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Abstract

We consider the 2D Schrödinger equation with variable potential in the narrow domain diffeo-
morphic to the wedge with the Dirichlet boundary condition. The corresponding classical problem
is the billiard in this domain. In general, the corresponding dynamical system is not integrable.
The small angle is a small parameter which allows one to make the averaging and reduce the
classical dynamical system to an integrable one modulo exponential small correction. We use the
quantum adiabatic approximation (operator separation of variables) to construct the asymptotic
eigenfunctions (quasimodes) of the Schrödinger operator. We discuss the relation between classical
averaging and constructed quasimodes. The behavior of quasimodes in the neighborhood of the
cusp is studied. We also discuss the relation between Bessel and Airy functions that follows from
different representations of asymptotics near the cusp.
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1 Introduction.

Potential well problems form an important part of quantum mechanics [1]. A well could be orga-
nized by growing potential outside some domain or by suitable Dirichlet conditions at the boundary
of this domain. In the first case the wave function is small outside considered domain and we speak
about soft walls, in the second case it vanishes on the boundary and we speak about hard walls.
The principal symbol of quantum operator can be considered as a Hamiltonian for related classical
dynamical system. This system with boundary reflection condition forms a billiard problem. In
cases with two and more dimensions semiclassical asymptotics for the quantum problem in a well
are closely related with integrability properties of the corresponding classical billiard. To construct
eigenvalues and eigenfunctions (or asymptotic eigenvalues and quasimodes) the classical problem
should be integrable or nearly integrable [2].
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Integrable systems appear very seldom. One of such problems, the n-dimensional Weyl chamber
x1 ≥ ... ≥ xn ≥ 0 with potential U(x1, ..., xn) =

∑n
k=1 V (xk), is considered in [3]. In two dimensions

the Weyl chamber is the π/4 angle. In general, the wedge with curved boundaries corresponds to
a classical system that is not integrable. The presence of a potential without special symmetries
also breaks the integrability. Nearly integrable cases are much more common. We consider a
two-dimensional narrow angle (x, q) ∈ R2

+ with boundaries 0 ≤ q ≤ d(εx), where 0 < ε ≪ 1 is a
small parameter and positive function d(x) > 0, x > 0; d(0) = 0; d′(0) > 0, and pose stationary
Schrödinger equation with slowly varying potential U(εx, q). Due to slow dependence on x the
classical system becomes nearly integrable and the adiabatic perturbation theory [4] can be applied.
Namely, the classical Hamiltonian can be averaged with respect to transverse variable q so that its
principal symbol and subprincipal symbols (up to any required order) become integrable. Averaged
Hamiltonian contains effective potential λ(x), x = εx with additional term proportional to 1/d(x)2

and at the angle cusp x→ 0, λ(x) → ∞. Adiabatic averaging (variable transform) of the classical
system corresponds to a reduction in the quantum problem. Namely, one can perform operator
separation of variables (see [5]) and reduce the initial problem to two one-dimensional problems.
After such procedure asymptotics are defined by the reduced Schrödinger equation with potential
λ(x), which equation is the appropriate quantization of the classical averaged Hamiltonian.

Physically a narrow angle can model pinched waveguide. Waveguides are widely studied (see
e.g. textbooks [6, chapter 2], where slightly perturbed waveguides are considered, and [7, chapter 7]
for acoustic waveguides with varying width). In [8] operator separation of variables is applied for
waveguides with varying width and reduced Schrödinger equation is studied. In this paper we are
interested in the following questions: how does the reflection from the angle cusp happen and how
does the cusp affect the semiclassical asymptotics. Near the cusp there is classically forbidden area
that is smaller for larger energies, so the angle cusp is a focal point of a special kind. Because of
fast growth of effective potential near the cusp, the momentum changes rapidly. From the classical
point of view there is a special regime of motion near the turning point close to the cusp. This
means that asymptotics change their structure: instead of Airy function, usually used near turning
points, the Bessel function of large order could be more suitable near the cusp. Thus another
interesting point is how does Airy and Bessel representation relates (see Nicholson-type formulas
in [9, 10, 11, 12]).

