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A resonant wave-particle interaction, in particular a nonlinear resonance characterized by particle
phase trapping, is an important process determining charged particle energization in many space
and laboratory plasma systems. Although an individual charged particle motion in the nonlinear
resonance is well described theoretically, the kinetic equation modeling the long-term evolution of the
resonant particle ensemble has been developed only recently. This study is devoted to generalization
of this equation for systems with localized wave packets propagating with the wave group velocity
different from the wave phase velocity. We limit our consideration to the Landau resonance of
electrons and waves propagating in an inhomogeneous magnetic field. Electrons resonate with the
wave field-aligned electric fields associated with gradients of wave electrostatic potential or variations
of the field-aligned component of the wave vector potential. We demonstrate how wave-packet
properties determine the efficiency of resonant particle acceleration and derive the nonlocal integral
operator acting on the resonant particle distribution. This operator describes particle distribution
variations due to interaction with one wave-packet. We solve kinetic equation with this operator for
many wave-packets and show that solutions coincide with the results of the numerical integration
of test particle trajectories. To demonstrate the range of possible applications of the proposed
approach, we consider the electron evolution induced by the Landau resonances with packets of
kinetic Alfven waves, electron acoustic waves, and very oblique whistler waves in the near-Earth
space plasma.

PACS numbers: 52.35.-g, 52.20.Dq, 96.50.Fm

I. INTRODUCTION

Rapid development of experimental techniques for
measurements of high-frequency electromagnetic fields in
space plasmas in the last two decades provides a lot of ev-
idences of large-amplitude coherent electromagnetic and
electrostatics waves in the near-Earth space. Unlike the
broad spectrum low amplitude waves occupying large co-
ordinate and time domains, these large amplitude waves
represent various solitary structures [e.g., electrostat-
ic solitons, electron holes, double layers, and Langmuir
wave-packets, see 1–8] and quite localized wave-packets
including few wave lengths [e.g., kinetic Alfven pulses,
whistler wave packets, and low-hybrid wave bursts, see
9–14]. Similar large amplitude wave bursts were repro-
duced in laboratory experiments [e.g., 15–18]. The res-
onant interaction of such waves with charged particles
is essentially nondiffusive and includes nonlinear effects
like phase trapping and phase bunching (scattering) [e.g.,
19, 20, and references therein]. Therefore, there is an
open question: how to describe the long-term evolution
of the charged particle velocity distribution in the system
with an ensemble of large amplitude localized waves?

The resonant wave-particle interaction is responsible
for many important plasma processes, and is well de-
scribed for many systems in the self-consistent frame.
However, the near-Earth plasma environment is often
characterized by two different particle populations, one
of which contributes to wave generation and another one
experiences a significant acceleration due to resonant in-

teraction with generated waves. The first population is
shaped by various external factors, quite complicate to
be accurately modeled. Thus, the convenient approach
for investigation of the resonant wave-particle interac-
tion consists in collection of statistics of spacecraft ob-
servations of wave properties and using this statistics
to derive global models calculating the particle accelera-
tion without estimates of feedback of accelerated parti-
cles on waves [e.g.,reviews 21, 22, and references therein].
Resonant particles can affect the wave significantly [e.g.,
23, 24]; however, such test particle approach sometime
represents a reasonable simplification and allows to de-
scribe many space plasma phenomena [25–28]. The basic
kinetic equation in this approach is the Fokker-Planck
diffusion equation derived within the quasi-linear theory
[29–31] and well justified for small wave amplitudes [32]
and the background magnetic field inhomogeneity [33].
The important generalization of this approach for large
amplitude waves can be performed under assumption of
a broad wave spectrum (i.e., a large wave ensemble) [e.g.,
34, 35], for which the effects of nonlinear trapping and
phase bunching are essentially reduced to particle diffu-
sion due to nonlinear resonance destruction. For systems
with well separated in space and time large amplitude
wave packets the nonlinear trapping and phase bunching
result in significantly nondiffusive evolution of resonant
particle ensemble. Therefore, the inclusion of large am-
plitude waves into diffusion approach should consist in
development of additional operators acting on distribu-
tion function and describing nonlinear resonant interac-



2

tion.

Unlike the diffusion by small amplitude waves, the non-
linear resonant interaction can result in significant change
of charged particle characteristics (e.g., energy) within a
single resonance. This is effect of phase trapping, when
wave intensity is sufficiently high to trap particles and
transport them at long distances in the phase space.
Such trappings cannot be described by differential op-
erators (due to large change of particle characteristics),
and nonlocal integral operators should be used. In case
of periodic harmonic waves, such operators can be de-
rived using the Hamiltonian theory of the resonant in-
teraction [36] or numerically [37, 38]. The corresponding
kinetic equation describes particle rapid transport in the
phase space (driven by trapping) and drift (driven by
scattering). The competition of these processes results
in evolution of the particle velocity distribution [38–40].
However, many assumptions and simplifications used to
derive this generalized Fokker-Planck equation cannot be
applied for systems with non-harmonic waves, when the
efficiency of the resonant interaction depends on the po-
sition of the resonant wave within the localized wave-
packet. Previous analytical investigations of such opera-
tor derived for electrostatic [39] and electromagnetic [40]
waves were based on equations derived for infinite plane
monohromanic waves [36], and the important effect of
the wave localization (wave propagation in form of wave-
packets) was not studied theoretically.

