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Abstract 

The Development and Applications of a System Designed to 
Quantify Coronary Arterial Stenosis. 

Mark Jackson, May 1988. 

The objective analysis of coronary artery stenosis is 
required for the assessment of interventions in the 
management of Coronary Artery Disease (CAD). This thesis 
presents a microcomputer based system designed to meet this 
requirement which is easy to use and relatively cheap. 

The hardware consists of a standard 35mm cine projector 
(International General Electric Company), a rear projection 
graphics tablet (GTCO Corporation) and microcomputer (Vector 
Graphic Limited) with printer (Epson Limited). The graphics 
tablet and projector are mounted into a steel framework 
which allows an arteriographic image to be cast from the 
rear of the projector and focused, parallax free, onto the 
centre of the tablet. The tablet in turn communicates with 
the computer via a RS232 link. 

Arterial contours are outlined directly onto the tablet 
surface using a fine nibbed water soluble pen. These 
contours are then digitized at 25 coordinates per second by 
retracing with the graphic tablet cursor. All coordinates 
are held in computer memory until digitization is complete, 
converted to ASCII and stored on disk. 

A suite of programs manipulate these raw data producing 
absolute and relative measures which characterize stenotic 
morphology, including maximal and minimal artery diameter, 
percent diameter stenosis and various measurements of artery 
eccentricity. 

The Quantitative Angiographic Mensuration System (QAMS) has 
been found to be repeatable and objective over a series of 
repeated trials, with standard errors of measurement for 
maximal artery diameter being 0.015mm and 0.14mm 
respectively. On validation, dimensional results were not 
significantly different from test'objects. 

Longitudinal data have been collected from 62 patients 
undergoing Percutaneous Transluminal Coronary Angioplasty 
(PTCA) using QAMS. Significant differences at the 0.01% 
level are evident in parameters reflecting stenotic severity 
post PTCA, correlating strongly with' improved patient 
exercise tolerance. Failure of the PTCA technique in the 
right coronary artery was significantly related to small pre 
PTCA dimensions and high eccentricity at the minimum 
diameter. Visual overestimation of stenotic severity was 
common in high grade lesions compared to objective 
quantification. 

Myocardial function, quantified using a modified exercise 
multiple gated radionuclide angiocardiography (MUGA RNA) 
technique, was related to stenotic severity measured using 
QAMS in 28 patients receiving arteriography or PTCA. 



Significant relationships were few and of low probability, 
however, global diastolic function exhibited increasing 
compromise with increasing stenotic severity when 
represented by a weighted factor of percent diameter 
stenosis. 

Exercise MUGA RNA was repeated in 5 patients following 
successful PTCA of the LAD artery where significant 
differences in stenotic morphology were reciprocated by 
significant improvement in global diastolic function. 

In conclusion, QAMS has proved to be of clinical use and 
therefore warrants further development. 

Keywords: Anatomy, Physiology, Coronary, Artery, Disease, 
Quantification, Computer, Angioplasty, Radionuclide, 
Angiography, Clinical. 
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CHAPTER ONE 

GENERAL INTRODUCTION 

1.1 The Need for Quantification 

Medicine is an inherently subjective and qualitative 

science. Most often, a physician works on symptom 

history and visual inspection of his patient, making 

decisions on the investigative parameter based on 

accumulated experience and some ill defined and usually 

personal "feel" for what constitutes normality and 

abnormality. For the majority of the time, this 

approach is adequate, with the patient receiving the 

correct treatment for his complication despite the 

imprecise origin of the decision. There are however, 
many areas in medicine where quantification would not 

only be a useful additional tool, but also a tremendous 

aid in the routine decision making regarding everyday 

care, culminating in maximal benefit to the patient. 

One such area is Cardiology and, more precisely, 

Coronary Artery Disease (CAD). 

Coronary arteriography, first introduced by Sones in 

1959 is still regarded as the gold standard for the 

assessment of CAD, and forms the basis of much of the 

decision making in its medical and surgical management. 

The arterial images are produced after the advancement 

of one of a number of specially designed catheters from 

the arterial entry point (femoral and brachial) into the 

right or left coronary ostia. Iodine containing 

radiopaque contrast media is injected directly into the 

cannulated artery via the catheter. The cine angiogram 

is produced as a sequence of images formed when the 

moving X-ray shadow of a transiently opacified arterial 

lumen is cast upon the input phosphor screen of the 

image intensifier. This electronic tube converts the 
- 2 -



energy of incident X-radiation into light, and produces 

an amplified, focused optical image of the coronary 

luminal shadow which is then recorded on 35mm cine film. 

Quantification of such images could prove useful in the 

evaluation of the efficacy of modern therapeutic 
procedures, in the effects of short term intervention on 
the size of coronary arterial segments, on the selection 
of patients for coronary artery bypass grafting and on 
the effects of long term intervention studies on the 

regression and progression of the disease state. 

Currently, visual inspection forms the basis 
clinical interpretation of these angiograms. 

of the 
Whilst 

the eye is an exceptional system for resolving very 
small differences, it has limited quantification 
capabilities. Clearly there exists a need for an 
objective and reproducible technique for the assessment 

of coronary atherosclerosis. Over the past 15 years, 
this need has been met to some extent by various systems 
with varying degrees of success. Generally speaking 
however, existing systems tend to be either simple 

extensions of subjective assessment (eg. vernier 
calipers) or involve large amounts of computer hardware 
and software (eg. edge detection) and as such have not 
enjoyed worldwide use. This thesis presents a system 

capable of providing objective quantification whilst 
being self contained, easy to use and simple to 
understand. 

1.2 The Problem 

CAD is the most frequent cause of death and premature 

adult death in Britain today (Wharton et al 1986). 

Specifically, CAD annually produces considerable absence 
of the British workforce; 23,900,000 lost man days in 
the period 1978/79, a figure which had risen steadily 

since 1969 when absence due to other conditions tended 
- 3 -
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to show a fall. This level puts considerable demands on 

our hospitals at a time of great economic stringency in 

health care. In the year 1980, 154,358 deaths in 

England and Wales were attributable to CAD alone, some 

30% of all male deaths. Mortality in Britain due to CAD 

has seen a steady increase since 1950 which plateaued in 

the early 70's and recently appears to be undergoing a 

slight decline (Wharton 1980). However, these changes, 

less than 1% on average, still fall well behind the 

changing pattern of the USA. During the.period 1969 to 

1977, they recorded a 22.6% decline in the incidence of 

mortality rate due to CAD in men aged 35 - 64 years 

(Wharton, 1986). Various theories have been put forward 

to explain why there has been a fall in some countries, 

including a growing public awareness to the harm of 

smoking (Cook et al 1986), the harm of poor diet that is 

high in saturated fats and dairy produce (Keys et al 

1970, Shaper 1987), and to the benefits of adequate 

exercise (Kannel et al 1986, Paffenberger et al 1986). 

These changes are in part due to government funded 

national health education programs and in part due to 

what is and is not currently socially acceptable. 

Cigarette smoking has been shown to double the mortality 

from CAD. Vigorous physical activity that induces 

breathlessness is beneficial and the diet should be 

adjusted so that dietary energy provided by fat is at 

the level of 25 - 30% of the total with increased 

consumption of foods rich in fibre. Other environmental 

factors include raised blood pressure, obesity and 

stress. All these factors may be amenable to assault 

and control, but after taking these so called "risk 

factors" into account and examining the mortality 

figures for different countries, it is difficult to 

explain their marked statistical variation. Clearly 

there are genetic factors which are as yet beyond our 

control, evident from the significant association of 

incidence of CAD and parental CAD history, even in the 

absence of all other risk factors (Rosenman et al 1975). 

- 4 -



Type A behavior pattern alone has been proved to be 

strongly related to CAD incidence (Rosenman et al 1975). 
This association could not be explained by the relation 
of behavior pattern with any other single or multiple 
predictive risk factors. 

It is CAD that provides one of the greatest current 
challenges in modern day epidemiological studies. 

1.3 The Aetiology of Chronic CAD 

This section deals with the evolution of atherosclerosis 
and briefly discusses the two popular theories of the 
time. It is not the intention of this text to 
comprehensively review this area of the literature, but 

merely introduce it as a platform for future reference. 

Atherosclerosis is the most important of the 
degenerative diseases of all arteries and consists of 
focal accumulation in the intimal lining of a variable 

combination of lipids, complex carbohydrates, blood and 
blood products, fibrous tissue and calcium deposits. In 
common with other diseases, atherosclerosis establishes 
itself over a period of time and consequently, there are 
notable stages of progression. 

Early atherosclerosis is manifest as short, thin, 
slightly raised yellow lines which run longitudinally 
along the internal surface of the artery. These are 

known as fatty streaks and consist of intracellular 
accumulation of lipids within the smooth muscle cells of 
the intima. At this stage the disease appears to be 
reversible, in that some fatty streaks may progress to 
plaques whilst .others may recede and disappear. 

Plaques represent established atherosclerosis and are 
characterised as raised focal, circumscribed lesions up 

to one centimetre in diameter, consisting of various 
amounts of fibrous tissue and lipid. Depending on which 
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of these constituents is predominant leads to further 

classification. Where extracellular lipid is most 

evident, the plaques are termed soft or atheromatous, 
whilst when fibrous tissue is most abundant, the plaques 
are known as hard of fibrous. The former are common in 

early established atherosclerosis which with time slowly 
reverts to the latter. Both types of plaque however 
have the same effect, namely increased thickness of the 
intima with encroachment into the lumen of the vessel. 
With the passage of time individual plaques will grow in 
size and tend to coalesce. 

These well established lesions may be further 
complicated according to the following mechanism. 
First, loss of endothelium may occur resulting in 
surface ulceration and consequent exposure of the 

lesions fatty contents to the bloodstream. Secondly, as 
a result of the roughened ulcerated surface, fibrin is 
commonly deposited with accompanying thrombosis which in 
time becomes incorporated into the plaque. Free blood 
may also enter a lesion at this stage. The plaque may 

then eventually become covered by endothelium. Finally, 
calcification may occur. 

The pathogenesis of atherosclerosis is still a 
contestable issue, with the following two theories being 
most popular of late. However, they are not mutually 

exclusive. 

THE FILTRATION THEORY. This theory postulates that 
lipids necessary for establishing atheromatous plaques 
reach the intima by filtering through defects in the 
endothelium, aided by transportation on low density 

lipoproteins (LDL). Once inside, the reverse passage of 
the LDL is somehow retarded. This may be due to the 

mucopolysaccharides of the ground substance, some of 
which have been shown to be able to precipitate LDL in 
vitro. 

- 6 -



THE THROMBOGENIC THEORY. This theory maintains that 

minute lesions may occur in the intimal surface as a 

result of some mechanical trauma. These defects then 
act as focal points for platelet aggregation, resulting 

in thrombosis formation and its adherence to the vessel 
wall. The fibrin in the thrombus then becomes 

organized, fibrous tissue 
covered with endothelium. 

is formed, eventually becoming 

The lipid within the thrombus 
then becomes the lipid of the atherosclerotic lesion. 

Whichever theory is correct the consequences to the 
patient are the same; a progressively narrowing arterial 
lumen which causes pain and imposes physiological 
constraints with concomitant reduction in the quality of 

life. 

1.4 The Treatment 

Once the patient has presented with the physiological 
consequences of CAD, be it chest pain due to the 
ischaemic myocardium (angina), myocardial infarct, heart 

failure or arrhythmia, the role of the physician is to 
treat the symptoms. The aim of treatment is twofold: 

1) To prolong life. 

2) To improve the quality of life by freeing the 
patients from the restriction of their 
condition. 

Currently, three avenues are open to the physician, the 
one of choice being the option that best suits the 
patients condition in the light of all available 
information. What follows is a short review of each 

treatment group discussing only the mechanism of action. 
It is not the intention of this text to give 
comprehensive pharmacological and/or surgical insight. 

- 7 -



1.4.l.Medical Management 

This is the option of choice in the patient with 
relatively mild symptoms or in the more elderly patient 
where the mortality risk of an operation contradicts 

this action. Drug regimes are usually made up of 
compounds from one or more of the following three 
groups: 

1) Nitrates. 
2) Beta - adrenergic blocking agents ({3 blockers) • 

3) Calcium antagonists. 

1) NITRATES: The principal pharmacologic effect of 
nitrates is direct relaxation of smooth muscle, 
including that of the vascular walls. Accordingly, 
administration of nitrates has been shown 

experimentally to produce dilation of the arteries 
(Brown et al 1981), veins and capillaries (Doorey 
et al 1985) leading to improved muscle perfusion 
and enhanced exercise tolerance. 

2) BETA BLOCKERS: Beta adrenergic blockers are 
pharmacologically similar to the normal neural 
transmitters and work by blunting the increased 

sympathetic drive concomitant with stress and/or 
exercise, the primary effect being decreased heart 
rate and cardiac output (Strait et al 1965). These 
effects reduce cardiac workload and myocardial 
oxygen consumption resulting in anginal relief. 

However, due to the distribution of the two ({3l and 
(32) adrenergic receptors around the body, the so 
called non selective blockers are prone to 
contradictory side effects, one of which is 
vasoconstriction which will lead to increased 
central circulating volume with corresponding 

increased cardiac workload, the exact opposite of 
the intention. Recently, these problems have been 

overcome with the advent of "cardioselective" 
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adrenergic blockers which act only on the PI 

receptors conveniently situated almost exclusively 
in the nervous system of the heart. 

3) CALCIUM ANTAGONISTS: This group of drugs are 
specific arterial vasodilators and achieve their 
effects by the inhibition of the movement of 
calcium across cell membranes, thus causing 

relaxation of the arterial smooth muscle (Wharton 

et al 1986). 

Hence, following calcium antagonist administration, 
there is improved coronary blood flow as a direct 

result of increased coronary artery dimensions, and 
decreased after load as a result of decreased 
peripheral arterial tone. Due to their coronary 
specificity they are the regime of choice when 

coronary artery spasm is suspected as being 
causative of exercise related pain with normal 
coronary arteries. 

1.4.2 Coronary Artery Bypass Grafting (CABG) 

As the name suggests this technique employs various 

vessels harvested from elsewhere in the body to bypass 
diseased segments of coronary arteries, thereby 
improving distal myocardial blood flow and perfusion. 

Typically, vessels from either the thorax or lower limb 
tend to be used as those employed from the upper limb 
have questionable patency (Raess et al 1986). Hence 
common conduits of choice are the internal mammary 

artery and the greater saphenous vein, although the 
lesser saphenous vein is becoming popular when the 
extent of myocardial revascularisation is extensive 
and/or recurrent (Raess et al 1986). The technique 

requires extensive surgery both at the "donor site" and 
the thorax, but incurs a mortality rate of only 1% in 

uncomplicated cases with consequent 80 - 90% cure of 
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angina (Wharton et al 1986). In some lesions, typically 

those of the left main stem, patients do better in terms 
of survival than those who are medically managed when' 
matched for stenotic severity. 

Recently, myocardial function pre and post operatively 
has been examined by Shearn et al 1986. Utilizing a 
radionuclide ventriculogram technique, he demonstrated 

significant improvements in resting global ejection 
fraction from 32% to 37% with 55% of previously akinetic 
segments regaining some function. This was concomitant 
with an improvement of two functional classes of angina 

and one functional class of heart failure in patients 
occupying the higher functional classes preoperatively. 

1.4.3 Percutaneous Transluminal Coronary Angioplasty 

(PTCA) 

Classified as non surgical intervention, the procedure 
uses a guide wire system to advance and position at the 

coronary stenosis a small calibre balloon tipped 
catheter. The balloon is then simply inflated to 
various pressures and for various durations until the 
operator judges that he has effected enough deformation 

of the atheromatous plaque to restore adequate distal 
myocardial blood flow and therefore perfusion. 

Exercise electrocardiography and thallium scintigraphy 
were utilized by Scholl et al 1982 in a serial follow up 

study of patients pre and post PTCA. One month 
following PTCA, 61% were a asymptomatic, with the 
frequency of abnormal ECGs dropping from 56% to 19% and 
positive thallium scans from 58% to 17%. Of the initial 
asymptomatic group, follow up coronary arteriography was 

carried out at 6 months on 20 patients: 18 had the 

initial PT CA result preserved with normal stress tests 
and 2 with partial restenosis had abnormal stress tests. 
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However, the technique may not be applied to all 
factions of CAD. Typically only 10% of all those 

suitable for CABG are suitable for PTCA, the decision 
resting on fulfillment of the following criteria: 

1) Good left ventricular function. 
2) Short history of angina (therefore stenosis 

predominantly atheromatic - section 1.3). 
3) One short proximal discrete concentric 

subtotal lesion. 
4) No ostial or side branch involvement. 

Consequently, single vessel disease has received the 
majority of benefit from PTCA, although, as is the case 
with the Groby Road Hospital, Leicester, continued 
practice and the constant improvements in PTCA equipment 
design has led to increased usage in double and triple 
vessel disease (particularly in the USA, and not without 
increased risk - Ellis et al 1988) and the more complex 
one vessel case (eg. left main stem stenosis - Stertzer 

et al 1985 and even bypass grafts - Ford et al 1981). 
However, rate of restenosis, currently between 25% and 
30% (Black and King 1987) continues to be an important 

limitation in the usefulness of PTCA. 

Golding et al 1986 highlighted the case for rigorous 
selection when he studied the need for emergency CABG in 
patients following unsuccessful PTCA. From a group of 
81 primary failures, 52 had 75 major complications 
following CABG, by far the most common being myocardial 
infarct (46% incidence). Clearly, emergency surgery 

following failed PTCA carries a high incidence of major 
postoperative complications, the like of which can be 
minimized if stringent conditions dictate selection. 

However, one must bear in mind the relative costs of the 
CABG and PTCA procedures. Kelly et al 1985 carried out 
a study in which even after allowing for the additional 
cost of CABG following unsuccessful PTCA and 
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representation with restenosis etc, the total cost of 
care per patient was still 43% lower on average in those 

patients receiving PTCA as an initial procedure for 
single vessel coronary artery disease. The lower 
morbidity risks, reduced cost, prompt recovery (median 

time to return to work 14 days in patients for whom PTCA 
is successful - Holmes et al 1983) and rapid return to 
full activity favour PTCA as an alternative therapy to 

bypass surgery in those candidates for whom it is 

suitable. 

The ability to quantify the nature, extent and severity 

of CAD would be of use in all of the three described 
treatment regimes. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Aims 

In order to understand the decisions made regarding the 

choice of type of quantification system presented in this 

thesis, the aims for its performance are presented below. 

Section 2.3 will state the approach of choice in the light 

of these aims and the current literature. 

AIM 1 - To involve no extra work in the catheterisation 

procedure or film processing. 

AIM 2 - To be accurate, repeatable and valid. 

AIM 3 - To be microcomputer based. The speed of larger 

(mainframe) machines suffer proportionately with the 

number of users. However, a microcomputer, when 

presented with the same information will always run at 

the same speed. Also, a microcomputer based system has 

the added benefit of being portable. 

AIM 4 - To be easy to use, utilizing a familiar and 

conceptually easy to understand mode of data entry. 

AIM 5 - To be easy to develop further. This involves 

the use of generically applicable hardware and software 
written in a portable high level language. These 

criteria will allow the transfer of the system to 

another host microcomputer enabling the system to "keep 

up" with technology and have scope for manipulation of 

the basic data for the derivation of new parameters. 

AIM 6 - To produce quantitative information on 

parameters routinely used by Cardiologists at the Groby 
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Road Hospital. These include percent diameter 

stenosis, absolute diameters and lengths. 

AIM 7 - To produce other less well known parameters 

which characterize stenotic morphology. ego 
Eccentricity and atheromal quantification. 

AIM 8 - To be as automated as possible. Once a 

relevant frame has been selected, the system should 
rely on operator input as little as possible, thereby 

minimizing subjective bias. 

AIM 9 - To be flexible in its use. This aim is focused 
primarily at the option of submitting data to be 
analysed individually ego when a result is urgently 
required or as a batch, when a large number of cases 

are being studied. 

AIM 10 - Last, but by no means least, the system should 
be relatively cheap, both in terms of initial outlay 
for hardware and in routine maintenance (service 

contracts, technician time, consumables, etc). 

2.2 Literature Review 

All mensuration systems rely on good quality images, for 

derived data can only be as accurate as the original and is 
usually less so. Therefore, for the purposes of discussion, 
it is assumed that images selected for quantification under 
the systems outlined in this text are worthy of further 
study. A generic review of the potential factors which may 
negate against quantification of an image are discussed in 

section 3.1, however, specific factors which disadvantage 
one approach in comparison with others are discussed here. 

2.2.1 Subjective Quantification 

This is by far the most common form of assessment of the 
clinical angiogram. The procedure usually involves the 
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projection of the film at two to three times normal size 

with visual comparison of the "normal" and usually proximal 
diameter to the more distal stenotic diameter in any 
particular artery. The results are then usually expressed 

as a percentage narrowing calculated thus: 

% Stenosis = 100 x (NOrmal diameter - Stenotic diameter) 
Normal diameter 

Stenoses visible in other views may be treated in the same 
way, with the final result being the expression of the most 

severe stenosis in anyone view (usual case) or an average 
of all collated values. 

This technique has high intra and interobserver variability. 
De Rowen et al 1977 recorded an average variability of +/-

25% when he asked 11 experienced cardiac angiographers to 

estimate the severity (in terms of percent stenosis) of the 
worst lesion in 10 different standard arterial segments in 
each of 10 angiograms. Koh et al 1979 removed the errors in 
locating the lesions by specifying the stenosis to be 
graded. Average variability was reduced to +/- 12% when 
compared to a computer assisted method (Brown Dodge method -

section 2.2.3) with substantial overestimation occurring in 
the 60% to 90% range. However, one must be very careful 
when evaluating the worth of the subjectively assessed 
percent stenosis estimate from the literature as 
inconsistent and misleading methodology is common. One 

example of this occurred in a paper by Shub et al 1981 who 
reported remarkably small inter and intraobserver 
differences (mean differences of less than 5%) for stenoses 
of less than 20% or greater than 80%; findings in direct 

conflict with the overestimation evident in the previous 
report. For stenoses between 20 and 80%, the differences 
were slightly greater at 8 to 14%; still most acceptable 
when compared to the average for the whole range described 
in the previous reference. These anomalies are soon 

explained on scrutiny of the experimental design when one 
discovers that they based their assessment of intra and 
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interobserver variability on differences recorded by the 

same subjects re-reading 25 randomly selected angiograms 

three months later. It is obvious that subjective bias 

present at the initial reading will still be in evidence on 

the second occasion. Therefore, to present an adequately 

designed study, it is important to use some means of 

quantification which may be held as a "gold standard" and 

allow comparisons to be made. However, researchers 

employing this strategy do not always utilize the full power 

of their new technology. 

Trask et al 1984 exemplified this when he compared 

computerized planimetric measurements of luminal 

cross-sectional area from histological sections to visual 

interpretation, concluding that 'eyeballing' can be used to 

evaluate coronary anatomy with a high degree of accuracy and 

minimal interobserver variability. In order to arrive at 

this statement, he had firstly visually graded the stenoses 

by percent diameter reduction into the following 
discontinuous intervals, normal, 25%, 50%, 75%, 95% or 

occluded. Secondly, he visually graded the same stenoses as 

pathological sections by percent cross-sectional area 

involvement (figure 2.1) thereby mixing his parameters. A 

random sample of these were checked using a computerized 

planimeter and found to be in good agreement (estimate 

deviation mean 4.6% +/- 5.8%). Finally, he reduced this 

semi-quantitative data down to whether the lesion was 

considered significant or not based on 75% or greater 

diameter reduction or 90% or greater reduction in 

cross-sectional area. Agreement between the two observers 

was considered to exist when both classified a lesion as 

either significant or not significant. Exact agreement on 

the already crudely subdivided estimated of percent stenosis 

(by either method) was not required. It is therefore not 

surprising that mean accuracy of correct ident~fication was 

93% for both angiographers. Moreover, he fails to comment 

on the potential hazards of comparing living anatomy with 

processed pathology (section 2.2.3). 
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GRADING OF CORONARY ARTERY STENOSIS 
(ha sed on maxi m um c ross-sectiona I involve ment) 

GRADE N.B;GRADES 0 AND 6 ARE AT REFERENCE POINTS 
GRADES 1 TO 5 ARE BETWEEN REFERENCE POINTS 

GRADE 

NONE 0 

MINIMAL 1 

25% 

MILD 2 

50% 

MODERATE 3 

75% 

MARKED 4 

90% 

VERY MARKED 5 

COMPLETE 6 

Figure 2.1 Chart of coronary artery lumens of different shapes and 
different degress of narrowing 

Trask N, Califf RM, Conley MJ, Kong Y, Peter R, Lee KL, Hackel DB 
and Wagner GS, 1984, J. Am. Coll. Cardiol., 3, 5, 1145-1154. 
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In their study Trask et al 1984 have made objective measures 

of an important stenotic parameter but were successful in 

using them for no more than a checking procedure. 

The most widely used application of subjective 

quantification of coronary stenoses is documented in a paper 

by Brandt et al 1977. Here he presents the "Green Lane 

system", a myocardial scoring system which not only takes 

into account the degree of visualized stenosis in any number 

of arterial branches, but also their importance in terms of 

the amount of myocardium supplied. The most severe stenosis 

in any artery is graded as below: 

Grade 

A 

B 
C 

D 

E 

% cross-sectional area loss 

(extrapolated from percent 

diameter reduction) 

100 

90 - 99 

75 - 89 

50 - 74 

~ 50 

The facility for increased haemodynamic significance is 

provided in increasing the grade by one unit (except to 

grade A) if two similar stenoses are present in series, or 

if the stenosis in question is more than one centimetre 

long. Using the grade of the stenosis and the myocardial 

value (the total number of previously designated arbitrary 

units of myocardium supplied by the artery distal to the 

stenosis), each artery is given a myocardial score. The 

score serves as a reflection of the physiological 

significance of the disease in that artery, thereby allowing 

logical numerical expression of it severity. 

Without exception, all the subjective methods of 

quantification of coronary artery disease rely on the 

parameter percent diameter stenosis (or its natural 

extension percent CSA stenosis). However, is this an 
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appropriate measure of atherosclerotic severity? Apparently 

not. If one examines the classical equations of pressure 
loss in a fluid dynamic situation (figure 2.2), one will 
appreciate that it is absolute minimum stenosis diameter 
(dmin ) that is the greatest single determinant of the 
haemodynamic impact of any coronary narrowing (fluid 

mechanics and coronary stenoses are considered in greater 

detail in section 6.1). The inverse powered function of 
dmin which appears in both terms of the formulae is 
mathematically very powerful. Thus, one weakness of the 
percent diameter (or CSA) stenosis parameter is that it is a 

relative estimate of luminal narrowing, whilst haemodynamic 
impact depends upon the absolute value of the minimum lumen 

diameter. Also, the "normal" portion of the vessel lumen, 
whose diameter forms the denominator of the percent stenosis 
estimate is very seldom normal. It may be dilated by the 
aging process or, as a result of turbulence caused by the 
stenosis, may even be substantially narrowed by diffuse 
atherosclerotic thickening of the intima. 

Yet, the simplicity of the percent stenosis estimate and the 

force of tradition (especially clinical) will undoubtedly 
compel its continued use, but clearly some method of 
obtaining absolute measurements of coronary stenoses would 
be the natural progression, particularly so for use in the 

more "scientific" studies. 

2.2.2 Simple Visually Assisted Quantification 

Estimates of absolute coronary dimensions require the 

presence of some form of calibration object in the same 
frontal plane as the lesion to be measured. A typical and 
convenient choice is that of the catheter despite the fact 

that due to initial positioning and motion throughout the 
cardiac cycle it seldom meets the above criteria (section 
2.2.3). Gensini et al 1971 employed projected dimensions 
taken from the catheter tip to scale to absolute size 
measurements taken from across the arteriographic lumen. 
This was achieved using a special projector fitted with 
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Figure 2.2 The fundamental equations of fluid mechanics 

Brawn EG, Bolson EL and Dodge HT, 1982, Arteriosclerosis, 2, 2-15 
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movable cursors which were subjectively positioned at the 

minimum diameter and at the normal. Projected dimension was 

electronically calculated and corrected for magnification 

using the ratio of projected catheter width to known 

catheter width. Variability in the estimates of known 

dimensions using this approach was as little as O.OSmm. 

MacAlpin et al 1973 was aware of the limitations in using 

the catheter and instead employed an object of known 

dimensions placed external to the body, filmed at the level 

of the atrioventricular groove and the left ventricular apex 
(previously determined by fluoroscopy). Although the object 

may not be in exactly the same plane as the stenosis, he 

reasoned that application of the magnification factor 

derived from the atrioventricular groove positior. would 

serve to correct dimensions taken from the right coronary 

and left circumflex arteries when viewed in the left 

anterior oblique (LAO) projection, whereas the magnification 

factor derived from the left ventricular apex position would 
adequately reflect the degree of correction necessary for 

the left anterior descending and posterior descending 

coronary arteries in the right anterior oblique (RAO) 

projection. When employing the same single plane view, he 

was able to make direct hand held divider measurements of 

projected arterial diameter to an accuracy of +/- O.2mm when 

reduced to true scale. This discrepancy in accuracy (2.5 

times larger than Gensini et al 1971) considering his 

refined technique is explained by the fact that this system 

is hand held and therefore suffers from "hand tremor". Also 
the reported accuracy values are based on measurements from 

coronary arteries in this study and objects of known 

dimension in the former (problems encountered in measuring 

dimensions from coronary arteries is covered in section 

3.1) • 

Reliance on the one view only as the method for stenotic 

quantification are in itself erroneous, as severe 

overestimation or underestimation can occur if the lesion 

has anything but concentric geometry (section 2.2.3). It is 
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therefore better to use multiple views, and indeed this 

usually results in even less variation in results as Meier 

et al 1983a demonstrated. Comparing estimates of relative 

percent stenosis estimate taken from angiograms using a 

calibrated magnifying glass, three observers showed a 

decrease in interobserver variability from 7% when only one 

view (the view demonstrating the stenosis at greatest 

severity) was considered to 6.4% when a mean of three views 

was· used. Intraobserver variability was also significantly 

reauced from 16% to 10.5% under these conditions. 

From the above section it can be seen that it is possible to 

get accurate, reproducible and absolute results with very 

simple equipment. The method employed by Gensini et al 1971 

may possibly be the most reproducible due to its unreliance 

on motor dexterity. However, the simple corrections 

employed for magnification discussed here are not all that 

are required for the attainment of true absolute dimensions 

(see following section). 

2.2.3 Computer Assisted Image Reconstruction 

The introduction of a computer based quantification system 

brings with it many advantages over the previously described 

methods. Namely quantification is usually more objective 

(removing subjective bias in the positioning of cursors, 
dividers, etc), capable of producing more information than 

just percent diameter stenosis and in some cases has graphic 

facilities for the production of hard copy reports for 

patient notes etc. 

The system introduced by Brown and Dodge et al 1977 was the 

first attempt to overcome the errors inherent in the 

previously cited systems using computer assisted 

reconstruction. This system has seen application by various 

centres the United States over the last 10 years with no 

change in the original calculations. 
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The system works by constructing a three dimensional true 

scale representation of the diseased arterial segment from 
two single plane projections. As mentioned earlier (section 
2.2.2), the diseased coronary lumen is seldom circular, ie. 

stenotic dimension in one view differs from that seen in 
another, hence complementary (orthogonal) pairs of views are 

used, for example 60 degrees LAO and 30 degrees RAO. 
However, following histological studies, pathologists raised 
the question whether the results from any view or 
combination of views from an arteriogram represent the true 
state of the coronary arteries. Their studies show that 

histological sections cut through atheromatous plaque often 
display a strikingly irregular cross section. since the 
arteriogram is a two dimensional representation of a three 
dimensional object, single or indeed multiple views will 
seldom allow the arteriographer comprehensive insight into 
the true state of the artery in cross-section. For example, 

postmortem specimens often display a residual lumen which is 
cresenteric in shape. This cross section may give the two 
dimensional appearance of not being severely narrowed in any 
arteriographic view (figure 2.3), and may explain the 
frequent underestimation of mild stenosis severity by 
angiographers (Wright et al 1984). However, justification 
for a two view approach is given by these authors in a later 
paper (Brown et al 1982) which states that "such lumen 
usually occur as artifacts of postmortem arterial fixation 

in the unpressurised state. Those who raise the non regular 
lumen argument have simply ignored the physical principle 
that an elastic chamber under pressure will adopt a regular 
configuration which can be easily visualized with the 

combination of two views". Indeed, a study was carried out 
by Liu et al 1976 where arterial segments were fixed at 
physiological pressures. He concluded that cresenteric 

lumen or indeed the simpler truly slit like lumen did not 
exist in the living state. 

Selected cine frames are projected at approximately five 
times magnification onto a large screen. The selected 
arterial segment and a portion of the catheter, of known 
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Figure 2.3 Projected appearance of cresenteric lumen 
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dimension, are manually traced onto paper from this view and 

its 90 degree complementary at the same point in the cardiac 
cycle. 

The traced vessel and catheter segments are then converted 

to digital information in the form of cartesian coordinates 

by retracing the original traces on a commercially available 
graphics tablet (Autotrol 3400-B, resolution O.lmm). This 

has the potential of doubling the error in the data due to 

the retracing, yet these authors have shown retracing 

repeatability to be as low as +/- 0.03mm, suspiciously low 

when considering the resolution of the graphics tablet. 

They believe the image processing capabilities of the human 

eye and brain which integrate to locate and trace the border 

of the lumen image provide the most accurate method for data 

entry. Other methods which work by edge detection (section 

2.2.4) commonly require very sophisticated hardware and 

software and are still capable of making gross errors. 

The digital information is then transmitted via modem to a 

remote mainframe computer which allows visual interaction 

via a graphics terminal. The data is then reduced to true 

scale by two correction processes. The first removes 

distortion resulting from the convex curvature of the input 

phosphor vacuum tube. This so called pincushion distortion 

effect results in selective magnification of objects near to 

the edge of the cine frame compared with their size at the 

centre of the field. This distortion, if left uncorrected, 

can account for 5% to 8% error in directly scaled 

dimensional estimates like those commonly employed with a 
visually assisted quantification system. The pincushion 

effect is theoretically radiallY symmetric about the central 

X ray beam, a fact confirmed by these authors who proposed 

the following empirically determined analytical function to 

characterize the distortion: 
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Where: RI is the true radial distance from the centre of 

the image to the projected image point. 

R is the projected radial distance from the centre 

of the image to the projected image point. 

C is an empirically determined coefficient which 

characterizes the distortion. 

Each coordinate point of the digitized image is thus 

corrected for pincushion distortion using the following 

transformation: 

X corrected = (R1/R)X 

Y corrected = (R1 /R)Y 

The second correction removes distortion of the image due to 

divergence of the X-ray beam, which, left untreated, results 

in selective magnification of objects closest to the X-ray 

source. This accounts for errors of up to 1.5% of estimate 
cm-1 separating the scaling object (eg. the catheter) and 

the measured object (eg. the stenosis) along the X-ray beam 

axis (section 2.2.2). A correction factor, CF, is 

determined for each view such that the product of the CF and 
the projected dimension result in the actual dimension 

according to the following formulae: 

Where: 

CW + 1 CW (~.DL ) 
Cw 1 CW 1 

R L 

CW + 1 CW (ML·DR ) 
Cw 1 Cw 1 

L R 

CFR and CFL are the correction factors in the 

respective RAO and LAO views. 

cw is the known catheter diameter at its point of 

measurement. 
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1 1 CWR and CWL are the pincushion corrected 

dimensions of the traced catheter segments in 

their respective views. 

DRl and DLl are pincushion corrected horizontal 

distances separating the lesion centre P (entered 

as separate information during the digitization 
process) and the traced catheter segment C in the 

respective views. 

MR and ML are empirically defined coefficients 

characteristic of the X-ray system reflecting the 

rate of change of correction factor with distance 

along the axis of the divergent X-ray beam. 

The initial terms of the above formulae reduce the projected 

dimensions to approximately true scale by using the 

dimension of the projected catheter tip as a scaling device. 

The fine correction for axial displacement is achieved by 

the second term, resulting in the derivation of a correction 

factor for the view in question. 

coordinate by the appropriate CF 

Multiplication of each 

yields data scaled to true 

size. The overall correction procedure is summarized in 

figure 2.4. 

Following the derivation of true scale, error free data, a 

centre line is mathematically defined such that its 

perpendicular at any point intersects both vessel edges at 

equal distances from itself. Resultant data describing the 

centreline and projected diameters (between 40 and 80 in 
number depending on segment length) are computed for both 

views. The two views are then matched with the point of 

maximal constriction, considered to represent the origin of 

a newly defined three dimensional coordinate system. This 

results in a representation of the arterial segments as 

paired diameters crossing at 90 degrees with midpoints 

running through a common centreline coordinate. Hence three 

dimensional reconstruction is complete. 
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Figure 2.4 Overall correction procedure for the Brown-Dodge system 

Brown BG, Bolson E, Frimer M and Dodge HT, 1977, Circulation, 55, 2, 329-337 
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From this basic raw information, the system produces a 

number of familiar stenotic parameters, ego absolute maximal 
and minimal diameter and percent diameter stenosis as well 

as a number of new parameters. Amongst these are absolute 
and relative cross- sectional areas based on an elliptical 
model (thereby utilizing the two views), atheroma mass based 
on linear interpolation of undiseased vessel above to 
undiseased vessel below and segmental resistance of the 
stenosis assuming various hypothetical coronary artery flow 

rates. 

Whilst seemingly cumbersome to apply, the system is 
relatively quick taking on average four minutes in frame 
selection, three minutes in tracing and three minutes for 
computer processing. It is also remarkably accurate. In 
processing information resulting from cine angiograms of a 

dummy brass lesion of known size, computer dimensions were 
exact to within 0.08mm of the known value. Diseased 
arteries were removed from postmortem human hearts and 
injected at 100 mmHg pressure with contrast containing 
gelatin. Cine angiograms of these segments were made in two 
views and quantified in the normal manner. The segments 
were then sectioned appropriately and lumen cross-sectional 
area independently planimetered by the resident pathologist. 
Browns paper graphically represents very good correlation 
between the computer estimation and the planimetered result 
yet omits to cite the correlation coefficient. 

A very comprehensive repeatability study was also carried 

out which yielded standard deviations of minimal diameter 
estimate in the range +/- 0.027mm to +/- 0.28mrn depending on 

the experimental design. Accuracy in studies carried out at 
other centres utilizing the Brown - Dodge system are 
comparable - +/- 0.103mm (McMahon et al 1979), and +/-

0.11mm2 for the minimum cross-sectional area standard error 
of measurement (Wilson et al 1986). 

Using this system, it would appear that trained observers 
can re-measure absolute vessel dimensions to an accuracy 
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(standard deviation) of +/- 0.1 - O.lSmm. This represents 

the equivalent of about 3-8% of the normally sized coronary 

artery and is of a magnitude of error tolerable in clinical 

situation. The system is reasonably easy to use and 

conceptually easy to understand, producing a host of useful 

parameters previously unavailable from earlier discussed 

quantification systems. Its only disadvantage would seen to 

be the necessity to collect stenotic data twice - once in 

paper tracing and again in digitization. 

A analogous system proposed by Owen et al 1983 produces 

similar stenotic parameters but is much more difficult to 

use. The system has the option of creating data from 3Smm 

spot films or videotape images, in either case data entry is 

achieved by movements of a keypad cursor upon a back-lit 

graphics tablet. 

Following image selection, empirically derived calibration 

constants depending on employed X-ray geometry are entered 

into the computer. Next the operator defines the arterial 

segment by digitizing its proximal and distal end points 

either from the spot film, directly mounted on to the 

graphics tablet, or by positioning on the TV screen a 

generated video cursor again controlled by the keypad on the 

graphics tablet. The user ,then digitizes a rough arterial 

centre line between the two previously entered points. 

Spatial derivatives are next calculated by the program at 

fixed increments (typically lmm) along the arterial 

centreline in order to generate tangent vectors which are 
later used to define diameters perpendicular to the 

centreline. Following establishment of the said vectors, 

the centre line is then shifted to a new location outside of 

the constraints of the artery in order to avoid mathematical 

instability when calculated diameters approach zero. 

The user then proceeds to digitize the arterial edges using 

one of the previously described methods depending on the 

image origin. Random variations in edge identification are 

eliminated using a re-digitization and averaging approach. 
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The artery outline is then displayed on a graphics terminal. 

The plot is checked for acceptability and either discarded 

or stored. Subsequent analysis of the image results in the 

production of similar parameters to those of the Brown -

Dodge system. 

The system was firstly validated by digitization of test 

objects. A comparison of calculated versus actual 

measurements yielded a correlation coefficient of 0.998 and 

a standard error of estimate of +/- 0.025mm; a more 

realistic figure than that quoted by Brown and Dodge. 

Repeatability was calculated to be +/- 0.05mm which 

represents an error of 1.6% in a ?mm diameter artery. 

Further validation was achieved by the filming and 

digitization of images from the coronary arteries of dogs 

containing previously placed hollow plastic cylinders of 

known dimensions. The relationship describing the 

calculated to the actual size had a correlation coefficient 

of 0.986 and a standard error of estimate of +/- 0.062mm. 

Despite the increased versatility (spot film and/or video 

medium) of this method above that of the Brown - Dodge 

system, it has been less readily accepted into routine use 

in other centres throughout the United States. The system 

is conceptually more difficult to understand, lacks the 

capability of 3D construction and requires much more 

operator interaction. 

2.2.4 Edge Detection Methods 

These methods have attempted to reduce operator interaction 

to a minimum by employing very sophisticated computer 

software to "recognize" the arterial borders. Basically 

this is achieved by examining the brightness in each pixel 

along the scanline in question and comparing it to its two 

adjacent neighbours. Maximal differences between thepixels 

denotes the vessel edge (figure 2.5). The accumulation of 

successive scanline brightness profiles depict the arterial 

morphology (figure 2.6). 
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One; such system was presented by Reiber et al 1978. 

Magnified portions of the cineframe are converted to a 

digital image via a high resolution video camera, such that 

the pixel size referred to actual size at the level of the 

heart equals approximately O.lmm for a 15.25cm (6 inch) 

image intensifier. Unfortunately this has the effect·of 

limiting the systems resolution, making estimates of small 

diameters (those seen routinely in clinically significant 

coronary artery disease) more inaccurate. 

In order to determine the positions of the arterial edges, 

the system requires a centreline to be defined by the user. 
This is achieved through communication via a graphics 

tablet. The user digitizes a number of centre line positions 

within the arterial segment such that straight lines joining 
these points remain within the artery. The sharp 

inflections encountered where one segment meets another are 

then smoothed by means of a first degree polynomial 

function. A new more accurate centreline will be generated 
following subsequent contour detection and the procedure 

reiterated for improved accuracy and reduction of error due 

to user bias in the selection of the centre points. 

Starting at the top centre point, a 64 x 64 pixel matrix is 

established within which scanlines are constructed at 90 

degrees to the centreline. For each scanline, 2 contour 

positions are determined from the maximum rate of change of 

pixel brightness as previously described. Also, a new 

centreline position is derived as the pixel with the maximum 

brightness along the scanline in question, provided it does 

not deviate from the original tentative position by more 

than 5 pixels (the expectation window). If it should, the 

tentative position is retained as being an accurate 

estimation of true centre point position. Scanlines 

continue to be processed in this manner until either a new 

centreline segment (and therefore direction) is detected or 

the end of the current matrix is encountered. A new matrix 

is established which allows the processing of scanlines 

perpendicular to the new centre line if the former condition 
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was operative, or, perpendicular to an average centreline 

computed from the direction of the previous centre line and 

the next if the latter condition prevails. The complete 
procedure repeats itself until the end of the centreline is 
reached. 

Where one matrix changes in direction in comparison to 
another, contour position density suffers accordingly, with 
discontinuities occurring on one side and clustering 

occurring at the other. Missing contour positions are 
established using linear interpolation between existing 
adjacent points, whereas clusters are reduced using a 
thinning operator. The effect of these functions on data 
integrity when rapid changes in artery direction are 
encountered are not reported, but it seems reasonable to 
assume that a 90 degree curvature (which often occurs in the 
right coronary artery at the acute margin) cannot be 
adequately modelled using a linear interpolation approach 

(figure 2.7). Each contour position is the then finally 
smoothed using a second degree polynomial function by basing 
the equation on the location of the ten previous and the ten 
following contour positions. 

The final contours are then superimposed on the original 
video image for user refinement. This is commonly required 
when the arterial segment of interest includes a side branch 
and the calculations based on brightness lead the computer 
to believe the ar~ery is wider than it actually is. Also, 
background structures such as bones may lead to slight 
stretching of the edge position if the brightness is of 
similar intensity to that encountered at the less densely 

opacified arterial lumen edge (section 3.1). Seemingly, the 
so called automated approach is struggling to mimic the 
image processing capabilities of the human eye and brain 
which were utilized in the systems reviewed in section 
2.2.3. Interpolation across small changes in brightness 

function (grey scale) are beyond this type of approach since 
the system has no concept of the structure of the image as a 
whole. 
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Once the user is satisfied that the computed contour 

positions fit the artery reasonably well, the system goes on 

to correct for pincushion distortion. This involves 
applying a correction based on calibration grids filmed at 
the time of the angiogram, therefore prolonging catheter 
study time. Analysis of the images of the grids yields 

information pertaining to the discrepancy of anyone point 
in the image from its original (unfilmed) position. 

Calibration for reduction of images to true size is obtained 
from a repeat edge detection operation on the catheter. 
These authors utilized only a single plane approach for this 
part of the image correction, thereby accepting the 1.5% 
error cm-1 axial displacement. This fact is rather 
surprising considering the complex approach employed to 
achieve accurate artery edge data. 

Contour analysis is then performed by determining the 
distances between corresponding contour points to the right 
and left of the centreline, with the calculation of 
variables akin to those encountered in the Brown and Dodge 
system in section 2.2.3. 

The system was tested for accuracy using machined brass 
cylinders of various simulated percent diameter stenosis. 
The correlation coefficient between the actual and measured 
values was very favourable at 0.99 with a standard error in 
the estimate of percent diameter stenosis of +/- 2.33%. 

However, as alluded to earlier, the authors recommend that 
this approach is really only suitable for quantification of 
lumen diameters of 0.8mm or greater due to less dependency 
on pixel size, and as a consequence, may be better suited to 
quantification of femoral or even cerebral vessels. 

Although this method has been employed in various studies on 
coronary artery quantification (Reiber et al 1979, Serruys 
1980, Serruys et al 1984, Wijns et a1 1985ab) further data 
regarding its validation is not evident. The fact the 

system has only been validated under "laboratory conditions" 
on test items leaves the system open to question. The high 
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content of complex mathematics and the prolific use of 

smoothing in order to produce artery edges which more often 

then not still require user interaction is poor methodology 

from the outset. Overall, this system is difficult to 

understand, requires many computer manipulations and much 

costly hardware (approximate cost, £90,000 - personal visit, 

the Hammersmith Hospital) and has poorly documented 

validation both in terms of accuracy and operator time. 

Alderman et al 1981 proposed a similar system to that 

outlined above with the exception that the two arterial 

borders are roughly approximated as digital input from the 

user rather than the centreline. Both borders are then 

refined by perpendicular brightness scans akin to the Reiber 

method. In their review article, Brown et al 1986 state 

that Alderman has yet to report the dimensional accuracy of 

this method, but he has demonstrated very low variability in 

repeated dimensional estimates, nearly equalling that 

obtained with manual tracing. It seems obvious that this 

category of quantification system has tried to tread the 

totally automatic analysis approach and failed. Not only is 

user interaction necessary to initiate the system and 

correct it when it goes wrong, but the combination of said 

interaction with automation produces results which are 

inferior to direct tracing. 

2.2.5 Photodensitometry 

In the previously discussed computer aided methods of 

quantification, the major emphasis has been on locating the 

vessel edge. However, if one were able to subtract 
background noise from an image and apply the Beer - Lambert 

law which states that a homogenous bolus (section 3.1) of 

contrast filling a vessel will attenuate the intensity of 

transmitted X-ray in proportion to length of the X-ray path 

through the vessel, then it is theoretically possible to 

avoid precise lumen border definition altogether. 

Integration of the resultant background subtracted 

attenuation profile will provide a direct estimate of lumen 

- 37 -



cross-sectional area (figure 2.8). This is the approach of 

photodensitometry. 

The typical system is composed of a video camera receiving a 
projected cine frame as input (figure 2.9). The signal 
produced by the camera is then digitized using an analogue 

to digital converter prior to being transmitted to the 
computer. 

The approach of the system proposed by Nichols et al 1984 

digitized the image into a 512 x 512 matrix such that each 
pixel represented O.Ollmm in absolute dimensions. The image 
is then analysed quantitatively by positioning rectangular 
regions of interest (ROIs) across the artery long enough to 

extend across its full width. Two smaller ROIs two pixels 
square are positioned adjacent to the ends of the above 

regions of interest for determining background videodensity. 
In order to determine percent cross-sectional area stenosis, 
the ROIs were positioned across a normal arterial segment 
and the visually assessed most severe stenotic segment 
(figure 2.10). Brightness profiles reflecting the density 
of the luminal contrast are then acquired along with values 
from the background areas. The final videosensiometric 
volume for either ROI is corrected thus: 

Corrected 
videodensitometric volume 

= Total 
videodensitometric volume 

where u = number of pixels in sample ROI 
b = average background density per pixel. 

- ub 

This approach separates the videodensitometric signal 
representing the column of contrast from the background 
density without requiring identification of the margins of 

the arterial lumen. Hence percent cross-sectional area 
stenosis may be calculated in a manner akin to the 
calculations of percent diameter stenosis. 
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Signals from the normal (Vn) and the 
stenotic (Vs) portions allows the 
calculation of percent stenosis thus: 

percent stenosis = 100 x (Vn-Vs)/Vn 

Region of interest for 
background correction 

Region of interest for 
calculation of the 
magnitude of the 
videodenstiometric signal 

Figure 2.10 Nichols method for the relative quantification of 
coronary arteries 
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The system was validated firstly using test objects ranging 

in diameter from 1.00 to 4.00mm. Even when the 
concentration of contrast medium was varied from 100% to 
25%, the relationship describing the cross-sectional area 

and the integrated background subtracted videodensitometric 
values was still highly linear (r )= 0.98). Test object 
stenoses in the range 5% to 79% (1.78 to 4.16mm) were well 
predicted by this method too (r = 0.99, SEE = 3.9%). 
Measurements of undiseased coronary artery area estimate 

validated against intraoperative high frequency epicardial 
echocardiography compared well (r = 0.86 - Johnson et al 
1988). However, like edge detection, diameters of less than 
1mm are avoided. 

Postmortem studies comparing planimetered artery cross 
section with the videodensitometric method compared well (r 
= 0.97, SEE = 7.0%). Intraobserver and interobserver 
variability are acceptably low at 7.7% and 4.3% 
respectively. As yet, absolute measurements are unavailable 
on this system. 

Serruys et al 1984 proposed a perhaps more elegant system 
which utilized a combination of edge detection and 
videodensitometry. Centreline detection and contour 
recognition are firstly performed according to the method of 

Reiber et al 1978. The errors inherent in the transfer of 
the image from its analogue to digital form are monitored 
and corrected for by measurement (on a pixel by pixel basis) 
of 21 calibrated density frames which are processed 
simultaneously with the rest of the cine film. His article 

declines to report the consequences of this procedure in 
terms of additional time spent in the catheterisation 
laboratory. Analysis of the calibration frames permits the 
calculation of a transfer function which is applied to the 
sequential video brightness profiles. These result from 
integration along scanlines perpendicular to the centre line 
in a previously defined ROI encompassing the whole stenosis. 

Background contribution is estimated by an interpolative 

method from all pixels adjacent to the detected contours and 
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removed from profiles in the normal way allowing the 

expression of percent cross-sectional area reduction at 
every scanline, and maximal percent cross-sectional area 

reduction using operator selected positions. Validation 
data is again conspicuous by its absence. 

Sandor et al 1979 proposed a system whereby digital 

magnification and grey scale "thresholding" of the image may 
be used to enhance its visual quality. He specifies an 
analyzing window using operator controlled cursors within 
which the computer determines multiple density profiles by 
scanning the vessel roughly perpendicular to its long axis. 

Each profile is then smoothed by a three point weighted 
digital filter and background corrected. User positioned 
cursors dictate the position of the reference and stenotic 
scanlines which allow the expression of maximal percent 

cross sectional area stenosis. A careful and detailed 
evaluation of their method reveals variability in area 
estimates of phantoms filmed against a background of a dog 

thorax of 20% of the mean for tubes of the size of the left 
coronary artery, but more than 30% for tubes of Imm2 area or 
less. The authors conclude that high precision densitometry 
has potential utility, but its failure to be able to produce 
an absolute measurement, coupled with increased measurement 

variability for small lumen negate routine application with 
coronary arteries. 

Other potential limitations of this method not discussed by 
any of the authors include: 

1. Superimposition of a vessel of interest directly on top 

of a underlying smaller vessel. On this occasion the 
arterial borders are correctly preserved but contrast 
density with the vessels is falsely elevated. 

2. Obliquely placed reference cursors causing 

overestimation of the area values. 
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3. Errors in background subtraction. For example, if the 

areas sampled overlie a dense structure such as bone. 
This will lead to generalized enhancement of the 

videodensitometric profiles with concomitant 
magnification of the relative percent cross-sectional 
area estimate. 

Consequently, this method has found better application in 
the quantification of larger more solitary vessels, for 
example the femoral artery. 

2.2.6 Conclusion 

The widely used clinical tool of arteriography is currently 
limited by imprecise and, to a certain extent, inappropriate 
subjective methods of interpretation. More objective 
methods for the analysis of the arteriographic image have 
become available over the past 10 years and have found 
application particularly in the United States and to a 
lesser extent, Europe, with Great Britain being somewhat 
left behind. Results pertaining to the use of the objective 

methods discussed in this review have resulted in 
considerable increases in the understanding of the 
pathogenic mechanisms of CAD. Surely the increased use of 
objective quantification is warranted in the light of these 
findings. 

2.3 Statement of Approach 

Considering the initial aims and the current review of the 
literature presented from this chapter, it was felt that a 
digitization system involving manual tracing of the arterial 
borders (section 2.2.3) most suited our purpose. Below are 
presented the reasons behind this decision listed for ease 
of comparison as complements to the previously s~ated aims. 

REASON 1 Characterization of the X-ray system for the 
corrections required to remove pincushion 

distortion and selective magnification can be 
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performed as a self contained experiment separate 

to routine catheterisation. Once completed it 
need never be repeated providing there are no 
changes to the X-ray system. By adopting this 
approach, all that is required for image 

quantification is the image itself. The various 
corrections are made by reference to derived 
empirical coefficients, therefore no unnecessary 

film need be processed or additional time 
incurred. 

REASON 2 Visually assisted methods of quantification are 
quick and quite repeatable, but results are 
invalid and lack correction for image distortion. 
Edge detection and videodensitometry are only 
accurate for dimensions of lmm and above and are 

poorly validated in the clinical environment. The 
digitization methods discussed in the review are 
highly accurate, repeatable and valid - the Brown 
and Dodge system, perhaps, suspiciously so. 

REASON 3 Edge detection and videodensitometric methods of 
quantification require large amounts of computer 
memory to allow their software to run. This has 
necessitated the use of the larger, less versatile 
minicomputers as the host machine. Visually 
assisted methods require no computerization, 
whereas the digitization methods have required 
mainframe links. Therefore b~sing a digitization 
system on a microcomputer would be an improvement 
to the systems currently in existence. 

REASON 4 Of all the systems reviewed, the visually assisted 
methods are easiest to understand since the user 
performs all the calculations. Videodensitometry 
and edge detection are easy to use but use much 

complex mathematics in order to produce results. 
This makes the "mechanics" of the system less easy 
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to understand. This is not so with digitization, 

as the ilser "instructs" the computer where the 

arterial borders are and what is their shape. ie. 

he is responsible for entry of the raw data, not a 

mathematical routine. 

REASON 5 Further development may be possible with all the 
systems discussed, though this is never mentioned. 

However, a graphics tablet is a common peripheral 

item unlikely to undergo the degree of change 

perhaps expected of a system based on the popular 

video medium. Software compatibility may be 
preserved by using a language for which 

international standards have been set, for example 

Fortran. This will allow the system to advance 

with new computer technology. 

REASON 6 Routinely used parameters are capable of being 

produced by all the quantification systems except 

videodensitometry, which produces a more 

haemodynamically significant variable, though less 

widely employed. However, a digitization based 

system produces the best validated results in 

terms of accuracy. 

REASON 7 Videodensitometry produces the only true estimate 

of percent cross-sectional area stenosis, whereas 

the other methods can only infer this parameter 

and other area/volume results based on information 

derived from a combination of views. However, 
edge detection and digitization methods are also 

capable of interpolating the normal vessel 

morphology from the diseased state. This may aid 

in the quantification of an infrequently used yet 

important parameter, that of eccentricity (chapter 
7) • 

REASON 8 All the systems discussed require some form of 

user interaction, firstly for data entry (and/or 
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correction) and secondly for position 

identification of various parameters, ego minimum 
diameter. Digitization is the only method quoted 

capable of identifying these positions 
automatically, therefore reducing user input and 

subjective bias to a minimum. 

REASON 9 Batching information for processing may be 
available on all the computer based systems, 

though this is never discussed in the literature 
above. However, it is particularly easy in the 
dedicated microcomputer environment. 

REASON 10 A visually assisted method would be the cheapest 
system when viewed from all facets, but the 
derivation of accurate absolute dimensions remains 
a problem. The introduction of computers and 
other hardware necessitates some expenditure, 
although this can be kept to a minimum if for 
example the choice of computer is popular (ie. 

microcomputer, which may also be put to other uses 
in the Department apart from dedicated 
mensuration) and the software is self generated 
rather than bought. Peripherals can also be 
expensive, so one may be advised to choose a 
peripheral combining greatest accuracy with least 
maintenance; this is perhaps true of a high 
resolution graphics tablet. 
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CHAPTER THREE 

METHOD 

3.1 Image Quality Considerations 

As discussed briefly in section 2.2, not all arteriographic 
images are suitable for quantification. This section will 
discuss factors affecting image quality and outline the 
image selection criteria adopted and recommended for use 
with the Quantitative Arteriographic Mensuration System 

(QAMS) . 

The sharpness of an arteriographic image is .dependenton 
many factors. 

1. Intraluminal contrast concentration. This in itself is 
dependant on volume, velocity and density of the 

injected bolus. In order to produce an acceptable 
image, the volume must be sufficient to fill the 
coronary artery, be delivered at a speed which allows a 

.complete fill of the said artery and be dense enough to 
sufficiently attenuate the X-ray radiation. Typically 

volumes of between 4 and Bml are injected manually over 
a period of 6 to 10 seconds using a 70% mixture; 
maximum opacification being towards the middle third of 
the injection phase. Use of inadequate volumes produces 

proximal segmental opacification of the coronary artery 
with subsequent distal dilution by the blood, resulting 
in inadequate image density for visual inspection or 
quantification. Slow injection velocity results in 
streaming (contrast medium confined to areas of highest 
blood flow) of the contrast medium with consequent 
failure to demonstrate the full arterial dimensions. 
In particular, the true edges are not demonstrated due 

to the reduced blood flow and added frictional forces 
present in these areas. Adoption of an over diluted 
contrast medium results in poor image definition as a 

result of low X-ray attenuation. However, adequate 
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intraluminal contrast concentrations are usually 

achieved by an experienced angiographer. 

2. The difference in attenuation coefficients between the 
contrast medium and the surrounding biological 

material. Obviously, superimposition of the opacified 
artery up on a material of similar attenuation 
coefficient (eg. another opacified vessel) results in 
loss of image sharpness. This is a particular problem 

at the arterial border since the physical amount of 
contrast at these locations is least and therefore 
attenuation is diminished. For this reason, images 
must be selected which are free from interference by 
any surrounding objects. Typically other opacified 
vessels and vertebrae present the most common 
occurrence of this problem. 

3. Radiation energy. Increased radiation energy improves 

penetration power which results in less attenuation by 
interfering structures and their subsequent deduction 
from the final image. However, this practice results 
in less of the true image being recorded, particularly 
the vessel edges. Also there are practical safety 
limits governing the use of radiation energy which must 
be adhered to for both the angiographers and patients 

wellbeing. 

4. The penumbra effect. The focal spot of all X-ray 
sources are of finite size, not a point source. 
Irradiation of an object by such a source causes the 
penumbra effect (figure 3.1), an area of less defined 
attenuation around the object, causing blurring of the 
arteriographic border. This factor is inherent in the 
X-ray system employed for the catheterization procedure 

and is unavoidable. However, it should be noted that 
the smaller the focal spot, the smaller the penumbra 
effect and the sharper will be the resultant image. 
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·5. Motion blur. The opacified coronary artery is 

irradiated by pulses of X-rays typically lasting 
between 4 and 7 milliseconds. However, throughout this 

small duration, the heart and therefore the artery is 

in motion; this leads to additional blurring of the 
image. Conversely maximal image definition occurs at 
periods of least heart motion, generally end systole, 
late diastole and at the peak of atrial contraction. 

It is therefore advisable to select images coincident 
with these stages of the cardiac cycle for 
quantification. 

6. Non linear magnification effects. Blurring of one 
section of artery in comparison to another can occur if 

the course of the artery runs across one half of the 
field of view, or more. This is due to pincushion 

distortion and peripheral unfocusing equivalent to 
spherical aberration in optical systems. Arteries of 
this type are best avoided and seldom occur in the 
coronary arterial tree. 

7. Quantum mottle. Low levels of transmitted X-radiation 
have high statistical variation of energy. This can 
result in focal irregularities in the final 
representation of image contrast (quantum mottle), 
leading to poor definition of the ve~sel edge. 
Therefore it is advisable to use medium range energies 
which have the effect of slightly reducing the actual 
size of the arteriographic lumen (ie. very low contrast 
densities are not recorded) but avoids quantum mottle 
without excessive degradation of the image. 

8. Film characteristic. When the image is recorded on 

film, the exposure must be such that the image of 
interest is filmed in the linear range of. the film 
characteristic curve (figure 3.2), otherwise the vessel 

edge may be "burned away" or "whited out". Enhanced 
image quality is available by use of the recently 

developed Digital Subtraction Angiography. The initial 
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fluoroscopic image is firstly logarithmically amplified 

- this allows the use of lower concentrations of 
contrast medium which has been proven to have a 
cardiodepressive effect (Bonoron - Adele et al 1984). 
It then undergoes analogue to digital conversion before 
being stored in computer memory where it may be 
accessed allowing immediate playback. Interfering 
objects other than those which are directly opacified 

are removed from the final image by the creation of a 
mask - an image recording the field of view prior to 
contrast injection. This is converted in a similar 

fashion and subtracted from the contrast image data; 
however the motion of the heart can cause some 
misregistration of the mask on the original image 
(Tobis et al 1983). Therefore the technique is better 
suited to :~ripheral angiography although the above 

laboratory has taken on digital recording as its 
primary storage medium of all arteriograms (Tobis et al 
1984). 

True anatomical representation of the arteriographic image 
is dependent upon: 

1. View. As reviewed in section 2.2.3, arterial 
cross-section is seldom symmetrical. Therefore, in 
order to exemplify true stenotic morphology by 
quantification or otherwise, one must utilize at least 
two views. Perpendicularly matched views are most 

desirable due to the potential for three dimensional 
reconstruction. The image which depicts the stenosis 
of greater severity is usually utilized as one view 
as many artifacts, some beyond the' arteriographers 

control, can serve to increase apparent lumen diameter 

ego motion blur, superimposition or foreshortening (see 
later). But few, usually within angiographer control, 
can cause the lumen to appear narrower than reality ego 
streaming and inadequate contrast injection. Therefore 

the most severe view is usually the most accurate, and 
should be quantified. 
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In addition, the views used for quantification must 

represent as far as is possible a true long axis view 
of the artery. Without meeting the criteria, the 

artery runs in the Z plane of the arteriographic image 
to some extent (the foreshortening effect). This leads 
to misrepresentation of the true anatomical state of 

the artery, usually manifest as increased dimensions 
and diminished length. The presence or absence of this 
foreshortening effect in an image to be quantified is 
entirely a subjective decision. However, as part of 
the image selection procedure a chart was employed 

which highlighted areas of potential foreshortening for 
every routinely used view in coronary artery 
catheterization (May and Baker Ltd). If a stenotic 
segment being considered for quantification fell into 
one of these "potentially hazardous" areas in any 
particular view, it was rejected, and another view was 
selected with the segment of interest in a "safe" 
location. 

Whilst the chart is based on "average" coronary 
anatomy, it was found a useful guide in avoiding the 
foreshortening problem and its continued use is 

recommended until superseded by a more elegant 
approach. 

2. Magnification variation. Pincushion distortion and 

selective magnification, qualities discussed in section 
2.2.3, distort the object in an arteriographic image 
relative to where it appears in the field of view (X 
and Y axes for pincushion distortion and in the Z axis 
for selective magnification). These parameters are to 
be quantified so that their effect may be removed from 
the image data (section 3.6). 

3. Presence of a scaling factor. As discussed in chapter 
2, if absolute dimensions of the lesion are required, a 
scaling factor must be present in the same image as the 
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object (eg. the stenosis) to be quantified. The 

typical choice is that of the catheter. 

4. Superimposition. Superimposition of the arterial 

segment of interest upon a neighbouring opacified 

artery is to be avoided, as interpolation of stenotic 

artery borders is impossible due to their varied 

nature. 

By adhering to the above guidelines, it became possible to 

select images suitable for quantification in less than one 

minute following loading of the film. 

3.2 Catheterization 

This section states the equipment and current practices 

employed by staff at Groby Road Hospital. It is not 

intended to be an exhaustive review of catheter procedure. 

3.2.1 Tube-Image Intensifier Equipment 

Groby Road Hospital has two X-ray systems currently in 

operation. Room A contains the single plane Thomson-CGR 

system composed of an Angix 80 arm, CPG 20 generator, 

Angiomax 80 catheterization table, Nuvicon TV system, 

Arritechno 35mm camera and SP11 image intensifier (16 and 

23cm in diameter). Room B has the biplane Siemens system 

with the Cardioskop-U arm, Pondoras optimatic generator, CU 

catheterization table, Videomed3 TV system, Arritechno 35mm 

camera with Sirecon2 image intensifier (15 and 25cm in 
diameter). Both systems are "C" arm based and allow full X­

ray tube - image intensifier rotation and angulation, as 

well as the more commonplace ability to alter focal spot 

(anode) to film distance. These capabilities avoid branch 

superimposition, in particular allowing for better 

definition of the left coronary artery main stem and its 

proximal branches. 
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3.2.2 Current Technique of Selective Arteriography 

Cardiologists and Radiologists at the Groby Road Hospital 

currently use a retrograde percutaneous transfemoral 

technique for selective catheterization of the coronary 

vessels. The guidewire of choice is commonly l45cm in 
length, 0.89mm (0.035 inches) wide with a 3mm J tip as 

opposed to a straight tip, used to reduce the likelihood of 

dissection of atheromatous plaque and easing the passage 

through tortuous iliac arteries. Both Judkins and Amplatz 

catheters are used, the basic difference being secondary arm 

configuration and are available in polyurethane and 

polyethylene with a metal braid incorporated into the wall 

of the shaft for better "torque" control. 

The catheters are usually a standard 100cm length and vary 

in external diameter according to the commonly used French 

system, where each French number is the external diameter of 

the catheter multiplied by three. In adults, commonly used 

sizes are the number 7 and 8 French with the tip tapering to 
a number 5 French in both cases. For contrast medium, a 

I ' 

non-ionic preparation is preferred due to induct~on of lower 

osmolality than ionic counterparts, resulting in less 

cardiodepressive action during the use of the transiently 

high concentrations employed for coronary arteriography 

(Bonoron - Adele et al 1984). Iopamidol (Niopam), Merck 

Ltd) an Iodine based compound at 300mg ml- l or 370mg ml- l is 

the frequent choice. 

Following injection of the contrast media with radiography, 

the resultant images are recorded on Aqfagevaert film (Agfa 
Ltd.) and developed using standard film processing 

techniques. Routinely, films are available for viewing 

within the day although exceptions can be made for 

emergencies (typically, half an hour from catheterization to 

viewing) • 
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3.3 The Equipment 

The basic equipment forming the Quantitative Arteriographic 
Mensuration System (QAMS) is assembled according to figure 

3.3. 

3.3.1 The Rig 

A steel framework (figure 3.4) of dimensions three feet long 

by three feet high by two feet wide was constructed which 
allowed the image projection side of the mensuration system 
to be housed as one functional unit. At the lower end was 
constructed a lift in/lift out cradle which secured the cine 
projector. This allowed the image origin to be fixed whilst 
the weight of the projector gave stability to the system. 
The projector could also be quickly released from the cradle 
if it were required elsewhere. At the upper end of the rig 
was built a slotted wooden framework ' which housed 
the graphics tablet. As with the projector, removal of the 
graphics tablet was a simple matter of withdrawing it 
through the top access slot. Hence both units of the 
projection side of the system could be used independently 
for other applications, ie. this equipment is by no means 

dedicated to the system, unlike in previous systems (Chapter 
2). This allows very expensive equipment to be utilized to 
the full, rather than being tied to one application for 
perhaps only two hours per week. 

The steel framework is inclined at 45 degrees to the 
horizontal and the graphics tablet at 45 degrees to the 
vertical (figure 3.4) thus providing a good ergonomic 

surface from which to mark the artery tracings. The rig is 
further constructed such that the plane of the graphics 
tablet, when housed, is exactly parallel to the plane of the 
image, thus removing any possible errors in the image due to 

parallax. 
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QUANTIFICATION TECHNIQUE EQUIPMENT 

projector and 
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microcomputer disk drives 

Figure 3.3 Assembly of the Quantitative Angiographic 
Mensuration System (Q.A.M.S.) equipment 
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Figure 3.4 Steel framework used for housing of projector 
and graphics tablet (graphics tablet shown) 
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3.3.2 The Cine Projector 

The projector of choice was the CAP-35B 35mm cine projector 
(figure 3.5a and 3.5b) manufactured by the International 

General Electric Company (IGE - Daventry, Northamptonshire). 

This projector is unique in that it could be readily 
converted into a back projection system by merely altering 
the position of the internal reflecting mirror via two 

external controls. 

Noiseless, flickerless projection is achieved through a 16 
facet rotary prism; the resultant image may be magnified up 
to 1.6 times using the built in zoom lens (f 4.5) facility. 
In addition, easy to use frame trimming, single frame 
advance and auto stop mechanisms are provided as standard. 
The projector also had the necessary electronics for video 
display, polaroid stills and X-ray duplication. 

At a weight of 55kg, it was a simple two man task to 

transfer the projector from its mobile stand and into the 
rig cradle. 

3.3.3 The Computer 

As it was the intention of this work to develop the software 
at the Department of Human Sciences, Loughborough University 
and apply it to cines at the Groby Road Hospital, Leicester, 

it seemed wise to use a computer which was common to the two 
establishments. For this reason the twin disk drive Vector3 
(Vector Graphic inc. L.A.) was chosen (figure 3.6). The 
computer is based on the Z80 8 bit microchip running at 2 
megahertz for the Loughborough machine and 6 megahertz (a 
later version) at Groby Road. Unfortunately, when the 
software development was complete, the Groby Road machine 
broke down and was judged too costly to repair. Hence the 

software did not receive the benefit of the extra 4 
megahertz of speed. However, as this version of the QAMS is 
essentially a prototype, provided the system works well 
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Figure 3 .5a Anterior view of CAP358 Cine Projector 
(International General Electric Company) showing loading 
spools and controls. 

• 
111111 111111 

Figure 3.5b Posterior view of CAP358 Cine Projector 
showing rear projection aperture. 
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Figure 3 .6 Vector 3 microcomputer (Vector Graphic rnc) • 
printer (Epson Ltd) and graphic tablet controller with 
power supply (GTCO Corp) . 
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(chapter 4), running speed may be enhanced by transferring 

the system to a new host microcomputer. 

The computer runs the familiar CP/M (Digital Research, 

California) operating system version 2.2, which allows a 

memory configuration of 56K and data disks to be created of 
560K capacity - sufficient for approximately 75 image files. 

With portability and speed in mind, the Fortran programming 

language was employed. The two pass compiler, produced by 

Microsoft Ltd (Bellvue W.A.) was compatible with 1966 

standards which made it slightly less flexible to use than 

its successor, the 1977 standard. These problems were 

generally overcome by use of extra programming code ego in 

DO loops and IF statements, but character handling remained 

a problem. For this reason, it was necessary to make the 

initial filename acted upon by the first program common, ie. 

a standard fi1ename, and either copy or rename a data file 

to this standard prior to processing. 

The Vector3 has two ports for peripheral communication. The 

serial port was attached an 80 column FX80 Epson printer for 

hardcopy of results etc whilst the graphics tablet was 

connected to the RS232 port. Communications software for 

the transmission of data between the graphics tablet and the 

computer was written by the Departmental Information 

Technology Technician. This consisted of two programs 

(appendix 1 for digitization procedure): 

1. A machine code routine BITPADB which allowed the 

graphics tablet to transmit hexadecimal coordinate 

information in real time at baud rate 9600 to the 

computer where it was written to disk under the common 

filename DATA. OAT. 

2. A conversion program BITPADC written in the compiled 

BASIC language which converted the hexadecimal file 

DATA. OAT into denary cartesian coordinates prior to 
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rewriting the information to disk under a user defined 

filename and erasing the original DATA.DAT file. 

These listings are not included in the body of this thesis 
as they are generic graphic tablet utilities and not 
specific to the QAMS (although they were originally written 
for this application). 

As can be appreciated, this reading, writing, re-reading, 
rewriting sequence naturally incurred the addition of extra 
time to the data acquisition procedure. However, the only 
way the computer could process the data at the speed it was 
being delivered from the graphics tablet, and for it to 

remain reasonably error free (section 3.5), was to accept it 
in the hexadecimal form and reconvert it later. Indeed, 
many problems were encountered during this interfacing stage 
due to equipment failure and the exceptionally poor after 
sales service received from the company who provided the 
graphics tablet. In fact, the time from acquisition of the 
graphics tablet to successful interfacing measured eighteen 
months in total, which caused delays to improvements of the 
system and further work discussed in Chapter 9. 

3.3.4 Graphics Tablet 

In order to reduce tracing errors to a minimum, direct 
projection onto' the graphics tablet was required. This 
could be achieved in one of two ways: 

1. The image could be reflected from the surface of 
several mirrors, eventually being projected from above 
onto the surface of an opaque graphics tablet. 
However, several problems exist in using this approach. 
Firstly, the intensity of the light source must be 
powerful enough so as to produce a sufficiently bright 

image on the graphics tablet. Standard projectors 
(including the CAP-35B) use bulbs of 250-300 watt 
rating which was sufficient only for projection over 

relatively short distances. Secondly the mirrors used 
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in reflection process must be of high optical quality 

in order not to distort the projected image. 
usually very expensive. Thirdly, the angles 

These are 
of these 

mirrors relative to the source, themselves and the 
projection surface must be carefully aligned in order 

to avoid parallax errors. This would require 
cumbersome fixing equipment and much time spent in 
checking by the operator. Lastly, accurate 
digitization from an overhead projection is extremely 

difficult if not impossible due to the fact that as 
your hands and cursor enter the field of projection, 
they become the projection surface themselves, 
resulting in gross image distortion. 

