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Abstract

Temporal-envelope cues are essential for successful speech perception. We asked here

whether training on stimuli containing temporal-envelope cues without speech content can

improve the perception of spectrally-degraded (vocoded) speech in which the temporal-

envelope (but not the temporal fine structure) is mainly preserved. Two groups of listeners

were trained on different amplitude-modulation (AM) based tasks, either AM detection or

AM-rate discrimination (21 blocks of 60 trials during two days, 1260 trials; frequency range:

4Hz, 8Hz, and 16Hz), while an additional control group did not undertake any training. Con-

sonant identification in vocoded vowel-consonant-vowel stimuli was tested before and after

training on the AM tasks (or at an equivalent time interval for the control group). Following

training, only the trained groups showed a significant improvement in the perception of

vocoded speech, but the improvement did not significantly differ from that observed for con-

trols. Thus, we do not find convincing evidence that this amount of training with temporal-

envelope cues without speech content provide significant benefit for vocoded speech intelli-

gibility. Alternative training regimens using vocoded speech along the linguistic hierarchy

should be explored.

Introduction

Temporal-envelope information is crucial for speech perception [1–10]. For instance, tempo-

ral-envelope (TE) information but not temporal fine structure (TFS) is preserved when hear-

ing is restored through cochlear implants, and listeners can learn to use the impoverished
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signal produced by the cochlear-implant processor to extract speech information. The degree

to which listeners are able to process the TE cues available in speech plays an important role in

determining speech-perception outcomes. Cochlear-implant patients who are better at detect-

ing TE modulations tend to be better at speech perception in quiet [11, 12], and specifically, at

phoneme identification [13–16]. Likewise, Erb et al. [17, 18] found that listeners who were bet-

ter at discriminating amplitude-modulation (AM) rates were quicker to improve in their per-

ception of vocoded speech (see also [19]), which is often used to simulate the signal as heard

through a cochlear implant. In vocoded speech, temporal envelopes are extracted from broad

frequency regions, and used to modulate tone or band-limited noise carriers. This manipula-

tion removes the original TFS whilst preserving lower-frequency TE modulations. Thus, learn-

ing of vocoded speech has important implications for a range of contexts where the auditory

signal is degraded, such as in the case of hearing impairment.

Intelligibility of vocoded speech for listeners with normal hearing depends on several fac-

tors, but most importantly the number of frequency bands used for vocoding [20, 21]. When

many frequency bands are used, intelligibility of noise- and tone-vocoded speech remains

high, but exponentially degrades as the number of channels decreases [6, 7, 21, 22]. However,

although vocoded speech represented by few channels (i.e.,� 6) is initially unintelligible for

naïve listeners, it can become intelligible with training or repeated exposure [7, 23]. Perceptual

learning of vocoded speech has also been shown to generalize to untrained sentences, words

and nonwords [23–25]. For instance, Hervais-Adelman and colleagues trained participants in

noise-vocoded word recognition [24] and sentence recognition [25], and showed generaliza-

tion of learning to untrained words and nonwords [24] and to sentences in an untrained fre-

quency region [25]. More recently, McGettigan et al [22] demonstrated a significant predictive

role for low level acoustic-phonetic features in recognizing vocoded speech across the linguis-

tic hierarchy, from phonemes to sentences. Listeners’ performance on a noise-vocoded conso-

nant recognition task (consonants embedded in vowel-consonant-vowel contexts) was the

best tested predictor of performance in other vocoded linguistic tasks (e.g., word and sentence

recognition). These findings are in line with the results obtained using tone- and noise-

vocoded speech stimuli by Loebach et al. [26–28], who postulated that training in low-level

acoustic-phonetic listening offers the most promising route for adaptation to distorted

speech. Thus, even though training on different linguistic levels leads to improved vocoded-

speech perception, training on bottom-up processes related to TE cues available in vocoded

speech seems a good candidate to promote transfer of learning to higher-level linguistic

representations.

Perceptual learning of TE information without speech content (e.g., tones) has been

observed after only two days of training [29]. Generalization to untrained stimuli has already

been observed across different modulation rates and, to some extent, across carriers (see [29–

32]). However, generalization across tasks with similar stimulus features (e.g., discrimination

of a change in rate versus detection of a modulated carrier) has been observed only for some

tasks (see [29, 30]). Similarly, vocoded speech recognition learning has been shown to general-

ize across different frequency regions but only across some carrier types [25]. Learning and

generalization of TE perception with and without speech content has been observed after brief

periods of training and several studies have shown a tight relationship between participants’

ability to detect TE information and speech perception (see [11–19]). However, the generaliza-

tion of training to higher linguistic levels using TE cues in low-level tasks has not previously

been studied.

One of the pioneer investigations exploring the relationship between training on low-level

tasks and performance on different language outcomes was the study by Merzenich and col-

leagues [33]. They showed that children with language-based learning impairment (LLI)
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improved in their ability to recognize phonetic elements within words after training on tempo-

ral processing information of speech and non-speech materials. They also showed that the

intensity of training required was directly related to participants’ performance on language

outcomes (Token Test for Children, Teaching Resources Corporation, Boston, MA, 1978),

suggesting a link between perceptual temporal processing and language comprehension.