This paper is focused on the theoretical model de-
scribing the nonlinear resonance of charged particles and
localized wave-packets. We consider a system where
Landau-resonant electrons interact with large amplitude
wave-packets propagating in an inhomogeneous magnetic
field and carrying the field-aligned electric fields. We also
consider the effect of the wave-packet evolution, when the
group velocity of the packet propagation differs from the
phase velocity of propagation of waves within this packet.
We use the equations of electron motion to describe sys-
tems with resonant electrons and electrostatic solitons
[41, 42], or localized pulses of the field-aligned electric
field carried by kinetic Alfven waves [43–45]. Moreover,
the same approach can be applied to plasma systems with
electromagnetic waves [e.g., see an example in 38, 46]. Al-
though we consider a quite general plasma system (elec-
tron resonant interaction with the intense field-aligned
electric fields propagating in the form of wave-packets),
which is similar to the problem of electron resonant accel-
eration by Langmuir waves in inertial confinement fusion
experiments [e.g., 47–49], we do not take into account
many effects (e.g., resonant particle feedback to waves)
important for accurate modeling of such systems. There-
fore, our study mostly describes a new approach for reso-
nant wave-particle consideration (with some applications
to the geophysical systems, see Discussion), but further
investigations are required to expand the approach on
the laboratory plasma systems.

Paper is organized as follows: section II describes main
system equations, section III describes the equations for

resonant interaction and explains the role of a wave-
packet evolution in the resonant particle acceleration,
section IV introduces the integral operator acting on the
particle distribution function and tests the basic prop-
erties of this operator, section V provides the solution
of the kinetic equation with the derived operator, and
section VII contains discussion of obtained results.

II. MAIN EQUATIONS

We consider Landau resonance of nonrelativistic
charged particles (mass m, charge −e) moving in the in-
homogeneous background magnetic field B with an elec-
tromagnetic wave defined by vector and scalar potentials,
Ã and ϕ̃. The wave energy is assumed to be much smaller
than the particle kinetic energy, and thus the Hamiltoni-
an takes the form

H =
1

2m

(
p +

e

c
A0

)2
+

e

mc

(
p +

e

c
A0

)
Ã− eϕ̃ (1)

where p is the generalized momentum conjugated to the
coordinate r, A0 is the vector potential corresponding
to the background magnetic field. The wave-fields, Ã
and ϕ̃, can be presented as a multiplication of periodical
functions of wave phase φ (such that ∇φ = K is the wave

vector and φ̇ = −ω is the wave frequency) and functions
smoothly depending on spatial coordinates and time. In
a sufficiently strong background magnetic field, the gy-
rorotation is the fastest type of motion. Thus, we can
introduce the magnetic moment µ (ratio of the particle
energy component transverse to the magnetic field and
magnetic field magnitude) as a new variable [see, e.g.,
50] and expand the wave fields into the series of gyrohar-
monics [see, e.g., 51, 52]:

H =
1

2m
p2‖ + µB +

∑
n

Wn

(
µ, p‖, s

)
sinφn (2)

where φ̇n = kṡ+neB/mc−ω, k is the field-aligned com-
ponent of the wave vector and field-aligned coordinate,
(s, p‖) are the field-aligned coordinate and generalized
momentum., eB/mc is the gyrofequency. In sufficiently
strong background field (i.e., sufficiently large eB/mc)
resonances with different numbers n do not overlap [see
details in, e.g., 53] and each term of the sum

∑
n can

be considered separately. The Landau resonance cor-
responds to n = 0, when φn does not depend on the
gyrophase. Therefore, µ̇ = 0 and µ is the invariant of
motion [50, 54]. For this resonance, Hamiltonian (2) can
be rewritten as

H =
1

2m
p2‖ + µB +W0

(
p‖, s

)
sinφ(s, t) (3)

where µ = const. Hamiltonian (3) describes the electron
resonant interaction with electromagnetic waves through
the Landau resonance. For purely electrostatic waves W0

does not depend on p‖ and the term W0 sinφ equals to
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the wave potential −eΦ(s, t). For electromagnetic waves,
W0 can depend on p‖ [see, e.g., 40, 51, 52]. For simplici-
ty we omit this W0 dependence in further consideration
but note that the general conclusions do not depend on
a particular form of W0. Therefore, we consider Hamil-
tonian

H0 =
1

2m
p2‖ + µB (s)− eΦ (s, t) (4)

We introduce dimensionless coordinates z = s/R, p =
p‖/
√
h0m, parameter Ω2

b = µB(0)/h, field b = B/B(0),

time t → t
√
h0/m/R, and wave potential amplitude

ε = −eΦ0/h0, where h0 is a typical particle energy, R is a
spatial scale ofB variation, and Φ = Φ0u(z)f(z, t). Func-
tion u(z) describes the distribution of the wave intensity
along magnetic field lines, and function f(z, t) defines the
shape of wave-packets. New Hamiltonian H = H0/h0
takes the form

H =
1

2
p2 + Ω2

bb (z) + εu (z) f (z, t) (5)

For Ωb → 0 (i.e., for a very weak background magnetic
field or almost field-aligned charged particles) this Hamil-
tonian system was considered in [55].

To set function f , we consider a localized wave-packet
propagating with a phase velocity vφ and a different
group velocity vg. Following [56, 57] we introduce the
effect of vφ 6= vg as a difference of velocities of wave and
envelope motions:

f (z, t) = exp
(
−qψ2

)
sin (φ)

φ = k (z − vφt) + φ0
ψ = k (z − vgt) + ψ0 = ϕ0 + φ+ Ωt

(6)

where k is a wavenumber, φ0 and ψ0 are initial phases,
Ω = k(vφ−vg)� kvφ (i.e., we consider a small difference
|vφ − vg| � vφ), and ϕ0 = ψ0 − φ0. Parameter q =
(2πN)−2 determines a number of wavelengths N within
one wave-packet. For wave characteristics we use the
same normalization as for particle coordinates, but keep
the notations: k → kR, (vφ, vg)→ (vφ, vg)/

√
h0/m.

