainability in manufacturing for more than two 

decades. with the growing awareness of this issue, manufacturers are expected to be more 

responsible in their products and manufacturing systems and to achieve ‘sustainable 

manufacturing’, where ecological and social aspects are considered together with the traditional 

economic mindset (U.S Department of Commerce 2013). More recently, to move forward to the 

industry 4.0 in the near future, advanced manufacturing technology is necessitated for the 

achievement of all the above requirements. This is to gain information accessibility and 

interconnection, to support technical analysis, and to assist faster and decentralised decision 

making (Hermann et al. 2016).   

In order to satisfy all of these requirements, there is a need for new PSD approaches which should: 

i. Be represented as a holistic and systematic design process which provides clear guidance 

and includes up-to-date requirements in consideration (Saxena and Jain 2012, Rösiö and 

Säfsten 2013, Verbeek 2013, Gräßler and Yang 2016). 

ii. Provide detail guidance supporting both cases of an original and adaptive PSD.  

iii. Aid the faster development of production systems (Alves and Carmo-Silva 2009)  

iv. Initiate the consideration of all critical requirements, which are generally considered at a 

later stage, at an early design stage (Mehrabi et al. 2000, Gräßler and Yang 2016).  

v. Include the interdisciplinary collaboration between PD and PSD as well as related 

stakeholders. This is required not only to provide information accessibility and 

knowledge interchange but also to mitigate rising complexity under the limited cost and 

time of development (Martin and D’Acunto 2003, Black 2007, Verbeek 2013, Gräßler 

and Yang 2016).  

The need for early consideration, information and knowledge availability, and interdisciplinary 

collaboration has been recognised for a long time. The arrangement of these factors was generally 

delivered through the concept of integrated design, which is explored in the following section.  
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3.4 INTEGRATED DESIGN  

With regard to technological advancement and higher competition in the manufacturing sector, 

designers have been struggling to manage a more complex product with limited time during a 

shorter design and development phase. To tackle this situation, a number of studies have proposed 

a concept of the Integrated Design (ID) by including production system considerations into the 

product design process. Hence, this section presents an overview of existing ID concepts as well 

as investigates how these concepts and approaches have been developed and used in academic 

and industry contexts at present. 

 An Overview of Integrated Design  

Production system design is typically driven by the specific requirements of an existing and/or 

predesigned product.  Referred to as the “throw over the wall” concept, this often causes long 

lead time, increased development costs, low product quality, and a frequent need for redesign of 

products and/or production systems (Spencer 1990, Otto and Wood 2001). To mitigate these 

difficulties, it has been highlighted that the product and its production system should be 

simultaneously considered at an early stage of the product design process (See Figure 3.13), 

because approximately 70-80% of the product performance, producibility and life-cycle costs are 

decided at this stage (Abdalla 1999, Howard and Lewis 2003). Therefore, Concurrent Engineering 

(CE) was proposed with the aim of: 

“having integrated, concurrent design of products and their related processes, 

including manufacture and support. This approach is intended to cause the 

developers, from the outset, to consider all elements of the product lifecycle from 

conception through disposal, including quality, cost, schedule, and user 

requirements” (Winner et al. 1988).  

Following this key proposal, many studies also introduced different integrated approaches using 

different terms, such as Simultaneous Engineering (SE), Integrated Product-Process Development 

(IPPD), Integrated Product Development(IPD), Integrate Product And Process Design And 

Development (IP2D2), and Design for Manufacturing (DfM) (Andreasen and Hein 1987, Winner 

et al. 1988, Pugh 1991, Shunk 1992, Gerwin and Barrowman 2002, Magrab et al. 2009, 

Boothroyd et al. 2011). One of these is exemplified in Figure 3.14. 
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 Figure 3.13 - Industry is moving to simultaneous engineering to survive in all product and technology 
areas (Pugh 1991) 

Regarding the literature, much of the existing research in the integrated design area assumes the 

importance of four main characteristics which lead to the success of integrated design (See Figure 

3.15). These characteristics are encouraging parallel activities, considering critical issues early in 

 

Figure 3.14 – Integrated Product Development (Andreasen and Hein 1987) 
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Figure 3.15 – Four main characteristics of the integrated design concepts 

design, exchanging information and maintaining collaboration between teams (Gerwin and 

Barrowman 2002, Bhuiyan et al. 2006). To address these, relevant publications were reviewed 

based on four corresponding research themes: integrated design process, specific improvement of 

design process performance, technical tools to support information sharing/exchange, and strong 

collaboration. 

3.4.1.1 Theme I: Integrated Design Process 

Firstly, the “integrated design process” such as IPD by Andreasen and Hein (1987), as well as 

the Generic Product Development Process (GPDP) by Ulrich and Eppinger (2003) are generally 

represented in the context of integration of parallel activities from different processes, e.g. 

marketing, product design, and production development. These management-level approaches 

generally suggest ways in which an integrated design can be managed through step-by-step 

activities performed by different stakeholders. Some of the approaches also suggest that an 

integrated process needs other integrated design methods and tools related to the other themes. 

Other concepts which also fall under this theme are SE (Pugh 1991), CE (Winner et al. 1988), 

IP2D2 (Magrab et al. 2009), Early Manufacturing Involvement (EMI) (Ettlie 1995), and Integrated 

Development Process of Products and Production systems (IDPPP) (Stoffels and Vielhaber 2016).   
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embedding manufacturing information and knowledge into the product design process 

(Tomiyama et al. 2009, Boothroyd et al. 2011).  

Based on the integration of the manufacturing and verification aspects, the design guideline 

collaborative framework was created to extend the application of DfM guidelines, applying them 

not only to product design but also to production process reconfiguration (Filippi and Cristofolini 

2009). Likewise, traditional Quality Function Deployment (QFD) has been applied to present PD 

and PSD specifications to negotiate preferences between design and production system by product 

designers, instead of collaborative consideration by both parties (Lu et al. 2007).  

In light of technology improvement, the DfA and DfM analytical tools were developed to support 

design engineers to faster evaluate and improve design concepts through information sharing. 

Examples of these analytical software packages are DFMA, SEER DFM and LASer software 

(Otto and Wood 2001). Besides this, also in this category are mathematical modelling tools which 

aim to structure the production or re-engineering process using a genetic algorithm in order to 

minimise production cost and time (Tomiyama et al. 2009). For instance, Bryan et al. (2013) 

proposed a genetic algorithm model to find the product family and reconfigurable assembly 

systems design that would result in maximum profits. Similarly, based on a DSM tool, Tang’s 

model aims to re-engineer the existing design process to enhance concurrency among design 

activities for reduction of product development time and cost (Tang et al. 2000). 

In addition, the proposed integrated design processes and methods related to these first two themes 

have been presented based on implementation criteria and stage of application, as depicted in 

Figure 3.16. Specifically, CE, IPD and the generic product development process have continuity 

in integration because these models provide guidance for integrating product and manufacturing 

system through all stages of the design process. On the other hand, the DfA and DfM methods 

are developed for implementation only with the complete design concept at a late stage of the 

design process. 
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Figure 3.16 - The existing concepts of integrated design processes and methods (implementation 
criteria vs applied stage) 

3.4.1.3 Theme III: Technological Tools to Support Information Sharing/Exchange 
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information at an early design stage (Swift and Booker 2013). Some of these tools have been 

traditionally proposed based on CAD or Computer Aid Manufacture (CAM); in this way, product 
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design selection by providing information related to resources, materials and the production 

process (Howard and Lewis 2003, Feng 2005). This also includes work in feature-based design, 

which is developed to integrated data from CAD, CAM, and/or Computer-Aided Process 

Planning (CAPP), such as the software for process planning of machining processes with 

optimisation using genetic algorithms by Kingsly Jeba Singh and Jebaraj (2005). This was 

developed for sharing design information in computer numerical control from the conceptual to 

manufacturing phases. Likewise, Šormaz et al. (2010) proposed an approach to integrate key 

product realisation (complete CAD of product, CAPP process planning, scheduling, and flexible 

manufacturing system simulation) in order to determine the optimal process planning using the 

least development time.  

Knowledge Management Tools such as Product Data Management systems (PDM) or Enterprise 

Resource Planning (ERP) have been developed for managing data like CAD, Material 

Requirements Planning, or Manufacturing Resource Planning.  These software systems are 

typically developed with the aim of providing information to the entire organisation. Such 

information, structurally and systematically handled by the system, proceeds from customer order 

to manufacturing and final delivery (Stark 2011). For instance, Giovannini et al. (2012) developed 

a knowledge-based system which includes sustainability knowledge by using PDM for supporting 

product designer and process planning in a manufacturing business. These applications of 

knowledge management are supported by ISO 10303 or STEP (STandard for the Exchange of 

Product model data). STEP was developed for exchanging and standardising a wide range of 

product-related data throughout the product lifecycle. In other words, STEP can support product 

and production designers in exchanging data about products between different CAD systems, or 

between CAD and downstream application systems (Pratt 2001). 

3.4.1.4 Theme IV: Strong Collaboration 

The International Journal of Collaborative Engineering has broadly defined collaborative activity 

as “the interaction of engineering collaboration, when several related stakeholders resolve 

conflicts, bargain for individual or collective advantages, agree upon courses of action, and/or 

attempt to craft joint outcomes which serve their mutual interests” (IJCE 2007).  It is also widely 

known that collaboration can cause additional complexity due to a difference and variety of 

individual collaborative objectives and benefits, the interfaces between decision/negotiation 

processes, and the integration of social/technical aspects of engineering activities.  
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Hence, a ‘Strong Collaboration’ has been introduced to discover the fundamental success factors, 

as well as the risks of collaboration and negotiation in product development and to identify how 

these can be effectively managed and enhanced. Various studies on this theme have been proposed 

under the concept of Collaborative Product Development (CPD), which is recognised as an 

extension of ID by considering a collaboration of both internal (also known as a cross-functional 

team) and external organisation (Gerwin and Barrowman 2002, Luo et al. 2010). In this regard, 

Luo et al. (2010) have indicated that a higher level of internal coordination leads to the effective 

integration of skills and knowledge from different backgrounds, productive product development, 

and better external collaboration.  

In addition, many researchers and practitioners have highlighted that communication is one of 

the critical success factors of collaborative design (Maier et al. 2008, Tomiyama et al. 2009). For 

this reason, some of these studies focused on different aspects of communication, such as 

influential collaboration factors, information exchange and cognitive behaviour in team 

communication during the development phase. Red et al. (2013) reported that the effectiveness 

of collaboration could be enhanced through informal communication rather than formal activities 

such as meetings. Besides, Maier et al. (2008) has isolated nine key factors influencing 

communication in product development process: mutual trust, collaboration, roles and 

responsibility, project reviews, availability of information about product specifications, handling 

of technical conflicts, ability to recognise what information the other party needs, autonomy of 

task execution, and an overview of sequence of tasks in the design process. In a review-based 

study, Büyüközkan and Arsenyan (2012) similarly reported that trust and communication are 

the most highlighted success factors among a range of essential collaboration factors (see Error! 

Reference source not found.). Even though trust is more often mentioned in the literature than 

communication in the past decade, achieving it is often impossible without effective 

communication and information sharing (Bstieler 2006, Bunduchi 2013). In order to enhance 

collaboration performance, it can be concluded that these underlined success factors should not 

be individually considered, because they also correlate with and influence one another. 
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Table 3.5 – Key factors of CPD motivation, success, and risks (Büyüközkan and Arsenyan 2012) 

Key factors of Collaborative Product Development 

Motivations Success Risk 

1.Sharing risks 

2.Reducing cost 

3.Technology 

4.Knowledge 

5.Experience 

6.Reducing time-to-market 

7.Market opportunities and 
competition 

8.Expanding product family 
and innovation 

9.Administrative initiative 
and corporate culture 

10.Maintaining sustainability 

1.Trust 

2.Communication 

3.Partner selection and 
preparation 

4.Product quality 

5.Attaining the main goal 

6.Commitment, interest and 
inter-team relationships 

7. Fairness 

8.Reciprocity 

9.Flexibility 

10.Learning 

11.Leadership 

12.Experience 

13.Alignment 

14.Information and risk 
sharing 

1.Leakage of a firm’s skill 

2.Experience and knowledge 
that may form the basis of 
its competitiveness 

3.Additional financial and 
time costs incurred in 
managing the collaboration 

4.Loss of direct control by an 
organization over the 
product development 
process 

5.Poor communication 
within and across 
organizational boundaries 

6.Documentation problems 

7.Opportunity cost 

8.Trust issues 

 Integrated Design in Practice 

Without the ID application, manufacturing companies can face project overruns and increasing 

cost and quality issues because of lack of information related design, production process and 

material (Pullan et al. 2010). Many manufacturers, such as Rolls-Royce, Hewlett-Packard, 

Motorola, and General Motors, have successfully adopted an integrated design process, applying 

all characteristics together (Otto and Wood 2001, Bhuiyan et al. 2006, Pullan et al. 2010). The 

benefit derived from such successful applications have led to increased attention to ID in many 

product design models/approaches in the past (Costa et al. 2015). More recently, it has been 

reported that the adoption of ID in design practice has been significantly reduced (from 69% in 

2004 to 49.1% in 2012) (Markham and Lee 2013). This is because many of these efforts have not 
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resulted in perceptible benefits due to the lack of a structured collaborative approach, 

inaccessibility of information and knowledge, and inability to manage process complexities 

(Tomiyama et al. 2009). In a context of ID between PD and PSD, one survey has revealed that 

the support from the manufacturing department was still low in comparison with other 

departments such as marketing and business unit departments during the product design process 

(Markham and Lee 2013). In the same way, it is also reported that PSD still did not gain much 

attention from designers currently since there is only 10% of the time during the early design 

stages that designer focused on production system aspect (Cash et al. 2015).   

Many studies have identified key effective practices and challenges to support ID implementation 

to enhance this situation. To effectively apply ID, a company should adopt a formal design process 

and well-organised information sharing (Peng et al. 2014). Rauniar et al. (2017) have noted that 

it is important to spend adequate time for sharing the ID project’s objectives and mission, as well 

as to have clear target trade-off during the early front-end stage. That is because this leads to 

effective cross-functional teams and efficient ID product outcomes. In addition, ID effectiveness 

can also be improved through customer and supplier involvement due to information 

enhancement. In Table 3.6, Sommer et al. (2014) have concluded the challenges of implementing 

ID in industry practice based on projects, project governance, and human resources. 

Moreover, another group of ID study has evaluated the implementation of ID characteristics based 

on different aspects such as ID benefits, ID performance, and design process aspects supporting 

the realisation of ID.  

Table 3.6 – Challenges in IPD related to each of the three project organisation elements (Sommer et 
al. 2014). 
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First, Gerwin and Barrowman (2002) have evaluated each ID characteristic against the two key 

benefits of design failure reduction and development time reduction. The results are that 

overlapping processes, specific methods and information sharing can achieve both failure and 

development time reduction. Regarding another characteristic, cross-functional team/strong 

collaboration tends to result only in development time reduction.   

In addition, Peng et al. (2014) studied the effects of ID practices and ID tools on design 

collaboration. The results revealed that all ID practices, such as overlapping phases, cross-

functional teams and early engagement of stakeholders did effectively support design 

collaboration. In a context of ID tool, most of the tools such as CAD, CAPP, simulation modelling, 

and shared part databases (except email groupware and PDM software) are positively support 

design collaboration (Barczak et al. 2009). In addition, this study also found that collaboration 

through ID practices are more necessary for the cases that there is a higher degree of design task 

interdependence and/or higher design novelty (higher design newness/information ambiguity).  

Especially at higher design novelty, ID practice significantly required support from ID tool for 

interpreting, clarifying, and organizing information. 

In an aspect of the number of product functions, Ahmad et al. (2013) have discovered that when 

project complexity increases due to higher numbers of product functions, integrated design teams 

(cross-functional teams) become essential for improving product development. These finding of 

ID characteristics on different design aspects are concluded in Table 3.7.  

Table 3.7 – Effects of ID characteristics on different design aspects 

ID Characteristics 

Support to Support collaboration different aspect 

Reduce 

design 

failure 

Reduce 

development 

time 

Design 

collaboration 

High task 

interdependency 

High 

novelty 

Larger 

product 

size 

Higher 

product 

functions 

ID 

Practice 

Overlapping 

processes ✓ ✓ ✓ ✓ ✓ - - 

Specific 

method 

(early 

application) 

✓ ✓ ✓ ✓ ✓ - - 

Cross-

function, 

teaming 
 ✓ ✓ ✓ ✓ - ✓ 

ID IT 

Tool 

Information 

sharing ✓ ✓ ✓ - ✓ ✓ - 
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In a context of ID adoption period, Kong et al. (2015) found that the integration of manufacturing 

considerations too early (marketing and product feasibility) or too late (production development) 

during product development had negative effects on both speed and cost performance. Therefore, 

it is highly essential to achieve integration from an early stage, and during the product design 

phase to gain positive effects which are higher performance related to not only to product 

development but also to the market. Nevertheless, “in order to maximise product development 

performance, managers should work on enhancing manufacturing integration by focusing on the 

right stages over the entire ID process.”(Kong et al. 2015).  This is because the different nature 

of tasks in different product design processes calls for differing levels of support from 

manufacturing at different stages. 

In conclusion, existing ID approaches and tools were proposed and implemented to support 

information and knowledge sharing between individual design processes, in place of generating 

a combined process. In any case, integrated design concepts are typically unidirectional 

approaches mainly assisting the product designers to consider manufacturability (Stoffels and 

Vielhaber 2016). In addition, the research to date has tended to focus on the last three 

characteristics of ID rather than the integrated design process area. A common observation in 

most of these studies is that integrated design should not mainly be utilised to meet a narrow target 

such as cost and time reduction. Significantly, with regard to current challenges, integrated design 

concepts must respond to conventional benefits and explore wider potential benefits such as 

improved resource efficiency (Haapala et al. 2013, Sheldrick and Rahimifard 2013). This 

highlights that the design of production systems is often the ‘outcome of decided product design,’ 

which typically limits the potential benefits of a truly integrated and simultaneous approach for 

designing product and its production system. 

3.5 CHAPTER SUMMARY 

In this chapter, a literature review of PD, PSD and ID were undertaken to provide basic knowledge 

about how product and production system design is processed and how they interact with each 

other. However, this review concluded that most of these proposed ID approaches were not often 

adopted due to being difficult to implement. This suggests that future approaches should give 

more consideration to the application and implementation aspects of ID. Equally important, many 

studies have emphasised a need to update the existing approach to respond to contemporary 
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challenges such as sustainability requirements.  In order to understand if existing sustainable 

design practice meets the requirement of integrating product and production system design, the 

next provides a detailed review of contemporary SD practices. 

 

 

 



CHAPTER 4 | 44 

 

 SUSTAINABLE DESIGN 

4.1 INTRODUCTION 

The previous chapter addressed design challenges, such as shorter development time and product 

quality, which demand the application of more efficient and closely integrated design. Recently, 

sustainability, which is one of the unavoidable challenges for the industry, was also highlighted 

as achievable through integration and collaboration during the design phase. This chapter 

therefore explores the current state of sustainable design in manufacturing application. The first 

section presents the key drivers of sustainability considerations.  Then the two following sections 

provide the state-of-the-art of sustainable design for product and production systems. 

4.2 DRIVERS OF SUSTAINABLE DESIGN 

Environmental awareness had emerged at least since the 1980s when the hole in the ozone layer 

and global warming were discovered (Sheldrick and Rahimifard 2013). Based on the forecast of 

increasing population by 2050, this issue will consequently become more crucial (Foresight 2013). 

Specifically, the requirements of resource consumption dramatically increase, and resource 

scarcity, rising material costs, climate change, and other issues will be more critical in the near 

future (see Figure 4.1). Accordingly, the environmental attention from various sectors will drive 

the future of PD and PSD as highlighted in the following subsections. 

 

Figure 4.1- Projection of World energy (Left) and water (Right) consumption (Tennant 2013, WWAP 
2015) 
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 Legislation, Standards and Governmental Driver 

In 1306, the first environmental legislation in the UK was an ordinance limiting coal burning to 

reduce air pollution in London. Since then, air pollution, industrial waste, water emission and 

import-export-storage of prescribed or radioactive substances have been controlled by the 

Environmental Protection Act (Government of UK 1990). After that, with the aim to improve 

effectiveness, an environmental agency was established to monitor environmental issues in the 

UK through Integrated Pollution Control (IPC), which is the integration of all existing 

environmental controls, as shown in Figure 4.2 (HM Government 1995). In the EU, the Waste 

from Electrical and Electronic Equipment (WEEE) directive and the End-of-Life Vehicles (ELVs) 

directive were established with the aim to build producer responsibilities.  WEEE specifies that 

producers need to control the reuse, recycling and recovery of their electrical and electronic 

wastes (European Parliament 2003). ELVs was applied to enforce automobile manufacturers to 

recover 95% of their end-of-life vehicles, and a minimum of 85% of component parts need to be 

reusable or recyclable (European Parliament and Council of the European Union 2000).  Under 

this legislation, manufacturing companies cannot avoid including environmental considerations 

during development of their production systems and, especially, at product design. Furthermore, 

to mitigate these environmental issues in the long term, manufacturers are expected to achieve 

sustainable design targets and goals (for both product and production system) in a three-phase 

plan which has been suggested, as in Figure 4.3 (Foresight 2013). 

 

Figure 4.2 - UK Environmental legislation (Rahimifard 2014) 
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Figure 4.3 - Three phases in the shift to sustainable product and production system (Foresight 2013) 

 Market and Consumer Driver 

The higher pressure of environmental issues and resource requirements has raised environmental 

consciousness in consumers in the past decade (Sheldrick and Rahimifard 2013). One consumer 

survey revealed that 75% of Europeans were willing to purchase environmentally friendly 

products even if the price is slightly higher (European Commission 2014). In the same way, the 

more than 50% of global respondents who are willing to pay more for green products “are 

influenced by key sustainability factors, such as a product being made from fresh, natural and/or 

organic ingredients (69%), a company is environmentally friendly (58%), and company is known 

for its commitment to social value (56%)” (Nielsen 2015).  Additionally, it has been forecasted 

that sustainability will strongly influence consumer goods markets in the future.  This is presented 

in four possible scenarios of sustainable consumption, based on the variation in attitudes of society 

and its leaders as illustrated in Figure 4.4 (Bennie et al. 2011). Therefore, the manufacturer should 

be able to cope with this increasing trend of the sustainable product by effective implementation 

of sustainable design. 
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Figure 4.4 – Four scenarios for future consumers (Bennie et al. 2011). 

 Business Driver 

In light of these drivers from the consumer and government, it is obvious that the consideration 

of environmental issues has become one of the key success factors for manufacturing businesses. 

In this past decade, several manufacturing businesses have started to consider the environmental 

aspect along with their economic mindset.  For instance, at British Sugar, the production process 

has been redesigned to reuse resources such as water, heat, and electricity, transferring them from 

one process to another. For instance, bagasse, which is waste from sugar production, was 

processed and sold as an animal feed product. In addition, heat emission from the evaporation 

process was further used for tomato farming, as shown in Figure 4.5.  Furthermore, the company 

has also supported its neighbours by sharing the excess electricity of the factory to support the 

electrical grid in the local area (LimeX 2014). It can be seen that the adoption of a sustainable 

strategy provided numerous advantages in terms of natural resources, the neighbouring society, 

and business revenue. Hence, manufacturers who more quickly satisfy the present-day needs of 

environmental sustainability will secure their existence and become more competitive in business. 

Given this increasing environmental awareness, a sustainable strategy is not only the best option 

to satisfy the increasing demands of consumers, but it is now a requirement to implement in 

manufacturing businesses. In fact, many manufacturers nowadays do realise the importance of 
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Figure 4.5 – British Sugar factory operation - an example of sustainable manufacturing (LimeX 2014)   

environmental improvement (Giddings et al. 2002, Gunasekaran and Spalanzani 2012, Deutz et 

al. 2013). Nevertheless, they are now faced with difficulties in implementing sustainability with 

their products and production system. Based on the potential for early adoption of sustainability 

during design, the sustainable design of the product and production system is explored in the 

following section.    

4.3 SUSTAINABLE PRODUCT DESIGN 

Even though the term ‘sustainability’ has just emerged in recent decades, it has gained much 

attention due to the long-term development of environmental consciousness. Also, it is well-

known that the key to success in sustainability is to embed and implement sustainable strategies 

since the early stages of product design and development (Ullman 2003, Kara et al. 2005, 

Luttropp and Lagerstedt 2006, Bovea and Pérez-Belis 2012, Hallstedt et al. 2013, Red et al. 2013). 

Otto and Wood (2001) also highlight that, similar to production cost, 80% of the environmental 

impact of a product is settled after 20% of the product design is completed.  In this light, this 

section explores sustainable product design, including the concept, theoretical methodologies, and 

industrial practice. 
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 An Overview of Sustainable Product Design  

Sustainable Design or design for sustainability (SD), is established to design products focusing 

on the ecological aspect, the social aspect and the economic aspect. The objective is to design a 

product which functions effectively and has a low environmental impact and a positive social 

impact, as reflected in usability and responsible use (Bhamra and Lofthouse 2007). SD can be 

considered as the extension of ‘design for environment (DfE) or Eco-design’ with regard to the 

definitions in Table 4.1 (Spangenberg et al. 2010).  

Eco-Design/DfE is widely recognised as a design concept that integrates environmental 

considerations into the design process in order to create a more environmentally friendly product 

(Bhamra and Lofthouse 2007). This concept entails applying various approaches under the 

concept of green design, which commonly focuses on a single issue related to environmental 

improvements, such as design for recycling, design for the life cycle, design for longevity, and 

design for disassembly (Marcelino-Sádaba et al. 2015). For example, Luttropp and Lagerstedt 

(2006) proposed the Ten Golden Rules to help designers to simply design an environmentally 

friendly product based on ten key considerations of the product life cycle (see Figure 4.6).  

Reflecting the long-term development of the eco-design concept, this is why most sustainable 

design methods were developed: to design a sustainable product with an ecological concentration 

such as a use of less energy, fewer resources or more environmentally appropriate materials, or 

release of less harmful waste and emissions (Ryan et al. 1992, Ramani et al. 2010, Bovea and 

Pérez-Belis 2012, Sheldrick and Rahimifard 2013). Nevertheless, some approaches  

Table 4.1 - Differentiation of environmental design philosophies (Bhamra and Lofthouse 2007) 

Green Design 
Green design focuses on single issues, for example, the inclusion of 

recycled or recyclable plastic, or consideration of energy consumption 

Eco-design 
Environmental considerations are considered at each stage of the design 

process 

Design for sustainability 

Design that considers the environmental (for example resource use, end 

of life impact) and the social impact of a product (for example usability, 

responsible use) 

Sustainability 
Sustainability is considered to be more of a direction than a destination 

that we will actually reach 
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Figure 4.6 - The Ten Golden Rules are organized according to the life cycle of a product. Each rule is 
attached to a picture associated with the essence of the respective rules (Luttropp and Lagerstedt 

2006) 

have covered all sustainable aspects.  For instance, the five elements of the Cyclic-Solar-Safe 

Principle, which are Cyclic, Solar, Safe, Efficient, and Social, were generated for measuring the 

environmental aspect and protecting human rights in both the production and the use phases of 

products (Datchefski 2001). Other examples are the cradle-to-cradle of the McDonough 

Braungart Principle, the Walker Principle and a strategic sustainability perspective (Hallstedt et 

al. 2013).   

Even though the concept of sustainable design has extensively grown in the context of research 

and industrial practices in the past decade, it has still required further development, in many 

aspects (see Figure 4.7) such as the social one, as well as improvement in environmental 

implementation (Spangenberg et al. 2010, Hallstedt et al. 2013, Marcelino-Sádaba et al. 2015). 

Therefore, the next section provides a summary of current practices in sustainable product design.  
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Figure 4.7 - Key considerations of Design for Sustainability (DfS) (Lyngaas 2014) 

 Sustainable Product Design in Practice 

After exploring the concept of sustainable product design, this section aims to investigate 

sustainable product design in practice based on the implementation challenges of sustainable tools 

and methods to clarify the further improvement required.  

A large volume of research has attempted to support sustainability applications through proposed 

sustainable design tools and methods. These have been developed for application at different 

design stages. For the early stage of concept design, the Design for Environment Matrix and 

Simplified/Streamlined Life Cycle Assessment tools have been developed to support ecological 

decisions made in material or concept selections (Bovea and Pérez-Belis 2012, Zhang et al. 2017). 

With a similar purpose, some eco-design tools (see Figure 4.8) which have been summarised by 

Bovea and Pérez-Belis (2012) were adapted from traditional design tools such as QFD, Failure 

Mode Effect Analysis, and Matrix design to ease implementation. During the testing and 

refinement stage, designers can define where a designed product needs ecological improvement 

using Risk Analysis, Total Cost Assessment or life cycle assessment software tools, such as 

SimaPro and Gabi (ISO 2006, Sheldrick and Rahimifard 2013).  
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Figure 4.8 - Classification of tools integrating environmental requirements into the design process 
(Bovea and Pérez-Belis 2012) 

Apart from these product-focused methods, a process-focused eco-design approach such as the 

Eco-design Maturity Model and a process-oriented performance indicator has been introduced to 

support and improve the integration of eco-design into product development and related processes 

(Rodrigues et al. 2017). 

Although eco-design from an academic perspective has been progressively developed, one survey 

reported that sustainability was applied as policy, seriously considered or truly implemented in 

50%, 20% and 10% of companies, respectively (Markham and Lee 2013). In addition, 

sustainability strategy was applied more by the best practice and large companies which perform 

design through a formal and structured product design process (Gunasekaran and Spalanzani 

2012). Hence, it has been questioned why the proposed approaches were often not successfully 

adopted in practice (Boks and McAloone 2009, Short et al. 2012, Pigosso et al. 2013). 
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Several studies have shown that this is because most of these tools are complex, lack 

implementation guidance and require specific training, a large amount of data, and particularly 

additional time and effort during the product development process, which is time-limited (Bovea 

and Pérez-Belis 2012, Rossi et al. 2016). Besides, Sheldrick and Rahimifard (2013) have 

underlined that most of these methods and tools were lately implemented sustainability; hence, 

they provide only incremental benefits, instead of radical benefits from the application.  