Given the importance of TE cues to both aided and unaided speech perception, we asked

here whether (1) listeners’ ability to perceive these envelope cues in non-speech stimuli is

related to initial learning of vocoded speech, and (2) training on these cues can transfer to

improved perception of spectrally degraded speech. To investigate this, we trained listeners on

either detection of TE modulation (sinusoidal AM) or the discrimination of the AM rates, and

tested for improvement in perception of vocoded vowel-consonant-vowel (VCV) ‘nonsense’

syllables. These sub-lexical stimuli were chosen to minimize the influence of higher-level lin-

guistic structure (e.g., semantic or syntactic) on learning effects. We predicted that (1) listen-

ers’ performance on AM tasks prior to training will be correlated with their ability to quickly

adapt to vocoded VCV segments on initial exposure (pre-training), and (2) training on TE

cues without speech content would improve vocoded consonant identification when com-

pared to untrained, control listeners.

Methods

Ethics statement

The research protocol was approved by the Nottingham University Hospitals NHS Trust

Research Ethics Committee. Written informed consent was obtained from all participants

prior to the first experimental session, and they were paid an inconvenience allowance for

their participation.

Participants

Fifty-four native English speakers (27 females) aged 18–40 years (mean = 22.9, standard devia-

tion, SD = 5.9) were recruited via posters from the University of Nottingham student popula-

tion and the general public. No participants reported any history of language disorders or

hearing impairment. Screening confirmed that bilateral audiometric pure-tone thresholds

were� 20 dB Hearing Level at octave frequencies across 0.25–4 kHz in both ears. No partici-

pants had prior experience of psychoacoustic testing or vocoded speech.

Equipment

Testing took place within a double-walled sound-attenuating booth. Tasks were based on cus-

tom software written in MATLAB Release R2007a (The MathWorks Inc., Natick, Massachu-

setts). Stimuli were presented diotically at 70 dB sound pressure level (SPL) using Sennheiser

HD-25-I headphones. Participants responded to vocoded speech recognition tasks via a

touchscreen LCD computer monitor placed in front of them at a comfortable distance.

Responses to psychophysical tasks were recorded via a custom-made button box placed hori-

zontally in front of the listeners.

General protocol

The study was conducted over four consecutive days and the protocol consisted of a pre-train-

ing phase, a pre-test, a training phase, and a post-test (Fig 1). During pre-training, all partici-

pants performed two blocks of a tone-vocoded speech recognition task (see below) with

feedback. This pre-training phase was included, as previous work has shown that rapid
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learning occurs when listeners are first exposed to vocoded speech [19, 23, 24], which could

mask experimental effects arising from AM-based training. We anticipated that after the learn-

ing occurring in this pre-training phase, listeners’ speech identification scores would plateau

to a more stable level. The resulting performance scores were used to assign each listener to

one of the three experimental groups (N = 18 each) ensuring balanced initial vocoded-speech

recognition performances across groups. All groups took part in the pre- and post-tests during

which they were tested on vocoded consonant identification, AM-detection (AMD), AM-

rate discrimination (AMRD), and frequency discrimination (FD) tasks. The latter task was

included to test the degree of specificity of AM-specific learning. Between pre-test and post-

test, one group completed two training sessions on an AMD task (‘AMD-trained’) and a sec-

ond group trained on the AMRD task (‘AMR-trained’), administered on two consecutive days.

The remaining group acted as untrained controls and completed only the pre-test and post-

test.

Since previous studies have shown a relationship between listeners’ memory span and per-

formance on AM tasks, as well as the perception of vocoded speech (e.g., [17, 34]), all partici-

pants were also administered two measures of memory span (i.e., the Forward Digit Span and

Backward Digit Span subtests of the Wechsler Abbreviated Scales of Intelligence [35]).

Pre-training phase

Vocoded consonant identification (with feedback). All participants undertook pre-

training on the vocoded consonant identification task. This phase allowed us to match the

groups on initial average speech identification performance by assigning participants to each

group according to their baseline performance and thus avoid bias due to poorer listeners

Fig 1. Schematic representation of the different regimens.

https://doi.org/10.1371/journal.pone.0226288.g001
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showing greater learning (as has been previously found: [36]; see also [37–39]). This was

achieved by calculating individual percentage of correct responses after the completion of the

second block of tone-vocoded VCV stimuli (i.e., pre-training2). First, each participant was ini-

tially pre-assigned to one of the groups in a counterbalance manner. Then, we calculated par-

ticipant’s percentage of accuracy on pre-training2 vocoded consonant identification task. If

the mean of the current participant was considerably lower than the individual means on each

of the three groups, then the participant was re-assigned to the group with overall higher

mean. Similarly, if the mean of the participant was considerably higher than the individual

means on each of the groups, then the participant was re-assigned to the group with lower

mean (see S1 Table for mean group percentage of accuracy in Pre-training2 alongside SD and

95% confidence intervals). If the mean of the participant was within the mean range of the

groups, participant was kept in the pre-assigned group.

Participants completed two blocks of 60 tone-vocoded VCV stimuli separated by a 10-min

break. In each trial listeners were asked to identify the consonant in a 20-alternative, forced-

choice procedure. The 20 possible consonants (see below) were represented orthographically

on a touch-screen and participants were instructed to select the response alternative corre-

sponding to the consonant they heard. There was no time limit for entering the responses and

participants were encouraged to guess if they could not identify the consonant. After each

response, auditory and visual feedback were given in the form of the clear unprocessed version

of the stimulus, followed by a repeat presentation of the vocoded VCV and the correct conso-

nant highlighted in green on the screen. The presentation of the stimuli was fully randomized

for each participant and block. To familiarize participants with the task, five practice trials

were presented before the first block.