For investigation of system (5, 6), we fix Ωb = 1,
use magnetic field model with b(z) = 1 + z2/2 + b0z

4/4
[see discussion why b0 6= 0 is needed for investigation
of nonlinear resonant interaction in 39], and consider
u = 0 for z < 0 and u = (u0(z) − u0(0))/2 for z > 0,
u0(z) = 1 + tanh((z − 1)/3). This distribution of the
wave intensity imitates the wave generation at z = 0 and
propagation along magnetic field lines. Zero u for z < 0
is taken for simplicity, i.e. particles oscillating in poten-
tial Ω2

bb(z) interact with waves only once per period of
oscillations. Wavelength is assumed to be much shorter
than R, whereas wave potential amplitude is much small-
er than the particle energy: k � 1 and ε � 1. This a
typical situation for, e.g., electrostatic and electromag-
netic waves propagating in the Earth radiation belts (see
Discussion for details).

Figure 1 shows three examples of particle trajectories
obtained from the numerical integration of Hamiltonian

equations of motion for system (5). In the absence of a
wave the particle oscillates in Ω2

bb(z) potential and it’s
z, p coordinates change periodically (see Fig. 1(a)). In
the presence of the wave, the particle can pass through
the resonance φ̇ = 0 (stationary wave point), determined
as: ż = ∂H/∂p = p = vφ. Resonance crossing results
in particle scattering (small change of the particle ener-
gy) and particle trapping characterized by a long par-
ticle motion with the wave (p = vφ, see Fig. 1(b)).
For harmonic wave with N → ∞ the resonance trap-
ping does not depend on characteristics of the initial
particle position in (z, p) trajectory. All particles with
the same energy are trapped at the same ztrap and es-
cape from the resonance at almost the same zesc (detrap-
ping). Trapped particle motion results in energy gain
∆h = Ω2

b(b(zesc) − b(ztrap)) (p = vφ does not change
in the resonance), and thus all trapped particles gain the
same energy (see Fig. 1(b)). Situation changes for a finite
wave-packet (finite N), when particles trapped into dif-
ferent waves (different wave periods within wave-packet)
gain different energy (see Fig. 1(c)). Situation even more
complicates for a wave-packet propagating with velocity
vg different from wave phase velocity vφ. In this case,
the trapped particle can travel along wave-packet and
the energy gain depends significantly on wave parame-
ters (wave phase) at the moment of trapping (see Fig.
1(d)). Taking apart the scattering process, we focus in
this paper on properties of particle trapping and depen-
dence of these properties on system parameters: N and
Ω = k(vφ − vg).

III. RESONANT TRAPPING: EFFECTS OF
WAVE-PACKET EVOLUTION

To consider effects of a finite wave-packet and Ω 6= 0
on the resonant wave-particle interaction, we follow the
standard procedure [58, 59] and investigate Hamiltonian

(5) around the resonance φ̇ = 0. First, we use the gener-
ating function W1 = k(z−vφt)Iφ+Pzz to introduce new
variable φ = k(z − vφt) and conjugated momentum Iφ.
New momentum Pz and Hamiltonian F have the form
Pz = p− kIφ and

F = −kvφIφ +
1

2
(Pz + kIφ)

2
+ Ω2

bb (z) + εu (z) f (φ, τ)

(7)
where τ = Ωt and new z coordinate equals to the old
coordinate. The resonant condition ∂F/∂Iφ = 0 written
through variables Iφ, Pz gives the equation for resonant
Iφ = IR:

IR = (vφ − Pz) /k (8)

We expand Hamiltonian F around Iφ = IR:

F = vφPz−
1

2
v2φ+

1

2
k2 (Iφ − IR)

2
+Ω2

bb (z)+εu (z) f (φ, τ)

(9)
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FIG. 1: Particle trajectories: top panels show trajectories in the (z, p) plane, and bottom panels show the evolution
of the particle energy h for one resonant interaction (we select trajectories of trapped particles). Wave

characteristics are: (a) ε = 0, (b) N →∞, Ω = 0 and ε = 0.05, (c) N = 25, Ω = 0 and ε = 0.05, (d) N = 25,

Ω/k = 0.1 and ε = 0.05. System parameters are: Ωb = 1, vφ = 0.5, k = 250, b̃0 = 2h0b0/Ω
2
b = 0.1.

Using the generating function W2 = (Iφ − IR)φ+ Pz we
introduce new variables K = Iφ − IR, P = Pz, Z = z +
φ(∂IR/∂Pz) = z − φ/k. The corresponding Hamiltonian
can be presented as

F̃ = vφP −
1

2
v2φ + Ω2

bb (Z + φ/k)

+
1

2
k2K2 + εu (Z + φ/k) f (φ, τ) (10)

Expanding over φ/k, we obtain F̃ = Λ(Z,P ) +
Hφ(K,φ,Z):

Λ = −1

2
v2φ + vφP + Ω2

bb (Z) , (11)

Hφ =
1

2
k2K2 + Ω2

b

∂b

∂Z

φ

k
+ εu (Z) f (φ, τ)

where variables (Z,P ) change slowly, and variables

(φ,K) change fast (φ̇ = k2K and k � 1). Hamiltonian
Hφ describes particle motion in the resonance, whereas
parameters of Hamiltonian Hφ depend on Z coordinate
described by Hamiltonian Λ. For fixed Z and slow time
τ (Ω� k), phase portrait of Hamiltonian Hφ is shown in
Fig. 2(a). This portrait contains many loops with closed
trajectories inside. Particles moving along these closed
trajectories are oscillating around the resonance K = 0
and move with the wave, i.e. these are trapped particles.
For Ω = 0 (τ = 0), the phase portrait varies only with Z,
i.e. varies along the resonant trajectory. This allows par-
ticles moving along open trajectories become trapped, i.e.
such particles cross the separatrix demarcating regions
with open and closed trajectories. Trapped particles

move with the wave (Ż = ∂Λ/∂P = vφ, and their energy
increases as ∼ Ω2

bb(Z)). At some Z, term ∼ ∂b/∂Z in
Hφ becomes sufficiently large to exclude all closed loops
from the phase portrait (see Fig. 2(b, c)).