Let us pass to the mathematical formulations. We pose the Dirichlet problem for the Schrödinger
equation for wavefunction ψ(x, q)

−1

2
(
∂2

∂q2
+

∂2

∂x2
)ψ = (E − U(εx, q))ψ, ψ|q=0 = 0, ψ|q=d(εx) = 0.

with energy E and potential U(x, q) → ∞, as x→ ∞, and study behavior of asymptotics near the
angle cusp x = q = 0. Corresponding classical Hamiltonian is H(x, ξ, q, p) = 1

2(p
2 + ξ2) + U(x, q)

with momenta ξ, p.
Introduce slow variable x = εx and get the problem in singular perturbed setting

− 1

2
(
∂2

∂q2
+ ε2

∂2

∂x2
)ψ = (E − U(x, q))ψ, ψ|q=0 = 0, ψ|q=d(x) = 0. (1.1) eq_Sch_2D

Outside some vicinity of the angle cusp this problem can be considered as a waveguide problem.
Curved boundaries prevent exact separation of variables in (

eq_Sch_2D
1.1) even without potential. Nev-

ertheless we can apply the procedure of operator separation of variables proposed in [5] to get
1D reduced Schrödinger equation. Procedure of operator separation of variables is related to the
classical adiabatic averaging: the principal symbol of reduced quantum problem is the averaged
classical Hamiltonian. We construct asymptotics for the reduced Schrödinger equation by Maslov
canonical operator and an appropriate coordinate transform as in [3]. Near the turning point, that
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Figure 1. (a) Classical trajectories in a narrow angle.
(b) Phase portrait of motion with frozen x in (q, p) plane.Fig_Lagrange

is close to the angle cusp, we get two representations: using Airy and Bessel functions. Their
combination gives relation between these two special functions.

The paper is organized as follows. In the sec. 2 we consider classical statement and perform
averaging to get integrable principal symbol of the Hamiltonian. In sec. 3 we apply operator
separation of variables for the quantum problem that corresponds to transform in the classical
problem from sec. 2. This allows to construct semiclassical asymptotics in sec. 4. In sec. 5 we discuss
relation between Bessel and Airy functions that follows from canonical operator asymptotics.

2 Classical motion in a narrow angle

Original system

Construction of asymptotics of discrete spectrum is related to integrability properties of corre-
sponding classical Hamiltonian system. So we start with the classical case and study how adiabatic
averaging leads to nearly integrable Hamiltonian.

We consider free motion of a particle of mass m = 1 in a planar channel with ideal reflections
at channel’s boundaries. In Cartesian coordinates x̄, q, boundaries of this channel have equations
q = 0 and q = d(εx̄), where ε > 0 is a small parameter, and d(·) is a smooth function (Fig.

Fig_Lagrange
1 (a)).

For motion in an angle, d = d0 + d1εx̄. We denote x = εx̄.
Let ξ, p be momenta conjugate to x̄, q. Then motion between collisions is described by the

Hamiltonian system with the Hamiltonian function

E =
1

2
(ξ2 + p2)

and pairs of conjugate variables (p, q), (ξ, ε−1x).

Hamiltonian in action-angle variables

We use a standard approach of the adiabatic perturbation theory [4, sec. 6.4.4], but apply it
for a system with collisions, like in [15]. Consider motion for frozen x first. For q, p we have a
Hamiltonian system with one degree of freedom. The phase portrait of this system is shown in
Fig.

Fig_Lagrange
1 (b). Let I, φ mod 2π be action-angle variables of this system,

I =
1

2π
2|p|d =

|p|d
π
, φ =

{
π q
d , p ≥ 0,

π(2− q
d), p < 0.

The generating function of the transformation q, p 7→ φ, I is

W (q, I, x) =

{
πI q

d , p ≥ 0,

πI(2− q
d), p < 0.
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The Hamiltonian in the new variables is

E =
1

2
ξ2 +

π2I2

2d2(x)
.

Let us make in the original system the canonical transformation of variables (q, p, ε−1x, ξ) 7→
(φ, I, ε−1x, ξ̄) with the generation function

ε−1xξ̄ +W (q, I, x).

We have

ξ = ξ̄ + ε
∂W

∂x
= ξ̄ − ε

Id′(x)

d(x)
f(φ), where d′(x) =

∂d(x)

∂x
, f(φ) =

{
φ, φ ∈ (0, π),

φ− 2π, φ ∈ (π, 2π).

