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Abstract 

The large-scale adoption of EVs presents both potential benefits and difficult challenges. 

The already stressed electricity grids will have to manage the influx of EV charging 

requirements, which is especially difficult at peak times. This calls for smart solutions to 

optimally charge EVs in a grid-friendly way, using demand response where possible. In line 

with the demand, the electricity prices at peak times can be very high and it would also be 

advantageous for the user to avoid charging at these times. Therefore, the goal of grid 

friendly charging is twofold: to avoid putting additional load on the electricity grid when it 

is heavily loaded already, and to reduce the cost of charging to the consumer.  

Along with the technological progress in the EV field, the electricity grid is evolving toward 

a smart-grid. One of the changes a smart-grid will bring is smart-metering. In such a system, 

Day Ahead tariff (DA) prices are announced in advance for the next day. However, the 

balance of supply and demand is not fully known in advance and therefore, the Real-Time 

Prices (RTP) are more reflecting of the actual grid situation, but unknown in advance.  

This thesis presents control strategies for Cost Optimal Charging of Electric Vehicles, from 

the point of an EV user connected to a real time pricing tariff system. Firstly, since there are 

differences in the DAP and RTP, the thesis proposes a predictor to create an unbiased 

estimate of the RTP tariff based on the available factors in the pricing data. It uses a linear 

regression on historical data to find the best prediction of the expected price. The results 

find that the predictor achieves a slight reduction in prediction uncertainty with the used 

data set and has a negligible effect on overall cost. It means that the DAP can be used as a 

fair prediction of RTP.  

The first charging strategy proposed, uses the available DAP (price-prediction) for 

optimisation and follows a deterministic approach, to achieve the lowest charging cost. It 

achieves a sub optimal solution in which the controller successfully picks the times of 

lowest electricity cost from the prediction and provides a full charge to the vehicle by the 

time the user requires it. Since the electricity prices are affected by random disturbances 

and therefore the RTP can be different, it makes the charging process less predictable and 

introduces a stochastic element into the problem.  

A second optimal controller is presented which takes this problem into account by 

following a stochastic optimisation approach, specifically based on a stochastic dynamic 

program (SDPM). It uses a stochastic optimisation algorithm to minimise total cost of 

charging over a given time-period, whilst still providing required state of charge (SoC) in 

the EV battery. The controller does this by predicting future prices changes from available 
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data, based on a probability. It takes into account price variability via a simple grid model 

that allows for unexpected price rises and a gradual return to a normal grid price. 

Finally, a case study is presented based on the price data available from the Illinois 

Electricity Grid (USA), to validate the optimal controllers over a year. The Stochastic 

Dynamic Programming optimal controller, can save up to (US) $112.88 over a year, 

compared to charging directly. This is very close to the theoretical optimum (full knowledge 

of real prices in advance) of $119.76. The controller uses the DAP and RTP prices effectively 

in simulation and optimisation stages, to avoid times of high price and price spikes. The 

result is, lower charging cost over the year which is achieved by shifting the charging over 

to the off-peak hours.  

Both strategies demonstrate significant advantages against conventional charging. The 

simple optimisation can realise most of the benefits and may therefore be the preferred 

strategy in practical terms, while the stochastic optimisation does offer slight further 

benefits at more significant complexity. This may change as the smart grid matures, the 

billing periods become shorter, and the processing capability of chargers increases.   
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1 Introduction 

The goal of reducing carbon and greenhouse emissions has created a revolution in the 

automotive industry leading to the popularity of Electric Vehicles (EVs). A report by the 

Royal College of Physicians estimates that 40,000 deaths a year are caused by particulates 

and nitrogen dioxide exposure [1]. Both pollutants are present in internal combustion 

engine (ICE) tailpipe emissions. Future transport policies in most countries now are geared 

toward expanding alternative networks of transport rather than the reliance on ICE 

vehicles. France has declared a ban on petrol and diesel ICE vehicles by 2040 and UK has 

followed suit on the basis of the report presented by the Department of Energy Change, UK 

in 2011 [2].  Although initial adoption of EVs was mild, the introduction of better battery 

technology and more mainstream vehicle manufacturers, like Nissan and BMW deciding to 

sell EVs, has made the number of vehicles grow quickly. Government initiatives, policies 

and aims to meet carbon reduction targets has not only driven manufacturers to make 

better and cheaper EVs but also has made EVs and charging infrastructure more accessible. 

As a result of all the efforts, the price of EVs has fallen drastically. Between 2010 and 2017, 

the prices have fallen by 65% [3].  

As EVs become mainstream, they will have a big impact on the already stressed electricity 

grid when they are charging [4]. The electricity grid and systems must be prepared for the 

extra demand required for these vehicles which require long times, high power and high 

currents for charging. For most domestic users, charging will take place in the evening at 

home which is already a peak time for electricity demand [4]. Numerous studies like [5]–

[9] highlight the impact of EVs on electricity distribution in the future, in elaborate detail. 

Whilst the recharging load for a small number of EVs is likely to be buried in the baseline 

load fluctuation, a large fleet of EVs charging at the same time could have an overwhelming 

effect on the grid during peak hours [10]. The latest National Grid report estimates at least 

a 30% increase in peak electricity demand due to EVs by 2050, when the deadline to shift 

to zero-emission vehicles is to be met [3]. Therefore, if the electricity system is left 

unmanaged and is not prepared for this demand, it will be very difficult for distribution 

networks and system operators to satisfy the demand.  

Subsequently, the electricity market, infrastructure and pricing structure is changing, both 

due to the market requirements and technological progress. Investments in physical 

infrastructure are slow and expensive but information technology offers an opportunity. 

Smart-grids and smart-metering are being deployed in many countries already and the 

Energy Networks Association (ENA) has set a target of 2020, to effectively roll out the 
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smart-grid for UK [11], [12]. Smart-grid generally refers to an energy network that can use 

various technology with digital control and automation to monitor the energy flow in an 

electric grid and adjust the energy supply and demand accordingly. Ideally, it is more 

efficient and able to manage problems in a more ‘real-time’ manner by allowing elastic 

behaviour from households, letting them manage electricity supply and demand in a way 

that is more cost-effective and environmentally friendly. Smart-metering or advanced 

metering infrastructure (AMI) can change the way users are billed. These meters record 

hourly consumption and alert the users about future prices. The smart grid is being 

promoted and provided to consumers in the USA for some time now. According to the 

Energy Information Association (EIA), 38% of all meters in the USA are already smart-

meters [13]. In real-time pricing (RTP) tariffs1, users are provided with a day ahead price 

prediction (DAP) and then a second set of prices hourly, on the day, which are the prices 

they are billed on. The idea is to offset electricity peak demand by encouraging behavioural 

change. This means that the users will have different prices for each hour which is very 

much like the ‘spot-electricity’ market prices most industrial sectors are charged on. 

Following on from the discussion, we can conclude that the electricity grid and EV will be 

interdependent in the future. Firstly, it will be important to manage the electricity loads 

and peak demands due to the user profile of EV charging. Some load may have to be shifted 

from peak hours either by persuading or enforcing the consumer to charge earlier or later. 

There will be a big push for smart demand-response solutions which can be integrated into 

the smart-grid. Secondly, charging the vehicle without control might also be a disadvantage 

for the consumer due to the possibility of a future with RTP.  There is a good argument for 

vehicle to grid solutions (V2G) to help reduce the impact on the electricity grid in a future 

where there are high numbers of EVs charging at the same time. V2G technology can 

provide electricity from the vehicle back to the grid, to level any load fluctuations and gives 

the opportunity to sell surplus electricity in the EV to national grids. However, the more 

immediate solution to consider in the same scenario is a smart automated charging control. 

The goal would be to reduce cost of charging to the vehicle user, by delaying the charging 

to the hours when there is already less stress on the electricity grid. 

This thesis presents a number of optimal charging algorithms for EVs in a real-time 

electricity market, for a user with AMI on the smart-grid. The idea is to automatically 

manage the charging time once the vehicle is plugged in, in order to provide a required 

                                                 
1 Real time pricing tariff is a type of flexible electricity pricing provided by certain electricity utilities 
over the world. In such a tariff, users are billed on prices which change hourly. The information is 
provided via a smart or advanced metering system. 
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amount of charge by the time the vehicle is needed, but at the lowest possible cost. This 

means that the charging would be shifted to off-peak hours when the prices are lower. The 

subsequent advantage of this can be to the grid in a way of load shifting. The research 

follows the approach of a control problem, trying to solve an optimization problem from 

the point of view of the vehicle user. Firstly, a basic time-discrete solution is explored which 

assumes that the known prediction (DAP) is accurate. Secondly, dynamics and the 

unpredictability of the real electricity prices is introduced as a stochastic element. The more 

complex problem with the stochastic nature of the prices is solved using stochastic control 

and dynamic programming.  

The thesis is presented as a problem, followed by its solution. A literature review is 

presented in chapter 2, which looks at EVs, driver charging behaviour, the RTP market and 

EV charging solutions in brief. The problem overview and statement is summarized in 

chapter 3 which presents a highly abstracted version of the optimisation problem: the 

problem this research is set out to solve.  Chapter 4 introduces the RTP market data from 

the Illinois grid and an analysis in terms of a linear regression predictor, with the aim to 

quantify the validity of the provided DAP versus the RTP.  

The basic problem which assumes that the DAP provided are accurate and hence the prices 

are known is presented in chapter 5. It also discusses variations to this problem and the 

reason why the dynamic nature of the electricity grid needs to be considered to achieve 

optimality in the solution. It is concluded with a simulation result and a short example 

based on real data from the Illinois grid to put the findings into perspective. The work done 

in this chapter has also been published as a journal paper in the SAE [14].  

Chapter 6 approaches the problem by using stochastic control and dynamic programming 

to account for the dynamics of it. It presents an algorithm developed on the basis of this 

approach which achieves an optimal charging solution. A simulation study is presented to 

validate the functioning of the strategy. The work done in this chapter is presented in 

another SAE journal paper [15]. 

Lastly, chapter 7 discusses a case study based on the real time price data from Illinois grid 

which proves the requirement and benefit of using the optimal charging strategies 

developed during this research. It highlights the potential financial benefit of using this 

approach toward the vehicle owner. An initial version of the case study is presented in a 

conference paper at the SAE World Congress 2017 [16]. Chapter 8 concludes the thesis by 

presenting and overview, summarizing and analysing achievements and discussing the 

outlook of optimal charging of EVs.  
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2 Literature Review 

This chapter discusses the motivation and relevant research in the field of EV charging. 

Section 2.1 through 2.3 present a review of adoption of electric vehicles, expected driving 

behaviour and the impact of EVs on the electricity grid. Section 2.4 discusses smart-grids 

with flexible pricing and section 2.5 presents a review of studies on electricity price 

prediction. Section 2.6 examines studies and solutions for automated EV charging. Lastly, 

section 2.7 presents a summary of the literature review.  

2.1 Electric Vehicles 

The power and transport sectors are the largest contributors to global greenhouse gas 

emissions (GHG). The transport sector contributions to both emissions and energy use are 

growing quickly by the year and World Energy Outlook projections predict that they will 

overtake the power sector by 2035 [17][18]. In 2007, the road transport sector accounted 

for 71% of the total emissions attributed to the sector as a whole, with 63% of them 

generated by passenger cars [19].  

The world community has set ambitious targets for GHG reduction in the future and many 

countries (especially the developed nations) have registered emission reduction targets or 

commitments to the actions by 2020. As an example, the European Union’s (EU) ambitious 

target is set for 2020 to reduce GHG emissions by at least 20%, improve energy efficiency 

by 20% and ensure the contribution of renewable energy sources in gross energy 

consumption is 20% [20].  

The pressing requirement for a 'greener future' has brought electric vehicles (EV) forefront. 

The opportunity that EVs and related technology vehicles (Hybrid EV (HEV), Plug-in HEV 

(PHEV)) have, is to revolutionize the transport sector and other related infrastructures in 

the next decade. They can significantly reduce the CO2 emissions if electricity sources with 

low carbon intensity can be used. CO2 savings are offset by generation, which reduces the 

saving effect. Studies [21] have shown that PHEVs would emit less CO2 per mile than a 

conventional petrol vehicle, even if the electricity is produced at 100% using coal plants 

which emit the maximum CO2-eq/KWh. If organisations began converting their 

conventional vehicle fleets to EVs, they could not only gain a greener footprint but also help 

in lowering the emissions from the light-duty transportation sector. 

It seems obvious that the charging of these vehicles will be an added load on the already 

stressed electricity grid. New and emerging research has shown the possibilities of a two-

way electrical system, connecting EVs through grids to homes, commercial establishments 
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or other facilities when they are being charged. The National Grid’s key insights include the 

acknowledgement that technology progress in EV infrastructure can help reduce the peak 

demand with the help of smart applications [3]. New technologies like the ‘smart-grid’2 

could integrate with load management services and allow charging of EVs individually or 

collectively in a manner that may benefit both the consumer and the electricity grid. This 

synergy between EVs (as electricity storage banks) and the grid will be able to smooth the 

demand profiles and help balance contingency needs. In a future which promises more 

renewable energy use, the surplus energy balancing can also be smoothed by charging or 

discharging of a large number of EVs.  

The EVs currently in the market can be broadly classified as follows. Hybrid electric 

vehicles (HEV) are a combination of the typical internal combustion engine (ICE) and a 

battery electric vehicle (BEV), with the electric motor supplying auxiliary power when the 

ICE is not in use. Plug-in hybrid vehicles (PHEV) combine the advantages of the HEV and 

BEV. They work in two modes: fully electric or hybrid.  

HEVs have been mildly successful in the past decade with the major producer, Toyota 

(Prius) selling 2 million units by 2009. Whilst it is widely accepted that market forces alone 

have not been able to make the EV a first choice for many consumers, government policy 

support, research to make EVs less expensive and economy improvement will improve 

their market significantly [22][23].  

The barriers in EV penetration into the main market have been limited driving range and 

high cost of electric technology. Although electric driving ranges are limited for all three 

HEV, PHEV and BEVs, surveys have indicated that 47-55% of single vehicle usage in a single 

day is less than 20 miles, with 82-88% of vehicles travelling less than 60 miles [24]. Kang 

and Recker’s 2009 [24] study concludes that it is possible to convert between 80% to 90% 

of daily mileage to electric when using PHEV with a 60 mile range in California, under the 

condition that both home and public place charging stations are in use. These numbers 

indicate that EVs are more feasible than previously thought.  

JP Morgan performed a study in 2009 which forecasted 11.28 million EVs worldwide by 

2020 and 20% of the total cars sold in North America [25]. In 2008, ARUP [26] forecasted 

that there will be between 0.5 to 5.8 million EVs in the UK by 2030. National Grid’s (UK) 

Future Energy Scenario [27], predicts an even higher number of up to 7 million EVs by 2030. 

                                                 
2 Smart-grid technology includes a smart- interface for electricity consumers by which they can be 
informed of future electricity prices. Technology research in this area is gearing to provide automatic 
and helpful control systems to enable smart load shifting and possible electricity bill savings. 
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National Grid’s 2015 study [28] states that battery costs need to come down for sales of EVs 

to grow alongside the proliferation of fast charging points, in order to battle ‘range-anxiety’. 

The UK government has committed to 35% discount on the purchase of new EVs for a car 

and 20% discount for light goods vehicles. In addition to this, funding is available for on-

street charging points and the Highways Agency has installed charging points on most 

motorway service stations which is a great step forward in producing infrastructure for an 

EV future. These studies indicate that EVs are more feasible than previously thought. 

2.2 Driving and Charging Behaviour 

The biggest variable in all the studies performed and being performed on EVs is driver 

behaviour analysis. Whilst many others can be predicted accurately using scientific 

formulae and principles, driver behaviour regarding selection of vehicles, driving styles and 

charging EVs is still unpredictable to a degree. The concern from the data already recorded 

is the viability of the behaviour of early EV adopters, which could change easily as EV 

technology, numbers and prices change.  

Conventionally, drivers refuel their car when petrol/diesel runs out after the mileage the 

vehicle normally provides. With regards to any kind of EV, this can change because it 

depends on the battery size (like the fuel tank size) however, so far, the range of these is 

very limited compared to conventional vehicles. This introduces an unknown about the 

charging behaviour the driver or owner might adopt. Will the vehicle be charged at the end 

of the day? Or will it be charged at every stop it makes during the day? To be able to answer 

these questions based on behavioural analysis, many variables must be considered. Total 

distance travelled during the day matters most if the vehicle is only charged at night. This 

may depend on the type of user, for example an organisation fleet user may charge the 

vehicle during the day if the workplace provides free charging. This introduces another 

variable- charging infrastructure and cost incentives.  

Regarding the usage of vehicles in the UK, the government Department for Transport (DfT) 

releases annual data on trends in personal and public transport. The 2012 analysis [29] 

shows that the distance travelled per person per year is 2% lower in 2011 compared to 

1995-97, however 89% of all trips are still made by private transport modes (including van, 

car, walking and cycling). Car travel formed the largest proportion of transport method in 

2011 as 79% of total distance was travelled by car. The average trip length for car or van 

personal transport is 8.5 miles and 21 minutes. 

Similarly, the Department of Transport for the USA’s National Household Travel Survey in 

2009 analysed the driving usage of American drivers. Haaren et al.’s study [30] took the 
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748,928 samples in the survey and concluded that 95% of the single-trips in a car were 

under 30 miles and less than 98% were 50 mile trips. Most people’s travel to work was not 

over 40 miles with an average work trip distance of 13.6 miles. They concluded and pointed 

out that with a public charging infrastructure which could support EVs, the range anxiety 

plaguing the changeover to EVs would not be significant.  

This shows that the car is the chosen mode of transport for very modest average trip 

lengths, and has been even through changing trends. The changes over the years have been 

attributed to variables like car availability, household income and policy changes and 

incentives, which themselves can be all interconnected. It is also evident from the numbers 

that the prediction of higher EVs in the future is a valid one because most daily trips can 

easily be made with the current battery technology available. It must be noted that there 

are, however minor, differences between driving behaviour in different geographical 

regions and this is also a variable connected with behavioural effects. 

With EVs being a new influx in the automotive market, real world data on driving and 

charging behaviour isn’t well populated. It is known that understanding consumer 

behaviour on charging EVs is crucial to understanding whether EVs will be viable and our 

current electrical infrastructure will be able to cope.  Most theoretical or real-world studies 

that have been performed concentrate on two basic scenarios: Uncontrolled charging- 

where users charge their vehicle where and when they please; Controlled charging- where 

devices like the smart-meter are predicted to control times of charging to manage 

electricity grid peaks and to save cost for the consumer. 

Morrow et al. [31] performed a study for the U.S Department of Energy on PHEV charging 

and infrastructure. They looked at two main charging scenarios- at night home charging 

and opportunity charging at public facilities. The conclusion was that there is a peak in EV 

charging during the evening when users plug-in at home between 19:00 and 23:00. Wang 

et al. [32] simulated four charging scenarios which included uncontrolled charging, delayed 

charging (to promote load shifting), smart charging and smart charging with demand 

response (where the charging is optimally controlled by the electricity distributor). They 

concluded that smart and delayed charging can significantly reduce the total cost of the 

system both on the electric and charging side.  
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Figure 1: Personal Travel Trends, UK (DFT-NTS 2012) 

Kang and Recker [24] developed four theoretical scenarios of uncontrolled home charging, 

end of day travel charging, controlled (after 10 pm) charging and public infrastructure 

charging. They concluded that it was important for the electricity charging infrastructure’s 

circuits to be upgraded for faster recharge times, which would allow more of the daily 

mileage to be electric. Although day-time public charging would allow for more trips in this 

manner, it would also cause higher spikes at peak time and this needs to be considered. 

Clement and Hasen [33] and Parks et al. [34] have also considered both ‘uncontrolled 

charging’ and ‘charging with a time delay scenario’ in their studies. However, Clement and 

Hansen have suggested a ‘coordinated controlled charging’ scenario which should help 

minimise grid power losses to be a more optimum step towards EV charging.  

Weiller [35]studied the effects of different charging behaviours in terms of time of day and 

location of charging. She highlighted how the time of the day of charge is influenced by the 

location of the driver. The model developed helps determine how access to different 

recharging locations can impact the recharge profile of PHEVs. It was concluded that 

enabling charging in places other than the home (like workplaces and public areas) can 

significantly increase the mileage covered by electricity over that covered by fuel.  

Mullan et al. [36] also took into account three scenarios: evening time charge (16:00-23:00), 

night time charge (22:00-7:30) and controlled night time charging using smart meters. 

They concluded that shifting the EV peak to later in the night can benefit the base-load 

utilisation in Australia up to a limit governed by other effects in daily electricity-

grid/transformer maintenance. 
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A study and report produced by the Consumer-led Network Revolution in UK [37] shows a 

similar profile to the academic studies discussed earlier. The study was performed with real 

world EV drivers in the UK and show EV charging peak demand results coinciding with the 

peak demand hours projected by the National Grid for current consumer usage. The report 

assumes and then states that consumers will charge their vehicle when it is convenient to 

them which is mostly when they arrive home or when work finishes.  

The National Grid report has based a simulation on this in their report [28] by applying a 

prediction of consumers switching to TOUTs. It shows that by shifting the demand by just 

2 hours from the peak at 17.30, it is reduced to 38% at this bad time for the grid. Figure 2 

explains this very well and almost makes a good case for charging automation applied with 

the uptake of RTP or TOUT.  

 

Figure 2: National Grid Report 2015, EV Charging Profile on a January day with and without TOUT 

This shows charging profiles can be a huge variable in determining the specifics of EV 

charging and usage in the future. Most studies more or less conclude that the tendency to 

charge vehicles as soon as users reach home is extremely high. It will not be enough to allow 

users to charge their vehicles as they please without serious effects on the grid’s health and 

power quality or simply the capacity. Most of them highlight the requirement of a ‘smart’ 

or ‘controlled’ way of charging the vehicles, the control of which may be shared between 

the user and the electricity provider.  

The charging behaviour of users is difficult to predict, although it can be derived from their 

usage profiles. Charging locations and times will vary with user type, infrastructure and 

geography. For instance, a company fleet user may opt to do most charging at work, where 

infrastructure may be provided. However, an individual user would choose to charge both 
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at home and public infrastructure. It is likely though that human behaviour will compel 

users to plug-in their chargeable appliance as soon as they are home so ‘it remains charged’ 

by the time they need it. Studies like [35], [38], [36] and [39] conclude that the spike in 

charging requirements is pronounced between 5:00 pm and 7:00 am based on the time 

majority vehicles arrive home. What is more interesting is that these studies are done in 

different geographical regions of the world and yet this time period is of concern whether 

or not the morning period at work may be of charging demand (assuming infrastructure is 

provided).  

2.3 The Impact of EVs on the Electricity Grid  

A change from ICEVs to EVs means a change for consumers in the context of refuelling 

patterns. However, their main impact will be on the already stressed electric grids because 

the batteries of these vehicles require long times and high currents for charging. Whilst 

peak load times would be different in different parts of the world, depending on many 

factors including weather, some kind of load shifting to accommodate EV charging may be 

required.   

The United Kingdom (UK) National Grid’s simulation study in 2015 has shown a steady and 

then accelerated increase in electricity demand with influx of EVs between 2010 and 2035 

[28]. These projections show that there are 20,000 PHEVs in Britain but the number could 

surpass a million as early as 2022, adding 2TWh/year to the electricity demand of the 

country. By 2035, EVs alone would account for 14TWh/year. Although charging will take 

place at the workplace or at service stations, most domestic users will also charge overnight 

at their homes. Consumer tendency to plug the vehicle in for charging as soon as they reach 

home will be high. If they charge the vehicles after every trip: for example, every time they 

reach office or a supermarket or come home and leave again, this would be of even higher 

concern to electricity peaks.  

The latest report by the National Grid [3] concludes that it is most likely by 2050, 90% of 

all vehicles sales will be of EVs. They perform the study in terms of four scenarios: 1) Steady 

State: Business as usual where focus is on providing low cost electricity supply rather than 

investing in long term low carbon technologies. 2) Two Degrees: A prosperous future with 

increased investment in low carbon energy with consumers making conscious choices and 

being able to afford technology. Additionally, there are effective low carbon policies in 

place. 3) Slow Progression: Low economic growth and affordability competes with the 

desire to be greener and reduce carbon emissions. 4) Consumer Power: High economic 

growth and more money available to spend. However, consumers have little incentive to be 
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environmentally friendly and their appetite for latest gadgets drives innovation. In all these 

cases, the number of EVs and the infrastructure needed to support them grows 

dramatically. Figure 3 is from the report and shows the results of the study in terms of 

annual electricity demand rise from EVs.  

 

Figure 3: Annual Demand from EVs (Future Energy Scenario, National Grid, UK 2017) 

Studies on the effect of EV penetration to the electricity grid date back to the 1980s and 

have been performed in all developed and developing parts of the world. In [40], Heydt 

discusses the effects on and of electric load management due to EV penetration. The study 

concludes that it is likely that charging will occur at peak demand times and some form of 

load management must be introduced to manage the additional EV charging load. Webster’s 

review of electric infrastructure in the UK concludes that in case of high EV penetration, it 

is likely that battery recharging times will coincide with peak electricity demand [41]. 

Measures must be taken to avoid this although the electric networks may be able cope with 

the additional load. Both the above studies consider user driving profiles to have the 

primary impact on recharging times.  