Situation is more complicated when the wave-packet
evolves with time (Ω 6= 0). In this case, the phase
portrait changes both with Z and τ . Figures 2(d,e,f)
shows three states of the phase portrait with initial state
from Fig. 2(a) (when Z = Z0 and ϕ0 = 0), and
τ = ϕ0/Ω + Ω(Z − Z0)/vφ. Despite Z increases, the
areas surrounded by some closed loops are growing (due
to time evolution of the wave-packet) before eventually
decrease to zero. This effect explains why in the system
with Ω 6= 0 trapped particles can stay in the resonance
longer and gain more energy (see test trajectories in Fig.
1).

The coordinate of a particle trapping into the reso-
nance, Ztrap (note, Z for system (11) coincides with z
for system (5)) can be defined from the combination of
the resonant condition (I = IR, i.e., P = Pz = vφ)
and conservation of the total energy for Hamiltonian F
(∂F/∂t = 0): b(Ztrap) = (h − v2φ/2)/Ω2

b where h is an

initial particle energy in Hamiltonian (5). Position where
the particle escapes from the resonance, Zesc, is defined
by the simple relation: the area surrounded by the sep-
aratrix in the phase portrait shown in Fig. 2 should be
the same in the moments of trapping and escaping from
the resonance [see, e.g., 58, 59]. To define Zesc we write
the equation for area surrounded by the separatrix:

S =

∮
Kdφ =

2
√

2kεu (Z)

k3/2
(12)
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FIG. 2: Phase portraits for the system with Ω = 0 (a, b, c) and for the system with Ω = 10/250 (d, e, f). Panel (a):
Z coordinate equals to the resonant value. Panel (b): Z is larger than the resonant value, but the separatrix loop

still exists. Panel (c): Z is larger than the resonant value, and there is no separatrix loop. Panel (d): Z the same as
in panel (b). Panel (e): Z the same as in panel (c), but the separatrix loop still exists. Panel (f): Z is larger than in

panel (d), and there is no separatrix loop.

×
φ+∫
φ−

√
a (φ+ − φ) + f (φ+, τ)− f (φ, τ) dφ

where a = Ω2
b(∂b/∂Z)/(kεu(Z)), φ− is a root of equa-

tion a = −df/dφ, whereas φ+ is a root of equation
a (φ+ − φ) + f (φ+, τ) − f (φ, τ) = 0 (for a > 0 φ− is
smaller than φ+, and for a < 0 the direction of in-
tegration reverses). Area S depends both on Z and
τ . Figure 3 shows three examples of S(Z, τ). For
Ω = 0 profile S(Z, τ) does not depend on τ , whereas
for Ω 6= 0 we have 2D surface S(Z, τ). Trajectories of
trapped particles in this figure are shown by straight lines
(Z = tvφ+const = τvφ/Ω+const). For Ω = 0, the escape
coordinate Zesc (coordinate of detrapping) does not de-
pend on τ and is defined only by trapping position Ztrap,
whereas for Ω 6= 0 the position of escaping Zesc depends
on the moment when particles are trapped.

IV. OPERATOR OF NONLINEAR TRANSPORT

To characterize the energy change for particle ensemble
we consider map hfinal = hfinal(h, ϕ0) describing final
particle energy as a function of the initial energy h and
initial wave phase ϕ0. This map is constructed for a time
interval of a single resonant interaction, i.e. for one peri-
od of slow particle oscillations in the (z, p) plane. During
this interval, each particle (having some φ0) crosses the

resonant Ztrap once, and thus can interact with the wave-
packet only once (or can skip the resonant interaction if
ϕ0 corresponds to absence of the resonance). Such res-
onant interaction results in energy change h → hfinal
that depends on h and ϕ0. Figures 4(a,b,c) show hfinal
map plotting for fixed h and different ϕ0. In the system
with Ω = 0 and N → ∞, function hfinal(ϕ0) is peri-
odic with sharp maxima (hfinal > h) and wider minima
(hfinal < h). These minima are due to particle scattering
with a small energy decrease, whereas maxima are due
to trapping and acceleration. Analysis of phase portraits
and areas S shown in Figs.2, 3 provides main character-
istics of this map: ratio of scales of ϕ0 ranges related
to acceleration and deceleration (so called probability of
trapping, see [60]) and magnitude values (minimum and
maximum) of hfinal [see examples in 61–63]. Such char-
acteristics can be used to construct the operator acting
on the particle distribution Ψ(h) and describing a long-
term evolution of this distribution due to scattering and
trapping (under assumption of the uniform distribution
of ϕ0 values, see [36, 39, 40]).

Systems with a finite N (even if Ω = 0) provide sig-
nificant difficulties for construction of such operator an-
alytically. Indeed, Fig. 4(b) shows that for fixed h, map
hfinal(ϕ0) is not periodic, i.e. we still can separate each
2π-interval of ϕ0 values to two ranges with hfinal < h
and hfinal > h, but magnitudes of hfinal vary form one
2π-interval to another interval. Situation becomes even
more complicated for systems with Ω 6= 0, where map
hfinal(ϕ0) loses the symmetry relative to the center, see
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FIG. 3: Areas surrounded by the separatrix loop for (a) Ω/k = 0, (b) Ω/k = 10/250, (c) Ω/k = 5/250. Lines show
resonant trajectories.