The Hamiltonian in the new variables is

E =
1

2
(ξ̄ − ε

Id′(x)

d(x)
f(φ))2 +

π2I2

2d2(x)
= H0(I, ξ̄, x) + εH1(I, φ, ξ̄, x) + ε2H2(I, φ, ξ̄, x), (2.1) eq_classic_1

where

H0 =
1

2
ξ̄2 +

π2I2

2d2(x)
, H1 = −ξ̄ Id

′(x)

d(x)
f(φ), H2 =

1

2

(
Id′(x)

d(x)
f(φ)

)2

. (2.2) eq_classic_H

In the principal approximation, invariant 2D surfaces in 4D phase space are given by relations
H0 = h = const, I = const, i.e

p = ± πI

d(x)
, ξ = ±

√
2h− π2I2

d2(x)
, 0 ≤ q ≤ d(x). (2.3) eq_classic_Lambda

As we will see below, averaged classical HamiltonianH0 is the principal symbol of corresponding
reduced quantum equation and invariant manifold (

eq_classic_Lambda
2.3) relates to semiclassical asymptotics.

Classical corrections

Let us make an almost identical canonical transform of variables (φ, I, ε−1x, ξ̄) 7→ (ψ, J, ε−1X,Ξ)
such that the Hamiltonian function in the new variables does not contain ψ in terms of the first
order in ε. We are looking for the generating function of this transform in the form

Jφ+ ε−1Ξx+ εS1(J, φ,Ξ, x),

where S is 2π-periodic in φ. The old and new variables are related as follows:

I = J + ε
∂S1
∂φ

, ψ = φ+ ε
∂S1
∂J

, ξ̄ = Ξ+ ε2
∂S1
∂x

,X = x+ ε2
∂S1
∂Ξ

.

Let H1(J,Ξ, X) be the term of order ε in the Hamiltonian for the new variables. Then

∂H0(I, ξ, x)

∂I

∂S1(I, φ, ξ, x)

∂φ
+H1(I, φ, ξ, x) = H1(I, ξ, x).

As S1 is 2π-periodic in φ, we get

H1(I, ξ, x) =
1

2π

∫ 2π

0
H1(I, φ, ξ, x)dφ,

S1(I, φ, ξ, x) = − 1

∂H0(I, ξ, x)/∂I

∫ φ

0
(H1(I, θ, ξ, x)−H1(I, ξ, x))dθ + S0

1(I, ξ, x),
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where S0
1(I, ξ, x) is an arbitrary function. In our case H1 ≡ 0, H1 = −ξ Id

′(x)
d(x) f(φ), H0 = 1

2ξ
2 +

π2I2

2d2(x)
. Thus we have

∂S1(φ, I, ξ, x)

∂φ
=
ξdd′

π2
f(φ).

Hence

I = J + ε
∂S

∂φ
= J +

ξdd′

π2
f(φ) = J + ε

ξd′

π
q sgn(p).

In the first approximation, invariant 2D surfaces in 4D phase space are given by relationsH0(J, ξ̄, x) =
h = const, J = const, i.e

p = ± π

d(x)
(J + ε

ξd′

π
q sgn(p)), ξ = ±

√
2h− π2J2

d2(x)
− ε

πJd′

d2
q sgn(p).

Such procedure can be continued to make averaged Hamiltonian as precise as we want.
In what follows we discuss the role of described classical objects in quantum problem and the

relation between classical and quantum problems.

3 Operator separation of variables
sec_separation

Here we perform operator separation of variables and study the relation between averaged equation
and averaged classical Hamiltonian.

Consider Schrödinger equation (
eq_Sch_2D
1.1). Standard adiabatic approach is based on Born and Op-

penheimer works [16] and was adopted for fast oscillating solutions like WKB in [17]. The general
method of operator separation of variables was formulated in [5] and it uses ideas of Peierls sub-
stitution [18, 19]. We will follow it in the way described in [8] (see also [20, 21]).

Here and below we consider the following quantization rule

f̂ = f(
1

ξ̂,
2
x), ξ̂ = −iε ∂

∂ξ .

Denote H(ξ, ∂
∂q , x, q) =

1
2(ξ

2 − ∂2

∂q2
) +U(x, q), so that (

eq_Sch_2D
1.1) can be written as Ĥψ(x, q) = Eψ(x, q).

We are looking for solution in the form ψ(x, q) = ŵφ(x), ŵ = w(ξ̂, x, q) and we want to get
equation Ĥφ(x) = Eφ(x), Ĥ = H(ξ̂, x, q). This gives

Ĥŵφ = ŵĤφ.