Although the significance of sustainable development was realised (Short et al. 2012), product 

designers can easily select familiar solutions that might be not environmental friendly, owing to 

an inability to see the impact of eco-design decisions on the manufacturing system (Giddings et 

al. 2002, Deutz et al. 2013).This was also because of a lack of information, concerning, for 

instance, the resource consumption of manufacturing processes, led to unsuccessful eco-design 

applications (Dekoninck et al. 2016). Therefore, to maximise sustainable development, several 

researchers recommended that the design of product and production systems should be considered 

simultaneously (Haapala et al. 2013, Ghisellini et al. 2016). 

The requirement of integration between PD and PSD was also agreed by Gagnon et al. (2012) 

who has highlighted that when “sustainability issues [are] addressed, it will likely prove more 

efficient to do so at the beginning of the design… Such an approach is coherent with the early 

integration of manufacturing or assembly considerations in concurrent engineering” In order to 

achieve this, a company should consider modifying conventional approaches and organising a 

multifunctional team (from staff with different skills and knowledge) to increase the 

understanding of sustainability issues and include all possible solutions (Le Pochat et al. 2007, 

Rossi et al. 2016) 

4.4 SUSTAINABLE PRODUCTION SYSTEM DESIGN  

There is a great deal of research and industrial practice exploring how to make manufacturing 

systems more sustainable. This covers a range of subjects, from improving the efficiency of 

manufacturing processes and factory operations through to supply chain management and 

business operations (Jawahir and Dillon Jr 2007, Ramani et al. 2010, Gunasekaran and Spalanzani 

2012, Haapala et al. 2013). Shifting to a more effective proactive approach, the early 

consideration of sustainability at the production system design phase is required to maximise the 

utilisation of natural resources, reduce emissions and thus minimise resource requirements. 
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However, there is a lack of proactive methods specifically at this phase (Alayón et al. 2017). This 

is because it is very expensive to overhaul entire factories, and very infrequent that a company 

may design a ‘sustainable’ production system from scratch. Instead, it is more common that they 

would make changes and upgrades to the existing infrastructure, as this is less disruptive and 

requires less investment. Presented in this section are a number of approaches for managing, 

redesigning, or changing the existing production system into a sustainable one. 

 An Overview of Sustainable Production System Design 

To adopt a sustainable strategy, manufacturers generally start with a sustainable evaluation of 

their systems, considering the input (material and energy) and output (waste, as well as land, water 

and air emissions) of the system (Haapala et al. 2013). This supports the identification of 

“hotspots” where the largest challenges and opportunities are and help target design improvement 

activities appropriately. To effectively evaluate the sustainability of a production system, a 

sustainable measurement metric is required. Over the long period of environmental awareness, 

the number of existing environmental metrics is significantly higher than the number of social 

metrics, as the latter is difficult to quantify and in the initial phases (Jørgensen et al. 2008).  

However, some studies have proposed quantified units for both social and environmental 

measurement (see Table 4.2).  

Table 4.2 - Quantitative measurement of social and environmental evaluation (Lu et al. 2010) 
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With these measurement metrics, many sustainable methods and tools are established for 

evaluating and improving sustainability across all levels within the factory, including machine 

tools, process, and the whole manufacturing system (see Table 4.3). These SPSD methods were 

proposed to support different levels of the application as follows. 

4.4.1.1 Sustainable Production System Design Methods for system level 

Environmental Management System (EMS) is an integrated framework for managing, controlling 

and monitoring the environmental impact of process and operation based on the requirements of 

ISO 14001 and ISO 14004 standards (ISO 2015, 2016) as well as the Eco-Management and Audit 

Scheme (European Council 2009).  The implementation steps of the Plan Do Check Action key 

in EMS can identify the company’s activities and their environmental impact, arrange 

environmental policy based on involved legislation, set improvement objectives, and issue control 

documents for all processes and related activities in order to conduct environmental audits and 

set future improvement plans. (ISO 2015, 2016). The implementation of EMS can enable one to 

focus on continuous improvement on environmental issues (Haapala et al. 2013). 

Table 4.3 - Sustainable production methods and tools 

Category Description Example methods 

System Assessment and Evaluation 

These methods focus on measuring 

input and output in both the process 

and system level for supporting the 

environmental improvement 

Growth sustainability based 

on lean manufacturing (Miller 

et al. 2010) and energy-cost 

efficiency modelling 

(Anderberg et al. 2010) 

Simulation modelling 

Quantitative Methodologies for 

supporting process planning, 

scheduling, line balancing in 

environmental practice 

Simulation style Competence-

based and Technology-

Enhanced Learning (TEL) 

environments 

Install sustainable process 

An additional process such as 

remanufacturing, recycling and 

disassembly process is adopted in the 

production line 

Material Requirement 

Planning for the sustainable 

process, integer programming 

(IP)-based algorithm, and 

Mixed Integer Linear 

Programming based aggregate 

production planning model 

Strategy/Guidelines 
The tools can provide broad 

requirements in sustainable practice 

3R, 6R strategy, Eighteen 

principles (Monozukuri) 

Framework 

The suggestion of common steps to 

adopt sustainability in the 

manufacturing system 

Environmental Management 

System (EMS) 
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In addition, “Monozukuri” was introduced as the “Eighteen principles” for being sustainable, 

focusing on a rule-based approach. This set of principles guides success in sustainability, such as 

the need for management’s attention, embedding in the culture of the company, and adopting 

green technologies (Ranky 2010). Moreover, a five-step framework for sustainable production 

system design which was adapted from manufacturing system design decomposition was 

introduced to redesign the current system through the collection of life cycle requirement and 

assessment design solutions (Herrmann et al. 2009). 

Other methodologies, including the modelling of waste and energy optimisation, are developed 

to analyse, evaluate, and manage environmental issues at the system level (Bi 2011). These types 

of models have a similar concept with environmental evaluation but apply in the broader view at 

the system level. Specifically, the models work by collecting data on waste, energy and costs, 

then manage energy resources based on manufacturer information to reduce energy usage and 

waste impact; examples are growth sustainability based on lean manufacturing, and energy-cost 

efficiency modelling (Anderberg et al. 2010). Similarly, to evaluate the environmental impact of 

a production process, several techniques such as Life Cycle Assessment and Resource and 

Environmental Profile Analysis are often applied in practice (Kalakul et al. 2014). 

Sustainability was also addressed in production system simulation modelling, such as in 

simulation style competence-based, Technology-Enhanced Learning environments and in the 

SIMTER environmental assessment (Heilala et al. 2008, Cerinšek and Abbas 2013, Lee et al. 

2014). This research can support process selection, facilities and layout design, product planning 

and scheduling, as depicted in Error! Reference source not found..  

 

Figure 4.9 - The SIMTER environmental assessment tool for sustainable manufacturing system 
design (Heilala et al. 2008) 
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4.4.1.2 Sustainable Production System Design Methods for machine tool and process level  

It is highly significant to select machine tools and processes which can satisfy the production 

function, require fewer resources (water, material, energy) and produce lower levels of waste and 

pollution (e.g. gas emission, carbon emission).  The main application of sustainable 

considerations at the process level can be grouped into two steps, which are process evaluation 

and process improvement. For instance, Jawahir and Dillon Jr (2007) proposed six main aspects: 

environmental friendliness, machining cost, power consumption, waste management, operational 

safety, and personal health for sustainable evaluation in machine and process. For the current 

environmental enhancement, high-performance fabricate technologies like the laser-based 

manufacturing process and micro-factory retailing also provide benefits in sustainability due to 

optimum material utilisation (Williams 2006). Bi et al. (2015) redesigned reconfigurable machine 

tools based on the 6R strategy (reduce, reuse, recycling, remanufacturing, redesigning, recovering) 

by considering their usage from the pre-manufacturing, manufacturing, use to post-use phases. 

As a result, the adoption of 6R in reconfiguring machines reduced the raw material requirements 

by reusing existing components, improving the capabilities and flexibility of machine tools and 

resulting in cost reductions (Ijomah et al. 2007). Moreover, many production processes such as 

metal manufacturing and chemical manufacturing have been redesigned; these are presented in 

Table 4.4 (Haapala et al. 2013).  

4.4.1.3 New sustainable production processes 

In addition to the redesigned processes, several sustainable processes were developed and adopted 

in sustainable production systems. These can further the boundaries of traditional production 

systems and support ecological activities such as product take back, remanufacturing, reuse and 

recycling. These specialist operations are becoming more frequent and widespread with the 

increasing trend in service-based businesses and circular economy initiatives. 

The remanufacturing process, which consists of refurbishing disassembled parts to have a similar 

condition to a new one with a shorter lead-time, provides many benefits to manufacturing systems 

such as automobile manufacturing (Ilgin and Gupta 2010). Some well-known remanufacturing 

cases are the single-use cameras of Kodak and Fuji film, photocopiers of Fuji Xerox, and 

Caterpillar machines (APSRG 2014).  Many methods were researched at each step of the 

remanufacturing process, starting from forecasting models for calculating the amount (Marx-

Gómez et al. 2002) and lifetime (Linton et al. 2005) of the product.   



CHAPTER 4 | 58 

 

Table 4.4 - Sustainable improvement of different manufacturing processes adapted from (Haapala et 
al. 2013)  

Manufacturing process Main environmental impacts The improvement areas 

Metal manufacturing 

• Casting 

 

 

• Forming 

 

• Machining & 

grinding 

 

• Cleaning & finishing 

 

• Hazardous air pollution, water 

emission, and solid waste in sand 

casting and cooling processes 

• Co2 emission, resource use 

  

• Health and environmental 

concerns from chemicals and 

lubricants in process 

• Water pollution from toxic 

chemicals (cadmium, chromium), 

high energy use in thermal surface 

finishing 

 

• Development of sand 

mould and thermal 

management 

• Net-shape forging and 

reconfigurable dies 

• Use of alternative fluids 

such as liquid nitrogen 

  

• Applying a low-energy 

process, developing close-

loop finishing process 

Chemical process 

• Solvents 

 

 

• Lubricants 

 

• Hydraulic fluids 

 

 

• Improper disposal of solvent use 

such as supercritical co2, gas-

expand liquid  

• Resource scarcity from using a 

petroleum-based lubricant 

• The largest energy consumption in 

plastic production 

 

• Applying alternative 

chemicals which provide a 

lower impact 

• Replacement of bio-based 

lubricants 

• Operation improvement  

Then, product planning methodologies are requested to manage the material requirements 

between new parts and disassembled parts by Material Requirement Planning (MRP) (Ferrer and 

Whybark 2001), Integer Programming (IP)-based algorithms (Sarkis 2001), and the MILP-based 

aggregate production planning model (Xanthopoulos and Iakovou 2009), which broadly 

determine the optimal number of products for collection, disassembly, remanufacturing, storage, 

back order and disposal. Furthermore, much research in remanufacturing focuses on production 

scheduling, capacity planning and inventory management, including deterministic models, 

stochastic models, and cost and value evaluation, in order to improve the implementation of 

remanufacturing systems (Kurilova-Palisaitiene et al. 2018).  

Reuse and recycling of consumer goods can effectively reduce resource extraction. For instance, 

one ton of recycled pulp paper can save almost twenty trees, three square meters of landfill, and 

water and energy use in the material extraction phase (Garner 2002). To adopt a repair and 

upgrade, remanufacturing and recovery strategy, products should be easily separated and 

disassembled into components(Moore et al. 2001, Ilgin and Gupta 2010). 
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Disassembly, defined as the systematic disjoining of assembled components and sub-assembled 

parts, is also worth noting (Moore et al. 2001). The disassembly process is a very significant one 

in material and product recovery before the application of recycling or remanufacturing and is 

widely developed in scheduling, sequencing, line balancing, and automation. However, since the 

disassembly process is present time-consuming, several researchers have proposed methods to 

determine disassembly time in order to identify and improve the design of product parts which 

are difficult to disassembly (Vanegas et al. 2018). 

 Sustainable Production System Design in Practice 

As mentioned in the previous section, most of the existing publications were in the area of system 

improvement rather than addressing proactive approaches or the design of sustainable systems 

during the design stage (see Figure 4.10) (Ramani et al. 2010, Bi et al. 2015). Similarly, it has 

been reported that most industry practice also takes a reactive approach, to comply with regulatory 

requirements, market pressure, or technology advancement, whilst the proactive actions were 

applied in business competition (Sáez-Martínez et al. 2016, Alayón et al. 2017). Besides this, a 

reactive approach was more likely to be adopted by SME companies, while a proactive approach 

was commonly applied by larger ones (Singh et al. 2014).  

Therefore, various researchers have highlighted the need to consider sustainability at the design 

stage, especially an integrated consideration of product and production system design (Ramani et 

al. 2010, Zaman 2015, Esmaeilian et al. 2016, Gbededo et al. 2018),  

 

Figure 4.10 - Sustainable manufacturing research map (Ramani et al. 2010) 
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because “a single focus on designing or re-designing a product for environmental performance 

without considering the effects of the design on the production process may result in an ineffective 

decision for the design of a sustainable product” (Gbededo et al. 2018) 

It was also recommended that this environmentally sustainable consideration of a product and 

production system should be fulfilled through the development of: 

i. New models, frameworks, metrics, and techniques to transform systems (Molamohamadi 

and Ismail 2013, Zaman 2015).  

ii. Collaborative design through product-process cross-functional integration (Jawahir et al. 

2013) 

iii. Methods to assess the sustainability of the design of a product and its production system 

(Gbededo et al. 2018)  

iv. Training to improve knowledge of sustainability for employees and related persons  

(Jayal et al. 2010, Alayón et al. 2017) 

v. Data support for product-process design, evaluation, selection, and planning, which can 

be provided through new information technologies, e.g. data-enable technologies (Bi 

2011, Esmaeilian et al. 2016). For instance, Ramani et al. (2010) developed sustainability 

knowledge into computer-aided process planning (CAPP), which normally focuses on 

product efficiency, cost and product quality.  

In addition to these, in a research context, the majority of sustainable publications were heavily 

concentrated on the energy aspect, while a small number studies considered other aspects such as 

material, waste and water efficiency (Esmaeilian et al. 2016, Alayón et al. 2017, Moldavska and 

Welo 2017, Gbededo et al. 2018).  Therefore, the development of design solutions should cover 

all environmental aspects. 

4.5 CHAPTER SUMMARY 

In this chapter, the requirement of the simultaneous design of P&PS was identified through the 

increasing design challenges, especially the present need for environmental sustainability. With 

the environmental pressures from different drivers taken into account, the possibility of 

collaborative design, assessment, and the creation of sustainable product and production systems 

was raised in the context of both sustainable product and sustainable production system studies. 
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In this chapter, the key driver for sustainability consideration in manufacturing application have 

been identified, and the current practices in Sustainable Design (SD) are presented. This has 

highlighted that current sustainable design methods are unable to deal with interaction and 

interrelation between design decision in PD and PSD. Thus, this research has proposed a 

concurrent approach to design P&PS to support a seamless approach to consider sustainability 

challenges at an early stage of P&PS design. The next chapter focuses on the integrated design 

approaches more relevant to the scope of this thesis.   
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 A REVIEW OF THE MOST RELEVANT 

RESEARCH IN THE INTEGRATED 

DESIGN OF PRODUCT AND 

PRODUCTION SYSTEM    

5.1 INTRODUCTION 

The literature review in Chapters 3 and 4 has highlighted the requirements for the integration of 

product and production system design. This chapter scrutinises the existing approaches that have 

been proposed to consider the integrated design of P&PS from various aspects, including 

environmental sustainability. This is undertaken in order to identify the specific research gaps. 

This chapter provides an overview of the previous research most relevant to the scope of the work 

reported in this thesis. The initial section presented a summary of interrelation and interaction 

requirement between P&PS design processes, and the later sections outline how these 

requirements are adopted by the recent publications for integration of P&PS design processes. 

Lastly, this also underlines an evolutionary path to sustainable co-design of product and 

production system.    

5.2 INTERRELATION AND INTERACTION BETWEEN P&PS DESIGN 

PROCESSES 

Based on the highlighted need of sustainable integrated design, this section aims to delineate the 

current state of integration between the design processes of product and production system (P&PS) 

in order to identify how a manufacturer can move forward from an existing design process to a 

single co-design process. To complete this, the current integration between design processes of 

product and production system is investigated through the interrelation and interaction of sample 

design processes of product and production system, which are modelled using IDEF0 and 

presented in Appendix I and II. Therefore, the following sub-sections present interrelation and 

interaction between P&PS design processes and the challenge of integrated design in supporting 

sustainability. 
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 Interrelation Between P&PS Design Processes 

An interrelation (or interdependency) is the term used to identify the relationship between two 

design tasks or activities subject to the required information in task execution. The relationship 

between two tasks can be classified as follows (Arundachawat et al. 2009):  

5.2.1.1 Independent relationship  

This is when two tasks require no information from one another to be carried out. When applying 

integrated design, these tasks can be freely undertaken in a completely overlapping/parallel 

pattern. 

5.2.1.2 Dependent relationship  

This is when a task requires information/data from a preceding task. Hence, these two tasks are 

processed in a sequential pattern. When applying integrated design, this pair of dependent tasks 

can partially overlap through the early sharing of preliminary information.  

5.2.1.3 Interdependent relationship  

This is when two tasks require information exchange from each other and any changes to one task 

directly cause reconsideration (rework) of another. These interdependent tasks can be arranged to 

overlap partially at the beginning, and subsequently information and decisions made by each task 

are unidirectionally transferred backwards-and-forwards until final decisions are agreed.    

Due to the considerable focus on reduction of development time, a completely 

overlapping/parallel pattern of tasks in independent relationships is often desirable (Gerwin and 

Barrowman 2002). Also, the integration of dependent tasks is less complicated than that of 

interdependent tasks. Therefore, several studies offered methods to mitigate complexity via the 

separation of interdependent tasks. For example, a well-known approach referred to as Design 

Structure Matrix (DSM), which was originally proposed for relationship identification, is 

frequently being adapted to manage interdependent tasks (Arundachawat et al. 2009). As part of 

the existing sequential design processes for P&PS (see Figure 5.1), most of the PSD tasks (i.e. 

system concept, system configuration, and detailed system development) require information 

from completed PD tasks (e.g. conceptual product design, product assembly scheme, and 

complete product documentation).  Current integrated design predominately focuses on 
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Figure 5.1 - The interrelation of design processes of products and production systems 

timely development instead of identifying, prioritising and managing design tasks based on their 

significance to mitigate unexpected concerns and redesign. Moreover, these design tasks are 

principally formed by advancing the execution of product development (unidirectional 

information transfer) (Bruch and Johanssonl 2011, Stoffels and Vielhaber 2016). As a result, the 

critical decisions requiring collaborative considerations from various areas of expertise are often 

overlooked, limiting the significant potential that could be offered through a concurrent approach 

to co-design of P&PS. 

To advance the integration of P&PS design, the critical decisions which address failures, redesign 

issues or ecological concerns should be carefully deliberated with sufficient knowledge and 

address each of these challenges; for example, Failure Modes and Effects Analysis and Life Cycle 

Assessment (Haapala et al. 2013). However, they are often used in isolation and not with visibility 

across both PD and PSD. Therefore, the critical decisions should be specified and evolved in such 

a way as to foster an interdependent relationship between design tasks based on a bidirectional 

flow of information and knowledge. This enables a broader range of potential benefits, including 

consideration of resource efficiency to be investigated across various design tasks, and more 

importantly from the outset of the integrated P&PS design process.# 

 Interaction between Design Processes 

To generate integrated tasks, the interaction between two design teams should be structurally 

managed. The different levels of human interaction can be described based on three different 

processes as follows (Lu et al. 2007). 
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5.2.2.1 Coordination  

This involves unidirectional managing of tasks done by different teams or different hierarchies 

(such as management and staff) with different objectives.  

5.2.2.2 Cooperation  

Here we see bidirectional management of tasks performed by individuals or teams who share 

resources, procedures, and benefits.  

5.2.2.3 Collaboration 

This is used when the task is unachievable by an individual because of knowledge complexity 

and resource limitations.  Lu et al. (2007) define collaboration as “teams of individuals to work 

on tasks that not only have shared resources (coordination) and shared outcomes (cooperation) 

but most essentially, share a common goal”(Lu et al. 2007). 

In the majority of applications, the more advanced level of interaction (i.e. collaboration) is most 

likely only achievable if the preliminary interaction levels (i.e. coordination and cooperation) 

have already been established. The methods and tools in the existing design interactions, such as 

Quality Function Deployment and CAD-CAM tools (Lu et al. 2007), often appear to be limited 

in scope and only promote “unidirectional coordination” via task overlapping and information 

sharing (Magrab et al. 2009). Due to complexities in design tasks, the interactions for closely 

integrated design should be formed at cooperation or collaboration level using the effective 

implementation of communication and collaboration management. This highlights a clear need to 

explore the detailed nature of the required interactions within P&PS co-design to achieve targeted 

ecological benefits. 

5.3 REVIEW OF RELEVANT RESEARCH  

In Chapter 3, the existing concepts of integrated design have been summarised. The scope of 

many current studies of the integrated concept has generally been quite narrow, based on the 

improvement of a single characteristic of integrated design, such as information exchange or 

collaboration improvement. Moreover, most of these mainly aimed to meet economic targets, 

such as the reduction of costs and development time as opposed to achieving wider potential 
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benefits, such as resource efficiency and improved overall sustainability of products (Short et al. 

2012).  

In order to clearly define the research gaps addressed by this research, this section investigates 

the research publications which are most relevant to the scope of research reported in this thesis 

based on: 

i. a concentration on which ID characteristics (theme I - ID process, theme II - specific 

improvement, theme III - supporting information exchange and theme IV - strengthening 

collaboration),  

ii. a consideration of interrelation and interaction between P&PS design  

iii. responding to the environmental improvements 

 A summary of current methods for integrated design of P&PS is provided in Table 5.1 and 

discuss in the remaining sections of this chapter. 

Table 5.1 – Existing methods to implement the integrated design of product and production system   

Approach 
Improvement/Utilisation of 

ID characteristics 

Support the 

interrelation and 

interaction between 

P&PS design 

Responding to the 

environmental 

improvement 

The co-evolution 
model of products, 
processes and 
production 
systems.         (Tolio 
et al. 2010) 

This work focused on a 
theme I in which this 
support the selection of the 
existing ID process 
approaches instead of 
supporting the integration 
of products, processes and 
production. 

This more considered 
on the requirement 
of P&PS information 
instead of the 
interrelation and 
interaction between 
P&PS design task   

No environmental 
consideration. 

Method for 
integrated product 
development 
oriented to 
sustainability 
(Fernandes et al. 
2017) 

Theme III was utilised to 
embed sustainable 
production system 
knowledge into the product 
design process 

There is no 
consideration of 
P&PS integration in 
contexts of 
interrelation and 
interaction in this 
work 

Environmental 
consideration 

Integration 
framework for 
preliminary design 
and preliminary 
process planning 
(Pullan et al., 2010) 

This framework proposed 
new ID processes (a theme 
I) and a new information 
sharing tool (theme III) to 
support this new ID process. 

This support P&PS 
design to interact at 
cooperation level by 
bi-directional 
information sharing   
between separate 
processes   

No environmental 
consideration 

(More focuses on the 
traditional benefits 
such as cost and time 
reduction) 
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Approach 
Improvement/Utilisation of 

ID characteristics 

Support the 

interrelation and 

interaction between 

P&PS design 

Responding to the 

environmental 

improvement 

Decision-making 
system for 
designing products 
and production 
systems for 
remanufacturing 
activities       (Ismail 
et al. 2017) 

This paper supports the 
specific improvement 
(theme II) of 
remanufacturing 
consideration in P&PS 
design by proposing a two-
dimensional framework and 
tool selecting a suitable 
remanufacturing design 
approach 

There is no 
consideration of 
P&PS integration in 
contexts of 
interrelation and 
interaction in this 
work 

Environmental 
consideration 

(More focuses on 
Remanufacturing) 

Integrated model 
for co-
development of 
products and 
production 
systems            
(Gedell et al. 2011) 

This research has added the 
new knowledge to ID theme 
III by proposing the new 
integrated information 
model which illustrate the 
interface and interaction of 
P&PS 

The integration was 
considered regarding 
interaction and 
interface between 
function and 
component of P&PS 
(no consideration of 
process and task 
integration)  

No environmental 
consideration 

 

A recursive 
operations 
strategy model for 
managing 
sustainable 
chemical products 
development and 
production            
(Choy et al. 2016) 

The information system tool 
(ID theme III) was developed 
to support chemical 
product-process design and 
operation 

There is no 
consideration of 
P&PS interrelation 
and interaction in 
this work 

Environmental 
consideration 

 

Sustainable 
product 
development 
methodology 
(Lacasa et al. 2016) 

This research applied ID 
theme II and III to support 
P&PS redesign by proposing 
a new specific methodology 
and using information 
sharing between P&PS 
designs  

This research did not 
focus on P&PS 
interrelation and 
interaction 

Sustainable 
consideration  

Decision support 
for energy-efficient 
production in 
product and 
production 
development 
(Stoffels and 
Vielhaber 2016) 

This research has proposed 
a new ID process (a theme I) 
namely Integrated 
development process of 
P&PS 

This support P&PS 
design to interact at 
cooperation level by 
bi-directional 
information sharing   
between separate 
processes   

Energy efficiency 
consideration  
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To cope with the evolution and rapid changes of systems, Tolio et al. (2010) proposed a co-

evolution model which aims to support companies in selecting a suitable approach for configuring 

the product, process, and production system through the evaluations of the level of integration and 

usefulness of the available approaches. The model determines the integration level of an approach 

through the type of input information. If an approach required information related to the product, 

process and production system, such an approach could be considered as embodying a high level 

of integration. In addition to this, this model also determined when the implementation of the 

approach should be reviewed through the level of evolution. This can be determined by the 

requirement to change the input information. However, it seems that this very new concept and 

the proposed methods are relatively complex; therefore, there is a need for detail explanation 

supporting industrial implementation. 

Fernandes et al. (2017) introduced a simple method for integrated product development oriented 

to sustainability, which is comprised of a three-step guideline supporting the consideration of 

environmental sustainability during the design process. These steps included a) categorising 

product and environmental impact by lifecycle phase, b) suggesting DfE strategies based on 

categorised product and c) give recommendation guidelines and tool support DfE suggestions 

related to product and production system design. Although this method attempted to utilise the 

ID concept to consider P&PS aspects, the production system consideration was solely considered 

as information support for improvement of product design rather than the holistic design of P&PS.  

An integration framework for preliminary design and preliminary process planning has been 

introduced by Pullan et al. (2010) to induce manufacturing to design product and production 

system in parallel at an early design concept phase (see Figure 5.2). This framework provided 

steps for designing concept, product and production system while supporting bi-directional 

information sharing and two-way communication between preliminary P&PS design with an 

integrated manufacturing object model based on the Unified Modelling Language.  

Ismail et al. (2017) proposed a decision-making system for supporting designing products and 

production systems for remanufacturing activities. Based on a large number of the available 

remanufacturing method and tools, this work proposed methods to classify and select suitable 

design approaches and tools to support P&PS design decisions. This work mainly promotes the 

inclusion of the production system with product consideration and does not deliver any support 

or suggestions for the parallel design of product and production system. 
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Figure 5.2 - Integration framework for preliminary design and preliminary process planning (Pullan et 
al. 2010)  

In the context of information exchange, Gedell et al. (2011) proposed a configurable component 

framework for integrating information from complex products and production between 

component, part, and system. This aims to illustrate the interface and interaction between product 

and production system through the Unified Modelling Language. This can be used to collect and 

display the co-evolution of P&PS to support integrated design activity. This work is a useful tool 

to support collaborative and simultaneous P&PS design. Nevertheless, the co-equal illustration of 

P&PS design can cause difficulties in identifying P&PS elements; hence, the presentation of the 

model should be improved, keeping the uniqueness of each PD and PSD. 

Choy et al. (2016) developed a recursive operation model to support management of sustainable 

chemical manufacturing by suggesting how to design an ecological policy and strategy for 

chemical product development and production planning. This model comprises three main steps 

for planning business strategy, operation strategy, and design policy. This work also proposed a 

Case-based Ingredient Formulation Module and a Fuzzy-based Parameter Determination Module 

to support historical P&PS data during design policy. It aims to support the specific design of 

chemical products and production systems by reducing resource use during the design and 

development phase.  
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To support ecological implementation at the operation level, Lacasa et al. (2016) offered a three-

stage framework called sustainable product development methodology. This has been developed 

to improve sustainable manufacturing systems by incorporating resource consumption of 

production processes and life cycle assessment into product redesign. However, the potential 

benefits of ecological considerations through this proposed framework are limited, since the 

integrated consideration of product and production system is only applied at a late stage during 

the manufacturing phase. 

For another application at the operational level, the integrated development process of products 

and production systems was established to suggest how manufacturing can implement ID 

concepts (Stoffels and Vielhaber 2016). This work manages integrated design during concept 

design and component design, using iterative information sharing between the two design 

processes. In addition, during integration design, an energy efficient manufacturing method was 

proposed to support the appropriate design with low energy consumption. This work also supports 

the requirement of integrated design to mitigate the present challenge of environmental crisis, 

particularly the energy issue, which was highlighted in the previous chapter. 

In conclusion, it can be seen that far too little attention has been paid to the integrated design of 

product and production system. The literature under review has highlighted the emergence of 

research attention in considering a product together with its production system. Nevertheless, only 

a few publications, by Gedell et al. (2011), Pullan et al. (2010) and Stoffels and Vielhaber (2016), 

directly explored and developed support for integrating the design of P&PS. Therefore, there still 

a gap in fulfilling the need to truly aid manufacturers in integrating product and production system, 

especially in the context of design process integration in order to maximise the resource efficiency 

(including materials, energy and water) of manufacturing. 