Each of the 20 consonants (/b/, /ʧ/, /d/, /f/, /g/, /ʤ/, /k/, /l/, /m/, /n/, /p/, /r/, /s/, /ʃ/, /t/, /θ/,

/v/, /w/, /j/ and /z/) was embedded in three vowel contexts (/a/, /i/ and /u/). The resulting 60

VCV stimuli were spoken by a male native British-English speaker and recorded on a digital

audio tape recorder. The recordings were digitalized with 16-bit resolution at a sampling rate

of 22.05 kHz. Each VCV stimulus was vocoded using Tiger CIS software written by Qian-Jie

Fu (www.tigerspeech.com, Version 1.05.02). Speech stimuli were divided into six contiguous

frequency bands equally spaced on the ERBN-number scale. Corner frequencies (3-dB down

from the peak of the passband) of the filters were at 100, 331, 725, 1396, 2538, 4485 and 7800

Hz with a roll-off of 24 dB per octave. The frequencies of the 6 channels were centred at

185, 491, 1007, 1881, 3375, and 5916 Hz. The slow-varying envelope within each band was

extracted by removing pitch-synchronous oscillations above 45 Hz (with a roll-off of 24 dB per

octave) and used to modulate sine waves located at the logarithmic center frequency of each

analysis band. Although classic psychophysical studies [3] suggest that AM rates up to 16 Hz

are the most important for speech intelligibility, information related to some phonetic features

of consonants can go up to 50 Hz (e.g., place of articulation), hence we included here modula-

tion rates up to 45 Hz. Pure-tone carriers were used instead of noise carrier, because the latter

contain extraneous envelope fluctuations that might interfere with amplitude modulation

applied to the signal [21, 40]. The modulated sine waves were combined to produce the final

vocoded VCV stimuli. See S1–S6 Audio Files for examples of clear and vocoded VCV stimuli.

Pre- and post-tests

Vocoded consonant identification (without feedback). The same task undertaken dur-

ing the pre-training was used for the pre- and post-tests, except that no feedback was provided

to minimize further learning during the tests. Participants performed one block (i.e., 60

VCVs) during the pre-test and the post-test.

Amplitude modulation training for vocoded speech
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AM detection (AMD). Listeners performed two blocks of 30 trials employing a three-

interval three-alternative forced-choice (3I-3AFC) oddball design with feedback. Two stan-

dard intervals contained an unmodulated carrier, and the third, randomly determined interval

(the target), contained an AM carrier. Listeners were instructed to detect the interval that was

different from the other two (see [29] for similar procedure).

AM stimuli were created by multiplying a 1-kHz pure-tone with DC-shifted sinusoids of

the required modulation rate. For the pre- and post-tests, a modulation rate of 8 Hz was used

to maximize the potential transfer of learning to vocoded consonant identification, as this cor-

responds to temporal information at the sub-syllabic level (average syllabic rate in English =

~5 Hz; [3, 41–44]). The duration of each tone was 500 ms, including 10-ms raised cosine

ramps, with an inter-stimulus interval of 750 ms. The amplitude of all AM tones was reduced

by [1 + m2/2]0.5 (where m is the modulation depth) to cancel out the increase in power result-

ing from amplitude modulation, and thus avoid participants’ decisions based on intensity cues

[45]. The starting phase of modulation was randomized in an interval-by-interval manner.

In the AMD task the modulation depth (m) was initially set to 100% (0 dB), then adaptively

adjusted by a factor of 1.58 (4 dB) according to a one-down, one-up staircase procedure. After

the first incorrect response, the factor was changed to 1.26 (2 dB) and an adaptive three-down,

one-up staircase procedure, targeting 79% correct on the psychometric function [46] was used

until the total number of trials have elapsed. Before the first block, participants underwent

practice of five trials with three trials being ‘easy’ (m = 100%), and two ‘impossible’ (m = 0%).

AM-rate discrimination (AMRD). The procedure and task for AMRD was similar to

those used for AMD. Two blocks of 30 trials were presented to each listener employing a 3I-

3AFC oddball design with feedback. The two standard intervals consisted of 1-kHz carriers

modulated at 8 Hz (m = 100%) and the target interval contained the same carrier modulated at

a higher rate. The modulation rate (fm) for the target varied adaptively (8 Hz + Δfm), starting at

Δfm = 50% of the standard rate (i.e., 4 Hz) and was reduced by a factor of 1.4, according to a

one-down, one-up staircase procedure. After the first incorrect response, the step size was

changed to
p

1.4 and a three-down, one-up staircase procedure. Five practice trials were pre-

sented before the first block to familiarize participants with the task. Three of these trials were

‘easy’ (Δfm = 50%) and two were ‘impossible’ (Δfm = 0%).

Frequency discrimination (FD). Two blocks of 30 trials were administered to every lis-

tener employing the same 3I-3AFC oddball design with feedback. The frequency of the two

standard tones was 800 Hz while the frequency of the target, randomly determined interval

contained a higher-frequency (800 Hz +Δf). Listeners were instructed to indicate the interval

that was different in pitch. Starting with Δf = 50% (i.e., 400 Hz), Δf of the subsequent trial was

divided by two until the first incorrect response. Thereafter, the step size was
p

2. Before the

first block a five-trial demonstration was administered. Three of these were ‘easy’ (Δf = 50%)

and two impossible (Δf = 0%). FD stimuli consisted of 100-ms tones (including 10-ms raised

cosine ramps) with an inter-stimulus interval of 500 ms. This task was chosen as a control

psychophysiological task in order to show the degree of specificity of the AM training regimes,

and to be able to measure any disruption of learning due to training on AMD or AMRD tasks.