It is sufficient to have operator equality Ĥŵ = ŵĤ, and corresponding equations for the symbols
H = H0 + εH1 +O(ε2), w = w0 + εw1 +O(ε) are

(
H(ξ, ∂

∂q , x, q)−H0(ξ, x)
)
w0(ξ, x, q) = 0, (3.1) eq_Hw0(

H(ξ, ∂
∂q , x, q)−H0(ξ, x)

)
w1(ξ, x, q)− iHξw0x = w0H1 − iw0ξH0x, (3.2) eq_Hw1

...

Symbols wn also satisfy the Dirichlet boundary conditions wn|q=0 = 0, wn|q=d(x) = 0.
Normalization condition ∥ψ(x, q)∥x,q = 1 leads to equality ∥ϕ∥x = 1 and operator equation

ŵ∗ŵ = 1 that gives chain of equations for symbols

∥w0∥q = 1, 2⟨w0, w1⟩q − i⟨w0ξ, w0x⟩ = 0. (3.3) eq_w_norm
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Here the scalar product is ⟨f(q), g(q)⟩q =
∫ d(x)
0 f(q)g(q)dq.

From the first equation (
eq_Hw0
3.1) we found H0(ξ, x) =

1
2ξ

2 + λ(x), where λ(x) and w0 = w0(x, q)
are eigenvalue and eigenfunction of the Dirichlet problem with respect to q:

− 1
2

∂2

∂q2
w0 + U(x, q)w0 = λ(x)w0, w0|q=0 = w0|q=d(x) = 0, (3.4) eq_w0

while x and ξ are “frozen” (x and ξ are considered as parameters).
To find correction H1 we take scalar product ⟨w0, ·⟩q of w0 with the second equation (

eq_Hw1
3.2):

H1 = −iξ⟨w0, w0x⟩q = −iξ 1
2

( ∂
∂x

⟨w0, w0⟩q + d′(x)w2
0(x, d(x))

)
= 0.

Thus correction w1(ξ, x, q) is a solution of inhomogeneous equation

−1
2

∂2

∂q2
w1 + U(x, q)w1 − λ(x)w1 = iξw0x

with normalization (
eq_w_norm
3.3). As can be seen from the last equation w1(ξ, x, q) = iξw̃1(x, q) and thus

ŵ1 = w̃1(x, q)
∂
∂x is a differential operator.

Remark 3.1. To construct the leading term of formal asymptotics to (
eq_Sch_2D
1.1) it is enough to find

w0 and H0,H1. We only need to state the existence of solution w1 to prove the convergence of
asymptotic procedure.

Asymptotics of φ(x) are found from the reduced Schrödinger equation

Ĥ0φ = −ε2 12
∂2

∂x2φ+ (λ(x)− E)φ = O(ε2), (3.5) eq_Sch_1D

where effective potential is λ(x) ∼ 1/d(x) → ∞ as x→ 0 and if U(x, q) → ∞ as x→ ∞ then also
λ(x) → ∞. For energy E > minλ(x) there are two turning points x− < x+ : E = λ(x±). In the
segment x ∈ (x−, x+) the solution oscillates. Intervals x < x− and x > x+ are classically forbidden
and solution is exponentially small there.

Remark 3.2. The principal symbol of equation (
eq_Sch_1D
3.5) is the classical Hamiltonian H0 from (

eq_classic_1
2.1),

(
eq_classic_H
2.2) that appears after corresponding canonical transform. This illustrates the relation between
classical dynamics and semi-classical asymptotics of quantum problem.

Remark 3.3. One can consider n-dimensional cone (0,∞)r × Σq(εr), Σq(ρ) ⊂ Rn−1, where
(Σq(ρ), h(ρ)) is a family of compact (n − 1)-dimensional Riemannian manifolds. If correspond-
ing eigenvalues and eigenfunctions λν(ρ), wν(ρ) are smooth with respect to parameter ρ then the
presented procedure of operator separation of variables can be naturally generalized, and one can
get effective one-dimensional Schrödinger equation for ψν(x). Such multi-dimensional procedure is
considered in [8].