5.4 SUMMARY OF MAIN FINDING FROM LITERATURE REVIEW CHAPTERS 

The integrated design of product and production system has generally been utilised for a separated 

but concurrent development approach rather than the combined consideration of P&PS design in 

one single process. Currently, integrated concepts are frequently applied to shorten development 

time through the early stages of the design process. For example, according to DfM, 

manufacturability is generally considered during the late detailed design stage. This practice still 

cannot truly prevent possible failure and redesign issues based on the lack of knowledge and 
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inability to effectively evaluate the impact of product design decisions on production systems 

requirements (Lumsakul et al. 2018). 

More importantly, this ‘fix it later’ approach also appears to be present in sustainable design and 

manufacturing applications, in which the potential benefits are limited by the late consideration 

of sustainability issues within the design process, and/or inability to fully assess the direct and 

indirect impacts of proposed product design improvements within production facilities. 

Manufacturers are often unwilling to replace the existing production processes with ones that 

produce lower ecological footprints and require less resource consumption if the significant 

additional investment is required. Hence, designers should equally consider the design of the 

product and production system equally at an early stage of the design process. In order to do so, 

there is a need to clearly understand the relationship between product and production system 

design, to be able to identify and assess design decisions which impact on the improvement of 

resource consumption as well as select the most environmental-friendly options.  

To achieve this, the next level of closer integration should be realised through a single combined 

design method capable of delivering the ability to assess the impact of recommendations and 

changes throughout P&PS design processes. For example, the impact of materials substitution for 

improved recyclability or the impact of adopting new production system design which is more 

energy-efficient technologies and are lower impact non-chemical processes on product design can 

be assessed directly.  

Therefore, this research proposes an evolution towards a combined design process of product and 

production system, refer to as Co-design of P&PS (See Error! Reference source not found.). 

Such novel design concept provides the ability to gain insight into the impact of various possible 

design improvements and enable what-if scenario planning to maximise the potential for resource 

efficiency. Moreover, this concept of co-design of P&PS is expected to provide other benefits, 

including reduction of cost and development time, improved quality and manufacturability of 

products, and the opportunity for reacting to market changes as well as the ability for mass 

customisation and personalisation of product designs, as shown in Figure 5.3. 
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Figure 5.3 – Drivers and benefits of co-design of P&PS            
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 RESEARCH METHODOLOGY 

6.1 INTRODUCTION 

This chapter outlines the methodology adopted in performing the research reported in this thesis. 

The first two sections of this chapter explore an overview of existing research methodologies, 

including research definition, research types, and research methods used in diverse fields of study 

beyond the design discipline. Then, the third section details the methodology applied in this 

research. 

6.2 DEFINITION, TYPES AND METHODS OF RESEARCH  

The Cambridge Dictionary has defined ‘research’ as “a detailed study of a subject, especially in 

order to discover new information or reach a new understanding” (Cambridge University Press 

2016).  With reference to various definitions of research, the term’s meaning has been 

comprehensively expressed as “the systematic method consisting of clarifying the problem, 

formulating a hypothesis, collecting the facts or data, analysing the facts and reaching certain 

conclusions either in the form of solution(s) towards the concerned problem or in certain 

generalisations for some theoretical formulation” (Kothari 2004) 

Kumar (2011) has suggested that research can be classified based on different perspectives of 

application, objective and information type, as depicted in Figure 6.1. From the application 

perspective, the main two types of research are pure research and applied research. Pure research 

(or basic/fundamental research) is principally concerned with generalisation, theoretical 

formulation, and natural phenomena, e.g. the discovery of new scientific knowledge or new pure 

mathematics.  On the other hand, applied research, such as most research in the social sciences, 

aims to find solutions for situations related to social, economic or political trends (Kothari 2004). 

For the objective perspective, research endeavours can be classed as descriptive, correlational, 

explanatory, and exploratory. Descriptive research tries to explain a particular situation, problem, 

phenomenon or service regarding a group of people or a community systematically (e.g. attitudes 

of students towards the quality of teaching). The purpose of correlational research is to verify the 

existence of a relationship between related aspects of a condition.  
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Figure 6.1 - Types of research (Kumar 2011) 

The explanatory research aims to investigate further why and how an existing relationship has 

formed. The last type of research regarding objectives is exploratory research, which is commonly 

known as feasibility or pilot study for determining the possibility of a full-scale research project. 

This type of research is to confirm worthiness in conducting full-scale research in an unexplored 

area. From the viewpoint of information measurement, research can be classified into qualitative 

and quantitative research. 

The qualitative research attempts to define a situation, phenomenon, problem or event via variable 

measurement using nominal or ordinal scales, whereas quantitative research aims to quantify the 

variation in a situation, phenomenon, or problem (Kumar 2011).  

In addition to these research types, Kothari (2004) has systematically categorised research based 

on research methods into three types: library research, laboratory research and field research.  

Library research can be processed by an analysis of historical records and an analysis of 

documents, whereas laboratory research is generally conducted by small group study of random 

behaviour, play or role analysis. For field research, applicable research methods include non-

participant direct observation, participant observation, mass observation, mail questionnaire, 

opinion survey, personal interview, focused interview, group interview, telephone survey, case 

study and life history.  Overall, research methods are typically used for three primary purposes: 
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collecting data, establishing relationships between the data and the unknown, and evaluating the 

accuracy of results.   

6.3 RESEARCH METHODOLOGY 

Nayak and Singh (2015) have defined a term ‘Research methodology’ as “a research strategy 

that translates ontological and epistemological principles into guidelines that show how research 

is to be conducted and principles, procedures, and practices that govern research…The selection 

of research methodology depends on the paradigm that guides the research activity, more 

specifically, beliefs about the nature of reality and humanity (ontology), the theory of knowledge 

that informs the research (epistemology), and how that knowledge may be gained (methodology).” 

The present research concern product and production system design, the existing methodology 

for design research was reviewed in the next section. 

 Research Methodology in Design 

According to Blessing & Chakrabarti (2009), design research aims “to make the design more 

effective and efficient, in order to enable design practice to develop more successful products”.  

To satisfy this, a Design Research Methodology which consists of four steps, namely  

research clarification, descriptive study Ι, prescriptive study, and descriptive study ΙΙ has been 

proposed (Blessing and Chakrabarti 2009). With research clarification, researchers intend to 

formulate a realistic and valuable research goal (to link influential factors, design problems and 

an existing situation) by searching in the literature. In the descriptive study Ι step, researchers aim 

to refine the factors influencing the research goal (e.g. product success) by elaborating a 

comprehensive description using further literature review or empirical data analysis (e.g. by 

observing and interviewing designers at work). Next, researchers develop possible solutions or 

scenarios based on a clear understanding of the existing and desired situation at the prescriptive 

study step. Finally, the descriptive study ΙΙ step is designed to investigate the impact of the 

developed solutions/support/scenarios and their ability to realise the desired situation to improve 

and refine the development. In reference to these steps, seven possible pathways for design 

research are recommended (see Table 6.1). The review-based study is based only on literature 

review, and a comprehensive study is a combination of literature review and an empirical study  
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Table 6.1 – Types of design research projects and their focus according to (Blessing and Chakrabarti 
2009) 

 

or development by the researcher. Furthermore, an initial study may be undertaken, or subsequent 

research will complete it through result presentation, discussion and preparation for further use. 

6.4 RESEARCH METHODOLOGY ADOPTED IN THIS THESIS 

The research methodology adopted in this project is in line with the Design Research 

Methodology approach type 5. The methodology can be divided into four distinct phases, which 

are research clarification, framework and model development, testing and validation, and research 

conclusions (see Figure 6.2). The steps within and details of each phase are described as follows. 

The first phase intended to clarify the research hypothesis, which requires sufficient knowledge 

concerning the research topic. Therefore, this phase involved a systematic investigation of 

existing knowledge, including the author’s prior knowledge gained through work experience in 

the subject area, the related literature (integrated design drivers, design processes, and 

sustainability in product and production system), and industry practices. As the result of 

knowledge exploration through the current situation, challenges and opportunities of integrated 

design, sustainable design, and resource efficiency, a clear need for the combined design of 

product and production system for resource efficiency was highlighted. Moreover, interrelations 

and interactions between design processes were clarified to examine further how the design of 

product and production system are currently integrated. This would provide support to current 

manufacturers and designers to improve the resource efficiency of the product and production  

 



CHAPTER 6 | 77 

 

 

Figure 6.2 – Research Methodology Diagram 
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system during the development phase. To this end, research objectives and scope were then 

established to achieve the aim with systematic working steps. 

Based on this examination and the findings during the previous phase, a framework for co-

designing (integrating) product and production system for resource-efficient manufacturing was 

then developed in the second phase. This framework was designed to assist manufacturers in 

identifying the requirements of integrated design, examining which design decisions should be 

jointly considered to improve the resource efficiency of product and production system, 

suggesting how these collaborative design decisions are generated, and implementing this 

framework with an applicable toolkit. Therefore, this phase also covered the development of 

methods for studying the feasibility of co-design adoption, assessing design processes, creating a 

co-design process, and developing a supporting toolkit.    

The third phase involved testing, validating and refining the proposed framework through two 

case studies which test different applications of the framework in different manufacturing 

industries. The first case study was applied with manufacturing companies who have simple 

design processes for developing simple products and production systems. Then, another case 

study was implemented in a company which generally designs complex products making use of 

complex production processes. Data was collected through a combination of email exchanges, 

telephone interviews, face-to-face interview and questionnaires. The result of the validation can 

be used for improving the framework.   

The fourth phase was to report the research conclusions, including the results of the research from 

the previous phase, the new knowledge that this research has contributed in the research area, and 

further research and development for sustainable integrated design. 

6.5 CHAPTER SUMMARY 

This chapter presented an overview of research methodology, including the difference between 

research method and research methodology and descriptions of different research types, research 

methodology in design and the research methodology adopted in this work. The four main phases 

of the adopted methodology were explained, in which the detailed work of the first phase has 

been provided in Chapters 1 – 5. The details of research conducted during the last three phases 

are presented in Chapters 7 – 10, Chapter 11 and Chapter 12-13, respectively. 
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 A FRAMEWORK FOR THE CO-DESIGN 

OF PRODUCT AND PRODUCTION 

SYSTEM TO IMPROVE RESOURCE-

EFFICIENCY 

7.1 INTRODUCTION 

This chapter introduces a framework for co-designing the product and production system to 

support resource-efficient manufacturing. Based on the results from the literature review, this 

framework is proposed to reduce resource consumption of production through co-design 

(combined design) of product and production system. First, this chapter defines a term of Co-

design adopted in the framework. Subsequently, the following section gives an overview of the 

co-design framework including its objectives, structure and a brief explanation of its four main 

phases.  

7.2 THE DEFINITION OF CO-DESIGN IN THIS RESEARCH 

In the literature, the term ‘co-design’ tends to be used to refer to an activity or process where 

problems, ideas, and decisions are deliberated between the designer and non-designers (i.e.  the 

recipients of the design, such as customers, consumers, and users) to clarify better the 

requirements for designing the product or service (Taffe 2015). For instance, Steen et al. (2011) 

defined co-design as activities where “diverse experts come together, such as researchers, 

designers, developers, (potential) customers, and users who are also experts (of their experiences) 

to cooperate creatively” during design processes. 

Bradwell and Marr (2008) provide a slightly different definition of co-design based on 

participation, development, ownership and the outcome as “the effort to combine the views, input 

and skill of people with many different perspectives to address a specific problem.”  

In this research, it should be noted that the term “co-design” refers to the predicted future of the 

conventional Integrated Design (ID) concept and is defined as ‘a single combined process to 

simultaneously design the product and production system required to manufacture them’.  
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7.3 A FRAMEWORK FOR THE CO-DESIGN OF PRODUCT AND PRODUCTION 

SYSTEM TO IMPROVE RESOURCE-EFFICIENCY 

The majority of current sustainability initiatives in the manufacturing sector focuses on the 

improvement of production processes, technologies and systems. Consequently, these 

improvements are considered to result in only incremental ecological benefits. These methods, 

however, cannot satisfy the contemporary and urgent requirements posed by environmental 

considerations. To achieve the desired radicle improvements, a manufacturing company should 

consider the design of its product and its production systems concurrently the author asserts that 

a manufacturing company should consider the design of its product and its production systems 

concurrently. Therefore, this research has defined a framework which is a stepwise approach to 

combining the consideration for the design of P&PS in a single process. The P&PS co-design 

aims to develop a more collaborative design method for concentrating on the improvement of 

resource efficiency as shown in Figure 7.1. In addition to ecological benefits, this new co-design 

process is expected to provide other benefits, including reduction of cost and development time, 

improved quality and manufacturability of products, and the opportunity for mass customisation 

and personalisation of product designs. 

 

Figure 7.1 - The requirements of environmental considerations in an integrated design concept 
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To implement a single co-design process, this research proposes a novel framework in which 

crucial design decisions related to resource-efficiency improvements will be identified and 

addressed through simultaneous collaboration between designers. The improved collaboration 

provides the ability to gain insight into the impact of various possible design improvements and 

enables what-if scenario planning to maximise the potential for resource efficiency. For instance, 

through the exchange of knowledge, P&PS designers can collaboratively choose from broader 

options, such as materials substitution for improved recyclability, new more energy-efficient 

technologies, or low impact non-chemical processes within the production system. Also, the 

flexibility offered through co-design not only facilitates the requirement for frequent changes 

imposed by market conditions but also removes obstacles in enhancing resource efficiency during 

the manufacturing phase. 

Moreover, guidance and methods are provided to identify the benefits of co-design adoption,  

specify the requirements for collaboration between design processes, and to organise more 

streamlined design process for manufacturers. This framework, labelled P&PS Co-design, 

consists of four main phases, namely Co-initiate, Co-specify, Co-create and Co-implement, as 

shown in Figure 7.2 and are briefly described in the remaining sections of this chapter.  

 

Figure 7.2 - A framework for co-designing products and production systems to support resource-
efficient manufacturing 

PHASE II: CO-SPECIFY PHASE III: CO-CREATEPHASE I: CO-INITIATE  

Identify which P&PS will 
benefit from Co-Design 
adoption 

Assessing interrelationship 
between P&PS design 
processes 

Generating P&PS Co-Design 
process based on product 
update and interrelationship

Supporting the application of the other phases with the software tools

PHASE IV: CO-IMPLEMENT   

The commercial software tool 
supports a generation of a 
new Co-Design process

P&PS CO-Design prototype 
software tool in mapping 
design processes

Mixing uses of a existing and 
a new proposed software 
tools to find P&PS hotspots



CHAPTER 7 | 82 

 

 Phase 1: Co-initiate  

The first phase provides an approach to determine the potential benefits to be gained from P&PS 

co-design adoption. The manufacturing company is therefore able to indicate which design 

processes of P&PS should be combined to minimise resource use. The Co-initiate phase can be 

performed through two main activities, as depicted in Figure 7.3. 

The first step begins with the collection of the relevant P&PS design data, e.g. the person in charge 

of each activity, product list, product structure, and so on, to define the goal and scope of co-

design consideration clearly. Then, a P&PS co-design feasibility study is undertaken based on 

consideration of three main factors; the frequency of design updates, the potential impact of 

design changes between P&PS, and the resource efficiency of the production system. The 

principal output of this phase is an overall assessment of P&PS co-design suitability for the 

product and/or product family under consideration. 

 Phase 2: Co-specify 

Based on the feasibility assessment, the main objective of the Co-specify phase is to identify 

which P&PS design decisions have a direct and indirect impact on resource efficiency.  This phase 

consists of three main steps as shown in Error! Reference source not found.. The first step 

analyses the impact of a design decision on resource consumption. Then, the second highlights 

the interrelation between these P&PS design decisions and the third aims to suggest the most 

suitable strategy for applying a single co-design process within a company. 

 

Figure 7.3 - Fundamental activities during the Co-initiate phase 
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Figure 7.4 - Fundamental activities during the Co-specify phase 

 Phase 3: Co-create 

In the third phase, the strategies are considered for implementation of P&PS co-design process. 

These strategies are based on ‘Awareness’ of knowledge interchange, ‘Association’ between 

design team through better collaboration, and ‘Adaptation’ to a single design process, as depicted 

in Figure 7.5.  The selection of one of these strategies for implementation of P&PS co-design is  

 

Figure 7.5 - The proposed 3A strategy used during the Co-create phase 

INPUT ACTIVITIES OUTPUT 

Selection of the 
strategy for a P&PS     

co-design application

Ecological classification

Information related 
P&PS design decision, 

specification, and 

processes

Eco-classified design 
decisions and 
specifications 

P&PS interrelation 
assessment

Eco-classified design 
decisions and 
specifications 

Co-design 
specification and 
individual design 

specification 

Results of the
feasibility assessment
and the interrelation 

assessment 

The suitable strategy 
for create and adopt 

a new Co-design 
process 

PHASE II: CO-SPECIFY

Current 
design processes PSD PSD

PD PD
1.Awareness 
of knowledge 
interchange 
at early design 
stage 

2.Association
between design 
teams through 
a better 
collaboration 

3.Adaptation 
into a single 
co-design 
process

PD PD

PSD PSD



CHAPTER 7 | 84 

 

very much dependent on the specific product attributes and manufacturing company 

characteristics (e.g. size, sector, market, etc.). These three strategies could also offer a gradual 

path from existing design to P&PS co-design process for a manufacturing company. With 

Awareness strategy, the product and production system are still designed using two different 

processes but in a much more coordinated approach. In association strategy, a subset of design 

processes is combined, whereas in adaptation strategy the entire design process is replaced by a 

single combined P&PS co-design process.  

 Phase 4: Co-implement  

The Co-implement phase supports the implementation of the three preceding phases using a 

specially developed P&PS co-design prototype software tool, along with other available 

commercial software tools as shown in Figure 7.6. The use of these software tools is not only to 

provide guidance in the form of a framework application but also for identifying the data required 

for the operation of a single P&PS co-design process. The prototype software developed by this 

research aims to support the significant data processing involved in Co-initiate, Co-specify and 

phases. The choices of existing commercial software will depend on the specific strategy adopted 

as part of Co-create.    

 

Figure 7.6 - Fundamental activities in the Co-Implement phase 
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7.4 CHAPTER SUMMARY 

This chapter has presented the step-wise approach in the P&PS co-design framework which is 

implemented to enable a seamless and rapid decision making regarding the suitability of co-design 

application. In phase 1 (Co-initiate), the design frequency change and resource intensiveness in 

the application are considered to make the first decision, i.e. is co-design suitable for this 

application or not. The second phase (Co-specify) identifies where the collaboration in decision 

making is required and depending on a number of potential collaboration requirements; it decides 

which of three strategies (defined in phase 3) should be adopted as a starting point for 

implementation of co-design in a company. Phase 3 (Co-create) then utilises the selected strategy 

to identify areas of collaboration and how best to achieve this. Finally, in phase 4 (Co-implement), 

the specific requirement in the application is used to identify any appropriate existing tools that 

could be used by a company to aid the creation and implementation of co-design. The following 

chapter will further discuss the first two phases in full detail to perform a co-design feasibility 

study and a design process assessment. 
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 CO-INITIATE AND CO-SPECIFY IN THE 

P&PS CO-DESIGN FRAMEWORK 

8.1 INTRODUCTION 

An overview of the P&PS Co-design framework was introduced in the previous chapter. In this 

chapter, phase one and two of the framework, namely the Co-initiate and Co-specify will be 

explained in more detail. The Co-initiate phase aims to perform a co-design feasibility assessment 

based on the key characteristics of a product and its production systems, and the Co-specify phase 

will guide designers to define the critical decisions related to the co-design process. 

8.2 PHASE 1: CO-INITIATE PHASE  

This research proposed the novel P&PS Co-design framework to support manufacturing 

companies in coping with the present design challenge by replacing current independent P&PS 

design processes with a new co-design process. Commonly, any changes to a method or tool in 

manufacturing usually require an investment of time and/or money. The first phase of the P&PS 

Co-design framework therefore aims to investigate the feasibility of co-design adoption and to 

confirm the potential benefits, before recommending any changes to the current design processes.  

In the past, manufacturing companies generally introduced new design very infrequently. This 

meant a rigid production system could be designed and operated for a long period of time for a 

mass production approach. In such cases, the traditional design process of P&PS was able to 

satisfy the simple market requirement of infrequent product updates, with very limited changes 

to production system and high availability of natural resources. However more recently, market 

requirements have significantly changed and became more complicated, with various 

requirements such as higher product quality, lower cost, product updates for market stimulation, 

and sustainability considerations (Ramani et al. 2010, Sheldrick and Rahimifard 2013). The novel 

P&PS co-design process is proposed for a better response to these challenges (see Table 8.1).  
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Table 8.1 - The difference between the traditional design process and a co-design process based on 
P&PS characteristics. 

P&PS CHARACTERISTICS 
TRADITIONAL/INDEPENDENT 

DESIGN PROCESS 
CO-DESIGN PROCESS 

A frequency of design update Low product design update Frequent product update 

Level of the interrelation 
between P&PS design update 

Low level of P&PS interrelation  High level of P&PS interrelation  

Requirements for improving 
resource efficiency via design 

Low requirement due to low 
resource consumption 

 High requirement due to 
resource intensive product 

 

Hence, this phase utilises the three key considerations of the required frequency of design updates, 

the level of interrelation between P&PS design activities, and the requirements for improving 

resource efficiency through design for assessing the feasibility and suitability of co-design process 

of a given product and product family. Also, the Co-initiate phase aims to highlight the P&PS 

candidates in which their design processes need to be improved. In this context, candidates are 

defined as ‘P&PS that their design decisions necessitate changes in both design processes in 

order to enhance the overall resource efficiency of P&PS’.  

The Co-initiate consists of five tasks (see Figure 8.1), which are listed below and described further 

in the following sections: 

i. Collection of relevant data for both product and production system design data 

ii. Identifying the required frequency of design updates 

iii. Defining the interrelation between P&PS design updates  

iv. Measuring resource consumption of key processes in the production system 

v. Identifying the candidates for P&PS co-design processes based on the results in task 2-4  
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Figure 8.1 - Overview of activities in the Co-initiate phase 

 Step 1.1: P&PS design information collection 

The first task in the Co-initiate stage requires the collection of relevant information related to the 

structures of design processes. This includes basic information used for setting goals, objectives, 

scope, company name, project start date, a person in charge, other stakeholders, and finally a list 

of products (or product families) and production systems under consideration in the co-design 

project. Other information required for the feasibility study in Co-initiate phase is the frequency 

of P&PS design updates, the service life of P&PS, and resource consumption associated with key 

processes in the production systems.  

Additionally, this information is used to define whether a company currently applies a simple or 

complex design process structure. The identification of design process structure is required 

because a simple and complex design will use the different framework approaches, particularly 

in the second phase (design processes assessment).  

A simple design process is commonly used to design a simple product such as sporting goods 

and furniture. As mentioned in Chapter 3, this linear process comprises of several design stages 

and managed by a central design organisation (Sheldrick 2015). All design activities in this type 

of organisations are performed in-house and controlled by a small group of designers. Changes 

in design processes are flexible, simple and easy to implement since there is no additional 

complication in co-design based on design authority and control aspects.  

On the other hand, a complex design process is applied to systematically design a complex 

product, its parts and its components. In general, during the early period of this process, design 
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activities are managed by various design teams who are specialised in different PD techniques. 

Then, after the design concept is selected, the different design teams parallelly complete the 

design of each part and component. In this design nature, a complex design process is regularly 

managed by a distributed design organisation. Also, the improvement or change of this complex 

design could be more difficult depending on product characteristic. For example, the change in 

the design of complex products (i.e. chassis and jet-engine) could be highly limited due to high 

risk, high sensitivity and the requirement of high quality. Hence, there is more difficulty in 

processing the co-design framework due to the need for information collected from various 

stakeholders. To implement a single co-design process, an advanced technological tool is required 

to support information sharing and decision making throughout the design process.  

Importantly, these activities should be handled by a team of co-design operators who have 

different backgrounds of product design, production system design and sustainability. Importantly, 

these operators should be the experienced staff and have a matured knowledge. In detail, at least 

one of co-design operators should have a mature knowledge related an assessment of resource 

consumption to support the implementation of Co-initiate phase; therefore, this operator should 

be staff from the environmental department or out-sourcing environmental consultant. Moreover, 

the co-design operator from design departments should 1) understand the structure of their 

existing design processes, 2) realise actual collaboration between design teams, and 3) be able to 

authorise the improvement of collaboration. Therefore, the application of framework phase two 

to four can be effectively performed. In sum, regarding the collected information, the co-design 

operator may then continue the co-design feasibility assessment as detailed in the following steps.  

 Step 1.2: Identifying the frequency of P&PS design updates 

This section aims to identify the chance to embed the consideration of resource efficiency during 

the design phase. Therefore, the often update product is more likely to have more chances of 

resource efficiency consideration through a production system design (the design of production 

is considered in the following step). In some products, frequent design update has led to an 

increasing demand of unnecessary products and rapidly replace their functioning products to 

maintain modernity. The higher updates of new product designs result not only resource 

consumed during P&PS manufacturing, but also increases waste from functioning products. Even 

so, many studies have extensively underlined the relationship between frequent product updates 

and resource consumption, while only a small number of studies offer applicable methods for 
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estimating this relationship. The following equation concerning Product Design Update (PDU) 

rate is proposed to define the requirement of Co-Design and to estimate resource efficiency in a 

product design update context. The product design update rate can be calculated based on a ratio 

between a Frequency of Product Design (FPD = Pn+1 - Pn) updates and Product Service Life 

(PSL = Te - Ts) as illustrates. 

Equation 8.1 PDU = 1 - 
Pn+1 - Pn 

Te - Ts

  

Pn : the start time of the development of product model n 

Pn+1 : the start time of the development of product model n+1 

Ts : the start service time of product model n 

Te : the end service time of product model n 

The product design update rate can be calculated as a ratio between the frequency of product 

design update and product service life. An interpretation of a value of PDU can be classified into 

one of two categories: 

If 0 ≤ PDU < 1, the evaluated design has frequent updates and might be considered an example 

of planned obsolescence. At this point, the adoption of the Co-design process relies on an effect 

between P&PS design update and resource consumption of production systems. The PDU results 

of the products which could be included in this range are shown in Error! Reference source not 

found.. 

If PDU < 0, the design of product or production process might be continued using the current 

conventional design process, which can be satisfactory for infrequently updated product 

manufacturing with mass production patterns. Moreover, this design mode might further improve 

design durability, in that it conserves resource consumption from the replacement of the current 

design.  
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Figure 8.2 – Example of PDU results from different products 

Table 8.2 – Source of data for PDU determination 

Product Type 

Product 

Lifespan 

(Year) 

Design 

Changes 

(Year) 

Data source for 

 Lifespan 

The data source for 

Design Change 

Vacuum cleaners 8 3 (Bakker et al. 2014) Interview 

Dishwashers 10.5 2 (Bakker et al. 2014) Interview 

Microwaves 9.4 2 (Bakker et al. 2014) Interview 

Automotive 14.1 5.0 (SMMT 2017) Interview 

Refrigerator 14.0 3.0 (Horie 2004) Interview 

Laundry machine 12.5 3.0 (Stamminger et al. 2018) Interview 

Television 7.4 1.0 (Chris 2014a) Interview 

Mobile phone 4.7 2.0 (Chris 2014b) Interview 

Computer (Laptop and PC) 4.1 3.0 (Bakker et al. 2014) Interview 

Small Toys 3.7 0.2 (Bakker et al. 2014) (McDonald 2015) 

Paper Packaging (food and 

consumer good) 
1.0 

0.003-

0.167 
Interview Interview 

Moreover, this PDU equation intends to present a concordance between the frequency of a single 

design update and its service life, excluding the comparison of design updates between different 

product types regarding the variety of resource consumption pattern and utilisation.  

 Step 1.3: Defining the interrelation of change between P&PS design 

The interrelation of change between P&PS design is considered in order to support the 

consideration of resource-efficient strategies at an early stage of the design process. Regarding 

literature finding, resource efficient strategies can be realised through a change within production 

system which can be a process flow/layout change, a production process change and/or a machine 

tool change (see Figure 8.3). Hence, any product design updates which lead to one of these  
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Figure 8.3 – A consideration of change within the production system 

production system changes are the opportunities to improve the resource efficiency of the 
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valid when co-design is applied to improve the resource efficiency of the production system. This 

consequently provides economic benefits where one can produce more products with fewer 

natural resources. For instance, a change of geometry in a shampoo or detergent package generally 

requires a new plastic injection mould for production. In this case, the consideration of the 

ecological aspect during P&PS co-design could provide higher benefit than a currently separated 

design of P&PS with only a belated consideration of resource use.  

If FPD ≠ FPSD, it means that any updates in product design did not necessitate the change in the 

production facilities or vice versa. For instance, the apparel industry seasonally updates the design 

of the products which can be manufactured by the existing production system.  

 Step 1.4: Measuring resource efficiency during the manufacturing phase 

Based on the literature finding, most of the studies are mainly considered energy efficiency 

consideration. This research therefore aims to further improve the key resource efficiency (include 

material efficiency, energy efficiency and water efficiency) by identifying and improving P&PS 

hotspots which have the high resource consumption during the manufacturing operation phase. In 

this task, energy, water and materials which are generally consumed during production are 

assessed, and the environmental impacts which has been considered are a type of material use 

(scarcity material), mass of material consumption, ratio of material waste, ratio of recycle shipped 

and scrap, a volume of water consumption, renewable water, wastewater, greywater, ratio of 

renewable energy used, energy use for maintain working environment, energy used  for material 

handling. The assessment of resources can be conducted following the research produced at the 

Centre for SMART (Sustainable Manufacturing and Recycling Technology) as follows: 

i. The framework for Material Flow Assessment (MFAM)  (Gould and Colwill 2015) 

ii. Water usage Efficiency Ratios (WER) (Sachidananda et al. 2016) 

iii. The framework for modelling Embodied Product Energy (EPE) (Seow et al. 2013) 

In this light, the production hotspots which have high energy consumption, produce significant 

amounts of contaminated water or material waste can be marked through a production process 

hotspot identification workflow (see Figure 8.4). This is comprised of production system 

modelling and resource consumption assessment via the MFAM, WER and EPE frameworks. 

Current production process flows must be modelled to systematically identify qualitative and 

quantitative information regarding material, water, and energy for resource assessment.  