2. The image could be projected directly onto a rear 
projection graphics tablet, ie. a graphics tablet whose 
surface is translucent. 

As the system was being designed to be as flexible, compact 
and easy to use as possible, the second option seemed to 
suit the requirements of the system best. 

Rear projection graphic tablets are a rare commodity. 
However, a suitable one was selected from Dicol Ltd, Reading 
who are the UK repairing outlet for the GTCO corporation, 

Rockville, MD. The tablet (the Digi-Pad-5 - figure 3.4) has 
an 11" x 11" active area and was provided complete with a 
controller (Z80A microchip, 4 megahertz clock, RS232I/O), 5 
button dual bulb cursor and power supply (figures 3.6 and 
3.4) . 

The graphics tablet operates on an electromagnetic principle 

producing absolute coordinate information based upon 
measuring the time taken for an electromagnetic (EM) wave 
front to travel down an axis. The EM wave front is created 
by sequentially pulsing a d.c. current down consecutive 
copper conductor gridlines set into the tablet, spaced at 
half inch intervals. This induces a complex signal in the 

cursor coil which provides a means of measuring cursor 
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position by using the linear relationship between distance 

and time of arrival of the field at the coil. Scanning in 
the horizontal plane gives X axis position and the vertical 
plane Y axis position. Resultant cursor position 

information is transmitted to the controller where it is 
organized and packed, prior to being transmitted to the 
computer via the RS232 interface. 

The graphics tablet has an intrinsic resolution of 0.001 

inches and can operate in three modes - point, continuous 
and stream where it is capable of producing coordinates at a 
rate of 200 points per second depending on set up 
configuration and computer baud rate. This was judged to be 
far to fast for our purposes, so the lower rate of 25 

coordinates per second was chosen. 

The system also hosts a four tone alarm mechanism which 
allows immediate fault diagnosis and audible feedback on 
correct operation. Graphics tablet configuration, mode 
selection, alarm control and data handling are all dictated 
through the machine code program BITPADB. 

3.4 Routine Identification 

Now that the creation of a file containing X,Y ASCII 
coordinate data describing the digitized stenosis (appendix 
1) is possible, it becomes necessary to consider how the 

system will transform this information into meaningful 
results. 

3.4.1 Initial Considerations 

The overriding consideration is, of course, accuracy. 

Coordinate output rate from the graphics tablet is fixed at 
25 points per second and computer memory is fixed at 56K. 
Timed trials (tracing of a stenosis) revealed that it was 
necessary to spend 30 to 40 seconds in the digitization 

procedure (appendix 1) for accurate results to be achieved. 
Each coordinate is an integer number which requires two 
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bytes of storage space in computer memory. Therefore, by 

simple calculations, the maximum data storage area required 
for one tracing is 4K: 

2 (X, Y 

coordinates) 
x 2 (No. bytes per x 40 (tracing x 25 (rate per 

coordinate) time) second) 

equals 4000, approximately equal to 4K 

The compiler required to transform the object code into 
runnable code consumes another 16K of memory. Therefore, 
total source program size must not exceed 36K maximum for 
successful compilation. 

After identification of the areas required for 
transformation of the raw data into meaningful results 
(section 3.4.2), it was decided that 36K was not enough 
space to accommodate a program with all the recognized 
potential; each section should therefore be written and run 
as a separate entity, with the full suite of programs 

assembled in a batch formation allowing automatic concurrent 
implementation. This would also allow each program to be 
fully documented within the source code to facilitate use 
and change by other users in the future. However, this 
"building block" approach must be traded off against the 

extra running time carried in re-reading the data for every 
program In the future, transfer of the system to a larger 
machine will allow combination of some if not all these 
programs, therefore removing this problem. 

The effects of pincushion distortion are to be removed from 
the data prior to any handling or calculations, whereas the 
reduction to true scale is to be left until all processing 

is complete. This will allow the data to be preserved in 
its integer format, thereby keeping memory requirements for 
data to the minimum. The reference for magnification is to 
be the injecting catheter as with previous systems (Brown et 

al 1977), so that no additional work need be done at the 
time of catheterization (MacAlpin et al 1973). 
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The system is to work initially in single plane format, 

thereby accepting the documented error of 1.5% of estimate 

per centimetre axial displacement between the location of 

the stenosis and the catheter. Whilst no error in a system 

is most desirable, it was judged that this level of 

discrepancy was acceptable, especially in the light of this 

systems major application in this thesis (chapter 7), where 

proximally situated lesions are most frequent, therefore 

axial displacement is at a minimum. It was the intention to 

write a program capable of matching coordinate data from two 

views once the initial single plane programs had proven 

themselves. Unfortunately, due to the excessive time 

required to produce a working software interface between the 

graphics tablet and the computer, and concern over memory 
limitations, this was never achieved. However, an algorithm 

for a matching program is presented in appendix 1. This is 

by far the most important aspect of future work (chapter 9) 

for continued use of this system. 

3.4.2 Algorithm Identification 

This section divides the problem of the production of 

meaningful information from a tracing into its constituent 

parts. These parts are discussed under the program titles 

they eventually became focusing mainly on what the program 

does and what files are produced as a consequence._ The 

mathematical basis of each program is discussed in the 

following section. 

PROGRAM PNTED 

The raw data exists as a file on disk arranged as sequential 

X and Y coordinates according to the program BITPADC 

(section 3.3.3 and appendix 1). Information on demarcation 

between the relevant sections of the file (appendix 1) is 

contained in the first 12 lines of the file, the "header". 

The first task therefore it to read the data from the file 

and divide it up into its constituent parts so that each may 

be handled separately. Following this, all data should be 
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corrected for pincushion distortion according to the 

catheter room the investigation took place in, so that the 

system is dealing with data representative of true life in 

all aspects apart from magnification. The corrected data 

from the digitized catheter is then written to file under 

the filename POINTMAG.NIF for use by a later program. 

As will be appreciated, when a user is tracing an object at 

slow speed and coordinates are being delivered at a 

relatively high rate, it is easy for the same coordinate 

position to be registered twice, or more. Also, precise 

control of hand movements is achieved by fine interplay 

between the forces developed by the wrist extensors and 

flexors. This invariably leads to slight tremor of the hand 

during the tracing procedure. Since the graphics tablet 

used in this application is sensitive to changes of one 

thousandth of an inch, it is also quite possible to enter 

coordinates whose location is opposite to the general 

direction of tracing. Program PNTED removes these 
coincident points and then the so called reversals by 

comparing the amount of "reversed" displacement with values 

derived from a hand tremor experiment (section 3.6.1). 

Hence the system is then presented with data free from the 

artifacts of tracing ie. it is said to be "clean". This 

area of methodology has not previously been discussed or 

employed by previous systems, although it is fair to say 

that less accurate graphic tablets have commonly been used, 

and these corrections to the data may not have been 

necessary. 

The resultant data are written to the files SIDE1POI.NTS and 

SIDE2POI.NTS for use by the next program. 

PROGRAM DIAMAV 

Every stenosis morphology is different. Therefore every 

tracing of stenosis will differ, one of the basic 

differences being the coordinate density. It is true to say 

that a user will spend relatively more time digitizing a 
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stenosis with complex morphology than one of simpler 

structure. An ideal system will base calculations 
pertaining to a stenosis specifically to that stenosis, 

rather than assuming a global factor by which all stenoses 
should be processed, ego the use of a 64 x 64 matrix in 
Reibers edge detection system. Program DIAMAV provides this 

I criterion on the assumption that the artery is unlikely to 
grossly alter its general direction over a relatively small 
distance. 

An easily calculable parameter which takes into account 
coordinate density and is specific to each individual 
tracing is the average diameter of the stenosis. Therefore 
program DIAMAV calculates this individualistic factor and 
writes it to disk under the filename AVERAGED.lAM for future 
use. 

PROGRAM DIAMRS 

The basic function of the system is to produce serial 
diameters along the length of a digitized stenosis which 
are at right angles to its long axis. This is the task 
achieved by program DIAMRS. The program uses the factor 
generated by the previous program to limit calculations to 

overlapping areas (from now on referred to as "the bubble") 
whose size (parameter bublen) is dictated by individual 
morphology, where coordinates are generated representing the 
positions of the ends of the aforementioned diameters. 
These are sequentially written to the file DlAMETER.EPS for 
use in the following program. 

PROGRAM ANALYZ 

Program ANALYZ firstly reads the contents of the file 

POlNTMAG.NIF and derives the apparent size of the catheter 
for magnification correction. It then reads the file 
DIAMETER.EPS and calculates the apparent diameters, cross 

sectional areas and lengths from the X,Y coordinate data 
contained within (section 3.5). The program lastly reduces 
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all the parameters to true scale based on the French value 

of the catheter used (user input), before writing the 

results to screen and/or printer. 

PROGRAM ECCFTR 

Lesion eccentricity, defined as degree of offset of the 
stenotic diameter in comparison to the "normal", has been of 
interest to various workers in Cardiology (Meier et al 
1983b) but as yet has not been quantified, perhaps in part 
due to inferior techniques used to recreate original artery 
profile (section 2.2.3). This program amends these 
shortcomings by producing a file (ARCRADII.EPS) of 

undiseased diameter points representing the morphology of 
the artery if disease were absent. However, the user must 
exercise judgement in selecting stenoses where undiseased 
morphology construction is valid (section 3.5). 

Area calculations are also performed on the undiseased and 
diseased artery areas, resulting in the quantification of 
atheroma I area. Values for mean eccentricity, maximal 

eccentricity and eccentricity at minimum diameter are 
subsequently computed and written to screen and/or printer. 

PROGRAM ARTDR 

Graphical as well as numeric output is always useful in the 
assessment of stenotic morphology. This program produces 
such output allowing the display of the lesion diameters, 
the undiseased diameters, the artery axis or combinations of 

these data according to the users choice. 

Unfortunately, due to the lack of graphics facilities on the 
Vector3 microcomputer, this program is only available on the 

University's Prime Mainframe Computer. However, should the 
system be transferred to a modern machine, this facility 
could easily be recreated, allowing the production of 
permanent pictorial records for patients notes. 
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Figure 3.7 presents simply the overall schema for the QAMS 

system. 

3.5 Software Theory 

It is important to stress at this point that the production 
of software for a working version of QAMS has been a 
developmental process, ie. the work presented in this 
section is only a fraction of the work that was actually 
required in order to arrive at successful methodology. Many 
initial ideas have either seen extensive revision or have 
been superseded by more elegant or practical methodology. 

Throughout the development and validation of the QAMS 
software, all coding and testing was performed on the Prime 

System as the Fortran compiler was much faster than that on 
the Vector3 thus allowing small changes to be made much more 
quickly. Once the programs were complete and running 
properly, they were down loaded to the vector3. 

As the information provided by the graphics tablet is 
basically geometric, each X,Y coordinate being considered to 
be connected to the next by a straight line, it is not 
surprising that the majority of the theory behind the 
workings of the system has its foundations in single plane 
trigonometric geometry. Special emphasis has been placed on 
keeping the mathematical solutions to problems as simple as 

possible, since the system is aimed for use by biologists or 
Doctors, not mathematicians. 

A full listing of every program concerned with QAMS can be 
found in appendix 1. It is not the intention of this 
section to exhaustively review each routine line by line. 
Much of the code is simple, either involving the linking of 
various program sections or performing simple error 
trapping, with most steps adequately explained within the 

listing itself - a luxury afforded by the use of several 
smaller programs rather than one larger one. Therefore each 
program is presented as a figure depicting a flow diagram or 
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algorithm. However, mathematically more intricate areas 

(those in the square boxes) require further explanation. 

This appears as relevant text and separate figures within 
this section. It is important to note that each derivation 
of an expression or explanation of a routine subsection will 
not appear exactly as found in the listing, for it is the 

proof of the methodology which is important, not its 
translation into Fortran 66. However symbols and parameter 
names used by the programs are adhered to in the proof for 
direct comparison, except when the same program element has 
been used again in a later program, when the element is 
simply re-referenced in order to minimize duplication. 

PROGRAM PNTED 

As per algorithm presented in figure 3.8. The following 

areas are highlighted for further discussion. 

The correction of data for pincushion distortion -
SUBROUTINE PCUSH 

Location of the 1st and 2nd coordinates outside the 
tolerance limit. 

The reversal check - SUBROUTINE PPSIDE. 

SUBROUTINE PCUSH. This subroutine applies a correction to 
each coordinate point such that the effect of pincushion 
distortion (section 2.2.3) is removed. The equation used to 

characterize this distortion was based on the fact that the 
origin of the distortion is the convexly curved nature of 
the input phosphor vacuum tube. 

If one films a rectilinear grid, the result is a distorted 
rectangular image (figure 3.9). Grid interval appears to 
vary as a function of the square of the radial distance from 
the centre of the image (personal communication, Phillips 

Medical Systems, Hammersmith, London). This ties in with 
the fact that the distorting element is quadratic in nature. 
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On filming 

.. 
1 

Figure 3.9 The pincushion distortion effect 
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Since grid interval at the centre of the image is unaffected 

(ie. unity) the following basic equation may be formulated: 

~R a 

~R 
o 

Where L\R 

L\ Ro 

R2 

= 

= 

= 

The projected grid interval. 

The undistorted grid interval (and for 

practical purposes that at the centre of the 
image) • 

The square of the radial distance from the 

centre of the image. 

In order to obtain equality, a constant (C) must be added to 
the equation which quantifies the amount of distortion for 

the system from which the image under consideration was 

obtained. 

This equation must be rewritten and integrated in order to 

arrive at an expression which quantifies pincushion 

distortion at each and every point at radius R from the 

centre of the image. Thus: 

Where 

tan -1 (R . ..jC) 

R1 is the true radial distance from the centre of 

the image to the point of interest. 

The above equation forms the basis of the correction 

procedure employed in the SUBROUTINE PCUSH. The derivation 

of C is reported in the characterization experiments, 

section 3. 6 . 1. 

LOCATING COORDINATES. This area of software has been 

highlighted in order to present the derivation of the method 
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for calculating the length of a line joining two distinct 

coordinate points, as this piece of coding is used 
repeatedly throughout the suite of QAMS programs. The 
introduction of the tolerance limit theory is reserved for 
the validation experiments in section 3.6. 

Referring to the diagram in figure 3.10 it can be seen that 
the length df a line may be resolved using pythagoras 

theorem ie: 

C = ~ (X1-X (J) ) 2 + (Y1 - Y (J) ) 2 

On expansion: 

On rearranging: 

This is the equation found in the software listing for the 
location of the 1st and 2nd points outside of the tolerance 

limit. 

FUNCTION PPSIDE. This function allows serial detection of 
the "direction" of the data vector. This is achieved by 
constructing a circle of uncertainty of radius equal to hand 

tracing tolerance (section 3.6) with centre at the second of 
every set of three coordinates. The segment connecting 

I 
points 1 and 2 dictates the direction of the vector, with the 

I 
dividing line between constant direction and reversal being 
made from a test of the position of the third coordinate 
with respect to the perpendicular to the direction segment, 
a point lying on the perpendicular or on the same side as 

the direction vector is deemed a reversal, whilst a point on 
the opposite side of perpendicular to the direction vector 
has the same direction as the direction vector. 
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X(J) ,Y(J) 

Pythagoras 
2 c = 

Therefore 

Xl, Yl 

Ib (Yl-Y(J) 
I 

--- -- - - - - - - - -- ------ -'i Xl",Y(J) 
a 

(Xl-X(J) ) 

theorem stages: 

a
2 + b2 

c = .Ja2 + b2 

Substituting above terms: 
~----~-------= .J (Xl_X(J))2 + (Yl_Y(J))2 c = 

On expanding 
~-----------------------------

..J X12 -2X1X(J) + X(J)2 + Y12 - 2YlY(J) + Y(J)2 c = 

Collecting like terms 
~----~--~----~--------------.Jx2 + X(J)2 + Y12 + Y(J)2 _ 2(X1X(J) + Y1Y(J)) c = 

Figure 3.10 Calculation of the length of a line using Pythagoras 
theorem 
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The physical size of the circle of uncertainty is used by 

the main program to decide when a reversal test is actually 

required. ie. points within the circle are to be tested 

since the reversal may be a function of hand tremor - the 

effect trying to be removed, whereas points outside the 

circle are not tested since the reversed direction is 

assumed to be implied. Figure 3.11 exemplifies the workings 

of the reversal test with various possibilities. 

The test revolves around deriving the equation of the 

perpendicular to the direction vector and substituting in it 

the values of the coordinates to be tested. In order to 

achieve this, one must first calculate the coordinate values 

of two points which lie on this line. Considering the 

situation presented in figure 3.12, it can be seen that the 

gradient angle of the direction vector may be represented in 
terms of both sine and cosine thus: 

SINGRA = OPPOSITE = 

HYPOTENUSE R 

COSGRA = ADJACENT = x 
HYPOTENUSE R 

These values allow the construction of two similar triangles 

at right angles to the direction vector with hypotenuse 

length each equal to the tolerance value, thereby 

establishing the circle of uncertainty. Using simple 

trigonometry, distances d1 to d 4 may be calculated in order 

to allow translation of the coordinate values of X2,Y2 to 

points on the perpendicular line at the limits of hand 
tracing tolerance thus: 

For d1 SINGRA = OPPOSITE = ~ d1 = SINGRA X TOL 
HYPOTENUSE TOL 

For d 2 COSGRA = OPPOSITE - d -_2_ d2 = COSGRA X TOL 
ADJACENT TOL 
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No 

1 

2 

3 

4 

5 

I 
I 

I 

Condition 

Intended 

Intended 

\ 
\ 
\ 

reversal 

reversal 

Unintended reversal 

Vector direction 
maintained 

Vector direction 
maintained 

--

3 

-- --- -- --

Action 

none - Intentional change in direction 

none - Intentional change in direction 

Points between X2Y2 and X3Y3 removed 

none - Relative coordinate position 
correct 

none - Relative coordinate position 
correct 

Figure 3.11 Reversal test possibilities 
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Xl, Yl 

y 
( Yl-Y2) 

XPERP 2, YPERP 2 

(XI-X2) 

____ ~ ______________ ~~------~~----x_u-----A 
X2,Y2 

XPERPl, YPERPl 

Sine gradient angle = y 

R 

Cosine gradient angle = x 

R 

Using similar triangles: 

Sine gradient angle = d
l 

TOL 

Cosine gradient angle = d
2 

TOL 

On translation 

dl = Singrad x TOL 

d2 = Cosgrad x TOL 

XPERPl = X2 + dl 
YPERPl = Y2 + d

2 
Similar operations are carried out for computing XPERP2 and YPERP2 

Figure 3.12 Formation of per~dicular, subroutine PPSIDE 
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Translating: XPERP1 = X2 

YPERP1 = Y2 

A similar transformation is made for XPERP2,YPERP2. 

Evaluation of the equation of the line perpendicular to the 

direction vector may now be made. 

It can be seen from figure 3.12 that construction of similar 
triangles effects a rotation of the parent triangle by 90 

degrees in either direction depending on which triangle is 

considered. Considering just the upper triangle of figure 
3.12 for demonstration purposes (figure 3.13), the gradient 

may be expressed as: 

Gradient = Increase in y = YPERP2 - YPERP1 
,Increase in x XPERP2 - XPERPl 

The general equation of a straight line may be written as: 

y = ax + b 

In order to derive an expression for b, the intercept, we 

must first consider the equation in its most simple form, 

ie. with the intercept at 0, that is: 

y = ax 

For any point X,Y (figure 3.13): 

Y - Y2 

Rearranging: 

= YPERP2 - YPERPl . (X - X2) 

XPERP2 - XPERP1 

o = YPERP2 - YPERP1 • (X - X2) - Y + Y2 
XPERP2 - XPERPl 

Multiplying out (NB. Some terms reverse to maintain 

positivity) : 
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YPERP2 -
YPERPl 

XPERP2 
XPERP2 

Y-Y2 

I 
I 
I 
1 
I 

--------1-----
1 
I 
I 
1 
I 
I 

i X -X2 

XPERP2 - XPERPl 

General equation of line for point X, Y 

Y -Y2 YPERP2 - YPERPl (X-X2) 

XPERP2 - XPERPl 

I 
/ 

/ 

/ 

Figure 3.13 computation of the general equation for the 
perpendicular, sUbroutine PPSIDE 

XPERPl 
YPERPl 

/ 



0 = (YPERP2 - YPERP1)X + (XPERP1 - XPERP2)Y + 

X2(YPERP1 - YPERP2) + Y2(XPERP2 - XPERP1) 

0 = (YPERP2 - YPERP1)X + (XPERP1 - XPERP2)Y + 

X2.YPERP1 - X2.YPERP2 + Y2.XPERP2 - Y2.XPERP1 

0 = (YPERP2 - YPERP1)X + (XPERP1 - XPERP2)Y + 

(X2.YPERP1 + Y2.XPERP2) - (X2.YPERP2 + Y2.XPERP1) 

The equation is now in the form found in the program listing 

and has reduced to the coefficient method for the expression 

of the equation of a straight line, ie. 0 = aX + bY + 

constant. 

The constant evaluates to zero in the simple case (origin at 

0,0) but is mathematically correct to return a value of b 

when the line originates elsewhere. 

This equation is then used in the program to test the 

position of the third coordinate point. This is achieved by 

considering the perpendicular line in question to be 

neighboured by many other perpendicular lines of obviously 

equal gradient, but differing intercept. If the point lies 

on the perpendicular line, then as proved, the result will 

be zero. If, however, the point lies above the line, then 

the result with be negative and vice versa. The resultant 

discrepancy between the calculated value and zero is a 

function of the differences in intercept only. As parallel 

gradients are the same, the difference reflects the shortest 
distance (Y value to Y value) between the two lines. The 

implication of this latter point becomes apparent in PROGRAM 

DIAMRS. 

Based on the sign of the difference, the function ascribes a 

result of either +1, 0 or -1. Within the same line of code 

in the main program, the function is called again, this time 

with the 1st point of the three being the coordinate to be 

tested. The function duly returns a value of +1, 0 or -1 as 
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before, and the results to the two tested points are 

compared; if the results are the same, then a reversal has 

occurred, as point 3 is on the same side of the 

perpendicular as point 1, whereas if the results are 

opposite, then point 3 is on the opposite side of the 

perpendicular to point 1 and constancy of direction is 

deemed to have been preserved in this particular three point 

complex. 

PROGRAM DIAMAV 

Refer to algorithm presented in figure 3.14. 

CALCULATION OF AVERAGE ABSOLUTE AREA AND AVERAGE DIAMETER. 

The artery tracing can be considered to be a continuous loop 

by simply joining of the two ends. From this loop a 

centroid may then be calculated by simple averaging of all 

points within that loop. The total area of the figure may 

now be obtained from the addition of all the separate 

triangles which constitute it. 

In order to arrive at an expression for the compuation of 

triangle area one must again return to the simplest case, 

that of the triangle having a vertex at the origin, or 0,0. 

From figure 3.15 it can be seen that the area of the hatched 

region is a product of the following expression: 

NoW, the area of a simple triangle is equal to the base 

multiplied by the height divided by two and of a rhombus 

base multiplied by average height, therefore: 

The distance 0 to An are displacements in the x direction of 

n units and An to Pn displacements in the y direction again 

of n units. 
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read tlde1polnta and tlde2polnta 

j 
re - 888lgn 81de2polnb to reverse 

order 810ret thut forming 
a conUnuou8 loop 

j 
close the loop 

I 
calculBIII the centrold of the loop 

j 
calculBIII total loop length 

1 
calculBIII absolute area and 

aaage diameter 

j 
wrtte _rage diameter value to 

file for use In n8ld program 

figure 3.14 DIAMAV algorithm 
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y 

.. 

.. 

P 
1 

Figure 3.15 Area of a triangle with one vertex at the origin 
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substituting: 

Expanding: 

The sign of the resultant area depends upon the direction of 

rotation. In this example, rotation is from P1 to P2 ie. 

from OX to OY. This is the positive plane of rotation and 

returns a positive answer. Rotation in the opposite 

direction would yield an answer numerically equivalent to 

the previous, yet opposite in sign. The significance of 

this effect is given later. 

If the origin is within the perimeter of the triangle 

(Figure 3.1Ga), the total area is the sum of the three 

component triangles thus: 

substituting the above derived expression for the area of a 

triangle: 

However, the more normal case (typical of this work) is for 

the origin to be removed from the triangle (figure 3.1Gb). 

Relating the coordinates of PI' P2 and P3 to the origin 
reveals that the area of the component triangle is given by: 

Each constituent area is a triangle in its own right, 

therefore we may sUbstitute the previously derived 

expression for their area, ie: 
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o 

Figure 3.l6a Area of triangle PlP2P3 with enclosed origin 

Area Pl P2P3 = OP2P
3 

- OP
2

P
l 

- OP
l

P
3 

= «XBXA + YCXB+YAXC) - (YBXC+YCXA+YAXB» 

2 

Figure 3.l6b Area of triangle P
l

P
2

P
3 

with removed origin 
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The negative term may now be removed by rearrangement, 

yielding the expression for area found in the program 

listing. 

By further arrangement: 

constituent Area = «YBXA+YCXB+YAXC)-(YBXC+YCXA+YAXB»/2 

When the tracing shape is complex, ie. the profile folds in 

on itself (figure 3.17), it is evident that the direction of 

rotation for the calculation of the area is reversed, hence 

the result is negative. If all areas, positive or negative 

are accumulated, then the resultant will be the area only 

enclosed by the loop, all infolds will have been removed by 

the reversed direction technique. 

If, whilst the areas are accumulated, the segment lengths 

are computed also (length of line technique, PROGRAM PNTED), 

total perimeter length of the tracing will be derived. From 

this, average artery side length may be computed as half the 

perimeter length. Whilst this is not the true average side 

length due to inclusion of the segments joining the two ends 

of the data arrays, it is still related to the tracing in 

question and is therefore specific. 

The average side length may then be used to calculate the 

average diameter of the tracing for use as scan size 

criterion in the following program as follows: 

Dimensionally, Average diameter = L2 = Total tracing area 
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XB,YB 

xc, YC 

\ 
XA,YA 

total triangle Running total 
area 

Area 1 5 units included 5 +5 

Area 2 = 10 units removed 15 -10 

Area 3 15 units included 30 +20 

Area 1 + 3 20 

Note: Area removed originates from triangle whose direction of 
rotation is reversed 

Figure 3.17 Computation of the area of an infolded loop 
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PROGRAM DIAMRS 

Refer to the algorithm presented as figure 3.18. 

Re-reference to figure 3.7 at this point may also make the 

following explanation more clear. 

Areas highlighted for further discussion are the alignment 

of the data vectors, alteration of bubble subscripts and 

location of the diameter end points. 

DATA VECTOR ALIGNMENT. This is necessary to allow the 

bubble to grow in an orderly fashion ie. when number of 

points within the bubble is low, even with the adjustments 

provided by SUBROUTINE ADJBUB, the possibility of not 

finding a diameter end point is increased by not performing 

this correction (see SUBROUTINE ADJBUB). 

Whilst the mathematical background to this portion of the 
program is not new (calculation of length of a line, PROGRAM 

PNTED), its application requires further explanation. , 

pythagoras theorem, which states that the square of the 

hypotenuse of a triangle in equal to the sum of squares of 

the other two sides, holds exactly for right angled 

triangles only. This fact may be used to good effect by 

sequential calculation of the value of the hypotenuse as the 

lengths of the other two sides change, with computation 

terminating when approximation to a right angle is achieved 

between the two sides, resulting in a calculated hypotenuse 

value approximating closely to what would be the true 

hypotenuse. Figure 3.19a illustrates the three possible 

conditions when data alignment is to be carried out, along 

with desired placement of the bubble starting position from 

pythagoras theorem assuming the data were continuous. Of 

course, this is never the case, since this data set is made 

up of discrete coordinate points. 
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read slde1, slde2 data arrays 
and the awrage diameter 

Into bublen 
'I 

open retuft filet for diameter 
end polnb and axlt polnb 

'I 
I align dlifi arrays 

'I 
x = 1 

'I 

I 

wfIh tIart potllton fixe 
.------l~ tldex bubble end p 

1 coordlnata 

d, expand 
otIIton by ~ 

x f 1,2 
'I NO 

It length> = bublen? ~IF 

S t 
ble complete = 2 

'lYE 
L-_ expantlon of s1dex bub 

x=2 
continue until tlde2 bubb 

complete 
le expanllon 

complete 
'I 

both expaMIont 
begin mO\llng bub ble 

'I 

SUBROUTlNE 
AXDf.6S compu18 
the locallonl of 
.. e diameter end 
polnb and axlt 

polnb 

wrIIII both to rue 

A 
SUBROUTlNE 
ADJBUB aIIIIr 
bubble tubtcrlpta 
to maxlml .. the 
poltlblllly of 
IocaIInd dlamel8r 

end point 

x = 1 ... --------------. 

'I 
.----1 ....... --+ Increment bubble tIart potlUon + _______ ---, 

by 1 coordinate along .Idex 
'I YES 

hat end of data been reache=3 calculale no. 
NO 'I NO YES of polnb In 

It length of bubble > = bublen? bubble and 
'I accumula18 

movement of bubble along aklex complete I 
x=2 t 

conllnue urdI movement along tlde2 It 
complete 

'I 
movement of bubble complete 

'I 
compute the average no. of 
poInta In bubble (BUBAVP) 

'I 

~IF '" 
x = 2 x = 1,2 
'I 

call ADJBUB 
'I 

call AXDMS 

call AXDHI S It no. of diameter end polnla not found YES 
• (ENDERR) > =' BUBAVP? -----, 
A 'I NO 

call ADJBUB L----,l~ hat end of data array been reached 
A NO by bubble ttert potllton 

Increment bubble ..... f--- In either data arrstf? 
ttart potllton by YES 'I YES 
1 coordIna18 In ... In one? Iborrun 
one./bOth data 'I NO 
~ STOP.~--------------J 

figure 3,18 DIAMRS algorithm 
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start! start2 start! start2 start! 

SI > S2 SI S2 SI < 

Figure 3.19a possible conditions for data vector alignment 

t tl ...,,,, 
"""" a2 - """" '1. ~ 

-_} """0:::: --bL -~ c 
01 _ _ _ --=-::s~ 

3 

I 
b l _ 

2 -
.....- .... --""'-"hl 

- 3 b a 

Searching S2 from SI 

Searching SI from S2 

Figure 3.19b Calculation of pythagoras theorem terms 

a 

c 

b 
d== c 

Figure 3.19c Relationship between c and d at various angles 
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When the position of the start of SIDE1POI.NTS is in exactly 

the same plane as SIDE2POI.NTS no alignment correction is 

necessary, however, this is rarely the case. Taking 

SIDE1POI.NTS being longer than SIDE2POI.NTS as the example, 

it becomes obvious that SIDE1POI.NTS must be shortened in 

order for the data vectors to be aligned as closely as 

possible. Using the test method presented in figure 3.19b, 

the software first calculates the length of the line 

connecting the first coordinate points of each vector. This 

becomes the true hypotenuse, c (figure 3.19c). Next 

SIDE2POI.NTS is searched from the first coordinate of 

SIDE1POI.NTS (full lines) with sidea being the length of the 

segment between points 1 and 2 of SIDE2POI.NTS and sideb the 

length of the line connecting point 1 SIDE1POI.NTS to point 

2 SIDE2POI.NTS. The length of the theoretical hypotenuse, 

d, for this situation is then calculated and compared with 

the true value. As the angle between sidea and sideb is 
less than 90 degrees, (figure 3.19b) the calculated value of 

the hypotenuse exceeds the true value of c. In this 
occurrence, the searching of SIDE2POI.NTS stops, since 

further increments along this vector would only serve to 

further reduce the angle between sides a and b and therefore 

further extend the length of d. 

The roles are then reversed, with SIDE1POI.NTS being 

searched from the first coordinate of SIDE2POI.NTS (dotted 

lines with sub and superscripted letters). The lengths of 

sides a1 and b1 along with the theoretical hypotenuse d1 are 

calculated as before, and d1 compared to c. Since the angle 

between side a1 and b1 is greater than 90 degrees (figure 

3.19b), d1 is less than c. The software thus increments 

from the second to the third points (figure 3.19b) in 

SIDE1POI.NTS and the procedure is repeated. Further 

increments occur until an approximate 90 degree angle is 

achieved between side an and side bn , with consequent close 

agreement between dn and c. 

SUBROUTINE ADJBUB. In order to understand how this 

subroutine works and why it is necessary, the performance of 
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the nearly identical SUBROUTINE AXDIAS must also be 

discussed. However SUBROUTINE AXDIAS is also presented as 

the next section, as this code deals with computing the 

points of intersection and the angle between the diameter 

and the data vector, facts not relevant to this subroutine. 

Basically, SUBROUTINE ADJBUB corrects for inequalities in 

coordinate density between the two vectors. The main 

program is responsible for producing the bubble subscripts 

(start of bubble in SIDEl, start of bubble in SIDE2, end of 

bubble in SIDEl and end of bubble in SIDE2) which dictate 

the margins of the bubble according to growth towards, 

attainment of, or contraction below the length set by the 

previous program. This allows a reasonable first 

approximation of the artery axis to be constructed as a 

segment joining the midpoint of lines connecting the top and 

the bottom coordinates of the bubble (figure 3.20a). 

Within the SUBROUTINE AXDIAS the artery axis is then 

bisected at 90 degrees at its midpoint and the coordinate 

values of its points of intersection with the data arrays 

SIDElPOI.NTS and SIDE2POI.NTS are computed. These represent 

the location of the serial diameters and are written to file 

for manipulation in the following program. It is evident 

from the perfect case in Figure 3.20a that there is plenty 

of distance enclosed within the bubble from both data 

vectors in order to allow the true diameter end points to be 

found. This is not the case in figure 3.20b. As before, 

the sides of the bubble have been adjusted to the correct 

bubble length and the subscripts of the bubble fixed as 

shown by the main program. The problem is that due to the 

rather erratic coordinate density of SIDE2POI.NTS (in 

actuality, both data vectors are erratic, especially where 

the user has traced an element of a stenosis more carefully 

than another, for example, the profile approaching the 

minimal narrowing. However, for ease of explanation, 

SIDE2POI.NTS is shown as the only data vector of varying 

coordinate density), a reasonable approximation to the 

bubble length in this data vector cannot be achieved. The 
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Artery axis 
(1st approximation) 

r 
1-------1---- --.- bublen 

bublen 

1 

Figure 3.20a Establishment of bubble and bisecting diameter _ 
equal coordinate density, coordinate end points 
located 

XMIIJl'P, YMIIJl'P 

bublen 
bublen 

XMIDBM, YMIDBM 

Figure 3.20b Establishment of bubble and bisecting diameter _ 
unequal coordinate density, side2points coordinate end 
points not located 
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program is designed to select the point which conforms to a 

length less than that required, however, in this instance, 

it would be no better off selecting the next point. As a 

consequence, the first approximation to the artery axis 

remains unaffected, but, the distance from which true 

diameter end points may be located within SIDE2POI.NTS is 

vastly reduced, and, indeed, as this case illustrates, the 
diameter end point is actually located outside of the 

bubble. Since we are using the bubble as a maximal 

expectation window within which we are searching for 

diameter end points, this one will remain unlocated and this 

area of the tracing will remain unsampled. As mentioned 

earlier, if this problem is left uncorrected, sections of 

the vector with high coordinate density in comparison to an 

equivalent position in the complementary data vector (eg. in 

the tracing of an eccentric stenosis - figure 3.20c) will 

remain completely unsampled, with a resultant lack of data 

in the final output commonly located at the point of maximum 

interest! 

So, obviously some transformation of the position of the 

bubble subscripts is necessary once the artery first 

approximation is set. This routine achieves this by finding 

the coordinates nearest to perpendiculars created at the top 

and bottom of the artery axis. In this way any adjustments 

are made on the basis of original artery axis length and 

position, and indeed, these change only minimally following 

correction. Figure 3.20d demonstrates a situation where 

correction is necessary; The profile is more complex on 

side 2 (for simplification, drawn as an angled straight 

line) leading to non uniform coordinate density. This 

method is superior to picking the nearest coordinate to give 

an approximate bublen (smaller or larger) as it involves a 

degree of averaging between the two sides and maximizes the 

chances of locating the diameter end points as.a consequence 

of the bubble "shape adjustment". 

The basic mathematics surrounding subscript transformation 

encountered within this subroutine have been described 
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r i Note: The rapid 
changes in profile of 

-e bublen the artery given 

coordinate density the appearance 

is increased to 

1 
shorter bublen 

accomodate rapidly this side 

changing profile 

Figure 3.20c Side2points coordinate end points not found due to 
unequal coordinate density resulting from carefully 
traced eccentric stenosis 

--- --...... --. '. 

t ---...... -.. .... 
* 

of a 
on 

bublen! 
Original bubble margins 

- ---- Artery axis perpendiculars 

New bubble margins 

Notice that side 2points has irregular coordinate density. 
Following the establishment of the original bubble, perpendiculars 
from the artery axis mark the positions of "maximal expectancy" for 
locating an artery diameter. This dictates a change in bubble margin 
location with little effect on original artery axis position or 
length. Notice also that if the decision regarding bubble manipulation 
had been made on nearest coordinate above or below bublen, then the 
coordinatES marked with <I.' * would have been picked. This would 
have resulted in a bottom bubble margin of similar orientation to 
the original, thus reducing the possibility of locating an artery 
diameter. 

Figure 3.20d Bubble margin change in progress 
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within program PNTED. The following account is therefore 

basically descriptive with reference to the required proofs 

as necessary. 

Firstly, the equation of the artery axis must be computed 

from which perpendiculars at each end may be drawn up. The 

proof of the equation of a perpendicular line can be located 

in the section function PPSIDE, PROGRAM PNTED. The 

following is proof of the equation of a normal line. 

From figure 3.20b the gradient of the axis line may be 

expressed thus: 

Gradient = Increase in y 
Increase in.x 

= YMIDTP-YMIDBM 

XMIDTP-XMIDBM 

In its simplest form, for any point X,y on a line, the 

equation may be expressed as: 

Y-YMIDTP = YMIDTP-YMIDBM . (X-XMIDTP) 

XMIDTP-XMIDBM 

Rearranging: 

o = YMIDTP-YMIDBM . (X-XMIDTP)-(Y+YMIDTP) 

XMIDTP-XMIDBM 

Multiplying out: 

o = (YMIDTP-YMIDBM)X + (XMIDBM-XMIDTP)Y + 

YMIDTP(XMIDTP-XMIDMBM) + XMIDTP(YMIDBM-YMIDTP) 

Further multiplication: 

o = (YMIDTP-YMIDBM)X + (XMIDBM-XMIDTP)Y + 

YMIDTP.XMIDTP-YMIDTP.XMIDBM+XMIDTP.YMIDBM-XMIDTP.YMIDTP 
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Overall: 

o = (YMIDTP-YMIDBM)X + (XMIDBM-XMIDTP)Y + 

(XMIDTP.YMIDBM) - (YMIDTP.XMIDBM) 

The equation is now in the familiar form aX+bY+c=O and is as 

stated in the program listing. 

Following the calculation of the equations of the 

perpendiculars, the nearest coordinates to their points of 

intersection must be found and be reassigned as the new 

bubble margins for use in the following subroutine AXDIAS. 

This is achieved using the function DISIDE which checks 

which side of the perpendicular a pair of points (the third 

point is used for error trapping) are in a fashion identical 

to the reversal test in the function PPSIDE in program 

PNTED. The test returns a value of +1, 0 or -1 for each 

point of the pair which serves as a quick check for location 

(figure 3.21a). If a solution is not immediate, as with 

pairs 2 and 3 in figure 3.21b, the routine continues and 

calculates the shortest displacement (LINE calculations) 

between the perpendicular line and the point under 

consideration in a manner again identical to that found in 

function PPSIDE. This value represents the distance the 

point is away from the perpendicular line. For pair 2, a 

flag is raised within the software which indicates that this 

pair of points is astride the perpendicular. Therefore the 

smallest absolute displacement reflects the coordinate of 

choice for appropriate transformation of the bubble margin. 

For pair 3, the lower displacement for point B instructs the 

software to increment down the data vector until pair 2 
reached, the appropriate coordinate being selected as 

described. This process of adjusting the bubble subscripts 

with computation of the diameter end points (SUBROUTINE 

AXDIAS) continues until the bubble meets the bottom of the 

two data vectors and contracts to zero. 
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DIsrDE +1 

DISIDE = -1 

Bubble 
axis 

Axis 
perpendicul 

'f 

D1SIDE = +1 

D1SIDE = -1 

Figure 3.21a locating the relative positions of coordinates using 
function DISIDE 

I 
A(DISIDE=+U' 

PAIR 1 Point A is on the 
perpendicular. This point 
is automatically selected 
as new subscript 

---~~---- - --- PAIR 2 F.1.cg F3. has been raised 
indicating points A &B PAIR3 

B(DlsIDE=+l 
---~~----- --. 

are astride the 
perpendicular. The line 
tests compute the distance 
dl and d2 . d

2 
is the 

Figure 3.2lb 
perpendicular 

d d 
3 

, rh 

smaller, therefore point 
B is assigned to be the 
new bubble subscript 

~ PAIR 3 Both points are on the 
same side of the 
perpendicula~d3 is less 
than d4 , therefore 
search proceeds downwards 
work until PAIR2 is 

A(DISIDE=O) encountered 
PAIRl 

4 B 

Locating the closest coordinates 
using D1SIDE and the LINE tests 
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Due to the simplistic nature of the LINE test, there are two 

clearly definable conditions where errors in the searching 
process may occur. These are: 

1. When coordinate density is high and artery profile is 

changing rapidly producing a set of points whose 

connecting segments are exactly parallel to the 
bisecting line in question, be it from the SUBROUTINE 

ADJBUB or AXDIAS. As can be seen from figure 3.22a, 

the LINE test indicates that all points within the test 

are an equal distance away from the bisector, ie. there 

is no convergence or divergence of values present in 

order to instruct the program in which direction to 

continue the search. Therefore, to all intents and 

purposes, the searching process is "stuck". 

This occurrence is dealt with in one of two ways 

depending on which routine is currently running. For 

ADJBUB, where the searching is taking place across the 

whole data vector, once the problem is detected, the 

current bubble margin is incremented by one unit before 

being passed to AXDIAS. In this way, although true 

bubble parallelity is temporarily lost, the solution is 

quick and resolves itself following the necessary 

number of unit increments. For AXDIAS however, the 

situation is somewhat different. Here, the true 

location of the bisecting line must be located, hence 

the check for equivalence of the line tests promotes 

unit increase in the searching counter, with subsequent 

re-searching one step further down the data vector. 
This method is best suited to this situation since the 

number of possible searches is small in comparison to 

the previous routine, being limited by the bubble 

margins. 

2. When coordinate density is high and artery profile is 

changing rapidly producing an inflection is the artery 

profile relative to the bisector. This can occur when 

the bisecting line has intersected with the data vector 

- 104 -



---

A B C 

~ ------ Bubble axis perpendicular 
(ADJBUB) 

or 

Bisecting diameter 
(AXDIAS) 

---

= d 3 Therefore bisector and artery contour are 
parallel 

Figure 3.22a "sticking" of the searching process due to parallelity 
between artery contour and bisector 

B 

c 

dl(LINEA) < d2 (LINEB) 

d
3

(LlNEC) < d
2 

(LINEB) 

~ is usually acute 

Figure 3.22b potential problem with-the searching process caused by 
an inflection in the artery profile relative to the bisector 
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in a normal fashion but at a relatively steep angle. 

From figure 3.22b, it can be seen that the continuation 

of bisector runs close to other data points currently 

being searched in a fashion which, on testing using the 

LINE method, leaves point B further from the bisecting 

line than points A and C. This constitutes what was 

earlier defined as a reversal (PROGRAM PNTED). The 

search must thus continue in order to locate the point 

nearest to the axis perpendicular (SUBROUTINE ADJBUB) 

or the actual point of intersection (SUBROUTINE AXDIAS) 

as in this example (between points C and D). Hence, 

the software compares the relative values of LINE A, B 

and C; a peak at LINE B denotes a false reversal which 

promotes continued searching of the subsequent data. 

Whilst the LINE test has these shortcomings, providing they 

are appreciated and attended to adequately within the 

program, the test performs well and maintains the easy to 

understand approach which is one of the core aims of this 

work. 

SUBROUTINE AXDIAS. As previously mentioned, the bulk of the 

coding for this routine is essentially the same as the 

previous, in that bisecting lines are created at 90 degrees 

to the artery axis and the data vectors are scanned within 

the recently adjusted bubble in order to find where the 

intersecting segments lie. The major difference between the 

two routines is that AXDIAS takes the computation one step 

further by actually computing the points of intersection, 

along with the angle between the bisector and the data 

segment in question. This angle information is then used as 

a check against the minimum angle obtainable on the graphics 

tablet following which a decision is made on the credibility 

of this particular diameter line, whilst computed diameter 
end points are written to the file DIAMETER.EPS. Presented 

below is the proof for computation of points of intersection 

followed by a description of the function ANGLE, which 

performs the angle calculations. 
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Point x,y satisfies both equations as in figure 3.23. Using 

a pivotal method (Davies and Hicks 1978) for the solution of 

two simultaneous equations, x and y may be expressed in 

terms of equation coefficients only: 

State basic equations: 

XCOEFDx + YCOEFDy + CONSTD = 0 

XCOEFlx + YCOEFly + CONSTl = 0 

1 

2 

Calculating x in terms of coefficients only: 

Remove y term by first multiplying equation 1 by YCOEFl and 

equation 2 by YCOEFD. 

XCOEFD.YCOEFlx + YCOEFD.YCOEFly + CONSTD.YCOEFl = 0 - 3 

XCOEF1.YCOEFDx + YCOEF1.YCOEFDy + CONST1.YCOEFD = 0 - 4 

Subtract equation 3 from equation 4 thus removing y term. 

XCOEFD.YCOEFlx + rC~~Fly + CONSTD.YCOEFl -

XCOEF1.YCOEFDx - ~CD&F~.~COEFDy - CONSTl.YCOEFD = 0 

Collect like terms: 

XCOEFD.YCOEF1.x - XCOEFl.YCOEFDx = - CONSTD.YCOEFl + 

CONST1.YCOEFD 

Solve for x: 

x = CONSTl.YCOEFD - CONSTD.YCOEFl 

XCOEFD.YCOEFl - XCOEF1.YCOEFD 

Calculating y in terms of coefficients only: 

Remove x term by firstly multiplying equation 1 by XCOEFl 

and equation 2 by XCOEFD. 

XCOEFD.XCOEFlx + YCOEFD.XCOEFly + CONSTD.XCOEFl = 0 - 5 
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XCOEFlx+YCOEFly+CONSTl = ~ 

/ 
/ 

/ 

x, y (point of intersection) 

XCOEFDx+YCOEFDy+CONSTD=0 

point x, y satisfys both equations. 

Figure 3.23 Demonstration of a point intersection 
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XCOEFl.XCOEFDx + YCOEFl.XCOEFDy + CONSTl.XCOEFD = 0 - 6 

Subtract equation 5 from equation 6 thus removing x term. 

KC~~XCOEFix + YCOEFD.XCOEFly + CONSTD.XCOEFl -

~OE~~XC~FDX - YCOEFl.XCOEFDy - CONSTl.XCOEFD = 0 

Collect like terms: 

YCOEFD.XCOEFly - YCOEFl.XCOEFDy = 

Solve for y: 

CONSTD.XCOEFl + 

CONSTl.XCOEFD 

y=CONSTl.XCOEFD-CONSTD.XCOEFl or CONSTD.XCOEFl-CONSTl.XCOEFD 

YCOEFD.XCOEFl-YCOEFl.XCOEFD YCOEFl.XCOEFD-YCOEFD.XCOEFl 

This reversal of terms for y allows the same denominator to 

be used in both the calculation of x and y, the equations 

quoted being directly comparable with those in the listing. 

The function ANGLE calculates the angle between any line and 

the right directed horizontal according to figure 3.24a. 

Considering any line on which lie two known points, (for 

example the bisecting diameter line) the equation may be 

calculated (function PPSIDE, PROGRAM PNTED). This allows 

the equation to be expressed in the form: 

XCOEFDx + XCOEFDy + CONSTD = 0 

Rearranging for y (y ax+b format): 

y = - XCOEFD 

YCOEFD 

x - CONSTD 

YCOEFD 

ie. the gradient of the line may be expressed as: 

Gradient = XCOEFD 

-YCOEFD 

or TanO or 
- 109 -
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2n 
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XCOEFDx + YCOEFDy + CON STD : 11 

where x, y : Xl, Yl or X2, Y2 

XCOEFD 

11 or 2ll 

right directed 
horizontal 

Sine (ANGLE) : XCOEFD 
R 

Cos (ANGLE) : -(YCOEFD) 

R 

Figure 3.24a Calculating the angle between the right directed 
horizontal and the bisector using function ANGLE 

a 

El 

- . 
Vb' -c' 

Figure 3.24 Converting ARCSINE and 
ARCCOS to ARCTAN 
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As the tangent function tends to infinity at its limits, it 

was thought more sensible to base an angle calculation 
routine on the sine and cosine functions. However once the 
routine was complete and ready for coding, it was found the 
version of Fortran running on the Vector3 did not support 
inverse sine and cosine functions. This was overcome by 

using inverse tan (see figure 3.24b for derivation). As the 
angles are initially calculated in terms of sine and cosine, 
the converted to tan the effects of limits are avoided. 

Figure 3.24c presents the two functions mapped across one 
complete cycle. The dotted areas indicate when there is a 
non linear response between current angle and returned 
function value, whilst the solid areas indicate linearity. 
For accuracy, all calculations of angle are made from the 

appropriate function depending on the relative position of 
X2,Y2 to XI,YI. This is derived from the relative 
relationships of the previously derived equation 

coefficients, which are passed directly to the routine. 

Hence, this routine begins with the calculation of sine and 
cosine from the equation coefficient as in figure 3.24a. 
These figures are then rounded up or down to prevent 
numerical accuracy problems originating from the computer. 
There then follows four quadrant traps, within which are two 

octant traps where the angle between the right directed 
horizontal and the line in question is computed from the 
correct function as in figure 3.24c. 

The function ANGLE is used again to calculate the angle 

between the right directed horizontal and data segment with 
which the diameter intersects. Subtraction of one angle 
from another gives the angular difference between the two 

lines (figure 3.24d). 

This is then compared to the minimum angle obtainable on the 
graphics tablet, calculated thus: 
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Figure 3.24c Selection of the appropriate function for the computation 
of ANGLE 
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XCOEF1+YCOEF1+CONST1 

--
XCOEFD+YCOEFD+CONSD 

-

-,,-
/ 

/ 
/ 

Figure 3.24d Using function ANGLE to calculate angular 
separation between a diameter line and a data segment 
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Graphics tablet scale = 0 - 11000 units. 

Minimum axis discrepancy = 1 

Maximum axis discrepancy = 11000. 

Minimum gradient = ~l __ _ = 3.3333332lxlO-4 

11000 

Any recorded angular difference smaller than this critical 

angle dictated that the lines are essentially parallel to 

each other and therefore the diameter line under test should 

be excluded from the final data set. 

PROGRAM ANALYZ 

This is basically the "number crunching" program of the set 

and works according to the algorithm presented as figure 

3.25. 

The following areas have been highlighted for further 

discussion: 

1. Calculation of diameter lengths, cross-sectional areas 

(CSA's) and true artery axis. 

2. Obtaining number of maxima with hand tracing tolerance 

(TOL) • 

3. Searching for the first occurrence of a CSA greater 

than 90% of the average maximum. This forms the cut 

off for the calculation of stenotic length, a parameter 

influencing the fluid mechanics equations presented in 

chapter 2. 

4. Calculation of percent diameter and cross~sectional 

area stenosis. 
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figure 3.25 ANAL YZ algorithm 
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CALCULATION OF DIAMETER LENGTHS ETC. Diameter end point 

information is read from the file DIAMETER.EPS produced by 

the previous program and converted into lengths using the 

technique described in program PNTED. From these lengths, 

cross-sectional areas are calculated under the assumption 

that the artery is cylindrical in cross section. 

ie: CSA = PI • (DILENS/2.0)2 

Whilst this is almost certainly never true, its value 

provides a better estimate of the haemodynamic significance 

of the current diameter at the location in question (chapter 

2) • 

Now that the locations of the diameters have been fixed, a 

true artery axis may be computed as a line connecting the 

midpoints of all artery diameters. These midpoints are then 

written to the file AXPTS for use in the following graphics 

program (available on the Prime System only). 

OBTAINING THE NUMBER OF MAXIMA WITHIN TOL. Since maximal 

diameter is the denominator of the percent diameter stenosis 

parameter (section 2.2.1), it is mathematically powerful. 

Therefore, it is important that the value used for the 

maximum represents the true state of artery morphology and 

is not some spurious value which was entered from the 

graphics tablet during a period of excessive hand tremor, 

occurring for example at the onset of tracing. It is for 

this reason that the denominator for the percent diameter 

stenosis estimate, and indeed, "the maximum" used in all 

other applications is formed from an average of all those 
, 

diameter values falling within the hand tremor tolerance 

(derivation section 3.6.1). This is achieved by summing all 

those diameters which are greater than the previously 

quantified maximum, less the tolerance value. The sum is 

then divided by the number of maxima fulfilling this 

criteria thus producing an average maximum estimate. In 

this way no one maxima gives excessive bias to the result at 

the expense of "shaky tracing". 
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SEARCHING FOR THE FIRST OCCURRENCE OF A CSA>= 90% OF 

MAXIMUM. Whilst the code for a search procedure is very 

simple, the use of a 90th centile value as the cut off for 

the calculation of stenotic length needs explanation. 

When a user digitizes an image, the amount of normal vessel, 

above or below, included in the tracing is entirely a 
subjective decision. Therefore, if the stenotic length 

result were based entirely on total length of tracing, the 

answer would be somewhat meaningless. So, the method of 

McMahon et al 1979 was adopted, whereby stenotic lengths 

were based on the distance between 90% of the average 

maximal cross-sectional area above to 90% of the average 

maximal cross-section below. In this way, the result 

reflects the true length of the stenosis rather than the 

traced segment length. However, on a fair proportion of the 

occasions, no lower 90th centile can be detected due to the 

natural taper of the artery. Therefore, in the results, the 

length of the traced segment is also reported as a backup, 

though caution must be drawn to its interpretation. 

CALCULATION OF PERCENT DIAMETER AND CROSS SECTIONAL AREA 

STENOSIS. These are calculated as simple ratios of the 

difference between average maximal and minimal (diameter 

and/or CSA)to average maximal(diameter and/or CSA) thus: 

percent diameter 

stenosis = 

percent CSA 

stenosis = 

(

Average maximal - minimal) 
100 x diameter diameter 

Average maximal diameter 

(

Average maximal - minimal) 
100 x CSA CSA 

Average maximal CSA 

These represent the most commonly used (the former more so) 

clinical parameters in the current literature. 

A hard copy of the following parameters are produced as 

results at the printer for. placement in patient notes: 

- 116 -



MEAN MAXIMAL DIAMETER 

90% MAXIMAL DIAMETER 

MINIMAL DIAMETER 

% DIAMETER STENOSIS 

MEAN MAXIMAL CSA 
90% MAXIMAL CSA 

MINIMUM CSA 

% CSA STENOSIS 

) 

) 
DISTANCE TO UPPER 90TH CENTILE 
DISTANCE TO LOWER 90TH CENTILE 

STENOTIC LENGTH 

SEGMENT LENGTH 

PROGRAM ECCFTR 

Absolute 

Relative 

Absolute 

Relative 

Absolute 

Whilst this program draws on a lot of the mathematics 

presented thus far, the concept is difficult to describe in 

small sections without the reader having an overall feel for 

the schema of the program. For this reason, the diagram 

presented as figure 3.26 provides a global introduction to 

the workings of this routine which supplements the algorithm 

in figure 3.27. 

The following areas have been highlighted for further 

discussion: 

1. calculation of diseased area. 

, 
2. Calculation of proximal and distal diameter equations 

plus parallel check. 

3. Fitting linear equation between proximal and distal 

diameters. 

4. Calculating the points o~ intersection between 

extrapolation of the proximal and distat diameters. 
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The angular separation between upper and lower boundry diameter 
lines dictate the curvature of the arc to be fitted (,y). Between 
the artery axis and the arc's centre of rotation, a radii 
establishes the position of the undiseased diameter line. End 
point co-ordinates for thisliameter are computed from rate of 
change of radial length with change in angle (8). 

All diameters are worked through sequentially such that each 
pair of diseased diameter end point co-ordinates, has a complementary 
part of undiseased diameter end point co-ordinate~ 

Atheroma area may now be calculated as the difference between 
undiseased and diseased artery area. 

Figure 3.26 Program ECCFTR - overall schema 
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figure 3.27 ECCFTR algorithm 
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5. Calculating angular difference and radii adjustments. 

6. Calculating coordinates of radial end points. 

7. Calculation of eccentricity. 

8. Calculation of undiseased and atheroma area. 

CALCULATING THE DISEASED AREA. This is performed by the 

subroutine AREAS and is an almost carbon copy of the program 

DIAMAV. 

COMPUTING DIAMETER EQUATIONS AND PARALLEL CHECK. The 

mathematical proof for calculating the equation of a 

straight line is presented in PROGRAM PNTED function PPSIDE. 

The parallelity check consists of comparing the angles of 

the upper and lower diameter lines (figure 3.26) with 

respect to the right directed horizontal (PROGRAM DIAMRS, 

function ANGLE). If the difference between the lines is 

less than the smallest angle obtainable on the graphics 
tablet from direct tracing (3.33 x 10- 4 ) the lines are 

judged to be parallel. If this is the case, a linear 

equation is fitted between the diameters and represents the 

artery profile if disease were not present (next section). 

If the lines are not judged to be parallel, then the artery 

profile is represented by a circular function. 

FITTING LINEAR EQUATIONS. Although an artery may taper 

throughout the course of its traced segment, discernible 

curvature may not be present. Fulfilment of the parallelity 
check allows linear equations (PROGRAM PNTED, function 

PPSIDE) to be fitted between the proximal and distal 

diameters (figure 3.28) in the subroutine LINFIT. End 

points of the undiseased diameters are computed as the 

points of intersection between an extrapolation of the 

diseased diameter and the fitted equation between the 

proximal end distal boundaries according to the method 

described in PROGRAM DIAMRS, SUBROUTINE AXDIAS. Linking of 
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1st diameter = AVMAXD, or, 
maximum diameter above location of minimum diameter 

Point of intersection 

Minimum diameter 

t 
1st diameter = AVMAXD or, 
maximum diameter below location of minimum diameter 

Figure 3.28 Subroutine LINFIT - Rate of change of diameter 
length between upper and lower boundries determines the degree 
of interpolation necessary for each sequential diameter 
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these end points describes the artery profile in the absence 

of disease. 

CALCULATING POINTS OF INTERSECTION. If the parallelity 

check fails, then significant curvature is present in 

profile of the artery. This dictates a fit based on a 

circular function between proximal and distal diameters. A 

circular function is chosen for two reasons: 

1) The data cannot realistically support the fitting of a 

polynomial equation as all the information for the 

normal artery fit is located at the "ends" (usually 

taken to be normal) of the tracing. 

2) At large radii, the arc of a circle approximates to an 

ellipse, a geometric shape commonly fitted to the 

interior of the left ventricle particularly and the 

shape of the heart in general. It has been assumed 
that one may employ this shape to describe the course 
of an artery accross the external surface of the heart, 

provided it is viewed at right angles to its long axis. 

The centre of the circle is computed as the point of 

intersection between extrapolation of proximal and distal 

diameter lines (figure 3.26) following the methodology cited 

in PROGRAM DIAMRS. 

CALCULATING ANGULAR DIFFERENCE AND ADJUSTING RADII. The 

angular difference between proximal and distal diameters 

(figure 3.26) is computed by successive use of the function 

ANGLE in the normal way. Starting radii are calculated as 

the distances between the circle centre and the lower bound 

and upper bound points of the diameter lines (figure 3.26). 

The change in radius between the proximal and distal ends is 

calculated as a direct difference and the product is divided 

by the angular difference, resulting in an expression of 

rate of change of radius for that boundary with angle. For 

any subsequent diameter under test (figure 3.26), the 

lengths of the radii for this position may be obtained as: 
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New 

radius 

= starting + rate of change 

radius of radius 

angular difference 

between start and 

current diameter 

CALCULATING COORDINATES OF RADIAL END POINTS. Consider the 

diagram presented as figure 3.29. The program is proceeding 

to calculate new radial end points in a clockwise direction. 

The angular difference between the starting diameter (taken 

as the proximal diameter in all cases) and the current 

diameter is represented as 8 in the figure and the parameter 

CURANG in the program. 

Taking the lower boundary as the example, PLRAD represents 

the starting radial distance and LRAD the current radial 

distance for the position of the current diameter line. Two 

triangles can now be formed between the lower boundary 

coordinates of the diameter, the x axis and centre point and 

the lowe~ boundary radial end points currently under 

computation, the x axis and the centre point. ~ is used to 

represent .the angle between the starting radius and the x 

axis, such that 8 and ~ represents the angle between the 

current radius and the x axis (NB notice that there is a 

difference in the use of these symbols between this figure 

and figure 3.26). By referring all displacements to the 

centre coordinates, XCENTR,YCENTR, expressions for the 

radial end points may be written thus: 

LP1X(J) - XCENTR = LRAD cOS(8+~) 

LPIY(J) - YCENTR = LRAD sin(8+~) 

Using trigonometric compound angle formula, these 

expressions may be written as: 

LRADcos(8+~) = LRAD(coseco~- sinesinw) 

LRADsin(8+~) = LRAD(sineco~ cosesinw) 

The above are standard ratios for compound angles. For full 

derivation, see Davies and Hicks 1978. 
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LPIY{ J)-YCENTR = LRAD(Sine+~ 
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Figure 3.29 Calculation of radial end point position 
(lower boundry only) 
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Expressions for sin~'and cos~ are obtained from the starting 

diameter triangle thus: 

XlP - XCENTR = PLRADcos~ 

Rearranging: 

cos'l' = XlP-XCENTR 

PLRAD 

YlP - YCENTR = PLRADsin~ 

Rearranging: 

sin'f = YIP-YCENTR 

PLRAD 

substituting into the radial end point equations: 

LPIX(J)-XCENTR = LRAD . fl(XlP-XCENTR\ COSS-(YlP-YCENTR) sine] 
~ PLRAD ) PLRAD 

LPIY( J) -YCENTR = LRAD • ffYlP-YCENTR)COS9-(XlP-XCENTR) sin91 
~ PLRAD PLRAD J 

Rearranging for radial end points: 

LPIX(J) = LRAD.~XlP-XCENTR)COSe -

PLRA9.. 

LPIY(J) = LRAD.~YlP-YCENTR)COSe + 

PLRADL 

, 

(YlP-YCENTR)SinJ + XCENTR 

(XlP-XCENTR)SinJ + YCENTR 

This is the equation found in the listing for computation of 

lower boundary radial end points. The procedure is repeated 

for points on the upper boundry. 

CALCULATION OF ECCENTRICITY. An object which is described 

as eccentric is defined as not having its axis placed 
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centrally. This method of calculating eccentricity hinges 

entirely on this definition. 

Figure 3.30 shows a slightly eccentric lesion with 

superimposed normal artery profile and axis as calculated 

earlier in this routine. One diseased and one "normal" 

diameter line are highlighted as an example. They have had 

to be separated in order to be drawn. In actuality they sit 
on top of each other to some extent, crossing at the 

diseased artery axis as this point has been used for the 

radii positioning (figure 3.29). Their angles of 

orientation differ slightly according to the degree to which 

the position of the diseased artery axis changed within the 

controlling parameter bublen (section 3.6). 

It is evident that the position of the diseased artery axis 

at this point does not lie on the normal artery axis line. 

The parameter SHIFT expresses this discrepancy in absolute 

terms. However, it was decided that this parameter may be 
better expressed as a relative measure. As absolute 

concentricity would be indicated by superimposition of 

diseased and normal artery axis points (0% eccentricity), 

with eccentricity capable of being measured in either 

direction ie. diseased axis point on either lower or upper 

boundry (100% eccentricity), the denominator for 

eccentricity calculation was taken as half the "normal" 

diameter. Hence the expression for relative eccentricity 

becomes: 

Eccentricity (%) = (~ndisea::~F~i:m!~~r lengt2\ x 

\: at this location ) 

100 

Eccentricity values at each point are compared with the 

maximum thus far in order to locate the point of maximal 

artery axis offset. Eccentricity at the previously located 

minimal diameter is also stored, along with cumulative 

eccentricity from which the average may be computed. 
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Figure 3.30 Calculation of the ecsentricity factor 
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CALCULATION OF UNDISEASED AND ATHEROMA AREA. Following the 

computation of the lower and upper boundry coordinate 

positions which describe normal artery profile, these may be 

passed to the same subroutine AREAS which calculated the 

diseased artery area earlier in the program. The result is 

an expression of the area of the normal artery between the 

fitted circular function limits. Atheroma area is obtained 

by simple difference between the undiseased and diseased 

areas (figure 3.26). All areas are expressed in absolute 

terms following correction for magnification. 

Program ECCFTR produces a hardcopy of the following results: 

ECCENTRICITY FACTOR AT MINIMUM DIAMETER) 
MAXIMAL ECCENTRICITY FACTOR Relative 

MEAN ECCENTRICITY FACTOR 

STENOTIC AREA ) UNDISEASED AREA Absolute 
ATHEROMA AREA 

Whilst the fit of the arc of a circle to the course of the 

artery is perhaps not the most appropriate method for 

interpolation of eccentricity, it is mathematica~ly simple 

and has obvious advantages over visually scored methods 

(Meier et al 1983b) or a purely linear fit (Wijns et al 

1985a) which allows for artery taper, but not for artery 

curvature. 

However, the technique is limited to arteries exhibiting 

curvature in one direction only. A second (or more) change 

of curvature direction throughout the course of the traced 

segment invalidates the circular fit and anomalous results 

are generated. This is also true in arteries whose 

direction changes reasonably rapidly ego the RCA at the 

acute margin. Such results are usually manifest as negative 

atheroma areas and/or eccentricity values above 100%. 
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PROGRAM ARTDR 

Whilst quantification is the primary aim of this project, 

the addition of graphical information can aid in its 

interpretation. For this reason, PROGRAM ARTDR was written 

and operates according to the algorithm presented as figure 

3.31. No areas are highlighted for further discussion as no 

complicated mathematics are involved. 

Unfortunately, due to lack of graphics facilities on the 

Vector3, this routine runs on Loughborough University Prime 

mainframe computer only, employing the dedicated graphics 

package GINO. However, should the system be transferred to 

a more modern microcomputer, an equivalent program could be 

written to allow routine hardcopy generation for placement 

in the patients notes, supplementing the quantitative 

information. Direct visualization would also be useful 

during program ECCFTR as the circular function fit could be 

directly viewed and its worth assessed prior to being 

printed. Figure 3.32 displays a plot of diseased artery 

diameter with quantification output from program ANALYZ. It 

is important to note that only every eighth diameter has 

been plotted. Figure 3.33 shows the artery axis and 

interpolated undiseased artery diameters superimposed upon 

the previous figure. Quantification data from program 

ECCFTR the is also included. These figures summarize the 

present capabilities of QAMS as it stands. 

3.6 Characterization and Validity Experiments 

3.6.1 System characterization 

This section describes the methodology behind the derivation 

of the various constants necessary for the QAMS to run. All 

experiments in this section were carried out on the QAMS 

system itself rather than on the Prime System. 

HAND TRACING TOLERANCE. As the QAMS system relies on 

tracing accuracy for data entry, it is important to quantify 
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Figure 3.32 Graphical representation of sequential artery 
diameters; program ANALYZ quantification data included 
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Figure 3.33 Graphical Representation of sequential diseased artery 
diameter~, undiseased artery diameters and artery long axis; program 
ECCFTR quantification data included 
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---------

the extent to which a user fails to digitize to within the 

resolution accuracy of the graphics tablet. The magnitude 
of this factor is both of general interest (is it so large 

as to be unacceptable when digitizing objects of a size to 
be routinely met in the primary application of QAMS) and 
specific interest for application in the previously cited 

software. 

Four naive users were each instructed to trace a marked 

horizontal and vertical line across the graphics tablet in 
their own time as accurately as possible. The lines taken 
were those of the wires embedded into the graphics tablet, 
their course reflecting a constant Y coordinate value for 
the horizontal and a constant X coordinate value for the 
vertical. Each user traced each line four times in random 
order before being allowed at least a one hour rest. The 

same users were then asked to retrace the four lines, again 
in random order, so that repeatability of the tolerance 
factor could be investigated. 

Coordinate data files produced where firstly analyzed by the 
program BPSTAT.BAS (appendix 1) in the presence of the user 

which computed the number of coordinates accumulated for 

each trace, the mean coordinate value the standard deviation 
and the coefficient of variation. This information served 
as a quick check of data integrity (a wild standard 
deviation would indicate the accumulation of spurious 
coordinates from the collection programs) and provided the 
raw data for further manipulation in the mainframe based 
statistical package, MINITAB (Ryan,Joiner,Ryan Penn State 
University). MINITAB was used to calculate the average 
standard deviation for the whole group, the parameter 

accepted as the basis for the hand tolerance factor (chapter 
4). Standard errors of measurement were also calculated and 
the data further investigated for interuser and intertest 

condition variation using analysis of variance and related 
t tests. 
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MAGNIFICATION AND PINCUSHION DISTORTION FACTORS. The QAMS 

system has been originally designed for single plane use 
only, which unavoidably introduces error as a result of 

axial displacement between the stenosis and the calibrating 
object (the catheter - chapter 2). Whilst this displacement 
cannot be measured on this system as it stancis, it is 
important for the user to be aware of how much error there 

may be in an absolute measurement of a stenosis with varying 
axial displacement. Should the user be requiring absolute 
measurements, the magnitude of the magnification factor may 
encourage him to combine knowledge of cardiac anatomy with 

radiological projection in an effort to employ a view where 
axial displacement is at a minimum. Derivation of the 
pincushion distortion factor is necessary so that objects to 
be quantified using the QAMS may have the effects of 

selective magnification at the frame edges removed as 
discussed in section 3.5. 

The deviation of both factors was combined into one 
experiment. 

Films were taken at the catheter rooms of the Groby Road 
Hospital, Leicester of a calibration grid composed of 

crosswires. A custom made grid was not available, so 
industrial mesh was used instead, with the absolute 
measurements of all wire separations to be quantified from 
the film being previously measured with a set of hand held 

vernier calipers accurate to O.02mm, the average of three 
repeat measurements being used. One exposure of the grid 
was made in each room with the grid centre at that of the 
image intensifier at five differing but known source - film 
distances and the two commonly employed image intensifier 
sizes (section 3.2.1) giving a total of ten exposures per 
catheter room. 

As pincushion distortion is absent at the centre of the 
image, the magnification factor may be derived from analysis 
of the rate of change of separation of centrally placed 

crosswires with increasing source - film distance, and its 
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comparison to the absolute separation. Characterization of 

the pincushion distortion factor requires measurement of 
crosswires separation at increasing radial distances from 
the centre and comparison to the absolute separation in a 
manner described in section 3.5. 

Hence, using point mode, the 4 corners of a centrally 
located square of the grid image were digitized, along with 
other squares in the horizontal and vertical planes at 
increasing radial distances from the image centre. The 

resultant data files were processed by a custom written 
program CUSHCALC.FOR (appendix 1). For every source - film 
distance and image intensifier size, the program supplied 
values of current magnification factor, ratio of crossgrid 
wire separation in the outer field to that in the centre, 
and radial distance from midpoint of digitized point pairs 

to image centre. This raw information was further 
investigated using the MINITAB statistical package where 
regression analyses were performed. 

3.6.2 Software Validity 

This section addresses the questions "do the routines 
perform the tasks they are supposed to, and, are the 
subsequent results accurate enough to warrant further 
implementation"? Thus, for every routine which involved any 
form of computation other than pure "number crunching" (ie. 

PROGRAM ANALYZ), an experiment was designed and undertaken 
to put the code to the test. As these experiments were at 
the heart of the software developmental process, the data 
for these experiments was collected and processed using the 
University's graphics tablet and Prime System. 

TESTING PNTED. Leaving pincushion distortion aside for the 
moment, the program basically works by making decisions 
about the structure of the datafile in question. Competence 
is assessed on whether the data file is free of any 

coincident points or reversals. Therefore, in order to 
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test PROGRAM PNTED, a sample data file was created 

containing known errors designed to test every facet of the 

decision making process. The routine was judged accurate 
when all discrepancies were correctly identified and 

removed. 

Correction of the data for pincushion distortion involves 
adjustment of the value of each coordinate point in 
accordance with the value of the earlier derived factor in 
the form of the equation which characterizes the distortion. 
Raw datafiles were checked by hand and tested for agreement 

with their processed equivalents. 

TESTING DIAMAV. Program DIAMAV was tested by employing the 

following two experiments: 

Experiment 1. This experiment was conducted in order to 
establish if the program was capable of accurately measuring 
areas of the size likely to be encountered during the 
quantification process. To this end, two sets of test data 
were created. Firstly, representing undiseased coronary 

arteries, "tubes" of known area, range a.5cm2 to 5cm2 in 
a.5cm2 increments were drawn on graph paper. Secondly, 
tracings of actual coronary arteries (exhibiting coronary 
artery disease) were taken directly from the projected 
images. The area of the tracings was then calculated using 

a planimeter (Gerbruder Haff GMBH, Pfronten-1, West 
Germany), the mean of three tracings taken to be 
representative of the true area. 

Each area was then digitized on the University's 
Summagraphics graphics tablet (Terminal Display Systems 

Ltd., Blackburn Lancs.), which allowed the production of a 
coordinate datafile in the Prime filespace for subsequent 
area analysis. Each area was digitized three times, with 
each datafi1e being separately ana1yzed by the PROGRAM 

DIAMAV. The mean of the three tracings was taken to be 
representative of the true area for analysis (chapter 4). 

Linear Regression analysis was then carried out on the two 
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data sets to highlight potential differences. The two data 

sets were then combined in order to produce a data set 

representative of all physiological possibilities in the 

quantification of the dimensions of coronary arteries. 

Linear regression analysis was performed on this "combined" 

data set also. 

Experiment 2. The ability to measure area accurately from 

an analogue source is very useful. Indeed, the measurement 

of area has many applications other than the one found for 

it in this thesis. Hence, this experiment was conducted in 

order to establish whether the algorithm which lies at the 

core of the PROGRAM DIAMAV was capable of measuring areas of 

any size (limited only the input device, the graphics 

tablet) and any shape, regular or infolded. Again, two sets 

of data were created. The first, like before, was 

constructed as drawings on graph paper. In this instance, a 

variety of geometrical shapes of varying size were chosen, 

the area of which was either calculable directly by 

equation, ego rrr2 or obtainable by dividing the more complex 

shape up into a collection of smaller regular shapes whose 

individual areas could be calculated from equation. The 

shapes chosen included the square, circle, triangle, 

hexagon, horseshoe and sixpointed star. The second data set 

was taken from planimetered areas of highly complex shapes 

which were drawn at random, the area of which was not 

calculable by any form of equation. Again, the mean of 

three tracings was utilized for analysis in the results. 

All areas were digitized and processed according to the 

previously cited methodology. All data was then analyzed in 

a similar fashion to that in the previous experiment, both 
separately and combined. 