Example 1. Operator separation of variables for small potential

Consider the angle with curved boundary q = d(x). To have explicit formulas we assume that

potential U(x, q) = v0(x) + εv1(x, q) +O(ε2) is adiabatic with respect to q. Operator −1
2

∂2

∂q2
with

Dirichlet conditions has the following eigenvalues and eigenfunctions

λν(x) =
1

2

π2ν2

d(x)2
, wν

0(x, q) =
√
2√

d(x)
sin

( πν
d(x)

q
)
. (3.6)

Symbol of the reduced equation is

H(ξ, x, ε) = H0(ξ, x) + εH1(ξ, x) +O(ε2),

H0(ξ, x) =
ξ2

2 + v0(x) + λν(x), H1(x) = ⟨v1(x, q), w0(x, q)
2⟩q.
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Figure 2. (a) Boundary function q = d(x) (magenta) and q = x (blue).
(b) Effective potential λν(x) for ν = 1, 2, 3 (blue, magenta, yellow) and energy levels Eν

n for ν = 1, 2, n =
10, 20, 30, 40, 50 (blue and magenta dashed).

(c) Lagrangian curve H(X,P ) = E for ν = 1 and n = 10, 20, 30, 40, 50 (from blue to red).Fig_u_eff

Due to additional potential λν(x) = 1
2
π2ν2

d(x)2
→ ∞ as x → 0 the region near the angle cusp is

classically forbidden and the solution vanishes: ψν(0) = 0. Let us set v0(0) = 0, then classically

forbidden region x < x−(E) is defined by E = λ1(x−) = π2

2d(x−)2
+ O(x) + O(ε), which gives

x−(E) ∼ E−1/2. Potential λν(x) and Lagrangian manifolds for different modes ν and energies E
are illustrated by Fig.

Fig_u_eff
2.

4 Asymptotics of reduced Schrödinger equation
sec_as

Quantization conditions

Semiclassical asymptotics for reduced Schrödinger equation (
eq_Sch_1D
3.5) are related to Lagrangian mani-

fold Λ(E) that is defined by Hamiltonian trajectories for energy E:

H = ξ2

2 + λ(x) = E.

Lagrangian manifold is a cycle. In the turning points x = x± : λ(x±) = E Jacobian J = ∂ξ/∂x
has simple roots J(x±) = 0, J ′(x±) ̸= 0 and the increment of Maslov index over the cycle is equal
to δm = 2, thus quantization conditions for E = En are standard Bohr–Sommerfeld conditions∫ x+

x−

√
2(En − λ(x))dx = πh

(
n− δm

4

)
= πh

(
n− 1

2

)
, n = 1, 2, ... (4.1)

Maslov canonical operator and Airy asymptotics near turning points

Despite (
eq_Sch_1D
3.5) is one-dimensional, we construct asymptotics using Maslov canonical operator to

show how it gives Airy integral near turning points x± : λ(x±) = E. As in [3], we use canonical
transform x = X(y), ξ = Ξ(χ, y) = χ/X ′(y) (denote its inverse by y = Y (x)) with the property

1

2
RA(x)Y

′(x)2 = 1, RA(x) =
Y (x)

λ(x)− E
.

Such transform changes the Hamiltonian (the principal symbol of reduced equation (
eq_Sch_1D
3.5)) as follows:

H(Ξ(χ, y), X(y))− E = h(χ, y, E) ≡ R−1
A

(
χ2 + y − E

)
.

Equation (
eq_Sch_1D
3.5) takes the form

−ε2 ∂2

∂y2
φ+ yφ− εg(y) ε ∂

∂yφ = 0, g(y) = 1√
2

√
|RA(X(y))| Y ′′(X(y)).
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The transform Y (x) is defined by formula:

Y±(x) = ±sgn(x− x±)

(
3

2

∫ x

x±

√
|2(λ(x)− E)|

)2/3

. (4.2) eq_Y

This substitution is smooth; Jacobian Y ′
+ does not vanish near x+ (on any segment [b1, b2] ⊂

(x−,∞)) and Y ′
− does not vanish near x− (on segments [b1, b2] ⊂ (0, x+)).

New Hamiltonian h(χ, y, E) = 0 defines the same Lagrangian curve Λ(E) (see Fig.
Fig_u_eff
2) as

H(ξ, x) = E and the Hamiltonian system has the form ∂
∂ty(t) = R−1

A χ(t), ∂
∂tχ(t) = R−1

A . We

change time t→ τ : ∂τ
∂t = R−1

A to have

∂
∂τ y(τ) = 2χ, ∂

∂τ χ(τ) = −1 ⇒ χ(τ) = −τ, y(τ) = −τ2.