CHAPTER 8 | 94 

 

 

Figure 8.4 – A workflow of Critical resource identification  

Manufacturing companies which already document this information may skip this step and 

directly start resource consumption assessment. 

8.2.4.1 Material Consumption Assessment 

Material consumption and material waste in manufacturing industries can be identified in Phases 

1 - 3 of the framework for material flow assessment in manufacturing systems (MFAM) (Gould 

& Colwill, 2015), as shown in Figure 8.5. This framework begins with the production system 

scope, which can directly be carried over from the modelled production system determined 

previously. Then, material flow can be assembled via qualitative and quantitative data inputs. 

Qualitative data includes a list of embedded materials (materials which are embedded into the 

final product), auxiliary material (material required in the production system), and material 

information (key ingredients, hazard information, storage information, information related waste 

management and environmental impact), and the functions of each production process.  
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Figure 8.5 - The framework for material flow assessment in manufacturing (MFAM) (Gould and 
Colwill 2015) 

Significant quantitative data consists of the material consumption rate (based on the information 

provided in bills of material), the economic value of the material (considering the value added 

from material transformation). With this material flow, selected metrics such as production yield 

loss in Phase 3 can be assessed, and the amount of waste along this flow can be presented to 

highlight opportunities for improving material efficiency. Subsequently, the critical material 

production processes can be conveyed by implementing MFAM from Phases 1-3.   
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8.2.4.2 Water consumption assessment  

The concept of Water usage Efficiency Ratio (WER) provides a systematic measurement of water 

consumption at the factory level, considering the amount of water used in each process and 

production system (Sachidananda et al. 2016). This concept categorises water use in a factory as 

shown in Figure 8.6. Factory water can be classified into two main types; Production Water (PDW) 

and Non-Production Water (NPW). PDW can further be categorised as Consumed water (C), 

Discharged Non-Renewable water (DNR), and Discharged Renewable Water (DRW). Process 

Water (PW) and System Water (SW) are two additional categories. With this classification, the 

WER can be mainly determined based on Water Intensity (WI) and the Waste Water Efficiency 

(WWE).  The WI ratio was proposed to determine which processes use the largest proportions of 

water in a production system, while WWE is meant to identify the proportion of reusable 

wastewater to total water input. These two ratios can be determined as shown in the following 

equations; 

Equation 8.2                  𝑊𝐼𝑖 =  
∑𝑃𝐷𝑊−𝑃𝐷𝑊𝑖

∑𝑃𝐷𝑊
 

Equation 8.3                   𝑊𝑊𝐸𝑖 =  
𝑃𝐷𝑊𝑖−𝐷𝑁𝑅𝑖

𝑃𝐷𝑊𝑖
 

 

Figure 8.6 - Factory Water classification scheme for manufacturing plants (Sachidananda et al. 2016) 
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8.2.4.3 Energy Consumption Assessment 

The critical energy production process can be identified through a framework for modelling 

Embodied Product Energy (EPE), as shown in Figure 8.7. Within this framework, the energy 

consumption for producing a product is modelled on the product, production process and factory 

level. The energy used can be categorised into two main types: Direct Energy (DE) required for 

producing a product and Indirect Energy (IE) required to facilitate an environment for operating 

the production system. In greater detail, DE is further decomposed into Theoretical Energy (TE) 

consumed to transform a product, and Auxiliary Energy (AE) used to support production 

processes such as the coolant pumping process. With this qualitative energy and process 

information, the model of EPE is further quantified with mathematical models and system 

specifications. Therefore, energy assessment can be conducted through the calculation of process 

Efficiency Ratio (= TE/DE) and an energy efficiency production system (= DE/IE) to distinguish 

the energy hotspots of each product unit. 

 

Figure 8.7 - EPE framework consisting of Indirect Energy and Direct Energy (Seow et al. 2013) 
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 Step 1.5: Identifying the candidates for P&PS co-design processes 

Based on the results of the assessment from previous steps, this section provides a table for 

supporting decisions regarding the adoption of a new single P&PS co-design process. 

Fundamentally, this new co-design process is required if a manufacturing company which 

continuously updates product design, has a high level of P&PS interrelation and has intensive 

resource consumption. Based on this consideration, Table 8.3 suggests that a co-design process 

should be adopted only when product design is often updated and directly affects production 

system changes and when resource consumption of the production system is high or exceed the 

assigned threshold.   

In summary, the analysis of the frequency of design change and consideration of resource 

efficiency in this initial phase will define the suitability of a co-design process adoption. The 

output of this is the existence of a group of P&PS which are suitable to be designed in a co-design 

process. At this phase of the framework, a decision could be made where Co-design is found to 

be not suitable and thus processing to the second phase stops. Otherwise, the steps in phase two 

are undertaken to assess an interrelation of design processes in order to decide the best strategy 

for Co-design as describe below. 

Table 8.3 - Classification table supporting decisions in Co-design implementation 

PDU RATE  
INTERRELATION OF P&PS 

UPDATE 
RESOURCE EFFICIENCY 

RECOMMEND DESIGN 

PROCESS 

Low (PDU≤0) FPSD ≠ FPD High  Independent design 

Low (PDU≤0) FPSD ≠ FPD Low Independent design 

Low (PDU≤0) FPSD = FPD High Independent design 

Low (PDU≤0) FPSD = FPD Low Independent design 

High (PDU>0) FPSD ≠ FPD High Independent design 

High (PDU>0) FPSD ≠ FPD Low Independent design 

High (PDU>0) FPS = FPD High Independent design 

High (PDU>0) FPS = FPD Low Co-design 
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8.3 PHASE 2: CO-SPECIFY PHASE 

The Co-specify phase has three primary objectives, namely a) to identify design decisions which 

significantly impact resource consumption during the manufacturing phase, b) to define the 

interrelations P&PS design decisions, and c) to recommend the most suitable strategy for 

implementation of a single co-design process within a company, as presented in Figure 8.8.  

In a case of a complex product, the relationship between various parts and components needs to 

be examined firstly, because any changes to one part and/or component design could impact not 

only the design of its production system but also the design of production processes for other 

related parts. Furthermore, in an application with simple products where various products share 

the same standard design process, the relationship between P&PS design processes should be 

assessed separately for products that do not share the same production system (see Figure 8.9). 

This is because these products may require a different amount of resource consumption, resulting 

in a different ecological impact. However, the main outputs from this phase for both complex and 

simple products are the specification for P&PS design decisions, and a recommendation for a 

suitable strategy for implementation of the co-design process, as described in the following 

sections. 

 

Figure 8.8 - Overview of activities in the Co-specify phase 
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Figure 8.9 - Differences of interrelation assessment based on the difference of production system  

 Step 2.0: The interrelation between parts for a complex product 

For a complex product, a P&PS co-design process could be required only for some parts and their 

production systems (e.g. a subset of components within a vehicle). However, any changes or 

improvements in a part design for reducing resource consumption might result in a number of 

consequential changes in other related parts. For example, in a case of automotive seat design, a 

design change of a rear seatback can affect a change of a car body because these two parts are 

interfaced and interacted through fixing components and fixing-folding function. In such cases, 

the co-design of a complex product is limited by the interrelations of its parts. Therefore, a product 

architecture based on the DSM model (Eppinger and Browning 2012) is suggested to identify 

such interrelations, as presented in Figure 8.10. The results of this interrelation mapping can be 

used as input information to the next step in the P&PS co-design process.  

 Step 2.1: Identifying design decision which impacts on resource consumption 

Since not all P&PS design decisions have a similar impact on resource consumption, this step 

therefore identifies which design decisions have an impact on resource consumption and resource 

efficiency improvement.  To complete this, the co-design operator is advised to document all 

design decisions of the P&PS candidates (defined from the previous phase) then identify these 

decisions regarding the resource efficiency improvement (based on the result of the resource 

consumption assessment). These two activities can be done through the step-by-step guide 

described in the following sub-sections.     

HOTSPOT

Even through product A and product B 
share a same design process, the 

interrelation should be assessed separately
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Figure 8.10 - An example of part interrelation assessment (Eppinger and Browning 2012) 

8.3.2.1 Step 2.1.1: Modelling P&PS design processes and allocating design decisions and 

specification 

To prepare a design process assessment, all design decisions should be identified through 

modelling current design processes. Particularly, a design process is typically presented as an 

activity process flow transforming and delivering qualitative and quantitative information. The 

required design information includes design stages, product design activities, design decisions, 

input and output data of the design stages, and all related operators of design stages. This step of 

design process modelling can be conducted using existing functional modelling methods, e.g. 

Functional Flow Block Diagram, Design structure analysis, IDEF3, IDEF0 or axiomatic design.  

Typically, a list of design specifications is already recognised in the existing design process. 

However, this step of design specification listing is created to confirm that all design specification 

is included in the consideration. In Figure 8.11, examples of significant product design 

specifications include geometry, materials, signals, energy, safety, ergonomics, aesthetics, cost, 

quality, timescale, environment, maintenance, regulation/legislation, and transportation. 

Similarly, examples of significant production system design specifications are production 

process/machine type (fabricate/assembly), technology, the number of machines, production 

capacity, plant rate, process flow, material flow, production planning, plant layout, material 

handling equipment, installation, work organisation and environment, and ergonomics. 
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Figure 8.11 - Examples of design decision allocation in P&PS design processes 

With a conventional design process, some design specifications have not been finalised during a 

single design step.  For instance, the material of a product is considered at two design stages. One 

type of material is firstly decided at an early design stage, then another material type and its 

specification are finalised at a more detailed design stage. Hence, P&PS design specifications 

should be defined at the level of design decisions (a sub-specification), as shown in Figure 8.12.  

Based on the literature findings, many design companies do not have a formal or structured design 

process, especially when designing something simple. Therefore, a design specification allocation 

checklist is proposed to support the allocation of design decisions and organise a formal design 

process.   

edd

m/c: machine

ed
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Figure 8.12 - Three levels of design information 

Product and production system designers are requested to confirm where each design decision is 

decided. In Table 8.4, this checklist requires the input of data, such as a) design decisions (sub-

design specifications), b) the location of sub-design specifications, and c) additional information 

relating to design decisions (sub-design specifications). This design decision allocation can 

support P&PS interrelation assessment and the creation of a single co-design process during the 

next Co-create phase.  Nevertheless, if the company already has a developed design process flow, 

this step of modelling might be excluded, and one would directly proceed to the following step.   

 

Design stage

Design 
Specification

Design decision 
(Sub-specification)
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8.3.2.2 Step 2.1.2: Identifying P&PS design decisions which impact on resource 

consumption 

The co-design operator can perform this ecological identification (Eco-identification) with the 

support of a resource-efficient expert. This step consists of two steps which are to select resource 

efficiency criteria based on the result of resource consumption and to classify a particular design 

specification as to whether it impacts resource efficiency or not. 

First, based on the result of resource consumption for the Co-initiate phase, the co-design operator 

should select the applicable eco-strategy to be used as the ecological classification criteria. For 

example, footwear design, material and energy are assumed to be highly used during the 

manufacturing phase. Regarding the literature finding and the focus on improvement of resource 

efficiency, the potential SD strategies which may be applied to reduce the resource consumption 

is presented in Table 8.5 and 8.6. In a context of product design, sustainable design strategies 

cover material elimination (dematerialise product service and consolidate material variety), 

material minimisation (restructuring product, size reduction, light weighting and optimise the 

quantity of components), material substitution, material separation, energy minimisation, energy 

source substitution, water minimisation and wastewater treatment. For a production system 

consideration, sustainable design approaches are near net shape, waste in process minimisation, 

selection of low impact process, use of efficient packaging, adoption of a sustainable process, 

minimise operation, selection of renewable and safe energy source, shorten transportation 

distance, minimisation of wastewater, minimisation of grey/contaminated water and water 

recycling.    In this case, it is assumed that there is high material waste during the cutting process 

and high energy consumption in the shoe-base injection process. Then, any SD approaches which 

can support the improvement of these resource efficiencies are selected as ‘Y’ in the ‘improve PS 

candidate’ column. In contrast, if the identified SD approaches are not suitable for this case, it 

should be marked as ‘n’ (not improve PS candidate). Then, the co-design operator should classify 

which PD and PSD specifications are required to consider in applying the selected SD approaches. 

This can be done through the design specification Eco-identification table as depicted in Table 

8.7 and 8.8. In these tables, if a certain design specification (in a row) is required in operating the 

selected SD approach (in a column), this specification should be marked as ‘X’. If it is not required, 

the box should be left blank. Then, the required design specification will be used for further 

interrelation assessment in the following steps.   
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Table 8.5 – A selection of criteria for classifying product specification based on the result of resource 
consumption assessment 

 

 

 

Applicable SD approaches for product

Please input 

‘Product/Component 

name’ if a strategy is 

applicable

Improve PS 

candidate or 

not

1.             Material

a.       Material Elimination

i.      Dematerialise product service n/a -

ii.      Consolidate material variety (Homogenous 

material/Standardised component)
Sport shoe Y

b.       Material Minimisation

i.      Restructuring product n/a -

ii.      Size reduction (near net shape) Sport shoe n

iii.      Light weighting Sport shoe n

iv.      Optimise quantity of component Sport shoe n

c.       Material Substitution

i.      Optimise geometry Sport shoe Y

ii.      Selection of recyclable materials Sport shoe Y

iii.      Selection of reuse/remanufactured component n/a -

iv.      Selection of low impact materials (non-toxic, 

responsible sourced)
Sport shoe n

v.      Consider material longevity and durability 

(corrosion resistant, appropriate to use life)
Sport shoe Y

d.       Material separation

i.      Avoid coating/lamination Sport shoe n

ii.      Limited use of adhesives Sport shoe n

2.             Energy 

a.       Energy Minimisation

i.      Energy efficiency during use (efficient 

mechanism and operation of product)
n/a -

b.       Energy source substitution

i.      Considering energy type and source during use 

(from safe and renewable sources)
n/a -

3.             Water

a.       Water Minimisation

i.      Water efficiency during use (efficient 

mechanism and operation of product, reduce 

wastewater)

n/a -

b.       Wastewater treatment

i.      Considering quality of discharge water after use n/a -
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Table 8.6  – A selection of criteria for classifying production specification based on the result of 
resource consumption assessment 

 

Table 8.7 – An example of ‘Ecological identification’ of PD specifications 

 

Applicable SD approaches for production system

Please input 

‘Product/Component 

name’ if a strategy is 

applicable 

Improve PS 

candidate or 

not

1.             Material

a.       Near net shape Sport shoe Y

b.       Waste in process minimisation Sport shoe Y

c.       Selection of process which produce low/zero waste Sport shoe Y

d.       Efficient packaging (minimised packaging materials and volume 

of packages)
Sport shoe n

e.       Adoption of remanufacturing process, recycling process Sport shoe Y

f.        Adoption of take back and collection methods Sport shoe n

2.             Energy

a.       Minimise operation (Eliminate unnecessary operation) Sport shoe n

b.       Selection of process which consume less energy (energy 

efficiency in production process)
Sport shoe Y

c.       Selection of energy type and source used in production (safe 

and renewable source)
Sport shoe Y

d.       Transportation method Sport shoe n

e.       Geographical location of manufacturing, operations and 

suppliers (Shortening Distance of transportation)
n/a -

3.             Water 

a.       Waste water minimisation n/a -

b.       Contaminated/Grey water minimisation n/a -

c.      Water recycling n/a -
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1 Geometry x

2 Material type x x x

3 Material specification and property x x x

4 Product shape x x

5 Component allocation x x

6 Component interaction x x

7 Product/Part dimension defining x

8 Product /Part tolerance specifying x

9 Aesthetics x x x x

10 Texture of finished surface x x

11 Signal

12 Energy 

13 Safety x x x

14 Ergonomics x x x

15 Quality x x x x

16 Durabiltiy x x x

MATERIAL
Product Design 
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Table 8.8 – An example of ‘Ecological identification’ of PSD specifications 

 

 Step 2.2: Assessing the interrelation between design decisions in P&PS 

An assessment of how P&PS design decisions interrelate can be processed based on the 

classification of task relationships mentioned in Chapter 5. Therefore, this step provides a two-

step approach guiding designers to classify the interrelation of P&PS and arrive at a co-design 

specification. These are detailed in the following sub-steps. 

8.3.3.1 Step 2.2.1: Assessing the interrelation between P&PS design decisions 

At this step, the co-design operator can prepare an assessment of the interrelation between P&PS 

design decisions using information provided from a previous step.  In Figure 8.13, a list of P&PS 

design decisions is recorded into a co-design interrelation assessment sheet, which is adapted 

from the Domain Mapping Matrix (Danilovic and Browning 2007). Two forms of checklists are 

provided; they differ regarding the purpose of use and required input data, as presented in Figure 

8.13 (a) and (b). In the first format, product designers will be requested to score the decision of a 

single design spec as: 
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3 Assembly Process Type x x x
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i. ‘0’ when the decision on the specific product design spec does not require information or 

knowledge support from the production system design 

ii. ‘1’ when the decision on the specific product design spec requires information or 

knowledge support from the production system design.  

On the other hand, another format of the PSD spec sheet is for the production system designer to 

input the requirements of product design knowledge or information in designing production 

systems with a similar pattern.  

With the completed forms, the co-design operator will continue the analysis of interrelations by 

combining the results from the product and a production system forms. Such analysis results in a 

classification of P&PS interrelations, which are categorised into three main outcomes (See Figure 

8.13(c)):  

i. Value ‘0’: the two design decisions are independent 

ii. Value ‘1’: one of the design decision depends on the other 

iii. Value ‘2’: the two design decisions are interdependent  

8.3.3.2 Step 2.2.2:  Determining co-design decisions and specifications  

Based on the results of the former step, this step involves specifying all design decisions assessed 

in the ecological classification and the P&PS interrelation assessment. The design decisions and 

specifications which do not impact resource consumption are also considered in this step.  This is 

to conclude all design consideration to support the creation of a single co-design process. This 

step categorises design decisions (sub-specifications) into two categories:   

i. An individual design decision which requires individual consideration from the product 

design team or production system design team, resulting from the P&PS interrelation of 

‘0 - independent relationship’.  

ii. A Co-design specification which requires co-consideration from the P&PS designers, 

resulting from the P&PS interrelation of ‘1 - dependent relationship’ or ‘2 - 

interdependent relationship’. 

With the results from the case of footwear design in the previous step, the design specifications 

which are assigned to be co-designed are listed in Table 8.9 and 8.10.  As the result of the design 

specification types, several stages of the product design and production system design need to be 

linked (see Figure 8.14) to create the coordinated design of P&PS according to specifications. 
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Table 8.9 - An example of categorisation of footwear design specification  

 

Product Design Process

Design stage
Level of  

information
Design specification Design Decision

Result of the interrelation 

assessment

Planning 2 patents An individual design decision 

2 product quantity An individual design decision 

2 product lifespan An individual design decision 

2 product service life An individual design decision 

2 product cost An individual design decision 

2 time scale An individual design decision 

2 customer An individual design decision 

2 company constraint An individual design decision 

2 manufacturing facility An individual design decision 

2 politics An individual design decision 

2 market constraint An individual design decision 

2 competitiion An individual design decision 

2 legislation An individual design decision 

Conceptual design 2 environment An individual design decision 

2 materials A Co-design specification 

3 material type A Co-design specification 

2 geometry A Co-design specification 

3 product shape A Co-design specification 

3 product size A Co-design specification 

3 product weight A Co-design specification 

3 geometric layout A Co-design specification 

3 component connection A Co-design specification 

2 ergonomics An individual design decision 

2 performance An individual design decision 

2 documentation An individual design decision 

Detail design 2 materials A Co-design specification 

3 material property A Co-design specification 

3 material specification A Co-design specification 

3 material testing An individual design decision 

3 material sourcing An individual design decision 

2 geometry A Co-design specification 

3 product size (final) A Co-design specification 

3 product weight (final) A Co-design specification 

3 appearance finish A Co-design specification 

3 product and part dimension A Co-design specification 

3 product and part tolerance A Co-design specification 

3 texture of surface finish A Co-design specification 

3 aesthetics An individual design decision 

2 quality A Co-design specification 

3 reliability A Co-design specification 

3 durability A Co-design specification 

3 standard An individual design decision 

3 shelf life An individual design decision 

2 product safety An individual design decision 

3 setting test standard An individual design decision 

2 product test An individual design decision 

2 shipping An individual design decision 

2 disposal An individual design decision 

2 packaging An individual design decision 

2 documentation An individual design decision 

Test 2 testing An individual design decision 

3
finalising test standard and 

specification An individual design decision 

2 documentation An individual design decision 
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Table 8.10 - An example of categorisation of footwear production system specification  

 

 

 

Production System Design Process

Design stage
Level of  

information
Design specification Design Decision

Result of the interrelation 

assessment

Planning 2 product quantity An individual design decision 

2 production process An individual design decision 

3 fabrication process type A Co-design specification 

3 assembly process type A Co-design specification 

2 P&PS feasibility An individual design decision 

2 development time An individual design decision 

3 plant rate An individual design decision 

3 takt time An individual design decision 

2 capacity An individual design decision 

2 production volume An individual design decision 

2 product life cycle An individual design decision 

Conceptual system 3 make or buy decision An individual design decision 

2 process flow sequencing A Co-design specification 

3 operation sequence A Co-design specification 

2
material and product 

flow A Co-design specification 

3 buffer/ work in progress An individual design decision 

3 supplier selection An individual design decision 

Detail system 2 process flow sequencing An individual design decision 

3 line balancing An individual design decision 

3 transport time An individual design decision 

3 queuing time An individual design decision 

2 reliability An individual design decision 

2 inventory An individual design decision 

3 space An individual design decision 

3 spare part An individual design decision 

3 store An individual design decision 

2 production process A Co-design specification 

3 fabrication process specification A Co-design specification 

3 fabrication process accuracy A Co-design specification 

3 assembly process specification A Co-design specification 

3 assembly process accuracy A Co-design specification 

3 workstation layout An individual design decision 

3 tolerance An individual design decision 

3 quantity of production processes
An individual design decision 

2 production layout An individual design decision 

3 space An individual design decision 

2 quality control A Co-design specification 

2
material handling 

equipment An individual design decision 

2 ergonomics An individual design decision 

2 maintenance An individual design decision 

Production system 

realisation 2 system installation
An individual design decision 

2 training An individual design decision 

2 work organisation An individual design decision 

2 work studies An individual design decision 

2 production safety An individual design decision 
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 Step 2.3: Recommendation for a suitable strategy for creating a single co-design 

process 

Different manufacturing companies require a different level of P&PS design process 

improvement to achieve the potential benefit from P&PS co-design framework. Therefore, 3A 

strategy is designed to fulfil the three different levels of co-design creation, which are temporary 

co-design, partial co-design, and full co-design through the Awareness, Association, and 

Adaptation methods, respectively. This section therefore provides a Co-create guide for 3A 

strategy selection. This selection guide is based on two key factors, which are the simplicity or 

complexity of the product design process and the percentage of changes in PSD decisions, as 

presented in Table 8.11. In addition, the percentage of changes in PSD decisions can be 

determined based on a percentage of PSD that became the co-design specification. It has been 

asserted that the low level of product design update (PDU < 0) is expected to benefit less from 

the proposed P&PS co-design process. Therefore, a company which has low resource efficiency 

and high product design update (PDU ≥ 0) can improve their design processes through this 

framework. In addition, a company which has a low number of co-decisions and applies a simple 

design process is suggested to set the co-design goal using the Awareness method. For a company 

with a high number of decisions in complex processes that require co-design considerations, 

establishing the co-design goal via the Adaptation method is recommended where Awareness and 

Association methods are completed first. For instance, in a case of footwear manufacturing, there 

is only 24% of PSD that developed Co-design decisions. Hence, it is suggested to apply co-design 

via the Awareness method since footwear is designed using the uncomplicated design processes 

by a small number of designers. 

Table 8.11 – 3A strategy selection guide based on product design update rate and co-decision ratio 

 

CRITERIA FOR STRATEGY 
SELECTION

3A STRATEGIES

Awareness Association Adaptation

Design process structure Simple process Simple process Complex process Complex process

Percentage of changes          
in PSD decision 

< 50% of PSD
became 

Co-design 
decision

≥ 50% of PSD
became 

Co-design 
decision

< 50% of PSD 
became 

Co-design
decision

≥ 50% of PSD 
became 

Co-design 
Decision
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8.4 CHAPTER SUMMARY 

This chapter has detailed the first two phases of the proposed P&PS co-design framework, in 

which these two phases provided step-by-step guidance for studying co-design feasibility and 

assessing the existing P&PS design processes. Three key considerations; the product design 

update rate, the interrelation between P&PS design updates, and the resource consumption of the 

production system, were used in the co-design feasibility study to identify potential benefits from 

co-design adoption in a given company. Also, two different approaches have been offered to 

determine the ecological interrelation of a simple product and a complex product and advise the 

suitable approach for co-design creation during the Co-specify phase.   

The next chapter presents details of the activities that transform separated design processes into a 

single P&PS co-design process during the Co-create phase. Subsequently, the Co-implement 

phase will be further detailed in Chapter 10, with a demonstration of framework implementation 

using the available supporting tools while highlighting tools that require further development.  
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 CO-CREATING A COMBINED PROCESS 

FOR DESIGNING PRODUCT AND 

PRODUCTION SYSTEM 

9.1 INTRODUCTION 

This chapter presents the third phase of the proposed framework, namely the Co-create phase 

which aims to provide a stepwise approach to construct a single process for designing P&PS to 

improve resource efficiency. An overview of this Co-create phase is given in Chapter 7. The main 

sections describe the details of the proposed ‘3A strategies’ which offer three options for creating 

a new P&PS co-design process based on a number of considerations such as complexity of 

product design, the complexity of interrelation between P&PS designs, and potential 

complications in the co-design implementation.  

9.2 PHASE 3: CO-CREATE PHASE 

The first two phases of the framework focus on the evaluation of current design processes and 

specify how they should be improved. The third phase of the framework provides further guidance 

on how to create and implement a single P&PS co-design process. Due to significant variation in 

current design practices, this phase offers three specific strategies, referred to as 3A strategies 

(see Figure 9.1), so that various manufacturing companies regardless of the frequency of their 

product updates, the resource efficiency of their production system and the interrelation between 

its P&PS design could construct a single co-design process which is tailored to their specific 

requirements.  

Furthermore, these strategies could provide a gradual approach for the transition from the existing 

independent P&PS design processes into a single co-design process based on changes and 

improvements in design procedures, design knowledge management and performance of design 

collaborative. These strategies are briefly described below and detailly explained in the remaining 

sections of this chapter. 
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i. Awareness of knowledge interchange: This strategy aims to add targeted information 

exchange into the current design processes and improve knowledge sharing between 

P&PS co-design processes. To achieve this, a detailed understanding and mapping of 

information exchange and knowledge sharing among P&PS designers are necessary. In 

this strategy, the designers are provided with access to relevant and specific information 

and knowledge for improving the overall resource efficiency.   

ii. Association through closer collaboration between design teams: In this strategy, a 

subset of design processes is modified based on close collaborative approach between 

product design and production system design teams (see Figure 9.1) because this strategy 

aims at the two cases. The first is where the targeted co-design decisions are more 

complex and require expertise from both design teams. Also, the applications in which 

the benefit of co-design P&PS is limited to a subset of design decisions, and the total 

transformation of existing independent design processes appears infeasible due to 

conflicts with legacy systems/procedures and potential costly operational changes. 

iii. Adaptation into a combined co-design process: This strategy aims, where possible, to 

support a total transformation into a single combined design (co-design) in which this 

necessitates significant changes to current design practices including the need for 

reskilling of the P&PS co-designers who formerly were either product or production 

system designers. In this strategy, a Design Structure Matrix is used for rearranging the 

specified design decisions and activities for a concurrent approach to generating product 

and production system designs. 

9.3 STRATEGY  I: AWARENESS OF KNOWLEDGE AND INFORMATION 

INTERCHANGE 

This first strategy is intended to support the application of co-design with low complexity of 

interrelations between product and production system design.  In such cases, it is argued that an 

‘Awareness’ of information and knowledge interdependencies through a number of minor 

changes and improvements in design procedures could provide the majority of potential benefits 

expected from a P&PS co-design process.  

The Awareness strategy, therefore, proposes organising co-design through targeted and 

beneficial information and knowledge exchange.  In this approach, P&PS co-design activities 
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can be generated by directly increasing information transfer and knowledge sharing between 

design processes, as well as incorporating ecological considerations. More specifically, product 

and production system designers are requested to increase communication to determine and refine 

the best solution for co-design specifications.  For example, in the case of footwear manufacturing 

(presented in Chapter 8), a shoe designer generally provides product design information to a shoe 

production system designer at the end of each stage in the design process using a unidirectional 

method. This implies that no feedback regarding the impact of this information on production 

system design is received by shoe designer (see ‘As-is’ diagram in Figure 9.2). In such cases, to 

achieve the benefit from a co-design approach, the design processes need to be arranged with 

additional ‘forward’ and ‘backward’ information exchange and knowledge sharing practices, as 

shown through the ‘To-be’ diagram in Figure 9.2.  

 

Figure 9.2 - Co-design by the Awareness of knowledge and information interchange  
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In this context, it may seem that such additional information exchange and knowledge sharing 

might increase development time. However, in practices, this often results in a reduction of the 

development time as well as resource consumption due to more effective communication between 

design teams. Therefore, to effectively apply the Awareness strategy, there is a need a) to identify 

the targeted and beneficial information exchange and b) to improve the current practices for 

knowledge and information accessibility by P&PS designers. 

 Identifying the targeted and beneficial information exchange 

The various steps in Co-specify phase (see section 8.3) aid with identifying the need for additional 

ecological considerations and increase information transfers to ensure that the P&PS decisions 

lead to the improvements in resource efficiency during the production phase.  This is initiated by 

developing an ‘As-is’ information flow in step 2.1 of Co-specify phase (see Section 8.3.2).  

