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Abstract 
 
Muscle wasting and increased proteolysis is a major problem in chronic kidney disease (CKD). 
Exercise is potentially beneficial, but has been under-investigated in pre-dialysis CKD and could 
theoretically worsen acidosis through exercise-induced lactic acid generation. We therefore 
investigated effects of 6 months walking exercise with and without additional alkali therapy. 40 
patients were recruited (23 male and 17 female, median age 58, range 20-83, mean eGFR±SEM 
25.7±1.2ml/min/1.73m2). 20 undertook walking exercise at a Borg Rating of Perceived Exertion 
Rate (RPE) of 12-14 for at least 30 minutes, 5 times a week. The other 20 continued with normal 
physical activity (non-exercising controls). In addition to standard oral bicarbonate therapy 
(STD), 10 patients in each group were randomised to receive additional bicarbonate (XS). Blood 
and vastus lateralis muscle biopsies were drawn at baseline, one and six months. 18 exercisers 
(including 8 in XS group) and 14 controls (6 in XS group) completed the 6 month study.  
 
Exercise tolerance increased after 1 and 6 months in the exercisers, but not the controls, 
accompanied by a reduced acute lactate response in the XS, but not the STD exercising group. 
After 6 months of exercise, 9 intramuscular free amino acids showed striking depletion in the 
STD, but not XS bicarbonate group. This suggests an inhibition of active amino acid 
transporters, possibly the SNAT2 transporters that are inhibited by acidosis. Studies with 
cultured myotubes identified glucocorticoid as a possible mediator of acid’s inhibitory effect on 
SNAT2. 

The preservation of amino acid  concentrations in the XS exercising group was accompanied by 
strong suppression of ubiquitin E3-ligases MuRF-1 and MAFbx which activate proteolysis 
through the ubiquitin-proteasome pathway. However, other anabolic indicators (Protein Kinase B 
activation and suppression of the 14kDa actin fragment) were unaffected in the exercising XS 
group. Possibly because of this, overall suppression of myofibrillar proteolysis (3-methyl 
histidine excretion) and increased lean body mass (DEXA) were not observed in the exercising 
patients. As XS alkali had no effect in non-exercisers, it is concluded that alkali effects in the 
exercisers arose by countering exercise-induced acidosis.  
 
Sulphuric acid produced from the catabolism of sulphur-containing amino acids ingested in the 
diet is the main contributor to the daily titratable acid load and hence acidosis in CKD. In these 
patients the amount of sulphate excreted in urine over 24h varied widely between individuals. 
This directly correlated with 3-methyl histidine excretion suggesting that sulphate excretion may 
be a better clinical indicator of acidotic patients at long-term risk of cachexia than conventional 
measures such as venous bicarbonate. Studies with cultured myotubes confirmed that skeletal 
muscle is a source of sulphuric acid and showed that production of this acid is partly suppressed 
by L-Glutamine – a potential novel way to control acidosis in CKD.  
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1.1 Basic muscle physiology 

A skeletal muscle such as rectus femoris, is surrounded by a layer of fascia and contains fascicles 

(bundles of fibres). Muscle fibres are long, cylindrical, multinucleated cells that lie with their 

long axes in parallel surrounded by a membrane called the sacrolemma and by a thin sheath of 

fibrous tissue called the endomysium that divides muscle into individual myofibrils (Figure 1.1). 

The intracellular structure of a muscle fibre contains sarcoplasm, mitochondria, myoglobin, and 

the main contractile element of muscle, the myofibrils that vary in length from only a few 

millimetres to over 30cm laid end to end and are surrounded by an extensive sarcoplasmic 

reticulum (Maughan et al. 1997a; Silverthorn, 2001a) (Figure 1.2). A muscle can contain a 

thousand or more myofibrils (Silverthorn, 2001a) that are made up of a continuous series of 

sarcomeres (contractile units of muscle) and have a striated appearance that can be seen by light 

microscopy, comprising alternating light and dark bands caused by the arrangement of the 

myofilaments in each repeating sarcomere (demonstrated in Figure 1.2). The myofilaments 

overlap each other to a lesser or greater extent depending on whether the muscle is relaxed or 

contracted. The light band is represented in this diagram by the I band and comprises the thin 

filament actin and two regulatory proteins troponin and tropomyosin that all extend part way into 

the A band, the dark band. The A band contains the thick filament myosin and is the only 

filament to be found in the H zone (Maughan et al. 1997a; Silverthorn, 2001a). 
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Figure 1.1. Skeletal muscle anatomy. Described in the text in Section 1.1. 

Diagram copied from Maughan et al. (1997a), Pg 2.  

 

 

Figure 1.2. Muscle fibre ultrastructure 

Diagram copied from Maughan et al. (1997a), Pg2. 

 

Actin in its monomeric form is a globular protein (G-actin) and usually polymerizes to form long 

chains or filaments of fibrous actin (F-actin) and two F-actin molecules twist together to form a 

helix, creating the thin filaments. The myosin molecule has two globular heads, a neck with an 

elastic hinge region that allows the head to swivel around the point of attachment, and a tail 
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region. The globular head has ATPase activity and the ability to bind actin. Each myosin 

molecule comprises two heavy protein chains that intertwine to form a coiled tail, and a pair of 

heads protruding in opposite directions. The thick filaments are arranged so that the myosin 

heads are clustered at the ends and the middle portion (H zone) contains the myosin tails. The 

myosin molecules are anchored to the Z line by titin, acting to stabilise these filaments (Tortora 

and Grabowski, 1996a).  

 

1.2 Muscle contraction 
Individual muscle fibres are usually innervated by just one nerve that excites skeletal muscle 

through the release of acetylcholine across the motor end plate, ultimately causing the release of 

Ca2+ from the sarcoplasmic reticulum. Ca2+ is bound by troponin C, altering the troponin-

tropomyosin complex and thereby displacing tropomoysin from the actin binding site on the 

myosin molecule allowing crossbridge formation to occur. This binding of myosin to the actin 

molecule results in the myosin head changing from its activated configuration to its ‘cocked’ 

shape causing the myosin heads to pull on the thin filament and the filaments to slide past each 

other. This is known as the power stroke and releases ADP and inorganic phosphate (Pi) (from 

the prior hydrolysis or ATP) from the myosin head.  A new ATP molecule can then bind, 

reducing the affinity of myosin for actin binding and causing detachment of the crossbridge. The 

ATP is then hydrolysed, returning the myosin head to its activated state in which it is able to 

bind another actin molecule further along the filament. This cycle repeats many times in the 

presence of Ca2+. In the relaxed state, Ca2+ is sequestered from the sarcoplasm back into the 

sarcoplasmic reticulum via the ATP dependent calcium pump, returning the troponin-

tropomyosin complex to its inhibitory position blocking cross bridge formation (Tortora and 

Grabowski, 1996a). 

 

1.3 Muscle buffering systems 
During high intensity exercise, lactic acid produced by anaerobic glycolysis dissociates to lactate 

and H+ resulting in a fall in intracellular pH. Skeletal muscle has a large buffering capacity (βm) 

that reduces the rate of intracellular pH decrements therefore delaying fatigue. A high βm is 

associated with good sprinting performance and it appears it can be increased with training 

(Weston et al. 1997).  
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In humans, the main skeletal muscle buffering systems are; the bicarbonate buffer system , and 

intramuscular phosphates, protein bound Histidine and Histidine containing dipeptides 

(carnosine, anserine and balenine) which make up the non-bicarbonate system (Bishop et al. 

2009).  In humans there is no balenine in skeletal muscle and anserine is only found in very low 

concentrations and so the most important dipeptide in muscle buffering in humans is carnosine 

(Abe, 2000). 

 

Skeletal muscle cells have a high concentration of phosphate related compounds, which have a 

very high capacity of buffering H+ and contribute approximately 20% to the non-bicarbonate 

buffering system (Hultman and Sahlin, 1980). Proteins containing Histidine residues have been 

suggested to contribute about 30-70% to the total muscle buffering capacity (Abe, 2000; 

Hultman and Sahlin, 1980). The majority of protein involved in skeletal muscle buffering is 

soluble proteins with little involvement from contractile proteins (Abe, 2000). Histidine is the 

only amino acid that is capable of exerting a buffering function in the physiological pH, owing to 

the imidazole side ring found in Histidine residues. Imidazole groups are potent buffering 

constituents as they have a pK value that is close to physiological pH and so one of the two 

nitrogen molecules of this group can be protonated in the physiological pH range (Abe, 2000).  

 

It has been suggested that free Histidine contributes little to the βm as it is in low concentration 

in skeletal muscle (Parkhouse and McKenzie, 1984) and Histidine containing dipeptides might 

be more important due to their larger intramuscular concentration (Bergström et al. 1974). A role 

for carnosine was established by Smith in 1938 who demonstrated that the imidazole side ring 

had a pKa of 6.83, which made it a suitable buffer at physiological pH. Carnosine is a dipeptide 

that is synthesised in skeletal muscle from β-alanine and L-Histidine catalysed by carnosine 

synthase (Sale et al. 2010). A role for carnosine in intramuscular buffering was first 

demonstrated by early studies in fish (Abe, 2000) Whilst the intramuscular concentration of 

carnosine is lower in humans compared to other species, with reported values in the vastus 

lateralis of 16-20 mmol/kg dw (Harris et al. 1990) these concentrations do vary between fibre 

types and can be changed with training. Carnosine concentrations have been observed to be 

twice as high in type II fibres compared to type I (Harris et al. 1998) and Parkhouse and 

collegues (1985) found the vastus lateralis carnosine content was higher in sprinters and rowers 

than in marathon runners and untrained individuals and Suzuki et al. (2002) found a significant 

correlation between carnosine concentration and power output in a wingate test. Furthermore, 
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Hill et al. (2007) showed that 10 weeks of β-alanine supplementation resulted in an 80% increase 

in muscle carnosine and a significant improvement in cycling capacity at 110% peak power 

output. Taken together, this evidence suggests muscle carnosine might be an important factor in 

determining performance during high intensity exercise and plays an important role in skeletal 

muscle buffering capacity. 

 

1.4 Basic renal physiology 

1.4.1 Renal anatomy 

The two kidneys are located either side of the spine between the posterior wall of the abdominal 

cavity and the peritoneum at the level of the eleventh and twelfth ribs (Tortora and Grabowski, 

1996b). They are about 10cm long and 5cm wide, weigh approximately 150g, are bean shaped 

and are encased in a fibrous outer capsule called the renal capsule.  The interior of the kidney is 

arranged in two layers, the outer cortex and the inner medulla. The outer cortex contains the 

renal corpuscle (made up of the glomerulus surrounded by Bowman’s capsule), renal tubules, 

cortical collecting ducts and vasculature. The medulla contains pyramids of straight tubules 

(medullary pyramids). The apex of each pyramid forms a papilla, which drains urine into the 

minor calyx then the major calyx (Kriz and Elger, 2007) followed by the renal pelvis and finally 

the proximal ureter which transports urine to the bladder. 

 

Figure 1.3. Cross section through a kidney 

Figure copied from Kriz and Elger, (2007), Pg 1. 
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The nephron is the functional unit of the kidney and regulates salt and water balance through 

excretion and reabsorption. The nephron consists of the renal corpuscle (glomerulus and 

Bowman’s capsule), the proximal tubule, loop of Henle, distal convoluted tubule and the 

collecting duct. A healthy kidney usually contains approximately 1 million nephrons (Shirley et 

al. 2007). There are two types of nephron, which are classified according to the location of the 

renal corpuscle. Cortical nephrons have their renal corpuscle in the outer renal cortex and have 

very short loops of Henle. Juxtamedullary nephrons have their renal corpuscle in the medulla and 

have long loops of Henle that extend deep into the medulla (Lote, 1990). 

Renal blood flow is approximately 1200mL/min receiving approximately 20-25% of the cardiac 

output (Tortra and Grabowski, 1996b) and of this, 125-130mL of plasma is filtered into 

Bowman’s capsule every minute resulting in the production of primary urine. Blood flow to the 

kidney is usually through a single renal artery entering the kidney at the renal hilus. The renal 

artery branches to form interlobar arteries which enter the renal cortex and branch further into 

afferent arterioles. Each nephron receives blood through one afferent arteriole which divides to 

form the glomerulus (Lote, 1990). Here water and salts are filtered out of the capillary and into 

the lumen of the tubule, passing along the length of the nephron until, at the end, the remaining 

filtrate is excreted as urine. The blood leaves the glomerulus and passes into an efferent arteriole 

and passes into a network of peritubular capillaries and vasa recta which surround the renal 

tubules. Any filtrate that is reabsorbed from the lumen, returns to the circulation through these 

capillaries. Eventually these capillaries drain to the renal vein that leaves the kidney through the 

renal hilus. 
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Figure 1.4. Nephrons and the collecting duct of the kidney 

Figure copied from Kriz and Elger (2007), Pg 1. 

 

1.4.2 Function of the kidney 

The main function of the kidneys is to maintain homeostatic regulation of the water and ion 

content of the blood by balancing reabsorption and excretion of solutes to maintain fluid and 

electrolyte balance. They also serve in the regulation of osmolarity and acid-base balance, 

excretion of waste and foreign materials, and production and secretion of hormones.  

 

 



 

9 
 

1.4.3 Renal processes 

The three processes of the kidney are filtration, secretion and reabsorption. Filtration occurs at 

the renal corpuscle in the cortex of the kidney and the processes of reabsorption and secretion 

occur in the tubules. 

 

1.4.4 Glomerular filtration 

Filtration is a relatively non-specific process creating an ultrafiltrate of the plasma containing 

water and dissolved salts and is almost protein free. A normal glomerular filtration rate is 

125ml/min producing 180L/day of primary filtrate. Blood pressure forces water and small 

solutes out of the capillary through three barriers, the endothelial fenestrations, the basement 

membrane and the slit diaphragms of the podocytes (glomerular epithelial cells). The resulting 

solution enters Bowman’s capsule and becomes glomerular filtrate. The molecular size, along 

with shape and charge of the molecule, is the main determinant as to whether a molecule is 

filtered into Bowman’s capsule, or remains in the glomerular capillaries (Lote, 1990). 

 

1.4.5 Components of the glomerular filtration barrier 

The first of these barriers is the layer of flattened endothelial cells of the fenestrated glomerular 

capillaries. This fenestrated area covers 20-50% of the endothelial cell surface and allows high 

permeability to water and small solutes.  The filter allows the free movement of molecules up to 

a molecular weight of 7000Da and molecules up to a weight of 70000Da can be filtered. (Lote, 

1990) There is much controversy over the importance of this barrier in the selective filtration 

process due to uncertainty over the effective size of the fenestrae (Haraldsson et al. 2008). By 

microscopy these appear large enough to allow the filtration of serum albumin. However, recent 

evidence indicates that the fenestrae may be an important barrier, due to the cell coat that fills the 

fenestrae i.e the glycocalyx that contains negatively charged proteoglycans, glycosaminoglycans 

and plasma proteins that tend to repel plasma proteins (Haraldsson and Sörensson, 2004). The 

thick basement membrane of the glomerulus (GBM) is the second barrier to filtration and was 

formerly considered to be the most important barrier (Lote, 1990). It forms a continuous layer 

allowing filtration of molecules depending upon the molecules’ size, shape and charge. It lies in 

between the glomerular endothelium and the epithelial lining of Bowman’s capsule. It contains 
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collagen like protein and negatively charged proteoglycans (Silverthorn, 2001b). Recent findings 

suggest the GBM lacks charge selectively and is therefore not such an important contributor to 

selective filtration (Haraldsson and Sörensson, 2004). The final layer to the filtration barrier is 

the epithelium of Bowman’s capsule containing specialized epithelial cells called podocytes. The 

podocyte is now regarded as the most important barrier in maintaining selective permeability 

(Haraldsson and Sörensson, 2004), as failure of the podocyte is associated with proteinuria, 

initiation of progressive renal disease and the maintenance of progression to end stage renal 

failure (Pavenstädt et al. 2003). Podocytes have long foot-like processes projecting from the cell 

body called pedicels. These processes encircle the basement membrane of the glomerulus and 

processes of adjacent podocytes interdigitate, creating filtration slits that are bridged by the slit 

diaphragm. The slit diaphragm has recently been discovered to contain many specialised 

proteins, one of which is nephrin, and mutations in this protein have been found to give rise to 

severe proteinuria and congenital nephritic syndrome of the Finnish type (Kestila et al. 1998). 

The slit diaphragm and luminal membrane are covered by sialoglycoproteins giving the 

podocytes a strong negative charge and preventing the movement of medium sized molecules 

(Pavenstädt et al. 2003). 

 

1.4.6 Tubular reabsorption and secretion  

Approximately 180L of plasma are filtered each day and most of this volume is reabsorbed by 

processes which vary along the length of the nephron. Transport processes within the nephron 

includes simple and facilitated diffusion and primary or secondary active transport processes. 

Passive transport is allowed by the concentration gradient that is maintained by the Na+, K+-

ATPase pump on the basolateral membrane. 

 

The bulk of the filtered Na+, Cl-, K+ and HCO3
- are reabsorbed at the proximal tubule facilitated 

by the microvilli on the apicial surface of the epithelial cells which create a large surface area for 

reabsorption. The concentration of Na+ in the filtrate is approximately 140mmol/l and is much 

lower in the cytosol of the epithelial cells favouring movement of Na+ from the tubule into the 

cell through open leak channels. Approximately 20% enters the peritubular interstitium via Na+ 

pumps on the basolateral membrane whilst the remaining re-enters the tubule via tight junctions 

(paracellular pathways) (Shirley et al. 2007). The secretion of H+ into the lumen plays an 

important role in the reabsorption of HCO3
- (see Section 1.5 for more detail). The walls of the 



 

11 
 

proximal tubule are highly permeable to water and approximately 60% of the filtered water is 

reabsorbed here by diffusion due to the decrease in osmolarity in the tubular lumen following 

solute reabsorption. There is also near complete reabsorption of glucose, amino acids and low 

weight molecular proteins that were able to cross the glomerular barrier. This water reabsorption 

results in a concentration gradient down which Cl-, K+ and urea diffuse via paracellular 

pathways. Glucose and amino acids are co-transported with Na+ into the epithelial cell against 

their concentration gradient and diffuse into the peritubular interstitium. Small proteins enter the 

epithelial cell by endocytosis and are digested inside the cell and released as amino acids 

(Shirley et al. 2007). 

 

As the filtrate reaches the loop of Henle, the majority of the reabsorption of water and solutes has 

already taken place. Approximately 25% of the filtered water is reabsorbed in the thin 

descending limb, which is freely permeable to water, but relatively impermeable to Na+. Na+ is 

reabsorbed by the Na+-K+-2Cl- active transporter in the thin ascending limb that is impermeable 

to water. The U shape of the loop of Henle and the differences in the permeability of the limbs to 

water and Na+ are responsible for the countercurrent multiplier which generates the medullary 

osmotic gradient (Shirley et al. 2007). 

 

The distal nephron and collecting duct are responsible for the reabsorption of the remaining Na+ 

and K+ via active transport mechanisms in the principal cells. These sections of the nephron are 

permeable to water in the presence of vasopressin that increases permeability by the insertion of 

channels (aquaporins) into the apical membrane in response to substrate receptor binding, 

allowing the diffusion of water out of the tubule. Ca2+reabsorption here is regulated by 

parathyroid hormone (PTH) and vitamin D. The presence of PTH activates Ca2+ channels in the 

apical membrane and a Ca2+-ATPase pump on the basolateral membrane. The intercalated cells 

in the late distal tubule secrete H+ or HCO3
- into the filtrate that becomes final urine (Shirley et 

al. 2007). 

 

 

1.5 Acid-base balance 
Acid-base balance or pH homeostasis is an essential regulatory process of the body maintaining 

H+ concentration at an acceptable level, which in a healthy individual, leads to an arterial plasma 

pH within the range 7.35-7.45 (Tortora and Grabowski, 1996c). A conventional western diet is 
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high in protein and sulphur amino acids that, when metabolised, produce sulphuric acid (Suliman 

et al. 1996) and result in the generation of 40-70mEq of H+ per day (Sebastian et al. 2002). This 

must be buffered, as deviations from the acceptable pH range would denature proteins and 

disrupt normal body processes (Silverthorn, 2001c). The body has three mechanisms by which to 

eliminate acid from the body: buffers in the blood that are able to respond very quickly to 

changes in pH, respiratory responses that deal with 75% of the generated acid, and finally, the 

renal system. The renal system is much slower that the other two, but is capable of dealing with 

any remaining disturbance to pH. The main focus here will be the role of the kidneys in 

maintaining acid-base balance. 

 

Non-volatile acid (acid produced from sources other than carbon dioxide, for example lactic acid 

and sulphuric acid), is not eliminated by the lungs and is buffered quickly in the blood by 

bicarbonate (HCO3
-), producing water and carbon dioxide, the concentration of which does not 

change from the level set and maintained by respiratory control. The function of the kidney is to 

excrete titratable acid, to regenerate bicarbonate that is lost in this process, and to reabsorb the 

filtered load of HCO3
- (Koeppen, 2009). 

 

The reabsorption of HCO3
- occurs primarily in the proximal tubule, with the remainder being 

reabsorbed at the thick ascending loop of Henle and a small proportion by the colleting duct 

(Koeppen, 2009).  Filtered bicarbonate is unable to cross the apical membrane of the proximal 

tubular cell (PTC), so in order to be reabsorbed it combines with H+ which is secreted into the 

lumen by the apical Na+-H+ antiporter in exchange for a filtered Na+, to form carbonic acid 

(H2CO3). Carbonic anhydrase (CA) IV present in the brush border catalyses the dissociation of 

H2CO3 to H2O and CO2. These readily diffuse across the apical membrane into the tubular 

epithelial cell where, under the influence of CA II, CO2 is hydrated to produce HCO3
- and H+. 

The H+ is secreted back into the lumen by the apical Na+-H+ antiporter repeating the cycle. Three 

molecules of HCO3
- are transported out of the cell across the basolateral membrane with one 

molecule of Na+ via the Na+-HCO3
- symporter. The low intracellular Na+ concentration in the 

proximal convoluted tubule (PCT) is maintained by the active Na+-K + ATPase sodium pump on 

the basolateral membrane that pumps 2K+ into the cell for every 3Na+ transported out of the cell. 

This sets up the concentration gradient between the cytosol and the tubular lumen that is utilised 

by the Na+-H+ antiporter on the apical membrane to bring 1 Na+ into the cell in exchange for 1  
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H+ secreted into the tubular lumen. The net result is the reabsorption of one HCO3
- and one Na+ 

for every H+ secreted into the lumen (Silverthorn, 2001c; Koeppen, 2009). 

 

Although the reabsorption of the filtered load of HCO3
- is an important process, it does not fully 

replace the HCO3
- lost in the titration of acid, so new HCO3

- must be generated through 

ammoniagenesis. This is the main mechanism by which the kidney regulates acid base balance, 

accounting for 90% for the acid excreted into the urine (Karim et al. 2005) and subsequent 

generation of HCO3
-, a process that occurs in the PCT. Glutamine from the peritubular capillaries 

is deaminated to glutamate via glutaminase and then converted to α-ketoglutarate by glutamate 

dehydrogenase. Further catabolism of α-ketoglutarate results in the generation of two NH4
+ and 

two HCO3
- per molecule of glutamine. The new HCO3

- exits the cell via the Na+- HCO3
- 

symporter and enters the blood and NH4
+ is secreted from the PTC via a Na+-H+ antiporter taking 

the place of H+ (Karim et al. 2005). Between 40-80% of the NH4
+ is reabsorbed at the thick 

ascending loop of Henle via the Na+, K+(NH4
+)2Cl- cotransporter, on which NH4

+ is substituted 

for K+. NH4
+ is also reabsorbed through movement along the paracellular pathway resulting in an 

accumulation of total ammonia (NH4
+ and NH3) in the medullary interstitium. In order to 

successfully buffer H+, NH4
+ must be excreted in the urine: if it returns to the blood, it will be 

metabolised by the liver to urea, generating H+. NH4
+ is secreted back into the tubule at the 

collecting duct via NH4
+-H+ antiporters and is excreted into the urine. The process of 

ammoniagenesis is up-regulated in metabolic acidosis resulting in a much larger ammonia 

excretion. This up-regulation is due to increased expression stimulated by acidosis of the 

mitochondrial enzymes glutaminase, glutamate dehydrogenase and cytosolic 

phosphoenolpyruvate carboxykinase (Karim et al. 2005). 

 

As the filtrate passes down the nephron, the reabsorption of water results in an increased 

concentration of the remaining HCO3
-, which was not removed at the proximal tubule. The 

majority of this is reabsorbed at the thick ascending loop of Henle, by a similar process to that in 

the proximal tubule (Koeppen, 2009). The type A intercalated cells of the distal tubule reabsorb 

any remaining HCO3
- in the form of CO2 and H2O as the result of H+ secretion into the tubule. 

These cells have a high concentration of CA converting CO2 into H+ and HCO3
-, which leaves 

the cell via a HCO3-Cl- antiport exchanger on the basolateral membrane back into the blood and 

the remaining proton is secreted back into the lumen (Koeppen, 2009). Net acid excreted is equal 
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to the sum of titratable acid plus NH4
+ excretion minus the loss of HCO3

- in the urine. Free H+ 

accounts for very little of the excreted acid and is not included in this equation. 

 

 

1.6 Chronic Kidney Disease 

Normal kidney function is defined by a glomerular filtration rate (GFR) of approximately 

130ml/min for men and 120ml/min for women (Gul et al. 2007). Chronic Kidney Disease (CKD) 

is defined as kidney damage, or a reduction in GFR to <60ml/min for three months or more, 

irrespective of the initial cause (Kossi and Nahas, 2007) and is generally due to a reduction in the 

nephron number (Gul et al. 2007). CKD has been classified into five stages determined by GFR 

(Table 1.1) 

 

Table 1.1 Classification of Chronic Kidney Disease. Adapted from Kidney Disease Outcomes 

Quality Initiative (K/DOQI) guidelines (Kossi and Nahas, 2007). 

Stage Description Estimated GFR 
(ml/minute) Action 

1 Kidney damage , normal or 
increased GFR ≥90 Diagnose and treat, 

slow progression 

2 Kidney damage with mild 
decrease in GFR 60-89 Estimate Progression 

3 Moderate decrease in GFR 30-59 Evaluate and treat 
complications 

4 Severe decline in GFR 15-29 Prepare for renal 
replacement therapy 

5 Kidney Failure or End Stage <15 Initiate renal 
replacement therapy 

 

The prevalence of CKD is increasing and it is now estimated that approximately 26 million 

Americans have been diagnosed with CKD, 13% of the population (Bronas, 2009). The 

prevalence of CKD is lower in the UK with an estimated 8.8% of the population suffering with 

symptomatic CKD (The Association of Public Health Observatories, 2009), but the number of 

patients reaching end stage renal failure increased by 4.4% from 2007-2008 (Farrington et al. 
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2008). The rise in prevalence is most likely due to an aging population and the type II diabetes 

mellitus epidemic that is occurring. The early stages of CKD are usually asymptomatic and for 

this reason it is not unusual that it remains undetected until progression occurs. The glomerular 

barrier prevents the filtration of high molecular weight proteins and any small proteins that are 

filtered are reabsorbed by the proximal tubule resulting in very small amounts of protein 

appearing in the urine. Detection of protein in the urine (proteinuria) is usually the first sign of 

CKD (D’Amico and Bazzi, 2003) indicating either damage to the glomerular barrier allowing 

filtration of larger protein molecules, or to the proximal tubules preventing the reabsorption of 

the smaller protein molecules. 

Hypertension, obesity, diabetes, hyperlipidaemia and smoking are all risk factors for 

development of CKD in the general population (Kossi and Nahas, 2007). Hypertension is one the 

main causes of progression of CKD, by the transference of systemic pressure to the glomerular 

capillary beds resulting in glomerular hypertension which causes glomerulosclerosis. Therefore 

blood pressure in these patients is kept under tight control to help slow this progression. The 

appearance of proteinuria (>500mg/day) is also associated with a faster progression to end stage 

renal failure which can be controlled by diet and angiotensin receptor blockers (Kossi and Nahas, 

2007). 

 

1.7 Metabolic acidosis 
Metabolic acidosis is reported in the majority of CKD patients when GFR declines to less than 

20-25% of normal i.e. CKD Stage 4 onwards. The degree of acidosis usually correlates with the 

severity of the renal failure (Kraut and Kurtz, 2005) and is the result of a reduced ability to 

excrete ammonia and titratable acids in the face of a reduced reabsorption and synthesis of 

bicarbonate (Cibulka and Racek, 2007). Metabolic acidosis is diagnosed when the plasma 

bicarbonate concentration decreases from the normal range of 24-30mmol/l to 12-22mmol/l. This 

decrease severely impairs the ability of the blood to buffer H+ quickly. As renal failure 

progresses to less than 15ml/minute there is an increase in anion gap acidosis due to a decrease 

in the excretion of non-volatile acid. This acidosis seen in advanced renal failure is termed 

uraemic metabolic acidosis (Cibulka and Racek, 2007). Metabolic acidosis has been identified as 

a uraemic toxin because correction results in the amelioration or elimination of many 

complications of CKD (Mitch, 2006), including a negative nitrogen balance and skeletal muscle 

wasting (Mitch, 2006; see Section 1.8), anorexia (Kovacic et al. 2003), bone disease (Lefebvre et 
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al. 1989), negative effects upon cardiac function including suppression of myocardial 

contractility (Marsiglia et al. 1973) and impaired peripheral vasoconstriction and dilation (Narins 

and Cohen, 1987). Sodium bicarbonate is a successful treatment of metabolic acidosis (Movilli et 

al. 2009), but is undesirable due to the associated sodium and water retention and possible 

exacerbation of hypertension (Kraut and Kurtz, 2005) in patients where blood pressure must be 

kept under tight control to help reduce progression of the renal disease. 

 

 

1.7.1 The source of the titratable acid load - sulphur metabolism 

The dominant contributor to the titratable (non-volatile) acid load, whose excretion fails in 

uraemic metabolic acidosis, is catabolism of the sulphur amino acids L-cysteine and L-

methionine. These are irreversibly metabolised primarily by the liver, and to a lesser extent by 

the kidneys and brain, to cysteinesulphinate (CSA) via the enzyme cysteine dioxygenase 

(Suliman et al. 1996; Stipanuk, 2004) (Figure 1.5). CSA can have two fates: it can either be 

converted to hypotaurine and ultimately taurine by decarboxylation, or by transamination to 

pyruvate and sulphate. Skeletal muscle also has the ability to convert cysteine to taurine and 

sulphuric acid (accounting for up to 10% of the whole body sulphate production (Ensuna et al. 

1993)), but here the mechanism is less clear because the activity of cysteine dioxygenase is very 

low in this tissue (Ensuna et al. 1993). The conversion of CSA to sulphate also results in the 

production of two moles of H+ per mole of cysteine or methionine and is therefore considered to 

be an acid generating branch of the pathway generating sulphuric acid (Stipanuk et al. 2006; 

Coloso and Stipanuk, 1989; Bella and Stipanuk, 1995). This branch generates most of the daily 

titratable acid load of around 40-70mEq of H+ each day in humans (Sebastian et al. 2002), and in 

individuals with renal impairment is a major contributor to uraemic metabolic acidosis (Cibulka 

and Racek, 2007). This acidosis is a significant clinical problem in CKD patients and an 

important contributor to the muscle wasting that is frequently seen in CKD (Mitch, 2006) (see 

Section 1.8.1). Cysteine is also used in the biosynthesis of glutathione, a key physiological 

antioxidant compound and so plays a role in both acid base balance and redox status (Métayer et 

al. 2008).  
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Figure 1.5. Simplified scheme showing pathways for the catabolism of L-methionine and L-

cysteine (adapted from Suliman et al. 1996).  

 

1.7.2 Plasma concentrations of sulphur amino acids and metabolites in CKD patients 

The metabolism of sulphate may be abnormal in CKD, because despite normal plasma 

methionine concentrations (Gulyassy et al. 1970; Condon and Asatoor, 1971), the concentrations 

of cysteine and homocysteine, a homologue of cysteine, both in the free and bound forms, are 

frequently seen to be raised in uraemic patients (Flűgel-Link et al. 1983; Robins et al. 1972). 

Plasma taurine levels, however, in non-dialysed and haemodialysis patients tend to be lower than 

those seen in healthy individuals (Alvestrand et al. 1982; Qureshi et al. 1989; Suliman et al. 

1996) and Bergström and colleagues (1989) reported that in CKD patients the muscle and plasma 

taurine concentrations were both reduced by the same margin, suggesting that this represents a 

true depletion of taurine from the cells rather than a decline in the cell/plasma concentration 

gradient. 
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The concentrations of CSA in the plasma have also been reported to be high (Suliman et al. 

1996) and it was speculated that low plasma taurine accompanied by these high levels of CSA 

represents a defect in the activity of cysteinesulphinate decarboxylase (CSAD), the rate limiting 

step in the conversion of CSA to taurine (Suliman et al. 1996).  This enzyme requires vitamin B6 

as a cofactor, of which CKD patients are commonly deficient (Kopple et al. 1981). However, 

patients in a number of studies by Suliman and colleagues (1999, 2001, 2002) were administered 

vitamin B6 supplements, and so the authors concluded that uraemia itself inhibits CSAD. 

Anorexia and malnutrition are frequently seen in these patients (Suliman et al. 2002) and it is 

likely that this results in a reduced taurine intake that, when coupled with a reduced synthesis 

from CSA as proposed by Suliman et al. (1996), causes these reduced plasma taurine levels. 

Taurine has many important cellular functions including stabilization of the membrane potential, 

antioxidant properties and a positive inotropic effect on the heart (Suliman et al. 2002; Schaffer 

et al. 2009) and depletion could possibly result in muscle fatigue and cardiovascular disease 

(Suliman et al. 2002), common co-morbidities in CKD patients (Nussbaum and Garcia, 2009; 

Pecoits-Filho et al. 2002). It is possible therefore that in CKD the flux through this pathway is 

diverted away from taurine and towards the generation of pyruvate and sulphuric acid (Figure 

1.5). 

 

1.8 Cachexia 

Cachexia is defined as the progressive loss of muscle mass and muscle protein associated with 

chronic disease (Tan and Fearon, 2008) and is frequently reported in many disease states such as 

uraemia, diabetes, sepsis and burn injury (Workeneh et al. 2006). (The skeletal muscle 

abnormalities observed in CKD are described in detail in Section 1.16.2). Cachexia is an 

important clinical problem as it is strongly associated with morbidity and mortality (Griffiths, 

1996) and even mild degrees of CKD are capable of stimulating proteolysis leading to cachexia 

(Wang et al. 2006). For a long time malnutrition was believed to be the primary cause of 

cachexia (Mitch, 1998), but there is now much evidence to suggest that this is not the case 

(Mitch, 2002) as nutritional therapy has little impact on nitrogen balance (Mak and Cheung, 

2006). The mechanisms causing muscle loss in uraemia are complicated and are likely to be 

multifactorial including acidosis, neuropathy, oxidative stress, hyperparathyroidism, protein 
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restriction, inflammation, anorexia and physical inactivity (Mak and Cheung, 2006; Johansen et 

al. 2003). This thesis will focus on the effects of metabolic acidosis and glucocorticoid. 

 

1.8.1 Metabolic acidosis and cachexia 

Early reports demonstrated that fasted acidotic rats exhibit an increase in urinary ammonia with 

no change in urea production (Hannaford et al. 1982), leading to the speculation that the nitrogen 

required for this increase in ammonia production came from skeletal muscle. May et al. (1986) 

were the first to demonstrate a direct association between acidosis and an increase in skeletal 

muscle proteolysis in rats. They rendered rats acidotic through ammonium chloride 

administration and assessed changes in protein synthesis in ex vivo incubated muscle by L-[U-
14C] phenylalanine incorporation into muscle and changes in protein degradation by the rate of 

tyrosine released into the media. An increase in the rate of muscle proteolysis was observed in 

the acidotic rats, with no corresponding changes in the rate of muscle protein synthesis. 

However, an acute inhibitory effect of acidosis on muscle protein synthesis (measured by [ring-
2H5] phenylalanine incorporation into muscle) has been demonstrated in humans rendered 

acidotic by ingestion of ammonium chloride (Kleger at al. 2001) and it has been suggested from 

in vitro cell culture work, that the primary effect of acidosis may be on protein synthesis, 

followed by a chronic (possibly compensatory or adaptive) effect on protein degradation (Evans 

et al. 2008). The protein catabolic effect of metabolic acidosis was later confirmed by May and 

colleagues in 1987 in rats with an induced renal failure and a more physiological degree of 

acidosis, as a criticism of the 1986 study by these authors was that the rats were subjected to a 

severe acidosis unlikely to be seen in CKD. Furthermore, this increase in proteolysis (measured 

by tyrosine release from the hindquarter) in acidotic rats could be prevented by the correction of 

acidosis using bicarbonate (May et al. 1987). Alkali therapy in the form of sodium bicarbonate is 

commonly used in CKD patients to correct acidosis and is associated with improvements in 

nitrogen balance (Reaich et al. 1993; Papadoyannakis et al. 1984), increases in body weight, 

decreases in morbidity (Szeto et al. 2003) and decreases in protein catabolism (Movilli et al. 

2009). Stein and colleagues (1997) administered either a high or low alkali dialysis fluid to 

peritoneal dialysis patients, achieving plasma bicarbonate concentrations of 23mmol/l in the low 

group and 27mmol/l in the high group. After one year, those patients who received the additional 

alkali had significant improvements in body weight and mid arm circumference (a measure of 

muscle mass) and fewer hospital admissions. Normal adults with an experimental acidosis 
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induced using oral ammonium chloride had increased whole body protein degradation 

(determined from the kinetics of infused L-[l-13C] Leucine) and amino acid oxidation (Reaich et 

al. 1992), confirming acidosis as an important catabolic factor. The mechanisms through which 

this occurs will be discussed in Section 1.13.   

Sodium bicarbonate has obvious positive effects on protein balance (Reaich et al. 1993), but how 

might this be occurring? It is well established that acidosis increases protein degradation through 

a stimulation of the ubiquitin proteasome system (Lecker et al. 2006). Animal studies have 

shown that acidosis induced by CKD in conjunction with glucocorticoids reduce insulin 

signalling (Bailey et al. 2006) resulting in an increase in the abundance of the 14kDa fragment - 

a marker of myofibrillar degradation. Sodium bicarbonate is unable to cross the muscle 

sarcolemma, but may act to reduce protein degradation by diffusing out of the plasma into the 

interstitial fluid, the environment to which the cell membrane is exposed, and thereby increasing 

interstitial pH and through effects on pH sensors on the skeletal muscle membrane, for example 

SNAT2, may possibly relieve the inhibition on insulin signalling reducing protein degradation 

rates. Indeed this has been shown in preliminary results by Bailey and colleagues (2006) in rats, 

but whether this is the case in humans is unclear.  

However, the effects of acidosis do not appear to occur exclusively through low pH. May et al. 

(1986) found there was no increase in proteolysis rates when the muscles from normal rats were 

incubated at pH 7.1 and the incubation of muscles from acidotic rats at pH 7.4 was unable to 

fully reverse the abnormal proteolysis rates. These authors concluded that there must be another 

signal required for the acceleration of muscle proteolysis. 

 

1.8.2 Glucocorticoids and cachexia 

Previous studies have demonstrated that glucocorticoids are capable of increasing protein 

degradation and inhibiting protein synthesis (Goldberg et al. 1980) and May et al. (1986) 

reported that metabolic acidosis was associated with an increase in glucocorticoid production. 

This led to the investigation of the possible contribution of glucocorticoids to the muscle wasting 

process. 

As previously described, May et al. (1986) found acidotic rats had increased rates of protein 

degradation. This observation was then extended to the effects of glucocorticoid on protein 
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degradation. They found these elevated rats of proteolysis were abolished if acidotic rats 

underwent an adrenalectomy (ADX) and were increased again following the administration of 

dexamethasone, suggesting that glucocorticoids are necessary for the increase in proteolysis seen 

in uraemia (May et al. 1986). This was later supported by the finding that ADX also prevents the 

increase in mRNA for ubiquitin and proteasome subunits (see Section 1.11.1) that was observed 

in intact acidotic rats, therefore preventing the activation of protein degradation pathways (Price 

et al. 1994), a response that was also restored by dexamethasone. Oxidation of branched chain 

amino acids (BCAA) may be a further mechanism by which acidosis causes a loss of muscle 

protein mass in CKD (Lofberg et al. 1997) (see Section 1.14) and May et al. (1996) reported that 

this increase in oxidation of BCAA, in particular Leucine, also requires glucocorticoids. There 

was no increase in oxidation of BCAA in ADX rats with acidosis, but treatment with 

dexamethasone significantly increased Leucine oxidation (May et al. 1996). This suggests that 

glucocorticoids appear to be required for the acidosis-induced muscle wasting, but on their own, 

are insufficient.  

Contrary to the effects following ADX, blockade of the glucocorticoid receptor using the specific 

antagonist RU38486 failed to block muscle wasting in acid loaded rats with intact kidneys 

(Pickering et al. 2003) at least partly because this drug impairs acid excretion and worsens 

acidosis. 

It is important to note that in CKD all the evidence above suggesting a role for glucocorticoids in 

the muscle wasting process have been performed using a rodent model and using 

pharmacological doses of dexamethasone. Therefore it is not known how applicable this research 

is to humans. 

This evidence for a catabolic role of glucocorticoids, in particular dexamethasone, when 

incombination with metabolic acidosis, is in contrast to its clinical effects and application in 

humans. Dexamethasone has anti-inflammatory properties and is used clinically to treat 

inflammatory and autoimmune conditions (Rhen and Cidlowski, 2005). In support of this, a 

recent study by Crossland and colleagues (2010) demonstrated that in rats with endotoxaemia, a 

low dose of dexamethasone reduced muscle protein loss, observed by a prevention of the 

reduction of the muscle protein:DNA ratio that was seen to fall in rats with endotoxaemia 

without dexamethasone. This effect of dexamethasone was seen to occur with a reduced mRNA 

expression of TNF-α and IL-6 in muscle, suggesting the anti-inflammatory properties of 
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dexamethasone resulted in the maintenance of muscle mass in a condition that is usually 

considered to be catabolic. 

These contrasting results may be explained by dose of dexamethasone that was used, with a 

much lower dose used by Crossland and colleagues (2010) compared to those described above. 

However, there is research to show that in catabolic conditions, the involvement of 

glucocorticoids include physiologically relevant levels of glucocorticoid (Du et al. 2005a). For 

example, in acidosis, adrenalectomy reduces stimulation of the ubiquitin proteasome system and 

therefore reduces protein degradation rates (May et al. 1986; Price et al. 1994). It therefore may 

be more likely that the differences in glucocorticoids effects are due to different disease 

conditions. Endotoxaemia, unlike CKD, is not usually associated with a chronic metabolic 

acidosis, so it may be possible that when glucocorticoids, even at a physiological dose, are 

combined with metabolic acidosis, the results are catabolic and not anabolic in nature as their use 

in other conditions may suggest. 

 

1.9 Protein turnover  
Skeletal muscle accounts for 40% of total body weight and 50% of total body protein (Griffiths, 

1996). Approximately 3.5 – 4.5 g of protein/kg is degraded and synthesised every day (Mitch 

and Goldberg, 1996) equating to the amount of protein contained in 1 – 1.5 kg of skeletal 

muscle. In order for nitrogen balance to be maintained, rates of protein synthesis and degradation 

must be very tightly controlled, any small discrepancy that occurs could over many weeks lead to 

a substantial loss of muscle mass; indeed such a discrepancy is thought to be the basis of 

cachexia. 

 

1.9.1 Methods to determine muscle protein synthesis and breakdown in vivo 

The gold standard method by which to investigate protein synthesis is to measure it directly 

using the incorporation of a stable isotope into muscle tissue.  Fractional protein synthesis rates 

can be measured using a continuous primed intravenous infusion of an amino acid that is not 

transaminated or oxidised in muscle, or an alternative approach is to administer the tracer as a 

flooding dose to quickly equilibriate the tracer in the intracellular and extracellular amino acid 

pools. Both methods are frequently used and presently there is no evidence to suggest the use of 

one method over the other. Commonly used tracers are, L- [l-13C] Leucine, L-[l-13C] α-

Ketoisocoporate and L-[2H5] Phenylalanine. Once a steady state is reached in the precursor pool, 
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muscle biopsies can be taken and analysed using GC-combustion-IRMS methodology 

(Wagenmakers, 1999; Smith et al. 2007) to determine tracer enrichment and therefore protein 

synthesis rates. However, this method does not provide any information on protein degradation 

rates. The Arterio-Venous (A-V) tracer dilution method using a two or three compartmental 

model, is commonly used and allows simultaneous measurements of protein synthesis and 

degradation to be made.  A tracer amino acid, for example [2H5] Phenylalanine is given by 

primed intravenous infusions and under steady state conditions samples of arterial and venous 

blood from catheters inserted into the femoral artery and vein are made. Net balance of the tracer 

amino acid is calculated by the concentration in the arterial blood minus the concentration in the 

venous blood multiplied by blood flow. Protein degradation rates are commonly calculated from 

the A-V dilution of the [2H5] Phenylalanine tracer. This method is invasive and technically 

demanding and should only be used in the certainty of the presence of steady state conditions 

(Kumar et al. 2009). This topic is discussed in detail in two reviews by Wagenmakers (1999) and 

Rennie (1999). 

 

For ease, several indirect measures of myofibrillar protein degradation are commonly used: 3-

Methyl Histidine (3-MH) excretion rates, accumulation of the 14kDa actin fragment and mRNA 

expression of components of the proteasome and E3 ligases such as MAFbx and MuRF-1. The 

use of 3-MH excretion as an index of the rate of myofibrillar proteolysis is based upon the 

presence of N-Methylated Histidine residues in actin and myosin heavy chain proteins (Nissen, 

1997). The cleavage of myofibrils releases 3-MH which, as it has no specific tRNA, cannot be 

re-used for protein synthesis and so is excreted into the urine (Welle, 1999). Thus the excretion 

rate of 3-MH over a 24h period provides an indication of the rate of myofibrillar degradation. 