The major UK energy provider, E.ON, projected that if PHEVs represented 5-7% vehicle 

miles travelled in 2020, it would be equivalent to 7.5 TWh of electricity [42]. The article 

concluded that this represented only 2.2% of the current electricity capacity and UK’s 

electric networks would cope with the influx of EVs. However, considering EV loads are 

mobile and very unpredictable, an increase in contingencies may be needed because 

nuclear power is not flexible enough and wind power is too unpredictable to meet EV 

recharging loads. This leaves thermal plants complimented by smart-meters and tariff 

incentives to minimise spikes.  
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Clement and Hasen [33] talk about the effect of EV penetration in 2030 on the Belgian 

electricity grid. They propose that coordinated charging of PHEVs will be needed to avoid 

power losses and maximise the main grid load factor. In their simulation they show that 

uncoordinated charging (whether immediate plug-in when home or delayed to avoid 

spikes) both can cause problems for the local grid. 

In a much more recent study, Camus et al. [43] simulate a 2020 scenario of 2 million EVs in 

the Portuguese spot electricity market, considering different mixes of renewable power 

generation. They conclude that with low renewables and high cost, charging of EVs during 

peak times can lead to electricity prices of 17 Euro cents/KWh. This can be brought down 

to 7 Euro cents/KWh with off-peak charging and with higher renewables and low general 

costs, down to 5.6 Euro cents/KWh. Mahalik et al. [44] performed a simulation to realize 

EV impacts on the Illinois grid in 2020 and concluded that on-peak uncontrolled charging 

would require an additional 400 MW unit to support the state’s reserve margin. If off-peak 

and controlled charging is facilitated, no additional supporting grid would be needed. The 

additional electricity required could be provided by reducing the electricity exports Illinois 

makes. A study for South Californian Edison [45] looking at the impact on its local grids 

concluded that, without planning load management substation and circuit rebuild costs 

could be very high due to the randomness of the EV load. All the above research recognizes 

the problems related to on-peak charging in a high EV penetration scenario, but no 

mathematical formulations are presented for optimal charging.  

Acha et al. [46] present a time coordinated optimal power flow (TCOPF) tool for 

distribution networks to decide on load control approaches for EVs in the future. The 

algorithms concentrate on showing different charging strategies to the electricity providers 

to see how they may have to change energy production to reduce carbon emissions and 

cost. They conclude that, the UK will need to introduce more renewables or non-carbon fuel 

mix to offset costs and emissions for high EV charging scenarios. Kristoffersen et al. [47] 

use  linear regression to minimize charging costs based on the Danish (Norpool) electricity 

market prices. The study assumed an EV fleet controller who managed the participation of 

EVs during charging or providing electricity to the grid, based on fleet driving patterns and 

electricity prices. It concluded that EV driving patterns and hence charging time is highly 

flexible during the day but not from day to day. In [48], Rotering and Ilic present two time-

discrete algorithms for optimal charging; one considering only minimizing cost and the 

other also taking into account V2G support. They perform a case study based on the 

California day ahead electricity price market and conclude that optimal/smart charge 
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reduces the charging cost from 0.43 USD to 0.2 USD daily. In case of V2G support, the profit 

amounts to 1.71 USD including charging. 

The charging of EVs can have an impact on the electricity grid on a number of time scales, 

ranging from the millisecond range to hours and days. Schirmer et al. [45] concluded that 

multiple EV chargers connected to the grid could lead to power quality issues by utilities 

on a large-scale. They mentioned another study which estimated that harmonic levels could 

reach 90% at some locations if the batteries were being charged fully at the same time. 

There is potential for all these effects to not be a problem to the grid with today’s research 

and technology: for example, active inverters can absorb harmonics; they can apply droop 

control to enhance grid stability and they can pick times for charging when excess 

electricity is available. However, very little progress has been made towards these goals so 

far and regulations often only aim to prevent harmful effects, not to leverage potential 

benefits.  

2.4 Smart Grids and Real Time Pricing 

The subsequent effect to consider is the logical change to electricity generation, distribution 

and pricing in the future. The higher peaks, consumption and addition of more renewable 

energy might change the prices in markets significantly. Whilst EVs have been much the 

topic of recent research and significant progress in the transport world, the electricity grids 

are also about to undergo a landmark change from their historical method of exchange. This 

can be rather beneficial because the simultaneous and synergetic progress of research 

ideas with regards to EVs and electricity grids can shape a reliable future.  

Traditionally, the electricity grids in the world have been distribution grids. A few central 

power generators or stations broadcasting electricity via a large network of transformers 

and cables to a country or region. Over the years, load forecasting has developed 

significantly allowing generators and distributors to forecast requirement by the use of 

sophisticated models. However, no prediction can account for a hundred percent balance 

and therefore demand is more often than not over-provisioned with respect to peak load. 

The demand is then managed by using backup plants which use non-renewable (traditional 

sources like coal in large quantities) sources of energy to balance the load on the grid and 

cope with demand. This approach has proved necessary but wasteful at the same time 

because when the average demand is lower than peak, surplus electricity that is produced 

has to be consumed due the high expenses often involved in energy storage [49].  

As the electricity demand increases with scenarios and studies discussed previously, a 

solution more widely accepted and currently in the process of introduction all over is a 



Cost Optimal Charging of Electric Vehicles 
Sagar Mody | Loughborough University 

20 
 

‘Smart Grid’. The idea is to manage and match the demand to the available supply by two-

way communication between the grid and customers (and other stakeholders). The benefit 

of a grid-wide communication system also offers a method of providing the customer with 

incentives like variable pricing (with an aim to urge them to shift their electricity use to off-

peak times).  

With the rapid research and progress that has taken place in regard to Smart Grids, there 

is no one solid definition given by regulators and nations, but the two important statements 

given by the European Union (EU) and the United States Department of Energy (US DoE) 

are reproduced here. 

1. The EU defines the Smart Grid as an electricity network that can intelligently 

integrate the behaviour and actions of all users to ensure sustainable, economic and 

stable electricity supply [50]. 

2. The US DoE states that smart grids use digital technology to improve reliability, 

security and efficiency of the electricity system [51].  

 

Figure 4 shows a typical smart grid architecture which clearly indicates integration of all 

players in the electricity grid as interconnected, at least via the communications link. If 

utilised and planned properly, each of these can both consume and provide to the central 
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transmitting network of the electricity grid. A proper demand management through smart 

grid technology has the potential to yield significant savings in both the generation and 

transmission of energy [52].  

The Smart Grid revolution has many aims according to the EU and US DoE, but the most 

relevant change with regards to general and EV consumers will be pricing incentives for 

demand response. Smart Grids are expected to play a significant role in shifting and 

customising consumers’ demands to the effect of load balancing and prevention of peak 

loads. Load profiles of electricity grids have changed significantly over time and today’s 

situation is more complex but, in some ways, predictable. This is due to change with newer 

loads like the EV coming into play.  

Figure 5 shows a typical winter day power demand profile3 for the UK (precisely 11th 

January 2015), obtained from the archives of the National Grid and charted in Excel. 

 

Figure 5: Winter Day Power Demand for UK (National Grid 2015) 

Most countries’ load profiles follow similar curves owing to the routines of people: there is 

a rise in demand from the morning till noon when people wake up, use appliances, and go 

to offices; the demand rises steadily after this period up to the point when people return 

                                                 
3 INDO refers to published BMRA Initial Demand Outturn based on National Grid operational 
generation metering, EXCLUDES Station Load, Pump Storage etc.; i014 DEMAND: This is calculated 
from Elexon SO_IO14 generation data.  It is the sum of the same generation meters as INDO; i014 
TGSD refers to Total Gross System Demand calculated from Elexon SO_IO14 generation data and 
INCLUDES Station Load, Pump Storage Pumping and Interconnector Exports. 
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home and start using appliances again at which point it peaks. The key in these profiles is 

the commonality of times at which people require to use appliances.  

It is important to note here that this will be different in different geographical areas (owing 

to weather differences) but not so much that the overall curve would differ. For example, 

winter in the UK would demand higher lighting and heating loads in residential areas when 

people return home. As confirmed by the National Grid [28] the peak demand is reached at 

17.30 more commonly as the industrial loads settle and residential ones take over. If we 

were to take the example of a hot state in the USA during summer, the loads might be 

different i.e. air conditioning and fan loads but the curves are more or less comparable. The 

key once again is commonality of timing, the loads tend to increase at the time of returning 

home. Therefore, the promise of Smart Grids to integrate the consumer side demands and 

consumers themselves into the ecosystem to balance the peaks is of great significance. 

In most countries the industrial sectors are on wholesale electricity prices- buying 

electricity at lower rates during off-peak hours. There is a possibility for such ‘spot-

markets’ even for domestic electricity consumers as is the case in Portugal, Germany, some 

parts of continental Europe and a few states in the USA. In such markets, the consumers are 

encouraged to shift their electricity usage to off-peak hours through high-price 

updates/alerts either hourly or daily. Many studies like [53], [54] on smart grids have been 

carried out and the research agrees that one of the solutions for load shifting is going to be 

the manipulation of consumers’ demands using intelligent real-time pricing models (RTP) 

(a term mostly used in the US grid).  

 

Figure 6: National Grid Future Energy Scenario 2017, Predictions for Time of Use Tariffs 
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The integration and implementation of such tariffs is the near future and will be done in 

tandem with smart meters, distributed energy resources and energy management units. 

The energy price of the time of use (TOU) (a term used by the UK national grid) including 

peak pricing would be shown to consumers with an attempt to urge them to shift their loads 

to a lower price time. Figure 6 shows the potential percentage change to residential peak, 

if TOU tariffs are rolled out to UK customers. The natural thought here is, could this be done 

by automation? The answer is a possible yes, especially for loads which don’t need to be 

constantly used much like the EV: strategies like the ones which are the aim of this 

research- to automatically help the consumers and grid to benefit from the situation.  

One of the other benefits of recharging during off-peak times is that it can reduce the carbon 

content of the electricity generation and lead to financial savings. In winter, power 

generation from coal-fired plants increases from 34% of total generation to 41% during on-

peak. Coal has the highest carbon content (910gCO2/KWh compared to natural gas’ 390 

gCO2/KWh) of all electricity generation profiles (in the UK) and as power demand increases 

the carbon content therefore increases [55]. Therefore, recharging off-peak has this major 

positive effect on the environment. The study in [56] shows that by deferring the peak 

demand to off-peak, the capacity transmission cost could be reduced up to 67 billion Euros 

in Europe.  The McKinsey report [57], [58] from USA shows a potential value generation of 

130 billion dollars by 2019 by deployment of a successful smart grid infrastructure. 

Smart metering is being promoted and provided to consumers in the U.S.A. for some time 

now. Electric utility providers in California, Colorado, Florida, Illinois, Indiana, Ohio, Texas, 

Washington and some other states have already been introducing smart meters to many 

customers. There is also a strong financial incentive being provided for both smart grid 

research and introduction via the Energy Independence Act of 2007 and the US Stimulus 

Package of 2009 [59]. As a result of this by 2015 38% of meters in the USA are smart meters 

or advanced metering information (AMI) enabled [13]. The report [60], claims that 9% of 

peak demand could be offset using just small-incentive demand response programs, if they 

were used all over U.S.A.. Moreover, if dynamic pricing programs are introduced to all 

electric consumers, 20% of the peak demand could be offset. This strongly indicates that 

smart grids and RTP are the future of electric pricing and management.  

The state of Illinois is a good example where RTP has been available to customers since 

2003. The RTP programs have been successful in reducing the participating consumers’ 

electric usage and bills and shifting usage to non-peak times of the day [61]. The two 
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electricity providers which allow the choice of RTP are Amaren and ComEd. Amaren’s 

Power Smart Pricing (PSP) and ComEd’s Residential Real Time Pricing (RRTP) programs 

have reduced their peak demand in the range of 15% and achieved participant bill savings 

between 10-15% [61]. 

The UK hasn’t been lagging in their plans to introduce such tariffs and advancements, a lot 

of it though is still in its research and planning stages. National Grid survey of July 2015 

[28] mentions three potential implementation plans for the smart metering change in the 

country, the least of which is 1 million units a year by 2017-18. The other two more 

optimistic plans take the number up to 6 million units a year by 2017-18.  Along with smart-

metering, there is an effective roll out plan for Time of use tariffs (TOUTs)4 which are 

expected to significantly reduce peak demands by urging consumers to become a part of 

the ecosystem. The optimistic prediction is that of rapid uptake of such tariffs by consumers 

and close to a peak demand reduction up to 4GW by 2035. The more realistic predictions 

still claim a reduction of at least 1.2GW up to a potential of 2GW.  

2.5 Day Ahead Price Prediction 

Many factors influence electricity prices: the cost of fuel used to produce it; the 

transmission and distribution systems of the power plants; weather conditions; the load on 

the grid; location and location specific regulations are just some important considerations. 

Even basic factors like day, hour, week and month are of importance, when the reaction of 

consumers is considered.  

Additionally, electricity grids can suffer from transmission congestion which may prevent 

free power exchange between control nodes. This creates complex non-linearity in the 

electricity load and prices, making them even more difficult to predict. This volatility can 

give rises to unexpected electricity price spikes. 

The prediction of electricity prices is an important science but in spite of the numerous 

methods in use and ongoing research studies, short term price forecasting isn’t a mature 

science, especially with price sensitive loads being introduced in the system [62]. Weron, R 

[63] presented a thorough review of state-of-the-art price forecasting techniques being 

used in the electricity market, aiming to explain the complexity and effectiveness of these 

techniques. It covers over fifteen years of studies and provides a detailed breakdown of 

them.  

                                                 
4 This is the United Kingdom terminology for the real time pricing tariffs (RTP) as used in the United 
States of America. 
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Once, a significant share of electricity is generated from (generally uncontrollable) 

renewable sources, load shifting will be an important measure needed to align generation 

and consumption. Therefore, with a good next day forecast, a stakeholder in the ‘Electricity 

System’ would be able to make better financial decisions. A power producer could develop 

strategies to maximize its pay off and the consumers could minimize their utilization costs 

[64]. As such, there are three types of price forecasting, short-term, mid-term and long-

term. The short-term time scale (hourly up to 24 hours) is the important one to consider 

for load shifting and consumer usage. 

The wholesale spot-electricity markets rely upon price-forecasting techniques for bidding 

purposes and hedging against volatilities. Electricity is traded like wholesale and retail 

markets for other products. Generators connect to the grid and produce electricity, which 

is sold in the wholesale market to resellers (electricity providers). The resellers sell 

electricity in the retail market, to meet end user demand. The wholesale price can be pre-

set via a contract between the generator and reseller or bought hourly in an auction style 

market. The clearing price for every hour is determined by these auctions, the cheapest 

resource clearing the market first. When the supply matches the demand, the market is 

cleared [65]. 

The trouble with forecasting arises from this nature of the electricity market. It does not 

allow for continuous trading, instead it must be cleared and the market clearing price 

(MCP) is set the day before by the bids submitted hourly. This arises from the need of the 

system operators requiring advanced notice to verify the supply schedule for the next day 

can be met by the transmission constraints. The prices for all contracts cleared for the next 

day would be determined at the same time using the same available information [66].  

Complexity arises when there is transmission congestion and local and zonal prices might 

differ from the actual MCP. For a large market like North America, PJM zonal prices are 

computed and used. However, a study done in 2012 by Loland et al. [67] shows that 

transmission congestion can be predicted in short-term. For the short time, just before 

delivery, the transmission system operator operates the real-time market. This is used to 

adjust and deviate price in the day-ahead market. The system operator must react to any 

shortfall in production at very short notice, in order to ensure system balance [63]. To 

minimize this time, the system operators run an ancillary market for reserves. The day-

ahead and real-time market which we are interested in here, is complementary to the 

ancillary services market for which the forecasting techniques used are different.  
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Some markets in the world are more volatile than others but price spikes are not rare across 

the board, when the ancillary generation markets are used to balance the shortfall. The 

complexity of price-spikes in the real-time market is such that Aggarwal et al. [68] conclude 

in their review paper: the accuracy levels achieved by models of day-ahead forecasts can 

be higher than those of real-time forecasts.  

There are a multitude of approaches employed over the last fifteen years for day ahead 

price forecasting. Han et al. [69] propose a composite approach for ultra- short term load 

forecasting using two well-known methods: recursive least square support vector machine 

algorithm and Takagi-Sugeno fuzzy control. Hong, Wilson and Xie [70] propose statistical 

methods to predict long term probabilistic forecasts, also including linear regression with 

multiple factors. They use hourly information to create a more robust forecast using 

predictive modelling, scenario analysis and weather data. Singhal et al. [71] use back 

propagation with neural networks. Their basic idea uses history and other estimated 

factors in the future to fit and extrapolate, to achieve a price prediction. Many of these 

studies and the strategies they propose, are already being used by power utilities and claim 

to have less than 5% error in their predictions [69]–[71].  

Weron [63], [72] classifies the various different approaches as follows: 

• Multi-agent Models which simulate the operation of the electricity system 

(generators and companies) and build a price process by matching supply and 

demand. 

• Fundamental models, which describe price dynamics by modelling the impact of 

different factors, economic and otherwise, which affect the prices. 

• Quantitative and stochastic models, which characterize the statistical properties of 

the market over time. 

• Statistical models which are direct applications of the techniques of load 

forecasting. 

• Artificial intelligence and non-linear techniques, which combine several elements 

of learning and fuzzy logic. 

Regression is one of the most widely used statistical techniques in literature. Multiple 

regression can bring out the relationship between several independent variables on the 

criteria of prediction. However, many of the modern regression-based techniques are 

usually combined with other methods. For example, Conejo et.al [73] combine multiple 

regression with wavelet decomposition to predict day ahead prices in the PJM market. 

Schmutz and Elkuch [74] use multiple regression with gas prices, nuclear generation 

capacity and weather factors as predictor variables and a mean-reverting stochastic 
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process for residuals. There are several more, using varied regression techniques. The 

accuracy of historical data-based regression models depends on the efficiency of the 

algorithms and the quality of data analysed. The inclusion of relevant factors like weather 

forecasts, fuel prices, historical demand etc. is a difficult task as there are so many factors, 

yet some might not be relevant. However, the seasonality or predictability that exists in the 

electricity market can tend to make technical analysis of the data based on regression 

useful.  

The inevitable price-spikes are what makes it difficult for statistical methods to perform 

well; stochastic models are more effective at capturing this clearly ‘random’ behaviour. 

Literature is unclear on whether a combination of both techniques works better and if it is 

useful to include the stochastic analysis in the final statistical predictor, or the spikes should 

be filtered out as outliers. Logically, this depends on the periodicity of the spikes, which is 

also quite unpredictable but also some markets are more volatile than others, making it 

difficult to conclude on a perfect technique. As such, there is literature and methods 

devoted to just spike forecasting for the more volatile electricity markets, like Australia 

[75], [76].  

2.6 Demand Response and Optimal EV Charging 

The evolving concept of smart-grid aims to develop a strong integration between electricity 

generation and demand. Demand response (DR) is a term which relates to any program 

which encourages shift of energy demand by end consumers. The response is due to 

incentives like flexible tariffs or greater awareness and their participation may involve 

passive responses or active behavioural changes [12].  

Load management problems have received significant attention from researchers for 

industry and grid-side management. In the last decade, there have been DR or demand side 

management (DSM) programs proposed for industrial electricity usage. In [77] Ashok 

proposes a peak load management strategy for mini steel plants in India. Using a process 

industry load model coupled with integer programming, an optimisation formulation is 

developed. The goal is to reduce peak demand and electricity cost by optimal DSM. 

Vadabhat and Banerjee [78] propose three DSM options for global temperature adjustment, 

chilled water storage and variable air volume systems. The models proposed show a 

potential for shifting peak electricity in commercial applications for heating, cooling and 

ventilation systems. 

Similar load management techniques would apply to EVs as well. As established in previous 

sections, there is a clear need for EV load management when they are used abundantly. In 
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[79] Richardson et al. investigate impact of different levels of EV penetration on low voltage 

distribution systems. They assess modest to worst case scenarios by setting up an 

optimization problem and doing load flow analysis. The idea is to maximize energy for 

charging operations while keeping factors like network congestion and thermal loading in 

check. They propose a weighted objective function to penalize charging points with high 

sensitivity. Overall, they propose that optimisation techniques for charging EVs should be 

explored and demand side operators could potentially control EV charging with smart-

metering. However, in this work user requirements are not modelled. 

There are some control approaches in literature which aim to propose control of the EV 

charging process but with aims that are not aligned with user benefits. Bashash and Fathy 

[80] propose a robust feedback strategy for controlling aggregate grid power demanded by 

an plug-in EV fleet. They apply sliding mode control principles to achieve stability in the 

case of using renewable generation in tandem with a number of grid-connected vehicles. 

The outcome is a centralized control strategy which attenuates the imbalance between 

supply and demand in the above case. Once again, user requirements are not discussed. 

In 2012, Druitt and Fruh [38] investigated the integration of additional wind power and 

electric vehicles in the future electricity network. They suggested a stochastic model for 

both wind power generation and electricity price market. The study’s aim however, was to 

investigate the role of a ‘fleet’ of EVs in a future grid to load management and energy storage 

potential (essentially V2G), with the integration of more wind power.  

Yunus, Parra and Reza [81] presented a paper on distribution grid impact of fast charging 

with a stochastic charging model (2011). The stochastic model they used was for a 

simulation of the effect of many PEVs loading the grid, when charging at high power (fast 

charging). The model results led to a conclusion that widespread fast charging affects the 

quality of electricity supply and necessary actions need to be taken to continue the use and 

deployment of such stations for EV charging.  

Zheng and Wang [82] proposed an aggregation model for large number of EVs charging, to 

control power fluctuation problems. They consider the randomness of the number of EVs 

charging at any time as a stochastic disturbance and employ a genetic algorithm to obtain 

these. They simulate this model for a parking lot scenario and show the stochastic feature 

of the charging characteristics. Their proposed charging strategy is to control (minimize) 

the influence of many EVs charging simultaneously to the grid power. They conclude their 

updateable model reduced power fluctuation levels in the residential district where EVs in 
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parking lot are being charged. However, their idea does not consider the effect to SoC and 

user needs. 

The study by Deforest et al. [83] suggests adopting a smart strategy to mitigate issues which 

would schedule the EV charging to fill the overnight valley in power demand. Many studies 

propose centralized and decentralized ‘valley-filling’ schemes but they all concentrate on 

the problem from the grid point of view. ‘Peak clipping’ and ‘valley-filling’ are two concepts 

in DSM which concentrate on reducing the difference between maximum and minimum 

power demand [84]. This essentially means that at certain times peak load can be shifted 

from peak to off-peak, performing the function of filling the low-demand ‘valley’ in the 

graph of power demand (Figure 7). 

  

Figure 7: Example of Valley Filling 

Ma et al. [85] propose such a decentralized charging strategy which optimizes the charging 

profile through a day-ahead negotiation between the electricity utility and EV users based 

on predicted load profiles. These charging profiles optimally minimize load variance by 

filling the ‘valleys’ of the load curves. In other words, the charging is offset to periods when 

there is a dip in the electricity demand. It assumes that all the EVs participate in the 

negotiation together and their load profiles must be known beforehand. A strategy like this 

could potentially address the peak demand issue but the users may not get the best out of 

it. Moreover, the control solution is optimal only if it is assumed that the predicted load 

profiles are accurate.  

In [86], Kang, Duncan and Mavris present a real time scheduling (RTS) concept which 

promises to extend the ‘valley-filling’ strategies benefits by also guaranteeing the 

satisfaction of EV users in terms of complete charging and the time they would like that 

charge. Their strategy is a centralized RTS where EVs are charged in a distributed manner 

and different queues for charging are maintained based on the user requirements and 

electricity utility’s main functional need (minimizing total load variance). 
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Mody and Steffen [87] presented a study in 2013 describing the need to use automated 

control for ‘optimal’ charging of EVs. They observed that the increasing EV population will 

lead to electricity grid problem if it is treated like a normal appliance. It would be necessary 

to use a smart method to offset EV charging to lower demand hours by automatically 

charging the vehicle rather than let it charge instantly when it is plugged in. The paper 

presented a sub-optimal controller for automated charging based on real time tariffs 

provided by electricity grid distributors in Illinois (Chicago).  The first conclusion was that 

if prices are known in advance (day-ahead pricing), the optimization only requires picking 

the cheapest time slots for charging the battery. Further savings can be made by using real 

time prices that are not known in advance.  

Scholer and Glynn [88] presented a charging solution in the technical paper (2014) with a 

similar idea to [87]. However, it was mainly a part of a series of technical papers written by 

the SAE PEV task force. The main theme of their paper was ‘smart-charging standards’ but 

their main conclusion was that it is not necessary to charge the PEV immediately when 

plugged in, and smart charging is required to balance the load and prevent problems in the 

local distribution circuit. They presented a price-based smart charging idea based on RTP 

and smart grid communication very similar to the one presented by Mody and Steffen in 

[87]. It reacted to the price information and offset charging to lower demand times, still 

making sure that full charge was provided when needed. 

Various studies including the ones discussed here which propose the need for a solution or 

a solution for optimal EV charging. However, most of them stress on the need to find an 

optimal control solution from the electricity utility and grid point of view. They concentrate 

on the system view, including vehicle-to-grid (which may be valid in the future and useful) 

and on assumptions about grid requirements regarding future regulations. 

2.7 Summary 

The above discussion urges us to consider two things when EV penetration becomes high 

in the future. Firstly, it will be important to manage the electricity loads and peak demands 

due to user profile of EV charging. Some load may have to be shifted from peak afternoon 

and evening times in some manner either by persuading or enforcing the consumer to 

charge earlier or later. Secondly, charging the vehicle without control might also be a 

disadvantage for the consumer due to the possibility of a future with RTP for electricity. 