Training phase

One group was trained on an AMD task (‘AMD-trained’ group) and a second group was

trained an AMRD task (‘AMR-trained’ group), using similar adaptive procedures to those

used for the test phases. Participants completed 21 blocks of 60 trials spread across two days.

Nine blocks were completed on Day 2 (immediately following the pre-test) and an additional

12 blocks were completed on Day 3. For both AM training tasks, the standard fm varied

Amplitude modulation training for vocoded speech
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pseudo-randomly between 4, 8 and 16 Hz in a block-by-block manner using a Latin square

design. These modulation frequencies were chosen because they are in the syllabic and sub-syl-

labic–the fluctuation rate at which the segments within a syllable (e.g., VC unit) occur–speech

ranges that are critical for performing the speech perception task (vocoded consonant identifi-

cation). In English the syllabic rate is around ~4 Hz [19, 41], the sub-syllabic rate can go up to

~16 Hz (e.g., sub-beat and consonants [43]), and the phoneme rate can go up to 50 Hz (see [9,

44]). The task used for training was the same than for pre- to post-tests (i.e., 3I-3AFC) as well

as the staircase procedure, stimulus duration, and inter-stimulus interval.

Statistical analysis

Analyses were conducted using the lme4 [47] package in R [48]. Continuous outcome mea-

sures were analyzed with linear mixed-effect models (lme). Significance p-values and Type III

F-statistics for main effects and interactions were calculated using Satterthwaite approxima-

tions to denominator degrees of freedom as implemented in the lmerTest package [49]. For the

analysis of binary outcomes, mixed-effects logit models were employed [50]. Type III Wald χ2-

statistics for main effects and interactions were calculated using the car package [51]. We also

provide estimates (β), standard errors, and CI (95%) in addition to inferential statistics since

binary decisions (significant, not-significant) with small samples sizes need to be considered

cautiously. It is worth noting that due to the assumption of infinite number of degrees of free-

dom associated with mixed-effects logit models, we calculated confidence level (95%) for esti-

mates resulting from binary dependent variables using the asymptotic method. This method,

however, tends to make confidence intervals slightly too narrow as well as the p-values associ-

ated with it slightly lower.

All models included group (control, AMD-trained, AMR-trained) and test (pre-test, post-

test) as fixed effects, including all main effects and their interactions. Additionally, information

transfer analyses also included type of phonetic feature (voice, manner, place) as a fixed effect,

including all main effects, 2-way and 3-way interactions. All models included maximal within-

unit random effects structure [52, 53], thus random intercepts and random slopes for all the

within-unit variables and interactions were included for participants, and items when suitable

(see S1 Appendix for further model specifications). Control group and pre-test were used as

reference levels for initial models. We also included control variables related to the task itself

as fixed effects without the interaction terms (i.e., control variable block in psychophysiological

tasks, and control continuous variable trial-order for vocoded consonant identification tasks;

see S1 Appendix).

Psychophysical data. Raw threshold data from psychophysical measures (i.e., FD, AMD

and AMRD) were log10-transformed and fitted with a psychometric function using the Psigni-

fit toolbox [54]. Tracks where the optimization procedure did not adequately fit the data (i.e.,

negative slopes or fitted threshold values outside the measure range) were discarded (3.2% of

the data; see S1 Dataset). This resulted in the exclusion of one participant from the AMRD

data analysis due to lack of adequate fitted tracks for the post-test. Additionally, listeners’

thresholds that deviated more than 2.5 interquartile-range above and below the 3rd and 1st

quartile from each group and task were considered outliers and excluded from further analysis

(1.9%). On average the number of reversals per block of 30 trials (pre- to post-test phase) in

each task was: AMD = 5.53 (SD = 1.72); AMRD = 5.11 (SD = 1.63); FD = 5.70 (SD = 2.16).

Threshold estimates for the two consecutive blocks of 30 trials in pre- and post-tests were

highly correlated: AMD pre-test: r = .75, p< .001, AMD post-test: r = .62, p< .001; AMRD

pre-test: r = .70, p< .001, AMRD post-test: r = .53, p< .001; FD pre-test: r = .74, p< .001, FD

post-test: r = .89, p< .001.
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The threshold estimates for each task were analyzed using a group (Control, AMD-trained,

and AMR-trained) × test (pre-test and post-test) mixed-effects model. Since all participants

conducted two blocks of each task in the pre- and post-test sessions, this factor (i.e., block) was

included as a control variable in the fixed-effect structure of the model [see 52].

Vocoded consonant identification. Mean percent correct score on the consonant iden-

tification task during the pre-training phase was used to assign each participant to one of

the three experimental groups, ensuring balanced average initial identification performance

for vocoded consonants (Control: 55.1%, SD = 49.8, confidence interval (CI; 95%) =

23.41–69.51; AMD-trained: 58.9%, SD = 49.2, CI (95%) = 22.0–70.9; AMR-trained: 63.3%,

SD = 48.2, CI (95%) = 22.7–70.2; see S1 Table). There were no reliable statistical differences

across groups in this task at this stage (χ2 (2) = 1.93, p = .38). It is worth noting that pre-test

intercepts were not statistically different between trained groups and the control group

(AMD-trained vs control: Estimate intercept difference = .30, SE = .32, z = .94, p = .35;

AMR-trained vs control: Estimate intercept difference = .49, SE = .32, z = 1.52, p = .13 (see

S1 Appendix—Table N), nor the descriptive statistics for pre-training scores showed notice-

able differences given our sample size (Control: 56.0%, SD = 49.7, CI (95%) = 14.5–59.0;

AMD-trained: 60.8%, SD = 48.8, CI (95%) = 13.1–60.4; AMR-trained: 63.0%, SD = 48.3, CI

(95%) = 13.8–59.7 (see S1 Table).