There are a few inherent problems with this method; Actin is present in all cells, not only muscle 

cells, and although 3-MH excretion will primarily represent myofibrillar breakdown, a 

proportion will also result from non-myofibrillar proteins such as skin and intestine, which has a 

much higher rate of turnover than muscle. However, it has been quoted that in healthy 

individuals, muscle turnover represents the majority of 3-MH appearing in the urine, accounting 

for approximately 75% of the total 3-MH excretion (Ballard and Tomas, 1983). It is assumed 

that 3-MH appearing in the urine is from endogenous muscle proteolysis and not from exogenous 

sources. However, 3-MH derived from dietary protein will be absorbed and ultimately also 

excreted in the urine. For this reason, to ensure that 3-MH excreted is coming primarily from the 

degradation of myofibrillar proteins and is not influenced by dietary protein intake, individuals 
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are placed on meat-free diets for three days prior to the day on which the urine collection is made 

due to the slow clearance of 3-MH. In order to determine 3-MH excretion rate, the total volume 

of the 24 hour urine collection is recorded and a sample is taken, deproteinsed and 3-MH 

concentration measured using High performance liquid chromatography. This method is 

frequently used to assess protein breakdown rates, particularly in chronic disease states due to 

the relative ease of collecting a 24h urine sample compared to the more invasive methods such as 

stable isotopes, and the low cost in the collection and analysis of the sample. 

 

The degradation of the myofibrils results in the production of a small 14kDa actin fragment (this 

is discussed in more detail in Section 1.11.2) which is present in the insoluble fraction of the 

muscle lysates and is easily detected by western blotting. This method has been significantly 

correlated against measured rats of muscle protein degradation using stable isotope techniques 

(Workeneh et al. 2006). 

 

Degradation of myofibrils is performed primarily by the ubiquitin proteasome system. The 

mRNA expression of subunits of the proteasome and of E3 liageses which are considered to be 

the rate limiting step in protein degradation by the proteasome (Lecker et al. 2006) have been 

used as an indicator of the activity of this system. However, recent evidence from Greenhaff et 

al. (2008) has shown that in humans the expression of these E3 ligases at the mRNA level do not 

relate to the protein degradation rate measured using [2H5]Phenylalanine dilution technique. This 

suggests that when used in isolation, caution is required interpreting this data.  

 

 

1.10 Protein synthesis 
In contrast to protein degradation (Section 1.11 below), there is only one known pathway for 

protein synthesis. In this process, the genetic information in the chromosomes is first transcribed 

into RNA which, following processing to messenger RNA (mRNA), is then translated into the 

protein amino acid sequence in the cytosol. The process of translation can be separated into three 

stages, initiation, elongation and termination (Proud, 2006). Most of the control of protein 

synthesis occurs at the initiation step and in the signalling events preceding it. Before the mRNA 

sequence can be translated, it must first undergo pre-translational modifications. The sequence is 

capped on the 5’ end with a methylated guanosine derivative, 7-methylguanosine and a polyA 

tail is added at the 3’ end (Welle, 1999). 
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1.10.1 Translation initiation 

This process involves the assembly of the ribosomal complex at the initiation codon on the 

mRNA sequence. A methionyl initiator tRNA (Met-tRNAi) is in its peptidyl(P) site with its 

anticodon base-paired to the start codon (usually AUG) on the mRNA strand (Mitchell and 

Lorsch, 2008). This process requires the involvement of many non-ribosomal proteins, known as 

eukaryotic initiator factors (eIFs). The first step involves the delivery of the Met-tRNAi to the 

40S ribosomal subunit by the trimeric GTP-binding protein eIF2. eIF2 can only bind Met-tRNAi 

in the GTP-bound state, which is regulated by eIF2B, a guanine nucleotide exchange factor that 

replaces a GDP molecule on eIF2 with GTP and allows the formation of the eIF2·GTP·Met-

tRNAi ternary complex. This complex then binds to the 40S subunit in the absence of mRNA 

facilitated by eIF1A and eIF3 forming the 43S pre-initiation complex (Acker and Lorsch, 2008; 

Kapp and Lorsch, 2004). The GDP-GTP exchange process is an important regulatory step in 

translation initiation. The phosphorylation of eIF2’s α subunit by an eIF2 kinase (which can 

occur for example during severe amino acid depletion) prevents this exchange and therefore the 

binding of Met-tRNAi to the start codon (Proud, 2006). 

 

The next step in translation initiation is the recruitment of mRNA to the ribosome by the eIF4F 

complex which comprises the 3 eIF’s 4A, 4E and 4G (Merrick, 1992) and is regulated by the 4E 

binding protein 4E-BP1 (Figure 1.6). eIF4E is released from the inactive 4E-BP1·eIF4E complex 

by the phosphorylation of 4E-BP1 allowing it to bind to the scaffold protein eIF4G that makes 

additional contacts with eIF4A.  Together these three eIFs form the eIF4F complex that is 

assembled on the 5’ end of the mRNA strand (Kimball and Jefferson, 2006). eIF4A comprises a 

RNA helicase that unwinds secondary structures in the mRNA’s 5’ untranslated region, 

promoting ribosomal binding to the mRNA. eIF4E recognises and binds the 5’ cap on the mRNA 

sequence and in conjunction with eIF3 and the poly A binding protein, loads the mRNA onto the 

43S initiation complex (Kapp and Lorsch, 2004). This complex then starts scanning in the 5’ to 

3’ direction to find the AUG start codon. Upon the recognition of the start codon, eIF1 is 

released from the 43S complex resulting in the hydrolysis of GTP by eIF2 releasing Met-tRNAi  

into the P site of the 40S subunit. The remaining eIF’s dissociate from the complex and the 60S 

subunit is joined to the 40S, facilitated by eIF5B, resulting in formation of the 80S initiation 

complex and the elongation phase of translation can begin (Acker and Lorsch, 2008). 
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Figure 1.6. Schematic representation of the events of translation initiation. 
This figure has been adapted from information described in Proud, (2006); Kimball and 
Jefferson, (2006); Merrick, (1992); Acker and Lorsch, (2008). Initiation factors are shown 
schematically as individually labelled coloured circles or ellipses. 
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1.10.2 Elongation 

Elongation is the addition of amino acids to the growing polypeptide chain in a stepwise manner. 

The process requires only two elongation factors, eEF1A that delivers the charged tRNA 

molecules to the ribosome and eEF2 that promotes the translocation of the ribosome along the 

mRNA strand (Groppo and Richter, 2009). There are three stages to the elongation process that 

are repeated until a stop codon is encountered. These are the binding of aminoacyl-tRNA, 

peptidyl transfer and translocation. The ribosome contains three binding sites, the aminoacyl (A 

site), the peptidyl (P site) and exit (E site) (Noble and Song, 2008).  Elongation begins with a 

peptidyl tRNA in the P site of the ribosome next to an empty A site. The GTP-bound eEF1A 

delivers an aminoacyl-tRNA to the A site for decoding to take place. When a correct match is 

made between the mRNA codon and the tRNA anticodon, a conformational change occurs in the 

small ribosomal subunit catalysing the hydrolysis of GTP by eEF1A releasing the aminoacyl 

tRNA into the A site. Almost immediately, a peptide bond is formed between the peptidyl tRNA 

and the incoming amino acid catalysed by peptidyl transferase activity on the large ribosomal 

subunit. The ribosome is then moved forward three bases facilitated by eEF2 and the now 

deacylated tRNA is displaced into the E site, the peptidyl tRNA is translocated from the A site to 

the P site and the A site becomes empty once again. This cycle is repeated until one of the stop 

codons is encountered, UAA, UAG or UGA (Noble and Song, 2008). 

 

 

1.10.3 Termination 

Upon recognition of a stop codon in the A site, elongation is terminated. This process is 

mediated by two proteins; eukaryotic release factor 1 (eRF1) and eRF3. In the GTP-bound state, 

eRF1 recognises the stop codon and induces the hydrolysis of the final peptidyl tRNA bond to 

the polypeptide chain catalysed by peptidyl-transferase at the centre of the ribosome (Janzen and 

Geballe, 2004). This releases the completed polypeptide chain and disassembles the ribosomal 

complexes (Kapp and Lorsch, 2004). eRF3 is a GTPase protein whose activity requires both the 

80S ribosome and eRF1 and stimulates eRF1 activity in response to GTP hydrolysis 

(Zhouravleva et al. 1995). Unlike eRF1, the necessity for eRF3 in the termination of protein 

translation in unclear (Janzen and Geballe, 2004). 
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1.11 Major proteolytic systems in skeletal muscle 
Intracellular protein degradation is important as it allows for adaptation to occur in response to 

changing physiological circumstances and it is an essential quality control mechanism that 

removes misfolded and damaged proteins (Lecker et al. 1999). Skeletal muscle, like other tissue, 

contains three major proteolytic systems:  

• The lysosomal system: Together with the proteasome system, the lysosomes comprise 

one of the major intracellular proteolytic systems in mammalian cells (Zhao et al. 2007). 

Lysosomes are small spherical organelles containing proteases called cathepsins and have 

an acidic pH ranging from 3.5 – 6.5. This system is primarily involved in the digestion of 

organelles (especially mitochondria) (Scott and Klionsky, 1998) by autophagy, 

phagocytosis and endocytosis. The myofibrils are too large to be engulfed by lysosomes 

and skeletal muscle cells contain very few lysosomes and so it is unlikely that this system 

has a large role to play in the turnover of myofibrillar proteins (Goll et al. 2008). It has 

recently been shown that FOXO transcription factors are capable of activating cathepsin 

L (Mallinson et al. 2009). 

• The calcium dependent system that relies on the activity of calpains, a family of Ca2+- 

dependent cysteine proteases. This system controls the disassembly of tropomyosin and 

therefore plays an important role in muscle contraction and it has been discovered that in 

muscular dystrophy this system is up-regulated contributing to the loss of muscle mass 

(Carragher, 2006).  

• Finally, there is the cytosolic ATP-dependent pathway(s), of which the best described is 

the ATP-dependent ubiquitin-proteasome system (UPS), responsible for degrading actin 

and myosin following prior cleavage by caspase-3. This is quantitatively the most 

important system in skeletal muscle (Rock et al. 1994). The high rates of proteolysis seen 

in uraemia and other catabolic states have been attributed to the stimulation of the UPS 

following the observation that an increased expression of mRNAs encoding certain 

components of this system occurs (Mitch and Goldberg, 1996), and that blocking the 

proteasome using MG132 blocks the accelerated protein degradation that is seen in 

uraemia (Bailey et al. 1996). 
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1.11.1 Ubiquitin-proteasome pathway 

The ATP-dependent ubiquitin-proteasome pathway is a highly organised and complex cascade of 

enzymatic events in which, ubiquitin (ub) molecules are covalently linked to proteins marking 

them for degradation. The tagging of a protein with ub is a process that is coordinated by the 

activity of three enzymes E1, a ub- activating enzyme, E2, a ub- conjugating enzyme, and E3, a 

ub- ligase. The key enzyme is the E3 ligase, which provides the system with specificity. There 

are in the region of 1000 different E3 ligases, each recognising a different protein (Rajan and 

Mitch, 2008). 

 

Before ub can be conjugated to the target protein it must first be activated by the binding of 

ubiquitin activating enzyme E1 via a high energy thioester bond in an ATP-dependent process. 

Once activated, ub is then transferred to an E2 carrier protein followed by an E3 ub ligase which 

then covalently joins the ub molecule by an isopeptide bond to an ε-amino group of a lysine 

residue on the target protein. This process is then repeated and the C-terminal glycine of another 

ub molecule is linked to the lysine residue on the first until a chain of four or more ub molecules 

is made producing a polyubiquiniated protein. This can then be recognised and degraded by the 

26S proteasome (Lecker et al. 1999; Murton et al. 2008). 

 

The 26S proteasome is a large protein complex of approximately 50 subunits and is located in 

the nucleus and cytoplasm of all cells. It comprises a 20S catalytic core and two 19s regulatory 

sub units. The 19s “cap” protein complex, recognises and binds polyubiquitinated molecules, 

unfolds the protein to its primary structure and guides it into the catalytic core following the 

disassembly of the ub chain enabling the ub molecules to be recycled (Hasselgren, et al. 2002). 

The barrel shaped 20S subunit is made up of four stacked rings of proteins each containing 

approximately seven subunits around a central cavity (Goldberg et al. 1995). The subunits of the 

two inner rings have proteolytic sites that cleave the protein into peptides that are six to twelve 

amino acids in length (Mitch and Goldberg, 1996). These peptides are then degraded into 

individual amino acids by cytosolic exopeptidases (Debigaré and Price, 2003), (Figure 1.7). 
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Figure 1.7. Ubiquitin conjugation of a protein and its degradation by the ubiquitin 

proteasome system. 

This diagram depicts ubiquitination of a protein catalysed by E1, E2 and E3 ligases and 

subsequently degraded by the 26S proteasome into small peptides. This figure was adapted from 

the information in Debigaré and Price, (2003); Lecker et al. (1999); Murton et al. (2008). 

 

1.11.2 Degradation of myofibrillar proteins 

The majority of muscle protein (50-70%) exists as myofibrils and actomyosin complexes (Du et 

al. 2004), but the ubiquitin proteasome system is unable to degrade these large complexes 

(Solomon and Goldberg, 1996) so they must first be cleaved into smaller protein fragments by 

caspase-3, creating substrates that are rapidly degraded by the proteasome. This process leaves 

behind a characteristic “footprint”, a 14-kDa C-terminal fragment of actin that is found in the 

insoluble fraction of muscle (Du et al. 2004). The presence of this fragment has been seen to 
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increase in catabolic states and the level of this is closely related to the rate of protein 

degradation (Workeneh et al. 2006). In conjunction with other methods, this fragment can be 

used to detect changes in muscle proteolysis (Workeneh et al. 2006; Workeneh and Mitch, 

2010). 

 

1.11.3 Muscle Specific E3 Ligases and FOXO transcription factors 

Muscle contains two specific E3 ligases, muscle atrophy F box (MAFbx, also known as atrogin-

1) and muscle-specific RING finger-1 (MuRF-1) (Sandri et al. 2004, Bodine et al. 2001b) 

collectively called atrogins. The expression of these E3 ligases is controlled by the 

phosphorylation status of the forkhead box gene group O (FOXO) family of transcription factors. 

FOXO is phosphorylated by PKB rendering it inactive and inhibiting its transcriptional activity 

by confining it to the cytoplasm. A reduction in phosphorylation of FOXO by PKB results in 

their translocation to the nucleus where they increase the transcription of the two E3 ligases and 

thereby increasing protein degradation through the ubiquitin proteasome system. 

The expression of these ligases increases dramatically in many different catabolic states, 

including uraemia (Lecker et al. 2004). Bodine and colleagues (2001b) observed that in response 

to denervation, MAFbx or MuRF-1 knockout mice experienced a 56% and 36% slowing of 

muscle atrophy respectively in comparison to a wild type, identifying these genes as critical 

regulators of muscle atrophy. Subsequently, many research groups have used the mRNA 

expression of these E3 ligases as a marker of myofbrillar proteolysis. 

However, caution is required when interpreting this expression data from humans when 

measures of proteolysis have not been made, as recent evidence suggests that in healthy 

individuals the relative expression of MuRF-1 and MAFbx do not always correlate with 

measured protein degradation rates (Greenhaff et al. 2008). However, this study was carried out 

using healthy individuals and there are currently no studies of its kind in humans in a chronic 

disease state. It is possible that in healthy individuals, the increase in MuRF-1 and MAFbx 

mRNA expression is a side effect of an increase in FOXO activity, which has an involvement in 

muscle fuel selection. In the case of an individual in a chronic disease state characterized by 

muscle wasting, the increase in the mRNA expression of these E3 ligases may have 

physiological significance and correlate with measured rates of protein degradation. This has 

certainatly been shown in animal models. Wang and colleagues (2006) studied the influence of 
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insulin resistance, a common feature of many catabolic diseases, on muscle atrophy using the 

db/db mouse model. They observed that these insulin resistance mice had reduced muscle mass 

and increased rates of muscle protein degradation as measured by tyrosine release into the media. 

Rosiglitazone, an insulin sensitizer, was administered to a group of the db/db mice, and resulted 

in an increase in muscle mass, and in PI3-K activity, and a reduction in muscle proteolysis rates. 

This was also seen with a significant reduction in the mRNA expression of MuRF-1 and MAFbx, 

consistent with the decline seen in muscle protein breakdown rates. A similar finding was 

reported by Crossland et al. (2008) who reported in a model of sepsis, a reduction in muscle 

protein:DNA ratio was seen with increases in the expression of MuRF-1 and MAFbx. However, 

these results are yet to be demonstrated in humans. 

 

Recent studies by Crossland et al. (2008, 2010) and Constantin et al. (2007) have highlighted a 

potential role for FOXO transcription factors in the generation of muscle insulin resistance by 

identification of another target, pyruvate dehydrogenase kinase 4 (PDK4). Activation of FOXO 

(reduced phosphorylation) results in an increase in transcription of PDK4 which phosphorylates 

and inactivates pyruvate dehydrogenase complex, preventing the conversion of pyruvate to 

acetyl-CoA and impairing carbohydrate oxidation. This suggests there is a common pathway that 

activates the loss of muscle protein and impairs muscle carbohydrate oxidation involving 

activation of the FOXO family of transcription factors. 

 

 

1.12 Insulin signalling pathway 
In human skeletal muscle, insulin and IGF-1 exert a major anti-catabolic effect preventing 

initiation of protein degradation (Goldspink, 2006). 

 

Insulin signalling propagates through three major pathways, Phosphatidylinositol 3 kinase (PI3-

K), MAPK (mitogen-activated protein kinase) and Cbl/CAP (Cbl-associated pathways). As this 

thesis focuses on the initiation of protein synthesis and signalling to protein degradation, only the 

PI3-K pathway will be discussed.  
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1.12.1 PI3-K pathway 

Insulin and IGF-1 signalling through the PI3-K pathway plays a key role in promoting muscle 

growth, repair and the maintenance of muscle mass (Goldspink, 2006). The insulin receptor has 

two α extracellular subunits and two transmembrane β subunits connected by disulphide bridges 

(Seino et al. 1989). Insulin binds to its receptor on the outside surface of the cell causing a 

conformational change that triggers tyrosine kinase activity on the β subunits and 

autophosphorylation of the β insulin receptor subunit at several tyrosine residues (Sykiotis and 

Papavassiliou, 2001). This activation of tyrosine kinase causes phosphorylation of insulin 

receptor substrates 1 and 2 (Sykiotis and Papavassiliou, 2001), which then act as a docking site 

for proteins containing Src-homology-2 (SH-2) domains including the p85 regulatory subunit of 

PI3-K. The binding of the SH-2 domain to the insulin receptor substrate – 1 (IRS-1) stimulates 

the activity of the P110 catalytic subunit of the PI3-K molecule resulting in the conversion of 

phosphatidylinositol 4,5-bisphosphate (PIP2) to PIP3 which is an important second messenger in 

the action of insulin. PIP3 recruits PDK1 (3-Phosphoinositide-dependent kinase 1) and protein 

kinase B (PKB, also known as Akt) to the plasma membrane where PKB becomes activated 

(Cohen, 2006). Downstream of PKB, but upstream of the mammalian target of rapamycin 

(mTOR) are the Tuberous Sclerosis Complex proteins (TSC), TSC1 also known as hamartin and 

TSC2, also known as tuberin. When present as a hetrodimer, the TSC1-TSC2 complex inhibits 

mTOR indirectly by converting a small G protein, ras homolog enriched in brain (rheb) from the 

active GTP-bound state into the inactive GDP-bound state (Corradetti and Guan, 2006; 

Jastrzebski et al. 2007; Frost et al. 2009). PKB phosphorylates TSC2 at Ser939 and Thr1462 

residues (Rosner et al. 2008) degrading the TSC1/TSC2 complex and therefore increasing the 

activity of rheb and ultimately mTOR. It has recently been shown that rheb up regulates the 

activity of mTOR via the association with FKBP38, a member of the FK506 binding protein 

family (FKBP) relieving FKB38’s inhibition on mTOR (Rosner et al. 2008). Downstream targets 

of mTOR are P70S6K and 4E-BP1, which are both regulators of the translational machinery (Hay 

and Sonenberg, 2004) and allows initiation of protein synthesis (Figure 1.8). 
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Figure 1.8. Schematic representation of the PI3-K/PKB pathway. 

This figure was adapted from the information cited in Cohen (2006); Sykiotis and Papavassilou 

(2001); Hay and Sonenberg (2004); Lizcano and Alessi (2002). 
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1.12.2 PI3-K 

PI3-K is a lipid kinase consisting of a p110 catalytic subunit and a p85 regulatory subunit that 

contains two SH2 domains that interact with the IRS proteins and is a key protein in the 

metabolic action of insulin. There are three classes of PI3-K, but the most likely form to be 

involved with insulin signalling is Class 1a (Shepherd et al. 1998) that is sensitive to activation 

by growth factors, but is not sensitive to amino acids. Upon IRS-1 phosphorylation, PI3-K is 

recruited to the membrane where it converts PIP2 to PIP3. Recent evidence shows PI3-K is an 

important regulator of proteolysis and suppressed activity of this kinase by acidosis has been 

implicated in the accelerated muscle protein degradation in CKD (Franch et al. 2004). The 

activation of mTOR complex 1 (mTORC1) by insulin appears to be mediated by P13-K as 

blockade using wortmannin inhibits the phosphorylation of 4E-BP1 and P70S6K which are 

downstream targets of mTORC1.  

 

 

1.12.3 Protein Kinase B (PKB) 

PKB is a serine/threonine phosphatidylinositol – regulated kinase and is a critical mediator of 

mTOR activity sitting at the crossroads between protein synthesis and degradation, and playing a 

central role in the regulation of glucose and protein metabolism, motility, and cell growth and 

survival (Fayard et al. 2005). There are three isoforms of PKB, α, β and γ. The most important 

isoform in muscle seems to be PKBβ which is also the dominant isoform in insulin responsive 

tissues (Kandel and Hay, 1999). In order to become fully activated, PKB must be phosphorylated 

on two sites, Ser473 and Thr308. Ser473 is phosphorylated first by rictor that is bound to the 

mammalian target of rapamycin complex 2  (mTORC2) and is required for the localisation of -

PKB to the membrane (Sarbassov et al. 2005). PKB contains a pleckstrin homology domain that 

binds to PIP3 with high affinity, exposing the Thr308 residue and allowing phosphorylation by 

PDK-1 (Cohen, 2006; Scheid et al. 2002). Once activated, PKB dissociates from the membrane 

and phosphorylates downstream targets such as TSC2 (Kimball, 2007) and AS160 (Sano et al. 

2003). The phosphorylation of AS160 results in the inactivation of its GTPase activity leading to 

the accumulation of GTP-bound Rab (a small G-protein required for vesicle trafficking) and 

promotes the translocation of GLUT-4 to the plasma membrane (Cartee and Funai, 2009; Thong 

et al. 2005). 
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1.12.4 Mammalian target of rapamycin (mTOR) 

The mammalian target of rapamycin is a 289kDa serine/theronine protein kinase that regulates 

many aspects of cell growth, notably the regulation of translation through the phosphorylation of 

P70S6K  and 4E-BP1 (Corradetti and Guan, 2006) and the phosphorylation of these two proteins 

is often used as a marker of mTOR activity (Hay and Sonenberg, 2004). mTOR exists in two 

complexes, mTORC1 and mTORC2. mTORC1 consists of three proteins, mTOR, MLST8 and 

raptor (regulatory associated protein of mTOR) and is involved in the control of translation and 

of cell growth in response to nutrients and growth factors. mTORC2 consists of mTOR, MLST8 

and rictor (rapamycin insensitive companion of mTOR) and is a rapamycin insensitive protein. It 

controls the actin cytoskeleton dynamics and the phosphorylation PKB on the Ser473 residues 

(Cohen, 2006; Um et al. 2006). It is raptor that binds mTORC1 to P70S6K and 4E-BP1 and 

facilitates their phosphorylation (Corradetti and Guan, 2006). mTOR is activated by growth 

factors and is also a nutrient sensing protein that is capable of being activated by amino acids 

(Hay and Sonenburg, 2004). Insulin and IGF-1 activate mTOR through the PI3-K/PKB 

signalling pathway, whilst amino acids possibly signal to mTOR through a type III PI3-K (a 

nutrient sensing isoform) that is not activated by insulin and does not phosphorylate PKB (as in 

traditional PI3-K signalling), but phosphorylates mTORC1 directly (Kimball, 2007; Evans et al. 

2008). 

 

If signalling through mTOR is inhibited using rapamycin, cell growth and protein accretion is 

inhibited. Bodine and colleagues (2001a), demonstrated that 14 days of overload of the plantaris 

muscles by removal of the synergists resulted in an increase in the size of the overloaded leg by 

45% compared to the control, however, this effect was abolished when rapamycin was 

administered demonstrating the powerful effect of mTOR signalling. 

 

Studies have shown that mTOR activity can also be negatively regulated by DNA damage 

responses protein 1 (REDD-1) that acts to restore the TSC1-TSC2 complex and subsequently 

inhibits rheb (DeYoung et al. 2008; Frost et al. 2009). Expression of this protein has been found 

to be increased under conditions of hypoxia (Brugarolas et al. 2004).  

 

 

 

 



 

37 
 

1.12.5 S6 kinases 

Mammalian cells contain two genes for S6 kinases, giving rise to S6K1 (also known as P70S6K) 

and S6K2. P70S6K was discovered much earlier and as much more is known about the function 

of this protein it will be discussed here in more detail than S6K2. Downstream targets of S6Ks 

are ribosomal protein S6 (rpS6) and eIF4B (Yang et al. 2008; Holz et al. 2005). 

 

The activity of P70S6k is regulated by mTORC1, specifically by Raptor (Corradetti and Guan, 

2006) and is phosphorylated in a sequential manner on a number of different residues, Ser411, 

Ser418, Thr421 and Ser424 by mTOR which then allows phosphorylation of Ser389 and Ser371 also 

by mTOR and finally allowing PDK1 to phosphorylate P70S6K on its Thr229 residue (Jastrzebski 

et al. 2007). In the inactive form, P70S6K along with 4E-BP1 are bound to eIF3, part of the pre-

initiation complex and, following stimulation by growth factors and nutrients, both P70S6K and 

4E-BP1 are phosphorylated by mTORC1 causing their dissociation from this complex 

(Corradetti and Guan, 2006). 

 

The importance of S6K as a growth effecter became apparent when the gene for P70S6K was 

successfully knocked out (Shima et al. 1998). These knockout mice are 20% smaller at birth, 

glucose intolerant and have low insulin levels due to a reduction in β cell volume. It was 

observed that there was an increase in S6K2 expression, but this was unable to reverse the 

growth defect caused by this genotype. Interestingly, the transcription of the 5’ terminal 

oligopyrimidine (5’ TOP) mRNA’s (see Section 1.12.6) was intact indicating that the low birth 

size was not due to a decrease in the translational machinery (Shima et al. 1998). Those mice 

null for the P70S6K gene also had a muscle atrophy phenotype despite no alteration in 

phosphorylation of PKB or 4E-BP1, indicating that P70S6K plays a key role in IGF-1 induced 

skeletal muscle hypertrophy (Um et al. 2006) 

 

 

1.12.6 Ribosomal protein S6 (RpS6) 

RpS6 is a component of the 40S subunit of the ribosome and is phosphorylated on five residues, 

Ser235, Ser236, Ser240, Ser244 and Ser247 by ribosomal protein S6 kinase (rpS6K) (Ruvinsky et al. 

2005). Evidence from knockout mice show both P70S6K and S6K2 are required for the activation 

of rpS6, but predominantly S6K2 is required (Pende et al. 2004). Despite its discovery many 

years ago, the precise biological function of rpS6 remains obscure (Proud, 2007). However, the 
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phosphorylation of rpS6 correlates with protein synthesis rates and phosphorylated rpS6 is found 

at the mRNA binding site of 40S ribosomes, so it probably has a significant translational 

function. It has been suggested that rpS6 is involved in the translational control of the 5’TOP 

mRNA’s that encode proteins associated with the assembly of the translational machinery 

(Ruvinsky et al. 2005). However, as described above, P70S6K-/- mice have no defects in the 

translation of these mRNA’s indicating that rpS6 phosphorylation is not required for this (Shima 

et al. 1998) and in fact these mice did not display any translation related phenotype. In support of 

these findings by Shima and colleagues (1998), rpS6-/- mice have a reduction in cell size, but not 

body size and a defective glucose homeostasis, but normal rates of protein synthesis (Ruvinsky, 

2005). 

 

 

1.12.7 Eukaryotic Initiation Factor 4E- Binding Protein 1 (4E-BP1) 

The efficiency of mRNA binding to the 40S ribosome depends upon the availability of 

eukaryotic initiation factor 4e (eIF-4E) (see Section 1.10.1 above). When signalling through the 

PI3-K pathway is low and therefore anabolic signalling to protein synthesis is low, eIF4E is 

bound to 4E-BP1 sequestering it away from other initiation factors. However, when demand for 

protein synthesis increases, 4E-BP1 is hyper-phosphorylated. This dissociates the eIF4E:4E-BP1 

complex thereby releasing eIF4E. Once released, eIF4E can bind with eIF4G and eIF4A creating 

the initiation complex eIF4F and allowing cap-dependent mRNA translation initiation (Shah et 

al. 2000). 4E-BP1 is phosphorylated at many sites by mTORC1 stimulated by growth factors and 

nutrients. In humans these are Thr37, Thr46, Ser65, Thr70, Ser83 (Bai and Jiang, 2010), with the 

first four being of particular importance, and upon phosphorylation of Ser65, eIF4E is released 

from its complex with 4E-BP1 (Hay and Sonenberg, 2004). 

 

 

1.12.8 Activation of PKB/mTOR in relation to protein synthesis in humans 

Results from studies using cell culture and small mammals suggest that insulin activates mTOR 

and up-regulates protein synthesis rates (Kimball et al. 1994; Biolo et al. 1995).  However, there 

is evidence to suggest that there is some dissociation between insulin signalling and protein 

synthesis rates in humans.  Greenhaff et al. (2008) investigated the effect of insulin on muscle 

protein synthesis and breakdown rates and changes in phosphorylation of anabolic signalling 

proteins in the presence of a continuous supply of amino acids in healthy human subjects. Four 



 

39 
 

insulin concentrations were used, 5, 30, 70 and 180 mU/l that were maintained using the insulin 

clamp technique. They observed that with an increasing plasma insulin concentration there was a 

dose-response effect on the phosphorylation status of PKB and P70S6K and that the 

phosphorylation of mTOR and 4E-BP1 was increased when plasma insulin concentrations were 

increased from 5 to 30 uM/l, but no further changes were seen when insulin concentrations were 

increased to 70 and 180 uM/l. However, these changes in phosphorylation status was seen to 

occur with no corresponding change in muscle protein synthesis rates measured from [l-13C] 

Leucine incorporation into the quadriceps muscle. Glover et al. (2008) investigated the effect of 

14 days unilateral knee immobilization on muscle protein synthesis rates in the quadriceps 

muscle. They found immobilization did result in decreased rates of protein synthesis compared to 

the non-immobilized leg and this was unable to be restored by amino acid infusion. The changes 

in phosphorylation status of PKB, mTOR and P70SK6 were not easily interpreted and as 

Greenhaff et al. (2008) had observed previously, didn’t follow the changes in protein synthesis 

rates. This discrepancy in muscle protein synthesis rates and phosphorylation status of proteins 

thought to be important in anabolic signalling has also been demonstrated by de Boar and 

colleagues (2007) who also reported that lower leg immobilization resulted in reduced rates of 

myofibrillar protein synthesis with no corresponding changes in the phosphorylation of any of 

the proteins in the PI3-K pathway.  Finally, Wilkinson et al. (2008) compared the effects of 10 

weeks of resistance or endurance training on muscle protein synthesis rates and activation of the 

signalling proteins in the PKB/mTOR pathway. They observed that resistance exercise training 

lead to a significantly greater increase in resting muscle protein synthesis rates compared to 

endurance exercise, which was associated with changes in mitochondrial protein synthesis rates. 

This increase in muscle protein synthesis was also seen to occur with no obvious change in the 

phosphorylation of the regulatory proteins involved in translation initiation. These studies 

suggest that this pathway may be more complex in humans than has previously been described in 

rodents and that using the phosphorylation status of these proteins alone may cause misleading 

conclusions on the rates of protein turnover in humans and so caution may be required when 

interpreting this data. 
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1.13 The coupling of insulin signalling, glucocorticoid and activation of the 

ubiquitin-proteasome system in metabolic acidosis 

 In early experiments in which rats with intact kidneys were subjected to metabolic acidosis, an 

increase in skeletal muscle protein degradation was observed (May et al. 1986). However, 

depletion of ATP from the muscle abolished this effect demonstrating that the acceleration of 

muscle wasting was via a pathway that consumed energy (Mitch et al. 1994), i.e. the ubiquitin 

proteasome system, that is now accepted as a major contributor to mscle wasting in acidosis and 

uraemia (Lecker et al. 2006). Evidence from uraemic patients has shown that there is an increase 

in the expression of mRNA encoding ubiquitin and some proteasome subunits in CKD (Mitch 

and Goldberg, 1996), and correction of acidosis by sodium bicarbonate results in a decrease in 

the expression of ubiquitin (Pickering et al. 2003). As discussed in Section 1.11.3 changes in 

expression of the E3 ligases MuRF-1 and MAFbx have been used to infer changes in proteolysis. 

To date, only one study has investigated the effect of CKD on MuRF-1 and MAFbx. Lecker et 

al. (2004) found by Northern blot that the expression of MuRF-1 and MAFbx was increased in 

uraemic rats, but as protein degradation was not measured directly, we are unable to conclude if 

this change in expression conferred an increase in protein degradation.  

It was aslo discussed in Section 1.8.2, that under conditions of catabolic stress, glucocorticoids 

may exert a permissive effect for the catabolic action of acidosis in vivo. This possible catabolic 

action of glucocorticoids also appears to be primarily through activation of the ubiquitin 

proteasome pathway. Bodine et al. (2001b) observed that dexamethasone administered to normal 

rats resulted in a 10-fold increase in expression of both MuRF-1 and MAFbx. This was also seen 

in vitro by Sandri et al. (2004), an effect that was rapidly suppressed by insulin. However, the 

MAFbx promoter lacks a glucocorticoid response element (GRE) and so the action of 

glucocorticoid on this ligase must be indirect and is most likely to be through expression of the 

transcription factor FOXO that controls expression of both MuRF-1 and MAFbx (Sandri et al. 

2004).  MuRF-1 on the other hand, does have a GRE upstream of the promoter so it appears this 

E3 ligase is directly activated by glucocorticoids and FOXO-1 synergistically (Waddell et al. 

2008). Expression of FOXO-1 and FOXO-3 have been seen to be raised in myotubes in response 

to glucocorticoids in vitro (Imae et al. 2003) and led to the conclusion that glucocorticoids 

activate a transcriptional programme thought to be responsible for activating muscle atrophy 

(Schakman et al. 2008).  
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Glucocorticoids have also been shown to reduce protein synthesis rates. Shah et al. (2000) 

demonstrated that L6 myotubes incubated with dexamethasone have a reduced phosphorylation 

of 4E-BP1 and P70S6K, ultimately resulting in a reduction in protein synthesis. A study by Wang 

and colleagues (2006) found an enhanced REDD-1 expression following dexamethasone 

administration in vivo, an effect that has been blocked using RU38486 in vitro (Shah et al. 2002) 

resulting in an increase in phosphorylation of these downstream targets of mTOR, suggesting 

that glucocorticoids exert their effects upon protein synthesis via regulation of mTOR activity. 

However, as discussed earlier (see Section 1.8.2) these studies use relatively high doses of 

glucocorticoids, and in light of the study by Crossland et al. (2010) who found a low dose of 

dexamethasone was actually able to suppress muscle protein degradation induced by 

endotoxaemia, the applicability of this data to humans where glucocorticoid concentrations are 

much lower, is questionable. However, as endotoxaemia is not characterized by acidosis, it is 

possible that in when combination with acidosis, the effect of glucocorticoids is catabolic and not 

anabolic, but much more data is needed before firm conclusions can be drawn. 

 

In CKD, metabolic acidosis blunts the action of insulin even in non-diabetic patients. This effect 

is not just the result of lower insulin or IGF-1 concentration, as it has been reported that uraemia 

and acidosis are typically associated with normal or high insulin levels (Defronzo et al. 1981).  

 

This insulin resistance appears not to result from a defect of the insulin receptor (Cecchin et al. 

1988) and has therefore been attributed to post-receptor defects, possibly through a decrease in 

signalling through the PI3-K/PKB pathway, an impairment of which has been observed during 

atrophy (Bodine et al. 2001a). In a study by Bailey et al. (2006), it was demonstrated that the 

muscles of acidotic CKD rats had abnormalities in the IRS-1-associated PI3-K activity that were 

accompanied by a reduction in the phosphorylation of PKB, leading to activation of the 

transcription factor FOXO. This PKB inhibition also activated caspase-3 which is known to lead 

to the initial cleavage of the myofibrils prior to degradation by the UPS (Du et al. 2004) and 

generates the characteristic 14kDa actin cleavage fragment (Section 1.11.2) which has been 

found to be higher in the muscle of maintenance haemodialysis patients than in healthy controls 

(Workeneh et al. 2006). There was also an increase in the activity of IRS-2 to compensate for the 

decrease in IRS-1-associated PI3-K activity, but this was unable to prevent the decrease in PKB 

phosphorylation (Bailey et al. 2006). In addition to this, as previously described in Section 

1.11.3, activation of FOXO and therefore PDK4 may also have a role to play in the impairment 
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of muscle carbonhydrate oxidation and therefore in the generation of insulin resistance in CKD 

(Constantin et al. 2007; Crossland et al. 2010). However, to date, there is no data to support this 

speculation. 

 

The defect in the IRS-1-associated PI3-K activity during metabolic acidosis may arise partly 

from the secondary increase in glucocorticoid secretion during acidosis (May et al. 1986, 

Pickering et al. 2003). In rats, a pharmacological dose of dexamethasone results in a reduced 

content of both IRS-1 and PI3-K in muscle and a reduced IRS-1 associated PI3-K activity (Saad 

et al. 1993).  Hu et al. (2009) discovered that endogenous glucocorticoids bind to the 

glucocorticoid receptor which then competes with IRS-1 for PI3-K binding, further reducing 

IRS-1-associated PI3-K activity and PKB phosphorylation, thus promoting atrophy. This 

mechanism has yet to be confirmed in humans, and the direct effect upon protein degradation 

rates would need to be determined in light of the suggestion of a dissociation between anabolic 

signalling and protein turnover in humans (Greenhaff et al. 2008). 

 

 

1.14 Depletion of intramuscular amino acids 

It is well established that branched chain amino acids (BCAA), in particular Leucine, are 

anabolic in muscle, capable of stimulating muscle protein synthesis (Rennie et al. 2006). Under 

conditions of catabolic stress, depletion of these BCAA could potentially be a limiting factor for 

protein synthesis (Bergström et al. 1990). Therefore, the depletion of intramuscular amino aicds 

is thought to be an important early step in the muscle wasting process and abnormalities have 

been reported in both muscle and plasma amino acid concentrations and in the distribution of 

amino acids between cells and extracellular fluid in CKD patients compared to healthy 

individuals (Bergström et al. 1990). Early studies of patients with untreated chronic uraemia 

reported low intramuscular concentrations of threonine, lysine, arginine, valine and taurine with 

low plasma concentrations of leucine, lysine, phenylalanine and again, taurine (Bergström et al. 

1990; Alvestrand et al. 1982; Bergström et al. 1989). It appears that some, but not all of these 

abnormalities can be corrected with nutrition (Alvestrand et al. 1978). However, it has also been 

observed that rats with chronic renal failure exhibit a similar pattern of amino acid depletion 

despite the same food intake as control rats (Haines et al. 1989) indicating that is not a result of 

malnutrition, but of factors relating to uraemia. 
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Once the patients began haemodialysis, depletion of intramuscular valine and serine was still 

observed and the muscle/plasma concentration gradients for glycine, citrulline and arginine were 

low (Bergström et al. 1990). A strong positive correlation was also observed between the 

intramuscular valine concentration and the pre-dialysis plasma bicarbonate concentration in these 

haemodialysis patients, suggesting that metabolic acidosis may have a role in intramuscular 

amino acid depletion (Bergström et al. 1990). This was confirmed in a later study by rigorous 

correction of metabolic acidosis by use of high bicarbonate haemodialysis fluid which 

significantly increased the intramuscular concentrations of alanine, isoleucine, leucine and 

valine; and increased the muscle/plasma amino acid concentration gradients for these amino 

acids as well as arginine, asparagine, glycine, serine and histidine (Lofberg et al. 1997).  These 

changes were accompanied by a statistically significant fall in the plasma concentrations of 

glutamine, glycine and histidine. These effects on concentration gradients were observed in 

fasted patients, thus eliminating transient disturbances to amino acid concentrations caused by 

amino acid intake from the most recent meal. This implies that the active transport mechanisms 

responsible for pumping amino acids into the muscle cells, and for maintaining the intracellular 

concentrations higher than in extracellular fluid, are impaired in metabolic acidosis. 

 

1.15 The SNAT/slc38 amino acid transporters 
The System N and A Neutral Amino Acid Transporters (SNATs) are members of the slc38 gene 

family and are sub-divided into System A and System N transporters according to their substrate 

specificities (i.e. the solutes that they carry). System A has three isoforms, SNATs 1, 2 and 4, 

and System N has two isoforms, SNATs 3 and 5 (Mackenzie and Erickson, 2004). 

 

System A transporters were originally described in the 1960s  as sodium-dependent transporters 

that carry small zwitterionic (neutral) amino acids into the cell along with one Na+ cation that 

binds to the transporter first (Mackenzie and Erickson, 2004). This is a secondary active process 

utilising the Na+ gradient set up by the Na+,K+-ATPase pump (Palii et al. 2006). The property of 

System A transporters distinguishing them from the System N transporters is the ability to 

transport N-Methylamino acids, for example, α-Methylaminoisubyrate acid (MeAIB) (Yao et al. 

2000), and the uptake of this synthetic amino acid is often used as a measure of System A 

transport activity (McGivan and Pastor-Anglada 1994). System A’s naturally occurring 

substrates include alanine, asparagine, cysteine, glutamine, glycine, methionine and serine. In 
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contrast System N only carries glutamine, histidine and asparagine (Mackenzie and Erickson, 

2004). System A is regulated by environmental conditions, for example, it is up-regulated by 

insulin and amino acid starvation (Yao et al. 2000), is activated by exercise (King et al. 1994) 

and, of particular relevance to amino acid abnormalities in metabolic acidosis, it is  strongly 

inhibited by low pH (Mackenzie and Erickson, 2004).  

 

The only SNAT transporter that is strongly expressed in skeletal muscle is SNAT2 (Mackenzie 

and Erickson, 2004) so, for the purposes of this thesis, System A activity in muscle will be 

regarded as a consequence of the SNAT2 transporter. 

 

 

1.15.1 The SNAT2 amino acid transporter 

SNAT2 is widely expressed in mammalian tissue and is found in skeletal muscle, brain, adrenal 

glands, liver, kidney, lungs and skin (Mackenzie and Erickson, 2004) and appears to be the most 

highly regulated isoform in response to endocrine and nutrient stimuli (Baird et al. 2006, 

McDowell et al. 1998). SNAT2 directly accumulates amino acids, for example L-Glutamine, 

inside the cell, maintaining an intracellular L-Glutamine concentration that is approximately 10 

times greater than in the extracellular fluid (Mittendorfer et al. 2001). As with System A 

transporters in general (Section 1.15), the activity of this transporter is up-regulated in response 

to insulin (McDowell et al. 1998) and amino acid starvation (Mackenzie and Erickson, 2004) and 

is suppressed when the external pH falls, over the physiologically relevant range (pH 7.8 – 7.0) 

(Baird et al. 2006). 

 

This suppressed activity by low pH was initially thought to be caused by H+ directly competing 

with Na+ for the cation binding site (Chaudhry et al. 2002). However, more recently, mutation of 

the c-terminal histidine residue of SNAT2 has been shown to blunt the pH sensitivity, suggesting 

that this terminal histidine has functional effects in the sensing of H+, as it does in other 

membrane proteins (Zong et al. 2001; Uchiyama et al. 2003). Baird and colleagues (2006) found 

that reducing the extracellular pH resulted in a reduced affinity for Na+ binding to SNAT2, and 

pre-treatment of the cells with the histidine specific reagent DEPC reduced the pH sensitivity, 

leading to the conclusion that extracellular H+ affects SNAT2 transport activity by interacting 

with one or more conserved histidine residues which indirectly affect allosteric binding of Na+. 
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As well as being readily detectable at the plasma membrane (Hyde et al. 2002), SNAT2 is also 

reported to be present in intracellular membranes and is translocated to the plasma membrane in 

response to insulin in a manner similar to GLUT4 translocation (Hyde et al. 2001, 2002; 

Hatanaka et al. 2006). However, there is no evidence that internalisation of SNAT2 has any role 

in the reduction of its activity in response to low pH. 

 

 

1.15.2 SNAT2, amino acid depletion and suppression of protein synthesis 

As discussed in Section 1.14, intramuscular amino acid depletion may be an early contributor to 

cachexia (Bergström et al. 1990), but the precise mechanism of this depletion in vivo is not well 

defined. 

 

Previous work from our laboratory using cultured L6-G8C5 myotubes has suggested a role for 

SNAT2 in the regulation of intramuscular amino acid content and signalling through mTOR to 

protein synthesis (Evans et al. 2007). Inhibition or silencing of the SNAT2 transporter resulted in 

reduction of the intracellular concentration of a number of amino acids, notably L-Glutamine and 

the overall pattern of amino acid depletion was similar to the amino acid depletion observed in 

the muscles of acidotic CKD patients (Bergrstöm et al. 1990; Lofberg et al. 1997). A number of 

these depleted amino acids are not carried on SNAT2, for example, L-Leucine. This suggests 

that SNAT2 and the System L amino acid transporter (that is capable of transporting L-Leucine) 

are coupled, with System L exchanging the intracellular amino acids accumulated by SNAT2 for 

extracellular L-Leucine. The depletion of intracellular amino acids observed on inhibition or 

gene silencing of SNAT2 was accompanied by impaired signalling through mTOR, implying 

that SNAT2 has a role in the regulation of mTOR through the widely documented effect of free 

amino acids on this kinase (Kimball et al. 1999). 