However, both these problems can be looked as an opportunity for EVs. The flexibility of 

charging time can be viewed as an advantage for load shifting opportunities. 
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Majority of the research in the area of optimal EV charging looks at the user point of view 

in a limited manner. Most of the work done concludes that in any centralized or 

decentralized charging strategy, the users’ requirements might be secondary. For example, 

the studies proposing centralized control by negotiating requirements with utilities in 

advance, do not acknowledge the basic user requirement of state of charge deadline being 

met for a high percentage of EVs. Moreover, there is not much stress on ‘optimality’ in 

finding the control inputs in the majority of studies. Although some studies like [89] and 

[90] do take into account minimising cost of energy, there is no direct link to electricity 

prices or the benefit or loss to the users who might be on a smart-tariff. 

The approach taken in this thesis tries to fill this gap in the field. The aim is two-fold: to 

reduce cost of charging the EV for the user and to shift electricity demand from peak to off-

peak. A control engineering approach which views the problem from a user point of view 

first, is the main concept behind the strategies developed here. Data of flexible pricing 

tariffs like RTP can be used to decide when it is the optimum time to charge. Chapter 3 

presents and overview of the problem and scope of the solutions presented in this thesis. 

The optimal charging strategies presented in this thesis have been published in three 

journal and conference papers [14], [15], [91]. 
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3 Problem Overview and Statement 

A problem statement is formulated in this chapter, on the basis of the discussion in chapter 

2. The research question is put forward clarifying the scope of the optimal EV charging 

solutions presented in this thesis.  

The interests of the grid are obvious in a scenario with high EV penetration. It will be 

essential to manage the electricity loads and peak demands due to user profile of EV 

charging, or the additional load could lead to power outages. Some load may have to be 

shifted from peak afternoon and evening times in some manner either by persuading or 

enforcing the consumer to charge earlier or later.  

This has to be traded against the goals of the EV owner. Charging the vehicle without control 

might be a disadvantage for the consumer, especially when smart-grids are in place and 

most customers are on the real-time pricing tariff (RTP). Essentially with users being billed 

upon changing prices, the nature of the electricity market and possible price spikes might 

lead to a financial disadvantage from the user’s point of view. 

The flexibility of charging time can be looked as an advantage (discussed in chapter 2 

section 2.2) for grid-side load management and for the user saving on charging cost. If the 

daily mileage required is for urban travel, a desired state of charge (SoC) requirement can 

be achieved in less time and times of charging can easily be varied. The question of when 

the right time to charge is the core of the problem. Up-to-date pricing information from the 

smart-metering system could be a starting point which aids automation strategies to decide 

charging times. 

The charging of electric vehicles can impact the electricity grid on a number of time scales, 

ranging from the millisecond range to hours and days. The potential is there for all these 

effects to be beneficial to the grid: active inverters can absorb harmonics; they can apply 

droop control to enhance grid stability [92], and they could pick times for charging when 

excess electricity is available. However, very little progress has been made towards these 

goals so far, and regulations often only aim to prevent harmful effects, not to leverage 

potential benefits.  

This thesis concentrates on the slow time scale, and what kind of effects smart metering 

has on the optimal charging timing. Currently, prices are set in intervals of 5 to 15 minutes 

depending on markets, and it is difficult to see a price-based approach being able to respond 

faster than about 30 seconds. On the other hand, using prices allows sophisticated 

optimisation strategies to schedule the charging. The aim is to look at the potential benefit 
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a combination of real time pricing and charge automation strategies can achieve for the 

user.   

3.1 Context and Terminology  

Figure 8 shows a typical representation of North-American and European distribution 

grids. The urban, low-voltage distribution highlighted in purple is of significance for the 

problem described in this thesis. More specifically, the snapshot of a single home and EV 

connected to the grid.  

There are many differences in European and North-American grid designs. Primarily, 

European systems have larger transformers and more customers per transformer, than 

North-American systems do. European transformers are three-phase and 300-1000 kVA, 

compared to North-American 25-50 kVA, single-phase transformers.  In terms of secondary 

voltage, North-America has a standard of 120/240-V, whereas European systems have the 

240/480-V standard. European systems can have more customers per transformer because 

they are three-phase and have twice the voltage. This means they can reach eight times the 

length of an American system for a given load and voltage drop [93]. There are pros and 

cons with either system but with respect to significant number of EVs being charged, having 

less customers per transformer can be an advantage.  
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In terms of secondary supply (urban and low voltage customers), European systems are 

more flexible. For example, transformers can be sited more conveniently. Conversely, 

North-American systems have more flexible primary distribution layout, which means it is 

easier to extend and supply to new loads in rural areas. On average, North-American 

designs result in fewer customer interruptions. European systems have less primary but all 

of it relies on the main feeder backbone. The loss of the main feeder would result in an 

interruption for all customers on the circuit [94]. The context of the North-American grid 

is used in this thesis because there are smart-metering programs in place in some states, 

and price data is available from the electricity distributors for research. 

We begin by foreseeing a future with wide spread adoption of battery electric vehicles 

(EVs), although it is not clear when exactly this will happen. The cost of EVs has fallen by 

65% since 2010 already, as discussed in chapter 2. If the decline continues the possibility 

of electric mobility in the future is a given. Many drivers have already opted for EVs as 

second vehicles but will likely have one or more EVs as the main household vehicle in the 

future. This influx of EVs will cause additional load on electricity grids. One solution for that 

problem is smart EV charging control which shifts this load from peak to off-peak times. 

The electrification of transport will be aided by charging infrastructure that can support it. 

There is already a network of charging points in countries like the U.K. and U.S.A., and this 

will only get better, including the availability of chargers at public and work places. 

However, users are likely to charge when it is cheapest and most convenient for them, 

unless they absolutely need to. Especially, the availability of fast chargers to install at homes 

is a great incentive to charge conveniently at home, like users would their smartphone 

every evening at home. Although fast chargers are currently expensive, they are aided by 

government grants and tax reliefs in many countries and like EVs themselves (chapter 2), 

the price of this infrastructure will undoubtedly fall to more affordable levels.  

Overall, the driving behaviour is assumed generally unchanged in this future, where most 

drivers still use the vehicle for urban commute like daily trips to the workplace and back 

and some leisure driving on the weekends. As reviewed in section 2.2 most single vehicle 

usage is likely to be in between 20-80 miles a day. Based on this, the users travel to and 

from work back to home every day and do some leisurely driving on weekends with a 

matching mileage to the weekdays. The EV is charged using a fast charger installed at home 

when it is most convenient, i.e. when they return from work which is a peak time for 

electricity use.  
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The users’ homes are connected to the smart-grid and most importantly have a smart-

metering connection which makes the day-ahead prediction (DAP) of price and real time 

price (RTP) tariff available. The users are also billed on the real time price tariff. These 

tariffs are explained in chapter 2, section 2.4. 

The key question to answer is: when is the best time to charge the EV? This question is 

surprisingly difficult to answer because of the number of parameters which could affect 

this decision. The most important parameters would be location; weather; charge 

requirement, and price of electricity (in turn dependant on the time). Although, the 

intensive discussion in the Literature sections (chapter 2 section 2.2) reveals that charging 

times can be somewhat predicted, this is not strictly true all the time for all locations in the 

world. How much charge will be needed and when will depend on the use profile of the EV. 

This is a significant variable here; is the vehicle used for leisure, work, urban driving, extra-

urban etc. This makes predicting a charging profile tedious. The consumer themselves will 

have to intervene to decide when exactly they would want to charge, unless there is an 

intelligent automatic system which can do this.  

Moreover, users are likely to plug-in at their convenience and the price of electricity (and 

demand) at these times might be very high. More vehicle owners will obviously choose to 

charge where the service may be provided for free, or at lower rates. So, with the narrowing 

down of some abstraction, the two parameters which will always affect the decision of 

when to charge, will be State of Charge (SoC) and Price of Electricity; which in effect would 

be dependent on the time at which charging will take place and time at which it is needed 

i.e. Time of Charge (ToC). 

3.2 Problem Breakdown 

There are two main stakeholders in the electricity system who would be affected by a high 

number of EVs in the future: 1) the electricity grid and 2) EV users. This research 

concentrates on the problem from the second point of view, i.e. the vehicle user’s point of 

view. To make it easier to explain, Figure 9 and Figure 10 try to visualise the problem. 

The user comes home at 18:00 and plugs the vehicle in. Until 7:00, it is available for 

charging, and then it needs to have a certain minimum state of charge (SoC) for the daily 

drive. The vehicle battery is an integrator of power, so it can be charging at any point during 

this time. The charging time does not have to be continuous.  
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Figure 9: Charge profile and DAP-RTP Price curves 

A simple strategy (and in widespread use current) is to charge the vehicle immediately. 

This makes the vehicle available as soon as possible, and it is simple. However, this 

approach leads to very high prices for charging, and it causes extra load for the grid at a 

very busy time.  

 

Figure 10: Availability of DAP and RTP 

At 17:00 in the evening the day ahead prices (DAP) are released for the rest of the day and 

the next day. Based on these prices, it is relatively easy to come up with an optimal charging 
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strategy, as will be discussed in Chapter 5. The real time prices are of course unknown, and 

they only become available hourly as time progresses. Because the prices are unknown, it 

is much more difficult to identify the right time for charging. Figure 10 shows this problem: 

the purple section is the hourly price which is known, and the grey section represents the 

hours for which only a prediction is available.  

Part of the problem is about the user’s requirements; the time when the vehicle is needed 

again, and how much charge is required in the vehicle to manage the mileage for the day. 

Based on this information, the time required to charge the vehicle can be known. Two 

variables of concern to the user are SoC and ToC, i.e. how much charge is required and when 

is it required by. 

The solution needs to answer: when is the best time to actually charge the vehicle between 

now and then (the point in time when the vehicle is needed)? It must be able to balance the 

trade-off between the user’s requirements and delaying the charging to the correct hours 

to achieve the lowest possible cost.  

Answering the question of when to charge is not trivial because the real prices are not 

available in advance when they would be helpful to make the decision, and the prediction 

is not likely to always be accurate or can even be far off. The question can then be posed as: 

What will be the cost of charging now versus charging later? The dilemma can be explained 

well using the following example. 

The DAP price at the hour, say 23:00, is low compared to other hours and we decide to start 

charging. This reality might change at the hour, when the RTP is available, i.e. the RTP might 

be higher. This poses more than one problem. Firstly, we may have missed the opportunity 

to charge earlier at a lower cost in the earlier hours. Secondly, we now must decide if to 

delay the charge further and rely upon the known DAP and hope we can we rely on them.  

Lastly, the charging cannot be delayed indefinitely i.e. we cannot keep waiting. The battery 

will require a known amount of time to charge and that threshold would be most important 

because the user cannot be denied a charged vehicle. Basically, the nature of the problem 

is such that the opportunity cost of charging later is unknown compared to charging now. 

The trade-off between saving cost and achieving the outcome of a charged EV must be 

balanced, which is difficult because the time dependency of the problem is on the 

environment and not just the cost. 

The problem now takes shape on the basis of the change or delta of price over time. This is 

an important and largely unpredictable variable. Smart meters or AMI can deal with 

frequently changing tariffs and typically the cost of electricity changes every hour. The 
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power provider makes an hourly prediction for the next day in form of DAP, but these prices 

are merely a best possible prediction. DAP then, is a known factor but also a ‘known 

unknown’, as they are likely to be unreliable to a certain degree. The problem becomes 

simple, if we were to assume that DAP are accurate and therefore the known price but this 

cannot achieve optimality in the solution.  RTP on the actual day and hour can be very 

different due to the nature of the market because the real prices fluctuate based on the 

supply and demand and are prone to random disturbances. This is evident from the Figure 

9 above as well. 

3.3 Model Framework 

Now, taking the important aspects discussed above in account, the basic plant model of the 

problem can be represented as shown in Figure 11. 

 

 

 

 

 

 

 

 

 

 

Figure 11: Basic Plant Model showing the Minimisation Problem 

• u: The charging power will be the input which has to be regulated or switched on 

an off based on the control solution. 

• Battery Model: We want to integrate charge inside the battery over time, i.e. the 

SoC of the battery is a state of the problem. The SoC is basic and internal state which 

is explained by its dependence on the control input and input alone. 

• Grid Model: The Electricity Grid cost is affected by external disturbances and is an 

external state which will affect the output but there are several approaches which 

can be taken to model this. Further analysis is performed to understand electricity 

price data in chapter 4. 

• Cost Model: The cost is added up at every unit of time when the input is applied 

and is affected by the input and grid cost. 
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• w: This is the known price disturbance i.e. the day ahead price prediction (DAP). 

• d: This is the unknown price disturbance i.e. the factors which are unpredictable 

but change the electricity price. 

• c: This is the output is the final cost which the solution aims to minimise. 

 

The nature of the external state, the grid cost, divides the problem into two distinct parts, 

one is deterministic and the other is the disturbance which changes the basic problem into 

a stochastic one. The ‘Charge Control’ in Figure 11 can be developed with a variety of 

methods. The deterministic part can be resolved by linear programming. However, the 

stochastic part may require methods like model predictive control (MPC) or dynamic 

programming (DP). These are methods to solve classic optimisation problems, but they 

have the advantage that they can deal with stochastic elements.  

The deterministic approach and controller are discussed in chapter 5. The stochastic 

control approach is presented in chapter 6. It is the combination of these approaches which 

leads to an understanding that has ultimately resulted in an optimal controller for EV 

charging. 

3.4 Summary  

Thus, to summarize the problem and requirements:  

1. The EV user drives in an urban area and plugs in the vehicle to charge as soon as he 

or she is home. The vehicle needs to be charged by morning, ready for use again. 

2. The condition is to provide the required charge at the required time and to minimise 

the total cost of charging. 

3. The charging of the vehicle should be offset to lower demand hours which in turn 

benefits the user because he or she is charged less for electricity. 

4. Retrospectively, there is DAP and RTP price data which is available from some 

electricity providers in the world where these tariffs are active. This data can be 

used to formulate (by training) a grid model which affects the total cost. 

5. The vehicle battery can be modelled as an integrator of power. Without any losses 

or effects of temperature or other chemistry being considered, any charge stored in 

it is not lost unless used. Therefore, charging can be done in stages if required. 

 



Cost Optimal Charging of Electric Vehicles 
Sagar Mody | Loughborough University 

40 
 

3.5 Research Question 

This research aims to provide an optimal solution to the problem of ‘when to charge?’ for 

an EV connected to a smart-metering system. The idea is to provide a unique approach in 

which the system of control is not hierarchical, but the problem is viewed from the 

perspective of the vehicle owner instead. The aim is to minimise charging cost over a given 

period of time while still providing the required amount of SoC.  

This discussion leads to the main research question this thesis presents a solution to:  

From the perspective of a battery electric vehicle owner on real time tariff, what kind of 

control law for vehicle charging leads to the lowest cost for charging the vehicle? 

Although this may seem like a forgone conclusion, in that an optimal control will deliver the 

lowest cost, this problem is not specific enough to solve yet. A number of assumptions need 

to be formalised before a solution can be attempted and the nature of the assumptions will 

imply the appropriate algorithm. Therefore, the remainder of the thesis approaches this 

very question from a number of different points of view.  
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4 Data Analysis and Price Prediction 

This chapter begins by assessing the data from the RTP programs in the state of Illinois, 

USA, because this is used for the case study which validates the controller strategies 

proposed in this research. Since there are differences between these two prices, i.e. the day-

ahead (DAP) being the prediction provided by the electricity company, compared to the 

real-time (RTP) and therefore unpredictability in them, we proceed to analyse this further.  

We explore a linear regression predictor to create an unbiased and improved estimate of 

the RTP tariff based on the available data, specifically the available DAP trajectory. The aim 

of this basic predictor is to understand how useful DAP is in predicting RTP, and whether 

there is any systematic difference between the two that would have an impact on a charging 

control strategy. 

As discussed in chapter 2 section 2.5, predicting the real time price is a tedious endeavour. 

The concept of using linear regression with the available factors is to see how close the DAP 

come to the RTP, and whether by using the available information (the DAP themselves 

along with the hour, week, month and day), we can achieve a better prediction than that is 

already provided. The other question this analysis could answer is: Is there a clear 

alteration in the DAP to already encourage load shifting?   

The chapter is arranged as follows: Section 4.1 introduces the pricing data which is being 

used for training and verification purposes. Section 4.2 explains the methodology behind 

the linear regression predictor. Section 4.3 discusses the various models and 4.4 presents 

an analysis of them. Finally, the results are discussed, and a conclusion is presented. 

4.1 Pricing Data 

In Illinois, U.S.A., RTP tariff has been available to customers since 2003. These programs 

have been successful in reducing the participating consumers’ electric usage and bills and 

shifting usage to non-peak times of the day [61]. The two electricity providers which allow 

the choice of RTP are Amaren and ComEd. Amaren’s Power Smart Pricing (PSP) and 

ComEd’s Residential Real Time Pricing (RRTP) programs have reduced their peak demand 

in the range of 15% and achieved participant bill savings between 10-15% [61]. 

In the Midwest area of U.S.A., ‘PJM’ is a neutral and regulated organisation which directs the 

operation for different generators. They serve as an agent, to regulate fair access to 

transmission systems for different electricity suppliers. Illinois, is one of the states in which 

PJM regulates the spot-electricity market and ‘ComEd’ is one of the electricity resellers to 
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the retail market. The reseller, ComEd, charges the end users based on the ‘real time price’ 

(RTP) from PJM which is determined by the average of twelve 5-minute prices from that 

hour, without any mark-up. The ‘day-ahead price’ (DAP) which is the prediction based on 

weather, capacity, generation factors and other variables, is also provided by PJM [95].  

There has clearly been great progress in the last five years. Price information was available 

on an hourly time-scale in 2012 but now is available at both fifteen and five minutes. 

Although these programs have been successful, smart-grids and AMI are in their infancy. 

This is evident by these changing policies and non-standard data availability across the 

same distribution network PJM. A recent review paper in the area concludes something 

similar about AMIs. The data clarity and frequency is questionable at times and therefore 

unreliable [96].  

The data available from ComEd also has been incomplete for many years which have been 

discarded. Secondly, it is now claimed that the RTP is only available after the hour is passed. 

This reflects a grave issue because the whole idea of encouraging behavioral change on part 

of the users’ electricity usage is defeated if the real price isn’t available before the billing 

interval. The availability of the five-minute prices makes it better but even then, the last five 

minutes in the hour could change everything if there was a ‘spike’. If the price is ultimately 

unavailable before the billing interval (whether it is an hour or five minutes), demand 

response solutions will be limited to using unreliable DAP.  

Retrospectively, both the DAP and RTP are available from the electricity provider. The data 

available from Amaren, Illinois (year 2010) was first used as the baseline. However, due to 

changes in their company policy, further data was not available to download and ComEd 

data was used instead. As a result of this, the example in the first part of the research 

(chapter 5) has been conducted using the Amaren data and the subsequent case study in 

the latter part (Chapter 1) is conducted on the basis of ComEd data. An analysis is 

performed here on the basis of both, but the predictor is explored on the basis of ComEd 

data. 

The data from years 2010 to 2014 is used, from 1st of January to the 31st of December for 

each year [97]. These prices exclude the distribution cost, which is constant and therefore 

not relevant for comparison purposes.  So, that question, ‘When to charge?’ comes down to 

answering this one, ‘How much can we rely on the DAP data for the prediction of real prices 

the next day?’  

Table 1 left (Amaren, 2010) and right (ComEd, 2010) show the pricing data from a statistical 

point of view. First of all, both the day-ahead price and even more so, the real-time price 
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become negative at times. This happens because bids with negative prices are allowed in 

the spot market, when the demand is very low or the production from renewable sources 

like wind is very high. The costs of shutting down and ramping up a power plant can exceed 

compared to the losses due to negative prices, so the existence of negative prices is not odd 

[72].  

Secondly, the standard deviation of the real-time price is much higher than the day-ahead 

price although the means are quite similar (highlighted in Table 1). There is a remarkable 

difference in the standard deviation between DAP and RTP; in the Amaren data it is more 

than double for RTP and in the ComEd data slightly less but still significant.  

Table 1: Statistical Properties of Amaren data (2010) (left) and ComEd data (2010) (right) (SD-
Standard Devaition) 

 

The difference between the day-ahead price and the real-time price can be seen as 

prediction error and interestingly its standard deviation is only slightly lower than 

standard deviation of the real-time price. The RTP are much more volatile, and therefore 

offer greater potential for load shifting. The correlation coefficient between day-ahead 

prices and real time prices of the Amaren data is 0.43, which indicates that day-ahead prices 

have only moderate value as a prediction of the real-time prices. However, the correlation 

coefficient of the ComEd data is 0.71, indicating that their day-ahead prices have a higher 

value as a prediction for the real prices.  

To understand further, the autocorrelation property of the data can be analyzed. 

Autocorrelation is a characteristic of the data which shows the degree of similarity between 

the values of the same variables over successive time intervals.  As such, it measures the 

correlation in the data of the same series, between 𝑦𝑡 and 𝑦𝑡+𝑘 where 𝑘 = 0, … , 𝐾 and 𝑦𝑡 is 

a stochastic process.  

 

Amaren Mean SD Min Max 

Day-Ahead 

(US cents) 
2.73 1.04 -0.19 19.81 

Real Time 

(US cents) 
2.63 2.20 -8.85 107.58 

Difference 

(US cents) 
-0.10 1.99 -99.19 13.19 

Ratio 1:0.96 1:2.11 1:6.92 1:5.43 

ComEd Mean SD Min Max 

Day-Ahead 

(US cents) 
3.61 1.60 -0.44 12.38 

Real Time 

(US cents) 
3.61 2.19 -12.58 33.30 

Difference 

(US cents) 
0.13 1.54 -23.85 13.31 

Ratio 1:1 1:1.37 1:28.5 1:2.69 
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Lag 𝑘 is defined as 

 𝑟𝑘 =  
𝑐𝑘

𝑐0
 (1) 

Where 

 𝑐𝑘 =
1

𝑇 − 1
∑(𝑦𝑡 − �̅�)(𝑦

𝑡+𝑘
− �̅�)

𝑇−𝑘

𝑡=1

 (2) 

 

𝑐0 is the sample variance of the time series 

The estimated standard error for the autocorrelation lag  𝑘 is 

 𝑆𝐸(𝑟𝑘) = √
1

𝑇
(1 + 2 ∑ 𝑟𝑗

2

𝑞

𝑗=1

) (3) 

Where 𝑞 is the lag beyond which the theoretical ACF is effectively 0. If the series is 

completely random, the standard error reduces to 1
√𝑇

⁄  [98].  

 

Figure 12: Autocorrelation of DAP 

Figure 12 shows the autocorrelation of DAP data for the 2010-year data. The DAP data 

decays quickly to lag 10, reaching zero and then going negative before rising back up. Figure 

13 shows the autocorrelation of RTP data for the same year.  The RTP data stays positive 

nearly converging to zero but stays between 0-0.1 before rising again. The data is 

predictable starting with a high autocorrelation, but the randomness is stronger at the 
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central lags, near 12.  There is likely to be more randomness during the hours when there 

is higher use of electricity. The DAP seem to show a higher autocorrelation, as they 

converge more quickly to zero. Of course, both tariffs are a combination of regular daily 

changes in price, and random fluctuations caused by specific supply or demand situations. 

 

Figure 13: Autocorrelation of RTP 

Figure 14 shows the autocorrelation of the error (𝐷𝐴𝑃 − 𝑅𝑇𝑃). This removes the regular 

daily changes from consideration and makes interpreting the data easier. The exponential 

fit (0.83𝑒−0.33𝑥) shows a convergence to zero by lag 15.  

 

Figure 14: Autocorrelation of the error (DAP-RTP) 
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The plot starts with a high autocorrelation at lag 1, which quickly decreases but then decays 

exponentially. It does not quite converge to zero itself indicating a moderate 

autocorrelation. So, the correlation shows a long tail, which is best explained as a 

combination of exponential functions. This means that a stochastic model would need to 

include hidden variables – a first order system cannot produce this autocorrelation with 

precision. Still, for the purpose of this research, the first order approximation is considered 

to be close enough to be useful.  

Figure 15 shows the normal probability plots for DAP and RTP. Firstly, the key observation 

that can be made, is that there is much more variability in the RTP prices compared to the 

DAP. The RTP plot clearly shows the trend of the electricity market, discussed in sections 

4.1 and 4.2. The ‘normal’ prices all fall on the linear line, but there is a long tail on either 

end. The non-Gaussian nature of electricity prices is the cause of this shape. The higher 

prices, which do not fall on the line and tend to elongate the right end, can be attributed to 

the large-scale unforeseen events, which are difficult to predict. The extreme high prices 

indicate failure of transmission in some cases. Therefore, it is essential that heavier loads 

like EVs are encouraged to shift their charging away from peak times.  

 

Figure 15 : Normal Probability plot for DAP and RTP 
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The lower end of the tail, indicates the negative prices which are the cause of negative bids 

in the wholesale market. These are allowed when the production is surplus (usually from 

renewable sources) or when the demand is too low, or even a combination of both. This end 

of the scale is interesting and an opportunity to make the most of, for a stakeholder, in this 

case the EV owner. However, as it is clear, the prediction of this is difficult and the DAP do 

not show the negative tail. It is possible that with the large-scale change to smart-grids in 

the future, the negative tail might come under control. The transparency and 

communication should help all stakeholders to balance electricity transmission and usage 

with the aim to not ‘waste’ any surplus.  

4.2 Predictor Methodology 

There are many in-depth studies on ‘predictors for hourly electricity prices’, as discussed 

in chapter 2 section 2.5. Many of these predictors proposed are already being used by 

electricity providers themselves. Use of a sophisticated algorithm to generate the DAP is 

crucial, with multiple underlying factors involved including history and weather 

predictions. Therefore, the exercise to create this linear regression to make a predictor is 

to check validity of the DAP provided, and to see if a marginally better prediction can aid 

the controllers proposed in chapter 6 and 7, in making a control decision of ‘when to 

charge?’ Secondly, there is an underlying question to consider: are the DAP provided 

already tailored in some way by the electricity providers to encourage the users to shift 

electricity? 