TESTING DIAMRS. PROGRAM DIAMRS uses the information passed 

to it from PROGRAM DIAMAV to grow, move and contract a 

mathematical bubble along the course of the digitized 

coronary artery, calculating the position of diameter lines 

perpendicular to the long axis as it goes. It seemed 
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obvious that the crucial parameter to test as a mark of 

performance of this program was the perpendicularity of the 

diameter lines. In order to investigate this, the data 
files from the tubes in the previous routines validation 
where re-employed. Note, tubes 1 to 5 had a diameter of 
50mm whilst tubes 6 to 10 had a diameter of 100mm. PROGRAM 
DIAMRS was allowed to run on these files following 
processing by PROGRAM DIAMAV which provided the relevant 

bubble information. 

In addition to the file of diameter end point information 
which is normally produced, an additional file containing 

the angle between the diameter line and the right directed 
horizontal was created. This latter file could now be 
analyzed for constancy of angle expressed as mean, standard 

'deviation and coefficient of variation thus describing 
para1lelity between the diameter lines throughout the traced 
tube. Once the actual diameters had been calculated from 
the coordinate information in the DIAMETER.EPS file, 
variability in these dimensions could be expressed as mean, 

standard deviation and coefficient of variation, their 
magnitude reflecting the combination of the errors of 
non-parallelity with those of hand tracing tolerance. 

The ability of the routine to work with curvature was also 
investigated. Three curved tubes of varying radii were 
drawn and digitized. PROGRAMDIAMRS then processed these 
files, the diameter lengths expressed again as mean, 
standard deviation and coefficient of variation. 
Unfortunately it is not possible to examine variabilitY'in 
angle in the same fashion as was adopted in the previous 
validation as the angle of the diameter lines relative to 
the right directed horizontal will be changing as the bubble 

travels down the axis of the curve. 

Whether the value of bublen provided by PROGRAM DIAMAV was 
producing the best results also came under scrutiny at this 

point. If the value of bublen were set correctly for the 
tracing under test, then errors in stenotic parameters would 
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be at a minimum. Hence, program DIAMRS was allowed to run 

on data from digitized coronary stenoses (taken from 

projected tracings, as in PROGRAM DIAMAV validity) and the 

bubble length from program DIAMAV was altered in the 

following manner. 

PROGRAM DIAMRS was 

Taking the original value as 100%, 

allowed to run on 50%, 75%, 100%, 150% 

and 175% of this value with resultant data files examined in 

the manner previously described. 

TESTING ANALYZ. Program ANALYZ is a simple numerical 

manipulation routine, and therefore did not undergo any 

extensive validation other than comparison of results from 

hand worked examples with those of computed ones - this 

includes the calculation of the magnification factor from 

the digitized catheter coordinates. 

TESTING ECCFTR. The principle behind program ECCFTR 

involves fitting of an arc of a circle between two 

previously identified diameter lines. Therefore, in order 
to validate the routine, the three curved tubes from the 

previous validation were re-employed. The coordinates 

representing the proximal and distal diameter lines between 

which the fit had taken place were obtained, along with all 

coordinates between these limits. PROGRAM ECCFTR then 

processed these files in the normal way. As the routine 

produces a set of coordinates from the fit for every set of 

initial coordinates, direct comparison of the differences 

between the two data sets could be made. This was carried 

out using a two tailed unrelated 't' test at the 5% level of 

significance. 

TESTING ARTDR. Like PROGRAM ANALYZ, PROGRAM ARTDR is merely 

an numerical manipulation routine, the only difference being 

that the Fortran code is interfaced through Prime resident 

GINO routines to the University's Laser Jet printer. The 

routine was not validated in the true sense, (other than 

working through), but rather parameters within the code were 

altered until a "pleasant" graphical result was obtained 

from the raw data. 



3.6.3. Usability 

This section describes experiments conducted in order to 

assess the repeatability, objectivity and validity of the 

QAMS system and as such all data were collected using the 

system itself, rather than the University's mainframe 

computer as in the previous section. 

In each of the three sections which follow, the method of 

data collection is exactly the same as that described in 
appendix 1. 

1. REPEATABILITY. This section addresses the question "to 

what extent does image selection and. preparation 

interfere with obtaining repeatable results in the 

digitization of coronary artery stenoses". As group 

variability for digitization had already been studied 

(section 3.6.1), this experiment concerned itself with 

individual variability only. 

The following data was collected in order to 

investigate repeatability. NB. each test utilized a 

different film. 

a. 8 times repeated digitization of the same 

pretraced stenosis (apparently most severe) in the 

same frame of a given cine angiogram. 

b. 2 sessions of single digitization of eight 

different pretraced stenoses. 

c. 8 times repeated tracing and digitization of the 
same stenosis (apparently most severe) in the same 

frame of a given cine angiogram. 

d. 8 times repeated tracing and digitization of the 

same stenosis in multi-frame increments over the 

course of one cardiac cycle (systole - systole) 
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(NB. the stenosis could only be digitized when 

adequately visualized). 

e. 4 times single tracing and digitization of the 
same stenosis in the same frame (as judged by left 

ventricular wall movement) across consecutive 

cardiac cycles. 

Using the above strategy, variability within the 

results for coronary artery quantification due to 

digitization, tracing, intracardiac cycle change and 

intercardiac cycle change could be evaluated. The 

results for each trial were examined and compared using 

simple descriptive statistics. Data from experiment b 

was subjected to computation of the standard error of 

measurement statistic. 

2. OBJECTIVITY. This trial addressed the question,"how 

well does one individuals measurements of a coronary 

artery agree with another?". This trial was conducted 

at Loughborough University using students reading Human 

Biology as users. Since patient cine films could not 

be removed from the Groby Road Hospital premises, 

slides taken from patients films were used as an 

alternative source of data. As errors introduced by 

repeat tracing had previously been evaluated, the 

contours of the stenosis were highlighted prior to 

commencement of the trial. 

Eight users each traced the same artery once, 

variability amongst the stenotic dimension estimates 

between the users was examined using descriptive 

statistics. The same eight users then each traced 

eight different stenoses twice; the resultant data 

then afforded computation of a standard error of 

measurement statistic. 

, 

3. VALIDITY." Do estimates of dimensions obtained using 

the QAMS system reflect their dimensions true life?". 
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In order to investigate this question, one must have 

access to films of material whose true size is known 

accurately. This is far more difficult to achieve than 

it sounds. Ideally, this system would have been best 

validated on comparisons of dimensions of 

histologically processed human coronary arteries and 

their equivalents from the QAMS system. However, such 

a comparison could not be made within the scope of this 

work for the following reasons: 

1. The handling of human postmortem material in a 

busy catheter laboratory is unethical and 

hazardous, unless done under completely aseptic 

conditions, cleaning thoroughly both before and 

after use. This is costly both in terms of time 

the catheter laboratory is out of action, and 

manpower involved. 

2. Fresh postmortem material is difficult to acquire. 

ie. before it is subjected to the routinely used 

preservatives which tend to distort and alter the 

structure of the material. Even abbatoir animal 
material is rendered unusable by the slitting of 

the heart walls during routine meat inspections. 

3. Loughborough University has no histological 

processing facilities. 

As coronary arteries could not be used, objects of known 

size were substituted. As grid radiographs already taken in 

both catheter rooms existed (section 3.6.1) it seemed 

sensible to cut intrusion into the normal workings of the 

catheter laboratory down to a minimum, and use the 

separation of the grid wires as the raw data. 

Hence, two sections of gridwire were arbitrarily selected 

across the surface of the grid, one in the horizontal plane 

and one in a vertical plane for each catheter room and image 

intensifier size. Each section was carefully measured with 
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an engineering vernier caliper (accurate to O.Olmm), the 

mean of three readings being taken to be representative of 

the true value. Then, each section of grid wire was 

digitized eight times. Comparisons between the vernier 

measurements and those provided by the QAMS system where 

then made using correlation analysis and a two tailed 

unrelated "t" test with significance set at the 5% level. 
Repeatability of true wire separation estimate was also 

examined using simple descriptive statistics. 
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CHAPTER FOUR 

RESULTS 

4.1 System Characterization 

4.1.1 Hand Tracing Tolerance 

Table 4.1a presents the data from the repeatability study 

described in section 3.6.1. Each individuals data have been 

averaged across the four re-traces. 

Hand tracing tolerance was calculated as twice the average 

standard deviation (SD) across all users on both trials -

the result being 22.04 graphics tablet units ( g.t.u - table 

4.1a). Thus, in the PROGRAM PNTED, there is 95% confidence 

that any reversals of magnitude equal to or less than 22.04 

g.t.u are due to "hand tremor". Reversals exceeding this 

criterion are treated as intended and not removed from the 

final data set. 

Standard errors of measurement (Smeas) for the three 

parameters of total coordinate number, mean coordinate value 

and SD were also calculated as the SD of the differences in 

anyone parameter, divided by the square root of two (table 

4.1a). The results indicate that variability incurred in 

the digitization of a constant X or Y value is very small 

(coefficients of variation (CV) for each re-trace less than 

0.3%) over a wide range of total coordinates collected 

(Smeas 60.13) both in absolute terms, and relative to the 

previously calculated hand tracing tolerance (SD only). 

Variability across the users (subjects) and between the two 

test conditions was then examined in order to exclude the 

possibility that the magnitude of the hand tracing tolerance 

factor had not been unduly influenced by anyone users 

results. This was achieved using two way analysis of 

variance (table 4.1b). The analysis demonstrated only three 

significant results at the 1% level, all due to between 
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Table 4.1a Group repeatability (mean of 4 runs). standard error of measurement 
hand tracing tolerance 

gtu = graphic tablet units (thousands, of an inch) 

RUN 1 

N X(gtu) SD(gtu) 

X MJ 32717 5294.95 8.58 
C 
0 VWM 277.0 5292.17 9.51 
N 
S PSB 300.0 5292.37 13.10 
A 
N DB 341.7 5296.10 8.53 
T 

Y MJ 280.0 5806.65 9.64 
C 
0 VWM 239.2 5810.62 13.60 
N 
S PSB 454.2 5810.90 14.46 
A 
N DB 296.0 5808.85 9.43 
T 

Standard errors of measurement (Run 1 - Run 2) 
(Subject and X. Y data combined) 

N = 60.13 
X = 4.19 
SD = 2.88 

CV(%) 

0.162 

0.181 

0.248 

0.161 

0.166 

0.234 

0.249 

0.162 

RUN 2 

N X(gtu) 

268.2 5295.52 

143.7 5293.95 

369.7 5294.55 

283.7 5299.75 

281.5 5804.85 

146.2 5810.82 

469.7 5810.12 

239.0 5805.50 

and computation of 

SD(gtu) CV(%) 

8.70 0.164 

11.42 0.216 

9.74 0.184 

9.64 0.182 

8.28 0.143 

16.94 0.293 

11.76 0.203 

13.07 0.225 

Average standard dev~ation (whole group) = 11.02 Hand tracing tolerance = 2 x SD = 22.04 gtu 



Table 4.lb Intersubject and intertest variability. Two way 
analysis of variance (1= 0.01 (Run 1 vs Run 2 and MJ vs VWM vs 
PSB vs DB) 

Between Between test Interaction 
Subjects conditions 

X CONSTANT df F·obs df Fobs df Fobs 

N 3,24 7.04 P '" 0.01 1,24 4.87 3,24 4.22 

X(gtu) 3,24 4.12 1,24 3.51 3,24 0.80 

SD(gtu) 3,24 2.42 1,24 0.05 3,24 2.01 

Y CONSTANT 

N 3,24 74.30 p" 0.01 1,24 6.29 3,24 3.66 

X(gtlU) 3,24 2.81 1,24 0.95 3,24 0.26 

SD(gtu) 3,24 6.65 p .. 0.01 1,24 0.49 3,24 2.41 
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subject variation; those of total number of coordinates 

collected for both X and Y constant, plus SD for Y constant. 

Although no significant differences were encountered for 

between test condition variation, it was thought wise to 

examine this parameter on an intrasubject level using a 

battery of related t tests (table 4.1c). Such testing 

allows examination of individual repeatability of the 
tolerance factor and change in the magnitude of the SD as a 

result of accumulated experience from the first run. 

All results are non significant at the 1% level (table 4.1c) 

confirming that the tolerance factor is individually 

repeatable and the magnitude of the SD shows no training 

effect. 

These facts establish the conclusion that the current 

setting for the hand tracing tolerance factor is appropriate 

even after allowing for familiarization. 

4.4.2 Magnification and Pincushion Distortion Factors 

a. Magnification factors (MF's). Data, following initial 

processing by the program CUSHCALC.FOR is presented in 

table 4.2. The upper half of the table documents the 

MFs at increasing source to film distances (relative 

displacement) whilst the bottom half of the table deals 

with rate of change of MF using regression analyses. 

The two variables of MF and distance were regressed 

against each other for each of the four conditions 

(figure 4.1), the resulting gradient from each analysis 

representing the rate of change of MF with distance. 

Rate of change of MF varied from O.0158cm-1 in Room A, 

small image intensifier size to O.0251cm-1 in Room B, 

large image intensifier size (section 3.2.1). 

Transferring these two extremes to a practical 

condition where a 3.5mm lesion may be displaced from 
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Table 4.lc Intrasubject variability between test conditons 
2 tailed related t tests (Run 1 vs Run 2) a ~ 0.01 

N X (gtu) SD(gtu) 

X MJ 2.75 -0.26 -0.54 
C 
0 VWM 3.03 -0.41 -1.32 
N 
S PSB -1.04 -1.48 3.22 
A 
N DB 2.24 -2.33 -0.98 
T 

Y MJ -0.23 0.91 0.91 
C 
0 VWM 4.41 -0.06 -0.83 
N 
S PSD -0.63 0.23 1. 79 
A 
N DB 4.45 0.71 -2.90 
T 

All results are non significant 
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Table 4.2 Rate of change of magnification factor (MF) 

MF 

Relative distance Room A, Room A, Room B, Room B, 
(cm) SmallII LargeII SmallII Large II 

0 1.66192 2.59103 1.42231 2.16513 
5 1. 70076 2.60222 * 2.25376 
10 1.76831 2.76197 1.57891 2.41854 
15 1.86133 2.89800 1.66559 2.50377 
20 1.98098 2.97607 1. 79799 2.66696 

Gradient (rate ~1 
change of MF cm ) 0.015848 0.021317 0.018303 0.025073 

SE gradient 0.001761 0.002684 0.001650 0.001526 

r 0.98 0.97 0.99 0.99 
P .,; 0.01 p,O.Ol P " 0.01 p"; 0.01 

SEE 0.028 0.042 0.024 0.024 

11 = Image intensifier 

* indicates missing value 
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figure 4.1 Rate of change of 
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the catheter by for example, as much as 3cm, rates of 

change of MF of this order would incur errors in the 

estimation of maximal diameter of 4.7% and 7.5% 

respectively. However, 3cm represents a theoretical 

maximal displacement; it is envisaged that the working 

discrepancy in the major application of the QAMS in 

this thesis would be much smaller than this. 

All correlation coefficients describing the 

relationship between MF and distance were compared 

against a critical value at the 1% level of 

significance in the one tailed condition, as the 

regressed relationship was expected to be positive. 

All correlation coefficients were significant under 

these conditions, confirming the highly linear 

relationship between MF and distance. 

b. Pincushion distortion factors. As presented in section 

3.5, magnification factor at increasing distances from 

the centre of the image intensifier is related to the 

square of this distance according to the general 

equation Y = ax2+b. Therefore regression analysis was 
performed between the square of the radial distance and 

magnification factor at these increasing radii. 

The upper portion of table 4.3 documents the 

regression results describing the rate of change of 

pincushion distortion factor with the square of 

increasing radial distance. Graphical representation of 

the relationships is presented as figure 4.2. All 

relationships are highly linear (r )= 0.88) with low 
variability about the regression line (standard error 

of the estimate - SEE <= 0.045). All gradients 

(equivalent to 'C', the coefficient characterizing the 

pincushion distortion in this and the Brown - Dodge 

method) agree reasonably well apart from that in room A 

with the small image intensifier. This particular 

relationship also has the largest standard error of the 

gradient (SEgrad). 
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Table 4.3 Pincushion distortion factors 

General equation: 
2 

Y = ax + b 

Room A, Room A, Room B, Room B, 
SmallII LargeII SmallII LargeII 

N 39 28 29 33 

Gradient -2 (cm ) 0.0020136 0.00062484 0.0006513 0.00053700 

SE gradient -2 (cm ) 0.0001486 0.00005607 0.00006559 0.00004235 

r 0.91 0.91 0.88 0.91 
P , 0.01 P" 0.01 P ... 0.01 P" 0.01 

SEE 0.045 0.015 0.021 0.017 

Intercept 1.00479 1.00614 1.01232 1.01260 

SE intercept 0.01240 0.00434 0.00551 0.00417 

t ratio 0.37 1.41 2.23 3.02 
P'" 0.01 
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As pincushion distortion is theoretically absent at the 

centre of the image intensifier, all regression 

relationships should intercept with the y axis at a 

magnification factor of 1. This theory was put to the 

test applying a criterion t test to the intercept data 

calculated thus: 

t Ratio = (true intercept - expected intercept(ie1.0») 
SE1ntercept 

The theory is confirmed in three of the four cases, 
with the intercept in room B, large image intensifier 

being significantly different from 1.0 at the 1% level. 

4.2 Software Validity 

4.2.1 PROGRAM PNTED 

Figure 4.3a presents the test datafile containing both 
coincident points and reversals. Note the metric equivalent 

of the hand tracing tolerance factor was used. This enabled 

coordinate separation to be kept small and easy to handle 

during testing. 

As a validation procedure, PROGRAM PNTED was allowed to 

process this datafile and the resultant file was checked for 

errors. PROGRAM PNTED was not implemented until detection 

rate was 100%. The objective data file is presented as 

figure 4.3b and was produced both by hand and the current 

version of PROGRAM PNTED. 

4.2.2 PROGRAM D1AMAV 

Table 4.4 documents the results to a series of related t 

tests performed on the six sets (4 individual,_ 2 combined) 

of data collected for the validation of the routine D1AMAV. 

The 5% level of significance was chosen for these tests as 

this reduces the possibility of a type 11 error, ie. failing 

to reject the null hypothesis when it is actually false. 
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Table 4.4 2 tailed related t test results, a = 0.05, 
DIAMAV evaluation 

t observed d.f. t critical decision 

Tubes in the 
physiological .range 0.6851 9 3.250 NS 

Digitised arteries 1.4895 9 3.250 NS 

Tubes and arteries 
combined 1.6299 19 2.861 NS 

Geometric shapes 0.3648 13 3.012 NS 

Convoluted areas -0.2652 9 3.250 NS 

Shapes and areas 
combined -0.1532 23 2.807 NS 

NS = Not significant 
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This level of significance seemed most appropriate as even 

small discrepancies are important in the measurement of area 

due to its two dimensional nature. 

From the evidence of the validation results, the routine 

performs well as there are no statistically significant 

differences detected in any of the individual or combination 
groups. 

The validity of area measurement using PROGRAM DIAMAV was 

further examined by regressing true area against computed 

area (table 4.5 and figures 4.4a,4.4b). If the routine 

computes true area, the regression relationship should show 

no significant differences from the line of identity. All 

SEgrads are low, with those in the geometric shape and 

convoluted area groups being relatively smaller than those 

in the tubes and arteries groups. All t tests performed to 

detect significant differences from the line of identity (t 

ratio formula presented in section 4.1.2) are non 

significant, confirming that the routine does indeed compute 

area accurately over a wide range of shapes and sizes. 

Intercepts are all approximately zero reinforcing this 

statement. All SEEs are low and correlation coefficients 

equal to unity. The significance of the regression 

relationship has also been tested using analysis of variance 

(Fregr) yielding highly significant results. 

Overall, this routine is sufficiently accurate to be used in 

the QAMS system. 

4.2.3 PROGRAM DIAMRS 

Analysis of the tube data for variation in diameter length 

and angle (with respect to the right directed horizontal) 

from the previous sections experiments resulted in the data 

presented in table 4.6. Regarding the results of 

variability in diameter length firstly, all mean diameters 

approximate to the criterion values (50mm and 100mm), 

however, there is increased disparity in tubes 1 to 5 (CV 
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Table 4.5 Regression analyses results for DIAMAV evaluation 

N Gradient SEgrad t:.regr Intercept SEE r Fcregr 
(cm) 

TUbes in physiological 
range 10 1.0005 0.0140 0.036 0.0118 0.0636 1.00 5077 .82 

P .. 0.05 P ~ 0.05 
, i' .. 

Digitised arteries 10 1.0157 0.0503 0.312 0.0152 0.0915 0.99 408.56 
P ~ 0.05 P ~ 0.05 

TUbes and arteries 
combined 20 0.9973 0.0144 -0.188 0.0349 0.0763 1.00 4789.20 

P ~ 0.05 P ~ 0.05 
f-' 
1Jl 
CD Geometric shapes 14 1.0025 0.00138 1.812 -0.1505 0.3510 1.00 

p, 0.05 p~ 0.05 

Convoluted areas 10 1.0027 0.0068 0.397 -0.2973 1.5787 1.00 21696.30 
p"; 0.05 P ~ 0.05 

Shapes and areas 
combined 24 1.0027 0.0029 0.931 -0.2168 0.9890 1.00 122015.51 

p~ 0.05 p";;; 0.05 



figure 4.4a Relationship between true 
and computed areas in the physiological 

rarge - program DIAMAV validation. 
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figure 4.4b Relationship between true 
and computed areas in the general range 

program DIAMAV validation. 

true area (cm) 

270 r 
I 
I 

180 ~ , , 

comoined 

. L con'.jJiuted 
I 

90 r 
I 
I 

o------------~----------~--------~ 

o 90 180 270 

computed area (cm ) 

geometric 



f-' 

'" f-' 

I 

Table 4.6· Variability in diameter length and angle (with respect to the right directed horizontal) 
of digitised tubes. DIAMRS validation 

Tube No Length DIAMETER ANGLE 

(cm) 

X(mm) SD(mm) CV(%) X(rad) SD(rad) CV(%) 

1 1 50.67 0.83 1.6 3.13 0.029 0.9 
2 2 51.73 1.43 2.8 3.13 0.026 0.8 
3 3 52.58 1.17 2.2 3.12 0.029 0.9 
4 4 47.58 1.54 3.2 3.13 0.029 0.9 
5 5 50.39 1.32 2.6 3.12 0.021 0.6 
6 3 100.18 1.62 1.6 3.12 0.029 0.9 
7 3.5 99.36 1.54 1.5 3.12 0.020 0.6 
8 4 99.24 1. 70 1.7 3.13 0.013 0.4 

9 4.5 * * * * * * 
10 5 101.28 1.41 1.4 3.12 0.020 0.6 

* Datafile corrupted by mainframe to microcomputer transfer 



1.6% to 3.2%). SDs are, on the whole, relatively constant 

regardless of mean diameter length. CVs are all low 

suggesting homogeneity of diameter lengths, although lower 

in tubes 6 to 10 (see above). There appears to be no linear 

trend between CV and increasing tube length. 

Angle results however are remarkably constant in both 

subsections, inferring very good parallelity between 

successive diameters. 

These data were processed sometime after it was collected by 

a microcomputer statistical package. Unfortunately, the 

transfer between mainframe and microcomputer (using MOVE -

IT and GETFILE, appendix 1) lead to the loss of the data for 

tube 9. 

Table 4.7 presents data regarding variability of the 

diameter length in three digitized curves of varying radii. 

SD of the diameter length, like those earlier are 
relatively constant and apparently independent of mean 

diameter length. However, variability is generally higher 

than that encountered in a straight tube, and highest in the 

curved tube with the smallest radii. On reflection, it is 

unlikely that artery segments will have morphology with 

radius of curvature as small as 18.0mm with mean diameter 

41.6mm. Therefore the normal case is perhaps better 

represented by curves 1 and 3. 

Table 4.8 presents results to a similar experiment performed 

on actual tracings of coronary stenoses of varying severity. 

In this instance bubble length (section 3.6) was allowed to 

vary also. The data show that varying the bubble length 

between 50% of normal and 150% of normal has little effect 

on the variation in the diameter lengths, although there is 

a tendency for average diameter length to increase as bubble 

length increases. 

However, on the whole, the number of diameter end points not 

found by the program tends to decrease as bubble length 
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Table 4.7 Variability in diameter length of digitised curves of 
varying radii, DIAMRS validation 

DIAMETER 

CUrve No. X(mrn) SD(mrn) CV(%) 

}, 

radius 28mm 80.45 2.02 2.5 

2 
radius 18mm 41.57 2.45 5.9 

3 
radius 34mm 122.16 3.53 2.9 

- 163 -



PAT254, PAT214', , PAT223, PAT312, PAT51 , 
% stenosis = 40% % stenosis = 57% % stenosis = BO% % stenosis = 70% % stenosis = B4% 

Ill~ 

g' ~ !2: !2: ~ !2: !2: 
""' 0.. 0.. 0.. E 0.. 
<::<::fil ~ fil E gj E gj fil E 
III III Cl ~ ~ Cl ~ E ~ E E 1>"- ~ E ~ Cl ~ E 1>"-
U ..... E '",g . 0 Cl :> 0 Cl :> 0 Cl :> 0 Cl :> Ill· 0 Cl :> 
o...oZ 1>< Cl) U Z 1>< Cl) U Z 1>< Cl) U Z 1>< Cl) U Z 1>< Cl) u 

50 9 255.0 40.9 16.03 11 226.3 55.4 24.4B * * * * 15 219.6 BO.B 36.79 12 226.7 105.7 46.63 

75 9 256.2 40.9 15.96 10 227.3 55.5 24.41 12 130.5 36.4 27.B9 16 220.9 BO.7 36.53 12 229.7 107.4 46.76 

100 9 260.1 39.2 15.07 9 22B.0 55.6 24.39 11 131.7 37.2 2B.25 15 222.B BO.7 36.22 11 234.2 107.4 45.B6 

125 9 260.3 39.4 15.13 9 229.2 55.9 24.39 11 131.9 37.2 2B.20 16 226.6 B1.6 36.01 12 23B.9 106.3 44.50 
..... 
en 
~ 150 9 260.6 39.5 15.15 9 230.6 56.2 24.37 11 131.B 36.7 27 .B5 16 229.4 B1.9 35.66 12 243.6 104.1 42.73 

No. DEPNF = Number of diameter end points not found 

* program aborted due to too many diameter end points not found. 

Bubble length normally used by Q.A.M.S. shown as 100 percent 

Table 4.B Variation in diameter lengths of coronary stenoses with changing bubble length 



increases up to the average (ie. 100% bublen), and increase 

again with increasing bubble length. Indeed, for PAT223 at 

50% bubble length, the program aborted due to too many 

diameter end points not found. The implications of varying 

bubble length will be considered in the following 

discussion. 

4.2.4 PROGRAM ECCFTR 

When ECCFTR was allowed to run on the curve data from the 

previous validation, and diameter end point coordinates 

compared with radial end point coordinates using an 

unrelated t test, all combinations of complementary 

coordinate position were non significant (table 4.9). This 

leads to the conclusion that PROGRAM ECCFTR produces a set 

of coordinates which are essentially equivalent in position 

to where the diameter end points are, or would be if the 

segment digitized had been normal. Information regarding 

midpoint shift and eccentricity is not provided as the true 

diameters and radial diameters are essentially equivalent, 

and therefore shift is zero. 

4.3 Usability 

For this section of the results, 8 parameters from the 18 

normally produced have been selected in order to demonstrate 

repeatability and objectivity. The other 10 parameters are 

either products of a selected variable or combine in some 

way to produce a selected variable and therefore do not 

warrant individual discussion. 

4.3.1 Repeatability 

Table 4.10 documents the results to the four factor 

repeatability trial (data from experiment b was used for 

Smeas computation). 

As expected, repeated digitizing generally shows the lowest 

variability across the selected parameters, with minimal 
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Table 4.9 Comparision of diameter end point and radial end 
point position using a two tailed unrelated t test 11;0.01 
ECCFTR validation 

CURVE 1 CURVE 2 CURVE 3 

tobs df t crit t· obs" df t. crit t obs df t. crit 

X1d vs X1r -0.35 186 2.57 -0.11 60 2.66 0.26 62 2.66 

Yld vs Y1r -0.12 186 2.57 0.13 60 2.66 -0.12 62 2.66 

X2d vs X2r 0.34 186 2.57 -1.04 60 2.66 0.01 62 2.66 

Y2d vs Y2r 0.15 186 2.57 -0.01 60 2.66 -0.12 62 2.66 

Xl ; Side 1 X coordinates 

X2 
; Side 2 X coordinates 

Y1 
; Sfde 1 y coordinates 

Y2 
; Side 2 Y coordinates 

r ; radial end point 

d ; diameter end point 
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Table 4.10 Variation in selected quantification parameters - Repeatability and objectivity 

REPEATABILITY OBJEcrIVITY 

Parameter Repeated Repeated tracing Differing frames * Equivalent frame Naive subjects 
digitising and digitising in one cardiac in different repeated digitising 

cycle cardiac cycles 
X' SD CV X SD CV X SD CV X SD CV X SD CV 

Average maximal diameter 3.09 0.06 1.9 3.63 0.16 4.4 4.60 0.24 5.2 5.04 0.25 5.0 4.45 0.21 4.7 
(mm) 

Minimal diameter (mm) 0.89 0.08 9.1 1.25 0.17 14.0 0.89 0.15 16.8 1.94 0.22 11.4 1.25 0.15 12.1 

Percent stenosis (%) 71.05 2.78 3.9 65.70 4.63 7.0 80.60 2.90 3.6 61.5 3.23 5.2 71.93 2.62 3.6 

,... 
'" 

Segment length (mm) 26.65 0.20 7.6 24.10 0.49 2.0 14.40 1.07 7.4 13.13 2.25 17.1 13.730.44 3.2 
-.J 

Eccentricity at the 46.4 4.1 8.8 54.2 5'.42 10.0 20.56 18.94 92.1 51.08 7.95 15.5 7.83 2.69 34.4 
minimum diameter (%) 

Maximal eccentricity (%) 50.35 1.50 7.3 80.0 8.08 10.1 44.38 16.3036.7 24.69 10.14 16.2 23.21 5.54 23.8 

Mean eccentricity (%) 25.80 1.57 5.8 26.40 2.01 7.6 22.4814.7665.70 21.58 2.96 13.7 9.89 2.27 23.0 

2 Atheroma area (mm ) 24.1 0.70 2.6 22.1 1. 76 :7.0 43.39 62.14 143.1 8.32 1. 75 9.6 15.08 1.88 12.3 

8 repeats, 1 artery 
* 4 repeats, 1 artery (due to contrast washoutJ:: 



diameter being the most variable. The act of retracing the 

same stenosis prior to digitization introduces more error 

into the quantification procedure, but not enough so as to 

make the information useless in a clinical situation. The 

digitization of differing frames within the same cardiac 

cycle adds yet more variability to dimensions which are not 

location specific, ie. diameters and lengths but renders 
spatial information useless (eg. maximal eccentricity) which 

in turn corrupts data which depends upon its accuracy (eg. 

atheroma area). When equivalent frames from different 

cardiac cycles are digitized, ego at end diastole, 
variability in all parameters is on the whole, reduced, 

although the spatial data have variability above that in the 

straight repeat digitization trials. 

Smeas, calculated from repeat digitizing of eight arteries 
(table 4.11) are all very good, average maximal diameter 

especially so. Average coordinate number per file by this 

experienced user (MJ) was also relatively low, thus 

facilitating rapid computation. 

4.3.2 Objectivity 

Diameter and length data are repeated well by naive users 

(table 4.10) but spatial data suffers from the lack of 

experience. 

This trend was negated when the same subjects were involved 

in the Smeas trial which immediately followed. Smeas values 

(table 4.11) were on the whole comparable with those of the 

experienced user, and indeed, results for the spatial data 

were better. 

4.3.3 Validity 

When variability in the dimension of crosswire separation 

for each catheter room and image intensifier size was 

examined from two randomly chosen locations (one vertical, 

one horizontal) within the projected field, the data 
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Table 4.11 Standard errors of measurement on selected quantification 
parameters - Repeatability and objectivity. 

Parameter 

Average maximal diameter (mm) 

Minimal diameter (mm) 

Percent stenosis (%) 

Segment length (mm) 

Eccentricity at the minimum 
diameter (%) 

Maximal eccentricity (%) 

Mean eccentricity (%) 
2 Atheroma Area (mm ) 

Average number of 
co-ordinates Ifile 

2 repeats, 8 arteries 

REPEATABILITY 

Repeat digitising 

0.015 

0.10 

3.66 

0.20 

4.30 

0.99 

0.90 

352.7 
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OBJEcrIVITY 

Naive subjects 
repeat digitising 

0.14 

0.09 

3.40 

0.32 

3.47 

2.39 

0.69 

831.6 



presented in table 4.12 was recorded. CVs are all equal to 

or less than 1.5% affirming that dimensions can be repeated 

accurately from projected X-ray images. 

In order to examine the validity of these dimensions the 

crosswire separation had to be measured using vernier 

calipers. Due to the small size of the separation, it was 

only possible to measure each crosswire separation at three 

locations without repetition of measurement at the same 

site. This inhibited the matching of dimensions if 
independence of samples was to be preserved. Hence an 

unrelated t test was employed which was essentially reduced 

to a criterion t test as the differences in the measured 

dimensions were very small. 

Table 4.12 presents the results to these tests. All fail to 

reach statistical significance confirming that measurements 

from within a projected image accurately represent their 

dimensions in real life. 

The averaged data presented in table 4.12 was also subjected 

to correlation analysis. The correlation coefficient 

between true and computed wire separation stands at 0.98 

with SEE +/- 0.026mm. 

Mechanisms underlying the magnitude and significance of all 

these results are discussed in the following chapter. 
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Table 4.12 Variability and accuracy (using a two tailed unrelated 
t test, ~ 0.05) of digitised crosswire separation dimensions­
Validity 

d f ~ 11, t crit ~ 2.262 

Room Image plane Average X 
Intensifier Criterion (mm) (mm) 

SMALL V 5.42 5.44 
H 5.61 5.61 

A 
LARGE V 5.68 5.69 

H 5.74 5.74 

SMALL V 5.39 5.42 
H 5.50 5.45 

B 
LARGE V 5.41 5.40 

H 5.60 5.59 

Correlation coefficient, true vs computed ~ 0.98 
Standard error of estimate ~ 0.026mm 

V = Vertical 
H = Horizontal 

Computed dimension 8 repeats 
Measured dimension 3 repeats 
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SO CV t obs 
(mm) (%) 

0.074 1.3 0.88 
0.063 1.1 -0.06 

0.080 1.4 0.53 
0.075 1.3 0.61 

0.081 1.5 -0.99 
0.062 1.1 0.78 

0.062 1.1 0.65 
0.071 1.3 -0.09 



CHAPTER FIVE 

DISCUSSION 

5.1 System Characterization 

5.1.1 Hand Tracing Tolerance 

Pooling of all user and test condition SD results from the 

experiment described in section 3.6.1 gave a final result of 

11.02 g.t.u. This was doubled to 22.04 g.t.u. (0.056cm) to 

give 95% confidence. 

This parameter was then employed in two distinct and 

differing situations. Firstly, it was used as a criterion 

by which decisions about the integrity of the raw data could 

be made (PROGRAM PNTED) and secondly as an "error band" 

within which the average maximal diameter was computed 

(PROGRAM ANALYZ). Addressing this latter application in 
more detail, obviously the larger the tolerance factor and 

the more uniform (or "unstenosed") the artery, (as non 

maximal diameters are to some extent included - figure 5.la) 

the more inaccurate the estimate of mean maximal diameter. 

The rationale behind using such an averaging approach was to 

remove the effects of hand tremor in the tracing which may 

be manifest as the computation and inclusion into the final 

data set of unnecessarily large (and unrepresentative) 

diameters. The fact that this occurs was proven in the 

early stages of the design of QAMS before such corrections 

were made. Indeed, hand tremor remains a problem at the 

onset of tracing and requires certain editing procedures 

(see PROGRAM PNTED listing). However, one must now address 

the problem, is the tolerance factor set too larger so as to 

include an unnecessary amount of diameters less than a t~ue 

maximum into the calculation of the mean maximal diameter? 

In this application, the answer is no. If one considers 

that the average maximal projected dimension on the graphics 

tablet is approximately 400 g.t.u., 22.04 g.t.u. is 5.5% of 
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Figure 5.1a Effect of variation in tolerance factor on size of diameters 
contributing to the average maximum 

100% 
• % 

94.5% 

Figure 5.1b Unusual proximal morphology "forces" the inclusion of inappropriately 
sized diameters into the calculation of the average maximum 

100% 

94.5% 

~.~----- Average maximum will 
tend to this size 

Figure 5.1c Underestimation of the true average maximum on quantification 
of undiseased coronar~ arteries 
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the maximum. At the absolute worst, where natural artery 

taper above a 50% stenosis for example forces the inclusion 

of many diameters into the calculation which would not 
normally have been included (figure 5.lb), the true average 

maximal diameter would be underestimated by 5.5%. 
Transferring this to the calculation of percent diameter 

stenosis: 

percent diameter = 94.5 - 50 = 47.1% 

stenosis 94.5 

results in an underestimation of the true value by 2.9%. 

This magnitude of error is small in comparison to 
variabilities in the estimates for the currently most 
popular method of coronary artery assessment, that of 
subjective quantification. The above also illustrates the 
absolute worst case. From experience it is known that such 
arteries, when diseased, seldom exist, however, if one is to 
quantify undiseased arteries, this underestimation may 
become an important factor and must be taken into account 
(figure 5.lc). 

Whilst no error in a system is desirable, it is rarely 
achievable, more so in a clinical situation. However this 
potential source of error could be diminished using one of 
two approaches. 

1. Reduce the size of the tolerance factor, perhaps to 
half the current value, giving 68% confidence about the 

size of the diameters. 

2. Increase the size of the image, thereby decreasing the 
contribution of the tolerance factor to the magnitude 
of diameter size. 

The first suggestion is impractical, for it is essential in 
the other application of the tolerance factor that all 

reversals in the raw data are removed in order to allow the 
following routines to run. The tolerance factor could be 
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separately adjusted to meet the demands of PROGRAM PNTED and 

PROGRAM ANALYZ although this would be inconsistent 

methodology. The answer probably lies in the second 

suggestion. Provided that the resolution of the standard 

clinical film could still maintain adequate grey scale 

separation, without excessive "graininess", the coronary 

arterial image size could be magnified by perhaps another 

two times, reducing the error in the percent stenosis 

estimate to 0.9% (computed value 49.1%). Obviously, the 

larger the image, the smaller the error, and perhaps larger 

magnifications are possible without the need for image 

enhancement. 

These practices however, were not employed due to size of 

the graphics tablet. For the effects of pincushion 

distortion to be removed, the position of the image centre 

must be known and stenosis coordinate positions must be 

considered relative to the centre (section 3.5). This can 

only be accomplished if the full image is projected as a 

single entity. possible future enhancements are discussed 

in chapter 9. 

Smeas for the parameter of total coordinate number (TCN -

table 4.la) is very high as a result of the wide variation 

collected by each individual. This variation is 

statistically Significant for both X constant and Y constant 

(table 4.lb) but shows no learning effect either on a pooled 

(table 4.lb) or individual (table 4.lc) level. This large 

discrepancy in the consistency of total number of 

coordinates collected is to be expected, as each 

individual's hand-eye coordination is different, resulting 

in varying rates of tracing. The question now is, what 

effect does this variation have on the more important 

parameters of mean coordinate value (MCV) and SD? 

Smeas for MCV and SD are both low, suggesting good 

repeatability at varying TCN. There are no statistically 

significant differences for MCV and SD either between users, 

between test conditions or with interaction between the two 
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when X is constant (table 4.lb). This is also the case for 

MCV alone when Y is constant. Interestingly, there is a 

significant difference for SD at the 1% level for this test 

condition for between users (subjects) only. This suggests 

that it is perhaps physically easier to trace vertically 

than horizontally. When regarding the raw data table (table 

4.la) there appears to be no obvious link with TCN; the 

highest SD on run 1 has a TCN of 454.2 and the lowest a TCN 

of 296.0 - this trend is reversed on run 2 with the highest 

SD having a TCN of 146.2 and the lowest 281.5 coordinates. 

Whilst this difference is worrying and perhaps should be 

considered in image selection (i.e. do not select purely 
horizontally orientated stenoses) it is unlikely that 

stenoses will have direction in one of the frontal planes 

exclusively. 

Individual testing between test conditions yielded no 

significance difference for either MCV or SD in either 

digitization direction, again reinforcing the conclusion 
that their is no training effect in this relatively simple 

task of tracing a straight line. This gives support to the 

argument that the calculation of hand tracing tolerance from 

a pooling of SDs across all users and test conditions will 

account for variability typical of the digitization process, 

and that it should not be necessary to adjust the magnitude 

of this value as a users experience with the system grows. 

5.1.2. Magnification and Pincushion Distortion Factors 

a. Magnification factors. Rates of change of 

magnification factor (table 4.2 and figure 4.1) for 

each room at the same image intensifier size are all 

reasonably comparable, with room A magnification factor 

being larger throughout. However, there is a 

considerable discrepancy between the rates calculated 

for these systems and those quoted by the only 

reference found to deal with this material, ie. Brown 

et al 1977. For his small image intensifier, the rate 

was 0.002cm-1 and for the larger 0.0037cm-1 . Figures 

- 176 -



from the present study are approximately 8 times larger 

for the small and 6 times larger for the large, 

although one must bear in mind that the equipment Brown 

used was different from that used in this study. The 
results from table 4.2 translate to an approximate 

error of 1.65% cm-1 axial displacement for the small 

image intensifier and 2.25% cm-1 axial displacement for 
the large image intensifier - not too far removed from 

the quoted maximum of 1.5% cm-1 axial displacement 

(Brown et al 1986) although Browns original figures are 

considerably better. 

As mentioned in chapter 3, axial displacement in the 

major application of the QAMS (chapter 7) is likely to 

be quite small, although the suggestion of view 

matching discussed earlier and in chapter 9 would allow 

any possible errors to be removed. Whilst these 

results have no direct relevance as the system stands, 

they are useful for the user to know if accurate 

dimensional measurements are to be gained and aid in 

the selection of appropriate images for this aim to be 

met. 

b. Pincushion distortion factors. As with the 

magnification factors, derived pincushion distortion 

factors for the systems at the Groby Road Hospital 

differ quite markedly from those values quoted by Brown 
et al 1977. Brown cites values of 1.25 x 10- 4cm- 2 and 

5.0 x 10-4cm- 2 for the small and large image 

intensifier size respectively. Values from this study 
are comparable for the small but some ten times smaller 
for the large. 

Whilst this discrepancy is quite marked, the QAMS 

performs well when test objects were reduced to true 

size from arbitrarily chosen positions in the image 

field (section 4.3.3). Hence differences between 

present figures and those of Brown are almost certainly 

a result of differing equipment. 
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Pincushion distortion is confirmed to be absent in 

three of the four catheter rooms (chapter 9). The 

intercept for room B, large image intensifier is 

significantly different from 1.0. This result may 

indeed be a reflection of the "optical" characteristics 

of the equipment in use in that catheter room, but more 

than likely, it is due to use of inferior material as 

the calibration grid (industrial mesh). 

5.2 Software Validity 

5.2.1 PROGRAM PNTED 

with the present algorithm (figure 3.8), detection rate was 

100% for the test file presented as figure 4.3a. On the 

strength of these results PROGRAM PNTED should be capable of 

removing all errors inherent in the data due to inconsistent 

digitization. 

5.2.2 PROGRAM DIAMAV 

Whilst all t ratios generated from the testing of actual 

versus computed area are non significant, (table 4.4) it is 

important to notice that values are larger for the areas of 

smallest size. This again raises the problem of the effects 

of hand tracing tolerance magnitude on digitized object 

size. When digitized area is large, the observed t ratio is 

low and vice versa (table 4.4). Should a user ever need to 

digitize very small coronary arteries, for example, those of 

a child; the magnitude of the hand tracing tolerance may 

interfere with obtaining accurate results. As previously 

discussed, the only real answer is to increase the size of 

the projected image. Unfortunately, this is not possible 

(from a image distortion correction point of view - the 

CAP-35B can magnify up to 1.6 times) with the present QAMS 

design. It is therefore important to only select arteries 

which are within the validated range, or more importantly 

from the point of this discussion, above the minimum end of 

the range, ie. 0.5cm2 . Provided this is the case, the 
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regression results presented in table 4.5 suggest that the 

computed area is a highly accurate reflection of true area 

digitized. 

5.2.3 PROGRAM DIAMRS 

Variability of mean diameter length in tubes 1 to 5 (table 

4.6) is increased above that of tubes 6 to 10. This trend 

is not apparent in the angle data which shows a consistent 

result regardless of tube diameter or tube length. 

These results suggest that most of the error in the QAMS is 

directly attributable to the actual digitization procedure 

(inability of the user to follow desired digitization path 

• exactly) and the raw data resulting, rather than inability 

of the software to perform the calculations correctly. The 

criterion diameter for tubes 1 to 5 was 50mm. Experience 

with digitizing coronary arteries has shown that a projected 

image of an adult coronary artery is seldom likely to be 
this small, resulting in diminished magnitude of the tracing 

effect, although less error would have resulted if the 

original image were larger in the first instance. 

When the digitized object is curved, errors are enhanced 

slightly (table 4.7) probably due to the extra difficulty 

encountered in trying to trace accurately whilst constantly 
changing direction. Again smaller objects suffer more, 

whilst those of a size routinely digitized (curves land 3) 

have comparable variability. 

The choice of correct bubble length for any particular 

artery is important. A small bubble may produce relatively 

more diameter lines resulting in higher sampling but 

variability is magnified, evident from the higher values of 

CV in table 4.8. Indeed, where profile changes abruptly, 

employing a small bubble stretching over relatively few 

coordinates can cause this area to remain unsampled (figure 

5.2a). Should the profile be sufficiently complex and the 

bubble too small, then many areas of the artery may go 
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Figure 5.2 Effect of varying bubble length on sampling rate and consistency 

of diameter lengths 

- 180 -



unsampled causing the program to register "too many diameter 

end points not found", and abort. Clearly then, employing a 

small bubble length is not recommended. As bubble length 

increases, variability drops reasonably quickly as the 

currently employed value of bublen is approached (figure 

5.2b) and either settles out or in some cases drops slightly 

more. So, perhaps the longer the bubble the better? Again, 

this is not the case. If the bubble length is too long, the 

movement and positioning of the bubble does not reflect the 

profile of the artery. The decreasing variability of the 

diameter lengths is simply reflecting the loss of the true 

shape of the artery - it approximates to the shape of the 

bubble, i.e. a tube. In the exaggerated case, it may even 

be possible for the computed axis to lie outside the margins 

of the profile data (figure 5.2c). It therefore seems 

appropriate to use a bubble whose length is sufficiently 

large enough to virtually guarantee the solution a located 

diameter for each change in position yet sufficiently small 

enough to accurately reflect arterial morphology. This 

criterion is adequately provided by stenosis average 

diameter. 

5.2.4 PROGRAM ECCFTR 

The magnitude of the observed t ratios confirm excellent 

agreement between the actual and computed profile positions. 

The signs of the t ratios are randomly distributed 

reflecting no consistent differences with respect to 

position (i.e. above or below) between diameter and radial 

end points. These results confirm the hypothesis that in 

the artery with reasonably gentle curvature in one direction 

only, one may employ previous assumptions regarding shape of 

the inner surface of the left ventricle and heart in 

general. This allows computerized reconstruction of 

arterial morphology prior to the establishment of coronary 

artery disease. 

- 181 -



5 . 3 Usabili ty 

5.3.1 Repeatability 

CVs (table 4.10) for repeat digitizing are all acceptable, 

although there is a a tendency for parameters which are 

location specific ie. those requiring a location to work 

from (eg. eccentricities), to be more variable.· This occurs 

as a consequence of the slight shape difference in profile 

digitized on each repeat. Minimal diameter also shows 

moderate variability, but, as the diameter is so small 

originally, this has little effect on the percent stenosis 

estimate. Again this variability exists as a function of 

original image size, a larger image would reduce the effect 

of hand tremor on the data (chapter 9). However, it is 

interesting to note that the magnitude of the SDs for 

average maximal and minimal diameter, having been corrected 

for pincushion distortion and magnification are very close 

to the previously quantified digitizing variability (i.e. 

11.02 g.t.u. is the digitization SD on the graphics tablet 

surface. As the image is projected at approximately two to 

two and a half times magnification, digitization SD at true 

size approximates to O.llmm). This relationship is also 

true in other test conditions, including the objectivity 

trial. This fact allows three conclusions to be drawn: 

1). Corrections for pincushion distortion and 

magnification add little error to the processed data. 

2). Digitization variability appears to be set at the 

correct magnitude. 

3). Digitization variability is the major source of 

error in quantification of coronary arteries using 

QAMS. 

Smeas for this test condition are all good (table 4.11), 

particularly that of average maximal diameter. This 

reinforces the previously discussed suggestion also implied 
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by conclusion 3 above, that the coronary arterial image be 

magnified prior to digitization (chapter 9). 

When retracing is added to the redigitizing procedure, 

errors are enhanced slightly, probably as a result of 

inability of the hand to re-trace the same path, rather than 

the brains ability to perceive it. 

Results from the digitization of the same lesion at 

differing stages through the same cardiac cycle show highest 

variability. This is accountable for in the dramatic 

morphology 'changes which occur as a consequence of the 

variations in pressure both in the coronary artery itself 

and the ventricles (more so the left), plus, of course, the 

shape of the latter changes throughout systole and diastole. 

Errors in the non spatial data when an equivalent frame from 

differing cardiac cycles was used are only slightly greater 

than those in repeat digitizing with the exception of 

segment length. As mentioned in chapter 3, great care must 

be taken in applying this parameter, as it is not fixed. 

Stenosis length, which is the length between the upper and 

lower 90th percentiles was not used due to artery taper. 

Hence, high variability in segment length is due to 

differing starting and/or ending position. 

Spatially dependant data show more variability than either 

repeat digitizing or repeat tracing and digitizing. This 

may be explained by the fact the the cine film is not gated 
to the ECG so an equivalent frame may not have been 

. generated from exactly the same portion of the cardiac 

cycle, ie. we are seeing similar effects to those eXhibited 

when sequential stenoses from differing cardiac cycles were 

examined, although not to the same extent. 

Overall, the system appears repeatable in the clinical 

situation and is acceptably within routine clinical 

tolerances. The previous results from chapter 4 confirm 

that the user is most accurate in selecting a portion of the 
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cardiac cycle for digitization (eg. end diastole - this 

usually coincides with when the stenosis appears most 

severe, - section 3.1) and keeping to it, rather than 

digitizing images from anywhere within the cardiac cycle, 

where gross errors can result. 

5.3.2 Objectivity 

Results arising from this testing regime using naive users 

suggests that non spatial data can be repeated well with no 

training, whereas the spatial data may require a 

familiarization period (table 4.10). Indeed, this 

hypothesis was borne out by the results from the following 

Smeas trial (table 4.11) where the same naive users returned 

lower Smeas for maximal eccentricity and eccentricity at the 

minimal diameter than the experienced user (MJ). Other 

standard errors were comparable with the repeatability trial 

suggesting that objective results are obtainable on the QAMS 

following brief experience. However, new users tend to 
spend a long time digitizing a stenosis, with the consequent 

accumulation of a large number of coordinates. This has the 

disadvantage of labouring processing time (see later) but 

produces a more accurate picture of morphology. This latter 

fact may go some way to explaining the lower standard errors 

of the naive group. 

5.3.3 Validity 

The system has been shown to produce exceptionally valid 

measurements from the crosswire separation experiment (table 

4.12). It is rather surprising that the results are so good 

considering that the experiment was carried out using 

industrial mesh - not the most accurate of equipment. 

Chapter 9 discusses future work in this area. 

In conclusion to this section, the Q.A.M.S. has been shown 

to be repeatable, objective and valid and is therefore 

worthy of application and further development. 
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5.4 General Discussion 

The introduction and use of a computer in the quantification 

of coronary stenoses has allowed repeatable, objective and 

valid measurements to be made. Variability in percent 

diameter stenosis estimate has been reduced from the order 

of 12-25% (Koh et al 1979, De Rowen et al 1977) for the 
commonly employed subjective method to around 4% with the 

QAMS following some familiarization. The use of the 

catheter as a scaling device has allowed absolute dimensions 

to be computed, parameters more physiologically meaningful 

when one considers myocardial blood supply (section 6.2.1). 

The process of quantification is automated, in that 

selection of dimensions for quantification is under computer 

control once the data have been entered. This removes 

subjective bias in the selection of particular maximal and 

minimal diameters allowing Smeas for absolute dimensions to 

be lower than those recorded for visually assisted 

quantification (Smeas QAMS 0.015mm - O.lmm, 0.08mm Gensini 

et"a1 1971 and 0.2mm MacA1pin et a1 1973). 

correction for image distortion is a simple matter of 

applying a previously derived correction for the catheter 

room and image intensifier size used. This meets the 

original aim of the system in that no other work is 
necessary (regarding correction on every occasion - unlike 

Reibers method) at the time of catheterization. 

Validation data for this system compares well with the more 
complex and expensive techniques of edge detection and 

videodensitometry. Reiber et a1 1978 demonstrated a 

correlation coefficient of 0.99 and a Smeas of 2.33% when he 

regressed known object size against the computed values. 

Nichols et a1 1984 did the same with videodensitometry for 

the parameter of cross-sectional area and showed comparable 

results (r=0.99, SEE 3.9%). The QAMS had a correlation 

coefficient of 0.98 and standard error of the estimate (SEE) 

of 0.026mm (0.75% of a 3.5mm artery) under these validation 
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conditions. However, it is fair to say that all validations 

(including the QAMS system, section 3.6.3) were performed on 

objects of greater than lmm diameter, therefore the 

correlation between observed and true life may be somewhat 

poorer in the clinical environment. Certainly, 

repeatability (using videodensitometry) of relative area 

measurements from clinical data below this cut off are poor, 

running at 20-30% (Sandor et al 1979). 

Repeatability for the minimal diameter using the original 

system proposed by Brown et al 1977 stands at +/- 0.027mm 

and validation results are accurate to,+/- 0.08mm. The QAMS 

in its present form returns 0.09mm and +/- 0.07lmm (average 

SD measurement table 4.12) in direct comparison. Therefore 
the two systems have equivalent validity yet the Brown -

Dodge system is much more repeatable. 

What is the secret of Browns accuracy? The answer must 

surely lie in the fact that the system utilizes images 
projected at five times normal size. The errors introduced 

as a consequence of having to retrace the stenosis on the 

graphics tablet following tracing from the film is 

negligible in comparison. This reaffirms the earlier 

suggestion that quantification using the QAMS should utilize 

larger images (chapter 9). 

Browns system is also exceptionally fast in computing the 

quantification parameters, achieving this in just three 

minutes, in comparison to twenty minutes using the QAMS. 

This latter figure can be reduced to around fifteen minutes 

as the user becomes more experienced and total number of 

coordinates collected falls (table 4.11). As discussed in 

chapter 3, it was intended to transfer the system to a 

computer with a 6 megahertz chip, but this could not be 

achieved due to breakdown. However, subsequent to 

completing experiments on QAMS, the quantification software 

has successfully been transferred to a PC clone, resulting 

in a reduction of processing time to two and a half minutes 
on average (chapter 9). 
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Results from the similar system proposed by Owen et al 1983 

agree reasonably well with the QAMS also. Repeatability of 

0.05mm, validation of test object correlation coefficient of 

0.99, SEE +/- 0.025mm and validation correlation coefficient 

of artificially induced coronary stenoses (plastic 

cylinders) in dogs 0.99, with a SEE +/- 0.062mm. 

In conclusion, the QAMS is a microcomputer based mensuration 

system composed of peripherals which all may be used 

independently. It is capable of being used easily, 

producing accurate and valuable results from standard 

clinical coronary arteriography films. It is a prototype, 

and therefore warrants further development. 

The present system meets all the original aims of chapter 2 

and is capable of producing results of comparable accuracy 

to the Brown - Dodge system on which the QAMS was to some 
extent based. However, the QAMS has certain advantages over 

this and any other system currently in existence. 

Primarily, the fact that it is microcomputer based and 

allows access to the raw data for manipulation into new 

parameters will see its continued use and improvement 

throughout the following years. 
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SEcrIOO 2 

APPLICATIONS 
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CHAPTER SIX 

INTRODUCTION TO THE PATHOPHYSIOLOGICAL 

CONSEQUENCES OF CORONARY ARTERY DISEASE 

6.1 Introduction 

The ability to provide quantitative information about the 

nature, severity and morphology of coronary artery disease 

(CAD) in any particular vessel is perhaps, in itself, 

interesting, however, what use is it? Are the measurements 

any better (or worse) at describing disease severity than 

the methods currently employed? Do the measurements mean 

anything in terms of the patients ability to live a normal 

life, coping with the daily demands asked of his body? Can 
one infer anything about the performance of the heart as a 

pump now that quantitative information about the state of 

its blood supply is available? The list of questions is 

endless. 

Clearly then, the QAMS now requires application. It is true 

to say that there are many avenues in the study of CAD where 

quantification would complement and increase understanding. 

However, due to the nature of work carried out at the Groby 

Road Hospital, Leicester, this thesis will focus on two main 

applications. 

1. The quantification of changes in stenotic dimensions as 

a result of Percutaneous Transluminal Coronary 

Angioplasty (PTCA) and their correlation with patient 

exercise tolerance (chapter 7). 

2. The role of quantification of CAD in the evaluation of 

myocardial function (chapter 8). 

In order to introduce and discuss the above two specific 

applications, it is necessary that the physiological 

consequences of CAD are understood, along with how the 

performance of the affected heart may be measured. A 
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discussion of these two topics forms the basis of this 

chapter. 

6.2 The Pathophysiology of the Ischaemic Heart 

Ischaemia is defined as a deficient blood supply and can 

occur in one of two states. 

1. When tissue demand for blood, or more correctly, 

oxygen, is in excess of the capacity for the normal 

circulation to deliver it. 

2. When blood flow (and therefore oxygen supply) to a 

tissue is restricted in some way despite normal 

demands. 

Ischaemia of the myocardium as a result of CAD is generated 

according to the latter mechanism and is felt 
symptomatically as chest pain (angina) by the patient. This 

section reviews the genesis of this condition and ensuing 

physiological consequences. 

6.2.1 Haemodynamics of Coronary Arterial Stenosis 

Pressure loss and flow in the diseased coronary artery are 

usually related according the general fluid mechanics 

equation: 

P = fQ + sQ2 

The coefficients f and s can be expanded and modified to 

meet the biological application thus: 

Where 

P = (SIT"L . ---.:.). Q +f- P K 
As As \ 2 

1 

As 
_ ~)2 

An 

P = Pressure loss across the stenosis. 

,,= Absolute blood viscosity. 
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L = Stenosis length. 

An = Cross-sectional area of normal artery 

(equivalent to dmax
2 if measurements are made 

in one plane only). 

As = Cross-sectional area of the stenotic segment 

(equivalent to dmin
2 if measurements are made 

in plane only). 

p = Blood density. 

K = A constant related to flow profile (varies 

between 1.0 and 2.0). 

Q = Volume flow. 

Examining the relationships within the above equation, one 

must appreciate that pressure loss across a stenosis is a 

two component mechanism. Losses from the f coefficient are 

related by Poiseuilles equation to the reciprocal of the 

cross-sectional area of the stenotic segment and stenotic 

length, and produce viscous 'resistance' to flow at the 

stenosis. Losses from the s coefficient are related to the 

difference in absolute size between the reciprocal of the 

stenotic cross-sectional area and the normal cross-sectional 

area, facts important in the genesis of turbulence distal to 

the stenosis. 

When blood is delivered to a coronary artery at aortic 

pressure, flow occurs due. to the pressure gradient between 

the aorta and the myocardial perfusion bed. However, when 

the artery is narrowed by a stenosis, this natural gradient 

is disrupted into zones of varying pressure giving rise to 

the above pressure loss effects. 

Consider the natural pressure gradient to be broken into 

three stages (figure 6.1). 
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Figure 6.1 Variation in pressure and flow in a stenotic coronary artery 
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1. The pressure gradient established between the aorta and 

the proximal part of the stenosis. 

2. The pressure gradient across the stenosis. 

3. The pressure gradient between the distal part of the 
stenosis and the myocardial perfusion bed. 

When laminar flow (higher flow rate in the centre of the 
arterial stream as compared to the edges) encounters the 
"entrance" to the stenosis, some of the driving pressure is 
converted to kinetic energy causing pressure reduction in 
this region. This loss of pressure due to the viscous 
resistance of the stenosis is primarily dependant upon the 

absolute cross-sectional area of the stenosis and is only 
important at low (resting) rates of flow. Figure 6.2 shows 
an arbitrary classification of pressure-flow curves for 

varying stenotic severity. Losses due to viscous resistance 
are linearly related to pressure gradient (see equation) and 

are thus demonstrated as the lower straight line portions of 
each curve. Addressing these areas only, one can see that 
as stenosis severity increases, the flow rate at which 
pressure losses begin, and the extent to which the viscous 
term contributes to total pressure loss gets less and less 
(Young et al 1977, Gould et al 1978). Obviously, with no 

stenosis, there is little or no pressure loss, and any loss 
that is incurred is linearly related to flow due to small 
differences in size between normal and "stenotic" 
cross-sectional area (see equation). 

This increased kinetic energy causes the flow rate through 
the stenosis to become enhanced (venturi effect) resulting 
in more viscous energy losses. Energy losses at this 

location are compounded by increasing stenotic length (Kindt 
et al 1969, Lipscomb et al 1978). 

On exit from the stenosis, the kinetic energy is in part 
reconverted back to pressure again, the extent of the 

reconversion being dependant on absolute cross-sectional 
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Figure 6.2 Arbitary c13ssification of pressure flow curves for varying 

stenotic severity 
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area of stenosis and normal artery, plus flow rate. When 

the difference between stenotic and normal artery size 

distal to the stenosis is not great, the flow profile 

through the stenosis is able to "reattach" itself to the 

artery wall with little loss of energy and thus pressure 

(Kloche et al 1980). With higher flow rates however, more 

pressure is converted to kinetic energy pre stenotically and 

hence intrastenotic blood flow is higher. On exiting from 

the stenosis, this is decelerated by the slower flowing 

blood in the distal coronary artery causing loss of energy 

as heat and turbulence (Lipscomb et al 1978). With high 

flow rate and severe stenosis, the above losses can be added 

to losses due to flow profile detachment at the stenosis 

exit (Kloche et al 1980). Gould et al 1978 demonstrated 

pressure losses due to viscous and turbulent events of 65% 

and 35% respectively at rest flow rates, but 33% and 67% 

respectively at maximal vasodilation. The rate at which the 

stenosis "opens up" (the exit angle) has also been shown to 

play a part in pressure loss with variations between 10 and 
30 degrees having greatest effect (Gould et al 1982). 

This loss of energy causes pressure distal to the stenosis 

to become reduced, thus enhancing the gradient across the 

lesion. This promotes further increases in flow through the 

stenosis until pressure differences and viscous forces are 

balanced and flow rate steadies out. With pressure distal 
to the stenosis diminished, a slower flow rate is 

established between the artery and the myocardium which 

induces further turbulence until equilibrium is met. 

However, pressure within the myocardium is not constant and 

varies throughout the cardiac cycle affecting the speed and 

direction of blood flow in the coronary artery. For mild 

and moderate stenoses, systolic compression of the 

myocardium increases distal coronary pressure causing 

stenotic pressure gradient to be diminished or even 

reversed. This reduces or temporarily halts coronary flow. 

The exact opposite occurs for myocardial relaxation. 
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For severe stenoses blood flow in systole is often seen to 

increase. This is rather paradoxical but may be explained 
by increased viscous losses due to the stenosis size, 
causing greater pressure loss at the entrance to the 
stenosis, thereby establishing a strong gradient for blood 

flow. 

These effects are not governed by stenosis geometry or 
original artery flow rate as they result from pressure 
changes within the myocardium. Hence changes in coronary 
blood flow are not fully described by the fluid mechanics 

equation above. 

Many workers have tried to look for a "critical" coronary 
stenosis, ie. a value of relative size reduction (diameter 
or cross-sectional area) below which significant 
haemodynamic effects are seen. May et al 1963 demonstrated 
that no significant pressure gradient was established across 
a stenosis until 80% of the cross-sectional area was 

involved. These values are close to the figure of 75% 
proposed by Reul et al 1983 using a hydrodynamic model. 
However, results based on relative size reduction have to be 
carefully considered as the equation is based on absolute 

size measurements. Harrison et al 1984 examined the maximal 
hyperaemic response of patients with CAD during surgery. 
Hyperaemia is a physiological index related to the ability 
of coronary arteries to supply the heart with blood on 
demand. The affected artery was clamped proximal to the 
stenosis for 20 seconds then released. Coronary flow rate 
distal to the stenosis was measured using a doppler 
flowmeter. Maximal flow rate was divided by the previously 
measured resting levels, quantifying the maximal hyperaemic 

response. He demonstrated considerable overlap between 
percent area stenosis measurement from arteriographicimage 

quantification and. normal maximal hyperaemic response 
(percent area stenosis 7-54% with a normal response, 27~94% 

with abnormal response). However, when the stenoses were 
considered in terms of absolute size, all normal responses 
had minimal cross-sectional areas above 3.5mm2 and all 
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2 abnormal responses below 3.5mm This study exemplifies the 

need for absolute quantification if the fluid dynamics of 

coronary arteries are to be understood. 

However, should we really consider stenoses and fixed "pipe 
like" lesions? Various studies have shown that stenosis 
geometry is not fixed, and can vary according to differing 

physiological conditions. Gould et al 1982 whilst 
vasodilating dog arteries with induced stenoses demonstrated 
an increase in the size of their "normal" portions, thus 
increasing the apparent severity of the lesion under study. 
Brown 1984 in a review article highlighted this problem with 
particular reference to eccentric lesions, where part of the 
stenotic segment wall is normal. Any physiological 
condition causing vasoconstriction or vasodilation can alter 

not only the normal artery size but also stenotic dimensions 
directly. This problem was readdressed by 5antamore et al 

1985 who experimentally demonstrated that local 
vasoconstriction around eccentric lesions lead to an 
increase in stenotic resistance by directly altering 
stenotic dimensions. 50 perhaps, measurements made from 
coronary arteries at rest (ie. "normal arteriography) may not 
reflect stenotic dimensions or general artery morphology on 

exercise where vasodilation is apparent. 

What then, would be a more appropriate measure? Reactive 
hyperaemia is becoming the favourite parameter in recent 
literature as it is a combination of information from rest 
and the investigative condition and therefore more 
accurately reflects true physiology. Gould et al 1974 

observed no change in resting coronary artery blood flow 

through a stenosis until it reached 85% severity. However 
by inducing hyperaemia with contrast media the normal 
response was lost at 30-45% stenosis and the ability to 
demonstrate hyperaemia at all was obliterated at 88-93% 

stenosis. White et al 1984 correlated visually assessed 
percent stenosis with the reactive hyperaemic response and 
reported very little relationship (r = 0.25). 
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Clearly then, it is not physiologically meaningful to use 

percent stenosis (diameter or CSA) to characterize coronary 

disease, as such quantification cannot be extrapolated to 
the potential effects when demand on the heart increases. 
The usefulness of absolute dimensions and artery 

eccentricity have already been discussed in this review and 
will be evaluated in the forthcoming applications. 

In conclusion, the haemodynamic effects of CAD manifest 
themselves as a decreased perfusion pressure in the distal 
coronary artery coupled with a decreased flow rate. The 
next section now investigates the physiological consequences 
of these phenomena. 

6.2.2 The Genesis and Physiological Consequences of 

Ischaemia 

Myocardial perfusion is an autoregulatory process. If flow 

rate and perfusion pressure distal to a coronary stenosis 
are reduced, then the myocardium compensates by allowing 
maximal dilation of precapillary sphincters (as myocardial 
oxygen extraction is at near maximum even at rest, and 
therefore blood flow is the limiting factor - Bove 1985). 
This mechanism preserves an adequate supply of blood and 
therefore oxygen to the metabolically active myocardial 

cells but is only sufficient however to compensate for the 
effects of the stenosis at rest. 

On exercise, coronary artery blood flow increases. This 
further reduces dista1 perfusion pressure and flow rate 
(section 6.2.1). The myocardial perfusion bed is already 
fully dilated and oxygen consumption is elevated as a result 
of increased cardiac output. Coronary artery flow and 

artery to myocardium perfusion gradient becomes insufficient 
to supply oxygen to the deep (subendocardial) layers of the 
myocardium and ischaemia develops. These ischaemic areas 
have disordered function (see later) which reduces the 

pumping efficiency of the ventricle. Mild cardiac failure 
develops and end diastolic pressure is increased. This in 
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turn further reduces the perfusion gradient between the 

distal coronary artery and the myocardium resulting in 

compounded subendocardial ischaemia. 

The key to understanding the physiological consequences of 

ischaemia finds origin in the development of stiffness of 

the ventricular wall produced by an abnormal relaxation 
mechanism. Hypoxia as a direct consequence of the ischaemia 

results in an insufficient ATP supply to drive the ATPase 

enzymes in the sarcoplasmic reticulum (SR) of the myocardial 
2+ cell (Nayler et al 1978). Hence, the normal release of Ca 

ions from the SR and consequent binding with troponin (part 

of actin filament) initiating muscular contraction (Guy ton 

1980) occurs, but all ca2+ ions cannot be returned to the 

SR, and intracellular Ca2+ concentration remains higher than 

normal. This results in the I actin! - myosin complex of that , 
particular cell remaining partly contracted, ie. not fully 

relaxed. 

This mechanism alters the way in which end diastolic 

pressure in the ventricle responds to changes in volume 

(other mechanisms also have an effect, ego ventricular 

interaction, the pericardium, etc. - Glantz et al 1978). 

The relationship is shifted upward and to the left (figure 

6.3) such that smaller volume changes are associated with 

higher chamber pressures and at any given volume the end 

diastolic pressure within the ventricle is greater. Chamber 

stiffness, the ratio between pressure changes to volume 

change, is thus increased (Weber et al 1986). 

Visner et al 1985 induced global left ventricular ischaemia 

in dogs by clamping the left coronary artery. This was 

associated with a shift in the pressure-volume 

indicative of increased myocardial stiffness. 

relationship 

This change 

mimics that exectly seen during regional ischaemia 
suggesting that changes in regional diastolic mechanics are 

a direct result of the ischaemic process rather than 

interaction between ischaemic and non-ischaemic segments. 
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Figure 6.3 The end diastolic pressure-volume relation for the left ventricle 
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Tebbe et al 1980 have reported that shifts in the diastolic 

pressure-volume curve with exercise indicative of ischaemic 

changes occurred in all patients with angina and in 75% of 

patients with no symptoms. 

Smaller effects in systolic function usually follow changes 

in the diastolic performance of the ventricle and may be 

investigated by measuring the maximal rate of pressure 

increase (+dP/dt) within the ventricle. Tomoike et al 1978 

demonstrated significantly reduced +dP/dt changes during 

strenuous exercise in dogs with limited coronary flow. Peak 

-dP/dt (diastolic performance) has been shown to fall by 

38.4% and peak +dP/dt by 19.9% following one minute coronary 

occlusions in conscious dogs (Kumada et a1 1979). However, 

Ross 1976 recommends that systolic dysfunction is more 

accurately reflected by the velocity of circumferential 

fibre shortening rather than +dP/dt, due to afterload 

sensitivity. 

It has been suggested (Willis-Hurst 1974) that the reduction 

in function of an ischaemic segment of the heart may serve as 

a protective mechanism against myocardial infarct. The 

reduced movement of the segment will not only reduce total 

myocardial oxygen demand but will also offset the effects of 

systolic squeeze allowing more uniform perfusion throughout 

the cardiac cycle. This theory supports that of Ellestad 

1980 who suggests that the diminished heart rate response to 

exercise (and lower heart rate for any given workload) in 

some patients with CAD serves to improve myocardial 

perfusion as relatively more of the cardiac cycle is spent 

in diastole, the interval where myocardial blood flow 

occurs. 

In conclusion, the major effect of ischaemia on the heart is 

to increase ventricular wall stiffness, which in turn 

affects its efficiency as a pump. 
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6.3 Measuring the Performance of the Ischaemic Heart in the 

Clinical Environment 

Many of the experiments whose results are described above 
utilize muscle preparations from animals or the complete 

animal model combined with sophisticated equipment for the 
measurement of tensions, velocities etc. Whilst experiments 
of this kind greatly increase our understanding of the 
mechanics of ventricular function, they cannot be repeated 

(without grave ethical problems) in the human. This section 
then briefly describes what techniques may be applied and 
clinical data collected in order to infer the performance of 
the ischaemic heart. 

Investigative techniques may be basically subdivided into 
those which are invasive (requiring entry into the body) and 

those which are not. 

6. 3. 1 Invasive Techniques 

Invasive techniques for the assessment of ventricular 
function carry with them an increased risk of morbidity and 
mortality above that encountered with non-invasive 
techniques. They are also more expensive and involve more 

discomfort for the patient. Currently, catheterization is 
the usual method chosen for study of ventricular function. 

Catheterization. 

Technique (femoral approach only): The femoral artery is 
treated with local anesthesia and an arterial needle 
inserted. The needle is then slowly withdrawn until 
pulsatile blood flow is obtained. At this point the needle 
is fixed in position and a J tipped guide wire (section 
3.2.2) is introduced through it. The guide wire is passed 

up to the level of the mid-abdominal aorta before the point 
above the artery is compressed and the needle removed. A 
No. 5 french Teflon dilator i·s then passed over the guide 
wire in order to spread the subcutaneous soft tissues and 
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the femoral artery wall. The dilator is then removed and an 

arterial sheath inserted over its introducer which surrounds 

the guide wire. Once the sheath has passed into the femoral 

artery, introducer and guide wire may be removed. A pigtail 

catheter is then passed through the sheath and the guide 

wire advanced to the mid-abdominal aorta, at which point the 

catheter is allowed to follow. The system is then passed as 

a whole up to the lower thoracic aorta before the guidewire 

is removed. The catheter is then advanced (under 

fluoroscopic control) around the aortic arch and through the 

aortic valve into the left ventricle. Contrast media 

(section 3.2.2) may then be delivered via the catheter to 

achieve opacification of the left ventricle. Images are 

recorded on 35mm cine film in exactly the same manner as for 

coronary arteries (section 1.1) from a variety of views 

(including biplane), although the 30 degree RAO is most 

common. Ventricular pressures are also transmitted via the 
fluid in the catheter and may be recorded in either analogue 

or digital form. 

Analysis: Subsequent analysis of either the cine films or 

pressure data allows the deviation of various indices of 

ventricular function. 

Simple visual inspection of regional wall motion is carried 

out routinely in most cardiothoracic units. The 

angiographer divides the ventricle up into several regions 

and assigns a semiquantitative grade based upon personal 

interpretation of the extent of systolic contraction and 

diastolic relaxation in that region (Diamond et a1 1984). 

However, this subjective technique is rapidly being replaced 

by computer assisted methods which usually involve the user 

digitizing the left ventricular outline of each successive 

frame throughout one cardiac cycle. The degree, direction 

and rate of movement of the walls may then be objectively 

quantified by computer. Using such a system Gibson et al 

1976 established reversed (inward) movement of the left 

ventricular wall during isovolumic relaxation in patients 

with CAD. Shepertycki ab ,1-1983 reported overall 
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sensitivity of 87.5% and specificity of 97.9% of such a 

computerized method in comparison to subjective assessment. 