 

 

1.15.3 SNAT2 and Proteolysis 

Further results from this laboratory have shown that silencing of SNAT2 using small interfering 

RNAs (SiRNA) stimulates proteolysis rates in L6-G8C5 myotubes, accompanied by an 

impairment in the activation of PI3-K and PKB in the presence of insulin (Evans et al. 2008).  
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The resemblance between these effects of SNAT2 silencing in myotubes in vitro and the effects 

of metabolic acidosis on skeletal muscle in vivo suggests that, owing to its sensitivity to pH, 

SNAT2 may have a functionally significant role in the control of protein synthesis and 

degradation in uraemic metabolic acidosis. The activity of System A transporters has been 

reported to be low in the skeletal muscle of rats with acute uraemia incubated ex vivo (Maroni et 

al. 1990); and the activity in skeletal muscle of CKD patients (assessed by measuring uptake of 
11C-MeAIB by positron emission tomography) is also reported to be low (Asola et al. 2001), but 

it is important to emphasise that there is no direct evidence yet for SNAT2 mediating the effects 

of acidosis in vivo.   

 

 

1.16 Exercise in CKD patients 
Recent published guidelines by the UK National Institute for Health and Clinical Excellence 

(NICE) gave the recommendation that CKD patients “should be encouraged to take exercise” 

(NHS, 2008), but there are currently no specific exercise guidelines for this population, unlike 

cardiac and pulmonary populations. However, exercise in CKD populations is an area that is 

gaining in popularity and momentum and the first sessions were dedicated to it at a recent 

congress (World Congress of Nephrology, Milan, 2009). There is a growing body of research in 

this area that will hopefully lead to the implementation of exercise programmes for these 

patients. 

 

CKD patients have a number of biochemical abnormalities such as reduced insulin sensitivity 

and glucose tolerance (Goldberg et al. 1983, 1986), hypertension (Johansen, 2005) and 

dyslipidemia (Bronas, 2009). These, and an abnormal internal milieu, contribute to a vastly 

increased risk of cardiovascular events, which is the biggest cause of mortality in these patients 

and poses a significant challenge to clinicians (Bronas, 2009). In the healthy population, exercise 

helps to reduce risk factors for CKD and so exercise in this population may also help to reduce 

mortality and increase quality of life. As in the healthy population, sedentary behaviour carries 

with it an increased risk of all-cause mortality. O’Hare et al. (2003) observed 2,837 patients for a 

one year period and showed that the sedentary patients had a 62% greater risk of mortality than 

those patients who were more active. The majority of research into exercise implementation has 

focused on the dialysis population and has shown significant benefits (Kouidi et al. 1998; Kopple 
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et al. 2007; Koufaki, et al. 2002), but there has been very little research performed using the pre-

dialysis population.  

 

1.16.1 Exercise tolerance and capacity in CKD patients 

Patients on dialysis are extremely inactive compared to their healthy counterparts (Johansen et al. 

2000) and Painter et al. (2000) reported that 59% of HD patients participated in no physical 

exercise at all. This may be the result of a lack of encouragement to do so by their doctors or 

nurses (Johansen et al. 2003), an increase in co-morbidity as the disease progresses, a general 

feeling of being unwell, depression or cardiac dysfunction (Kouidi et al. 1998). This reduced 

exercise capacity is further compounded by anaemia (Painter, 2005), which it appears cannot be 

improved with exercise (Zabetakis et al. 1982; Painter et al. 1986).  

 

Many early studies reported that CKD patients have a reduced VO2peak compared to the healthy 

population (Barnea et al, 1980) and this has been reported to be up to 60% less (Painter, 2005) 

ranging from 17.0 mL/kg/min to 28.6 mL/kg/min (Kouidi et al. 1998; Lundin et al. 1981). Many 

studies have shown that with aerobic exercise, CKD patients can improve their VO2peak, with 

improvements ranging from 17% (Hagberg et al. 1983) up to 43% (Konstantinidou et al. 2002) 

and even improvements of 70% after one year of cycle ergometer exercise (Kouidi et al. 2004).  

A few studies have reported no improvement in VO2peak (Carney et al. 1983; Akiba et al. 1995) 

and this can probably be attributed to a low exercise intensity and a short duration of the exercise 

training period. Correction of anaemia with recombinant human erythropoietin (rHuEPO) results 

in a very small improvement in VO2peak (Painter and Moore, 1994) suggesting that this is not the 

main cause of a limited exercise capacity. 

 

 

1.16.2 Muscular abnormalities in CKD patients 

CKD patients exhibit severe muscular atrophy that appears to affect type II fibres more than type 

I (Kouidi et al. 1998). Many abnormalities are present at the ultra structural level, for example,   

swollen mitochondria, disappearance of the cristae and reduced matrix density (Kouidi et al. 

1998). Electron microscopy has shown Z-band degeneration, myofilament loss and accumulation 

of intracellular glycogen (Diesel et al. 1993) and fibre splitting, internalized nuclei and moth-

eaten fibres by light microscopy (Diesel et al. 1993). This atrophy has also been seen in non-

locomotor muscles demonstrating that these changes are unlikely to be caused purely by disuse, 
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and are probably due to uraemia (Sakkas et al. 2003). As well as the abnormalities in 

mitochondrial structure described above, these patients also exhibit dysfunctional intramuscular 

energy metabolism (Johansen et al. 2005), but the cause of this is currently unknown. Following 

a bout of exercise, there is a slowing in the recovery of phosphocreatinine (PCr) (Kemp et al. 

2004) and a reduced PCr level and pH and a higher Pi/ PCr ratio (Johansen et al. 2005), 

indicating their ability to recover from a bout of exercise is grossly impaired. In principle, 

exercise in CKD patients may worsen pre-existing metabolic acidosis through exercise-induced 

lactic acid generation and this may explain the abnormally prolonged and severe intramuscular 

acidification observed in these patients following exercise (Johansen et al. 2005).   

 

Several studies have reported an improvement in these muscular abnormalities with exercise 

training in haemodialysis patients. Kouidi et al. (1998) saw an increase in the fibre cross 

sectional area for type I by on average 25.9%, and 23.7% for type II following a six month 

mixed exercise programme, and similar changes were seen by Sakkas et al. (2003). A 

regeneration of degraded fibres and an improved architecture was observed following exercise 

training (Kouidi et al. 1998; Sakkas et al. 2003). The mitochondria were of a normal shape and 

size with normal orientation of the cristae (Kouidi et al. 1998), and there was an increased 

capillary content of the muscle (Sakkas et al. 2003). This suggests that skeletal muscles of CKD 

patients are able to respond to exercise training in the same way as a healthy individual, but 

whether they are able to adapt to the same extent is unknown. 

 

CKD patients generally have a reduced muscular strength compared to healthy controls 

(Johansen et al. 2003), but this can also be improved with resistance exercise training. Castaneda 

et al. (2001) saw a 32% increase in muscle strength in pre-dialysis patients following a 12 week 

programme compared to a 13% reduction in strength in the non-exercising CKD control group. 

Headley et al. (2002) conducted a 12 week resistance exercise programme in haemodialysis 

patients and saw an improvement in peak torque of the leg extensors and an improvement in 

several physical functioning tests, with no adverse event reported in either study. Muscle wasting 

and weakness are well established predictors of increased mortality (Kosmadakis et al. 2010) and 

so any improvement in these parameters may lead to a reduced mortality risk. 
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1.16.3 Cardiac Function 

It is extremely important for renal patients to maintain good blood pressure control, as 

hypertension can accelerate progression of kidney disease. A study by Miller and colleagues 

(2002) was designed solely to examine the effect of an intradialytic exercise programme on 

blood pressure. They reported that after six months of cycling exercise there was no significant 

change in blood pressure compared to the control patients, but patients were taking on average 

36% less antihypertensive medications, an annual saving that the authors calculated was 

US$885/patient. An improvement in blood pressure has also been reported by Boyce et al. 

(1997) following four months of exercise training; an improvement that was reversed by two 

months of detraining. 

 

 

1.17 Signalling events in response to exercise and training adaptations 
Resistance exercise training is mainly associated with muscle hypertrophy and an increase in 

strength and power. Endurance exercise training on the other hand is associated with adaptations 

that lead to an increase in oxidative capacity, resulting in a slower rate of muscle glycogen and 

blood glucose utilisation, an increased reliance upon fatty acid oxidation and a reduction in 

lactate production during submaximal exercise (Hollosky and Coyle, 1984). These adaptations 

include: increases in stroke volume and cardiac output resulting in a reduced heart rate, increased 

capillarisation and importantly, an increase in mitochondrial content (mitochondrial biogenesis) 

(Hood, 2009). Mitochondrial content can be doubled within six weeks of endurance training, but 

due to their short half life, repeated exercise is required to maintain these increased levels 

(Zierath and Hawley, 2004). The diverse adaptations to training that occur with endurance and 

resistance training result from different molecular events in the hours following the exercise 

bout. 

 

A bout of resistance exercise results in an increase in protein synthesis rates that can be 

maintained for up to 48 hours (Phillips et al. 1997). This increase in protein synthesis is thought 

to be brought about through an increase in signalling through the PI3-K/PKB pathway (Baar, 

2006; Nader, 2006). A single bout of resistance exercise can increase the activity of PI3-K 

(Hernandez et al. 2000) and increase PKB phosphorylation  (Nader and Esser, 2001) and P70S6K 

phosphorylation (Baar and Esser, 1999; Koopman et al. 2006) resulting in rpS6 and 4E-BP1 

activation, but only in the post-prandial state (Koopman et al. 2006; Witard et al. 2009). If 
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resistance exercise is performed in the fasted state, it appears that this increase in protein 

synthesis is suppressed due to AMPK activation, an important energy sensor that reduces the 

phosphorylation of 4E-BP1 (Dreyer et al. 2006). 

 

Endurance exercise, on the other hand, is not usually associated with hypertrophy and large 

increases in protein synthesis rates, but primarily with an increase in mitochondrial biogenesis 

and therefore mitochondrial content (Holloszy and Coyle, 1984). This adaptation requires the 

activation of a different pattern of signalling events. The long exercise duration results in an 

increase in the AMP:ATP ratio that activates AMPK, inhibiting ATP-consuming pathways and 

increasing carbohydrate and fatty acid oxidation (Wackerhage, 2006; Hawley, 2009). Exercise 

also results in calcium release from the sarcoplasmic reticulum, increasing intramuscular calcium 

concentrations (Wackerhage, 2006) that activate calmodulin-activated kinase (CamK). CamK 

and AMPK allow myocyte-enhancing factor 2 (MEF2) to bind to the proliferator-activated 

receptor γ coactivator 1α (PGC-1α). PGC-1α then increases the expression of nuclear respiratory 

factors 1 and 2 (NRF-1,2) that bind to promoters and activate transcription of genes encoding 

mitochondrial respiratory chain proteins (Kelly and Scarpulla, 2004).  NRF-1 also regulates the 

expression of mitochondrial transcription factor A (Tfam) that binds to mitochondrial DNA and 

induces mitochondrial biogenesis (Baar, 2006; Wackerhage, 2006; Hawley, 2009). 

 

There is some evidence that moderate intensity (75% VO2Max) endurance exercise can increase 

phosphorylation of mTOR that remains above basal for two hours after exercise (Mascher et al. 

2007). An increase in phosphorylation of PKB was seen one and two hours after exercise which 

returned to baseline after three hours. This delay in PKB phosphorylation suggests that mTOR is 

activated by PKB, but also by an alternative mechanism. There was, however, no signalling 

downstream of mTOR to P70S6K (Coffey et al. 2006), suggesting another role for mTOR 

activation following endurance exercise. There is currently a lack of agreement on the effect of 

endurance exercise upon PKB phosphorylation. Some studies report no change (Widegren et al. 

1998), but others do show an increase (Sakamoto et al. 2004). It is likely that this discrepancy 

arises from differences in the intensity and duration of exercise and in participant characteristics.    

 

As well as an increase in mTOR phosphorylation, Mascher et al. (2007) also reported a 

dephosphorylation of eukaryotic elongation factor 2 (eEF2), that is activated by eEF2 kinase 

(eEF2k), following one hour of exercise at 75% VO2Max that occurred with a lack of P70S6K 
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activation. It is thought that insulin acting through mTOR may inactivate eEF2 kinase thus 

dephosphorylating eEF2 that in its phosphorylated state serves to inhibit elongation, the major 

energy consuming step of protein synthesis (Proud et al. 2001).  

 

However, recent evidence from two other studies that concomitantly measured protein synthesis 

rates and the phosphorylation status of some of the proteins in the PI3-K/PKB pathway suggest 

that this pathway may be a little more complicated in humans than previously thought. 

Wilkinson et al. (2008) showed that an acute bout of single-legged endurance exercise was 

associated with an increase in the phosphorylation of PKB, mTOR and P70S6K, but this was seen 

without any changes in myofibrillar protein synthesis rates. Likewise, Greenhaff et al. (2008) 

saw that in healthy human subjects, a stepwise increase in plasma insulin concentrations resulted 

in stepwise increases in the phosphorylation of PKB and P70S6K, but this was also seen with no 

changes in muscle protein synthesis rates. These results suggest that using the phosphorylation 

status of proteins such as these described above as markers of protein turnover in muscle, may be 

an oversimplification.  

 

1.17.1 Exercise signalling in CKD 

There is very little information regarding signalling events following exercise in CKD and the 

only studies that have been performed were in rodents. Wang and colleagues (2009) found that 

as previously reported (Bailey et al. 2006), the skeletal muscles from CKD mice (subjected to 

partial nephrectomy) had a reduced phosphorylation of PKB. However, they reported that two 

weeks of treadmill running or two weeks of muscle overload were able to correct this defect, 

returning phosphorylation levels back to those seen in the sham-operated control mice. This was 

accompanied by an increase in phosphorylation (and hence inactivation) of the FOXO 

transcription factors in both modes of exercise and ultimately a suppression of muscle protein 

breakdown, as evidenced by a reduced level of the 14kDa actin fragment in the muscle. Muscle 

overload was able to increase phosphorylation of mTOR and its downstream target P70S6K and 

reverse the CKD-induced suppression of protein synthesis. Treadmill running, however, was 

unable to increase the phosphorylation of these downstream targets despite a small increase in 

PKB phosphorylation, and only small increases in protein synthesis rates were seen, which is 

consistent with results from healthy humans undergoing endurance training (Coffey et al. 2006).  
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Chen and colleagues (2008) observed that rats (both with surgically induced CKD and sham-

operated controls) were able to activate PKB and P70S6K to the same extent in muscle following 

muscle overload, which was also accompanied by a decrease in the accumulation of the 14kDa 

actin fragment in both groups and hence a decrease in myofibrillar degradation. This evidence 

suggests that overload can overcome the signalling defects that are present in uraemic muscle 

and can effectively activate the PI3-K/PKB pathway. 

 

 

 

1.18 Cell stretch in vitro  
Muscle protein synthesis is modulated by mechanical activity (Hornberger et al. 2006), but the 

mechanisms by which this occurs are only recently becoming understood. What is well known 

however, is that as discussed above in Section 1.12.1 myocyte growth is regulated by mTOR 

through activation of downstream substrates. Mechanically overloading a muscle results in 

hypertrophy and underloading leads to atrophy (Goldberg et al. 1975) suggesting that tension 

may be playing a role in muscle growth (Hornberger et al. 2006). Administration of rapamycin to 

rats with overloaded plantaris muscles prevents the occurrence of hypertrophy (Bodine et al. 

2001a) suggesting a role for mTOR in mechanically induced hypertrophy.  

 

In contrast, passive stretch may be exerting effects via a different mechanism. Vandenburg 

(1987) demonstrated that cyclic stretch applied to myotubes in vitro resulted in an increase in 

protein synthesis rates and an accumulation of cellular protein with a decrease in protein 

degradation. This has been confirmed in vivo by Hornberger and colleagues (2006) who 

observed that muscles from mice incubated and subjected to passive intermittent stretch ex vivo 

had increased the rates of protein synthesis, an effect that was completely blocked by rapamycin. 

They also saw an increase in the phosphorylation of P70S6K, without any change in PKB 

phosphorylation, suggesting that the increase in protein synthesis that is seen following passive 

stretch occurs via a PI3-K independent mechanism.  

 

However, more recent measurements in vitro suggest that the timing of the measurements of 

protein synthesis rate may be critical:  Atherton and colleagues (2009) found an inhibition of 

protein synthesis in cultured myotubes during cyclic stretch, in accordance with the inhibition of 

protein synthesis that is seen during (but not following) exercise in vivo. Following stretch in 
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vitro they found an increase in mTOR, P70S6K and 4E-BP1, but not PKB phosphorylation 

accompanied by an increase in protein synthesis rates (Atherton et al. 2009) supporting the 

earlier results of Hornberger et al. (2006). 

 

 

1.19 Limitations of exercise performance 
The factors limiting exercise performance in healthy individuals are a complicated and multi-

factorial set of process that depends on the duration and intensity of the exercise bout. As this 

thesis is primarily concerned with muscle metabolism, only fatigue originating in the skeletal 

muscle will be discussed here. 

 

During short duration high intensity exercise, ATP is replenished by the hydrolysis of 

intramuscular PCr stores, and through anaerobic glycolysis which results in the production of 

lactate. High intensity anaerobic exercise sees a rapid decline in the ATP and PCr concentration 

of the type II muscle fibres: following a 30 second maximal sprint, concentrations of ATP and 

PCr fall by approximately 40% and 70% respectively (Cheetham et al. 1986). This results in a 

reduced rate of glycolysis after approximately 20 seconds (Soderlund et al. 1992) and an 

accumulation of ADP resulting in a reduction in force production and ultimately, fatigue. Lactate 

production is also associated with the accumulation of H+ (causing acidosis) which is a 

commonly cited cause of fatigue. However, recent studies have shown that reduced pH may have 

little effect on muscle contraction and therefore fatigue at physiological temperatures (Wiseman 

et al. 1996; Westerblad et al. 1997) and so fatigue must result from another product of anaerobic 

glycolysis. Inorganic phosphate produced during the breakdown of PCr has been shown to 

inhibit force generation in human muscle (Wilson et al. 1988) possibly by interfering with cross 

bridge formation or disruption of calcium handling and sensitivity (Westerblad et al. 2002; Allen 

et al. 2008), and is now a candidate for one of the main causes of muscular fatigue (Westerblad 

et al. 2002).  

 

Fatigue during prolonged exercise in temperate conditions is mainly due to muscle glycogen 

depletion and a fall in muscle carbohydrate (CHO) oxidation rates (Sherman et al. 1983; Tsintzas 

et al. 1996). At fatigue, muscle glycogen concentrations have been found to be nearly depleted 

(Bergström et al. 1967) and the ingestion of CHO both before and during the exercise bout 

(Sherman et al. 1991; Coyle et al. 1986), improves performance. Muscle glycogen depletion 
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results in a reduced rate of ATP resynthesis, an increase in ADP and Pi concentrations, a 

decrease in the intermediates of the TCA cycle and therefore reduced oxidative ATP resynthesis 

(Maughan et al. 1997b). 

 

Limitations to exercise in CKD patients appear to stem primarily from the muscular 

abnormalities described in Section 1.16.2 as CKD patients frequently attribute the early 

termination of exercise to muscle fatigue (McMahon et al. 1999; Lundin et al. 1987). CKD 

patients have defective mitochondrial energy metabolism, there is an accelerated rate of decline 

of PCr stores during exercise (Durozard et al. 1993) and a slower recovery following exercise 

(Reviewed in Kosmadakis et al. 2010), but the precise mechanism for this defect is currently 

unknown. Biopsy studies performed in haemodialysis patients have also shown fibre type 

grouping, which suggests denervation and subsequent re-innervation. However, central 

activation of motor units has been found to be normal (Johansen et al. 2003). It is possible that 

acidosis has a greater role to play in the development of fatigue in these patients. Nishida et al. 

(1991) observed using 31-P NMR that there was a greater decline in sarcosolic pH during 

aerobic exercise in CKD patients compared to healthy controls and a slower rate of its recovery, 

an observation that has been confirmed by other groups (Durozard et al. 1993; Kemp et al. 

2004). Earlier studies have reported that an imposed mild metabolic acidosis by either NH4Cl 

administration or through diet manipulation was sufficient to reduce exercise capacity in healthy 

individuals during high intensity exercise (Jones et al. 1977; Greenhaff et al. 1987) and it was 

suggested that acidosis may have directly caused the early fatigue possibly by reducing the rate 

of glycolysis. However, the exact role acidosis played in the development of fatigue is unclear as 

it was later demonstrated that the acute correction of diet induced metabolic acidosis by 

bicarbonate supplementation failed to have an effect on time to exhaustion (Ball et al. 1996). It 

may be that under conditions of chronic metabolic acidosis, such as that in CKD, the role that 

acidosis plays in fatigue is significantly greater than when it is merely transient. CKD patients 

also appear to have a reduced ability to increase muscle blood flow during submaximal and 

maximal exercise compared to controls (Bradley et al. 1990) coupled with anaemia further 

reducing these patients ability to exercise. 
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1.20 Unanswered Questions and Aims 

Muscle wasting is a clinically significant problem in CKD patients which appears to be partly 

caused by a combination of metabolic acidosis and glucocorticoids. The correction of acidosis by 

sodium bicarbonate therapy has been shown to improve nitrogen balance and morbidity in these 

patients. Exercise has also been shown to provide benefits to patients receiving haemodialysis 

therapy, but there is little information in the literature regarding potential benefits of exercise to 

skeletal muscle in the pre-dialysis population, nor is it known whether combining correction of 

acidosis with exercise would yield additional benefits. CKD is associated with impaired insulin 

signalling that in uraemic rat models has been shown to lead to the suppression of protein 

synthesis and the stimulation of protein degradation. It is not known if insulin signalling is 

suppressed in human CKD patients, or if this signalling has a tight relationship to protein 

synthesis and degradation, which has been shown in animal models, but seems to be more 

doubtful in healthy humans. If there is impairment in insulin signalling, it is not known if this 

can also be overcome using exercise and what effect this would have on protein turnover. 

The acid load that CKD patients fail to excrete, leading to uraemic metabolic acidosis, arises 

largely from catabolism of the sulphur amino acid cysteine to sulphuric acid. The concentration 

of some of these sulphur metabolites is abnormal in uraemia, and there may be a defect in the 

activity of the enzyme CSAD resulting in a greater proportion of the flux from cysteine being 

metabolised to sulphuric acid rather than to taurine, thus adding to the burden of metabolic 

acidosis in these patients. However, few direct measurements of the flux from cysteine to 

sulphuric acid and taurine have been reported in CKD patients and the relative excretion rates of 

these metabolites of cysteine oxidation would shed more light on this. 

Results from animal models have shown that glucocorticoids when in combination with 

metabolic acidosis, may have a role in the muscle wasting process that is commonly seen in 

uraemia via activation of the ubiquitin proteasome system. A functionally significant role for the 

pH-sensitive neutral amino acid transporter SNAT2 has also been identified in mediating the 

effects of acidosis on protein synthesis and degradation in a culture model of skeletal muscle in 

vitro. Whether a combined effect of acid and glucocorticoids upon SNAT2 might contribute to 

the synergism between acidosis and glucocorticoid in muscle wasting is currently unknown. 

The specific hypothesises of this project were therefore: 
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In Chapter 3: 

• It was hypothesised that six months of walking exercise would increase LBM (as measured 

by DEXA) compared to the control group. This would be associated with increased basal 

insulin signalling (increased phosphorylation of PKB, P70S6K and 4E-BP1) suggesting and 

increase in muscle protein synthesis rates, and a reduction in MuRF-1 and MAFbx mRNA 

expression, reduced levels of 14kDa fragment, reduced 3-MH excretion rates and an increase 

in muscle protein:DNA ratio, indicating reduced rates of myofibrillar proteolysis.  

• The effects of exercise and additional acidosis correction using sodium bicarbonate in these 

patients would be additive.  

 

In Chapter 4: 

• It was hypothesised that CKD patients would excrete more sulphuric acid and less taurine 

than healthy individuals and that the sulphate excretion (and hence sulphuric acid production) 

would vary widely between individuals, but correlate with myofibrillar protein degradation, 

thus possibly allowing identification of those patients who may be high acid producers and 

therefore may be at a greater risk of muscle wasting. 

• Exercise and bicarbonate supplementation would reduce sulphuric acid production in CKD 

patients. 

 

In Chapter 5 

• It was hypothesised that glutamine would reduce sulphuric acid production in vitro. 

• Glucocorticoids, like acidosis, would reduce the transport activity of SNAT2.  

• Passive and cyclical stretch would increase mRNA expression and transport activity rates of 

SNAT2. 
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Chapter 2 

 

General Methods 
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All the methods described in this chapter are used in more than one experimental chapter. 

 

Note: For convenience, throughout this thesis all microcentrifuge speeds are quoted in rpm 

because all centrifuges used have approximately the same rotor radius of 7cm. All other 

centrifuge speeds have been quoted as the maximum g force generated at the outer edge of the 

rotor. 

2.1 Blood sampling, handling and analysis 

Venous blood samples, approximately 7ml, were collected for studies described in Chapters 3 

and 4. Samples were taken from a superficial antecubital vein, drawn into a dry syringe and 

dispensed into a tube containing either the anticoagulant K2 EDTA or lithium heparin, depending 

upon its intended analytical use. Arterial blood samples were also taken during the study 

described in Chapter 3 at each time point prior to the muscle biopsy, this data is also presented in 

Chapter 4. A 3ml sample was taken from the brachial artery following the administration of 1% 

lignocaine, drawn into a blood gas syringe containing heparin and taken to the Pathology 

Department at the Leicester General Hospital for analysis of arterial pH and bicarbonate.  

 

2.2 Urine sampling and handling 

Consenting patients and healthy volunteers underwent a diet free from animal protein for 4 days 

and collected a 24h urine sample on the final day of the diet. The urine volume was measured 

and aliquots were stored at -20oC prior to assay for sulphate, and amino acid derivatives by High 

Performance Liquid Chromatography (HPLC) as described below. 

 

2.3 Measurement of amino acids and their derivatives by high performance 

liquid chromatography 

Muscle and plasma samples were analysed for their full amino acid profiles.  Urine samples were 

analysed for the derivatives of sulphur amino acid catabolism, cysteinesulphinic acid (CSA) and 

taurine and for the myofibrillar catabolite 3-Methyl Histidine (3-MH).  
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2.3.1 Preparation of muscle samples for amino acid analysis 

Approximately 2mg (dw) muscle was homogenised (T8.01 Netzgerät, IKA, Germany) in 0.3M 

PCA (400µl) containing 1mM Norvaline as an internal standard and incubated on ice for 30 

minutes. The samples were centrifuged in a microcentrifuge at 13,000rpm for 15 minutes at 4°C. 

The resulting supernatant was stored on ice and the pellet was retained for determination of total 

DNA concentration (see Chapter 3.2.7.2). An equal volume of freon-trioctylamine (78% v/v 

1,1,2-trichlorotrifluoroethane, 22% v/v trioctylamine) was added to the supernatant and vortexed 

for 1 minute. The tubes were centrifuged briefly (for approximately 10 seconds at 13,000rpm) 

resulting in the formation of three phases. Approximately 80% of the top (aqueous) phase was 

taken off and filtered through a 0.45 microfilter into a glass HPLC vial. 

 

2.3.2 Preparation of the plasma and urine samples for amino acid analysis 

Plasma (500µl) was deproteinsed using 12M PCA (12.5µl) containing 40mM Norvaline as an 

internal standard. Urine (1ml) was deproteinsed using 12M PCA (25µl) containing 40mM 

Norvaline. The tubes were vortexed for 1 minute and incubated on ice for 30 minutes. From this 

point, the method of amino acid extraction from plasma and urine was the same as described 

above for muscle, with the exception that the pellets formed following centrifugation were 

discarded.  

 

2.3.3 Amino acid separation by reverse-phase HPLC 

Amino acid master standard was made fresh daily and comprised 25µl Agilent amino acid 

standard (5061-3330), 75µl ultra pure water and 1µl supplementary amino acid mixture. Amino 

acid concentrations were determined by reverse phase HPLC. All samples were separated on an 

Agilent (1100 Series) chromatograph with ultraviolet (UV) detection using a Zorbax eclipse 

AAA column (4.6 x 75mm, 3.5μm) with pre-column derivatisation using Orthophthalaldehyde, 

(OPA; Agilent, UK, 5061-3335) and Fluorenylmethyloxycarbonyl chloride (FMOC; Agilent, 

UK, 5061-3337). Samples were eluted with 40mM Na2HPO4, pH 7.8 supplemented with a linear 

gradient of 0-57% v/v Acetonitrile:Methanol:water (45:45:10) applied between t = 1 and 9.8 

minutes in each run. At the end of each run, the column was purged with 100% 

aceonitrile:methanol:water for two minutes and re-equilibrated with 100% 40mM Na2HPO4, pH 
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7.8 for two minutes before injecting the next sample. Peaks were integrated using the Agilent 

Chemstation software and concentrations calculated in relation to the standard. 

 

2.4 Protein Assays 

Total protein concentration of acid precipitates from muscle and cell cultures was measured 

using the Folin Lowry protein assay. Protein in lysates intended for Western blotting was 

analysed using the BioRad Detergent Compatibile (DC) assay (BioRad, UK, 500-0116). 

 

2.4.1 Folin Lowry protein determination 

Acid-precipitated protein pellets were dissolved in 1ml 0.5M sodium hydroxide and heated at 

70˚C in a water bath for 30 minutes.  Just before use, Folin Reagent A was mixed with Reagent 

B (see Appendix A) at a ratio of 50:1 to give Reagent C and Folin Ciocalteu’s Phenol reagent 

(Sigma, Dorset, UK, 47641) was diluted 1:2 using water. Samples were diluted to bring them 

within the range of the standard calibration (0-500μg/ml). Generally, muscle sample precipitates 

were diluted 1:10 using 0.5M sodium hydroxide and L6 precipitates were diluted 1:1. Standards 

and diluted samples (50μl) were then mixed with Folin C reagent (600μl) with immediate 

vortexing. After 10 minute incubation, diluted Folin Ciocalteu reagent (60μl) was added with 

immediate vortexing and tubes were incubated for a further 40 minutes at room temperature and 

subsequently read at 660nm on a Titertek Multiscan spectrophotometer. 

 

2.4.2 Bio-Rad DC Assay 

Reagent A (1ml) and Reagent S (20μl) were mixed immediately prior to use, producing reagent 

As.  The muscle lysates to be assayed were diluted 1:10 with 1% v/v IGEPAL CA-360 detergent 

(Sigma, Dorset, UK, I3021) and the L6 lysates were diluted 1:1 in order to bring them into the 

range of the standard curve. Standards (0-20μg/ml) and diluted samples (5μl) were pipetted in 

triplicate into a clean 96 well plate. Reagent As (25μl) was added to each well, followed by 

Reagent B (200µl). The plate was gently agitated to mix the reagents and left to incubate for 15 

minutes and read at 750nm on a Titertek Mulitscan spectrophotometer.  
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2.5 Protein techniques 

2.5.1 Cell Membrane Preparation 

Following incubation with test media, cells were washed three times in 5ml ice cold 0.9% w/v 

NaCl. Cells were immediately scraped in 3ml per 9cm Petri UIC3 Protease Inhibitor Cocktail 

(see Appendix A) using a plastic cell scraper. Cells were centrifuged at 200g for 5 minutes at 

4°C to pellet the intact cells.  The supernatant was aspirated and cells were re-suspended in 12ml 

fresh UIC3 and incubated on ice for 30 minutes. Cells were then lysed by drawing them through 

a pre-chilled 33 gauge needle twice. Lysates were then microcentrifuged at 7500rpm for 10 

minutes at 4°C. The pellets were discarded and supernatants centrifuged at 170,000g for 60 

minutes at 2°C. The resulting membrane pellets were dissolved in UIC3 plus 1% IGEPAL CA-

630 detergent (Sigma, Dorset, UK, I3021) and stored at -80°C. Protein concentration was 

determined using the BioRad DC assay as described in Section 2.4.2 and 30µg protein was 

mixed with an equal volume of SDS-PAGE reducing sample buffer and run on an SDS-PAGE 

gel as described below. 

 

2.5.2 Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE gels) 

All samples were run on 12.5% gels using Mini PROTEAN 2 and 3 systems (Bio-Rad, 

Hertforshire, UK) and blotted using a semi-dry transfer cell (Bio-Rad, Hertfordshire, UK). All 

protein extracts were resolved under reducing conditions. 

 

2.5.3 Casting the gels 

The resolving gel was poured between two glass plates and over-laid with butanol. Once set, the 

butanol was removed and the stacking gel was poured over the top of the resolving gel and the 

well comb inserted in between the top of the glass plates creating loading wells. The gels were 

made up as follows, 
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Table 2.1. SDS-PAGE resolving gel, all volumes are shown per gel 

Final Acrylamide % 12.5% 
Water 3.19ml 
Acrylamide (30% w/v) 4.17ml 
1.5M Tris-HCl pH 8.8 2.5  ml 
SDS (10% w/v) 0.1  ml 
APS1 (10% w/v) 0.05ml 
TEMED2 5  μl 
 

Table 2.2. SDS-PAGE stacking gel, all volumes are shown per gel 

Final Acrylamide %      4% 
Water 3.03  ml 
Acrylamide (30% w/v) 0.65  ml 
0.5M Tris-HCl pH 6.8 1.25  ml 
SDS (10% w/v) 0.05  ml 
APS1 (10% w/v) 0.025ml 
TEMED2           5μl 
1 Ammonium Persulphate 
2 Tetramethylethylenediamine 

2.5.4 Preparation of muscle samples for protein SDS-PAGE  

As well as skeletal muscle from CKD patients and healthy volunteers, skeletal muscle samples 

from rats were also taken as a positive control. Freeze-dried muscle samples to be analysed by 

Western blotting were homogenised in SDS-PAGE Muscle Lysis Buffer (see Appendix A) and 

run on a gel on the same day as the homogenisation in order to prevent any loss of signal by 

freeze-thawing. Samples were processed according to the method used by Karlsoon et al. (2004). 

Approximately 4mg dw muscle was homogenised (T8.01 Netzgerät, IKA, Germany) in 90µl/mg 

dw SDS-PAGE Muscle Lysis Buffer and rotated at 4°C for 90 minutes. The tubes were 

microcentrifuged at 13,000rpm for 15 minutes at 4°C and the resulting lysate supernatant was 

taken off and transferred to a new tube. The pellet was retained and stored at -80°C to be used 

later for determination of 14kDa actin fragment concentration. The lysate supernatant was 

assayed for protein concentration using a Bio-Rad DC assay (see Section 2.4.2) and a volume 

yielding 150μg protein was mixed with an equal volume of Laemelli Reducing Sample Buffer 

(see Appendix A), heated at 100˚C and briefly centrifuged in a microcentrifuge (13,000rpm for 

10 seconds at room temperature).  
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The protocol for the detection of the 14kDa fragment was based on the protocols developed by 

Du et al. (2004) and Workeneh et al. (2006) modified as follows. The pellets were resuspended 

in 150µl SDS-PAGE Muscle Lysis Buffer without Bromophenol Blue, vortexed and heated at 

100°C for 5 minutes. Samples were then sonicated and heated again at 100°C for 5 minutes and 

this step was repeated until the pellet had gone back into solution. A volume yielding 50µg of 

protein was loaded onto an SDS-PAGE gel with a small amount of Bromophenol Blue. The 

protein concentration in this solution was assayed by mixing 50µl with an equal volume of 20% 

w/v Trichloroacetic Acid (TCA). This was vortexed and placed in the refrigerator at +4°C for 30 

minutes. The samples were microcentrifuged at 13,000rpm for 10 minutes at 4°C, the 

supernatant was aspirated and the pellet was washed twice in 200µl 10% TCA. Following the 

final centrifugation, the supernatant was aspirated and the pellet dissolved in 50µl 0.5M NaOH. 

The tubes were placed in a water bath at 70°C to ensure that all the protein had dissolved and 

protein concentration was determined using the Folin assay (see Section 2.4.1).   

 

2.5.5 Preparation of L6 skeletal muscle cell samples for SDS-PAGE  

Following incubation with test media, medium was aspirated and the plates were scraped on ice 

in SDS-PAGE L6 Sample Buffer (see Appendix A) and the cell lysates were microcentrifuged at 

13,000rpm at 4˚C for 10 minutes. The supernatant was assayed for protein using the Bio-Rad DC 

assay.   

A volume yielding 30μg protein was mixed with an equal volume of Laemmli Reducing Sample 

Buffer. The tubes were heated at 100˚C on a heating block for 5 minutes and briefly centrifuged 

in a microcentrifuge as described above. 

 

2.5.6 Running the gels 

The gel rig was assembled and transferred to a tank containing Running Buffer (See Appendix 

A). The molecular weight markers (Full-Range Molecular Weight Markers, GE Health Care Life 

Sciences, Little Chalfont, UK, RPN800E) and prepared samples were loaded into the wells. The 

gel was run at 200V until the Bromophenol Blue dye front had almost reached the bottom of the 

glass plates (approximately 50 minutes). Gels run for 14kDa fragment and 4E-BP1 were stopped 
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slightly earlier (approximately 40 minutes) to ensure these small proteins did not run off the 

bottom of the gel.   

 

2.5.7 Western Blotting 

Once the gels had been run, they were soaked in Transfer Buffer (see Appendix A) along with 

blotting paper and the appropriate transfer membrane for 15 minutes. Western blots for P-S6 

were transferred onto Polyvinylidine Fluoride (PVDF) membranes (Bio-Rad, Hertfordshire, 

UK). Western blots for 14KDa fragment, P-PKB and P-4E-BP1 were transferred onto 

nitrocellulose membranes (GE Health Care Life Sciences, Little Chalfont, UK) and the semi-dry 

transfer was performed at 15V for 30 minutes. The membranes were blocked using 5% w/v non-

fat dry milk powder (NFDM) in TTBS (see Appendix A) for 1 hour at room temperature to 

prevent non-specific binding of the antibody to proteins. In some experiments the PVDF 

membranes were treated with an enhancer reagent (Qentix Western Blot Signal Enhancer, 

Thermo Scientific, Northumberland, UK) and rinsed in ultra pure water prior to blocking. After 

blocking, the membranes were washed 3 times in TTBS As the enhancer reagent had little 

obvious effect on signal intensity and prevented the membranes from being re-probed with other 

antibodies, its use was discontinued in later experiments.  

 

2.5.8 Immunostaining 

Membranes were then probed with primary antibodies made up in TTBS and milk powder or 

Bovine Serum Albumin (BSA) (Sigma, Dorset, UK) as indicated in Table 2.3. The membranes 

were incubated with the primary antibody overnight at 4˚C with continuous agitation.  They were 

then washed 3 times with TTBS and incubated with horseradish peroxidise conjugated secondary 

antibody: goat anti rabbit (Dako, Denmark, P0448) or rabbit anti-mouse (Dako, Denmark, 

P0260) at a dilution of 1:1500. After 1 hour incubation, the membranes were again washed 3 

times in TTBS. The bands were visualised using enhanced electrochemiluminescence (ECL) 

detection system according to the manufacturers’ instructions (Thermo Scientific, 

Northumberland, UK). 
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Table 2.3. Details of Antibodies 

Antibody 
 

 Source Ref No Dilution 
  Blocking 
    Agent 

 
Secondary 
 Antibody 

PSer235/236rpS6 
 

Cell  
Signalling 2211 1:1000 5% BSA             R 

Total rpS6 
Cell  
Signalling 9456 1:1000 

5% BSA 
R 

PSer473PKB 
Cell  
Signalling 9271 1:750 

 5% BSA 
R 

Total PKB 
Cell  
Signalling 9272 1:1000 

5% BSA 
R 

PThr389P70S6K 
Cell  
Signalling 9206 1:1000 

5% BSA 
   M 

Total P70S6K 
Cell  
Signalling 2708 1:1000 

5% BSA 
R 

PSer654E-BP1 
Cell  
Signalling 9456 1:1000 

5% Milk 
Powder R 

Total 4E-BP1 
Cell  
Signalling 9452 1:1000 

5% Milk 
Powder R 

Anti-Actin 
Clone 

AC40 (14kDa) 
Sigma A4700 1:500 

5% Milk 
Powder 

     M 

SNAT2 Ap JE* - 1:4000 
5% Milk 
Powder 

    R 

Na, K, ATPase Abcam Ab7671 1:4000 
5% Milk 
Powder 

   M 

Annexin II Santa Cruz Sc-1924 1:4000 
5% Milk 
Powder 

   G 

M denotes rabbit anti-mouse HRP secondary antibody was used (Dako P0260) 
R denotes polyclonal goat anti-rabbit HRP secondary antibody was used (Dako P0448) 
G denotes rabbit anti goat HRP secondary antibody was used (Sigma A5420) 
* A kind gift from Professor J Erickson, Louisiana State University Health Sciences Centre. 
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2.6 RNA techniques 

All RNA techniques were performed using RNAse free consumables and diethylpyrocarbonate-

treated (DEPC) water. Any glassware that was used was baked at 200°C for 4 hours and 

equipment including the homogeniser was treated with RNase Zap (Sigma, Dorset, UK).  

 

2.6.1 RNA extraction 

RNA was extracted from muscle tissue using the guanidinium thiocyanate-phenol-chloroform 

extraction described by Chomczynski and Sacchi (1987) commonly known as TRIzol. 

Approximately 2mg dw muscle was homogenised in TRIzol (1.5ml) (Invitrogen, UK, 15596) 

and incubated at room temperature for 15 minutes. The tubes were microcentrifuged at 

13,000rpm for 15 minutes at 4°C to remove any insoluble material and the TRIzol solution was 

transferred to a fresh tube and Chloroform (200µl/ml TRIzol) was added. The tubes were 

vortexed thoroughly and following a 10 minute incubation at room temperature, they were 

microcentrifuged at 13,000rpm for 15 minutes at 4˚C resulting in the formation of three phases. 

The aqueous phase, containing RNA was taken off and transferred to a new tube.  Isopropanol 

(500μl/ml TRIzol) was added to precipitate the RNA and the tubes were vortexed and incubated 

at room temperature for 10-15 minutes, then microcentrifuged at 13,000rpm for 15 minutes at 

4°C. The resulting pellet was washed in 75% ethanol and dissolved in DEPC treated water 

(20µl). The RNA concentration was quantified from the optical density using a Nanodrop (ND 

1000) Spectrophotometer (Thermo Scientific, Northumberland, UK). RNA extracts were stored 

at -80°C. 

RNA was extracted from L6-G8C5 cells also using the TRIzol technique. At the end of the 

incubation time, test media was aspirated and 1ml TRIzol was added. The cells were then frozen 

at -80˚ until a time when the RNA was extracted using the method described above. 

 

2.6.2 Reverse transcription 

RNA was reverse transcribed to cDNA using the Reverse Transcription System (Promega, 

Hampshire, UK A3500). RNA (1μg) was heated at 70˚C for 10 minutes to remove any secondary 
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structure, briefly centrifuged as previously described and incubated on ice.  The reaction buffer 

was made up as follows: 

Table 2.4. RT- Reaction 

For a single 20µl reaction Volume 
(µl) 

MgCl2 4 
10X Reverse Transcription Buffer 2 
10mM dNTP Mix 2 
Rnasin Ribonuclease Inhibitor 0.5 
AMV Reverse Transcriptase 15 Units 
Primers1 
RNA 
Water                                                   

1μl 
1µg 
to 20µl 

1A mix of random and oligo dT primers was used in a 1:1 ratio. Preliminary experiments showed this 
gave the greatest RNA yield over and above that gained by using each primer individually. 

The tubes were then placed in a controlled heat block at 42˚C for 1 hour, 95˚C for 5 minutes and 

4˚C for 5 minutes. The resulting cDNA was then stored at -20˚C. 

 

2.6.3 Validation of an appropriate reference gene 

To control for the variation in the loading of cDNA into the PCR reaction it is important to have 

a reference gene whose level of expression remains stable over all the experimental conditions. 

Commonly used exercise reference genes are β-actin, β-microglobulin and GAPDH (Jemiolo and 

Trappe, 2004; Mahoney et al. 2004). qPCR primers for these genes were available in our 

laboratory, but preliminarily experiments showed that the expression of all of these genes in 

skeletal muscle from the exercising patients varied outside the acceptable limits (1 comparative 

threshold, cT value) to be used as a reference gene. Therefore, in order to identify the most 

appropriate reference gene, an endogenous control plate (Applied Biosystems, Warrington, UK, 

4396840) was used to screen 32 different control genes using the cDNA derived from one patient 

before and after exercise training. The results showed ribosomal protein L30 (RPL30) and beta-

glucuronidase (GUSB) were the most stable with exercise training (see Table 2.5) and the most 

highly expressed. 
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Primers were designed for RPL30, GUSB and SNAT2 using Primer-3 software version 0.4.0 

(www.primer3.Sourceforge.net) using gene sequences obtained from the NCBI nucleotide 

database. They were all designed to span an intron-exon boundary to allow any product 

amplified contaminating genomic DNA to be distinguished. Primers were checked for sequence 

homology to other genomic sequences using the NCBI Basic Local Alignment Search Tool 

(BLAST) and were commercially synthesized (Invitrogen, UK). All primers were designed and 

optimised to amplify with an annealing temperature of 56°C allowing all genes to be run on the 

same plate. Primer’s PCR efficiency was calculated by performing a serial dilution reaction and 

drawing a standard curve (see Table 2.6 for efficiencies). 

 

Table 2.5. Results of endogenous control plate  

Gene Name Coefficient of 

Variation (%) 
Gene Name Coefficient of 

Variation (%) 
18S 4.7 MT-ATP6 0.7 

ABL1 0.6 PES1 0.01 

ACTB 5.8 PGK1 1.6 

B2M 2.3 POLR2A 3.2 

CASC3 0.4 POP4 1.7 

CDKN1A 2.1 PPIA 1.7 

CDKN1B 0.2 PSMC4 1.7 

EIF2B1 1.6 PUM1 1.3 

ELF1 1.7 RPL30 0.17 

GADD45A 1.3 RPL37A 0.4 

GAPDH 3.3 RPLPO 2.4 

GUSB 0.6 RPS17 3.3 

HUBS 1.3 TBP 1.7 

HPRT1 1.4 TFRC 0.2 

IPO8 1.3 UBC 2.5 

MRPL19 2.1 YWHAZ Undetermined 
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2.6.4 DNA sequencing 

The amplified products generated from the SNAT2, RPL30 and GUSB primers were sequenced 

to confirm that the correct amplicon was produced. 