Here we set integration constants to zero to have turning point x = x+ at zero time y(0) = 0.
We introduce Jacobians J = ∂y

∂τ = ±
√
−y, J̃ = ∂χ

∂τ = −1. Turning point y(x±) = 0 is a focal
point: J = 0 and inverse function τ = τ(y) can’t be found. Thus we need to write phase in singular
representation

S̃(χ) = −
∫ χ

0
ydχ = χ3/3.

Canonical operator then is simply

Kε
Λ(E,τ)[c](y) =

c ei
π
4

√
2πε

∫
R
|J̃(χ)|−1/2e

i
ε

(
S̃(χ)+yχ

)
dχ

=
c ei

π
4

√
2πε

∫
R
e
i
ε

(
1
3χ

3+yχ
)
dχ = c ei

π
4

√
2π

ε1/6
Ai

( y

ε2/3
)
.

To make the inverse transform we use the general property of canonical operator [17, 19]:

Kε
Λ(E,t)

[
A(t)

]
(x) =

√
|∂Y∂x | K

ε
Λ(E,τ)

[√
| ∂t∂τ |A(τ)

](
Y (x)

)
. (4.3) prop_CO

Finally asymptotics to (
eq_Sch_1D
3.5) near x± is [3]

φ(x) = c ei
π
4

√
2π

ε1/6
(
2R±

A(x)
)1/4

Ai

(
Y±(x)

ε2/3

)
(1 +O(ε)), (4.4) as_Airy

and together with solution w0(x, q) to (
eq_w0
3.4) this solves initial problem

ψ(x, q) = w0(x, q)φ(x) +O(ε). (4.5) as_1

Bessel asymptotics near the angle cusp

Near the cusp, as x → 0 potential λ(x) ∼ a/x2 in the reduced equation (
eq_Sch_1D
3.5) and transform (

eq_Y
4.2)

Y (x) ∼ (32
√
2a lnx)2/3 are not bounded. For large energies (focal) turning point x− approaches

the cusp and formally considerations of previous section fails. Near the cusp it is more natural to
use Bessel-type asymptotics.

Assume d′(0) = γ > 0 so that effective potential λ(x) = a
x2 (1 + O(x)), a = π2ν2

2γ2 as x → 0.

Consider canonical transforms in the phase space x = X̃(z), ξ = Ξ̃(ζ, z) = ζ/X̃ ′(z) (with inverse
z = Z(x)), so that the Hamiltonian changes in the following way:

H
(
Ξ̃(ζ, z), X̃(z)

)
− E = h̃(ζ, z) ≡ R−1

B

(
1

2
ζ2 − (E − a

z2
)

)
, RB(x) =

E − a/Z(x)2

E − λ(x)
.
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Figure 3. (a) Bessel function Jα(r) for α = 5, 6.1, 7.2, 8.3, 9.4 (from blue to red).
(b) J1/ε(r/ε) for ε = 0.1, 0.01, 0.001 (from blue to red).Fig_Bessel_large_alpha

This transform satisfies

RB (Z ′(x))2 = 1 ⇔
∫ Z(x)

z0

√
|E − a/z2|dz =

∫ x

x−

√
|E − λ(x)|dx, (4.6) eq_Z

where z0 = Z(x−) =
√
a/E. This transform is smooth and bounded near the cusp Z(x) ∼ x+O(x2)

as x→ 0; Z ′ does not vanish on intervals (0, b1] ⊂ (0, x+). Equation (
eq_Sch_1D
3.5) becomes

− ε2

2

∂2

∂z2
φ−

(
E − a

z2

)
φ− ε

2
f(z) ε

∂

∂z
φ = 0, f(z) =

√
|RB(z)| Z ′′(X̃(z)).

If we omit small term ε
2f(z) ε

∂
∂zφ its solution is (see [22, sec. 1.4])

φ0(x) = c0
√
zJα1

(√
2E

ε
z

)∣∣∣∣
z=Z(x)

, α1 =
√

1
4 + 2a

ε2
=

√
2a
ε +O(ε).