However, as Diamond et al 1984 explains, subjective 

assessment of regional wall motion can be adversely biased 

by knowledge of the patients coronary anatomy, and thus 

endorses use of the objective methods of computer analysis. 

Data (shortening of computer generated lengths between the 

centre of gravity of the LV and the end diastolic and end 

systolic outlines) from the digitized images were combined 

with continuous pressure recordings from the LV by Sasayama 

et al 1984 allowing generation of pressure - length loops 

thus quantifying myocardial work. Hypofunction, 

characterised by 30% reduced shortening and a 25% decrease 

in segmental work was recorded during pacing stress in 

patients with angina pectoris. 

Volumetric data may be derived from ventricular outlines by 

applying mathematical equations which approximate the shape 

of the ventricle to various geometric figures (cones, 
ellipses) or apply integration techniques (Simpsons rule). 

Many different equations exist and are r.eviewed in the paper 

by Beranek et al 1976. Kennedy et al 1966 cite· normal 

values for end diastolic (70mlm2- l ) and end systolic 

(24mlm2- 1 ) volumes, along with stroke volume (45mlm2- l ) and 

ejection fraction (67%). Vogel et al 1973 draw attention 

to the hazards involved in estimating ejection fraction from 

a single plane ventriculogram as healthy wall movement in 

one view does not necessarily indicate well functioning 

walls in another; underestimation of the true value is 

common. Cohn et al 1974 enforces this argument and reports 

that it is not uncommon to see variations in ejection 

fraction of 10% on repeat angiography. He ascribes these 

differences to an altered haemodynamic state between the two 

tests. Volumetric measurements were combined with exercise 

in normals, and patients with and without angina in a study 

by Sharma et al 1976. Changes in the volumes immediately 

following exercise (decrease in normals, no change in non 

angina and increase in angina) showed clear separation 

between the three groups. Interestingly, ejection fraction 
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showed no consistent change. Baan et al 1984 describes an 

electronic catheter which is capable of measuring the 

ventricular volumes directly, thus removing the need for 
mathematical assumptions. 

Increased left ventricular end diastolic pressure on 

exercise in patients with CAD was documented by Licht'len 

1971. He demonstrated'good correlation with severity of CAD 
even in patients with normal LV function. 

Knowledge of changes in pressure and volume of the left 

ventricle allow inferences to be made about the "stiffness" 

of the ventricle in exactly the same manner as in the animal 

experiments cited previously. Grossman et al 1976 described 

an abnormal pressure-volume relationship in the acutely 

ischaemic ventricle under clinical conditions, leading to 

increased stiffness. He concludes by explaining that 

systolic dysfunction generally seen in cardiac failure has 

genesis in altered diastolic properties of the ventricular 

chambers. Gradient of the pressure-volume curve at end 

systole (Emax) and the ratio of peak systolic pressure to 
end systolic volume (P/Ves ) were examined by El-Tobgi et al 

1984 as indices of LV function. He concludes that Emax is 
the only systolic pressure volume variable capable of 

separating normal and abnormal ventricular function. 

Rate of change of pressure (positive and/or negative) may 

also be recorded clinically and used to evaluate myocardial 
function. Mason 196'9 draws caution to using +dP/dt as it is 

exceptionally sensitive to cha~lges in preload and afterload, 

recommending that it be used only to evaluate directional 

changes of contractility in response to intervention in an 

individual patient rather than using it to evaluate the 

different contractile properties between patients. Ludbrook 

et al 1981 demonstrated a lower peak -dP/dt in patients with 

asynchronous relaxation, reflecting increased chamber 

stiffness during diastolic filling. 
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Analysis of the rate of change of ventricular shape with 

time permits the calculation of the velocity of movement of 
the ventricular wall. This is commonly employed at the 
level of the minor equator where the extent of shortening 
may also be measured. By using these data plus pressure 

recordings it is possible to calculate (using an ellipsoidal 
model of varying wall thickness) wall stress at the minor 
equator and correlate it with the extent of shortening of 
the circumferential fibres (Ross 1969). Extrapolation of 

stress-velocity plots to zero stress allows the expression 
of maximal contractile element velocity (Vmax ). Hugenholtz 
et al 1970 reports that Vmax appears to aid significantly in 
the evaluation of myocardial mechanics in patients with 
heart disease and "apparently" normal ventricular function 

(Vmax is significantly lower than in subjects with normal 
ventricular mechanics). Yin 1981 reminds us that myocardial 
wall stress is one of the primary determinants of myocardial 
oxygen consumption, concluding that we are valid in applying 
the necessary models in order to enhance understanding of 
ventricular mechanics in the absence of a technique to 
measure wall stress directly. 

6.3.2 Non Invasive Techniques 

Various non-invasive techniques have become popular over 
recent years. These have allowed the effects of CAD to be 
evaluated under stress and have proven useful in the 

determination of the prognosis and severity of disease, the 
evaluation of medical therapy, screening for latent coronary 
disease and evaluation of functional capacity (Ellestad 
1980) . 

1. Exercise testing. 

Technique: This involves stressing the patients heart by 
asking him to perform some form of exercise which is usually 
familiar to him. Exercise is continued until symptoms 
typical of the patients condition are evoked or the test is 

completed. Such a process allows investigation of the 
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patients capacity for exercise. Tests may be single load, 

or continuous tests with loading changing incrementally or 
continuously. Differing test also employ a variety of 

equipment. The protocols of Nalge et al 1971 and Naughton 
et al 1964 use a step, Bruce 1971 and Balke et al 1959 
utilize a treadmill and other workers have used a bicycle 
ergometer. Each mode of exercise has good and bad points, 
with cost, ease of performing the exercise (ie. familiarity) 
muscle groups involved (ie. extent of stress applied) and 

ease of recording investigative parameters all entering into 
the argument. 

Analysis: Heart rate is a parameter measured on all 

exercise tests and is usually used as a criterion by which 
time of termination of a test may be judged. As stressing 
anyone (CAD or not) to their maximal capacity is very 

dangerous, achievement of 85% of maximal heart rate is 
usually taken as successful completion of the test (Ellestad 
1980). Wiens et al 1984 evaluated heart rate response to 
exercise in 172 patients with angiographica11y documented 
CAD. He reported that chronotrophic incompetence is a 
relatively infrequent occurrence in such a test population, 
however, it may be useful in detecting patients with CAD who 
have indeterminable exercise test (65 patients had no 

exercise ECG abnormalities yet failed to reach 85% of 
maximal heart rate on completion of test). 

Twelve lead ECG recording is also very popular in exercuse ..... : , ' 

testing. This allows the depolarisation/repolarisation 
cycle of the heart to be viewed from many "electrical" 
planes and positions. Significant ST segment depression, 

taken to be 1mm or more horizontal or downs loping depression 
below the isoelectric line 0.08 seconds after the J point 
(Sendoe et al 1984) occurs as a result of myocardial 
ischaemia. The depression evolves from intracellular 
potassium loss producing a current flow during diastole from 
endocardium to epicardium. This current flow in the 
direction of the recording electrode displaces the baseline 

of the ECG upward which is offset by the balancing current 
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produced by ECG equipment. It is only when depolarisation 

(QRS complex) imbalances the potential of the compensating 

current that during systole, the shift is manifest as ST 

segment depression (Ellestad 1980). Hakki et al 1983 

reported that a false negative ST segment response is 

infrequent (10%) amongst patients with CAD and is usually 

associated with a less extensive disease state. However, 

the location of the ST segment depression seldom correlates 

with the anatomical site of the CAD (Fox et al 1984) 

although it is useful in predicting mortality risk both 

individually and in large populations (Weiner et al 1984). 

Rate of progression of ST segment depression relative to 

increases in heart rate were studied by Elamin et al 1982. 

They reported, quite controversially, that ranges of the 

slope data were all different, with no overlap, in patients 

with differing numbers of coronary arteries affected by CAD 

and thus could be used to predict its presence and severity. 

Fox 1982 in reply to this paper states that he cannot 

believe the results when one considers coronary collateral 

supply and variations in coronary anatomy. Quyyumi et al 

1984 has tr.ied to reproduce the results of Elamin with 

little success. The usefulness of the ST/heart rate slope 

remains unproven even today. 

Hakki et al 1984 draws attention to the size of the R wave 

necessary for ST segment depression to develop. Low R wave 

amplitude «llmm) is rarely associated with ST segment 

depression even in patients with multivessel CAD. 

Other electrographic changes coincident with ischaemia have 

been evaluated. O'Hara et al 1964 described equivalent 

discriminative capacity of Q wave changes (small in CADs, 

getting smaller on exercise) to that of ST segment 

depression. 

Blood pressure is also generally recorded during evaluation 

of exercise tolerance. Amon et al 1984 evaluated an 

abnormal post exercise response (failure to fall or 
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increasing) of systolic blood pressure (SBP) in patients 

with CAD. Expressing results as ratios of early recovery 

SBP to peak exercise SBP gave greater sensitivity to the SBP 

changes than exercise electrocardiographic changes. Changes 

in the rate pressure product (RPP - SBP multiplied by heart 

rate) bears close correlation with alterations in directly 

measured myocardial oxygen consumption (Amsterdam et al 

1977). Use of beta blocking agents have an improved 
exercise tolerance time with termination of the exercise 

test occurring at the same RPP indicative of myocardial 

oxygen consumption as the limiting factor (Ellestad 1980). 

The ability of the heart to circulate blood and the ability 

of tissues to extract it may be evaluated by measuring one . 
parameter, that of maximal oxygen uptake (Vo2max). This may 

be measured directly by collecting samples of expired air 

from the patient, or estimated indirectly by calculating 

work done by the patient on the test and applying a factor 

which describes the oxygen requirement per unit of work (eg. 
1.8mlmin- l per Imkg- l of work - Balke et al 1959). 

Nitroglycerin, in a study by Detry et al 1971 was effective 

in increasing vo2max in patients with CAD mainly by reducing 

peripheral vascular tone and the left ventricular pressure­

volume relationship. Ehsani et al 1984 documented decreaseg 

vo2max in patients ~ith CAD in comparison to age-matched 

healthy subjects. vo2max correlated well with various 

indices of LV function (r = 0.7 for maximal heart rate and r 

= 0.77 for change in ejection fraction) suggesting that 

impaired LV function is the limiting factor in attaining 

normal Vo2max. As sUbsta~tial individual variation exists 

in the normal values for V02max, results may be better 
quantified as functional aerobic impairment (FAI - Bruce 

1971). This is calculated according to the following 

formula: 

FAI = (predicted V02 max - Observed 
Predicted v02 max 
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Phonocardiographic and carotid artery pressure measurements 

may also be made from the patient at the time of exercise 

testing. However results tend to be less reproducible than 

those already described and suffer greatly from motion 

artifact (Sutton et al 1977). 

Exercise testing allows investigation of the incapacitation 

resulting from the physiological effects of CAD and is 

routinely carried out in many hospitals across the UK. 

However, Redwood et al 1972 suggests that the information 

gained from a stress test can easily be obtained from a 

patients self reported history, and advocates that only in 

patients with atypical anginal syndromes is exercise testing 

of any value. 

2. Echocardiography 

Technique: Ultrasound (sound above 20,000 hertz) is 

generated in short pulses by piezoelectric crystals and 

directed toward the heart. The sound is reflected and 

received at the crystal from the surface of the heart 

whenever tissue acoustic impedance changes (function of 

tissue density), occurring typically at the interface of 

blood and endocardium, endocardium and myocardium and 

myocardium with epicardium and pericardium. The reflected 

sound is then displayed as an image on an oscilloscope in 

one (or more) of a number of ways. 

Analysis: Two dimensional echocardiography (TDE) which 

allows multiple tomographic - equivalent views of the heart 

and its internal structures to be obtained is currently the 
most popular echocardiographic method of studying LV 

function. 

Pictures produced by TDE can be thought of as inverse video 

images of those produced by angiocardiography. Hence many 

of the indices of LV function employed by this latter 

technique can be re-employed for TDE ego EF (Folland et al 

1979) and WMA (Parisi et al 1980). 
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3. Nuclear Cardiology 

Nuclear Cardiology involves injection of a radiolabelled 

tracer into the patients bloodstream which is then 

distributed in proportion to the function under 

investigation. This radiopharmaceutical emits gamma photons 

with energy sufficient to transverse overlying tissues where 

they are interact with an imaging device (collimator and 

gamma camera) which produces electrical signals as an end 

product. These are then passed on to a computer where they 
may be quantified, stored and displayed. 

In order to evaluate left ventricular function (rather than 

the effects of coronary disease on myocardial perfusion, 

where Thallium imaging would be the study of choice), two 

main types of study may be performed, those of first pass 

radionuclide angiography (1st RNA) and multiple gated 

equilibrium (MUGA) RNA. 

1st RNA 

Technique: Invariably, 99mTC is used as the radioisotope 

either as pertechnetate or bound to diethyltriamine 

pentacetic acid (DTPA) although intravascular tracers may be 

used if a MUGA study is to be performed in combination. 

The radiopharmaceutical is injected as a bolus into the vein 

of the arm and tracked as it makes its way through the atria 

and ventricles of the right and left hearts, thus allowing 

temporal analysis of their function. 

Analysis: Apart from the qualitative data achieved from the 

images, time-activity curves (as emissions are independent 

of geometry) may be constructed for right and left hearts 

which then may be analyzed as one would a time~volume curve. 

Reduto et al 1981 demonstrated reduced filling fraction (35% 

vs 47%) at rest during the first third of diastole in 68 

patients with CAD. Peak filling rate at this time and 

overall peak filling rate were also lower than normal. He 
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concludes that at rest, early diastolic performance is often 

abnormal despite normal systolic performance with 

dysfunction increasing on exercise. Ejection fraction may 

also be derived from averaging of the peaks of the time 

activity curve across the course of a few cardiac cycles 

(Ashburn et aI, 1978). Bodenheimer et al 1978 reported 

excellent correlation of LV ejection fraction with that 

obtained by contrast angiocardiography (r = 0.82). 

Incidence of wall motion abnormalities were also in good 
agreement in a study by Marshall et al 1977 with 59% of 

abnormal segments detected. 

MUGA RNA 

Technique: 99~c is bound to red blood cells by previous 

injection of the stannous ion (Strauss et al 1980). The 

radiopharmaceutical then mixes with the blood pool 

eventually coming to equilibrium. Once achieved, a 16 frame 

composite ECG gated image may be built up from several 
hundred cardiac cycles. 

Analysis: Creation of areas of interest by software on the 

controlling computer can allow quantification of counts 

within specific areas on certain frames of the image. Hence 

left ventricular counts may be computed for the end 

diastolic and end systolic frames which permits the 

calculation of ejection fraction once background activity 

has been subtracted. Such values have been shown to 

correlate well with contrast angiocardiography (r = 0.92, 

Strauss et al 1971, r=0.92, Green et al 1978, r = 0.74, 

Albrechtsson et al 1982) and have good interobserver 

agreement (r=0.95, Green et al 1985). Biello et al 1981 

describes a method which removes subjective bias and 

operator error in deducing the position of the LV regions of 

interest by employing edge detection algorithms. 

Intraobserver variability is 0.9+/-0.57 ejection fraction 

units and interobserver variability 3.0+/-2.5 ejection 

fraction units using this method. 
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MUGA RNA may be combined with stress testing (usually 

bicycle) in order to examine LV responses to exercise. 

Steingart et al 1984 observed decreased ejection fraction 

and peak systolic pressure-end systolic count relationship 

in 25 patients with CAD engaged in supine exercise. 

MUGA RNA also allows production of the spatial distribution 

of functional variables (such as regional ejection fraction, 

extent of contraction (amplitude) or timing of contraction 

(phase» as images themselves. These are known as 

parametric images. These parameters allow quantitative 

investigation of wall motion (Vos et al 1983) and can 

increase sensitivity of the MUGA RNA in detection of CAD 

(Norris et al 1984). 

The dynamics of a labelled blood pool may also be 

investigated by using non imaging scintillation probes 

(nuclear stethoscopes) which are capable of producing real 

time quantitative data on a beat by beat basis (Green et al 
1981). Resulting time-activity curves may be processed in a 

manner similar to that of MUGA RNA. 

These sections have attempted to provide a framework on 

which discussions regarding the extent of ischaemia may be 

evaluated using tests routinely employed in the clinical 

environment. The following two chapters seek to evaluate 

the usefulness of data provided by QAMS in combination with 

some of the tests discussed. 
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CHAPTER SEVEN 

APPLICATION ONE 

QUANTIFICATION OF STENOTIC DIMENSIONS AND THEIR RELATIONSHIP 

WITH EXERCISE PERFORMANCE IN PATIENTS RECEIVING PERCUTANEOUS 

TRANSLUMINAL CORONARY ANGIOPLASTY (P.T.C.A). 

7.1 Introduction 

It would seem logical that improvement in myocardial blood 

supply to a dysfunctioning, ischaemic heart following PTCA 

(sections 1.4.3 and 7.2) should re-normalise its function, 

resulting in amelioration of exercise tolerance. This 

chapter aims to investigate whether this is indeed the case, 

and explore also if stenotic anatomy correlates with the 

capacity for exercise. In answering these questions, 

comparisons between subjective and quantitative methods of 

artery analysis are made along with discussions regarding 

PTCA success rate and coronary artery morphology. 

7.2 Literature Review 

PTCA was first introduced by Gruentzig et al 1979 following 

its development from the technique of Dotter and Judkins for 

the treatment of femoral artery atherosclerotic disease. 

The basic equipment consists of a guide catheter and a 

dilating catheter. The guide catheter has normal external 

diameter (French No 8 or 9) but greater internal diameter 

when compared with the standard coronary angiographic 

catheter. Amplatz or Judkins curves of varying size 

(Przybojewski et al 1984) allow' the catheter to be 

positioned into the affected artery orifice in the manner 

described previously (section 3.2.2). The dilating catheter 

runs inside the guide catheter and has a double lumen which 

communicates with a balloon at its tip. This is made of 

polyvinyl chloride or irradiated polyolefin and demarcated 

by two radio-opaque markers. The double lumen also allows 

pressure measurement and artery contrast injection to take 
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place as well as inflation of the balloon. various sizes of 

dilating catheter are available (French No. 4 - S, balloon 
length 1 - 2cm, post inflation diameter 2 - 3.7mm), the 
choice being dependant on arterial morphology. 

The original dilating catheters were headed by a short soft 
wire, Smm along which served to direct the catheter into the 
artery and thus a avoid injury. In 1983 however, a 
steerable guidewire system was introduced. Wires of this 
system are teflon coated and have flexible tips. They are 
unconnected with the enshrouding dilation catheter, allowing 
independent control from the proximal (operator end) of the 
catheter system. A unique feature of these guidewires is 
that their stiffness diminishes gradually toward the distal 
tip, which is normally gold coated to improve radiopacity. 

Using i:luoroscopy, first the guidewire is "steered" across 
the stenosis and into the distal coronary artery. The 
dilating catheter follows and is carefully positioned across 

the stenosis (indicated by visual assessment or recording or 
a pressure gradient) thus temporarily blocking the artery. 

Expeditious dilation then takes place, accomplished by 
purging the balloon of all air and inflating it with a 
solution of SO% contrast medium and SO% saline pumped in at 
pressure of 3 to 6 atmospheres for 4 to 10 seconds 
(Gruentzig 1981). Inflation and deflation is repeated at 
least three times, the pressure being increased with each 
dilation. Coronary arteriography is then repeated to 
examine the extent of stenotic change, a successful result 
being classified as 20% visual improvement in percent 
diameter stenosis. PT CA may then be repeated until such a 
change is apparent or the procedure terminated. 
Improvements in percent diameter stenosis or, more 
importantly, minimal diameter (section 6.2.1), serve to 
increase distal myocardial blood supply affecting anginal 

relief and an improved cardiovascular response to exercise. 

The usefulness of dimensional arteriographic criteria for 
classification of success or failure was questioned by 
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O'Neill et al 1984. He 

a digital 

measured coronary vasodilatory 

radiographic technique (time of reserve using 

appearance of injected contrast media) in 15 patients before 

and after PTCA and correlated his findings with caliper 
measurements of change in percent stenosis and translesional 

pressure gradient. The correlation (r = 0.61) was 

significant for stenosis (reduction from 71% to 34%) and 

pressure gradient (reduction from 47mmHg to 21mmHg) bu.t more 
so for pressure gradient and the coronary hyperaemic reserve 

(r = 0.77). He concludes by suggesting that either of the 

two latter measurements be routinely adopted for assessing 

PTCA outcome, as they reflect the altered physiological 

state and are not subject to the problems that exist in the 

measurement of coronary arteriograms (section 3.1). 

Adoption of such criteria would also assist in predicting 

true outcome in dilation of "dynamic" or "functional" 
stenoses (section 6.2.1). 

Since 1977, there has been much improvement in the PTCA 

equipment, the most noticeable change being the introduction 

of a steerable guidewire system as discussed earlier. 

Gruentzig in a personal communication to Przybojewski et al 

1984 states that this has been greatly responsible for the 

much improved primary success rate of the PTCA technique, as 

crossing the stenosis is made much easier. 

Changes in dilating catheter design have also allowed higher 

dilation pressures to be applied in PTCA. The effect of 

higher pressure dilation (up to 10 or 12 atmospheres) on 

overall outcome were studied by Meier et al 1984. 100 

patients processed with the "old, low pressure" catheters 
were compared with 100 patients receiving PT CA from the "new 

high pressure" catheter. Both groups were matched for age, 

sex, artery distribution, initial degree of stenosis and 

pressure gradient. Following PTCA, primary success, 

complications and residual degree of stenosis were not 

different in the two groups. However, residual pressure 

gradient was significantly lower in the high pressure group 

(llmmHg +/- 7mmHg vs. 16mmHg +/- 10mmHg). This result 
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indicates a better haemodynamic outcome without increased 

risk. These authors now propose to investigate the effects 

of higher pressures on recurrence rate, but conclude that it 

is at least "safe" to use the new balloon types. Whilst 

clinical and angiographic parameters influence successful 

PTCA, procedural factors (eg. inflation pressure) and PTCA 

experience appear to be the most important determinants of 

success (Faxon et al 1982). 

Patients suitable for the technique are generally highly 

selected, with factors such as good overall left ventricular 

function with objective (if safe and practiced) evidence of 

myocardial ischaemia (section 6.2.3) and short history of 

angina (less than one year) unresponsive to maximal medical 

therapy weighing heavily. Stenotic anatomy is also 

carefully considered, the ideal patient being the single 

vessel case, with a short, proximal concentric lesion, 

easily accessible with no ostial or side branch involvement 

(Gruentzig 1981). However, increasing experience with the 

technique has lead to is employment in the multi stenotic 

single vessel case (Katz et al 1982), left main stem 

stenosis (Stertzer et al 1985), recent and PTCA induced 

coronary artery occlusion (Holmes et al 1984, Dervan et al 

1983, Marquis et al 1984), double and triple vessel disease 

(Gruentzig et al 1982, Hubner et al 1988) and even in 

aortocoronary graft stenoses (Ford et al 1981). 

Laser angioplasty is now receiving attention in various 

cardiothoracic centres, particularly in the United States. 

Work with models which simulate the physiological conditions 

of the human arterial circulation (Gressman et al 1984, 

Shelton et a1 1986) predict that precise alignment of the 

laser catheter provides the greatest obstacle for use in 

human coronary arteries, although such systems have been 

used in the larger peripheral arteries (Bowker et al 1986). 

PT CA has been shown to increase stenotic dimensions in the 

animal model through intimal fracture combined with 

stretching of a non involved portion of the vessel rather 

- 217 -



than plaque compression (Sanborn et al 1982). Cracking of 

the intima and separation of it from the media has been 

histologically demonstrated in various cadaver arteries 

following postmortem PTCA (Castaneda - Zuniga et al 1980). 

They propose that the stretched media distends following 

dilation, carrying with it the intima and atheromatous 

material. Beyond a certain point, the arterial widening 

becomes permanent due to overstretching of the muscle 

fibres. Block 1980 however, describes the mechanism to be 

made up from same plaque compression combined with 

endothelial desquamation and shearing of superficial plaque 

elements. For moderate stenoses, he describes 

re-endothelia1isation and healing of the intima being 

responsible for an enlarged lumen whereas in more severe 

stenoses, splitting of the atheromatous plaque may occur, 

sometimes extending to the internal elastic membrane, 

causing an immediate increase in lumen size. This mechanism 

may explain the irregular artery edges or filling defects 

visualized post PTCA. Fibrosis and healing then occurs, the 
separated intimal flaps becoming retracted and 

endothelialised, further enlarging the lumen. It is this 

latter mechanism proposed by Block that presents the 

currently favoured hypothesis (Willman 1985). 

The National Heart, Lung and Blood Institute (NHLBI, Dorros 

et al 1983) reported on the initial clinical experience with 

PTCA from 34 centres within the united States. Of the 1500 

patients enrolled, PTCA was deemed successful in 63%. Major 

complications (MI, emergency CABG or in hospital death) 

occurred in 9.2%, with non fatal complications being 

significantly influenced by presence of unstable angina and 

initial lesion severity greater than 90% (visual 

assessment). These facts reemphasize the need for careful 

patient selection but illustrate the relative safety of PTCA 

as a method of non surgical myocardial revascularisation. 

subjective quantification of changes in stenotic morphology 

as a result of PTCA have been presented as the largest group 

in the literature. Objective quantification of coronary 

arteries is usually not practiced, although results of PTCA 
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tend to be supported by non invasive analyses. Kent et al 

1982 affected a change in percent diameter stenosis from 74% 

to 31% following PTCA, and reports a 64% success rate. Such 

changes were associated with improved myocardial function as 

assessed by multiple gated acquisition (MUGA) radionuclide 

angiography (RNA). At 3 months follow up, 27 of the 

initially successful 38 patients had sustained improvements 

as assessed by treadmill stress test. Scholl et al 1982 

reports very similar results with stenosis severity being 

reduced from 78% to 35%. Trans-stenotic pressure gradient 
was reduced from 46mmHg to 12mmHg. From 36 of the 45 

initial successes, 33 were asymptomatic at one month, the 

number of patients with ST segment depression on exercise 
was reduced from 20 to 7 and perfusion defects on thallium 

imaging reduced from 21 to 6. Average treadmill time for 

the group was significantly increased (448 to 618 seconds) 
. 3 

and average ratepressure product (RRP) rose from 19.81x10 

to 31.35x103 • They suggest that such non invasive tests may 

be useful in determining guidelines for repeat arteriography 

in patients who have had PTCA. Exercise tolerance was also 
significantly improved in a group of patients reported on by 

Lewis et al 1983. Mean duration of exercise was improved 

from an 5.5 to 7.2 minutes and maximal heart rate from 125 

to 136 beats min-1 • Improved LV function was also apparent 

as measured by MUGA RNA. Meier et al 1984 documented 

changes in percent diameter stenosis of 70% to 27% for low 

pressure balloon inflation and 73 to 31% for high pressure 

balloon inflation. These changes were associated with 
pressure reductions from 50mmHg to 16mmHg and 49mmHg to 

11mmHg respectively. 

Objective assessment of changes on PT CA were investigated in 

a group of patients with unstable angina by Meyer et al 1981 

but were not supported by non invasive tests for 

presence/absence of ischaemia. Pre PTCA, the stenoses 

measured 95.5% cross-sectional area stenosis and were 

reduced to 61.5% immediately after PTCA. ',on follow up 

arteriography (4.9 months) the degree of stenosis had risen 

slightly to 69.2% cross-sectional area stenosis without 
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recurrence of symptoms. Stenotic severity was assessed from 

measurement of traced outlines by Cowley et al 1981. PTCA 

was effective in reducing percent diameter stenosis from 

82.2% to 33.9% and pressure gradient from 48mmHg to 8mmHg. 

When success rate was analyzed according to severity, 

results were significantly better (12/12 vs 6/12) in 

patients with less than 90% stenosis. Successful candidates 

also demonstrated an improved exercise capacity, improved 

heart rate response (118 beats min-1 to 147 beats min-1 ) and 

RPP (20.3x10 3 to 28.3x10 3 ). Exercise thallium scans were 
normal in 11 of 13 patients and 

one functional class of angina. 

noticed that performing PTCA on 

all had improved by at least 

Ischinger et al 1983 

stenoses with less than 60% 

severity (as measured by a digital caliper) had primary and 

long term results similar to those of higher grade stenoses, 

but the incidence of myocardial infarct was higher in this 

group, perhaps being a function of lack of sufficient 

collateral blood flow on complication. They conclude by 

suggesting that performing PTCA on such lesions may 

accelerate the disease process and should be avoided. 

Changes in stenotic severity following PTCA measured using 

an edge detection system were compared with densitometric 

measurements in a study by Serruys et al 1984. The coronary 

lesions were selected prior to PTCA for their extreme 

severity and symmetry. Single plane edge detection 

measurements of diameter were converted to percent area 

stenosis by assuming a circular artery cross-section. 

Estimates by both methods agreed well pre PTCA, (r = 0.89) 
however, discrepancies enlarged post PTCA, (r = 0.62) being 

explained by asymmetric morphological changes in luminal 

cross section, incorrectly assessed from diameter 

measurements in the single plane view. These authors 
however fail to discuss the limited resolution power of 

videodensitometry or its inability to provide absolute 

dimensions (section 2.2.5). The Brown-Dodge system (section 

2.2.3) for coronary artery quantification was employed by 

Johnson et al 1986 in analyzing changes in cros.s-sectional 

area of the coronary lumen 6 months post PTCA. Successful 

PTCA was associated with three fold increase in minimal 
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cross-sectional area (1.0mm2 to 3.2mm2 ). Interestingly 

though, the area remains well below normal and less than 

half the cross-sectional area of the dilating balloon. 

Follow up arteriography at 7.2 months revealed late 

increases in 8 of 23 patients (2.7mm2 - 4.1mm2 ). They 

postulate a possible vasospastic response immediately post 

PTCA to explain this discrepancy but conclude by stating 

that angiographic and non invasive analyses performed 
immediately post PT CA will not define the ultimate adequacy 

of coronary dilation in many patients undergoing PTCA. 

Complication rate versus morphology was assessed by Meier et 

al 1983b when stenoses were categorized as either long or 

short (measured using digitial calipers) and concentric or 

eccentric (estimated by visually assessing if the stenotic 

lumen appeared to lie within one half of an extrapolated 

normal lumen in at least one projection). Long stenoses did 

not differ from short stenoses in terms of overall 

complications or gain in luminal diameter or distal 

pressure. Eccentric stenoses showed a lower rate of primary 

success (80% vs. 89%) with inability to cross the stenosis 

being the major reason. Stenoses which were long and 

eccentric had the highest complication rate (25%) and short 

and concentric stenoses the lowest (12%) despite similar 

improvements in minimal diameter and pressure gradient. 

These authors highlight eccentricity particularly as a risk 

factor against successful PTCA and recommend its 

consideration in patient selection. 

Restenosis following PTCA was associated with an increased 

(8.8mm to 10.4mm) length (measured from tracings) of the 

original lesion (Jackson et al 1985). Changes in the 
ST/heart rate slope post PTCA have been investigated by 

Silverton et al 1984. They demonstrated a fall in the 

relationship equivalent to single vessel disease 

following successful PT CA in 23 of 25 patients. 

change 

No 

significant difference was noted in the 2 patients in which 

PTCA was not successful. At six months follow up, six 

patients had recurrent chest pain and were retested. The 

test correctly identified the three patients who were 
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exhibiting restenosis and three who were not. These authors 

recommend the tests use in t~e non invasive evaluation of 
the results of PTCA, despite the inability of any other 
centres to repeat their original results (section 6.2.3). 

Wijns et al 1985a combined edge detection quantitative 
angiography with stress testing and thallium scintigraphy in 
order to detect restenosis post PTCA. Percent diameter 
stenosis for the whole group was reduced from 64% to 30% 
immediately following PTCA, but had increased to 63% 8.6 

months later. The positive predictive value of a thallium 
scan was 82% compared with 60% for an exercise test, 
recommending the former for future use in the non invasive 
evaluation of PTCA results. 

, 

In a separate study, Wijns et al 1985b correlated stenotic 
severity with trans-stenotic pressure gradient and derived a 
curvilinear- relationship which was best normalized by 

logging the obstructive area measurements (r = 0.74). By 
applying cutoffs of 80% cross-sectional area stenosis and 
0.3 mean pressure gradient (normalized for mean aortic 

pressure) the occurrence of thallium perfusion defects 
induced by exercise were correctly predicted in 83% of 
patients. 

Non invasive estimation of changes in myocardial performance 
following PTCA without reference to dimensional changes in 
stenotic severity has also been popular in the literature. 
However, most reports have tended to utilize MUGA RNA which 
is the technique used in the second application of this 

thesis, hence a discussion of this literature is reserved 
for chapter 8. 

Despite the advent of quantitative coronary arteriography, 
there has been no definite reports which categorically relate 
exercise performance with stenotic severity; many workers, 
with the possible exception of Wijns, have repo"rted improved 

artery caliber and enhanced exercise tolerance but none have 
actually investigated the two areas quantitatively and 
statistically in order to answer the questions: 
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1. Is PTCA effective in improving exercise performance? 

2. Can a patients exercise tolerance be predicted (with 

any certainty) from arteriographic assessment? 

3. Can stress test results infer anything about the state 

of the coronary circulation? 

This application of QAMS was designed to answer these and 
other questions (section 7.3.4). 

7.3 Method 

7.3.1 Patient Selection and Sequence of Events 

Sixty two patients with significant (70% or more visually 

assessed percent diameter stenosis in at least one vessel) 

coronary disease (59 one vessel disease, 3 two vessel 

disease) were,retrospectivelyjselectedf.rom a current list of 

all patients who had received PTCA (performed by the same 

operator) over the period 23rd December 1982 to 10th July 

1985. Sex ratio of the total group was preserved in the 

sample (51 males 11 females) with mean age 52.9 +/- 8.5 

years. By reviewing the patients notes, it was possible to 

obtain cine numbers and stress test data for each of the 

following events (depending upon PT CA result for that 

particular patient): 

N.B. Initial PTCA is expressed as PTCAl and second PTCA 

resulting from restenosis or failed PTCAl as PTCA2. 

Initial arteriogram (10.6 +/- 5.2 weeks prior to 

PTCAl) . 

Initial stress test (18.3 +/- 10.7 weeks prior to 

PTCAl) • 

PTCAl procedure. 

Initial PTCAl follow up stress test (8.0 +/- 9.3 weeks 
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post PTCA1). 

Long term follow up stress test (29.9 +/- 12.4 weeks 

post PTCA1). 

Long term follow up arteriogram (performed routinely in 

all patients until February 1984, then only in 

problematic cases: 29.8 +/- 9.5 weeks post PTCA1). 

Pre PTCA2 stress test, 19.1 +/- 9.9 weeks post PTCA1). 

PTCA2 procedure (19.9 +/- 11.6 weeks post PTCA1). 

Initial PTCA2 follow up stress test (29.1 +/- 14.2 

weeks post PTCA1). 

Long term PTCA2 follow up stress test (49.7 +/- 11.7 
weeks post PTCA1). 

7.3.2 

Long term PTCA2 follow up arteriogram (39.4 +/- 13.7 

weeks post PTCA1). 

Quantification of PTCA Patient Arteriograms 

The protocol for individual image quantification is fully 

described in appendix 1. For each arteriogram, every effort 

was made to obtain at least two views (one in which stenosis 

appeared most severe and its complement at 90 degrees) of 

each affected artery. However, this was not possible (due 

to poor image quality or overlapping with other structures 

etc.) in some of the patients films resulting in only one 

image quantification. In some instances however, 

quantification was possible from three (the other taken from 

the next best view) images. 

For each cine film, artery, procedure, left ventricular 

function score and presence of collaterals was recorded from 

the Radiologists report with subjectively assessed percent 

stenosis and judgement regarding success or failure of the 
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PTCA procedure (based on 20% or more visual improvement in 

percent diameter stenosis). In addition to the normally 
produced stenotic data (section 3.5), the parameter percent 
longitudinal area stenosis was computed thus: 

Longitudinal area 
stenosis (%) 

= (UndiSeased - disea~ed ~x 100 
stenotic area stenotic area 
Undiseased stenotic area 

This parameter allows expression of atheroma area corrected 
for original artery size. 

Regarding sequential arteriograms, care was taken to examine 
the stenosis from the same view as in previous 

quantifications (provided images from the same view had been 
recorded) in order to enable direct comparisons to be made, 
however for reasons described above, this was not always 
possible. 

7.3.3 Quantification of PTCA Patient Exercise 
Performance 

Treadmill based exercise involves large numbers of muscle 
groups and has been proved to elicit the highest levels of 
maximal oxygen consumption (vo2max - Astrand et al 1961). 
This fact, combined with the familiarity of the exercise to 
all make it an ideal medium by which the exercise capacity 
of a patient with CAD may be investigated. The protocol by 
which work load is progressively increased should include an 
initial level of work well within the patients anticipated 
physical capacity and continue to levels expected to produce 

symptoms. 

The Groby Road Hospital achieves this by employing the 

Sheffield (modified Bruce) protocol (Sheffield et al 1976 -

figure 7.1) which utilizes successive three minute exercise 
loads with incremental belt speed and gradient. Current 
medication is maintained for patient safety thus reducing 

the chances of a false positive result, however this 
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practice may mask the true effects of changes in stenotic 

severity as medication will tend to prevent rises in heart 
rate and blood pressure (Harrison 1985). The patient is 
prepared for full 12 lead ECG recording and the test is 

explained. On exercise, ST segment changes in all twelve 
leads are noted throughout the test as is the incidence of 
chest pain, shortness of breath (dyspnoea) extrasystoles and 

onset (plus grade) of fatigue. 

During the final minute of each exercise level, the 
attending Doctor measures the patients blood pressure and 
records the heart rate from the ECG monitoring system. The 
test is terminated when one (or more) of the following 
conditions is fulfilled:-

1. ·Development of progressive angina at least as severe as 
that which would normally cause the patient to stop 
exercise. 

2. A fall in systolic blood pressure or heart rate. 

3. Severe dyspnoea or faintness (especially if the patient 

looks clammy). 

4. Ventricular tachycardia or fibrillation. 

5. The patient experiences chest pain in the absence of ST 
changes. 

6. The patient becomes/feels unsteady. 

7. Marked ST segment depression (>= Smm) 

8. Presence of atrial arrhythmias and/or ventricular 

extrasystoles. 

9. Marked elevation of blood pressure. 

10. Development of high grade block. 
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Depending on the circumstances and cooperation of the 

patient, the test may also be terminated when severe fatigue 
is experienced or 85% of maximal predicted heart rate is 
achieved, although the results from such tests may not 
adequately reflect true exercise capacity. Experience of 

the Doctor is also an important factor in encouraging the 
patient to exercise to a sufficient level and, on repeat 
testing, ideally the same Doctor should be present. This 
however, is seldom the case. 

On cessation of the test, the patient is monitored for at 
least nine minutes in order I tOI' confirm return of all 
parameters to rest levels. The Doctor then completes 
the schedule by recording the reason for stopping the test 
and deciding (on the basis of ST segment changes, section 
6.2.3) whether the test was positive or negative in inducing 
myocardial ischaemia. 

In order to investigate the relationship between exercise 
capacity and stenotic severity changes resulting from PTCA, 
the following parameters were recorded from the exercise 
test data: 

Heart rate at rest and maximal exercise. 

Systolic and diastolic blood pressure at rest, maximal 
exercise and three minutes post exercise. 

Time to t·ermination of test. 

Sum of significant ST segment changes in all leads 
across all levels of exercise and on recovery. 

In addition, age, height and weight were recorded from the 

patients notes. 
From the above data, exercise heart rates and.blood 
pressures were normalized for resting haemodynamic state by 

expressing each parameter as a percentage of the rest 
value. In addition, rest and maximal exercise rate pressure 
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product (heart rate multiplied by systolic blood pressure) 

plus exercise pulse pressure (systolic - diastolic pressure) 

were calculated (Amsterdam et al 1977). Systolic blood 

pressure (SBP) ratio was derived by dividing SBP at 3 

minutes recovery by peak SBP (Amon et al 1984). 

Power exerted by the patient at rest and maximal exercise 
was calculated by two methods: 

1. Using .the simple physical principle that power exerted 

by the patient will be equal to force multiplied by 

distance moved divided by time (Sheffield 1980): 

Power = 
(watts) 

[ 

Body Mass.'~'.Beltsp:ed.Gradient 

(kg) (ms 1) (mmin 1) ( %) ] 

6000· 

2. Using the method of Balke et al 1959 which includes a 

corrective- 'for the· metabolic· cost· of rest and level 
walking: 

Power = (BOdY Mass.'g'.Beltspeed.(0.073+Gradient) 
(watts) (kg) (ms- 1 ) (mmin-1 ) (%) ] 

6000 

Acceleration due to gravity ('g') is assumed to be 10ms-2 • 

Total work done by the patient was calculated as the sum of 

all work performed throughout the exercise test. 

- . 
Symptom limited vo 2max and peak estimated V02 may also be 

calculated from maximal power provided by the above equation 

by assuming that 1.8ml of oxygen is necessary in order to 

perform 1 meter kilogram of work in one minute (Balke et al 

1959) . 

vo2max mlmin- 1 = 1.8 x Maximal power (watts) 
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". -1 -1 V02 m1min kg = 1. 8 Xl maximal power (wattsJ 

BodY",Weight (kg) 

Such an assumption has been shown to return oxygen 
consumption values to within +/- 10% of values actually 

measured (Balke 1960) and is often used in order to predict 

exercise levels necessary to elicit oxygen consumptions in a 

required experimental range (Nalge et al 1971). 

Predicted peak (pp) V02 is calculated for each patient from 

the regression equations proposed by Bruce et al 1973. This 

allows estimation of what the oxygen consumption would be in 

the absence of CAD. The most well known equations of 

Astrand et al 1954 were avoided as their subject population 

was composed of well trained people. 

Sedentary men: 

-1 -1 ppV02 (mlmin kg ) = 57.8 - 0.445 (Age,yrs) r = 0.65 

Sedentary women: 

PPV02 (mlmin-1kg- l ) = 41.2 - 0.343 (Age,yrs) r = 0.72 

Inspection of daily exercise habits from the patients notes 

precluded the use of regression equations for active men and 

women. 

From the oxygen consumption data, functional aerobic 

capacity (FAC) was calculated, with peak estimated V02 
replacing peak V02 measured by the usual gaseous techniques. 

FAC(%) = Peak estimated V02 
PDedicted peak V02 

Rest and exercise oxygen pulse (the amount of oxygen 

delivered in one beat of the heart, a relative measure of 

changes in stroke volume (Astrand and Rodahl, 1977» was 

calculated by dividing peak estimated V02 at rest and 

exercise by respective heart rate. 
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Height and weight were combined in the calculation of body 

surface area (Dubois and Dubois, 1916) such that the above 

data, if necessary, may be corrected for variations in 
patient body size. 

Body surface = 
area (m2 ) 

Height 

(cm) 

0.425 + Weight 
(kg) 

0.745 x 0.007184 

Although some of the above data is based on predictions from 
regression equations, it may prove useful in examination of 
change in exercise performance resulting from PTCA when the 
whole group is considered. Obviously, such data are useless 
in evaluating individual changes. 

7.3.4 Statistical Analyses 

This chapter attempts to answer the following questions: 

1. Does PTCA have a significant effect on exercise 
performance and/or stenotic anatomy? Serial two tailed 
unrelated t tests between adjacent stages of the PTCA 
procedure (ie. arteriography vs. pre PTCA1, pre PTCAl 
vs. post PTCA1, post PTCAl vs. follow up, follow up vs. 

pre PTCA2 and pre PTCA2 vs. post PTCA2) on each data 
variable will allow this question to be answered. 

2. Across all stages of the PTCA procedure, do any 
parameters of exercise performance correlate 
significantly with coronary artery morphology? This 
investigation is best explored by employing linear 
regression, which will not only produce a correlation 
coefficient, but also returns standard error of 
estimate and regression relationship t ratio, thus 

allowing examination of the correlation in real terms 
plus the significance and direction of the regression 
relationship. 

3. Using information from the above tests, can the 

significance of the relationships of the most useful 
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parameters be improved by analyzing the better matched 

data from the initial PT CA procedure only? Linear 

regression again is most useful. 

4. Can a combination of significantly correlating exercise 

parameters be usefully employed in order to predict 

percent diameter stenosis from data arising from: 

a) the whole set of PTCA percent diameter stenosis 
results. 

b) percent diameter stenosis data from the initial 

PTCA procedure. 

The use of stepwise mUltiple regression, which allows 

inspection of each parameters contribution to the 

variance of each relationshi~ is the test of choice. 

5. Can PTCA failure rate be explained by unfavourable 

stenotic morphology? Hierarchical testing of 

successful PTCA stenotic data vs. failed PT CA stenotic 

data using two tailed unrelated t tests is to be used. 

6. Does subjective assessment of stenotic severity 

correlate significantly with the quantified value 

provided by QAMS? Linear regression, which will allow 

differences from the line of identity to be evaluated, 

is the most appropriate test. 

As this chapter is intended to illustrate one application of 
the usefulness of quantified stenotic data, analyses are 

limited to the above. Undoubtedly data collected from this 

study may also allow investigation of other facets of the 

PTCA procedure sometime in the future. 

7.4 Results 

statistical analysis for this chapter utilized all exercise 

tolerance data which was matched with stenotic data for the 
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same patient (N = 137). Where multiple view quantitative 

data existed for any artery (the usual case), averages were 

taken prior to matching. The whole data set includes failed 

PTCAs as well as the successes. These were not considered 

separately as interest lies in relationships and changes in 

the group as a whole. Also, following failure, the patient 

is usually medically managed and not re-catheterized or 

exercise tested, and therefore data from the failed cases 

post PTCA would be absent. 

As PTCA patient review is not standardized at the Groby Road 

Hospital (ie. not all patients received a follow up 

arteriogram) and the fact that it has regional status (ie. 

some patients had follow up exercise tolerance tests nearer 

their homes) it has not been possible to compile a complete 

data set for each patient so that the patient population is 

the same for each test at each stage. Rather, the patient 

population, and the number of patients varies at each stage. 
Should a definitive study of the effects of PTCA be 

required, it would be necessary to adopt standard practices 

into the way in which the PTCA patients are currently 

reviewed. Such practices would be costly and not 

necessarily of direct benefit to the patient. 

7.4.1 Efficacy of the PTCA Procedure 

Significant CAD (greater than or equal to 70% stenosis by 

visual assessment) was judged to be present in 86 vessels in 

the 62 patient sample. PTCA was attempted in 65 arteries 

(46 LAD, 17 RCA and 2Cx). PTCA2 was required by 7 patients, 
6 following restenosis, 1 following a failed first attempt. 

PTCA results are presented in table 7.1, with primary 

success defined as greater than or equal to 20% visual 

improvement in percent diameter stenosis, primary failure 

defined as either a failure to cross the stenosis with the 

dilating catheter or less than 20% visual improvement in 

percent diameter stenosis, and restenosis being defined as 
an increase in percent diameter stenosis of at least 30% by 
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Table 7_1 PTCA procedure results 

No of arteries 

Primary success. long term success 41 

Primary fail. no further intervention 11 

Restenosis. successful second PTCA 6 

Restenosis. no second PTCA attempted 6 

Primary fail. successful second PTCA 1 

Total number of arteries 65 

Primary success rate ( 41+6+6) 53 (82%) 

Primary failure rate (11+1) 12 (18%) 

Overall success rate (41+6+1) 48 ( 74%) 

Overall failure rate (11+6 ) 17 (26%) 
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the time of follow up arteriography. Nine patients 

eventually required CABG (emergency and planned). Overall, 

20 complications occurred throughout the PTCA procedure (15 

intimal tears, 5 myocardial infarcts) with no deaths. 

Grade of angina (table 7.2) based on severity of shortness 

of breath (NYHA classification) post PTCA was improved by at 

least one functional class in 46 patients (74%). 

Table 7.3 presents results from the inter PTCA stage 
unrelated t tests. Each t ratio is classified as being 

either non significant (NS) or significant (numbers 1 - 6), 

with the number indicating the probability level. Whilst 

the direction of the mean difference (table 7.4) may well be 

predicted "a priori" for the pre PTCA1/pre PTCA2 vs. the 

post PTCA1/post PTCA2 tests (ie. improvement in exercise 

tolerance and stenotic parameters) this is not so for all 
other test combinations. Therefore all significant levels 

relate to two tailed values. 

All t ratios· (table 7.3) are non significant when initial 

arteriogram parameter is tested against the same parameter 

at pre PTCA1, with the exception of summated ST segment 

change on recovery (figure 7.2a). Whilst the difference in 

the means between the two groups is marked (table 7.4), the 

standard deviation of the arteriogram group is large. Also 

the group is small suggesting unrealistic "weight" 

contribution from one or two patients resulting in the 

significant result. Sum of all ST segment change (exercise 

and recovery) remains non Significant for this test 

combination. 

Where pre PTCA is tested against post PTCA1, most parameters 

show a significant result. Some parameters exceed 

significance at the 0.01% level, these are longitudinal area 

stenosis, atheroma area (figure 7. 2b), percent. diameter 

stenosis (figure 7.2c), minimal diameter (figure 7.2d), 
functional aerobic capacity (FAC) , peak estimated oxygen 

consumption (peV02 - figure 7.2e), work done (figure 7.2f), 
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Table 7.2 Number of patients occupying various grades of angina 

pre and post PTCA 

o 

pre PTCA 0 

post PTCA 39 

1 

22 

14 

angina grade 

2 

12 

4 

Median score pre PTCA = 2 

Median score post PTCA = 0 
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9 

3 

4 (unstable) 

19 62 

2 62 



Table 7.3 Inter PTCA stage two tailed unrelated t tests 

Exercise Exercise SBP Exercise Work Exercise Exercise ST change SlJm of 

heart rate systolic ratio rate pressure done time ST on ST 

blood pressure product (FXSl (minsl change recovery change 

Initial tobs _0.83NS _0.62NS _0.43NS _0.75NS -0.91 _0.82NS _0.99NS 2.735 O. 73N~ 

arteriogram 
vs df 58 58 56 58 57 58 58 58 58 

pre PTCAl 

Pre PTCAl tobs _5.556 _1.681 _1.12NS _4.366 _4.076 _3.485 3.505 0.66NS 3.515 

vs 
post PTCAl df 93 93 91 93 91 93 93 93 93 

Post PTCAl tobs _0.28NS _0.02NS _O.20NS _0.19NS 1.07NS O.OlNS 1. 36NS 0.70NS l.43N: 

vs 
Follow up df 61 61 61 61 60 61 61 61 61 

Follow up tobs 2.46
1 l.OONS l.OlNS 2.071 2.011 2.492 _4.526 _2.722 -4.84 

vs 
pre PTCA2 df 26 26 25 26 26 26 26 26 26 

Pre PTCA2 tobs _l.03NS _0.83NS 0.32NS _l.03NS _4.076 _2.101 1.861 1.39NS 2.061 

vs 
post PTCA2 df 11 11 10 11 11 11 11 11 11 

Significance levels 

1 0.05" P > 0.01 
2 0.01" P > 0.05 
3 0.005 " P > 0.001 
4 0.001 ~ P > 0.005 
5 0.0005 " P > 0.0001 
6 p < 0.0001 



Table 7.3 continued 
Peak Functional V02 max Average Minimal Stenosis Stenotic Segment Eccentricit 
estimated aerobic maximal diameter length length at the 
V02 

capacity diameter minimal 
diameter 

Initial tobs _0.85NS _1.19NS _0.86NS _0.68NS _1.31NS 1.02NS 0.55NS 1.2~S 1.08NS 

arteriogram 
vs 
pre PI'CAl df 58 58 57 58 58 58 42 58 56 

Pre PI'CAl tobs _4.256 _4.366 _3.865 0.68NS _12.356 13.286 2.412 1.721 1.65NS 

vs 
post PI'CAl df 93 93 91 91 91 93 59 91 91 

Post PI'CAl tobs 0.38NS _0.36NS 0.90NS 1. 24NS 1.961 _0.91NS _2.251 _2.612 _0.48NS 

vs 
Follow up df 61 61 60 59 59 61 39 59 58 

'" w 
2.221 2.542 1.831 _0.89NS 2.803 _2.542 0.61NS -1. 33NS _1.861 

CD Follow up tobs 
vs 
pre PI'CA2 df 26 26 26 25 26 26 23 26 24 

Pre PI'CA2 tobs -1. 39NS _2.722 _2.161 _0.2NS _3.273 1.841 -1. 12NS 0.3~S 0.55NS 

vs 
post PI'CA2 df 11 11 11 10 11 11 8 11 10 



Table 7.3 Continued 

Maximal Mean Atheroma Longlitudirial 
eccentricity eccentricity area area stenosis 

Initial tobs 1.191 1. 49NS 1.51NS 0.89NS 

arteriogram 
vs df 56 56 55 55 
pre PTCAl 

Pre PTCAl tobs 3.344 2.612 5.226 8.866 

vs 
post PTCAl df 91 91 90 90 

Post PTCAl tobs _2.361 _1.891 _0.63NS _0.82NS 

vs 
Follow up df 58 58 57 57 

N Follow up tobs 0.31 NS 0.07NS _2.001 _1.63NS 
w 

'" vs 
pre PTCA2 df 24 24 24 24 

Pre PTCA2 tobs 0.36NS 0.06 NS 0.42NS 1. 46NS 

vs 
post PTCA2 df 10 10 10 10 



Table 7.3a Inter PTCA stage unrelated t tests, normalised 

haemodynamic data 

exfh - restfh exSBP - rest SBP 
" 100 

restfh rest SBP 

tobs elf tobs elf 

Initial arteriogram 
_1.20NS 

0.89NS vs 58 58 
pre PTCAl 

Pre PTCAl 
_1.791 _1.59NS vs 93 93 

post PTCAl 

Post PTCAl 
_0.66NS _1.54NS vs 61 61 

Follow up 

Follow up 
2.121 _0.20NS vs 26 26 

pre PTCA2 

Pre PTCA2 
vs -1. 22NS 11 0.89NS 

11 
post PTCA2 

1 0.05 ~p> 0.01 
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'r<d:llc 7.4 Changc..'s in cxerC.l!:i1.: toh:c-~nc(.· <.mu stt..:nolic ufl",lomy dalu ut l!,lch PrcA :JluyC: (M" .... n ~/_ one ::;lilrK1<-lrd U<-.VI .... tJfm) 

exfh (bpm) 

exSBP (mmHg) 

sbp ratio 

ex RPP 

Work (F's Watts) 

extime (min) 

exST (rmd 

RecST (mm) 

SumST (rrrn) 

Pev02 (ml/min/kgl 

FAC (%) 

V02max (ml/min) 

AV'IIaxd (mm) 

Mind (nm) 

Stenosis (%1 

Stenlen (rrrn) 

Seglen (mm) 

CcCrnln (%J 

MLlx L>CC (~J 

Mean ecc (%) 

Atharea (~2) 

Longlit. Area (%) 

Arlericqram 

148.6!28.53 

l.12!O.13 

17.B4!6.8 

712.83!551.1 

11. 7l!4 .27 

4.57~6.60 

2 .14!3. 45 

6.71!7.98 

26.27:!13.02 

76. n!40. 20 

3.30!O.59 

O. 79!O. 25 

75 .65:!8 .69 

16.50'!4.44 

23.15!1O.09 

16.43!a.49 

33. n!lO. 24 

Pre PfCAl 

125.3!25.46 

155.24!26.35 

1.15:!O.17 

19. 7S!6. 24 

926 .16!S84 .0 

13.13!4.31 

4. 76:!5 .02 

0.33!1.29 

5.09!5.14 

30. 79:!13. 32 

95. 30:!38. 33 

2323 .8f!'1028 .44 

3.47!0.61 

l.01:!0.44 

70.29:!13.57 

14.31±4.26 

23.19!17.48 

)9.52:!21.tH 

IG.86:!9.80 

11. 90!6. 23 

30. n:!7 .42 

Po~t F''I'CA 1 

152.98!22.31 

165.83!22.46 

1. 20!:0. 21 

25.21!S.B3 

139B.58!S1B.97 

15.88:!3.08 

1.59!3.41 

0.167!l.OB 

41.S3!10.76 

128.45!:34.70 

3092 .B3:!BSO. 75 

3.38!0.66 

2.16:!0.43 

36.21!:10.81 

6.70!2.90 

12 .86!3 .68 

25.]4!1B.28 

11.631:9.]3 

5.93!4.20 

16.76"!7.S7 

PolIo .... llr~ 

154.71!24.93 

16].95!:26.25 

1.21!0.14 

25.5!6.00 

1255.97!451.17 

IS.80!2.53 

0.52:!1.6 

O.OO!O.OO 

40.50!9.17 

131. 9f!:]8 .85 

2~97. 78:!704 .98 

3.17!0.57 

1.91!O.56 

39.]1!16.16 

15 .65:!'; .46 

19.46!:13.)8 

46 .1t:!49 .88 

16.93!11.6 

6.67:!4.37 

18.61£8.98 

152.14!29.41 

1.l4!0.17 

19.49:!8.46 

883 .14:!J21. 5 

13.01!2.69 

5.4]!4.28 

0.71:!1.25 

6.14'1:4 .71 

31.31'1:10.44 

9] .07:!l7 .05 

2257 .43!lOS8 .B7 

].4!.O.7 

1. 27!0. ]5 

58.09!l9.43 

B.2S:!2.86 

l8.S2!6.36 

39.9G:!21.08 

16.56!9.6 

1l.6B!.8.42 

25 .03!:8 .B3 

146.S!.W.07 

163.33!lfi.02 

1.U!O.1 

24. ]!B. 29 

1561.Ut;J!L6.99 

15.98!.2.37 

1.67!2.66 

u.OO!O.OO 

1.67!2.66 

]9.15!9.8 

116.25:!12.99 

3247 .6:!39].6 

3.S0:!O.86 

2.24:!:0.69 

40.52:!:14.01 

1l.42:!G .11 

17 .33!4. 79 

26 .13!.15.44 

3S.GS:!18.7S 

J6:20!9.82 

9.B2:!S.97 

IB.]]:!:6.16 
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Table 7.4a changes in normalised maximal exercise heart rate and systo1ic blood pressure at each 

PTCA stage (mean +/- one standard deviation) 

Normalised 
exfn 

Normalised 
exSBP 

Arteriogram 

74.18+55.57 

26.36+13.65 

Pre PTCA1 Post PTCA1 

95.95+36.47 105.19+33.11 

20.41+17.02 26.16+18.2J 

Follow up Pre PTCA2 Post PI'CA2 

112.25+40.56 77.19+26.68 102.35+46.74 

33.17+14.43 34.81+29.02 23.05+14.70 
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exercise rate pressure product (exRPP) and maximal exercise 

heart rate (exfh - figure 7.2g). However, the parameters of 
exfh and exercise systolic blood pressure (exSBP) which 

contribute to the calculation of exRPP can be markedly 
affected by changes in drug therapy, particularly changes in 
the dosage or administration of~blockers (sp.ction 1.4.1). 

Overall, 23 patients (37%) underwent a drug therapy change 
from treatment involving the use of ~blockers to treatment 
not using~blockers. Hence, exfh and exSBP were reanalyzed 
expressed as percentage change of their rest values (ie. 
normalized for resting haemodynamic state - figure 7.2h). 

Exfh was still significant although much less so (table 
7.3a), exSBP was non significant (tables 7.3a and 7.4a). 

On the post PTCAl vs. follow up tests, all exercise 
tolerance parameters showed non significant differences. 
Minimal diameter was significant at the 5% level. 
Inspection of the mean change (table 7.4) suggests reduction 
of minimal diameter below the post angioplasty dimension. 
Percent diameter stenosis was non significant. Changes in 
lesion length (stenotic and segment - figure 7.2i) exhibited 
significant differences (table 7.3), becoming increased 

above their post PTCAl values (table 7.4). Significant 
changes in stenotic morphology were also evident from 
maximal and mean eccentricity changes (figure 7.2j) whilst 
atheroma area and longitudinal area stenosis were non 
significant (table 7.3). 

Comparing follow up to pre PTCA2 (table 7.3) revealed 
significant differences in most exercise tolerance 
variables, being particularly strong in parameters relating 
to ST segment changes. Minimal diameter and percent 
diameter stenosis were also significant as was atheroma 
area. However this latter parameter was not significant 
when normalized for undiseased artery area (longitudinal 
area stenosis). Normalized exfh was also significant at the 

5% level. 
The second PTCA procedure significantly affected work done, 

exercise time, ST changes, FAC and vo2max, along with 
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minimal diameter and percent diameter stenosis. Mean 
changes (table 7.4) are for the better. Drug therapy 

was unchanged in all patients receiving PTCA2 and all 
potentially sensitive parameters are non significant both in 
absolute (table 7.3) and relative (table 7.3a) terms. 

In all cases, significant differences in the stenotic 
anatomy data are associated with mean differences much 
larger than those incurred by the errors of digitization 
(table 4. 11 ) . 

7.4.2 Relationship between Exercise Performance and 
Coronary Anatomy - Whole Group 

ST segment changes are considered as a whole for the 
purposes of these analyses. 

Minimal diameter, percent diameter stenosis, minimal 
cross-sectional area and percent cross-sectional area 
stenosis all have a strongly significant regression 
relationship with exercise performance. Table 7.5 presents 
the results to the regression analyses, displaying only 
those where the t ratio (reflecting whether the gradient is 
significantly different from zero or not) is significant. 
Each t ratio is assigned a significance rating as in the 
previous section. Correlation coefficients are not 
themselves labelled, as levels of significance are identical 
to the corresponding t ratio. Minimal diameter correlates 
the best, followed by percent diameter stenosis and the 
cross-sectional area based parameters. All standard error 
of estimates are quite large and the data well spread. 

Of the eccentricity variables, eccentricity at the minimal 

diameter correlates most highly and most often with the 
exercise parameters. Mean eccentricity is next most useful, 
with maximal eccentricity relating least well 'to exercise 
performance. Atheroma area shows fair correlation with a 

moderate number of exercise parameters (table 7.5). 
However, these correlations and t ratios are much enhanced 
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Table 7.5 Regression analysls - exercise performance vs stenotic parameters. all patients 

In;:luded 

Minimal 
diameter 
(""') 

~ 
,~ ~ 
~ t: 
~ . 
x ~ 

'" .c 

tobs 5.176 

SEE 0.65 
r 0.41 
N 135 

Percent tobs _5.006 

19.31 
-0.40 
137 

diameter SEE 
stenosis r 
(%) N 

Minimal tobs 
cross SEE 
sectiona~ r 
area (Iml ) N 

Percent tabs 
cross SEE 
sectional area r 
stenosis (X), N 

4.816 

1. 74 
0.39 
135 

_4.62 6 

18.74 
-0.37 
137 

Eccentricity 
at the 
minilTlJm 
diameter (%) 

tobs _3.053 

SEE 15.91 

Maximal 
eccentricl ty 
(%) 

Mean 
eccentricity 
(%) 

r' -0.26 
N 131 

tabs 
SEE 
r 
N 

tobs _2.48 2 

SEE 9.98 
r -0.21 
N 130 

tabs _2.41 2 

SEE" 6.20 
r -0.21 
N 129 

Longlitudina1 tobs 
area stenosis SEE 

_4.226 

9.55 
-0.35 
129 

(%) r 
N 

All signif icance tests are tailed 

Significance levels 

1 0.05 ~ P > 0.01 
2 0.01 .. P > 0.005 
30.005" P > 0.001 
4 0.001 , P > 0.0005 
50.005 .. P > 0.0001 
6 p .. 0.0001 

• w 

;;: 
~ 

• u • 
III ,~ a. 

·~o ~ .~ •• x >-~ 
", • .0 

3.194 

0.69 
0.27 
135 

_3.324 

20.21 
-0.27 
137 

2.8033 

1.83 
0.24 
135 

. 4 
. -3.13 
19.39 
-0.27 
137 

1. 711 
16.30 
-0.15 
131 

_2.021 

27.33 
-0.19 
131 

_1.901 

10.07 
-0.17 
131 

_2.91 3 

6.14 
-0.25 
129 

_4.466 

9.49 
-0.37 
129 

INDEPENDANT VARIABLE 

o 
"" Q. ~ 

Bi ~ 

2.422 

0.70 
0.21 
132 

_2.121 

20.79 
-0.18 
134 

2.372 

1.86 
0.20 
132 

_2.39 2 

19.87 
-0.20 
134 

-1. 701 

16.28 
-0.15 
128 

_2.45 2 

10.00 
-0.21 
126 

~ 

w* .. ~ 
.~ 0. U 

~w.a 
~~~ 
x •• "'.0. 
5.026 

0.65 
0.40 
135 

_5.086 

19.25 
-0.40 
137 

4.606 

1. 75 
0.37 
135 

_4.866 

18.60 
-0.39 
137 

_2.813 

16.00 
-0.24 
131 

_2.291 

27.29 
-0.20 
131 

_2.72 3 

9.93 
-0.23 
131 

_3.093 

6.11 
-0.26 
129 

_5.176 

9.27 
-0.42 
129 
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il; 
" & m 

.~ 'rl 
U , U 
• • • Q. • 

x '" x "''''. 
3.695 

0.68 
0.30 
135 

, _4.496 

19.60 
-0.36 
137 

3.284 

L81 
0.27 
135 

_4.55 6 

18.78 
-0.36 
137 

_2.372 

16.13 
-0.20 
131 

_2.341 

27.27 
-0.20 
131 

_2.291 

10.01 
-0.20 
131 

_3.304 

6.08 
-0.28 
129 

_5.146 

9.28 
-0.41 
129 

~~~ 
:is!!'. 
4.26

6 

0.67 
0.35 
133 

_3.605 

20.14 
-0.30 
135 

3.886 

1. 79 
0.32 
133 

_3.194 

19.53 
-0.27 
135 

_2.141 

16.21 
-0.19 
129 

_1.671 

10.12 
-0.15 
129 

_1.831 

6.26 
-0.16 
127 

_2.75 3 

9.93 
-0.24 
127 

~ 
" " . ~ .c.l'l 

!is-
4.256 

0.67 
0.35 
133 

_3.595 

20.14 
-0.30 
135 

3.886 

1. 79 
0.32 
133 

_3.184 

19.54 
-0.27 
135 

_2.ll1 

16.21 
-0.18 
129 

-1. 711 

10.1l 
-0.15 
129 

_1.951 

6.25 
-0.17 
127 

_2.793 

9.92 
-0.24 
127 

3.996 

0.67 
0.33 
135 

_3.575 

20.09 
-0.29" 
137 

3.735 

1. 79 
0.31 
135 

_3.334 

19.39 
-0.28 
137 

_2.71 3 

9.92 
-0.23 
129 



Table 7.5 Rcqresslon analysis _ exercise performance vs stenotiC parameters, all patients 

wclujed 

continued. 

Minimal 
diameter 
("",I 

Percent 
diameter 
stenosis 
(%1 

Minimal 
cross 
sectiona~ 
area (nm ) 

tobs _3.01 3 

SEE 0.69 
r -0.25 
N 13S 

tobs 3.09
3 

SEE 20.31 
r 0.26 
N 137 

tabs _3.274 

SEE 1.81 
r -0.27 
N 135 

Percent tabs 
cross SEE 
sectional area r 

~ stenosis (%) N 

3.244 

19.43 
0.27 
137 

~ 

~ Eccentricity tabs 
:> at the SEE 

eccentrici ty 
(%1 

r 
N 

tobs 
SEE 
r 
N 

Mean tabs 
eccentricity SEE 
(%1 r 

N 

tabs 
SEE 
r 
N 

LOnglitudinal tobs 
area stenosis SEE 
(%1 r 

N 

2.241 

10.00 
0.20 
129 

It~EPENDAwr VARIABLE 

_2.532 

0.69 
-0.21 
135 

2.512 

20.54 
0.21 
137 

_2.231 

1.85 
-0.19 
135 

2.151 

19.83 
0.18 
137 

1.901 

16.25 
0.16 
131 

2.49
2 

6.19 
0.22 
129 

3.04 3 

9.B5 
0.26 
129 

_3.54 5 

0.68 
-0.29 
135 

3.605 

20.07 
0.30 
137 

_3.705 

1. 79 
-0.31 
135 

3.63
5 

19.25 
0.30 
137 

3.01 3 

9.85 
0.26 
129 

!l 
~ • E 

"" ~ • • 
" • N &§? 

4.276 

0.67 
0.35 
135 

_3.986 

19.88 
-0.32 
137 

3.755 

1. 79 
0.31 
135 

_3.515 

19.31 
-0.29 
137 

_1.741 

16.30 
-0.15 
131 

_2.BB3 

9.BB 
-0.25 
129 

All slgnlficance levels tiilled. 

Signlflcance levels 

0.05" P > 0.01 

2 C.Ol.(p)o 0.005 

3 0.00:''' P > O.OOl 

4 0.001 {" P > 0.0005 

5 0.0005" F > 0.0001 

6 p..:;:O.OOOl 
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4.496 

0.66 
0.36 
135 

_4.396 

19.66 
-0.35 
137 

3.866 

1.79 
0.32 
135 

_3.936 

19.11 
-0.32 
137 

_3.274 

3.80 
-0.28 
129 

4.24
6 

0.67 
0.35 
133 

_3.906 

19.98 
-0.32 
135 

3.846 

1. 79 
0.32 
133 

_3.565 

19.36 
-0.30 
135 

_2.161 

16.19 
-0.19 
129 

-1. 741 

27.62 
-0.15 
129 

_1.861 

10.09 
-0.16 
129 

_2.633 

6.18 
-0.23 
127 

_3.155 

9.84 
-0.27 
127 



and more frequent being significant with all exercise 

variables once atheroma area is normalized for undiseased 

artery size. 

As in the previous section, exfh, exSBP and exRPP correlate 

frequently and in some cases highly with stenotic anatomy. 

Table 7.5a illustrates the degree of correlation once these 
variables have been normalized for resting haemodynamic 

state. Many previously strong regression relationships are 
now weak or non significant, and therefore not displayed. 

Correlations of height, weight and body surface area 

(regression with percent diameter stenosis, section 7.4.4) 

with all parameters were non significant (except with those 

involving these parameters in their deriving equations). 

Hence all data described above remains uncorrected for body 

size. 

7.4.3 Relationship between Exercise Performance and 

Coronary Anatomy - Pre/Post PTCAl Group only 

These regression analyses have excluded work done using 

Balkes equation, all direct reference to exercise systolic 

blood pressure, exercise pulse pressure, minimal 

cross-sectional area and percent cross-sectional area 

stenosis as their interrelationships were less strong than 

those preserved for study. 

Overall, the pattern of significant results is preserved 

across all parameters (table 7.6) with the possible 

exception of maximal eccentricity and eccentricity at the 
minimal diameter, whose positions have been reversed. 

Generally, all correlation coefficients and t ratios are 

increased and standard errors of estimate decreased. Once 

again, exfh and exRPP correlate strongly. Table 7.6a 

presents the same analyses once normalization has taken 

place. 
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Table 7.5a Regression analysis - Normalised haemodynamic data 

vs stenotic parameters, all patients and ?TeA stages included 

Minimal diameter 
(mm) 

Percent diameter 
stenosis (%) 

Minimal cross 
sec2ional area 
(mm ) 

Percent cross 
sectional area 
stenosis (%) 

Eccentricity 
at the minimum 
diameter (%) 

Longlitudinal 
area stenosis 
(%) 

Significance levels 

1 0.05 ~ P > 0.01 
2 0.01 ~ P > 0.005 
3 0.005 ~ P > 0.001 

Normalised exfh 

tobs SEE r N 

1.711 0.70 0.15 135 

- 253 -

Normalised exSBP 

tabs SEE r N 

2.442 0.700.21 135 

_2.091 20.68 -0.18 137 

2.311 1.85 0.20 135 

. 1 
-2.15 19.83 -0.18 137 

1 -1.90 16.26 -0.17 131 

3 -2.87 9.88 -0.25 130 



Table 7.6 Regress100 analysis _ exercise performance vs stenotic parameters, pre/post ?TeAl group only 

INDEPENDAt'lI' VARIABLE 

• 
~ ~ 
~t;-5 

Minimum 

diameter 

(""') 

tobs 

SEE 

r 

N 

5.146 

0.64 

0.48 

90 

4.336 3.785 

0.66 0.67 

0.42 0.31 

90 90 

3.55
5 

0.68 

0.35 

90 

_2.221 

0.71 

-0.23 

90 

Percent 

dianeter 

stenosis 

tabs _S.246 -4.94 _3.34 3 _3.183 2.011 

SEE 

r 

(") N 

18.65 

-0.48 

92 

19.24 20.07 

-0.43 -0.33 

92 92 

Eccentricity at tdbs _2.602 _1.93
1 

the minimum SEE 16.30 16.53 

diameter r -0.27 -0.20 

(") N 90 90 

20.18 

-0.32 

92 

Maximal tdbs _3.0S3 _1.931 _2.422 _1.68) 

eccentricity SEE 20.S6 21.17 20.93 21.27 

(%) r -0.31 -0.20 -0.25 -0.18 

N 90 90 90 90 

Mean 

eccentrici ty 

(%) 

tabs _2.96 3 _2.1S3 _1.861 

SEE 9.S2 9.72 9.79 

r -0.30 -0.22 -0.19 

N 90 90 90 

Atherana tabs _1.9S1 _2.472 _1.721 

SEE 6.09 6.02 6.12 

r -0.20 -0.25 -0.18 

N 89 89 89 

area 

stenosis 

(%) 

tobs 

SEE 

r 

N 

_4.066 

9.44 

-0.40 

89 

All significance levels 1 tailed. 

Significance levels 

1 0.05 ~ P > 0.01 

2 C.01 ~ P > 0.005 

3 0.005" P > 0.001 

4 0.001 .. P > 0.0005 

5 0.0005 ~ P > 0.0001 

6 P ~ 0.0001 

_4.766 _2.70 3 

9.18 9.89 

-0.45 -0.28 

89 89 

_2.622 

9.91 

-0.27 

89 
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20.82 

0.21 

92 

1.981 

10.06 

0.21 

89 

Jl 
~ " ." • ~ N 

,n~ 

4.06
6 

0.67 

0.40 

90 

19.78 

-0.37 

92 

_2.241 

21.02 

-0.23 

90 

4.09
6 

0.67 

0.40 

90 

19.76 

-ll.37 

92 

_2.973 _3.13 3 

9.81 9.76 

-0.30 -0.32 

89 89 

5 ." ~ 
id 
" ~~ 
~~B 
3.68

5 

0.68 

0.36 

90 

20.01 

-0.34 

92 

_2.402 

20.94 

-0.25 

90 

_1.771 

9.80 

-0.18 

90 

_1.941 

6.10 

-0.20 

89 

_2.86 3 

9.84 

-0.29 

89 



Table 7.6a Regression analysis - Normalised haemodynamic data 

vs stenotic parameters, pre/post PTCAl data only 

Minimal diameter 
(mm) 

Percent diameter 
stenosis (%) 

Minimal cross 
seciional area 
(mm ) 

Minimal cross 
sectional area 
stenosis (%) 

Atheroma area 
(mm) 

Longlitudinal 
area stenosis 
(~) 

Significance levels 

1 0.05 ~ p>O.Ol 

2 0.01 ~ P > 0.005 

3 0.005~p>0.001 

Normalised exfh 

tobs SEE r N 

1.94
1 

0.71 0.20 93 

1 
1.85 1.83 0.19 93 
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Normalised exSBP 

tobs SEE r N 

2.031 0.70 0.23 93 

1 -1.84 20.77 -0.19 95 

2.442 20.77 -0.19 93 

_2.081 19.63 -0.21 95 

1 -1.97 6.03 -0.20 92 

3 
-2.92 9.79 -0.29 93 



All data is unrelated to body size and therefore remains 

uncorrected (regression with percent diameter stenosis, 
section 7.4.4). 