 

2.6.5 Principle of the DNA sequencing technique 

Primer amplification products were sequenced at the Protein Nucleic Acid Chemistry Laboratory 

(PNACL) at the University of Leicester using Fluorescence-Based Sequencing and Dye 

Terminator Chemistry on an Applied Biosystems 3730 sequencer (Applied Biosystems, 

Warrington, UK). This technique requires the DNA template, a modified DNA polymerase, 

nucleotides (dNTPs), and dideoxynucleotides (DdNTPs) with each of the four bases labelled 

with a different colour fluorescent dye, and a buffer. This is then subjected to cycles of 

annealing, extension and denaturation in a thermo cycler. The modified DNA polymerase allows 

the incorporation of DdNTP into the product. As DdNTP lacks a 3-hydroxyl (3-OH) group on its 

deoxyribose sugar which is already lacking a 2-OH group, no further nucleotides can be added as 

a phosphodiester bond is unable to be formed and this terminates the fragment. The ratio of 

dNTP and DdNTP is balanced to ensure that a mixture of long and short extension products are 

produced. This has the result of producing many extension products of different sizes. At the end 

of the reaction, a high voltage charge is applied to the buffered reaction products forcing the 

negatively charged fragments into a capillary separating them by size based upon their total 

charge. Before reaching the positive electrode, the fragments pass through a laser beam causing 

the dyes to fluoresce emitting a wavelength specific to the base. This signal is then converted to a 

digital signal producing a series of peaks indicating the DNA sequence. 

 

2.6.6 Sequencing protocol for fluorescence-based sequencing using dye terminator 

chemistry 

The PCR product was run out on a 1% agarose gel in DNA sample buffer (see Appendix A) plus 

Ethidium Bromide with a DNA molecular weight ladder (ΦΧ174 Hae III Digest, Sigma, Dorset, 

UK). An electric current was applied at 120V until the DNA sample buffer dye front had moved 

approximately three quarters of the way down the gel. The bands were visualized under UV 

light, cut out of the gel and placed in pre-weighed tubes. The DNA was extracted from the gel 
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using a Qiaex II gel extraction kit according to the manufacturer’s instructions (GE Health Care 

Life Science, Little Chalfont, UK). The extracted DNA was quantified by running on a 0.8% 

agarose gel with the DNA markers (φχ174 DNA Hae III digest, Sigma, Dorset, UK). Two 

sequencing reactions were then performed, one using the forward primer and the second using 

the reverse primer. 20μg DNA template was required for each sequencing reaction plus the 

primer (4pmol) and 8μl BigDye terminator V1.1 (PNACL Laboratory, University of Leicester). 

The sequencing reaction was performed in a controlled heat block at 94˚C for 30 seconds then 30 

cycles of the following, 96˚C for 10 seconds, 50˚C for 5 seconds and 60˚C for 4 minutes. Any 

unincorporated dyes were removed using the ethanol/sodium acetate precipitation method; 3M 

sodium acetate (2μl) and 95% ethanol (50μl) was added and incubated on ice for exactly 10 

minutes. The tubes were then centrifuged at 13,000rpm for 30 minutes at room temperature. The 

supernatant was removed and pellets washed with 70% ethanol (150μl) by gently agitation and 

centrifuged at 13,000rpm for 1 minute at room temperature. The supernatant was taken off and 

pellets left to dry. They were then sent to the PNACL at the University of Leicester for the 

amplicon to be sequenced (3730 sequencer, Applied Biosystems, Warrington, UK). 

 

2.6.7 Real time qPCR 

All qPCR was carried out on an Applied Biosystems Light cycler real time PCR machine. 

Amplification reactions for SNAT2 were set up in 25µl volumes containing 12.5µl Power 

SYBR® Green PCR Master Mix (Applied Biosystems, Warrington, UK) with 10pmol per 25µl 

forward primer, 10pmol per 25µl reverse primer and 10.5µl sterile water. cDNA (or water if a 

negative control) (1µl) was added once 24µl of the mastermix detailed above had been added to 

the plate. All samples were run in triplicate with negative controls for each gene. All Primers 

were optimised to run at 56°C for the extension phase of the amplification. A dissociation step 

was added onto the end of the cycling to check that no non-specific product amplification had 

occurred. Primers and probes for MAFbx and MuRF-1 were supplied as Taqman gene 

expression assays from Applied Biosystems (Applied Biosystems, Warrington, UK, MAFbx 

Hs00369714_m1, MuRF-1 Hs00822397_m1, RPL30 Hs00265497_m1) 

The stability of expression of RPL30 and GUSB in response to exercise training was then tested 

in five more patients. RPL30 proved to be the most stable (RPL30 = 1.7% CV and GUSB 1.9% 

CV)  and so was selected as the house keeping gene to be used in all qRT- PCR experiments 
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using RNA extracted from human muscle samples. For qRT-PCR experiments performed using 

L6 rat skeletal muscle cells, cyclophilin was used as the reference gene as it had been used 

previously in L6 cell cultures and in rat skeletal muscle in catabolic states (Pickering et al. 2003). 

qRT-PCR primers were designed and sequenced for rat SNAT2 and Cyclophilin using the same 

method as that described above. 

Table 2.6. Primer sequences and efficiencies 

Gene 
 

Forward 
Sequence 

Reverse 
Sequence 

 
       PCR 
Efficiency (%) 

SNAT2 (Hu) AGTGGAATCCTTGGGCTTTC TCCTTCATTGGCAGTCTTCA 96.1% 

RPL30 (Hu) GGGTACAAGCAGACTCTGAA CCAGTTTTAGCCAACATAGC      97.5% 

GUSB (Hu) CTTTTTCAACTACGCTGGAC ACGACTTTGTTTTCTGCATC      96.3% 

SNAT2 (Rat) GCTCATTCTCCCATTGTCAC TTGCAAATCACCACAATCAG      98.5% 

Cyclophilin 
(Rat) CACCGTGTTCTTCGACATC TGCTGTCTTTGGAACTTTGTC      96.0% 

PCR data were quantified and presented as the Pfaffl ratio according to the following equation 
cited in Pfaffl (2001). 

 

ratio = 
ሺE Targetሻ ∆CT Target ሺControl – כ  Treatmentሻ

ሺE Referenceሻ∆CT Reference ሺControl כ െTreatmentሻ 

Where E = PCR efficiency and CT = comparative threshold value. 

*In the exercise studies this control value was the baseline value at the start of the study 

 

2.7 Quantification of bands from Western and Northern Blotting 

Band intensities were quantified using a Bio-Rad GS7000 densitometer and Molecular Analyst 

v1.4 software. 
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2.8 Statistical Analysis 

Data were tested for normal distribution using the Kolmogorov–Smirno test. All normally 

distributed data are presented as mean ± SEM. All non-normally distributed data are presented as 

median and range values.  Western and Northern blotting data are expressed as a percentage of 

the positive control run on the same gel. For both the one month pilot study and the six month 

study, baseline vs post-treatment values were analysed using Paired t tests for normally 

distributed data where appropriate and non-parametric Wilcoxon Signed Ranks test for non- 

normally distributed data. Data from cell culture experiments were analysed for statistical 

significance by ANOVA and post hoc testing with Duncan multiple range test. Changes were 

regarded as significant when P<0.05. Correlation was expressed as the Spearman Rank 

Correlation Coefficient Rs. All statistical analysis was carried out using SPSS 16.0 software 

(SPSS, Chicago, IL). 
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Chapter 3 
 

 

 

In vivo study of the effect of exercise and metabolic 

acidosis correction on amino acid and protein metabolism 

in skeletal muscle in CKD 
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3.1 Introduction 

It is well documented that CKD patients have poor physical functioning (reduced ability to 

perform everyday activities) and low exercise capacity (Painter, 2005; Johansen et al. 2007). 

This is caused by a combination of inactivity (Tawney et al. 2003), muscle wasting and reduced 

muscle function and metabolism (Diesel et al. 1990), inflammation (Kaizu et al. 2003) and 

anaemia (Painter and Moore, 1994) It has been suggested that the abnormalities in muscle 

metabolism are the most important limiting factors to exercise capacity (Diesel et al. 1990).There 

is growing evidence that exercise can provide benefits to haemodialysis patients such as 

improved exercise capacity (Painter et al. 2002; Kouidi et al. 2004), a reduction in cardiac risk 

factors (Goldberg et al. 1986), improved insulin sensitivity and glucose disposal (Goldberg et al. 

1983, 1986), increased quality of life and reduced depression (Painter et al. 2000). However, 

there has been little research performed in this area on the pre-dialysis population. 

 
As previously described in Chapter 1.6, metabolic acidosis is a common problem in CKD 

patients (Kovacic et al. 2003) and is an accepted cause of muscle wasting (Mitch, 2006). 

Acidosis is known to disrupt insulin action resulting in insulin resistance, but it has been shown 

that this can be improved following exercise training in haemodialysis patients (Goldberg et al. 

1980, 1986) and there is some evidence that muscle catabolism (indicated from accumulation of 

the 14kDa fragment) can be slowed by combined strength and endurance exercise training in 

dialysis patients (Workeneh et al. 2006). Furthermore, Storer and colleagues (2005) found eight 

weeks of intradialytic exercise (three times a week) significantly increased quadriceps strength, 

power and fatigability. These authors attributed this effect of endurance exercise on muscle 

strength to the significant deconditioned state of the patients prior to the exercise training. 

However, Kopple et al. (2007) were unable to detect any increases in lean body mass following 

an 18 week exercise programme of either aerobic or resistance training, alone or in combination. 

The reason for this failure of exercise to induce any detectable increase in muscle mass is 

unknown, but exercise in non-dialysed patients could potentially result in a transient worsening 

of acidosis through exercise-induced lactic acid generation, and could therefore off-set any 

potential benefits gained from the exercise. It might be possible to neutralise this acid through 

the administration of extra alkali, but there are no studies to date that have investigated the effect 

of exercise training in combination with sodium bicarbonate therapy in these patients. 

Favourable gains in body mass have been achieved however, in peritoneal dialysis patients, 
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using a high alkali dialysis fluid (Stein et al. 1997) and additional alkali in the form of sodium 

bicarbonate (Szeto et al. 2003). 

As described above, acidosis correction alone (Kooman et al. 1997), and exercise alone 

(Workeneh et al. 2006) can both reduce accelerated muscle protein degradation, but the effect of 

the two therapies combined has not been investigated. Therefore, the aim of this study was to 

implement a six month aerobic training study in pre-dialysis patients with and without additional 

bicarbonate therapy, and to investigate the resulting effects upon muscle amino acid and protein 

metabolism.  Owing to the results of Storer et al. (2005), this study used walking exercise to 

investigate these changes. Exercise had not previously been implemented in our renal unit and 

although there are no reports in the literature of any adverse effects of exercise in this population, 

it was believed walking exercise would be safer and easier to implement in a non-supervised 

exercise programme.  

 

It was hypothesised that six months of walking exercise would increase LBM (as measured by 

DEXA) compared to the control group. This would be associated with increased myofibrillar 

protein synthesis rates and reduced protein degradation rates. Increased protein synthesis would 

be detected by increased basal insulin signalling (increased phosphorylation of PKB, P70S6K and 

4E-BP1). Increased myofibrillar protein degradation would be detected by a reduction in MuRF-

1 and MAFbx mRNA expression, reduced levels of 14kDa fragment, reduced 3-MH excretion 

rates and an increase in muscle protein:DNA ratio. It was also hypothesised that additional 

sodium bicarbonate therapy would further correct acidosis causing the effects of exercise and 

acidosis correction to be additive. 
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3.2 Methods 

3.2.1 Ethical approval 

The studies described in Chapters 3 and 4 which required patient involvement received ethical 

approval from the Medicines and Health Regulatory Authority (MHRA) and the Local Ethics 

Committee. The sampling of skeletal muscle from healthy volunteers in Chapter 3, received 

ethical approval from the Loughborough University Ethical Advisory Committee. Potential 

participants from the patient population were approached in person at a routine hospital 

appointment. They were contacted a few days later by telephone to confirm their interest to 

participate. Potential healthy volunteer participants were approached in person, or contacted by 

email or telephone.   

All participants were given information regarding the study protocol, assessments and any 

associated risks.  Following any questions, participants who wished to volunteer signed a written 

statement of consent and were made aware of their right to withdraw from the study at any point 

without the need to give a reason. 

 
3.2.2 Participant information 

Patient characteristics and basic clinical biochemical measurements for the participants are 

summarised in Table 3.1. Patient volunteers were recruited from the Leicester General Hospital. 

Participants were CKD patients classified as CKD stage 4-5. Exclusion criteria included a 

physical disability (sufficient to prevent involvement in an exercise programme), age under 18 

years, pregnancy, regular intake of aspirin, (or any other substance that would affect blood 

clotting) and particularly for the main study, those patients judged to be in imminent need of 

renal replacement therapy. Healthy volunteers were recruited from the University or hospital 

staff, as well as spouses of those participants in the patient arm of the study. All healthy 

volunteers were required to be in good general health with no signs of renal impairment or other 

diseases associated with muscle wasting.   

 

 

 



Table 3.1.  Patient characteristics at baseline. Values are displayed as median and range. 

Patient 
Involvement 

Completed 
(n) Males Females Age   

(years) 
Weight 

(kg) 
Height 

(m) BMI 
Serum 

Creatinine 
(µmol/l) 

eGFR 
(ml/min) 

Plasma 
Bicarbonate 

(mmol/l) 

 
STD 

Bicarb 
(n) 

 
XS 

Bicarb 
(n) 

One Month 24 18 6 60         
(30-76) 

78         
(53-116) 

1.70        
(1.45-1.92) 

26.6        
(20.4-37.4) 

292        
(132-960) 

19        
(7-35) 22 (19-29) 13 11 

One Month 
+ Biopsy 16 12 4 60         

(30-76) 
79         

(53-116) 
1.70        

(1.48-1.92) 
27.1        

(20.4-37.4) 
256         

(132-960) 
21        

(9-35) 22 (19-28) 9 7 

Six Months 18 11 7 62         
(50-73) 

80         
(53-116) 

1.72        
(1.48-1.92) 

28          
(20.4-33.5) 

205         
(132-506) 

26        
(11-36) 25 (19-29) 10 8 

Six Months  
+ Biopsy 15 8 7 62         

(50-73) 
80         

(53-116) 
1.70        

(1.48-1.92) 
29.9     

(20.4-33.5) 
190         

(132-506) 
26        

(11-36) 25 (19-27) 9 6 

Non-
Exercising 

controls 
14 8 6 56         

(31-83) 
85.5       

(60-125) 
1.76        

(1.55-1.87) 
29.2        

(19-38) 
205         

(139-427) 
28        

(12-37) 27 (19-30) 8 6 

Non-
Exercising 

controls       
+ Biopsy 

11 5 6 50         
(31-83) 

85.5       
(66-115) 

1.73        
(1.57-1.87) 

29.6        
(19-38) 

214         
(154-427) 

24       
(12-33) 26 (19-30) 8 3 
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3.2.3 Explanation of study design 

A flow diagram to illustrate patient’s involvement and study design is shown in Figure 3.1. A 

one month pilot study preceded this six month exercise training study. The pilot study was 

designed to test the logistics of running a training study in this patient population and to address 

any problems that were identified prior to embarking on the main study. At baseline the patients 

underwent an exercise tolerance test, assessments of skinfold thickness and mid-arm 

circumference, blood sampling, if consent was given, a muscle biopsy, and were asked to keep a 

3-day food diary.  Patients also travelled to the Royal Derby Hospital for a full body Dual 

Energy X-ray Absorptiometry (DEXA) scan. These assessments were repeated after one month 

and six months of exercise training. At the end of the pilot study all patients were given the 

choice of continuing into the main study or finishing their involvement upon completion of one 

month of exercise.  Those patients who consented to continue into the main study did so without 

a break to avoid contaminating the baseline results of the main study with the effects of a 

previous one month of exercise. Those who did not wish to participate any further in the study 

withdrew and were replaced with a new patient who entered the 6 month study with no 

assessments at the one month time point. The non-exercising control patients took part only in 

the 6 month study, with assessments made at baseline and after 6 months during which time 

physical activity was not encouraged. By volunteering, the patients self-selected themselves into 

the exercise group.  

 

Participants were randomized to receive additional acidosis correction by sodium bicarbonate 

supplementation (abbreviated to XS throughout this thesis), or to remain on their standard 

sodium bicarbonate prescription (abbreviated to STD throughout this thesis). The target serum 

bicarbonate level in the XS group was 28mmol/l and 25mmol/l in the STD group, the level that 

clinicians at the Leicester Renal Unit routinely aim to achieve. 

 

Muscle biopsies were also taken from a group of healthy volunteers. This was a single biopsy 

(with no intervention) and served only to provide reference material for comparison with the 

CKD patients for some of the analyses. 

 



 

Figure 3.1. Flow diagram to illustrate patient involvement and study design. 

5 Months

14 non-exercising 
controls complete

18 exercisers 
complete

Repeat Baseline Tests

Repeat Baseline Tests

1Month

10 dropout

Randomised 
to STD or XS 
bicarbonate 
group 

Baseline Tests
1) Exercise tolerance tests with blood sampling before and after
2) Muscle Biopsy with arterial and venous blood sampling
3) Anthropometric assessments
4) 3-day food diary
5) 24h urine collection following 3 days of diet free from animal protein (To 

also be used in Chapter 4)
6) DEXA scan in collaboration with Derby City Hospital

33 CKD patients 
Stage 4-5 

recruited for one 
month study

20 CKD patients 
stage 4-5 

recruited as 
non-exercising 

controls 6month 
study

5 CKD patients 
stage 4-5 

recruited to 
replace exercisers 

who left after 1 
month

6 Months
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3.2.4 Description of the exercise tolerance test 

The exercise test was performed at the Leicester General Hospital on a treadmill (Life Fitness, 

UK) with a physician present. The test was a 30 minute submaximal exercise tolerance test, the 

intensity of which was measured throughout using Rating of Perceived Exertion (RPE) using the 

Borg scale (Borg, 1982) and heart rate (HR). Despite the reproducibility of RPE being 

questionable, it is frequently used in exercise tests and in exercise prescription in the CKD 

population (Sakkas et al. 2003; Koufaki et al. 2002; Segura-Orti et al. 2009; Fuhrmann and 

Krause, 2004) due to the inherent variability in HR in these patients and also because it provides 

a sensitive index of how the patients feel during the exercise bout (Koufaki et al. 2002). Patients 

were familiarized with the RPE scale and the treadmill and were fitted with a polar heart rate 

monitor (Polar Electro, Kempele, Finland). The treadmill was set at a 1% incline to mimic the 

energy cost of walking outside and the speed was increased to elicit a RPE of 12-14, somewhat 

hard. Every two minutes the patient’s heart rate was recorded, they were asked their RPE and the 

treadmill speed was then altered or remained the same depending upon their response. In the 

event of the patient being unable to complete the 30 minute test, the time completed was noted 

along with their heart rate and RPE. After the one and/or six month period, the baseline exercise 

test was replicated exactly as at baseline: treadmill speeds were the same at each corresponding 2 

minute time point over the 30 minute test, and heart rate and RPE were recorded as before. 

Blood samples were drawn from a superficial antecubital vein prior to, and immediately upon 

completion of the exercise test. Blood samples were handled as described in Chapter 2.2. 

 

3.2.5 Exercise prescription 

The results from the exercise test were used to prescribe individual exercise programmes that 

were reassessed on a monthly basis. Patients were asked to exercise for 30 minutes five times a 

week at a level of intensity that they deemed to be “somewhat hard”. The exercise usually 

involved brisk walking, although a few of the patients were fit enough to begin light jogging. 

They were informed of their heart rate range at the desired exercise intensity during the test and 

were given a heart rate monitor that was to be used as an individual guide of exercise intensity 

when exercising at home. Patients were also asked to record all their exercise in a diary stating 

what they did, the duration and how hard they rated it overall on the Borg scale. Once a month 

the patients attended an exercise class held at the physiotherapy gymnasium at the Leicester 

General Hospital to meet with a doctor to discuss any problems that may have arisen, update 
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exercise programmes, check bicarbonate levels and dosage for those patients on XS bicarbonate 

treatment, and to help increase motivation. 

  

3.2.6 Blood sampling, handling and analysis 

Prior to the muscle biopsy, a 7ml venous blood sample was taken from a superficial antecubital 

vein, drawn into a dry syringe and dispensed into a tube containing the anticoagulant K2 EDTA. 

This sample served as the baseline or pre-exercise sample and was also the sample that was used 

in the analysis of plasma amino acid concentrations. Immediately following the exercise test a 

second venous blood sample was taken from a superficial antecubital vein and treated as above. 

In additional to this, an arterial blood sample was also taken prior to the muscle biopsy. A 3ml 

sample was taken from the brachial artery following the administration of 1% lignocaine, drawn 

into a blood as syringe containing heparin and taken to the Pathology Department at the 

Leicester General Hospital for analysis of arterial pH and bicarbonate.  Unless otherwise stated, 

all assays described below were performed in duplicate. 

Duplicate 100µl aliquots of whole blood in K2 EDTA were immediately deproteinsed in 1ml ice 

cold 0.3M Perchloric Acid (PCA). These tubes were then centrifuged and the resulting 

supernatant was used in the spectrophotometric determination of blood glucose concentration 

measured on the day of the assessment using a commercially available kit (GodPAP; Randox, 

Co.Antrim, UK). The remaining acid supernatant was then frozen at -80°C for the fluorometric 

determination of blood lactate and β- hydroxybutyrate using the methods described by Maughan 

(1982). 

 The EDTA-treated whole blood was used in the spectrophotometric determination of 

haemoglobin (Hb) using the cyanmethaemoglobin method and Packed Cell Volumes (PCV) 

measured in triplicate on a microhaematocrit centrifuge. Both were measured on the day of 

assessment. The remaining EDTA-treated blood was centrifuged at 1500g for 15 minutes at 4°C. 

The plasma was taken off and 1ml aliquots were stored at -80°C for the analysis of plasma amino 

acid concentration.  The blood collected from healthy volunteers was dispensed into a plain tube 

and allowed to clot at room temperature for approximately 1 hour. The clot was removed and the 

sample centrifuged at 1500g for 10 minutes at 4˚C. The serum was removed and placed into a 

fresh tube and analysed for creatinine concentration using a commercially available colorimetric 
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assay kit (BioAssay Systems, CA, USA, DICT-500) according to the manufacturer’s 

instructions. 

 

3.2.7 Muscle sampling and handling  

Muscle biopsies were taken from patients using a Bergström needle by a trained physician at the 

Leicester General Hospital. Patients reported to the procedure room on the nephrology ward after 

an overnight fast. Fasting conditions were used to allow for the investigation of amino acid 

metabolism under the same conditions as those used by Bergström et al. (1990). 

 

All biopsies were taken using a Bergström needle from the vastus lateralis muscle of the right leg 

with the patient in the supine position, and any subsequent biopsies were taken 1cm above or 

below the initial site. The area was first cleaned using an antiseptic and 1% lignocaine was 

administered superficially under the skin and fascia. A 1cm incision was made and the needle 

was inserted to a depth of approximately 3cm. Suction was used to draw the muscle tissue into 

the needle. To minimise trauma, small samples (rather than one large sample) were drawn as 

rapidly as possible until approximately 100mg wet weight had been obtained. The sample was 

immediately extracted from the needle and following the removal of any visible fat or connective 

tissue it was placed into a pre-weighed Eppendorf tube and quickly frozen in liquid nitrogen. 

Pressure was applied to the biopsy site for a few minutes and steri-strips placed over the incision. 

In the laboratory, the Eppendorf tube was removed from liquid nitrogen and immediately re-

weighed to the nearest 0.1mg to obtain the wet weight of the sample. This allowed for the 

calculation of the water content of the biopsy to investigate if XS bicarbonate had caused any 

water loading in these patients. A correction of 0.0027g was subtracted from all values to allow 

for frost formation on the outside of the tube. This was based on the result of the difference in the 

weight of Eppendorf tubes at room temperature and immediately following freezing in liquid 

nitrogen repeated ten times. The results ranged from 0.0026g to 0.0032g with a mean of 0.0027g. 

The Eppendorf tube containing the muscle tissue was placed into a glass flask and freeze-dried 

(Edwards, Modulyo, UK with RV8 vacuum pump). The sample was re-weighed at regular 

intervals and was considered to be dried when there were no further changes in weight. 

Approximately 20mg dry weight in total was obtained using the Bergström needle. The muscle 

sample was stored at -80°C.  
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All healthy volunteer muscle biopsies were taken in the department of Sport, Exercise and 

Health Sciences at Loughborough University by the same physician who performed the patient 

sampling, using the same method. 

Samples from all time points and patient groups were processed and analysed at the same time 

and were subjected to three types of analysis; amino acid concentration determined by HPLC, 

gene expression using real time polymerase chain reaction (PCR) and protein detection using 

Western Blotting. 

 
3.2.7.1 Determination of the protein content of muscle biopsies 

The total soluble protein content of muscle biopsies was measured using the Folin Lowry assay 

(see Chapter 2.4.1).  Determination of protein concentration in muscle lysates to be run on SDS-

PAGE was done using the Bio-Rad DC assay (see Chapter 2.4.2). 

 

3.2.7.2 Determination of the concentrations of intramuscular and plasma amino acids 

Muscle and plasma were analysed for their full amino acid profiles by High performance liquid 

chromatography (HPLC) (see Chapter 2.3) Results are shown for the 18 amino acids that were 

readily detectable in the muscle biopsies. 

 

3.2.7.3 Determination of DNA content of muscle biopsies using Burton DNA Assay 

Total DNA concentration in muscle extracts was measured using the Burton DNA assay. The 

pellet obtained following acid precipitation and centrifugation in Section 2.3.1 above, was 

resuspended in 10% PCA (400μl). The tubes were placed in a water bath at 70°C for 20 minutes 

to hydrolyse the DNA and vortexed at regular intervals throughout. They were then incubated at 

4 °C for 30 minutes and microcentrifuged at 13,000rpm for 15 minutes at 4°C. The resulting 

supernatant was used in the determination of DNA concentration using the Burton assay.  

Standards (0 - 200µg/ml of calf thymus DNA) and samples (100μl) were added to Eppendorf 

tubes followed by the addition of 4% w/v diphenylamine (DPA) (100μl) and 0.2% v/v 

acetaldehyde (20μl), (both of which were made up in glacial acetic acid) and vortexed. The tubes 

were incubated overnight at room temperature in the dark. The following morning, 190µl from 
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each tube was pipetted into a 96 well plate and read at 595nm and immediately again at 710nm 

with subtraction of the 710nm value as a blank from all samples. 

 

3.2.7.4 Determination of the chloride concentration of muscle samples 

Chloride was determined by turbidimetry by a modification of the method of Mesquita et al. 

(2002). This assay was performed on the neutralised muscle and plasma samples obtained in 

Sections 2.3.1 and 2.3.2.  Prior to the assay, the plasma samples were diluted 1:100 using ultra 

pure water. A 50µl aliquot of Cl- standard (0 – 1mM) or sample was pipetted into a 1.5ml 

Eppendorf tube with 50µl Precipitating Reagent (5mM Silver Perchlorate, 4% dextran in 2M 

PCA) and vortexed. From this, 95µl was transferred into a 96 well plate and incubated for 2h 

before reading at 405nM on a Titertek Mulitscan spectrophotometer. 

 

3.2.7.5 Determination of phosphorylated signals and 14kDa accumulation by Western 

blotting 

The phosphorylation status of proteins in the PI3-K/PKB signalling pathway were analysed by 

Western Blotting before and after exercise training. Proteins analysed were PKB, rpS6, P70S6K 

and 4E-BP1. The accumulation levels of the 14kDa actin fragment were also analysed using this 

technique. Western Blotting method used is detailed in Section 2.5.2. 

 

3.2.7.6 Determination of protein mRNA expression by real-time PCR 

The mRNA expression levels of SNAT2, MuRF-1 and MAFbx in the muscle biopsies were 

analysed before and after exercise training. Primers for MuRF-1 and MAFbx were supplied as 

Taqman gene expression assays from Applied Biosystems (Applied Biosystems, Warrington, 

UK, MAFbx Hs00369714_m1, MuRF-1 Hs00822397_m1). SNAT2 gene expression was 

quantified using SYBR green real-time PCR. Methods for RNA extraction and PCR experiments 

are detailed in Section 2.6. 
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3.2.8 Urine sampling and handling 

Those patients who consented, underwent a diet free from animal protein for four days prior to 

the exercise training, with a 24h urine collection on the final day. This was repeated after one 

and/or six months of exercise training.  Urine samples were analysed for volume and aliquots 

stored at -20°C for later analysis of 3-MH by HPLC as described in Section 2.3.2. 

 

3.2.9 Analysis of food diaries 

Patients were asked to keep a 3-day food diary prior to the commencement of exercise training, 

following one month, and at the end of the six month training period. Food diaries were analysed 

for energy content and macronutrients using the CompEat Pro version 5.8.0 nutritional analysis 

software (Grantham, UK). 
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3.3 Results 

3.3.1 Bicarbonate therapy and completion rates 

No ill effects were reported as a result of taking extra bicarbonate; however, technical difficulties 

were experienced in obtaining muscle biopsies at the one month point from patients receiving XS 

bicarbonate: specifically the biopsies were found to contain considerable amounts of fibrotic 

tissue and will be discussed in more detail in Section 3.4.6. For this reason, data from this group 

will not be presented. 

Throughout these results, standard bicarbonate therapy is referred to as STD and additional 

bicarbonate as XS. 

 

Table 3.2. Effect of STD and XS bicarbonate therapy on blood bicarbonate levels and pH 

for those patients in the one month pilot study. Data are presented as median and range. * 

denotes significant difference from corresponding baseline value (P<0.05). a denotes significant 

difference from STD group at corresponding time point(P<0.05). 

    Baseline One Month 

Arterial pH 
1 Mth Ex STD Bicarbonate 7.38 (7.31 – 7.42) 7.4 (7.27 – 7.49) 

1 Mth Ex XS Bicarbonate 7.36 (7.33 -7.40) 7.4 (7.36 – 7.42)* 

PCO2 (kPa) 

 

1 Mth Ex STD Bicarbonate 3.5 (1.8 – 4.2) 3.4 (1.3 – 4.3) 

1 Mth Ex XS Bicarbonate 3.5 (1.8 – 4.6) 3.6 (1.4 – 5.6) 

Venous 
Bicarbonate 

(mmol/l) 

1 Mth Ex STD Bicarbonate 21 (19 -27) 22 (16 – 28) 

1 Mth Ex XS Bicarbonate 21 (19 – 29) 27 (21 -30)*a 
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Table 3.3. Effect of STD and XS bicarbonate therapy on blood bicarbonate levels and pH 

for those patients in the six month study. Data are presented as median and range. * denotes 

significant difference from corresponding baseline value (P<0.05). a denotes significant 

difference from STD group at corresponding time point (P<0.05). 

   Condition Baseline Six Months 

 6 Mth Ex STD Bicarbonate 7.41 (7.31 – 7.43) 7.39 (7.34 – 7.48) 

Arterial pH 

6 Mth Ex XS Bicarbonate 7.36 (7.28 – 7.40) 7.41 (7.35 – 7.44) 

Non-exercising Control STD 
Bicarbonate 

7.39 (7.30 – 7.45) 7.42 (7.35 – 7.44) 

 
Non-exercising Control XS 
Bicarbonate 

7.39 (7.31 – 7.48) 7.36 (7.32 – 7.42) 

  6 Mth Ex STD Bicarbonate 3.7 (1.8 – 4.5) 3.7 (2.4 – 4.5)  

PCO2 (kPa) 
6 Mth Ex XS Bicarbonate 3.6 (1.1 – 4.6) 3.8 (3.3 – 4.6)  

 Non-exercising Control STD 
Bicarbonate 

4.1 (2.8 – 4.7) 3.6 (2.6 – 4.7) 

 
Non-exercising Control XS 
Bicarbonate 

2.9 (1.9 – 4.8) 3.7 (3.2 – 4.9)  

  6 Mth Ex STD Bicarbonate 25 (21 – 26) 25 (20 – 28)  

Venous 
Bicarbonate 
(mmol/l) 

6 Mth Ex XS Bicarbonate 22 (19 – 29) 27 (26 – 30)*
a  

 Non-exercising Control STD 
Bicarbonate 

25 (19 – 30) 26 (23 – 27)  

 Non-exercising Control XS 
Bicarbonate 

27 (24 – 32) 30 (26 – 31)
a
  

 

The effect of bicarbonate therapy on arterial pH and partial pressure of CO2 are displayed in 

Tables 3.2 and 3.3. The XS bicarbonate therapy successfully raised venous bicarbonate 

concentrations above those in the STD group after both one and six months, and in the one 

month study, XS therapy was also able to significantly increase the arterial pH. 

 

The patient completion rates are shown in Table 3.4. The lowest dropout rate of 10% was seen in 

the six month exercising patients, while the non-exercising control group and one month pilot 
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study saw a 30% dropout rate each. A higher dropout was seen in those taking XS compared to 

STD bicarbonate therapy but this did not reach statistical significance P>0.05 χ2 test.  Reasons 

for withdrawal from the study were progression onto haemodialysis, clinical deterioration and 

family or work commitments. There were no fatalities.  

 

Table 3.4. Patient completion rates. 

Group 
Patients Consented 

(n) 
Patients Completed (n) 

All patients One Month Ex 30 24 

All Patients Six Months Ex 20 18 

All  Non-exercising Controls 20 14 

One Month Ex STD 16 13 

One Month Ex XS 14 11 

Six Months Ex STD 10 10 

Six Months Ex XS 10 8 

Non-exercising Controls STD 10 8 

Non-exercising Controls XS 10 6 

 

3.3.2 Exercise tolerance tests 

Mean response in the exercise tolerance test is shown in Figures 3.2 – 3.4 and average walking 

speeds during the test are presented in Table 3.5. Exercise tolerance (individuals’ RPE averaged 

over the whole 30 minute test) significantly improved after one (P<0.001) and six months 

(P<0.001) of exercise which is demonstrated by a lower RPE to the same absolute exercise 

intensity as that recorded prior to the training period (Figures 3.2 and 3.3). The decline in RPE 

following one month of training was more apparent in the XS bicarbonate group (Figure 3.2B) 

than in the STD bicarbonate group (Figure 3.2A). However, this apparent effect of XS 

bicarbonate was not sustained at six months; indeed the decline in RPE seemed less marked at 
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this time in the XS group (Figure 3.3B) compared to the STD group (Figure 3.3A). The non-

exercising control group showed only small time-dependent changes in RPE over the six month 

period (Figure 3.4). 

Table 3.5. Patient walking speeds during the exercise tolerance test. 

 Walking Speed (km/h) 

Time 
(minutes) One Month Study Exercising Patients: Six 

Month Study 
Non-Exercising Control 

Patients: Six Month Study 

2 2.8 ± 0.2 2.7 ± 0.2 2.6 ± 0.2 

4 3.5 ± 0.3  3.5 ± 0.3 3.3 ± 0.3 

6 4.0 ± 0.3  3.8 ± 0.3 3..8 ± 0.4 

8 4.2 ± 0.3  4.0 ± 0.3 4. 0 ± 0.4 

10 4.4 ± 0.3  4.1 ± 0.3 4.2 ± 0.4 

12 4.5 ± 0.3  4.2 ± 0.3 4.2 ± 0.4 

14 4.6 ± 0.3  4.4 ± 0.4 4.3 ± 0.4 

16 4.6 ± 0.3  4.6 ± 0.4 4.3 ± 0.4 

18 4.7 ± 0.3  4.6 ± 0.3 4.3 ± 0.4 

20 4.7 ± 0.3  4.7 ± 0.3 4.4 ± 0.4 

22 4.8 ± 0.3  4.7 ± 0.3 4.2 ± 0.3 

24 4.8 ± 0.3  4.8 ± 0.3 4.2 ± 0.3 

26 4.8 ± 0.4  4.7 ± 0.4 4.2 ± 0.3 

28 4.7 ± 0.4  4.7 ± 0.4 4.2 ± 0.3 

30 4.8 ± 0.4  4.8 ± 0.3 4.2 ± 0.3 
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Figure 3.2. Rating of perceived exertion (RPE) during an exercise tolerance test before 

(baseline) and after one month of exercise with STD (A) or XS (B) bicarbonate therapy. * 

Denotes a significant difference from corresponding time point during the baseline trial (P<0.05). 
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Figure 3.3. Rating of perceived exertion (RPE) during an exercise tolerance test before 

(baseline) and after six months of exercise with STD (A) or XS (B) bicarbonate therapy. * 

Denotes a significant difference from corresponding time point during the baseline trial (P<0.05). 

A 

B 
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Figure 3.4. Rating of perceived exertion during an exercise tolerance test before (baseline) 

and after six months without exercise with STD (A) or XS (B) bicarbonate therapy. * 

Denotes a significant difference from corresponding time point during the baseline trial (P<0.05). 
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3.3.3 Blood lactate and glucose response to acute exercise 

At baseline, the acute 30 minute treadmill exercise test led to a significant increase in the blood 

lactate concentration (Tables 3.6 and 3.7). One or six months of exercise with STD bicarbonate 

therapy had no effect on this lactate response to acute exercise (P = 0.582 and P = 0.674 

respectively) (Figures 3.5A and 3.6A), and the magnitude of this rise with exercise was similar at 

both time points. However, after one month of exercise with XS bicarbonate therapy the lactate 

response to exercise was markedly suppressed, declining to less than a quarter of the baseline 

value (Table 3.6; Figure 3.5B) (P = 0.005). This trend was still present after six months, but was 

less marked and only reached marginal statistical significance (Figure 3.6B) (P = 0.057). There 

was no significant time-dependent change in the lactate response to exercise in the non-

exercising control group receiving STD bicarbonate therapy (P = 0.197), nor in the non-

exercisers receiving XS bicarbonate (Figure 3.6C and 3.6D) (P = 0.072). 

 No acute effect of exercise was observed on the blood glucose concentration in any of the 

groups (P>0.05, Tables 3.6 and 3.7). There were no abnormalities in the concentration of β-

hydroxybutyrate in any group, all basal values falling within the normal range of 20-270µmol/l 

(data not shown) suggesting that keto acidosis was not a contributor to the metabolic acidosis in 

these patients. 

Table 3.6. Effect of one month of exercise training on blood lactate (mmol/l) and glucose 
(mmol/l) concentration at rest and following the acute 30 minute treadmill exercise test. * 
Denotes a significant difference between one month and the corresponding value at baseline (P < 
0.05). a Denotes a significant difference from the corresponding pre-exercise value in each trial 
(P < 0.05). 

    Baseline One Month 
  Condition Pre-

Exercise
Post Ex Post-

Pre
Pre-

Exercise
Post Ex Post-

Pre 

Lactate 
(mmol/l) 

1 Mth Ex STD 
Bicarbonate 

1.1 ± 
0.1 

2.1 ± 
0.2

a
 

1.0 ± 
0.2 

1.0 ± 
0.1 

1.8 ± 
0.2

a
 

0.8 ± 
0.2 

1 Mth Ex XS 
Bicarbonate 

1.0 ± 
0.1 

2.5 ± 
0.4

a
 

1.4 ± 
0.4 

1.2 ± 
0.2 

1.5 ± 
0.2 

0.3 ± 
0.2* 

Glucose 
(mmol/l) 

1 Mth Ex STD 
Bicarbonate 

5.4 ± 
0.5 

5.6 ± 
0.6 

0.2 ± 
0.3 

5.6 ± 
3.6 

5.6 ± 
2.7 

0.1 ± 
0.3 

1 Mth Ex XS 
Bicarbonate 

6.1 ± 
0.9 

5.9 ± 
0.8 

0.9 ± 
0.6 

6.1 ± 
1.7 

6.0 ± 
1.5 

0.2 ± 
0.4 
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Table 3.7. Effect of six months of training or without training on blood lactate (mmol/l) and 

glucose (mmol/l) concentration at rest and following the acute 30 minute treadmill exercise 

test. * Denotes a significant difference between six months and the corresponding value at 

baseline (P < 0.05). a Denotes a significant difference from the corresponding pre-exercise value 

in each trial (P < 0.05). Δ Denotes a near significant difference from the corresponding value at 

baseline (P = 0.057) 

    Baseline Six Months 

  Condition Pre-
Exercise 

Post Ex Post-Pre  Pre-
Exercise 

Post Ex Post-Pre 

 

6 Mth Ex STD 
Bicarbonate 

1.3 ±  
0.1 

2.4 ± 

0.4
a
 

1.2 ±  
0.2 

1.4 ±   
0.3 

2.4 ± 

0.5
a
 

1.0 ±  
0.3 

Lactate 
(mmol/l) 

6 Mth Ex XS 
Bicarbonate 

0.9 ±  
0.1 

2.8 ± 

0.4
a
 

1.8 ±  
0.5 

1.2 ±  
0.1 

2.0 ± 

0.3
a
 

0.8 ± 
0.3Δ 

Non-exercising 
Control STD 
Bicarbonate 

1.2 ±  
0.2 

2.1 ± 

0.4
a
 

0.9 ±  
0.3 

0.8 ± 
0.1* 

1.2 ± 

0.1
a
 

0.4 ±  
0.1 

 

Non-exercising 
Control XS 
Bicarbonate 

1.0 ±  
0.2 

1.7 ± 

0.2
a
 

0.8 ±  
0.2 

0.9 ±  
0.1 

2.2 ± 

0.4
a
 

1.3 ±  
0.4 

  

6 Mth Ex STD 
Bicarbonate 

5.4 ±  
0.6 

5.8 ± 
0.6 

0.4 ±  
0.3 

5.2 ±  
0.9 

5.0 ± 
0.7 

0.2 ±  
0.2 

Glucose 
(mmol/l) 

6 Mth Ex XS 
Bicarbonate 

5.2 ±  
0.8 

6.0 ± 
0.7 

0.7 ±  
0.2 

3.0 ±  
0.1 

3.8 ± 
0.4 

0.8 ±  
0.1 

 Non-exercising 
Control STD 
Bicarbonate 

3.6 ±  
0.3 

4.5 ± 
0.4 

0.9 ±  
0.3 

6.2 ±  
0.2 

5.9 ± 
0.4 

0.3 ±  
0.4 

  

Non-exercising 
Control XS 
Bicarbonate 

4.4 ±  
1.0 

4.6 ± 
1.0 

0.2 ±  
0.1 

8.3 ±  
2.1 

8.7 ± 
2.1 

0.5 ±  
0.2 
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Figure 3.5. Effect of one month of exercise training on the lactate response to exercise with 

STD (A) or XS (B) bicarbonate. Due to sampling difficulties, n = 9 in both graphs A and B. 

 

 

Figure 3.6. Effect of six months with (A,B) or without (C,D) exercise training on blood 

lactate response to exercise with STD (A,C) or XS (B,D) bicarbonate. Due to sampling 

difficulties, n = 8, n = 7, n = 7 and n = 6 in graphs A, B, C and D respectively.  
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3.3.4 Haemoglobin and Haematocrit Response to Acute Exercise 

Basal haemoglobin (Hb) concentration and haematocrit (Hct) were not affected by one or six 

months of exercise training with STD or XS bicarbonate therapy (Tables 3.8 and 3.9). There was 

also no acute effect of the 30 minute treadmill exercise test on Hb concentration or Hct in any of 

the groups (data not shown). It is possible, however, that the erythropoietin treatment received by 

a number of the patients during the study obscured the effects of exercise. 

 

Table 3.8. Basal blood haemoglobin concentration (Hb; g/dl) and haematocrit (Hct; %) at 

baseline and after one month of exercise with STD or XS bicarbonate therapy. 

    
Baseline 

One 
Month 

Hb 
(g/dl) 

1 Mth Ex STD Bicarbonate 13.9 ± 0.6 13.2 ± 0.4 

1 Mth Ex XS Bicarbonate 13.0 ± 0.5 13.4 ± 0.6 

Hct (%) 
1 Mth Ex STD Bicarbonate 38.0 ± 2.5 36.0 ± 1.0 

1 Mth Ex XS Bicarbonate 36.0 ± 1.5 36.5 ± 1.5 
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Table 3.9. Basal blood haemoglobin concentration (Hb; g/dl) and haematocrit (Hct;%) at 

baseline and after six months of exercise or no exercise with STD or XS bicarbonate 

therapy. 

    Baseline Six Months 

 6 Mth Ex STD Bicarbonate 13.9 ± 0.6 13.2 ± 0.3 

Hb 
(g/dl) 

6 Mth Ex XS Bicarbonate 13.2 ± 0.6 13.6 ± 0.7 

Non-exercising Control STD Bicarbonate 13.2 ± 0.4 13.0 ± 0.6 

  Non-exercising Control XS Bicarbonate 13.6 ± 0.6 12.2 ± 1.2 

 6 Mth Ex STD Bicarbonate 38.0 ± 1.5 38.0 ± 1.0 

Hct (%) 
6 Mth Ex XS Bicarbonate 36.0 ± 1.5 36.5 ± 1.5 

Non-exercising Control STD Bicarbonate 36.0 ± 1.0 36.0 ± 1.5 

  Non-exercising Control XS Bicarbonate 35.5 ± 2.0 33.0 ± 2.5 

 

 

3.3.5 Effect of exercise training on body composition data 

Body composition data is tabulated in Table 3.10. There was no change in body weight 

following one or six months of exercise (P>0.05). There was a tendency for a decrease in body 

weight to occur in those patients who had exercised for six months with XS bicarbonate, but this 

failed to reach statistical significance (P = 0.063). A significant decline in the body weight of the 

non-exercising controls on STD bicarbonate was observed after six months (P = 0.025), but not 

in the XS group. There were, however, significant decreases in the body mass index (BMI) of 

those patients who exercised for one month regardless of bicarbonate treatment (P = 0.018) and 

for six months (P = 0.006), but the apparent decrease seen in the control group was not 

significant (P = 0.103). Furthermore, this decrease in BMI at one and six months was seen only 

in those patients who received XS bicarbonate therapy (Table 3.7) (P = 0.051 and P = 0.009 

respectively) and not in those on STD bicarbonate therapy (P = 0.209 and P = 0.223 

respectively). There was no change in BMI in either of the non-exercising control groups 
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suggesting there was no effect of bicarbonate supplementation in these patients or an effect of 

seasonal variation. 

 

When bicarbonate groups were combined, full body DEXA scans revealed that there was a 

significant increase in LBM after one month of exercise (P = 0.013), that was not seen after six 

months of exercise (P = 0.188). No effect of bicarbonate was observed on LBM following one 

and six months of exercise or after a six month control period without exercise (P>0.05). 

However, expressing LBM data as % of total body mass reveals a significant increase following 

one month of exercise in both STD and XS bicarbonate groups (from 59.1 ± 2.6% to 59.8 ± 

2.5%; P = 0.038 and from 65.4 ± 3.6% to 66.3 ± 3.8; P = 0.027 respectively) (Figure 3.7). 

Following six months of exercise this increase persisted only in the XS bicarbonate group, with 6 

of the 7 patients showing an apparent increase (P = 0.028) (Figure 3.8B). 