For pre- to post-test analysis, listeners’ percent correct responses that deviated more than

2.5 interquartile range above the 3rd and below the 1st quartile of the group were considered

outliers and discarded (3.7%). Due to an experimenter error one participant performed the

consonant identification task with feedback in the post-test, and therefore was excluded from

further analyses (see S2 Dataset for raw data). The remaining data were analyzed using a 3

(group) × 2 (test) mixed-effects model, checking for significant improvement for AM-trained

groups compared to controls. We included trial order in the vocoded consonant identification

task as a control predictor in the fixed structure of the model [see 52]. This allowed us to

take into consideration the spontaneous learning on vocoded speech that occurs during the

session.

Information transfer analyses (IT). Information-transfer (IT) analysis [55] was con-

ducted to investigate whether training on TE cues improved vocoded speech perception of

phonetic features that are specially conveyed by TE information (i.e., manner and voice)

[22, 56–58]. IT analysis provides the percentage of bits of information received by the lis-

tener. Through the use of confusions (such as /p/ being mistaken for /t/, where the type of

voicing and manner have been correctly transmitted but not the place of articulation), we

can estimate the extent to which different phonetic features are accurately transmitted to

the listener. The categories for the phonetic feature of voice were voiced and voiceless. The

categories for manner were nasals, fricatives, approximants and consonants starting with a

plosive sound. For place of articulation three categories were selected: front, middle and

back (see S2 Appendix). Each phonetic feature has a different probability of being correctly

transmitted due to the different number of categories (e.g., voice has 50% of guessing cor-

rectly, whereas place of articulation has 33%) and the different probabilities within category

(e.g., from 20 consonants eight were voiceless and 12 voiced), making it difficult to estimate

what fraction of the input is correctly received by the listener. To overcome this problem,

we computed the relative IT by dividing IT values obtained from individual confusion

matrices by the input entropy (see S2 Appendix) [55, 59]. Relative IT percentages were then

analyzed exploring the interaction between phonetic feature (voice, manner and place of

articulation), group (Control, AMD-trained and AMR-trained), and test (pre- and post-

test).
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Results and discussion

Correlations between performance on AM tasks and vocoded consonant

identification

Contrary to our prediction and the findings from Erb and colleagues [17, 18], pre-training

improvement on vocoded-VCV identification was not significantly correlated with listeners’

initial performance on AMD (r = .039, t(50) = .28, p = .78) or AMRD (r = .004, t(51) = .03, p =

.98). Our data suggested that early learning of vocoded VCVs does not seem to be reliably

related to sensitivity to non-speech TE cues. It is noteworthy that differences in sample sizes

between Erb et al. [17] and the current study might contribute to discrepancies in resulting

correlations (18 participants in Erb et al. [17], 51 (AMD task) and 52 (AMRD task) in the cur-

rent study). This discrepancy with previous work might also be due to the type of speech sti-

muli used in the two studies. Erb et al. [17] used sentence stimuli, which contain more

linguistic information than our stimuli (e.g., lexical information or semantic predictability

[22–24]). Furthermore, correct word identification in sentences might also rely on other cog-

nitive processes (e.g., working memory [4, 24]) than in the current identification task (see S2

Table for correlations between vocoded speech and cognitive processing). Yet another factor

that might contribute to divergent results between the studies could be the type of vocoder.

Our study used tone-vocoded speech whilst noise-vocoded speech was used in Erb et al.

Although previous studies had found that consonant recognition in quiet using VCV stimuli is

not affected by the type of vocoder used [8, 40, 60], differences have been observed for words

and sentences in quiet [40].

Learning and transfer-of-learning on psychophysical tasks

Prior to training the groups did not differ statistically on AMD (F(2,50.1) = .63, p = .53),

AMRD (F(2,50.3 = .37, p = .69) or FD (F(2,51) = .69, p = .51), nor the summary-based statistics

showed reliable differences across groups (see S1 Fig). Learning was observed in all three psy-

chophysical tasks (Fig 2 and S1 Fig; main effect of test: AMD: F(1,50.2) = 23.3, p< .001;

AMRD: F(1,50) = 41.91, p< .001; FD: F(1,103.5) = 15.76, p< .001). However, only in the

trained tasks (AMD and AMRD) was there a modulation of learning by type of training

(group × test interaction: AMD: F(2,50.2) = 3.18, p = .050; AMRD: F(2,50) = 4.21, p = .020;

FD: F(2,103.5) = 1.52, p = .22).

Only the AMD-trained group showed reliable improvement on the AMD task (Fig 2A;

AMD-trained: β = .21, SE = .05, CI (95%) = .12 –.31, t = 4.76, p< .001; AMR-trained: β = .07,

SE = .04, CI (95%) = -.01 –.16, t = 1.69, p = .10; Control: β = .08, SE = .04, CI (95%) = -.01 –.17,

t = 1.84, p = .08), and this improvement was significantly greater than both the control group

(β = .13, SE = 0.06, CI (95%) = .01 –.26, t = 2.07, p = .04) and the AMR-trained group (β = .14,

SE = .06, CI (95%) = .02 –.27, t = 2.25, p = .03), which did not show reliable differences (β =

.01, SE = .06, CI (95%) = -.11 –.14, t = .20, p = .86; see S1 Appendix Tables A–E).