Following this, the co-design interrelation assessment sheets (see Figure 8.13) that are generated 

in step 2.2 of co-specify phase to interact with product and production system designers, are 

utilised to identify the targeted and beneficial information exchange proposed by various 

designers. For example, in the design processes depicted in Figure 9.2 (based on footwear 

manufacturing application), three possible improvements in information exchange are proposed 

relating to: 

i. Material type and product geometry with fabrication and assembly process pre-

design in conceptual design,   

ii. Geometric layout and component connection with material flow planning and 

operation sequencing in embodiment design, and   

iii. Material property and specification, geometry refinement and product quality with 

fabrication and assembly process specification as well as the design of quality control 

process in detailed design.  

To improve ecological considerations in this strategy, two additional design ‘gates’ are added to 

the co-design process. First, the information related to the available ecological options of product 

specification based on ecological considerations (e.g. material substitution) is shared with 

production system designers to assess the impact on their production system specifications. Then, 

the production system designers provide feedback regarding the production feasibility of these 

options to product designer before finalising the P&PS co-design decisions.  
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 Improve the current practices for knowledge and information accessibility by P&PS 

designers  

To achieve this strategy, knowledge and information accessibility between product and 

production system designers should be improved through a) providing further training to P&PS 

designers, and b) adopting and incorporating proper knowledge and information management 

tools.   

In view of further training, a product designer should be provided with additional knowledge 

related to the production system configuration through specially designed training course (and 

tools) as well as exchanging skills and experience with a production system designer. For example, 

a product designer should study basic steps involved in production system development, gaining 

sufficient technical knowledge on the production processes most related to their roles and 

responsibilities in product design. In the same way, production system designers should also 

receive further training on specific notation, terminology and technical language used in product 

design and development. More importantly, both sets of designers need to extend their knowledge 

of resource efficiency and sustainability considerations and practices within their company. This 

improvement can be achieved through the published assessment methods, such as the 

‘sustainability survey’ introduced by Short et al. (2012).  

In view of improving knowledge and information management tools, the relevant information 

related to resource-efficient design should be available and accessible to both P&PS designers. 

Availability of information is dependent on a manufacturing company’s initiatives to collect and 

acquire relevant internal data (e.g. recyclability of materials used in the existing products, water 

and energy consumption rates at a production process level) as well as external information (e.g. 

emerging alternative low impact materials and/or resource-efficient technologies) related to 

resource-efficiency and environmental sustainability of their products and operations. The 

accessibility of information can be assessed by the specific capabilities of the information sharing 

tools (e.g. ability to keep information up-to-date, continuous monitoring and clear documentation, 

accessibility and contribution of information) employed by the manufacturing company. In this 

context, the range of possible capabilities of information sharing tools and its usage to support the 

collaboration activities can be classified into four levels of practice based on accessibility, 

modifiability, and authority, and information control, as identified by Prasad (1996):  
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Level i. Other users can only access information when the owner provides the accessibility. 

Level ii. Multiple users can access information, which can be modified only by the owner.     

Level iii. Multiple users can access and sequentially modify information, but they must 

request final approval from the owner. 

Level iv. Multiple users can access in parallel and modify information; nonetheless, the 

modification requires approval by all related members.      

While current information sharing tools within the majority of integrated design approaches are 

often based on level i, ii or iii since the current information sharing between PD and PSD is often 

managed with the limited accessibility. For instance, information is occasionally shared or 

exchanged for the specific and critical cases such as quality issue, design improvement or cost 

reduction activity where the only small amount of information related specific issue is shared 

between these two design processes. Ideally, in the P&PS co-design process, the information 

sharing tools must be based on level iv capability in order to enable full interaction between design 

processes.  

To support a programme of continuous improvement (for training designers and enhancing the 

level of information and knowledge interchange within the design), this research defined a set of 

simple guidelines, in Table 9.1 and 9.2 which are adapted from (Maier et al. 2008).  These tables 

aim to provide the ability to assess the existing level of capability by a company’s information 

sharing practice and tool as well as devise a stepwise approach to improve this capability towards 

level iv required by the P&PS co-design process based on Awareness strategy. 
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9.4 STRATEGY II: ASSOCIATION THROUGH A CLOSER COLLABORATION 

BETWEEN P&PS DESIGN 

The second strategy for implementing of co-design processes is recommended for companies 

where their interrelation between product and production system designs are relatively 

complicated due to a number of interdependencies between many co-design decisions. In this 

strategy, however, the close collaboration and/or combination of design processes is only limited 

to a subset of overall design processes due to a range of conditions such as design conflicts with 

legacy systems/procedures, costly operational changes, or in cases where the potential benefits of 

a co-design approach are limited to a subset of design decisions. For example, in high precision 

manufacturing applications (e.g. a jet-engine), the product and production system designs are very 

restricted, and any design changes are constrained tightly by specific product characteristics such 

as the need for zero defect due to high risk associated to product failure. In such cases, only a 

subset of decisions could be supported by a co-design approach through the adoption of 

‘Association’ strategy for implementation of the P&PS co-design process.  

To realise this strategy, closer collaboration between P&PS designers must be established in 

order to facilitate a direct involvement of key designers with various backgrounds within a single 

process for co-designing resource-efficient P&PS. For example, in the case of a footwear 

company, the shoe design information is only utilised at the end of product design for developing 

production system layout (i.e. defining a production process chain). In this case, a collaboration 

between PD and PSD designers is occasionally organised only when redesign issue is raised. 

Therefore, to achieve the benefit of P&PS co-design, the ‘closer design collaboration’ needs to 

be arranged, as shown in the To-be diagram (see Figure 9.3). This is when both P&PS designers 

collectively make ecological decisions related to a selection of shoe material and geometry as 

well as pre-development of fabrication and assembly process during conceptual design, as 

identified in step 2.1 of Co-specify phase (see Table 8.8 and 8.9).  

In this context, the Association strategy might be considered as an expansion of ‘DfM’ in which 

a more comprehensive range of production system information and knowledge are made available 

during product design. The main objective in a DfM approach is to ensure the availability of 

manufacturing facilities to produce a product, whereas in P&PS co-design process the need for a 

bi-directional flow of information and knowledge is extended (i.e. from PD to PSD) to unlock the 

infinite capability of design decisions to optimise resource efficiency. 
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Figure 9.3 - Co-design by the Association through closer collaboration between P&PS designers  

 Establishing closer collaboration between P&PS co-design decision-making 

In a similar manner to Awareness strategy, the results from steps 2.1 - 2.3 in the Co-specify phase 

are used in Association strategy to identify which sub-set of design processes would benefit from 

establishing closer collaboration between designers. The difference in this second strategy is that 

the co-design interrelation assessment sheets (see Figure 8.13) that are generated in step 2.2 of 

co-specify phase highlight a higher degree of interdependencies between product and production 

system design decisions. For example, in Figure 9.3, three groups of co-design considerations are 

identified during Co-specify phase which needs to be collaboratively decided by P&PS designers 

during conceptual product design, embodiment design and detail design stage, as depicted in a 

‘To-be’ information flow. To achieve this, the relevant production system designers involved in 

these processes are assigned specific additional duties to participate in the product design process. 

This strategy could not only involve further training for designers (similar to Awareness strategy) 

but also a reorganisation of the two design teams into a single entity whose member’s role, and 

responsibilities have been redefined to ensure closer collaboration and to operate as one team. In 

a simple application, this could be based on repositions of designers into the same design office 
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(physical co-design collaboration) or in the case of more complex applications, a redefinition of 

the workflow model (virtual co-design collaboration), enforcing dependency of design decision 

makings.  

In order to realise this strategy, the relationship between members of such a newly formed P&PS 

design team should be defined to ensure the efficiency of the collaborative design. In this context, 

the current design relationship can be basically classified into four different levels, namely 

interaction, coordination, cooperation, and collaboration, as defined by Lu et al. (2007) :  

i. Interaction –  different teams separately manage task with very limited 

communication  

ii. Coordination –  different teams unidirectionally manage tasks with different objectives  

iii. Cooperation  –  different teams bidirectionally manage tasks with the shared resource, 

procedure and benefits 

iv. Collaboration –  a combination of teams, jointly manages tasks with the shared resource, 

procedure, benefits and common goal 

While the relationship in the current integrated design approaches is often based on levels i, ii or 

iii, ideally in the P&PS co-design process, this must be based on level iv (collaboration).  To 

support a programme of continuous improvement in training designers and enhancing the level 

of interaction, a collaboration performance checklist is readapted from Maier et al. (2008) and 

summarised in Table 9.3 and 9.4. This checklist is based on an ‘interaction communication grid’ 

method which was originally applied to assess communication effectiveness in a collaborative 

product development process (Maier et al. 2008).  These tables aim to provide the ability to assess 

the existing level of collaboration and provide an approach to improve this capability towards 

level iv, required by the P&PS co-design process based on Association strategy.  This can be 

achieved through the ‘collaboration improvement plan’ outlined in Table 9.5, in which 

communication and collaboration procedures are initially assessed, and a transformation path 

from no communication or reactive communication procedures (in level i & ii) towards 

continuous proactive communication procedures (in level iv) is implemented. Similarly, in this 

plan, a stepwise approach from no collaboration or unfollowed collaboration procedures (in level 

i & ii) towards a continuous improvement collaboration procedure is employed.   
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Table 9.5 - Collaboration improvement plan during the Co-create phase 

 

9.5 STRATEGY III: ADAPTATION INTO A COMBINED CO-DESIGN PROCESS 

FOR PRODUCT AND PRODUCTION SYSTEM 

This strategy is recommended to support companies where the complexity of interrelation 

between P&PS design is critically high because of the number of interdependencies between 

many co-design decisions within their design processes. In such cases, to gain the maximum 

potential benefits and to respond to the high complexity of co-design decisions, it is recommended 

that the existing independent processes should be completely transformed into P&PS co-design 

process through utilisation of ‘Adaptation’ strategy.  

This Adaptation strategy can be considered as a revolutionary approach to changing the design 

process, aiming to combine two independent processes into a single one for a concurrent 

approach to co-designing P&PS. This single process can be constructed by decomposing the 

independent product and production system design processes into a number of design activities 

(and/or decisions), and restructuring and reorganising these into a combined process, as illustrated 

in a ‘To-be’ diagram in Figure 9.4. This new P&PS co-design process is operated by the reskilled 

designers who previously were product or production system designers. In contrast with the 

Awareness and Association strategies, the designers in Adoption approach need to have the 

complete knowledge of P&PS design instead of a part of PD and/or PSD related only to a subset 

of targeted decisions (See Section 9.3). Therefore, with this new role and responsibilities for 

P&PS designers, the structure of the design team is completely changed to manage the design 

process within one organisational unit.        
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Figure 9.4 - Co-design by the Adaptation into a combined co-design process 

The Adaption strategy therefore offers a step-by-step approach for identifying the relationship 

pattern between various design activities and re-sequencing these into a P&PS co-design process, 

as explained in the following subsection.  

 Identifying the relationship pattern and re-sequencing the design activities into the 

P&PS co-design process 

The Adaptation strategy utilises the Design Structure Matrix (DSM) method (Danilovic and 

Browning 2007) to restructure the various design activities identified as part of step 2.3 in Co-

specify phase (See Table 8.9 and 8.10) into a new single co-design process. The DSM has been 

widely applied to support the improvement of design process flow through process decomposition 

and sequencing, outlining input/output/feedback and process iteration, and highlighting 

interdependency between design activities (Eppinger and Browning, 2012). In this context, to 

construct a new P&PS co-design process, the following two steps must be undertaken.  

In step 1 the relationship pattern of design activities must be identified using the design process 

model outlined in Section 8.3.2. This is achieved by listing all P&PS design activities across the 

rows (on the left-hand side of the DSM table) and columns (on the top of the DSM table), and by 

inserting ‘x’ in cross-sections in which an information flow is required between the two design 
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activities under considerations (see Table 9.6). For example in Figure 9.5, activity B requires 

input information from the output of activities A (i.e. they are dependent), and activities C & D 

do not need information exchange (i.e. they are independent). Activities E and F need information 

from each other (i.e. they are interdependent, and finally both activities G & H required to input 

information from activity F (i.e. they are contingent). In this context, the relationship pattern of 

A to H design activities can be classified into these four main types of Dependent (sequential 

activities), Independent (parallel activities), Interdependent (coupled activities) and Contingent 

(conditional activities). 

In the second step, all but the independent activities are re-sequenced to improve the performance 

of design process by minimising ‘the size of information feedback loop’ (i.e. provide information 

in a timely fashion to support a key design decision), as proposed by DSM methods.  For example, 

in Table 9.6, the interdependent activities A31 and A32 have an efficient feedback loop (i.e. 

Feedback loop 1) since activity A32 can immediately start and can directly feed information back 

to A31 in order to complete both activities. In contrast, activity A12, B12 and several other 

activities between them have an inefficient feedback look (i.e. feedback loop 2) as all activities 

cannot be achieved until the A12 and B12 are undertaken and finalised. Hence, this large feedback 

loop must be re-sequenced using the following guidelines (Eppinger and Browning, 2012):  

 

Figure 9.5 - Four main types of relationship between activities in process flow (Eppinger and 
Browning 2012) 
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i. Identify feedback loops for all interdependent activities (see ‘red’ feedback loops in 

Tables 9.6) 

ii. Group together all activities within a loop as a single activity (For instance, group 1:  A12, 

A13 and B12; Group 2: A23, A24, B23 and B24 in Table 9.6) 

iii. Sequence the dependent, independent and contingent activities based on all empty rows 

(which require no further information) to be performed first and all empty columns (which 

provide no information to other activities) to be performed last. Once an activity is 

sequenced, remove it from further consideration and repeat this procedure until no empty 

rows or columns remains. 

iv. Consider the identified groups of interdependent activities (in step ii) as a single activity 

and sequence these groups following the guidelines in step iii.  

v. Repeat steps iii. and iv. until there is a minimum number of information required for 

previous activities, as shown in Table 9.7. 

The application of the abovementioned procedure for resequencing for the design activities within 

a footwear manufacturer, presented in Table 9.6 and 9.7, has resulted in four groups of co-design 

activities, as shown in Table 9.8 and listed below: 

Group 1: Customer requirement translation, P&PS requirement identification, concept 

generation, concept selection, production cost estimation, feasibility study and 

evaluated concept selection. 

Group 2: Product decomposition, component grouping, selecting the main suppliers, 

allocating product part and draft geometry, identifying part interaction and defining 

the assembly scheme, as well as defining high-level process flow 

Group 3: Refinement of material, P&PS geometry and P&PS tolerance, design production 

processes, balance assembly line and refine plant layout 

Group 4: Simulate, test, evaluate, refine and revise the P&PS as well as regulatory approval.  

Such resequencing of Dependent, Independent, Interdependent and Contingent (conditional 

activities) is reported to minimise design process duration and cost (Eppinger and Browning, 

2012). 
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9.6 CHAPTER SUMMARY 

This chapter has outlined the third phase of the P&PS co-design framework, namely the Co-create 

phase, which is devised based in three strategies provided a step-by-step approach to guide a 

company in its efforts to improve current design processes through implementation of co-design 

process. These three strategies, namely Awareness of design knowledge interchange, Association 

through closer collaboration, and Adaptation into a single co-design process of P&PS can be 

utilised individually by a company based on the design complexity and interdependencies among 

their design activities. These could be used as a gradual (continuous improvement) approach for 

transforming from the existing two independent design processes for product and production 

systems into one single combine design process.    

Within the final stage of the framework, a computer-aided software tool has been developed to 

support the implementation of the various tasks included in the initial three phases of P&PS co-

design framework. This fourth Co-implement phase of P&PS co-design framework is discussed 

in detail in the next chapter (Chapter 10). 
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 IMPLEMENTING THE NOVEL 

FRAMEWORK FOR CO-DESIGNING 

PROCESSES OF PRODUCTS AND 

PRODUCTION SYSTEMS 

10.1 INTRODUCTION 

This chapter describes the fourth and the final phase of P&PS Co-design framework, namely the 

Co-implement phase, which aims to support the application of this framework through a specially 

designed software toolkit, generated by the research reported in this thesis. In addition, the use of 

existing commercial design software tools to further support the various implementation aspects 

of the P&PS framework is also discussed in this chapter.  

10.2 PHASE 4: CO-IMPLEMENT PHASE 

The Co-implement phase supports the implementation of the various steps defined as part of 

phases 1-3 of the P&PS Co-design framework, as depicted in Figure 10.1. The implementation of 

these steps requires significant information gathering, recording and processing. Thus, this 

research has generated a specially designed software toolkit, referred to as of Product and 

Production system Co-design (PPC) software tool. In brief, this toolkit consists of a number of 

modules, developed using Microsoft Excel and Visual Basic Programming Language for 

supporting data collection, automatic data analysis, and visualisation and presentation of results 

in a user-friendly manner to relevant designers. An overview of the system structure for the PPC 

comprising of inputs, outputs, user interface, database and functional modules, is illustrated in 

Figure 10.2. Furthermore, the PPC can be used in conjunction with several existing commercial 

tools and emerging tools introduced by relevant research publications. These consist of the 

support for application of the Co-initiate phase through utilisation of subSTance flow ANalysis 

(STAN2.6) software tool (TU Wien Institute 2012) for resource consumption assessment, the 

realisation of the Co-specify phase through Microsoft VISIO for modelling design process, and 

finally for support of Co-create phase through Design Structure Metrix V1.6 software tool 

(Projectdsm 2016) for resequencing the co-design activities. 
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Figure 10.1 - An overview of the applicable toolkit for the P&PS Co-design framework application  

 

Figure 10.2 – Overview of PPC software tool 
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A flowchart outlining the various functions of PPC provided in Figure 10.3. This start by 

collecting data related to a Frequency of Product Design (FPD) update, a Frequency of Production 

System Design (FPSD) update, product lifespan and resource consumption. 

 

Figure 10.3 - A flowchart representing the algorithm of the P&PS Co-design prototype software  
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This data is used to generate the primary results from Co-initiate phase, namely a recommendation 

on whether the product and production system under consideration is suitable for a P&PS co-

design process. Then, the data related to design process structure and complexity of P&PS design 

interrelation is used within phase 2 (i.e. Co-specify) to suggest the adoption of one of the 

Awareness, Associate, or Adaptation strategies in phase 3. Lastly, in the Co-create phase, the 

analysis of information sharing and collaboration practices between design teams are used to 

implement the co-design strategies selected in phase 2. 

10.3 THE PPC SOFTWARE SUPPORT TOOL FOR CO-INITIATE PHASE  

Co-initiate phase aims to distinguish most suitable candidates for P&PS co-design process by 

undertaking five main steps, and listed below:  

i. Collection of relevant P&PS design data (Step 1.1)  

ii. Identifications of a frequency of design updates and interrelation between P&PS 

design updates (Step 1.2 – 1.3) 

iii. Measurement of resource consumption of PS processes (Step 1.4)  

iv. Identification of candidates for a P&PS Co-design process (Step 1.5) 

 Collection of relevant P&PS design data (Step1.1) 

Two user interface screens are used to collect relevant P&PS design data. In Figure 10.4, the first 

screen provides an introduction to P&PS Co-design framework including aim, an overview  

 

Figure 10.4 – Start screen of the P&PS Co-design prototype software tool 
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three main steps and the required data. Within this screen, a user can click the ‘Start New Project’ 

button to begin the implementation of the framework or ‘Continue Existing Project’ button to 

recall and continue a stored Co-design project. The second screen (see Error! Reference source 

not found.) facilitates the collection of initial relevant data such as project name/identity, duration, 

goal and scope, product list and person in charge of the project as well as other related project 

stakeholders. 

 Identifications of a frequency of design update and interrelation between P&PS design 

update (Step 1.2 – 1.3) 

The frequency of design updates and interrelation between P&PS design updates are assessed 

using a Co-initiate data inventory screen (see Figure 10.5). At this step, a Co-design operator can 

input P&PS data for the first product under consideration including name, product model code, 

FPD and FPSD updates and product service life. Then, this data is then used to determine the rate 

of product design using the Equations 8.1 and the relationship between P&PS design updates (see 

Section 8.2.2 and 8.2.3) to select only those suitable product candidates for P&PS co-design 

process for further considerations (see Figure 10.6). 

 

Figure 10.5 – A screenshot of the project’s goal and scope 
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Figure 10.6 - A screenshot of the Co-initiate data inventory 

 

Figure 10.7 – A screenshot of the result of step 1.2 and 1.3 (when a co-design process is not suitable 
for a particular design) 

 Measurement of resource consumption of PS processes (Step 1.4)  

At this step, the resource (energy, material and water) consumption and process waste (material 

and water waste) of the existing production system is calculated to identify candidates for a co-

design process. To achieve this, in Figure 10.8, the ‘resource consumption data inventory’ screen 

is used to collect relevant resource consumption data (i.e. percentages of material consumption, 

material waste, energy consumption and wastewater) for critical production processes. Notably, 

it is suggested to complete the P&PS data input of all products under consideration (by repeating 

step 1.2 – 1.4) before continuing to Co-design feasibility analysis. As a result, if data related to 

resource consumption is not available (held by the company) or cannot be directly (empirically) 

measured, A resource flow analysis (using a suitable modelling tool) is required to measure input 

and output resources for each production process. This study utilises the STAN process simulation  
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Figure 10.8 – A screenshot of resource consumption data inventory 

software tool to generate simulated data for resource consumption. For an example of a packaging 

production system in Figure 10.9, the outputs of the cutting process BC can be estimated through 

two main steps. The former step is to create a material flow of this production system by a) 

selecting shapes and flows within the ‘Shapes’ frame and b) assigning the available data (e.g. 

process name, input material, a quantity of input and/or output material and waste ratio) to each 

production process through a ‘Flow Properties’ frame. Then, the latter is to click the ‘Calculation’ 

button to allow the software determining the output of this process automatically. 

 Identification of candidates for a P&PS Co-design process (Step 1.5) 

After the completion of P&PS data input, the result of candidates for a P&PS Co-design process 

is presented in ‘P&PS Co-design feasibility analysis’ screen, as depicted in Figure 10.10, which 

summarises the Co-initiate results. Further detailed result for each product can be obtained using 

the ‘detail result screen’ (see Figure 10.11) by clicking ‘Product name’, ‘Select product’ and 

‘Result’ button respectively. This screen provides a detail explanation of the result for a company, 

highlighting whether it should adopt a new co-design process or continue to use their existing 

independent design processes. 
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Figure 10.10 - A screenshot of the Co-design feasibility analysis result 

 

Figure 10.11 - A screenshot of the Co-design feasibility detail result of each product design 

10.4 THE PPC SOFTWARE SUPPORT TOOL FOR CO-SPECIFY PHASE 

Similarly, the application of the Co-specify phase can be achieved through the four steps, as listed 

below:  

i. Interrelation assessment between product parts and/or subassemblies (Step 2.0)  

ii. The identifications of design decisions which impact on resource consumption and the 

interrelation between these P&PS design decisions (Step 2.1 – 2.2) 

iii. Recommendation of the suitable strategy for applying co-design (Step 2.3) 
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 Interrelation assessment between product parts (Step 2.0) 

As outlined in Section 8.3.1, in a case of a complex product, any changes or improvements in a 

part (sub-assembly) design for reducing resource consumption may result in consequential 

changes in other part/subassembly designs. Hence, the ‘interrelationship assessment 1’ screen, 

shown in Figure 10.12, is used to assess the interrelation between a product’s parts/subassemblies. 

The PPC software tool guides the user to select a checkbox ( ) if design changes to parts listed 

in the rows cause a design change on parts listed in the columns or leave it blank if there is no 

relationship between parts design changes. 

 The identifications of design decisions which impact on resource consumption and the 

interrelation between P&PS design decisions (Step 2.1 – 2.2) 

This step starts at ‘interrelation assessment 2’ screen (See Figure10.13) which is used for 

navigating a user to select input data related to a set of design processes by entering the names of 

all products which shared this set of design processes and an identification number for these 

design processes. Then, the identifications of design decisions which impact on resource 

consumption and the interrelation between P&PS design decisions are accomplished through 

‘decision allocation’, ‘ecological identification’ and ‘design interrelation’ screens as depicted in 

Figure 10.14. These screens are used to identify when design decisions are made, to categorise 

which decisions impact on the improvement of resource efficiency and to assess an interrelation 

between PD and PSD decisions, respectively. 

 

Figure 10.12 - A screenshot of the product part interrelation assessment 
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Figure 10.13 - A screenshot of the interrelation assessment between P&PS design processes 

For example, on the design interrelation for product design screen, a product designer is advised 

to select a checkbox ( ) if the availability of the relevant information for a PSD process is 

required to support decision making for a particular PD process or to leave it blank if PSD 

information is not needed. Notably, if a particular design decision has been identified in the 

previous step to have no impact on resource consumption, this decision will not be enabled for 

the design interrelation assessment.  For instance, in Figure 10.15, component interaction and 

finished surface are not included in the assessment since these decisions do not influence any 

resource consumption.     

 Recommendation of the suitable strategy for applying co-design (Step 2.3) 

In this step, the result of the assessments, which is determined based on the analysis outlined in 

Section 8.3.4, is summarised in ‘P&PS design process assessment result’ screen (See Figure 

10.16). The PPC user is guided to select a particular product design from the provided table and 

click ‘view result’ button to open ‘a design process improvement’ screen, as shown in Figure 

10.17. This screen is used as an information dashboard and is divided into three frames (sections), 

each of which presents the results related to one of the Co-initiate, Co-specify and Co-create phase. 

For instance, ‘Co-design Creation Strategy’ frame portrays the recommended strategy for P&PS 

design processes which is determined to be the most suitable Co-create strategy based on the input 

design process data and the results of interrelation assessment.  
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Figure 10.14 - An overview of P&PS Design process assessments (Design decision allocation, Eco-
Identification, Design interrelation) 

Decision-Allocation

Eco-Identification

P&PS Design Interrelation

PD form    PSD form



CHAPTER 10 | 150 

 

 

Figure 10.15 – A screenshot of design-interrelation (an example of a non-enable specification) 

 

Figure 10.16 – A screenshot of P&PS Design process assessment result 
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The results of material, energy and water consumption for each production processes are 

presented in ‘Resource Consumptions’ frame. Moreover, the result of Eco-identification and 

Design interrelation assessment are summarised in ‘Design Process Mapping Result’ frame in 

which the co-design decisions highlighted as a ‘green’ tab are suitable for P&PS co-design 

process. Finally, the links between various product and production system design processes are 

shown in this information dashboard using the overview of the P&PS design map. 

10.5 THE PPC SOFTWARE SUPPORT TOOL FOR CO-CREATE PHASE 

In the third phase, PPC software tool provides the detailed information for implementing 

Awareness, Association and Adaptation strategy within ‘Co-create Information’ screen (see 

Figure 10.18). The remaining subsections of this chapter explain how the applications of these 

strategies are supported by PPC software and other commercial software tools.  

 Awareness strategy 

The implementation of Awareness strategy necessitates the improvement of P&PS design 

information sharing between teams and knowledge of sustainability and resource efficiency. The 

information sharing evaluation checklist outlined in Table 9.2 and 9.3 are provided in 

‘Information Sharing Evaluation’ screen (see Figure 10.19). In this screen, data related to the 

current information sharing practice is entered and analysed, the results of which are presented in 

‘knowledge and information sharing evaluation’ screen, as shown in Figure 10.20.  

 

Figure 10.18 – A screenshot of Co-create strategy 
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Figure 10.19 – A screenshot of knowledge and information sharing evaluation 

 

Figure 10.20 – A screenshot of a result of knowledge and information sharing evaluation 
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 Association strategy 

Through the application of Association strategy, an improvement in design collaboration 

performance can be implemented using the ‘design collaboration checklists’ screen, as depicted 

in Figure  10.21. Similar to the information sharing evaluation, this screen collects the relevant 

design collaboration data from designers. The results of the analysis of the performance of design 

interaction and elements supporting collaboration are presented in ‘a result of design collaboration 

evaluation’ screen (see Figure 10.22).   

 

Figure 10.21 – A screenshot of the design collaboration evaluation 

 

Figure 10.22 – A screenshot of a result of design collaboration evaluation 
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 Adaptation strategy 

Through Adaptation strategy, the generation of a new combined P&PS co-design process can be 

accomplished. To achieve this, the research has utilised the Design Structure Matrix v1.6 tool to 

support the rearrangement of design activities through two main steps. First, all design activities 

and dependencies between these activities can be inputted in ‘element’ and ‘dependencies’ sheets, 

respectively, and, a ‘DSM’ sheet automatically illustrates interrelation between activities in the 

form of a black dot as shown in Figure 10.23. This tool then rearranges the inputted activities by 

selecting the ‘Dependency sequence’ function (see Figure 10.24). These activities are moved in 

order to reduce the distance between all black dots and a central line in which this represents the 

minimisation of the duration of information feedback loop for improving information transfer 

between design activities.     

Importantly, before implementing a change to design process through this Adaptation strategy, a 

company must improve the existing information sharing/exchange or data management tools and 

establish closer design collaboration by using the set of tools outlined in Section 10.2. 

 

Figure 10.23 – Design Structure Matrix v1.6 software tool from Project DSM Pty Ltd (Input) 
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Figure 10.24 – Design Structure Matrix v1.6 software tool from Project DSM Pty Ltd (Result) 

10.6 CHAPTER SUMMARY 

This chapter has described an overview of the Co-implement phase as well as PPC software tool 

generated by this research to support the implementation of Co-initiate, Co-specify, and Co-create 

phase. To demonstrate and refine the application of P&PS framework, two case studies are  used 

based on simple and complex product design and outlined in Chapter 11. 

 

Central Line
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  CASE STUDIES 

11.1  INTRODUCTION 

This chapter reports a summary of two case studies conducted to demonstrate the proposed 

framework for co-designing P&PS to improve resource efficiency. The two case studies are 

demonstrated through simple and complex product designs which have a dramatically high 

frequency of design updates and high resource consumption to present the applicability of the 

simple and complex design framework approaches. At the end of this chapter, the results of these 

case studies are discussed to summarise the effectiveness of the proposed P&PS Co-design 

framework.   