 

There were also demonstrable effects of upon fat mass measured by DEXA. One month of 

exercise with STD bicarbonate reduced fat mass by 0.6 ± 0.2kg (P = 0.018). A similar reduction 

of 0.6 ± 0.3kg was also seen in the XS bicarbonate group, but this fell short of significance (P = 

0.063). After six months, the decline in fat mass on STD bicarbonate therapy had disappeared (P 

= 0.593). However, following six months of exercise with XS bicarbonate there was a reduction 

in fat mass of 1.5 ± 0.6kg achieving marginal significance (P = 0.054). These changes were 

reflected in an increase in the lean / fat mass ratio in the six month exercising patients receiving 

XS bicarbonate from 2.3 ± 0.5 to 2.9 ± 0.7 (P = 0.043). No detectable effect of exercise or 

bicarbonate on bone density was seen in any group (data not shown). 

 

Two anthropometric measurements were also made, mid-arm circumference (an indicator of 

muscle mass) and skin fold thickness (a measure of fat mass). The only significant effect 

observed was a decrease in mid-arm circumference from 33.6 ± 1.1cm to 32.2 ± 1.2cm in the 

non-exercising control group on STD bicarbonate therapy (P = 0.028). No other changes were 

observed in any of the groups with either measure. 

 

 



Table 3.10. The effect of one and six months of exercise training or a no-exercise control period on indices of body composition.                

* Denotes a significant difference from the corresponding baseline value (P<0.05). Δ Denotes  a near significant difference from baseline (P = 

0.054). 

 Body Mass (kg) BMI Lean Body Mass (kg) Fat Mass (kg) 
 Baseline Post Training Baseline Post Training Baseline Post-Training Baseline Post-Training 
All patients 
One Month Ex 78.7 ± 3.4  79.0 ± 3.5 27.3 ± 0.9 26.9 ± 0.9* 49.4 ± 2.2 50.1 ± 2.3* 28.1 ± 2.4 27.5 ± 2.4* 

All patients 
Six Months Ex 78.1 ± 3.4 78.0 ± 3.7 27.5 ± 1.0 26.9 ± 1.1* 46.4 ± 2.3 46.8 ± 2.4 29.0 ± 2.4 28.5 ± 2.5 

All non-
exercising 
controls 

84.2 ± 5.1 83.8 ± 4.8 29.2 ± 1.5 28.6 ± 1.3 49.1 ± 2.9 48.8 ± 2.7 32.3 ± 3.3 32.3 ± 2.7 

One Month Ex 
STD 81.8 ± 5.0 81.9 ± 5.1 28.7 ± 1.4   28.5 ± 1.4 47.4 ± 3.4 48.1 ± 3.6 31.2 ± 3.2 30.7 ± 3.0* 

One Month Ex 
XS 78.1 ± 4.3 78.2 ± 4.5 25.8 ± 1.0 25.4 ± 0.9* 53.0 ± 1.7 54.0 ± 1.7 24.1 ± 3.3 23.5 ± 3.4 

Six Months Ex 
STD 81.2 ± 5.0 81.9 ± 5.3 29.1 ± 1.3 28.8 ± 1.3 46.0 ± 3.4 46.4 ± 3.6 32.4 ± 2.9 32.7 ± 2.7 

Six Months Ex 
XS 73.8 ± 4.0 72.6 ± 4.4 25.5 ± 1.4 24.6 ± 1.5* 47.0 ± 3.0 47.3 ± 3.2 24.1 ± 3.5 22.5 ± 4.1Δ 

Non-exercising 
controls STD 84.4 ± 6.3 83.0 ± 6.3* 30.3 ± 1.8 29.4 ± 1.7 45.6 ± 3.3 44.7 ± 3.1 36.2 ± 3.7 35.7 ± 3.8 

Non-exercising 
controls XS 83.9 ± 9.1 84.9 ± 8.1 27.8 ± 2.5 27.6 ± 2.4 54.0 ± 4.6 54.2 ± 4.1 27.2 ± 5.6 27.9 ± 4.9 
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Figure 3.7. The effect of one month of exercise on LBM expressed as % of total body mass 

with STD (A) or XS (B) bicarbonate therapy. Due to logistical problems, n = 9 and n = 7 in 

graphs A and B respectively.  
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Figure 3.8. The effect of six months of exercise training (A,B) or a 6 month control period 

(C,D) on LBM expressed as % of total body mass with STD (A,C) or XS (B,D) bicarbonate 

therapy. Due to logistical problems, n = 10, n = 7, n = 8 and n = 6 in graphs A, B, C and D 

respectively. 
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3.3.6 Muscle biopsy composition 

The gross composition of the muscle biopsies obtained from the patients is shown in Table 3.11.  

Muscle DNA content did not change under any condition. The RNA content of the muscle 

biopsies taken from those patients who had exercised for six months with STD bicarbonate 

therapy increased from 1.2 ± 0.2 µg/mg dw to 1.5 ± 0.2 µg/mg dw (P = 0.017), an effect that was 

not seen under any other condition.  The water content was determined in the biopsies from the 

subtraction of dry weight from wet weight. Muscle biopsies were dried to constant weight, but 

the contribution to the weight from tightly locked water in the biopsy was unknown. No change 

was seen in the water content of the muscle biopsies from any group (P>0.05) indicating that the 

additional sodium load given to the XS bicarbonate group had not caused any detectable water 

loading in these patients.  

 

There was an apparent decline in the muscle protein content in the biopsies taken from those 

patients who exercised for six months with XS bicarbonate therapy (P = 0.052) which did not 

occur in any of the other groups. A similar effect was observed on muscle Protein:DNA ratio (P 

= 0.008) and as no corresponding effect on lean body mass was detected by DEXA in this group 

of patients, it is unlikely that this decline in biopsy protein content reflects muscle protein 

wasting. Significant amounts of fibrotic tissue were observed in the biopsies obtained from the 

CKD patients. While macroscopic connective tissue was dissected away during processing of the 

sample (see Methods Section 3.2.7), this does not exclude microscopic infiltration of the muscle 

by scar tissue that may have been particularly likely to occur near the biopsy site (see Discussion 

Section 3.4.6). The soluble protein content of the biopsies was determined using the Folin Lowry 

assay (see Section 2.4.1). This assay works by oxidising the tyrosine and tryptophan residues in 

the protein producing a blue colour, and as collagen contains little or none of either of these 

amino acids, it would not be detected by the assay and therefore would not have contributed to 

the total protein content.  No other effects on muscle protein:DNA ratio were seen in any other 

group. 

 

In view of this uncertainty, all of the biochemical data in the remainder of this thesis are 

expressed in ways aimed at minimising artefacts arising from variation in the myocyte content of 

the biopsies. Data have therefore been presented as metabolite concentrations expressed in 



 

103 
 

relation to intracellular water (e.g. amino acid concentrations), relative abundance of proteins 

determined by Western blotting after loading of fixed quantities of total soluble protein onto the 

gels, and abundance of molecules (e.g. mRNA’s and 14kDa actin fragment) expressed in relation 

to a reference molecule in the same sample. Intracellular water content was determined from 

intramuscular chloride concentrations assuming a normal membrane potential as described by 

Bergström et al. (1974). It was shown that changes in membrane potential result in only very 

small errors in intracellular water content and subsequently this method has frequently been to 

normalise amino acid concentration data. 

 

Table 3.11. The effect of six months of exercise or no exercise with STD or XS bicarbonate 

therapy on muscle biopsy composition. * Denotes a significant difference between six months 

and the corresponding value at baseline (P < 0.05). 

 Condition Baseline Six Months 

Muscle Protein 

Concentration 

(mg/mg dw) 

6 Mth Ex STD Bicarbonate 0.6 ± 0.1 0.6 ± 0.1 

6 Mth Ex XS Bicarbonate 0.5 ± 0.1 0.3 ± 0.1 

Non-exercising Controls STD 0.5 ± 0.1 0.5 ± 0.1 

Non-exercising Controls XS 0.5 ± 0.1 0.6 ± 0.2 

Muscle DNA 

Concentration 

(µg/mg dw) 

6 Mth Ex STD Bicarbonate 2.6 ± 0.3  2.6 ± 0.2 

6 Mth Ex XS Bicarbonate 2.7 ± 0.2 2.7 ± 0.4 

Non-exercising Controls STD 2.7 ± 0.2 2.8 ± 0.5 

Non-exercising Controls XS 2.8 ± 0.3 2.9 ± 0.4 

Muscle RNA 

Concentration 

(µg/mg dw) 

6 Mth Ex STD Bicarbonate 1.2 ± 0.2 1.5 ± 0.2* 

6 Mth Ex XS Bicarbonate 1.6  ± 0.2 1.5 ± 0.3 

Non-exercising Controls STD 1.6 ± 0.2 1.5 ± 0.2 

Non-exercising Controls XS 1.2 ± 0.3 1.4 ± 0.3 

Muscle 

Protein:DNA 

ratio (mg/mg dw) 

6 Mth Ex STD Bicarbonate 232.4 ± 124.1 263.6 ± 193.9 

6 Mth Ex XS Bicarbonate 202.5 ± 6.6 131.2 ± 35.1*

Non-exercising Controls STD 200.3 ± 62.1 193.0 ± 86.1 

Non-exercising Controls XS 202.9 ± 65.7 235.7 ± 66.5 
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3.3.7 Muscle and plasma amino acid concentrations 

Tables 3.12 – 3.14 show the changes that occurred in fasted plasma amino acid concentrations 

over the course of the study. No dramatic changes were observed, but statistically significant 

increases in L-Asn, L-Gln, L-His, and L-Ala were observed after one or six months of exercise 

in the STD bicarbonate groups. These changes observed at six months were not paralleled by 

changes in the exercising patients on XS bicarbonate (Table 3.13) who showed statistically 

significant increases only in Gly and L-Met and the non-exercising patients on STD bicarbonate 

also failed to show these changes. All the changes that were observed were increases above 

baseline concentrations (P<0.05), except for the concentration of L-Arg that was seen to decline 

significantly in the six months exercise group with STD bicarbonate (P = 0.008). In contrast, this 

amino acid increased in the non-exercising patients on STD bicarbonate (Table 3.14) (P = 

0.008). 
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Table 3.12. Changes in fasted plasma amino acid concentrations (µmol/l) following one 

month exercise on STD bicarbonate. * Denotes significant change from baseline (P<0.05). 

Amino Acid STD Baseline  STD One       
Month  

Δ 

Glu 61.9 ± 18.1 56.4 ± 14.5 -5.5 ± 5.6 

Asn 49.8 ± 5.7 63.1 ± 2.8 13.4 ± 5.3 

Ser 68.5 ± 10.1 86.6 ± 16.2 18.1 ± 12.2 

Gln 600.7 ± 59.4 732.3 ± 37.9* 131.7 ± 51.1 

His 51.3 ± 6.4 66.8 ± 6.6* 15.6 ± 7.1 

Gly 273.9 ± 81.6 366.5 ± 62.9 92.6 ± 66.7 

Thr 83.1 ± 9.7 119.0 ± 13.5 35.9 ± 18.8 

Arg 60.8 ± 13.0 80.8 ± 11.9 20.0 ± 11.3 

Ala 329.2 ± 42.4 414.0 ± 33.1 84.4 ± 52.8 

Tyr 50.7 ± 7.1 62.0 ± 5.6 11.3 ± 5. 0 

Cys 68.3 ± 6.7 75.8 ± 6.9 7.4 ± 7.1 

Val 145.9 ± 18.6 159.6 ± 18.3 13.7 ± 17.1 

Met 14.8 ± 2.9 15.2 ± 1.5 0.5 ± 3.5 

Tryp 38.7 ± 2.8 41.3 ± 2.8 2.6 ± 5.1 

Phe 51.9 ± 7.1 60.7 ± 5.2 8.8 ± 4.6 

Ile 45.8 ± 4.8 49.5 ± 4.3 3.7 ± 5.7 

Leu 88.4 ± 8.3 93.3 ± 4.1 4.9 ± 7.1 

Lys 154.0 ± 22.9 170.0 ± 8.5 15.9 ± 17.5 

 

 

 

 

 

 

 

 

 



3.13. Changes in fasted plasma amino acid concentration (µmol/l) following six months of exercise on STD or XS bicarbonate 

therapy. * Denotes significant change from baseline in each group (P<0.05). 

Amino Acid STD Baseline STD Six       
Months STD Δ XS Baseline XS Six Months XS Δ 

Glu  80.5 ± 19.0 94.3 ± 13.5 20.3 ± 17.0 74.2 ± 21.3 89.9 ± 14.8 3.1 ± 11. 0 

Asn  49.1 ± 5.0 64.8 ± 5.4* 15.7 ± 5.0 71.5 ± 5.2 68.4 ± 6.5 -3.2 ± 7.2 

Ser  81.1 ± 10.5 100.0 ± 5.8 18.9 ± 9.5 88.5 ± 5.8 99.0 ± 8.0 10.4 ± 7.2 

Gln  599.4 ± 51.4 676.1 ± 27.8 76.6 ± 46.2 640.7 ± 41.4 712.1 ± 34.9 71.4 ± 5.3 

His  49.8 ± 5.3 67.7 ± 7.0* 19.9 ± 6.8 73.3 ± 7.8 74.2 ± 8.3 0.9 ± 8.5 

Gly  293.5 ± 72.4 342.7 ± 51.3 49.2 ± 33.5 233.7 ± 23.0 290.0±29.5* 56.3 ± 18.6 

Thr  93.8 ± 10.4 127.6 ± 9.8 33.9 ± 14.4 134.9 ± 12.7 145.1 ± 12.7 10.2 ± 11.7 

Arg  47.8 ± 11.7 29.3 ± 6.8* -18.5 ± 8.2 57.2 ± 11.0 43.4 ± 8.4 -13.8 ± 14.7 

Ala  337.4 ± 38.9 448.5 ± 38.3* 111.1 ± 43.6 497.8 ± 60.2 495.1 ± 60.0 -2.6 ± 65.5 

Tyr  56.0 ± 8.1 63.2 ± 5.1 7.2 ± 5.2 53.4 ± 5.1 50.7 ± 4.3 -2.8 ± 4.5 

Cys  66.5 ± 5.6 58.5 ± 3.1 -8.0 ± 5.6 58.9 ± 8.2 58.1 ± 3.5 -0.8 ± 5.1 

Val  157.6 ± 18.5 170.0 ± 26.4 12.4 ± 25.1 205.4 ± 28.8 196.6 ± 19.7 -8.8 ± 24.4 

Met  15.7 ± 2.6 17.4 ± 1.8 1.7 ± 3.3 18.0 ± 2.9 23.5 ± 3.7* 5.5 ± 1.6 

Tryp  41.2 ± 5.8 40.1 ± 3.9 -1.1 ± 5.8 41.8 ± 4.8 41.3 ± 4.2 -0.5 ± 4.3 

Phe  50.5 ± 5.5 59.9 ± 11.9 9.4 ± 7.1 54.6 ± 9.2 56.1 ± 7.3 1.5 ± 3.7 

Ile  46.1 ± 4.2 48.3 ± 4.8 2.3 ± 5.9 62.8 ± 9.6 62.0 ± 11.3 -0.8 ± 8.9 

Leu  93.5 ± 8.2 108.7 ± 11.8 15.2 ± 13.2 113.9 ± 11.4 120.5 ± 15.6 6.6 ± 10.0 

Lys  164.3 ± 21.1 179.1 ± 11.6 14.7 ± 21.6 189.1 ± 17.7 225.4 ± 37.5 36.3 ± 28.8 



Table 3.14. Changes in fasted plasma amino acid concentrations (µmol/l) following six months without exercise. * Denotes 

significant change from baseline in each group (P<0.05). 

 
Amino Acid STD Baseline STD Six 

Months STD Δ XS Baseline XS Six 
Months XS Δ 

Glu 51.7 ± 4.2 56.2 ± 5.8 4.4 ± 5.9 60.2 ± 8.2 49.2 ± 4.8 -11. 0 ± 4. 0 

Asn 51.1 ± 1.9  55.0 ± 3.4 3.9 ± 3.8 60.2 ± 5.3 56.6 ± 5.7 -3.6 ± 7.1 

Ser 89.3 ± 9.8 105.5 ± 16.3 16.2 ± 9.5 96.7 ± 21.0 87.6 ± 15.7 -9.1 ± 16.0 

Gln 598.3 ± 14.3 660.6 ± 32.0 62.3 ± 34.0 675.0 ± 55.2 684.0 ± 26.0 9.0 ± 55. 0 

His 56.4 ± 3.2 64.9 ± 5.8 8.5 ± 5.5 82.2 ± 12.8 77.3 ± 15.3 -4.8 ± 21.3 

Gly 263.7 ± 31.8 306.0 ± 53.8 42.2 ± 27.1 345.0 ± 28.7 405.2 ± 14.4 60.2 ± 14.3 

Thr 106.0 ± 11.2 117.7 ± 14.0 11.7 ± 9.5 141.8 ± 12.7 150.2 ± 11.3 8.4 ± 13.8 

Arg 34.7 ± 6.4 58.0 ± 7.1* 23.3 ± 6. 0 75.6 ± 15.1 83.2 ± 13.9 7.6 ± 3.8 

Ala 322.6 ± 33.5 392.1 ± 32.4 59.5 ± 54.7 479.1 ± 45.8 455.4 ± 84.7 -23.7 ± 87.2 

Tyr 45.6 ± 2.2 51.8 ± 5.8 6.1 ± 5.2 80.5 ± 19.6 74.0 ± 13.4 -6.5 ± 6.2 

Cys 53.6 ± 5.6 69.5 ± 11.1 15.8 ± 8.1  63.6 ± 10.5 59.9 ± 15.4 -3.7 ± 8.1 

Val 156.7 ± 13.8 168.3 ± 13.6 11.5 ± 8.2 234.8 ± 20.4 203.4 ± 13.9 -31.3 ± 14.2 

Met 16.5 ± 0.8 21.0 ± 2.2 4.5 ± 8.2 29.5 ± 2.4 28.5 ± 3.7 -1.0 ± 3.5 

Tryp 32.0 ± 2.2 38.3 ± 4.2 6.3 ± 3.2 40.3 ± 3.9 38.2 ± 5.8 -2.1 ± 2.4 

Phe 52.8 ± 3.1 62.6 ± 7.3 9.8 ± 7.6 70.2 ± 0.4 65.9 ± 2.0 -4.3 ± 1.7 

Ile 44.0 ± 3.1 51.8 ± 4.8* 7.8 ± 3.2 68.1 ± 2.9 61.7 ± 3.4 -6.4 ± 2.6 

Leu 87.5 ± 5.3 95.9 ± 7.8 8.4 ± 5.9 139.7 ± 12.3 116.2 ± 7.7 -23.5 ± 5.4 

Lys 127.9 ± 7.1 159.6 ± 22.7 31.7 ± 18.1 239.7 ± 67.5 188.9 ± 24.8 -50.7 ± 50.2 
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Tables 3.15-3.17 show the changes in muscle amino acid concentrations in the fasted state. The 

median baseline concentrations were comparable with those previously reported by Bergström et 

al. (1990) (Figure 3.9). However, some of the patients had high baseline concentrations of some 

of the amino acids causing the data to be skewed, especially in the STD bicarbonate group. No 

artifactual explanation could be found for this and so all the data were included in the analysis 

(however see Chapter 4, Section 4.4.5(2)). Methionine concentrations were virtually 

undetectable in these muscle biopsies and so have been omitted from the tables. After six months 

of exercise with STD bicarbonate therapy, nine amino acids showed a striking statistically 

significant depletion relative to the baseline value. Of these Threonine, Valine, Phenylalanine, 

Leucine and Lysine are essential amino acids. Interestingly no significant effects were seen in 

the intramuscular concentration of histidine, which is kown to be highly involved in the muscle 

buffering process. This amino acid depletion is illustrated in Figure 3.10B.  Such depletion was 

detectable after only one month on STD bicarbonate treatment, but was not yet statistically 

significant (Table 3.15; Figure 3.10A) This effect was not observed following six months of 

exercise with XS bicarbonate, nor was it seen in either the STD or XS non-exercising control 

groups (Figures 3.11 and 3.12). This depletion was also accompanied by a collapse in many of 

the muscle / plasma amino acid concentration gradients (Table 3.19). Again, this effect was 

apparently present at one month, but failed to reach statistical significance, except for L-Ser 

(Table 3.18). This collapse was not seen in any of the other groups (Tables 3.19. and 3.20).  
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Table 3.15. Changes in muscle amino acid concentration (mmol/l cell H2O) in the fasted 

state following one month of exercise with STD bicarbonate therapy. Values are presented as 

median and range. 

Amino Acid STD Baseline STD One Month Δ 

Glu 3.6  (0.3 – 16.7) 1.6  (0.9 – 64.2) -1.9 (-12.5 – 61.0) 

Asn 0.3  (0.3 – 1.9 ) 0.4 (0.1 – 3.3) -0.01 (-1.33 – 3.12) 

Ser 0.4 (0.08 – 7.78) 0.3 (0 – 8.5) -0.06 (-7.60 – 8.12) 

Gln 12.3 (3.0 – 92.1) 8.4 (3.3 – 196.1) -3.9 (-65.7 – 7.4) 

His 0.3 (0 – 2.9) 0.2  (0.04 – 2.27) -0.1 (-2.4 – 2.0) 

Gly 1.6 (0.6 – 9.9) 1.5 (0.4 – 17.4) -0.3 (-9.4 – 15.9) 

Thr 0.9 (0.3 – 5.7) 0.8  (0.7 – 13.7) 0.3 (-4.1 – 13.3) 

Arg 0.6 (0.09 – 4.2) 0.4 (0.1 – 8.0) -0.2 (-3.4 – 7.5) 

Ala 2.7 (0.7 – 29.6) 2.5 (1.1 – 51.1) -0.1 (-20.3 – 49.2) 

Tyr 0.78 (0.08 – 3.56) 0.21 (0.05 – 1.19) -0.03 (-3.5 – 1.1) 

Cys 0.09 (0.02 – 1.37) 0.05 (0.01 – 0.55) -0.01 (-1.50 – 0.18) 

Val 0.5 (0.1 – 6.9) 0.2 (0 – 2.9) 0.1 (-6.9 – 2.7) 

Met -- -- -- 

Tryp 0.27 (0 – 1.7) 0.10 (0 – 2.1) -0.03 (-0.45 – 0.16) 

Phe 0.5 (0.06 – 0.59) 0.2 (0.06 – 1.68) -0.05 (-1.01 – 1 .08) 

Ile 0.21 (0.06 – 2.38) 0.15(0.05 – 0.87) -0.02 (-2.33 – 0.18) 

Leu 0.35 (0.09 – 4.63) 0.2 (0.09 – 1.57) -0.08 (-4.53 – 1.36) 

Lys 0.5 (0.01 – 6.49) 0.2 (0.1 – 10.5) -0.2 (-6.3 – 10.0) 

 

 

 

 

 



Table 3.16. Changes in muscle amino acid concentration (mmol/l cell H2O) in the fasted state following six months of exercise 
with STD or XS bicarbonate therapy. * Denotes significant change from baseline in each group (P<0.05). Values are presented as 
median and range. 

Amino 
Acid STD Baseline STD Six Months STD Δ XS Baseline XS Six Months XS Δ 

Glu 3.6   (0.3 – 16.7) 1.7 (0.3 – 3.1)* -1.8 (-15.4 – 1.1) 2.1 (0.5 – 2.6) 3.3 (1.1 – 8.9) 1.4 (-1.0 – 6.6) 

Asn 0.39  (0.11 – 1.87) 0.18 (0.08 – 0.48)* -0.25 (-1.66 – 0.06) 0.14 (0.08 – 0.43) 0.43 (0.11 – 0.61) 0.3 (-0.3 – 0.4) 

Ser 0.4 (0.08 – 7.78) 0.2 (0 – 0.50) -0.09 (-7.40 – 0.08) 0.3 (0.04 – 0.86) 0.3 (0.05 – 2.15) 0.2 (-0.2 – 1.3) 

Gln 11.9 (3.0 – 92.2) 7.1 (2.2 – 10.6) -5.7 (-83.1 – 7.6) 7.6  (4.7 – 14.1) 8.9 (1.5 – 19.8) 4.3 (-6.4 – 9.2) 

His 0.3 (0 – 2.9) 0.20 (0.06 – 0.76) -0.10 (-2.8 – 0.6) 0.2 (0.05 – 0.48) 0.2 (0 – 2.4) 0.05 (-0.5 – 2.3) 

Gly 1.7 (0.6 – 9.9) 1.1 (0.7 – 10.6) -0.4 (-8.3 – 8.9) 1.0 (0.6 – 1.1) 2.6 (0.4 – 16.7) 1.6 (-0.7 – 11.7) 

Thr 0.7 (0.3 – 5.7) 0.3 (0.1 – 0.6)* -0.5 (-5.3 – 0.3) 0.3 (0.1- 0.5) 0.6 (0.3 – 1.9) 0.4 (-0.2 – 1.6) 

Arg 0.7 (0.09 – 4.19 ) 0.3 (0.1 – 0.5)* -0.39 (-3.86 – 0.01) 0.3 (0.09 – 0.48) 0.3 (0.2 – 1.1) 0.1 (-0.2 – 0.5) 

Ala 3.1 (0.7 – 29.6) 1.4 (0.03 – 1.87)* -2.0 (-26.8 – 0.1) 1.8 (1.6 – 12.3) 5.0 (0.8 – 7.3) 0.02 (-4.94 – 3.37) 

Tyr 0.42 (0.08 – 3.56) 0.09 (0.03 – 0.64) -0.08 (-3.37 – 0.54) 0.08 (0.03 – 0.37) 0.13 (0.03 – 1.32) 0.09 (-0.30 – 1.25) 

Cys 0.09 (0.02 – 1.37) 0.08 (0.01 – 0.21) -0.01 (-1.36 – 0.36) 0.04 (0.02 – 0.39) 0.02 (0 – 0.1) -0.02 (-0.04 – 0.10) 

Val 0.62 (0.1 – 6.9) 0.17 (0 – 0.3)* -0.28 (-6.66 – 0.01)  0.26 (0.08 – 0.3) 0.52 (0.07 – 1.96) 0.2 (-0.2 – 1.7) 

Met -- -- -- -- -- -- 

Tryp 0.09  (0 – 1.7) 0.06 (0 – 0.3) -0.03 (-0.25 – 0.16) 0.08 (0 – 0.6) 0.2 (0.04 – 0.26) 0.07 (-0.41 – 0.21) 

Phe 0.32 (0.09 – 2.58) 0.11 (0.04 – 0.17)* 0.26 (-2.24 – 0.05) 0.11 (0.07 – 0.13) 0.09 (0.04 – 0.49) 0.09 (-0.2 – 0.4) 

Ile 0.22 (0.06 – 2.38) 0.08 (0 – 0.6) -0.07 (-2.15 – 0.48) 0.08 (0.03 – 0.1) 0.09 (0 – 0.1) 0.05 (-0.06 – 0.21) 

Leu 0.5 (0.09 – 4.63) 0.2 (0.09 – 0.48)* -0.19 (-4.14 – 0.01) 0.15 (0.12 – 0.17) 0.3 (0.07 – 0.75) 0.12 (-0.07 – 0.59) 

Lys 0.9 (0.01 – 6.49) 0.2 (0.08 – 0.73)* -0.4 (-4.7 – 0.2) 0.3 (0.2 – 0.5) 0.4 (0.2 – 1.0) 0.06 (-0.09 – 0.55) 



Table 3.17. Changes in muscle amino acid concentration (mmol/l cell H2O) in the fasted state following six months without 

exercise with STD or XS bicarbonate therapy. Data are shown as median and range. 

Amino 
Acid STD Baseline STD Six Months STD Δ XS Baseline XS Six Months XS Δ 

Glu 1.4 (0.7-3.2) 2.1 (0.9 – 4.0) 0.4 (-1.6 – 2.1) 1.6 (1.1 – 2.30) 2.5 (0.3 – 2.8) 0.5 (-0.8 – 1.0) 

Asn 0.2 (0.1 – 0.4) 0.20 (0.05 – 0.56) -0.03 (-0.09 – 0.35) 0.14 (0.04 – 0.31) 0.22 (0.23 – 0.24) 0.08 (-0.06 – 0.16) 

Ser 0.3 (0.1 – 0.4) 0.3 (0.1 – 1.0) -0.09 (-0.1 – 0.7) 0.3 (0.2 – 0.5) 0.23 (0.08 – 0.45) -0.06 (-0.1 - -0.05) 

Gln 8.3 (1.6 – 13.7) 8.3 (0.6 – 20.9) 0.2 (-8.1 – 19.7) 8.7 (3.5 – 11.9) 12.2 (0.3 – 15.1) 0.3 (-3.2 – 6.4) 

His 0.14  (0.06 – 1.67) 0.17  (0.09 – 2.71) 0.05 (-0.36 – 1.36) 0.2 (0.1 – 0.4) 0.3 (0.1 – 0.4) -0.01 (-0.09 – 0.27) 

Gly 0.9 (0.4 – 3.4) 0.9 (0.5 – 2.7) -0.2 (-0.8 – 1.2) 0.9 (0.4 – 1.4) 1.1 (0.5 – 1.5) 1.1 (0.2 – 1.5) 

Thr 0.4 (0.1 – 0.9) 0.20 (0.09 – 0.60) -0.2 (-0.5 – 0.4) 0.1 (0.1 – 0.3) 0.29 (0.05 – 0.35) 0.03 (-0.06 – 0.16) 

Arg 0.3 (0.1 – 0.6) 0.4 (0.1 – 0.4) -0.01 (-0.23 – 1.11) 0.3 (0.2 – 0.5) 0.43 (0.05 – 0.54) -0.04 (-0.12 – 0.17) 

Ala 2.6 (0.7 – 3.7) 2.1(0.2 – 0.4) -0.3 (-0.8 – 6.9) 2.6 (0.7 – 3.0) 2.6 (0.7 – 3.0) -0.06 (-0.52 – 2.28) 

Tyr 0.08 (0.03 – 1.10) 0.20 (0.08 – 1.10) 0.09 (-0.8 – 0.7) 0.05 (0.05 – 0.40) 0.06 (0.02 – 0.12) -0.03 (-0.33 – 0.07) 

Cys 0.06 (0.02 – 0.53) 0.10 (0 – 0.7) 0.01 (-0.39 – 0.60) 0.05 (0.03 – 0.07) 0.2 (0.1 – 0.3) 0.27 (0.03 – 0.30) 

Val 0.3 (0.2 – 1.6) 0.6 (0.2 – 1.2) 0.12 (-0.9 – 0.5) 0.3 (0.1 – 0.3) 0.3 (0.1 – 0.4) -0.03 (-0.10 – 0.10) 

Met -- -- -- -- -- -- 

Tryp 0.3 (0.1 – 0.6) 0.5  (0 – 1.2) 0.05 (-0.64 – 1.0) 0.2 (0.1 – 0.2) 0.16 (0.08 – 0.24) -0.02 (-0.02 – 0.04) 

Phe 0.09 (0.03 – 0.3) 0.17 (0.08 – 1.63) 0.09 (-0.18 – 1.51) 0.10 (0.06 – 0.16) 0.11 (0.08 – 0.12) 0.01(-0.03 – 0.01) 

Ile 0.18 (0.07 – 0.34) 0.26 (0.07 – 1.25) 0.05 (-0.01 – 0.96) 0.12 (0.05 – 0.14) 0.10 (0.06 – 0.13) -0.01 (-0.02 – 0.01) 

Leu 0.19 (0.09 – 0.55) 0.21 (0.08 – 0.57) -0.01 (-0.26 – 0.23) 0.15 (0.07 – 0.43) 0.12 (0.11 – 0.21) 0.05 (-0.31 – 0.06) 

Lys 0.3 (0.1 -1.0) 0.7 (0.1 – 1.2) 0.3 (-0.5 – 1.0) 0.3 (0.1 – 0.3) 0.28 (0.03 – 0.86) -0.01 (-0.08 – 0.48) 



 

112 
 

 

 

Figure 3.9. Comparison of muscle amino acid concentrations recorded in the present study 

with those previously reported by Bergström et al. (1990). Data are expressed as log10.mmol/l 

Solid black line denotes r2 = 0.957, dashed black line symbolises r2 = 1.000. Median values from 

the six month exercise group on STD bicarbonate at baseline were used in the comparison. 
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Table 3.18. Changes in muscle / plasma amino acid gradients (mmol/l) following one month 

of exercise with STD bicarbonate therapy. * denotes significant change from baseline 

(P<0.05). Values are presented as median and range. 

Amino Acid STD Baseline STD One Month Δ 

Glu 13.9 (0.4 – 30.9) 4.6 (0.8 – 301.2) -1.9 (-30.0 – 278.2) 

Asn 7.2 (1.8 – 28.9) 5.9 (2.0 – 61.7) -1.2 (-38.0 – 52.2) 

Ser 5.9 (1.3 – 125.5) 0.27(0.07 – 8.39)* -2.7 (-125.4 – 0.1) 

Gln 25.9 (3.7 – 126.4) 10.9 (3.7 – 337.7) -14.2 (-91.9 – 309.2) 

His 4.7 (0 – 42.3) 3.3 (0.7 – 33.4) -2.11 (-37.4 – 29.0) 

Gly 9.6 (1.8 – 54.6) 3.2 (1.8 – 56.6) -2.9 (-52.7 – 43.9) 

Thr 11.4 (4.0 – 49.7) 7.9 (2.2 – 114.0) -1.6 (-47.5 – 106.1) 

Arg 15.6 (1.2 – 14.1) 5.9 (1.8 – 157.1) -8.0 (-51.7 – 143.0) 

Ala 10.6 (1.8 – 75.3) 6.9 (3.9 – 114.1) -2.1 (-54.0 – 102.1) 

Tyr 14.0 (2.5 – 41.0) 4.1 (0.6 – 22.1) -3.3 (-40.3 – 26.9) 

Cys 1.7 (0.9 – 23.6) 0.8 (0.3 – 8.4) -0.4 (-23.2 – 2.0) 

Val 4.1 (0.9 – 107.5) 1.3 (0 – 18.6) -1.4 (-106.2 – 1.2) 

Met -- -- -- 

Tryp 7.6 (0 – 33.0) 2.8 (0 – 61.4) -4.9 (-31.7 – 61.4) 

Phe 8.0 (1.5 – 74.7) 3.4 (0.9 – 30.6) -0.6 (-73.6 – 4.0) 

Ile 6.0 (1.3 – 50.1) 3.5 (0.9 – 19.4) -0.6 (-49.2 – 12.3) 

Leu 5.6 (0.9 – 45.2) 2.3 (0.9 – 18.4) -0.9 (-44.3 – 12.9) 

Lys 5.0 (0.06 – 31.1) 1.3 (0.6 – 62.7) -2.2 (-30.1 – 56.8) 

 

 

 

 

 



Table 3.19. Changes in muscle / plasma amino acid gradients (mmol/l) following six months of exercise with STD or XS 

bicarbonate therapy. * denotes significant change from baseline in each group (P<0.05). Values are presented as median and range. 

Amino 
Acid STD Baseline STD Six Months STD Δ XS Baseline XS Six Months XS Δ 

Glu 11.1 (0.4 – 30.9) 2.2 (0.6 – 8.3)* -9.3 (-69.6 – 5.1) 4.8 (2.1 – 12.5) 4.9 (4.0 – 9.1) 0.3 (-8.4 – 4.3) 

Asn 8.4 (1.8 – 28.9) 2.5 (1.8 – 8.2)* -6.0 (-32.9 – 0.1) 2.4 (1.0 – 5.5) 6.9 (1.15 – 11.5) 4.5 (-4.0 – 8.7) 

Ser 3.23 (1.4 – 125.5) 0.11  (0 – 0.39)* -3.1 (-125.2 – 1.3) 3.23 (0.4 – 12.3) 0.24 (0 – 2.05) -2.3 (-10.3 - -0.46)

Gln 25.6 (3.7 – 126.4) 10.7 (3.5 – 14.5)* -13.8 (-113.5 – 9.2) 12.5 (6.0 – 12.5) 12.5 (2.4 – 31.0) 2.2 (-10.5 – 12.5) 

His 4.6 (0 – 42.3) 5.0 (0.6 – 10.4) -1.8 (-39.8 – 6.7) 2.0 (0.7 – 6.0) 2.4 (0 – 45.6) 0.4 (-5.5 – 43.8) 

Gly 12.6 (1.8 -54.6) 3.4 (1.2 – 50.6) 1.5 (-47.3 – 35.3) 4.9  (1.9 – 28.0) 8.7 (1.6 – 70.4) 3.8 (-3.2 – 42.3) 

Thr 7.9 (1.0 – 49.7) 2.4 (0.8 – 4.5)* -4.3 (-41.0 – 3. 0) 2.1 (1.5 – 5.1) 4.5 (2.0 – 13.7) 2.9 (-3.0 – 11.6) 

Arg 23.8 (1.2 – 34.0) 14.3 (1.4 – 30.9)* -8.8 (-43.8 – 0.5) 5.9 (1.5 – 5.9) 7.7 (4.2 – 42.5) 6.2 (-17.1 – 36.0) 

Ala 11.5 (1.8 – 75.3) 2.9 (0.07 – 7.08)* -7.7 (-70.3 – 0.5) 4.2 (2.9 – 41.8) 12.1 (2.1 – 18.9) -0.5 (-22.9 – 8.5) 

Tyr 8.2 (2.5 – 41.0) 1.6 (0.4 – 11.5) -2.4 (-38.9 – 7.6) 2.3 (0.5 – 7.6) 1.9 (0.6 – 30.2) 1.4 (-6.0 – 29.1) 

Cys 1.5 (0.9 – 23.6) 1.1 (0 -3.6) -0.5 (-20.6 – 0.3) 0.7 (0.3 – 7.4) 0.5 (0 – 6.4) 0.2 (-7.4 – 5.7) 

Val 5.0 (0.9 – 107.5) 1.2 (0 – 5.0)* -2.3 (-102.5 - -0.2) 1.2 (0 – 5.0) 2.2 (0.4 – 12.0) 1. 0 (-1.6 – 10.3) 

Met -- -- -- -- -- -- 

Tryp 2.6 (0 – 33.0) 1.3 (0 – 5.7) -1.4 (-27.6 – 5.0) 2.6 (0 – 9.6) 5.4 (1.2 – 9.6) 0.3 (-6.9 – 7.4) 

Phe 5.2 (1.5 – 74.7) 1.8 (0.8 – 5.5)* -2.7 (-69.1 – 0.3) 2.1 (1.3 – 6.8) 3.2 (1.1 – 9.7) 1.1 (-5.7 – 7.9) 

Ile 4.9 (1.3 – 50.1) 1.8 (0 – 8. 0) -3.9 (-45.5 – 9.6) 1.6 (0.4 – 2.1) 1.1 (0 – 7.4) 0.5 (-1.6 – 5.8) 

Leu 5.8 (0.9 – 45.2) 1.5 (0.5 – 4.2)* -3.7 (-41.0 – 0.1) 1.4 (0.8 – 1.7) 1.7 (0.7 – 8.3) 0.8 (-0.9 – 6.8) 

Lys 5.9 (0.06 – 31.3) 1.4  (0.5 – 3.6)* -3.6 (-27.9 – 1.3) 2.1 (0.5 – 3.3) 1.5 (1.2 – 2.4) 0.2 (-1.0 – 2. 0) 



Table 3.20 Changes in muscle / plasma amino acid gradients (mmol/l) following six months without exercise with STD or XS 

bicarbonate therapy. * Denotes significant change from baseline in each group (P<0.05). Values are presented as median and range. 

Amino 
Acid STD Baseline STD Six Months STD Δ XS Baseline XS Six Months XS Δ 

Glu 24.9 (16.5 – 61.6) 36.6  (13.6 – 91.6) 4.6 (-23.3 – 66.2) 26.8  (24.3 – 31.0) 48.6 (7.4 – 56.8) 17.7 (-16.8 – 29.9) 

Asn 3.7 (2.6 – 8.7) 4.6  (0.8 – 8.0) -0.3 (-2.6 – 4.4) 2.4 (1.4 – 4.5) 3.9 (3.8 – 4.9) 2.4 (-0.5 – 2.5) 

Ser 4.0 (1.9 – 6.2) 3.9 (1.8 – 7.6) -0.01 (-3.3 – 4.9) 2.7 (1.6 – 4.0) 3.4 (0.6 – 3.8) -0.2 (-1.0 – 0.7) 

Gln 13.1 (2.8 – 16.3) 12.0 (0.9 – 32.8) 1.1 (-16.3 – 30.7) 11.1 (5.7 – 19.0) 16.9 (0.4 – 21.8) -2. 0 (-5.3 – 10.7) 

His 2.3 (1.1 – 33.3) 3.8  (1.2 – 38.0) 0.8 (-5.7 – 23.8) 1.7 (1.2 – 6.4) 5.8 (1.1 – 5.9) -0.5 (-0.6 – 4.6) 

Gly 3.8  (3.1 – 9.3) 4.4   (0.9 – 10.6) -0.8 (-3.0 – 6.9) 2.5 (1.3 – 4.7) 2.9 (0.6 – 3.7) -0.7 (-1.7 – 1.1) 

Thr 3.2  (1.1 – 7.8) 2.2 (0.9 – 7.3) -1.1 (-5.2 – 4.8) 1.2 (0.7 – 2.3) 2.0 (0.4 – 2.1) -0.1(-0.3 – 0.8) 

Arg 12.3 (1.8 – 22.6) 6.8 (1.8 – 33.8) -2.4 (-16.1 – 25.4) 3.4 (3.0 – 7.6) 4.9 (0.9 – 5.5) -2. 0 (-2.1 – 1.4) 

Ala 0.14 (0.05 – 0.56) 0.18 (0.05 – 2.43) -0.01 (-0.4 – 2.3) 0.3 (0.1 – 0.8) 0.18 (0.05 – 0.29) 0.01 (-0.05 – 2.2) 

Tyr 1.6 (0.7 – 23.0) 3.9 (1.1 – 12.8) 2. 0 (-19.5 – 7.4) 0.5 (0.5 – 9.3) 1.3 (0.3 – 1.5) -0.3 (-7.9 – 0.9) 

Cys 1.3 (0 – 11.4) 1.7 (0 – 21.0) -0.06 (-8.62 – 19.54) 0.7 (0.7 – 1.4) 3.2 (2.7 – 5.3) 2. 0 (1.8 – 4.6) 

Val 2.1 (1.6 – 6.8) 2.8 (1.9 – 8.1) 0.06 (-3.70 – 3.85) 1.2 (0.7 – 1.8) 1.3 (0.7 – 1.8) 0.01 (-0.05 – 0.06) 

Met -- -- -- -- -- -- 

Tryp 10.3 (4.3 – 38.8) 12.6 (0 – 36.5) 0.9 (-8.5 – 31.9) 4.1 (2.6 – 5.4) 4.7 (2.4 – 5.4) -0.1 (-0.6 – 0.8) 

Phe 1.6 (1.0 – 7.8) 3.5 (1.4 – 28.8) 1.9 (-4.5 – 26.7) 1.6 (0.9 – 2.3) 1.7 (1.1 – 1.9) -0.2 (-0.3 – 0.3) 

Ile 4.1 (1.4 – 10.7) 6.5 (1.6 – 13.3) 0.3 (-2.6 – 11.5) 1.7 (0.9 – 2.0) 1.7 (1.1 – 1.9) -0.01 (-0.07 – 0.2) 

Leu 2.2 (1.4 – 5.6) 2.1 (1.1 – 6.5) -0.4 (-2.7 – 3.4) 0.9 (0.5 – 3.2) 1.2 (1.0 – 1.7) 0.6 (-2.2 – 0.7) 

Lys 2.6  (1.0 – 6.1) 3.4 (0.8 – 13.5) 1.4 (-3.7 – 5.7) 1.2 (0.4 – 2.9) 1.9  (0.1 – 4.8) -0.2 (-0.9 – 3.5) 
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Figure 3.10. Summary of changes in muscle amino acid concentration from baseline 

following one month (A) or six months (B) of exercise with STD bicarbonate therapy. 

Values are calculated from median concentrations.   
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Figure 3.11. Summary of changes in muscle amino acid concentrations from baseline 

following six months of exercise with STD or XS bicarbonate therapy. Values are calculated 

from median concentrations 

 

Figure 3.12. Summary of changes in muscle amino acid concentrations from baseline 

following six months without exercise with STD or XS bicarbonate therapy. Values are 

calculated from median concentrations. 
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3.3.8 Dietary intake 

In principle, changes in diet may have contributed to the changes in amino acid concentrations 

described above. The effect of exercise and bicarbonate on dietary intake was assessed by diet 

diaries over three days at each time point. Only two patients from the six month exercise group 

receiving XS bicarbonate and from the non exercise group receiving XS bicarbonate completed 

and returned these diaries so data on bicarbonate will not be presented. 

 

Table 3.21. The effect of one month of exercise on dietary intake. 

 Baseline One Month 

 
Energy 
(kcal/kg 

bw) 

CHO 
(g/kg 
bw) 

Protein 
(g/kg 
bw) 

Fat   
(g/kg 
bw) 

Energy 
(kcal/k
g bw) 

CHO 
(g/kg 
bw) 

Protein 
(g/kg 
bw) 

Fat   
(g/kg 
bw) 

Exercise 23.2 ± 
4.2 

3.0 ±     
0.2 

0.90 ± 
0.07 

0.9 ±      
0.1 

24.5 ± 
4.2 

3.0 ±     
0.3 

0.92 ±     
0.07 

1.0 ±    
0.1 

 

Table 3.22. The effect of six months of exercise or without exercise on dietary intake.                        

* denotes significant change from corresponding value at baseline. 

 Baseline Six Months 

 
Energy 
(kcal/kg 

bw) 

CHO 
(g/kg 
bw) 

Protein 
(g/kg 
bw) 

Fat 
(g/kg 
bw) 

Energy 
(kcal/kg 

bw) 

CHO 
(g/kg 
bw) 

Protein 
(g/kg 
bw) 

Fat   
(g/kg 
bw) 

Exercise 24.5 ± 

3.2 

3.1 ±     

0.3 

0.97 ± 

0.10 

1.0 ±      

0.2 

19.2 ± 

1.2 

2.5 ±     

1.2 

0.76 ±   

0.03* 

0.7 ±      

0.1 

Controls 26.6 ± 

5.5 

3.2 ±     

0.8 

1.06 ± 

0.15 

1.0 ±      

0.2 

22.0 ± 

1.0 

2.7 ±    

0.6 

0.84 ±  

0.15* 

0.8 ±      

0.1 
 

Energy intake did not change following one month of exercise (Table 3.21), but was seen to 

decrease after six months of exercise and a no exercise control period, but this failed to reach 

significance in both groups (P = 0.078 and P = 0.094 respectively) (Table 3.22). There was also 

no change in the carbohydrate (CHO) intake following one month of exercise (P = 0.800) or in 

the non-exercising control group (P = 0.264). CHO intake fell after six months of exercise, but 
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this was not significant (P = 0.084). Protein intake did not change following one month of 

exercise (P = 0.973), but was seen to fall significantly after six months of both exercise and no 

exercise (P = 0.028 and P = 0.030 respectively).  