All groups showed significant improvement on the AMRD task (Fig 2B; AMD: β = .09, SE

= .04, CI (95%) = .01 –.17, t = 2.34, p = .023; AMRD: β = .23, SE = .04, CI (95%) = .16 –.31, t =

-6.12, p< .001; Control: β = .10, SE = .04, CI (95%) = .03 –.18, t = 2.77, p = .008). However, the

AMR-trained group showed greater improvement than both the control group (β = .13, SE =

.05, CI (95%) = .02 –.24, t = 2.32, p = .024) and the AMD-trained group (β = .16, SE = 0.06, CI

(95%) = .05 –.27, t = 2.84, p = .007), which did not substantially differ (β = .03, SE = 0.06, CI

(95%) = -.08 –.14, t = .57, p = .57).

Only the control group showed significant improvement on FD (Fig 2C; Control: β = .18, SE

= .05, CI (95%) = -.08 –.27, t = 3.75, p< .001; AMD-trained: β = .08, SE = .05, CI (95%) = -.02
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Fig 2. Learning and transfer of learning on psychophysical tasks. Mean adjusted post-test thresholds in percentage

of improvement from pre- to post-tests at the individual (small circles) and group level (big circles) on (A) AMD, (B)

AMRD and (C) FD tasks. Mean pre-test threshold across all participants is plotted as a dotted line, with the grey

shaded area denoting the 95% confidence interval.

https://doi.org/10.1371/journal.pone.0226288.g002

Amplitude modulation training for vocoded speech

PLOS ONE | https://doi.org/10.1371/journal.pone.0226288 December 27, 2019 10 / 19

https://doi.org/10.1371/journal.pone.0226288.g002
https://doi.org/10.1371/journal.pone.0226288


–.17, t = 1.62, p = .11; AMRD-trained: β = .07, SE = .05, CI (95%) = -.02 –.17, t = .17, p = .13),

but this improvement did not reliably differ from the AM-trained groups, resulting in the non-

significant group × test interaction (F(2,103.47) = 1.52, p = .22; Improvement differences: Con-

trol–AMD-trained: β = .11, SE = .06, CI (95%) = -.02 –.23, t = 1.65, p = .10; Control–AMRD-

trained: β = .11, SE = .07, CI (95%) = -.02 –.24, t = 1.68, p = .10). It is worth noting that lower

and upper confidence intervals for the difference of improvement in this task across AM-

trained groups and controls show that the “true” population mean difference between the con-

trol group and AM-trained groups could be zero.

In summary, although there was some improvement on untrained tasks, only the AM-

trained groups showed improvements that significantly exceeded that of the control group on

the trained task, suggesting a degree of learning specific to the training task.

The observed learning for both AMD-trained and control groups from pre- to post-tests in

the AMRD task, suggests that learning to discriminate AM rates can be captured with little

exposure to the stimuli. Such rapid learning on the AMRD task could reflect faster perceptual

and/or procedural learning (see [61]; see also [62]). Additional training on this task (AMR-

trained group) also produced greater improvement compared to controls and the AMD-

trained group, reflecting perceptual learning specific to stimulus processing and task, as also

shown for the AMD-trained group on the AMD task.

Although the control group improved on the FD task, the improvement did not signifi-

cantly exceed that of the AM- trained groups. Hence, these data do not support disruption of

learning in FD tasks by AM training or of transfer of learning across tasks (see [32] for a

review). These results are consistent with previous literature with similar samples sizes [61].

Transfer of learning to vocoded consonant identification

AM-trained groups, but not controls, showed a significant improvement on vocoded conso-

nant identification between pre- and post-test (Fig 3; AMD: β = .32, SE = .12, CI (95%) = 0.08–

0.56, z = 2.55, p = .011; AMRD: β = .36, SE = .13, CI (95%) = 0.12–0.61, z = 2.87, p = .004; Con-

trol: β = .18, SE = .11, CI (95%) = 0.05–0.39, z = 1.54, p = .12). However, the improvement

shown by the AM-trained groups was not reliably greater than that shown by the controls

(group × test: χ2 (2) = 1.39, p = .50). It is worth noting the large and overlapping confidence

intervals for the differences in improvement from pre- to post-test in each group, with lower

confidence intervals close to 0 values even for AM-trained groups. As can be also seen in

Table 1, group comparisons before and after training showed no reliable numerical differences

between groups during pre-test and post-test sessions given our sample size and the variability

within groups during all sessions (see S1 Table). In this regard, post-test mean estimates differ-

ences across groups show confidence intervals crossing the 0 value, suggesting that the mean

population difference after training across groups could be zero. It is worth noting however,

that learning kept occurring during performance of the VCV task itself (main effect of trial

order: χ2 (1) = 12.5, p< .001; see S1 Appendix). Further analyses using Bayes Factors for the

magnitude of improvement between groups after training (see [63]) show that the null hypoth-

esis (i.e., no differences between groups) was around 2.5 times more likely than the alternative

(Control vs AMD-trained: BF01 = 2.70; Control vs AMR-trained: BF01 = 2.61).