11.2 CASE STUDIES FOR CO-DESIGNING P&PS TO SUPPORT RESOURCE-

EFFICIENT MANUFACTURING 

This research has proposed new approaches to identify the potential P&PS candidates for 

improving their design processes, to assess how their processes could be improved and 

collaborated, and to provide guidance for creating and implementing a P&PS Co-design process 

via the proposed framework. In order to refine these approaches, this framework was tested 

through two case studies to demonstrate the effectiveness of the framework and to improve the 

applicability and the advantage of the framework. For these purposes, the potential product 

designs which are feasible to co-design were explored. According to the explanation in the 

previous chapters, not every manufacturer will gain the potential benefit from the co-design 

implementation. Based on the proposed key criteria, two case studies were conducted using the 

suitable manufacturing companies which often update their product designs, frequently change 

the process facilities based on the product updates and have the intensive resource consumption.  

For the first case study, a paper-based packaging industry was chosen because this has a high 

frequency of design update and high resource consumption during manufacturing and use phases. 

Even though a demand of paper consumption was expected to decline due to an entry of electronic 

data; in fact, it was reported that world consumption of paper and board had been dramatically 

increased approximately 533% in past 60 years (Finnish Forest Industries 2017). In 2006-2016, 
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the level of paper consumption worldwide has reached about 400 million tonnes each year. 

Although the use of recycling paper can decrease a requirement of new material use, the energy 

and water consumption of paper production is considerably high to satisfy this excessive demand 

each year. Importantly, to reduce resource use and support current eco-design practices in paper 

and cardboard packaging industry, Koklacova and Atstaja (2011) have raised a need of 

collaboration between packaging designers and manufacturers to mitigate a lack of 

interdisciplinary knowledge about product design and the process of production. 

For the second case study, automotive seat design and manufacturing industry was selected. In 

the context of automotive development, the automotive seat is considered as a high-frequency 

design update in comparison with its life expectancy. Much attention has been paid to automotive 

industry due to the high resource consumption during production and use phase as well as the 

pressure of environmental legislation in the past two decades. SMMT (2017) has reported that, in 

2016, energy, material and water per vehicle production in the automotive company were reduced 

by 3.2%, 33.7%, and 3.5% respectively. However, there still is a need to further achieve an 

improvement of resource efficiency in the automotive supply chain, especially outside the EU.     

These two case studies were not managed concurrently in which these started with the 

implementation of the packaging design case study. In detail, this began with collecting P&PS 

data and testing the simple design framework by packaging company. Therefore, the result and 

feedback from this case study were applied to improve and refine the applicability of approaches 

within the framework. Then, the refined framework approach was distributed to both of a 

packaging designer and an automotive seat design engineer for implementing these simple and 

complex design framework approaches. 

More detail of these case studies is described in the two following sections. Each section includes 

the data collection and synthesis, the applications of Co-initiate, Co-specify and Co-create phase 

and the result and discussion of the case study. 
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11.3 CASE STUDY 1: PACKAGING DESIGN AND MANUFACTURING  

The first case study was conducted in collaboration with an experienced packaging company X 

in Thailand. This company, which is a small and medium-sized enterprise, offers a wide range of 

customisable products including cosmetic packaging, food packaging, customised shopping bag, 

customised packaging label, and other printing products such as a customised folder, customised 

printing, book as depicted in Figure 11.1. These products are internally designed by central control 

and central design organisation and manufactured by an in-house production system. 

 Case Study Data  

The first group of data required for an application of Co-initiate phase includes product list, the 

frequency of product design update, product service life, and production system. The sources of 

this data are summarised in Table 11.1.  Due to the data unavailability, the number of machines 

and working hours of production systems was assumed for applying a resource consumption 

assessment of production system. For the implementation of Co-specify and Co-create phase, data 

related to P&PS design processes and design decisions of P&PS are collected through email 

exchanges, telephone interviews and the completion of the provided checklists by a designer with 

14 years of experience and a senior designer with 19 years of experience. At this step, there is a 

challenge in collecting data related design processes and its production system due to a lack of 

formal and structured design process in practice.  

Table 11.1 – Sources of data used in the case study 1 

Data Source Data type 

A collaborated company 

Product list 

A frequency of product design update 

Product life expectancy 

Production process flow 

Energy consumption 

Design process data 

Actual data 
Energy consumption of each process 

Material consumption of each process 

Assumption  Working hour and number of machines of a production system 
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 The Application of Co-Initiate Phase 

In this section, the feasibility of Co-design adoption was managed through: 

i) Measuring the frequency of design update and interrelation between P&PS design update,  

ii) Assessing resource consumption  

iii) Identifying P&PS candidates for a co-design process as described in the following 

subsections.  

11.3.2.1 Measuring the frequency of design update and interrelation between P&PS design 

update between P&PS designs 

A data related to the frequency of product design update, product life expectancy and an effect 

between P&PS of seven main product types were collected as shown in Table 11.2. This table 

also presents the calculated results of the PDU value of each product. Based on the specified 

classification for Co-Design implementation in Table 8.1, the result reveals that the designs of a 

shopping bag, a customised folder, a customised printing and a customised book were suggested 

to design by the current design processes. This is because although the designs of these products 

were frequently updated, the change of their PSDs did not depend on the changes in PD (FPD ≠ 

FPS). Therefore, packaging, customised label and the other printing product that their design 

frequently updates and necessitate the changes of their PSDs (e.g. printing plate and die cutting 

tool) need to assess their resource consumptions further to identify the potential candidates for a 

co-design process. 

Table 11.2 – Data for identifying PDU and the interrelation between PD and PSD update 

 

Frequency of 

PD update

Product 

Lifespan
PDU

Frequency of PSD 

update

1

Packaging e.g. cosmetic box, 

food packaging, crape box, 

food tray, dessert box, etc.

Daily > 1 Year 0.97 - 0.99 Daily

2 Shopping bag Daily > 1 Year 0.97 - 0.99 No change

3 Customised folder Monthly > 1 Year 0.917 No change

4

Customised label e.g. product 

label, product tag, and sticker 

label

Daily > 1 Year 0.97 - 0.99 Daily

5
Customised printing e.g. 

poster, postcasd, brochure

Every 2-3 

months
> 1 Year 0.75 - 0.83 No change

6 6.Book - > 1 Year - No change

7
Other printing e.g. Air 

Freshener, Room tag, 
Daily > 1 Year 0.97 - 0.99 Daily

Product Type
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11.3.2.2 Assessing the resource consumption of a packaging production system  

In this section, the production system of the three identified product designs was assessed for their 

resource consumption. This production system consists of 14 production processes for printing 

plate preparation, die cutting preparation, printing, drying, cutting, folding and forming processes 

as shown in the production process flow (see Figure 11.2). Based on the data of process output 

and the assumption of the working hour (8 hours per day, 5 days per week and 50 weeks per year), 

the input materials of each machine were simulated via the material flow assessment using the 

STAN2.6 software tool. The detail data of resource consumption assessment is provided in 

Appendix III.  

As the results, the material efficiency of the entire production system was not highly critical since 

the material waste was determined as 11.68% of total input material. Nevertheless, in a context 

of material weight, this production system wasted 1,975.2 tons of materials per year. Most of 

these wastes (63.27% of all material wastes) were produced from the cutting processes. Based on 

the assumed allowance of waste efficiency at 20%, the cutting machine A, BC, D and E were 

denoted as the material hotspots with waste generation at 24.02%, 23.27% ,25% and 32% 

respectively (see Figure 11.3). In addition, the block screen process has dramatically high reject 

rate at 100%. This is because, for every new design, this process has to produce a new printing 

plate and a new die cutting for printing and cutting process while the existing ones are discarded. 

However, this process wasted only 0.03% of all material waste (see Figure 11.4). 

Apart from these processes, it is suggested to start monitoring the material efficiency of coating 

machine B because the waste efficiency (19.91%) almost exceeds the maximum limit. In a context 

of energy consumption, the printing machine A, B and C were considered as the energy hotspot 

because their energy efficiencies which are at 62.5% 54.42% and 62.5%, respectively were lower 

than the minimum limit (at 70%) as shown in Figure 11.5. 
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Figure 11.3 – Result of material consumption assessment (by the process) 

 

Figure 11.4 – Result of material consumption assessment (by material) 

11.3.2.3 Identifying P&PS candidates for a co-design process  

Based on the classification criteria in Table 8.1, this company was suggested to adopt a new single 

co-design process for designing three candidates which are packaging, customised label and other 

printing products (see Figure 11.6). As the results, these three product designs had a high 

frequency of product update (0.97 ≤ PDU ≤ 0.99), an interdependency between design updates of 

P&PS and the high material and energy consumptions. The production process hotspots of these 

three product designs are the cutting machine A, BC, D and E as well as the printing machine A, 

B and C.  
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Figure 11.6 - P&PS candidates for a co-design process 

 The Application of Co-Specify Phase 

At this phase, P&PS design processes were assessed and analysed to identify which design 

decisions requires co-design consideration to reduce resource consumption of the identified 

hotspots within this packaging company. Thus, the simple design framework approach which 

involves the below steps was applied, and the result is described in the following subsections:  

i. Identification of ecological design decision,  

ii. An assessment of interrelation between P&PS design decisions. 

iii. A recommendation of the most suitable co-create strategy. 

11.3.3.1 Identification of ecological design decision 

At this step, design decisions within the P&PS design processes used by company X are identified 

when they are decided within design processes and assessed their impacts on resource 

consumption. These were completed through two sub-steps respectively. 

First, the developed design specification allocation checklists have been filled by a packaging 

designer. In this application, there was a difficulty in utilising this set of checklists because this 

company has designed all ranges of their products and their production system by using the similar 

informal design steps and a designer was also lack of knowledge related to a formal design process. 

To realise the actual design processes, the allocation of design decisions has been completed based 
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on the information provided in the filled check sheets and the numbers of the interviews with two 

designers and presented in Figure 11.7. 

For the second step, these design decisions were assessed for their impact on resource 

consumption and resource efficiency improvement. Based on the results of resource consumption 

assessment, the criteria used for this eco-classification was identified and shown in Appendix C. 

Then, the ecological identification checklists (see Figure 11.8) were completed by a designer. As 

a result, only one product design decision (project period) and four production system design 

decisions (material sourcing, detail specification of the assembly process, detail specification of 

lamination process and material flow) were determined to have no impact on resource efficiency 

improvement. Therefore, these decisions were not considered and included in the P&PS design 

interrelation assessment.   

 

 

Figure 11.7 – A result of P&PS design decision allocation 
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Figure 11.8 – Ecological identification of PD and PSD decisions 
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11.3.3.2 P&PS design interrelation assessment 

The design interrelation assessment checklists were prepared and determined by a packaging 

designer, and these are presented in Appendix III. Based on these filled PD and PSD checklists, 

the calculated result of the mapping is presented in Figure 11.9. As a result, it was found that 7 

out of 9 (or 78%) of PD decisions were specified as the co-design specifications. Only the 

decisions related to product durability and project period were identified to have no potentially 

affect resource consumption. Moreover, 8 out of 11 (or 72%) of PSD decisions were also defined 

as the co-design specifications. The decision related to the setting of production process standard 

and tolerance was excluded in the co-design consideration. 

11.3.3.3 a recommendation of the most suitable co-create strategy 

As a result of the interrelation assessment and the criteria suggested in Chapter 9, this company 

X is suggested to create and implement a new single process for co-designing packaging, 

customised label, other printing product and their production system by using the Association 

strategy since 72% of production system design decisions was advised to consider collaboratively 

with product decision within the simple design process (see Figure 11.10 and Appendix III). 

 

Figure 11.9 – Design interrelation assessment between PD and PSD 
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 The Application of Co-Create Phase  

Through Association strategy, this company X was advised to implement i) the improvement of 

knowledge and information interchange and ii) strengthening design collaboration as follows.   

At the former step, based on the current practice, this company was recommended to provide the 

knowledge related to a formal and structural product and production system design process for 

product and production system designer respectively. Then, the designers could be reskilled to 

understand overall P&PS design, sustainability, and resource efficiency. Moreover, to support co-

design decisions, the information related to the identified production design decisions which are 

a type and specification of fabricated and assembly process, type of lamination process, the source 

of the production processes, a process flow and a process standard and tolerance could be 

documented, updated, and available to product designers. In the same way, the information related 

to the identified product design decisions is required to distribute to the production system 

designers.  

At the latter step, design collaboration practice between product designers and production system 

designers could be evaluated, improved and practised at ‘collaboration level’ (see section 9.4.1). 

Significantly, after the improvement of knowledge and information interchange as well as design 

collaboration, the formal P&PS co-design processes need to be created, documented and 

distributed to all relevant designers to enable co-design consideration in this central design and 

central control practice.  

With these new processes, a team of the assigned P&PS designers could consider minimisation 

of material waste from cutting processes and improve the energy efficiency of the printing 

processes by using the recommended resource efficiency strategies and considering options of the 

specified co-design decisions during consumer need identification, conceptual design and detail 

design steps. 

 Result and discussion of case study 1 

The implementation of the simple design framework approach has identified the need to improve 

the design activities of this packaging company X to achieve a resource-efficient production 

system. As the result of Co-initiate phase, the three product types (customised packaging, 

customised label and other printing) were considered to gain the potential benefit from a co-design 

process. This is because their product design and production facilities had a relatively high design 
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update (due to daily design update) and a need to reduce resource use in a production system. 

Their production systems have produced a large number of material wastes, especially from 

cutting processes (63.27% of all material wastes) and consumed high energy in printing processes. 

Then, as the result of Co-specify phase, 9 resource efficiency strategies were suggested to apply 

by considering 7 PD and 8 PSD decisions concurrently to reduce the targeted hotspot processes. 

For example, PD decisions, which are the selection of primary materials and product durability, 

and PSD decisions, which are type and specification of fabricating process, type of assembly 

process and production process flow, are considered to identify the P&PS options based on light-

weighting consideration. To realise the new co-design processes, company X was advised to apply 

Association strategy since most of PSD considerations need to consider together with PD 

decisions. Thus, it was recommended to reskill designers who require the ability to understand 

sustainability, resource efficiency and P&PS information for implementing a co-design process.  

Moreover, based on nature of design practice in company X which product designers commonly 

predominant all design decisions, the design collaboration between product and production 

system designers needs to be improved carefully, and the information related to these identified 

design specifications should be documented, updated, and made available to support co-design 

decisions. Nevertheless, based on the nature of the product which highly depended on customer 

need, company X could also provide sustainability and resource efficiency knowledge and 

suggestion to their customer to achieve the improvement of resource efficiency.  

11.4 CASE STUDY 2: AUTOMOTIVE SEAT DESIGN AND MANUFACTURING 

The second case study was conducted by the collaboration with the experienced automotive seat 

design engineers. Nevertheless, due to the sensitivity of data and the confidential nature of 

information, the first part of this case study was tested based on the generated automotive seat 

production system. In assumption, a set of five automotive seat designs is generally designed by 

an automotive company A which is a large enterprise and has distributed control and distributed 

design organisation in collaboration with an automotive seat company B which offers design and 

manufacture service. The company B has three main type of production lines which are able to 

produce a seat head restraint, assemble the finished front seat and assemble the finished rear seat 

by using the supplied seat parts and components from five different production lines: seat frames, 

seat pad foams, plastic components, seat trim covering and leather productions.   
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 Case study data 

The input data for the Co-design feasibility study was from three different sources. For 

determining PDU and an effect between PD and PSD, the frequency of seat design update and 

the frequency of seat production change were provided by interviews with the three experienced 

seat design engineers. Seat life expectancy was based on a life expectancy of a vehicle (SMMT 

2017). For the resource consumption assessment, an input data related to the seat structure, 

components, materials and component weight were provided by Steinwall and Viippola (2014). 

Seat production system, production processes and production process flow were from two 

publications: Tsou and Chen (2005) and Manoj Bhalwankar and Sachin Mastud (2014). For the 

demonstration of Co-specify and Co-create phase, the information related design processes, 

design decisions and design organisation of P&PS were collected through telephone interview 

with two seat design engineers (with 5 and 6 years of experience) and the completion of the 

developed check sheets by an engineering design manager with 17 years’ experience. All types 

of input data gathered from both primary and secondary sources were summarised in Table 11.3. 

Table 11.3 – Source of data used in the Case study 2 

Data Source Data type 

Collaborated 
designers 

A frequency of seat design update 

Design process (include design decision and design 

organisation) 

Literature 

Automotive seat life expectancy 

Seat part and seat structure 

Seat production processes flow 

Energy consumption of each process 

Material consumption of each process 

Assumption 

Product list 

Working hour of the production system 

The fraction of material waste per material input 
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 The Application of Co-Initiate Phase 

At this first Co-initiate phase, the implementation of the Co-design feasibility study was processed 

following the steps explained in Figure 8.7.  

11.4.2.1 Measuring the frequency of design update and interrelation between P&PS design 

update between P&PS designs 

Based on the interview, all designs of automotive seat generally change following vehicle design 

change which is categorised into minor changes (every 24 months) and full model change (every 

60 months). Based on a vehicle service life, seat life expectancy is 14 years (168 months) (SMMT, 

2017). Therefore, the result of PDU is 0.86 and 0.64 for a minor change and full model change, 

respectively. For the interrelation between PD and PSD update, PSD commonly changes during 

a full model change and barely change during a minor change. In addition, PSD changes during 

full model change involve a new design of the trim cover, pad foam and frame. This also includes 

the selection of seat supplier and seat part suppliers. Thus, the production system of all five seats 

needs to assess the resource consumption to identify a candidate for a co-design process.  

11.4.2.2 Assessing the resource consumption of seat production system  

To assess the resource consumption, the production system of the automotive seat is assumed to 

process 8 hours per day, 6 days per week and 50 weeks per year. Based on this assumption, the 

resource consumption assessment of this seat production system was determined based on a seat 

production process flow in Figure 11.11. As a result, the material efficiency of this production 

system was not highly critical because only 7.87% of the total input is waste. This system 

nevertheless wasted 1,073,924 tons per year. The majority of this waste (29.77%) were from the 

cutting processes for leather and fabric trim cover which were denoted as material hotspots with 

waste generation at 33.63% and 23.30% respectively (see Figure 11.12). Also, although the seat 

frame production process has wasted only 10.83% of all input steel, this 408,424 tons of steel 

waste was considered as 50% of all material wastes (see Figure 11.14). In a context of energy 

consumption (see Figure 11.13), a stamping process of frame components, frame coating 

processes and three hot-injection processes of a seat pad foam were denoted as the energy hotspots 

of this production chain. Because their energy efficiencies which are at 58.39%, 59.52%, 59.26%, 

59.26% and 59.26%, respectively, were lower than the minimum limit (at 60%). 
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Figure 11.14 – Result of material consumption 

11.4.2.3 Identifying P&PS candidates for a co-design process  

In sum, companies A and B had a high frequency in product update (PDU = 0.64), required 

process change for product update, and needed to improve high material waste (for cutting 

processes) and energy consumption (for stamping, coating and injection processes). Therefore, 

referring to the classification criteria in Table 8.1, this company is suggested to further improve 

their resource consumption through a new single process for designing a seat together with seat 

production chain. 

 The Application of Co-Specify Phase 

At this phase, seat design and seat production development processes were analysed to identify 

which design decisions requires co-consideration to improve the resource efficiency of the 

hotspots. In this case, the complex approach of Co-specify phase involving the interrelation 

assessment between seat components, design processes modelling, the Ecological classification 

of design decisions, and the interrelation assessment between design processes were used as 

explained in the following subsections. 

11.4.3.1 The interrelation assessment between seat components 

This step demonstrates the identification of parts and components interrelations. This will be 

denoted as the design constraints for a Co-design process.  

At the automotive-level, the interrelation between the seat and other automotive parts was 

identified through the interview. The design of a mounting track of a front seat is directly related 

to the design of a floor of the car body in which the fixing hip-points of components must be 

matched for the assembly, safety and ergonomic reasons. At the level of seat component, the seat 
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component interrelation checklist was filled by a 17 years-experienced design engineer as shown 

in Table 11.4.  

For the seat-level, a design of the front seat back frame is related to a design of front seat base 

frame, and the trim cover designs of the front seat and rear seat are related with each other. At the 

component level, in context of the part position, design of each component is only related and 

effect to each other within each seat part (front seat base, front seat back, rear seat).  

Table 11.4 – The result of an interrelation assessment between seat components 
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Moreover, in context of three main seat parts (seat frame, seat pad foam and seat trim covering), 

it was found that the design of seat frame is dominated by the design of seat pad foam and seat 

trim cover. This is because some design changes on the frame components (base frame, 

suspension, and airbag) directly require the changes of pad foam and covering design.   

11.4.3.2 Seat design processes modelling through PD and PSD allocation 

This automotive seat was designed based on the formal design and development processes. In a 

context of design complexity, during this design and development phase, all decisions related seat 

and seat production design are not authorised only by a small group of design engineers, but also 

by several sections under a design department at automotive company A and seat company B. 

The seat design process and the related organisation were displayed in Table 11.5.  At automotive 

company A, the seat design department starts a new design project at the project planning stage 

after receiving customer requirement from the marketing department. Then, a set of seat design 

concepts are generated and selected by a group design staffs (product planners, styling designers, 

seat engineers, test engineers and package engineers). The information related this selected seat 

concept is transfer to the seat design engineer teams to detail the selected design with a 

collaboration with design engineer of seat Company B. After that the completed seat design is 

delivered to the three key suppliers, the prototypes of the frame, pad foam and trim covering are 

developed and tested. Finally, based on the approval of the test part, a prototype of the completed 

seat design is assembled and tested by the design departments of company A and company B.      

In Table 11.6, in parallel start with seat design process, the design department of company A starts 

a new design project at the project planning stage by including the consideration of production 

constraints and supply chain strategy. At this stage, after the completion of a business agreement, 

company B also plans the production system and seat supply chain in collaboration with company 

A. Then company B starts the development of system concept based on information from seat 

design. After that at system detail design, company B focuses on the completion of seat part 

productions with the supplier companies while designers from company A concentrate on a seat 

production at company B and a seat assembly in vehicle production. After the completion of the 

detail system, part suppliers begin production ramp-up and refine the part production. Lastly, seat 

company B and automotive company A then perform production ramp-up and refinement.   
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For identification of the decisions within these design processes, the design decision allocation 

checklists have been filled by seat design engineers (see Table 11.7 and 11.8 ). For this complex 

design framework approach, the design decision of automotive seat was separately allocated by 

the main product parts (seat frame, seat pad foam and seat trim covering). This is because each 

part differently focuses on a different design specification. For instance, as the allocation result, 

each part was considered with the different aspect of the environment during a use phase. Crash 

safety specification was commonly considered only on the seat frame and seat pad foam design. 

Moreover, it resulted that a majority of the same design specifications for different parts was 

considered at the same stage. At detail design stage, design engineers focus on the design of seat 

frame to confirm the manufacturability and safety before continuing with the detail of pad foam 

and trim cover. 

11.4.3.3 Ecological identification of design decision 

After allocating the identified seat design decisions, these P&PS design decisions were classified 

through Ecological identification. The criteria used for this eco-classification was identified based 

on the result of material consumption in cutting processes, and 8 resource efficiency strategies for 

material elimination, material minimisation, material substitution and material separation strategy 

were selected as the criteria for assessing seat trim cover design decisions. As a result of the 

identification (see Table 11.9), all trim cover design decisions except homologation decision were 

needed in the considerations of these resource efficiency strategies.      

In Table 11.10, 6 resource efficiency strategies within material and energy efficiency strategy 

were selected as criteria in the ecological identification of PSD decisions. As a result of ecological 

identification of PSD, decisions which influence on resource efficiency improvement can be 

presented in three following groups: 

i. Frame design decisions: type, detail specification and source of the fabricating process.  

ii. Pad foam design decisions: type, detail specification and source of the fabricating 

process as well as material flow process. 

iii. Trim cover design decisions: type and detail specification of fabricating process, type 

of assembly process, the source of fabricated and assembly processes and decision-

related to standard and tolerance setting.  
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Table 11.7 – A result of seat design decision allocation 
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Table 11.8 – An allocation results of the design decision of seat production  
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Table 11.9 – Results of Eco-classification of PD specifications 
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Table 11.10 – Results of Eco-classification of PSD specifications  
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11.4.3.4 Assessment of Interrelation between P&PS design decisions 

Based on the identified design specifications, the interrelation mapping sheets were established 

and delivered to test their applicability by a collaborative seat design engineer. To complete these 

checklists, a design engineer was asked to select which PSD data is required for making a 

selection/decision of a particular PD specification. The filled Eco-interrelation mapping check 

sheets are illustrated in Appendix D, and the calculated mapping results are presented in Figure 

11.15. As a result, it was found that 34 out of 48 of PD decisions were specified as the co-design 

specifications. For seat frame design, all decisions except ergonomic factor, crash safety and 

homologation were specified as the co-design decisions. For seat pad foam, all decisions except 

durability, environmental factor (e.g. cleanliness), functions of the seat, crash safety and 

homologation were specified as the co-design decisions. For seat trim cover, all decisions except 

ergonomic factor, functions of seat and crash safety were specified as the co-design decisions, In 

the same way, 15 out of 27 PSD decisions were also defined as the co-design specifications. The 

decision related to a type, detail spec and a source of frame and pad foam fabrication process and 

all production specifications of the trim cover was specified as the co-design decisions.  

11.4.3.5 A recommendation of the most suitable co-create strategy 

As a result of the interrelation assessment, these companies were suggested to create and 

implement a new single process for co-designing these automotive seats and their production 

system by using the Adaptation strategy since 56% of production system design decision was 

advised to co-considered with product decision within the complex design process.     

 The application of Co-Create phase  

Through Adaptation strategy, these company A and B were advised to implement i) the 

improvement of knowledge and information interchange, ii) strengthening design collaboration 

and iii) generating new co-design processes as follows.   

At the former step, based on the current practice, this company was recommended to provide 

training courses related to P&PS design, sustainability, and resource efficiency so that these 

designers could be reskilled to understand all necessary knowledge for implementing a co-design  
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process. Moreover, the information related to P&PS design decisions should be documented, 

updated, and distributed to all relevant designers.  

Then, design collaboration practice between product designers and production system designers 

(within and between company A and B) should be evaluated, improved and practised at 

‘collaboration level’ (see section 9.4.1). Significantly, after the improvement of knowledge and 

information interchange as well as design collaboration, P&PS designers were repositioned into 

a one design team under a single design section.  

After these improvements, the reskilled designers can perform co-design activities through a new 

co-design process as illustrated in Table 11.11 – 11.13. This new P&PS co-design processes need 

to be documented and distributed to all relevant designers and stakeholders to enable co-design 

consideration in this central design and central control practice.  

 Result and discussion of case study 2 

The study of co-design feasibility suggests that this company A and B should adopt a single co-

design process in designing a new seat model and its production system concurrently. This is 

because the study found that the company A and B was often updated seat and seat production 

design with high design update rate (PDU=0.64). Significantly, there is a need to include the 

consideration of resource efficiency – especially material efficiency of trim covering cutting 

process and energy efficiency of pad foam injection, frame stamping and coating processes – into 

the early stage of design process. Furthermore, the information and design decision of seat 

production system should be considered in concert with seat design as presented in the result of 

design process assessment in order to improve the hotspot processes. Therefore, it is suggested 

transforming these seat and seat production design processes by using Adaptation method because 

of the complication in co-designing many decisions under the complex design processes with 

distributed design and distributed control scenario. To implement the changes through this 

strategy, in this case, the significant challenge is not only the changes within one organisation but 

also the need to strengthen collaboration and create close collaboration between two firms. 

Besides, there is a need for a clear agreement to manage the sensitive design knowledge and 

information exchanging between two firms.   