Proper multiple linear regression using least square technique is used to create a model for 

RTP based on the provided DAP. A study has been performed using the standard 

methodology, to achieve possible predictions on this basis. The value of the predictions is 

then analyzed. Data for the year 2010 has been used as training data, and the years 2011-

2014 have been used for verification. 

RTP is treated as the dependent or response variable, which is dependent on the available 

factors (available from the data provided by the electricity company): DAP; day of the week; 

hour of the day, and month of the year. These are treated as the explanatory or predictor 

variables.  

The linear model underlying the least square regression analysis is: 

 𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏𝑿𝒊𝟏 + 𝜷𝟐𝑿𝒊𝟐 + ⋯ + 𝜷𝒑𝑿𝒊𝒑 + 𝜺𝒊,      𝒊 = 𝟏, … , 𝒏,  (4) 
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• 𝑦𝑖  is the ith response 

• 𝛽𝑘 is the kth coefficient, where 𝛽0 is the constant term in the model 

• 𝑋𝑖𝑗  is the ith observation on the jth predictor variable, j = 1, …, p 

• 휀𝑖  is the ith noise term indicating the random error 

Using the least square method [99], [100], the unknown parameters are estimated by 

minimizing the sum of the squared deviation between the data and the model. This reduces 

any over-determined parameters and leaves functional parameters in a system of 

equations which is finally solved.  

As is well-known and established, linear least squares can make use of any reasonable size 

data sets efficiently in-turn providing good results for the purposes of prediction. In this 

case, the data-sets are not very small; considering that we are concerned about the hourly 

time-scale, each year’s data has price data for every hour of the year. The main concern with 

using this method of regression is generally the limitation in shapes linear models can take 

over long range data. Secondly, this method of regression is also sensitive to outliers in the 

data-set.  

Unusual data points can give very misleading results and cause errors in further 

extrapolation from these points. However, if the model is linear to a high degree, especially 

in the data region of interest, this method is most reliable. In the case of electricity prices, 

we mainly need to find the parameters that most affect the RTP. 

 

 

PREDICTOR 

RTP Prediction 

DAP 

Higher order DAP 

Hour 

Figure 16: DAP based Linear Predictor for RTP 

Day 

Week 

Month 
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The following method was used to find and assess a regressive predictor in MATLAB: 

1. Data imported and sorted to make sure known factors are available for study 

(2010-year prices for training the linear-regression model and 2011-2014 for 

verification of the model) 

2. Fitted models are created. 

2.1  Using DAP as the main factor of concern.  

2.2  Using higher order DAP-based models.  

2.3  Other factors added one by one.  

2.4  All factors are added together (Full Model). 

3. Results of each model are compared and test plots are created to understand 

predictor effects 

4. An attempt is made to find if there are any outliers of concern and to test the quality 

of the models 

5. Ineffective models are eliminated based on their plot or they are simplified by 

removing factors (coefficients) which did not prove significant based on their p-

value.  

6. The most-effective model is verified with new data (verification with 2011-2014 

data) 

Important Definitions 

• Null Hypothesis: It represents a theory put forward which is believed to be true 

but is not proven. It is the starting point of analysis with no effect or no difference. 

• Alternative Hypothesis: It is the hypothesis that sample observations are 

influenced by some non-random cause.    

• P-Value: The P value is defined as the probability under the assumption of the null 

hypothesis. The ‘P’ stands for probability and can take a value between 0 and 1. It 

measures how likely it is that any observed difference is unlikely to be due to chance. 

A value closer to 1 suggests no difference between observations other than chance. 

• T-Stat: The t-stat value is a test between the null hypothesis and alternative 

hypothesis. Along with the p-value it is used to make inferences about the 

regression coefficients. A higher t-value usually corresponds with a lower p-value.  

4.3 Models 

The training data for all models is the ComEd pricelist for 2010. The file included DAP and 

RTP with the dates and times. The tables were adjusted to reflect the other factors which 
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can be derived from the information i.e. day, week, hour and month. The same method was 

applied to the verification data years (2011-2014). This section shows the final models used 

to obtain fitted results.  

4.3.1 First Order Model 

Since DAP is provided as a reliable prediction by the electricity company, it is considered 

to be the most important factor in the prediction of RTP for the study. Therefore, starting 

with the simple model, which uses only DAP as the predictor the following model is 

obtained for the training data. 

Figure 17 shows the scatter plot of DAP and RTP. The linear fit line explains the first order 

model shown below. The scatter shows how similar the DAP and RTP are. The colors in the 

plot are varying from the first to last point in the data (8760 points). The function of the 

varying color is to make it easier to read the plot.  

 

Figure 17: First order DAP Model 

Referring to equation (4), Y is RTP and X1 is DAP, 

𝑹𝑻𝑷 = 𝟎. 𝟎𝟎𝟎𝟖 + 𝟎. 𝟗𝟕𝟓𝟕(𝑫𝑨𝑷) 

Table 2: Coefficients of the Simple Model (DAP Predictor) 

 Estimate Std Error tStat pValue 

𝜷𝟎 0.00086454 0.0004056 2.1315 0.33075 

DAP (X1) 0.9757 0.010272 94.988 0 
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4.3.2 Second and Third Order Model 

An attempt to make the ‘prediction’ better, i.e. attempt to make the linear fit better, is made 

by trying to use a higher order DAP factor model. An additional factor is added to the model 

by squaring and cubing DAP. This is still a linear coefficient model.  

Referring to equation (4), Y is RTP, X1 is DAP and X2 is DAP2 

𝑹𝑻𝑷 = −0.0025774 + 1.1602(𝑫𝑨𝑷) − 2.065(𝑫𝑨𝑷𝟐) 

Table 3: Coefficients of the second order DAP model 

 
Estimate Std Error tStat pValue 

𝜷𝟎 -0.0025774 0.00073537 -3.5048 0.00045918 

DAP (X1) 1.1602 0.034463 33.665 9.46E-234 

DAP2 (X2) -2.065 0.36829 -5.6069 2.12E-08 

Adding third order DAP as a factor:  

Referring to equation (4), Y is RTP, X1 is DAP, X2 is DAP2 and X2 is DAP3 

𝑹𝑻𝑷 = −0.00094789 + 1.0116(𝑫𝑨𝑷) + 1.6321(𝑫𝑨𝑷𝟐) − 25.624(𝑫𝑨𝑷𝟑) 

Table 4: Coefficients of the third order DAP Model 

 
Estimate SE tStat pValue 

𝜷𝟎 -0.00094789 0.0010821 -0.87597 3.81E-01 

DAP (X1) 1.0116 0.080197 12.613 3.67E-36 

DAP2 (X2) 1.6321 1.8386 0.88767 0.37474 

DAP3 (X3) -25.624 12.485 -2.0524 0.040165 

4.3.3 Full Model 

The full model includes all the available factors (hour, weekday, month, DAP), including the 

interdependencies between them. This makes it a linear formula with 11 terms and 4 

predictors.  

𝑹𝑻𝑷 = 𝜷𝟎 + 𝜷𝟏(𝐷𝐴𝑃) + 𝜷𝟐(𝐻𝑂𝑈𝑅) + 𝜷𝟑(𝑊𝐸𝐸𝐾𝐷𝐴𝑌) + 𝜷𝟒(𝑀𝑂𝑁𝑇𝐻) + 𝜷𝟓 (𝐻𝑂𝑈𝑅 × 𝐷𝐴𝑃)

+ 𝜷𝟔(𝐻𝑂𝑈𝑅 × 𝑊𝐸𝐸𝐾𝐷𝐴𝑌) + 𝜷𝟕(𝐻𝑂𝑈𝑅 × 𝑀𝑂𝑁𝑇𝐻) + 𝜷𝟖(𝐷𝐴𝑃 × 𝑊𝐸𝐸𝐾𝐷𝐴𝑌)

+ 𝜷𝟗(𝐷𝐴𝑃 × 𝑀𝑂𝑁𝑇𝐻) + 𝜷𝟏𝟎(𝐷𝐴𝑃 × 𝐻𝑂𝑈𝑅) + 𝜷𝟏𝟏(𝑀𝑂𝑁𝑇𝐻 × 𝑊𝐸𝐸𝐾𝐷𝐴𝑌) 

The RMS Error=0.0149, which at first glance confirms the dependence of the output on 

these factors in addition to DAP. 

Initially, models with one factor added at a time were explored, however the improvement 

or change was so negligible compared to using all the factors together that these models 
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were discarded as insignificant. This may be due to the fact that each of these factors 

represents various factors. For example, ‘HOUR’ is actually 24 different hours. 

Running the simplification method within MATLAB, and analyzing results and plots, no 

significant factor reduction is obtained. For example, MATLAB removes HOUR×WEEKDAY 

which has a p-value=0.40522 (average of all hour x weekday combinations) which is not very 

small (only <0.5). Moreover, there is no change in RMS error.   

4.4 Analysis 

 

Figure 18: Plot of Linear Models (from top left: DAP, DAP2, DAP3 and Full Model) 

The results show that DAP is very closely related to RTP in this set of data. As such, DAP is 

a good prediction of the RTP except in cases of 0.05 cents or less, or in case of very large 

price spikes. Figure 18, shows the fit of each model as a whole and it is clear to see that, the 

bounds don’t come too close to containing a horizontal line. For the most part, the fit is 

linear with good confidence bounds which conform to the linearity. There is very little 

difference in between first order and higher order models and we can see the confidence 

bounds start to diverge post 0.12 when it comes to the third order. The full model with all 

factors on the other hand shows a good fit like the basic DAP model but since it contains 

DAP as a factor, the effect of DAP is not at all diminished.  
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Figure 19: Probability Plot of Residuals (Cumulative Histogram) 

Some outliers and deviations are expected since the electricity price is non-Gaussian in 

nature (Figure 19). It exhibits a rather long tail at both, very high and very low probability 

bounds. This can make relying entirely on the linear regression data analysis, quite difficult. 

It shows high similarity to figure 4, the probability plot for the real RTP data. 

In Figure 19, the probability plot of the residuals shows a good straight plot for the region 

of interest, the region where most of the average price data lies. On each end of the data, 

there is an expected long tail which makes prices less predictable and more ‘random’, 

indicating the stochastic nature of the electricity prices. Additionally, this plot helps find 

outliers and there seems to be only one outlier in approximately 8760 data points in each 

year.  

On a shorter time-scale i.e. hourly, and the one of concern in this project, electricity use is 

logically and statistically higher during office/work hours including usage by industry, 

compared to that at night. The market prices are directly affected by this trend as discussed 

previously in the literature. Naturally, the addition of these factors in the DAP only model 

becomes a significant step forward and we expect to see a reduction in the prediction (RMS) 

error of the model.  
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While all the different coefficient values obtained are helpful in making a decision about the 

predictor’s usefulness, the most important observations for our purpose are the intercept, 

coefficient of the DAP factor and the root mean squared (RMS) error estimate. Clearly, the 

RTP prediction is almost closely based on the DAP with a small error.  

4.5 Discussion of Results 

The reduction in the RMS error between the normal and higher order models is negligible, 

although as expected, it is slightly lower for the higher order models. The coefficients of the 

model now show a negative proportionality with the higher order DAP factor. Figure 20 

shows the RMS error of the different models compared to that of the original training data. 

The first order DAP model shows no improvement. The second and third order models both 

improve by 0.65 %, and the full model shows a 6.5 % improvement.    

 

Figure 20: RMS errors of models for training data (2010) 

There seems to be a significant improvement in the model when multiple factors are added, 

at least based on the RMS error. Although it would not be correct to conclude that all factors 

are fully important (because their interactions can be redundant at many values and their 

coefficients are highly negative in some cases), it would be wrong to assume they are 

unimportant because the effect of hours, days and months is significant to weather and 

other user/consumer related interactions which do affect electricity prices. However, it can 

be assumed with some certainty that the electricity companies already use these factors in 

their models to provide the DAP prediction. Secondly, using higher order DAP models only 

marginally improves on the RMS error, with second and third order showing the same. 
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Figure 21: RMS error comparison for years 2011 (Top-Left), 2012 (Top-Right), 2013(Bottom-Left), 

2014 (Bottom Right) 

Figure 21 shows the results from the verification data from years 2011-2014. The data for 

2014 was incomplete, so it should be disregarded. For the other years, the common trend 

is a small decrease of the RMS error with the first order and second order DAP, which means 

that the predictor is working as expected. However, starting with the third order models 

the error for the validation data set is increasing, which indicates overfitting to the training 

data. This also applies to the model with all factors included. Therefore, it is not 

recommended to rely on the third order or the full model for prediction.  

2011 data 2012 data 

2013 data 2014 data 



Cost Optimal Charging of Electric Vehicles 
Sagar Mody | Loughborough University 

56 
 

4.6 Model Verification 

 

Figure 22: DAP Model verification 

Figure 22 and Figure 23 show the verification of the linear regression predictors. Figure 22 

shows the fit of the DAP only model and Figure 23 shows the verification of the full model. 

There is negligible difference between the fits but as the RMS error comparison has shown 

that there is chance of overfitting in the full model. These plots also clearly show the 

skewness in the 2014 data. 

 

Figure 23: Full Model Verification 
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4.7 Conclusion 

It is clear when all the data results are analyzed, that it is possible to use DAP as an 

appropriate prediction for the RTP. Using linear regression, it may be possible to gain a very 

slight improvement using the first or second order predictor. The simple linear regression 

predictors, based on known factors from day ahead price data, show that DAP is already a 

good estimation of RTP. Some of the predictors show slight improvements in prediction, 

but there is also evidence of overfitting for the more complex predictors, resulting in worse 

performance on the verification data.  
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5 Deterministic Controller 

This chapter presents a deterministic charging controller. Firstly, the basic problem and its 

solution are introduced in the mathematical form. The solution follows a deterministic 

approach reflecting the symmetry assumed in the basic problem. A simulation is performed 

with arbitrary prices to prove the effectiveness of the solution. Lastly, variations to the 

problem are discussed and an application example is presented to put the findings into 

perspective.  

5.1 Basic Problem 

 

Figure 24 shows the block diagram of the controller. It is based on Figure 11 (chapter 3), 

but with the external price (unknown) disturbance (d) removed. The grid model is based 

simply on the known prices (w) (day ahead prediction), which are assumed accurate.  

The basic optimal charging problem is defined in discrete time with step size 𝑇𝑠. It has one 

control variable: the charging power  𝑢. The power is subject to two constraints: it cannot 

be negative and there is a constant maximum power 𝑢𝑚𝑎𝑥 such that  𝑢 ∈ [0, 𝑢𝑚𝑎𝑥].  

List of Notations  

𝒙𝟏 : Battery SoC (state) 𝜶  : Decay constant (grid price decay) 

𝒘  : Known cost prediction (DAP) 𝒌 : Current Time-Step 

𝒘′  : Threshold Price 𝑵 : Final Time-Step 

𝒖  : Input (charge power) 𝑬 : Expected Cost 

𝒖′  : Threshold charge power 𝒙𝟏𝟎
 : Initial SoC 

𝒖𝒎𝒂𝒙 : Maximum available Charge Power 𝒙𝟏𝑵
 : Required SoC 

𝒅  : Random disturbance (stochastic variable) 𝜷 : Disturbance Scaling Factor 

𝒄   : Cost 𝑻 : Time Period (assumed 1 unit) 

𝒄𝟎 : Initial Cost 𝑻𝒔: Step-size 

  

  

 

u 

w 

Battery Model 

Cost Model c 

SoC 

Charge Control: 
Deterministic 

Figure 24: Block diagram of the controller for a known price disturbance 
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The behaviour of the system is determined by two separate dynamics: the battery state (𝑥1) 

and the total cost (𝑐). Both accumulate (integrate) over time and the only difference is the 

coefficient.  

The diagrammatic representation of the problem is shown in Figure 25. 

The battery state 𝑥1 is an integral of the charge power over time and assuming that the 

self-discharge and charging losses are negligible, it can be written as:  

 𝑥1𝑘+1
= 𝑥1𝑘

+ 𝑇𝑢𝑘 (5) 

The time period 𝑇 is assumed as 1 unit, for the ease of explanation. Therefore, equation 

(5) becomes:  

 𝑥1𝑘+1
= 𝑥1𝑘

+ 𝑢𝑘 (6) 

The cost 𝑐𝑘 is also an integral of the charge power but weighted by the known cost 

disturbance (w).  In the deterministic approach, we assume the price is known and we can 

rely on the prediction. The cost function is written as follows and the initial condition is 

that the cost is zero.  

 𝑐𝑘+1 = 𝑐𝑘 + 𝑤𝑘𝑢𝑘 (7) 

 𝑐0 = 0 (8) 

The total number of steps 𝑁 to consider with 𝑘 = 0 … 𝑁 are also defined in advance. 

The basic optimal charging problem is defined by the cost function 𝐽 = 𝑐𝑁 representing the 

total electricity cost and the boundary condition 𝑥1 𝑁 = 𝑥1 𝑓𝑢𝑙𝑙, which requires the battery 

to be fully charged at the end of the charging process.  

wk 

Figure 25: Plant Model of the Optimisation Problem (Deterministic Approach) 
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Because no discharge is allowed, it is not necessary to impose limits on the charge state. 

The advantage of using this simple model is that the final state and cost can easily be 

calculated as: 

 𝑥1𝑁
= 𝑥10

+ ∑ 𝑢

𝑘=𝑁−1

𝑘=0

  (9) 

 𝑐𝑁 = ∑ 𝑤 × 𝑢

𝑘=𝑁−1

𝑘=0

 (10) 

 

5.2 Solution to the Basic Problem 

Control Law for Optimal Charging 

The solution to basic optimal charging problem is: 

 𝑢𝑘 = {
0, 𝑤𝑘 > 𝑤𝑘′

𝑢𝑚𝑎𝑥 , 𝑤𝑘 ≤ 𝑤𝑘′
 (11) 

The threshold price 𝑤𝑘
′ is one of the prices 𝑤𝑘 and the threshold charging power 𝑢′ can be 

found from the boundary condition using a linear equation. There may be more than one 

solution if several time steps have the same price 𝑤𝑘 = 𝑤𝑘′ = 𝑤′ and for now it is assumed 

that is not the case. 

Algorithm for Optimal Charging 

1. Determine the required charge as intervals (n) 

2. Sort the electricity prices in ascending order 

3. Set the price, in the ascending ordered list at index 1 + n (rounded up), as the 

threshold price (wk’) 

4. Set the threshold power (u’) by subtracting maximum available power over n, from 

required charge power for desired SoC 

The method involves picking the lowest from a known set of prices for the given charging 

period. Once, the time required to charge the vehicle battery is known (intervals n), the ‘n’ 

lowest costs can be picked.  Charging should begin at the highest (nth) cost hour and 

continue at the hours with the other costs in this set.  
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Figure 26 further clarifies the process. For an example where 𝑛 = 4: the top plot shows the 

known price prediction for a given charging period between 17:00 and 07:00, and the 

bottom plot shows the process of selection. The prices are arranged in ascending order and 

the threshold price is set at $0.025, which is at 03:00. At the hours (intervals) where the 

price is lower, the vehicle is charged (in this case, 03:00-07:00).  

 

Theorem for Optimal Charging 

The given control law with the parameters set by the Optimal Charging Algorithm leads to 

the lowest cost charging process.  

Proof for Optimal Charging 

The proof has two parts. The first step is to demonstrate that the presented from is an 

admissible solution to the problem and the second is to show that it is indeed the only 

optimal solution when the assumption that DAP are accurate is made. 

With the given control law, the final charge state 𝑥1𝑁
 is a function the initial state 𝑥10

, the 

threshold charging power 𝑢′ and the number of full charging cycles 𝑛 that satisfy 𝑤𝑘 < 𝑤𝑘 ’. 

As long as 𝑥1𝑁
≥ 𝑥10

 and 𝑥1𝑁
≤ 𝑥10

+ 𝑇𝑁𝑢𝑚𝑎𝑥, the problem has a solution.  

wk’ 

Figure 26: Visual Representation of Price Selection 
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Assuming that the prices are different at each time step, there is exactly one solution, which 

is given by the following two equations when 𝑇 = 1:  

 
𝑛 = floor 

𝑥1𝑁
− 𝑥10

𝑢𝑚𝑎𝑥
   

𝑢′ = 𝑥1𝑁
− 𝑥10

− 𝑛𝑢𝑚𝑎𝑥 

(12) 

This solution is not just admissible but also optimal for the assumption that DAP are 

accurate because any deviation from this solution within the charging power limits leads 

to a higher cost. In order to maintain the same final charge state 𝑥1𝑁
, an alternate solution 

needs the charging power to be decreased at some time step 𝑢𝑖 = 𝑢𝑖
∗  − Δ𝑢, and increased 

it at another 𝑢𝑗 = 𝑢𝑗
∗ + Δ 𝑢. This maintains the same integral and therefore satisfies the 

boundary condition. But increases are only admissible when 𝑢𝑗 < 𝑢𝑚𝑎𝑥 , and decreases 

only when 𝑢𝑖 > 0. It follows that 𝑤𝑖 < 𝑤’ <  𝑤𝑗 , and therefore the net effect is an increase 

of charging cost by Δ𝐽 = (𝑥2𝑗 − 𝑥2𝑖) Δ𝑢. 

5.3 Results 

5.3.1 Assumptions 

The example assumes a typical electric vehicle that is being used for a regular commute to 

work during the week and for reduced driving during the weekend.  

The car is driven to work at 07:00 and driven back home at 17:00. Charging is possible at 

home between 17:00 and 07:00 using a smart meter. The electricity is provided by Ameren, 

and two tariffs are considered: the day-ahead tariff, where prices are set at 5 pm for the 

following day and real time pricing. The prices for Ameren Illinois Zone have been taken 

from the Ameren web site [101], for the period from September 1st 2011 to September 1st 

2012. These prices exclude the distribution cost, which is constant and therefore not 

relevant for comparison purposes.  

In addition, the following assumptions (Table 5) are used for the simulation. No specific 

vehicle is used as a reference, since electric vehicles are still at a very early stage. The GM 

Volt and the Nissan Leaf for example both have a smaller battery than assumed here (The 

Nissan Leaf has a battery with nominal 24 kWh capacity but not all of that is actually 

usable.) Instead these figures are based on a slightly longer than average commute of about 

35 miles one way, where the savings of an electric vehicle should be more pronounced than 

on a shorter commute.  
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Table 5: Assumed Constants 

Constant Symbol Value Unit 

Usable Battery Capacity 𝐸𝑇𝑜𝑡𝑎𝑙  24 kWh 

Weekday Consumption 𝐸𝑊𝐷 16 kWh 

Weekend Consumption 𝐸𝑊𝐸  8 kWh 

Charging Power 𝑃𝑆𝑙𝑜𝑤 2 kW 

Charging Efficiency 𝜂 90 % 

Charging Period 𝑇𝐶ℎ𝑎𝑟𝑔𝑒 14 h 

 

5.3.2 Simulation Result 

 

Figure 27: Simulation Results 

The charging strategy is based on the basic optimal charging problem. The day-ahead prices 

are used as an indication for the electricity prices during the charging period, and the 

cheapest prices are used to charge the battery. In the simulation, the controller is given an 

arbitrary set of prices from one night in the year. The effect of this can be seen in Figure 27 

– charging takes place during the hours of the night when the electricity has its lowest price. 

The controller fulfils its aim perfectly, assuming the DAP data it has for the given time in 

the night, it waits once the car is plugged in for a low price. It delays the charge from 17:00 

till 23:00 when it calculates the time required for a full charge against the lowest average 

price. It then stops the charging at 24:00, when the price goes above threshold. It restarts 

charging at 01:00.  
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5.4 Application Example Results 

The car uses a total of 4928 kW during the simulated year and with the assumed 90% 

efficiency this means 5476 kW of electricity is used from the grid. With a traditional tariff 

at an average electricity price of 2.73 cent per kWh, this would cost 149.4 USD. 

5.4.1 Charging Strategies 

Several different strategies and assumptions are tested with the price data for 2010 

obtained from Amaren, to test the effect of the controller on electricity costs for charging.  

For comparison purposes, two dumb strategies are considered first: charging as soon as the 

car is plugged in (“fixed early”) and charging as late as possible while still filling the battery 

before setting off (“fixed late”).  

The optimal strategy5 implements the selection of the cheapest tariffs while still filling the 

battery before setting off. For this purpose, a price prediction horizon of 24h is used, of 

which only the 12h covering the charging period are relevant.   

As a variation, a second strategy looks ahead to the next night and decides whether it is 

cheaper to charge the battery fully or to fill the battery only as much as required for the 

daily commute, followed by an expected complete charge during the following night. Ideally 

this requires a prediction horizon covering two nights (48h), but this is not actually feasible 

because the prediction only extends to the end of the next day (indicated by a star in the 

graph). Therefore, a realistic horizon of 31h is also added to the comparison.  

                                                 
5 In the deterministic approach, the optimal strategy refers to the best possible solution of the 
problem within the bounds of the assumption that DAP are perfect i.e. the Deterministic Controller. 
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As can be seen in Figure 28, the annual electricity cost of charging an electric vehicle is 

highest when it is charged as soon as the owner gets home. Charging late in the morning 

(just in time) is 15.31% more cost-effective. Using an optimal charging strategy further 

reduces the cost by 4.37%, and the benefit is increased by 1.17-1.79% when an extended 

prediction horizon is used. The maximum cost-saving that can be achieved is 20.46%.  