Information transfer analysis. We next examined whether training improved specific

phonetic features of the consonant identification task based on information transfer for voice,

manner and place of articulation. We found a significant main effect of phonetic feature (F

(2,240) = 492.6, p< .001), with manner best received (77.5%), followed by voice (73.9%) and

place of articulation (32.5%), consistent with results reported by Lorenzi et al. (2000). Pre- to

post-test learning was also significant (Fig 4; F(1,155.8) = 19.0, p< .001), showing an overall
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5.9 percentage-point improvement (AMD-trained: 7.0%; AMR-trained: 6.2%; Control: 4.9%).

However, neither the main effect for group (F(2,48) = .95, p = .39), nor the 3-way interaction

between group, test and phonetic feature were significant (F(4,240) = .17, p = .95). These find-

ings suggest that AM training did not improve specific phonetic features beyond those found

in the Control group.

General discussion

Given the importance of TE cues for both aided and unaided speech perception, and the

results of previous studies, we expected to find an improvement on vocoded speech perception

Fig 3. Percentage of correct vocoded consonant identification during pre-training and pre- to post-test. Learning curves for

each group of participants across pre-training (two blocks), and pre- to post-tests of vocoded consonant identification task. Error

bars represent +/- 1 standard error. In pre-training1 and 2 (Day 1) participants received online feedback during the task, but not in

pre-test or post-test. Note that participants were split into the different groups after pre-training2 based on their mean scores

ensuring balanced performance across groups before starting the training regimens. Learning from pre-training1 to pre- training2

was significant for all groups (all z values> 7, all p values< .001), whereas only AM-trained groups showed significant improvement

from pre-test (Day2) to post-test (Day4).

https://doi.org/10.1371/journal.pone.0226288.g003

Table 1. Transfer of learning to vocoded consonant identification. Descriptive statistics including estimates (β), standard errors (SE), and asymptotic lower and upper

confidence intervals, and inferential statistics for between groups comparisons during pre- and post-tests.

Test Group Estimate SE Lower CI Upper CI z-ratio p-value

Pre-test Control vs AMD-trained -.30 .32 -1.04 .44 -.95 .61

Control vs AMRD-trained -.49 .32 -1.24 .26 -1.52 .28

AMD-trained vs AMRD-trained -.19 .33 -.96 .59 -.57 .83

Post-test Control vs AMD-trained -.44 .35 -1.27 .39 -1.25 .43

Control vs AMRD-trained -.68 .35 -1.50 .14 -1.93 .13

AMD-trained vs AMRD-trained -.24 .36 -1.08 .61 -.66 .79

https://doi.org/10.1371/journal.pone.0226288.t001
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through explicit training on TE cues in non-speech sounds. However, despite robust learning

on the trained AM tasks, no reliable transfer to vocoded speech perception was found. Trained

listeners showed a slight improvement on vocoded consonant identification, yet this did not

substantially exceed the (non-significant) learning observed in the untrained controls. Fur-

thermore, we failed to find significant correlations between listeners’ initial learning on

vocoded VCVs and their performance on AM tasks. It is worth noting that the sample size of

this study as well as the studies from which the initial hypothesis are drawn are small. This

might lead to inconsistent results across studies given the binary interpretation of the results

(significant versus non-significant effects). Here we have reported summary-based descriptive

statistics alongside the more traditional inferential statistics as per to show the level of uncer-

tainty associated with our results. As can be observed in the results section (see also S1 Table)

confidence intervals from pre- to post-tests are rather wide and overlapping between groups.

This thus suggest that although there might be a tendency for improvement on vocoded VCV

identification after AM(R)D training, this is not quite consistent across participants and there-

fore not observable in studies with sample sizes similar to that of this study and studies of pre-

vious literature [17, 20, 21, 61].

We specifically chose the vocoded consonant identification task as an outcome measure

because, lacking lexico-semantic cues, it presumably relies more heavily on bottom-up, per-

ceptual processing compared with more complex speech materials such as words or sentences.

We reasoned that the effects arising from training on TE cues would be strongest for a task

that relies on low-level processing. However, the choice of speech material and the experimen-

tal procedure may also have hindered our ability to attain observable transfer of learning.

Given the closed set of stimuli, the benefits of longer term AM training might be dwarfed by

Fig 4. Relative information transfer. Improvement on relative information transfer for each phonetic feature and

group. Error bars represent standard errors.

https://doi.org/10.1371/journal.pone.0226288.g004
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the rapid learning that occurs via repeated exposure to the stimuli (see [19]). This learning can

be also viewed as a carry-over effect from the pre-training which is sometimes observed for

several days after perceptual training has ceased [64], and would thus affect trained and control

groups equally. Alternatively, participants may have received significant training on vocoded

VCV during the pre-training session (overall pre-training reception of Manner: 76%, Voice:

72% and Place: 32%), reaching near-ceiling performance and leaving little room for additional

improvement due to training on the AM tasks (see Fig 3 and S1 Table). Fu et al (2005) showed

no reliable improvement in spectrally shifted vowel perception after 5 days of training on

vowel recognition in CVC contexts and on spectrally shifted monosyllabic words. Although in

their study they used 8-channel spectrally shifted and unshifted materials instead of tone-

vocoded stimuli, it is possible that similar ceiling effects might be occurring in our study. How-

ever, we did find a significant improvement during the task as shown by a significant effect of

trial order, suggesting that there was still room for improvement. We ran an additional group

trained on AMD task during 5 consecutive days to investigate whether performance could

improve with more training. Results again failed to show any reliable benefit with increased

training (see S3 Appendix).