 

 



CHAPTER 11 | 191 

 

Table 11.11 – A new seat co-design process for designing seat and seat production together through 
a rearrangement of design decisions   

 

 

 

st
ag

e 

5 25 48 9 1 2 8 24 50 7 6 31 4 32 30 29 3 49 57 28 14 10

5 Frame ergonomic factor 2

25 Frame Homologation 3

48 Frame Type of fabricate machine (part production) 7 x x x x x
9 Frame Product durability all 2 x x 2
1 Frame Material type 2 x 2 x x x 2 x x x x 2
2 Frame Product Shape 2 x 2 x x x x 2 x x x x 2
8 Frame Legislation 2 x x 2 x
24 Frame Crash safety 3 x x x x x x
50 Frame Source of production process/machine/tool 7 x x x x x x
7 Frame Additional function of seat (power seat, heater, etc.) 2 x 2
6 Frame key function of seat (e.g. foldable, lever,etc.) 2 x 2 2 2
31 Frame maintenance factor 4 2 x x x x x 2
4 Frame Appearance of product 2 2 x 2 2
32 Frame Productivity 4 2 x x 2 x x 2
30 Frame environmental factor (e.g. Noise and vibration) 4 x x 2 x x
29 Frame Product safety (e.g. Robustness) 4 x 2 x x x x x 2 x
3 Frame Product size 2 x x 2 x x x x 2 x x x x x 2
49 Frame Type of Assembly machine (part production) 7 x x x x x
57 Frame Detail specification of fabricating machine (part production) 8 x x x x x x x x x x
28 Frame The setting of tolerance and standard of product 4 2 x x x 2 x x x x x x 2
14 Pad foam Legislation 2

10 Pad foam Product Shape 2 x x
11 Pad foam Product size 2 x x
12 Pad foam Appearance of product 2 x x
37 Pad foam Productivity 4 x
52 Pad foam Type of fabricate machine (part production) 7 x
45 Pad foam Source of production process/machine/tool 6 x
61 Pad foam Detail specification of fabricating machine (part production) 8 x x
13 Pad foam ergonomic factor 2 x
16 Pad foam Product durability all x
15 Pad foam Homologation 2 x x
26 Pad foam Material type 3 x
43 Frame  Source of material 6 x x
44 Pad foam  Source of material 6

62 Pad foam Material flow (transportation from-to supplier and customer) 8 x
58 Frame Detail specification of Assembly machine (part production) 8 x x x x x x x x x x
59 Frame Material flow (transportation from-to supplier and customer) 8 x
60 Frame Production process standard and tolerance 8 x x x x x x
51 Frame Production and assembly flow (step of production) 7 x x x x x x
27 Pad foam Crash safety 3 x
33 Pad foam The setting of tolerance and standard of product 4 x x
34 Pad foam Product safety (e.g. Robustness) 4

35 Pad foam environmental factor (e.g. Noise and vibration) 4 x
66 Trim coveringMaterial flow (transportation from-to supplier and customer) 8 x
56 Trim coveringProduction and assembly flow (step of production) 7

63 Pad foam Production process standard and tolerance 8

20 Trim coveringAppearance of product 2 x
64 Trim coveringDetail specification of fabricating machine (part production) 8

65 Trim coveringDetail specification of Assembly machine (part production) 8

67 Trim coveringProduction process standard and tolerance 8

21 Trim coveringLegislation 2 x
22 Trim coveringHomologation 2

23 Trim coveringProduct durability all

17 Trim coveringMaterial type 2

46 Trim covering Source of material 6

18 Trim coveringProduct Shape 2 x
19 Trim coveringProduct size 2 x
42 Trim coveringProductivity 4

47 Trim coveringSource of production process/machine/tool 6

54 Trim coveringType of fabricate machine (part production) 7

55 Trim coveringType of Assembly machine (part production) 7

36 Pad foam maintenance factor 4 x x
38 Trim coveringThe setting of tolerance and standard of product 4

39 Trim coveringProduct safety 4

40 Trim coveringenvironmental factor (e.g. Noise and vibration, cleanliness) 4

41 Trim coveringmaintenance factor 4

53 Pad foam Production and assembly flow (step of production) 7 x

Decision of Design Specification
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Table 11.12 – A new seat co-design process for designing seat and seat production together through 
a rearrangement of design decisions (Continue 2) 

 

 

 

st
ag

e 

11 12 37 52 45 61 13 16 15 26 43 44 62 58 59 60 51 27 33 34 35 20

5 Frame ergonomic factor 2

25 Frame Homologation 3

48 Frame Type of fabricate machine (part production) 7

9 Frame Product durability all

1 Frame Material type 2

2 Frame Product Shape 2

8 Frame Legislation 2

24 Frame Crash safety 3

50 Frame Source of production process/machine/tool 7

7 Frame Additional function of seat (power seat, heater, etc.) 2

6 Frame key function of seat (e.g. foldable, lever,etc.) 2

31 Frame maintenance factor 4

4 Frame Appearance of product 2

32 Frame Productivity 4

30 Frame environmental factor (e.g. Noise and vibration) 4

29 Frame Product safety (e.g. Robustness) 4

3 Frame Product size 2

49 Frame Type of Assembly machine (part production) 7

57 Frame Detail specification of fabricating machine (part production) 8

28 Frame The setting of tolerance and standard of product 4

14 Pad foam Legislation 2 2 2 2
10 Pad foam Product Shape 2 2 2 2
11 Pad foam Product size 2 2 2 2
12 Pad foam Appearance of product 2 2 2 x
37 Pad foam Productivity 4 x 2 2 2 x
52 Pad foam Type of fabricate machine (part production) 7 x x
45 Pad foam Source of production process/machine/tool 6 x x x
61 Pad foam Detail specification of fabricating machine (part production) 8 x x x
13 Pad foam ergonomic factor 2 2 2
16 Pad foam Product durability all x x x
15 Pad foam Homologation 2 x
26 Pad foam Material type 3 x 2 2 2 x x
43 Frame  Source of material 6

44 Pad foam  Source of material 6 x x
62 Pad foam Material flow (transportation from-to supplier and customer) 8 x x x
58 Frame Detail specification of Assembly machine (part production) 8

59 Frame Material flow (transportation from-to supplier and customer) 8 x
60 Frame Production process standard and tolerance 8 x
51 Frame Production and assembly flow (step of production) 7 x
27 Pad foam Crash safety 3

33 Pad foam The setting of tolerance and standard of product 4 x x x 2 2 2 x
34 Pad foam Product safety (e.g. Robustness) 4 2 2 x
35 Pad foam environmental factor (e.g. Noise and vibration) 4 x x x x
20 Trim coveringAppearance of product 2 x
64 Trim coveringDetail specification of fabricating machine (part production) 8 x
65 Trim coveringDetail specification of Assembly machine (part production) 8 x
67 Trim coveringProduction process standard and tolerance 8 x
21 Trim coveringLegislation 2

22 Trim coveringHomologation 2

23 Trim coveringProduct durability all

46 Trim covering Source of material 6

18 Trim coveringProduct Shape 2 x
19 Trim coveringProduct size 2

42 Trim coveringProductivity 4

47 Trim coveringSource of production process/machine/tool 6

54 Trim coveringType of fabricate machine (part production) 7

55 Trim coveringType of Assembly machine (part production) 7

66 Trim coveringMaterial flow (transportation from-to supplier and customer) 8 x x x
56 Trim coveringProduction and assembly flow (step of production) 7 x x x x

17 Trim coveringMaterial type 2 x

63 Pad foam Production process standard and tolerance 8 x x x x x
36 Pad foam maintenance factor 4 x x 2 2 x x x x
38 Trim coveringThe setting of tolerance and standard of product 4 x
39 Trim coveringProduct safety 4

40 Trim coveringenvironmental factor (e.g. Noise and vibration, cleanliness) 4 x
41 Trim coveringmaintenance factor 4

53 Pad foam Production and assembly flow (step of production) 7 x x x x x

Decision of Design Specification
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Table 11.13 – A new seat co-design process for designing seat and seat production together through 
a rearrangement of design decisions (Continue 3) 

 

 

 

st
ag

e 

64 65 67 21 22 23 46 18 19 42 47 54 55 66 56 17 63 36 38 39 40 41 53

5 Frame ergonomic factor 2

25 Frame Homologation 3

48 Frame Type of fabricate machine (part production) 7

9 Frame Product durability all

1 Frame Material type 2

2 Frame Product Shape 2

8 Frame Legislation 2

24 Frame Crash safety 3

50 Frame Source of production process/machine/tool 7

7 Frame Additional function of seat (power seat, heater, etc.) 2

6 Frame key function of seat (e.g. foldable, lever,etc.) 2

31 Frame maintenance factor 4

4 Frame Appearance of product 2

32 Frame Productivity 4

30 Frame environmental factor (e.g. Noise and vibration) 4

29 Frame Product safety (e.g. Robustness) 4

3 Frame Product size 2

49 Frame Type of Assembly machine (part production) 7

57 Frame Detail specification of fabricating machine (part production) 8

28 Frame The setting of tolerance and standard of product 4

14 Pad foam Legislation 2

10 Pad foam Product Shape 2

11 Pad foam Product size 2

12 Pad foam Appearance of product 2

37 Pad foam Productivity 4

52 Pad foam Type of fabricate machine (part production) 7

45 Pad foam Source of production process/machine/tool 6

61 Pad foam Detail specification of fabricating machine (part production) 8

13 Pad foam ergonomic factor 2

16 Pad foam Product durability all

15 Pad foam Homologation 2

26 Pad foam Material type 3

43 Frame  Source of material 6

44 Pad foam  Source of material 6

62 Pad foam Material flow (transportation from-to supplier and customer) 8

58 Frame Detail specification of Assembly machine (part production) 8

59 Frame Material flow (transportation from-to supplier and customer) 8

60 Frame Production process standard and tolerance 8

51 Frame Production and assembly flow (step of production) 7

27 Pad foam Crash safety 3

33 Pad foam The setting of tolerance and standard of product 4

34 Pad foam Product safety (e.g. Robustness) 4

35 Pad foam environmental factor (e.g. Noise and vibration) 4

20 Trim coveringAppearance of product 2 2 2 2 2 x x 2 2 2 x
64 Trim coveringDetail specification of fabricating machine (part production) 8 x x x x x x
65 Trim coveringDetail specification of Assembly machine (part production) 8 x x x x x x
67 Trim coveringProduction process standard and tolerance 8 x x x x x
21 Trim coveringLegislation 2 2 2 2 x x 2 2 2 x
22 Trim coveringHomologation 2 2 x x
23 Trim coveringProduct durability all 2 2 2 x x 2 2 2
46 Trim covering Source of material 6 x
18 Trim coveringProduct Shape 2 2 2 2 x 2 x
19 Trim coveringProduct size 2 2 2 2 x x 2
42 Trim coveringProductivity 4 2 2 2 x x 2 2 2 2 2 x
47 Trim coveringSource of production process/machine/tool 6 x x x x
54 Trim coveringType of fabricate machine (part production) 7 x x x x x
55 Trim coveringType of Assembly machine (part production) 7 x x x x x
66 Trim coveringMaterial flow (transportation from-to supplier and customer) 8 x x x x
56 Trim coveringProduction and assembly flow (step of production) 7 x x x x x x

17 Trim coveringMaterial type 2 2 2 2 x 2 2 2 2 2 2

63 Pad foam Production process standard and tolerance 8 x
36 Pad foam maintenance factor 4

38 Trim coveringThe setting of tolerance and standard of product 4 2 2 2 x x 2 2 2 x
39 Trim coveringProduct safety 4 2 2 2 x 2 2
40 Trim coveringenvironmental factor (e.g. Noise and vibration, cleanliness) 4 2 2 2 x 2 2 2 2 x
41 Trim coveringmaintenance factor 4 2 2 2 2 x
53 Pad foam Production and assembly flow (step of production) 7

Decision of Design Specification
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11.5 SUMMARY OF FINDING FROM THE CASE STUDIES 

The two different case studies aim to refine the framework applicability and to demonstrate the 

implementation of this framework with simple and complex products. For these purposes, this 

section therefore concludes the refinements and benefits of the framework from the 

implementation of each case study. Furthermore, the key factors affected the framework 

performance are also summarised to support the implementation of manufacturing companies. 

 Conclusions of findings from Case Study 1 

The first case study was demonstrated the framework application with a small design and 

manufacturing business. Based on the substantial amount of information, the assessment methods 

within the framework phase one were systematically measured the frequency of design update of 

different products, assessed resource consumptions of their production system. Therefore, three 

product types and seven production processes which were feasible to gain benefit from a Co-

design process adoption.     

In the context of design practice, the design activities in the company were managed by the 

informal design processes. The design specifications were mainly subjected to a customer 

requirement and/or a decision of a single designer. Hence, PS designers barely have authority on 

the PS decision because PS design has only a few design changes and mainly resulted from 

product design decisions. Under this situation, the implementation of the second phase, especially 

the modelling design process, was rather difficult since a designer was a shortage of knowledge 

related a concept of a formal design process. However, this has shown the usefulness of the design 

decision allocation checklists in which a designer was able to utilise the design decision allocation 

checklist to form the formal design process. In addition, a designer also had difficulty during 

applying ecological identification, particularly for a product design format, because the provided 

criteria (a type of resources, i.e. material, energy and water) was more presented in the context of 

PS aspect. This therefore supported the refinement of criteria to be more understandable and 

applicable by a product designer. Apart from these, the developed design processes assessment 

approaches were able to identify co-design specification with the suggestion of the suitable 

method for co-design adoption.     

In summary, a company X has visualised how the simultaneous consideration of product and 

production system design should be applied in order to improve the resource efficiency of their 
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production system through the application of P&PS Co-design framework. It is however the 

application of a new co-design process is currently impossible due to the lack of basic design 

knowledge, the required improvement of information related to resource consumption and the 

empirical study of a new co-design process implementation, the designers, have recognised the 

resource-efficient benefit of equal consideration of product and production system specification. 

Besides, regarding the suggestion provided as the output of the case study, the senior designer 

will consider improving designers’ basic knowledge related to a formal design process and 

sustainability. the company in which this could consider as the initiation of design process 

improvement and enhance readiness for adopting P&PS Co-design process in future.  

 Conclusions of findings from Case study 2 

The second case study has demonstrated the framework application to the complex design product 

of large manufacturing companies. Even though the part of information (related production 

system) was not available due to the confidential nature of the data, the implementation of the 

first phase was effectively conducted using the provided design data from a collaborated company 

and the production system data from the literature. In detail, the assessment methods within the 

first phase systematically measured a frequency of seat design update, assessed resource 

consumptions of the seat production systems. As a result, the identified seat designs and their 

seven production processes which were potentially be improved by a Co-design process adoption.      

The assessment at the second phase mainly focused on design processes. In this case, the design 

activities in this company were managed by the formal and well-structured complex design 

processes. The collaborated seat design engineers were familiar with the well-structured design 

processes, design organisation and design management. Therefore, the implementation of the 

second phase of the framework was successfully applied due to the maturity of the design 

organisation and design knowledge. The usefulness of the developed methods within this second 

phase was presented through this case study. Nonetheless, in addition to the provided design 

decision allocation checklists, seat design engineers informed the additional information related 

to design specification, design position and design organisations to support the realisation of seat 

design and development processes. The table therefore should be able to make a record about a 

person-in-charge, specifically for the complex approach because of a variety of related design 

staffs. Thus, the developed design processes assessment approaches were able to identify co-
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design specification with the suggestion of the suitable method for co-design at distributed design, 

distributed control organisation. 

In summary, the developed complex design framework approach was supported design engineers 

to visualise how the potential benefit of resource efficient application can be realised through the 

identification of the collaborative P&PS design decisions and the adoption of a combined Co-

design process. This also provides the support to realise the resource-efficient benefit with a 

detailed implementation guide. However, this case study has underlined that it is a significant 

challenge if the automotive company is willing to replace the present seat design and development 

process with a new co-design process due to the complexity of design organisation (both internal 

and external automotive company) and the complication related information sensitivity. The 

companies were encouraged to improve P&PS information exchange, staffs’ knowledge (related 

SD, RE and P&PS design), collaboration between (internal and external) P&PS design 

organisations and design processes gradually. These improvements could be conducted through 

the application of the co-create strategy which will be further refined through an empirical study 

in the future research. Based on this output of the framework application, the engineering design 

manager realised the potential benefit of this proposed P&PS co-design approach and was aware 

of the concurrent designs of product and production system. Moreover, he has also suggested that 

the defined strategies within the Co-create phase will be useful to support the improvement of 

collaboration between design department (for both low and high experienced designer) and to 

initiate the new co-design process. This framework could be proposed as the countermeasure idea 

to improve the collaboration between P&PS design departments if the benefit of a trial 

implementation is presented.  

 Conclusions of findings from Case studies 

The two case studies have demonstrated the applicability and facilitated the refinement of the 

developed P&PS Co-design framework for the simple and complex product. Within these two 

different case studies, three factors which are design practice, collaboration and agreement on the 

Co-design objective, and availability and accessibility of information were denoted as the key 

factors supporting the successful implementation of the simple and complex design framework 

approach. 
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11.5.3.1 Design practice 

The current design practice in a company directly impacted on the effectiveness of the application 

of the framework in both steps of the design process assessment and a co-design process adoption. 

Without the implementation of a formal design process, a designer was unable to visualise and 

understand the need to improve design practices. Hence, a designer had the difficulty to 

implement the design processes assessment. In contrast, the implementation of the framework 

was effectively conducted with the support from various designers working under a formal design 

process. This also highlighted that, where the informal design process was used, PD and PSD 

designers need to understand a basic design knowledge related to their current work before 

providing further knowledge related P&PS design.   

11.5.3.2 Collaboration and agreement on the Co-design objective 

There is a challenge in applying any changes within an organisation. In this case, the 

implementation of P&PS co-design framework directly results at the change of design practice. 

Therefore, based on the case studies, one of the critical challenges is collaboration. The 

collaboration was needed to support during both the assessment phases and the Co-design creation 

phase. At the assessment application, the effective collaboration was requested to collect all 

necessary data in which it was found that the successful collaboration could be built on the 

agreement on the objective of the project. For the process creation, strengthening design 

collaboration seems to be manageable for a company that has the simple design process. This is 

because the small number of related persons worked in a central design and central control 

organisation. While, at the complex design process structure, a complex product was designed by 

various design teams from a single company or multiple companies. In this case, the creation of 

the co-design process is very challenging, especially to strengthen the collaboration within an 

organisation and across the supply chain. 

11.5.3.3 Availability and accessibility of information  

The availability and accessibility of information were affected by the success of the framework 

implementation. The decision related the investment and improvement of the new design process 

required a correct result of the assessments which critically depended on the availability and 

accessibility of information. Based on the case studies, it appeared that the unavailability of 

information was likely to occur at a small company due to a lack of well-organised design practice. 
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While, at a large company, the information was documented and available, but inaccessible due 

to the data confidential issue. Consequently, this factor is substantially affected by the 

successfulness of the framework implementation. Particularly where the complex design 

processes were applied, this factor could be a considerable challenge to enable information 

exchange between design teams, design sections, particular between different companies. 

11.6 CHAPTER SUMMARY  

This chapter reported two case studies applied in this research to validate and refine the P&PS 

Co-design framework. The first case study demonstrated the simple design framework approach 

to support a packaging design and manufacturing company, which frequently update the design 

of the product but have a small change in a production system. This company therefore was able 

to visualise the benefit of co-design adoption, to improve their design practice and to adopt co-

design through an insignificant change of the design process. For the second case study, with the 

supported from an automotive company, the complex design framework approach was 

demonstrated through the automotive seat design and the seat manufacturing chain where designs 

of the seat and its production system were often updated. These case study demonstrated the 

effective implementation of the proposed complex approaches and enable the ability to visualise 

and gain the benefit of co-design adoption through gradual changes of design practice.     

In sum, these case studies have shown how the developed framework was able to support the 

different manufacturers to identify the benefit of co-design and transform the existing design 

processes into a single co-design. The findings of the case studies are very useful in the refinement 

of the applicability of the developed methods within this framework. 
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 CONCLUDING DISCUSSIONS 

12.1 INTRODUCTION 

This chapter summarises the main research contributions and identifies the new knowledge and 

key findings generated by the research. The main sections of the chapter discuss the overall 

achievements of the research in line with defined objectives as well as any limitations of work 

undertaken.   

12.2 RESEARCH CONTRIBUTIONS 

In the areas of integrated design, sustainable design and resource efficient manufacturing, the 

fundamental contributions of this research have been as follows: 

i. Introduction of a new approach that builds upon the existing ID approaches which focus on 

the integration between two independent P&PS design processes through information sharing 

and exchange, by defining and implementing a single concurrent P&PS co-design process to 

cope with the increasing complications in design, especially those related to resource 

efficiency considerations. 

ii. Development of the P&PS co-design framework to enable the ability to visualise the 

interrelations between product and production system design activities based on the resource-

efficient consideration through the identification of the potential resource-efficient benefits, 

the specification of design decisions and the establishment of a collaborative design process.  

iii. Generation of a new method to identify the potential benefits of implementing a collaborative 

design process through the quantitative measurement of the frequency of design updates and 

level of resource consumption by production processes. 

iv. Creation of a novel method to specify the design decisions which impact on the resource 

consumption of the production system by considering the environmental factors such as 

energy, water consumption and material waste generated. 

v. Definition of the three strategies to support the implementation of a new single co-design 

process for manufacturing companies with varying design complexities and requirements. 
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This also includes a long-term plan, implementation guide, and an additional evaluation 

method supporting collaboration improvement between design processes. 

vi. Development of the P&PS Co-design prototype software tool using Microsoft Excel and 

Visual Basic Programming Language to support and demonstrate the implementation of the 

proposed framework.   

vii. Demonstration of the applicability of the proposed framework through industry-based case 

studies, highlighting the potential for improvement in resource efficiency.  

12.3 CONCLUDING DISCUSSIONS 

Based on the research scope outlined in chapter 2, the major results from various research 

activities are summarised in the following subsections. 

 Review of the state-of-the-art and current practice in the design of the product and 

production system 

As a foundation for this research, a review of the state-of-the-art in independent and integrated 

design approaches to product and production system design was undertaken to understand the 

basic knowledge, to explore the design evolution and to identify current gaps in ID concepts. This 

review covered the literature related the existing concepts, approaches, methods, tools and current 

practices as well as the recent shortcomings reported in PD, PSD and ID. The literature published 

under independent design processes provides a basic design knowledge but lacks clear guidelines 

supporting design integration between P&PS. Significantly, a need for new approaches which 

include considerations of contemporary requirements such as the critical environmental issues 

(e.g. resource efficiency), changeability and interdisciplinary collaboration has also been 

highlighted by many publications in this subject area.  

The review of the existing integrated design concepts highlighted that majority of these were 

originated, developed and applied to achieve the traditional and narrow targets such as improving 

development time, improving manufacturability and reducing cost. Moreover, most of the studies 

focused mainly at an enhancement of overlapped processes, cross-functional teams and 

information sharing, without wider considerations for long-term objectives such as improving the 

resource efficiency. For these reasons, such approaches are widely adopted in academia but not 

for industrial applications. In fact, the adoption of integrated design approaches has been declining, 

owing to the failure of any significant observed benefits. It has been found that the improper 
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implementation without a structured approach, inaccessibility of information, and inability to 

manage complex processes are the main causes of unsuccessful ID applications. In response, 

several researchers have highlighted that ID approaches should be organised under the formal and 

structured design processes and initiated with a clear objective and mission, and they should be 

upgraded to promote a more interdisciplinary, collaborative and concurrent approach to design. 

 The need for a single P&PS co-design process  

The ever-increasing range of complexities and demands on design processes for P&PS 

necessitates a more flexible and responsive approach to undertaking various design activities.  As 

stated, the traditional ID approaches, which were originated to achieve specific targets such as 

reduction of development time and cost, are too rigid to for the unavoidable needs of sustainability 

applications.  In addition, the current application of ID approach has mainly supported a 

unidirectional information sharing (i.e. from product to production system design). Hence, there 

is a need to transform the present integration practices towards a single co-design process which 

support bi-directional collaborative design activities.    

The need to consider sustainability considerations during design is another driver for the 

development of a more collaborative multidisciplinary approach to the design of P&PS. In 

particular, in the context of resource efficiency, the current shortcomings are associated with lack 

of simple guidance, late consideration of these issues during design processes, inability to 

instantly assess the effect of change between designs of P&PS, absence of multidisciplinary 

knowledge and a shortage of methods to consider the trade-off among multiple resources (e.g. 

energy versus water consumption). This highlight a need for a new sustainable design solution 

for P&PS in which any potential benefits could be readily and seamlessly assessed during the 

early stage of design processes.  

 A framework for co-designing product and production system to support resource-

efficient manufacturing 

This research has highlighted the need to implement a single co-design process in response to the 

increasing design requirements especially those related to conserving natural resources. Although 

this single process has been promoted as an approach with many potential benefits, it is also 

accepted that not every manufacturer will benefit from its adoption. This is because each product 

type requires different design focus on resource efficiency, possesses varying interrelationships 
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between its key design decisions, and is updated with different frequency. To provide a structured 

approach for assessing the suitability of co-design as well as guidelines for its implementation, 

the P&PS Co-design framework which comprises of four phases has been developed. The first 

phase provided the method to determine whether a company can gain any benefits from the 

adoption of a new co-design process, before committing further efforts and investments. If the 

adoption of the co-design process is assessed to be beneficial, then the current separated design 

processes of P&PS are decomposed to identify the co-design decisions through the ecological 

interrelation assessment in the second phase. Similarly, based on the results of the previous two 

phases, the third phase offers the three possible strategies for supporting creation and 

implementation of a new single P&PS process for companies with varying size, type and 

capabilities. These strategies could also be used by a company as the gradual step-wise transition 

from its current independent P&PS design processes to a single co-design process. Finally, the 

fourth phase of the framework is supported through development of a software toolkit to underpin 

the implementation of P&PS co-design process. 

 Strategies for creation and implementation of a single co-design process 

Due to various design requirements related to different product types, every manufacturer will 

need to adopt a different approach to the implementation of the co-design process to achieve 

resource-efficient manufacturing. This research has utilised the four key characteristics of 

integrated design (see Section 3.4.1) to develop three optional strategies to support a range of 

design and manufacturing scenarios.  

In a case where the interrelations between product and production system design is low, this P&PS 

co-design can be performed through the ‘Awareness’ strategy. Through this first strategy, a 

company can operate P&PS co-design through an improved knowledge and information exchange. 

Designers may need to be reskilled to gain a wider knowledge of product, production process and 

sustainability, and information systems must be improved to unlock the accessibility of 

information between product and production system designers. 

Secondly, the ‘Association’ strategy is developed to support a co-design creation in cases where 

the interrelation between product and production system designs are relatively complex. In this 

strategy, only a partial transformation of a subset of the independent P&PS design processes into 

a single co-design process is recommended.  Finally, the ‘Adaptation’ strategy was defined to 

support a company where the interrelation between P&PS design is critically high because of the 
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number of interdependencies between many co-design decisions within the design processes. 

Through this strategy, reskilling of designers are required to implement a new single co-design 

process.     

Any changes to a design process represent a significant challenge, in particular, in the case of 

Adaptation strategy which necessitates changes in design practices (i.e. collaboration procedure 

and design process), facilities (i.e. information sharing system) and resources (i.e. designers’ 

skills). Thus, the creation of a single co-design process should be considered as a long-term 

mission and managed through gradual changes.  

 Development of a toolkit supporting the P&PS Co-design framework implementation 

The range of assessments and analysis included in the P&PS Co-design framework requires a 

significant amount of data to be collected, processed and presented to different users. Therefore, 

this research has developed the P&PS Co-design prototype software tool to support and simplify 

the application of the various steps within this framework. The tools consist of a number of 

specially designed screens to collect relevant information from both product and production 

system designers. This data is then processed by the PPC tool, using the functional relationships 

and equations outlined in Chapters 8 and 9. Finally, the results in the form of specially designed 

tables, charts and statement are presented to users. Where possible, a number of related results 

from analysis and assessments are presented side-by-side in the form of a result sheet (or a 

dashboard) to aid with decision making (see Figure 10.16). While this prototype tool could 

effectively assist the application of P&PS framework, its application for commercial use requires 

significant upgrading and improvements, e.g. improvement of data collection to the realisation of 

the actual design process in practice. Finally, the PPC tool could be used in conjunction with 

several commercial and/or research tools to improve its overall functionality, as outlined in 

Chapter 10. 

 Demonstration of the applicability of the P&PS Co-design framework through case 

studies 

Two case studies were conducted to demonstrate the implementation of the proposed P&PS Co-

design framework. These represent examples of a simple and a complex product. 

The first case study was applied to a small-medium enterprise which produced a wide range of 

packaging products that are frequently updated. The application of the first phase P&PS co-design 
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framework helped the company to identify the three types of products and seven production 

processes which potentially gained benefit from the adoption of a co-design process. During the 

second phase, the difficulties of company staff to use the modelling design tables assisted the 

author to improve the design of these tables.  Moreover, this also highlighted that a practical and 

successful application of the framework is based on the availability of relevant data related to the 

formal design processes, the knowledge related to the design of production processes and their 

resource efficiency, and the common understanding of co-design objective among designers. This 

case study also resulted in the refinement of the ‘Association’ strategy throughout the research 

based on the specific requirements of a small and medium enterprise. 

The second case study was conducted in collaboration with a large company which designed and 

manufactured a more complex product (i.e. automotive seat). Due to time constraints, the 

implementation of the framework was limited with a complex sub-assembly of the overall product 

which is designed jointly with another manufacturing company.  Hence, this case study has shown 

the applicability of the framework, especially during the first two phases, across two different 

companies. This case study has also underlined the complexity and difficulty in the creation and 

implementation of a single co-design process within larger companies because of the required 

large-scale changes of design organisations. These changes included a reskilling of P&PS 

designers, changes to organisational structures and processes, an investment of a new design tool 

and the provision of seamless access to relevant knowledge and information across companies. 

In this case, the close collaboration and the agreement on the co-design objective among design 

teams were highly significant to the efficient implementation of the framework.    

 Toward a single P&PS Co-design process for supporting resource efficiency 

Designers are facing a higher complication in their day-to-day activities due to the increasing 

numbers of unavoidable design requirements such as the demand for a higher frequency of 

product updates, shorter product lifetime and environmental considerations as well as the rapid 

emergence of advanced technologies. In response, the requirement for further integration between 

design processes has been commonly reported as one of the most urgent challenges facing the 

design research community. Therefore, this research has proposed the evolution of current ID 

between two independent design processes into a single co-design process. Unlike other existing 

ID concepts such as CE and DfM, P&PS co-design does not simply try to apply PSD 

considerations as a manufacturability constraint in PD. The P&PS co-design concept aims to 
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improve the effectiveness of complicated design decisions making and facilitate the potential 

sustainability benefits such as those related to resource efficiency consideration. Therefore, the 

manufacturer can gain more benefits from early consideration of sustainable design concepts 

instead of incremental benefits which typically achieved through current ID and SD applications.  

As mentioned in the previous sections, many companies might currently not be ready for such 

radical transformational approach towards a single P&PS co-design process due to reliance to 

legacy systems, associated efforts and costs, and the level of required reskilling of their designers. 

In addition to these, a company might encounter many difficulties in attempting to strengthen the 

collaboration between teams which used to be in conflict due to ineffective redesign management 

procedures. Hence to ensure long-term success, a company must make a firm commitment to 

encourage their designers to clearly understand the specific needs and main objectives for the 

adoption of P&PS Co-design.  

Apart from the rapid increase in product updates and environmental challenges, in the near future, 

manufacturing business must be in the position to track and apply the emerging manufacturing 

technologies such as new smart materials, process automating an industrial robot. The concepts 

associated with Industry 4.0, Internet of Things and Big data are all indicative of a requirement 

for an innovative and well-structured P&PS co-design process. Hence, the earlier a company 

adopt such P&PS Co-design, the better they can cope with these emerging challenges and 

opportunities in the future.       

12.4 LIMITATIONS OF THIS RESEARCH 

The concluding discussions and research contributions have underlined the strength of this 

research and explained how this research had satisfied the aim and objectives identified at the 

start of this PhD study. Nonetheless, time constraints and data limitation have resulted in several 

limitations to this research which is briefly described below: 

i. Unavailability of relevant data to implement P&PS co-design framework has been identified 

as one of the main obstacles to its application.  

ii. The research has not considered the operational difficulties associated with very complex 

products that are designed using a distributed structures, such as those designed using V- 

model (Sheldrick 2015) commonly utilised by automotive and aeronautical sectors. In such 

applications, developing a single P&PS co-design approach necessitates contributions and 
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collaboration among a large number of stakeholders who are managed and incentified by 

different organisations and companies within a product supply chain. 

iii. Significant improvement in overall functionality of PPC prototype software tool is required 

for the commercial application.  

iv. Furthermore detail case studies are required to refine and strengthen the application of the 

proposed P&PS co-design framework. For example, an additional case study should be 

conducted with a sensitive and complex product, such as a chassis or an engine of aircraft, 

which is critically restricted by their specific characteristics such as product safety, high risk, 

high quality and complex standards. 
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 CONCLUSIONS AND FUTURE WORK 

13.1 INTRODUCTION 

This chapter reports the key conclusions of the research in this thesis. The research conclusions 

are summarised in the initial section. Then based on these conclusions, the potential areas of the 

future studies are suggested as the closing section of the thesis.    