7.4.4 Estimating Percent Diameter Stenosis from Exercise 

Performance 

Employing stepwise multiple regression, and entering all 

exercise parameters plus age, height, weight, body surface 

area and body mass index (BMI - related to obesity) ~s 

predictor variables, the variables of exfh, sum of ST 

segment changes and BMI were selected for the whole group 

(table 7.7a) and exfh, FAC and BMI being selected for the 

pre/post PTCAl group (table 7.7b). Correlation coefficients 

were 0.52 and 0.57, respectively. Both relationships were 

highly significant (p <= 0.01%). Table 7.7c demonstrates 

multiple regression analysis results for the pre/post PTCAl 

group utilizing the exercise parameters selected for the 

whole group for comparison. Indeed, correlation coefficient 
is improved to 0.54, although overall F ratio is reduced 
from 14.06 to 11.9. It is interesting to note that when 

used in combination with other parameters, BMI becomes 

significant, yet, considered alone the regression 

relationship with percent qiameter stenosis is non 

significant (two tailed) in both groups (table 7.7d and 

7.7e). 

As exfh accounted for the majority of the variance explained 

by the above relationships, these stepwise multiple 

regressions were then repeated with the most drug sensitive 

parameters removed. For the whole gr~up, FAC and sum of ST 

segment changes were selected with pevo2 and BMI 

contributing for the pre/post PTCAl group. Correlation 

coefficients are dramatically reduced, SEEs increased only 

marginally and the significance of the relationships 

preserved in both cases (table 7.7f and 7.7g). Table 7.7h 

shows results to regression analysis of those variables 

contributing significantly to the whole group on the 
pre/post PTCAl data set for comparison. This relationship 
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Table 7.7a predicting percent diameter stenosis from exercise tolerance data - whole group 

Percent diameter stenosis = 1.35 BMI - 0.31exfh + 0.83 SumST + 60.83 

Variable 

BMI 
exfh 

SumST 

CONSTArn' 

Regression 
coefficient 

1.3519 

-0.3109 

0.8263 

60.8322 

Standard error 
of coefficient 

0.07686 

0.0635 

0.3694 

SEE = 18.24, r = 0.52, variance explained = 25.09% 

OVerall f ratio, df 3,114 = 14.06 p(0.0001 

F 
df 1,114 

3.093 

23.982 

5.005 

Probability 

0.08129 

<0.0001 

0.02722 

Partial 
variance (%) 

2.64 

17.38 

4.21 



N 
U1 
Cl) 

I 

Table 7.7b predicting percent diameter stenosis from exercise tolerance data - pre/post PTCAl 

group only 

Percent diameter stenosis = 1.87 BMI - 0.32 exfh - 0.12 FAC + 65.58 

Variable Regression Standard error F 
coefficient of coefficient df 1,87 

BMI 1.8709 0.8071 5.373 

exfh -0.3160 0.0715 19.534 

FAC -0.1198 0.0477 6.322 

CONSTAm' 65.5753 

SEE = 17.43, r = 0.57, variance explained = 29.86% 

Overall F ratio, df 3,87 = 13.77, p~O.OOOl 

probability 

0.02280 

0.00003 

0.01377 

Partial 
variance (%) 

5.82 

18.34 

6.77 



N 
Ul 

'" 

Table 7.7c Predicting percent diameter stenosis in the pre/post ?TeAl group using parmeters 

selected from the whole group 

Percent diameter stenosis; 1.97 BMI - 0.34 exfh+ 0.58 SumST + 51.63 

Variable Regression Standard error F Probability 
coefficient of coefficient df 1,87 

BMI 1.9734 0.8276 5.688 0.01927 

exfh -0.3448 0.0717 -23.117 0.00001 

Sl.'nST 0.5826 0.3904 2.226 0.13929 

CONSTANT 51.6329 

SEE; 17.83, r ; 0.54, variance explained; 26.64% 

Overall F ratio, df 3,87; 11.90 p~ 0.0001 

Partial 
variance (%) 

6.13 

21.00 

2.50 



Table 7.7d Regression analysis - Percent diameter stenosis 

vs body size and obesity indices, whole group 

Variable tobs SEE r 
N 

(two tailed) 

Height 119 _0.88NS 21.01 _0.08NS 

Weight 119 0.48NS 21.06 0.04
NS 

SSA 119 -0. 26NS 21.07 _0.02NS 

BMI 119 1.8SNS 20.78 0.17 
(p=0.067) 

Table 7.7e Regression analysis - Percent diameter stenosis 

vs body size and obesity indicies, pre/post PTCAl group only 

Variable N tobs SEE r 
(two tailed) 

Height 83 _1.19NS 21.02 -0.13 

Weight 93 0.26NS 21.27 0.02 

SSA 83 -1.1 ~S 21.03 -0.13 

BMI 83 1.8SNS 20.77 0.20 
(p=0.069) 
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Table 7.7f Predicting percent diameter stenosis from parameters not directly affected by 

drug therapy - whole group 

Percent diameter stenosis = 1.04 SumST changes - 0.14 FAC + 66.26 

Variable Regression Standard error F 
coefficient of coefficient df 1,129 

SumST 1.0393 0.3592 8.370 

FAC -0.1433 0.0438 10.716 

CONSTANT 66.2592 

SEE = 19.1271, r = 0.41, variance explained = 15.82% 

Overall F ratio, df 2,129 = 13.3 p~ 0.0001 

Probabili ty 

0.00448 

0.00136 

Partial 
variance (%) 

6.09 

7.67 



N 

'" N 

Table 7.7g Predicting percent diameter stenosis from parameters not directly affected by drug 

therapy - pre/post ?DCAl group only 

Percent diameter stenosis = 1.93 BMI - 0.56 pevo2 + 27.03 

Variable Regression Standard error 
coefficient of coefficient 

BMI 1.9346 0.8855 

peV02 
-0.5598 0.1524 

CONSTANT 27.0284 

SEE = 19.1296, r = 0.42, variance explained = 15.54% 

Overall F ratio, df 2,88 = 9.28 P ~ 0.0005 

F 
df 1,88 

4.773 

13.482 

Probability 

0.03157 

0.00041 

Partial 
variance (%) 

5.14 

13.29 



N 

'" w 

Table 7.7h Predicting percent diameter stenosis in the pre/post ?reAl group using parameters 

selected from the whole group 

Percent diameter stenosis = 0.64 SumST - 0.17 FAC + 71.54 

Variable Regression Standard error F Probability 
coefficient of coefficient df 1,88 

FAC -0.1656 0.0521 10.1251 0.00202 

SulT6T 0.6412 0.4244 2.28 0.13444 

CONSTANT 71.5415 

SEE = 19.4491, r = 0.38, variance explained = 12.69% 

Overall F ratio, df 2,88 = 7.54, p.~ 0.001 

Partial 
variance (%) 

10.32 

2.53 



is severely affected both in terms of correlation 
coefficient and strength of significance. 

7.4.5 Influence of Stenotic Anatomy on PTCA Failure Rate 

PTCA failure rate due to inability to cross the stenosis 
with the dilating catheter was 29.4% in the RCA group of 
patients (table 7.8), almost twice the rate for PTCA of LAD 
arteries (15.2%). PTCA failure in circumflex arteries was 
also high at 50.0%, however, the data set for this group is 
very small at two patients and is not considered further. 
Hierarchical unrelated two tailed t tests were carried out 
using variables important when assessing PTCA feasibility 
from the pre PTCA1 and pre PTCA2 stenotic data in order to 
investigate if RCA failure rate may be explained by unusual 
stenotic anatomy. The data from these tests is presented as 
table 7.9. 

No significant differences in stenotic morphology existed 
between arteries in which PTCA was successful and arteries 
in which it was not (due to inability to cross the stenosis) 
when LAD and RCA arteries were considered collectively. All 
parameters remained non significant when all (ie. PTCA1 and 
PTCA2) LAD successes were tested against all LAD failures. 
When RCA data were tested in the same manner, differences 
between average maximal diameter (figure 7.3a) minimal 
diameter (figure 7.3b) and eccentricity at the minimal 

diameter (figure 7.3c) proved significant. Mean differences 
(table 7.9a) demonstrated that the failure group had smaller 
dimensions and higher eccentricity. 

Considering just the pre PTCAI data and repeating the tests 
gave no significant differences for the LAD group (table 
7.9) and significant differences with larger t ratios in the 
same parameters for the RCA group. Direction of mean 

differences are consistent with the above (table 7.9a). 
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Table 7.8 Overall ?reA success and failure rates (breakdown) 

Success Failure Failure 
(all cases) (inability to cross 

the stenosis) 

LAD 37 9 46 7 (15.2%) 

RCA 10 7 17 5 (29.4%) 

cx 1 1 2 1 (50.0%) 

48 17 12 
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Table 7.9 Two tailed unrelated t tests - pre PTCA stenotic data. Primary success PTCA vs primary 

fall (inability to cross the stenosis) PlCA 

Test All success All LAD success All RCA success PTCAl LAD success PTCA1 RCA success 
Con<iltlan vs vs vs vs vs 

all failure all LAD failure all RCA failure PTCA1 LAD failure PTCA1 ReA failure 

Parameter 

Average tobs l.06NS o . 32
NS 2.161 O.OgNS 2.271 

maximal 
diarreter df 114 Ba 31 74 29 

Minimal tobs 1.33NS O.75NS 2.641 1.12NS 2.721 

diameter 
df 114 Ba 31 73 29 

Percent tabs 0.70NS 1.19NS 1.97'5 1.32NS 2.00NS 

diameter 
stenosis df 115 B1 31 74 29 

Stenotic tohs 0.6-fS O.46NS 0.41'-' 1.20NS O.42NS 

length 
df 66 45 19 41 18 

Segrrent tabs O.IONS 0.33NS O.6gNS 1. 24NS O.69NS 

length 
df 114 Ba 31 73 29 

Eccentrici~' , tabs 1. 43
NS o .1BNS 2.B42 1.17''" 4.263 

at the 
minimal df 98 70 25 64 24 
dl.ameter 

Maximal tabs 1.06NS O.lBNS 1. 57
NS O.32NS 1.6SNS 

eccentricity 
df 98 70 25 64 28 

Mean tobs O.6NS O.UNS O.76NS O.lSNS 0.86NS 

eccentricity 
df 98 70 25 64 24 

Stenotic tohs 1.56NS 1.06NS 1.37'5 1.30NS 1.33NS 

area 
df 97 69 25 63 24 

Atherana tabs 0.22NS 0.9I NS o .8d'-.lS 1.26NS 0.73NS 

area 
df 97 69 25 63 24 

Significance levels: 

1 O:05~" p > 0.01 

2 0.01 .... P > 0.005 

3 0.005 , p > 0.001 
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Table 7.9a Descriptive statistics, stenotic morphology, success 
vs failure (mean +/- 1 standard deviation) 

Average maximal Minimal diameter Eccentrici ty 
diameter (mm) (mm) the minimal 

diameter (%) 

All successes 3.52+/-0.65 1.1+/-0.49 23.8+/-18.3 

All fails 3.35+/-0.71 0.99+/-0.65 31. 7+/ -30.1 

All LAD 
successes 3.50+/-0.63 1.10+/-0.46 24.1+/-19.8 

at 

All LAD fails 3.56+/-0.76 1. 22+/ -0.68 22.85+/-18.80 

All ReA 
successes 3.63+/-0.69 1.09+/ -0.59 22.0+/-13.3 

All ReA fails 3.05+/-0.56 0.52+/-0.28 47.7+/-34.6 

PTCAl LAD 
successes 3.47+/-0.65 1. 09+/ -0.46 24.1+/-18.5 

PTCAl LAD fails 3.55+/-0.61 1. 30+/ -0.75 16.1+/-13.8 

PTCAl RCA 
successes 3.67+/-0.70 1. 09+/ -0.56 20.4+/-11.3 

PTCAl ReA fails 3.05+/-0.56 0.52+/-0.28 47.7+/-34.7 
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7.4.6 Relationship between Subjective and Quantified 

Estimation of Percent Diameter Stenosis 

QAMS estimation of percent diameter stenosis was regressed 
against the reviewing Radiologists visual interpretation 
(averaging of QAMS values from differing views was necessary 
in order to match the data). Visual interpretation was 
treated as the independent variable in order to investigate 
validity of predicting QAMS percent stenosis from the 
visually assessed values (figure 7.4). 

The data correlated remarkably well (r = 0.79) yielding a 
highly significant regression relationship (table 7.10) and 
a reasonably low SEE at 11.77%. The gradient and constant 
of the regression relationship were tested against the line 
of identity (table 7.10) and proved significantly different. 

7.5 Dis~ussion 

7.5.1 The Efficacy of the PTCA Procedure 

The primary success rate (82%) in this group of patients is 
greater than the primary success rate (73%) of the first 200 
PTCA cases (within which these patients are included) 
undertaken at the Groby Road Hospital, Leicester (Hubner et 
aI, 1988). However, this may be explained by the relatively 
small sample of this study where each artery accounts for 
1.54% of the total. Primary success rate is much greater 
than that quoted by the NHLBI (Dorros, 1983) and Kent et al 
1982 in which only 63% and 64% of PTCAs were initially 
successful. However, . these figures are compiled from PTCAs 
performed before the introduction of the steerable guide 
wire system which has contributed greatly to PTCA success 
(Przybojewski, 1984). 

Median (as data are clearly skewed) grade of angina was 
markedly reduced by the PTCA procedure (table 7.2) with 39 

patients becoming asymptomatic on exercise where previously 
there had been none. PTCA was also beneficial in converting 
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Table 7.10 Regression analysis - visually assessed stenosis vs Q.A.M.S. stenosis 

Q.A.M.S. stenosis = 0.52 visual stenosis + 24.58 

Variable 

Visual stenosis 

CONSTANT 

Regression 
coefficient 

0.5171 

24.5779 

SEE = 11.77, r = 0.79, N = 199 

Testing against line of identity: 1. 

Standard error 
of coefficient 

0.0281 

Gradient tobs = 

2. Constant tobs = 

tobs 
df 197 

18.38 

0.5171-1.0 

0.0281 

24.5779-0 

11.77-0.0281 

= 

= 

Probability 

~ 0.0001 

-17.19 

P ~ 0.0001 

2.09 
NS 



unstable angina (grade 4) to low level stable angina, 

typically grade 1 or even o. Such results agree with those 

of Cowley et al 1981 and Lewis et al 1983 in which obvious 
improvement was apparent by a change in each patient of one 

functional class of angina at least. 

Of the parameters directly measurable using Q.A.M.S. (area 

is inferred from a circular model), the most 
haemodynamically significant is the minimal diameter (Young 

et al 1977, Gould 1978, section 6.2.1) whilst percent 

diameter stenosis is widely used clinically. As expected, 

the PTCA procedure produces markedly significant changes in 

these two parameters on the first and second attempts, with 

the extent of dilation of the stenosis (table 7.4) being 

comparable to other visual (Kent et al 1982, Scholl et al 
1982, and Meier et al 1983a) and quantitative (Meyer et al 

1981, Serruys et al 1984 and Wijns et al 1985ab) methods of 

stenotic assessment. such changes must allow improvement in 

distal coronary artery blood flow and perfusion pressure 
(section 6.2.1), thus reversing exercise induced ischaemia 

and improving myocardial contractility by decreasing 

;.ventricular chamber stiffness (section 6.2.2). Such effects 
are widely manifest in these data set by significant changes 

in many exercise related parameters as a result of PT CA 

(table 7.3). 

Exfh, exSBP and exRPP show significant changes on PTCAl but 

not PTCA2. It is likely that some of the variance in the 

changes on PTCAl may be explained by changes in drug therapy 

although there is still a significant increase in normalized 

exfh as a result of PTCA1 and a significant decrease in 
those patients who are classified as restenosed in 

comparison to the follow up group. Previous studies (Cowley 

et al 1981 and Scholl et al 1982) with mixed drug therapy 

report changes in the above parameters of similar magnitude 

to this study. Interestingly, systolic blood pressure ratio. 
shows no significant differences as a result of PTCA which 

would have been expected if it were a sensitive predictor of 

significant CAD (Amon et al 1984, section 6.2.3). 
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Work done (force multiplied by distance moved equation; 

Balkes equation is less well related to stenotic morphology, 
section 7.5.2) by the patient shows large significant 
differences (table 7.3) as a result of the two PTCA 
procedures, inspection of group means (table 7.4) suggesting 
improvement. Work is also significantly affected by 
restenosis, being reduced. The strongly significant 
differences observed in percent diameter stenosis and more 

so, minimal diameter confirm the importance of these 
parameters in the patients ability to perform work. Whilst 
myocardial perfusion itself has not been quantified (ST 

changes however reflect it, see· later), changes associated 
with the above conditions must result from changes in 
myocardial oxygen supply (section 6.2.1). 

Exercise time also shows similar significant changes to work 
done, although less strongly. On PTCA1, exercise time is 
improved from 13.13 mins (788 secs) pre PTCA to 15.88 (953 
secs) post PTCA1. Whilst the difference shows agreement 
with the results of Sch01l et al 1982 (448 secs improved to 
618 secs) absolute treadmill times in this study are 
considerably higher despite use of a similar exercise 
protocol. This may reflect better physical conditioning or 
less severe disease in this PTCA patient group. Scholls 
study utilized visual assessment of stenotic severity 
reporting changes of 78% to 35%, comparing well to this 
group in which PTCAl affected a reduction from 70.3% to 
36.2%. However, visual assessment is prone to high observer 
variability (Koh et al 1979) which may explain this 
difference in treadmill times. Kent et al 1982 describes 
changes in visual percent stenosis on PTCA from 74% to 31%, 
associated with treadmill time improveme~t from 7 minutes to 
17 minutes, however treadmill protocol was very different 
for the Sheffield protocol in this case. Lewis et al 1983 
showed no statistically significant difference in exercise 
time (5.5 to 7.2 mins) as a result of PTCA anq fails to 
quote the protocol used. 

Significant reduction of coronary narrowing (assessed by 
either minimal diameter or percent stenosis) significantly 
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affected exercise induced ischaemia (inferred by ST segment 

changes) with mean differences (tabled 7.4) indicating 

better myocardial perfusion with PTCA. Such ST changes have 

been demonstrated by Scholl et al 1982, however without the 

aid of significance testing. 

Surprisingly, changes in predicted exercise parameters 

(peY02 , FAC and Y02max) are significant as a result of PTCA. 

Whilst these parameters are more than likely useless when 

compared to their equivalents derived from respiratory gas 

analysis (eg. FAC averages around 100% from pre PTCAl 

onwards (table 7.4), suggesting that this parameter is not 
reflecting true FAC) , they may be useful in determining 

whether disease state is haemodynamically significant and/or 
allow group comparisons between normals and cardiac patients 

to be made. 

Broadly speaking, it is evident from these results that 

exercise performance is not affected one way or the other in 

the time between initial arteriographic assessment and pre 

PTCAl. All parameters (except SBP ratio) are then improved 

by the significant reduction in stenotic severity which 
(presumably) has allowed orderly myocardial function to be 

restored. These changes are retained throughout the time 

period to follow up, despite a significant change (decrease) 

in minimal diameter which is unlikely to be haemodynamically 
significant (2.16mm to 1.91mm). Most exercise parameters 

are then detremented as follow up exercise performance is 

compared to exercise performance of patients visually judged 

to have restenosed (and typically presenting with anginal 

symptoms). Changes are less significant than those of the 

reverse process (pre PTCAl to post PTCA1) in keeping with 

the relatively larger minimal diameter of the pre PTCA2 

group. Work, exercise time, ST changes and some predicted 

exercise parameters are then significantly affected again by 

the PTCA2 procedure, although to a smaller extent than on 

PTCAl as secondary stenotic narrowing is less severe. The 

parameters of exfh, exSBP and exRPP show no significant 
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differences as drug therapy in all patients receiving PTCA2 
is constant. 

PTCA produces no significant effect on average maximal 
diameter of the artery at any of the review stages, although 
there is a tendency (non significant) for it to become 
smaller both at post PTCA and on follow up. These changes 

may relate to an immediate vasospastic response (Johnson et 
al 1986) and a local late remodeling process within the 
arterial vessel wall following the barotrauma of PTCA 
(Serruys et al 1988). However, these tendencies may simply 
be a function of differing patient population in the three 
samples. 

Length of stenosis (both stenotic and segment), which may 
have a minor haemodynamic effect (section 6.2.1) show 
significant differences at post PTCAl and follow up. These 
changes are explained by PTCA making the top and bottom of 
the stenosis a normal caliber again, hence 90% of the 
maximal diameter becomes closer to the minimal diameter both 
proximally and distally, resulting in a shorter stenotic 
segment (figure 7.5). For this reason, segment length is 
also reduced as the user perceives what was previously 
abnormal artery to be normal, and consequently begins 

tracing closer to the minimal diameter then on the post 
PTCAl arteriogram (figure 7.5). On follow up, the 
significant difference in the minimal diameter demonstrates 
that restenosis is occurring to some extent, but this effect 
is masked by the tendency of the average maximal diameter to 
become smaller too, preserving current percent diameter 
stenosis (non significant). However, this minimal diameter 
reduction has affected a "pulling in" of the proximal and 
distal margins of the stenosis, thus increasing stenotic and 
segment length (figure 7.5). However, these changes in 
length do not adversely affect exercise performance 

confirming their weak contribution to the haemodynamic 
effect of coronary stenosis (section 6.2.1). 
Eccentricity at the minimal diameter, a parameter perhaps 

more important in assessing technical difficulty of the PTCA 
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procedure (see later) shows o~ly a significant difference at 

follow up vs. pre PTCA2. This is more than likely due to 

patient population differences. However, where population 
difference is relatively constant (pre PTCA1 vs. post PTCA1) 
this parameter is non significant, reflecting that changes 
in minimal diameter appear concentric around the balloon 

catheter. Maximal eccentricity and mean eccentricity are 
both significantly affected by PTCA1, a change reversed on 
follow up. This indicates the immediate effect of PTCA on 
vessel tortuousity (maximal and mean) is to "smooth it out", 
an effect which is reversed following remodeling and 
healing. 

The current theory of the effect of PTCA on the stenosis 
supports atheromal compression rather than spreading in low 
grade stenoses and medial stretching plus splitting in high 
grade stenoses (Block, 1980 - figure 7.6). Assuming that 
stenoses receiving PTCAI fall into the latter category, the 
morphological changes revealed by QAMS support this theory. 

Consider the stylized situation presented as figure 7.7. 
PTCA is effective in reducing stenotic severity 
concentrically around the minimal diameter. Maximal 
eccentricity is reduced as is stenotic length (not shown, 

see figure 7.5) and, to a small non significant extent, 
average maximal diameter. With time, the minimal diameter 
becomes reduced rather than enlarged. This fact refutes the 
observation of Johnson et al 1986 where late increases were 
apparent, explained by a reversal of the vasospastic 
response. However, the above describes the trend in the 
whole group. Should the data be separated according to 
eccentricity, this late increase may well be exhibited. 
Percent diameter stenosis however, is preserved by the 
reduction in average maximal diameter. Decreases in minimal 
diameter occur concentrically again allowing maximal 

eccentricity to become reestablished, on average being more 
severe in relative terms than previously as maximal diameter 
is reduced. As atheroma I area remains constant (Block, 
1980, Castaneda-Zuniga et aI, 1980) and the medial layers 
heal, tension in them increases causing the atheroma to be 
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pushed back towards the centre. Restenosis is not complete 

so the atheroma appears to spread, causing the stenosis to 

increase in length. 

Atheromal area and longitudinal area stenosis (a parameter 
combining atheromal area and stenosis length) are both 
significantly affected by PTCA1. Current theories (above) 
suggest that changes in the atheroma are due to medial 
effects rather than compression. PTCA2 in the lower grade 
stenoses show no significant differences in the atheromal 
parameters. This category would normally be classified as 
mild disease and therefore normally demonstrate atheromal 
compression (Block, 1980). However, histological changes 
resulting from a second PTCA have not been documented. It 
may be that changes in exercise performance may result from 
a spreading of the atheroma (figure 7.6) to previously non 
involved portions of the vessel not quantifiable by the two 
dimensional nature of QAMS. Atheromal area is significantly 
changed also between follow up and pre PTCA2. However, this 
change fails to be significant once normalized for artery 
area reflecting that patient population change is the 
probable cause of this result. 

In conclusion, these tests have demonstrated that PTCA is 
effective not only in improving exercise performance but 
also in considerably altering stenotic morphology. 
Additionally, quantification of stenotic parameters has 
allowed insight to be gained in the possible mechanism of 

PTCA. 
7.5.2 Relationship between Exercise Performance and 

Coronary Anatomy - Whole Group 

Regressing exercise performance against stenotic anatomy in 
a large group of patients who are subject to changes in drug 
therapy which may affect effort tolerance would never yield 
perfect results. Drawing data from a relatively 
uncontrolled (ie. clinical) environment will always enhance 

variability. 

Q.A.M.S. as a 

However, the aim of these 
tool by which the effects 
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morphology may be related to exercise performance, and, 

should significant results be gleaned then hopefully this 

would pave the way for the use of Q.A.M.S. in similar 
studies under more rigorous conditions. 

On the whole, all the above considered, the results are 
encouraging. The regression analyses have been carried out 
with stenotic anatomy as the dependant variable such that 
SEEs reflect degree of error in predicting these variables 
from the respective parameters of exercise performance. 

Minimal diameter has the strongest relationship of all 
stenotic variables confirming its importance in the 
haemodynamic effects of arterial narrowing (Young et aI, 
1977, Gould et aI, 1978). Interestingly, minimal 
cross-sectional area, on which the fluid dynamic equations 
are actually based, correlates less well than minimal 
diameter or percent diameter stenosis. This may well be due 
to the circular cross-section assumption made for 
calculation of this parameter which is known not to be 
correct. This is an area where the future development of 
view matching may see a reversal in the above (chapter 9). 

Many t ratios for the parameters of minimal diameter, 
percent diameter stenosis and their cross-sectional area 
equivalents show very high statistical significance 
confirming the validity of comparing exercise performance 
with stenotic anatomy. Standard errors of estimate for each 
relationship are very high however, suggesting that using 
the regression equations (not presented) from such analyses 
would not be useful in predicting individual stenotic 
dimensions. There may be of some use though in predicting 
whether coronary disease is likely to be haemodynamically 
significant or not in a similar patient population where 
arteriographic information is perhaps not available. 
Eccentricity variables are weak correlators as· they have 
little to do with the equations of fluid dynamics. However, 
high values of eccentricity (ie. the maximal eccentricity) 
may be important in reducing distal myocardial perfusion 
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pressure by inducing friction and turbulence, thus 

increasing energy loss of stenotic blood flow. 
Unfortunately, this is not true of this set of data, 
instead, eccentricity 
best and most often. 

at the minimum diameter, correlates 
It would be most interesting to 

develop QAMS further, incorporating immediate graphical 
representation with location of these parameters, thus 
allowing comparison of their relative positions to be made. 

If, for example, the position of maximal eccentricity were 
proximal to that of eccentricity at the minimal diameter 
(figure 7.8a), then all turbulence effects would occur at 
the mouth of the stenosis, and would be streamed at the 
minimal diameter and perhaps recover for exit from the 
stenosis, the position where turbulence is most important 
(section 6.2.2). Should eccentricity at the minimal 
diameter be proximal to maximal eccentricity, then the 
position would be reversed (figure 7.8b). Mean 
eccentricity, may also have some bearing on generation of 
turbulence, however, the problem with this variable (at the 
moment anyway) is there is no way of telling if the returned 
value is composed of a continued gradual deviation of 
stenotic artery axis from diseased artery axis, or violent 
departure at only one or two sites. It would seem logical 
to assume that these two conditions would have differing 
physiological effects. , 

Absolute atheroma area correlates rather poorly with 
exercise performance. However, atheroma area is a two 
dimensional parameter. It is possible for a high grade 
stenosis to have the same atheroma area as a low grade 
stenosis, with consequently differing effects on exercise 
performance. Hence, once atheroma area is normalized for 
undiseased artery area, all correlations and t ratios are 
much improved. 

Exercise parameters correlating most strongly with stenotic 
anatomy include exfh, exSBP and exRPP. As discussed in the 
previous section, some of the explained variance may be due 
to changes in drug therapy. Repeating the analyses with 
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normalized data confirms this suspicion. However, the 

parameters of work, exercise time, sum of ST changes and the 

predicted exercise parameters (peY02 , FAC and Yo2max) all 
correlate significantly with variables shown to be important 
in resistance to stenotic blood blow. 

7.5.3 Relationship between Exercise Per~ormance and 
Coronary Anatomy - Pre/Post PTCAI Group only 

Results to these analyses are perhaps more meaningful as the 
matching rate was quite high (ie. the group was composed of 
a pre and post result from each patient in many cases). 
However, drug therapy is still very variable again 
contributing to the relationships involving exfh, exSBP and 
exRPP. 

Minimal diameter remains the strongest correlator above 
percent diameter stenosis. Cross-sectional areas were not 
considered as they had proved inferior to diameter 
measurements in the section above. 

Eccentricity at the minimum diameter has become less 
important in this more homogeneous data set whereas maximal 
eccentricity is increased in significance and correlating 
reasonably highly with work and V0

2
max. This effect may 

well be due to turbulence pre PTCA1 which is removed post 
PTCA1, although location of this variable in relation to the 

~ minimal diameter may be important (section 7.5.1) and is 
unknown. However, this effect is not preserved and 
eccentricity tends to reestablish itself with time (section 

7.5.11. 

Changes in atheroma area follow the previous pattern, except 
that correlation coefficients are, on the whole slightly 
lower in this group. However, these are improved beyond 
those previously shown when normalized, clearly 
demonstrating that it is important to consider artery size 

in deriving quantitative relationships. 
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Work and exercise time continue to be highly significant 

variables when related to minimal diameter, however, the 
predicted exercise parameters all have more significant 

relationships. PeV02 is basically a reflect~on of stage 
reached on the stress test (section 7.3.3), V02max adds to 

this the effect of body weight (see next section for body 
si~e correlations) to peV02s detriment while FAC compares 
peV02 to standards based on the performance cardiac patients 
(Bruce et ai, 1973). Therefore, aside from the potentially 
drug affectable parameters, the most powerful predictor of 
stenotic anatomy may well be the exercise stage reached and 
completed. 

7.5.4 Estimating Percent Diameter Stenosis from Exercise 
Performance 

As already demonstrated, equations using one predictor 

variable leave much of the variance unexplained. Therefore, 
stepwise multiple regression was used to examine to what 
extent more of the variance could be accounted for by using 
more predictors. Number of predictors was never allowed to 
exceed three, as equations became increasingly cumbersome to 
use and variance explained obeys the law of diminishing 

returns. 

For the whole group, it was possible to explain 25.1% of 

the variance from the three predictors of exfh, sum of ST 
changes and body mass index (BMI). Standard error of 
estimate was high at 18.24% diameter stenosis. Exfh 
contributed most significantly accounting for 17.4% of the 
variance explained. The overall correlation coefficient of 
0.52, whilst highly significant still confirms the use of 
this equation for group work only. 

This situation was improved for the pre/post PTCA1 group 
with 29.9% of the variance explained from the predictors of 
exfh, FAC and BMI. Once again, exfh accounted for the 

majority of the variance at 18.3%. With a correlation 
coefficient of 0.57 and SEE 17.43%, this equation (table 
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7.7b) would prove marginally more useful than that above in 

predicting percent diameter stenosis from variables of 
exercise performance and obesity in a group of PTCA 
patients. Using the same parameters as those selected from 
the previous analysis on data from the pre/post PTCAl group, 
variance explained was increased to 26.6%, correlation 
coefficient to 0.54 and SEE reduced to 17.83%. However the 
variables of BMI and sum of ST changes were not contributing 
significantly to the relationship, with exfh accounts for 
21% of the explained variance (table 7.7c). 

Clearly, exfh is very powerful in these relationships, but 
as proved already, much of the changes resulting from PTCA 
are due to changes in drug therapy. These tests were thus 
repeated without exfh, exSBP and exRPP being allowed to 
enter the equations. For the whole group, just the two 
param~ters of FAC and sum of ST changes: were selected. 
Variance explained was reduced below the previous analysis 
to 15.8%. Correlation coefficient was reduced to 0.41 and 
SEE increased to 19.13%. Both variables contributed 
approximately equally to the explained variance. 

For the pre/post PTCAl group, the results were again made 
worse, with explained variance from the parameter of peV02 
and BMI being 15.5%, less than the whole group value. 
Correlation coefficient was slightly better at 0.42 and SEE 
the same at 19.13%. pevo2 contributed two and a half times 
more to the explained variance than BMI. Using the same 
parameters as before, variance explained was very low at 
12.7%, lower than using a simple linear relationship in some 
cases. SEE and correlation coefficient were also adversely 
affected (19.45% and 0.38 respectively). 

This work confirms that it is impossible to predict with any 
real accuracy percent diameter stenosis from any combination 
of exercise parameters. However, as with the simple linear 
equations, they~ may prove useful in comparative work or 
assessing presence of significant disease in groups of PTCA 

patients. 
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It is also interesting to note that BMI, a widely used index 

of obesity, correlates significantly with percent diameter 
stenosis when the direction of the coefficient can be 

predicted (p = 0.3%), in both in the whole group and in the 
pre/post PTCAI group. However, assuming direction may not 
be valid as there is no supporting evidence confirming that 
in a population of patients with CAD, the more obese subject 
will demonstrate the more severe disease. Whether this is a 
chance finding or an actual effect warrants a further, more 
controlled study. 

7.5.5 Influence of Stenotic Anatomy on PTCA Failure 

The NHLBI (Dorros et aI, 1983) have reported that the 
chances of a successful PTCA can be enhanced by choosing the 
right sort of candidate, ie. one with a short, discrete 
concentric stenosis, proximally located etc. (sections 1.4.3 
and 7.2). These analyses set out to establish if there was 
anything about the stenotic morphology as measured by QAMS 
which predisposed to failure. 

Within the data available, it was noticed that failure due 
to inability to cross the stenosis at pre PTCA with the 
dilating catheter was relatively high in the RCA group. 

In order to exclude the effect of all failures having 
different morphology from all successes, tests were 

conducted in a hierarchical manner for the whole group, down 
through the individual arteries, ending at considering only 
pre PTCAl data. 

No significant differences were noted when all successful 
pre PTCA stenotic data were tested against all failed pre 
PTCA stenotic data, ruling out a general failure morphology. 

This was also the case when the LAD artery was considered 
separately, giving rise to the conclusion that.the failures 
associated with the LAD group must be attributable to other 
aspects of morphology not taken into account or other 
unmeasured physiological and/or anatomical indices. 
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On considering the RCA group alone, significant differences 

were present in average maximal diameter, minimal diameter 

and eccentricity at the minimal diameter. Inspection of 
group means (figures 7.3a to 7.3c) proved that artery 
dimensions were indeed smaller in the RCA fail group and 
eccentricity at the minimum diameter was larger. These are 
important factors when considering technical feasibility of 
the PT CA procedure. A small average maximal diameter and 

small minimal diameter increase the problem in gaining entry 
into the artery with the catheter, and more importantly, 
getting the dilating catheter across the stenosis once 
located. The high eccentricity at the minimum diameter will 
further complicate the crossing procedure as careful 
manipulation (ie. steering) to one side of the artery or 
another will be required in order to bridge the stenosis. 

Visually assessed eccentricity has previously been shown to 
complicate the PTCA procedure and reduce the rate of primary 
success (Meier et al 1983b). 

Data from just the pre PTCA1 procedure were then considered 
for each artery as minimal diameter is smaller in this 
group, thus representing the "worst case" scenario (section 

7.4.1). No significant differences were recorded for the 
LAD artery, but the three parameters proving significant 
previously were all significant again, eccentricity at the 

minimum diameter more so. 
In conclusion, it would seem likely that the high failure 
rate of the RCA group may indeed be attributed, in part at 
least (as all aspects of stenotic morphology have not been 
measured), to small pre-angiop1asty dimensions and high 
eccentricity at the minimal diameter. Without 
quantification capabilities, these differences would not 

have come to light. 

7.5.6 Relationship between Subjective and Quantified 
Estimation of Percent Diameter Stenosis 

Visually assessed percent diameter stenosis correlates very 
highly with that produced by the QAMS with 63.2% of the 
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variance explained. The regression relationship is highly 

significant (t = 18.4). The standard error of estimate, at 
11.77% is considerably better than those reported in 

predicting percent diameter stenosis from simple linear or 
multiple regression of stenosis vs. exercise performance 
(section 7.5.2, 7.5.3 and 7.5.4). Indeed, the equation 
presented in table 7.10 may well be useful for removing bias 

in the visual estimation of percent diameter stenosis for 
clinicians not having access to quantification equipment. 

The regression line differs significantly from the line of 
identity, enforcing the need for correction of bias. 
Underestimation of true stenosis with mild stenoses and 
overestimation of true stenosis with severe stenoses is 
evident from the position of data above and below this line. 
This observation confirms the data of Koh et al 1979. 
Grouping of data around the commonly used grades of 90% and 
50% by visual assessment is also evident. It may well be 
that the relationship may be improved by adoption of a more 
continuous scale for visual stenotic assessment by the 
clinicians. 

In conclusion, visually assessed stenosis, at this centre at 
least, agrees well with that measured by QAMS. The 
regression relationship derived may be useful in redressing 

the effects of under and overestimation. 
In overall conclusion, study of data arising from this group 
of PTCA patients has proved that the availability of 
quantified material (particularly absolute measurements) 
relating to stenotic morphology can greatly enhance the 
understanding of the mechanism of PTCA and its physiological 
consequences. Data from the QAMS agree well with that 
reported in the literature and has proven useful both 
clinically and in a research capacity. with continued 

improvement, uses of the QAMS can only increase our 
knowledge of the effects of this treatment of CAD. 
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CHAPTER EIGHT 

APPLICATION TWO 

THE RELATIONSHIP BETWEEN MYOCARDIAL FUNCTION AND SEVERITY OF 

CAD IN PATIENTS RECEIVING CORONARY ARTERIOGRAPHY OR P.T.C.A. 

8.1 Introduction 

Whole body exercise performance is ultimately governed by 

quality of myocardial function, which in turn is dependant 

upon resistance to myocardial blood flow. Whilst the 

previous chapter demonstrated the usefulness of using QAMS 

in investigating exercise tolerance, this chapter focuses on 

its application in evaluating the extent of myocardial 

function. In doing so, various indices of left ventricular 

performance (quantified using a non-invasive radioisotope 

test) at rest and exercise are related to, and tested 

against stenotic morphology, both in a sample of patients 
undergoing routine arteriography for disease management 

assessment and in a smaller group of patients receiving 

PTCA. 

8.2 Literature Review 

As discussed in section 6.2.3, there are two radioisotope 

techniques available for studying myocardial function, those 

of first pass radionuclide angiography (1st RNA) and 

multiple gated acquisition radionuclide angiography (MUGA 

RNA). Perfusion techniques, ego Thallium imaging, do not 

provide quantitative information regarding ventricular 

performance, rather, they pictorially reflect the 

physiological consequences of the anatomical disease. For 

this reason, this review concentrates on the two former 

quantitative methods. 

Ejection fraction (EF - section 6.3) has long been utilized 

by many workers as an index of myocardial performance. The 

advent of radiopharmaceuticals and radiation counting 

- 291 -



devices assisted by computers (section 6.3) which have the 

capability to measure rate of radiation emission from user 

specified areas in captured images, has continued this 

tradition. Berger et al 1979 using 1st RNA (section 6.3.2) 

demonstrated increased EF (67% to 82%) in 13 normals and 

decrease or failure to change in 44 of 60 patients with CAD 

when subjected to vigorous cycle ergometery. Using the same 

test and type of exercise, Upton et al 1980 demonstrated 

decreased or a failure to increase EF by more than 5% in 18 

of 25 patients with angiographically demonstrated CAD prior 
to onset of anginal symptoms or electrocardiographic 

evidence of myocardial ischaemia. Abnormal EF response was 

presented in all patients on manifestation of ST segment 

depression. He concludes that 1st RNA provides an early 

sensitive technique by which patients suspected of having 

CAD may be tested. A much larger study was conducted by 

Gibbons et al 1982. He evaluated EF response to upright 

cycle exercise using 1st RNA in 281 patients with chest 

pain, significant CAD and normal resting ventricular 
function. EF response to exercise varied widely (range -36% 

to +26%). Changes were related to 28 clinical 
catheterization (including visually assessed percent 

diameter stenosis) and 1st RNA variables. several of the 

variables, not related to extent of the disease (eg. resting 

pulse pressure) were significant independent predictors of 

changes in EF. Interestingly, percent diameter stenosis was 

not amongst any of the significant variables, although 

number of diseased vessels was. However, Gibbons 

observations indicated that change in EF is a complex 

response influenced by many pathophysiological variables, 

not necessarily directly linked with disease state and as 

such is perhaps not the best indicator of extent of CAD. 

Changes in MUGA RNA EF on treadmill exercise with . . 
simultaneously measured V02 up to vo2max was undertaken in a 

group of asymptomatic patients by Ehsani et al 1984. In 

those patients with an abnormal (lower than rest) peak 

exercise EF (51% rest to 47% on exercise), vo2max was 21 +/-
4ml kg-lmin- l compared with patients in whom EF response was 

. -1 -1 
normal (55% to 60%) where vo2max was 27 +/- 4ml kg min . 
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Seemingly, impaired LV function can limit ability to perform 

exercise (as measured by Vo2max) even in patients not 

limited by angina. Angiographic extent (number of vessels) 

of CAD was compared to EF response on exercise using 1st RNA 

in a group of patients exhibiting LV dysfunction at rest by 

Higginbotham et al 1984. Exercise induced decreases of 5% 

or greater were highly prevalent in those patients with 

multivessel CAD who were later to demonstrate high mortality 

rate during long term follow up on medical therapy. The 

test may therefore be useful in highlighting prognostic 

outcome in patient exhibiting severe CAD if course of 

therapy is monitored. 

A reversal in exercise induced EF response in patients 

receiving PTCA has often been reported in the literature. 

Sigwart et al 1982 using 1st RNA demonstrated a decrease 

from 66% to 46% on exercise pre PTCA which was reversed to 

an increase from 64% to 69% 6 months post PTCA in 7 

patients. No quantitative data on disease severity is 
reported. De Puey et al 1983 demonstrated changes in 

percent diameter stenosis of 90 +/- 9% to 12 +/- 9% from 

traced caliper measurements following PTCA in 44 patients. 

This was associated with an increase in peak exercise EF 

(MUGA RNA) from 61% pre PTCA to 66% post PTCA. Whilst this 

change is very significant (p<O.OOl), pre PTCA LV function 

was still adequate on exercise (rest 58%) demonstrating 

selectivity of PT CA patients. On follow up angiography in 

19 patients, 6 had restenosed, 4 of whom demonstrated 

abnormal EF response (failure to increase by 5%). De Puey 

concludes by stating that MUGA RNA is useful in documenting 

changes in functional reserve in patients receiving PTCA. 

Unfortunately, no quantitative relationships are drawn 

between stenotic severity and EF. This is also true of the 

study by Kent et al 1982 in which MUGA RNA EF was improved 

from 51% pre PTCA to 62% post PTCA, associated with change 

in percent diameter stenosis from 74% to 31%. Using atrial 

pacing, changes in regional EF resulting from PTCA (5 

segments in LAO position) were investigated by Weiss et al 

1984. PTCA affected a reduction in percent diameter 
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stenosis from 90% to 31%. This was associated with a change 

in involved (ie. supplied by artery receiving PTCA) segment 

regional EF from a decrease of 36% pre PTCA to no change 

following PT CA at the same heart rate. Again however, no 

exploration of the relationship between disease severity and 

ventricular function is made. Global and regional EF 

changes (3 segments, LAO position) were also improved 

following PTCA in the study by Lewis et al 1985. With PTCA 

reducing percent diameter stenosis from 70% to 25%, MUGA RNA 

global EF was improved from 59% to 67% on peak exercise. 

Changes in regional EF were most apparent in the septal 

region (59% to 79%) with moderate increases in the apical 

segment (50% to 61%). The ability of MUGA RNA to detect 

degree of restenosis following PTCA was investigated by De 

Puey et al 1984. Patients receiving late follow up 

arteriography after successful PTCA were categorized as less 

than 20% restenosis, more than 20%, but less than 50% and 

more than 50%. All arteriographic measurements were made 

with calipers from tracings. MUGA RNA correctly predicted 

presence of greater than 50% restenosis in 77% of patients. 

In the above centre, like the Groby Road Hospital where 

routine recatheterization is not undertaken, MUGA RNA may be 

useful in predicting the long term outcome of PTCA, allowing 

more careful management of patients with an unsuccessful 

long term result. 

Whilst EF is routinely u~ed to indicate myocardial 

performance in many centres, it computation is sensitive to 

methodology. Slutsky et al 1980 investigated the 

correlation between EF on angiography and MUGA RNA EF using 

various differin~method010gies. Correlation was highest with 

a user defined LV area of interest (AOI) in conjunction with 

a computer assigned background region beyond the lower left 

quadrant of the ventricle, or a manually drawn ring around 

the end diastolic image. However the latter method 

increased inter and intraobserver variability. Using a 

fixed AOI and computer generated background decreased 

variability but was not always associated with the best 

correlation with angiography. Sorenson et al 1981 employed 
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fixed AOI (end diastolic image only) and variable AOI (end 

diastolic and end systolic images) to measure exercise MUGA 

RNA EF in 8 normal subjects. Abnormal (failure to increase 

by 5%) EF response was noted in 5 of the 8 subjects using 

the fixed method, and zero using the variable method. 

Therefore, false abnormal EF responses to exercise MUGA RNA 

may occur due to method of region of interest selection even 

in subjects whose ventricular function is normal. 

Wall motion analysis, which highlights disordered 

ventricular relaxation and contraction (section 6.3) 

resulting from myocardial ischaemia was employed by Berger 

et al 1979. New or exaggerated regional wall motion 
abnormalities (RWMA) were detected in 28 of 60 patients in 

the 10 degree RAO view using 1st RNA with cycle ergometry. 

Interobserver variability in assessing RWMA on exercise is 

low (80% complete agreement in 3 observers) and compares 

well with contrast ventriculography (78% complete agreement 

- Brady et al 1980a). Indeed, RWMAs often precede the more 

classic indicants of ischaemia (angina, ST changes) when 

performing work (Upton et al 1980). MUGA RNA has previously 

been proven to be of equivalent sensitivity to the more 

expensive and invasive method of intravenous digital 

ventriculography in detecting RWMAs on exercise, where 

atrial pacing was used to increase heart rate (Wasserman et 

al1984). However, because of technical factors, the 

investigating views used by the two techniques are not 

equivalent leading to differences in the location of the 

RWMAs. Perhaps 1st RNA would have been the better technique 

to use for comparison. 

Amelioration of RWMAs following PTCA has been demonstrated 

by Kent et al 1982 in which 94% of patients exhibited at 

least one RWMA pre PTCA, being reduced to just 8% following 

successful PTCA. 

MUGA RNA allows evaluation of regional ventricular 

abnormalities without the involvement of wall motion 

assessment by the production of parametric images (section 
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6.2.3). Mathematical analysis of time - activity curves 

from individual pixels in the image reveal phasic 

fluctuations in differing cardiac chambers. This so called 

phase image, can not only distinguish atria from ventricles 

but also, within the ventricles (most often the left), 

regions with delayed or paradoxical emptying may be defined. 

Phase imaging was employed in 70 patients with suspected CAD 

by Walton et al 1981, and the results compared to findings 

at catheterization. Regions of abnormally high phase (late 

emptying) were detected in 42 of 61 patients with CAD. 

These results were often associated with total occlusion of 

a coronary artery, low EF and extensive RWMAs. 

Quantification of the phase image by calculating mean and 

standard deviation of phase value was reported on by Ratib 

et al 1982. By comparing with normals, he detected an 

abnormal phase response (mean greater than two standard 

deviations above normal mean) in 95% of patients during 

exercise while only 86% had abnormal EF and/or RWMA. Phase 

analysis was also employed in a group of patients with 

valvular disease where abnormal EF and RWMAs are common. 

Phase was abnormal in only 18% of patients despite RWMAs in 

45% and abnormal EF response in all. Therefore quantitative 

phase imaging is a highly sensitive and specific indicator 

of regional myocardial ischaemia and is therefore specific 

to CAD unlike EF and RWMA. Quantification of the phase 

image was taken a step further by Gerber et al 1983 who not 

only computed SD but skewness also. In healthy subjects, SD 

was low reflecting ventricular synchrony and skew slightly 

negative. Exercise changed this profile little. In 

patients with CAD, resting phase profile showed larger SD 

and positive skewness reflecting ventricular asynchrony. On 

exercise, SD was further increased (16.5 degrees to 27.4 

degrees) as was skewness (0.35 to 0.75), demonstrating 

increased asynchrony and tardokinesis. Phase SD has been 

shown to be improved by administration of nitrates in 

patients exhibiting angina at rest (Marzullo et a1 1984). 

Phase SD was changed from 14.5 degrees with no symptoms to 

22.8 degrees during the ischaemic episode. Intravenous 
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injection of isosorbide dinitrate returned phase SD to the 

control level (14.2 degrees). 

Changes in rate of fall and rise of ventricular pressure have 

often been reported as a sensitive indicator of myocardial 

dysfunction both in the animal model (Weisfeldt et al 1978, 

Kay et al 1979) and in the human (Tebbe et al 1980 - section 

6.2.2). Whilst pressure is not measurable using MUGA RNA, 

volume or more correctly, count rate being proportional to 

volume, is. Boyles law states that pressure is inversely 

proportional to volume, therefore, using MUGA RNA, it is 

possible to examine myocardial function by computing the 

rate of change of counts within a LV AOI. Results may then 

be corrected for end diastolic counts allowing expression of 

rate of change of volume with time (in units of end 

diastolic volumes). 

Evidence was presented in section 6.2.2 that ischaemia tends 

to alter the dynamics of diastole prior to its effects on 

systolic function. This fact was confirmed by Hirakawa et 

al 1977 who demonstrated that diastolic rate of volume 

change (+dv/dt) was the most sensitive indicator in 

separating ischaemic patients from normals and 

hypertensives. Poliner et al 1984 compared normals and 

patients with CAD on exercise using MUGA RNA. Both groups 

exhibited the same peak diastolic filling rate (measured in 

the first half of diastole, as atrial systole which occurs 

late in diastole can increase filling rate dramatically, and 

is unrelated to disease state - Benchimol et al 1969) at 

rest (2.3 end diastolic volume (EDVs) per second). This 

parameter was increased on exercise in the normals to 3.1 

EDV sec- 1 and decreased in the CAD patients to 1.7 EDV 
sec-I. Peak systolic ejection rate (PER) was not 

significantly affected in the norma1s but fell in the 

patients from 2.5 EDV sec-1 to 1.9 EDV sec-I .. However, 

sensitivity of changes in chamber volumes 

different; for PER 67%, and for PFR 98%. 

PFR exercise/rest ratio was always greater 
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patients with normal arteries (and normals) and 1 or less in 

patients with significantly disease. 

Impaired LV diastolic filling appears to be reversed 

following successful PTCA. Bonow et al 1982 described a 

group of patients in which LV diastolic filling at rest was 
improved from 2.3 EDV sec- l to 2.8 EDV sec- l concordant with 

a change in percent diameter stenosis (calipers) from 76% to 

30%. Similar results were reported in another paper by 

Bonow 1985 where LV diastolic filling was improved from 2.5 
EDV sec- l to 3.0 EDV sec-I. This was associated with 

improved intersection (20 sectors) phase differences from 

6.0 degrees to 5.1 degrees reflecting more homogenous 

resting diastolic function. PFR at rest was unchanged (2.4 
EDV sec- l to 2.5 EDV sec-I) by PTCA in the study by Lewis et 

al 1985. During exercise however, PFR was improved from 

2.1 EDV sec- l to 2.5 EDV sec- l highlighting the beneficial 

effects of PTCA in improving diastolic function on exercise. 

Differences in time (in comparison to normal) to various 

events in the cardiac cycle may also highlight disordered 

cardiac function. Time to PER occurred significantly later 

in systole in a group of patients with CAD in comparison to 

normals (Slutsky et al 1983). Arterial occlusion in dogs 

significantly delayed time to minimum count in the region 
of LV supplied by that artery reflecting inability of the 

ventricle to relax (section 6.2.2 - Green et al 1984). 

It is evident from this literature review, that, as with the 
previous chapter, no work has yet related extent of 

myocardial dysfunction to severity of coronary disease. 

However, parameters which may demonstrate a relationship 

have been presented. 

Remembering that coronary collateral supply is not 

quantified by QAMS (greater than 75% diameter stenosis 

coincided with the development of coronary collaterals in 

dogs - Tomoike et al 1983) it would still seem logical that 
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the extent of CAD may relate to the hearts ability to 

perform normally. It is along this aspect that the 

experiments presented in this chapter were conducted. 

Changes in myocardial function and disease state are also 

investigated in a small group of patients receiving PTCA. 

8.3 Method 

8.3.1 Patient Selection 

Over the period 8th August 1984 to 9th January 1986 45 

patients were subjected to an exercise radioisotope test 

(section 8.3.3a) at a rate of one per week. Due to 

excessive patient and/or heart movement (see later), poor 

count statistics (particularly of the exercise images), 

large R-R interval variability (see later) or insufficient 

level of exercise, the final group consisted of just 28 

patients. All were to receive coronary arteriography the 

following day, the majority (68%) either for assessment for 

suitability for PT CA or for PTCA itself. All patients had a 

recent exercise test. Following successful PT CA of the LAD 

artery (mean 28.8+/-9.3 weeks) exercise MUGA RNA was 

repeated in 5 patients the day prior to follow up 

arteriography. Current medication was preserved in all 

patients. 

Group details: 

8.3.2 

Group 1. N = 23, 21 male, 2 female. Mean age 

53.7+/-8.6 years. 

Group 2. N = 5, 4 male, 1 female. Mean age 52.8+/-6.8 

years. 

Quantification of Arteriograms 

For each patient, the following days arteriograms were 

quantified using QAMS in the manner described in appendix 1. 

For each diseased artery, efforts were made to obtain data 
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from at least two orthogonal views, however, this was not 

always possible for reasons discussed in section 7.3.2. 

Blocked arteries were awarded a figure of 100% for percent 

diameter stenosis. Obviously, no other quantifiable data 

are obtainable in such cases. 

Stenotic morphology data were then averaged for each 
affected artery as described previously. For the analysis 

of global function, percent diameter stenosis in the 3 

supplying arteries was weighted according to the average 

blood flow carried in each thus: 

LAD 47% weighting 

RCA 33% weighting 

Cx 20% weighting 

These figures are those quoted for right dominant coronary 

circulation (Brandt et al 1977). 

Group details: 

8.3.3 

Group 1. 15 patients with single vessel disease (11 

LAD, 4 RCA) , 4 with double vessel disease (2 LAD/RCA, 

2 LAD/Cx) and 4 with triple vessel disease. 

Group 2. All patients had right dominant coronary 

circulation with single vessel disease of the LAD 
artery. 

Quantification of Myocardial Function 

Coronary arteriography indicates areas of potential 

ischaemia by defining anatomical lesions in the coronary 
arteries. Myocardial perfusion (eg. 201Tl imaging) 

complements this by providing information about coronary 

blood flow. Neither of these methods however,' permits 

assessment of the consequences of coronary disease on 

myocardial function. Contrast ventriculography could be 

used, but is most often performed at rest. Thus, patients 
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with CAD often exhibit (apparently) normal regional and 

global LV function at rest when investigated by this method. 

Therefore, there exists a need for a method which is non 

invasive, safe and repeatable which permits global and 

regional LV function to be assessed during stress. 

8.3.3a Development of a New Radioisotope Test Exercise 

Protocol 

RNA allows investigation of myocardial function (section 

6.2.3). Whilst 1st RNA allows any chamber view to be used 

(no overlap due to bolus injection) timing of the injection 

to coincide with symptoms is critical. Also, count rate for 

adults using this technique is very high, thus scintillation 

counter deadtime may become a problem. Therefore MUGA RNA 

was chosen as the technique around which the act of exercise 

whilst imaging was to be introduced. 

On beginning this work, exercise MUGA RNA was not practiced 

at the radioisotope imaging unit, Groby Road Hospital. At 

some time previously, however, it had been, with supine 

ergometry being used as the mode of exercise. However this 

was soon abandoned as patient movement resulted in much 

deterioration of the acquired images. 

Apart from treadmill testing, erect cycling would most 

closely match everyday exercise stress and has been proven 

to elicit vo2max to within 5% of that evoked by treadmill 

testing (Astrand et al 1961), thereby proving its use as a 

good modality of exercise in terms of extent of fat free 

mass involved. Also, should erect exercise be used in 

preference to supine, cardiac haemodynamics (ie venous 

return) woulq more closely represent the normal situation. 

Therefore it was decided that erect cycling exercise would 

be adopted as the mode of stress to combine with MUGA RNA. 

A cycle ergometer was borrowed from the Department of Human 

Sciences, Loughborough University. The ergometer was fitted 

with a magnetic mechanism which allowed the work rate to be 
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selected in the range zero to 450 Watts at various pedal 

revolution rates (prr - figure 8.1). Maximal efficiency has 

been proved to be evoked at a prr of 50 revs min-1 (Astrand 

and Rodahl 1977), however, this frequency was not supported 

on this model of ergometer, thus 60 revs min-1 was used 

instead. Prr was communicated to the patient by means of a 

digital display which could be mounted anywhere around the 

imaging equipment so as to always be in view (figure 8.2a). 

A wooden base was constructed for the ergometer to rest upon 

(figure 8.2a). This was necessary in order that the 

ergometer could be brought close enough to the imaging 

equipment so that the patient was in contact (figure 8.2b). 

A velcro strip was used to strap the patient to the 

collimator face in order to minimize movement during 

exercise. Foam wedges positioned between the patients chest 

and the collimator allowed the correct view to be maintained 

during image acquisition (figure 8.2b). 

As recent exercise test (treadmill) data were available, and 

therefore patient tolerance was well known, the exercise 

MUGA RNA protocol was designed to elicit symptoms in the 

shortest time possible. Therefore, the maximal work rate 

performed on the treadmill was calculated using Balkes 

equation (section 7.3.3) and work rate on the bicycle 

adjusted such that the maximal work rate would be elicited 

by 6 minutes of exercise. Each exercise stage was to be 3 

minutes long, therefore the initial 6 minutes were to be at 

two lower but incrementally increasing work loads in order 

to give the patients cardiovascular system time to adapt to 

the exercise stress. Following this third stage (between 

minute 6 and minute 9), if no symptoms were evoked, work 

rate could be increased further. Patient heart rate (fh) 

and blood pressure (BP) were recorded at each stage using 

the Critikon exercise monitor (figure 8.3a), the microphone 

within the cuff (figure 8.3b) being placed over the brachial 

artery of the right arm. Occurrence of stress induced ECG 

abnormalities were monitored at the V6 position using 

Cardiac Recorders equipment (figure 8.4a). Upper electrodes 
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Figure 8 .1 Work rate adjustment mechanism on cycle ergometer 
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F igure 8 . 2a Equipment set up prior to MUGA RNA. Notice the defibrillator, 
bicycle ergometer , gamma camera and pedal revolution rate monitor (mounted 
o n top of persi stence monitor , top righ t hand corner) 

F igure 8.2b MUGA RNA in progress . Notice use of velcro strip and 
wedges for patient positioning 
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Figure 8 . 3a The Critikon exercise monitor 

Figure 8 . 3b Blood pressure cuff with brachial artery microphone 
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8 . 4a ECG electrode positioning, anterior view 

8 . 4b ECG electrode positioning,posterior view 

- 306 -



were placed on the clavicles and the lower electrodes on the 

patients back in order to minimize muscular interference 

from the respiratory muscles (figures 8.4a and 8.4b). 

Exercise was terminated on fulfillment of the conditions' 

presented in section 7.3.3. Much motivation of the patient 

was provided by the team. in 'order'"to encourage 'achievement 

of an adequate level of exercise such that symptoms would be 

evoked (sensitivity 94% vs 6.2% in, those patients who 
. ..<. 

developed chest pain and/or ST changes and/or RPP greater 

than 250 x 103 - Brady et al' 1980b). 

8.3.3.b Exercise MUGA RNA Procedure 

99~c'eluted that day as sodium pertechnetate from a 

99Mo1ybdenum generator at the regional radiopharmacy, 

Leicester Royal Infirmary, Leicester is delivered to the 
radioisotope room each morning. The patient receiving the 

test, who has previously been selected and given verbal 

consent, is collected from the Ward and the test explained. 

A small venf10n butterfly needle is then inserted into the 

dorsal venous network of the patients hand through which is 

administered 0.2mg/kg stannous pyrophosphate reconstituted 

with 5m1 of bacteriostatic free 0.9% saline. This completes 

the first stage of the in vivo labelling of the red blood 

cells described by Pavel et al 1977. During the time 

between administration of the stannous ion and injection of 
the 99mTc (typically 20 minutes) the patients height and 

weight are recorded, ECG electrodes are positioned for 

recording in the 3 standard leads, the augmented leads and 

the V6 position and the computer (ADAC Ltd.) is prepared for 

the study. 

The protocol used is that recommended in the IMAC handbook, 

reference No. DD 7605 A/A. Briefly, heart rate varying 

window widths are not selected as it is important to collect 

as much data as possible once the patient is exercising. 

The additional time take for frequent R-R interval 

calculation during acqUisition would result in much loss of 

data, and is therefore overridden. However, as heart rate 

- 307 -



in cardiac patients shows a slower response to reaching the 

steady state in comparison to normals, then significant 
variation in R-R interval may occur once acquisition has 
started. This was always checked by recording heart rate at 
15 second intervals throughout the exercise period and 

checking its variability. R-R interval has inherent +/- 20% 
variability within the acquiring software; unacceptable 
variability (arbitrarily selected as +/- 10% original R-R 
interval) resulted in the test not being used in further 

analyses. The protocol was set for imaging of 90% of the 
cardiac cycle thus maximizing the number of counts per unit 
of examination time. Rollover protection (count saturation) 

is turned off as a stress study is too short for rollover to 
occur. This is necessary to remove interrupts in data 
collection which check for approaching rollover. 

Following the 20 minute period within which the stannous -
RBC complex has been formed and excess stannous 
pyrophosphate has cleared from the vascular pool, 20 milli 
curies (740 megaBq.) Of 99~c (whole body dose 400 

millirads) are injected intravenously via the venflon 
needle. An additional five minute delay allows up to 95% 
99~c labelling of the RBCs to occur (Pavel et al 1977). 

The patient is then connected to the ECG recorder which in 
turn provides R-R interval information to the computer. 

Imaging of the patient requires positioning of their heart 
at the 30cm diameter gamma camera face (figure B.2b). Gamma 

radiation is emitted from the intravascular tracer at an 
energy of 140 KeV as the 99~c (half life 6 hours) decays to 
99Tc (half life 2.lxl05 years). A high sensitivity 

collimator (figure B.2a) focuses the gamma radiation onto a 
Sodium Iodide (NaI) crystal converting the radiation into 
photons of visible light. The NaI crystal is in direct 
contact with 37 photomultiplier tubes arranged hexagonally 

allowing the light to be converted and amplified into 
spatial electrical pulses. An x,y coordinate system is then 
employed to process all signals from the photomultiplier 
tubes yielding the position of each gamma radiation event in 
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the NaI crystal. The summed output (energy) or brightness 

signal is input to the single channel analyzer (SCA) which 

functions as an electronic window, in this case tuned to 

l40KeV. This serves to remove events detected by the 

crystal resulting from Compton scattering which, if left 

unchecked, would result in blurring of the image. 

Pulses accepted by the SCA are recorded and displayed in 

real time on the persistence monitor attached to the camera 

(figure 8.2a and 8.2b). The x,y coordinates are also 

transmitted to the computer via an analogue to digital 

converter where they are stored in a 64 x 64 matrix. 

However, whilst each gamma emission is being processed, the 

hearts cyclic function is altering the temporal relationship 

between activity at various positions in the camera field of 

view. For this reason, the image is subdivided into 16 

frames which are gated from the R wave (end diastole) 

supplied by the ECG monitor. Provided that heart rate is 
reasonably constant, several hundred cardiac cycles may then 

be acquired in this manner, such that each frame 

a sixteenth of 90% of a composite cardiac cycle. 
represents 

Such an 
image may then be displayed or analyzed allowing separate 

appreciation of systolic end diastolic function. 

The patient is first imaged whilst standing at the gamma 

camera face in the 10 degree RAO position. This image is 

collected only for routine clinical assessment and is not 

considered further in this work. The patient is then asked 

to sit astride the cycle ergometer and then positioned close 

to the camera in a 45 degree LAO view with 10 degree cranial 

tilt (figure 8.2b). This view was chosen so as to give 

maximum separation between left and right ventricles whilst 

allowing the- LV to be examined from a modified, "end on" 

position (figure 8.5). The usefulness of this view becomes 

apparent in the following section. Using the persistence 

monitor to check, minor modifications of this view were made 

in some cases to accommodate different patient anatomy. 

Once the position is set, foam wedges and the velcro strip 

- 309 -



LAD 

right ventricular 
blood pool 

1 

I 
A 

/ \ 
/ \ 

/ \ 

inferior wall 

septal 
wall 

junction of septal and 
inferior segments 

direction of aortic valve 

\ 

+--+-- left atrial blood pool 

\ 
\ 

t 

.... ---ex 

--- lateral wall 

left ventricular blood pool 

junction of inferior and lateral 
segments 

Figure 8.5 Left ventricular blood pool and superimposed segmental 
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prevent the patient moving further (figure 8.2b). A rest 

image of 4 to 5 minutes duration was collected from this 

view. 

Following this, the Critikon cuff was fitted to the patient 

and rest fh and BP recorded. The machine was then 

programmed to actuate at 3 minute intervals one minute out 

of phase with the exercise, such that fh and BP were 

recorded during the second minute. Initial work load was 

set and one minute allowed to elapse for the phase 

difference to become established. 

The supervising team consisted of a Doctor, computer 

operator, coordinator/timekeeper (MJ), technician and nurse. 

The Doctor was responsible for patient well-being whilst the 

technician provided encouragement to the patient. The nurse 

monitored the ECG. On commencing the exercise, the patient 
was encouraged to reach th~ 60 revs min- l prr required for 

the set work rate as quickly as possible in order to 
establish a steady physiological state. A one minute 

period was allowed in order for this to be achieved before a 

fresh calculation of R-R interval was made (pressing 'do not 

store' key) and the acquisition began in earnest. 

Acquisition is continued for the following two minutes 

within which fh and BP are measured. At the end of the 2 

minutes the study is accepted and normalized prior to 

commencement of the next level of the exercise or 

termination of the test. In this way, should a patient be 
genuinely unable to complete a stage, the previous complete 

stage is still available for analysis where symptoms may 
have been evident. 

Following termination of the test, the patient rests in the 

acquisition position until recovered enough to dismount the 

cycle. Fh, BP and ST changes continue to be monitored until 

they have returned to base line. The Venflon is then 

removed and the patient escorted back to the Ward. 
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8.3.3c Image Processing and Quantification 

The raw rest and exercise MUGA RNA images are firstly 

processed using resident software. This involves production 

of a complementary 13 frame smoothed and background 

subtracted (SB) study to the raw 16 frame study in addition 

to various parametric images, including a global amplitude 

and phase image. These images are used in the normal 

clinical assessment of the patient. 

Quantification of a study (ie. rest or exercise, using the 

LAO modified view only) begins by displaying the SB images 

in cine loop format and outlining the LV diastolic and 

systolic AOIs directly onto the computers monitor using a 

chinagraph pencil. The SB images are chosen in preference 

to the raw images due to zero background activity 

interference. Once the outlines are judged to fit the AOIs 

adequately (figure 8.6), the ADAC systems' 2 AOI ejection 

fraction program is run. During this, the operator 
digitizes the two contours using a light pen and applies 

these AOIs to the raw data. In addition, the program 

constructs a horseshoe background AOI from two digitized 

points around the inferior surface of the LV. This serves 

to subtract from the EF calculation activity due to blood 

contained within structures above and below the LV (figure 

8.6). The final result if expressed according to the 

following formula: 

Ejection Fraction 
(% ) counts counts 

= [End diastolic - End systOliC] 

This method closely follows that of Green et al 1978. 

x 100 

As disease in anyone coronary artery will tend to affect LV 

function in the region it supplies, a program was written 

which allowed the LV to be divided up into 3 anatomical 

regions which corresponded to the position of the 3 major 

coronary arteries, thus allowing individual regional 
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Figure 8.6 Calculation of two area of interest ejection fraction 
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analysis. PROGRAM MUGA (appendix 2), written in Fortran 66 

requires that the user creates a new end diastolic overlay, 

to which is added the position of the aortic valve plane, 

the position of the inferior junction of the right and left 

ventricles, and the position where inferior wall becomes 

lateral wall (figure 8.7). The first two points are always 

well defined, with the third coming with experience. 

Employing the 45 degree LAO 10 degree cranial tilt view, the 

LV is essentially being viewed end on, allowing such 

anatomical separation (see later for discussion of atrial 

superimposition). In addition, a user rather than computer 

generated background area is drawn for later correction 

(figure 8.7). Other images, ego phase and amplitude are 

also used at this stage such that the final outline is 

correctly positioned. Once complete, the overlays are 

written to a file containing the five named areas, ie. 

global, septal, inferior, lateral and background. 

Phasic differences are then examined in each region by first 
subjecting the SB image data (fitted with new overlay) to 

Fourier analysis. This process fits (by least squares 

analysis) the volume curve in each pixel of the AOI (ie. 

global and segments) in question with the first harmonic of 

a cosine curve. This necessitates altering the curve's 

amplitude and angular phase in order to obtain the closest 

fit. As a matter of course, the program displays an 

amplitude image (reflecting stroke volume) a phase image 

(reflecting timing of contraction) and a phase histogram 

(reflecting number of pixels contracting a each instant ie. 

synchrony) for each region. The phase image is particularly 

useful as it serves as a check by which atrial 

superimposition can be excluded. Presence of very light or 

very dark pixels at the the top of the phase image (ie. 

global, septal, and lateral AOIs) confirm atrial 

superimposition, and the original outlines must be redrawn 

such that these are excluded. If left unchecked, resulting 

numeric data would not reflect ventricular activity. 

However, it must be stressed that phase differences may 

exist due to ventricular dysfunction, and it is important 
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background subtracted image, the amplitude image and the phase 
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that these areas be included. Experience and common sense 

usually make this distinction possible. The phase value of 

each pixel, together with the images are then written to 

disk. 

PROGRAM MJHIST (appendix 2) then reads these data, and" 

displays it as a phase histogram (figures 8.8a and 8.8b). 

The user then selects the range within which calculations 

are to be made. Normally this is the total data set, 

however, the range provision is made such that the odd one 

or two atrial pixels can be excluded from phase calculations 

without the need for redrawing the overlays. The program 

then proceeds to calculate mean phase, standard deviation 

and skew value (Kurtosis - Snedecor 1946) for that 

particular AOI. All other AOIs within the overlay are 

processed in the same manner. 

Normal numeric data (count information) are then created 

from the raw data for each AOI in the overlay using the 

established ADAC software. The result is a time activity 

curve for each segment. This is then written to disk. 

PROGRAM EFDVDT (appendix 2) reads this numeric data for the 

global and segmental areas. Patient age is included as 

input to be used by the program to calculate maximal 

obtainable heart rate. For each study (rest or exercise) 

heart rate achieved is then calculated from the frame time 

information. Counts and size of the background area are 

then computed and the raw data background subtracted 

according to its size. The normally produced SB data are 

not used for these analyses as the study is composed of 13 

images only. The 16 frame time activity curve is then 

fitted by a cubic spline routine which results in the 

generation of a 100 point interpolated time activity curve 

with corresponding values of the first derivative (figures 

8.9a and 8.9b). By using this interpolative method, it was 

hoped that the inadequacy in framing rate capabilities of 

the 16 frame system would be overcome, allowing 

investigation of LV ej"ection and filling rates. Normally, 
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Figure B.Ba Resting global and segmental phase histograrrs 
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Figure B.Bb Exercise global and segmental phase histograms. 
Notice the change in mean phase, standard deviation of: phase 
and histogram skewness 
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frame lengths of 20 milliseconds are required for 

measurement of such parameters during exercise (Bacharach et 

al 1979) translating to heart rates of 160 beats per minute. 

In order to perform this interpolation, the routine must be 

provided with a value which reflects the variation in the 

count data due to normal statistical fluctuation and 

physiological variation on a beat to beat basis,ie. error 

introduced from variation other than the cyclic nature of 

the heart in each frame must be quantified. 

Briefly, this figure is calculated from the mean count of 

the time activity curve according to the following formula: 

Smoothing factor (counts) = 1.25 xl~Mean count x 9750 ) 
, 121.8 x Mean Count 

Where: 1.25 = Coefficient of variation from static 

radioisotope emission. 

9750 = Mean normalized count. 

121.8 = Standard deviation of normalized count. 

This formula was derived from an experiment involving 

collection of five 16 frame studies from a phantom filled 
with 99mTC , gated by a cardiac simulator. The figures above 

correct for statistical variation in count rate for non 

physiological data (ie. where mean is constant) whilst the 

form of the equation applies a correction for cyclic 

variation based on standard deviation of a proportion theory 

(Snedecor 1946). 

From the 100 point time activity curve, the following 
parameters are then calculated: 

Stroke Volume. 

Ejection Fraction (essentially the 1 AOI method, Slutsky et 

al1980). 

Cardiac Output (Stroke volume x heart rate). 
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Peak ejection period (PEP - time from end diastole to 

maximum count in the first half of cardiac cycle). 

Systolic time interval (STI - time from PEP to minimum 

counts) . 

Diastolic time interval (time from STI to PEP). 

Peak ejection rate (PER - maximum first derivative value in 

STI) . 

Peak filling rate (PFR - maximum first derivative value in 

DTI) . 

Peak filling rate in 1st half of diastole (PFR/2 - maximum 

first derivative value in first half of diastole. Division 

of diastole made on calculation of ventricular fullness 

achieved by application of smoothing factor to latter frames 

of study). 

Rate ratio 1 (PER/PFR). 

Rate ratio 2 (PER/PFR2). 

Time to PER (expressed as a percentage of R-R interval, ie. 

normalized) . 

Time to PFR (normalized for R-R interval). 

Time to PFR/2 (normalized for R-R interval). 

Time to PER (normalized for STI). 

Time to PFR (normalized for DTI). 

Time to PFR/2 (normalized for DTI). 

In addition to the above, results for septal, inferior and 

lateral AOIs are normalized for global size. A hardcopy of 
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all of these results is obtained at the printer. The 100 

point time activity curve with superimposed first derivative 

were plotted to the computer monitor for producing microdot 

copies if required (figure 8.9). 

Obviously, as all calculations are ultimately derived from 

the global end diastolic AOI, this program relies on the LV 
contracting more or less concentrically around its centre of 

gravity. In order to check that this was indeed a valid 

assumption, PROGRAM MOVCEN (appendix 2) was written to 

quantify movements of the centre of gravity between the 

diastolic and systolic outlines. The program utilized the 

overlays submitted for 2 AOI EF calculation. Centres of 

gravity were calculated for each outline as the mean of the 

digitized points contained within. The shift between the 

two centroids was calculated relative to the end diastolic 

diameter. Direction of shift is returned as left, right up 

or down (figure 8.10). Centroids with much movement 

reflected a non concentric contraction, leading to potential 

errors in the EFDVDT program. Such tests were not 

considered in the final analysis. 