Fig. 4(c).
The range of ϕ0 shown in Fig. 4 can be considered as

a time interval ∆ϕ0/k = vφ∆t during which the wave-
packet passes through the system, i.e. time interval
between the first resonant interaction of particles with
waves within this wave-packet and the last resonant inter-
action. This interval is longer than one period of particle
oscillations in (z, p) plane, and thus many particles ex-
perience several resonant interaction during this interval.
As a result, the construction of analytical operator acting
on distribution Ψ(h) becomes very complicated problem
requiring calculation of trapping probabilities and ampli-
tudes of acceleration/deceleration for each 2π-interval of
ϕ0 and following combination of these information.

In periodical system with N → ∞, Ω = 0 (where
one needs to define all characteristics of the resonant in-
teraction only for one 2π-period of ϕ0 values), the unit
time interval is the interval between two resonant inter-
actions, i.e. the period of oscillations in (z, p) plane. For
systems with a finite N we can consider a longer unit
time interval including the entire ϕ0 range shown in Fig.
4(b,c). Thus, we can construct probability distribution
P(hfinal, h) showing the probability for particles with
the initial energy h to have final energy within the range
[hfinal, hfinal + ∆hfinal] after the wave-packet passage
through the system.

To test this approach, we start with a simple single-
resonance operator, i.e. we consider P(hfinal, h) that de-
scribes energy change due to one resonant interaction of
particles and wave-packet (see Fig. 4). We take N →∞,
set a net in h-space, and for each initial h consider 104

particles distributed uniformly along the trajectory in
(z, p) space. Particle trajectories are integrated numer-
ically until the first resonant interaction, and then par-
ticles are distributed in the hfinal-space. Figure 5(a)
shows the final probability distribution P(hfinal, h) (note
that

∫∞
0
P(hfinal, h)dhfinal = 1). There are two dis-

0�φ

�
��
�
�	

b

b5

�53��

��5 ��� ��5 ��� ��5 �b�

0�φ
�
��
�
�	

b

�

0�φ

�
��
�
�	

b

�

FIG. 4: The final energy after a single resonant
interaction as a function of the initial wave phase : (a)
N →∞ and Ω/k = 0, (b) N = 25 and Ω/k = 0, (c)

N = 25 and Ω/k = 10/250. The initial energy equals to
one.

tinct particle populations in this distribution: decelerat-
ed (scattered) particles with hfinal < h and accelerated
(trapped) particles with hfinal > h. To check the ob-
tained distribution, we take into account properties of
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FIG. 5: Top panels show distributions P(hfinal, h) for a single resonant interaction (system contains one
wave-packet and particles are traced during a quarter of the bounce period): (a) N →∞ and Ω/k = 0, (b) N = 5

and Ω/k = 0, (c) N = 5 and Ω/k = 10/250. Black curve shows hfinal = h. Bottom panels show the integral
properties of these distributions (see Eqs. (13, 14)).

the nonlinear wave-particle interaction. We calculate the
total probability of particles with the initial energy h to
be trapped

Π(h) =

∫
h<hfinal

P(h, hfinal)dhfinal (13)

and the total energy change for scattered particles

V (h) =

∫
h>hfinal

(hfinal − h)P(h, hfinal)dhfinal (14)

Integration of P(hfinal, h) over initial energies h < hfinal
gives the total probability of particles to have ener-
gy h due to trapping, whereas integration (hfinal −
h)P(hfinal, h) over initial energies h > hfinal gives the
average particle energy change due to scattering. For
an individual resonant interaction with periodical wave,
Π and V are connected to each other by a simple rela-
tion which can be derived from the consideration of the
resonant phase fluxes [see 36, 60]: Π = −dV/dh (note
this relation connects the probability of trapping (rela-
tive number of trapped particles) and average change of
scattered particle energy; for systems with constant pe-
riod between two resonant interactions V equals (with
some constant factor) to the scattering particle drift ve-
locity [e.g., 36]). Figure 5(d) shows Π and −dV/dh cal-
culated from Eqs. (13,14) for P(hfinal, h) shown in Fig.
5(a). Numerically obtained Π and −dV/dh are very close
to each other, thus we confirm that the approach with
P(hfinal, h) construction works well.

Relation Π = −dV/dh works even for the localized
wave-packet. Figure 5(b) shows the corresponding oper-
ator P(hfinal, h) for N = 5 and Ω = 0, whereas Π and V
calculated for this probability distribution are shown in
Fig. 5(e). This distribution is calculated for a single reso-
nant interaction, but unlike the harmonic wave (N →∞,
see Figs. 5(a,d)), less particles can be efficiently acceler-
ated by a localized wave-packet, and the corresponding
probability of trapping is smaller. The evolution of wave-
packet (Ω 6= 0) makes system more complicated, and the
relation Π = −dV/dh does not work for small energies
anymore (see Figs.5(c,f)).

Probability distributions shown in Fig. 5 are plotted
for a short time interval including only one resonant inter-
action. However, we can construct a similar distribution
for the time interval sufficiently long to allow a local-
ized wave-packet pass through the system. During this
interval, some particles make several bounce rotations
(cross Ztrap several times) and can resonate with wave-
packets several times, i.e. these particle experience sever-
al h→ hfinal energy changes. We distribute 104 particles
uniformly along trajectory in (z, p) space and integrate
their trajectories numerically for time interval needed to
particle to pass φ range slightly exceeding ϕ0 range from
Fig. 4. Figure 6 shows the final probability distribu-
tions for three different systems. Similar to Fig. 5, there
are decelerated (scattered) particles with hfinal < h and
accelerated (trapped) particles with hfinal > h. Acceler-
ated particles form several local maxima of P, and each
maximum corresponds to the resonant interaction with
one particular wave from the wave-packet. Different wave
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amplitudes and different evolution of these amplitudes
due to ∼ exp(−qψ2) provide different hfinal. Unlike the
distributions constructed for a single resonant interac-
tion (see Fig. 5), distributions including several interac-
tions do not demonstrate the relation Π = −dV/dh for
the entire range of initial energies. Figures 6(d,e,f) show
that only for large initial energies we have Π = −dV/dh,
whereas for h < 0.5 the drift velocity has stronger gradi-
ents changing sign around the peak value of Π. This can
be an effect of the combination of trapping and scatter-
ing for particles contributing to V calculated using Eq.
(14).