13.2 CONCLUSIONS 

The main conclusions drawn from the research are : 

i. The initial review of the literature related to product and production system design practices 

found that although the existing design approaches provide sufficient fundamental 

knowledge and formal structures to support various design decisions, these suffer from lack 

of flexibility and responsiveness to deal with design challenges, in particular, those 

associated with the most efficient use of resources in manufacturing applications. In such 

cases, the concurrent consideration of influences of key decisions during products and 

production systems design processes is of paramount importance to ensure potential gains 

due to one improvement is not cancelled by changes required in the proceeding and/or 

subsequent activities.   

ii. The ever-increasing complexities of product and production system design requirements 

within contemporary advanced manufacturing applications also demand a new integrated 

approach to design. In this context, the conventional concepts of integrated design which 

mainly focus on information sharing and exchange between two independent processes for 

product and production system design, do not meet the real need for a multidisciplinary, 

collective and cooperative approach to design.  

iii. The transformation from existing independent design processes into a single combined co-

design process, as proposed by this research, required a substantial amount of long-term 

investment in reskilling designers, improving collaboration between newly formed design 

teams and novel information and knowledge management tools and techniques. Thus, the 

manufacturing companies need to ensure feasibility, define potential benefits from P&PS 
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Co-design adoption. Therefore, this research asserts that a P&PS Co-design is more useful 

in an application with frequently design updates in both products and their associated 

production systems, and in cases with substantial potentials for improving overall resource 

(material, water and energy) efficiency.  

iv. The first phase of the proposed P&PS co-design framework, namely the Co-initiate, aims to 

systematically generate the supporting information and knowledge required to justify the 

adoption of this novel approach. While a wide-ranging consideration (energy, water, material) 

regarding the current resource efficiency of production processes has been included, lack of 

data availability may necessitate simplification of these considerations based on the most 

critical resource within a particular application. 

v. The research has recognised that there are numerous differences in existing design processes 

based on product and/or production requirements in different manufacturing applications as 

well as company sizes, types and capabilities. In this context, the development of a generic 

‘one-size-fits-all’ approach has been replaced with a more flexible and gradual approach in 

the second and third phases of P&PS co-design framework (i.e. Co-Specify and Co-create) 

through the definition of 3A strategies to suit the requirements within various applications. 

vi. There are many challenges to realise and implement the P&PS co-design process in practice. 

In author’s viewpoint, the two most significant challenges in driving this novel concept are 

the readiness/willingness of a manufacturing company to adopt P&PS co-design due to its 

many potential benefits, and gradual implementation of new knowledge and information 

sharing software tool that support a collaborative and cooperative approach to design 

activities, similar to that of the prototype PPC software tool generated by this research. 

vii. While there are a wide range of design considerations impacting the resource efficiency such 

as material selection, product shape and fabricating process has been included in the P&PS 

co-design framework, the results from the second case study show that there may be other 

considerations such as product safety and ergonomics that influences the overall resource 

efficiency.  In such cases, these additional considerations need to be added to the 

interrelationship assessment checklists.   

viii. The distinctly different nature of two case studies based on a simple and a complex product 

highlighted different changes and transformations required to implement a single co-design 

process. While in the case of simple product design, the focus should be on improvement of 

knowledge and information flow, in the case of complex products the focus should be on the 
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development of new collaboration activities, reorganising and restructuring design processes, 

and reskilling of existing product and production system designers.  

ix. It is recommended that for the effective implementation of the P&PS co-design framework, 

an appropriated P&PS Co-design project manager must be appointed. In this context, such 

project manager should not only have a comprehensive understanding of existing design 

processes and be familiar with the company’s change management procedures but also be 

supported by a team of internal and external designers, engineers and planners from various 

stakeholders within a product lifecycle. 

13.3 FUTURE WORK 

Similar to other research activities, this research was undertaken based on the previous discovery 

by other researchers.  In this context, the authors have identified the following extension to the 

scope of the research reported in the thesis for future researchers in this subject area.  

 A further empirical study investigating the implementation of the co-design process in 

manufacturing practice 

Due to the time constraints, chapter 11 highlighted the limitations of the conducted case studies. 

These two case studies were devised to demonstrate the framework implementation and 

applicability of proposed research concepts. Further empirical case studies based on different 

products and company sizes/types are required to ensure and highlight the effectiveness of the 

three recommended strategies. Such case studies may lead in refining the steps included within 

various phases of P&PS co-design framework.  

 Extension of a range of criteria adopted in a Co-design process  

The utilisation of this P&PS co-design framework enables an ability to assess changes between 

designs of a product and its production system with the aim to enhance resource efficiency. Thus, 

this framework has incorporated environmental considerations into the early stages of design 

processes so that manufacturers and designers could maximise the potential benefits. However, 

the range of design decision impacting ecological benefits from co-design consideration may have 

to be extended and, in some cases, tailored to the specific requirement of a product and/or a 

company. Also, other potential benefits from such a co-design approach such as reduce time-to-
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market and design costs, improved product customisation, and the inclusion of social 

considerations in product and production system design could be further explored.  

 Expansion of co-design to engage the consumers, product designers and production 

system designers  

This research has proposed the P&PS co-design framework to cope with the increasing design 

challenges such as complexity in designing resource-efficient P&PS. In addition to this, the 

literature review also discovered that there was also a research opportunity for a holistic co-design 

when all consumers, designers, engineers, and related stakeholders collaborated to achieve all 

design requirements and constraints. The collaboration between end users and designer has been 

widely recognised through a concept of participatory design (or user experience design) which 

aims at the better fulfilment of the consumer needs which may also lead to improving overall 

sustainability within manufacturing applications. The inclusion of consumer into the proposed 

P&PS co-design process is identified by the author as an essential area of expansion for this 

research.   

 Development of the software tools supporting the operation of a single P&PS co-design 

process 

The proposed P&PS Co-design framework aims to assist a manufacturing company in identifying 

various opportunities in improving the resource efficiency of their products and production 

activities. To effectively realise this objective, designers should be able to visualise, manage and 

utilise a wide range of P&PS information and knowledge which needs to be collected, 

documented, and properly presented to meet the requirement of each co-design activity. In 

response, there is a need for further development of the software tool supporting co-design 

decision trade-off and co-design concept selection. Such new software capabilities must focus on 

highlighting the impact of changes between the interdependent P&PS design specification This 

might be realised by the improvement of the existing CAD software to not only present the detail 

of product design but also to outline the interrelation of product and its related production 

specification.  Furthermore, current Life Cycle Assessment software is predominantly used to 

support product design decisions, which highlight a need to extend the scope of their functionality 

as well as the relevant standard Life Cycle Assessment data to support production process design.  
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APPENDIX I IDEF0 OF PRODUCT DESIGN PROCESS 

This appendix contains six pages involving three levels of product design process which are: 

Page A2 Top level of the product design process (Level 1) 

Page A3  Four design stages within the product design process (Level 2) 

Page A4 Four design steps within the concept development stage (Level 3) 

Page A5 Four design steps within the embodiment design stage (Level 3) 

Page A6  Four design steps within the detail design stage (Level 3) 

Page A7 Four design steps within testing and refinement stage (Level 3) 
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APPENDIX II IDEF0 OF PRODUCTION SYSTEM 

DESIGN PROCESS  

This appendix contains six pages involving three levels of the production system design process 

which are: 

Page A9 Top level of the production system design process (Level 1) 

Page A10  Four design stages within the production system design process (Level 2) 

Page A11 Four design steps within the conceptual system stage (Level 3) 

Page A12 Four design steps within the system configuration design stage (Level 3) 

Page A13 Four design steps within the detail system design stage (Level 3) 

Page A14 Three design steps within system testing and refinement stage (Level 3) 
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APPENDIX III PACKAGING CASE STUDY 

This appendix illustrates the additional data, and result screens from the application of the simple 

design framework approach demonstrated in section 11.3 of this thesis. The contents of the 

appendix are as follows: 

A3.1 The completed P&PS Co-design framework worksheets 

A3.2 The completed calculation of resource consumption assessment 

A3.3 Checklist for selecting resource efficient design strategy for product design 

A3.4 Checklist for selecting resource efficient design strategy for production system design 

A3.5 P&PS Design interrelation assessment 

A3.6 Result of P&PS design process interrelation assessment from PPC software 
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A3.1 The completed P&PS Co-design framework worksheets 
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A3.2 The complete calculation of resource consumption assessment  
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A3.3 Checklist for selecting resource efficient design strategy for product design 

 

 

 

 

 

 

 

 

Resource efficient design strategy for product design

Please input 

‘Product/Component name’ if 

a strategy is applicable

Improve PS 

candidate (✓) 

or not ( )

i.      Dematerialise product service n/a -

ii.      Consolidate material variety (Homogenous material/Standardised component)n/a -

i.      Restructuring product n/a -

ii.      Size reduction (near net shape) Packaing , label and other ✓

iii.      Light weighting Packaing , label and other ✓

iv.      Optimise quantity of component n/a -

i.      Selection of recyclable materials Packaing , label and other 

ii.      Selection of reuse/remanufactured component n/a -

iii.      Selection of low impact materials (non-toxic, 

responsible sourced)
Packaing , label and other 

iv.      Consider material longevity and durability 

(corrosion resistant, appropriate to use life)
Packaing , label and other 

i.      Avoid coating/lamination Packaing , label and other ✓

ii.      Limited use of adhesives Packaing , label and other ✓

 Energy efficiency during use (efficient mechanism and 

operation of product)
n/a -

 Considering energy type and source during use (from 

safe and renewable sources)
n/a -

 Water efficiency during use (efficient mechanism and 

operation of product, reduce wastewater)
n/a -

 Considering quality of discharge water after use n/a -

 M
at

e
ri

al

Applicable strategies for product

 Material Elimination

 Material Minimisation

 Material Substitution

 Material separation

En
e

rg
y 

 Energy source substitution

 Energy Minimisation

W
at

e
r

 Water Minimisation

 Wastewater treatment
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A3.4 Checklist for selecting resource efficient design strategy for product design 

 

 

 

 

 

 

Resource efficient strategy for production system design

Applicable SD approaches for production system

Please input 

‘Product/Component name’ if 

a strategy is applicable 

Improve PS 

candidate (✓) 

or not ( )

i.       Near net shape Packaing , label and other ✓

ii.       Waste in process minimisation Packaing , label and other ✓

iii.       Selection of process which produce low/zero 

waste
Packaing , label and other ✓

iv.       Efficient packaging (minimised packaging 

materials and volume of packages)
Packaing , label and other 

v.       Adoption of remanufacturing process Packaing , label and other 

vi.       Adoption of recycling process Packaing , label and other 

vii.   Adoption of take back and collection methods

i.       Minimise operation (Eliminate unnecessary 

operation)
Packaing , label and other ✓

ii.       Selection of process which consume less energy 

(energy efficiency in production process)
Packaing , label and other ✓

iii.       Selection of energy type and source used in 

production (safe and renewable source)
Packaing , label and other 

iv.       Transportation method Packaing , label and other 

v.       Geographical location of manufacturing, 

operations and suppliers (Shortening Distance of 

transportation)

Packaing , label and other 

i.       Waste water minimisation n/a -

ii.       Contaminated/Grey water minimisation n/a -

iii.      Water recycling n/a -

Material

Water 

Energy
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A3.5 P&PS Design interrelation assessment 

  

 

 

 

Interrelation assessment sheet - Product design
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Interrelation assessment sheet - Production system design
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A3.6 Result of P&PS design process interrelation assessment from PPC software  
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A3.6 Result of P&PS design process interrelation assessment from PPC software 

(continue) 
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APPENDIX IV AUTOMOTIVE SEAT CASE STUDY 

This appendix illustrates the additional data, and result screens from the application of the simple 

design framework approach demonstrated in section 11.4 of this thesis. The contents of the 

appendix are as follows: 

A4.1 The completed P&PS Co-design framework worksheets 

A4.2 Data supporting resource consumption assessment  

A4.3 The complete calculation of resource consumption assessment 

A4.4 Checklist for selecting resource efficient design strategy for product design 

A4.5 Checklist for selecting resource efficient design strategy for production system design 

A4.6 P&PS Design interrelation assessment (seat frame) 

A4.7 P&PS Design interrelation assessment (seat pad foam)  

A4.8 P&PS Design interrelation assessment (seat trim cover) 

A4.9 The original P&PS Design processes supporting creation of a single process 
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A4.1 The completed P&PS Co-design framework worksheets 
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A4.2 Data support resource consumption assessment  
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A4.3  Data supporting resource consumption assessment (continue) 
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A4.3 The complete calculation of resource consumption assessment (continue)  
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A4.4 Checklist for selecting resource efficient design strategy for product design 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Resource efficient design strategy for product design

Please input 

‘Product/Component name’ if a 

strategy is applicable

Improve PS 

candidate (✓) 

or not ()

i.      Dematerialise product service n/a -

ii.      Consolidate material variety (Homogenous material/Standardised component)Frame, Pad foam, Trim covering ✓

i.      Restructuring product Frame, Pad foam, Trim covering ✓

ii.      Size reduction (near net shape) Frame, Pad foam, Trim covering ✓

iii.      Light weighting Frame 

iv.      Optimise quantity of component Frame, Trim covering ✓

i.      Selection of recyclable materials Frame, Pad foam, Trim covering ✓

ii.      Selection of reuse/remanufactured component Frame 

iii.      Selection of low impact materials (non-toxic, 

responsible sourced)
Frame, Pad foam, Trim covering ✓

iv.      Consider material longevity and durability (corrosion 

resistant, appropriate to use life)
Frame, Pad foam, Trim covering 

i.      Avoid coating/lamination Frame, Trim covering ✓

ii.      Limited use of adhesives Trim covering ✓

 Energy efficiency during use (efficient mechanism and 

operation of product)
Seat -

 Considering energy type and source during use (from safe 

and renewable sources)
n/a -

 Water efficiency during use (efficient mechanism and 

operation of product, reduce wastewater)
n/a -

 Considering quality of discharge water after use n/a -

En
e

rg
y 

 Energy Minimisation

 Energy source substitution

W
at

e
r

 Water Minimisation

 Wastewater treatment

Applicable strategies for product

 M
at

e
ri

al

 Material Elimination

 Material Minimisation

 Material Substitution

 Material separation
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A4.5 Checklist for selecting resource efficient design strategy for production system 

design 

 

 

 

 

 

 

 

 

Resource efficient strategy for production system design

Applicable SD approaches for production system

Please input 

‘Product/Component name’ if 

a strategy is applicable 

Improve PS 

candidate (✓) 

or not ( )

i.       Near net shape Trim covering ✓

ii.       Waste in process minimisation
Frame, Pad foam, Trim 

covering
✓

iii.       Selection of process which produce low/zero 

waste

Frame, Pad foam, Trim 

covering
✓

iv.       Efficient packaging (minimised packaging 

materials and volume of packages)

Frame, Pad foam, Trim 

covering, Seat


v.       Adoption of remanufacturing process Frame 

vi.       Adoption of recycling process
Frame, Pad foam, Trim 

covering
✓

vii.   Adoption of take back and collection methods Seat 

i.       Minimise operation (Eliminate unnecessary 

operation)
n/a -

ii.       Selection of process which consume less energy 

(energy efficiency in production process)
Pad foam ✓

iii.       Selection of energy type and source used in 

production (safe and renewable source)

Frame, Pad foam, Trim 

covering
✓

iv.       Transportation method
Frame, Pad foam, Trim 

covering, Seat


v.       Geographical location of manufacturing, 

operations and suppliers (Shortening Distance of 

transportation)

Frame, Pad foam, Trim 

covering


i.       Waste water minimisation n/a -

ii.       Contaminated/Grey water minimisation n/a -

iii.      Water recycling n/a -

Material

Energy

Water 
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A4.6  P&PS Design interrelation assessment (seat frame) 

 

1. Source of material 

2. Type of fabricate machine (part production)

3. Detail specification of fabricating machine (part 

production)

4. Type of Assembly machine (part production)

5. Detail specification of Assembly machine (part 

production)

6. Source of production process/machine/tool

7. Material flow (transportation from-to supplier and 

customer)

8. Production and assembly flow (step of production)

9. Production process standard and tolerance

1. Source of material 

2. Type of fabricate machine (part production)

3. Detail specification of fabricating machine (part 

production)

4. Type of Assembly machine (part production)

5. Detail specification of Assembly machine (part 

production)

6. Source of production process/machine/tool

7. Material flow (transportation from-to supplier and 

customer)

8. Production and assembly flow (step of production)

9. Production process standard and tolerance
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A4.7 P&PS Design interrelation assessment (seat pad foam) 

 

1. Source of material 

2. Type of fabricate machine (part production)

3. Detail specification of fabricating machine (part production)

4. Type of Assembly machine (part production)

5. Detail specification of Assembly machine (part production)

6. Source of production process/machine/tool

7. Material flow (transportation from-to supplier and customer)

8. Production and assembly flow (step of production)

9. Production process standard and tolerance

1. Source of material 

2. Type of fabricate machine (part production)

3. Detail specification of fabricating machine (part production)

4. Type of Assembly machine (part production)

5. Detail specification of Assembly machine (part production)

6. Source of production process/machine/tool

7. Material flow (transportation from-to supplier and customer)

8. Production and assembly flow (step of production)

9. Production process standard and tolerance
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A4.8 P&PS Design interrelation assessment (seat trim covering) 

 

1. Source of material 

2. Type of fabricate machine (part production)

3. Detail specification of fabricating machine (part production)

4. Type of Assembly machine (part production)

5. Detail specification of Assembly machine (part production)

6. Source of production process/machine/tool

7. Material flow (transportation from-to supplier and customer)

8. Production and assembly flow (step of production)

9. Production process standard and tolerance

1. Source of material 

2. Type of fabricate machine (part production)

3. Detail specification of fabricating machine (part production)

4. Type of Assembly machine (part production)

5. Detail specification of Assembly machine (part production)

6. Source of production process/machine/tool

7. Material flow (transportation from-to supplier and customer)

8. Production and assembly flow (step of production)

9. Production process standard and tolerance
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A4.9 The original P&PS Design processes supporting creation of a single process 

 

st
ag

e 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 Frame Material type 2 x x x
2 Frame Product Shape 2 x x x x
3 Frame Product size 2 x x x x x x
4 Frame Appearance of product 2 x
5 Frame ergonomic factor 2

6 Frame key function of seat (e.g. foldable, lever,etc.) 2 x
7 Frame Additional function of seat (power seat, heater, etc.) 2 x
8 Frame Legislation 2 x x x
9 Frame Product durability all x x
10 Pad foam Product Shape 2 x x
11 Pad foam Product size 2 x x
12 Pad foam Appearance of product 2 x x x
13 Pad foam ergonomic factor 2 x
14 Pad foam Legislation 2

15 Pad foam Homologation 2 x x x
16 Pad foam Product durability all x x x x
17 Trim coveringMaterial type 2 x x
18 Trim coveringProduct Shape 2 x x x x
19 Trim coveringProduct size 2 x x x
20 Trim coveringAppearance of product 2 x x x x x
21 Trim coveringLegislation 2 x x
22 Trim coveringHomologation 2 x
23 Trim coveringProduct durability all x x
24 Frame Crash safety 3 x x x x x
25 Frame Homologation 3

26 Pad foam Material type 3 x x x x
27 Pad foam Crash safety 3 x
28 Frame The setting of tolerance and standard of product 4 x x x x x x x
29 Frame Product safety (e.g. Robustness) 4 x x
30 Frame environmental factor (e.g. Noise and vibration) 4 x x x
31 Frame maintenance factor 4 x x x x x
32 Frame Productivity 4 x x x x
33 Pad foam The setting of tolerance and standard of product 4 x x x x
34 Pad foam Product safety (e.g. Robustness) 4

35 Pad foam environmental factor (e.g. Noise and vibration) 4 x x x x
36 Pad foam maintenance factor 4 x x x x x
37 Pad foam Productivity 4 x x
38 Trim coveringThe setting of tolerance and standard of product 4 x x x x
39 Trim coveringProduct safety 4 x
40 Trim coveringenvironmental factor (e.g. Noise and vibration, cleanliness) 4 x x
41 Trim coveringmaintenance factor 4 x
42 Trim coveringProductivity 4 x x x
43 Frame  Source of material 6 x
44 Pad foam  Source of material 6

45 Pad foam Source of production process/machine/tool 6 x x
46 Trim covering Source of material 6 x
47 Trim coveringSource of production process/machine/tool 6 x x x
48 Frame Type of fabricate machine (part production) 7 x x x x
49 Frame Type of Assembly machine (part production) 7 x x x x
50 Frame Source of production process/machine/tool 7 x x x
51 Frame Production and assembly flow (step of production) 7 x x x
52 Pad foam Type of fabricate machine (part production) 7 x x
53 Pad foam Production and assembly flow (step of production) 7

54 Trim coveringType of fabricate machine (part production) 7 x x x
55 Trim coveringType of Assembly machine (part production) 7 x x x
56 Trim coveringProduction and assembly flow (step of production) 7

57 Frame Detail specification of fabricating machine (part production) 8 x x x
58 Frame Detail specification of Assembly machine (part production) 8 x x x
59 Frame Material flow (transportation from-to supplier and customer) 8

60 Frame Production process standard and tolerance 8 x x x
61 Pad foam Detail specification of fabricating machine (part production) 8 x x x x x
62 Pad foam Material flow (transportation from-to supplier and customer) 8

63 Pad foam Production process standard and tolerance 8

64 Trim coveringDetail specification of fabricating machine (part production) 8 x x x x
65 Trim coveringDetail specification of Assembly machine (part production) 8 x x x x
66 Trim coveringMaterial flow (transportation from-to supplier and customer) 8

67 Trim coveringProduction process standard and tolerance 8 x x x x
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A4.9 The original P&PS Design processes supporting creation of a single process 

(continue) 

 

 

 

st
ag

e 

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

1 Frame Material type 2 x x x x x
2 Frame Product Shape 2 x x x x x
3 Frame Product size 2 x x x x x
4 Frame Appearance of product 2

5 Frame ergonomic factor 2

6 Frame key function of seat (e.g. foldable, lever,etc.) 2

7 Frame Additional function of seat (power seat, heater, etc.) 2

8 Frame Legislation 2

9 Frame Product durability all

10 Pad foam Product Shape 2

11 Pad foam Product size 2

12 Pad foam Appearance of product 2

13 Pad foam ergonomic factor 2

14 Pad foam Legislation 2

15 Pad foam Homologation 2

16 Pad foam Product durability all

17 Trim coveringMaterial type 2

18 Trim coveringProduct Shape 2

19 Trim coveringProduct size 2

20 Trim coveringAppearance of product 2

21 Trim coveringLegislation 2 x x
22 Trim coveringHomologation 2 x
23 Trim coveringProduct durability all

24 Frame Crash safety 3 x
25 Frame Homologation 3

26 Pad foam Material type 3

27 Pad foam Crash safety 3

28 Frame The setting of tolerance and standard of product 4 x x
29 Frame Product safety (e.g. Robustness) 4 x x x x x
30 Frame environmental factor (e.g. Noise and vibration) 4 x
31 Frame maintenance factor 4

32 Frame Productivity 4

33 Pad foam The setting of tolerance and standard of product 4 x x
34 Pad foam Product safety (e.g. Robustness) 4 x
35 Pad foam environmental factor (e.g. Noise and vibration) 4 x
36 Pad foam maintenance factor 4 x x x
37 Pad foam Productivity 4 x
38 Trim coveringThe setting of tolerance and standard of product 4

39 Trim coveringProduct safety 4

40 Trim coveringenvironmental factor (e.g. Noise and vibration, cleanliness) 4 x
41 Trim coveringmaintenance factor 4

42 Trim coveringProductivity 4

43 Frame  Source of material 6 x
44 Pad foam  Source of material 6 x x
45 Pad foam Source of production process/machine/tool 6 x x
46 Trim covering Source of material 6

47 Trim coveringSource of production process/machine/tool 6 x
48 Frame Type of fabricate machine (part production) 7 x
49 Frame Type of Assembly machine (part production) 7 x
50 Frame Source of production process/machine/tool 7 x
51 Frame Production and assembly flow (step of production) 7 x x
52 Pad foam Type of fabricate machine (part production) 7 x
53 Pad foam Production and assembly flow (step of production) 7 x x
54 Trim coveringType of fabricate machine (part production) 7 x x
55 Trim coveringType of Assembly machine (part production) 7 x x
56 Trim coveringProduction and assembly flow (step of production) 7 x x x
57 Frame Detail specification of fabricating machine (part production) 8 x x x x
58 Frame Detail specification of Assembly machine (part production) 8 x x x x
59 Frame Material flow (transportation from-to supplier and customer) 8 x
60 Frame Production process standard and tolerance 8

61 Pad foam Detail specification of fabricating machine (part production) 8

62 Pad foam Material flow (transportation from-to supplier and customer) 8 x x
63 Pad foam Production process standard and tolerance 8 x x x x
64 Trim coveringDetail specification of fabricating machine (part production) 8

65 Trim coveringDetail specification of Assembly machine (part production) 8

66 Trim coveringMaterial flow (transportation from-to supplier and customer) 8 x x
67 Trim coveringProduction process standard and tolerance 8
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A4.9 The original P&PS Design processes supporting creation of a single process 

(continue) 

 

 

st
ag

e 

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

1 Frame Material type 2 2 2 2
2 Frame Product Shape 2 2 2 2
3 Frame Product size 2 2 2 2
4 Frame Appearance of product 2 2 2 2
5 Frame ergonomic factor 2

6 Frame key function of seat (e.g. foldable, lever,etc.) 2 2 2 2
7 Frame Additional function of seat (power seat, heater, etc.) 2 2
8 Frame Legislation 2 2
9 Frame Product durability all 2 2
10 Pad foam Product Shape 2 2 2 2
11 Pad foam Product size 2 2 2 2
12 Pad foam Appearance of product 2 2 2
13 Pad foam ergonomic factor 2 2 2
14 Pad foam Legislation 2 2 2 2
15 Pad foam Homologation 2

16 Pad foam Product durability all

17 Trim coveringMaterial type 2 2 2 2 2 2 2 2 2 2
18 Trim coveringProduct Shape 2 2 2 2 2
19 Trim coveringProduct size 2 2 2 2 2
20 Trim coveringAppearance of product 2 2 2 2 2 2 2 2
21 Trim coveringLegislation 2 2 2 2 2 2 2
22 Trim coveringHomologation 2 2
23 Trim coveringProduct durability all 2 2 2 2 2 2
24 Frame Crash safety 3

25 Frame Homologation 3

26 Pad foam Material type 3 2 2 2
27 Pad foam Crash safety 3

28 Frame The setting of tolerance and standard of product 4 2 2 2
29 Frame Product safety (e.g. Robustness) 4 2 2
30 Frame environmental factor (e.g. Noise and vibration) 4 2
31 Frame maintenance factor 4 2 2
32 Frame Productivity 4 2 2 2
33 Pad foam The setting of tolerance and standard of product 4 2 2 2
34 Pad foam Product safety (e.g. Robustness) 4 2 2
35 Pad foam environmental factor (e.g. Noise and vibration) 4

36 Pad foam maintenance factor 4 2 2
37 Pad foam Productivity 4 2 2 2
38 Trim coveringThe setting of tolerance and standard of product 4 2 2 2 2 2 2
39 Trim coveringProduct safety 4 2 2 2 2 2
40 Trim coveringenvironmental factor (e.g. Noise and vibration, cleanliness) 4 2 2 2 2 2 2 2
41 Trim coveringmaintenance factor 4 2 2 2 2
42 Trim coveringProductivity 4 2 2 2 2 2 2 2 2
43 Frame  Source of material 6

44 Pad foam  Source of material 6

45 Pad foam Source of production process/machine/tool 6

46 Trim covering Source of material 6

47 Trim coveringSource of production process/machine/tool 6

48 Frame Type of fabricate machine (part production) 7

49 Frame Type of Assembly machine (part production) 7

50 Frame Source of production process/machine/tool 7 x x
51 Frame Production and assembly flow (step of production) 7 x x
52 Pad foam Type of fabricate machine (part production) 7

53 Pad foam Production and assembly flow (step of production) 7 x x x x
54 Trim coveringType of fabricate machine (part production) 7

55 Trim coveringType of Assembly machine (part production) 7

56 Trim coveringProduction and assembly flow (step of production) 7 x x x x x x x
57 Frame Detail specification of fabricating machine (part production) 8 x x x
58 Frame Detail specification of Assembly machine (part production) 8 x x x
59 Frame Material flow (transportation from-to supplier and customer) 8 x
60 Frame Production process standard and tolerance 8 x x x x
61 Pad foam Detail specification of fabricating machine (part production) 8

62 Pad foam Material flow (transportation from-to supplier and customer) 8 x x
63 Pad foam Production process standard and tolerance 8 x x
64 Trim coveringDetail specification of fabricating machine (part production) 8 x x x
65 Trim coveringDetail specification of Assembly machine (part production) 8 x x x
66 Trim coveringMaterial flow (transportation from-to supplier and customer) 8 x x x x x x
67 Trim coveringProduction process standard and tolerance 8 x x

Decision of Design Specification
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APPENDIX V THE SUSTAINABLE CO-DESIGN OF 

PRODUCTS AND PRODUCTION 

SYSTEMS 

This conference paper has been published in Procedia Manufacturing and presented by the author 

at the 15th Global Conference on Sustainable Manufacturing (GCSM 2017) in Haifa, Israel, 25-

27th September 2017 
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