Behavior of Bessel function of large order α1 ≫ 1 is illustrated on Fig.
Fig_Bessel_large_alpha
3. Particularly, the lowest

positive zero r = εµ1 > 0 of function Jb/ε(r/ε) = 0 is µ1 = bε−1 + cb1/3ε−1/3 + O(ε1/3), c ≈ 1.86

so that r = b+O(ε2/3) as ε→ ∞ (see [11, sec. 15 · 82]).
New Hamiltonian h̃ = 0 as H = E defines the same Lagrangian curve Λ(E) that can be defined

as z = Z(ζ) =
√
2a/

√
2E − ζ2. We change time for Hamiltonian system t → τ, dτ/dt = R−1

B

and get ∂
∂τ z = ζ, ∂

∂τ ζ = −2a
z3
. Jacobians are J(z) = ∂z

∂τ = ±
√

2E − 2a/z2, J̃(ζ) = ∂ζ
∂τ =

−(2E − ζ2)3/2/
√
2a < 0. Phase in focal map is

S̃(ζ) = −
∫ ζ

0
z(ζ)dζ = −

√
2a arcsin( ζ√

2E
).

Canonical operator gives integral representation of Bessel function of order α =
√
2a/ε

Kε
Λ(E,τ)[c](z) =

c ei
π
4

√
2πε

∫
R
|J̃(ζ)|−1/2 e

i
ε

(
S̃(ζ)+zζ

)
dζ

=
c ei

π
4

√
2πε

∫
R

√
Z(ζ(θ)) e

i
ε (

√
2E z sin θ−

√
2a θ)dθ = c ei

π
4

√
2π√
ε

√
z Jα

(√
2E

ε
z

)
.

Here we make substitution ζ = ζ(θ) =
√
2E sin θ, and use the well-known commutation property

f(ζ̂, z)Kε
Λ(E,t)[A(t)] = Kε

Λ(E,t)[f(ζ(t),Z(t)) A(t)] +O(ε) (see [17]).

Asymptotics to (
eq_Sch_1D
3.5) near the cusp is (using property (

prop_CO
4.3) of canonical operator)

φ(x) = RB(x)
1/4Kε

Λ(E,τ)

[
c
]
(Z(x)) = c ei

π
4

√
2π√
ε

√
Z ′(x)

√
Z(x) Jα

(√
2E

ε
Z(x)

)
(1+O(ε)). (4.7) as_Bessel
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Figure 4. Asymptotics for effective Schrödinger equation for E = En (a), (b) and (c): n = 1, 2, 5.
Asymptotics with Bessel (black dashed), with Airy (red) and harmonic oscillator (green dotdashed),
energy level En (blue horizontal line), potential λν (magenta) and its approximation λν

appr (yellow).Fig_as

(a) (b) (c)

Figure 5. (a), (b): exact solution for U = 0, d(x) = x arctan(εθ)/ε, ε = 0.1, θ = 1, ν = 1 and ν = 2.
(c) Asymptotics for Example 3 in sec.

sec_as
4: U = x2/8, d(x) = x(1 + 0.3 sin x), ε = 0.1, ν = 1, n = 5.Fig_exact

Remark 4.1. Formulas (
as_Airy
4.4) and (

as_Bessel
4.7) can both be used for asymptotics near the cusp. Which

one to choose is the question of convenience. Coordinate transform (
eq_Y
4.2) is easier to compute.

From the other hand, it is unbounded: Y (x) → ∞ as x → 0 while Z(x) = O(1) and thus Bessel
representation seems more natural near the cusp.

Example 2. Semiclassical asymptotics

Let us return to the Example 1 in sec.
sec_separation
3. We take the following functions d(x) = x(1 + 0.3 sinx),

U(x, q) = v0(x) = x2/8, ε = 0.1 (see Fig.
Fig_u_eff
2) and implement asymptotics (

as_Bessel
4.7) near x− and (

as_Airy
4.4)

near x+. Effective potential λ
ν(x) and energy levels Eν

n for different ν and n are plotted on Fig.
Fig_u_eff
2.

We consider ν = 1 and energy En with n = 1, 2, 5.
Asymptotics of effective Schrödinger equation are presented on Fig.

Fig_as
4. It illustrates that asymp-

totics with “varying” arguments Y (x), Z(x) have wide applicability region. Formulas near x− are
valid in (0, x+−

√
ε) and formulas near x+ – in (x−+

√
ε,∞). Asymptotics provide good matching

in the wide region (x− +
√
ε, x+ −

√
ε).