V. KINETIC EQUATIONS

The probability distribution P(hfinal, h) shown in Fig.
6 can be used to calculate the evolution of the particle
distribution Ψ(h, t). We write the master equation [64]
describing the relation between Ψ(h, t+ ∆t) and Ψ(h, t),
where ∆t is a time interval needed for one wave packet
to pass through the system:

Ψ (h, t+ ∆t) =

∞∫
0

Ψ
(
h̃, t
)
P
(
h̃, h

)
dh̃ (15)

Figure 7 shows three examples of solutions of Eq. (15)
for P from Fig. 6. In case on non-evolving wave-packet
(Ω = 0, Fig. 7(d)), the distribution function Ψ changes
with time as follows: the high-energy part of Ψ increas-
es due to particle trapping and acceleration, for inter-
mediate energies Ψ decreases due to particle drift with
energy loss, and for very small energies Ψ increases be-
cause particles arriving to this region due to drift cannot
be trapped due to the very small wave amplitude (cor-
responding resonant z is small and u(z) tends to zero).
This evolution is determined by the wave amplitude dis-
tribution. Note also that the operator P may describe
diffusion insufficiently accurately, because energy change
due to diffusion is so small that initial and final energies
both fall into the same energy bin in the h-net. Diffusion
is playing an important role in the systems where low-
amplitude wave signals are almost continuously present.
However, it is expected to be much less important in
case of separate intense wave packets when the number
of considered resonant interactions is small.

The evolution of the wave-packet (Ω 6= 0) results in a
more complicated structure of Ψ(h, t) (compare Fig.7(d)
and Fig.7(e,f)). For moderate Ω, each wave-period with-
in the wave-packet provides acceleration of trapped par-
ticles up to some energy (see Fig. 7(c)). This results
in a quasi-periodical structure of Ψ(h) in the high ener-
gy range. The wave-packet evolution leads to variation
of wave-amplitude at the scale of a wave-period in this
packet. Thus, some waves can transport trapped parti-
cles for a longer time than other waves and provide more
effective acceleration. This effect resembles the forma-
tion of a quasi-periodical energy distribution of trapped

particles in a system where particles can spend more or
less time in the resonance with waves depending on the
initial wave phase [see 65]. The evolution at intermediate
and low energy ranges are similar for all cases shown in
Fig. 7, i.e. scattering is only weakly perturbed by the
wave-packet evolution.

To check the applicability of Eq. (15) and the accuracy
of the constructed operator ∼ P, we compare solutions
of this equation with results of numerical integration of
106 trajectories within the time interval including many
wave-packets. Figure 8 shows such a comparison for two
Ω values and two initial distributions Ψt=0. Numerical
solutions coincide well with solutions of Eq. (15), con-
firming the correctness of our approach.

VI. Ω/k DISTRIBUTION

In more realistic systems, wave-packets do not have the
same Ω/k parameter, but rather have some distribution
X(Ω/k). Therefore, to reproduce the evolution of the
charged particle distribution in such systems, we need to
construct P operators for a set of Ω/k and then average
these operators as

P =
∑
i

P ($i) X ($i), $ = Ω/k (16)

Figure 9 shows three examples of such averaged opera-
tors P. Independently of the particular profile of the X
distribution, the averaged P has the same boundaries in
the (hfinal, h) space (different X correspond to different
P values within these boundaries). These boundaries are
defined by the hfinal(h, ϕ0) function, which can be eval-
uated analytically for each Ω/k value.

To reproduce the shape of the P operator from Fig. 9,
we first find max (hfinal(h, ϕ0)) for ϕ0 covering the entire
range of the initial phases allowing the resonant interac-
tion. This procedure provides max (hfinal) as a function
of initial energy, h, and the wave-packet characteristic
Ω/k. For different Ω/k, we plot max (hfinal(h)) together
with one P operator in Fig. 10(a). Analytical boundaries
well describe the shape of P, but we also need to evaluate
P values within these boundaries. For this reason, we use
the analytical equation Π = −dV/dh with V = vφS/2π
[36, 60] (area S is given by Eq. (12)). The probability of
scattering is equal to 1−Π and corresponds to the final
energy hfinal = h + V (h) (note V < 0). We evaluate
Π, 1 − Π for each bin in the (h, hfinal) space with fixed
ϕ0 and Ω/k. Then, analytical probabilities Π(ϕ0,Ω/k)
are averaged over the uniform ϕ0 distribution. Final-
ly, we re-normalize the obtained analytical operator P
to get

∫∞
0
P (hfinal, h)dhfinal = 1 and average it over

the X(Ω/k) distribution. Figure 10(b) shows such an
analytically derived P operator for the uniform X(Ω/k).
Comparison of P from Fig. 9 and 10(b) shows that the
analytical equations reproduce the main features of the
distribution of the probability of trapping and scattering,
but, of course, can miss some details related to the fine
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FIG. 6: Top panels show distributions P(hfinal, h) for a time interval of one wave-packet passing through the system
(the system contains one wave-packet and particles are traced during the interval of packet motion between z = 0

and z = 5 where u→ 0): (a) N = 5 and Ω/k = 0, (b) N = 5 and Ω/k = 10/250, (c) N = 5 and Ω/k = 5/250. Black
curve shows hfinal = h. Bottom panels show integral properties of these distributions (see Eqs. (13, 14)). Blue
curves show derivatives of modified drift velocity Vm, which is evaluated taking into account that during several

resonant interactions some scattered particles become trapped and the final number of scattered particles (h < hinit)
is lower than expected for one resonant interaction. This reduction of particles with h < hinit corresponds to the

multiplication factor Vm = V/(1 + `) with ` = M−1
∑M
n=1 Π(M − n)/(1−MΠ) = (1/2)Π(M − 1)/(1−MΠ) where