 

3.3.9 SNAT2 Expression 

Even though the effects on free amino acid concentrations and muscle/plasma concentration 

gradients described above imply changes in active amino acid transport in muscle, there was no 

effect of six months of exercise or bicarbonate treatment on the expression of the SNAT2 

transporter at the mRNA level (Figure 3.13).  The apparent small decrease following one month 

of exercise with STD bicarbonate was not statistically significant (P = 0.532) (Figure 3.13 inset), 

nor was the apparent effect of XS bicarbonate in non-exercising subjects (P = 0.742) (Figure 

3.13).  
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Figure 3.13. Changes in the expression of the SNAT2 amino acid transporter following six 

months with or without exercise with STD or XS bicarbonate therapy. Inset graph displays 

changes in SNAT2 expression following one month of exercise with STD bicarbonate therapy. 

Data are presented here as the Pfaffl Expression Ratio (See Chapter 2.6.7) in which, by 

definition, the baseline value is 1.0. 

 

 

3.3.10 Protein phosphorylation signals 

In agreement with earlier studies of the extent of rpS6 phosphorylation in the muscle of healthy 

fasted subjects (Dreyer et al. 2008), considerable difficulties were experienced in the detection of 

phosphorylated rpS6 in these wasted patients in the fasted and rested state. The negligible P-rpS6 

signal observed was not significantly affected by exercise or alkali treatment even in those 

subjects whose biopsies gave a quantifiable signal at baseline (Figures 3.14 and 3.15). 
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Figure 3.14. The effect of six months of exercise with STD or XS bicarbonate therapy on 
rpS6 phosphorylation. (A) Representative immunoblot showing rpS6 phosphorylation at Ser 
235/236. (B) Quantification by densitometry of pooled data from those patients who exercised 
for six months with STD or XS bicarbonate therapy. Inset shows the quantification by 
densitometry of the pooled data from those patients who exercised for one month with STD 
bicarbonate therapy. As a reference against which the patients’ samples were expressed a sample 
of a lysate from insulin-stimulated L6-G8C5 cells was run in parallel with the patients’ lysates 
on every blot. 
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Figure 3.15. The effect of six months without exercise with STD or XS bicarbonate therapy 
on rpS6 phosphorylation on the Ser 235/236 residue. (A) Representative immunoblot showing 
rpS6 phosphorylation at Ser 235/236. (B) Quantification by densitometry of pooled data from 
non-exercising controls with STD or XS bicarbonate therapy. As a reference against which the 
patients’ samples were expressed a sample of a lysate from insulin-stimulated L6-G8C5 cells 
was run in parallel with the patients’ lysates on every blot. 

 

Owing to the problems encountered in detecting a P-rpS6 signal, a random sample of biopsies 

from all patient groups was selected and probed for two further downstream targets of mTOR, 
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i.e. phosphorylated eukaryotic initiation factor 4E binding protein 1 (P-4E-BP1) and 

phosphorylated P70S6 Kinase (P-P70S6K). As with P-rpS6, the P-4E-BP1 and P-P70S6K signals 

were essentially undetectable in these biopsies and were not affected by exercise training or 

alkali therapy (Figure 3.16).  

 

           

           

 

           

                    

             Reference      0               6 

 

Figure 3.16. Representative immunblots of 4E-BP1 and P70S6K from a non-exercising 

control patient on STD bicarbonate therapy. Due to the negligible signal, immunostaining has 

not been quantified. The reference sample is the sample of lysate from insulin stimulated L6-

G8C5 cells presented in Figures 3.13 and 3.14. “0” denotes baseline and “6” six months.                     

 

In contrast to the mTOR signals, a readily detectable PKB phosphorylation signal was seen in the 

biopsies, but no statistically significant changes were detected after one or six months of exercise 

with STD or XS bicarbonate therapy (Figure 3.17).  
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Figure 3.17.  The effect of six months of exercise with STD or XS bicarbonate therapy on 
PKB phosphorylation on the Ser 473 residue. (A) Representative immunoblot showing PKB 
activation at Ser 473. (B) Quantification by densitometry of pooled data from those patients who 
exercised for six months with STD or XS bicarbonate therapy. Inset shows the quantification by 
densitometry of the pooled data from those patients who exercised for one month with STD 
bicarbonate therapy. As a reference against which the patients’ samples were expressed a sample 
of a lysate from insulin-stimulated L6-G8C5 cells was run in parallel with the patients’ lysates 
on every blot. 
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Figure 3.18. The effect of six months without exercise with STD or XS bicarbonate therapy 

on PKB phosphorylation on the Ser 473 residue. (A) Representative immunoblot showing 

PKB activation at Ser 473. (B) Quantification by densitometry of pooled data from non-

exercising controls with STD or XS bicarbonate therapy. As a reference against which the 

patients’ samples were expressed a sample of a lysate from insulin-stimulated L6-G8C5 cells 

was run in parallel with the patients’ lysates on every blot. 
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B 

D 

3.3.11 The 14kDa Actin Fragment 

Downstream from PKB, cleavage of actomyosin by caspase-3 to generate the 14kDa proteolytoic 

fragment was measured as an index of the early steps in myofibrillar protein catabolism (Du et 

al. 2004; Workeneh et al. 2006) (Figures 3.19 – 3.22). One month or six months of exercise 

resulted in no statistically significant change in the levels of the 14kDa fragment. Following six 

months of exercise the apparent decline from baseline in those patients taking STD bicarbonate 

was not statistically significant (P = 0.096) (Figure 3.21). There was also no detectable change in 

the non-exercising groups (Figure 3.22). 

                    

                       

 

                    

                              

Figure 3.19. Representative immunoblots to demonstrate the effect of one and six months 

of exercise with STD (A) or XS (B) bicarbonate therapy and six months without exercise 

with STD (C) or XS (D) bicarbonate therapy on the level of the 14kDa actin fragment. 

Muscle specimens obtained from healthy rat and from a healthy volunteer “H” were run on every 

blot for comparison with the CKD Patients.  “0” denotes baseline, “1” one month and “6” six 

months.  
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Figure 3.20. Bar graph denoting pooled quantification by densitometry of the effect of one 

month of exercise with STD bicarbonate therapy on the level of the 14kDa actin fragment. 

Two exposure times were used when developing these results, approximately 10 seconds for 

42kDa intact actin and a longer exposure of up to 10 minutes for 14kDa actin fragment (Figure 

3.18). These pairs of films were used to quantify 14kDa/42kDa ratio in Figures 3.19 – 3.21). 

 

Figure 3.21. Bar graph denoting pooled quantification by densitometry of the effect of six 

months of exericse with STD or XS bicarbonate therapy on the level of the 14kDa actin 

fragment.  
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Figure 3.22. Bar graph denoting pooled quantification of the effect of six months without 

exercise with STD or XS bicarbonate therapy on the level of the 14kDa actin fragment.  

 

3. 3.12 Ubiquitin E3 ligase mRNA expression 

In contrast to the 14kDa actin data, significant changes were observed in the mRNA expression 

of MuRF-1 and MAFbx. In the one month pilot study, patients receiving exercise therapy with 

STD bicarbonate treatment showed a detectable decrease in the expression of both of these 

enzymes (Figures 3.23 and 3.24). In the main six month study, this decrease was only sustained 

in the exercising patients who also received XS bicarbonate therapy.   

 

One month of exericse with STD bicarbonate therapy resulted in a statistically signifcant 

reduction in the mRNA expression of both MuRF-1 (P = 0.045) and MAFbx (P = 0.025). Six 

months of exercise with XS bicarbonate therapy resulted in a decrease in the mRNA expression 

of MuRF-1 to 41 ± 18% (P = 0.005) and MAFbx to 46 ± 18% (P = 0.04) of baseline, whilst no 

change was seen in the mRNA expression of either enzyme in the STD bicarbonate group (P = 

0.768 and P = 0.664 respectively). Furthermore, the mRNA expression of MuRF-1 was 
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significantly lower in those patients on XS bicarbonate compared to those on STD bicarbonate 

treatment (P = 0.049). No such change was observed in the mRNA expression of MuRF-1 or 

MAFbx in either of the non-exercising control groups, indeed there was a tendency for MAFbx 

mRNA expression to increase in those non-exercising control patients receiving STD 

bicarbonate therapy (Figures 3.23 and 3.24). 

 

 

Figure 3.23. Change in MAFbx mRNA expression with or without exercise and bicarbonate 

therapy. Graph inset shows change in MAFbx mRNA expression following one month of 

exercise with STD bicarbonate therapy. # denotes significant difference from baseline (P<0.05). 

Data are presented as the Pfaffl Ratio (See Chapter 2.6.7) in which, by definition, the baseline 

value is 1.0. 
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Figure 3.24. Change in MuRF-1 mRNA expression with or without exercise and 

bicarbonate therapy. Graph inset shows change in mRNA MuRF-1 mRNA expression 

following one month of exercise with STD bicarbonate therapy here # denotes significant 

difference from baseline (P<0.05). In main graph # denotes significant difference from 

corresponding baseline (P<0.05). * denotes significant difference between bicarbonate groups 

following six months of exercise (P<0.05). Data are presented as the Pfaffl Ratio (See Chapter 

2.6.7) in which, by definition, the baseline value is 1.0. 
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change in the rate of myofibrillar protein degradation with or without exercise or additional 

bicarbonate treatment (Tables 3.23 – 3.24). This was true when the data were corrected for 

variation in lean body mass by calculating the 3-MH/creatinine excretion as is conventional (Elia 

et al. 1981), or by expressing 3-MH in relation to lean body mass measured directly using 

DEXA. Excretion of 3-MH apparently showed a paradoxical increase above baseline after one 

month of exercise on STD bicarbonate therapy when corrected for creatinine (Table 3.23), 

indicating an increase in myofibriliar degradation and a worsening of their muscle wasting, but 

this change was not statistically significant (P = 0.138).  

Table 3.23. 3-MH excretion rates corrected for creatinine or for lean body mass (LBM) 

(DEXA), following one month of exercise with STD bicarbonate therapy. 

 
Baseline STD 

One month 

Exercise STD 

3-MH/Creatinine 

(µmol/mmol crnn/24h) 
33.9 ± 4.6 46.9 ± 8.8 

3-MH/LBM          

(µmol/kg LBM/24h) 
10.4 ± 2.2 9.9 ± 1.9 

 

Table 3.24. 3-MH excretion rates corrected for creatinine or for lean body mass (LBM)  

(DEXA) following six months of exercise with STD or XS bicarbonate therapy. 

 
Baseline 

STD 

Six 
Months 
Exercise 

STD 

Baseline 
XS 

Six Months 
Exercise        

XS 

3-MH/Creatinine 

(µmol/mmol crnn/24h)
33.9 ± 5.9 38.8 ± 8.1 32.0 ± 8.9 35.8 ± 8.0 

3-MH/LBM          

(µmol/kg LBM/24h) 
10.6 ± 2.6 9.4 ± 2.0 9.2 ± 1.2 12.3 ± 2.7 
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Table 3.25. 3-MH excretion rates corrected for creatinine or for lean body mass (LBM) 

(DEXA) following six months without exercise with STD or XS bicarbonate therapy. 

  
Baseline  
STD 

Six 
Months 
STD 

Baseline 
XS 

Six 
Months 
XS 

3-MH/Creatinine  

(µmol/mmol crnn/24h) 

 
37.5 ± 6.9 29.0 ± 3.9 47.2 ± 13.9 60.8 ± 10.1 

3-MH/LBM           

(µmol/kg LBM/24h) 

 
8.6 ± 1.7 9.0 ± 1.4  12.4 ± 4.1  16.3 ± 3.9 
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3.3.14 Summary 

Table 3.26. Summary of the principal effects observed in this study.  ND denotes not 
determined 

Parameter 
One Month 

Ex STD 
One Month 

Ex XS 
Six Months 

Ex STD 
Six Months 

Ex XS 
Figure / Table 

Exercise 
Tolerance 

↑  ↑  ↑  ↑  Figures 3.2 and 
3.3 

Lactate 
Response to 
Exercise 

↔  ↓  ↔  ↓ 
Tables 3.6 and 

3.7 

Hb and Hct 
Response to 
Exercise 

↔  ↔  ↔  ↔ 
Tables 3.8 and 

3.9 

Body Weight  ↔  ↔  ↔  ↔  Table 3.10 

BMI  ↔  ↓  ↔  ↓  Table 3.10 
LBM % Total 
Body Weight 

↑  ↑  ↔  ↑  Figure 3.7 

Fat Mass  ↓  ↔  ↔  ↓  Table 3.10 

Biopsy DNA 
Content 

ND  ND  ↔  ↔  Table 3.11 

 Biopsy RNA 
Content 

ND  ND  ↑  ↔  Table 3.11 

Biopsy Total 
Protein 

ND  ND  ↔  ↓  Table 3.11 

Overall Trend 
for Plasma 
Amino Acids 

↔  ND  ↑  ↔ 
Tables 3.12 – 

3.14 

Overall Trend 
for Muscle 
Amino Acids 

↔  ND  ↓  ↔ 
Tables 3.15 – 

3.17 
 

Muscle SNAT2 
Expression 

↔  ND  ↔  ↔  Figure 3.13 

P‐PKB  ↔  ND  ↔  ↔  Figure 3.17 

14kDa  ↔  ND  ↔  ↔  Figures 3.20 and 
3.21

MAFbx 
Expression 

↓  ND  ↔  ↓  Figure 3.23 

MuRF‐1 
Expression 

↓  ND  ↔  ↓  Figure 3.24 

3‐MH Excretion  ↔  ↔  ↔  ↔  Tables 3.23, 3.24 
and 3.25 
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3.4 Discussion 

The main results produced from this study were that exercise tolerance did improve following six 

months of walking exercise, an effect that was not seen in the non-exercising patients, and that 

XS sodium bicarbonate did appear to provide the exercisers with some additional benefits. These 

patients were seen to have larger increases in LBM, greater reductions in the mRNA expression 

of MuRF-1 compared to those who remained on their standard bicarbonate dose, and were able 

to maintain amino acid concentration gradients between the plasma and muscle, and therefore 

were also able to maintain intramuscular amino acid concentrations, which might have 

significant implications for muscle protein synthesis rates. 

 

3.4.1 Exercise tolerance 

These results confirm previous reports that exercise tolerance and capacity can be improved in 

CKD patients (Painter et al. 1986; Koudi et al. 1997; Molsted et al. 2004). One and six months of 

aerobic exercise training significantly improved the patients’ ability to exercise. A small 

improvement was seen in the exercise tolerance of the non-exercising patients who received STD 

bicarbonate therapy: this may have arisen through a psychological effect of participating in an 

exercise training study, or through improper familiarisation with the RPE scale. However, no 

improvement was observed in the non-exercising group receiving XS bicarbonate in which 

similar psychological factors could also have led to an improvement, but none was observed. It is 

possible therefore, that in sedentary CKD patients, XS bicarbonate worsens their exercise 

tolerance, but there was no clear evidence for such a detrimental effect of bicarbonate alone in 

the other measurements described in this study. It was decided not to present the HR data from 

the exercise test in this thesis. In a separate arm of this study that has not been reported here, the 

effect of exercise on many clinical parameters was investigated, including blood pressure and the 

dose of anti-hypertensive’s the patients were taking. Patients in the exercise group were on 

greatly reduced doses of their ant-hypertensive medication following six months of walking 

exercise, which would undoubtedly affect heart rate response in subsequent exercise tests and 

this in combination with an inherent HR variability in these patients due to cardiac dysfunction 

lead to the conclusion the HR data was an unreliable measure of exercise tolerance in these 

patients.  
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The reduced lactate response to acute exercise that was observed after one and to some extent six 

months of exercise with XS bicarbonate (Figures 3.4B and 3.5B) has been reported previously in 

CKD (Kouidi et al. 1998; Akiba et al. 1995) in which 6 and 3 months respectively of a mixed 

exercise training programme resulted in lower blood lactate concentrations.  Kouidi et al. (1998) 

attributed this to a block in glycolysis resulting in an increase in muscle glycogen levels, similar 

to that seen in McArdle’s disease, but this has not been confirmed and also seems unlikely. It is 

more likely that this reduced lactate response at one or six months to the same absolute exercise 

intensity as at baseline, might be attributed to a training effect (MacRae et al. 1992). If so, this 

implies that the training effect of aerobic exercise was enhanced here by administering extra 

bicarbonate. A possible factor limiting the ability to exercise in CKD is acidosis: the normal 

intracellular acidification of skeletal muscle that occurs during exercise, as a result of lactic acid 

generation, is enhanced in patients with CKD. Nishida et al. (1991) observed using 31-P NMR 

that there was a greater decline in sarcosolic pH during aerobic exercise compared to healthy 

controls and a slower rate of its recovery, an observation that has been confirmed by other 

groups (Durozard et al. 1993; Kemp et al. 2004). In healthy individuals it has also been 

demonstrated that an induced metabolic acidosis by NH4Cl administration or through diet 

manipulation reduces exercise capacity in high intensity exercise (Jones et al. 1977; Greenhaff et 

al. 1987). Intramuscular acidification during exercise historically was considered to be a major 

factor in the development of fatigue (Karlsson et al. 1975), which has latterly become a 

somewhat controversial point (Westerblad et al. 2002). It is possible however, that the 

administration of extra bicarbonate helped to blunt the onset of acidification and fatigue during 

exercise, allowing more prolonged and effective exercise in these patients and hence, an 

enhanced training effect. Indeed this has recently been demonstrated in healthy rats with a 

chronic alkalosis. Compared to rats on placebo, rats that received sodium bicarbonate before 

each training session exhibited a longer time to exhaustion following five weeks of interval 

training, and greater improvements in mitochondrial mass and mitochondrial respiration 

measured in the soleus (Bishop et al. 2010). This suggests that chronic ingestion of sodium 

bicarbonate may sufficiently reduce the muscle hydrogen ion accumulation during training 

allowing for greater adaptations to occur. 

Although the plasma lactate levels here that were generated by the exercise test were only 1-

2mmol/l above the resting values, it is important to note that this was imposed on an existing 

metabolic acidosis and these values only represent the appearance of lactate in the blood and the 

impact of the exercise on intramuscular acidification was unknown. Any attempt to minimise an 
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additional acid load in these patients may well result in significant beneficial effects, such as 

those observed here. 

 

3.4.2 Body composition 

Exercise training resulted in a small but statistically significant increase in LBM of 0.5kg after 

one month and in LBM as % of total body weight after six months in the XS bicarbonate group 

only. Going et al. (1993) quoted the precision error in DEXA scanning of lean body mass to be 

0.8kg, and so caution is required when interpreting these small apparent effects. The precision 

error in detecting changes in fat mass by DEXA is generally stated at 1% (Salamone et al. 2000) 

changes that the results presented here exceed. The decline in fat mass and the rise in LBM/fat 

mass ratio that were observed in the present study are of functional interest because CKD 

patients are chronically inflamed (Pereria et al. 1994). Many of the pro-inflammatory cytokines 

such as TNF-α and IL-6 that are reported to be elevated in these patients (Pereria et al. 1994) are 

produced by adipose tissue (Coppack, 2001) and can stimulate protein degradation (Goodman, 

1991, 1994). By decreasing fat mass, the production of these cytokines may also be reduced and 

this may help alleviate the patient’s pro-inflammatory condition that can result in cardiac disease 

(Kalantar-Zadeh and Balakrishnan, 2006) which is the biggest cause of mortality in this 

population (Pecoits-Filho et al. 2002). (The effect of exercise on the inflammatory processes in 

these patients is described in a PhD thesis by J. Viana, Loughborough University). 

 The changes that were observed in body composition are small changes, but they were achieved 

with aerobic exercise alone. This may be a reflection of how cachectic these patients are; effects 

being more readily observed because of the initial wasted state of the patients. In future studies, 

larger gains might be expected with resistance exercise training or a combination of the two. 

 

It was also noted that no body composition changes whatever were detected in the STD 

bicarbonate group at six months (Table 3.10), the small apparent changes being confined to the 

XS bicarbonate group as with the lactate response data in Section 3.3.3 above. This may mean 

that muscle acidification during exercise was a limiting factor in these patients and XS 

bicarbonate therapy rendered exercise more effective. 
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3.4.3 Free amino acids 

A striking decline was observed in the fasting intramuscular amino acid concentrations of those 

patients who received STD bicarbonate therapy. This was apparent after one month of walking 

exercise, but a more consistent and significant decline was seen after six months. As there were 

generally no changes or small increases in the extracellular (plasma) amino acid concentrations, 

this decline in the fasted steady-state intracellular amino acid concentration seems to have arisen 

from a collapse of the concentration gradient between the intramuscular and extracellular 

compartments. This gradient is normally maintained by active transporters, for example SNAT2, 

which is the major amino acid pump in skeletal muscle cells (Evans et al. 2007, 2008). This 

decline was not observed in the XS bicarbonate group, suggesting that it was an acidosis-

mediated effect. Furthermore, it was not seen in the non-exercising control group receiving STD 

bicarbonate therapy, indicating that it was not the result of a resting metabolic acidosis, but of an 

exercise-induced exacerbation of acidosis and therefore may have been a limiting factor for 

exercise in the exercising patients. The decline in dietary protein intake after six months of 

exercise on STD bicarbonate therapy may have contributed to the accompanying changes in 

intramuscular amino acid concentrations, but this seems an inadequate explanation because a 

similar decline in dietary protein intake was observed in the non-exercising patients with no 

accompanying effects on muscle free amino acids. 

  

There was no change seen in the gene expression of the SNAT2 transporter, but previous studies 

in vitro have shown that acidified medium significantly decreases the activity of this transporter 

(Bevington et al. 2002) probably through a direct effect of low pH on the SNAT2 protein (Baird 

et al. 2006) resulting in a reduction of the intracellular concentration of glutamine and many 

other amino acids without any detectable decline in SNAT2 expression at mRNA or protein level 

(Evans et al. 2007, 2008). The reduction in muscle amino acid concentrations and subsequent 

collapse of gradients in the present study may be the result of a reduced activity of the SNAT2 

transporter caused by a local decrease in pH by the production of lactic acid during exercise, an 

effect that was apparently prevented by the administration of XS bicarbonate. 

It has previously been reported that CKD patients show abnormalities in amino acid metabolism 

(Kopple, 1978) and exhibit lower concentrations of many muscle and plasma amino acids 

(Bergström et al. 1990; Gulyassy et al. 1968; Young and Parsons, 1970). This is a problem that 
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appears to be worse in non-dialysed patients and improves upon initiation of dialysis therapy 

(Bergström et al. 1990). The muscle and plasma amino acid concentrations that are presented 

here varied widely between individuals, but were similar to those reported by Bergström and 

colleagues (1990). Further depletion of these concentrations following exercise in these patients 

has not previously been reported.  

 

3.4.4 Protein phosphorylation signals 

3.4.4.1 Signals through mTOR 

Significant changes in free amino acid pools that were observed in response to exercise (Tables 

3.12 – 3.17) could in principle affect protein metabolism, acting through amino acid sensors such 

as mTOR (see Section 1.11.4). However, in the fasted and rested state, under which conditions 

the muscle biopsies were drawn in the present study, negligible phosphorylation of rpS6, P70S6 

kinase and 4E-BP1 was observed (Figures 3.14 and 3.16) implying that only a low level of 

signalling was occurring through mTOR under these conditions. It has been reported that the 

concentration of most signalling proteins is lower in human skeletal muscle than in rodent 

muscle (Wackerhage, 2006) and the observation of a negligible P-rpS6 and P-P70S6K signal in 

human muscle in the fasted and rested state is not a new finding (Karlsson et al. 2004; Dreyer et 

al. 2006, 2008; Fujita et al. 2007). The low intensity of these phosphorylation signals 

downstream from mTOR suggest that sensing of the changes in free amino acid pool size 

through mTOR is unlikely to have been a major factor under these conditions. Nevertheless, the 

weakness of the signals is of practical importance because it confirms the fasted nature of these 

patients and suggests that the observed amino acid profiles are a true reflection of their 

endogenous amino acid metabolism and not simply a reflection of the amino acid content of their 

last meal. The muscle biopsies were taken in the fasted state to allow the amino acid data to be 

compared to that of Bergström and colleagues (1990) who also studied uraemic patients in the 

fasted state. 

 

3.4.4.2 Signals through PKB 

An important stimulus for the muscle wasting that is seen in CKD patients is a reduction in 

insulin/IGF-1 signalling (Bailey et al. 2006). These authors observed that under basal conditions 
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IRS-1 associated PI-3K activity was suppressed in rats with induced CKD resulting in a reduced 

phosphorylation of PKB. In IRS-1 knockout models, mice exhibit abnormal glucose handling, 

peripheral insulin resistance and growth defects (Araki et al. 1994), problems that are frequently 

reported in CKD patients, suggesting that this is an important defect, but is yet to be confirmed 

by data from human studies. As evidence from rodent studies show the PI-3K/PKB signalling 

pathway is a critical regulator of muscle mass and hypertrophy in vivo (Bodine et al. 2001a), 

activation of this pathway through exercise training could lead to reduced protein degradation 

through a suppressed expression of E3 ubiquitin ligases, as it is thought that ubiquitin-

conjugation by E3 ligases is the rate limiting step in protein degradation (Lecker et al. 1999), and 

increased protein synthesis through phosphorylation of the downstream effectors of PKB (Lecker 

et al. 2006).   

 

A recent study by Wang and colleagues (2009) examined the effect of muscle overload or 

treadmill running in CKD rats on indices of muscle protein synthesis and degradation. They 

observed an inhibitory effect of both forms of exercise on protein degradation, but less of an 

effect on protein synthesis with treadmill running compared to overload. This inhibition of 

protein degradation was accompanied by a small increase in PKB phosphorylation following 

treadmill running, an effect that was again larger in the rats with muscle overload.  

 

In the present study no overall change was seen in the phosphorylation of PKB in response to 

exercise (Figure 3.16) apparently contradicting the results by Chen and Colleagues (2008) and 

Wang and colleagues (2009) who observed in rats, workoverload and treadmill exercise was 

capable of increasing PKB phosphorylation levels and ultinatley protein synthesis rates. The 

differences between these studies may stem from a species variation, from the compliance of the 

patients to perform the required amount of unsupervised exercise or from the fact that PKB 

phosphorylation in humans was studied here at rest; Differences may have become apparent if 

the muscle samples had been taken in the period following the exercise bout. Recent evidence 

from human volunteers has suggested there is a dissociation between anabolic signalling and 

muscle protein synthesis rates suggesting this pathway is more complex in humans than evidence 

from rodent studies would suggest, and therefore PKB phosphorylation in humans may simply 

be reflecting insulin availability (Greenhaff et al. 2008). This would agree with the very low 
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signals detected in these patients who were studied in the fasted state. However, in spite of this 

there was a significant reduction in mRNA expression of the E3 ligases, MuRF-1 and MAFbx 

after one month of exercise with STD bicarbonate and after six months of exercise on XS 

bicarbonate therapy (Figures 3.23 and 3.24). Previous studies have reported that an increase in 

PKB phosphorylation causes an increase in the phosphorylation of the FOXO transcription 

factors resulting in a reduced expression of E3 ubiquitin ligases. The large decline in E3 ligase 

expression seen here therefore, appears to have occurred via a mechanism that is independent of 

PKB. It is possible that exercise-induced stimulation of PKB phosphorylation was missed in the 

present study through some technical artefact. For example, it has previously been suggested that 

a high phospho-protein phosphatase activity may explain some unexpected results in PKB 

phosphorylation (Foster et al. 2005) so that exercise and chronic PKB phosphorylation may lead 

to a compensatory stimulation of protein phosphatases, resulting in artifactual dephosphorylation 

of PKB in the time taken to draw the biopsy. Such artefacts seem an inadequate explanation, 

however, because activation of PKB suppresses myofibrillar proteolysis by suppressing caspase-

3 activation (Workeneh et al. 2006) (and production of the 14kDa actin fragment) as well as by 

suppressing E3 ligase expression. In the present study, no statistically significant effects were 

seen on the 14kDa actin fragment, especially in the patients on XS bicarbonate therapy (Figure 

3.20) so suppression of the E3 ligase expression independent of PKB activation would seem a 

more likely explanation. 

 

The observation here that after six months of exercise, suppression of mRNA E3 ligase 

expression was confined to the XS bicarbonate group and there was no change in expression in 

the STD bicarbonate group correlates with marked differences in the accompanying changes in 

free amino acid pool size between these two patient groups (Figure 3.10). It has been suggested 

that depletion of amino acids can increase proteolysis (Sadiq et al. 2007) through the ubiquitin 

proteasome pathway independent of PKB, although these authors attributed this effect largely to 

amino acid sensing through mTOR. This also seems an inadequate explanation in the present 

study (Figures 3.13 and 3.15) as no corresponding changes in mTOR signalling were detected. 

However, regulation of the ubiquitin-proteasome pathway by amino acids independent of mTOR 

has also been recently described (Eley et al. 2007). 
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A recent study by Moriscot and colleagues (2010) has shown that following denervation, MuRF-

1 is preferentially expressed in type II fibres. It is possible that the reduced expression of this E3 

ligase seen in the present study might be explained by a training induced fibre type shift from a 

type II fast fibre to a type I slow fibre that was not created in the STD group due to the limiting 

effect of acidosis on exercise training and adaptation (see Section 3.4.1).However, the 

contribution of a possible fibre type change to this reduced expression in the individual muscle 

biopsies is unknown as no quantification of fibre type distribution was made. 

 

3.4.5 Myofibrillar proteolysis 

Complete proteolysis of myofibrillar proteins requires both an initial caspase-3 dependent 

cleavage step (leading to accumulation of the 14kDa actin fragment) (Workeneh et al. 2006) and 

a subsequent degradation of the cleavage fragments through the ubiquitin proteasome pathway. 

Suppression of both of these processes would therefore be expected to bring about overall 

suppression of myofibrillar proteolysis. In practice in the present study, even through conditions 

were found which strongly suppressed E3 ligase expression (Figures 3.22 and 3.23), and even 

though some decline in 14kDa actin fragment may have occurred at six months in the STD 

bicarbonate group (Figure 3.20), under none of the conditions did they occur simultaneously. 

Overall suppression of myofibrillar proteolysis (indicated by 3-MH excretion) was not therefore 

detected in response to the treatments applied in this study (Tables 3.23 and 3.24). In addition to 

this, muscle protein:DNA ratio has been used to get a sensitive index of muscle protein mass 

(Crossland et al. 2008). A significant decline in the muscle protein:DNA ratio was observed in 

those patients that exercised for six months whilst receiving XS bicarbonate therapy. It is 

unlikely that this reflects muscle wasting, and can probably be attributed to the decline in total 

protein content in the biopsy (discussed in more detail in Section 3.4.6). There were no other 

changes observed in the muscle protein:DNA ratio in any of the other groups indicating walking 

exercise was unable to increase muscle mass in these patients, but similarly, did not cause 

muscle mass to be reduced. 

 

In spite of this failure to observe net reduction in 3-MH excretion or an increase in muscle 

protein:DNA ratio, small apparent increases in LBM were detected by DEXA, especially after 

one month of exercise (Table 3.10). Bearing in mind the technical limitations of DEXA in 
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detecting small changes (as discussed in Section 3.4.2 above), this may be a reflection of the 

accompanying suppression of E3 ligase expression which, even though it would be expected to 

have little effect on overall myofibrillar proteolysis, might still lead to some net accumulation of 

non-myofibrillar protein whose protein degradation is not thought to require prior processing via 

caspase-3. Exercise-induced stimulation of muscle synthesis may also have contributed, 

especially in the fed state. 

 

3.4.6 Adverse effects of sodium bicarbonate 

Even though exercise therapy in combination with XS bicarbonate may have had beneficial 

effects on the lactic acid response to acute exercise (Figure 3.5B), body composition (Figures 

3.7B and 3.8B), free amino acid pools (Figure 3.11) and E3 ligase expression (Figures 3.23 and 

3.24), in principle adverse effects may also occur as a result of this increased bicarbonate load. 

There are two potential dangers when administering high doses of sodium bicarbonate. Firstly, 

sodium loading (with secondary fluid loading) may occur, which is of a particular concern in the 

more hypertensive patients. Secondly, pH overshoot could also occur possibly resulting in a 

localised alkalosis.  These patients did not appear to have been sodium loaded as there were no 

detectable increases in the water content of the muscle biopsies in the XS bicarbonate group, 

suggesting that secondary fluid retention in the tissues had not been a major problem. The 

possibility of alkalosis is more difficult to refute. While blood pH or bicarbonate concentration 

did not exceed the top end of the normal range, it is difficult to exclude the possibility of 

transient alkalosis localised to tissue interstitial fluid. Such effects may have contributed to 

difficulties encountered in obtaining muscle biopsies from those patients randomised to receive 

XS bicarbonate. While biopsies were routinely obtained without problems from patients 

receiving STD bicarbonate therapy at all time points, and from XS bicarbonate patients at 

baseline, significant difficulties were experienced in obtaining subsequent biopsies from this 

group. It was noted that considerable amounts of fibrous tissue or fascia, were present in these 

subsequent biopsies, which was particularly a problem after one month of exercise and, for this 

reason, XS bicarbonate data are not presented at this time point. At six months, fibrous tissue in 

the muscle biopsies was still observed and is reflected in the significant decline in the soluble 

protein content of these biopsies relative to baseline (Table 3.11).  
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This consistent decline in soluble protein of the muscle biopsies and in muscle protein:DNA ratio 

that was seen in those patients who had exercised for six months with XS bicarbonate is a 

surprising finding and has not previously been reported. As DEXA measurements indicated that 

this decline in biopsy soluble protein content was accompanied by gains in LBM, (that were 

more apparent when expressed as a percentage of total body weight and in relation to fat mass), 

this protein loss seems to be confined to the biopsy site. The reason for these sampling 

difficulties is unknown, but there are two possible explanations. Firstly, the distance between 

biopsies was only 1cm. This may have meant the second and third biopsies were infiltrated by 

scar tissue altering the biopsy composition and so the close proximity of the multiple biopsy sites 

might be responsible for the decline in soluble protein. Secondly, as it was only seen in the XS 

group, it may reflect an adverse pro-fibrotic effect of XS bicarbonate on the tissue regeneration 

response of the vastus lateralis muscle following the initial biopsy. Recent evidence from mouse 

models suggests that skeletal muscle regeneration following injury in CKD is significantly 

impaired and is accompanied by fibrosis (Zhang et al. 2010) and this may have been a problem 

in the present study. The accompanying amount of protein in the insoluble fraction of the 

biopsies did not increase, showing that this problem did not occur simply through inadequate 

homogenisation of the tissue.  

 

In conclusion, six months of aerobic exercise combined with XS bicarbonate therapy resulted in 

an improved exercise tolerance and associated lactate response, favourable changes in body 

composition and a reduced mRNA expression of the E3 ubiquitin ligases. This suggests that XS 

bicarbonate allowed the patients to exercise more effectively by buffering acid that was produced 

during the exercise bout and demonstrates that the beneficial effects of alkali supplements that 

have previously been seen in peritoneal dialysis patients (Stein et al. 1997) may also be observed 

in pre-dialysis patients, but only in combination with exercise. Exercise without XS bicarbonate 

therapy appeared to disrupt amino acid gradients, resulting in a decline in intramuscular amino 

acid concentration and perhaps ultimately limited protein synthesis. Overall there was no 

decrease in myofibrillar protein catabolism (3-MH), possibly resulting from a failure of the 

treatments to increase PKB phosphorylation sufficiently and decrease casapase-3 mediated 

cleavage of myofibrils and, in the case of STD bicarbonate therapy, to effectively buffer the 

additional acid produced during exercise. Whether hypertrophy in CKD can be attained by alkali 

therapy combined with resistance exercise warrants further investigation. These results suggest 
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that acidosis is a functionally significant problem in CKD patients attempting an exercise 

programme, and factors determining the magnitude of this problem are the subject of the next 

chapter. 
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Chapter 4 

 

In vivo study of the regulation of sulphuric acid 

production in CKD 
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4.1 Introduction 

The catabolism of sulphur-containing amino acids (as described in detail in Chapter 1.6.1) results 

in the production of taurine and sulphate (Stipanuk et al. 2004; Coloso and Stipanuk, 1989) and 

accounts for the majority of the daily titratable acid load in humans. The metabolism of sulphate 

may be abnormal in CKD, because despite normal plasma methionine concentrations (Gulyassy 

et al. 1970; Condon and Asatoor, 1971), the concentrations of cysteine and homocysteine, a 

homologue of cysteine, both in the free and bound forms, are frequently seen to be raised in 

uraemic patients (Flűgel-Link et al. 1983; Robins et al. 1972). Plasma taurine levels, however, in 

non-dialysed and haemodialysis patients tend to be lower than those seen in healthy individuals 

(Alvestrand et al. 1982; Qureshi et al. 1989; Suliman et al. 1996) and Bergström and colleagues 

(1989) reported that in CKD patients the muscle and plasma taurine concentrations were both 

reduced by the same margin, suggesting that this represents a true depletion of taurine from the 

cells rather than a decline in the cell/plasma concentration gradient. 

The concentrations of cysteinesulphinate (CSA) in uraemic plasma have also been reported to be 

high (Suliman et al. 1996) and it was speculated that low plasma taurine accompanied by these 

high levels of CSA arises from a defect in the activity of cysteinesulphinate decarboxylase 

(CSAD), the rate limiting step in the conversion of CSA to taurine (Suliman et al. 1996).  This 

enzyme requires vitamin B6 as a cofactor, a vitamin in which CKD patients are commonly 

deficient (Kopple et al. 1981). However, patients in a number of studies by Suliman and 

colleagues (1999, 2001, 2002) were administered vitamin B6 supplements and so the authors 

concluded that uraemia itself inhibits CSAD. Anorexia and malnutrition are frequently seen in 

these patients (Suliman et al. 2002) and it is likely this results in a reduced taurine intake that, 

when coupled with a reduced taurine synthesis from CSA as proposed by Suliman et al. (1996), 

results in these reduced plasma taurine levels. Taurine has many important cellular functions 

including stabilization of the membrane potential, antioxidant properties and a positive inotropic 

effect on the heart (Suliman et al. 2002; Schaffer et al. 2009) and taurine depletion could 

possibly result in muscle fatigue and cardiovascular disease (Suliman et al. 2002), common co-

morbidities in CKD patients (Nussbaum and Garcia, 2009; Pecoits-Filho et al. 2002). 

It was therefore hypothesised that in CKD the flux through this pathway is diverted away from 

taurine and towards the generation of pyruvate and sulphuric acid (H2SO4) (Chapter 1, Figure 

1.5) thus exacerbating the metabolic acidosis that is already present because of impaired 
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excretion of acid. Such enhanced catabolism of cysteine to H2SO4 has been observed previously 

in cancer and HIV infection - conditions which both show prominent cachexia (Breitkreutz et al. 

2000; Hack et al. 1996), but has yet to be demonstrated in CKD patients.  

It has been shown previously in peritoneal dialysis patients that alkali therapy results in weight 

gain and improvements in morbidity (Stein et al. 1997; Szeto et al. 2003), but this was achieved 

with only small changes in plasma bicarbonate or pH, suggesting that plasma bicarbonate and pH 

are not sensitive indicators of muscle wasting or clinically significant levels of acidosis in the 

tissues. It is possible that measures of sulphur amino acid catabolism might be more sensitive 

clinical biochemical markers of tissue acidification leading to cachexia. Therefore, the aims of 

this study were 

1) To compare sulphate, CSA and taurine excretion in CKD patients (Stage 4-5) who 

were still producing urine, with a group of healthy control subjects to determine 

whether these patients do excrete more sulphate and less taurine than the healthy 

individuals, consistent with a decreased flux through the CSAD enzyme. 

2) To examine if sulphate excretion rate correlates with 3-MH excretion (as a measure 

of myofibrillar protein catabolism) in either group, possibly allowing identification of 

those patients who produce more sulphate and may therefore be at a greater long-term 

risk of muscle wasting. 

3) To examine the effect of exercise and bicarbonate therapy on sulphur metabolism.  

 

It was hypothesised that compared to healthy controls, CKD patients would exhibit higher 

excretion rates of sulphate and lower excretion rates of taurine indicating an impairment in the 

CSAD enzyme, and that the acid generated from the diet would be functionally important in 

CKD patients resulting in a positive correlation between sulphate excretion and 3-MH excretion 

rates. 
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4.2 Methods 

4.2.1 Participant information 

This study received ethical approval from the local ethics committee. Prior to the start of the 

study, all potential participants received written information regarding the nature of the protocol. 

Following any questions, participants signed a written statement of consent and were made 

aware of their right to withdraw from the study at any point without the need to give a reason. 

The healthy volunteers in this study were free of any renal impairment, assessed by serum 

creatinine and of any known disorder in the metabolism of sulphate. Twenty CKD patients Stage 

4-5 who had not yet started dialysis therapy and twenty healthy controls were recruited. 

Table 4.1. Participant characteristics. Values are presented as median and range. 

 Males Females 
Age 

(years) 
Weight (kg) Height (m) 

Plasma 
bicarbonate 

(mmol/l) 
CKD 

Patients 
14 6 

60        
(38 – 77) 

80.3            
(53.0 – 116.0) 

1.73        
(1.48 – 1.92) 

23           
(20 – 29) 

Healthy 
Controls 

8 12 
39        

(31 – 57) 
63.0            

(48.0 – 94.0) 
1.68          

(1.54 – 1.82) 
26           

(22 – 30) 
 

 

4.2.2 Protocol for urine collection and handling 

As described in Chapter 3, the excretion of 3-MH was analyzed as a measure of myofibrillar 

protein degradation. To do this, patients were required to undergo three days on a vegan diet (i.e. 

devoid of 3-MH and low in taurine), followed by a complete 24h urine collection on the fourth 

day, whilst on the same diet and before the initiation of exercise or bicarbonate therapy. These 

urine samples were also used to perform analyses of sulphate, taurine, CSA and 3-MH excretion 

(see Chapter 2.3). As part of the exercise study protocol (see Chapter 3.2.3), patients were 

required to repeat this vegan diet and 24h urine collection after one month and/or after six 

months to investigate changes in 3-MH excretion, and so the analyses of sulphur metabolites 

were repeated in these samples to give an indication of the effect of exercise and bicarbonate 

therapy on excretion rates. The healthy control group gave a 24h urine sample following the 

vegan diet as for the patients, but the procedure was also repeated six months later whilst on their 
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normal ad libitum diet. Taurine, CSA and 3-MH excretion were analysed by HPLC, (see Chapter 

2.3). Sulphate excretion was analysed by turbidimetry (see Section 4.2.2.1). 

 

4.2.2.1 Urinary sulphate quantification by turbidimetry 

Sulphate precipitated in the form of Barium Sulphate was determined by turbidimetry as 

described by Ma and Chan (1973).  Protein was precipitated from the urine sample by the 

addition of 5% w/v TCA (200μl) to 50µl of the urine sample or sodium sulphate standard (0-

100mM) (50μl), vortexed and incubated on ice for 5 minutes. The tubes were then 

microcentrifuged at 13,000rpm for 10 minutes at 4˚C. 200μl of the resulting supernatant was 

transferred to a new tube and 1% BaCl2 plus 10% dextran (50μl) was added and immediately 

vortexed. 200μl from each tube was pipetted into a 96 well plate and incubated at room 

temperature for 10 minutes to allow barium sulphate turbidity to develop. The plate was then 

read at an optical density of 660nm on a Titertek Mulitscan spectrophotometer. 

 

4.2.3 Blood sampling and handling 

On the day of collection, patients arrived at the hospital fasted and a venous and arterial blood 

sample was taken for the determination of blood bicarbonate concentrations. 7ml venous samples 

were drawn into tubes containing lithium heparin. Arterial blood samples were drawn from the 

brachial artery into a blood gas syringe containing heparin. Venous and arterial blood samples 

were taken to the Pathology Department at the Leicester General Hospital for the determination 

of blood bicarbonate concentrations. In the case of healthy volunteer samples, a 10ml venous 

blood sample was taken and dispensed into a plain tube and a tube containing K2 EDTA. No 

arterial blood sample was taken. 
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4.3 Results 

4.3.1 Excretion rates 

Sulphate excretion rates over 24h on a vegan diet are shown below in Figure 4.1. Although body 

weight will have an effect upon sulphate excretion, these results are initially presented as 

absolute excretion rates before a correction for body weight is made. 

 

Figure 4.1. Variation in daily sulphate output in healthy individuals and in CKD patients 

on a vegan diet. Healthy controls n = 20; CKD patients n = 20. 

Daily sulphate output varied widely, up to five fold, in both the CKD patients (35.5 ± 

4.7mmol/24h) and in healthy individuals (35.8 ± 3.9mmol/24h), but there was no significant 

difference in the sulphate output between the two groups (P = 0.771). There was also no 

significant difference when these values were corrected for body weight (healthy subjects = 

0.56mmol/24h/kg bw; CKD patients = 0.45mmol/24h/kg bw; P = 0.158). These values presented 

in Figure 4.1 are comparable with those previously reported in CKD (Nakanishi et al. 2002) and 

to those reported in healthy individuals of approximately 40mmol/day in Documenta Geigy 

(Diem and Lentner, 1970). The wide variation in the age of the subjects studied showed no 

detectable correlation with the rate of sulphate excretion (both in the CKD and healthy groups) (r 

= -1.81; P = 0.431) (data not shown).  
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Figure 4.2. Variation in daily sulphate output in healthy individuals on a vegan compared 

to an ad libitum diet.  Lines represent changes in each individual, n = 16. 

In healthy subjects, sulphate excretion was significantly higher on the ad libitum diet (49.3 ± 

5.3mmol/24h) compared to the vegan diet (33.4 ± 4.6mmol/24h) (P = 0.036), but there was no 

correlation between sulphate excretion rates measured on the two diets (r = 0.196; P = 0.483). 
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Figure 4.3. Variation in daily taurine (A) and CSA excretion (B) between healthy subjects 

and CKD patients on a vegan diet. (C) ratio between sulphate and taurine excretion in 

healthy subjects and CKD patients. 