Although both of these explanations are plausible, a third alternative should be considered:

that the mechanisms involved in learning to distinguish of AM tones are not the same as those

involved in learning of vocoded VCVs. This interpretation is supported by the lack of correla-

tion between initial thresholds on AM tasks and learning of vocoded VCV during pre-training.

Furthermore, correlation analysis between the amount of learning for each trained group and

the amount of generalization to VCV perception also fail to show a significant relationship

(AMD-trained: r = -.17, p = .54; AMR-trained: r = .13, p = .61). Hence, it could be hypothe-

sized that whilst perception of TE information relies on detection and discrimination of low-

level acoustic features, perceptual learning of vocoded speech involves adjusting the mapping

of low-level acoustic feature cues present in the degraded speech signal onto pre-existent pho-

nological representations (e.g., [1, 23, 24, 65, 66]). According to this account, it is not the

detection/discrimination of the TE cues that is critical for learning to perceive vocoded speech

but rather how those cues map onto higher-level representations.

We found no transfer of learning between the AMD and AMRD tasks even though they

used very similar stimuli and identical testing paradigms. Maidment et al. [29] also showed

that training on AMD with two different modulation rates (similar to our AMD training para-

digm) transferred to an AMD task with a different modulation rate but only partially to an

AMRD task with the same modulation rate. Furthermore, in the Maidment et al study [29]

AMRD training not only did not transfer to AMD task but also led to disrupted learning of a

simultaneously trained AMD task. Wright and Fitzgerald [61] also failed to find generalization

to AMD and FD tasks after AMRD training. It is perhaps not surprising, therefore, that train-

ing on AM tasks did not transfer to a completely different task that required the identification

of vocoded VCVs.

A final possibility is that transfer was not achieved because the AM training was limited to

modulations frequencies� 16 Hz and a single carrier frequency, whereas the VCV stimuli

contained modulation information up to ~45 Hz along several carrier frequencies (or bands).

Since AM learning can be both carrier- [25] and modulation-frequency specific [31], training

on a broader range of modulation- and carrier-frequencies might be required to observe trans-

fer of learning to vocoded consonant identification.

Our findings cast doubts on the role of low-level perceptual learning in tone-vocoded con-

sonant perception beyond initial and rapid learning. We showed that the ability of naïve listen-

ers to process TE cues was not related to the improvement in their ability to perceive vocoded

nonsense syllables, and that although AM training as used here improved perception of VCV
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speech material, improvement did not substantially differ from that observed for the untrained

control group. Hence, improvements did not appear to be directly related to TE information

training in our sample of participants, but rather to repeated exposure to the specific speech

stimuli (see [19]). We therefore conclude that training on TE cues in our study does not seem

to provide consistent and reliable benefits for the perception of sub-lexical vocoded speech.

Training regimens with vocoded speech along the linguistic hierarchy could be explored to

find the minimum unit required for training (see [22–26, 28, 38, 67]). Alternatively, as other

linguistic features, such as rhythm, prosody and segmental cues in continuous speech have

previously been linked with TE information [43, 68, 69], it is possible that transfer of learning

after training on AM tasks could be observed for more complex or meta-linguistic aspects of

vocoded speech.

Supporting information

S1 Appendix. Specification of statistical models and analyses. Detailed information of the

statistical models employed, including tables with results and significance values.

(PDF)

S2 Appendix. Phonetic features and information transfer (IT) computation. Detailed infor-

mation of the consonants used in the experiment as a function of manner, voice and place of

articulation and the procedure to compute IT scores, including script written in R.

(PDF)

S3 Appendix. Statistical analyses: Pilot group with extended AMD training.

(PDF)

S1 Dataset. Thresholds obtained from psychophysical tasks and digit span scores.

(TXT)

S2 Dataset. Raw data obtained from the vocoded consonant identification task. Partici-

pants’ scores for all blocks of vocoded consonant identification task, including hits and misses

for each specific phonetic feature.

(TXT)

S1 Table. Vocoded consonant identification. Means, standard deviations, and 95% confi-

dence intervals fore each group and session.

(PDF)

S2 Table. Pearson’s correlation coefficients between tasks. Correlations between hearing

and cognitive tasks before undertaking any training.

(PDF)

S1 Audio File. Example of vocoded VCV stimuli. File containing vocoded /ama/ non-sense

syllable.

(WAV)

S2 Audio File. Example of vocoded VCV stimuli. File containing vocoded /isi/ non-sense syl-

lable.

(WAV)

S3 Audio File. Example of vocoded VCV stimuli. File containing vocoded /ugu/ non-sense

syllable.

(WAV)

Amplitude modulation training for vocoded speech

PLOS ONE | https://doi.org/10.1371/journal.pone.0226288 December 27, 2019 15 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226288.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226288.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226288.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226288.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226288.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226288.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226288.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226288.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226288.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226288.s010
https://doi.org/10.1371/journal.pone.0226288


S4 Audio File. Example of clear VCV stimuli. File containing clear /ama/ non-sense syllable.

(WAV)

S5 Audio File. Example of clear VCV stimuli. File containing clear /isi/ non-sense syllable.

(WAV)

S6 Audio File. Example of clear VCV stimuli. File containing clear /ugu/ non-sense syllable.

(WAV)

S1 Fig. Threshold estimates for each psychophysical task. Means, standard deviations, and

95% confidence intervals fore each group and session.

(PDF)

Acknowledgments

The authors wish to thank Oliver Zobay for his comments on discussion of the statistical

analysis.

Author Contributions

Conceptualization: Ediz Sohoglu, David R. Moore, Christian Füllgrabe, Sygal Amitay.
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