For small quantum numbers n = 1, 2 we also compare these asymptotics with harmonic oscilla-
tor solutions for quadratic approximation λνappr of effective potential λ

ν : λνappr(x) = λν(x0)+a(x−
x0)

2/2, x0 = (x− + x+)/2, a = 2(En − λν(x0))/(x+ − x0)
2. Comparison with harmonic oscilla-

tor approximation for n = 1, 2 shows that obtained asymptotics can be applied as well for small
quantum numbers. Illustration of asymptotics in angle with curved boundaries and its comparison
with exact solution for a straight angle and without potential can be found on Fig.

Fig_exact
5.

Asymptotics ψ(x) are plotted on Fig. (
Fig_exact
5) and is compared with exact solution for angle with

straight boundaries and with zero potential.
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Figure 6. Comparison of approximations of Bessel function Jα(w) (black dashed line) with Airy function
by Nicholson-like formula (

as_BesselAiry
5.3) (blue) and formula (

as_BesselAiry_1
5.2) provided by canonical operator asymptotics.

The first three figures are plot for α = 1 (for three different ranges) and the last three – for α = 10.Fig_Bessel_Airy

5 Relation between Airy and Bessel

Here we consider angle with straight boundaries q = 0, q = d(x) = γx and use asymptotics to
study relation Airy and Bessel functions. The angle with straight boundaries is a simple cone and
there are a lot of studies for Laplacians of cones (see e.g. recent results [13], that are based on [14],
and bibliography within).

If potential U(x) = 0 then the reduced equation (
eq_Sch_1D
3.5) has potential λ(x) = a/x2, a = π2ν2/2γ2.

We set a = 1/2, E = 1/2 (this can be done by using the normalization ε = ε̃
√
2a, x = x̃

√
a/E)

and consider equation

−ε2φ′′ +
1

x2
φ = φ, φ = c

√
x Jα1

(x
ε

)
, α1 =

1

ε

√
1 +

ε2

4
.

For considered potential Lagrangian manifold Λ0 is defined by ξ2 = 1 − 1
x2 and there is just

one turning point is x0 = 1. Coordinate transform (
eq_Z
4.6) in this case becomes trivial Z(x) = x,

transform (
eq_Y
4.2) is defined for x ∈ R+ and can be explicitly integrated:

Y (x) =

{
−
(
3
2

)2/3(√
x2 − 1− arcsec(x)

)2/3
, x ≥ 1,(

3
2

)2/3(− lnx+ ln(1 +
√
1− x2)−

√
1− x2

)2/3
, x < 1.

(5.1) eq_Y1

Here sec y ≡ 1/ cos y = x, and y = arcsecx is its inverse. For x > 1 : arcsecx ∈ [0, π/2].
Denote α = ε−1 and w = x ε−1. Combining canonical operator asymptotics (

as_Bessel
4.7) and (

as_Airy
4.4), we

get relation between Airy and Bessel functions

Jα(w) ≈
21/4

α1/3

1√
w/α

(
2Y

(
w
α

)
α2/w2 − 1

)1/4

Ai

(
α2/3 Y

(
w
α

)) (
1 +O(α−1)

)
. (5.2) as_BesselAiry_1

It includes complicated argument (
eq_Y1
5.1) that makes difference from the well-known Nicholson-type

formulas

Jα(x) ∼
(x
2

)−1
3 Ai

((x
2

)−1
3 (α− x)

)
, x→ ∞, x− α = O(x1/3). (5.3) as_BesselAiry

Relation (
as_BesselAiry
5.3) was first obtained in [9, 10] (see also [11, pp. 190 and 249], [12, p. 142], and

bibliography within [23]). It is the principal term of series (see [24, pp. 281 and 287])

Jα(w) ≈
∞∑
k=0

(−1)k
(x
2

)−2k+1
3

(
Pk(ξ)Ai(ξ) +QkAi′(ξ)

)
, ξ =

(w
2

)−1
3 (α− w)
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with polynomials Pk, Qk. There are other relations, e.g. in [25].
Comparison on Fig.

Fig_Bessel_Airy
6 shows that (

as_BesselAiry_1
5.2) gives better approximation than (

as_BesselAiry
5.3) and can be applied

on the whole semiaxis x ∈ R+ and even for ε ∼ 1.
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