
Accepted Manuscript

Regular paper

A Novel Compact Fractal UWB Antenna with Triple Reconfigurable Notch
Reject Bands Applications

Amir H. Nazeri, A. Falahati, R.M. Edwards

PII: S1434-8411(18)31470-5
DOI: https://doi.org/10.1016/j.aeue.2019.01.018
Reference: AEUE 52650

To appear in: International Journal of Electronics and Communi-
cations

Received Date: 4 June 2018
Accepted Date: 17 January 2019

Please cite this article as: A.H. Nazeri, A. Falahati, R.M. Edwards, A Novel Compact Fractal UWB Antenna with
Triple Reconfigurable Notch Reject Bands Applications, International Journal of Electronics and
Communications (2019), doi: https://doi.org/10.1016/j.aeue.2019.01.018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.aeue.2019.01.018
https://doi.org/10.1016/j.aeue.2019.01.018


  

A Novel Compact Fractal UWB Antenna with 
Triple Reconfigurable Notch Reject Bands 

Applications 
 
 

Amir H. Nazeri1     A. Falahati2      R.M.  Edwards3 

 

1 School of Electrical and Computer Engineering, Texas Tech University, USA 
2 School of Electrical Engineering, Iran University of Science and Technology, Tehran 

  3 Department of Electrical Engineering, Loughborough University, UK    

afalahati@iust.ac.ir 
 

Abstract: A compact, circular UWB fractal antenna with triple reconfigurable notch rejection bands is proposed. 

It rejects the crowded frequency bands WiMAX, WLAN and X band interferences produced in UWB 

communication systems. The proposed fractal structure consists of a basic circular patch with circular fractal 

iterations. By employing this new structure of fractals, the overall size of antenna is reduced 53% to 21x25 mm, in 

comparison with traditional circular monopole antenna. The implemented antenna operates at 3.1-10 GHz. Re-

configurability is realized by designing slots and split ring resonators in desired frequencies with the attached PIN 

diodes. WLAN band rejection was realized by creating a pair of optimized L-shaped slots in the ground plane. By 

etching a split ring resonator and a U-shaped slot, X and WiMAX bands were also rejected. Furthermore, by 

attaching diodes to aforementioned slots and designating the diodes on/off, different bands can be included or 

rejected. In time domain, the antenna properties are evaluated by a figure of merit called fidelity factor. Finally, the 

antenna properties are measured in anechoic chamber and the results agrees with simulation findings. 

 

1. Introduction  

 

The allocation of 3.1 to 10.6 GHz band by FCC as Ultra-Wide Band (UWB) application is now well established for 

both UWB systems and antenna designers. Studying some antenna designers attempts [1,2], by designing different 

slots such as T and L slots as well as tuning stubs, the 80% band width is achieved with a less-than-satisfactory 

gain. In [3], electromagnetic band gap structures (EBG) and defected ground are used to attain a wide band 

scenario. Another method studied in [4], employs multilayer structures and places gaps between patch and ground 

plane to provide a 66% bandwidth with average gain of 3dB. It must be emphasized that, most of the considered 

methods have limitations in fabrication and antenna specs enhancement. Another possible method for designing an 

UWB antenna is the use of fractal structures. Fractal structures are usually utilized because of their suitable 

radiation patterns and UWB bandwidth, which are a result of fractals self-similarity and space-filling properties [5, 

6]. Fractal antennas have compact sizes, impedance compatibility, high directivity, and can be designed for 
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multiband and broadband applications. Some of the most popular fractal geometries are Minknowski fractals, 

Serpienski fractals, recursive trees, Hilbert curves, and Koch structures [7, 8]. Within such a wide band that UWB 

is situated, many different systems with their appropriate bands exist that could well produce frequency 

interferences. The three major narrow band systems, Worldwide Interoperability for Microwave Access (WiMAX) 

in 3.3–3.8GHz band, Wireless Local Area Network (WLAN) in 5.15–5.85GHz band, and X-band (military satellite 

communication) in 8–10GHz band, not mentioning many different RFID bands that could exist within UWB bands 

regions can cause interference over UWB antennas. To overcome such interferences, UWB antennas with notches 

in the mentioned frequencies are required. In [9-19], several UWB antennas with notch band characteristics are 

presented that employs EBG and defected structures for rejecting application. Moreover, as WLAN is more prone 