Similar to the results for sulphate excretion, there was also a wide variation in the excretion of 

taurine and CSA in both groups.  There was a tendency for taurine excretion to be lower and 

CSA excretion to be higher in the CKD patients compared to the healthy subjects (Figure 4.3A 

and 4.3B respectively), but these apparent differences did not achieve statistical significance. 

There was no statistically significant difference in the sulphate/taurine ratios between the healthy 

subjects and CKD patients (P = 0.792) (Figure 4.3C), nor was there a difference in the 

taurine/CSA ratios (P = 0.555). Consequently, even in the healthy subjects, more than 95 % of 

the total sulphur excreted was in the form of sulphate.  
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A strong positive correlation was observed between 3-MH excretion rate and sulphate excretion 

rate in CKD patients (Figure 4.4A) (r = 0.755; P<0.001). This correlation persisted when 3-MH 

and sulphate were corrected for body weight (r = 0.761; P<0.001), creatinine (r = 0.529; P = 

0.016) and DEXA-derived lean body mass (r = 0.714; P<0.001) (Figures 4.4A, C, E and 4.5), 

demonstrating that the expected increases in 3-MH and sulphate production with increasing 

tissue mass were not the cause of the correlation. In contrast, no significant correlation was seen 

between the excretion rates of 3-MH and sulphate in the healthy control group (r = 0.347; P = 

0.133), or when these values were corrected for creatinine (P = 0.061). There was however a 

significant correlation when corrected for body weight (P = 0.024) (Figures 4.4B, D, F). 
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Figure 4.4. Correlation between daily 3-MH and sulphate excretion in CKD patients (A) 

corrected for creatinine (C) and body mass (E) and in healthy individuals (B) corrected for 

creatinine (D) and body mass (F). 
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Figure 4.5. Correlation between daily 3-MH and sulphate excretion corrected for LBM in 
CKD patients.  

 

4.3.2 Correlations with net tissue wasting (cachexia) 

At this stage in the disease progression (CKD 4-5) it was not possible to demonstrate a 

correlation between elevated rates of 3-MH excretion and net wasting of lean tissue. For 

example, when the DEXA-derived LBM was expressed as a percentage of total body weight (a 

measure of cachexia), no correlation was observed with the 3-MH excretion rate (Figure 4.6A). 

Consequently, no correlation was observed between sulphate excretion rate and severity of 

wasting (Figure 4.6B). 

 

Figure 4.6. Correlation between LBM expressed as a % of total body weight and (A) daily 

3-MH excretion corrected for creatinine and (B) sulphate excretion corrected for 

creatinine. 
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4.3.3 Comparison with conventional measures of acid-base status 

The proposed catabolic effect of acidosis in CKD (Stein et al. 1997; Szeto et al. 2003) would be 

expected to lead to a correlation between elevated rates of 3-MH excretion and low blood 

bicarbonate concentration or pH. In spite of this, no correlation was observed between venous 

bicarbonate levels and 3-MH excretion rate in either the CKD patients (r = 0.231; P = 0.342) 

(Figure 4.7A) or in healthy individuals (r = 0.196; P = 0.407) (data not shown). There was 

however, a significant inverse relationship as expected between arterial bicarbonate and 3-MH 

excretion in CKD patients (r = -0.680; P = 0.011) (Figure 4.7B). 

 

 

 Figure 4.7. Correlation between 3-MH excretion rate and venous bicarbonate (A) and 

arterial bicarbonate (B) in CKD patients. Note, 6 of the 20 patients refused consent for an 

arterial blood sample. 

The accumulation of acid in those CKD patients with higher rates of sulphuric acid production 

would also be expected to lead to an association between high sulphate excretion and low blood 

bicarbonate. At least for arterial bicarbonate, the expected trend was observed (Figure 4.8B), but 

fell short of statistical significance (P = 0.113).  



 

157 
 

  

Figure 4.8. Correlation between blood bicarbonate and daily sulphate excretion in CKD 

(A) venous blood (B) arterial blood. 

An unexpected observation was that there was a strong positive correlation between venous 

bicarbonate and sulphate excretion in the healthy controls (r = 0.800; P = 0.001) (Figure 4.9), in 

marked contrast with that in the CKD patients (Figure 4.8A), presumably indicating that in 

healthy individuals producing large amounts of sulphuric acid, potent compensatory mechanisms 

exist to prevent acidosis (Figure 4.9) and prevent increased protein catabolism (Figure 4.4B) 

 

Figure 4.9. Correlation between venous bicarbonate concentration and daily sulphate 

excretion in healthy subjects. 
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4.3.4 Relationship with free amino acid concentrations 

No relationship was identified between sulphate excretion and muscle or plasma concentrations 

of methionine, cysteine, or any other free amino acid (P>0.05) (data not shown). 

 

4.3.5 Effects of exercise or bicarbonate therapy on sulphur metabolism 

Values in Tables 4.2 and 4.3 show that exercise had no significant effect upon sulphate 

excretion. After one month, sulphate excretion did appear to have increased, but this change was 

not statistically significant (P = 0.109) and had disappeared after six months of exercise. XS 

sodium bicarbonate therapy had no effect on sulphate excretion after one month of exercise 

(>0.05), however, the excretion rates after six months of exercise from those patients receiving 

STD and XS bicarbonate were significantly different (P = 0.020). This difference remained when 

sulphate excretion rates were corrected for body weight (P = 0.012) and LBM (P = 0.028), but 

not creatinine (P = 0.240). It is important to note however, that most of this apparent difference 

in sulphate excretion between the STD and XS groups was already present at baseline, but was 

not statistically significant at that time point (P = 0.125) (Tables 4.2 and 4.3), indicating that the 

therapy had exerted negligible effect on sulphate output. 

Table 4.2. Effects of one month of exercise and bicarbonate therapy on sulphate excretion 

(mmol/24h). 

 Baseline One Month 
All Patients 33.0 ± 4.8 41.4 ± 7.4 

STD Bicarbonate 28.3 ± 4.6 31.9 ± 4.7 
XS Bicarbonate 40.7 ± 10.0 57.3 ± 17.0 
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Table 4.3. Effects of six months of exercise and bicarbonate therapy on sulphate excretion 

(mmol/24h). * denotes a significant difference from corresponding value in STD bicarbonate 

group (P<0.05). 

 Baseline Six Months 
All Patients 33.0 ± 5.0 34.7 ± 5.5 

STD Bicarbonate 26.5 ± 4.8 25.2 ± 4.2 
XS Bicarbonate 45.7 ± 11.0 51.7 ± 10.1* 

 

Even though this study was not designed to test the stability of sulphate excretion rate in 

individual patients, it is interesting to note that differences in the sulphate excretion rate between 

individuals generally persisted over time. A strong correlation was observed between baseline 

and six month sulphate excretion rates (R = 0.814; P<0.001) (Figure 4.10C) i.e. those individuals 

who produced large amounts of sulphate at baseline still produced large amounts six months 

later, possibly indicating that these individuals are at a higher long-term risk of acidosis-related 

complications when their ability to excrete this acid is lost. 
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Figure 4.10. Change in sulphate excretion over time in those CKD patients who received 

STD bicarbonate (A) and XS bicarbonate (B) therapy. (C) Stability of sulphate excretion 

over time assessed by correlating baseline and six month data in those patients on STD 

bicarbonate therapy. 

 There was no significant effect of exercise or bicarbonate therapy on the excretion rates of 

taurine or CSA (Tables 4.4 – 4.7). 

Table 4.4. Effects of one month of exercise and bicarbonate therapy on taurine excretion 

(µmol/24h).  

 Baseline One Month 

All patients 816.8 ± 168.3 879.0 ± 286.8 

STD Bicarbonate 862.5 ± 228.6 882.0 ± 320.3 

XS Bicarbonate 734.6 ± 258.7 873.6 ± 615.7 
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Table 4.5. Effects of six months of exercise and bicarbonate therapy on taurine excretion 

(µmol/24h). 

 Baseline Six Months 

All patients 710.4 ± 178.9 868.8 ± 262.5 

STD Bicarbonate 748.9 ± 250.3 986.9 ± 378.9 

XS Bicarbonate 623.7 ± 191.3 603.0 ± 26.7 

 

Table 4.6. Effects of one month of exercise and bicarbonate therapy on CSA excretion 

(µmol/24h). 

 Baseline One Month 

All patients 109.4 ± 25.8 95.7 ± 26.0 

STD Bicarbonate 122.8 ± 36.6 116.4 ± 32.7 

XS Bicarbonate 85.3 ± 31.8 58.5 ± 41.8 

 

Table 4.7. Effects of six months of exercise and bicarbonate therapy on CSA excretion 

(µmol/24h). 

 Baseline Six Months 

All patients 97.6 ± 26.0 109.3 ± 27.3 

STD Bicarbonate 114.9 ± 36.1 125.4 ± 34.6 

XS Bicarbonate 66.3 ± 33.2 80.3 ± 46.5 
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4.4 Discussion 

4.4.1 Uraemic defects in sulphur metabolism 

It has previously been reported that CKD patients have abnormal plasma concentrations of the 

sulphur containing amino acid cysteine and their catabolites (Flűgel-Link et al. 1983; Alvestrand 

et al. 1982; Suliman et al. 1996) indicating a defect in their metabolism. In particular Suliman 

and colleagues (1996) proposed that a defect may be present in the activity of the CSAD enzyme 

which may result in cysteine metabolism being diverted away from non-acidic products such as 

taurine and towards sulphuric acid. By making the assumption that dietary sulphur intake and 

urinary sulphur excretion are at steady state, the present study attempted to investigate fluxes 

through these sulphur amino acid catabolic pathways by measuring excretion rates on a vegan 

diet. This failed to detect statistically significant changes in these fluxes (Figure 4.1) when 

compared with healthy individuals, although the tendency towards decreased taurine excretion, 

increased CSA excretion (Figures 4.3A and B) may be consistent with the proposed impairment 

of flux through CSAD in CKD. Nevertheless, it should be emphasised that, even in healthy 

people, 95% of the total sulphur excreted is in the form of sulphuric acid rather than taurine 

(Section 4.3.1). Therefore, even if CSAD is strongly inhibited in CKD, this would probably have 

little additional impact on acid production in these patients.  

It is frequently reported that CKD patients have low muscle and plasma taurine levels (Qureshi 

et al. 1989; Bergström et al. 1989) which, in the presence of high cysteine and CSA 

concentrations, led to the suggestion of a defect in the activity of the enzyme CSAD in uraemia. 

The median taurine excretion rate in the patients in the present study was less than half of that 

seen in the healthy control group (Figure 4.3), but this apparent difference fell short of statistical 

significance. The patients studied by Suliman and colleagues (1996), leading them to the 

conclusion of a defective CSAD flux, were established haemodialysis and peritoneal dialysis 

patients, unlike the pre-dialysis patients in the current study. It may be that there is a disorder in 

sulphur metabolism in end-stage renal disease that is not yet fully developed in pre-dialysis 

patients of the type studied here. It has also been observed that the dialysis procedure itself 

results in a loss of taurine (Loftberg et al. 2000), which may also explain why clearer depletion 

of taurine levels was observed in the earlier studies. 
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4.4.2 Correlation with protein catabolism 

No significant increase was observed in the sulphate excretion rate in the present CKD patients, 

when compared with healthy control subjects. This contrasts with the results from other catabolic 

diseases, such as cancer and HIV infection (Breitkreutz et al. 2000; Hack et al. 1996), in which 

large sulphur losses have been reported. However, an important finding in the present study was 

that there was very wide variation in the sulphate excretion rate between individuals (both in the 

healthy control group and in the CKD patients (Figure 4.1)) and this wide variation showed a 

strong positive correlation with 3-MH excretion, but only in the CKD patients. Two possible 

interpretations of this observation are that: 

a) Increased sulphuric acid production causes increased protein catabolism if excretion of 

the acid is impaired, OR 

b) Increased protein catabolism liberates L-Met and L-Cys from the degraded proteins 

which are then further degraded, leading to increased sulphuric acid production. 

In vivo both effects may occur: (a) may contribute to the lethal effects of the acidosis generated 

in chicks receiving supraphysiological doses of L-Cysteine (Dilger & Baker, 2008) whereas (b) 

may contribute to the strongly increased L-Cysteine catabolism and sulphate excretion reported 

in severe cachexia (Breitkreutz et al. 2000; Hack et al. 1996). In the present study (a) seems to be 

the dominant factor because this interpretation predicts that sulphuric acid production should not 

lead to acid accumulation and hence protein catabolism if acid excretion is normal. This was 

indeed the case in healthy individuals (Figure 4.5B) and the 3-MH/sulphate correlation was not 

seen in this group, presumably because in non-uraemic individuals there is a significant ability to 

buffer and excrete the sulphuric acid. 

This suggests that in the patient population, sulphate excretion may be a good indicator of 

myofibrillar protein degradation, and those patients who consistently produce large amounts of 

sulphate in their urine may be at a greater long-term risk of muscle wasting. The rate of sulphate 

production in each individual did appear to remain relatively stable over time (Figure 4.10C): 

those individuals who were seen to produce large amounts of sulphate (sulphuric acid) at 

baseline generally still produced large amounts six months later, which has not been shown 

previously. This needs to be confirmed in a larger long-term study but, if verified, is potentially 

important because it might allow a single 24h urine sample, early in the progression of the 
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disease, to be used to screen for those patients at greatest risk from metabolic acidosis and 

muscle wasting.  

As expected, the rate of sulphate excretion was higher in healthy individuals on the ad libitum 

diet compared to the vegan diet, presumably because of a greater intake of foods high in sulphur 

amino acids, for example meat (Nakamura et al. 2002) and therefore a greater flux through the 

sulphuric acid pathway. If this also applies to CKD patients on their usual diet, this implies that 

the severity of the apparent effect on protein catabolism observed on the vegan diet in Figure 4.5 

is probably an under-estimate.  

 

4.4.3 Correlation with cachexia 

There was no detectable relationship in this study between LBM and 3-MH excretion (Figure 

4.6A), contrary to what might have been expected. If indices of myofibrillar degradation increase 

as in Figure 4.5, this might be expected to be reflected in whole body measures of LBM. Several 

factors probably contributed to the failure to observe this. The inability of DEXA to detect small 

changes in muscle mass was discussed in the previous chapter (Section 3.4.2). At this stage in 

the disease progression (CKD 4-5), it may also be too early for significant wasting to be 

demonstrated, and the patients may have achieved a steady-state in which increased protein 

catabolism is compensated by increased protein synthesis (Reaich et al. 1995). Further long-term 

studies may therefore be required to demonstrate the clinical significance of elevated sulphuric 

acid production rate in cachexia. 

 

4.4.4 Conventional measures of acid-base status 

More conventional means of assessing a patient’s acid base status are venous and arterial 

bicarbonate measurements and pH measurements (Robertson, 1989). Venous bicarbonate 

measurements are routinely used by clinicians in the treatment of CKD, but as this is prone to 

influence by many factors for example diet and environment, it is a less desirable measure than 

arterial bicarbonate, which is usually lower than the venous bicarbonate levels.  Unlike the 

relationship observed between sulphate and 3-MH excretion in the present CKD patients, no 

relationship was found between venous bicarbonate and either sulphate or 3-MH excretion 

(Figures 4.7A and 4.8A). There was however, a significant inverse relationship between arterial 
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bicarbonate and 3-MH excretion (Figure 4.7B), suggesting that arterial bicarbonate rather than 

venous measurements may be a more reliable indicator of acidosis leading to protein catabolism. 

The reason for this observed correlation with arterial but not venous bicarbonate is unknown, but 

may reflect the variable nature of venous bicarbonate levels as described above. As arterial blood 

sampling involves considerable discomfort to the patients, further investigation of urinary 

sulphate excretion as a surrogate, non-invasive measure of acid-base status in CKD may be 

worth pursuing. 

 

4.4.5 Alkali therapy and 3-MH excretion 

Even though the positive correlation between sulphate excretion and 3-MH excretion 

demonstrated in Figure 4.5 and the inverse correlation between arterial bicarbonate and 3-MH 

excretion demonstrated in Figure 4.7B suggest that acid accumulation in CKD is driving 

myofibrillar protein degradation, six months of XS bicarbonate therapy with or without exercise 

therapy in Chapter 3 (see Section 3.3.12) failed to show the expected suppression of 3-MH 

excretion in these patients. This failure might be attributable to three factors: 

1) The XS bicarbonate therapy may have had insufficient impact on pH/bicarbonate 

concentration in the tissue interstitial fluid and indeed there was no significant change in 

arterial pH following XS bicarbonate therapy (P = 0.110; see Chapter 3, Table 3.3). 

However, clear effects were observed in Chapter 3.3.11 on muscle E3 ligase expression 

suggesting that this is an inadequate explanation. 

 

2) This discrepancy might also have arisen from a stimulatory effect of bicarbonate therapy 

on appetite and feeding. Metabolic acidosis is a known appetite suppressant (Koch & 

Kaske, 2008) and increased dietary protein intake (and hence sulphur intake) leads to the 

generation of sulphuric acid (Trilock and Draper, 1989; Leman and Relman, 1959). 

However, no significant increase in sulphate excretion was found to accompany the XS 

bicarbonate therapy: sulphate excretion was indeed higher in the XS bicarbonate group 

than in the STD group after 6 months (Table 4.3) but this seemed to arise mainly from a 

pre-existing elevation in sulphate output in the XS bicarbonate patients which was 

present at baseline (Table 4.3). This observation of a higher rate of sulphuric acid 

production at baseline and after six months in the XS bicarbonate patients may partly 
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explain however the low muscle amino acid concentrations and amino acid gradients that 

were observed in Chapter 3 in these patients (Tables 3.13 and 3.16). This may mean that 

in future studies of this type it will be necessary to match the different patient groups for 

sulphur intake/sulphate excretion at the start of the study. 

 

3) Failure of XS bicarbonate to suppress 3-MH excretion in spite of an apparent link 

between sulphuric acid production and 3-MH (Figure 4.5A) may mean that some toxic 

product of the sulphuric acid pathway other than acid is contributing to myofibrillar 

protein catabolism. In addition to acid, this pathway also generates the toxic intermediate 

sulphite (SO3
2-) from sulphurous acid (H2SO3) (See Chapter 1, Figure 1.5). Sulphite 

accumulates in patients with advanced CKD, attaining concentrations of approximately 5 

µmol/L (Kajiyama et al. 2000) - concentrations which are known to induce oxidative 

stress (Vincent et al. 2004) and hence inflammation – a known contributor to cachexia. 

This accumulation is made possible by the fact that the detoxifying enzyme sulphite 

oxidase (Chapter 1, Figure 1.5) which converts sulphite to sulphate (SO4
2-) has much 

lower activity in humans than in other mammals such as rat (Kucukatay et al. 2006). 

 

4.4.6 Conclusions 

In conclusion, no significant difference was observed between healthy subjects and CKD 

patients in their excretion rates for sulphate, taurine or CSA. The observation of a lack of a 

relationship between venous bicarbonate and 3-MH excretion, and the identification of a strong 

correlation between sulphate and 3-MH excretion, suggests that sulphate excretion might be a 

better clinical indicator of acidotic patients at risk of cachexia than conventional measures such 

as venous bicarbonate. This relationship between sulphate and 3-MH excretion also implies that 

sulphuric acid production is functionally important in these patients, and therapy aimed at 

slowing sulphur catabolism or diverting it away from sulphuric acid, for example towards the 

non-acidic end product taurine, might be worth investigating in high-risk acid-generating 

patients. A possible way in which this might be achieved is examined in the next chapter. 
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Chapter 5 

 

 

In Vitro modelling of the factors that generate acidosis, 

and the effects of stress signals on sensing of acidosis 

through the SNAT2 transporter 
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5.1 Introduction 

In the previous two chapters it was concluded that metabolic acidosis may be an important 

influence on muscle metabolism in CKD, particularly when exercise, resulting in generation of 

lactic acid, is imposed on a background of uraemic metabolic acidosis. Two important 

observations were: 

• Acid generation A strong positive correlation between the rates of sulphuric acid 

production and myofibrillar protein catabolism (3-MH excretion) in these patients. At the 

end of Chapter 4, it was suggested from this correlation that patients with a high rate of 

sulphate generation may be at a higher risk of acidosis-induced muscle wasting. 

• Acid sensing Collapse of the intramuscular/extracellular amino acid concentration 

gradients after six months of exercise – a defect which was concluded to be a 

consequence of acidosis because it was prevented by administering additional oral 

bicarbonate (Chapter 3).  

 

These observations lead to two important questions: 

1) Acid generation Is the higher rate of sulphuric acid generation seen in some patients a cause 

of increased protein catabolism (through worsening acidosis) or a consequence of protein 

catabolism (through liberation of sulphur amino acids from protein)? 

2) Acid sensing Inhibition of pH sensitive System A amino acid transporters (especially 

SNAT2/slc38a2) by acidosis could account for the observed collapse of amino acid gradients, 

but this inhibition is thought to be a direct, rapidly reversible, effect of low pH on the SNAT2 

protein (Bevington et al. 2002; Baird et al. 2006) implying that collapse of the amino acid 

gradients would only occur while acidosis was at its most severe during lactic acid generation 

accompanying exercise, but in practice, the effects on amino acids were detected in the resting 

state. This leads to the question of whether the metabolic stress of acidosis can also exert long-

term inhibitory effects on SNAT2 over a time scale of hours. 

 

For technical reasons these problems were difficult to investigate directly in the patients in vivo. 

In order to measure SNAT2 activity directly in vivo, 11C-MeAIB must be used and the analysis 

of which requires a cyclotron adjacent to the clinical research facility, therefore the effect of 



 

169 
 

exercise on SNAT2 activity could therefore not be measured directly in vivo. In order to address 

the question on acid generation above, rates of protein metabolism would need to be manipulated 

using cycloheximide and MG132. This would be unsafe and unethical to do in vivo and therefore 

in this chapter in vitro experiments using cultured cell models are described which attempt to 

answer the questions raised above. The chapter is divided into three parts:  

 

Part A investigates in vitro the factors controlling the production of sulphuric acid in cultured 

L6-G8C5 skeletal muscle cells and HepG2 hepatocytes. The L6-G8C5 myotube model has been 

used extensively in this laboratory to study metabolic effects of acidosis (Evans et al. 2008; 

Evans et al. 2007; Pickering et al. 2003; Bevington et al. 2002; Bevington et al. 2001; Bevington 

et al. 1998). The HepG2 cell line has been used previously as an in vitro model to study 

regulation of sulphur amino acid catabolism in liver (Dominy et al. 2007) which is the dominant 

organ responsible for sulphuric acid production in mammals (Stipanuk, 2004). Muscle makes a 

smaller contribution to whole-body sulphuric acid production (Ensunsa et al. 1993) but it was 

also felt to be important to study a muscle model here because locally generated sulphuric acid 

may be the pool with the most direct access to the myocytes in vivo and hence a greater possible 

influence on muscle catabolism. 

Initial experiments in this laboratory using the turbidimetric sulphate assay that was applied  to 

the patients’ urine in Chapter 3 showed that sulphate production by HepG2 and L6-G8C5 cells 

was detectable in vitro and that a confluent 35mm culture well of HepG2 cells produced 

approximately 20nmoles over three days (A. Eltagouri and J.R. Brown, unpublished 

observations). However, this technique was too insensitive for routine use in investigating effects 

on sulphate metabolism. A more sensitive technique was therefore developed, measuring 35S-

sulphate generation from catabolism of 35S-L-Methionine, followed by selective harvesting of 

the 35S-sulphate by precipitation with Barium as described in Chapter 2.10.2. 

This 35S assay system was also used to test the feasibility of manoeuvres aimed at diverting 

sulphur metabolism away from sulphate (sulphuric acid) towards non-acidic end products such 

as taurine. Boelens et al. (2003) observed that trauma patients frequently had low plasma 

glutamine and taurine concentrations and, following previous reports on the beneficial effect of 

glutamine supplementation in decreasing infections (Houdijk et al. 1998) and restoring body-

fluid distribution (Scheltinga et al. 1991), they hypothesised that glutamine supplementation may 
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help to increase plasma taurine concentrations, an amino acid that is involved in these two 

processes. They found that enteral glutamine supplementation resulted in increased plasma 

taurine levels, a finding that they also confirmed in surgically stressed rats (Boelens et al. 2003). 

In the current study, it was hypothesised that glutamine supplementation (possibly by trapping 

sulphur in the form of taurine) might decrease sulphuric acid generation in both L6 and HepG2 

cells.  

 

Parts B and C investigate in vitro (using L6-G8C5 myotubes) whether stress signals generated 

by acidosis or exercise might induce longer term inhibition of the SNAT2 transporter than would 

be obtained by the direct inhibitory effect of low pH on the SNAT2 protein (Baird et al. 2006). 

Two potential stress signals were investigated: 

 

Part B: The effect of glucocorticoid 

It is widely accepted that acidosis is an important contributor to muscle wasting and impaired 

growth (Mitch, 2006; Reaich et al. 1993; Kalhoff et al. 1993; McSherry and Morris, 1978). 

However, in vivo low pH is not the only catabolic signal generated by acidosis (Chapter 1.7.2): 

metabolic acidosis results in an increase in glucocorticoid secretion (May et al. 1986; Pickering 

2003) and a positive correlation has been identified between muscle proteolysis and plasma 

cortisol levels (Garibotto et al. 1994).  

As glucocorticoid and acid appear to work in a coordinated manner in vivo (Chapter 1.7.2), it 

was hypothesised that like acid, glucocorticoid might also be acting through an inhibitory effect 

upon SNAT2.  

At present this is difficult to test directly in vivo. System A/SNAT2 activity has been measured 

in human skeletal muscle in vivo and has been shown to be inhibited in CKD (Asola et al. 2001), 

but this involves measuring uptake of 11C-MeAIB which requires a cyclotron adjacent to the 

clinical research facility. Plasma glucocorticoid concentration (cortisol) is reported to be elevated 

in CKD patients (McDonald et al. 1979; Rosman et al. 1982), but the assays for cortisol are 

prone to possible interference by glucuronide conjugates which circulate at high concentrations 

in patients with CKD (Nolan et al. 1981). For these reasons, the effects exerted by glucocorticoid 

on SNAT2 were investigated in vitro. Initial experiments in this laboratory (H. Butler, 
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unpublished observations) had indicated that SNAT2 activity in L6-G8C5 myotubes is inhibited 

after 4 – 24h of exposure to Dexamethasone. The experiments described below extend and 

characterise this observation. It was therefore hypothesised that glucocorticoids like acidosis, 

would cause a decrease in SNAT2 transport activity and would also result in similar reductions 

in intracellular glutamine concentrations. If the action of glucocorticoids and acidosis is through 

distinct mechanisms, the effects of the two combined would be expected to be additive. 

 

Part C: The effect of mechanical stretch upon this transporter. 

It is well known that mechanical stimuli play a key role in the maintenance of skeletal muscle 

mass in vivo and in vitro (reviewed in Chapter 1.17). Such signals arising from mechanical stress 

during exercise could potentially modulate System A/SNAT2 activity. Henriksen et al. (1992) 

found that an acute exercise bout in rats increased the System A transporter activity in skeletal 

muscle in the presence of a submaximal concentration of IGF-1 and two other studies have also 

reported an acute stimulatory effect of exercise on System A activity in rat (Henriksen et al. 

1993; King, 1994). This is of interest because of recent evidence that SNAT2 can activate PI3-K 

and PKB and increase phosphorylation of proteins downstream of mTOR (Evans et al. 2007; 

Evans et al. 2008) leading to the hypothesis that this transporter may be a sensor of mechanical 

stretch and may mediate the anabolic signals reviewed above. 

 

Clearly such acute stimulatory effects on System A transporters cannot explain the collapse of 

muscle/ECF amino acid gradients observed in the exercising patients in Chapter 3. However, 

long-term effects of mechanical stress on System A activity in skeletal muscle cells (as in the 

patients) have not been investigated. The final part of this chapter therefore investigated the 

effect of passive continuous stretch and cyclic stretch (up to 48h duration) on the activity and 

expression of the SNAT2 transporter in L6-G8C5 myotubes and it was hypothesised that both 

passive and cyclic stretch would cause an up-regulation of SNAT2 transport activity through an 

increase in transcriptional regulation. 
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5.2 Methods 

 

5.2.1 Cell culture 

Cells used in this thesis were L6-G8C5 rat skeletal muscle from the European Collection of 

Animal Cultures (ref. 92121114) and human Hep G2 hepatoma (ref.85011430). 

 

5.2.1.1 Maintenance of cell lines 

L6-G8C5 cells were routinely passaged and were grown to confluence in Growth Medium 

containing Dulbecco’s Modified Essential Medium (DMEM) (Invitrogen, UK, 11880-) 

supplemented with 10% v/v heat inactivated foetal bovine serum (FBS) (Invitrogen, UK, 10270) 

(heat inactivated by incubation at 56°C for 30 minutes), 2mM glutamine (Invitrogen, UK 25030) 

1% v/v penicillin-strepomycin (Invitrogen, UK 15140) and 10mg/L phenol red (Sigma, Dorset, 

UK, P5530).  

Hep G2 cells were grown to confluence in Growth Medium containing Minimum Essential 

Medium (MEM) (Invitrogen, UK, 21090) supplemented with 10% v/v FBS, 2mM glutamine, 1% 

v/v penicillin-strepomycin (Invitrogen, UK, 15140) and 1% v/v non-essential amino acids 

(Invitrogen, UK, 11140).  

 

5.2.1.2 Routine cell passaging 

L6-G8C5 cells on 9cm diameter Petri dishes were routinely sub-cultured every 4 days to prevent 

them becoming more than 75% confluent. Growth Medium was aspirated and cells were rinsed 

with 5ml Hanks Balanced Salt Solution (HBSS) (Invitrogen, UK, 24020) to remove serum. 

Trypsin- EDTA (2ml) (Invitrogen, UK, 25300) was added to the cells which were then incubated 

at 37°C for 10 minutes until detached from the bottom of the plate. Growth medium was added 

to inactivate the Trypsin-EDTA and this cell suspension was centrifuged at 200g for 5 minutes at 

room temperature. The cells were resuspended in Growth Medium seeded at a density of 16 X 

104 per 9cm Petri and cultured at 37°C under humidified 95% air and 5% CO2. 
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Hep G2 cells in 25cm2 flasks were routinely sub-cultured every 4 days to prevent becoming 

more than 75% confluent. Growth Medium was aspirated and cells were rinsed with 5ml HBSS 

(Invitrogen, UK, 24020) to remove serum. Trypsin- EDTA (2ml) (Invitrogen, UK, 25300) was 

added to the cells which were then incubated at 37°C for 10 minutes until detached from the 

bottom of the plate. Growth medium was added to inactivate the Trypsin-EDTA and this cell 

suspension was centrifuged at 200g for 5 minutes at room temperature, The cells were 

resuspended in 6ml Growth Medium. 1ml of cell suspension and 4ml Growth Medium was 

added to a 25cm2 flask and cultured at 37°C under humidified 95% air and 5% CO2. 

 

5.2.1.3 Differentiation of myoblasts into myotubes for experiments 

Cells were seeded on 35mm diameter 6-well plates at 43 X 104 cells/well in Growth Medium. 

When the L6-G8C5 cells had reached confluence, which occurred after 3 days, the Growth  

Medium was replaced with MEM (Invitrogen, UK, 21090) supplemented with 2% v/v heat 

inactivated FBS (Invitrogen, UK, 10270), 2mM glutamine, and 1% v/v penicillin-streptomycin 

(Invitrogen, UK, 15140), which was replenished every 2 days. By 8 days after seeding, the cells 

had differentiated into fused myotubes suitable for experimental incubations. 

 

5.2.1.4 Experimentation 

Confluent myotubes were rinsed with HBSS (Invitrogen, UK, 24020) and incubated at 37°C, 

under humidified 95% air / 5% CO2 in the relevant test medium. Test medium consisted of MEM 

supplemented with 2%v/v Dialysed Foetal Bovine Serum (DFBS) (Invitrogen, UK, 26400) and 

1% v/v Penicillin-Streptomycin (Invitrogen, UK, 15140) at pH 7.4 unless otherwise stated. Other 

components of the test media varied depending upon the experimental conditions and are 

detailed in figure legends in this chapter. Test media for amino acid free conditions contained 

Earls Balanced Salts Solution (Sigma, Dorset, UK, E2888) supplemented with 1% v/v Penicillin-

Streptomycin with MEM vitamins (Invitrogen, UK, 11120037) at pH 7.4. unless otherwise 

stated. 
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5.2.1.5 Passive stretch technique 

Adapted from that described in Rauch and Loughna, (2008). L6-G8C5 cells were seeded on type 

I collagen coated Bio-flex six well plates (Flexcell International Corporation, NC, USA, BF-

3001C). Once the cells were confluent and fused, a glass marble (15mm diameter) was placed 

centrally under each well with a 3kg weight on top of the culture plate to create approximately an 

18% linear stretch of the culture surface. Myotubes were stretched for 17 or 48h in media 

containing 2mM glutamine. The % linear stretch was calculated using trigonometry from the 

measured vertical movement shown in Figure 2.1A as described by Rauch and Loughna (2008). 

 

5.2.1.6 Cyclic stretch technique 

L6-G8C5 cells were seeded on type I collagen coated Bio-flex six well Flexcell plates and 

stretched using Flexercell Strain Unit Fx-3000 (Flexcell International Coproration, NC, USA). 

Cells were cyclically stretched using the same protocol as Goto et al. (2003), a 2 second sine 

wave stretch with a 4 second release that resulted in an 18% maximum stretch. In each 

experiment a second plate of cells was cultured under the same conditions, but was not stretched 

and so acted as a control. Stretch pattern is depicted in Figure 2.2. 

    

Figure 5.1. Graphs indicating (A) the measured vertical displacement of the highest point 

on the culture surface on applying various loads to the top of the culture plate. (B) the 

accompanying calculated linear stretch of the L6-G8C5 myotubes. 
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Figure 5.2. Stretch applied to L6-G8C5 myotubes during cyclic stretch, a 2 second sine 

wave stretch with a 4 second release resulting in an 18% stretch. 

 

5.2.2 Radio-isotope techniques 

5.2.2.1 Detection of 35Sulphate production by L6 and Hep G2 cells by 35S-methionine 

labelling 

Confluent cultures on 35mm wells were incubated in sulphate-free MEM (Invitrogen, UK, 

51200) with L-35S-Met at 10.25µCi/ml; 1175µCi/µmol for 24h. Following incubation, 800μl of 

medium was sampled and placed into a 1.5ml Eppendorf tube on ice. 20% w/v TCA (267μl) was 

added to the samples, vortexed and incubated on ice for 10 minutes to precipitate the protein. 

The tubes were microcentrifuged at 13,000rpm for 10 minutes at 4˚C and 700μl of the 

supernatant was transferred to a new tube. To this, 100mM Na2SO4 (100μl) was added followed 

by 1% w/v BaCl2 (200μl) and vortexed. The tubes were microcentrifuged at 13,000rpm for 10 

minutes at 4˚C to spin down the 35S-labelled barium sulphate. The supernatant was aspirated and 

the pellet was vortexed to help break it up and washed twice in 100mM Na2SO4 (1ml), by 

vortexing and microcentrifugation at 13,000rpm for 10 minutes at 4˚C. To the pellet, 1ml 

Ecoscint A Scintillant (National Diagnostics, Hesssle, UK) was added and the tubes vortexed 

thoroughly and immediately transferred to scintillantion vials containing 3ml of Ecoscint A 

Scintillant and counted on an LKB 1219 liquid scintillation counter. 

 

 Recovery measurements using fresh culture medium spiked with 35SO4
2- demonstrated that 

approximately 70% of the radioactive sulphate was detected in the scintillation vial and this 

recovery was essentially constant over a wide range of sulphate concentrations (Table 2.6).  
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Table 5.1. 35SO4
2- Recovery Measurements 

(Pooled data from two experiments each performed in triplicate) 

 
 Nominal Dilution Factor 

 101 102 103 104 105  106

Mean added 
35SO4

2- 

 (cpm) 

1330000   135000  16200  1773  380  124  

% Recovery 67 ± 3 70 ± 4 66 ± 5 71 ± 4 73 ± 4 71 ±4 

 

When culture medium was incubated with L-35S-Met in the absence of cells, 35SO4
2- radioactivity was 

almost indistinguishable from background in the final Barium Sulphate pellet (data not shown). 

 

5.2.2.2 14C MeAIB uptake measurements 

SNAT2 (System A) transport activity was measured by the incorporation of 14C MeAIB from 

extracellular medium into the intracellular space of L6 cells cultured on 22mm diameter plates.  

Following incubation of cultures on 35mm wells with test media, medium was aspirated and the 

cells were washed twice with 2ml Hepes Buffered Saline (HBS) (see Appendix A). HBS (1ml) 

was added to all the wells, and to the wells to be used as transport blanks, unlabelled MeAIB was 

added (10μl) to give a final concentration of 10mM. 14C-MeAIB (20μl) containing 0.5mCi 

(18.5MBq/L) was added to all the wells and incubated for 5 minutes at room temperature. The 
14C –labelled medium was aspirated and the cells washed 3 times with 2ml ice cold 0.9% NaCl 

followed by storage at -20˚C. 

 

5.2.2.3 Processing plates to assess 14C-MeAIB incorporation into cells 

Plates were thawed and each well scraped in 0.05M NaOH (400μl) and transferred to a 1.5ml 

Eppendorf tube. The tubes were incubated at 70˚C for 30 minutes in a water bath to digest the 

cells. Cell digests (110μl) were mixed with 4ml Ecoscint A Scintillant (National Diagnostics, 

Hessle, UK) in a scintillation vial and left in the dark overnight to allow chemiluminesence to 

decay before counting on a LKB 1219 liquid scintillation counter with quench correction. 
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5.2.2.4 Northern Blotting 

For cell culture experiments in which plentiful RNA was available, expression of SNAT2 mRNA 

was quantified by Northern blotting. RNA (30µg) extracted following the procedure described in 

Section 2.9.1 was resolved by denaturing gel electrophoresis on a 1% w/v agarose 1.9% 

formaldehyde gel in MOPS/EDTA/sodium acetate. RNA was loaded using RNA gel loading 

sample buffer (see Appendix A) with Ethidium Bromide (0.5µg/ml) to visualise the bands and 

the gel was run at 80V for approximately 1 hour. The integrity of the RNA was checked using a 

transilluminator and the gel was washed in DEPC water to remove the formaldehyde. The gel 

was blotted overnight onto nylon membrane (GE Health Care Life Sciences, Little Chalfont, 

UK), which was then cross linked by UV illumination the following morning. The membranes 

were then incubated with pre-hybridisation solution (see Appendix A) for 4 hours at 42˚C. 

Membranes were hybridised overnight with 32P labelled cDNA probes using a Prime-a-gene kit, 

(Promega, Hampshire, UK, TB049) for SNAT2 and cyclophilin. The probe templates were a full 

length cDNA for rat SNAT2 (a kind gift from Professor J. Erickson as described in Yao et al. 

2000) and for cyclophilin (a kind gift from Dr Izabella Pawluczyk from SmithKlein, Beecham, 

UK). After the incubation, the membrane was washed twice in a low stringency wash containing 

2X SSPE and 0.2% SDS for 10 minutes at room temperature followed by two more washes in 

high stringency wash containing 0.2X SSPE and 0.2% SDS for 30 minutes at 65˚C. The 

hybridisation signal was visualised using autoradiography. The membrane was placed on top of a 

Kodak X-OMAT XAR-5 film and a Kodak X-OMAT LS film (Sigma, Dorset, UK) and exposed 

for 8-24h. The LS film was developed first, and the exposure time for the XAR-5 film was 

adjusted according to the signal obtained on the LS film. 
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5.3 Results 

Part A 

In vitro modelling of the factors controlling the production of sulphuric acid (35SO4
2-) in 

cultured L6 skeletal muscle cells and HepG2 hepatocytes 

 

5.3.1 Characterisation of 35SO4
2- output 

The time course of the accumulation of (35SO4
2-) in the culture medium when the cells were 

incubated with 35S-L-Methionine is shown for L6-G8C5 myotubes in Figure 5.1 and for HepG2 

cells in Figure 5.2. As a positive control, flux through the pathway from L-Methionine to 

sulphuric acid was stimulated in some cultures by increasing the L-Methionine concentration in 

the medium from 100 to 1100µM (- the specific radio-activity of the 35S-L-Methionine in the 

medium in those cultures was kept constant by also increasing the amount of 35S-L-Methionine 

added).  

As expected, 35SO4
2- production was strongly stimulated in the positive control cultures in both 

L6-G8C5 and HepG2 cells (P<0.001). The basal rate of production of sulphate was 

approximately 10 times faster in HepG2 cells than in L6-G8C5 myotubes, consistent with the 

more rapid rate of sulphuric acid production reported in liver compared with skeletal muscle 

(Garcia and Stipanuk, 1992). Both cell types exhibited a time-dependent generation of 35SO4
2- 

from 35S-L-Methionine. Sulphate generated from L6-G8C5 cells continued to accumulate over 

72h (P<0.05) (Figure 5.1). In HepG2 cells a paradoxical fall in the concentration of 35SO4
2- was 

observed in the medium at 72h (Figure 5.2) (implying re-incorporation of the 35SO4
2- into a pool 

not precipitated by barium) and this was accompanied by loss of cell viability owing to 

exhaustion of the medium. For that reason all incubations in subsequent experiments were 

restricted to 24h or less.  It would be important in future experiements to perform measurements 

of protein breakdown to see if sulphate generation does actually cause increases in protein 

degradation that is implied from the correlations seen in Chapter 4. 
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Figure 5.3. Time course of 35SO4
2- production from L6-G8C5 myotubes and the effect of L- 

Methionine (Met) loading of the medium. Media contained sulphate-free MEM with 100µM 
L-Methionine, 2mM L-Gln and 2% dialysed foetal bovine serum. “+ Met” cultures were 
incubated with 1100µM L-Methionine. Data are from a representative experiment (with at least 3 
replicate culture wells per treatment). *denotes significant difference from corresponding control 
condition for that time point (P<0.001), adenotes significant difference from 24h + Met condition 
(P<0.05) and bdenotes significant difference from 48h + Met condition (P<0.05). 
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Figure 5.4. Time course of 35SO4
2- production from HepG2 cells and the effect of L- 

Methionine (Met) loading of the medium. Media contained sulphate-free MEM with 100µM 
L-Methionine, 2mM L-Gln and 2% dialysed foetal bovine serum. “+ Met” cultures were 
incubated with 1100µM L-Methionine. Data are from a representative experiment (with at least 3 
replicate culture wells per treatment). *denotes a significant difference from corresponding 
control condition (P<0.001), adenotes significant difference from 24h + Met condition (P<0.05) 
and b denotes significant difference from 72h + Met condition (P<0.05). 

 

5.3.2 Effect of inhibitors of protein metabolism on 35SO4
2- output 

Incubation with the proteasome inhibitor MG132 (to block protein degradation) and with 

cycloheximide (CYC) (to inhibit protein synthesis) had no significant effect on sulphate 

generation in L6-G8C5 myotubes (Figure 5.3). However, with these treatments some effect was 

observed in HepG2 cells. MG132 appeared to reduce sulphate generation when used at a 

concentration of 10µM, but this fell just short of statistical significance (P = 0.064; Figure 5.4). 
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Figure 5.5. The effect of incubation with MG132 or Cycloheximide on35SO4
2- production in 

L6-G8C5 myotubes. To maintain cell viability, incubations were restricted to 7h. Media 
contained sulphate-free MEM with 100µM L-Methionine, 2mM L-Gln and 2% dialysed foetal 
bovine serum. Condition C served as the control, whilst M1 contained MG132 (1µM) M10, 
MG132 (10µM), C0.5, Cycloheximide (0.5µM), C5, Cycloheximide (5µM) and C50 contained 
Cycloheximide (50µM). Data are from a representative experiment (with at least 3 replicate 
culture wells per treatment). 
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Figure 5.6. The effect of incubation with MG132 or Cycloheximide on 35SO4
2- production in 

HepG2 cells. To maintain cell viability, incubations were restricted to 7h. Media contained 
sulphate-free MEM with 100µM L-Methionine, 2mM L-Gln and 2% dialysed foetal bovine 
serum. Condition C served as the control, whilst M1 contained MG132 (1µM) M10, MG132 
(10µM), C0.5, Cycloheximide (0.5µM), C5, Cycloheximide (5µM) and C50 contained 
Cycloheximide (50µM). Data are from a representative experiment (with at least 3 replicate 
culture wells per treatment). *denotes a significant difference from condition C (P<0.05). 

 

5.3.3 Effect of non-sulphur amino acids on 35SO4
2- output 

Both in L6-G8C5 myotubes and HepG2 cells, L-Glutamine starvation significantly increased 

sulphate production compared with control cultures with 2mM L-Glutamine, but this effect was 

less marked in HepG2 (Figures 5.5 and 5.6). Increasing L-Glutamine to a supraphysiological 

concentration (8mM) had no further suppressive effect. Addition of L-Glutamate (a potential 

method for reversing the aspartate aminotransferase step in the sulphuric acid production 

pathway (Chapter 1, Figure 1.5); or competitive inhibition of System A transporters with a 

saturating dose of their non-metabolisable substrate MeAIB (a potential method for blocking L-

Methionine influx)  also had no further suppressive effect in the presence of 2mM L-Glutamine.   
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Figure 5.7. The effect of possible therapeutic agents on 35SO4
2- production in L6-G8C5 

myotubes. Media contained sulphate-free MEM with 100µM L-Methionine, 2% dialysed foetal 
bovine serum, and the specified amino acid concentrations. Data are from a representative 
experiment (with at least 3 replicate culture wells per treatment). Cells were incubated for 24h 
with these media. *denotes a significant difference from L-Glutamine starved condition 
(P<0.05). 
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Figure 5.8. The effect of possible therapeutic agents on 35SO4
2- production in HepG2 cells. 

Media contained sulphate-free MEM with 100µM L-Methionine, 2% dialysed foetal bovine 
serum, and the specified amino acid concentrations. Data are pooled from 2 experiments (with at 
least 3 replicate culture wells in each experiment). Cells were incubated for 24h with these 
media. *denotes a significant difference from L-Glutamine starved condition (P<0.05). 