The single image count information provided by existing 

software was used to examine regional contraction or stroke 

volume from the global and segmental amplitude images, 

achieved by fitting the amplitude image with the segmental 

overlays. 

For the 5 PTCA patients, exercise MUGA RNA was performed 

again 28.8 weeks later. In order that everything except of 
course, myocardial function was kept constant, PROGRAM 

AOICOP (appendix 2) was written such that the segmental AOI 

applied to the pre PTCA exercise MUGA RNA could be 

reutilized post PTCA, thus keeping segmental spatial 

relationships intact (figure 8.11). The program allows that 

the overlay be translocated (as the LV is unlikely to be in 

the same position on the monitor screen post PTCA) , rotated 

(some patient rotation may have taken place on the second , 
exercise MUGA RNA, ie. the old overlay is located relative 

- 323 -



I 
I 

.1 
/AT 

L / I 

end diastolic area 
of interest 

end systolic area 
of interest 

r~--------~---------- end diastolic 
diameter (EDD) 

Centroid movement (%) = L x 100 

EDD 

Direction of movement is Up (example) 

Direction of movement is left (example) 

Figure 8.10 principle of the program MOVCEN 

- 324 -



,.----- ~ - --~ - ---, 

-t 

Fitted Translocated 

Rotated Superimposed 

Figure B.ll Use of the program AOICOP 

- 325 -

------------- - -



to a new aortic valve plane position) and edited (as view 

angle may be slightly different), although efforts were made 

to reduce the latter. In practice, translocation and 

rotation were often required whilst editing was not. 

Application of the old overlay to the new test results 

ensured the myocardial function was the only true variable. 

All above programs were run on rest and exercise MUGA RNA 

tests for all AOIs (global, septal, inferior and lateral) 

both before and after PTCA in the 5 patients mentioned. 

8.3.4 Statistical Analyses 

Investigations regarding evaluation of the relationship 

between myocardial function and stenotic morphology are best 

explored using linear regression analysis, with stenotic 

parameters being utilized as theidependent variable such 
that error introduced from predictions based on myocardial 

function may be examined. This technique will serve for 

investigating both global and segmental function, although 

for the former, only percent diameter stenosis is available 

as an indicant of stenotic severity (section 8.3.2). 

For the 5 PTCA patients, two tailed related t tests will be 

performed on indices of myocardial function and stenotic 

anatomy between the pre PTCA and the post PTCA conditions 

for both rest and exercise. 

8.4 Results 

8.4.1 The Relationship Between Myocardial Function and 
Stenotic Morphology 

Table 8.1 presents all significant results obtained when 

global myocardial function was regressed against a weighted 

value (proportional to average blood flow in each artery) of 

percent diameter stenosis. All t ratios are given a 

significance number as in the previous chapter which also 

serves the correlation coefficient. 
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Table 8.1 Regression analysis, global MUGA RNA vs weighted 
percent diameter stenosis 

t obs 

" 2AOIEF _2.5381 

SD Phase 2.6151 

REST SV/BSA _2.2541 

PERSTI% 2.9922 

2AOIEF _2.9972 

XPhase _2.7431 

Skew Phase 2.4611 

1 AOIEF -2.5081 

STI -2.0821 

EXERCISE DTI 2.2361 

PER 2.23~ 
PFR/2 -2.2621 

,t i me to _3.2783 

PER/2 

PFRDTI% _2.4461 

R-R interval 2.2961 

Significance levels 

1 0.05 ~P > 0.01 
2 0.01 ~ P > 0.005 
3 0.005 ~ p > 0.001 
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SEE r N 

18.96 -0.48 23 

18.83 0.50 23 

19.45 -0.44 23 

18.15 0.55 23 

18.14 -0.55 23 

18.60 -0.51 23 

19.10 0.47 23 

19.02 -0.48 23 

19.74 -0.41' 23 

19.48 0.44 23 

19.26 0.46 23 

19.44 -0.44 23 

17.63 -0.58 23 

19.12 -0.47 23 

19.38 0.45 23 



Only four parameters from a possible 32 have a significant 

regression relationship with weighted percent diameter 

stenosis at rest. Levels of significance are low and SEEs 
approximately equal to those demonstrated in the previous 

chapter. 

There is a greater frequency of significant relationships 

when exercise global myocardial function is regressed 

against weighted percent diameter stenosis. Correlation 

coefficients and t ratios remain low in all but one case, 

when time to PRF/2 is considered (r = 0.58). SEEs are 

generally akin to those experienced in the previous chapter. 

Means and standard deviations (SDs) of all parameters 

presented in table 8.1 are cited in table 8.2. Note the 
negative sign for PER signifies that blood is leaving the 

left ventricle. 

When segmental myocardial function was regressed against 

percent diameter stenosis present in the artery supplying 
that segment, and the data considered collectively, there 

were no significant observations recorded (table 8.3). 

When each segment was considered separately, significant 

relationships occurred with little frequency and the 

significantly relating parameters differed between segments. 

Levels of significance are no higher than those tests 

considering global function, although t ratios, correlation 

coefficients and SEEs are higher and lower respectively, 

reflecting the smaller group size. Percent diameter 

stenosis in the three groups of septal, inferior and lateral 

segments are reasonably homogenous (table 8.4), ranging from 

70.9% to 80.5%, although higher than those encountered with 

the PT CA patients of the previous chapter. These values 

reflect the inclusion of some patients with blocked (ie. 
100% stenosis) arteries. 

Parameters correlating significantly with percent diameter 

stenosis in the previous analysis were then regressed 

against other parameters of stenotic morphology (table 8.5). 

Amongst those parameters which correlated significantly, 
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Figure 8.2 Descriptive statistics, global MUGA RNA and weighted 
percent diameter stenosis 

Mean Standard deviation 

2AOIEF(%) 62.0 8.14 
SD Phase (0) 2 16.31 6.16 

REST SV/BSA (counts/m ) 3114.08 951.27 
PERSTI (%STI). 47.77 16.76 

2AOIEF(%) 63.74 9.54 
X Phase (0) 55.36 16.43 
Skew Phase -0.99 0.74 
lAOIEF(%) 36.27 11.65 

EXERCISE STI(%R-R) 44.39 7.27 
DTI(%R-R) 49.14 6.79 
PER (EDV hsec) -3.56 1.86 
PFR/2(EDV / sec) 3.47 2.03 
time to F\."R/2(%R-R) 76.90 9.79 
PFRDTI (%DTI ) 53.44 16.87 
R-R interval 0.5175 0.1206 
% diameter stenosis(%) 45.01 21.18 
(weighted) 
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Table 8.3 Regression analysis, segmental exercise MUGA RNA vs 
percent diameter stenosis 

Pooled segmental data - no significant observations 

SD Phase 

SEPTAL lAOIEF 

Amplitude 

INFERIOR STI 

IJI'I 

LATERAL time to PFR 

Significance levels 

1 0.05 ~ P > 0.01 

2. 0.01 ~ P > 0.005 

3 0.005 ~ P > 0.001 

tobs SEE r 

2.1261 15.48 0.47 

_2.6511 14.61 -0.55 

_3.0332 13.97 -0.60 

-3.0211 13.99 -0.73 

3.9473 11.93 0.81 

_2.7921 14.41 -0.75 
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18 

18 

18 

10 

10 

8 



Table 8.4 Descriptive statistics, segmental exercise MUGA RNA 
and percent diameter stenosis 

Mean Standard deviation 

SD Phase (0) 28.67 16.31 

SEPI'AL lAOIEF(%) 29.78 12.32 

Amplitude (count) 107.39 22.52 

% diameter stenosis (%) 76.87 17.00 

STI (%R-R) 43.37 7.28 

INFERIOR DTI (%R-R) 49.49 7.50 

% diameter stenosis (%) 80.45 19.30 

time to PFR (%R-R) 72.28 10.24 

LATERAL % diameter stenosis (%) 70.68 20.23 
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Table S.5 Regression analysis, segmental exercise MUGA RNA 
vs stenotic morphology 

lAOIEF vs minimal 
SEPI'AL diameter 

STI vs minimal 
diameter 

INFERIOR 

DTI vs minimal 
diameter 

time to PFR vs 
minimal diameter 

time to PFR vs 
segment length 

LATERAL time to PFR vs 
atheroma area 

time to PFR vs 
longlitudinal 
stenosis 

Significance levels 

JJ 0.05':;:; p> 0.01 

2 0.01 ~ P > 0.J05 

3 0.005 ~ P > 0.001 

area 

tobs SEE r 

2.52S1 0.53 0.53 

1 2.574 0.57 0.70 

3 -3.547 0.4S -O.SO 

2.6541 0.35 0.76 

_2.6711 2.74 -0.77 

-4.7312 3.0S -0.90 

3 -5.700 4.25 -0.93 
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IS 

9 

9 

7 

7 

7 

7 



minimal diameter was a frequent dependant variable. Levels 

of significance were generally at the lowest level in all 

but the relationship with DTI in the inferior segment where 

it reached less than 0.5%. Myocardial performance in the 

lateral segment was the only region to correlate 

significantly with parameters other than percent diameter 

stenosis and minimal diameter. Segment length, atheroma 

area and percent longitudinal stenosis (section 7.3.2) 

demonstrated their importance, the latter particularly so (p 

< 0.5%). Generally, variability of the quantitative 

information for the three groups is higher than that 

previously encountered reflecting the small group size 

(table 8.6). 

Global exercise myocardial performance once corrected for 

resting myocardial function (by its subtraction from the 
exercise values) showed very poor relationship with weighted 

percent diameter stenosis (table 8.7) with only the one 

parameter of mean phase proving significant at the 5% level. 
Descriptive information about this relationship is presented 

in the same table. 

8.4.2 The Effects of PTCA on Myocardial Function and 

Stenotic Morphology 

Due to the nature of this work, repeatability of myocardial 

function could not be investigated. Therefore, significant 

differences discussed may well be within the degree of error 

introduced by repeating the test. 

As all 5 PTCA patients had disease of the LAD artery only, ., 
changes in function (rest and exercise) of the global area 

and septal segment could be investigated using related t 

tests. All tests are two tailed due to inability to predict 

the direction of difference "a priori". 

For the global area, only the 3 parameters of exercise 

PFR/2, exercise PER/PFR ratio and time to PER on exercise 

demonstrated significant changes as a result of PT CA (table 
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Table 8.6 Descriptive statistics, segmental exercise MUGA RNA 
and stenotic morphology 

Mean Standard deviation 

lAOIEF (%) 29.78 12.32 
SEIl'TAL Minimal diameter (mm) 0.82 0.61 

STI (%R-R) 44.06 7.36 
INFERIOR DTI (%R-R) 49.09 7.84 

Minimal diameter (mm) 0.81 0.75 

time to PFR (%R-R) 72.64 11.00 
Minimal diameter (mm) 1.07 0.50 

LATERAL Segment length (m2) 17.72 3.90 
Atheroma area (mm ) 11.81 6.59 
% longlitudinal stenosis 
(%) 27.33 10.57 
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Table 8.7 Regression analysis, exercise global MUGA RNA corrected 
for resting function vs weighted percent diameter stenosis 

lf Phase 

% diameter stenosis (%) 

t. obs 

-2.3641 

Mean 

31. 76 

45.01 
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SEE r N 

19.27 -0.46 23 

Standard deviation 

17.57 

21.18 



8.8). Whilst all significance levels were below 5%, PFR/2 

demonstrated the largest t ratio. This was associated with 

an approximate improvement of 1.6 EDV sec- l following PTCA 

(table 8.10). 

For the septal segment, only mean phase at rest and skew 

phase on exercise proved significantly different following 

PTCA. Again, all significance levels were around the 5% 

mark. Mean changes as a result of PTCA are presented in 

table 8.10. 

Larger significant differences were associated with changes 

in minimal diameter, percent diameter stenosis, maximal 

eccentricity and mean eccentricity following PT CA (table 

8.9). Degree of stenosis reflected by minimal diameter and 

percent diameter stenosis show good agreement with the mean 

of the PTCA group from the previous chapter. However, 

length, eccentricities and area variables tend to be 

greater, reflecting the inclusion of a patient with a very 

long and offset stenosis into this small group (table 8.10). 

8.5 Discussion 

8.5.1 The Relationship Between Myocardial Function and 

Stenotic Morphology 

In investigating global LV function, it was necessary to 

weight the contribution each artery makes to perfusing the 

LV in order to arrive at a figure which reflected the global 

effects of the disease state (section 8.3.2). Whilst there 

is likely to be much individual variation around the values 

adopted for this work (Brandt et al 1977) the correction 

appears to serve its purpose, in that myocardial function 

parameters previously reported in the literature to be 

affected by percent diameter stenosis (although no actual 

relationships have been established) show significant 

results. 
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Table 8.8 2 tailed related t tests, rest and exercise MUGA RNA 
results, pre PTCA vs post PTCA 

tobs N 

exercise PFR/2 -3.1251 5 

GLOBAL exercise PER/PFR _2.6801 5 
AREA 

_2.5851 
exercise, time to PER 5 

resting mean phase -2.2961 5 

SEPTAL exercise skew phase -2.6941 5 
SEGMENI' 

2.5411 exercise STI 5 

Significance level 1: 0.05, p > 0.01 
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Table 8.9 2 tailed related t tests, Q.A.M.S. stenotic morphology 
results,· pre PTCA vs post PTCA 

Minimal diameter (mm) 

Percent diameter stenosis (%) 

Segment length (mm) 

Eccentricity at the minimal diameter (%) 

Maximal eccentricity (%) 

Mean eccentricity (%) 

Atheroma! area (mm2 ) 

Percent longlitudinal stenosis (%) 

Significance levels 

1 0.05 ~ P > 0.01 
2 0.01 < p > 0.05 
3 0.005 ~ p > 0.001 
4 0.001 ~ P > 0.005 
5 0.0005 ~ P > 0.0001 
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_5.1383 

10.0465 

2.8461 

2.167
1 

4.2392 

5.6083 

2.4721 

2.5151 

N 

5 

5 

5 

5 

5 

5 

5 

5 



Table 8.10 Descriptive statistics, MUGA RNA (rest and exercise) 
and Q.A.M.S. stenotic morphology results, pre and post PTCA 

PRE PTCA POST PI'CA 

GLOBAL 
AREA 

SEPI'AL 
SEGMENT 

Q.A.M.S. 
DATA 

Exercise PFR/2(EDV/sec) 
Exercise PER/PFR 
Exercise time to PER(%R-R) 

Resting mean phase(o) 
Exercise skew phase 
Exercise STI(%R-R) 

Minimal diameter(mm) 
% diameter stenosis (%) 
Se;jment length ( mm) ( 
Eccentricity at the 
minimal diameter (%) 
Maximal eccentricity (%) 
Mean eccentricity ~%) 
A theromal area (mm ) 
% longlitudinal stenosis (%) 
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Mean 

3.62 
-1.19 
14.69 

24.58 
-0.70 
45.56 

1.07 
70.45 
15.27 

32.66 
45.63 
22.49 
17.83 
33.48 

Standard Mean 
deviation 

0.57 
0.37 
5.61 

10.32 
0.39 
2.98 

0.32 
12.31 
5.60 

26.21 
24.74 
16.61 
11.83 
10.65 

5.27 
-0.83 
30.42 

31.85 
-0.39 
36.79 

2.35 
39.17 
13.76 

26.41 
30.63 
16.50 

7.05 
20.41 

Standard 
deviation 

1.19 
0.14 

13.42 

9.75 
0.19 
5.99 

0.43 
7.28 
4.79 

23.73 
26.66 
15.80 

7.66 
15.21 



Relationships involving resting global LV function with 

percent diameter stenosis are most often non significant, 

demonstrating that in this group of patients at least, 

resting function is reasonably good. However, EF measured 

using a 2 AOI method and stroke volume (SV) corrected for 

body surface area (BSA) both show significant negative 

regression relationships with percent diameter stenosis, 

inferring that EF and SV are lower at higher degrees of 

stenosis, thus indicating compromised cardiac function at 

rest (Ellestad 1980). Resting ventricular function 

increases in asynchrony (Ratib et a11982) and time to PER 

gets longer (in terms of STI) as disease severity is 

increased confirming the above. 

On exercise, many more parameters of myocardial function 

show significant relationships with percent diameter 

stenosis, indicative of the increased haemodynamic effect at 
larger coronary artery flow rates (section 6.2.1). Of 

particular interest is the significantly positive relation 

with R-R interval, indicating that patients with more severe 

disease achieve a lower maximal heart rate on exercise. 

This occurs because the diastolic period (the portion of the 

cardiac cycle where coronary blood flow and therefore 

myocardial perfusion occurs - section 6.2.2) becomes the 

limiting factor as heart rate rises, ie. patients with more 

severe disease cannot tolerate much shortening of the 

diastolic component, as their ability to perfuse the LV is 

already reduced. However, this relationship is weak 

reflecting the heterogeneity in strength and frequency of 

anti-anginal preparations being taken by these patients. As 

with rest, EF demonstrates a negative regression 

relationship with percent diameter stenosis. This occurs as 

a result of the generation of ischaemia in the LV and the 

development of wall stiffness (section 6.2.2). This 

stiffness increases end diastolic pressure which in turn 

increases end diastolic volume leading to decreased EF. 

Interestingly mean EF by the two methods shows great 

disparity (table 8.2), a fact previously reported by Slutsky 

et al 1980. 
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In this group most of the parameters based on systolic 

function (mean phase, STI and PER) show a response which 
reflects the limiting factor of heart rate. Using STI as 
the example, patients with the more severe disease are 
unable to achieve the higher heart rates, therefore the 

proportion of the cardiac cycle occupied by systole is 
relatively less, as diastole has been shown to shorten in 
preference to systole with reducing R-R interval (Slutsky et 

a11983). Patients with less severe disease are able to 
exercise to higher heart rates (Ellestad 1980) explaining 
the increased proportion of the cardiac cycle attributable 
to systole. However, as R-R interval decreases, both 
components (systole and diastole) obviously show a reduction 
in real terms (Van Der Hoeven et al 1977). Changes in mean 
phase parallel the explanation for STI whereas for PER, the 
reverse argument applies (Bianco et al 1979). These results 
could ~ave been corrected for heart rate by using analysis 

of covariance, but the weak association with heart rate 
resulting from heterogeneous drug therapy precluded this. 

At face value then, these results contrast with those cited 
in the literature, where mean phase is seen to increase and 
therefore STI increases on exercise (Walton et al 1981, 
Ratib et al 1982, Slutsky et al 1983). These differences 
are for the most part explained by the covariance of heart 
rate and the fact that these studies have not related 

changes to disease severity. However, there are gross 
differences in patient population between this study and 
those above. Of Waltons group, 69% of patients had at least 
one major coronary artery blocked. Ratib has 43% of 
patients with triple vessel disease (76% double and triple 
vessel disease combined) whilst Slutsky has 56% of patients 
with triple vessel disease. This contrasts with this study 
where only 17% of patients have triple vessel disease (35% 
double and triple combined) and 17% one blocked coronary 
artery. 

The inability of this study to correct for heart rate 
covariance precludes making direct comparisons of phase and 
ejection rates with the above work. 
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PFR/2 demonstrates a negative regression relationship with 

percent diameter stenosis, initially indicating that 

diastolic dysfunction is evident (Poliner et al 1984) as a 

shift of the pressure volume curve resulting in reduced 

ventricular compliance (section 6.2.2). Again, with heart 

rate as the covariate, PFR/2 may actually be increasing in 

real terms. By comparing gradients of the regression 

relationship however (-1.21 STI and -4.61 PFR/2), it is 

unlikely that this is the case, as gradients should be 

approximately equal if correction for heart rate is all that 

is needed. The larger negative value for PFR/2 would lead 

to suggest true diastolic dysfunction. Accompanying this 

fall, the timing of this event appears to occur 

significantly earlier both in terms of R-R interval 

(gradient -0.63) and DTI (gradient -0.59). These small 

gradients would tend to suggest that the direction of these 

relationships would reverse following heart rate correction, 
demonstrating additional diastolic compromise. DTI is 

prolonged reflecting the limiting factor of diastolic 
component reduction with increasing heart rate. 

Concentrating just on exercise, and examining the myocardial 

performance of each segment of the LV individually but 

considering the data collectively, returned little in the 

way of significant results. This fact suggests that each 

segment is either not demonstrating the effects of ischaemia 

or that the responses in each segment are different, and 

therefore masked when considered as a whole. Accordingly, 
each segment was then considered separately. Very few 

parameters in comparison to the global area showed 

significant results, probably as a result of the poorer 

count statistics in these smaller areas. Moreover, of those 

parameters being significant, the number was related to the 

sample size. The septal region demonstrated increased 

asynchrony of segmental ventricular contraction, reduced EF 
(1 AOI method) and reduced amplitude with increasing 

stenotic severity, changes indicative of the effects of 

ischaemia (Ellestad 1980, Ratib et al 1982). The inferior 

segment, exhibiting the greatest degree of stenosis, 
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demonstrated significant changes in the timing of systole 

and diastole akin to those in the global area, again 

reflecting heart rate covariance. A decrease in time to PFR 

with increasing stenotic severity was evident in the lateral 

segment. Gradient of the regression relationship at -1.49 

is low suggesting correction for heart rate covariance would 

reverse this relationship. 

Using minimal diameter in place of percent diameter stenosis 

as the dependant variable and repeating the analyses tended 

to reduced the significance of the relationships, and in the 

case of the septal region, failed to achieve significance 

with phase standard deviation and amplitude of contraction. 

This is in direct contrast to the results presented in 

Chapter 7 where minimal diameter was always a stronger 

predictor. Inadequacy in view matching in this smaller 

group leading to variability in artery average maximal 

diameter may account for the better correlation demonstrated 

with percent diameter stenosis. Morphological parameters 
based on area however demonstrated a greater degree of 

significance, reflecting the addition of length to the 

dimensional measurements, a parameter of some influence in 

the equations of fluid dynamics (section 6.2.1). This 
parameter is also important when considered alone, 

correlating significantly although less strongly than 

percent diameter stenosis. The direction of these 

relationships is opposite to expected as with the data 

above. Regression relationship gradients are all less than 

1 demonstrating the influence of heart rate as a covariate. 

Correcting the exercise data for resting myocardial 

performance by considering change in function in comparison 

to weighted percent diameter stenosis, yielded only one 

significant result, the direction of the relationship 

indicating preserved diastolic function by limiting heart 

rate achieved. The failure of any other parameters to 

correlate significantly points to variable resting function 

in this group of patients, perhaps reflecting the 

heterogeneity of their disease and/or drug therapy state. 

- 343 -



Overall, the better count statistics of the global area have 

allowed investigation of the effects of exercise on the LV 

with a compromised blood supply. Several parameters 

correlate significantly with degree of stenosis on exercise, 

although overall, the relationships are not that strong. 

The inability to wholly relate myocardial performance to 

stenotic anatomy as measured by QAMS is not surprising 
however, as QAMS does not include any beneficial effects 

gained in LV perfusion by the coronary collateral 

circulation. 

The effects of dynamic or functional stenoses previously 

described by Gould et al 1982, Brown et al 1984 and 
Santamore 1985 (section 6.2.1) may also aid in producing a 

variable global exercise response in the light of apparently 

severe disease. Unfortunately, relating the parameters of 

eccentricity to global LV function is not possible, as the 

contribution each artery makes to LV perfusion must be taken 

into account, which means the adoption of some form of 

weighting system (section 8.2.3). The probable diversity of 

stenosis eccentricity in two or more arteries would tend to 

make such a calculation useless globally. Also, in order to 

weight absolute dimensional parameters ego minimal diameter, 

disease m~st be present in all three arteries. How one 

would weight minimal diameter for the presence of disease in 
just two arteries remains a problem for contemplation. 

In dividing the ventricle up into segments and analyzing 

each relative to the supplying artery allows the above to be 

achieved but suffers at the hands of poor count statistics 
and non concentric LV contraction. Whilst the latter was 

quantified, with movement of the systolic AOI relative to 

the diastolic AOI at rest being 9.9% and exercise 8.5% of 

end diastolic length, this movement could not be removed and 

therefore adds to errors in quantitative calculations. 

In overall conclusion, QAMS has proved useful in quantifying 

percent diameter stenosis which correlates significantly. 

with some variables of global myocardial performance at rest 
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and during exercise. The testing of patients free from the 

effects of drugs would also allow better investigation of 

myocardial function with disease severity. By using a 

higher 99~c dose a more thorough investigation of segmental 

function may be possible, although movement of the heart in 

the chest will always remain a problem. In the light of 

these findings, QAMS seems better suited to use in the PTCA 

and perhaps CABG environment. 

8.5.2 Effect of PT CA on Myocardial Function and Stenotic 

Morphology 

Improvement in diastolic function post PT CA is apparent even 

in this small group highlighted by the significant 

difference in the PFR/2 parameter (Lewis et al 1985, Bonow 

et al 1985), which exhibits the highest t ratio. R-R 

interval showed no significant differences in this group and 

therefore it is not necessary to consider this as a 

covariate. Size of improvement approximates to that 

reported by Lewis et al 1985. This increase in PFR/2 

highlights the effect of the significantly improved state of 

the coronary lesion (table 8.9) allowing restoration of 

myocardial perfusion pressure and removal of LV stiffness 

(section 6.2.2). PER/PFR ratio is also significantly 

affected, with PFR exceeding PER on average, implying better 

diastolic function post PTCA. Systolic function also 

becomes less laboured in that PER occurs significantly later 

post PTCA, indicant of normal function (Slutsky et al 1980). 
However, initiation of PER so early in systole pre PTCA 

seems spurious. 

Resting mean phase of the septal segment occurs 

significantly later post PTCA, probably as a result of drug 

regime changes. On exercise, there is a significant change 

in the phase histogram in that skewness is reduced and the 

distribution appears more normal (symmetrical). This 

indicates better segmental synchrony post PTCA (Gerber et al 

1983, Ratib et al 1982). However pre PTCA, exercise skew 

phase was the opposite of that expected. For this, there 

- 345 -



are two possible explanations. Firstly, tardokinesis is not 

evident, or secondly, most of the ventricle is tardokinetic. 

'The first proposal would seem most tenable considering that 

all of these patients had been selected to receive PTCA and 

therefore have good LV function. From these results then, 

it seems unlikely that patients with single vessel disease 

exhibit the phase changes on exercise documented by Walton 

et al 1981 and Ratib et al 1982. However, the group size is 

really too small to serve as conclusive proof. 

Overall however, the number of significant parameters and 

level of significance is low, for both the global and 

septal regions, reflecting the fact that subtle changes in 

myocardial function as a result of PT CA either cannot be 

detected by using our "in-house" software, the exercise 

level attained was not sufficient to evoke symptoms pre PTCA 

or myocardial dysfunction in this small group of patients 

with single vessel disease is not great. A repeat study, 

with more patients is required in order to investigate fully 

altered myocardial performance following PTCA. Backing this 

up with a computer capable of acquiring at a higher framing 
rate, plus utilization of a larger dose of 99~c would 

enhance success of the study. 

As with the data presented in chapter 7, large significant 

differences exist in parameters reflecting stenotic 

morphology as measured by QAMS post PTCA. Interestingly, 

percent diameter stenosis shows the largest difference, a 

reversal of the trend of chapter 7, probably being explained 

by differences in view as discussed earlier. Mean 
eccentricity is also highly affected, the tortuousity being 

significantly reduced as a result of PTCA. 

In conclusion, significant differences in stenotic 

morphology are reciprocated by significant improvement in a 

few parameters which reflect global diastolic function on 

exercise post PTCA. 
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CHAPTER NINE 

CONCLUSIONS AND PROPOSALS FOR FURTHER WORK 

9.1 Conclusions 

A system capable of quantifying stenotic morphology in both 

relative (percent diameter stenosis, eccentricity etc.) and 

absolute (minimal diameter, atheroma area etc.) terms has 

successfully been developed. The system is microcomputer 

based and reasonably easy to use (section 9.2) utilizing 

standard clinical coronary arteriographic film without the 

need for special images or processing. The QAMS software 

has been written in a portable high level language for 

longevity and easy access for future development. The 

system has employed standard cardiovascular unit equipment 
(eg cine projector) combined with commonly available 

peripherals (graphics, tablet, printer, etc). It is 

estimated that such a system could be assembled for less 

than £5,000 (£1,500 computer and printer,;£2,500 graphics 

tablet, provided the current software were available). 

Each facet of the image quantification procedure has been 

validated and demonstrated competence of its theory in the 

practical situation. Overall, results produced by the QAMS 

have proved repeatable, objective and valid. 

On application, changes in stenotic morphology following 

PTCA have demonstrated significant relationships with 

parameters characterizing patient exercise tolerance. 

Generally, associations involving absolute measurements 

(particularly minimal diameter) proved the stronger 

reinforcing current opinion in recent literature. New 

parameters based on arterial eccentricity have proved 

particularly interesting in examination of the long term 

PTCA effect. Relationships between stenotic morphology and 

ventricular (global and regional) function correlated less 

strongly than those above probably reflecting the present 

inability (section 9.2) of QAMS to quantify contribution 
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from the collateral circulation. However, significant 

relations were demonstrated between percent diameter 

stenosis and global diastolic function in a sample of 

patients with a mixed number of arteries affected by CAD. 

Compromised diastolic function was ameliorated following 

PTCA in a small number of patients with CAD of the LAD 

artery. 

In overall conclusion, whilst the system in its present form 

has several shortcomings (section 9.2) results produced have 

proved worthwhile and valuable in practical application. 
The QAMS system therefore warrants further development 

leading to regular application. 

9.2 Proposals for Further Work 

Should the opportunity ever arise for further development of 

the QAMS, attention to the following aspects would enhance 

its usability and quality of produced results. 

Short term developments (ie. those changes which would bring 

a quick return in QAMS performance): 

1. Transfer of complete system to a new host 

microcomputer. This development is, in part, complete 

as the quantification software is now resident on a IBM 

PC clone. This has successfully reduced run time once 

the coordinates have been collected from fifteen 

minutes to two and a half minutes on average. The next 

logical step is to transfer the graphics tablet 

interface to the IBM PC clone such that coordinates may 
be collected directly into the new microcomputers 

memory. 

2. Writing a PROGRAM ARTDR equivalent for the new host 

microcomputer. IBM PC clones have adequate graphics 

capabilities for on screen representation of coordinate 

files produced by QAMS. A hardcopy facility would also 

prove valuable for inclusion into the patients notes. 

This capability may also aid in examination of the 
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nature and the relative positions of artery 

eccentricity variables (section 7.5.2). 

3. Use of complementary view (orthogonal) data to 

reconstruct a three dimensional representation of the 

artery in space. 

90 degrees may be 

Diseased diameters from two views at 

matched according to the algorithm 

presented in appendix 1. Representation of the artery 

in this form would allow: 

a. An elliptical model for artery cross section to be 

used, giving an accurate estimate of true artery 

cross-sectional area. 

b. The effects of magnification due to axial 

displacement between stenosis and catheter 

positions to be removed. 

c. Computation of atheromal volume. 

d. More accurate representation of artery 

eccentricity. 

4. Increasing the size of the image being quantified. 

There are two ways of achieving this: 

a. Purchase a larger graphics tablet. 

b. Develop software to allow the digitization of an 

image to become a two stage process thus: Project 

image at normal size and digitize margins for 

calculation of pincushion distortion. Then, 

increase the size of the stenotic image (with 

catheter in view), digitize, and transform 

stenotic coordinates to original (unmagnified) 

position. 
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Such a facility would greatly improve repeatability and 

objectivity of results in the digitizing of coronary 

stenosis. 

5. Provision of a better user interface. Now that the 

QAMS have proved useful, more attention needs to be 

directed at making it as "user friendly" as possible, 

thus minimizing the possibility of making mistakes and 

: losing: data. The provision of a new host 

microcomputer with hard disk would easily afford this, 

allowing automatic implementation (ie. no floppy system 

disks) and the storing of results. 

6. complete software upgrade to Fortran 1977 standards. 

This would enhance run time and program readability, 

removing the necessity for cumbersome error trapping. 

7. Repetition of the validity experiments in catheter room 

A, with the small image intensifier selected (section 
3.6.1), using an accurate calibration grid rather than 

industrial mesh. This would allow accurate 

investigation of the "optical" characteristics of this 

equipment which, on the basis of previous validation 

results are not normal (section 5.1.2). 

8. Histological validation of the quantification of 

coronary stenoses using QAMS. Whilst this would be a 

costly and difficult experiment to perform (section 

3.6.3.) it is necessary that QAMS be validated against 

other objective measures of coronary anatomy prior to 

continued use. Perhaps this would be better aChieved 

by performing the X-ray filming elsewhere, having 

previously quantified magnification and pincushion 

distortion factors in a manner similar to that cited in 

section 3.6.1. This would overcome the ethical 

problems and allow the work to be completed at relative 

leisure. Histological quantification however still 

remains a problem. Perhaps the work could be done 
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collaboratively with a local firm familiar with 

histology, ego Fisons plc, Loughborough. 

9. Provision of new algorithms and software for the 

calculation of artery eccentricity, capable of 

quantification in arteries whose directional changes 

are acute and in more than one direction. 

Long terms developments (ie. those improvements which would 

be "nice" to have, but are not ultimately necessary). 

1. Co~ination of the individual quantification programs 

into a single functional unit. This would reduce 

runtime as it would not be necessary to re-read the 

original data for each programs execution. However, as 

IBM PC clones are much faster tha~ the Vector 3, the 

absolute time incurred in the above is very small and 

consequently the improvement gained by providing this 

facility would also be small. There are also practical 
difficulties. Most modern compilers have a 64K maximum 

limit for source code size. The present size of QAMS 

source code would dictate combination of perhaps three 

of the six programs into two combined units, this 

concurrent implementation would still be required. 

Perhaps while the original data is being used, it could 

be temporarily located on a RAM disk (effectively a 

portion of computer memory) to improve access speed to 

the full. 

2. Combine QAMS with videodensitometry such that the 

myocardial "blush", evident with significant collateral 

circulation may be quantified. This would allow more 

accurate representation of functional significance of a 

coronary stenosis for use in examination of ventricular 

function (chapter 8). 

As QAMS continues to develop, no doubt other enhancements 

will become evident. It is perhaps pertinent to state that 

the software provided may also be of use in the 
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quantification of any structure which resembles a tube, and 

therefore is perhaps better not considered as being specific 

to the quantification of CAD. 
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APPENDIX 1 

1. Making a Measurement 

Sections 3.4.2 and 3.5 have described in detail what the 

software does, how it does it and what files are produced as 

a consequence. This section deals with what the user has to 

do in order to produce a result. Detailed description of 

the Vector3 operating system is avoided. The user is 

referred to the manufacturers manuals or any CP/M handbook. 

1. Power up Vector3, graphics tablet and peripherals. The 

Vector3 requires approximately 10 minutes warm up in 

order to achieeve a successful "boot" from any system 

disk. The graphics tablet emits a four tone signal 

(three short - one long) following a self check if 

everything is alright. If this tone is not obtained, 

refer to manufacturers handbook. 

2. Select frame exhibiting the stenosis to be digitized 

according to the criteria laid down in section 3.1. 

Ensure also that the complete frame is within the 

active area of the graphics tablet. This may be 

checked by running the cursor around the margins of the 

frame. A continuous red light displayed on the cursor 

with absence of the continuous alarm signal indicates 

acceptability. 

3. Mark the edges of the cine frame using a fine nibbed 

water soluble pen (figure APP1). These marks when 

digitized will be used to calculate the image centre. 

Since the image is usually circular or a "squared off" 

circle it does not matter where the marks are placed as 

connecting diagonals will always cross at the centre. 

However, taking reference from the embedded graphics 

tablet wires is recommended for extra certainty, 

forming what would be a square should the marks be 

connected in series. 
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Figure APP1 . A stenotic segment prepared for quantification . 
Notice the 4 frame margin marks in the corners , the traced 
catheter width and artery contour . NB. The pen used here is 
rather thicker than the one normally employed in order for the 
marks to be visible in the photograph . Also , shading has been 
omitted in order to demonstrate the stenosis . 
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4. Mark a section of catheter with four points, two either 

side, evenly spaced and parallel (figure APP1). Four 

points are necessary in order to compute a reasonable 

diameter from the catheter (PROGRAM ANALYZ). Choose a 

portion of any catheter in the frame as long as its 

external diameter is known. Ensure that the section 

chosen is unforshortened and as close to the stenosis 

as possible, this minimizing the effects of axial 

displacement. 

5. Trace the stenosis with the water soluble pen (figure 

APP1). It beneficial (in terms of repeatability and 

ease of use) to have a definite edge to trace to when 

digitizing a stenosis. It is therefore advised that 

stenosis "preparation" for the final tracing be 

considered as two separate actions. 

a. Cortical integration of differing grey levels 

across the stenotic edge producing a minds eye map 

of where the tracing with lie. 

b. Application of the tracing to the graphics tablet 

surface. Due to the finite width of the pen nib, 

it is impossible to trace exactly the desired 

path. For this reason, the practice of shading 

the lines on the inside edge, towards the centre 

of the stenosis, should be adopted, such that the 

outside edge of the tracing demonstrates the path 

to be digitized. 

6. Insert a QAMS system disk into drive A and boot up. 

Displaying the directory reveals all the programs and 

files necessary for a full stenosis evaluation (system 

disk creation is covered elsewhere in appendix 1). It 

is~important to remember that all files produced by the 

programs are stored on this disk. Therefore it will 

become necessary to copy these to another disk should 

the user wish to store any of the digitized 

information. 
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7. Run BITPAD.SUB. The collection program BITPADB is 

first loaded up and presents the user with a coordinate 

accumulation screen displaying some simple operating 

instructions as well as the number of point mode 

coordinates and stream mode coordinates collected and 

remaining. All should be zeroed. 

8. Begin digitization - POINT MODE. The following data is 

to be collected in point mode: 

a. the cine frame margins - 4 points 

b. the diameter of the catheter - 4 points. 

Point mode is activated by pressing button 1 of the 

cursor when in the active area, ensuring that the green 

light is off. If this light is on when powered up, it 

may be deactivated by pressing button 5. The 

accumulation screen should then inform the user that 

point mode is active by displaying the words POINT MODE 

in inverse video. Before digitization can proceed 

therefore, point mode must be active. Failure to 

ensure activity prior to starting will upset the 

structure of the resultant data file and invalidate the 

results. 

The user may now digitize the marked points by 

administering a single press to button 1 for every 

coordinate in the following order: 

a. Cine frame - Top left hand corner, bottom left 

hand corner, bottom right hand corner, top right 

hand corner. 

b. Catheter diameter - Starting side is irrelevant. 

Side 1 top point, bottom point. Side 2 top point, 

bottom point. 
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Point mode collection is now complete. The user should 

ensure that eight points have been collected by 

reference to the accumulation screen. 

9. Continue digitization - STREAM MODE. Activate stream 

mode by pressing button 5. This is confirmed by 

illumination of the green light on the cursor. 

However, POINT MODE remains in inverse video and STREAM 

MODE is normal video or. the accumulation screen. This 

is because a full switch to stream mode cannot take 

place until the first coordinate of stream mode has 

been entered. Unlike with point mode, it is 

exceptionally difficult to enter just one coordinate of 

stream mode to complete the switch when the entry rate 

is 25 coordinates per second. Therefore the user is 

advised not to try. Place the cursor at the top of 

either traced side of the stenosis. Press button 2 of 

the cursor and keep depressed as the artery side is 

traced as carefully as possible. Release button 2 when 
the end of the side is reached. Stream mode will have 

become active and highlighted accordingly when the 

program receives the first stream mode coordinate. 

Immediate continued collection of successive 

coordinates in this way ensures minimal error, although 

the routine is prone to some data corruption on 

switching (see PROGRAM PNTED). The accumulation screen 

reveals the collection of X number of coordinate pairs. 

The user must now instruct the program that he/she is 

ready to digitize the second side of the stenosis. 

This is achieved by pressing button 3. The routine 
responds by asking the question at the bottom of the 

screen: collect second array (Y/N)? If the pressing 

of push button 3 was intentional, the user replies Y at 

the keyboard and proceeds to trace side 2 from the top 

downwards in exactly the same manner as side 1. On 

finishing, the accumulation screen reveals the total 

number of coordinates collected, both in point and 

stream mode. 
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Forty seconds are allowed (2000 coordinate pairs) for 

total stream mode digitization time. With practice 

this may be reduced to around 20 seconds with little 

loss of data integrity. 

10. End digitization. This is achieved by pressing button 

4. The accumulation screen disappears and is replaced 

by the message: DATA TRANSFERRING TO DISK. The 

program BITPADB finishes when all data has been 

transferred to the file DATA.DAT. 

11. Data conversion. The program BITPADD is automatically 

loaded from the submit file and asks the user to supply 

a specific filename. If the system is to be used in 

concurrent collection-evaluation mode with no desire to 

store the raw data then the response should be 

BITPDCOO.RDS as character handling is very poor in this 

version of Fortran (as explained in section 3.3.3). If 

the system is to be used in multi-collection mode for 
later evaluation then the filename supplied maybe 

anything of the users choice (maximum eleven 

characters) . 

The program then proceeds to convert the hexadecimal 

data in the file DATA.DAT to ASCII storing it on disk 

under. the user supplied filename. The program 

terminates by informing the user of the number of 

points collected in each section of the datafile and 

erasing the hexadecimal file automatically. 

12. Run STEN.SUB. This concatenates the programs PNTED, 

DIAMAV, DIAMRS, ANALYZ and ECCFTR requiring only that 

the data filename and catheter room be supplied as user 

input for PNTED and the external diameter of the 

catheter digitized for ANALYZ. Hence the system runs 

almost without user interaction once the stenosis has 

been digitized producing. two sheets of quantified 

information at the printer (programs ANALYZ and 

ECCFTR). If multi-collection mode has been opted for 
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on digitization then the submit file STEN.SUB must be 

supplemented to either rename (data lost) or copy to 

another disk (data preserved), then rename the datafile 

from the user supplied name to BITPDCOO.RDS before 

running the quantification programs. An example of 

such a submit file can be found elsewhere in appendix 

1. 

Should graphical representation of the artery diameters etc. 

be desired, then the necessary datafiles must be transferred 

to the Prime System using MOVE - IT and GETFILE 

communication software packages (example elsewhere in 

appendix l). 
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2. Typical datafile structure 

1 

9 

252 

243 

178 

8 

429 

o 
1 

1 

1 

1 

Start Point Mode 

Start Stream Mode - Side 1 

Start Stream Mode - Side 2 

No. Coordinates Side 1 

No. Coordinates Side 2 

No. Coordinates Point Mode 

Total No. Coordinates 

System Flags (ignore) 

TfS3- ---X-Coordinate --PAIRl 

10050 ---- Y Coordinate 

1063 

1788 

10561 

1351 

10590 

10293 

2947 

10297 

2913 

10141 

3172 

10281 

3154 

10136 

4139 

9330 

4151 

9223 

_ 1:h(\ _ 

PAIR 4 

PAIR 5 

PAIR 8 

PAIR 9 

FRAME 

MARGINS 

CATHETER 

DIMENSION 

P 

o 
I 

N 

T 

M 

0 

D 

E 

S 

T 

R 

E 

A 

M 

MODE 



3. Creating a Q.A.M.S. system disk under CP/M. 

a. Creating the system disk. 

BOOT UP 

Ensure the system disk (in Drive A) has the programs 

FORMAT.COM and SYS.COM present. 

Place blank disk in Drive B. 

From the A prompt, type: 

A> FORMAT B: (Return) 

Disk is formatted. Then type: 

A> SYS B: (Return) 

System tracks will now be transferred to disk B making 

it a "bootable" system disk. 

b. Transferring the QAMS system. 

Insert the QAMS system disk in Drive A, new disk in 

Drive B. Copy over the following files using the 

syntax below. 

Syntax: PIP B:=A: File.Extension 

eg.l PIP B:=A: PNTED.COM 

ego 2 

transfers program PNTED from A to B. 

PIP B:=A *.COM 

transfer all files with extension COM from A 

to B. 
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QAMS System files: SUBMIT.COM, PNTED.COM, DIAMAV.COM, 

DIAMRS.COM, ANALYZ.COM, ECCFTR.COM, SIDElPOI.NTS, 

SIDE2POI.NTS, AXPTS, POINTMAG.NIF, BITPDCOO.RDS, 

ARCRADII.EPS DIAMETER.EPS, AVERAGED. lAM. PIP.COM is a 

useful addition, though not part of the system. 
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4. Creating a submit file. 

A submit file allows programs to run concurrently. 

Place the QAMS system disk in Drive A. 

Type from the A prompt: 

A> PIP original submit file name.SUB = CON: 

Program names to run concurrently (as they would be 

typed normally). 

CONTROL Z (keyed in by holding control key down and 

typing Z). 

eg PIP BITPAD.SUB = CON: 

BITPADB 

BITPADD 

Z 
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read Imag. data from pair of \/Iewt to b. matched 
'f 

read retpeCtIve calheter wldlha 
'f 

• vIewt 118 at right angl.a, fll •• may b. matched on lie 
x lIda at a polld dlglllaed • common to both 

'f 
find nearett .xltllng diameter In ellher view 

to dlgltla.d point 
'f 

.algn file with n.areat diameter to b. 
vIeW1. oiler .algned • \IIew2 

'f 
r-------_ could = nearett dlamel8r number 

'f 

NO 

begin to work through data. N.B. alllncremenlt 118 + 
for do-.. d a.archlng and - for upward .. arching 

ttart with downward 
'f 

r------. count = count +/-1 .... 1--___ -, 

la llere a dll81amml8ldterlll;: In \IIew2 Inbetwe.n NO I 
dlameten could and count +/-11 

'f YES 
calcul_ .. aI dlaplacemeld between d'"*'d oth.r 
dlameter(count) In YIew1 and flnt ~ dlameten from 

diameter In \/Iew2 \IIew2 • only one 
'f YES pair of dlameten 

eny more dlametert In \/Iew2? can exlat at one 
'f NO location 

:ear:: ~r:::m':r~n c: !:;:':'p:':n:' ... _...J 

... aame x ... location. dlameter(courd) In \/Iew1 

'f 
calculate Y coordlnatea for \/Iew2 diameter 
from Interpolated length Information 

'f 
diameter pain match.d 

'f 
calculate era .. aecttonal ar.a from .llpllcal formulae 

'f 

NO 

correct for magnHICallon 
'f 

hat end of data been reached? 
'f YES 

hMM dlarneten from abow lnIIaI match.d polld been proc .... d? 
'f YES 

prtnt retultt to acre.n and prtnter 
'f 

STOP 

5. view matching algorithm 
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C 

C 

C 
C 

C 
C 

6. Q.A.M.S. SOFTWARE LISTINGS 

PROGRAh2NTED 

INTEGER FILDES(12),START1,START2,N1,N2,N3,NT,N,STARTP,ENDP,END1 
INTEGER END2,CHECK1,CHECK2,CHECK3,J,P,S,DUMX,DUMY,CATHRM,MAGVAL 
INTEGER XSIDE(2000),YSIDE(2000),N10R2,F,R,PPSIDE,F1,F2,K,F3 
INTEGEP ·I2,YI2,XI3,YI3,XI1,YI1,XI4,YI4,Zl,Z2,Z3,Z4,Z5,N4,F4,Q 

DOUBLE rKECISION TOL,X1,Y1,X2,Y2,X3,Y3,X4,Y4,DIST1,DIST2,DIST 
DOUBLE PRECISION X(100),Y(100),XA,YA,XB,YB,XC,YC 

COMMON/SET1/XSIDE,YSIDE/SET2/S,N10R2/SET3/TOL/SET4/X1,Y1 
COMMON/SET5/X2,Y2/SET6/XC,YC,CATHRM,MAGVAL/SET7/XI2,YI2,F,J 

C PUT HAND-TRACING TOLERANCE IN DIGITISER UNITS INTO TOL 
C 

C 
C 

TOL =22.04 

C PROGRAM PNTED IS A GENERAL POINT EDITING PROGRAM WHICH HAS BEEN 
C EMPLOYED HERE SPECIFICALLY TO AID IN THE CALCULATION OF 
C SERIAL DIAtIETERS ALONG THE LENGTH OF AN ARTERY INTERIOR 
C WALL TRACED FROM X-RAY ON A TRANSPARENT DIGITISING TABLET. THE 
C TABLET DELIVERS EITHER POINT MODE OR STREAM MODE CO-ORDINATES 
C (WHICH ARE INTEGERS UP TO 5 DIGITS) ACCORDING TO WHICH OF THE 
C CURSOR BUTTONS IS PRESSED. POINT MODE DELIVERS ONE CO-ORDINATE 
C PAIR PER PRESS OF ITS BUTTON WHILE STREAM MODE WILL DELIVER A 
C CONSTANT STREAM OF UP TO 200 CO-ORDINATE PAIRS PER SECOND (DEPENDING 
C UPON BAUD RATE) WHILE ITS BUTTON REMAINS PRESSED. 
C 
C THE PROGRAMS WHICH INTERFACE THE DIGITISING TABLET WITH THE COMPUTER 
C ARE DESIGNED TO WRITE CO-ORDINATES FOR BOTH SIDES DIRECTLY INTO 
C MEMORY SO THAT THE COMPUTER CAN RECEIVE STREAM MODE CO-ORDINATES 
C AS FAST AS POSSIBLE. THEN ANOTHER OF THESE PROGRAMS CONVERTS 
C THE STORED INFORMATION TO ASCII AND WRITES IT TO DISK UNDER THE 
C NAtIE BITPDCOORDS (ABBREVIATION FOR BITPAD-COORDINATES). THIS 
C FILE HAS THE FOLLOWING STRUCTURE: 
C 
C FILE DESCRIPTORS, 12 SINGLE VALUES, 1 PER LINE 
C POINT-MODE CO-ORDINATES 
C SIDE1 STREAM-MODE CO-ORDINATES 
C SIDE2 STREAM-MODE CO-ORDINATES 
C ALL CO-ORDINATE DATA IS SINGLE ALTERNATE X,Y VALUES, 1 PER LINE. 
C 
C FILE DESCRIPTORS ARE NUMBERS OF COORDINATE PAIRS CONTAINED IN EACH 
C SECTION. IN DETAIL THEY ARE: 
C 
C START OF POINT MODE 
C START OF SIDE1 
C START OF SIDE2 
C NUMBER OF SIDE1 CO-ORDINATE PAIRS 
C NUMBER OF SIDE2 CO-ORDINATE PAIRS 
C NUMBER OF POINT-MODE CO-ORDINATE PAIRS 
C TOTAL NUMBER OF CO-ORDINATE PAIRS 
C DESCRIPTORS 8 TO 12 ARE DUMMIES. 
C 
C INFORMATION IS STORED THIS WAY TO OPTIMISE USE OF MEMORY AND 
C SPEED OF OPERATION. 
C 
C ------------------------------------------------------------------
C 
C THIS PROGRAM EDITS THE ~03~~~NATE FILE WHICH RESULTS FROM THE 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

1 
C 

2 
C 

25 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 
C 

26 

TRACING TO ENSURE THAT EVERY CONSECUTIVE SET OF 3 POINTS 
IS DISTINCT AND THAT THE EFFECTS OF HAND TREHOR ARE FILTERED 
OUT. HAND TREHOR ARISES BECAUSE THE HUHAN OPERATOR IS UNABLE TO 
FOLLOW A LINE WITH THE CURSOR TO THE RESOLUTION ACCURACY OF 
THE DIGITISING TABLET. THE EFFECTS ARE REHOVED BY DEFINING A TOLERANCE 
(DETERHlNED FROH TRIALS) FOR HAND TRACING ACCURACY 
AND USING THIS TO DEFINE A CIRCLE AROUND THE LAST POINT 
ACCEPTABLE FOR INCLUSION. THE NEXT POINT BECOHES ACCEPTABLE IF IT 
LIES OUTSIDE THE CIRCLE, OR, IF ITS POSITION DOES NOT IMPLY A 
DIRECTION REVERSAL. IF ONE OF THE FOLLOWING POINTS LIES INSIDE THE 
CIRCLE BUT HAS A POSITION WHICH IHPLIES THAT THE REVERSAL HAS OCCURED, 
THEN THIS IS CONSIDERED TO REPRESENT HAND TRE~!OR OR A GLITCH. POINTS 
IN THE TREHOR ARE ALL THOSE COHPOSING THIS REVERSAL AND ARE FILTERED 
OUT BY RESETTING A COUNTER WHICH OHITS THEH AS ACCEPTABLE CO-ORDINATES 
AS THEY ARE WRITTEN TO FILE. 

DETERHlNE WHICH ROOH WAS USED FOR THE ARTERIOGRAPHY. 

WRITE(1,1) 
FORHAT(' WHICH CATHETER ROOM 1=ROOH A:2=ROOH B:') 

READ(1,2) CATHRH 
FORHAT(I2) 

WRITE (1,25) 
FORHAT('WHAT LEVEL OF HAGNIFICATION 1=SHALL:2=BIG:') 

READ(1,26) HAGVAL 
FORHAT(I2) 

READ FILE DESCRIPTORS (GIVEN IN FIRST 12 LINES OF FILE BITPDCOORDS) 
INTO FILDES(). NOTE 0 = DRIVE NUHBER. FIRST ITEH OF ANY SECTION 
HAS A SEPARATE READ STATEHENT TO FACILITATE CODING OF ERROR HESSAGES. 
FILE DESCRIPTORS ARE INITIALLY READ INTO A VECTOR FOR THE SAME 
REASON. 

OPEN FILES. 

CALL OPEN(6, 'BITPDCOORDS' ,0) 
CALL OPEN(7, 'SIDE1POINTS',0) 
CALL OPEN(8, 'SIDE2POINTS',0) 
CALL OPEN(9, 'POINTHAGNIF' ,0) 

READ(6,20,ERR=30,END=50) FILDES(1) 
READ(6,20,ERR=70,END=90)(FILDES(J),J=2,12) 

C PUT START OF SIDE1 INTO START1 
C START OF SIDE2 INTO START2 
C Nm!BER OF SIDE1 CO-ORDINATE PAIRS INTO N1 
C NU~!BER OF SIDE2 CO-ORDINATE PAIRS INTO N2 
C NUHBER OF POINT HODE CO-ORDINATE PAIRS INTO NP 
C TOTAL NUHBER OF CO-ORDINATE PAIRS INTO NT 
C TOTAL NUHBER OF CO-ORDINATE PAIRS IN SIDES ONLY· INTO N 
C DUHHIES INTO Z1 TO Z5 
C 

STARTP=FILDES(1) 
START1 = FILDES(2) 
START2 = FILDES(3) 
NI = FILDES(4) 
N2 = FILDES (5) 
NP = FILDES(6) 
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C 
C 

NT = FILDES(7) 
21 = FILDES(8) 
22 = FILDES(9) 
23 = FILDES (10) 
24 = FILDES (11) 
25 = FILDES (12) 
N = N1 + N2 

C PUT START OF POINT MODE INTO STARTP 
C END OF POINT MODE INTO ENDP 
C END OF SIDE1 INTO END1 
C END OF SIDE2 INTO END2 
C NUMBER OF POINT MODE CO-ORDINATES INTO NP 
C 

C 
C 

ENDP = START1 - 1 
END1 = START2 - 1 
IF(STARTP.EQ.O) END2=NT 
IF(STARTP.NE.O) END2=STARTP+NT-1 

C CHECK THAT STARTl, START2, N1, N2, NP, NT CORRECTLY RELATE AND THAT 
C N1 AND N2 ARE GREATER THAN THE MINIMUM REQUIRED. 
C 

C 

C 
C 

IF(STARTP.EQ.O) CHECK1=1 
IF(STARTP.NE.O) CHECK1=STARTP+NP 
CHECK2=N1+START1 
IF(STARTP.EQ.O) CHECK3=NT 
IF(STARTP.NE.O) CHECK3=STARTP+NT-1 

IF(START1.NE.CHECK1) 
IF(START2.NE.CHECK2) 
IF(END2.NE.CHECK3) 
IF(N1.LT.3) 
IF(N2.LT.3) 

GOTO 110 
GOTO 130 
GOTO 150 
GOTO 170 
GOTO 190 

C READ POINT MODE CO-ORDINATES INTO X(P),Y(P). 4 POINTS MUST BE PRESENT 
C WHICH INDICATE THE POSITIONS OF THE MRGINS OF THE CINE FRAME. IF NO 
C OTHER POINTS HAVE BEEN COLLECTED, WRITE -1,-1 TO THE FILE POINTMAGNIF 
C FLAGGING THE ABSENCE OF MAGNIFICATION INFORMTION. 
C 

c 

DO 3 J=l,NP 
READ(6,20,ERR=250,END=270) XSIDE(J) 
READ(6,20,ERR=250,END=270) YSIDE(J) 

3 CONTINUE 

C COMPUTE IMAGE CENTRE. 
C 

C 

C 

C 

XA = (XSIDE(1)+XSIDE(3))/2.0 
YA = (YSIDE(1)+YSIDE(3))/2.0 

XB = (XSIDE(2)+XSIDE(4))/2.0 
YB = (YSIDE(2)+YSIDE(4))/2.0 

XC = (XA+XB)/2.0 
YC = (YA+YB)/2.0 

C ASSIGN DUMMY VARIABLES TO -1. 
C 

C 

DUMX = -1 
DUMY = -1 
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C IF NO FURTHER POINT MODE DATA EXISTS, WRITE DUMX,DUMY TO FILE. 
C 

C 

IF(NP.EQ.4) REWIND 9 
IF(NP.EQ.4) WRITE(9,9) DUMX,DUMY 
IF(NP.EQ.4) GOTO 5 

C IF FURTHER POINT ~!oDE DATA DOES EXIST, CORRECT IT FOR PINCUSHION 
C ~~GNIFICATION. WRITE THE DATA TO POINTMAGNIF. 
C 

C 

S = 5 
NlOR2 = NP 
CALL PCUSH 

DO 4 J=l,NP 
WRlTE(9,9) XSIDE(J),YSIDE(J) 

4 CONTINUE 
C 
C READ STREAM MODE CO-ORDINATES INTO ARRAY XSIDE( ),YSIDE( ) 
C 
C SIDE1: 
C 

5 J = 1 

C 

READ(6,20,ERR=290,END=310) XSIDE(J) 
READ(6,20,ERR=290,END=310) YSIDE(J) 
DO 6 J=2,N1 

READ(6,20,ERR=330,END=350) XSIDE(J) 
READ(6,20,ERR=330,END=350) YSIDE(J) 

6 CONTINUE 

C CORRECT ALL SIDE1 DATA FOR PINCUSHION MAGNIFICATION. OMIT THE FIRST 
C COORDINATE OF STREAM MODE DUE TO ITS POSSIBLE SPURIOUS NATURE AS A 
C RESULTS OF THE SWITCHING BETWEEN POINT AND STREAM MODE. 
C 

C 

S = 2 
N10R2 = NI 
CALL PCUSH 

C WRITE SIDE1 CO-ORDINATE PAIRS TO FILE SIDE1POINTS, BYPASSING ANY 
C CO-ORDINATE PAIR DUPLICATED IN THE FOLLOWING TWO CO-ORDINATE 
C PAIRS TO ENSURE THAT EVERY CONSECUTIVE SET OF 3 POINTS IS 
C DISTINCT. OMIT ALSO COORDINATES WHICH ARE NEGATIVE OR MORE THAN 
C 11000 IN VALUE. THESE MAY BE PRESENT AS AN ARTIFACT OF THE 
C COORDINATE COLLECTION PROGRAM. 
C 

N3 = N1-1 
DO 14 J=2,N1 

IF( (J. LE. NI-I) . AND. (lABS (XSIDE (J)) . GT. 11000) . OR. (lABS (':"0 :DS' J)) 
&.GT.11000)) GOTO 8 

IF((J.LE.NI-1).AND.(XSIDE(J).EQ.XSIDE(J+1)).AND. 
&(YSIDE(J).EQ.(YSIDE(J+I)))) GOTO 8 

IF((J.LE.Nl-2).AND.(XSIDE(J).EQ.XSIDE(J+2)).AND. 
&(YSIDE(J).EQ.(YSIDE(J+2)))) GOTO 8 

IF(J.LE.N1-1) WRlTE(7,9,ERR=430) XSIDE(J),YSIDE(J) 
IF(J.EQ.N1) WRITE(7,9,ERR=430) XSIDE(J),YSIDE(J) 

9 FORMAT (2I7) 
GOTO 14 

8 N3 = N3-1 
14 CONTINUE 

C PRIOR TO WRITING NEW TOTAL FOR NI TO N3, PASS VALUE TO N4 FOR SIDE2 
C 

C 

N4 = NI 
NI = N3 
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C SIDE2: 
C 
C ALLOW N4 TO REPRESENT THE START OF SIDE2 

N4 = N4+l 

C 
J = N4 

READ (6,20,ERR=370,END=390) XSIDE(J) 
READ (6,20,ERR=370,END=390) YSIDE(J) 
N4 = N4+l 
DO 10 J = N4,N 

READ (6,20,ERR=410,END=ls) XSIDE(J) 
READ (6,20,ERR=410,END=ls) YSIDE(J) 

10 CONTINUE 
15 N4=N4-1 

C 
C CORRECT ALL SIDE2 DATA FOR PINCUSHION MAGNIFICATION. OMIT THE FIRST 
C COORDINATE OF STREAM MODE DUE TO POSSIBLE SPURIOUS NATURE AS A 
C RESULT OF THE SWITCHING BETWEEN SIDE1 AND SIDE2. 
C 

C 

S = N4+2 
NlOR2 = N 
CALL PCUSH 

C WRITE SIDE2 CO-ORDINATE PAIRS TO FILE SIDE2POINTS, BYPASSING ANY 
C CO-ORDINATE PAIR DUPLICATED IN THE FOLLOWING TWO CO-ORDINATE 
C PAIRS TO ENSURE THAT EVERY CONSECUTIVE SET of 3 POINTS IS 
C DISTINCT. OMIT ALSO COORDINATES WHICH ARE NEGATIVE OR MORE THAN 
C 11000 IN VALUE. THESE MAY BE PRESENT AS AN ARTIFACT OF THE 
C COORDINATE COLLECTION PROGRAM. 
C 

N3 = N2-1 
N4 = N4+2 
DO 700 J=N4,N 

IF((J.LE.N).AND.(IABS(XSIDE(J)).GT.11000).OR.(IABS(YSIDE(J)) 
&.GT.11000)) GOTO 11 

IF((J.LE.N-1).AND.(XSIDE(J).EQ.XSIDE(J+1)).AND. 
&(YSIDE(J).EQ.(YSIDE(J+1)))) GOTO 11 

IF((J.LE.N-2).AND.(XSIDE(J).EQ.XSIDE(J+2)).AND. 
&(YSIDE(J).EQ.(YSIDE(J+2)))) GOTO 11 

IF(J.LE.N-1) WRITE(B,600,ERR=450) XSIDE(J),YSIDE(J) 
IF(J.EQ.N) WRITE(B,600,ERR=450) XSIDE(J),YSIDE(J) 

600 FORMAT(217) 

c 

C 
C 
C 

GOTO 700 
11 N3 = N3-1 
700 CONTINUE 

N2 = N3 

GOTO BOO 

C FILE READ FORMAT STATEMENTS 
C 

20 FORMAT(I7) 
C 
C ERROR MESSAGES 
C 

C 

30 WRlTE(1,40) 
40 FORMAT('FlLE BITPDCOORDS READ ERROR, ITEM 1') 

GOTO 9999 

.50 WRITE(1,60) 
60 FORMAT('FILE BITPDCOORDS ERROR, END AT ITEM 1') 
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C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

GOTO 9999 

70 WRITE(l,80) FILDES(J-1),J 
80 FORMAT('FlLE BITPDCOORDS READ ERROR, FILE DESCRIPTOR SECTION, ITEM 

& BELOW' ,IS,' POSITION' ,IS) 

90 
100 

GOTO 9999 

WRITE 0,100) 
FORMAT('FlLE BITPDCOORDS 

&STREAM MODE CO-ORDINATES 
GOTO 9999 

ERROR, END IN FILE DESCRIPTOR SECTION, NO 
READ' ) 

110 WRlTE(l,120) START1,CHECK1 
120 FORMAT('FlLE BITPDCOORDS DESCRIPTOR RELATIONSHIP ERROR, START1.NE. 

&CHECK1, START1 = ',IS, 'CHECK1 = ',IS, 'SEE PROGRAM AND FILE') 
GOTO 9999 

130 WRlTE(l,140) START2,CHECK2 
140 FORt~T('FlLE BITPDCOORDS DESCRIPTOR RELATIONSHIP ERROR, START2.NE. 

&CHECK2, START2 = ',IS,' CHECK2 = ',IS,' SEE PROGRAM AND FILE') 
GOTO 9999 

150 WRlTE(l,160) END2,CHECK3 
160 FORMAT('FlLE BITPDCOORDS DESCRIPTOR RELATIONSHIP ERROR, END2.NE.CH 

&ECK3, END2 = ',IS,' CHECK3 = ',IS,' SEE PROGRAM AND FILE') 
GOTO 9999 

170 WRlTE(l,180) 
180 FORMAT('FILE BITPDCOORDS ERROR, FEWER THAN 3 CO-ORDINATE PAIRS IN 

&STREAM MODE SECTION FOR SIDE1') 
GOTO 9999 

190 WRlTE(l,200) 
200 FORMAT('FILE BITPDCOORDS ERROR, FEWER THAN 3 CO-ORDINATE PAIRS IN 

&STREAM MODE SECTION FOR SIDE2') 
GOTO 9999 

250 P=STARTP + J - 1 
WRITE(l,260) XSIDE(J-1),YSIDE(J-1),P 

260 FORMAT('FlLE BIPDCOORDS READ ERROR, POINT MODE SECTION, ITEM BELOW 
& ',IS,' ',IS,' POSITION' ,IS) 

GOTO 9999 

270 P = STARTP + J - 1 
WRITE(l,280) XSIDE(J-1),YSIDE(J-1),P 

280 FORMAT('FlLE BITPDCOORDS ERROR IN POINT MODE SECTION, END BELOW IT 
&E~ ',IS,' ',IS,' POSITION ',IS) 

GOTO 9999 

290 WRlTE(l,300) START1 
300 FORMAT('FILE BITPDCOORDS READ ERROR, STREAM MODE SECTION, AT FIRST 

&ITEM POSITION' ,IS) 
GOTO 9999 

310 P = START1 + J - 1 
WRlTE(l,320) START1 

320 FORHAT('FILE BITPDCOORDS ERROR, END IN STREAM HODE SECTION AT FIRS 
&T lTEH POSITION' ,IS) 

GOTO 9999 
C 

330 P = START1 + J - 1 
WRITE 0, 340) XSIDE (J -1). YSIDE (J -1) ,P 

340 FORtIAT(,FILE BITPDCOORDS READ ERROR, STREAH HODE SECTION, ITEM BEL 
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C 

C 

C 

C 

C 

C 

C 
C 
C 

C 
C 

&OW ',IS,' ',IS,' POSITION ',IS) 
GOTO 9999 

350 P=STARTl+J-l 
WRITE(I,360) XSIDE(J-l),YSIDE(J-l),P 

360 FOR~IAT('FILE BITPDCOORDS ERROR END SIDE 1, STREAM MODE SECTION 
&AT ITEM BELOW' ,IS,' ',IS,' POSITION' ,IS) 

370 WRITE(I,380) XSIDE(Nl),YSIDE(Nl),START2 
380 FORMAT('FILE BITPDCOORDS READ ERROR, STREAM MODE SECTION AT 

&FIRST ITEM FOR SIDE 2, ITEM BELOW' ,IS,' ',IS,' POSITION' ,IS) 

390 WRITE(I,400) START2 
400 FORMAT('FILE BITPDCOORDS ERROR, END IN STREAM MODE SECTION AT 

&FIRST ITEM FOR SIDE 2, POSITION' ,IS) 

410 P=START2+J-l 
WRITE(I,420) XSIDE(J-l),YSIDE(J-l),P 

420 FORMAT('FILE BITPDCOORDS READ ERROR,SIDE 2, STREAM MODE 
&SECTION AT ITEM BELOW' ,IS,' ',IS,' POSITION' ,IS) 

430 WRITE(I,440) J 
440 FORMAT('WRITE ERROR-SIDEIPOINTS;COINCIDENT POINT TEST: ITEM' ,15) 

GOTO 9999 

450 WRITE(I,460) J 
460 FORMAT('WRITE ERROR-SIDE2POINTS;COINCIDENT POINT TEST: ITEM' ,IS) 

GOTO 9999 

800 ENDFILE 6 
ENDFILE 7 
ENDFILE 8 
ENDFILE 9 

C REMOVE GLITCHES DUE TO HAND TREMOR. THESE ARE DEFINED TO BE DOUBLE 
C REVERSALS OF TRACING DIRECTION WITHIN A CIRCLE OF RADIUS EQUAL TO 
C HAND-TRACING TOLERANCE. THE CIRCLE IS CENTRED ON THE MIDDLE OF 
C EACH CONSECUTIVE SET OF THREE DISTINCT POINTS. THE PRECEEDING POINT 
C AND CENTRE POINT DEFINE CURRENT DIRECTION WHILE THE LAST POINT OF 
C THE SET IS USED TO INDICATE ANY CHANGE IN CURRENT DIRECTION. THE 
DIAMETER 
C OF THE CIRCLE PERPENDICULAR TO CURRENT DIRECTION GIVES THE BOUNDARY 
C ACROSS WHICH TESTS FOR REVERSAL ARE MADE. A FIRST REVERSAL OCCURS 
C IF THE LAST POINT OF THE SET OF 3 LIES WITHIN THE CIRCLE AND ON 
C THE SAME SIDE OF THE BOUNDARY AS THE FIRST POINT OF THE SET OF 3. 
C A SECOND REVERSAL OCCURS IF THERE HAS BEEN A FIRST REVERSAL, AND ANY 
C POINT FOLLOWING THE LAST OF THE SET OF 3 LIES WITHIN THE CIRCLE 
C WHILE BEING ON THE OPPOSITE SIDE OF THE BOUNDARY TO THE FIRST POINT 
C OF THE SET OF 3. WHENEVER A DOUBLE REVERSAL OCCURS, ALL POINT LYING 
C WITHIN THE CIRCLE ARE CONSIDERED TO BE SPURIOUS AND ARE OMITTED FROM 
C THE TOTAL SET. 
C 
C 

F = -1 
825 F = F+l 

C 

C 

IF(F.EQ.O) NI0R2 = NI 
IF(F.EQ.l) NI0R2 = N2 

C SIDEl: 
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C READ POINTS FROM FILE SIDE1POINTS INTO XSIDE( ),YSIDE( ) 
C 

IF(F.EQ.O) CALL OPEN(7, 'SIDE1POINTS' ,0) 
C 
C SIDE2: 
C READ POINTS FROM FILE SIDE2POINTS INTO XSIDE( ),YSIDE( ) 
C 

C 
IF(F.EQ.1) CALL OPEN(8, 'SIDE2POINTS' ,0) 

DO 900 J = 1,N10R2 
IF(F.EQ.O) READ(7,B50,END=900) XSIDE(J),YSIDE(J) 
IF(F.EQ.1) READ(8,B50,END=900) XSIDE(J),YSIDE(J) 

850 FORMAT(2I7) 
900 CONTINUE 

C 
C REWIND FILES. 
C 

C 

IF(F.EQ.O) REWIND 7 
IF(F.EQ.1) REWIND 8 

C WRITE FIRST COORDINATE TO FILE. 
C 

C 

J = 1 
IF(F.EQ.O) WRITE(7,1000,ERR=5000) XSIDE(J),YSIDE(J) 
IF(F.EQ.1) WRITE(B,1000,ERR=5200) XSIDE(J),YSIDE(J) 

C SINCE HAND TREMOR IS MOST PREVALANT AT THE ONSET OF TRACING, NO 
C SUCCESSIVE CO-ORDINATES ARE WRITTEN TO FILE UNTIL INITIAL TOLERANCE 
C BOUNDRY IS EXCEEDED. THIS ENSURES ALSO THAT CORRECT DIRECTION 
C OF VECTOR IS ESTABLISHED. INTEGER VALUES ARE CONVERTED TO DOUBLE 
C PRECISION TO ALLOW ACCURATE COMPUTATION OF DISTANCE. 
C 
C FINDING FIRST CO-ORDINATE PAIR OUTSIDE TOLERANCE LIMIT. 
C 

C 

X(J) = (XSIDE(J)) 
Y(J) = (YSIDE(J)) 

950 J = J+1 

C 

C 

X(J) = (XSIDE(J)) 
Y(J) = (YSIDE(J)) 

DIST=DSQRT( (X (J)*X(J)+X (1 ),·,X (1 )+Y (J)*Y (J)+Y (1 )"Y (1)) 
&-2*(X(J)*X(1)+Y(J)*Y(1))) 

IF(DIST.LE.TOL) GOTO 950 

C FILE FORMT STATEMENT 
1000 FORMT(2I7) 

C 
C PUT COORDINATES OF FIRST THREE POINTS I~701,Y1 X2,Y2 X3,Y3 
RESPECTIVELY. 
C 

C 

C 

C 
C 

Xl = XSIDE(l) 
Y1 = YSIDE(l) 

X2 = XSIDE (J) 
Y2 = YSIDE(J) 

X3 = XSIDE(J+1) 
Y3 = YSIDE(J+1) 

C INITIALISE F3 FOR EXISTENCE OF COORDINATE PAIR X4,Y4 
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F3 = 0 
C 
C SET F4 FOR SUBROUTINE FILLIN. 
C 

C 

C 
C 

F4 = 0 

GOTO 2600 

. C FOLLOWING THE FIRST PASS, FILL STORES WITH EDITED POINTS. 
C 

c 

C 

C 

2000 J = J+l 
IF(J.GE.NlOR2) GOTO 4000 

IF(Q.EQ.O) Xl = X2 
IF(Q.EQ.O) Yl = Y2 

IF(F3.EQ.0) X2 = X3 
IF(F3.EQ.0) Y2 = Y3 
IF(F3.EQ.l) X2 = X4 
IF(F3.EQ.l) Y2 = Y4 

C RESET F3 
F3 = 0 

C 
C 

C 

X3 = XSIDE(J+1) 
Y3 = YSIDE(J+1) 

C CHECK DATA FOR SEGMENTS FORMING RIGHT ANGLES SINCE THESE ARE TRUE 
C ERRORS WHICH MAY GO UNDETECTED USING THIS SYSTEM. 
C 

C 
C 

2600 P = 0 
Q = 0 

C CONVERT Xl,Yl,X2,Y2,X3,Y3 TO INTEGERS TO FACILITATE RIGHT ANGLE 
C CHECK AND WRITE COMMANDS. 
C 

C 

C 

XIl = Xl 
YIl = Y1 
XI2 = X2 
Y12 = Y2 
XI3 = X3 
YI3 = Y3 

IF((XI2.EQ.XI3).AND.(YI2.EQ.YSIDE(J-l))) P = 1 
IF((YI2.EQ.YI3).AND.(XI2.EQ.XSIDE(J-l))) P = 1 

C BYPASS BELOW COMPUTATIONS IF Xl, Y1=X2, Y2 OR X2, Y2=X3, Y3. THIS CAN 
C OCCUR FOLLOWING REVERSAL ERADICATION WHICH TEMPORARILY UPSETS THE 
C 'CLEANLYNESS' OF EVERY THREE COORDINATE PAIRS. THE FLAG Q DETECTS 
C THIS AND IF RAISED PREVENTS PROBLEMS REGARDING FOLLOWING NEARBY 
C REVERSALS. 
C 

C 

IF((XIl.EQ.XI2).AND.(YIl.EQ.YI2)) Q = 1 
IF((XI2.EQ.XI3).AND.(YI2.EQ.YI3)) Q = 1 
IF(Q.EQ.l) GOTO 2000 
Q = 0 

IF((P.EQ.l).AND.(J.LE.NlOR2-3)) X2 = XSIDE(J+2) 
IF((P.EQ.l).AND.(J.LE.NlOR2-3)) Y2 = YSIDE(J+2) 
IF((P.EQ.l).AND.(J.LE.NlOR2-3)) XI2 = XSIDE(J+2) 
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C 

C 

IF«P.EQ.1).AND.(J.LE.N10R2-3)) YI2 = YSIDE(J+2) 

IF«P.EQ.1).AND.(J.LE.N10R2-3)) X3 = XSIDE(J+3) 
IF«P.EQ; 1) .AND. (J.LE.N10R2-3)) Y3 = YSIDE(J+3) 
IF«P.EQ.1).AND.(J.LE.N10R2-3)) XI3 = XSIDE(J+3) 
IF«P.EQ.1).AND.(J.LE.N10R2-3)) YI3 = YSIDE(J+3) 

C CHECK FOR THE EQUIVALENCE OF X2,Y2 X3,Y3 AND X1,Y1 X2,Y2. THIS 
C WILL OCCUR ON THE SECOND PASS FOLLOWING RIGHT ANGLE DETECTION. 
C IF FULFILLED A NEW SET OF COORDINATES ARE PICKED UP BY INCREMENTING J. 
C 

IF«XI1.EQ.XI2).AND.(YI1.EQ.YI2)) GOTO 2000 
IF«XI2.EQ.XI3).AND.(YI2.EQ.YI3)) GOTO 2000 

C 
C PUT DISTANCE BETWEEN X2,Y2 AND X3,Y3 INTO DIST1 
C 
C CLEAR DISTl 
C 

DISTl = 0.0 
C 

DISTl = DSQRT( (X3*X3 + X2"X2 + Y3"Y3 + Y2"Y2) - 2*(X3"X2 + Y3*Y2)) 
C 
C IF A FIRST REVERSAL HAS OCURRED, SET REVERSAL FLAG R TO 1 
C 

C 

R = 0 
IF«PPSIDE(X3,Y3).EQ.PPSIDE(X1,Y1)).AND.(DIST1.LE.TOL)) R = 1 
IF«PPSIDE(X3,Y3).EQ.0).AND.(DIST1.LE.TOL)) R = 1 

C IF A REVERSAL HAS NOT OCCURED AND F4 = 0, FILL IN MISSING DATA. 
C 

C 

IF«F4.EQ.0).AND.(R.EQ.0)) CALL FILLIN 
F4 = 1 

C IF A FIRST REVERSAL HAS NOT OCCURRED, WRITE X2,Y2 TO FILE AND 
C TEST NEXT SET OF 3 CONSECUTIVE POINTS 
C 

C 

IF«R.EQ.O).AND.(F.EQ.O)) WRITE(7,1000,ERR=5400) XI2,YI2 
IF«R.EQ.O).AND.(F.EQ.l)) WRITE(8,1000,ERR=5600) XI2,YI2 

C WRITE XI3,YI3 TO FILE IF THEY ARE THE LAST POINTS IN THE VECTOR. 
C 

C 

IF«J.EQ.N10R2-1).AND.(R.EQ.0).AND.(F.EQ.0)) WRITE(7,1000,ERR= 
&5400) XI3,YI3 

IF«J.EQ.N10R2-1).AND.(R.EQ.0).AND.(F.EQ.1)) WRITE(8,1000,ERR= 
&5600) XI3, YI3 

IF(R.EQ.O) GOTO 2000 

C IF A FIRST REVERSAL HAS OCCURRED, LOOK FOR A SECOND REVERSAL 
C WITHIN THE TOLERANCE CIRCLE CENTRED ON X2,Y2. SET FLAG F1 TO 
C 1 IF POINT TESTED IS WITHIN CIRCLE; SET FLAG F2 TO 1 IF POINT 
C TESTED IS ON SAME SIDE OF BOUNDARY AS THAT GIVING FIRST REVERSAL. 
C IF BOTH CONDITIONS HOLD, CONTINUE TESTING POINTS FORWARD OF X3,Y3 
C 

C 
3000 

C 
C 
C 
C 
C 
C 

K = J 

K = K + 1 

IF THE END OF THE VECTOR IS REACHED AS K INCREMENTS (i.e. A 
REVERSAL HAS BEEN DETECTED BUT IT IS THE LAST POINT) WRITE 
XI2,YI2 TO FILE. 