M is the number of resonant interactions for the considered time interval (M = 5 is used to plot blue curves).

structure of the wave-particle interaction. Therefore, av-
eraging over Ω/k results in some more universal shape
of the probabilistic operator in the (hfinal, h) plane (in
comparison with P plotted for fixed Ω/k, see Figs. 6, 7),
and this averaged operator P can be fitted by analytical
equations. Neverheless, the accuracy of such an analyt-
ical description should be examined for each particular
plasma system separately.

VII. DISCUSSION AND CONCLUSIONS

Figures 6(d-f) show an interesting property of the con-
structed operator ∼ P(hfinal, h): this operator satisfies
the analytical equation Π = −dV/dh in the high energy
range, but it does not follow this relation at lower ener-
gies where dV/dh reverses. Deviations from the equation
Π = −dV/dh can be provided by two facts: the varia-
tion of the area (12) with time (equation Π = −dV/dh
was derived for S = S(h) when dS/dt = (dS/dh)(dh/dt),
see [36]), and an interference of effects of several reso-
nant interactions during the passage of one wave-packet
through the system. Indeed, Fig. 5(f) suggests that the
direct dependence of S on time can result in violation
of Π = −dV/dh, however, it does not lead to dV/dh re-
versal. Therefore, this reversal should be due to several

resonant interactions when particles expected to be scat-
tered and to lose their energy actually become trapped
and evacuated from the domain hfinal < h. Such an in-
terference effect of trapping and scattering can hardly be
included into an analytically constructed P, and the pro-
posed numerical approach for P construction represents
a reasonable compromise between fully numerical simu-
lations of the long term wave-particle interaction [e.g.,
46, 66–68] and a fully analytical analysis of the P struc-
ture [e.g., 36, 40]. Moreover, averaging the system over
a broad Ω/k distribution smooths many details of the P
operator, and the resulting averaged operator P can then
be described by the analytically derived P. Of course,
such an averaging strongly depends on the system char-
acteristics and the Ω/k distribution. Thus, the similari-
ty of the numerically and analytically derived operators
should be carefully examined for each particular plasma
system separately.

Although this study deals with field-aligned wave
fields, the resonant Hamiltonian (11) has a universal form
and can be derived for other wave modes as well [e.g.,
51, 52, 69, 70]. There are three main simplifications of
initial system (5): small difference of phase and group
wave velocities, a wave frequency constancy (for waves
with weak dispersion and small chirping), and constant
adiabatic invariant µ. If two first simplifications limit the
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evolution of particle distributions Ψ in these three systems. Grey line is for the initial distribution, dashed black line
shows Ψ after interaction with 100 packets, solid black lines are for intermediate time moments. Numerical results
are obtained in the system with periodical relaunching of wave-packets described by Eq. (6): when the peak (given
by ψ = 0) of one packet launched from z = 0 (i.e., ψ = 0 for z = 0 at the launch time) reaches z = 5 (where u→ 0),
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applicability range of the proposed approach to a par-
ticular types of wave emission, the latter simplification
is always satisfied for the Landau resonant interaction.
Therefore, the obtained effects of the wave packet evo-
lution on the particle resonant acceleration should exist
for electromagnetic (e.g., whistler) wave as well [see, e.g.,
46, 66, 67, 71–74], but the proposed approach is most ap-
propriate for description of Landau resonance with very
oblique whistler waves [e.g., 75], electron acoustic wave
[e.g., 76], very oblique magnetosonic waves [e.g., 77], and
ion acoustic waves [e.g., 78]. Moreover, using the pro-
posed approach for the construction of an integral oper-
ator ∼ P [see also 38, 79], one can in principle describe
charged particle energization in various plasma systems
(for waves with weak disoersiona nd small chipping). A
different approach can be used to evaluate the effects
of very short wave-packets representing the majority of
intense parallel-propagating whistler-mode waves in the
inner magnetosphere [80, 81], but averaged operators still
need to be determined in this case, in the same manner
as shown here. To demonstrate the applicability of the
proposed approach for description of the wave-particle
resonant interaction in space plasma, we consider three
examples related to the inner Earth magnetosphere.

A resonant wave-particle interaction, in particular a
nonlinear resonance characterized by particle phase trap-
ping, is an important process determining charged par-
ticle energization in many space and laboratory plasma
systems. Although an individual charged particle motion
in the nonlinear resonance is well described theoretical-
ly, the kinetic equation modeling the long-term evolu-
tion of the resonant particle ensemble has been developed
only recently. The present study is devoted to general-
ization of this equation for systems with localized wave
packets propagating with the wave group velocity differ-
ent from the wave phase velocity. We demonstrate how
wave-packet properties determine the efficiency of res-
onant particle acceleration and derive the nonlocal inte-
gral operator acting on the resonant particle distribution.
This operator describes particle distribution variations
due to interaction with one wave-packet. We solve ki-
netic equation with this operator for many wave-packets
and show that solutions coincide with the results of the
numerical integration of test particle trajectories. Appli-
cations of the proposed approach to description of space
plasma systems are discussed.