5.4.2 Real Time Pricing 

As has been shown in the data analysis chapter (chapter 4), the DAP tariff is not ideal for 

charging purposes. The RTP tariff offers much greater variations of prices, and thus better 

opportunities for load shifting and for saving costs. The difficulty is of course that the RTP 

prices are not known in advance, and therefore the optimal algorithm is not applicable. But 

there are a number of way that the algorithm can be adapted to extrapolate from the DAP 

prices to the ideal time for charging on the RTP tariff.  

To show the significance of more accurate prices than DAP, i.e. the ideal situation where we 

would know the RTP, a few comparisons are made. This effectively shows why it is 

necessary to build on the deterministic controller explained in this chapter and resolve the 

stochastic element which may bring us closer to predicting the price. Accounting for price 

changes could lead to significantly more savings and, by implication, more accurate load 

shifting. 

The first approximation is using the day-ahead price information to schedule the charging 

of the electric vehicle but in fact real time prices are used to calculate the cost (“RT Rate”). 

This can be achieved with minimal effort by changing electricity tariffs. In this case, the day-

ahead price becomes effectively a disturbance model for the real time price development.  

The second approximation uses the threshold cost 𝑥2
′ as calculated using the day-ahead 

price information, but it compares it to the real time price of electricity to decide whether 

charging takes place or not (“RT Trigger”). Again, this is simple to implement, although 

special care needs to be taken to ensure that the car always has sufficient charge at the 

beginning of the commute. The simulation does this by starting to charge irrespective of 

price if this is necessary to reach sufficient charge.  

The final approximation assumes complete knowledge of real time prices ahead of time – 

otherwise it is identical to the day-ahead optimization (“RT Optimal”). Obviously, this is 

only possible to simulate in retrospect and it is not implementable because it uses 

knowledge of future events. But the simulation provides an upper limit for the potential 

savings possible using a perfect price prediction model. It is worth noting that even using 

an optimal model, the savings may be significantly less than this upper limit.  
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It can be seen in Figure 29 that these algorithms provide significant reductions in cost. The 

more sophisticated the algorithm is, the bigger the savings. The effect of real time prices is 

distinctly more pronounced than the effect of different prediction horizons discussed 

before.  

 

Figure 29: Comparison of Charging Strategies Assuming RTP is KNOWN 

5.4.3 Fast Charging 

All previous simulations are performed with a moderate charging power of 2kW, which is 

approximately the amount of power that can be provided by a standard electricity outlet. If 

a smart charger is used, it is reasonable to assume that it will be a dedicated fast charging 

unit, which can provide higher power levels. A higher charging power means a shorter 

charging duration and therefore load shifting is expected to become more effective.  

To study this effect, charging powers of 2kW, 4kW and 8kW are simulated using the 

charging strategies and pricing schemes introduced above. The same charging efficiency is 

assumed for all charging powers, which may not be quite realistic depending on battery 

technology. When the infrastructure is advanced enough to support fast charging, the 

realistic powers could be higher than 10kW; it is important to remember that higher 

powers means a trade-off between charging efficiency and price optimization.  

The result shown in Figure 30 paints an interesting picture. Firstly, it is worth noting that 

fast charging is more expensive if a bad fixed time charging strategy is being used. This is 

because the cheapest prices are typically found during the middle of the night and neither 

the early nor the late charging times make use of them. Charging once the vehicle is home 

can get quite expensive. Setting an early morning time for the start of charge, for example 

3 am, provides much better results, leading to a cost of approximately 100 USD.  
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Figure 30: Impact of Using Fast Charging 

The next interesting conclusion is that fast charging does indeed provide better load 

shifting and a further reduction in electricity costs. The benefit depends on the charging 

strategy but it is in the order of 10 USD or more and it certainly is higher than the potential 

loss of efficiency due to the faster charging. Whether it is also high enough to compensate 

for the increased wear of the battery and the investment cost of the fast charger remains 

very much doubtful.  

Finally, the difference between the best feasible charging strategy (“RT Trigger”) and the 

retrospect theoretical optimum (“RT Optimal”) increases significantly with higher charging 

powers. It is only about 2.5 USD at 2 kW but it increases to over 15 USD at 8 kW. This means 

that fast chargers create significant demand for better real time price prediction strategies.  

Of course, fast chargers may also provide an opportunity to perform load shifting on the 

faster time scales mentioned above. For example, they can help to absorb harmonics and 

noise to improve local power quality, or they could apply droop control to improve 

frequency stability of the electricity grid. But so far there is no business case for these 

measures and in fact it would cost the consumer both in terms of investment and in terms 

of loss of cheap electricity. 

Assuming that electricity prices are known in advance, a simple solution to this problem 

can be found and implemented. According to numerical simulations using real price 

information from Illinois, this leads to very moderate savings in the order of about 30 USD 

a year compared to immediate charging, and 10 USD compared to fixed time charging.  

Larger savings can only be achieved by combining two measures: using a fast charger and 

changing to a real-time price tariff, where electricity prices are not known in advance. The 

problem of identifying the cheapest charging times becomes much more complicated in this 
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case, because it depends on the prediction of future prices, which is not reliable. Using the 

same simple approach informed by day-ahead price information, a reasonable solution can 

be found that saves another 20 USD. The potential for further savings in the order of 15 USD 

exists but it would rely on an operation model for predicting future electricity prices. It is 

therefore worth progressing this approach by exploring the dynamic problem of ‘when to 

charge?’ by respecting the stochastic element of the grid prices. 

5.5 Variations to the Basic Problem and their Solutions 

The basic problem uses a highly abstracted model of the battery, the grid, and the charging 

cost. It does not take into account anything but the basic constraints of power and the 

requirement of minimising the cost, hence the grid and battery model just worry about 

these. There are several extensions that can be made to make this problem more applicable. 

However, since the main assumption for the prices being known i.e. the DAP being a perfect 

prediction remains, it is possible to reduce these variations to the basic problem and solve 

it in a similar way.  

Varying Charge Power Limit 

The amount of available charging power 𝑢𝑚𝑎𝑥 may change over time, for example due to 

electricity use restrictions at peak load periods. This means a new time series 𝑢𝑘 has to be 

introduced. The closed formulation of the optimal solution is no longer applicable but a 

simple iterative algorithm can still find the best solution. 

The proof applies appropriately.  

Algorithm 

1. Determine the required energy 𝑥1𝑁
− 𝑥10

 

2. Sort the costs 𝑤𝑘 

3. Iterate starting from the lowest cost: add up the energy per time step 𝑤𝑘𝑢𝑘 until the 

required energy is exceeded. 

4. Reduce the power 𝑢′ for the last time step as required. 

Self-Discharge and Losses 

Every battery has losses which are associated with both charge and discharging. It can be 

assumed that the efficiency of the battery pack therefore will be less than 100%, and that 

the battery loses a certain part of its charge at every time step. This modifies the basic 

battery model: 
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 𝑥1𝑘+1
= 𝛿𝑥1𝑘

− 𝜇 + 𝜑𝑢𝑘 (13) 

Where 1-δ is the relative discharge coefficient for each time-step, µ is the absolute discharge 

energy per time step and φ is the charging efficiency. This leads to the following battery 

SoC: 

 𝑥1𝑁
= 𝛿𝑁𝑥10

− 𝜇 ∑ 𝛿𝑘

0…𝑁−1

+ 𝜑 ∑ 𝛿𝑁−𝑘−1𝑢𝑘

0…𝑁−1

 (14) 

Resistive losses within the battery (and the electricity supply) can be the dominating factor 

for charging losses. These resistive losses are proportional to the square of the current, 

assuming a constant voltage:  

 𝑢𝑖𝑛 = 𝑢𝑜𝑢𝑡 + 𝑅𝑢𝑜𝑢𝑡
2  (15) 

where 𝑅 is the resistance normalised for the charging power. In terms of the optimization 

problem, the losses can be included either in the power going into the battery or in the 

cost of the electricity depending on whether 𝑢𝑖𝑛 or 𝑢𝑜𝑢𝑡 is the wanted variable. The latter 

produces an easier problem definition: 

 𝑐𝑘+1 = 𝑐𝑘 + 𝑤𝑘(𝑢𝑘 + 𝑅𝑢𝑘
2) (16) 

These resistive losses in effect will tend have an influence in the decision to charge because 

practically the battery will only receive a part of the charging power. Secondly, losses are 

proportional to charging power, therefore they will be higher at higher charging powers 

(fast charging).  

5.6 Conclusions 

The deterministic approach provides a sub-optimal solution to the optimisation problem 

for the cost-effective charging of electric vehicle. Assuming a day-ahead tariff, electricity 

prices are known in advance and a simple solution to this problem can be found and 

implemented. According to numerical simulations using real price information from 

Illinois, this leads to very moderate savings in the order of about 30 USD a year compared 

to immediate charging, and 10 USD compared to fixed time charging.  

Larger savings can only be achieved by combining two measures: using a fast charger and 

changing to a real-time price tariff, where electricity prices are not known in advance. The 

problem of identifying the cheapest charging times becomes much more complicated in this 

case, because it depends on the prediction of future prices, which is not reliable. Using the 

same simple approach informed by day-ahead price information, a reasonable solution can 
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be found that saves another 20 USD. The potential for further savings in the order of 15 USD 

exists but it would rely on an operation model for predicting future electricity prices. 

Clearly, the deterministic solution assumes the problem is symmetric and achieves a sub-

optimal solution because of its main assumption, that the prices are known in advance or 

that the DAP are considered as 100% reliable. The real price is a known unknown because 

we know the RTP will indicate the correct price but it is not available until the hour the 

decision needs to be made.  The disturbance responsible for changing the RTP compared to 

DAP is random and therefore stochastic which adds a dynamic element to the minimisation 

problem. To achieve optimality, the RTP must be considered as the price which actually 

matters and the stochastic element of the prices must be accounted for. The problem 

becomes complex since the varying nature of the grid cost will affect the key decision the 

controller has to make. Chapter 6 explains the stochastic problem and approach to the 

solution in depth.  
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6 Stochastic Dynamic Programming (SDPM) Controller 

The optimal charging controller in the previous chapter was simple and successful because 

it assumed completely knowledge of future electricity prices. However, in reality, the best 

price for electricity in only available on the real time (RT) tariff, which is not known in 

advance. This uncertainly of available prices makes the problem much more complex to 

solve. It is necessary to introduce a stochastic model for future prices to define an 

optimisation problem.  

This chapter approaches the problem using stochastic optimisation, specifically stochastic 

dynamic programming (SDPM), which results in a controller that achieves on average the 

lowest optimal charging price. Firstly, the problem is explained and a grid cost model and 

possible approaches are discussed. Secondly, the choice of dynamic programming with a 

stochastic element is justified and a solution is shown with the algorithms used.  Finally, a 

small simulation study is used to illustrate the key features of the optimisation and the 

resulting controller. 

6.1 Problem 

6.1.1 Dynamic Problem and Random Disturbance 

The charging problem has been solved using a deterministic approach in Chapter 5, but this 

approach fails to appreciate the stochastic nature of electricity prices on the real time tariff. 

When considering the random effects on prices, the varying nature of the grid-cost is 

important to the decision made by the controller. It has been demonstrated in Chapter 4 

that these variations are correlated over time: a higher price at one point is likely to lead to 

higher prices in the near future.   

To keep the model simple, a first order dynamic stochastic process (or Markov process) is 

used to model the electricity price. Therefore, this problem turns into a 2-state dynamic 

problem (state of charge and electricity price) with a stochastic disturbance d. 

By definition a dynamic programming problem is one which has both inputs and outputs 

which change dynamically with time [102]. They are connected via both the system model 

and the control law. The dynamic programming approach also fits this problem well 

because it provides a systematic way to establish a control law for the decision of ‘when to 

charge’, that takes both states (battery state of charge and grid cost) into account. The time 

varying grid cost (and potential unpredictable disturbance) make the decision requirement 

dynamic. Dynamic programming allows to balance the trade-off between current cost and 

future cost (discussed in the Problem Statement, chapter 3) by identifying the value of 
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charge and the periods of most cost-effective charging. The aim is of course to minimize the 

resulting final total electricity cost over the time horizon. 

 

 

Figure 31 shows the plant model of the discrete-time system model. The dynamics of state 

𝑥1 (battery state of charge) are simple: it just integrates the charge over time. The grid 

model 𝑥2 on the other hand is a bit more complex, since it consists of a first order decay of 

the deviation and a stochastic change of price 𝑑𝑘. 

 𝑥1𝑘+1
= 𝑥1𝑘

+ 𝑢𝑘 (17) 

 𝑥2𝑘+1 = 𝛼𝑥2𝑘 + 𝑑𝑘 (18) 

It is possible to separate the model into two distinct parts: a deterministic part that models 

the known dynamics, and a stochastic part that adds the random element in the form of the 

disturbance 𝑑𝑘. The deterministic or basic problem is symmetric and essentially 

independent of time, as discussed in the previous chapter.  

List of Notations  

𝒙𝟏 : Battery SoC (state) 𝑵 : Final Time-Step 

𝒙𝟐 : Grid cost (state) 𝒙 : All states 

𝒘  : Known cost prediction (DAP) 𝑬 : Expected Cost 

𝒖  : Input (charge power) 𝒙𝟏𝟎
 : Initial SoC 

𝒅  : Random disturbance (stochastic variable) 𝒙𝟏𝑵
 : Required SoC 

𝒄   : Cost at each time step 𝒖𝒎𝒂𝒙 : Maximum available Charge Power 

𝜶  : Decay constant (grid price decay) 𝜷 : Disturbance Scaling Factor 

𝒌 : Current Time-Step 𝑻 : Time Period (assumed 1 unit) 

 

wk 

Figure 31: Plant Model of the Problem 
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The sum of the cost of the electricity used at each time step leads to a final cost, say JN, where 

N is the final time-step. The final cost (which we want to minimize) is the output of the 

problem. The cost at each time-step can be calculated as follows:  

 𝑐𝑘+1 = 𝑐𝑘 + 𝑢𝑘(𝑥2𝑘 + 𝑤𝑘) (19) 

The solution is subject to constraints on the state of charge according to the needs of the 

user. These are the given or known variables: the State of Charge (SoC) at the beginning of 

the charging period (initial SoC) 𝑥10, final SoC or required SoC  𝑥1𝑁 and time of charge 

which is essentially the end of the time period (ToC) (N is the final time-step). Together, 

they define how much charge is required, and when is it required by. The disturbance 𝑤, is 

the known prediction of electricity price (DAP or output of the Linear Regression Predictor 

(chapter 4)).   

The disturbance 𝑑, is not given and is the uncorrelated stochastic variable with a known 

distribution. It describes the price ‘spikes’ or fluctuations which can change the trajectory 

of grid-cost and is dependent on market forces and electricity demand. The nature of the 

electricity market (chapter 4) leads to unpredictable real time costs. This is what causes the 

difference between day-ahead prices and real-time prices when a smart-grid and smart-

metering tariff is in question.  

There are two main range constraints:  

 0 < 𝑢 ≤ 𝑢𝑚𝑎𝑥 (20) 

The charge power is always positive because we don’t consider vehicle to grid and 

therefore no charge power can go to the grid instead of the battery and 𝑢𝑚𝑎𝑥 is the 

maximum allowable charge power (dependant on the charging station), 𝑢 ∈ [0, 𝑢𝑚𝑎𝑥]. 

 0 ≤ 𝑥1 ≤ 1 (21) 

The battery SoC can never be negative and never above 100% which means there is no 

overcharging.  

By adding the stochastic element to the dynamic program, a solution for price prediction in 

context of EV charging (to try and minimize final cost) can be obtained as explained in 

further sections. 

6.1.2 New Grid Cost Model and Possible approaches 

To describe this nature of the electricity grid we can model the price ‘spikes’ as stochastic 

events and associate a probability to the occurrence of these events. For the sake of 

simplicity, the first order linear dynamics are assumed for the cost model, resulting in a 
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first order linear stochastic process. The process models the price deviation between the 

predicted price (DAP tariff) and the actual real time cost (RTP tariff).  

Grid Model Definition 

𝒅 ∶ A temporally uncorrelated random variable. Different distributions can be assumed. 

Here it is used to implement the event probability, and therefore a uniform distribution in 

the interval [0,1] is assumed.  

𝒄𝒌+𝟏  : The cost deviation at time-step k+1  

𝜶 : The decay factor of the dynamic process. It is informed by the autocorrelation of historic 

data.  

𝜷 : A scaling factor for the disturbance. It is used to match the standard deviation observed 

in the data.  

𝑷𝒆𝒗 : The probability of an event occurring, separated into the positive 𝑃𝑒𝑣𝑝 and negative 

𝑃𝑒𝑣𝑛 

We get: 

 
𝑐𝑘+1 = {

𝛼𝑐𝑘 + 𝛽 | positive event (𝑑 < 𝑃𝑒𝑣𝑝)   

      𝛼𝑐𝑘 − 𝛽 | negative event (𝑑 > 1 − 𝑃𝑒𝑣𝑛)

𝛼𝑐𝑘  | no event (otherwise)

 (22) 

 
  

This model defines a simple first order stochastic process with a discrete distribution of the 

disturbance. Different assumptions could be made for the probability, but it turns out that 

the optimisation is not very sensitive to the specifics of the distribution, because it evens 

out over time due to the low pass nature of the dynamics.  

Based on the analysis in chapter 4 section 4.1, a probability value can be selected as a 

beginning point. Figure 32 (page 75) shows the normal probability plot of RTP and DAP. It 

is clear that the predicted prices conform to real prices between 0.05-0.95 (5-95%). The 

upper and lower 5% show long tails and the RTP are very different from the DAP. This can 

be selected as the initial value of 𝑃𝑒𝑣𝑝 and 𝑃𝑒𝑣𝑛. Different values are tested as part of the case 

study, in chapter 7. 



Cost Optimal Charging of Electric Vehicles 
Sagar Mody | Loughborough University 

75 
 

 

If 𝑃𝑒𝑣𝑝 = 𝑃𝑒𝑣𝑛, the distribution is symmetric, which means that the expected difference 

between predicted and actual price is zero – there is no bias in other words. Figure 33 

shows the selected probability distribution. If the selected probability is 10%, then 𝑃𝑒𝑣𝑝 =

𝑃𝑒𝑣𝑛 = 5%, and  1 − 𝑃𝑒𝑣𝑝 − 𝑃𝑒𝑣𝑛 = 90%. 

  

 

Figure 33: Representation of Probability Distribution 
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Problem Statement 

The optimal solution for a stochastic process is defined as providing the lowest overall 

expected cost E<J(u)>. Due to the stochastic nature of the problem, the decision when to 

charge is a compromise between using the cheapest electricity and mitigating the risk of 

future price changes. The charging controller can take the current cost into account, but not 

the future cost: 

 min
𝑢𝑘(𝑐𝑘)

𝐸 < 𝐽(𝑢𝑘) >  (23) 

Therefore, the following summarizes the minimization problem:  

Problem min
ℎ

𝐸 < 𝐽 >  (24) 

Control Law 𝑢𝑘 = ℎ𝑘  (𝑥1,𝑘, 𝑥2,𝑘) (25) 

Battery Model 
𝑥1 = 𝑖(𝑢) 

𝑥1𝑘+1
= 𝑥1𝑘

+ 𝑢𝑘 

 

(26) 

Grid Model 

𝑥2 = 𝑗(𝑑) 

𝑥2𝑘+1 = 𝛼𝑥2𝑘 + 𝑑𝑘 

𝑑𝑘  is Gaussian with 

𝐸 < 𝑑𝑘 > = 0 

𝐸 < 𝑑𝑘
2 > = 𝛽 

 

(27) 

Cost Model 

𝑐 = 𝑘(𝑥2, 𝑢, 𝑤𝑘) 

𝑐𝑘 = (𝑥2,𝑘 + 𝑤𝑘)𝑢𝑘 

𝑤𝑘 known 

𝐽 = ∑ 𝑐𝑘

𝑘

 

 

(28) 

 

(29) 

Constraints 
0 ≤ 𝑥1,𝑘 ≤ 1 

0 < 𝑢𝑘 ≤ 𝑢𝑚𝑎𝑥 
(30) 

Boundaries 𝑥10 (𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑆𝑜𝐶), 𝑥1𝑁(𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑆𝑜𝐶)  

 

A finite horizon problem definition (as above), requires a finite or receding horizon 

approach. One popular approach is model predictive control (MPC), specifically stochastic 

model predictive control (SMPC). While it deals well with the finite horizon, the limits, and 

the dynamics, MPC is rooted in a linear quadratic Gaussian problem definition; it struggles 

both with linear cost of charging, the stochastic cost, and the resulting interaction between 

limits and stochastic variables. MPC with a stochastic weight models could be used [103], 

but most stochastic MPC approaches will consider only stochastic limits, not weights. The 
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reason is that the stochastic cost together with the input limits turns the Gaussian 

probability distributions into piecewise Gaussian distributions, which are complex to 

handle numerically.  

This problem is more complicated than typical control problems, because it asks the 

question whether it is better to charge at current electricity prices, or whether it is 

worthwhile to wait, based on the chance (not certainty) that price might fall in the future. 

The central question “are prices going to go up or down?” lies at the very heart of economic 

markets and market theory. And although it is not possible to come to a deterministic 

answer, based on the stochastic process model it is possible to calculate which one results 

in the lower expected cost (the average cost over a sufficiently large number of scenarios). 

This trade-off is addressed using the Hamilton-Jacobi-Bellman (HJB) equation [104], which 

minimises the expected cost based on the stochastic pricing model.  

Exact solutions of this equation are typically not feasible, but many reasonable numerical 

approximations exist. Dynamic programming uses quantization of continuous states, and 

specifically stochastic dynamic programming is well suited for addressing the problem at 

hand. Mixed integer algorithms may also be able to find the expected cost benefit of 

charging at specific times [105] with relative ease and accuracy. Finally there are a number 

of industry specific approaches coming from operations research, that deal with the 

question of optimal load shifting and scheduling using a limited capacity [106][107]. 

6.2 Stochastic Dynamic Programming 

Based on an analysis of available options, dynamic programming (DP) was picked as the 

most appropriate way to find the solution to the optimization problem. Classic dynamic 

programming requires knowledge of all disturbances in advance, and there it does not 

produce a causal controller. In a typical deterministic DP, decisions are taken backwards in 

time at each stage, based on the summation of present cost and expected future cost, 

assuming optimal decision making for future stages [102]. 

The symmetric part of the problem discussed in chapter 5 can be successfully dealt with in 

this manner. When the stochastic element is taken into account, dynamic programming can 

be extended to solve the stochastic problem in an effective way [108]. The cost model 

defined in equation ((19) is a Markov process because decisions are only based on the 

current state, but not any past decisions. This makes it easy to integrate into the dynamic 

programming framework.  
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The typical structure of dynamic programming is shown in the following equations based 

on the definitions and the algorithm in [109].  

The dynamic programming problem is based on a non-linear discrete-time plant model: 

 𝑥𝑘+1 = 𝐹𝑘(𝑥𝑘 , 𝑢𝑘) where 𝑘 = 0,1, … , 𝑁 − 1  (31) 

 

Here, 𝑥𝑘 is the state which uses information from the previous step for future optimization, 

𝑢𝑘 is the control variable which is also the decision variable. N is the length of control 

horizon. The problem assumes a cost-function which is additive over time: 

 𝐽𝜋 = 𝐸 〈𝐹𝑁(𝑥𝑁) + ∑ 𝐹𝑘(𝑥𝑘, 𝑢𝑘)

𝑁−1

𝑘

〉 (32) 

Here 𝜋 is the control policy- 𝜋 = {𝜇0, 𝜇1, … , 𝜇𝑁−1}, where 𝜇𝑘 is the control law for time 

step 𝑘 based on state 𝑥𝑘. 

For a given initial state 𝑥0, the expected cost of 𝝅 can be determined as: 

 𝐽𝜋(𝑥0) = 𝐸 〈𝐻𝑁(𝑥𝑁) + ∑ 𝐺𝑘(𝑥𝑘, 𝜇𝑘(𝑥𝑘))

𝑁−1

𝑘=0

〉 (33) 

but it is important to notice that the dynamic programming results in a control strategy, 

and this strategy can be calculated without knowing the initial state. (It is only when 

applying the strategy that the knowledge of the state becomes relevant.) 

The optimal control policy 𝝅𝟎 is the policy that minimizes 𝐽𝜋 for  𝑘 = 0,1, … , 𝑁 − 1 

 𝐽0(𝑥0) = 𝑚𝑖𝑛
𝑥∈𝑆

𝐽𝜋(𝑥0) (34) 

Where S is the set of all admissible policies. 

The framework can be extended in a few ways to include stochastic elements. Assuming a 

random stochastic element 𝑑 that affects the cost, (11) becomes: 

 𝐽𝜋(𝑥0) = 𝐸 〈𝐻𝑁(𝑥𝑁) + ∑ 𝐺𝑘(𝑥𝑘, 𝜇𝑘(𝑥𝑘), 𝑑)

𝑁−1

𝑘=0

〉 (35) 

However, in this specific problem, the price (and the Markov process that models its 

behaviour) is part of the plant state: 

 𝑥𝑘+1 = 𝐹𝑘(𝑥𝑘, 𝑢𝑘 , 𝑑) (36) 

The implementation becomes easier if the stochastic element can be separate from the 

input, in the form: 
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 𝑥𝑘+1 = 𝐹𝑘
′ (𝐹𝑘(𝑥𝑘, 𝑢𝑘), 𝑑𝑘) (37) 

The definition and the significance of the disturbance 𝑑𝑘 depend on the specific problem 

and the stochastic model used. There are some assumptions central to this theory: the set 

of values which control the input uk depend only on the state 𝑥𝑘 at time 𝑘, and the 

disturbance 𝑑𝑘 is uncorrelated in time (Markov property). As typical for finite horizon 

problems, it is not necessary to assume time invariance. Although many of the elements of 

the problem are time invariant, the available charging power and electricity cost certainly 

are not.  