IF«K.GE.N10R2).AND.(F.EQ.0)) WRITE(7,1000,ERR=5400) XI2,YI2 
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C 

C 

C 

C 

IF((K.GE.NIOR2).AND.(F.EQ.l)) WRITE(8,1000,ERR=5600) XI2,YI2 

IF(K.GE.NIOR2) GOTO 4000 

Fl = 0 
F2 = 0 
F3 = 1 

X4 = XSIDE (K+l) 
Y4 = YSIDE(K+l) 
XI4 = X4 
YI4 = Y4 

C IF XI2,YI2 AND XI4,YI4 ARE EQUIVALENT, INCREMENT K FOR ANOTHER 
C XI4,YI4 COORDINATE PAIR 
C 

IF((XI2.EQ.XI4).AND.(YI2.EQ.YI4)) GOTO 3000 
C 
C PUT DISTANCE OF POINT UNDER TEST FROM X2,Y2 INTO DIST2 
C 
C CLEAR DIST2 
C 

C 

C 

C 

C 

DIST2 = 0.0 

DIST2 = DSQRT( (X4"X4 + X2*X2 + Y4"Y4 + Y2*Y2) - 2* (X4"X2 + Y4"Y2)) 

IF(DIST2.LE.TOL) Fl = 1 
IF((PPSIDE(X4,Y4)).EQ.(PPSIDE(Xl,Yl))) F2 = 1 
IF(PPSIDE(X4,Y4).EQ.0) F2 = 1 

IF((Fl.EQ.l).AND.(F2.EQ.l)) GOTO 3000 

C FORWARD TESTING STOPS IF POINT UNDER TEST IS EITHER OUTSIDE 
C CIRCLE OR IF IT IS ON OPPOSITE SIDE OF BOUNDARY TO X3,Y3 GIVING A 
C FIRST REVERSAL. 
C 

J = K 
C 
C ONCE A SATISFACTORY POINT HAS BEEN FOUND FOLLOWING A REVERSAL, 
C WRITE XI2,YI2 TO FILE. 
C 

C 

IF(F.EQ.O) WRITE(7,1000,ERR=5400) XI2,YI2 
IF(F.EQ.l) WRITE(8,1000,ERR=5600) XI2,YI2 

C IF X4,Y4 REPRESENTS THE LAST COORDINATE OF THE VECTOR, WRITE 
C XI4,YI4 TO FILE. 
C 

IF((J.EQ.NIOR2-1).AND.(F.EQ.0)) WRITE(7,lOOO,ERR=5400) XI4,YI4 
IF((J.EQ.NIOR2-1).AND.(F.EQ.1)) WRITE(8,1000,ERR=5600) XI4,YI4 

C 
C 
C 
C TEST NEXT SET OF 3 CONSECUTIVE POINTS 
C 

GOTO 2000 
C 

4000 IF(F.EQ.O) GOTO 825 
C 

C 
C 
C 
C 

GOTO 9999 

ERROR MESSAGES 

- 375 -



C 

C 

C 

5000 WRITE(1,5100) 
5100 FORHAT('WRlTE ERROR-SIDE1POINTS:REVERSAL TESTING:ITEM1') 

GOTO 9999 

5200 WRlTE(1,5300) 
5300 FORMAT('WRlTE ERROR-SIDE2POINTS:REVERSAL TESTING:lTEM1') 

GOTO 9999 

5400 WRlTE(1,5500) 
5500 FORMAT('WRITE ERROR-SIDE1POINTS:REVERSAL TESTING: ') 

GOTO 9999 

5600 WRlTE(1,5700) 
5700 FORHAT('WRITE ERROR-SIDE2POINTS:REVERSAL TESTING: ') 

GOTO 9999 
C 

C ------------------------------------------------------------------
C 

C 

C 

9999 ENDFILE 7 
ENDFILE 8 

STOP 

END 
C -.'r**-k .. ':,,:**** .. ':***,':******-.'r*-.':*-.'r************-.b'r** .. h':********************** 
C 

C 

C 

C 

C 
C 

SUBROUTINE PCUSH 

INTEGER XSIDE(2000),YSIDE(2000),X,Y,S,CATHRM,HAGVAL 

DOUBLE PRECISION A,B,C,R,K,XDISP,YDISP,XC,YC 

COMMON/SET1/XSIDE,YSIDE/SET2/S,N10R2/SET6/XC,YC,CATmu~,HAGVAL 

C THIS ROUTINE CORRECTS FOR SELECTIVE ~IAGNIFICATION OF OBJECTS NEAR 
C TO THE EDGES OF THE ClNE FRAME (AS COMPARED WITH THEIR SIZE AT THE 
C CE~7RE OF THE FIELD: THE PINCUSHION DISTORTION EFFECT). 
C THIS OCCURS AS A DIRECT RESULT OF THE CONVEX-CURVED NATURE OF THE 
C INPUT PHOSPHOR VACUUM TUBE. 
C 
C C IS AN EMPIRICALLY DERIVED CONSTANT SPECIFIC TO THE CATHETER ROOM 
C USED WHICH IS A COMPONENT OF THE EQUATION WHICH CHARACTERISES THE 
C DISTORTION: 
C DELTA R' = DELTA RI (l + C (R"R)) 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 

WHERE: DELTA R' = THE GRID INTERVAL THAT WOULD BE ~:; A,'IC:; 
WITHOUT PINCUSHION DISTORTION. 

DELTA R = THE MEASURED GRID INTERVAL 
C = EMPIRICALLY DERIVED CONSTANT 
R = RADIAL DISTANCE FROM CENTRE OF FIELD TO 

POINT OF INTEREST. 

IF ((CATHRM.EQ.1).AND. (MAGVAL.EQ.1)) C = 0.0020136 
IF((CATHRM.EQ.1).AND. (~IAGVAL.EQ.2)) C = 0.00062484 
IF((CATHRM.EQ.2).AND.(HAGVAL.EQ.1)) C = 0.00065315 
IF((CATHRM.EQ.2).AND.(MAGVAL.EQ.2)) C = 0.00053700 

A = DSQRT(C) 
B = 1/A 

C USE XC, YC AS THE HIAGE CENTRE AS CALCULATED IN THE HAIN PROGRAM. 
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C CALCULATE THE RAD):AL DISTANCE FRml THIS POINT TO THE POINT OF 
C INTEREST. OBTAIN PINCUSHION CORRECTED VALUES FROM SUBSTITUTION 
C INTO THE EQUATION. DISPLACEMENTS ARE INITIALLY CORRECTED TO CENTIMETERS 
C SINCE THE CONSTANT C IS EXPRESSED IN C~!-2. 

C 
DO 10 J=S ,NlOR2 

IF((X.EQ.XSIDE(J)).AND.(Y.EQ.YSIDE(J))) GOTO 10 
XDISP = XC-XSIDE(J) 
YDISP = YC-YSIDE(J) 
IF((DABS(XDISP).LE.l.OD-36).AND.(DABS(YDISP).LE.l.OD-36)) 

&GOTO 10 
XDISP = XDISP/393.7 
YDISP = YDISP/393.7 
R = DSQRT(XDISP*XDISP+YDISP"'YDISP) 
K = (B"DATAN(R*A)) /R 
XSIDE(J) = IDINT((K"XSIDE(J))+0.5) 
YSIDE(J) = IDINT((K*YSIDE(J))+0.5) 

10 CONTINUE 
C 

C 

C 

C 

C 
C 

RETURN 

END 

FUNCTION PPSIDE(X,Y) 

INTEGER PPSIDE 
DOUBLE PRECISION R,SINGRA,COSGRA,XPERPl,YPERPl,XPERP2,YPERP2 
DOUBLE PRECISION PERPLN,Xl,Yl,X2,Y2,TOL,X,Y 

COMMON/SET3/TOL/SET4/Xl,Yl/SET5/X2,Y2 

C THIS SUBROUTINE DETECTS THE DIRECTION OF THE DATA VECTOR. EQUAL VALUES 
C OF PPSIDE REFLECT REVERSALS WHERAS UNEQUAL VALUES IMPLY A CONSTANT 
C DIRECTION. 
C 
C PUT SINE AND COSINE OF Xl,Yl TO X2,Y2 GRADIENT ANGLE INTO 
C SINGRA, COSGRA RESPECTIVELY 
C 

C 

R = DSQRT((X2 i 'X2 + Xl"'Xl + Y2"Y2 + Yl"'Yl) - 2"(X2"Xl + Y2"Yl)) 
SINGRA = (Y2 - Yl)/R 
COSGRA = (X2 - Xl)/R 

C PUT END POINTS OF TOLERANCE CIRCLE DIMIETER PERPENDICULAR TO Xl, Yl 
C X2,Y2 INTO XPERPl,YPERPl AND XPERP2,YPERP2. 
C 

C 

C 

XPERPl = X2 + SINGRA*TOL 
YPERPl = Y2 - COSGRA*TOL 

XPERP2 = X2 - SINGRA,"TOL 
YPERP2 = Y2 + COSGRA,"TOL 

C PUT REGION DEFINITION OF X, Y IN RELATION TO DIMIETER AS BOUNDARY 
C INTO PERPLN. 
C 

C 
C 
C 
C 
C 

PERPLN = 0.0 
PERPLN = (YPERP2 - YPERPl)"'X + (XPERPl - XPERP2)*Y + (XPERP2*Y2 + 

&YPERPli'X2) - (XPERPl*Y2 + YPERP2*X2) 

SET PPSIDE TO 1 OR -1 ACCORDING TO REGION OF X,Y OR SET PPSIDE 
TO 0 IF X,Y IS IN BOUNDARY LINE, ALLOWING FOR LI~lITS OF COMPUTING 
ACCURACY, 
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C 

IF(PERPLN.LE.-1.0D-36) PPSIDE = "1 
IF(PERPLN.GE. 1.0D-36) PPSIDE = 1 
IF((PERPLN.GT.-l.OD-36).AND.(PERPLN.LT.1.0D-36)) PPSIDE = 0 

RETURN 
END 

C **~':***-.,;* ... -.'n'r*-.'r*-.';*-'''-.':*-.hh':-.':*-.':**-.':*-.':******-.b':**;':*-.b':*-.bb':-.·~* ... "-.':************** 
C 

C 

C 

C 

SUBROUTINE FILLIN 

INTEGER F,XSIDE(2000),YSIDE(2000),XI2,YI2,MPX1,MPY1,MPX2,MPY2 
INTEGER MPX3,MPY3,J 

COMMON/SET1/XSIDE,YSIDE/SET7/XI2,YI2,F,J 

C DUE TO THE FACT THAT THE MAIN PROGRAM OMITS INITIAL COORDINATES 
C UNTIL THE TOLERANCE LIMIT IS EXCEEDED IN ORDER TO ESTABLISH THE 
C VECTOR DIRECTION CORRECTLY, THIS GAP MUST BE 'FILLED IN' SO AS TO 
C OBTAIN REASONABLY SPACED SEQUENTIAL DIAMETER LINES. THIS IS ACHEIVED 
C BY CALCULATING THE MIDPOINT OF THE SEGMENT JOINING THE FIRST AND 
C SECOND COORDINATES FOLLOWED BY THE MIDPOINTS OF THE SEGMENTS CREATED 
C BY THE CALCULATION OF THIS POINT. THESE VALUES ARE THEN WRITTEN 
C TO THEIR RESPECTIVE FILES DEPENDING ON THE VALUE OF F. 
C 
C 

C 

C 

C 

C 

C 

C 

C 

MPX2 = ((XSIDE(l) + XSIDE(J))/2)+1 
MPY2 = ((YSIDE(l) + YSIDE(J))/2)+1 

~IPX1 = (XSIDE(1)+MPX2)/2 
MPY1 = (YSIDE(1)+MPY2)/2 

MPX3 = (~IPX2+XSIDE (J)) /2 
MPY3 = (MPY2+YSIDE(J))/2 

IF(F.EQ.O) WRITE(7,10) MPX1,MPYl 
IF(F.EQ.O) WRITE(7,10) MPX2,MPY2 
IF(F.EQ.O) WRITE(7,10) MPX3,MPY3 

IF(F.EQ.1) WRITE(8,10) ~IPX1,MPYl 

IF(F.EQ.l) WRITE(8,lO) MPX2,MPY2 
IF(F.EQ.l) WRITE(8,10) ~IPX3,MPY3 

10 FORMAT(2I7) 

RETURN 
END 

C *-.':*~dr*-.'r ... 'd:-.':*-.':-.':**-.';·.':**-!d:**** ... ,:--::*****· ... ***********-.'d:**-."********"::******** 
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C 

C 

C 

C 
C 

PROGRAM DIAMAV 

INTEGER K,J,NI,N2,N,C,X(2000),Y(2000),A(2000),B(2000) 

REAL TRIARS(2000) 

DOUBLE PRECISION XSUM,YSUM,XC,YC,XA,YA,XB,YB,AREA,AVLEN,LEN 

C PROGRAM DIAMAV IS THE FIRST OF THREE CHAINED PROGRAl'IS DESIGNED TO 
C CALCULATE DIAMETERS ALONG THE LENGTH OF AN ARTERY INTERIOR 
C WALL TRACED FROM X-RAY ON A TRANSPARENT DIGITISING TABLET. 
C THIS PROGRAM READS THE 'NO ERROR FREE FILES PRODUCED BY THE 
C PROGRAM PNTED AND CALCULATES THE AREA ENCLOSED BY THE 'NO 
C VECTORS, ALONG WITH THEIR AVERAGE LENGTH AND SEPARATION. 
C THE VALUE FOR THE AVERAGE SEPARATION OR DIAMETER IS THEN WRITTEN 
C TO FILE (AVERAGED lAM) READY TO BE REFERENCED BY THE SECOND OF 
C THE THREE PROGRAMS (PROGRAM DIAMRS). HERE IT IS USED AS THE LENGTH 
C OF A MATHEMATICAL BUBBLE WHICH IS USED IN THE CALCULATION OF 
C THE ARTERY DIAMETERS. 
C TO FORM A CONTINUOUS LOOP, DATA FROM SIDE2POINTS IS READ INTO THE 
C VECTORS X(J),Y(J) IN REVERSE ORDER JOINING THE NORMALLY ARRANGED 
C DATA FROM SIDEIPOINTS. THE LOOP IS THEN COMPLETED BY JOINING 
C THE THE FIRST COORDINATE IN SIDEIPOINTS BY AN IMAGINARY LINE WITH 
C WHAT IS NOW THE LAST COORDINATE IN SIDE2POINTS, AND THE LAST 
C COORDINATE IN SIDEIPOINTS WITH WHAT IS NOW THE FIRST COORDINATE 
C OF SIDE2POINTS. TO EVALUATE THE AREA ENCLOSED BY THE LOOP, THE 
C CENTROID OF THE POINTS DEFINING THE LOOP IS CALCULATED AND USED 
C AS A CENTRE AROUND WHICH A RADIAL VECTOR TO EACH POINT SWEEPS. 
C STARTING AT THE FIRST POINT ENTERED, THE ·AREA OF THE TRIANGLE 
C BETWEEN THE CENTROID, FIRST POINT AND THE SECOND POINT IS 
C OBTAINED AND STORED IN A VECTOR. THIS IS REPEATED FOR THE SECOND 
C TRIANGLE FORMED BETWEEN THE CENTROID, SECOND AND THIRD POINTS. 
C THIS PROCESS CONTINUES UNTIL THE WHOLE LOOP HAS BEEN TRAVERSED, 
C THE LAST TRIANGLE BEING THAT BE'NEEN THE CENTROID, THE NTH POINT 
C AND THE FIRST POINT (WHICH IS WRITTEN TO THE Nth+I POSITION OF 
C THE LOOP TO ENABLE THIS LAST TRIANGLE TO BE REFERENCED). THE TOTAL 
C AREA ENCLOSED BY THE LOOP IS OBTAINED BY SUMMING THE CONTENTS 
C OF THE VECTOR TRIARS( ). 
C EACH OF THE TRIANGLES FORMED WITH THE CENTROID HAS A BASE DEFINED 
C TO BE THE DIRECTED LINE FROM THE CENTROID TO THE FIRST TRACED 
C POINT OF THE TRIANGLE. ANY POINT IN THE PLANE WILL BE EITHER 
C TO THE LEFT, RIGHT OR ON THIS LINE. THE FUNCTION USED TO CALCULATE 
C TRIANGLE AREA GIVES AN AREA WHICH IS EITHER NEGATIVE OR POSITIVE 
C ACCORDING TO WHETHER THE SECOND POINT IS TO THE RIGHT OR LEFT 
C OF ITS BASE RESPECTIVLY. BY TAKING THE ABSOLUTE VALUE FOR AREA 
C NEGATIVE AND POSITIVE AREAS GIVEN BY THIS FUNCTION C('·!BI\"E 
C IN A MANNER WHICH ALLOWS FOR THE CALCULATION OF AREA fRO,1 THE 

C INFOLDING OF ANY LOOP TRACED IN EITHER DIRECTION. 
C 
C THE AVERAGE DIAMETER IS CALCULATED AS THE AREA DIVIDED BY THE 
C MEAN OF THE SIDE LENGTHS AND PUT INTO VARIABLE AVERAGEDIAM. 
C 
C 
C READ 'SIDEIPOINTS' INTO X( ),Y( ) THEN 'SIDE2POINTS' (IN REVERSE 

C ORDER INTO X( ), Y( ). 
C 

C 
CALL OPEN(6, 'SIDEIPOINTS' ,0) 

NI = 1 
J = 1 - 379 -



C 
READ(6,20) X(J),Y(J) 

4 J = J+1 
READ(6,20,END=5) X(J),Y(J) 
NI = NI+! 
GOTO 4 

C 
5 CALL OPEN(7, 'SIDE2POINTS' ,0) 

C 
N2 = 1 
J = N1+1 

C 
READ(7,20) A(J),B(J) 

6 J = J+! 
READ(7,20,END=7) A(J),B(J) 
N2 = N2+! 
GOTO 6 

C 
C OBTAIN TOTAL. 
C 

7 N = Nl+N2 
C 
C IN ORDER TO FORM A CONTINUOUS LOOP, THE DIRECTION OF COORDINATES 
C FRml SIDE2POINTS MUST BE REVERSED. 
C 

C 

C 

J = N+! 
NI = NI+! 
DO 10 C=N1,N 

J = J-1 
X(J) = A(C) 
Y(J) = B(C) 

10 CONTINUE 
NI = N1-1 

GOTO 430 

C FILE READ FORMAT STATEMENT 
C 

20 FORMAT(2I7) 
C 
C 
C CLOSE THE LOOP 
C 

C 

430 X(N+1) = X(l) 
YeN+!) = Y(l) 

C PUT LOOP CE~~OID COORDINATES INTO XC,YC ENSURING TR~T THE FIRST/ 
C LAST POINT CONTRIBUTES TO THE CENTROID CALCULATIONS 0~CE O~LY. 
C 

C 

C 

C 

XSUM = 0.0 
YSUM = 0.0 

DO 440 J = 1,N 
XSUM = XSUM+X(J) 
YSUM = YSUM+Y(J) 

440 CONTINUE 

XC = XSUM/N 
YC = YSUM/N 

C ROTATE BASE VECTOR ROUND LOOP, ACCUMULATE SEGMENT LENGTHS AND PUT 
C SIGNED TRIANGLE AREAS INTO VECTOR TRIARS( ). ACCUMULATE TRIARS( ) 
C I~70 AREA. 
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C 

C 

C 

C 

C 

C 

LEN = 0.0 
AREA = 0.0 

DO 450 J = 1,N 
XA = X(J) 
YA = Y(J) 
XB = X(J+1) 
YB = Y(J+1) 

LEN = (LEN+(DSQRT((XA*XA+XB*XB+YA*YA+YB*YB)-2*(XA*XB+YA*YB)))) 

TRIARS (J) = ((YB"XA+YC"XB+YA*XC) - (YB*XC+YC*XA+YA*XB) )/2.0 

AREA = AREA + TRIARS(J) 

450 CONTINUE 
C 
C TAKE ABSOLUTE VALUE OF AREA THEREBY MAKING CALCULATIONS INDEPENDANT 
C OF DIRECTION OF TRACE. 
C 

AREA = DABS(AREA) 
C 
C CALCULATE THE AVERAGE ARTERY SIDE LENGTH AND ITS DIAMETER. 
C 

C 

C 

AVLEN = 0.0 
AVDIAM = 0.0 

AVLEN = LEN/2.0 
AVDIAM = AREA/AVLEN 

C DISPLAY RESULTS. 
C 

WRlTE(1,470) AREA,AVLEN,AVDIAM 
470 FORMAT ( , AREA = ',F16.5,' AVLEN = ',F16.S,' AVDIAM = ',F16.S) 

C 
C WRITE THE AVERAGE DIAMETER (WHICH BECOMES THE BUBBLE LENGTH IN THE 
C FOLLOWING PROGRAM) TO DISK. 
C 

CALL OPEN(8, 'AVERAGEDIAM' ,0) 
WRITE(8,480) AVDIAM 

480 FORMAT(F16.5) 
C 
C CLOSE FILES AND END PROGRAM 
C 

C 

C 

C 

9999 ENDFILE 6 
ENDFILE 7 
ENDFILE 8 

STOP 

END 

C *~~*******; .. ** ... 'r**1:.':** ... h" ... 'd:***** ... "***** ... ':**-."*;·:*-I:,,:** ... h':-f:****************,,:* 
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C 

C 

C 

C 
C 

PROGRAM DIAMRS 

INTEGER XSIDE1(1000),YSIDE1(1000),XSIDE2(1000),YSIDE2(1000) 
INTEGER F1,F2,DISUB,STBUB1,STBUB2,BUBAVP,N1,N2,J,S,ENDERR,BUBPTS 
INTEGER SCAN1,ENBUB1,SCAN2,ENBUB2,SUMPT1,SUMPT2,AVPTS1,AVPTS2 
INTEGER BEGIN1,BEGIN2,START1,END1,START2,END2,STAGE 

DOUBLE PRECISION BUBLEN,LEN1,LEN2,MINANG,LENA,LENB,LENC,LEND 
DOUBLE PRECISION LENTHI,PI 

COMMON/SET1/N1,N2/SET2/MINANG/SET3/BEGIN1,BEGIN2/SET4/ENDERR 
COMMON/SET5/XSIDE1,YSIDE1,XSIDE2,YSIDE2 
COMMON/SET6/STBUB1,ENBUB1,STBUB2,ENBUB2/SET7/PI/SET8/DISUB 
COMMON/SET9/START1,END1,START2,END2/SET10/STAGE 

C PROGRAM DIAMRS FOLLOWS PROGRAM DIAMAV AS THE SECOND OF THREE CHAINED 
C PROGRAMS DESIGNED TO CALCULATE ARTERY DIAMETERS. PROGRAM DIAMRS 
C READS THE COORDINATE FILES PRODUCED BY THE PROGRAM PNTED 
C FOLLOWING AREA CALCULATION BY THE PROGRAM DIAMAV INTO THE VECTORS 
C XSIDE1( ),YSIDE1( ) AND XSIDE2( ),YSIDE2( ). 
C 
C BECAUSE THE DISTRIBUTION OF POINTS IN SIDE1 AND SIDE2 ARE UNEVEN, AND 
THE 
C INTERNAL SHAPE AND BENDING OF THE ARTERY CAN VARY, IT IS DIFFICULT 
C TO IDENTIFY PAIRS OF POINTS(ONE IN SIDE1, THE OTHER IN SIDE2) 
C THAT CAN BE SAID TO BE OPPOSITE ENDS OF A DIAMETER. USE OF MINIMUM 
C ANGLES OF INTERSECTION AND MINIMUM DISTANCE BETWEEN SIDES TEND TO 
C BE VUNERABLE TO UNFORTUNATE COMBINATIONS OF INTERNAL SHAPE, BENDING 
C OR DISTRIBUTION. THIS ALGORITHM IS AN ATTEMPT TO OVERCOME THESE 
C PROBLEMS. IT RESTS UPON TWO ASSUMPTIONS: 1). THAT BENDING CAN BE 
TRACKED 
C WITH REASONABLE ACCURACY OVER A DISTANCE EQUAL TO ITS AVERAGE 
C INTERNAL DIAMETER(WHICH IS THE VALUE SUPPLIED BY THE PROGRAM DIAMAV). 
C THIS ASSUMPTION IS GIVEN EFFECT BY PASSING A MATHEMATICAL BUBBLE 
C DOWN THE ARTERY SUCH THAT THE LENGTH OF THE BUBBLE IS EQUAL TO THE 
C 'AVERAGE DIAMETER. THE BUBBLE STARTS AT THE TOP(LOW SUBSCRIPT) ENDS 
C OF THE SIDES, EXPANDS TO FULL LENGTH, ~IOVES DOWN THE ARTERY (IN 
C ONE POINT INCREMENTS ON EITHER SIDE) AND CONTRACTS AGAINST THE BOTTOM 
C END. WITHIN EACH EXPANDING, MOVING AND CONTRACTING BUBBLE, ONE AXIS 
C POINT AND TWO DIAMETER END POINTS ARE DEFINED:THE CO-ORDINATES 
C OF THESE ARE CALCULATED. 2). THAT THE MID-POINT OF LINES CO~~ECTING 
C THE TOP AND BOTTOM OF A BUBBLE GIVES A REASONABLE FIRST 
C APPROXIMATION TO AN AXIS POINT. THE DIAMETER THROUGH THE AXIS 
C POINT IS THEN DEFINED AS THE LINE PERPENDICULAR TO THE LINE BISECTED 
C BY THE AXIS POINT. DIAMETER END POINTS ARE ESTABLISHED BY SEARCHING 
EACH 
C SIDE FOR THE SEGMENT WHICH INTERSECTS THE DI~lETER LINE AND 
C CALCULATING THE POINTS OF INTERSECTION. FOR SPEED, THE SEARCH 
C ALWAYS STARTS FROM THE LAST COORDINATE FOUND AND REVERSES 
C WHEN DISTANCE OF TESTED SEGMENTS FROM THE DIAMETER LINE APPEARS TO 
C INCREASE. ONCE LOCATED, DIAMETER END POINTS ARE WRITTEN TO FILE. 
C 
C PUT INTO HINANG A CONSTANT REFLECTING THE MINIMAL ANGLE 
C OBTAINABLE BETWEEN ANY DIAMETER LINE AND ANY ARTERY' SIDE.- THIS IS 
C USED IN DETERMINING ERRORS OF INTERSECTION. 
C 

MINANG = 3.33333321D-4 
C 
C SET PI 

C 
C 

PI = 3.141592654 
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C READ 'SIDE1POINTS' INTO XSIDE1( ),YSIDE1( ) AND 'SIDE2POINTS' INTO 
C XSIDE2( ), YSIDE2( ). 
C 

C 

C 

CALL OPEN(6, 'SIDE1POINTS' ,0) 

N1 = 1 
J = 1 

READ(6,20,ERR=290) XSIDE1(J),YSIDE1(J) 
4 J = J+1 

C 

READ(6,20,ERR=290,END=5) XSIDE1(J),YSIDE1(J) 
N1 = N1+1 
GOTO 4 

5 CALL OPEN(7, 'SIDE2POINTS' ,0) 
C 

C 

C 

N2 = 1 
J = 1 

READ(7,20,ERR=290) XSIDE2(J),YSIDE2(J) 
6 J = J+l 

READ(7,20,ERR=290,END=7) XSIDE2(J),YSIDE2(J) 
N2 = N2+1 
GOTO 6 

C READ AVERAGE ARTERY DIAMETER FROM FILE AVERAGEDIAM INTO BUBLEN 
C WHICH IS THE LENGTH OF THE BUBBLE PASSED DOWN THE SIDES FOR 
C CALCULATING AXIS POINT CO-ORDINATES 
C 

C 

C 
C 

7 CALL OPEN(8, 'AVERAGEDIAM' ,0) 
READ(8,25,ERR=310) BUBLEN 

ENDFILE 8 

C FILE READ FORMAT STATEMENTS 
C 

C 
C 

C 

20 FORMAT(2I7) 
25 FORMAT(Fl6.3) 

GOTO 6010 

C ERROR MESSAGES 
C 

C 

C 
C 
C 
C 
C 

290 WRITE(1,300) 
300 FOR~IAT( 'FILE BlTPDCOORDS READ ERROR, STREAtI MODE SECTION') 

GOTO 9999 

310 WRITE(1,320) 
320 FO~IAT(' FILE AVERAGEDIAM READ ERROR') 

GOTO 9999 

OPEN NEW FILE FOR DIAMETER POINTS OF INTERSECTION 

6010 
C 

CALL OPEN(8, 'DIAtIETEREPS' ,0) 

C 
C 
C 
C 

EXPAND BUBBLE FROM LOWEST SIDE SUBSCRIPTS DOWNWARDS (IN DIRECTION 
OF SUBSCRIPT INCREASING) 
SCAN1,SCAN2 ARE SIDE1,SIDE2 SUBSCRIPTS 
STBUB1,STBUB2 ARE START~Of8~U~BLE SIDE1,SIDE2 SUBSCRIPTS 



C ENBUB1,ENBUB2 ARE END-OF-BUBBLE SIDE1,SIDE2 SUBSCRIPTS 
C LEN1,LEN2 ARE LENGTH-OF-BUBBLE ON SIDE1,SIDE2 AS MEASURED FROM 
C STBUB1,STBUB2. 
C 
C THIS SECTION TO EXPAND THE BUBBLE AND THE FOLLOWING TWO SECTIONS 
C TO MOVE AND CONTRACT IT AND ARE DESIGNED TO SET VALUES FOR 
C STBUB1,STBUB2,ENBUB1,ENBUB2 WHICH ARE USED TO SET THE LOCATION 
C OF THE AXIS POINTS ACCORDING TO THE BUBBLE LENGTH. THESE VALUES 
C ARE THEN TEMPORARILY ADJUSTED BY THE SUBROUTINE ADJBUB IN ORDER 
C TO MINIMISE THE POSSIBILITY OF DIAMETER END POINTS NOT FOUND. 
C THE ADJUSTED VALUES ARE THEN USED BY THE SUBROUTINE AXDIAS TO 
C COMPUTE DIAMETER END COORDINATES. 
C 
C Fl,F2 ARE FLAGS WHICH DETECT WHEN SIDE1,SIDE2 HAVE REACHED 
C FULL BUBBLE LENGTH. ONCE BOTH SIDES HAVE ACHIEVED THIS, THE BUBBLE 
C MAY THEN BE MOVED DOWN THE ARTERY. 
C 
C IN ORDER TO AVOID DIAMETER END NOT FOUND ERRORS (WHICH OCCUR WHEN 
C THE SIDES OF THE BUBBLE DO NOT LINE UP WITH EACH OTHER) THE BUBBLE 
C MUST START FROM COMPLEMENTARY POSITIONS IN THE TWO VECTORS. THIS IS 
C ACHEIVED USING PYTHAGORAS THEOREM, WHEREBY LENGTHC IS FIXED(THE 
C LENGTH BETWEEN THE FIRST COORDINATE PAIRS OF THE TWO SIDES), 
C AND LENGTHS A AND B CHANGE UNTIL LENGTHC IS EXCEEDED. J IS 
C RESET TO THE PREVIOUS COORDINATE PAIR(TO ALLOW FOR PERFECT ALIGNMENT 
C OF THE VECTORS) AND THEN ASSIGNED TO STBUB2. THE PROCESS IS REPEATED 
C FOR SIDE!. 
C 
C CALCULATING LENGTH BETWEEN FIRST TWO COORDINATE PAIRS. 
C 

S = 1 
LENC = 0.0 

C 
LENC = LENTHI(XSIDE1(S) ,YSIDE1(S) ,XSIDE2(S) ,YSIDE2(S)) 

C 
C SEARCHING SIDE2 FROM SIDE1: 
C 
C CALCULATING LENGTHS A AND B 
C 

C 

J = 1 
LENA = 0.0 
LENB = 0.0 

6100 J = J+1 

C 

C 

LENA = LENTHI(XSIDE2(S) ,YSIDE2(S) ,XSIDE2(J) ,YSIDE2(J)) 
LENB = LENTHI(XSIDE1(S) ,YSIDE1(S) ,XSIDE2(J) ,YSIDE2(J)) 
LEND = DSQRT(LENA*LENA+LENB*LENB) 

IF(LEND.LT.LENC) GOTO 6100 
IF(LEND.GE.LENC) STBUB2 = J-1 

C SEARCHING SIDE1 FROM SIDE2: 
C 
C CALCULATING LENGTHS A AND B 
C 

C 
6200 

C 

J = 1 
LENA = 0.0 
LENB = 0.0 

J = J+1 
LENA = LENTHI(XSIDE1(S),YSIDE1(S),XSIDE1(J),YSIDE1(J)) 
LENB = LENTHI(XSIDE2(S) ,YSIDE2(S) ,XSIDE1(J) ,YSIDE1(J)) 
LEND = DSQRT(LENM'LENA+LENB*LENB) 
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C 

C 

IF(LEND.LT.LENC) GOTO 6200 
IF(LEND.GE.LENC) STBUBl = J-l 

F1 = 0 
F2 = 0 

C INITIALISE STARTl,START2,ENDl,END2 WHICH STORE SIDEl AND SIDE2 
C ALTERED BUBBLE SUBSCRIPTS ONCE THE AXIS HAS BEEN ESTABLISHED. 
C THIS SAVES UNNECESSARY SEARCHING FROM ONE CALL TO ANOTHER. 
C 

C 

C 

START! = 1 
ENDl = 1 

START2 = 1 
END2 = 1 

C INITIALISE BEGINl AND BEGIN2 WHICH STORE SIDEl,SIDE2 SUBSCRIPTS 
C GIVING CURRENT POSITION FROM WHICH SEARCH TAKES PLACE FOR 
C SIDE SEGMENT WHICH INTERSECTS WITH DIAMETER. 
C 

C 

C 

BEGINl = 0 
BEGIN2 = 0 

DISUB = 1 

C INITIALISE ENDERR FOR ERROR ACCUMULATION. 
C 

ENDERR = 0 
C 
C SET PROGRAM STAGE. 
C 

STAGE = 1 
C 
C SET BUBPTS TO 2. THIS AVOIDS A POSSIBLE ERROR IN AXDIAS. 
C 

BUBPTS = 2 
C 
C BUBBLE EXPANDS BY 1 POINT EACH SIDE PER CYCLE IN THIS SECTION. 
C COUNT NUl'IBER OF POINTS PER SIDE INTO BUBPTS. 
C 

600 BUBPTS = BUBPTS + 1 
C 
C SIDEl 
C COUNT NUMBER OF POINTS INTO SCANl UNTIL SCANl EQUALS BUBPTS. 
C MEASURE LENGTH FROM STBUBl INTO LENl AND SET FLAG F1 TO 1 IF LENl 
C EQUALS OR EXCEEDS BUBLEN. BYPASS SIDEl EXPANSION IF Fl IS ALREADY 
C SET 
C 

C 

IF(Fl.EQ.l) GOTO 800 
LENl = 0.0 
SCANl = STBUBl 

700 LENl=LENl + LENTHI(XSIDEl(SCANl) ,YSIDEl(SCANl) ,XSIDEl(SCANl+l) ,YS 
&IDEl(SCAN1+l)) 

SCANl = SCANl + 1 
IF((SCANl-STBUB1.LE. BUBPTS) .AND. (SCANl-STBUB1.LE.·Nl)) GOTO 700 

C RESET SCANl TO LAST VALUE USED BY LENTHI( ) FUNCTION 
C 

C 
C 
C 
C 

SCANl = SCANl - 1 

IF END OF SIDEl HAS BEEN REACHED BY EXPANSION ALONG SIDEl, ABORT 
PROGRAM WITH ERROR MESSAGE. IF EXPANSION ALONG SIDEl IS COMPLETE, 
SET FLAG F1 
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C 

C 
C 
C 
C 

C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 

800 

900 

C 

IF(SCAN1-STBUB1+1.GE.N1) GOTO 1800 
IF(LEN1.GE.BUBLEN) F1 = 1 

SET VALUE OF ENBUB1 ACCORDING TO WHETHER LEN1 IS SLIGHTLY LESS THAN, 
EQUAL TO OR SLIGHTLY GREATER THAN BUBLEN 

IF(LEN1.LE.BUBLEN) ENBUB1 = SCAN1 
IF(LEN1.GT.BUBLEN) ENBUB1 = SCAN1 - 1 

ENSURE THAT FOLLOWING ALIGNMENT OF THE TOP OF THE VECTORS, THE 
FIRST BUBBLE CONTAINS AT LEAST TWO POINTS OF SIDE1. 

IF(STBUB1.GE.ENBUB1) ENBUB1 = STBUB1+1 

SIDE2 
COUNT NUMBER OF POINTS INTO SCAN2 UNTIL SCAN2 EQUALS BUBPTS. 
MEASURE LENGTH FROM STBUB1 INTO LEN1 AND SET FLAG F2 TO 1 IF LEN2 
EQUALS OR EXCEEDS BUBLEN. BYPASS SIDE2 EXPANSION IF F2 IS ALREADY 
SET 

IF(F2.EQ.1) GOTO 1100 
LEN2 = 0.0 
SCAN2 = STBUB2 
LEN2 = LEN2 + LENTHI(XSIDE2(SCAN2),YSIDE2(SCAN2),XSIDE2(SCAN2+1),Y 

&SIDE2(SCAN2+1)) 
SCAN2 = SCAN2 + 1 
IF((SCAN2.LE.BUBPTS).AND.(SCAN2-STBUB2.LE.N2-STBUB2)) GOTO 900 

C RESET SCAN2 TO LAST VALUE USED BY THE LENTHI( ) FUNCTION. 
C 

SCAN2 = SCAN2 - 1 
C 
C IF END OF SIDE2 HAS BEEN REACHED BY EXPANSION ALONG SIDE2, ABORT 
C PROGRAM WITH ERROR MESSAGE. 
C IF EXPANSION ALONG SIDE1 IS COMPLETE, SET FLAG F1. 
C 

C 

IF(SCAN2-STBUB2+1.GE.N2) GOTO 2000 
IF(LEN2.GE.BUBLEN) F2 = 1 

C SET VALUE OF ENBUB2 ACCORDING TO WHETHER LEN2 IS SLIGHTLY LESS THAN, 
C EQUAL TO OR SLIGHTLY GREATER THAN BUBLEN. 
C 

C 

IF(LEN2.LE.BUBLEN) ENBUB2 = SCAN2 
IF(LEN2.GT.BUBLEN) ENBUB2 = SCAN2 - 1 

C ENSURE THAT FOLLOWING ALIGNMENT OF THE TOP OF THE VECTORS, THE 
C FIRST BUBBLE CONTAINS AT LEAST TWO POINTS OF SIDE2. 
C 

IF(STBUB2.GE.ENBUB2) ENBUB2 = STBUB2+1 
C 
C NOW AXIS ESTABLISHED, ALTER BUBBLE SUBSCRIPTS TO ALLOW MAXIMUM 
C POSSIBILITY OF FINDING DIAMETER END POINTS. 
C 

1100 CALL ADJBUB 
C 
C PUT AXIS POINT CO-ORDINATES CALCULATED FROM CURRENT BUBBLE INTO 
C XAXIS( ),YAXIS( ) AND E~~S OF DIAMETER THROUGH THE AXIS POINT INTO 
C XDEND1( ),YDEND1( ) FOR SIDE1 AND XDEND2( ),YDEND2( ) FOR SIDE2. 
C END POINTS ARE THEN WRITTEN TO FILE. 
C _ 386 _ 



C 
C 
C 

1100 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 

CALL AXDIAS 

CONTINUE EXPANSION UNTIL BOTH FLAGS ARE SET. 

IF((F1.EQ.0).OR.(F2.EQ.0)) GOTO 600 

tlOVE BUBBLE DOWN ARTERY 

SUMPTl, SUMPT2 ARE STORES INTO WHICH THE TOTAL NUtlBER OF POINTS 
IN EACH FULL-SIZED BUBBLE FOR SIDE1,SIDE2 ARE ACCUMULATED SO 
THAT THE AVERAGE NUMBER IN EACH SIDE OF A BUBBLE CAN BE CALCULATED. 
Fl,F2 ARE FLAGS WHICH ARE SET WHEN END OF BUBBLE REACHES END OF 
SIDE1,SIDE2. IF BUBBLE REACHES THE END OF ONE SIDE BEFORE IT 
REACHES THE END OF THE OTHER, THE FORMER SIDE OF THE BUBBLE IS 
HELD CONSTANT WHILE THE LATTER SIDE IS ALLOWED TO REACH THE END 
OF ITS SIDE OF THE ARTERY. 

SUMPTl = 0 
SUMPT2 = 0 

F1 = O· 
F2 = 0 

C SET PROGRAM STAGE. 
C 

C 
C 
C 
C 
C 
C 

C 

1200 

STAGE = 2 

SIDE1 : 
MOVE SIDE1 OF BUBBLE ALONG BY INCREMENTING STBUB1. PUT NEW STARTING 
VALUE INTO SCAN1 AND SET LEN1 TO ZERO FOR START OF NEW LENGTH 
CALCULATIONS. 

IF(F1.EQ.1) GOTO 1350 
STBUB1 = STBUB1 + 1 
SCAN1 = STBUB1 

LENl = 0.0 

C MEASURE SIDE1 LENGTH OF BUBBLE FROM STBUB1 INTO LEN1 UNTIL LENGTH 
C EQUALS BUBLEN. 
C 

C 

1300 LEN1 = LEN1 + LENTHI(XSIDE1(SCAN1) ,YSIDE1(SCAN1) ,XSIDE1(SCAN1+1) ,Y 
&SIDE1(SCAN1+1)) 

SCAN1 = SCAN1 + 1 
IF((LEN1.LE.BUBLEN).AND.(SCAN1.LT.N1)) GOTO 1300 

C RESET SCAN1 TO VALUE LAST USED BY LENTH! ( ) FUNCTION. 
C 

SCAN1 = SCAN1 - 1 
C 
C SET FLAG F1 IF HIGHEST SUBSCRIPT USED IN LENTHI( ) FUNCTION REACHED 
C BOTTOM OF SIDE1. 
C 

IF(SCANl + 1.GE.Nl) Fl = 1 
C 
C SET ENBUBl ACCORDING TO WHETHER LENl IS SLIGHTLY LESS THAN, EQUAL 
C TO OR SLIGHTLY GREATER THAN BUBLEN. 
C 

C 

IF(LENl.LE.BUBLEN) ENBUB1 = SCAN1 
IF(LENl.GT.BUBLEN) ENBUB1 = SCAN 1 - 1 

C ADD NUMBER OF POINTS IN CURRENT SIDEl INTO SUMPTl 
C SO THAT MEAN CAN BE CALCULATED. 
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C 

C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 

1350 

SUMPT1 = SUMPT1 + ENBUB1 - STBUB1 + 1 

IF THERE IS NOT AT LEAST 1 POINT IN BUBLEN FOLLOWING STBUB1, 
WRITE ERROR MESSAGE TO SCREEN AND ABORT PROGRAM. 

IF(STBUB1.GE.ENBUB1) GOTO 2200 

SIDE2 : 
MOVE SIDE2 OF BUBBLE ALONG BY INCREMENTING STBUB2. PUT NEW STARTING 
VALUE INTO SCAN2 AND SET LEN2 TO ZERO FOR START OF NEW LENGTH 
CALCULATIONS. 

IF(F2.EQ.1) GOTO 1500 
STBUB2 = STBUB2 + 1 

SCAN2 = STBUB2 
LEN2 = 0.0 

MEASURE SIDE2 LENGTH OF BUBBLE FROM STBUB2 INTO LEN2 UNTIL LENGTH 
EQUALS BUBLEN. 

1400 LEN2 = LEN2 + LENTHI(XSIDE2(SCAN2) ,YSIDE2(SCAN2) ,XSIDE2(SCAN2+1) ,Y 
&SIDE2(SCAN2+1)) 

SCAN2 = SCAN2 + 1 
IF((LEN2.LE.BUBLEN).AND.(SCAN2.LT.N2)) GOTO 1400 

C 
C RESET SCAN2 TO VALUE LAST USED BY LENTHI( ) FUNCTION. 
C 

SCAN2 = SCAN2 - 1 
C 
C SET FLAG F2 IF HIGHEST SUBSCRIPT USED IN LENTHI( ) FUNCTION REACHED 
C BOTTOM OF SIDE2. 
C 

IF(SCAN2+1.GE.N2) F2 = 1 
C 
C SET ENBUB2 ACCORDING TO WHETHER LEN2 IS SLIGHTLY LESS THAN, EQUAL 
C TO OR SLIGHTLY GREATER THAN BUBLEN. 
C 

C 

IF(LEN2.LE.BUBLEN) ENBUB2 = SCAN2 
IF(LEN2.GT.BUBLEN) ENBUB2 = SCAN2 - 1 

C ADD NUMBER OF POINTS IN CURRENT SIDE2 INTO SUMPT2 SO THAT MEAN 
C CAN BE CALCULATED. 
C 

SUMPT2 = SUMPT2 + ENBUB2 - STBUB2 +1 
C 
C IF THERE IS NOT AT LEAST 1 POINT IN BUBLEN FOLLOWING STBUB2, 
C WRITE ERROR MESSAGE TO SCREEN AND ABORT PROGRAM. 
C 

IF(STBUB2.GE.ENBUB2) GOTO 2400 
C 
C NOW AXIS ESTABLISHED, ALTER BUBBLE SUBSCRIPTS TO ALLOW MAXIMUM 
C POSSIBILITY OF FINDING DI~ffiTER END POINTS. 
C 

1500 
C 
C 
C 
C 
C 
C 

CALL ADJBUB 

PUT AXIS POINT CO-ORDINATES CALCULATED FROM CURRENT BUBBLE INTO 
XAXIS( ),YAXIS( ) AND ENDS OF DIAMETER THROUGH THE AXIS POINT INTO 
XDEND1( ),YDEND1( ) FOR SIDE1 AND XDEND2( ),YDEND2( ) FOR SIDE2. 
END POINTS ARE THEN WRITTEN TO FILE. 
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C 
C CONTINUE MOVEMENT OF BUBBLE UNTIL FLAGS FOR BOTH SIDES SET 
C 

1500 IF((Fl.EQ.O) .OR. (F2.EQ.0)) GOTO 1200 
C 
C 
C USE INTEGER DIVISION TO PUT A CLOSE APPROXHIATION TO THE AVERAGE 
C Nl1I'lBER OF POINTS IN LENGTH BUBLEN FOR SIDEl,SIDE2 INTO AVPTSl,AVPTS2 
C AND MEAN OF NUMBER OF POINTS IN A BUBBLE INTO BUBAVP. 
C 

C 

AVPTSl = SUMPTl/STBUBl 
AVPTS2 = SUMPT2/STBUB2 
BUBAVP = (AVPTSl+AVPTS2)/2 

C CmlPARE THE VALUE OF BUBAVP WITH ENDERR:THE ACCUMULATION OF 
C TOO MANY NON-INTERSECTING DIAMETER LINES RESULTS IN INCOMPLETE 
C DATA-THEREFORE THE PROGRAM ABORTS. 
C 

IF(ENDERR.GT.BUBAVP) WRITE(I,550) 
550 FORMAT('TOO MANY DIAMETER END POINTS NOT FOUND, PROGRAM ABORTS') 

IF(ENDERR.GT.BUBAVP) GOTO 9999 
C 
C 
C CONTRACT BUBBLE 
C 
C SET PROGRAM STAGE. 
C 

C 

C 

STAGE = 3 

ENBUBl = NI 
ENBUB2 = N2 

C LET TOP OF LAST FULL SIZED BUBBLE APPROACH ITS BOTTOM. 
C LENGTH CALCULATIONS FOR DETECTING ATTAINMENT OF BUBLEN 
C ARE NO LONGER NEEDED. 
C 

C 

1600 IF(STBUBl.LE.NI-2) STBUBl = STBUBl + 1 
IF(STBUB2.LE.N2-2) STBUB2 = STBUB2 + 1 

C NOW AXIS ESTABLISHED, ALTER BUBBLE SUBSCRIPTS TO ALLOW MAXIMUM 
C POSSIBILITY OF FINDING DIAMETER END POINTS. 
C 

CALL ADJBUB 
C 
C PUT AXIS POINT CO-ORDINATES CALCULATED FROM CURRENT BUBBLE INTO 
C XAXIS( ),YAXIS( ) AND ENDS OF DIAMETER THROUGH THE AXIS POINT INTO 
C XDENDl( ),YDENDl( ) FOR SIDEl AND XDEND2( ),YDEND2( ) FOR SIDE2. 
C END POINTS ARE THEN WRITTEN TO FILE. 
C 

C 
C 

CALL AXDIAS 

C CO~7INUE CONTRACTION UNTIL BOTTOM OF BOTH SIDES HAS BEEN REACHED. 
C 

IF((STBUBl.LE.NI-2).OR.(STBUB2.LE.N2-2)) GOTO 1600· 
C 
C PRESENT ERROR INFORl'IATION. 
C 

WRITE(I,1760) ENDERR 
1760 FORMAT( 'No. DIA~ffiTER END POINTS NOT FOUND = ',IS) 

C 
C 

GOTO 9999 
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C 
C ERROR MESSAGES 
C 

C 

C 

C 

C 
C 

1800 WRITE(1,1900) 
1900 FORMAT('FIRST-TRACED SIDE HAS INSUFFICIENT POINTS') 

GOTO 9999 

2000 WRITE(1,2100) 
2100 FORMAT('SECOND-TRACED SIDE HAS INSUFFICIENT POINTS') 

GOTO 9999 

2200 STORE1 = STBUB1 + 1 
WRITE(1,2300) STBUB1,STORE1 

2300 FORMAT('POINT DENSITY TOO LOW ON FIRST-TRACED SIDE BETWEEN POINT 
&NUMBER' ,IS,' AND ',IS) 

GOTO 9999 

2400 STORE2 = STBUB2 +1 
WRITE(1,2500) STBUB2,STORE2 

2500 FORMAT('POINT DENSITY TOO LOW ON SECOND-TRACED SIDE BETWEEN POINT 
&NUMBER " IS,' AND " IS) 

GOTO 9999 

C CLOSE FILES AND END PROGRAM 
C 

C 

C 

9999 ENDFILE 6 
ENDFILE 7 
ENDFILE 8 

STOP 

END 
C *, .. *********** ..... **** ... ':**,': .. ':* ........ '.* ..... 'r* ... ': ... ':* ... ':**********-.b':-.'r******-.':************ 

C 

C 

C 

C 

C 

FUNCTION LENTHI (XDUM1, YDUMl ,XDUM2, YDUM2) 

INTEGER XDUM1,YDUM1,XDUM2,YDUM2 
DOUBLE PRECISION XDISP,YDISP,LENTHI 

XDISP = XDUM2 - XDUM1 
YDISP = YDUM2 - YDUM1 

LENTHI = DSQRT(XDISP"XDISP + YDISP*YDISP) 

RETURN 
END 

C -.':******************* ........ ':***-.':**-.b'r*-.':*******-. ....... ********************:.'\'\.\ le 

C 

C 

C 

C 

C 

FUNCTION LENGTH(XDUM1,YDUM1,XDUM2,YDUM2) 

DOUBLE PRECISION XDUM1,YDUM1,XDUM2,YDUM2,XDISP,YDISP,LENGTH 

XDISP = XDUM2 - XDUM1 
YDISP = YDUM2 - YDUM1 

LENGTH = DSQRT(XDISP"XDISP + YDISP*YDISP) 

RETURN 
END 

C -.b':-.b':-.b'.** ... ':-.':-.':* ... ': ... ':*-.·d:-.':**-.·:-.b':**'·:-;':***** ... ·:***-.':*-.':***-.'r*********************** 
SUBROUTINE ADJBUB 

C 
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C 

C 

C 

C 
C 

INTEGER XSIDE1(1000),YSIDE1(1000),XSIDE2(1000),YSIDE2(1000) 
INTEGER START1,START2,END1,END2,DISUB,Fl,F2,F3,F4,F5,I 
INTEGER SCAN1,BEGIN1,DISIDE,NEXT,SCAN2,BEGIN2,ENDERR,F6,SETSUB 
INTEGER STBUB1,STBUB2,ENBUB1,ENBUB2,STAGE,Nl,N2 

INTEGER*4 X1Sl,Y1Sl,X2S1,Y2S1,X1S2,Y1S2,X2S2,Y2S2,X3S1,Y3S1 
INTEGER*4 X3S2,Y3S2 

DOUBLE PRECISION XMIDTP,YMIDTP,XMIDBM,YMIDBM,XAX,YAX,CAX 
DOUBLE PRECISION LlNEA,LlNEB,LlNEC,LlNED 
DOUBLE PRECISION XCOEFT,YCOEFT,CONSTT 
DOUBLE PRECISION XCOEFB,YCOEFB,CONSTB 

COMMON/SET1/Nl,N2/SET5/XSIDE1,YSIDE1,XSIDE2,YSIDE2 
COMMON/SET6/STBUB1,ENBUB1,STBUB2,ENBUB2 
COlli!ON/SET9 /STARTl, END1, START2, END2/SETll/XCOEFT, YCOEFT, CONST 
COMMON/SET12/XMIDTP,YMIDTP,XMIDBM,YMIDBM/SET10/STAGE 

C THIS SUBROUTINE EFFECTIVLY ALTERS THE VALUE OF STBUB1,ENBUBl AND STBUB2 
C ENBUB2 IN ORDER TO PRODUCE A BUBBLE WHOSE MARGINS ARE AT APPROXlMATLY 
C 90 DEGREES TO THE AXIS LINE. THIS ALLOWS FOR MAXIMUM POSSIBILITY 
C IN THE LOCATION OF DIAMETER LINES. 
C 
C THIS IS ACHEIVED BY RUNNING LINES AT 90 DEGREES TO THE TOP AND 
C BOTTOM OF THE AXIS LINE IN QUESTION AND COMPUTING THE NEAREST 
C EXISTING COORDINATE TO ITS INTERSECTING POINT ON BOTH SIDES OF 
C THE ARTERY. IN THIS WAY BUBBLE GROWTH AND MOVEMENT ARE LEFT 
C UNDISTURBED AND THE AXIS LINE IS CORRECTLY PROVIDED BY THE MAIN 
C PROGRAM. 
C 
C 
C SET SETSUB TO 0 TO INFORM THE FUNCTION DISIDE THAT THIS IS 
C SUBROUTINE ADJBUB. 
C 

SETSUB = 0 
C 
C IN THE FINAL STAGE OF THE PROGRAM, ENDl AND END2 MUST BE FIXED 
C AS THE ENDS OF THEIR RESPECTIVE VECTORS. 
C 

C 

IF(STAGE.EQ.3) ENDl = Nl 
IF(STAGE.EQ.3) END2 = N2 

C CONPUTE EQUATION OF THE AXIS LINE. 
C 

C 

C 

C 

XNIDTP = (XSIDE1(STBUB1)+XSIDE2(STBUB2))/2.0 
YNIDTP = (YSIDE1(STBUB1)+YSIDE2(STBUB2))/2.0 

XNIDBN = (XSIDEl(ENBUB1)+XSIDE2(ENBUB2))/2.0 
YMIDBN = (YSIDEl(ENBUB1)+YSIDE2(ENBUB2))/2.0 

XAX = YNIDTP-YMIDBM 
YAX = XMIDBN-XNIDTP 
CAX = (nIIDBN"XNIDTP) - (YMIDTP*XNIDBN) 

C CONPUTE EQUATIONS OF LINES AT 90 DEGREES TO TOP AND BOTTOM 
C OF CURRENT AXI S LINE. 
C 
C TOP 
C 

XCOEFT = XMIDTP-XMIDBM 
YCOEFT = nIIDTP-YMIDBM 
CONSTT=(YMIDBM*YMIDTP+XM!DM'~IIDBM) - (YMIDTP"YMIDBN+XMIDTP* 



&lOlIDTP) 
C 
C BOTIOM 
C 

C 

XCOEFB = XCOEFT 
YCOEFB = YCOEFT 
CONSTB=(YMIDBM*TIlIDBM+XMIDBM*XMIDBM) - (TI1IDTP"'TIlIDBM+X~lIDTP* 

&XMIDBM) 

C LOCATING THE NEAREST COORDINATES. 
C 
C SIDE1 
C 

C 

Fl = 0 
F2 = 0 
F3 = 0 
F5 = 0 
1=1 

50 IF(F5.EQ.O) SCAN1 = START1 - 1 
IF(F5.EQ.1) SCAN1 = END1-1 
IF(F5.EQ.0) CONST = CONSTT 
IF(F5.EQ.1) CONST = CONSTB 

C 

C 

C 

C 

C 

100 SCAN1 = SCAN1 + I 
IF((F5.EQ.0).AND.(I.EQ.1).AND.(SCAN1.GE.Nl-2» GOTO 260 
IF((F5.EQ.1).AND.(I.EQ.1).AND.(SCAN1.GE.Nl-2» GOTO 300 
IF((F5.EQ.0).AND. (I.EQ.-1).AND. (SCAN1.LE.3» GOTO 260 
IF((F5.EQ.1).AND.(I.EQ.-1).AND.(SCAN1.LE.3» GOTO 300 

X1S1 = XSIDE1(SCAN1) 
Y1S1 = YSIDE1(SCAN1) 
SCAN1 = SCAN1+! 
X2S1 = XSIDE1(SCAN1) 
Y2S1 = YSIDE1(SCAN1) 
SCAN1 = SCANl+ I 
X3S1 = XSIDE1(SCAN1) 
Y3S1 = YSIDE1(SCAN1) 
SCAN1 = SCAN1-(I+I) 

IF(DISIDE(X1S1,Y1S1).EQ.O) F1 = 1 
IF(DISIDE(X2S1,Y2S1).EQ.0) F2 = 1 
IF(DISIDE(X1S1,Y1S1).NE.DISIDE(X2S1,Y2S1» F3 = 1 
IF(F1.EQ.1) GOTO 200 
IF(F2.EQ.1) GOTO 200 

LINEA = DABS(X1S1*XCOEFD + Y1S1*YCOEFD + CONSTD) 
LINEB = DABS(X2S1*XCOEFD + Y2S1"YCOEFD + CONSTD) 
LINEC = DABS(X3S1*XCOEFD + Y3Sl"YCOEFD + CONSTD) 

C 'STICKING' OF THE SEARCHING PROCESS CAN OCCUR WHEN COORDINATE 
C DENSITY IS HIGH AND ARTERY PROFILE IS CHANGING RELATIVLY QUICKLY. 
C THIS IS OVERCOME BY OBSERVING NO CHANGE IN THE LINE FUNCTION, 
C WHICH PRmlOTES A ONE UNIT INCREMENT OF THE PREVIOUS BUBBLE MARGIN 
C BEFORE BEING PASSED TO AXDIAS. 
C 

C 

C 

IF(LINED.EQ.LINEB) POINT1 = SCAN1 + 1 
IF(LINED.EQ.LINEB) GOTO 250 

LINED = LINEB 

C BECAUSE THE VALUE OF THE LINE TEST REFLECTS NOT ONLY THE PLACEMENT 
C OF COORDINATES RELATIVE TO THE DIMlETER LINE (i. e. ABOVE OR BELOW) 
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C BUT ALSO THE LINEAR DISTANCE FROM IT, THERE ARE OCCASIONS WHERE 
C THE TEST REVEALS AN APPARENT REVERSAL IN THE DATA EVEN THOUGH IT 
C IS CLEAN (REFER TO THESIS FOR DETAILS). HENCE THE FOLLOWING CODE 
C CHECKS FOR THE CONVERGENCE OR DIVERGENCE OF LINE AS THE DIAMETER 
C LINE IS APPROACHED OR LEFT, PLUS ALLOWS FOR THE CASE WHERE VALUES 
C OF LINE ARE CONTRADICTORY REFLECTING AN APPARENT REVERSAL. 
C 

C 

C 

F4 = 0 
F6 = 0 
IF((F3.EQ.1).AND.(LINEA.LE.LINEB)) POINT1 = SCANl 
IF((F3.EQ.1).AND.(LlNEA.GT.LlNEB)) POINT1 = SCAN 1 + I 
IF(F3.EQ.1) GOTO 250 
IF((I.EQ.1).AND.(LINEB.LE.LlNEA)) F4 = 1 
IF((I.EQ.-1).AND.(LINEA.GE.LlNEB)) GOTO 100 
IF((F4.EQ.1).AND.(SCAN1.LE.Nl-3)) GOTO 100 
IF((LlNEA.LE.LlNEB).AND.(LlNEC.LE.LlNEB)) F6 = 1 
IF(DISIDE(X2S1,Y2S1).NE.DISIDE(X3S1,Y3S1)) F6 = 1 
IF(F6.EQ.1) GOTO 100 
IF((F4.EQ.l).AND.(SCAN1.GT.Nl-3)) GOTO 300 

SCAN 1 = SCAN1+1 
I = -1 
GOTO 100 

200 IF(Fl.EQ.1) POINT1 = SCAN 1 

C 

C 

C 
C 
C 

C 

C 

C 

IF(F2.EQ.1) POINT1 = SCAN1 + I 

250 IF(F5.EQ.0) STARTl = POINTl 
IF(F5.EQ.1) GOTO 275 

260 F3 = 0 
F5 = 1 
GOTO 50 

275 END1 = POINT1 

SIDE2 

300 F1 = 0 
F2 = 0 
F3 = 0 
F5 = 0 

I = 1 

450 IF(F5.EQ.0) SCAN2 = START2 -1 
IF(F5.EQ.1) SCAN2 = END2 - 1 
IF(F5.EQ.0) CONST = CONSTT 
IF(F5.EQ.1) CONST = CONSTB 

500 SCAN2 = SCANZ + I 
IF((F5.EQ.0).AND.(I.EQ.1).AND.(SCANZ.GE.NZ-Z)) GOTO 660 
IF((F5.EQ.1).AND.(I.EQ.1).AND.(SCANZ.GE.NZ-Z)) GOTO 800 
IF((F5.EQ.0).AND.(I.EQ.-l).AND.(SCANZ.LE.3)) GOTO 660 
IF((F5.EQ.1).AND.(I.EQ.-1).AND.(SCANZ.LE.3)) GOTO 800 

XlSZ = XSIDEZ(SCANZ) 
Y1S2 = YSIDEZ(SCANZ) 
SCANZ = SCANZ+I 
XZSZ = XSIDEZ(SCANZ) 
YZSZ = YSIDEZ(SCANZ) 
SCANZ = SCANZ+I 
X3S2 = XSIDEZ(SCAN2) 
Y3S2 = YSIDE2(SCAN2) 
SCAN2 = SCAN2-(I+I) 
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C 

C 

C 

IF(DISIDE(X1S2,Y1S2).EQ.0) F1 = 1 
IF(DISIDE(X2S2,Y2S2).EQ.0) F2 = 1 
IF(DISIDE(X1S2,Y1S2).NE.DISIDE(X2S2,Y2S2)) F3 = 1 
IF(F1.EQ.1) GOTO 600 
IF(F2.EQ.1) GOTO 600 

LINEA = DABS (X1S2"XCOEFD + Y1S2*YCOEFD + CONSTD) 
LINEB = DABS(X2S2*XCOEFD + Y2S2*YCOEFD + CONSTD) 
LINEC = DABS (X3S2"XCOEFD + Y3S2"YCOEFD + CONSTD) 

C CHECK FOR STICKING. 
C 

C 

IF(LINED.EQ.LINEB) POINT2 = SCAN2 + 1 
IF(LINED.EQ.LINEB) GOTO 650 
LINED = LINEB 

C SEE PREVIOUS SOFTWARE EXPLANATION. 
C 

C 

C 

F4 = 0 
F6 = 0 
IF((F3.EQ.1).AND.(LINEA.LE.LINEB)) POINT2 = SCAN2 
IF((F3.EQ.1).AND.(~!NEA.GT.LINEB)) POINT2 = SCAN2 + I 
IF(F3.EQ.1) GOTO 650 
IF((I.EQ.1).AND.(LINEB.LE.LINEA)) F4 = 1 
IF((I.EQ.-1).AND.(LINEA.GE.LINEB)) GOTO 500 
IF((F4.EQ.1).AND.(SCAN2.LE.N2-3)) GOTO 500 
IF((LINEA.LE.LINEB).AND.(LINEC.LE.LINEB)) F6 = 1 
IF(DISIDE(X2S2,Y2S2).NE.DISIDE(X3S2,Y3S2)) F6 = 1 
IF(F6.EQ.1) GOTO 500 
IF((F4.EQ.1).AND.(SCAN2.GT.N2-3)) GOTO 800 

SCAN2 = SCAN2+l 
I = -1 
GOTO 500 

600 IF(Fl.EQ.1) POINT2 = SCAN2 
IF(F2.EQ.1) POINT2 = SCAN2 + I 

C 
650 IF(F5.EQ.0) START2 = POINT2 

C 
IF(F5.EQ.1) 

660 F3 = 0 
F5 = 1 
1=1 
GOTO 450 

GOTO 675 

675 END2 = POINT2 
C 

C 

C 

C 

800 RETURN 
END 

SUBROUTINE AXDIAS 

INTEGER XSIDE1(1000),YSIDEI(1000),XSIDE2(1000),YSIDE2(IOOO) 
INTEGER START1,START2,ENDI,END2,DISUB,F,F1,F2,F3,F4;F5,I 
INTEGER SCAN1,BEGINI,DISIDE,NEXT,SCAN2,BEGIN2,ENDERR,F6,SETSUB 

INTEGER"4 XISl, YlSl ,X2S1, Y2S1 ,XlS2, YlS2 ,X2S2, Y2S2 ,X3S1, Y3S1 
INTEGER"4 X3S2, Y3S2 

DOUBLE PRECISION XMIDTP,YMIDTP,XMIDBM,YMIDBM,XCNTRE,YCNTRE 
DOUBLE PRECISION LINEA,LINEB,XDEND1,PI,XDEND2,YDEND2 
DOUBLE PRECISION YDEND1,XCOEF1,YCOEF1,CONSTl,GRADET,ANGDIF 
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C 

C 
C 

DOUBLE PRECISION ANGLE,XCOEFZ,YCOEFZ,CONSTZ,MINANG,XCOEFD 
DOUBLE PRECISION YCOEFD,CONSTD,LINEC 

COllil0N/SETl/Nl ,NZ/SETZ/HINANG/SET3 /BEGINl ,BCGINZ/SET4/ENDERR 
CmlMON/SETS/XSIDEl, YSIDEl ,XSIDEZ, YSIDEZ 
COMtlON/SET9/STARTl ,ENDl, STARTZ ,ENDZ/SET7 /PI/SET8/DISUB 
CmlMON/SETlZ/XMIDTP, YtlIDTP ,XMIDBtl, YMIDBM 
COllilON/SETl3/XCOEFD, YCOEFD ,CONSTD 

C THIS SUBROUTINE COMPUTES A CENTRAL AXIS FOR THE ARTERY FROM WHICH 
C DIAMETER LINES ARE TAKEN. THE CO-ORDINATES OF THESE AXIS POINTS 
C ARE WRITTEN TO XAXIS( ),YAXIS( ) WITH SUBSCRIPT DISUB. DIAMETER END 
C CO-ORDINATES ARE WRITTEN TO XDENDl( ),YDENDl( ) FOR SIDEl, AND 
C XDENDZ ( ), YDENDZ ( ) FOR SIDEZ. THESE ARE THEN WRITTEN TO FILE. 
C 
C 
C SET F TO 1 TO ALLOW FOR DIAMETER END NOT FOUND. 

F = 1 
C 
C SET SETSUB TO 1 TO INFORM THE FUNCTION DISIDE THAT THIS IS 
C SUBROUTINE AXDIAS. 
C 

SETSUB = 1 
C 
C USE MID-POINT OF LINE BETWEEN ABOVE TWO MID-POINTS PROVIDED BY 
C ADJBUB AS AXIS POINT AND PUT INTO XCNTRE,YCNTRE. 
C 

C 

C 
C 

XCNTRE = (XMIDTP+XMIDBM)/Z.O 
YCNTRE = (YMIDTP+YMIDBM)/Z.O 

DISUB = DISUB+1 

C THE DIAMETER LINE IS CONSIDERED TO BE A LINE THROUGH XCNTRE,YCNTRE 
C PERPENDICULAR TO THE LINE BETWEEN XMIDTP,YMIDTP AND XMIDBM,YMIDBM. 
C PUT THE COEFFICIENTS OF THE DIAMETER LINE INTO XCOEFD,YCOEFD,CONSTD 
C 

C 
C 
C 
C 

C 

C 

XCOEFD = XMIDTP-XMIDBM 
YCOEFD = YHIDTP-YMIDBH 
CONSTD=(YHIDBM*YCNTRE+XHIDBH*XCNTRE)-(YHIDTP*YCNTRE+XMIDTP* 

&XCNTRE) 

SIDEl: SEARCH FOR THE SEGMENT THROUGH WHICH THE DIAMETER LINE 
RUNS. 