The Landau resonance of nonrelativistic electrons and
localized wave packets of oblique whistler waves, elec-
tron acoustic waves, and kinetic Alfven waves represent
an important example of nonrelativistic electron accel-
eration in the near-Earth plasma environment. These
three wave modes are exited at the fast plasma flows pen-
etrating the inner Earth magnetosphere [14, 82–84] and
can significantly affect the thermal electrons transported
by these flows [85–87]. Electron acoustic waves repre-
sent purely electrostatic wave mode [88]; kinetic Alfven
waves and very oblique whistler waves are electromag-
netic modes, but these waves carry a significant field-

aligned electric field that resonate with electrons (and
such resonant interaction is described by Hamiltonian
(4), see details in [44, 89]). We consider evolution of
a typical electron distribution observed within fast flows,
Ψ ∼ (1 + h/h0)−1 exp(−h/h0) with h0 ∼ 1 keV [e.g.,
76, 83], due to resonant interaction with these three wave
modes. Note, we assume (in agreement with spacecraft
observations) that during a particular time interval (e.g.,
a time interval corresponding to fast plasma flows pene-
trating the inner Earth magnetosphere) different wave
modes are generated and interact with electrons, but
these waves are well separated in space and time and
measured by spacecraft (and presumably seen by par-
ticles) as non-overlapping wave-packets (i.e., there is no
resonance overlapping, otherwise the resonant interaction
would be reduced to diffusion-like interaction [see, e.g.,
34, 35]).

There are several important wave characteristics defin-
ing such resonant interaction: wave phase velocity vφ
(we use the parameter hφ = vφme/2h0), dimensionless
wave number kR = ωR/vφ, number of wavelengths, N,
within the wave-packet, typical amplitude of the wave
field-aligned electric field E0 (we use the dimensionless
parameter ε = −eΦ0/h0 = (eRE0/h0)/kR). Table I pro-
vides estimates of these parameters for wave modes ob-
served by spacecraft in the inner Earth magnetopshere.
Using these estimates, we construct three operators P
with X = δ(Ω/k) for electron acoustic waves (these waves
have almost linear dispersion), and uniform X for kinetic
Alfven waves and oblique whistler waves. Figure 11(a)
shows these three operators for electrons with interme-
diate pitch-angles (Ω2

b = 0.25). Solution of Eq. (15)
with a sum of these operators and initial distribution
Ψ ∼ (1 + h/h0)−1 exp(−h/h0) (we have also added a
cold, of temperature

∑
h0/25, background always ob-

served in the near-Earth plasma) is shown in Fig. 11(b).
One can see three main effects of wave-particle resonant
interaction. First, all three wave modes contribute to
production of the high-energy population seen as a tail
of the distribution (h > 1 keV). Such accelerated popu-
lation is often measured by spacecraft around the plasma
flows. Second, the competition of particle scattering and
trapping (by electron acoustic waves and oblique whistler
waves) results in formation of plateau around ∼ 0.5 keV
(energy range with very weak phase space density gradi-
ent). Such plateaus were observed around plasma flows
and believed to be responsible for significant reduction
of the Landau damping of electrostatic waves [e.g., 90].
Third, kinetic Alfven waves accelerate low-energy par-
ticles and enhance the population of ∼ 100 − 300 eV
electrons. Such enhancements were found before in self-
consistent models of kinetic Alfven waves [45, 87]. There-
fore, our simulation demonstrates that the proposed ap-
proach can be applied for description of realistic space
plasma systems.

In conclusion, we have demonstrated and explained the
effects of finite wave-packets and wave-packet evolution
on trapping and acceleration of charged particles. A par-
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wave vφ hφ kR N E0 ε
mode km/s mV/m

KAW 103 10−2 104 ∼ 5 10−1 10−3

EAW 104 0.3 103 ∼ 3 10 10−2

OWW 104 0.3 5 · 103 ∼ 25 1 10−3

TABLE I: Characteristics of three wave modes observed
by spacecraft in the inner magnetosphere (radial

distance from the Earth ∼ 3 · 104 km; spatial scale of
the magnetic field inhomogeneity is R ∼ 4 · 104 km)

during plasma injections. Kinetic Alfven waves (KAW)
propagate with the Alfven speed, carrying the

field-aligned electric field ∼ 0.1 mV/m, and occupy the
frequency domain below ion cyclotron frequency

[14, 82]. A typical KAW packet contains several wave
lengths [9, 45]. Electron acoustic waves (EAW)

propagate with the electron acoustic speed (defined by
ratio of characteristics of cold and hot electron

populations, see [88]), carrying very strong field-aligned
field [6, 76], and have a typical frequency (ratio of

wavelength and phase velocity) about a fraction of the
electron cyclotron frequency [84, 91]. These waves

quickly evolve into very localized wave-packets
containing few (or even a single) wave length [76, 85].

Oblique whistler waves (OWW) propagate in a form of
wave-packets containing tens of wave lengths and carry

the field-aligned electric field about 1− 10 mV/m
[13, 75].

ticle accelerates due to a trapping into the resonance and
the subsequent escape from the resonance (a detrapping),
whereas scatterings result in particle deceleration. The
wave-packet evolution alter the particle energy gain be-
tween a trapping and the following detrapping. We have
shown that effects of acceleration (due to trapping) and
deceleration (due to scattering) can be included into the
kinetic equation through an integral operator. Such an
operator has been evaluated numerically and shown to
satisfy the main property of the trapping/scattering re-
lation (Π = −dV/dh) for the simplest case of a single
resonant interaction with an non-evolving wave-packet.
Operators constructed for more complicated systems (in-
cluding many resonant interactions and wave-packet evo-
lution) do not follow the Π = −dV/dh equation over
the entire energy range of resonant particles. We have
demonstrated that solutions of the kinetic equation in-
cluding these operators describe well the evolution of the
resonant particle distribution.
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