 

Part B 

5.3.4 The effect of glucocorticoid on the activity and expression of the SNAT2 amino acid 
transporter 

As previously demonstrated by Evans et al. (2008), these results show acidosis (pH 7.1) 

significantly reduced SNAT2 transport activity in L6-G8C5 myotubes compared to that in 

control incubations at pH 7.4  (by approximately 42%, P<0.001; Figure 5.7). Following a 7 hour 

incubation with 500nM dexamethasone at pH 7.4, SNAT2 transport activity was also reduced by 

approximately 40% (P<0.001). The effects of a reduction in pH and the addition of 500nM 

dexamethasone on transport activity were found to be approximately additive (Figure 5.7).                            
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Figure 5.9. Effect on SNAT2 transport activity of 7h incubations at the specified pH with 
and without 500nM dexamethasone (Dex) in L6-G8C5 myotubes. Media were based on 
MEM and contained 2mM L-Gln with 2% dialysed foetal bovine serum. Pooled data from 3 
experiments are shown with 4 replicate culture wells in each experiment. The pH of the medium 
during the transport assay (Chapter 2.11.1) was maintained at the same value as that in the 
preceding 7h incubation in culture medium. *denotes a significant difference from the pH 7.4 
control value without Dex (P<0.05). adenotes a significant difference from 500mM Dex pH 7.1 
(P<0.05). 

 

The time course of the effect of glucocorticoid on SNAT2 transporter activity was biphasic 

(Figure 5.8). A significant reduction in transport activity was observed in the first 7h of 

incubation with Dexamethasone but, following this initial decrease, a gradual recovery was 

observed, with net stimulation of the transport activity relative to the control condition after 48h, 

(P = 0.009). 
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Figure 5.10. Time course of the effect of 500nM dexamethasone (Dex) on SNAT2 transport 
activity at pH 7.4 expressed as a percentage of the corresponding control value measured 
without Dex. Media were based on MEM and contained 2mM L-Gln with 2% dialysed foetal 
bovine serum. Pooled data from at least 3 independent experiments are shown. *denotes a 
significant difference relative to the control value at the corresponding time point (P<0.05). 

 

Consistent with changes in transport rates, there were also changes observed in the intracellular 

amino acid concentrations, especially L-Glutamine a major SNAT2 substrate. After 7h 

incubation with 500nM Dexamethasone at pH 7.4, the intracellular L-Glutamine concentration 

had declined by approximately 22%, just short of statistical significance (P = 0.053). Lowering 

the pH of the media from 7.4 to 7.1 also reduced L-Glutamine concentrations (P = 0.044) and, as 

observed in the effects on transport activity, the effects of acidosis and glucocorticoid on 

intracellular L-Glutamine concentration were additive (Figure 5.9A). However, after 48h (Figure 

5.9B), the effect of Dex was no longer detectable, consistent with the recovery in SNAT2 

transport activity that was seen at this time point (Figure 5.8). 
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Figure 5.11. Effect of pH and 500nM dexamethasone (Dex) on intracellular L-Glutamine 
concentration in L6-G8C5 myotubes after 4h (A) and 48h (B) incubation. Pooled data from 
3 experiments. *denotes significant difference from pH 7.4 control condition without Dex 
(P<0.05). a denotes significant difference from pH 7.1 condition without Dex (P<0.05). 

The inhibition of transporter activity following incubation with Dexamethasone was abolished 

both by RU38486, a specific glucocorticoid receptor antagonist; and by Actinomycin D, an 

inhibitor of transcription (Figure 5.10), indicating that Dexamethasone was acting through a 

classical transcription-dependent pathway mediated by glucocorticoid receptors. However, by 

Northern blotting no change was detected in the expression of the SNAT2 transporter in response 

to Dexamethasone even after 17h (Figure 5.11). An apparent increase in SNAT2 expression was 

observed followed incubation with acidified media, but due to the wide scatter in the results, this 

failed to reach statistical significance (P = 0.151). 
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 Figure 5.12. Effect of inhibition of the glucocorticoid receptor with RU38486 (A) and of 
transcription with Actinomycin D (B) on SNAT2 transport activity in L6-G8C5 myotubes 
with or without 500mM Dexamethasone (Dex). Media were based on MEM and contained 
2mM L-Gln with 2% dialysed foetal bovine serum. Pooled data from 2 experiments are shown 
with 4 replicate culture wells for each treatment. Cultures were incubated with relevant test 
media for 4h. *denotes significant difference from treatment with 500nM Dex alone (P<0.05). 
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Figure 5.13. Effect on SNAT2 expression in L6-G8C5 myotubes of 17h incubations at the 
specified pH with or without 500mM dexamethasone (dex) measured by Northern blotting. 
Media were based on MEM and contained 2mM glutamine with 2% dialysed foetal bovine 
serum. (A) Representative Northern blot autoradiograph. (B) Pooled quantification data by 
densitometry from three experiments are shown with at least four replicate cultures for each 
treatment.   

 

In contrast, assessment of SNAT2 protein expression in membrane preparations obtained by 

ultracentrifugation from L6-G8C5 myotubes showed a clear down-regulation of the protein in 

response to 4h of incubation with 500nM Dexamethasone (Figure 5.12A) and this was confirmed 

by quantification using densitometry (P = 0.005; Figure 5.12B). No corresponding effects were 

seen with the α-Na, K ATPase (P = 0.509) or Annexin II (P = 0.080) that acted as control 

proteins. (Figures 5.12C and D). As reported previously (Evans et al. 2008) low pH had no 

reproducible effect on SNAT2 protein expression. 

 

 

0

50

100

150

200

250

300

350

400

450

500

pH 7.1 pH 7.4 pH 7.4

%
 o
f p

H
7.
4 
Co

nt
ro
l v
al
ue

B

SNAT2 

Cyclophilin 
A 

B 

500nM Dex 



 

190 
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Figure 5.14. Effect of pH, 500nM Dexamethasone and positive controls (amino acid 
starvation and hyperosmolality (200mM Sucrose)) on the expression of SNAT2 protein in 
cell membranes prepared as described in Chapter 2.5.1. Media were based on MEM and 
contained 2mM L-Gln with 2% dialysed foetal bovine serum. L6-G8C5 myotubes were 
incubated with the relevant test media for 4h. In the amino acid starved condition myotubes were 
incubated in amino acid free media, as described in Section 5.2.1.4. Immunoblot (A) shows 
proteins that were separated by SDS-PAGE from a 170,000g membrane preparation, probed with 
antibodies specific for SNAT2 or α1-Na,K-ATPase or Annexin II as loading controls. 
Densitometry results for (B) SNAT2 (C) α1-Na,K-ATPase and (D) Annexin II are results of 5 
pooled experiments. *denotes significant difference from pH 7.4 control value (P<0.01).  
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Part C  

5.3.5 The effect of mechanical stretch on SNAT2 transporter activity 

It was observed that 48h of continuous passive stretch resulted in a significant increase in the 

transport activity of SNAT2 (P = 0.028), but only a small and statistically insignificant effect 

was obtained after 17h (P>0.05; Figure 5.13). However, under conditions of cyclic intermittent 

stretch (Figure 5.14), 17h was sufficient to observe an up-regulation in activity and this effect 

was even more apparent after 48h (P<0.05) (Figure 5.14). This was accompanied by an apparent 

increase in the expression of the transporter after both 17h and 48h (Figure 5.15), but at both 

time points, this failed to reach statistical significance. 

 

Figure 5.15. Effect of 17h or 48h of passive continuous stretch on SNAT2 transporter 
activity. Media were based on MEM and contained 2mM L-Gln with 2% dialysed foetal bovine 
serum. Pooled data from 2 experiments are shown with at least 4 replicate culture wells in each 
experiment. L6-G8C5 myotubes were cultured on Collagen-coated Flexcell silicon-based culture 
wells that, upon initiation of the experiment, were placed on glass spheres and stretched by 
loading with a 3kg weight placed on the top of the culture plate as described in Chapter 2.1.5 to 
maintain a constant passive stretch (Rauch and Loughna, 2008). *denotes significant difference 
compared with 48h control condition (P<0.05). 
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Figure 5.16. Effect of 17h (A) and 48h (B) of cyclic stretch on SNAT2 transport activity in 
L6-G8C5 myotubes. The culture medium was based on MEM at pH 7.4 and contained 2mM 
glutamine with 2% dialysed foetal bovine serum. Myotubes were cultured on Collagen-coated 
Flexcell silicon-based culture wells stretched using a Flexcell Fx3000 system set to 2 second sine 
wave stretch with 4 second release as described in Section 2.1.5. * denotes significant difference 
from control value (P<0.05). Pooled data from 2 experiments. 

 

Figure 5.17. Effect of cyclic stretch on expression of SNAT2 in L6-G8C5 myotubes assessed 
by Q-PCR as described in Chapter 2.9.7. SNAT2 expression was related to Cyclophilin 
expression using the Pfaffl equation (Pfaffl, 2001). Myotubes were cultured and stretched exactly 
as described in Figure 5.14. The culture medium was based on MEM at pH 7.4 and contained 
2mM glutamine with 2% dialysed foetal bovine serum. Pooled data from 2 experiments are 
shown with 3 replicate culture wells in each experiment. 
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5.4 Discussion 

5.4.1 In vitro modelling of the factors controlling the production of sulphuric acid (35SO4
2-) 

in cultured L6 skeletal muscle cells and HepG2 hepatocytes 

Characterisation of 35SO4
2- output from cells incubated with 35S-L-Methionine (Figures 5.1 to 

5.6) indicate that this is a sensitive assay for sulphuric acid production in vitro, which detects (as 

expected) a high production rate in a hepatocyte cell line, a significantly lower rate in a skeletal 

muscle cell line, stimulation by L-Methionine loading, and no output in the absence of cells 

(Chapter 2.10.2). Recent data from this laboratory (L. Tooley and J.R. Brown, unpublished 

observations) have also confirmed that it is inhibited by amino-oxyacetate an inhibitor of 

aspartate aminotransferase in the sulphuric acid pathway (Figure 1.5). The detection here of 

sulphur amino acid catabolism to sulphuric acid in the L6-G8C5 skeletal muscle cell line is 

unlikely to be simply a cell culture artefact: sulphuric acid production has not been extensively 

documented in muscle, but has nevertheless been clearly demonstrated in rat skeletal muscle 

(Garcia and Stipanuk, 1992) and there are reports that it is stimulated under conditions of 

cachexia in vivo (Hack et al. 1996). It would be important in future experiments to perform 

measurements of proteolysis alongside measurements of sulphate production to investigate if 

sulphate generation is causally related to 3-MH excretion that is implied from the correlations 

seen in Chapter 4. 

 

5.4.2 Effect of inhibitors of protein metabolism on 35SO4
2- output 

The correlation between sulphate excretion and 3-MH excretion in Chapter 4 (Figure 4.4A) 

could have arisen as a result of stimulation of protein degradation by acidosis, or through the 

release of sulphur amino acids by protein degradation. If the second explanation is true, near 

complete inhibition of proteolysis in vitro with a high concentration of the proteasome inhibitor 

MG132 should strongly impair sulphate output. Conversely abolishing protein synthesis with a 

high dose of cycloheximide (an inhibitor of the elongation process in translation) should result in 

enhanced generation of sulphate due to increased availability of L-Cysteine and L-Methionine 

(Stipanuk, 2004).  In practice, little effect of either of these treatments was seen in the L6-G8C5 

myotubes and only modest effects in HepG2 cells, suggesting that, at least in vitro, sulphuric 

acid production is not strongly responsive to changes in protein metabolism. Ideally this result 

should be confirmed by a non-radio-isotopic method to guard against the possibility that sulphate 
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output from degraded protein has been missed because of incomplete labelling of sulphur in the 

protein pools.  

 

5.4.3 Effect of non-sulphur amino acids on 35SO4
2- output 

The observation that feeding L-Glutamine in vivo may divert sulphur catabolism from sulphuric 

acid towards taurine (Boelens et al. 2003) implies that L-Glutamine might be of therapeutic 

value in suppressing sulphuric acid production. The data from L6-G8C5 myotubes and HepG2 

hepatocytes in Figures 5.5 and 5.6 suggest that this may be the case, but as intracellular taurine 

concentrations were not measured in the present study, the mechanism of the suppression of 

sulphate output by L-Glutamine is currently unknown. With the relatively high L-Glutamine 

concentrations tested here, it is possible that L-Glutamine also acted partly by competing with L-

Methionine and L-Cysteine at plasma membrane transporters such as SNAT2, resulting in a 

lower intracellular availability of these substrates for sulphate metabolism. L-Methionine is an 

effective substrate for SNAT2 (Yao et al. 2000) and inhibition or silencing of SNAT2 in L6-

G8C5 myotubes significantly depletes intracellular L-Methionine (Evans et al. 2007). However, 

competitive inhibition of SNAT2 with a saturating concentration of its substrate MeAIB (Figures 

5.5 and 5.6) failed to suppress sulphate output any further than was the case with 2mM L-

Glutamine, suggesting that competitive effects of L-Glutamine on SNAT2 are not the full 

explanation. 

The effect of L-Glutamate  (L-Glu) was also tested in Figures 5.5 and 5.6. In principle L-Glu 

could exert a mass-action effect on the aspartate aminotransferase equilibrium:  

 

L-Glu + beta-sulphinylpyruvate (BSP) <--> alphaketoglutarate + cysteinsulphinate (CSA);  

 

thus depleting BSP (the precursor of sulphuric acid) (Yang and Brunengraber, 2000), and 

expanding the CSA pool (the main determinant of Taurine production through the regulatory 

enzyme CSA decarboxylase). In practice this exerted no effect beyond that observed with 2mM 

L-Glutamine, possibly because L-Glutamate generated from L-Glutamine was already exerting a 

maximal effect on this equilibrium. 
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5.4.4 The effect of glucocorticoid on the activity and expression of the SNAT2 amino acid 

transporter 

Metabolic acidosis is reported to increase circulating glucocorticoid concentrations (May et al. 

1986) and elevated concentrations are seen in CKD (Rosman et al. 1982; McDonald et al. 1979). 

Therefore the aim of the second part of this chapter was to investigate whether glucocorticoid 

might mediate a persistent inhibitory effect of acidosis on SNAT2 which could have contributed 

to the sustained collapse of muscle amino acid gradients in the acidotic exercising patients in 

Chapter 3. 

Dexamethasone administered at a concentration of 500nM did significantly reduce the transport 

activity of SNAT2 by approximately 40% and, in combination with acidified media, resulted in 

an additive inhibitory effect of approximately 70%.  The effect of glucocorticoid persisted for 

several hours suggesting that this is indeed a feasible mediator of longer term inhibitory effects 

on active transport of amino acids into muscle in acidotic CKD patients and warrants further 

investigation. Although a high dose of dexamethasone was used here this was because it appears 

this cell line is relatively insensitive. In order for effects of insulin on protein degradation to be 

seen in vitro, an insulin concentration that is approximately 100 times greater than that seen to 

produce an effect in vivo has to be used. This problem was also encountered in selecting a 

glucocorticoid dose to be used, doses lower than 500nM failed to produce an effect and so a 

relatively high non-physiological dose had to be used. 

 
These changes in transport activity were mirrored by changes in the intracellular L-Glutamine 

concentration, one of the main substrates for this transporter (Hyde et al. 2003; Yao et al. 2000). 

It has previously been reported that reducing the pH of the medium to 7.1 causes significant 

decreases in intracellular L-Glutamine concentrations (Evans et al. 2007). Incubation at pH 7.1 

for 4h in the present study resulted in a 22% reduction in the intracellular L-Glutamine 

concentration confirming this earlier report. Glucocorticoids were also seen to produce a 

comparable effect: 4h incubation with 500nM dexamethasone decreased glutamine levels by 

25% and when dexamethasone and acid were combined, the effect was additive, resulting in a 

43% decline, comparable with the decline in the L-Glutamine gradient observed in the STD 

bicarbonate group in Chapter 3, Table 3.16. 
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The effects on transport activity and intracellular L-Glutamine depletion appeared to show a 

biphasic time course, with inhibition in the first 7h, but after this time there was a rebound of 

SNAT2 activity which was actually significantly above baseline after 48h with Dexamethasone. 

Biphasic effects of glucocorticoid have been reported previously by Pickering et al. (2003) who 

observed a biphasic effect of Dexamethasone on the time course of protein degradation in L6-

G8C5 myotubes. Kayali et al. (1990) also observed that in normal and diabetic rats, the daily 

administration of corticosterone resulted in an increase in protein degradation rates measured by 

3-MH release from the hindquarters in the first four days. After this time, a fall in degradation 

rate back to baseline was seen, an effect that appeared to be independent of insulin and could not 

be explained by the authors. 

The additive effect of glucocorticoids and acid that was observed on SNAT2 transport activity, 

and subsequent changes on the intracellular L-Glutamine concentration, suggests that these two 

effects are occurring through distinct mechanisms. Previous reports of the effect of low pH on 

SNAT2 transport activity (Bevington et al. 2002) have shown that this effect is rapidly reversed 

when the acidified medium is washed away consistent with acid exerting a direct effect upon the 

SNAT2 transporter protein (reviewed in Chapter 1.14.1) Consequently, to observe the effect of 

low pH on SNAT2 activity, the transport assay must also be performed at a low pH. This is not 

the case for Dexamethasone, which exerts a more persistent effect on SNAT2 activity that is 

detectable even when the Dexamethasone has been removed from the medium. This persisting 

effect is consistent with glucocorticoid acting upon gene expression through a classical steroid 

receptor-mediated transcription dependent pathway (Figure 5.10). This pathway is activated by 

ligand binding to the glucocorticoid receptor resulting in the ligand-receptor complex 

translocating to the nucleus and binding to glucocorticoid response elements that are found on 

the promoter region of target genes (Granner, 1996).  

The data in Figure 5.10 suggest that Dexamethasone inhibits SNAT2 through effects on gene 

expression, but not on expression of the SNAT2 gene. Northern blotting detected no change in 

the expression of the transporter after 17h incubation with Dexamethasone (although a short-

lived effect may have been missed). It is possible that glucocorticoid acts by increasing the 

expression of a protein which leads to the down-regulation of the SNAT2 protein observed in 

Figure 5.12. 
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5.4.5 The effect of mechanical stretch on SNAT2 transporter activity 

The principal conclusion from this part of the study was that prolonged mechanical stress for up 

to 48h stimulates SNAT2 activity in L6-G8C5 myotubes, consistent with the stimulation of 

System A activity reported in rats following acute exercise (Henriksen at al 1992, 1993; King, 

1994). Under none of the conditions tested did mechanical stress inhibit SNAT2 activity. 

Therefore there is no evidence at this stage that the patients’ exercise regime in Chapter 3 led 

directly to the observed collapse of the muscle amino acid gradients.  

However, the observations that both continuous and cyclic stretch were able to activate SNAT2, 

and that SNAT2 is apparently able to regulate phosphorylation of rpS6 and 4E-BP1 and hence 

translation initiation (Evans et al. 2007) are of interest. Atherton et al. (2009) have shown that 

cyclic stretch of L6-G8C5 myotubes also increases the phosphorylation of these proteins, and 

previous research by Vandenburgh (1987) found that passive stretching of cells in vitro resulted 

in a large increase in protein synthesis and a small decrease in protein degradation. This may 

mean that SNAT2 serves as a sensor of mechanical stretch, mediating anabolic signals to protein 

metabolism and increasing protein synthesis rates (Vandenburgh, 1987). It will now be 

interesting to determine whether inhibition or silencing of SNAT2 leads to inhibition of stretch-

induced increases in phosphorylation of proteins downstream of mTOR. 

 

5.4.6 Conclusions 

Part A of this Chapter confirms that skeletal muscle does play a role in sulphate metabolism as 

previously suggested (Garcia and Stipanuk, 1992). Although its involvement is to a lesser degree 

than hepatocytes, it may be of importance as this source of sulphuric acid will be the most 

readily available one to myocytes. At least in vitro, the potential for L-Glutamine to be used as a 

therapy to reduce sulphuric acid production looks promising, and warrants further investigation. 

The results from part B of this chapter demonstrate a chronic inhibition by glucocorticoids of the 

SNAT2/slc38a2 transporter that appears to act via a separate mechanism to that of acidosis. This 

presents a possible line of enquiry to be investigated that may explain the collapse of the 

intracellular/extracellular amino acid gradients observed in the exercising patients in Chapter 3, 

but as these results were obtained in vitro, caution is needed in translating these conclusions 

directly to the effects seen in humans. 
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The results from part C of this chapter lead to the hypothesis that SNAT2/slc38a2 may be a 

sensor of mechanical stress, which may be able to up-regulate transport activity rates and, 

making use of the results from Evans et al. (2007), increase signalling through mTOR. 

Therefore, if acidosis and raised glucocorticoid levels in CKD are capable of inhibiting this 

transporter, this implies a role for SNAT2 in the regulation of protein metabolism under 

conditions relevant to uraemia. Whether this inhibition can be relieved by resistance exercise (i.e. 

mechanical stress) remains to be seen. 
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6.1 Aerobic exercise training in CKD patients and the effect of sodium 

bicarbonate 

There are many reports now published that demonstrate exercise in haemodialysis patients, both 

aerobic and resistance, improves exercise capacity (Painter et al. 1986; Kouidi et al. 1997; 

Molsted et al. 2004; Sakkas et al. 2003) and the results from Chapter 3 show this is also the case 

following aerobic exercise training in pre-dialysis patients. One of the most important findings 

from this chapter was the effect that additional sodium bicarbonate imposed on adaptations to the 

exercise training. A reduced lactate response to the same absolute workload was seen with 

modest increases in lean body mass (LBM) and reduced expression of the ubiquitin E3 ligases, 

none of which were seen in the exercising patients who received only their standard bicarbonate 

treatment. A possible interpretation is that XS bicarbonate allowed patients to exercise for longer 

by buffering acid that was produced during the exercise bout. The results presented in Chapter 3 

suggest that in these patients acidosis is not beneficial, but actually appears to be detrimental 

preventing the exercise-induced adaptations seen in the patients in the XS bicarbonate group. 

Acidification of skeletal muscle may be a limiting factor to exercise in this patient population, 

Nishida et al. (1991) observed a greater decline in sarcosolic pH during exercise in uraemic 

patients compared to healthy controls, and it is possible that the addition of XS bicarbonate 

helped to prevent such a fall. This beneficial effect of bicarbonate is in line with results from 

Stein et al. (1997) who observed that additional alkali therapy resulted in an increase in body 

weight and mid-arm circumference and reduced morbidity, and Szeto et al. (2003) who saw 

increases in free fat mass and LBM with reduced morbidity in peritoneal dialysis patients.  

Surprisingly, those patients who exercised while receiving only their standard bicarbonate 

therapy exhibited striking declines in intramuscular amino acid pools and a collapse of the 

intracellular/extracellular amino acid gradients. This was an effect that was apparent after one 

month of exercise, but was much larger after six months, and may have the potential to limit 

protein synthesis. Importantly, the administration of extra bicarbonate to exercising patients was 

able to prevent this collapse and maintain intramuscular amino acid concentrations. Amino acid 

gradients are usually maintained by active transporters, with the pH sensitive SNAT2/slc38a 

transporter apparently being the main active amino acid transporter in skeletal muscle cells. 

Previous evidence from our laboratory has shown that inhibition of this transporter by acidosis in 

vitro results in the depletion of L-Glutamine and other amino acids whose intracellular 

concentrations are maintained by the L-Glutamine concentration gradient set up by SNAT2 
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(Evans et al. 2007). Therefore, it was hypothesised that as this effect on amino acids was only 

seen in the exercising patients on STD bicarbonate therapy and not in the non-exercising controls 

also receiving only their STD bicarbonate therapy, it was an effect that was mediated by the 

exacerbation of acidosis by exercise. However, this gradient disruption was observed in the 

resting state, after any exercise-induced acidosis and therefore amino acid disruption may have 

dissipated.  

The results from the in vitro experiments in chapter 5 provide interesting speculation on a second 

factor that might be involved in the observed collapse in amino acid gradients. Acidosis results in 

an increase in circulating glucocorticoid levels (May et al. 1986) which have been reported in 

CKD (Rosman et al. 1982; McDonald et al. 1979) and appear to be a permissive factor for the 

catabolic effect of acid. For this reason, it seemed plausible that, like acid (Evans et al. 2007), 

glucocorticoids may also be exerting an effect on protein metabolism through SNAT2. In vitro, 

glucocorticoids (Dexamethasone) did suppress SNAT2 transport activity and reduce intracellular 

glutamine concentrations and, when applied in conjunction with acid, the effect was additive 

suggesting that these factors are working through distinct mechanisms. Caution is required when 

applying conclusions drawn from in vitro experiements to in vivo data, however, it is possible 

that glucocorticoids mediate a persistent inhibitory effect of acidosis on SNAT2 which could 

have contributed to the sustained collapse of muscle amino acid gradients seen in the acidotic 

exercising patients in Chapter 3. Whether the circulating glucocorticoid concentration in acidotic 

CKD patients is sufficient to exert such an effect in vivo, and whether exercise further increases 

this concentration, remains to be determined. 

Owing to the positive results seen in this aerobic training pilot study, further investigation is 

warranted into the effects of a resistance training programme, where much larger effects on net 

muscle mass might be expected. It would be important to continue to compare the effect of extra 

bicarbonate therapy, which if the current results are correct, may be a crucial supplement to 

make to exercise therapy in pre-dialysis CKD patients.  

 

6.2 Exercise and measures of myofibrillar proteolysis 

Despite the observation that exercise and XS bicarbonate therapy reduced E3 ligase expression, 

other markers of myofibrillar proteolysis showed no consistent beneficial effect and reduced 
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levels of the 14kDa actin fragment and 3-MH excretion were not observed together under the 

same condition that suppressed E3 ligase expression. There was no statistically significant 

decline in 14kDa actin levels in any group, contrary to the decline previously reported in 

combined aerobic and resistance exercise in haemodialysis patients (Workeneh et al. 2006). 

Similarly no change was observed in 3-MH excretion rates in any group, and although a decrease 

was seen in the muscle protein:DNA ratio in the XS group which appeared to be induced through 

technical error, no changes were seen in muscle: DNA ratio in the remaining groups, and this 

resulted in only very small effects on LBM observed by DEXA. This inability to reduce 3-MH 

excretion and therefore muscle proteolysis possibly resulted from a failure of the treatments to 

increase PKB phosphorylation sufficiently (although the importance of this is human muscle 

now seems to be unkown) and reduce caspase-3 activity, and, in the case of STD bicarbonate 

therapy, to effectively buffer the acid generated by exercise. Endurance exercise traditionally 

does not result in the accretion of skeletal muscle protein and the fact some small increases in 

LBM following aerobic exercise were seen here may be a reflection of how cachectic these 

patients were. In future studies, larger gains might be expected with resistance exercise training.  

When interpreting the results from Chapter 3, there are some limitations that should be taken into 

account. Firstly, sample sizes were not equal in all the groups and some groups were left with 

small numbers owing to a significant drop-out rate which has previously been reported in 

exercise studies with CKD patients (Koufaki et al. 2000; Malagoni et al. 2008). Such problems 

are difficult to avoid when performing a six month exercise training study in a disease 

population. Secondly, as the exercise programme was unsupervised, there was no way to 

quantify exactly how much exercise the patients actually performed. They were asked to fill in 

exercise diaries, but a digitalized method of assessing this would have been more accurate, for 

example an accelerometer. Finally, the allocation of patients to either an exercise or control 

group was not randomized. This means that the result may have been influenced by comparing 

an intervention group who were willing to exercise, with a control group who were unwilling.  In 

future studies it would be helpful to recruit a large number of patients all willing to exercise, and 

then randomly allocate them to exercising and non-exercising groups, but the large patient 

population required would probably need a multi-centre study. Unfortunately, due to logistical 

problems, it was necessary in the present study to limit recruitment to Leicester General 

Hospital. 
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6.3 Production of sulphuric acid and links to protein breakdown 

As the results from Chapter 3 showed the importance of limiting acidosis, sources of acid 

generation were investigated in Chapter 4. Sulphur containing amino acids that are consumed in 

the diet are ultimately catabolised to either sulphuric acid (sulphate plus hydrogen ions) or the 

non-acidic end product taurine. Interestingly, there was no relationship observed between venous 

bicarbonate concentration (the conventional measure of acidosis) and 3-MH excretion. There 

was however, a strong correlation between sulphate excretion and 3-MH excretion in the 

patients, but not in healthy controls. This suggests that in this patient population, sulphuric acid 

production is functionally significant and might be a better indicator of those patients at risk of 

acid-induced muscle wasting. However, it is important to bear in mind this conclusion has been 

made from only a correlation and is required to be confirmed using more robust experiments.  

Whether glutamine supplementation, possibly by trapping sulphur in the form of taurine 

(Boelens et al. 2003), can significantly limit the production of sulphuric acid in vivo and exert 

beneficial effects under conditions of uraemia warrants further investigation.  

 

6.4 Summary 

In conclusion, aerobic exercise in pre-dialysis CKD patients was a relatively un-researched area 

and this study has demonstrated that aerobic exercise is also able to confer some benefits to pre-

dialysis patients, as well as the haemodialysis population as previously documented, but only 

when applied in combination with additional bicarbonate therapy. Indeed, the evidence presented 

suggests that exercise with standard bicarbonate therapy, and therefore lower serum bicarbonate 

levels, might even be detrimental in the long-term. The conventional measure of acidosis, serum 

bicarbonate seems to be an insensitive marker of protein wasting in this population and this study 

tentatively proposes sulphate excretion rates as a putative indicator of those patients at high risk 

of skeletal muscle wasting. Glutamine therapy has been observed in vitro as a potential means by 

which to decrease sulphuric acid production. Finally, based on evidence in vitro, the pH sensitive 

SNAT2 transporter has been identified as a possible sensor of acidosis and mechanical stress, but 

much more work is required to demonstrate that it has an important role in protein metabolism in 

vivo following exercise and under conditions relevant to uraemia. 
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Appendix A 

Solutions and Reagents 

 

Folin Reagent A (1 Litre) 
20g Anhydrous Na2CO3 
4g NaOH 
0.2g K,Na-tartrate. 4H2O 
Ultra pure water up to one litre 
 

Folin Reagent B (1 Litre) 
5g CuSO4.5H2O 
Ultra pure water up to one litre 
 

UIC3 Protease Inhibitor Cocktail (100ml) 
8.55g Sucrose 
0.47g Hepes 
0.032g Sodium Azide 
0.076g EGTA 
Adjust to pH 7.4 with 0.5M NaOH 
Ultra pure water up to 100ml  
20 µl PMSF (25mg) 
14.2µl E64 (5mg) 
13.7µl Pepstatin A (5mg) 
9.5µl Leupeptin (10mg) 
 

SDS-PAGE Muscle Lysis Buffer (10ml) 
0.08g NaCl 
0.002g KCl 
0.002g MgCl2 
500µl Tris 1M pH 7.5 
20µl Ethylenediaminetetraacetic acid (EDTA) 0.5M pH 8 
250µl Ethylene glycol tetraacetic acid (EGTA) 40mM 
800µl Glycerol 
1ml 10% Triton X-100 
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100µl β-Glycerophosphate 1M 
1.18ml Sodium Orthovanadate 8.5mM 
1ml Sodium Fluoride 500mM 
10µ β-Mercaptoethanol 
5.09ml ultra pure water 
 
SDS-PAGE L6 Lysis Buffer (10ml) 
500µl Tris 1M pH 7.5 
20µl Ethylenediaminetetraacetic acid (EDTA) 0.5M pH 8 
250µl Ethylene glycol tetraacetic acid (EGTA) 40mM 
1ml 10% Triton X-100 
100µl β-Glycerophosphate 1M 
1.18ml Sodium Orthovanadate 8.5mM 
1ml Sodium Fluoride 500mM 
10µ β-Mercaptoethanol 
5.89ml ultra pure water 
 

Laemelli Reducing Sample Buffer 
4ml Ultra pure H2O 
1ml 0.5M Tric HCL pH 6.8 
0.8ml Glycerol 
1.6ml 10% w/v Sodium Dodecyl Sulphate (SDS) 
0.4ml β-Mercaptoethanol  
0.2ml 0.05% w/v Bromophenol Blue 
 
10X Running Buffer (1 Litre) 
30.3g Trizma Base    
144g Glycine    
100ml 20% SDS   
Ultra pure water to one litre 
 
1X Running Buffer (1 Litre) 
100ml 10X Running buffer   
900ml Ultra pure water   
 
10X Transfer Buffer (1 Litre) 
30.3g Tris-Base  
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144g Glycine    
Ultra pure water to one litre 
 
1X Transfer Buffer (1 Litre) 
100ml 10X Transfer Buffer    
200ml Methanol    
100ml 10% SDS 
Ultra pure water to one litre  
Blue 
 

10X TBS 
60.55g Trizma base   
87.66g NaCl    
Ultra pure water to 700ml 
pH to 7.6 using 6M HCl 
Ultra pure water to one Litre 
 
1X TTBS + 0.1% tween (1 Litre) 
100ml 10X TBS   
Ultra pure water to one litre 
1ml Tween 20 
 
RNA Gel Loading Sample Buffer 
50% Glycerol 
10mM Tris 
1mM EDTA 
Bromophenol blue 0.05% w/v to give a readily detectable colour 
DNA Sample Buffer 
0.25% Bromophenol Blue 
15% Ficoll (Type 400) in Water 
 

HBS 

140mM BaCl 
20mM Hepes Acid 
2.5mM MgSO4. 7H2O 
5mM KCl 
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1mM CaCl2. 2H2O 
10mg/l Phenol red 
Adjust to pH 7.4 with 0.5M NaOH 
 

Pre-hybridisation Solution 
5 ml Formamide   
2.5ml 20X SSPE   
1ml 50X Denhardt’s solution 
0.5ml 20% SDS w/v   
1ml DEPC Water   
200μg/ml Salmon sperm DNA  
Warm to 42˚C prior to use. 
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Appendix B 

Methods Development 

There were no protocols were set up in the Laboratory for working with skeletal muscle, and for 

western blotting in particular, a great deal of methods development had to be done to get the 

assay working effectively. Below is a step by step description of this process. 

1) I started by practicing the protocol described by Karlsoon et al. (2004) on rat skeletal 

muscle to determine the phosphorylation status of P-rpS6, P-PKB, P-P70S6K, and P-4E-

BP1. Westerns were run with 30μg protein, the amount of protein routinely loaded onto 

the gels in our Laboratory when running cell culture lysates. These Westerns worked 

well. 

2) Professor Ron Maughan kindly taught Dr Kosmadakis the biopsy technique and in the 

process provided myself with some human skeletal muscle to continue methods 

development with. Initially, all Westerns were run for P-rpS6 with the aim of setting up 

this western first. I repeated the protocol that had obtained good results in rodent muscle, 

but there was only a very faint signal detectable in healthy human skeletal muscle. 

3) The amount of protein loaded onto the gel was increased to 100μg protein and gave a 

better signal than 30μg. This was then increased to 150μg, which gave no improvement 

over 100μg. 

4) Two patients withdrew very early on in the study, but allowed their baseline samples to 

be used in methods development. The protocol was repeated with 100μg and then 150μg 

protein, but no signal was detectable. As a result of this, 150μg protein was routinely 

loaded onto the gel to maximise the possibility of detecting a signal with further 

modifications. 

5) It was decided to always run a positive control on the same gel as the muscle samples to 

ensure that the lack of a signal was not due to a technical failure of the Western. L6-

G8C5 cells stimulated with insulin served as the positive control and a volume containing 

10μg protein was loaded onto the gel. (A reduced amount of protein was used here 

because the length of time the membrane was exposed to the film meant that anything 

more than 10μg resulted in a very large overexposed band.) 

6) The effect of using a signal enhancer reagent and an antibody extender from Thermo 

Scientific was tested. Due to cost reasons it was decided to use the signal enhancer 
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reagent, but this was later removed from the protocol as it made little difference and 

prevented the membranes from being re-probed with other antibodies. 

7) I tried varying the length of time the membrane was exposed to the film, finally 

increasing to 24h exposures, which did give stronger signals than shorter exposures and 

this exposure time was then routinely used. 

8) I switched from using nitrocellulose to PVDF membranes, as these are sometimes 

suggested to be more sensitive. However, they seemed to make little difference, but 

again, in order to maximise the possibly of detecting a signal, they were continued to be 

used. 

9) I tried increasing the length of time proteins were transferred from the gel to the 

membrane using the wet transfer system from 2 to 3 hours and finally up to 4 hours to 

make sure all the protein was transferred out of the gel successfully. However, coomassie 

blue staining showed there was difference in the amount of protein that remained in the 

gel between the three different transfer times, and no difference in the signals detected, so 

the transfer time remained at 2 hours. 

10)  I started to compare the lysis buffer recipe I was using (which was the same as that used 

in cell culture experiments in our Laboratory) with those in the literature. It was 

essentially the same, except some research groups add salts to help dissolve the protein 

and glycerol to maintain a uniform concentration of the lysate when frozen. Salts and 

glycerol were then routinely added to the lysis buffer. 

11)  I tried using sonication following homogenisation to ensure the biopsy had completely 

gone into solution. This made no difference and was removed from the protocol. 

12) The length of time the muscle homogenate was incubated in the lysis buffer was 

increased from 30 to 60 and finally to 90 minutes, and instead of incubating it on ice, the 

tubes were rotated in the cold room. After this modification and the improved lysis buffer 

recipe, the lysates did appear to be more translucent and to contain less insoluble 

material. 

13)  Some research groups use the semi-dry transfer method, and this was tried following the 

modifications made in point 12. This method did seem to give a better transfer and the 

wet transfer system was no longer used. 

14)  I changed the blocking agent from 5% milk powder to 5% Bovine Serum Albumin 

(BSA), but this resulted in a high background and was no longer used. 
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15)  I then applied to the Loughborough University Ethical Advisory Committee to run a 

healthy volunteer study to obtain muscle biopsies from healthy individuals, in which 

phosphorylation signals should be detectable. If I could see a signal, then I could be sure 

that the lack of a detectable signal in the biopsies from CKD patients was the correct 

result and it was not simply the result of technical difficulties. A signal was detectable, so 

it was concluded that there is simply very little phosphorylation of rpS6 in these patients.  

 

This low phosphorylation signal was also found to be the case for P-4E-BP1 and P-P70SK6, but 

phosphorylation of PKB could be seen. 

The protocol described in Section 2.5 was used in the Western blotting experiments for 

phosphorylated proteins described in this thesis. 
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Appendix A 
Solutions and Reagents 

 
 
Folin Reagent A (1 Litre) 
20g Anhydrous Na2CO3 
4g NaOH 
0.2g K,Na-tartrate. 4H2O 
Ultra pure water up to one litre 
 
Folin Reagent B (1 Litre) 
5g CuSO4.5H2O 
Ultra pure water up to one litre 
 
UIC3 Protease Inhibitor Cocktail (100ml) 
8.55g Sucrose 
0.47g Hepes 
0.032g Sodium Azide 
0.076g EGTA 
Adjust to pH 7.4 with 0.5M NaOH 
Ultra pure water up to 100ml  
20 µl PMSF (25mg) 
14.2µl E64 (5mg) 
13.7µl Pepstatin A (5mg) 
9.5µl Leupeptin (10mg) 
 
SDS-PAGE Muscle Lysis Buffer (10ml) 
0.08g NaCl 
0.002g KCl 
0.002g MgCl2 
500µl Tris 1M pH 7.5 
20µl Ethylenediaminetetraacetic acid (EDTA) 0.5M pH 8 
250µl Ethylene glycol tetraacetic acid (EGTA) 40mM 
800µl Glycerol 
1ml 10% Triton X-100 
100µl β-Glycerophosphate 1M 
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1.18ml Sodium Orthovanadate 8.5mM 
1ml Sodium Fluoride 500mM 
10µ β-Mercaptoethanol 
5.09ml ultra pure water 
 
SDS-PAGE L6 Lysis Buffer (10ml) 
500µl Tris 1M pH 7.5 
20µl Ethylenediaminetetraacetic acid (EDTA) 0.5M pH 8 
250µl Ethylene glycol tetraacetic acid (EGTA) 40mM 
1ml 10% Triton X-100 
100µl β-Glycerophosphate 1M 
1.18ml Sodium Orthovanadate 8.5mM 
1ml Sodium Fluoride 500mM 
10µ β-Mercaptoethanol 
5.89ml ultra pure water 
 
Laemelli Reducing Sample Buffer 
4ml Ultra pure H2O 
1ml 0.5M Tric HCL pH 6.8 
0.8ml Glycerol 
1.6ml 10% w/v Sodium Dodecyl Sulphate (SDS) 
0.4ml β-Mercaptoethanol  
0.2ml 0.05% w/v Bromophenol Blue 
 
10X Running Buffer (1 Litre) 
30.3g Trizma Base    
144g Glycine    
100ml 20% SDS   
Ultra pure water to one litre 
 
1X Running Buffer (1 Litre) 
100ml 10X Running buffer   
900ml Ultra pure water   
 
10X Transfer Buffer (1 Litre) 
30.3g Tris-Base  
144g Glycine    
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Ultra pure water to one litre 
 
1X Transfer Buffer (1 Litre) 
100ml 10X Transfer Buffer    
200ml Methanol    
100ml 10% SDS 
Ultra pure water to one litre  
Blue 
 
10X TBS 
60.55g Trizma base   
87.66g NaCl    
Ultra pure water to 700ml 
pH to 7.6 using 6M HCl 
Ultra pure water to one Litre 
 
1X TTBS + 0.1% tween (1 Litre) 
100ml 10X TBS   
Ultra pure water to one litre 
1ml Tween 20 
 
RNA Gel Loading Sample Buffer 
50% Glycerol 
10mM Tris 
1mM EDTA 
Bromophenol blue 0.05% w/v to give a readily detectable colour 
DNA Sample Buffer 
0.25% Bromophenol Blue 
15% Ficoll (Type 400) in Water 
 
 
HBS 
140mM BaCl 
20mM Hepes Acid 
2.5mM MgSO4. 7H2O 
5mM KCl 
1mM CaCl2. 2H2O 
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10mg/l Phenol red 
Adjust to pH 7.4 with 0.5M NaOH 
 
Pre-hybridisation Solution 
5 ml Formamide   
2.5ml 20X SSPE   
1ml 50X Denhardt’s solution 
0.5ml 20% SDS w/v   
1ml DEPC Water   
200μg/ml Salmon sperm DNA  
Warm to 42˚C prior to use. 
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Appendix B 

Methods Development 

No protocols were set up in the Laboratory for working with skeletal, and for western blotting in 
particular, a great deal of methods development had to be done to get the assay working 
effectively. Below is a step by step description of this process. 

1) I started by practicing the protocol described by Karlsoon et al. (2004) on rat skeletal 
muscle to determine the phosphorylation status of P-rpS6, P-PKB, P-P70S6K, and P-4E-
BP1. Westerns were run with 30μg protein, the amount of protein routinely loaded onto 
the gels in our Laboratory when running cell culture lysates. These Westerns worked 
well. 

2) Professor Ron Maughan kindly taught Dr Kosmadakis the biopsy technique and in the 
process provided myself with some human skeletal muscle to continue methods 
development with. Initially, all Westerns were run for P-rpS6 with the aim of setting up 
this western first. I repeated the protocol that had obtained good results in rodent muscle, 
but there was only a very faint signal detectable in healthy human skeletal muscle. 

3) The amount of protein loaded onto the gel was increased to 100μg protein and gave a 
better signal than 30μg. This was then increased to 150μg, which gave no improvement 
over 100μg. 

4) Two patients withdrew very early on in the study, but allowed their baseline samples to 
be used in methods development. The protocol was repeated with 100μg and then 150μg 
protein, but no signal was detectable. As a result of this, 150μg protein was routinely 
loaded onto the gel to maximise the possibility of detecting a signal with further 
modifications. 

5) It was decided to always run a positive control on the same gel as the muscle samples to 
ensure that the lack of a signal was not due to a technical failure of the Western. L6-
G8C5 cells stimulated with insulin served as the positive control and a volume containing 
10μg protein was loaded onto the gel. (A reduced amount of protein was used here 
because the length of time the membrane was exposed to the film meant that anything 
more than 10μg resulted in a very large overexposed band.) 

6) The effect of using a signal enhancer reagent and an antibody extender from Thermo 
Scientific was tested. Due to cost reasons it was decided to use the signal enhancer 
reagent, but this was later removed from the protocol as it made little difference and 
prevented the membranes from being re-probed with other antibodies. 

7) I tried varying the length of time the membrane was exposed to the film, finally 
increasing to 24h exposures, which did give stronger signals than shorter exposures and 
this exposure time was then routinely used. 

8) I switched from using nitrocellulose to PVDF membranes, as these are sometimes 
suggested to be more sensitive. However, they seemed to make little difference, but 
again, in order to maximise the possibly of detecting a signal, they were continued to be 
used. 
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9) I tried increasing the length of time proteins were transferred from the gel to the 
membrane using the wet transfer system from 2 to 3 hours and finally up to 4 hours to 
make sure all the protein was transferred out of the gel successfully. However, coomassie 
blue staining showed there was difference in the amount of protein that remained in the 
gel between the three different transfer times, and no difference in the signals detected, so 
the transfer time remained at 2 hours. 

10)  I started to compare the lysis buffer recipe I was using (which was the same as that used 
in cell culture experiments in our Laboratory) with those in the literature. It was 
essentially the same, except some research groups add salts to help dissolve the protein 
and glycerol to maintain a uniform concentration of the lysate when frozen. Salts and 
glycerol were then routinely added to the lysis buffer. 

11)  I tried using sonication following homogenisation to ensure the biopsy had completely 
gone into solution. This made no difference and was removed from the protocol. 

12) The length of time the muscle homogenate was incubated in the lysis buffer was 
increased from 30 to 60 and finally to 90 minutes, and instead of incubating it on ice, the 
tubes were rotated in the cold room. After this modification and the improved lysis buffer 
recipe, the lysates did appear to be more translucent and to contain less insoluble 
material. 

13)  Some research groups use the semi-dry transfer method, and this was tried following the 
modifications made in point 12. This method did seem to give a better transfer and the 
wet transfer system was no longer used. 

14)  I changed the blocking agent from 5% milk powder to 5% Bovine Serum Albumin 
(BSA), but this resulted in a high background and was no longer used. 

15)  I then applied to the Loughborough University Ethical Advisory Committee to run a 
healthy volunteer study to obtain muscle biopsies from healthy individuals, in which 
phosphorylation signals should be detectable. If I could see a signal, then I could be sure 
that the lack of a detectable signal in the biopsies from CKD patients was the correct 
result and it was not simply the result of technical difficulties. A signal was detectable, so 
it was concluded that there is simply very little phosphorylation of rpS6 in these patients.  

 

This low phosphorylation signal was also found to be the case for P-4E-BP1 and P-P70SK6, but 
phosphorylation of PKB could be seen. 

The protocol described in Section 2.5 was used in the Western blotting experiments for 
phosphorylated proteins described in this thesis. 

 

 