to interference in comparison with WiMAX and X-band, so single-band/dual-band selectivity for WiMAX and X-

band can be very useful [20-23]. Indeed, employment of antennas with configurable notch band selectivity can be 

desirable. But this method makes antenna bigger in size and more complex in design. In [24] unwanted band is 

rejected by placing a T-type slot on the patch microstrip. In [25], a pair of parasitic strips are placed beside the feed 

line to reject WLAN band. Other means of unwanted frequency band rejection, studied in the literature, include 

placing half wavelength and quarter wavelength resonators as well as cutting away H-shaped slots from the 

radiating patch [26, 27]. In [28], a desired band-notch antenna is achieved by etching a narrowband dual resonance 

fractal binary tree into the radiating element of UWB antenna. In this paper, a new UWB circular fractal 

reconfigurable antenna with band rejection capability is proposed. Two L-shaped slots are used besides feed line to 

reject WLAN band. For WiMAX and X band rejections, a simple U-shaped slot and a C-shaped split ring resonator 

are employed, respectively. In order to enable reject band selectivity, PIN diodes are embedded in the middle of the 

defined slots appropriately, so that by switching diodes, unwanted frequency bands can be filtered out. The 

switches cause changes in the current path and antenna electrical length. In fact, by placing switches on the slots, 

the electrical length and antenna notch frequencies can be altered [29, 30]. In 3GHz and higher bands, the antenna 

simulated and measured S11 is below -10dB. The substrate is FR-4 with        and loss tangent of 0.025. The 

antenna dimensions are 21x25mm2. Design and fabrication of this fractal antenna is much simpler and cheaper in 

comparison with many other fractal counterparts. 

 

2   Antenna design procedure 

2.1   Design of Fractal Circular Patch Antenna (FCPA)  

 

In this section, a new Fractal Circular Patch Antenna (FCPA) design process is explained in details. The original 

antenna is a circular patch set by smaller circular patches (CPs) with fixed distances from center point of the 

original CP. In figure 1, the constitutive parameters of fractal antenna is demonstrated. r1 represents basic patch 

radii and r2, r3,… are the radius of other iterations. The an acts as sequential coefficients between sequential rn 
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  . This figure also shows that, in each iteration two new CP enter the antenna design process. The 



  

angle between two adjacent CP at the center from previous iteration CP is shown by 
n . Another factor that makes 

crucial effect on antenna size and operation is
nD . This is formulated as: 
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In fact, 
n

D stands for how much overlapping two sequential CPs may have.  

 

Fig. 1 The general sketch of FCPA with the antenna depiction at second iterations. 

 

By changing any parameters, the antenna size and bandwidth will alter. Thus, the best results must be chosen, i.e., 

high bandwidth and minimum size. This could be achieved by various optimization methods. In this paper the 

FCPA is fulfilled at second iterations. 

 

2.1.1   A practical problem 

In figure 2,    and    are the substrate length and width at 21mm and 25 mm, respectively.    is the distance 

between antenna and ground plane.          that denotes the feed line width.    and the distance between 

feed line and ground plane are chosen such that the feed line is matched with 50Ω impedance. The substrate which 

is used in simulations is FR-4 with        and loss tangent of 0.025 To define the constitutive parameters
na ,

nr ,

n  and
nD  of the proposed FCPA (Fig. 1), by which the antenna operates in desired bandwidth of 3-12 GHz, a 

genetic optimization algorithm is employed. To make the optimization algorithm faster and easier, it is assumed 

that the parameters value of D1 and D2 are the same and
1 2n    . And after optimization process, the following 

parameter are found as;   r1=6.6mm, a2=0.8, a3=0.6, D1=0.6, D2=0.6, 
n =65º.  

The result of analysis of    parameter is shown in figure 2. To find the efficiency of this method, the FCPA is 

compared with simple CP. The relation between dimensions and resonant frequency in circular patch antenna at 

initial stage are as reference [31]. According to [31], the radius of a simple circular patch for resonating at 3GHz is 



  

14mm and by simulation, the overall size of 30x36 for simple CP. Considering same bandwidth for FCPA and 

simple CP by applying the proposed fractal, the miniaturization of %53 is achieved as shown by figure 3. In figure 

5, the original antenna and iterations one and two are shown. All the three antenna dimensions are considered the 

same, i.e., taking into account fractal iterations effect. The radius of the initial antenna (Fig. 5(a)) is 9mm, and the 

radius of basic antenna in first and second iterations (Fig. 5(b) - Fig. 5(c)) are 8mm and 6.6 mm respectively. The 

results of the return loss for different antenna iterations can be observed in figure 6. 