As can be seen by comparing this problem statement with the one above in section 6.1, the 

dynamic programming algorithm is a perfect fit for the optimal charging problem.  

6.3 Solution 

This section presents the solution to the problem in 6.1 using stochastic dynamic 

programming. Section 6.3.1 explains the dynamic programming (DP) algorithm in the 

context of EV charging. The dynamic programming algorithm is extended with a step to 

resolve the stochastic disturbance in section 6.3.2. Lastly, section 6.3.3 presents the 

stochastic dynamic programming (SDP) theorem.  

6.3.1 DP algorithm for the EV charging problem 

The standard way of solving the dynamic programming problem (DP) is through 

discretisation of continuous variables. A tested implementation of this approach is 

published in [108]. The dynamic programming function solves the discrete-time optimal 

control problems backwards in time using Bellman’s principle of optimality. The paper by 

ETH Zurich affiliated Sundstrom and Guzella, describes a generic deterministic DP function 

implemented in MATLAB. This proved to be a good starting point as they have shown their 

function to be applicable to a hybrid EV energy management system.  

The charging problem described here is different due to the stochastic plant definition, and 

therefore the algorithm had to be rewritten to include the stochastic computational 

elements added to the overall program. The final code is much shorter, because it lacks the 

generic applicability of the dynamic programming function, and it differs significantly from 

it. It is based on the algorithms explained here and in the SDP algorithm section. Although 

this function is much more specific (supporting only two variables, and only specific 

stochastic plant models), it would provide a good starting point for a more generic 

Stochastic Dynamic Programming function.  
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Figure 34 shows the flowchart of the modified algorithm. Followed by this is the detailed 

description of it. It is clear from the flowchart, that the calculation is done backwards over 

the time horizon N. 
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Figure 34: Deterministic Dynamic Programming Algorithm (algorithm 1) 
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Algorithm 1: Deterministic Dynamic Programming 

Variables: 

• State:  𝒙 (here 𝑥1 – SoC and 𝑥2 – grid-cost) 

• Control: 𝒖 (here Charge Power) 

Inputs: 

• Input and state grid 

• Plant model function: 𝐹(𝑥, 𝑢)  

• Cost functions 𝐺(𝑥, 𝑢) 

here (where 𝑤𝑘 is the predicted cost):  

 𝑥1𝑘+1
= 𝑥1𝑘 + 𝑢𝑘  

 𝑥2𝑘+1
= 𝛼𝑥2𝑘

 (38) 

 𝐺(𝑥, 𝑢) = (𝑥2𝑘
+ 𝑤𝑘)𝑢  

• Final state cost: 𝐻(𝑥) for all states 𝒙𝑘+1 on the grid 

(A penalty function for inadmissible SoC states is applied) 

• Time horizon: N 

1. Initialise the final state cost 𝐽𝑁+1 (𝑥) 

2. Iterate over the time horizon backwards 𝑘 = 𝑁 … 1  

2.1 For each state 𝒙𝑘 in the grid 

2.1.1 For each input 𝒖𝑘 in the grid 

2.1.1.1 Evaluate the Model 

 
𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘) 

𝑐𝑘+1 = 𝑐(𝑥𝑘 , 𝑢𝑘, 𝑤𝑘) 
(39) 

 

2.1.1.2 Interpolate the remaining cost 

𝐽𝑘+1
∗  (𝑥𝑘+1) based on 𝑥𝑘+1 and the cost at the nearest state grid 

points.  

2.1.1.3 Calculate the total cost 

Based on the step cost and the remaining cost  
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 𝐽𝑘(𝑥𝑘, 𝑢𝑘) = 𝑐𝑘(𝑥𝑘, 𝑢𝑘 , 𝑤𝑘) + 𝐽𝑘+1
∗ (𝑥𝑘+1) (40) 

2.1.2 Find the best input 𝑢𝑘
∗ (𝑥𝑘) that produces the lowest cost 𝐽𝑘(𝑥𝑘, 𝑢𝑘

∗ ) =

𝐽𝑘
∗(𝑥𝑘) 

2.2 For visualization purposes, a cut-off grid-cost is determined – it is the grid cost 

for a given state of charge at which the charging power reaches 50%. (optional)  

This algorithm produces the optimal charge strategy. Once it has been determined, a 

simulation algorithm is used to find the charging cost. This algorithm has to be 

deterministic and uses real data (known retrospectively). Figure 35 shows the flowchart 

for forward simulation. 
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Algorithm 2: Optimal Charging Simulation 

1. For the forward simulation, define the initial state 𝑥1 

2. Iterate over the time horizon forwards 𝑘 = 1 … 𝑁  

2.1 Evaluate the model 

 𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘
∗ (𝑥𝑘)) (41) 

6.3.2 SDP version of the Algorithm 

The previous algorithm solves the deterministic dynamic programming problem. The 

following algorithm is extended to deal with the stochastic element of the plant model, 

(Figure 36). The stochastic step is separated in the model, and therefore does not have to 

be included in the input loop. This makes the final algorithm more elegant and much 

computationally less intensive. The separation is possible because the model isolates the 

stochastic element from the system input and thus from the optimization, eliminating the 

need to calculate it in the nested iterations.  

Figure 36: Charging controller showing stochastic function 

The separation is achieved by formulating the model in two steps: 

 𝑥𝑘+1 = 𝐹𝑘
′ (𝐹𝑘(𝑥𝑘, 𝑢𝑘), 𝑑𝑘) (42) 

Where 𝐹𝑘(𝑥𝑘 , 𝑢𝑘) deals with the control input 𝑢, and Fk
′ (𝑥𝑘

′ , 𝑑𝑘) with the stochastic input 𝑑.  

Specifically, the disturbance only acts on 𝑥2, the deviation of the electricity cost from the 

prediction.  

wk 
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The algorithm can now be extended as follows. Figure 37 shows the flowchart, and this is 

followed by the detailed description of the algorithm. The differences are highlighted in 

purple. 
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Figure 37: SDPM Algorithm (algorithm 3) 
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Algorithm 3: Stochastic Dynamic Programming 

• State:  x (here x1 – SoC and x2 – grid-cost) 

• Control: u (here Charge Power) 

• Grid size for all states 

• Model functions: F and c 

here:  

 

𝑥′1𝑘
= 𝑥1𝑘

+ 𝑢𝑘 

𝑥′2𝑘
= 𝛼𝑥2𝑘

+ 𝑑𝑘 

𝑐𝑘 = (𝑤𝑘 + 𝑥2𝑘
)𝑢 

(43) 

 

• Final state cost: 𝐽𝑁+1
∗  for all states 𝒙𝑘+1 on the grid 

(here: 𝐽𝑁+1 = 𝑐𝑁+1(𝑥𝑁+1) × 𝑘, where 𝑐𝑁 is the distance from the admissible set, 

and 𝑘 is a penalty factor) 

• The stochastic model 𝑭’(𝒙′, 𝒅) 

here: 

 
𝒙𝟏𝒌+𝟏

= 𝒙′𝟏𝒌
 

𝐱𝟐𝐤+𝟏
= 𝒙′𝟐𝒌

+ 𝚫(𝒅𝒌) 
(44) 

 

• Time horizon: N 

1. State and input grids are created from discretization limits 

2. Iterate over the time horizon backwards 𝑘 = 𝑁 … 1  

2.1. The expected cost function for the stochastic element is calculated using 

a folding integral or folding sum: 

 𝑱′
𝒌

(𝒙′
𝒌) = 𝑬〈𝑱𝒌+𝟏

∗ (𝒙𝒌+𝟏)〉 

𝑱′
𝒌

(𝒙′
𝒌) = ∑ 𝑷(𝒊)

𝒊

𝑱𝒌+𝟏
∗ (𝒙𝒌+𝟏

𝒊 ) 

(45) 

Iterating over all possible cases 𝒊 

2.2. For each state 𝒙𝑘   

2.2.1. For each input 𝒖𝑘 

2.2.1.1. Evaluate the Model: 
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     𝑥′𝑘 = 𝑓(𝑥𝑘 , 𝑢𝑘) 

         𝑐𝑘 = 𝑐(𝑥𝑘 , 𝑢𝑘 , 𝑤𝑘) 
(46) 

2.2.1.2. Interpolate the remaining cost 

𝐽𝑘
′  (𝑥′𝑘) Based on 𝑥′𝑘 and the cost at the state grid points. 

2.2.1.3. Calculate the total cost 

Based on the step cost and the remaining cost  

 𝐽𝑘(𝑥𝑘 , 𝑢𝑘) = 𝑐𝑘(𝑥𝑘, 𝑢𝑘 , 𝑤𝑘) + 𝐽𝑘
′ (𝑥′𝑘) (47) 

2.2.2.   Find the best input 𝑢𝑘
∗ (𝑥𝑘) that produces the lowest cost 𝐽𝑘(𝑥𝑘 , 𝑢𝑘

∗ ) =

𝐽𝑘
∗(𝑥𝑘) 

2.3. A cut-off grid-cost line is mapped for visualization purposes. This is the grid cost 

for a given state of charge at which the charging power reaches 50%. (optional) 

Once the ideal control strategy has been found, it is simulated to find the projected cost 

using Algorithm 2. Note that unlike Algorithm 3, Algorithm 2 is forward facing, so it has to 

be deterministic, relying either on data or a Monte Carlo simulation of the stochastic model. 

A probabilistic forward simulation may not be possible [102]. 

6.3.3 Theorems 

Theorem 1 

The optimisation problem is separable and can be solved as a series of optimisation 

problems backwards in time min
ℎ𝑘

𝐸 < 𝐽𝑘 > iterating over 𝑘 ≔ 𝑁, 𝑘 − 1, … 1. 

Proof  

This follows from the causality of the problem. Firstly, the control law is the optimal 

solution, because it has access to all information relevant at time step 𝑘. Previous time steps 

have no impact that is not captured in the system state 𝑥𝑘 (Markov property), and future 

time steps are not known yet, specifically 𝑑𝑘+1 is unknown. 

This allows the separation of the total cost at any point into the step cost and the remaining 

to go cost (Bellman’s principle of optimality): 

min
ℎ𝑘⋯𝑁

𝐸 < 𝐽𝑘 > = min
ℎ𝑘

𝐸 < 𝐽(𝑢𝑘 , 𝑥𝑘) > + min
ℎ𝑘+1⋯𝑁

𝐸 < 𝐽𝑘+1 >   

Assuming the last term has been solved, finding the minimum for the current step does 

solve the optimisation problem now. Recursive application solves the initial problem over 

the full horizon.  
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Theorem 2 

The algorithm does identify the optimal control law for each time step min
ℎ𝑘

𝐸 < 𝐽𝑘 > in 

approximation.  

The algorithm solves this problem in two steps. First, it solves for the expected cost function 

(equation (45) which corresponds to the definition of the stochastic model, and then the 

optimal input is found in step 2.2.1 of algorithm 3, based on the deterministic part of the 

model and the stochastic part that is already included in the cost function.   

In selecting the lowest possible cost for every state, it uses three approximations:  

1. It interpolates the remaining cost 𝐽𝑘+1 which is only known for grid points 

2. Input 𝑢 is only ever returned on the points of the input grid but not in between the 

grid points. 

3. The optimal 𝑢 is only ever calculated for points on the state grid 𝑥 

All these errors decrease with reducing grid size and eventually converge to zero for any 

smooth cost function.  

6.4 Results 

6.4.1 Scenario 

The baseline scenario provided to the controller assumes fast-charging at 

(0.5 𝑥 𝑏𝑎𝑡𝑡 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦) and no resistive losses. The user drives an EV back home from work 

and plugs in the vehicle at 17:00. The vehicle is required by 07:00 with 80% 

SoC (0.8 𝑥 𝑏𝑎𝑡𝑡 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦). During this 14 hour charging period, no discharging is allowed. 

Different cases are explored within this scenario to see the decisions the controller makes 

and this tests the SDP output. The baseline assumes no resistive losses in the battery or 

charger. 

6.4.2 Assumptions 

A number of assumptions about the boundary conditions and the model have to be made 

to test the optimization algorithm. The aim of these assumptions is to test the function of 

the controller, specifically its ability to pick the best hours to charge by using a prediction 

for price changes. The test requires exercising different scenarios and eliciting different 

responses from the controller.  

A DAP profile for an arbitrary evening is selected from the ComEd tariffs for Illinois, 

Chicago, USA [95]. A hypothetical event is triggered at different times (or not triggered at 
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all), which changes the price compared to the predicted cost. This set up allows to see the 

reaction of the controller for the different scenarios. 

Further assumptions are: 

• The grid model described is a Markov process as detailed above. 

• The decay factor (α), disturbance (β) and price-event change are all assumed as 

constant for simulation (stated in each scenario results). 𝛼 is set at 0.8 and derived 

from the analysis in section 4.1. 𝛽 is set at 10 cents.  

• The Pev, probability that an event might occur is constant and has a discrete-

distribution (Figure 33). The baseline value is set at 10%. Different values are tested 

to verify the controller functioning in different probability situations (only positive 

values are considered). 

• The dynamics of the grid model are linear. 

• The EV specifications have no effect on the charging process. The only relevant 

factors are the battery size, the required level of charge, and the time available.  

• EV battery temperature, ambient temperature effects are not taken into account. 

• The available charge power is assumed to be constant.  

6.4.3 Results 

6.4.3.1 No Event Case 

Table 1 shows the input parameters: for the first baseline case, we discuss the results for 

price-selection, charge-decision, optimal-control map, cost-of-control decision and a 

snapshot of the cut-off prices. There is a positive event probability for a price spike, but 

in the simulation no price-event happens.  

Table 6: Input Parameters for Basic Scenario 

 Current Parameters 

Time Step 1 

Number of Hours 14 

Alpha 0.8 

Max Available Charge Power 0.5 (of batt capacity) 

Resistive Penalty 0 

Event Probability 0.1 (10%) 

Event Time None 
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Figure 38 shows, the controller decides to start charge at 21:00 (allowing full power at 

22:00) and realizes it may need lesser time than initially calculated to charge. The charge 

power drops after 22:00 and a full charge is achieved by 00:00.  

 

Figure 38: Controller output for Base Scenario 

In this case, the controller picks a slightly higher cost than the lowest possible in the 14 

hours. This is because the stochastic model includes a 10% probability per hour for price 

spike, which would make later charging more expensive. Therefore, the certainty of a 

slightly higher price is considered superior to the uncertainty of a later price, which may be 

slightly lower, or significantly higher. So the controller decides that it is better to provide a 

‘full’ charge at a minimal penalty (low enough cost at 22:00) than to wait for the lower cost 

(at a later hour) and risk having to charge during a price-event. This shows that with a 

probability of an event occurring at (𝑃𝑒𝑣 = 0.1), the controller works intelligently to 

provide a full charge (which is a boundary condition 𝑥1 = 𝑥1𝑁
) whilst picking the lowest 

expected cost according to the stochastic model.  

Figure 39 shows the cut off cost selection for odd hours for the 14 hour time period. It is 

visible that as time passes and SoC has not been met, the controller is ready to pick a higher 

cost to make sure charge is provided in time. When possible, the lowest cost is chosen 

proving that the controller works to provide 'the optimal cost charging' within the set 

parameters (SoC and ToC) by predicting an event based on probability. 
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Figure 39: Cut-off Cost Trajectories 

This trade-off can be seen in the cut-off cost (deviation) plot: a very low cut-off cost is set 

in the early hours of the evening. This means charging is unlikely, and it would only happen 

if the cost is unexpectedly low, because they expectation is for cost to fall. As time 

progresses, and the freedom of the controller is reduced, the cut-off cost rises. Around 

20:00 and 00:00, it is expected to reach the grid cost, and then charging would happen. The 

higher the SoC, the less need there is for charging, and the lower the cut-off cost can be set 

– making charging less likely. Finally, at 5 am the cut-off cost rises significantly, especially 

at low SoC. This is to ensure the required level of charge, in case the grid price has prevented 

charging before then. Obviously, this would incur a high cost, so it is discouraged by the 

control strategy. So the rise of the cut-off cost is initially because of the expected cost, and 

later because of the penalty of insufficient SoC.  

Figure 40 shows a snapshot of the optimal control map where the colour bar represents 

charge power for 21:00 and 23:00 (covers one charge decision and one discharging 

decision for this scenario). This shows more detail of the control law than the cut-off plot, 

but only for specific points in time. The control action follows the expectations: the charge 

power is increased if the cost and SoC are lower. As both increase, charge power is 

decreased. In this case the most important area is between 0 and 37% SoC, where the 

decision to charge or not falls within a small range of grid-cost. The map suggests that once 

the cost is near $0.1, the controller will charge because the cost before is very high and $0.1 

is a low-enough cost to pick and charge to achieve full SoC. The black line shows half the 

available charge power, which is exactly the cut-off cost discussed earlier, highlighted here 
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for comparison. At 23:00 time has passed (SoC has increased), the controller selects a 

slightly higher charge power, because less time is left for charging, and therefore the 

urgency has increased slightly.  

 

Figure 40: Controller Maps Base Scenario with contours showing charge power 

Figure 41 shows the map of the expected cost at the start of the horizon at 17:00. The colour 

bar indicates the cost. The plot shows that cost is roughly proportional to the SoC missing 

in the battery.  

 

Figure 41: Cost (J) map for 17:00 
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The cost shows a large decrease for very low grid costs (towards 0), because this would 

indicate that the battery can be charged immediately for little cost. There is little 

corresponding increase for a high grid cost, because according to the grid model, the cost 

should normalise throughout the night, and allow charging at a moderate rate.  

6.4.3.2 No Probability 

 

Figure 42: Controller output with Pev=0 

For comparison, an optimisation is performed without the stochastic element in the grid 

model. This is achieved by setting the probability of an event to zero, which matches the 

simulation used for testing.  

Figure 42 shows that the controller reacts subtly differently in this scenario. Because the 

grid is assumed to be predictable, there is no rush to charge early to reduce the risk. Instead, 

the controller waits until the price is at its lowest point. It picks the hours with lowest price 

to charge at full power, making sure that it can provide a full charge in the remaining hours. 

It is remarkable how constant the cut-off cost is throughout most of the night. The 

controller approximates the constant cut-off cost solution described in the previous 

chapter for deterministic grid models, which has been shown to be the optimal solution. 

The difference between both scenarios both in terms of charge time and incurred cost 

reinforces the requirement for accurate probability values to be passed from the predictor. 
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6.4.3.3 Scenarios with Events 

The same simulations can be repeated with different events. Note that the controller is the 

same as before, but “as if by chance” different times for an event are tested.  

Table 2 again shows the input parameters: There is a positive event probability and 

early, middle, late hours and long events. The reactions of the controller in each case are 

compared. 

Table 7: Input Parameters for Base Scenario 

 Current Parameters 

Time Step 1 

Number of Hours 14 

Alpha 0.8 

Charge Power 0.5 

Resistive Penalty 0 

Event Probability 0.1 

Event Time 3, 6, 12, 6+ 

 

 

Figure 43: Early Event (base) 

Figure 43 shows the early event case; at 20:00 the price event occurs and alters the 

trajectory for future hours. The controller detects this from the increased price, and it 

delays charging until the price has come down again to a more reasonable level. The price 
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does fall, and it reaches low enough at 1:00 to warrant a charging phase to complete the 

charge. The cut-off prices increase slightly (indicating the need to charge in any cost 

situation) after 00:00 because the battery is empty, and the time left to charge it is reducing. 

The controller successfully picks low price hours till 3:00 to charge leaving no risk for later 

in case there is another event. Overall, the controller works very well in this case. 

 

Figure 44: Middle Event (base) 

Figure 44 shows the middle event case, which is much more disruptive. The controller sees 

a low price point at 21:00-22:00 where it decides to charge. But this is followed 

immediately by a price spike hits, and it increases the cost significantly after 23:00. The 

controller responds and stops charging as the price reaches a high at 23:00. The battery is 

50% charged by then so the controller is comfortable to wait for a lower price. This is 

reached around 3:00-4:00 when it decides to charge again to provide the SoC as required. 

In the second charge phase it does not use all the charging power (only 0.3 compared to 

0.5). This shows it meets the goals of avoiding high demand and cost, but still provides a 

full charge by ToC. The charging cost in this scenario is higher, because the price never 

really falls to the expected levels again. It would have been better to charge earlier in this 

case, but because the event is stochastic in nature, this has to be traded against the chance 

of an event not happening. As can be seen here, the controller provides a balanced trade-

off for these conflicting possibilities.  

Figure 45 shows the late event case, where the event happens after the charge is completed, 

which means that it has no effect at all. The controllers picks to charge exactly like the no 
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event case in Figure 38. This proves that it predicts the possibility of an event due to the 

positive Pev and decides to charge with a minimal penalty, to be safe and provide SoC at 

ToC. The deterministic controller may still be charging when the event happens, and incur 

a higher cost. So again, charging slightly earlier than the lowest price pays off, and leads to 

a lower charge cost. The resulting cost is close to the minimum possible.  

 

Figure 45: Late Event (base) 

Figure 46 simulates an extreme case of a sustained event, where the grid cost jumps up at 

23:00 and remains high for the remainder of the night. This is not in line with the stochastic 

grid model, but it has to be tested to see whether the controller always delivers the required 

charge, independent of the grid price trajectory. 

Initially the controller behaves similarly to the middle event case, where it charges between 

21:00 till the event alters the costs. It then stops and waits for a time of low cost to try and 

save both demand and price. However, the sustained event continues to keep the prices 

high all through the remaining hours.  

At 6:00 am, the controller realises that this is the last opportunity to charge the battery, and 

it decides to request a charge up to the minimum 80%. Although this comes at a high cost, 

it is still preferable to the penalty of not reaching the necessary charge level. The cut off cost 

trajectory shows this decision behaviour: it increases at the last opportunity for charging. 
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Figure 46: Long Event (base) 

6.4.4 Scenario with Resistive Losses 

The battery model does contain a term to model resistive losses. Just like the power loss on 

an Ohmic element grows with the square of the current (𝑃 = 𝑅𝐼2), this term grows with the 

square of the charge power. Without the square term, the optimal solution is usually an on-

off control, that either charges at full power or not at all. Introducing a square term of the 

control input is well known in Linear Quadratic control theory, because it leads to a less 

aggressive and typically more robust controller.  

Table 8:  Parameters for Scenario with Losses 

 

 

 

 

 

 

 

Applying a penalty for losses, the cost model in equation (19) can be re written as:  

 𝑐𝑘+1 = 𝑐𝑘 + (𝑥2𝑘
+ 𝑤𝑘)𝑢𝑘 + 𝑅𝑢𝑘

2 (48) 

 Current Parameters 

Time Step 1 

Number of Hours 14 

Alpha 0.8 

Charge Power 0.5 

Resistive Penalty 0.03 

Event Probability 0.1 

Event Time 6 
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The effect of this term on the behaviour of the optimal control is analysed here. The 

expected effect is that to minimise the square term, charging is happening at lower power, 

spread over a longer time duration. Predictions, charging decisions, and risk mitigation will 

change accordingly. 

Figure 47 shows the same scenario as Figure 44, but with the square penalty. The expected 

effect is clearly visible: the controller charges at lower power, and for longer. To 

compensate for the lower charge power, it also starts earlier. It starts to provide charge 

after 20:00 and more power by 22:00 when price is even lower but the power is clearly 

affected by the resistive losses and effectively reaches only a value of 0.3.  

 

Figure 47: Controller output with Resistive Losses 

The event occurs at 23:00 and the price shoots up, the controller stops charge and waits. 

Unlike the choice in scenario without resistive losses (Figure 44), the controller picks a 

slightly higher price at 2:00 because more time is needed to charge owing to low net charge 

power. This proves the intelligence in the controller works both for picking a low cost and 

avoiding the square penalty. This can also be seen in the cut-off cost trajectory, where the 

risk cost is higher at 2:00.  
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Figure 48: Cut-off cost trajectories for Losses 

 

Figure 49: Cost (J) Map for 17:00 

The cost of control map in Figure 49 shows only minor differences, but it is noticeably 

smoother than the previous version. It indicates clearly that the penalty of charging at the 

last moment at full power is significant, this being the main difference. This scenario and 

the reaction to it shows that, with losses considered, any controller will have to make 

compromises but the SDP controller makes these whilst still striving to find the lowest 

possible expense.  
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Figure 50: Controller Map for Losses 

Figure 50 shows the optimal controller map for this scenario which differs significantly 

from the base shown in Figure 10-13. The price range at low SoC is much wider in this case, 

which is forced by lower net power due to losses. This does indicate that the gain of the 

optimal control law is significantly lower than without the penalty, exactly as expected. The 

map also shows how the controller compensate for the reduced charge power by 

considering charging earlier.  

This is an interesting result, because it shows that both the square penalty term and the 

stochastic element of the grid model have a very similar effect: both make the controller 

charge earlier, before the minimum expected grid has been reached. The main difference is 

that the square penalty also leads to the charging spreading out over a longer period, while 

the stochastic element does not have any effect on the charge duration.   