 

Fig. 2   Proposed FCPA configuration with hs parameter demonstration, VSWR optimization in terms of    = 0.2 , 0.4 , 0.6 

As demonstrated in figure 2, changes in    (the distance between patch and ground plane), have considerable effect 

on impedance matching and return loss.  

 

Fig. 3  Comparison between return loss of  (a)-Traditional circular patch(CP), (b)- Second iteration of the proposed fractal antenna 



   

Fig. 4   (a) Geometry of the simple traditional CP. (b) Iteration-1 of the fractals. (c) Iteration-2 of the fractals, shown in figure  

 

 The fractal 

shaped boundary increases the electrical length and thereby magnetic current path of antenna. 

 

2.2   Notch Band Rejection Implementation   

By etching two modified L-shaped slots beside the feed line, a notch in WLAN frequency band is implemented. 

Also, by designing of a C-type slot and a split ring resonator, WiMAX and X bands are rejected too. Approximate 

length of each slot is calculated by: 
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where L, c, and      denote slot length, speed of light in free space, and effective dielectric constant, respectively 

[32]. Because of the approximations involved in (2) and variations in conditions of the environment, in general, 

total band rejection is not achieved. To overcome this problem, an optimization algorithm to calculate appropriate 

slot length is proposed. Flowchart of the algorithm is shown in figure 7.The embedded slots over the FCPA is 

shown in figure 8. 



  

 

Fig.5   Flowchart for the optimized design algorithm 

The parameters given in figure 5 are as follows: 
                

               
                

 

Fig. 6 The embedded slots shape to reject the mentioned bands 



  

So, the purposes of the slots in figure 6 are slot one to reject the WiMAX band and slots 2 and 3 to reject X-band 

and WLAN, respectively. Considering (2) and figure 6, the slot sizes can be calculated as, 

                       

                       

                        

                                             

As shown in figure 7, by attaching two PIN diodes on slot 1 and slot 2, they become reconfigurable. So, by 

biasing the diodes and switching them on or off, each band can be rejected at will. For this purpose, two 

Infineon BAR50-02v PIN diodes were chosen. Some experimental researches [33-36] are carried out employed PIN 

diodes as means of antenna reconfiguration that present technical biasing tips. In the biasing circuit, a 100pF 

capacitor is used to isolate DC and RF signals. Diodes are biased with a DC power supply (VCC) to a common 

node of the each capacitor and diode. A series inductor-resistor with values of 3nH and 50Ω is used in DC supply 

path in order to prevent RF signal from damaging DC supply.  

 

 
Fig. 7 Geometry parameter of the proposed reconfigurable fractal UWB antenna with PIN diode configuration and Fabricated antenna 

with DC biased diodes 

 

3 Simulation Results 

3.1   Antenna Reconfigurability 

In figure 8, simulation and measurement results for S11 parameter of the reconfigurable circular fractal patch 

antenna is shown. Diodes D1 and D2 are placed on U-slots, so that by switching them on and off, WiMAX and X 

bands can be reconfigurably rejected. Measurement is performed using Agilent E5071C Vector Network Analyzer. 



  

It is observed that, good agreement exists between measurement and simulation results. VSWR graph shown in 

figure 8 for different band rejection configurations are described by 4 states as below: 

(a)- state1, when both diodes are off, UWB antenna with triple notch band rejection is achieved.  

(b)- state2, when Diode1 is switched off and Diode2 is switched on, the antenna rejects WiMAX and WLAN bands. 

(c)- state3, when Diode1 is switched on and Diode2 is switched off, the antenna acts as a UWB antenna with 

WLAN and X-band rejection.  

(d)- state4, when both diodes are switched on, antenna radiates in all UWB frequency range, except WLAN band. 

As demonstrated in figure 8, changes in switching state of the diodes provides reconfigurable notch band rejection. 

 

(a) 

 

(b) 

 

(c) 



  

 

(d) 

Fig 8. Simulation and measurement results for S11 

 

In figure 9, surface current density distribution in reject-band frequencies can be observed. In notch band 

frequencies, most of the current flows through edges of the slots which causes low gain and low radiation. 

 

  
(a) (b) 

 
(c) 

Fig.9   Surface current density distribution for (a). 3.6GHz (b). 5.6GHz (c) 9GHz 

 

The current flow, around the slot reveals that the direction of current in either edges of the slots are opposite each 

other. This creates destructive interference and makes the antenna non-radiating at 3.6GHz, 5.6GHz and 9GHz. 



  

3.2   Radiation Performance 

Measured and simulated radiation patterns of the proposed antenna in E-plane (yz-plane) and H-plane (xz-plane) at 

resonant frequency is depicted in figure 10. The measurements are carried out at the state1. 

 
(a) 

 
(b) 

 
(c) 

Fig.10   Measured and simulated E-plane and H-plane radiation patterns of the proposed antenna at resonant frequencies of  (a) 4.3 
GHz, (b) 6.7 GHz, and (c) 10 GHz 
 

In figure 11, measured gain value of the proposed antenna in different frequency ranges is demonstrated. It can be 

seen that, the measured gain in notch frequencies is decreased to its lowest level. Also the results of antenna 

efficiency is depicted in figure 12. 

 



  

 
Fig.11    Measured  gain value of the proposed UWB reconfigurable fractal antenna 

 
Fig.12    Radiation Efficiency proposed UWB reconfigurable fractal antenna 

The proposed FCPA is presented in table 1 in comparison with some of the already published identical antennas. 

Table 1. Comparison of the proposed FCPA with other recent UWB antennas 

Ref BW Size(mm) Notches Switching 

capability 

[37] UWB 34x35.9 2 yes 

[38] UWB 24x32 2 no 

[39] UWB 35x35 3 no 

[40] UWB 30x35 3 no 

[21] UWB 25x28 1 no 

[41] UWB 27x30.5 3 no 

[42] UWB 27x32 2 yes 

[43] UWB 26.8x38.7 3 yes 

[44] UWB 26x30 3 no 

[45] UWB 27x36 4 no 

[46] UWB 25x25 0 no 

[47] UWB 50x50 3 no 

[18] UWB 32x24 1 no 

[13] UWB 32x24 2 no 

[17] UWB 30x32 3 yes 

Proposed 

antenna 
UWB 21x25 3 yes 

 

3.4   Time-domain Analysis 

It is vital to analyze the UWB structures in time-domain. Signals transmitted by UWB structures are prone to 

amplitude, and phase distortion. In order to investigate this problem, the structure group delay must be calculated. If 

the group delay is less than or equal to 1ns, distortion caused by the system is negligible. In other words, 



  

transmitted and received signal must be almost the same. Hence, correlation between transmitted and received 

signal is expressed as fidelity factor which is given by: 

        
             

                 
   (4) 

 

Where  ,     and      represent delay, source pulse, and received pulse, respectively. When correlation of two 

signals is 1, the signals are basically the same and have no distortion. In order to investigate group delay in 

simulation, Gaussian modulated pulse with 3-12 GHz spectrum by CST software package is chosen, which fulfills 

the FCC indoor and outdoor power mask criteria. A virtual probe in antenna far field is employed, situated 70 cm 

away from the antenna, with angles of 0, 45 and -45 degrees. For appropriate matching of the radiated pulse and the 

source pulse, fidelity factor must be above 0.71. [48, 49] 

 

 

Fig.12   Normalized source and received signal at plane z-y  (         ). The investigation is carried out for state1 

 

Table 2.  Calculated fidelity factor for six different situations 

 

 

 

 

As shown in table 2, it can be observed that, present antenna causes little distortion and fulfills the requirements in 

time domain, as well as the frequency domain. 

4. Conclusions 

A compact UWB fractal antenna with triple reconfigurable notch rejection bands is implemented, to reject the 

crowded frequency bands WiMAX, WLAN and X band interferences produced in UWB communication systems. 

The proposed structure consists of a basic antenna with 2 circular fractal iterations. By employing this new structure 

Fidelity 

Factor 

Probe Positions 

z-y  plane 

Fidelity 

Factor 

Probe Positions 

x-z plane 

0.721            0.745            

0.805           0.832           

0.796           0.792           



  

of fractal, the overall size of antenna is reduced %53, to 21x25. This antenna size is smaller than many available 

UWB antennas and has a suitable gain too. The designed antenna is also investigated in time domain to prove the 

employment of the antenna for UWB applications. 
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