6.4.5 Scenario using Slow Charging 

The final scenario looks at the effect of more limited available power for charging. Unlike in 

the previous case, where high power consumption was disincentivized by a penalty term, 

here it is prevented by a firm limit. Instead of a full charge in 2ℎ, it is assumed that it takes 

5ℎ to achieve the same at the reduced available power. The obvious implication is that with 

lower charge power, the battery needs more time to charge, so the timing of the control 

strategy will be affected.  
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Table 9: Input Parameters for Scenario 3 

 Current Parameters 

Time Step 1 

Number of Hours 14 

Alpha 0.8 

Charge Power 0.2 

Resistive Penalty 0 

Event Probability 0.1 

Event Time 3, 6, 12 

 

Figure 51 shows the middle event case. The trajectory actually looks very similar to the 

previous case with a square penalty term, in that charging is spread out over a longer period 

of time. The time 21:00 has a lower cost and just like in the cases the controller decides to 

charge but encounters an event at 23:00. As the charging stops, the SoC achieved is lower 

compared to fast-charge scenarios. 

 

Figure 51: Controller output for slow charge 

Figure 51  and Figure 52  both show the cut-off cost trajectories which describe the risk 

selections are much higher to compensate. The controller waits until 2:00 but takes the 

penalty of the higher costs (compared to 4:00) to be safe and provide charge.  
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Figure 52: Cut-off Trajectories for slow charge 

Figure 52 shows a very different plot compared to other cases; here at 3:00 as well as 5:00 

the cut –off values are much higher for the range of SoC, indicating the willingness to accept 

penalties if the SoC is too low. 

 

Figure 53: Slow Charge with early event 

Figure 53 shows the strategy for the case with an early event. As the event causes a high 

price increase in the early hours, the controller completely avoids charging and waits for a 

really low cost. At 00:00, it picks a low cost but predicts a possible event later and for safety 
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begins charging. It continues to provide power as the costs only fall over the period and 

provide SoC by 5:00. The cut-off cost penalties increase all the way through 20:00 to 3:00 

(where the battery achieves 50% SoC).  

 

Figure 54: Slow charge with late event 

Figure 54 shows a late event case; here the controller predicts an event because of the 

positive Pev. So, it picks a low enough cost at 20:00 and provides full power at 21:00 when 

the cost is low. It charges till 00:00, when the cost jumps a little; it stops charging and waits. 

The next hour, the cost falls again and the controller charges at full power and achieves SoC 

quickly. The event that occurs at 4:00, is therefore avoided completely by the controller’s 

strategy. 

6.5 Conclusions 

The optimal charging controller is generated using dynamic programming, which solves a 

time-discrete stochastic optimization problem. It is implemented in MATLAB, which 

requires a custom function for this problem of medium complexity. The controller 

considers the required SoC and ToC (user-defined) and controls charging over the provided 

time period (and time period data). It successfully predicts possible price-events (‘spikes’) 

based on probability and compensates by picking hours with lower price. The main goal of 

the control is to provide required SoC in time, which it attempts to achieve by selecting the 

lowest possible costs. It is intelligent enough to accept penalty in case the charge required 

cannot be provided in time. The SDPM controller is a large improvement over the simple 

optimal controller presented before.  
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The prediction ability of the controller has been tested using several simulations over a 14-

hour charging period of a typical night. Testing scenarios included positive and no event 

probabilities, effect of resistive losses and a lower charge power. In each case, the controller 

behaves as expected and not only predicts possible price jumps but also reacts to them in a 

‘safe’ manner thus being able to provide SoC and not leaving the user stranded. In all cases 

it picks lower costs than otherwise if the charging was performed arbitrarily (for example: 

as soon as the EV is plugged in). The results prove that this as an optimal solution, where 

the EV would charge automatically, reducing charging cost and in turn offsetting high 

demand.  
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7 Case Study 

The previous two chapters, 5 and 6, explain two charging strategies with the goal to 

minimise charging cost over a given period of time using simulation. Chapter 5 successfully 

showed a deterministic optimal controller which worked by picking the cheapest electricity 

price hours and offsetting the charging to those hours. However, it relied on the fore-

knowledge of electricity prices, realistically it would only work if it used day ahead 

predictions (DAP) provided by the electricity provider. In practice, we have seen that DAP 

are not 100% accurate and the real time prices (RTP) would provide the best solution when 

used with the controller.  

Therefore, to achieve a better solution, chapter 6 explained the use of a stochastic dynamic 

programming-based strategy (SDPM). It uses a time-discrete stochastic optimisation 

within a dynamic program, to achieve on average, the lowest optimal charging price. This 

was shown to be successful using simulations. The controller considers price variability via 

a simple grid model that allows of unexpected price rises and a gradual return to a normal 

grid price. The DP algorithm has two variables: the state of charge (SoC) and the current 

electricity cost. It traces the expected total cost based on the stochastic model and decides 

‘to charge or not’ to minimize the expected (average) total cost.  

Both these controllers are proven over a single day’s snapshot during which the charging 

had to occur, using arbitrary but representative electricity price values. This chapter uses 

real data from the Illinois electricity grid, provided by ComEd, to perform a case study and 

prove the successful functioning of the programmed strategies explained chapters 5 and 6. 

The data used is the same as the data used for analysis and to create the linear predictor in 

chapter 4. A baseline scenario is created to test the controllers over a year, to calculate the 

price of charging an electric vehicle (EV). The effectiveness of the linear regression 

predictor (introduced in chapter 4), is also analysed alongside. Furthermore, the effect of 

varying the important parameters in the baseline is also explained to try and cover different 

situations.  

Section 7.2 revisits the discussion on the data used and discusses typical user driving 

behaviour on which a scenario has been based. Section 7.3 explains the baseline scenario 

created from the above discussion. Section 7.4 explains the results obtained in all the 

different cases. Section 7.5 presents an analysis and conclusion of the results of the case 

study. The case study to prove the advantage of SDPM has been presented at  the SAE World 

Congress [16] and has been refined and presented here. 
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7.1 Price Data & Baseline Scenario 

The case study is based on electricity markets in which the consumers are encouraged to 

shift their electricity usage to off-peak hours through high price alerts provided daily or 

hourly. This allows elastic behaviour from consumers, helping them to reduce costs. The 

strategies discussed in this research have been created to automate this behaviour with 

respect to EV charging on the basis of such electricity price information. Typically, the cost 

of electricity charged changes every hour or half an hour, and the electricity company 

communicates either the current tariff or the expected tariff development for the next day 

to the customer. This means that customers can move electricity intensive activities into 

periods where electricity is plentiful, and therefore cheap. 

In USA, ‘PJM’ is a neutral and regulated organisation which directs the operation for 

different generators. Illinois is one of the states in which PJM regulates the spot-electricity 

market and ‘ComEd’ is one of the electricity resellers to the retail market. The reseller, 

ComEd, charges the end users based on the ‘real time price’ (RTP) from PJM which is 

determined by the average of twelve 5-minute prices from that hour, without any mark-up. 

The ‘day-ahead price’ (DAP) is also provided by PJM, and is the prediction based on 

weather, capacity, generation factors and other variables [95].  Figure 55 shows the RTP 

data and Figure 56 shows the DAP data, for 2013 as a colourmap.  

Figure 55: Real Time Price Data for the year 2013 
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For the case study, both tariffs are considered: DAP, where prices are set at 4:30 pm for the 

following day and RTP, available the hourly on the day. Retrospectively, the history of these 

prices is available. We have five years of price data but for the purposes of discussing the 

results, one year (2013) is selected (Figure 55 and Figure 56). The colourmap shows how 

the prices vary over the hours of the day, for a whole year. Clearly, there is a lot of load 

shifting and cost saving potential, if the right times to charge are picked. There is far more 

variability in the RTP than the DAP. This annual data is used to calculate the results of the 

case study.  

Basic Situation 

The charging behaviour of users is difficult to predict, although it can be derived from their 

usage profiles. To be able to derive representative drive and charging cycles specific to EVs 

would require large amount of studies in the area of EV driver behaviour, which is not in 

the scope of this research. Charging locations and times will vary on user type, 

infrastructure and geography. For instance, a company fleet user may opt to do most 

charging at work, where infrastructure may be provided. However, an individual user 

would choose to charge both at home and public infrastructure. It is likely though; human 

behaviour will propel users to plug-in their chargeable appliance as soon as they are home 

Figure 56: Day Ahead Price Data for the year 2013 
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so ‘it remains charged’ by the time they need it. Most studies conclude that the tendency to 

charge vehicles as soon as users reach home is extremely high. There is a brief review of 

driver behaviour in the literature review chapter, where some of these studies have been 

mentioned. Studies like [35], [38], [36] and [39] conclude that the spike in charging 

requirements is pronounced between 5:00 pm and 7 am based on the time majority 

vehicles arrive home. What is more interesting is that these studies are done in different 

geographical regions of the world, and yet this time is of concern for peaks (regardless of 

whether users might charge in the morning during work hours). 

The basic case assumes the use of a typical electric vehicle, the base model Nissan LEAF (24 

kWh battery), being used for typical work commute during the week and in-city driving 

during the weekend (for example, to visit the departmental store). The car is driven to work 

at 7 am and back home at 5 pm with an assumed total mileage of 50 miles, with each journey 

taking one hour. Whilst the stated NEDC6 mileage of the vehicle is up to 84 miles, a 

maximum of 70 possible miles are considered for a real-world situation, whilst using air-

conditioning and other amenities in the vehicle (from the EPA, United States Environmental 

Protection Agency website). The user plugs in the vehicle for charging at home at 5 pm, and 

charging is possible till 7 am next morning when the vehicle is needed for commute to work. 

The charging station is a level 2 AC charging station with a typical output between 3.6kW 

and 7.2kW, as defined in SAE J1772 (2012 revision) standards[110].  

Charge profile and time horizon 

Figure 57 shows 24 hours as the case study looks at them. The user arrives home at 17:00 

on and plugs in the vehicle to charge. Charging is allowed until 7:00 which is when the user 

needs the vehicle to drive. Between 7:00 and 17:00, there is a 50-mile journey that takes 

the user to their workplace and back home. During this period, we assume no charging 

takes place. This makes 1 day (24 hours) of the case, starting at 17:00. It is logical to look at 

a 24-hour horizon to test both the strategies (Optimal and SDPM) over a year. However, it 

is more interesting to see a 31-hour horizon (i.e. till 00:00 the next day) to show the 

strength of the SDPM strategy alone, because it can plan ahead by delaying charging to 

make it cheaper if there is a chance to save money by doing so. 

On the other hand, the strategy in chapter 5 uses a deterministic route and is concerned 

only with the electricity prices in the first 14 hours when charging is allowed. Therefore, 

                                                 
6 The New European Driving Cycle (NEDC), is a driving cycle designed to assess fuel economy and 
emissions of passenger cars in Europe. It represents typical usage of a car and is comprised of four 
repeated urban driving cycles and one extra-urban driving cycle.  
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annual tests with both horizons are run, and shown for strategy comparison, but for all 

other variations the baseline is 31 hours. We assume DAP information has been received 

by the controller via a smart-grid connection prior to or as soon as the vehicle is plugged 

in, and historical RTP information is available in the same way. New RTP information is 

available hourly on the day. All the prices used are exclusive of the distribution fees which 

matter to the user but are not significant for study purposes because they remain constant. 

 

Figure 57: Charge profile of Baseline Scenario showing 24 hours 

 

Baseline Parameters 

Table 10 shows all parameters chosen for the baseline case. These have been selected on 

the basis of data analysis performed before in chapter 5 and assumptions made during the 

creation of the SDPM strategy.  The idea is to try and achieve the minimum cost and the 

results of annual runs will be explained further in this chapter, also with respect to selection 

of baseline parameters and if they are a good selection. The allowable SoC range is 0-100%. 

The study initiates with the vehicle at 0%. The first charging period achieves either 100% 

or SoC required to meet the daily mileage, depending on the strategy. From then on, each 

day, the vehicle discharges according to fixed usage, and the initial SoC is updated before 

every charging period.  
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Table 10: Baseline Parameters 

PARAMETER VALUE 

Vehicle Nissan LEAF 

Battery Size 24 kWh 

Effective Range 70 mi 

Journey Mileage 50 mi 

Charger Power 6 kW 

Decay Constant (α) 0.8 

Time Horizon 31 hr 

Price Event Size 5 cents 

Probability of Event 10% 

State of Charge Range 0 - 100% 

 

Vehicle and Mileage: The Nissan LEAF base model was selected because it was the most 

widely available (and accessible) EV when the strategy was being developed. There is also 

a 30-kWh battery model available from Nissan, which has been explored in a case against 

other available pure EVs in the market, in section 7.2.2.5 of this chapter. The 24-kWh model 

has an 84-mile (claimed) range and fits the case of 50 mile a day travel. It is also the 

cheapest option for people to switch to EVs which makes it a good baseline to explore for 

test purposes.  

Charge Power and Discharge Power: As discussed before, the charging station assumed 

is a class II charger based on SAE specifications which has a power output range in between 

3.6 and 7.2 kW. The charge power assumed for the baseline case is a maximum of 6 kW 

from the charger. Discharge power is calculated as follows (normalised): 

𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑃𝑜𝑤𝑒𝑟 (𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑) =
𝑀𝑖𝑙𝑒𝑎𝑔𝑒 (𝑝𝑒𝑟 𝑡𝑟𝑖𝑝)

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑅𝑎𝑛𝑔𝑒
=

25

70
= 𝟎. 𝟑𝟓𝟕𝟏 

Similarly, the normalised charge power would be: 

𝐶ℎ𝑎𝑟𝑔𝑒 𝑃𝑜𝑤𝑒𝑟 (𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑) =
𝐶ℎ𝑎𝑟𝑔𝑒 𝑃𝑜𝑤𝑒𝑟 𝑖𝑛 𝑘𝑊

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑆𝑖𝑧𝑒 𝑖𝑛 𝑘𝑊
=

6

24
= 𝟎. 𝟐𝟓 

The following assumptions are made:  

• There are no resistive losses considered in the charger or the vehicle battery 

• Effective range of the vehicle is 70 miles 

• EV battery temperature, ambient temperature effects are not considered 
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• Losses are represented by multiplying or adding penalties to the final cost 

(Especially for undercharging over the given time horizon) 

Decay Constant: The decay constant (α) has been selected on the basis of the 

autocorrelation analysis performed in chapter 5. The values of the constant for RTP which 

are the actual prices lie between 0.6 and 0.8.  

Probability:  The probability of a price event occurring, is a calculation that can be made 

on the basis of deviation between both prices using historical data. This will of course be 

different on the basis of the year and time when the charging is occurring and is a varying 

parameter. As explained in chapter 5, data analysis for prediction purposes is not a perfect 

science yet, and many complicated strategies only get close to predicting such events. In the 

baseline, we use a 10% probability of a positive or negative event and further we test the 

effect of a varying probability to see the adaptability of the SDPM strategy. 

7.2 Case Study Results 

This section presents the results of the case-study. Sub-section 7.2.1 compares the cost 

reduction achieved by using the charging strategies discussed in chapters 5 and 6, versus 

direct charging. Sub-section 7.2.2 analyses the effect of varying different parameters 

(changing them from the baseline selected) on the annual charging cost, when using the 

SDPM strategy.  

7.2.1 Annual Comparison of Optimal Strategies versus Direct Charging 

A direct comparison of annual cost of charging is made using the baseline parameters as 

shown in Table 11. Each strategy is compared against charging the vehicle as soon as the 

user arrives home.  

There is a possibility of using different combinations of prices for the purposes of 

optimisation and simulation, when running the optimal or SDPM strategy with a view to 

save on charging cost over the year. Table 11 shows the different combinations which are 

possible to use and combinations that are impossible (non-causal) but interesting to 

explore for comparison purposes. 

Clearly the foreknowledge of electricity prices would give us the best result and lowest cost 

which would be the benchmark goal to achieve (RTP-RTP non-causal but ideal 

combination). Using DAP for both stages in the strategy means the deviation price would 

be zero. For the optimal strategy it is a simple case of it reacting to the lowest price 

predictions but for SDPM, it would still allow for the probability of price events or ‘spikes’ 
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and adapt accordingly. When giving DAP for optimisation and RTP for simulation, the 

optimal strategy can better react to the hourly price time scale during the control decision 

stage and SDPM strategy should also have the advantage of reacting to price events. 

Table 11: Price Combinations for Charging Strategies 

 
PRICE SELECTION FOR STAGE 

COMBINATIONS USED Optimisation Simulation 

Deterministic Optimal Strategy DAP DAP 

 DAP RTP 

 Linear Predictor RTP 

Stochastic Dynamic Programming (SDPM) DAP DAP 

(Baseline) DAP RTP 
 

Linear Predictor RTP 

IDEAL (Fore-knowledge of real prices) 
 

Stochastic Dynamic Programming (SDPM) RTP RTP 

Optimal (Deterministic) RTP RTP 

 

Other combinations which would use RTP in the optimisation stage are also not possible 

but would not give us either a benchmark or important learning about the reaction of the 

strategies and are therefore ignored. As far as the linear predictor is concerned, the most 

important, first order predictor output is tested alongside the other combinations based on 

the conclusions of chapter 5.  

Figure 58 shows the cost of charging over the year 2013 when the strategies are given a 24-

hour horizon. There is a clear advantage of using either the optimal or the SDPM strategies 

over early charging. 

When using the Optimal Strategy (light grey), there is already a significant advantage 

compared to charging directly. Using DAP for both optimisation and simulation saves 

$101.01. In this situation, the strategy relies completely on the day ahead prediction, which 

is not always accurate as discussed in chapter 4. There is $6.65 more saving when using 

RTP for simulation stage because this allows the strategy to react to the hourly price on the 

day during simulation, after having used the DAP for optimisation. When using the 

prediction provided by the linear predictor instead of DAP in the optimisation stage, the 

result is very similar to using DAP but is more expensive overall. 
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Figure 58: Case Study Result for year 2013 (24-hour horizon), comparing Optimal (light grey), SDPM 
(dark grey) versus using early charging (red) and ideal situation (green) 

Looking at the results from the SDPM strategy (dark grey), using DAP for both stages, the 

cost savings are similar but slightly less at $99.58 than the Optimal Strategy. This is due to 

the reaction of SDPM to a probability of an event spike which makes the strategy spread the 

charging times out, taking a small penalty at times to try and be safe in case of a spike. When 

using a 24-hour horizon, SDPM will always try and provide the maximum possible SoC by 

the end of the first charging cycle compared to deterministic strategy, which will charge at 

the cheapest predicted hours and provide the maximum required SoC.  

Using RTP for the simulation stage, SDPM performs better and increases savings by $10.25. 

This is as expected because SDPM can make a better decision with the real prices and react 

hourly. Along with the ability to react to a price spike it can make a better control decision. 

When using the linear predictor’s prediction instead of DAP, the saving is just a few cents 

lower.  

Figure 59 shows the case study results when the strategies are given a 31-hour horizon. 

The results are consistent with the 24-hour horizon test but with improvements when 

using SDPM. A 31-hour horizon, allows SDPM to delay charging to the next charging cycle, 

if the user does not require the extra state of charge in the battery. The prices when using 

the optimal strategy are the same as a 24-hour horizon because it is only concerned with 

the first cycle of the charge profile, whereas SDPM has a notion of time.  Of course, this is 
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speculative on part of the strategy but it proves the advantage of using stochastic control 

to achieve a better prediction.  

 

Figure 59: Case Study Result for year 2013 (31-hour horizon), comparing Optimal (light grey), SDPM 
(dark grey) versus using early charging (red) and ideal situation (green) 

The green bars show the ‘ideal’ goal. Although non-causal, they show the benchmark of a 

maximum we can achieve. When using RTP in the optimisation stage with the Optimal 

Strategy, it is able to pick out the real cheapest prices and delay charging to those hours 

which is not possible without the prior knowledge of RTP i.e. the real prices on the day. 

SDPM does the same but with the probability of a price event, it spreads out the charging 

rather than delaying till late and in doing so, accepts a small penalty to be safe. Interestingly, 

the cheapest cost over the year is $ 119.76 which is only $11.00 cheaper than using SDPM 

(DAP-RTP) combination when using the 24-hour horizon.  

When using the longer horizon, the effect of the SDPM Strategy having a notion of time can 

be seen. The savings with SDPM Strategy using RTP are only a few cents lower (compared 

to $1.99) than the Deterministic Optimal Strategy ideal. It can be argued that the simpler 

solution provides a better result when only using DAP, which are available the day before 

(as a prediction). However, it becomes clear why the deterministic optimal strategy 

performs better with just DAP compared to SDPM when we consider that, SDPM defers 

charging above the maximum required charge, to the next charge cycle in the 31 hours. It 

awaits a better price but overall the time period in the next charge cycle between 17:00 and 
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00:00 is not likely to provide much lower prices. If the horizon was a full 48 hours, i.e. SDPM 

had until 7:00 to the end of the next cycle to fully charge, it provides a better price of 

$140.20. In fact, with a 48-hour horizon, the DAP and RTP combination achieves an annual 

cost of $123.96.  In contrast, the deterministic optimal strategy only considers the first 

charge cycle and uses the DAP to provide the best possible result.  

It is evident that using RTP together with DAP gives a $9-14 advantage which is significant 

when we consider the theoretical optimum is only $119.76 which is just $7.45 cheaper 

than what the SDPM strategy can achieve. In the combined price case, SDPM is the clear 

winner because it accounts for the probability of price disturbance and can make use of the 

more up-to-date information of the RTP in both charging cycles. The fundamental 

difference is that it deals with risk better and manages it based on price versus time, 

assuming we have more accurate price information available on the day. This is proven by 

the result which shows that widening the horizon given to SDPM leads to much higher 

savings. In all cases, SDPM performs better than the deterministic optimal strategy which 

only works with the 24 horizon and achieves $132.93. Table 12 shows the percentage 

improvement in cost-saving, when increasing the charging horizon (and hence known 

prices) provided to the SDPM controller. 

Table 12: SDPM Improvement with larger horizon 

Horizon in Hours SDPM (DAP:RTP combo) Percentage Improvement 

24 $130.76 Comparison Point 

31 $127.71 2.3 % 

48 $123.96 5.2% 

 

SDPM effectively manages risk based on probability of events and has a notion of time. This 

means, if there was a better indication on the RTP, there could be more benefit and better 

results. During the times this research was done (2012-2016), RTP data was available 

hourly. This is still the case for billing customers i.e. they get billed on the hourly price but 

ComEd now provides the 5-minute prices that lead to the hourly price on which the 

customers are billed. The PJM real-time hourly market of Illinois provides hourly prices to 

different electricity companies like ComEd and they pass on these prices for billing without 

a mark-up. This hourly price is an average of the twelve ‘5 minute prices’ of the hour [111]. 

In the last half year, the 5-minute price data has been made available, which means, the 

SDPM strategy can have a faster timescale prediction which it can use for optimisation, 

potentially leading to significantly better results.  
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The success of the more complex solution, SDPM, is based on having that accurate hourly 

price information for the simulation stage. The results show that the RTP lead to a 

significantly better cost saving and load shifting opportunity, and any good strategy will 

rely on having these prices to provide an optimal and non-trivial solution.  

Therefore, we choose the baseline scenario result as the SDPM strategy, using the DAP-RTP 

combination with a 31-hour horizon, which achieves an annual charging cost of $ 127.71 

(highlighted in black) to compare the effects of changing parameters further in the 

chapter. This is $112.88 cheaper than not using any charging control.  

 

Figure 60: Application of Charging Power by hour of the charging cycle 

Figure 60 shows the histogram of power usage during the different hours of the charging 

period, comparing the use of optimal charging strategies versus direct charging. It is 

evident that when charging directly, i.e. as soon as the vehicle is plugged in all the charging 

power is applied instantly and the vehicle is charged. The ideal case is shown in green which 

is the Optimal Strategy Ideal. The charging is shifted to the times of lowest cost because the 

knowledge of real prices is assumed. As can be seen, the baseline (SDPM D-R in dark 

purple) is fairly close to the ideal, whilst being a strategy and price combination that is 

possible to use. 
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Comparing the Optimal and SDPM strategies using the DAP-RTP combination, it can be seen 

that the SDPM spreads the charging over the later hours if required to allow for price events 

but the optimal strategy waits to find the lowest price and tries to charge as quickly at those 

times. As a result, SDPM doesn’t always choose the expected hours because it accounts for 

the probability of a price change. When relying completely on DAP, both strategies are 

further from the ideal hours, which is to be expected due to the deviation in between the 

DAP and RTP.  

Figure 61 shows the annual charging power application pattern, when using the baseline 

controller (SDPM-DR). When comparing it to Figure 62, which shows the ComEd area 

power demand for the same year7, it highlights the success of the SDPM controller with 

respect to load shifting.  

The controller shifts the charging load away from the peak times, during the stipulated 

charging period (17:00 to 07:00). There is hardly any charging in the early time-period 

between 17:00 and 24:00, which is clearly the period with the highest power demand. The 

highest charging power seems to be applied during the morning hours of 01:00 to 06:00. 

Therefore, over the year, it successfully shifts the charging load to off-peak times.  

                                                 
7 Available from the PJM website retrospectively [65]. 
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Figure 61: Application of Charging Power over the year, when using SDPM-DR Baseline 
Controller 
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Figure 63 shows the cumulative use of energy over the entire year, versus the price. When 

charging directly, the average cost of energy is naturally high. The green line shows the 

ideal line, using the Optimal Strategy and it is evident that the baseline (SDPM DAP-RTP) 

follows it closely. The ideal achieves lower costs throughout whereas the SDPM Strategy is 

more expensive to begin with and then reacts at lower prices overall until the end. This plot 

also shows the evolution of the two strategies explored, compared to direct charging. 

  

 

Figure 63: Cumulative Power Histogram against hourly cost over the year 
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Figure 62: Power Demand for ComEd distribution area for 2013 
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7.2.2 Parameter Variations 

7.2.2.1 Varying Price Event Size 

The baseline uses a possible 5 cent price variation (price highlighted in black) as the 

possible ‘spike’ based on the 10% probability given to the strategy. As explained in chapter 

5 and 6, a price spike usually causes a parabolic delay before the prices return to normal 

and the grid model does mimic this behaviour.  

Figure 64 shows the effect of varying this parameter whilst keeping all others constant 

including the probability. The shape of the curve, clearly has a minimum at 5.5 cent before 

which the overall price increases again. Therefore, the selection of the baseline is good 

when looking at 1 cent intervals, but even with 0.5 cent intervals, the baseline is only $0.17 

higher than the minimum over the whole year.  

With the probability of an event constant, when the possible event size is small, the SDPM 

strategy still takes measures to make sure required charge is provided and charges early 

depending on the prices. Ideally, the strategy would charge as late as possible but to account 

for the probability, it would charge a little earlier and take the small penalty by not choosing 

the lowest price. However, the smaller price event size means that the delay for prices to 

settle is shorter and the strategy could have charged later to save cost. It is safer to charge 

earlier though, as the penalty for not being able to provide full charge is much higher. 

 

Figure 64: Effect on annual charging price with different Price Event Sizes 

As the event size increases, the saving by reacting to the event probability is higher. After 

the minimum possible at 5.5 cents, the overall price shoots back up. The jump at 6 cents is 

sudden before it plateaus and jumps again. Larger event sizes mean the strategy goes into 

‘panic’ mode. It charges the vehicle first early to avoid the event but the remaining charge 

P
ri
ce
 (
U
SD

) 



Cost Optimal Charging of Electric Vehicles 
Sagar Mody | Loughborough University 

119 
 

as late as possible. At the end it must charge in panic during a higher cost (before the 

parabolic delay has levelled out) and takes a penalty which would be lower than not being 

able to provide the required state of charge (SoC) by 07:00. These are the points at which 

the penalty applied for not providing the charge is higher than the penalty of charging at a 

slightly higher cost. 

7.2.2.2 Varying Decay Constant (α) 

Figure 65 shows the effect of varying α whilst keeping all other parameters constant. The 

decay constant is selected based on the autocorrelation analysis of the electricity price data. 

The coefficients of the exponential curve for the autocorrelation lag sit in between 0.6 and 

0.8. The figure here shows that the selection of 𝛼 is optimum at 0.8, where the minimum 

overall cost is when doing the annual case study. 

Figure 65: Effect on annual charging price with different Decay Constants (α) 

The decay constant is the constant that defines the rate of decay between the costs of one 

hour to the next. The grid model (explained in chapter 6) is as follows and helps to see the 

effect of α. 

 𝑥2𝑘+1
= 𝛼𝑥2𝑘

+ 𝑑𝑘 (49) 

As the decay constant gets higher, the cost of the next time step increases as well. It fulfils 

the decay trend as seen in the data analysis (chapter 4), and at the correct range of the price 

data’s decay constant, it leads to the best possible result for the strategy.  
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7.2.2.3 Varying Probability of Price Event 

Figure 66: Effect on annual charging price with increasing probability of price event (spike) 

Figure 66 shows the effect of increasing event probability on the overall annual cost of 

charging when using SDPM. The baseline is marked in black, at 10% event probability 

which is very close to the minimum possible at 16%. The annual price in between 10-16% 

is very close and as Table 13 shows, the baseline is only $0.18 more than the minimum. At 

0% probability, the price is higher, then it reaches the minimum and as the percentage 

probability of event (or spike) increases, the price increases again.  

Table 13: Baseline versus Minimum Probability choice 

Probability Price Difference 

10% $127.71  

12% $127.58 $0.13 

14% $127.65 $0.06 

16% $127.53 $0.18 

 

This is as expected because the SDPM strategy reacts earlier and earlier to a higher 

probability of event, taking the penalty of charging at a higher cost to avoid the penalty of 

not being able to provide a required charge when the price jumps. At 0% SDPM effectively 

acts in a similar way to the Optimal Strategy, thus not achieving a lower cost.  

7.2.2.4 Effect of Varying Charge-power 

Fast charging is becoming the norm as EVs become more mainstream, but SAE standards 

J1772, also mention a level 1 AC charging station with a typical output between 1.4kW and 

4kW. This is closer to a normal output from a home plug using 120V, and it is interesting to 
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consider whether a strategy like SDPM could save much over the year. At the same time, 

there is potential to save more when using faster chargers. Level III chargers can provide 

nearly 12kW and super-fast chargers can provide higher than 20kW.  

Figure 67 shows the effect on overall charging cost when using different chargers. There is 

clearly an advantage of using fast charging but this advantage levels out, giving less and less 

advantage as it goes higher, proving that the law of diminishing return applies. When the 

charger is slow (3kW), the SDPM strategy is capable of throttling charging power where 

possible at higher prices but it has to charge at these moments regardless because it takes 

longer to charge overall.  This achieves a higher annual cost compared to the baseline 6kW 

charger.  

 

Figure 67: Effect on annual charging cost when using different chargers 

The higher 9 and 12kW chargers show a saving of $5.80 and $9.80 over the baseline, 

respectively. The higher the power from then on, the lower the saving following a decaying 

curve. The saving between 12 and 15kW, is $0.59 and 15 and 18kW, is $0.31.  
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7.2.2.5 Comparing Different Vehicles 

Table 14 shows a list of electric vehicles with their specifications, which are compared in 

this section with the SDPM strategy applied to them over the 2013 year when charging.  

Table 14: Electric Vehicles which are compared 

Vehicle Battery Size Range (Effective EPA) 

Nissan LEAF 24 kWh 70 mi 

Nissan LEAF 30 kWh 107 mi 

BMW i3 33 kWh 114 mi 

TESLA 75 75 kWh 230 mi 

TESLA 100 100 kWh 300 mi 

 

Figure 68 shows the results of the different EVs charged using SDPM versus the baseline 

LEAF. The baseline scenario is used, where the user does 50 miles in the vehicle per day 

and uses a 6kW peak charger at home. The LEAF 30 shows a good improvement in overall 

cost of charging over the 24-kWh version. As expected, the BMW is slightly more expensive 

to use but it has 168bhp, using the battery quickly compared to the 108bhp power LEAF 

30. (The normalised discharge power considered is still, (𝑀𝑖𝑙𝑒𝑎𝑔𝑒 𝑝𝑒𝑟 𝑡𝑟𝑖𝑝/

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑅𝑎𝑛𝑔𝑒)). Comparing the higher specifications in terms of power, battery size 

and range, the TESLA models give encouraging yearly charging costs for the baseline 

scenario which are cheaper than the LEAF 24.  

 

Figure 68: Charging different EVs using SDPM over the year 2013 
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Figure 69 shows the comparison of the other EVs in a slightly different scenario where the 

user does 100 miles a day and uses a more powerful 12 kW peak charger at home. The 

baseline LEAF 24 cannot be compared because it has a maximum range of 84 miles. As 

expected, the results are consistent with the above scenario but with the total cost of 

charging higher as more mileage is done over the year. It is interesting to see that the TESLA 

vehicles do not cost much more than the LEAF 30 and BMW i3 in terms of charging cost 

when using SDPM. 

 

Figure 69: Charging different EVs using SDPM over 2013, 100-mile journey with 12kW charger 

Calculating the energy cost per mile from the above for the different vehicles, gives us the 

following results. 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑚𝑖𝑙𝑒 =
𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑑𝑎𝑦

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠
 

Where, 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑑𝑎𝑦 =  
𝐶𝑜𝑠𝑡 𝑜𝑓 𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑝𝑒𝑟 𝑑𝑎𝑦

𝐷𝑎𝑖𝑙𝑦 𝑀𝑖𝑙𝑒𝑎𝑔𝑒
 

Figure 70 shows the energy cost per mile for each EV based on the baseline scenario for 

this case study and using the SDPM strategy to charge the vehicle each day. It is worth 

noting that these prices don’t include distribution costs of the electricity provider and thus 

the value for each EV is very low. However, it gives us a good idea about the difference of 

energy cost of the vehicles compared when using SDPM to charge them. Therefore, the 

LEAF 30 has the cheapest energy cost per mile but as noted above, the TESLA EVs have a 

surprisingly low energy cost.  
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Figure 70: Energy Cost per Mile for different EVs 

7.3 Analysis & Conclusions 

This chapter has shown a successful case study result in favour of the two strategies that 

have been developed and discussed in this research project and thesis. There is a clear 

evolution and improvement going from direct charging to Optimal and SDPM strategies. 

Using the example of the year 2013 with the baseline case explained in section 7.2.1, the 

deterministic optimal strategy saves $107.66 and the SDPM strategy saves $112.88. The 

maximum possible saving is $119.76 using the ideal and non-causal combination which is 

only $7.95 better over the year than the achieved optimum using SDPM. Moreover, the 

baseline parameters used for the SDPM strategy have been proved to be the minimum or 

very close to minimum possible, by varying the parameters one at a time. 

The Optimal strategy is computationally simpler and is still only 11% higher than the 

benchmark. The SDPM strategy can predict price spikes and has a notion of time. It can react 

better than the Optimal Strategy, over a longer time horizon and therefore performs better. 

The optimum is only 6.64% lower than the SDPM result and therefore, SDPM is a small but 

clear improvement over the Optimal Strategy. It can be argued that the gains achieved 

follow the law of diminishing returns and the question arises: Would it be worth creating a 

more computationally complex strategy (and therefore requiring more processing power 

and cost) to achieve the extra 6.64%?  

The results also highlight the success of the strategies in shifting the charging load to off-

peak times. Figure 60, Figure 61 and Figure 62 show this well, by showing the times of 

charging power application when using these strategies, versus charging directly. SDPM 

successfully offsets the charging to the hours when the cost is low and so is the demand for 

electricity. The deterministic optimal strategy is successful in doing this as well but SDPM 

reacts better to unknown deviations between the RTP and DAP. It can be concluded from 
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the difference in price and power usage (versus time), that it is essential to use such a 

strategy to charge an EV, but it is worth noting that this case study considers only one 

vehicle. There would be other concerns when there is many EVs to consider because if the 

number is high enough and all vehicles charge at the lower demand times, this in turn may 

increase the demand and therefore price at those hours.  

Despite SDPM being more complex than the deterministic optimal strategy, it has a fairly 

low computational cost compared to other control methods like machine learning, fuzzy 

logic, or a combination of control methods. As a MATLAB code running the control strategy 

over annual price data, SDPM takes 2.49 minutes and the Deterministic Optimal Strategy 

takes 2.05 minutes to run on a 3rd generation Intel core i5 processor8. Although, the 

computation cost in terms of processing power and time is not high, SDPM is overall more 

effort, both in coding and performance. For example, the deterministic optimal strategy can 

be written in approximately ten lines of code, whereas, the core coding of SDPM is more 

than a hundred lines (split into a few functions).  

  

                                                 
8 A Microsoft Windows 10 personal computer, with 8 gigabytes of random-access memory, 1.8Ghz 
with available turbo-boost up to 2.10Ghz quad-core Intel core i5-3337U. The programs run on 
MATLAB 2016-2017 (64-bit) versions.  
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8 Summary and Outlook 

8.1 Review 

This research has shown that smart EV charging offers a joint opportunity for saving the 

user money and electricity load shifting. Two strategies have been discussed in detail to 

achieve charging cost minimisation, using different approaches. The results show that both 

the savings and the load shifting effect are very significant, and the algorithm achieves a 

good part of the theoretical optimum.  

Key Findings 

Firstly, a linear predictor is proposed based on a linear regression analysis of historical 

price data, to try and achieve an improved prediction compared to DAP. The predictor is 

based on the available and derived factors from within the price data sets. The findings 

show that this predictor achieves a slightly better prediction for real prices, for the data set 

used. The improvement is so slight that over different years it is possible for the prediction 

to not be reliable. This means that the provided DAP are a fair indication of the RTP in the 

data set.  

The next section discusses the deterministic optimal strategy, and simulation results 

proving the working of it. This achieves a solution to the optimal charging problem, by 

following a deterministic route to achieve the goal. Technically, the solution is sub-optimal 

because of the assumption that the provided price prediction is accurate and considering 

these as the real prices, the strategy optimally picks out the cheapest times for charging. In 

turn it provides the cheapest overall cost and a fully charged vehicle at the deadline.  

Followed by this, the more complex solution which uses stochastic dynamic programming 

is explained. It performs better than the first controller and achieves the optimal solution 

which is proved by simulation. The SDPM controller takes into account the stochastic 

nature of the electricity prices, which is responsible for the RTP being different at times to 

the DAP. It uses a probability to account for price spikes and a grid model to simulate the 

sudden increase in price and the gradual fall back to normal prices. It successfully avoids 

the high price hours and in addition is able to avoid potential periods of sudden price 

changes to come. It spreads the charging cost across the time horizon it has and provides 

the lowest possible cost whilst providing the required SoC in time. 

Finally, a case study based on real price data from the Illinois electricity grid is discussed. 

It shows the possible savings which can be achieved by using the strategies versus charging 

instantly. Working within the assumptions, there is a clear advantage in using the strategies 
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presented in this thesis which show a saving of up to $112.88 compared to charging the 

vehicle directly. 

Summary 

In a spot-electricity market like that of Illinois, USA, price information is available at the 

hourly timescale. One set of prices (DAP) are available as a prediction the day before. The 

second set of prices are available hourly on the day (RTP). Naturally, the fore-knowledge of 

prices is the ideal situation to know when to charge. The attempt to develop a linear 

regression-based predictor from available factors provided by the electricity distributors 

pricing tariffs showed that there is a strong correlation in between the provided DAP and 

the RTP, but with significant differences over the year. The linear predictor based on the 

DAP as a main factor itself shows to be a good approximation but not comprehensively 

better than the DAP itself.  

Testing the predictor over different years shows that it cannot always be relied upon to give 

a better result. Some of the higher order predictors show slight improvements in 

prediction, but there is also evidence of overfitting for the more complex predictors, 

resulting in worse performance on the verification data. Overall, the prediction provided 

by the electricity company (the DAP) is good but not always accurate. The case study results 

(section 7.2) reflect that, the price saving achieved using the predictor (instead of DAP) is 

only marginally better or worse. The results of verification in chapter 4 also show that over 

different years, there is no real trend to show that using this predictor gives an advantage.  

The first step of the research looked at using these DAP to decide the times to charge the 

EV. It successfully shifts the charging from the higher priced times to the lower priced times. 

This is a deterministic route to an optimal solution to automate the delaying of EV charging. 

It assumes that the DAP are accurate; and if this were true, it provides a simple solution to 

implement. The problem of electricity price ‘spiking’ due to problems in the grid, high 

demand, and other effects lead to the real prices (RTP) being different from DAP. These are 

very difficult to predict. Fore-knowledge of these prices would be the ideal situation. 

Developing a solution that could take this randomness (which leads to unknown real 

prices) into account was the next logical step.  

To account for the price-spikes, a strategy using dynamic programming with the addition 

of a stochastic disturbance was developed. This controller solves a time-discrete stochastic 

optimization problem, taking into account the required SoC and ToC (user-defined) to 

control charging over the provided time period. It successfully adapts to price changes 

based on probability and compensates by picking hours with lower price. It uses the real 
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price and price prediction more effectively to make a control decision when compared to 

the deterministic optimal controller. The main goal of the controller is to provide required 

SoC in time and minimize the expected cost at the final time-step. The controller has a built-

in penalty in case the charge required is not provided by the end time. The SDPM controller 

provides a large improvement over the deterministic optimal controller. 

Finally, a case study was developed and run with annual price data, to show the quantifiable 

benefit of using both these strategies versus charging directly. It is based on the Illinois real 

time tariff market, with price data provided by the electricity provider ComEd. The data is 

available retrospectively for all years and features both predicted and real prices, per hour 

and for each day. The study explores the use case of an EV user plugging in the vehicle at 

home at 17:00 after a daily 50-mile trip. The program uses a 6kW charger and is given the 

choice of using no strategy, deterministic optimal strategy, or stochastic dynamic 

programming (SDPM) strategy. The ideal case where having all fore-knowledge of 

electricity prices is considered as a benchmark. The achievements of this research as 

proofed in this thesis are presented in section 8.2. 

8.2 Achievements 

The problem statement, chapter 3 of this thesis, presents the question that this research was 

set out to answer. To summarize: In a future with EVs, there needs to be a way to make use 

of readily available electricity price data on smart-grids, to optimally charge the vehicle in 

order to achieve the lowest electricity cost and in turn offset the charging to off-peak times. 

The question posed is: 

What would be the right kind of controller from the user’s point of view, to charge an EV 

optimally, in order to minimise the charging cost while still achieving the required state of 

charge? 

This research has shown that there is a sub-optimal and an optimal control solution to the 

problem. With the assumptions made in the case-study, both the control solutions show a 

significant saving in annual charging cost. Figure 71 (left) shows baseline case-study 

results9, where the green bar shows the lowest achievable annual (2013) price10 for 

charging the EV. This is based on using RTP for both optimisation and simulation and is 

non-causal because it requires fore-knowledge of the real prices. The cost-saving potential 

in this ideal case is 50.22%. 

                                                 
9 Chapter 7 section 7.2 explains different time-horizons and their significance. 
10 Prices exclude distribution fee or standing charges. 
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Figure 71: Achievement of Optimal and SDPM Strategies against theoretical limit 

The achievements of this research can be summarised as follows:  

• The deterministic optimal controller is the simpler solution, and it is still successful 

in providing significant cost-saving. Using this controller for charging versus using 

no charging control leads to a 44.75 % lower annual charging cost.  

• The SDPM controller is the more complex solution and it improves upon the 

deterministic optimal controller. When picking the right time to charge, it can 

account for the stochastic nature of the electricity prices, and avoid any potentially 

large deviation between the predicted and real prices. This controller reduces the 

annual charging cost further; providing a 46.92 % lower annual charging cost 

compared to using no control. 

• Figure 71 (right) shows how close the two solutions come to achieving the ideal 

case.  Considering $119.76 as the 100% limit, the deterministic optimal strategy 

achieves 89% success and SDPM gains a further 4.36% success bringing it to 

93.36% of the limit.  

• Both the control strategies are also successful in shifting the charging load from 

peak to off-peak times. Figure 60, Figure 61 and Figure 62 (chapter 7 section 7.2) 

show that, when using the controllers versus not using any, the EV is charged during 

the times when power-demand is lower.  

• The thesis has presented a novel approach to resolve the problem posed in the 

research question. The control solutions consider the user perspective first, and 

implicitly benefit the grid by filling the demand curve. The novelty is in the fact that 

the controller reacts to price data using a simple grid model, which is fast and uses 
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a single optimisation stage. This simple and elegant grid model for real time price 

could be effective for scheduling demand response. 

• The algorithms have a low complexity. Even the non-trivial SDPM controller has low 

enough complexity (as explained in chapter 7 section 7.3) and does not require high 

processing power. Either controller can be easily implemented on embedded 

systems and start benefitting users in areas with real time electricity tariffs. 

• The solutions are also modular to a degree because they are purely mathematical, 

and are independent of any system standardisations. Either controller can be 

customised for any application which uses electricity, because the parameters 

provided to the programs can be changed. With some customisation, the 

optimisation stage could even include vehicle-to-grid and demand response signals.  

Overall, there are several factors that determine the precise amount of money saved; for 

any specific application, it is worth tuning these in detail. The choice of the optimisation 

algorithm has some influence, with the stochastic optimisation outperforming the 

deterministic optimisation as expected but by a small amount. Given the increased 

complexity of the stochastic optimisation, it may not necessarily be the method of choice in 

a practical application. More complex approaches may be able to achieve better results, but 

clearly there is a law of diminishing return. More effort leads to less comparative reduction 

in charging cost, and it would be a matter of another study to assess the cost-effectiveness 

of working on a more complex solution.  

The next logical step would be to perform an experiment by embedding the controllers on 

power electronics and testing their reaction to grid price changes. It would have to be 

performed along with an electricity provider who allows the reading and transmission of 

their historical and current price data to the system. 

8.3 Outlook 

It is evident that the use of strategies like these, applied as smart applications either in 

embedded systems or on-board, will be essential for future electricity demand 

management. The Future Energy Scenario report [3] from the National Grid in the UK, 

clearly states that the growth in EVs will have a significant impact in [electricity] demand. 

This impact must be managed carefully otherwise it will create challenges across all 

sections of the energy system, particularly at peak times. It also mentions that electricity 

requirement at peak time could increase by almost 1GW per year post 2030 but smart 

applications could lead to a reduction of this demand. 
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There are many research topics to explore, and questions to answer and address before any 

such strategy is integrated into the system. One main consideration is the infancy of the 

smart-grid infrastructure. Data problems were faced during this research: there were gaps 

in the price data of certain years, there were discrepancies in what time-interval the data is 

available at, and change in company policies meant consistent data was not available from 

the same source. The lack of standardisation in the area impacts the performance of real 

time tariffs and the real benefit that can be extracted out of them. This is conformed in a  

smart-grid progress review paper [96] by Cetin et al. The researchers conclude that the 

frequency and quality of data from smart-meters varies significantly and can be 

inconsistent.  

 

Figure 72: Optimal Charging Module communication and Placement 

The next logical question is related to many EVs using strategies like SDPM at the same time. 

It would be a matter of a real-world study to see the effect this would have on the grid prices 

because all vehicles with the strategy would opt to charge during the off-peak, in turn 

causing a rise in demand. However, the electricity market has a distributed nature (the data 

supports this (section 4.1)), which should help achieve a co-operative result when many 

EVs use the strategy. Multiple EVs using such strategies also compels the question: will 

using strategies like these mean that the user plays against the electricity market? 

Approaching this problem from the user’s perspective as this research has attempted, 

means this is certainly not the case. There is no intention of benefiting from the market or 

other user’s losses. Also, this was never the intent of the development.  

As Figure 72 suggests, it would certainly be beneficial if infrastructure would allow 

embedded modules or vehicles with this strategy to communicate with each other as well 

as the smart-grid. This would help in better decision making.  An addition to the strategy or 

Strategy Modules in communication 
with the smart grid and each other 
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an additional code could aggregate the requirements of the EVs in the area and distribute 

the charging effectively.  

The low computational complexity of this approach presents an opportunity to load it on 

embedded systems and be present on either side: the vehicle charging electronics or within 

the charging station itself.  The strategy can be deployed onto a low-cost device like an 

Arduino or Raspberry Pi which is the next logical step recommended for this study. On the 

vehicle side, it could run on the vehicle’s own electronic ICU or CPU since all modern 

vehicles have processors capable of handling a code like this, or it could be an additional 

device which communicates with the vehicle’s computer. The vehicle or module itself 

would need a connection to the internet or the smart-grid to download price data 

periodically.  

 

Figure 73: Placement of the Optimal Charging Strategy and Module 

The module installed in a vehicle could benefit from various other information from the 

vehicle. For instance, if the vehicle has machine learning capabilities, it could effectively 

learn the user’s driving pattern and this information could be used to alter charge and 

discharge profiles (times) used for the SDPM strategy. If the user would like to intervene 

and change any automation procedures, they could do so directly with the vehicle, rather 

than relying on another device. Essentially, the vehicle would function as a smart-device 

which uses information from the smart-grid infrastructure to benefit the customer. Figure 

74 shows an example of how the consumer could benefit from a vehicle with an automation 

module using SDPM with machine learning.  

The Strategy Module is the ‘middle man’ 

Installed on Charger Side Installed on vehicle Side 

Smart 

.GRID 
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Figure 74: Example of process leading to automatic charging with SDPM 

Closing Statement 

While this research has shown the effectiveness of two strategies on optimal charging of 

EVs, there is a possibility of more complex solutions. These strategies are based on data 

from smart-meters and in turn on the clarity of this data. We find that the infancy of the 

smart-metering infrastructure needs to improve before price data can be completely relied 

upon. However, even if we just consider using the simpler deterministic optimal strategy 

with DAP, there is a $100 advantage. The SDPM strategy achieves 93.36% of the causal limit 

when using DAP and RTP, and is a fairly computationally simple. The more computationally 

complex solutions offer only a 6.64% improvement beyond SDPM.  Therefore, the SDPM 

strategy is the recommended solution, which can easily be implemented on a simple 

embedded device in the charger or on-board on the control unit of the EV itself (as long as 

a data connection exists and the electricity providers can provide the data that is required). 

The return of the investment of this solution is expected within a few years for new 

hardware, and much less for a pure software change. Both are short compared to the 

lifetime of the vehicle and charger. 
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Abbreviations 

BEV Battery electric vehicle 

EV Electric vehicle 

DAP Day-ahead pricing 

RTP Real-time price 

HEV hybrid electric vehicle 

ICE internal combustion engine 

MPC model (based) predictive control 

PHEV plugin-in hybrid electric vehicle 

SOC (battery) state of charge 

SD standard deviation 

V2G vehicle to grid 

DP Dynamic programming 

SDPM Stochastic dynamic programming 

ToC Time of charge (required time) 

SoC State of charge (required) 

TOUT Time of use Tariff 

EU European Union 

US DoE United States Department of Energy 

AMI Advanced metering infrastructure 
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List of Symbols and Notations 

𝒙𝟏  Battery SoC (state) 

𝒙𝟐  Grid Cost (state) 

𝒘   Known cost prediction (DAP) 

𝒘′   Threshold Price 

𝒖   Input (charge power) 

𝒖′   Threshold charge power 

𝒖𝒎𝒂𝒙  Maximum available Charge Power 

𝒅   Random disturbance (stochastic variable) 

𝒄    Cost 

𝒄𝟎  Initial Cost 

𝜶   Decay constant (grid price decay) 

𝒌  Current Time-Step 

𝑵  Final Time-Step 

𝑬  Expected Cost 

𝒙𝟏𝟎  Initial SoC 

𝒙𝟏𝑵  Required SoC 

𝜷  Disturbance Scaling Factor 

𝑻  Time Period (assumed 1 unit) 

𝑻𝒔  Step-size 
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