F1 = 0 
FZ = 0 
F3 = 0 
F5 = 0 

I = 1 
SCANl = BEGINl 

100 SCANl = SCANl + I 
IF((I.EQ.l).AND.(SCANl.GE.Nl-Z)) GOTO 800 
IF((I.EQ.-l).AND.(SCANl.LE.STARTl+l)) GOTO 800 

X1Sl = XSIDE1(SCANl) 
Y1Sl = YSIDEl(SCAN1) 
SCAN 1 = SCAN 1+ I 
XZSl = XSIDE1(SCANl) 
YZSl = YSIDE1(SCANl) 
SCANl = SC~1+I 
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C 

C 

C 

X3S1 = XSIDE1(SCAN1) 
Y3S1 = YSIDE1(SCAN1) 
SCAN1 = SCAN1-(I+I) 

IF(DISIDE(X1S1,Y1S1).EQ.0) F1 = 1 
IF(DISIDE(X2S1,Y2S1).EQ.0) F2 = 1 
IF(DISIDE(X1S1,Y1S1).NE.DISIDE(X2S1,Y2S1» F3 = 1 
IF(F1.EQ.1) GOTO 200 
IF(F2.EQ.1) GOTO 200 
IF(F3.EQ.1) GOTO 200 

LINEA = DABS(X1S1*XCOEFD + Y1S1*YCOEFD + CONSTD) 
LINEB = DABS(X2S1*XCOEFD + Y2S1*YCOEFD + CONSTD) 
LINEC = DABS(X3S1*XCOEFD + Y3S1*YCOEFD + CONSTD) 

C REFER TO SOFTWARE EXPLANATION IN PREVIOUS SUBROUTINE FOR LINE .TEST 
C COMMENTS. 
C 

C 

C 

F4 = 0 
F6 = 0 
IF((I.EQ.1).AND.(LINEB.LE.LINEA» F4 = 1 
IF((I.EQ.-1).AND.(LINEA.GE.LINEB» GOTO 100 
IF((F4.EQ.l).AND.(SCAN1.LE.ENDl-3» GOTO 100 
IF((LINEA.LE.LINEB).AND.(LINEC.LE.LINEB» F6 = 1 
IF(DISIDE(X2S1,Y2S1).NE.DISIDE(X3S1,Y3S1» F6 = 1 
IF(F6.EQ.1) GOTO 100 
IF((F4.EQ.1).AND.(SCAN1.GT.ENDl-3» GOTO 400 

SCAN1 = SCAN1+1 
I = -1 
GOTO 100 

200 BEGIN1 = SCAN1 
C 

C 

C 

C 

C 

C 

C 

C 

IF(F1.EQ.1) XDEND1=X1S1 
IF(F1.EQ.1) YDEND1=YlS1 

. IF(F2.EQ.l) XDENDl=X2S1 
IF(F2.EQ.l) YDENDl=Y2S1 
IF((Fl.EQ.l).OR.(F2.EQ.l» GOTO 400 

XCOEFl = YlS1 - Y2S1 
YCOEFl = X2S1 - X1S1 
CONSTl = Y2S1*XlS1-YlSl*X2S1 

GRADET = XCOEFD"YCOEFl - XCOEFl *YCOEFD 

ANGDIF = DABS(ANGLE(XCOEFD,-YCOEFD) - ANGLE(XCOEFl,-YCOEFl» 

NEXT = BEGIN1 + 1 

IF(ANGDIF.LE.MINANG) WRITE(1,300) BEGINl,NEXT 
300 FORMATe' SEGMENT OF SIDEl BETWEEN POINT NutlBERS " IS,' AND " IS, ' 

& TOO NEAR PARALLEL WITH DIMIETER') 
IF(ANGDIF.LE.MINANG) DISUB = DISUB-l 
IF(ANGDIF.LE.MINANG) GOTO 1100 

XDENDl = (YCOEFD*CONSTl - YCOEF1*CONSTD)/GRADET 
YDENDl = (XCOEFl*CONSTD - XCOEFD"CONSTl)/GRADET 

400 Fl = 0 
F2 = 0 
F3 = 0 
FS = 0 
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C 
500 

C 

C 

C 

C 

I = 1 
SCAN2 = BEGIN2 

SCAN2 = SCAN2 + I 
IF((I.EQ.1).AND.(SCAN2.GE.N2-2)) GOTO 800 
IF((I.EQ.-1).AND.(SCAN2.LE.START2+1)) GOTO 800 , 

X1S2 = XSIDE2(SCAN2) 
Y1S2 = YSIDE2(SCAN2) 
SCAN2 = SCAN2+I 
X2S2 = XSIDE2(SCAN2) 
Y2S2 = YSIDE2(SCAN2) 
SCAN2 = SCAN2+I 
X3S2 = XSIDE2(SCAN2) 
Y3S2 = YSIDE2(SCAN2) 
SCAN2 = SCAN2-(I+I) 

IF(DISIDE(X1S2,Y1S2).EQ.0) F1 = 1 
IF(DISIDE(X2S2,Y2S2).EQ.0) F2 = 1 
IF(DISIDE(X1S2,Y1S2).NE.DISIDE(X2S2,Y2S2)) F3 = 1 
IF(F1.EQ.1) GOTO 600 
IF(F2.EQ.1) GOTO 600 
IF(F3.EQ.1) GOTO 600 

LINEA = DABS(X1S2*XCOEFD + Y1S2*YCOEFD + CONSTD) 
LINEB = DABS(X2S2*XCOEFD + Y2S2*YCOEFD + CONSTD) 
LINEC = DABS(X3S2*XCOEFD + Y3S2'''YCOEFD + CONSTD) 

C REFER TO SOFTWARE EXPLANATION IN PREVIOUS SUBROUTINE FOR LINE TEST 
C COHHENTS. 
C 

C 

C 

F4 = 0 
F6 = 0 
IF((I.EQ.1).AND. (LINEB.LE.LINEA)) F4 = 1 
IF((I.EQ.-1).AND.(LINEA.GE.LINEB)) GOTO 500 
IF((F4.EQ.1).AND.(SCAN2.LE.END2-3)) GOTO 500 
IF ( (LINEA. LE. LlNEB) . AND. (LINEC. LE . LINEB)) F6 = 1 
IF(DISIDE(X2S2,Y2S2).NE.DISIDE(X3S2,Y3S2)) F6 = 1 
IF(F6.EQ.1) GOTO 500 
IF((F4.EQ.1).AND.(SCAN2.GT.END2-3)) GOTO 800 

SCAN2 = SCAN2+1 
I.= -1 
GOTO 500 

600 BEGIN2 = SCAN2 
C 

C 

C 
C 

C 

C 

C 

IF(F1.EQ.1) XDEND2 = X1S2 
IF(F1.EQ.1) YDEND2 = Y1S2 
IF(F2.EQ.1) XDEND2 = X2S2 
IF(F2.EQ.1) YDEND2 = Y2S2 

IF((F1.EQ.1).OR.(F2.EQ.1)) GOTO 750 

XCOEF2 = Y1S2 - Y2S2 
YCOEF2 = X2S2 - X1S2 
CONST2 = Y2S2*X1S2-YlS2'·'X2S2 

GRADET = XCOEFD*YCOEF2 - XCOEF2*YCOEFD 

ANGDIF = DABS(ANGLE(XCOEFD,-YCOEFD) - ANGLE(XCOEF2,-YCOEF2)) 
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NEXT = BEGIN2 + 1 
C 

IF(ANGDIF.LE.MINANG) WRITE(1,700) BEGIN2,NEXT 
700 FORMAT(' SEGMENT OF SIDE2 BETWEEN POINT NUMBERS' ,IS,' AND ',15,' 

C 

C 

& TOO NEAR PARALLEL WITH DIAMETER') 
IF(ANGDIF.LE.MINANG) DISUB = DISUB-1 
IF(ANGDIF.LE.MINANG) GOTO 1100 

XDEND2 = (YCOEFD*CONST2 - YCOEF2"CONSTD) /GRADET 
YDEND2 = (XCOEF2"CONSTD - XCOEFD"CONST2) /GRADET 

C WRITE DIAMETER END POINTS TO FILE. 
C 

750 WRITE(8,780) XDEND1,YDEND1 
WRITE(8,780) XDEND2,YDEND2 

C 
C FILE FORMAT STATEMENT. 
C 

780 FORMAT(2F11.4) 
C 

F = 0 
800 IF(F.NE.O) F = 1 

C 

C 

C 

IF(F.EQ.1) ENDERR = ENDERR + 1 
IF(F.EQ.1) DISUB = DISUB - 1 

1100 RETURN 

END 

C ************7~ ..... *** ... ';i,*;'.**-. ... ,;-!: ..... * ... 'dd:-.';*-.·d.*i;-.';-.';*-.'r*-. .. **** ..... **inb .. ** .... "**** ... ':***** 

C 

C 

C 

C 

C 
C 

FUNCTION DISIDE(X,Y) 

INTEGER DISIDE,DISUB,SETSUB 

INTEGER*4 X,Y 

DOUBLE PRECISION XCOEF,YCOEF,CONSNT,LINE,XCOEFT,YCOEFT,CONST 
DOUBLE PRECISION XCOEFD,YCOEFD,CONSTD 

COMMON/SET8/DISUB/SET11/XCOEFT,YCOEFT,CONST 
COMMON/SET13/XCOEFD,YCOEFD,CONSTD/SET14/SETSUB 

C DISIDE DETECTS WHICH SIDE OF THE CALCULATED DIAMETER LINE POINT WITH 
C CO-ORDINATES X,Y IS POSITIONED. THE LINE EXPRESSION IS POSITIVE 
C FOR ALL POINTS ABOVE IT, ZERO FOR ALL POINTS IN IT AND NEGATIVE 
C FOR ALL POINTS BELOW IT IN THE CARTESIAN PLANE. DISIDE IS MADE 1,0 
C OR -1 RESPECTIVELY ACCORDING TO WHICH OF THESE CONDITIONS APPLIES. 
C SETSUB IS THE SWITCH WHICH TELLS THE FUNCTION WHICH EQUATION IS 
C APPROPRIATE FOR THE CURRENT CALL. 
C 
C 

C 

C 

IF(SETSUB.EQ.O) XCOEF = XCOEFT 
IF(SETSUB.EQ.O) YCOEF = YCOEFT 
IF(SETSUB.EQ.O) CONSNT = CONST 

IF(SETSUB.EQ.1) XCOEF = XCOEFD 
IF(SETSUB.EQ.1)YCOEF = YCOEFD 
IF(SETSUB.EQ.1) CONSNT = CONSTD 

LINE = X*XCOEF + Y'·'YCOEF + CONSNT 
IF(LlNE.LE.-1.0D-36) DISIDE = -1 
IF(LlNE.GE.1.0D-36) DISIDE = 1 
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C 

C 

IF((LINE.GT.-l.OD-36).AND.(LINE.LT.l.OD-36)) DISIDE = 0 

RETURN 
END 

C ****-,'r*-;":**.,'n,>**-.';**************-Idr ... 'r*******************,b":************** 
FUNCTION ANGLE(A,B) 

C 
INTEGER Fl,F2,F 

C 
DOUBLE PRECISION R2,S2,C2,A,B,PI,ANGLE,Sl,Cl 

C 
COMMON/SET7/PI 

C 
C ------------------------------------------------------------------
C 
C PUT SQUARES OF HYPOTENUSE INTO R2,SINE INTO S2,COSINE INTO C2. 
C 

C 

C 

R2 = A*A + B*B 
IF(R2.LT.2.0E-4) WRITE(l,lO)A,B 

10 FORMAT ( 'ERROR-PARAMETERS' ,n .5,' AND' ,F7 .5,' PASSED TO ANGLE 
& FUNCTION TOO SMALL') 

IF(R2.LT.2.0E-4) GOTO 400 

S2 = A*A/R2 
C2 = B*B/R2 

C ENSURE THAT NUMERICAL ACCURACY PROBLEMS DO NOT PREVENT CORRECT 
C WORKING OF OCTANT TRAPS. 
C 

C 

C 

C 

C 

C 
C 
C 

IF(S2.LT.1.0E-4) S2 = 0.0 
IF(C2.LT.1.0E-4) C2 = 0.0 

.IF(S2.GT.1.0-1.0E-4) S2 = 1.0 
IF(C2.GT.1.0-1.0E-4) C2 = 1.0 

F = 0 
IF(DABS(S2-C2).LT.l.OE-4) F = 1 
IF(F.EQ.1) S2 = 0.5 
IF(F.EQ.1) C2 = 0.5 

IF(C2.LT.S2) S2 = 1.0 - C2 
IF(S2.LT.C2) C2 = 1.0 - S2 

Sl = DSIGN(DSQRT(S2) ,A) 
Cl = DSIGN(DSQRT(C2) ,B) 

C ARCSINE AND ARCCOS ARE NOT INTRINSIC FUNCTIONS IN THIS VERSION 
C OF FORTRAN. THIS PROBLEM IS OVERCOME BY USING ARCTAN. 
C 
C 
C 

C 

IF((A.LT.O.O).OR.(B.LE.O.O)) GOTO 100 
F1=0 
F2=0 
IF((0.0.LE.S2).AND.(S2.LE.0.5)) F1=1 
IF((0.5.LE.C2).AND.(C2.LE.1.0)) F2=1 
IF((F1.EQ.1).AND.(F2.EQ.1)) ANGLE = DATAN(S/DSQRT(1.0-S*S)) 

F1=0 
F2=0 
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C 

IF((0.5.LE.S2).AND. (S2.LE.l.0)) Fl=l 
IF((0.0.LE.C2).AND. (C2.LE.0.5)) F2=1 
IF((Fl.EQ.l).AND.(F2.EQ.l)) ANGLE = DATAN(DSQRT(l.O-C*C)/C) 
GOTO 400 

C ------------------------------------------------------------------
C 

C 

C 

100 IF((A.LE.O.O).OR.(B.GT.O.O)) GOTO 200 
F1=0 
F2=0 
IF((0.5.LE.S2).AND.(S2.LE.l.0)) Fl=l 
IF((0.0.LE.C2).AND.(C2.LE.0.5)) F2=1 
IF((Fl.EQ.l).AND.(F2.EQ.l)) ANGLE = DATAN(DSQRT(l.O-C*C)/C) 

Fl=O 
F2=0 
IF((0.0.LE.S2).AND.(S2.LE.0.5)) Fl=l 
IF((0.5.LE.C2).AND.(C2.LE.l.0)) F2=1 
IF((Fl.EQ.l).AND.(F2.EQ.l)) ANGLE = PI-(DATAN(S/DSQRT(l.O-S*S))) 
GOTO 400 

C ------------------------------------------------------------------
C 

C 

C 

200 IF((A.GT.O.O).OR.(B.GE.O.O)) GOTO 300 
Fl=O 
F2=0 
IF((0.0.LE.S2).AND.(S2.LE.0.5)) Fl=l 
IF((0.5.LE.C2).AND.(C2.LE.l.0)) F2=1 
IF((Fl.EQ.l).AND.(F2.EQ.l)) ANGLE = PI-(DATAN(S/DSQRT(l.O-S*S))) 

Fl=O 
F2=0 
IF((0.5.LE.S2).AND.(S2.LE.l.0)) Fl=l 
IF((0.0.LE.C2).AND.(C2.LE.0.5)) F2=1 
IF((Fl.EQ.l).AND.(F2.EQ.l)) ANGLE = 2"PI-(DATAN(DSQRT(1.0-C*C) 

&/C)) 
GOTO 400 

C ------------------------------------------------------------------
C 

C 

C 

300 IF((A.GE.O.O).OR.(B.LT.O.O)) GOTO 400 
Fl=O 
F2=0 
IF((0.5.LE.S2).AND.(S2.LE.l.0)) Fl=l 
IF((0.0.LE.C2).AND.(C2.LE.0.5)) F2=1 
IF((Fl.EQ.l) .AND. (F2.EQ.l)) ANGLE = 2i 'PI-(DATAN(DSQRT(1.0-C*C) 

&/C)) 

Fl=O 
F2=0 
IF((0.0.LE.S2).AND.(S2.LE.0.5)) Fl=l 
IF((0.5.LE.C2).AND.(C2.LE.l.0)) F2=1 
IF((Fl.EQ.l).AND.(F2.EQ.l)) ANGLE = 2"PI+(DATAN(S/DSQRT(1.0 

&-S*S))) 
GOTO 400 

C ------------------------------------------------------------------
C 

400 RETURN 
END 

- 400 -



C 

C 

C 

C 

C 

C 
C 
C 

PROGRAM ANALYZ 

INTEGER MAXSUB,NMAX,POSMAX(750),MINCEN,HISUB,LOSUB,F1,F2 
INTEGER DISUB,J,COUNT,DIF,NPM,FCF 

INTEGER*4 XP(10),YP(10) 

REAL MAXLEN(750) ,DILENS(750) ,CSA(750),XCOEFD,YCOEFD,CONSTD,TOLEN 
REAL MAXSUM,AVMAXD,LENGTH,MINDIA,PI,HIDIST,LODIST,TODIST,LEN 
REAL AVMX90,HILEN,LOLEN,XAXIS(750),YAXIS(750),MINCSA,MAXCSA 
REAL AVCSA,CSA90,DIASTS,CSASTS 

DOUBLE PRECISION CWORIG,CF,XDEND1,YDEND1,XDEND2,YDEND2 

COMMON/SET1/XP,YP/SET2/CWORIG/SET3/CF/SET4/SCALE 

C PROGRAM ANALYZ FOLLOWS PROGRAM DIAMRS AS THE THIRD OF THREE 
C CHAINED PROGRAMS DESIGNED TO CALCULATE ARTERY DIAMETERS. IT 
C CONCERNS ITSELF WITH THE ANALYSIS OF DIAMETER LENGTHS WHICH 
C ARE CALCULATED FROM THE POINTS OF INTERSECTION CONTAINED IN 
C THE FILE DIAMETER.EPS. 
C 
C THE FACILITY EXISTS WHEREBY RELATIVE RESULTS (i.e. %STENOSIS etc) 
C MAY BE CONVERTED TO ABSOLUTE MEASURES BY THE APPLICATION OF A 
C MAGNIFICATION CORRECTION FACTOR. 
C 
C 
C PUT THE NUMBER OF DIGITISER UNITS IN 1mm INTO SCALE AND AN 
C ESTIMATE OF THE USERS HAND TRACING TOLERANCE INTO TOL. 
C 

C 

SCALE = 39.37 
TOL = 22.04 

C SET PI 

C 
C 

PI = 3.141592654 

C READ THE CONTENTS OF POINTMAG.NIF. IF MAGNIFICATION CORRECTION IS 
C REQUIRED ACTUAL DATA WILL BE PRESENT. IF NOT REQUIRED, THEN XP(l) 
C YP(l) WILL BE -1,-1. THE FLAG FCF DETECTS THIS CONDITION CAUSING 
C A WARNING TO BE PRINTED WITH THE RESULTS. IF THE NUMBER OF POINT 
C MODE COORDINATES IS NOT EQUAL TO FOUR(THE REQUIRED NUMBER), THEN 
C ABSOLUTE MEASUREMENTS CANNOT BE DERIVED AND THE PROGRAM REVERTS TO 
C PRODUCING ONLY RELATIVE ONES. 
C 

C 

C 

C 

FCF = 0 

CALL OPEN(6, 'POINTMAGNIF' ,0) 
J = 0 
NPM = 0 

1 J = J+1 
READ(6,5,END=2) XP(J),YP(J) 
NPM = NPM+1 
GOTO 1 

2 IF((XP(1).EQ.-1).AND.(YP(1).EQ.-1)) FCF = 1 
IF((XP(1).EQ.-1).AND.(YP(1).EQ.-1)) CF = 1.0 
IF((XP(1).EQ.-1).AND.(YP(1).EQ.-1)) REWIND 6 
IF((XP(1).EQ.-1).AND.(YP(1).EQ.-1)) WRlTE(6,40) CF 
IF((XP(1).NE.-1).AND.(YP(1).NE.-1).AND.(NPM.NE.4)) WRITE(I.30) 
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C 

C 
C 
C 

IF(NP~I.NE.4) XP(l) = -1 
IF (NP~I.NE. 4) YP(l) = -1 
IF((XP(1).EQ.-1).AND.(YP(1).EQ.-1)) GOTO 3 

WRITE (l , 35 ) 
READ(1,40) CWORIG 
CALL MAGNIF 

C OPEN DIAMETER END POINTS FILE. 
C 

3 CALL OPEN(7, 'DIAMETEREPS' ,0) 
C 
C OPEN A FILE FOR STORING THE ARTERY AXIS POINTS (FOR PLOTTING). 
C 

CALL OPEN(8, 'AXIS-POINTS' ,0) 
C 
C READ DIAMETER END POINTS, CALCULATE DIMIETER LENGTHS, CROSS-
C SECTIONAL AREAS, AXIS POINTS AND OBTAIN N (NDIAMS). 
C 

C 
C 
C 

NDIAMS = 0 
J = 0 

10 J = J+l 
READ(7,100,END=20) XDEND1,YDEND1 
READ(7,100) XDEND2,YDEND2 
DILENS (J) = DSQRT( (XDENDl"XDENDl+XDEND2*XDEND2+YDEND1*YDENDl+ 

&YDEND2"YDEND2) - 2* (XDEND1 "'XDEND2+YDEND 1 *YDEND2)) 
CSA(J) = PI*((DILENS(J)/2.0)"(DILENS(J)/2.0)) 
XAXIS(J) = (XDEND1+XDEND2)/2.0 
YAXIS(J) = (YDEND1+YDEND2)/2.0 
WRITE(8,100) XAXIS(J),YAXIS(J) 
WRITE(8,100) XAXIS(J),YAXIS(J) 
NDIAMS = NDIAMS+1 
GOTO 10 

C FILE FORMAT STATEMENT. 
C 

C 
C 
C 

5 FORMAT(2I7) 
30 FORMAT(' INCORRECT NUMBER OF POINT MODE COORDINATES-PROGRAM 

& REVERTING TO CALCULATION OF RELATIVE MEASURES ONLY') 
35 FORMAT(' ENTER CATHETER WIDTH IN MM (e.g. 2.0) ') 
40 FORMAT(F7.2) 
100 FORMAT(2F11.4) 

C PUT mNnlU~1 DIMIETER LENGTH INTO MINDIA AND MAXIMUM DIAMETER LENGTH 
C INTO MAXDIA: PUT MINIMU~I CSA INTO HINCSA AND MAXIMUM CSA INTO MAXCSA 
C PUT LOCATION OF MINUlAL C.S.A. INTO HINCEN. 
C 

C 

20 Fl = 0 
HINDIA = DILENS (l) 
MAXDIA = DILENS(l) 
MINCSA = CSA(l) 
~IAXCSA = CSA (l) 
HINCEN = 1 

DO 3500 DISUB = 1,NDIA~S 
IF(DILENS (DISUB) . LT. ~IINDIA) HINDIA = DILENS (DISUB) 
IF(DlLENS(DISUB).GT.MAXDIA) ~~XDIA = DILENS(DISUB) 
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C 

3500 
C 
C 
C 
C 
C 
C 

C 

3600 
C 
C 
C 
C 

C 
C 

IF(CSA(DISUB).LT.MINCSA) Fl = 1 
IF(Fl.EQ.l) MINCSA = CSA(DISUB) 
IF(Fl.EQ.l) MINCEN = DISUB 
Fl = 0 

IF(CSA(DISUB).GT.MAXCSA) MAXCSA = CSA(DISUB) 
CONTINUE 

THERE MAY BE SEVERAL DIAMETER LENGTH MAXIMA WITHIN THE LIMITS OF HAND 
TRACING TOLERANCE. PUT MAXIMA INTO MAXLEN( ) WITH SUBSCRIPT MAXSUB. 
PUT DILENS( ) SUBSCRIPTS OF MAXIMA IN POSMAX( ). 

MAXSUB = 0 
DO 3600 DISUB = 1,NDIAMS 

F1 = 0 
IF(DILENS(DISUB).GT.MAXDIA-TOL) Fl = 1 

IF(Fl.EQ.l) MAXSUB = MAXSUB + 1 
IF(Fl.EQ.l) MAXLEN(MAXSUB) = DILENS(DISUB) 
IF(Fl.EQ.l) POSMAX(MAXSUB) = DISUB 
CONTINUE 

PUT NUMBER OF MAXIMA INTO NMAX 

C PUT AVERAGE OF MAXIMUM DIAMETERS INTO AVMAXD AND 90% OF THIS VALUE 
C INTO AVMX90 
C 

MAXSUM = 0.0 
DO 3700 MAXSUB = 1,m!AX 

MAXSUM = MAXSUM + MAXLEN(MAXSUB) 
3700 CONTINUE 

C 

AVMAXD = MAXSUM/NMAX 
AVMX90 = 0.9*AVMAXD 

C CONVERT AVERAGE MAXIMAL AND 90% OF AVERAGE MAXIMAL DIAMETER 
C INTO CROSS SECTIONAL AREAS(CIRCULAR ASSUMPTION,SINGLE PLANE). 
C 

C 
C 
C 
C 
C 
C 

C 
C 

3800 

AVCSA = PI*((AVMAXD/2.0)*(AVMAXD/2.0)) 
CSA90 = 0.9*AVCSA 

PUT DISTANCE ALONG AXIS FROM TOP OF AXIS TO CENTRE OF MI~I~ I~,O 
HILEN. PUT DISTANCE ALONG AXIS FROM CENTRE OF MINIMA TO BOTTOM OF 
AXIS INTO LOLEN 

LEN = 0.0 
NDIAMS = NDIMIS-l 
DO 3800 DISUB = 1,NDIAMS 

LEN = LEN + LENGTH(XAXIS(DISUB),YAXIS(DISUB) ,XAXIS(DISUB+l) ,YAXI 
&S(D1SUB+1)) 

IF(D1SUB.EQ.MINCEN-l) HILEN = LEN 
IF(DISUB.EQ.MINCEN-l) LEN = 0.0 

CONTINUE 
NDIAMS = NDIAMS+l 

LOLEN = LEN 
TOLEN = HILEN + LOLEN 
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C 
C STARTING AT CENTRAL NINIMillI, MOVE UP AND DOWN TO LOCATE FIRST 
C OCCURANCE OF A CROSS SECTIONAL AREA GREATER THAN OR EQUAL TO 
C CSA90. PUT CSA( ) SUBSCRIPTS INTO HISUB,LOSUB RESPECTIVELY. 
C IF HI SUB OR LOSUB ARE NOT FOUND, SET FLAGS Fl,F2 RESPECTIVELY 
C 

C 

Fl = 0 
DISUB = MINCEN+l 
DO 3900 COUNT = 1,MINCEN 

DISUB = DISUB-l 
IF(CSA(DISUB).GE.CSA90) GOTO 3950 

3900 CONTINUE 
Fl = 1 

3950 HISUB = DISUB 

F2 = 0 
DO 4000 DISUB = MINCEN,NDIAMS 

IF(CSA(DISUB).GE.CSA90) GOTO 4500 
4000 CONTINUE 

F2 = 1 

4500 LOSUB = DISUB 
C 
C 
C PUT DISTANCE FROM UPPER 90% MAX CSA TO CENTRE INTO HIDIST AND 
C DISTANCE FROM LOWER 90% ~~X CSA INTO LODIST. 
C INITIALISE HIDIST AND LODIST TO 0.0 TO ACT AS FLAG FOR NON-EXISTENCE 
C OF ONE OR THE OTHER. 
C 

C 

C 

C 

C 

C 

C 

IF(Fl.EQ.l) TODIST = 0.0 
IF(Fl.EQ.l) GOTO 4650 

DIF = MINCEN - HISUB 
IF(DIF.EQ.O) HIDIST = 0.0 
IF(DIF.EQ.O) GOTO 4650 

LEN = 0.0 
MINCEN = MINCEN-l 
DO 4600 DISUB = HISUB,MINCEN 

LEN = LEN + LENGTH(XAXIS(DISUB) ,YAXIS(DISUB) ,XAXIS(DISUB+l) ,YAXI 
&S(DISUB+l)) 

4600 CONTINUE 
MINCEN = NINCEN+l 
HIDIST = LEN 

4650 IF(F2.EQ.l) TODIST = 0.0 
IF(F2.EQ.l) GOTO 4800 

DIF = MINCEN - LOSUB 
IF(DIF.EQ.O) LODIST = 0.0 
IF(DIF.EQ.O) GOTO 4750 

LEN = 0.0 
LOSUB = LOSUB-l 
DO 4700 DISUB=NINCEN,LOSUB 

LEN = LEN + LENGTH (XAXIS (DISUB) ,YAXIS(DISUB) ,XAXIS(DISUB+l) , 
&YAXIS(DISUB+l)) 

4700 CONTINUE 
LOSUB = LOSUB+l 
LODIST = LEN 

4750 TODIST = HIDIST+LODIST 
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C 
C 
C PUT PERCENTAGE DIAMETER CONSTRICTION INTO DIASTS, PERCENTAGE CROSS 
C SECTIONAL AREA INTO CSASTS. 
C 

C 
C 
C 

4800 DIASTS = 100'~ ((AVMAXD-MINDIA) / AVMAXD) 
CSASTS = 100*((AVCSA-MINCSA)/AVCSA) 

C OUTPUT BASIC INFORMATION TO PRINTER AT THE START OF A NEW PAGE. 
C 

C 

C 

C 

WRlTE(2,5800) 
5800 FORMAT(lH1, , ') 

IF(FCF.EQ.1) WRlTE(2,5900) 
5900 FORMAT(' NOTE-ABSOLUTE MEASUREMENTS BELOW REFER TO THE PROJECTED 

& DIMENSIONS TAKEN FROM ') 
IF(FCF.EQ.1) WRlTE(2,5925) 

5925 FORMAT ( , 
& ') 

IF(FCF.EQ.1) WRlTE(2,5950) 
5950 FORMAT(' THE BITPAD. i.e. THEY ARE NOT CORRECTED FOR MAGNIFICATI 

&ON ') 
IF(FCF.EQ.1) WRlTE(2,5975) 

5975 FORMAT ( , 
&= ') 

WRITE(2,6100) 
6100 FORMAT ( , SINGLE PLANE OUTPUT') 

WRlTE(2,6200) 
6200 FORMATe I ... b·~ ... ~********** ... ,,:*****I) 

WRlTE(2,6300) 
6300 FORMAT( , ') 

WRITE(2,6400) 
6400 FORMAT ( , DIAMETER RESULTS') 

WRlTE(2,6500) 
6500 FORMAT(' ----------------') 

AVMAXD = ((100*AVMAXD/SCALE+0.5)/100)'~CF 

WRITE (2,6600) AVMAXD 
6600 FORMAT ( , MEAN MAXIMAL DIAMETER 

AVMX90 = ((100*AVMX90/SCALE+0.5)/100)*CF 
WRITE (2,6700) AVMX90 

6700 FORMAT(' 90% OF MAXIMAL DIAMETER 

= I ,F6.2, I mm') 

= ',F6. 2, I mm I ) 

C 

C 

C 

C 

MINDIA = ((100*MINDIA/SCALE+0.5)/100)*CF 
WRITE (2,6800) MINDIA 

6800 FORMAT(' MINIMUM DIAMETER 

DIASTS = (lOO"DIASTS+O. 5) / 100 
WRITE (2,6900) DIASTS 

6900 FOR~IAT(' % DIAMETER STENOSIS 

WRlTE(2,7000) 
7000 FORMAT ( , ') 

WRlTE(2,7100) 
7100 FORMAT(' CROSS-SECTIONAL AREA RESULTS') 

WRITE (2,7200) 
7200 FORMAT(' ----------------------------') 

= I ,F6.2, t mm') 

= ',F6.2,' %') 

AVCSA = ((lOO*AVCSA/ (SCALE*SCALE)+O. 5) / 100)"CF 
WRITE (2,7300) AVCSA 
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7300 FORl'IAT(' 
C 

l'IEAN l'IAX INAL C. S . A . = I ,F6.2, I sq.mm') 

C 

C 

C 

C 

CSA90 = ((l00*CSA90/ (SCALE"SCALE)+O. 5) / 100)"CF 
WRITE (2,7400) CSA90 

7400 FORl'lATe' 90% OF l'IAXIMAL C.S.A. = ',F6.2,' sq.mm') 

mNCSA = ((loo"mNCSA/ (SCALE"SCALE)+O. 5) /100)*CF 
WRITE (2,7500) MINCSA 

7500 FORl'lAT(' MINIl'IUl'I C.S.A. = ',F6.2,' sq.mm') 

CSASTS = (lOO"CSASTS+O. 5)/100 
WRITE (2,7600) CSASTS 

7600 FORl'IAT(' % C.S.A. STENOSIS 

WRITE (2,7700) 
7700 FORl'lAT( , ') 

WRITE(2,7800) 
7800 FORl'lAT(, LENGTIl RESULTS') 

WRITE(2,7900) 
7900 FORl'lAT(' --------------') 

HIDIST = ((100*HIDIST/SCALE+0.5)/100)*CF 
IF(Fl.EQ.O) WRITE (2,8000) HIDIST 

= " F6. 2,' %') 

8000 FORI-lATe' DISTANCE TO UPPER 90th CENTILE = ',F6.2,' mm') 
C 

IF(Fl.NE.O) WRITE (2,8100) 
8100 FORl-IAT(' NO UPPER 90th CENTILE DETECTED') 

C 

C 

C 

C 

C 
C 
C 

LODIST = ((100*LODIST/SCALE+0.5)/100)*CF 
IF(F2.EQ.0) WRITE (2,8200) LODIST 

8200 FORl'lAT(' DISTANCE TO LOWER 90th CENTILE = ',F6.2,' mm') 

IF(F2.NE.0) WRITE (2,8300) 
8300 FORl'lATe' NO LOWER 90th CENTILE DETECTED') 

TODIST = ((100"TODIST/SCALE+0.5)/100)*CF 
WRITE (2,8400) TODIST 

8400 FORl'lAT(' STENOTIC LENGTH 

TOLEN = ((100*TOLEN/SCALE+0.5)/100)*CF 
WRITE (2,8500) TOLEN • 

8500 FORl'lAT(' SEGMENT LENGTH 

= I J F6. 2, f mm') 

= I ,F6.2, t mm') 

C CLOSE FILE AND END PROGRAM 
C 

C 

C 

ENDFILE 6 
ENDFILE 7 
ENDFILE 8 

STOP 

END 
C ~'r*********************,,:*-.h'r**-,':~':************·.'d:**-,T ... ,:****************** 

C 

C 

C 

FUNCTION LENGTH (XDUl'Il , YDUl'I1 ,XDlJN2, YDUN2) 

REAL XDUl'Il, YDUl'Il , XDUl'12 , YDUl'12 ,XDISP , YDISP , LENGTH 

XDISP = XDUl'I2 - XDUMl 
YDISP = YDUl'I2 - YDUl'Il 

LENGTH = SQRT(XDISP"XDISP + YDISP*YDISP) 

- 406 -



C 

C 

RETURN 
END 

C *********,':**,b,:*** ... ';-.,:*,,;*-lr*,,;*,,:****,';**,b'd:** ... ,,*****,':*,';*,hb ...... \ ;.:. :'******m':* 

C 

C 

c 

C 
C 

SUBROUTINE MAGNIF 

INTEGER*4 XP(IO),YP(IO) 

DOUBLE PRECISION XT,YT,XB,YB,CWPROJ,CWORIG,CF 
DOUBLE PRECISION DCOEFX,DCOEFY,DCONST,COEFXI,COEFYI 
DOUBLE PRECISION CONI,COEFX2,COEFY2,CON2,GRADI,GRAD2,XINTI,YINTI 
DOUBLE PRECISION XINT2,YINT2,TWO 

COMMON/SETI/XP,YP/SET2/CWORIG/SET3/CF/SET4/SCALE 

C THIS SUBROUTINE CALCULATES A MAGNIFICATION CORRECTION FACTOR FOR 
C SINGLE PLANE VIEWS. IT IS BASED ON THE RATIO OF KNOWN CATHETER 
C WIDTH TO PROJECTED CATHETER WIDTH WHICH IS DIGITISED ALONG WITH 
C THE STENOSIS. EMPLOYMENT OF SUCH A CORRECTION FACTOR ALLOWS 
C EXPRESSION OF RESULTS IN ABSOLUTE TERMS RATHER THAN ONLY RELATIVE 
CONES. 
C 
C USING THE FOUR POINTS WHICH DESCRIBE THE CATHETER WIDTH, CALCULATE 
C THE MIDPOINTS OF LINES JOINING THE TOP POINTS AND THE BOTTOM POINTS 
C OF EACH SIDE. 
C 
C INTEGER*4 VARIABLES CANNOT BE DIVIDED BY REAL NUMBERS. HENCE ASSIGN 
C THE VARIABLE TWO AS A DOUBLE PRECISION VALUE 2.0 
C 
C 

C . 

C 

C 

TWO = 2.0 

XT = (XP(I)+XP(3))/TWO 
YT = (YP(I)+YP(3))/TWO 

XB = (XP(2)+XP(4))/TWO 
YB = (YP(2)+YP(4))/TWO 

C CALCULATE THE MIDPOINT OF THE LINE BETWEEN THE ABOVE TWO MIDPOINTS 
C AS AN AXIS POINT. PUT INTO XMID,YMID. 
C 

C 

XMID = (XT+XB) /TWO 
YMID = (YT+YB)/TWO 

C THE CATHETER DIAMETER LINE IS CONSIDERED TO BE A LINE THROUGH XMID, 
C YMID PERPENDICULAR TO THE LINE JOINING THE TOP AND BOTTOM LINES. 
C PUT THE COEFFICIENTS OF THE DIAMETER INTO DCOEFX,DCOEFY,DCONST. 
C 

C 

DCOEFX = XT-XB 
DCOEFY = YT-YB 
DCONST = (YB*YMID+XB*XMID)-(YT*YMID+X1"XMID) 

C CALCULATE THE EQUATIONS OF THE LINES JOINING POINTS I WITH 2 AND 
C POINTS 3 WITH 4. 
C 

COEFXI = YP(I)-YP(2) 
COEFYI = XP(2)-XP(I) 
CONI = YP(2)"XP(l)-YP(l)*XP(2) 

C 
COEFX2 = YP(3)-YP(4) 
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COEFY2 = XP(4)-XP(3) 
CON2 = YP(4)*XP(3)-YP(3)*XP(4) 

C 
C CALCULATE GRADIENTS OF THESE LINES. 
C 

C 

GRADl = DCOEFX*COEFY1-COEFXl"DCOEFY 
GRAD2 = DCOEFX'·'COEFY2 -COEFX2*DCOEFY 

C CALCULATE THE POINTS OF INTERSECTION OF THE DIAMETER LINE WITH 
C THE ABOVE EQUATIONS. 
C 

C 

XINTl = (DCOEFY*CON1-COEFY1*DCONST)/GRADl 
YINT 1 = (COEFXl "DCONST-DCOEFX*CON 1) / GRAD 1 

XINT2 = (DCOEFY"CONZ -COEFYZ*DCONST) /GRADZ 
YINT2 = (COEFXZ*DCONST-DCOEFX*CONZ)/GRADZ 

C 
C CALCULATE THE DIAMETER OF THE CATHETER. 
C 

C 

CWPROJ = DSQRT((XINT1*XINT1+XINTZ*XINTZ+YINT1*YINT1+YINTZ*YINTZ) 
&-Z*(XINT1"XINTZ+YINT1*YINTZ) ) 

C CONVERT DIAMETER TO mm. 
C 

CWPROJ = CWPROJ/SCALE 
C 
C CALCULATE MAGNIFICATION CORRECTION FACTOR (CF). 
C 

CF = CWORIG/CWPROJ 
C 

RETURN 
C 

END 
C 
C **************-1dd~****-.·:*****-.·~-.·d:*** ... b':** ... ,:******-.,:******~,:******* ... ,:****** 

- 408 -



C 

C 

C 

C 

C 
C 
C 

PROGRMl ECCFTR 

INTEGER N,J,POSNIN,DISUB,NAXSUB,Fl,F2,LOSUB,HISUB,E,STEP 

REAL X1(2000),Y1(2000),X2(2000),Y2(2000),NINDIA,NAXDIA 
REAL NAXSUN,AVNAXD,XlP,Y1P,X2P,Y2P,XlD,Y1D,X2D,Y2D,CF,SCALE 
REAL XCENTR,YCENTR,DET,AREA1,AREA2,DIFAR,PAXX,PAXY 
REAL LPIX(1000j ,LPIY(1000),UPIX(1000) ,UPIY(1000) ,NPX,NPY,DI AN 
REAL AVECC,DILENS(1000) ,XAXIS(1000) ,YAXIS(1000) ,LENGTH,STORE 
REAL LDIFF,LRATE,UDIFF,URATE,PLRAD,DLRAD,NAXECC,PURAD,DURAD 
REAL SHIFT, ECCENT ,NINECC 

DOUBLE PRECISION NINANG,ANGDIF,DELTAL,DELTAU,LRAD,URAD,AP,BP,CP 
DOUBLE PRECISION AD,BD,CD,A(2000),B(2000),C(2000),DIFANG,PRXANG 
DOUBLE PRECISION CURANG,XTRAN,YTRAN 

CONNON/SET1/NINDIA/SET2/DlLENS,DISUB/SET3/XAXIS,YAXIS 
COmION/SET4/X1P, Y1P ,X2P, Y2P ,XlD, YlD, X2D, Y2D 
CONNON/SET5/X1, Y1 ,X2, Y2/SET6/POSHIN/SET7/NINECC ,NAXECC ,AVECC 

C THIS PROGRAN READS THE FILE OF DIANETER END POINTS PRODUCED BY THE 
C PROGRM! DIA~!RS AND CALCULATES THE NEAN ECCENTRICITY OF THE ARTERY 
C SEGNENT ALONG WITH THE NAXINAL ECCENTRICITY AND THE ECCENTRICITY AT 
C THE HININAL DIANETER. IN THE PAST MANY ASSm!PTIONS HAVE BEEN MADE 
C ABOUT THE INTERNAL SHAPE OF THE LEFT VENTRICLE, THE MOST COMMON ONE 
C BEING ITS APPROXIMATION TO AN ELLIPSOID. THIS PROGRAM IS BASED ON 
C THE ASSUMPTION THAT ONE NAY EXTRAPOLATE THIS SHAPE TO THE EXTERNAL 
C SURFACE AND CONSIDER IT TO BE A PORTION OF THE ARC OF A CIRCLE. 
C HENCE THE PROGRAN WORKS BY FIRST FITTING THE DISEASED ARTERY WITH 
C AN INTERPOLATED NORMAL PORTION BASED ON THE CALCULATIONS FOR THE 
C ARC OF A CIRCLE. ONCE ESTABLISHED, THE POINTS OF INTERSECTION OF 
C THE EXISTING DIANETER LINES WITH THE 'UNDISEASED ARTERY' CAN BE 
C Cm!PUTED AND HENCE ECCENTRICITY CALCULATED. 
C 
C HOWEVER, THIS ALGORITHN IS ONLY SUITABLE FOR ARTERIES WHICH ARE 
C EITHER STRAIGHT OR CURVED IN ONE DIRECTION. MULTIPLE CURVES IN 
C ALTERNATE DIRECTIONS WILL RESULT IN AN ANmlOLOUS FIT OF THE ARC 
C TO THE ARTERY, THUS GENERATING SPURIOUS RESULTS. 
C 
C 
C 
C SET HAND TRACING TOLERANCE INTO TOL AND THE Nm!BER OF BITPAD UNITS 
C IN 1mm INTO SCALE. 
C 

C 
C 
C 

TOL = 22.04 
SCALE = 39.37 

C READ THE FILE DIM!ETER. EPS CONTAINING THE DIANETER END POINT 
C INFORMATION, CALCULATE DIANETER LENGTHS, AXIS POINTS AND OBTAIN N. 
C 

CALL OPEN(6, 'DIANETER.EPS' ,0) 
C 
C OPEN A FILE FOR THE RESULTANT 'UNDISEASED' DIANETER END POINTS. 
C 

C 
C 
C 
C 

CALL OPEN(7, 'ARCRADII.EPS' ,0) 

OPEN THE FILE POINTMAG.NIF AND OBTAIN THE MAGNIFICATION CORRECTION 
FACTOR. 
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CALL OPEN(8, 'POINTNAG.NIF' ,0) 
C 

READ(8,5) CF 
5 FORNAT(F7.2) 

C 
N = 0 
J = 0 

10 J = J+l 
C 

READ(6,20,END=30) Xl(J),Yl(J) 
READ(6,20) X2(J),Y2(J) 
DILENS(J) = LENGTH(Xl(J),Yl(J),X2(J),Y2(J)) 
XAXIS(J) = (Xl(J)+X2(J))/2.0 
YAXIS(J) = (Yl(J)+Y2(J))/2.0 
N = N+l 
GOTO 10 

C 
20 FORNAT(2Fll.4) 

C 
C PUT NINIMUM DIAMETER LENGTH INTO MINDIA AND MAXIMUM DIAMETER LENGTH 
C INTO MAXDIA:PUT LOCATION OF MINIMAL DIAMETER INTO POSMIN. 
C 

C 

30 NINDIA = DILENS(l) 
MAXDIA = DILENS(l) 
POSMIN = 0 

DO 40 DISUB = 1,N 
IF(DILENS(DISUB).LT.MINDIA) POSMIN = DISUB 
IF(DILENS(DISUB).LT.MINDIA) MINDIA = DILENS(DISUB) 
IF(DILENS(DISUB) .GE .MAXDIA) ~IAXDIA = DILENS(DISUB) 

40 CONTINUE 
C 
C 
C THERE MAY BE SEVERAL DIAMETER LENGTH ~IAXIMA WITHIN THE LIMITS OF HAND 
C TRACING TOLERANCE. PUT SUCCESSIVE ~IAXnIA INTO MAXSUM AND COUNT 
C INTO MAXSUB. OBTAIN THE AVERAGE ~IAXIMA BY DIVISION OF MAXSUM BY 
C MAXSUB. 
C 

C 

C 

C 
C 

~IAXSUM = 0.0 
MAXSUB = 0 

DO 50 DISUB = 1,N 
Fl = 0 
IF(DILENS(DISUB).GT.MAXDIA-TOL) Fl = 1 
IF(Fl.EQ.l) MAXSUB = MAXSUB + 1 
IF(Fl.EQ.l) MAXSUM = MAXSUM + DILENS(DISUB) 

50 CONTINUE 

AVMAXD = MAXSUM/MAXSUB 

C STARTING AT CENTRAL MINIMUM, MOVE UP ~~ DOWN TO LOCATE FIRST 
C OCCURANCE OF A DIAMETER GREATER THAN OR EQUAL TO AVMAXD. PUT 
C DIAMETER SUBSCRIPTS INTO HISUB,LOSUB . IF NOT LOCATED, SET FLAG 
C Fl AND/OR F2. 
C 

C 

60 

F1 = 0 
E = 1 
STEP = -1 

DO 60 DISUB = POSMIN,E,STEP 
IF(DILENS (DISUB) . GE. AWIAXD) 
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C 

C 

C 

F1 = 1 
IF(Fl.EQ.1) CALL LOCMAX(E,STEP) 

70 HI SUB = DISUB 

F2 = 0 
E = N 
STEP = 1 

DO 80DISUB = POSMIN,E,STEP 
IF(DILENS(DISUB).GE.AVMAXD) GOTO 90 

80 CONTINUE 
F2 = 1 
IF(F2.EQ.1) CALL LOCMAX(E,STEP) 

90 LOSUB = DISUB 

C ASSIGN LOCATED DIAMETER END POINTS TO PROXIMAL AND DISTAL 
C REFERENCE POINTS. 
C 

C 

C 

X1P = XI(HISUB) 
YlP = Yl(HISUB) 
X2P = X2(HISUB) 
Y2P = Y2(HISUB) 

XID = Xl (LOSUB) 
YlD = Yl(LOSUB) 
X2D = X2(LOSUB) 
Y2D = Y2(LOSUB) 

C CALCULATE DISEASED AREA. 
C 

CALL AREAS(X1,Y1,X2,Y2,HISUB,LOSUB,AREAl) 
C 
C COMPUTE COEFFICIENTS OF DIAMETER LINES. 
C 

C 

C 

AP = YlP-YlP 
BP = X2P-X1P 
CP = XlP"Y2P-X2P*YlP 

AD = YlD-Y2D 
BD = X2D-XlD 
CD = X1D*Y2D-X2D*Y1D 

C CHECK DIAMETER LINES FOR PARALLELILITY USING THE FUNCTION ANGLE. 
C PARALLELILITY IS JUDGED TO BE PRESENT IF THE DIFFERENCE IN THE 
C ANGLES BETWEEN THE TWO DIAMETER LINES IS LESS THAN THE MINIMAL 
C OBTAINABLE ON THE BITPAD(MINANG). 
C 

C 

C 

C 

MINANG = 3.33333321E-4 

ANGDIF = (ANGLE(AD,-BD)-ANGLE(AP,-BP)) 

IF(ABS(ANGDIF).LE.MINANG) CALL LINFIT(HISUB,LOSUB) 
IF(ABS(ANGDIF).LE.MINANG) GOTO 135 

C CALCULATE THE POINTS OF INTERSECTION BETWEEN THE TWO DIAMETER LINES. 
C THIS REPRESENTS THE CENTRE OF THE CIRCLE FROM WHICH THE ARCS ARE 
C FITTED. 
C 

C 

DET = AP"BD-AD*BP 
XCENTR = (BP*CD-BD*CP)/DET 
YCENTR = (AD*CP-AP*CD)/DET 

C CALCULATE RADII FOR UPPER AND LOWER BOUND ARCS AT PROXIMAL AND 
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C DISTAL ENDS. 
C 

C 

PLRAD = SQRT ((X1P"X1P+XCENTR"XCENTR+Y 1P"Y 1P+YCENTR*YCENTR) - 2* 
& (X1P*XCENTR+Y1P'·'YCEl'.'TR) ) 

DLRAD = SQRT( (X1D"X1D+XCENTR"XCENTR+Y1D"'YlD+YCENTR*YCENTR) -2* 
&(X1D*XCENTR+Y1D*YCENTR)) 

PURAD = SQRT( (X2P"X2P+XCENTR"XCEl'.'TR+Y2P*Y2P+YCENTR"YCENTR) -2* 
& (X2P*XCENTR+Y2P"YCENTR)) 

DURAD = SQRT( (X2D"X2D+XCENTR"XCENTR+Y2D"Y2D+YCENTR*YCENTR) -2* 
&(X2D*XCENTR+Y2D*YCENTR)) 

C 
C CALCULATE THE ANGULAR RATE OF CHANGE OF RADIUS FOR UPPER AND LOWER 
C BOUNDS. 
C 

C 

C 

LDIFF = DLRAD - PLRAD 
LRATE = LDIFF/ANGDIF 

UDIFF = DURAD - PURAD 
URATE = UDIFF/ANGDIF 

C BEGIN TO WORK THROUGH DIAMETER LINES BETWEEN PROXIMAL AND DISTAL 
C ENDS CALCULATING FIRST THE EQUATION OF THE LINE IN TERMS OF A,B 
C AND C. SOLVE THE POINTS OF INTERSECTION WITH UPPER AND LOWER ARCS, 
C THEN CALCULATE MIDPOINTS, SHIFT AND ECCENTRICITY. STORE AND PROGRESS. 
C 

C 

MAXECC = 0.0 
MINECC = 0.0 
STORE = 0.0 

C CALCULATE THE AXIS POINT OF THE PROXIMAL DIAMETER LINE AND THE 
C ANGLE BETWEEN THIS POINT AND THE RIGHT DIRECTED HORIZONTAL. 
C 

C 

C 

C 

C 

C 

PAXX = (X1P+X2P)/2.0 
PAXY = (Y1P+Y2P)/2.0 

XTRAN = PAXX - XCENTR 
YTRAN = PAXY - YCENTR 

PRXANG = ANGLE(YTRAN,XTRAN) 

HISUB = HISUB+1 
LOSUB = LOSUB-1 

DO 110 J = HISUB,LOSUB 
A(J) = YCENTR-YAXIS(J) 
B(J) = XAXIS(J)-XCENTR 
CCJ) = XCENTR*YfuXIS(J) - XAXIS(J)*YCENTR 

C CALCULATE THE ANGULAR CHANGE BETh'EEN CURRENT AXIS POINT AND THE 
C PROXIMAL AXIS POI~l USING THE COORDINATE APPROACH. 
C 

C 

C 

C 

XTRAN = XAXIS(J) - XCENTR 
YTRAN = YAXIS(J) - YCEl'.'TR 

CURANG = ANGLE(YTRAN,XTRAN) 

DIFANG = CURANG - PRXANG 

C COMPUTE THE CHANGE IN RADIUS FOR THE CHANGE IN ANGLE AND ADJUST 
C LRAD fu~ URAD ACCORDINGLY. 
C 

DELTAL = LRATE,"DIFANG _ 412 _ 



C 

C 

DELTAU = URATE"DIFANG 

LRAD = PLRAD + DELTAL 
URAD = PURAD + DELTAU 

C CALCULATE THE COORDINATES OF THE POINTS AT THE ENDS OF THE RADII. 
C 

LPIX(J) = ((LRAD/PLRAD)*( (XIP-XCENTR)"COS (DIFANG) - (YlP-YCENTR) 
&*SIN(DIFANG)))+XCENTR 

LPIY(J) = ((LRAD/PLRAD)*((YIP-XCENTR)*COS(DIFANG)+(XIP-YCENTR) 
&*SIN(DIFANG)))+XCENTR 

UPIX(J) = ((URAD/PURAD)*((X2P-XCENTR)*COS(DIFANG)-(Y2P-YCENTR) 
&*SIN(DIFANG)))+XCENTR 

UPIY(J) = ((URAD/PURAD)*((Y2P-XCENTR)*COS(DIFANG)+(X2P-YCENTR) 
&*SIN(DIFANG)))+XCENTR 

C 
C CALCULATE THE ECCENTRICITY FACTORS AS THE SHIFT IN MIDPOINTS BETWEEN 
C THE DISEASED AND UNDISEASED SEGMENTS DIVIDED BY THE UNDISEASED 
C DIAMETER. 
C 

C 

C 

C 

C 

C 

C 

C 

MPX = (LPIX(J)+UPIX(J))/2.0 
MPY = (LPIY(J)+UPIY(J))/2.0 
DIAM = LENGTH(LPIX(J),LPIY(J),UPIX(J),UPIY(J)) 
WRITE(7,132) LPIX(J),LPIY(J) 
WRITE(7,132) UPIX(J),UPIY(J) 

132 FOR~IAT(2F11.4) 

SHIFT = LENGTH(XAXIS(J),YAXIS(J),MPX,MPY) 

ECCENT = (SHIFT/(DIAM/2.0))"100 

IF(ECCENT.GE.MAXECC) MAXECC = ECCENT 
IF (J. EQ. POSHIN) mNECC = ECCENT 
STORE = STORE+ECCENT 

110 CONTINUE 

HISUB = HISUB-l 
LOSUB = LOSUB+l 

AVECC = STORE/(LOSUB-I-HISUB-l) 

C CALCULATE UNDISEASED AREA. 
C 

LPIX(HISUB) = XIP 
LPIY(HISUB) = YIP 
UPIX(HISUB) = X2P 
UPIY(HISUB) = Y2P 

C 
LPIX(LOSUB) = XID 
LPIY(LOSUB) = YID 
UPIX(LOSUB) = X2D 
UPIY(LOSUB) = Y2D 

C 
CALL AREAS(LPIX,LPIY,UPIX,UPIY,HISUB,LOSUB,AREA2) 

C 
DIFAR = AREA2 - AREAl 

C 
C DISPLAY RESULTS. 
C 

C 

135 WRITE(I,140) 
140 FOmlAT(' ECCENTRICITY RESULTS. ') 
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C 

WRITE(l,150) 
150 FORNATe' ------------------

, ) 

WRITE(l,175) 
175 FORNAT(' ') 

C 
WRITE(1,200) NINECC 

200 FORNAT(' ECCENTRICITY FACTOR AT MINIMUM DIAMETER = ',F8.2, '%') 
C 

C 

300 
C 

C 

400 
C 

C 

500 
C 

550 
C 

C 

WRITE(l,175) 

WRITE(l,300) MAXECC 
FORNATe' MAXINAL ECCENTRICITY FACTOR = ',F8.2, '%') 

WRITE(l,175) 

WRITE(l,400) AVECC 
FORMATe' MEAN ECCENTRICITY FACTOR = ',F8.2,'%') 

WRITE(l,175) 
WRITE(l,175) 

WRITE(l,500) 
FORNAT( , AREA RESULTS. ' ) 

WRITE(l,550) 
FORNATe' ' ) 

WRITE(l,175) 

AREA1 = ((l00"AREA1) / ((SCALE"SCALE)+O. 5) / 100)*CF"'CF 
WRITE(1,600) AREA1 

600 FORNAT(' STENOTIC AREA = ',F8.2, 'sq.mm') 
C 

C 

650 
C 

C 

WRITE (1, 175) 

AREA2 = ((l00"AREA2) / ((SCALE*SCALE)+O. 5) / 100)"CF"CF 
WRITE(1,650) AREA2 
FORNAT( , .. I I I UNDISEASED AREA = ,F8.2, sq.mm ) 

WRITE(l,175) 

DIFAR = ((100*DIFAR)/((SCALE*SCALE)+0.5)/100)*CF*CF 
WRITE(1,700) DIFAR 

700 FORNAT(' ATHERONA AREA = ',F8.2, 'sq.mm') 
C 
C CLOSE FILES AND END. 
C 

C 

C 

C 

ENDFILE 6 
ENDFILE 7 
ENDFILE 8 

STOP 

END 

C ********~'r*********~':*********************************.'r* ... orn****** ... 'r*** 
FUNCTION ANGLE(A,B) 

C 
INTEGER Fl,F2,F 

C 
DOUBLE PRECISION R2,S2,C2,A,B,PI,ANGLE,Sl,C1 

C 
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COMMON/SET7/PI 
C 
C ------------------------------------------------------------------
C 
C PUT SQUARES OF HYPOTENUSE INTO R2,SINE INTO S2,COSI~~ INTO C2. 
C 

C 

C 

R2 = A*A + B*B 
IF(R2.LT.2.0E-4) WRITE(1,10)A,B 

10 FORMAT ( 'ERROR-PARAMETERS' ,F7.5,' AND' ,F7.5,' PASSED TO ANGLE 
& FUNCTION TOO SMALL') 

IF(R2.LT.2.0E-4) GOTO 400 

S2 = A*A/R2 
C2 = B*B/R2 

C ENSURE THAT NUMERICAL ACCURACY PROBLEMS DO NOT PREVENT CORRECT 
C WORKING OF OCTANT TRAPS. 
C 

C 

C 

C 

C 

C 
C 
C 

IF(S2.LT.1.0E-4) S2 = 0.0 
IF(C2.LT.1.0E-4) C2 = 0.0 

IF(S2.GT.1.0-1.0E-4) S2 = 1.0 
IF(C2.GT.1.0-1.0E-4) C2 = 1.0 

F = 0 
IF(DABS(S2-C2).LT.1.0E-4) F = 1 
IF(F.EQ.1) S2 = 0.5 
IF(F.EQ.1) C2 = 0.5 

IF(C2.LT.S2) S2 = 1.0 - C2 
IF(S2.LT.C2) C2 = 1.0 - S2 

Sl = DSIGN(DSQRT(S2) ,A) 
Cl = DSIGN(DSQRT(C2) ,B) 

C ARCSINE AND ARCCOS ARE NOT INTRINSIC FUNCTIONS IN THIS VERSION 
C OF FORTRAN. THIS PROBLEM IS OVERCOME BY USING ARCTAN. 
C 
C -----------------------------------------------------------------
C 

C 

C 

IF((A:LT.O.O).OR.(B.LE.O.O)) GOTO 100 
F1=0 
F2=0 
IF((0.0.LE.S2).AND.(S2.LE.0.5)) F1=1 
IF((0.5.LE.C2).AND.(C2.LE.1.0)) F2=1 
IF((Fl.EQ.1) .AND. (F2.EQ.l)) ANGLE = DATAN(S/DSQRT(1.0-S"S)) 

Fl=O 
F2=0 
IF((0.5.LE.S2).AND.(S2.LE.l.0)) Fl=l 
IF((0.0.LE.C2).AND.(C2.LE.0.5)) F2=1 
IF((Fl.EQ.l).AND.(F2.EQ.l)) ANGLE = DATAN(DSQRT(l.O-C*C)/C) 
GOTO 400 

C ------------------------------------------------------------------
C 

100 IF((A.LE.O.O).OR.(B.GT.O.O)) GOTO 200 
Fl=O 
F2=0 
IF((0.5.LE.S2).AND.(S2.LE.l.0)) Fl=l 
IF( (0.0. LE. C2) .AND. (C2.LE. 0.5)) F2=1 
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C 

C 

IF((F1.EQ.1).AND.(F2.EQ.1)) ANGLE = DATAN(DSQRT(l.O-C*C)/C) 

F1=0 
F2=0 
IF((0.0.LE.S2).AND.(S2.LE.0.5)) F1=1 
IF((0.5.LE.C2).AND.(C2.LE.1.0)) F2=1 
IF((F1.EQ.1).AND.(F2.EQ.1)) ANGLE = PI-(DATAN(S/DSQRT(l.O-S*S))) 
GOTO 400 

C ------------------------------------------------------------------
C 

200 IF((A.GT.O.O).OR.(B.GE.O.O)) GOTO 300 
F1=0 

C 

C 

F2=0 
IF((0.0.LE.S2).AND.(S2.LE.0.5)) F1=1 
IF((0.5.LE.C2).AND.(C2.LE.1.0)) F2=1 
IF((F1.EQ.1).AND.(F2.EQ.1)) ANGLE = PI-(DATAN(S/DSQRT(l.O-S*S))) 

F1=0 
F2=0 
IF((0.5.LE.S2).AND.(S2.LE.1.0)) F1=1 
IF((0.0.LE.C2).AND.(C2.LE.0.5)) F2=1 
IF ((Fl. EQ. 1) . AND. (F2. EQ. 1)) ANGLE = 2"PI - (DATAN (DSQRT(l. O-C*C) 

&/C)) 
GOTO 400 

C ------------------------------------------------------------------
C 

300 IF((A.GE.O.O).OR.(B.LT.O.O)) GOTO 400 
F1=0 

'C 

C 

F2=0 
IF((0.5.LE.S2).AND.(S2.LE.1.0)) F1=1 
IF((0.0.LE.C2).AND.(C2.LE.0.5)) F2=1 
IF((Fl.EQ.1) .AND. (F2.EQ.1)) ANGLE = 2"PI-(DATAN(DSQRT(1.0-C*C) 

&/C) ) 

F1=0 
F2=0 
IF((0.0.LE.S2).AND.(S2.LE.0.5)) F1=1 
IF((0.5.LE.C2).AND.(C2.LE.1.0)) F2=1 
IF((Fl.EQ.1) .AND. (F2.EQ.1)) ANGLE = 2'·'PI+(DATAN(S/DSQRT(1.0 

&-S*S))) 
GOTO 400 

C ------------------------------------------------------------------
C 

C 

C 

C 

C 

C 
C 
C 
C 
C 
C 

400 RETURN 
END 

SUBROUTINE LOCMAX 

INTEGER J,E,STEP,POSHIN,DISUB 

REAL HINDIA,MAX,DILENS 

COMMON/ SETl /HINDIA/ SET2 /D I LENS, DI SUB / SET7 /POSMIN 

THIS SUBROUTINE LOCATES THE MAXIMAL DIAMETER EITHER ABOVE OR 
BELOW THE MINIMUM IN THE ABSENCE OF A DIAMETER IN EXCESS OF THE 
AVERAGE MAXIMUM. 
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C 
C 
C 

C 
HAX = HINDIA 

DO 10 J = POSHIN,E,STEP 
IF(DILENS(J).GE.HAX) DISUB·= J 
IF(DILENS(J).GE.HAX) MAX = DILENS(J) 

10 CONTINUE 
C 

RETURN 
C 

END 
C 
C **************************************************~'r************** 
C 

C 

C 

C 

C 
C 
C 

SUBROUTINE LINFIT 

INTEGER POSHIN,J,HISUB,LOSUB 

REAL COEFXl,COEFYl,COEFCl,COEFX2,COEFY2,COEFC2,HAXEGC,MINECC 
REAL STORE ,XCOEFD , YCOEFD, CONSTD, GRADl ,LPIX( 1000) ,LPIY(lOOO) 
REAL UPIX(lOOO) ,UPIY(lOOO) ,HPX,HPY,DIAM,SHIFT,ECCENT,AVECC,GRAD2 
REAL XAXIS(1000),YAXIS(1000),Xl(2000),Yl(2000),X2(2000),Y2(2000) 

COHMON/SET5/XlP,YlP,X2P,Y2P,XlD,YlD,X2D,Y2D/SET3/XAXIS,YAXIS 
COMMON/SET6/Xl,YI,X2,Y2/SET7/POSMIN/SET8/MINECC,MAXECC,AVECC 

C THIS SUBROUTINE FITS A STRAIGHT LINE BETWEEN THE PROXIHAL AND 
C DISTAL DIAMETER LINES WHEN THEY HAVE BEEN JUDGED TO BE PARALLEL 
C TO EACH OTHER. THE SUBROUTINE GOES ON TO CALCULATE HAXIHAL AND MEAN 
C ECCENTRICITY AND ECCENTRICITY AT THE HINIHUM DIAMETER. 
C 
C 
C 
C DETER~INE THE EQUATIONS OF THE FITTED STRAIGHT LINES. 
C 
C LOWER BOUND. 
C 

C 

COEFXl = YIP-YID 
COEFYl = XlD-XlP 
COEFCl = YlD*XlP-YlP*XlD 

C UPPER BOUND. 
C 

C 

COEFX2 = Y2P-Y2D 
COEFY2 = X2D-X2P 
COEFC2 = Y2D*X2P-Y2P*X2D 

C CALCULATE THE DIAMETER EQUATION, THE POINTS OF INTERSECTION WITH 
C THE FITTED STRAIGHT LINES AND THE ECCENTRICITY FACTOR. OBTAIN THE 
C MAXIMUM, THE FACTOR AT THE MINIMUM DIAMETER AND THE MEAN. 
C 

C 

C 

HAXECC = 0.0 
MINECC = 0.0 
STORE = 0.0 

HISUB = HISUB+l 
LOSUB = LOSUB-l 
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C 

C 

LOSUB = LOSUB-1 

DO 10 J=HISUB,LOSUB 
XCOEFD = Yl(J)-Y2(J) 
YCOEFD = X2(J)-Xl(J) 
CONSTD = Y2 (J)"Xl (J) -Yl (J)"X2 (J) 

C LOWER BOUND. 
C 

C 

GRAD1 = XCOEFD*COEFY1-COEFX1*YCOEFD 
LPIX(J) = YCOEFD*COEFCI-COEFY1*CONSTD/GRAD1 
LPIY(J) = COEFXl*CONSTD-XCOEFD*COEFCl/GRADl 

C UPPER BOUND. 
C 

C 

C 

C 

C 

C 

GRAD2 = XCOEFD*COEFY2-COEFX2*YCOEFD 
UPIX(J) = YCOEFD"'COEFC2-COEFY2*CONSTD/GRAD2 
UPIY(J) = COEFX2"CONSTD-XCOEFD*COEFC2/GRAD2 

MPX = (LPIX(J)+UPIX(J))/2.0 
MPY = (LPIY(J)+UPIY(J))/2.0 
DIAM = LENGTH(LPIX(J),LPIY(J),UPIX(J),UPIY(J)) 
WRITE(7,132) LPIX(J),LPIY(J) 
WRITE(7,132) UPIX(J),UPIY(J) 

132 FORMAT(2F11.4) 

SHIFT = LENGTH(XAXIS(J),YAXIS(J),MPX,MPY) 

ECCENT = (SHIFT/(DIAM/2.0))"'100 

IF(ECCENT.GE.MAXECC) MAXECC = ECCENT 
IF(J.EQ.POSMIN) MINECC = ECCENT 
STORE = STORE+ECCENT 

10 CONTINUE 
C 

C 

C 

C 

C 

HISUB = HISUB-1 
LOSUB = LOSUB+1 

AVECC = STORE/(LOSUB-I-HISUB-l) 

RETURN 

END 

C ** ... 'r********** ... ':* ... h'r* ... '~*****.~,:***************** ... ,:****,,:**************** 
C 

C 

C 

C 

C 

C 

C 

FUNCTION LENGTH (XDUM1 , YDum ,XDUM2, YDum) 

REAL XDum, YDUm ,XDUM2, YDUM2 ,XDISP, YDISP ,LENGTH 

XDISP = XDUM2 - XDUM1 
YDISP = YDUM2.- YDUM1 

LENGTH = SQRT(XDISP*XDISP+YDISP*YDISP) 

RETURN 

END 

C ********** ... 'r*** ... ':*********************-J:*** ... '~ ... ,:********** ... ,:************ 
C 

SUBROUTINE AREAS(Xl,Yl,X2,Y2,HISUB,LOSUB,AREA) 
- 418 -



C 

C 

C 

C 
C 
C 

INTEGER J,HISUB,LOSUB 

REAL XSUM,YSUM,XA,TA,XB,YB,XC,YC,XD,YD,XE,YE,TRIARl(500) 
REAL TRIAR2(500),TRIAR3,TRIAR4,TRIAR5,AREA,Xl(1000),Yl(1000) 
REAL X2(1000),Y2(1000),XlP,YlP,X2P,Y2P,XlD,YlD,Y2D,Y2D 

COMMON/SET5/XlP,YlP,X2P,Y2P,XlD,YlD,X2D,Y2D 

C THIS SUBROUTINE CALCULATES THE AREA OF THE STENOSIS AND ITS 
C 'UNDISEASED' AREA. 
C 
C 
C 

C 

C 

C 

XSUM = 0.0 
YSUM = 0.0 

DO 10 J = HISUB,LOSUB 
XSUM = XSUM + Xl(J) 
YSUM = YSUM + Yl(J) 
XSUM = XSUM + X2(J) 
YSUM = YSUM + Y2(J) 

10 CONTINUE 

TFIAR3 = 0.0 

C COMPUTE THE CENTROID OF THE DATA. 
C 

XC = XSUM/«LOSUB-HISUB)*2) 
YC = YSUM/«LOSUB-HISUB)*2) 

C 
C CALCULATE THE LEFT HAND AREA. 
C 

C 

C 

C 

LOSUB = LOSUB-l 

DO 20 J = HISUB,LOSUB 
XA = Xl(J) 
YA = Yl(J) 
XB = Xl(J+l) 
YB = Yl(J+l) 

TRIARl (J) = «YB*XA+YC*XB+YA*XC) - (YB"XC+YC*XA+YA*XB) )/2.0 
TRIAR3 = TRIAR3 + TRIARl(J) 

20 CONTINUE 
C 

LOSUB = LOSUB+l 
C 
C CALCULATE THE RIGHT HAND AREA. 
C 

C 

C 

C 

HI SUB = HISUB+l 

DO 30 J = HISUB,LOSUB 
XD = X2(J) 
YD = Y2(J) 
XE = X2(J+l) 
YE = Y2(J+l) 

TRIAR2 (J) = «YE*XD+YC"XE+YD"XC) - (YE*XC+YC'·'XD+YD"XE)) /2.0 
TRIAR3 = TRIAR3 + TRIAR2(J) 
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C 

C 

30 CONTINUE 

HISUB = HISUB-l 
TRIAR3 = ABS(TRIAR3) 

C CALCULATE REMAINING AREAS. 
C 

G 

C 

G 

C 

TRIAR4 = ((Y2D*X1D+YG"X2D+YlD*XG) - (Y2D*XC+YC*X1D+YlD"X2D)) /2.0 
TRIARS = ((YlP*X2P+YC*X1P+Y2P*XC) - (YlP*XG+YG"X2P+Y2P"X1P)) /2.0 

AREA = ABS(TRIAR3 + TRIAR4 + TRIARS) 

RETURN 

END 

C **************,'f************,t:*******,'(**********.h':********* ... t:****,t:** 
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C 

C 

C 

C 

C 

C 

C 
C 

LIBRARY 'GINOGRAF' 
LIBRARY 'GINO' 
LIBRARY 'VAPPLB' 
LIBRARY 'LUSUBV' 

PROGRAH ARTDR 

INTEGER L1,L2,L3,J,NX,NY,N1,K,F,NPLOT,N2,N3,NT,C 

REAL X1(1000),Y1(1000) ,XMIN,XMAX,YHIN,YMAX,X(10) ,Y(10) 
REAL XTITLE,YTITLE,XVAL1(1000),YVAL1(1000),HAX,HIN,X2(1000) 
REAL Y2(1000),XVAL2(1000),YVAL2(1000),X3(1000),Y3(1000) 
REAL XVAL3(1000),YVAL3(1000) 

CHARACTER"l REPLY , REPLYl 
CHARACTER*32 XLAB,YLAB,FILE1,FILE2,FILE3 
CHARACTER"64 TITLE 

COHHON/SET1/NPLOT 

C PROGRAH ARTDR IS A GRAPHICS ROUTINE WHICH ALLOWS THE PLOTTING OF 
C COORDINATE INFORHATION PRODUCED BY THE SUITE OF QUANTITATIVE 
C ANGIOGRAPHIC MENSURATION PROGRAHS. A HAXIHml OF 3 FILES HAY BE 
C PLOTTED AT ANY ONE TIHE, AND HUST BE ENTERED IN THE FOLLOWING ORDER: 
C 

C 

1). THE DISEASED DIAHETER END POINTS (PRODUCED BY DIAHRS). 
2). THE UNDISEASED DIAHETER END POINTS (PRODUCED BY ECCFTR). 
3). THE ARTERY AXIS POINTS (PRODUCED BY DIAHRS). 

C THE PROGRAH HARNESSES GINO ROUTINES AND IS ONLY THEREFORE RUNABLE ON 
C SYSTEHS WHICH HOST THIS PACKAGE (IN THIS CASE THE PRIHE MAINFRAME). 
C 
C 
C 

C 

C 

1 CALL COUA('HOW HANY FILES DO YOU WISH TO PLOTCl-3) ') 
READ Cl ,5) NPLOT 

5 FORHAT(I2) 

WRITE (1,20) 
20 FORHAT(") 

IF(NPLOT.GE.2) WRITE(1,10) 
10 FORHAT('PLEASE OBSERVE YOU ENTER THE FILES IN THE CORRECT ORDER') 

C 

C 

C 

C 

C 

C 

I.I-: lTE Cl, 20) 

IF(NPLOT.GE.1) CALL COUA('DISEASED DIAHETER END POINT FILE IS ') 
IF(NPLOT.GE.1) READ(", , (A)') FILE1 
IF(NPLOT.GE.1) CALL STRLEN(FILEl,L1) 

WRITE Cl, 20) 

IF(NPLOT.GE.2) CALL COUA('UNDISEASED DIAHETER END POINT FILE IS ') 
IF(NPLOT.GE.2) READ(*, '(A)') FILE2 
IF(NPLOT.GE.2) CALL STRLEN(FILE2,L2) 

IF(NPLOT.EQ.3) CALL COUA('AXIS POINT FILE IS ') 
IF(NPLOT.EQ.3) READ(*, '(A)') FILE3 
IF(NPLOT.EQ.3) CALL STRLEN(FILE3,L3) 

WRITE Cl, 20) - 421 -



C 

C 

C 

C 

C 

C 

C 

C 

CALL COUA('XAXIS LABEL WILL BE ') 
READ(*, '(A)') XLAB 
CALL STRLEN(XLAB,NX) 

WRITE (1,20) 

CALL COUA('YAXIS LABEL WILL BE ') 
READ(*, '(A)') YLAB 
CALL STRLEN(YLAB ,NY) 

WRITE (1,20) 

CALL COUA('GRAPH TITLE WILL BE ') 
READ (* , , (A) ') TITLE 

IF(NPLOT.GE.1) OPEN(6,FILE=FILE1(1:L1),STATUS='OLD',ACCESS= 
&' SEQUENTIAL' ) 

IF(NPLOT.GE.1) CALL TOTAL(X1,Y1,6,N1) 
IF(NPLOT.GE.2) OPEN(7,FILE=FILE2(1:L2),STATUS='OLD',ACCESS= 

& ' SEQUENTIAL' ) 
IF(NPLOT.GE.2) CALL TOTAL(X2,Y2,7,N2) 
IF(NPLOT.EQ.3) OPEN(8,FILE=FILE3(1:L3),STATUS='OLD',ACCESS = 
IF(NPLOT.EQ.3) CALL TOTAL(X3,Y3,8,N3) 

F = 0 

C OBTAIN RELATIVE CORRECTION FACTORS FROM DISEASED 
DIAMETER END POINT DATA. 

C 

C 

C 

C 

C 

C 

C 

XMIN = 99999 
YMIN = 99999 
XMAX = -99999 
YMAX = -99999 

DO 300 J = 1, N1 
IF(X1(J) .LT.XMIN) XHIN = Xl(J) 
IF(Y1(J).LT.YMIN) YMIN = Y1(J) 
IF(X1(J).GE.XMAX) XMAX = X1(J) 
IF(Y1(J).GE.YMAX) YMAX = Y1(J) 

CONTINUE 

DIFFX = XMAX - XMIN 
DIFFY = YMAX - YMIN 

IF(DIFFX.GE.DIFFY) MIN = XMIN 
IF(DIFFX.GE.DIFFY) MAX = XMAX 
IF(DIFFY.GT.DIFFX) MIN = YMIN 
IF(DIFFY.GT.DIFFX) MAX = YMAX 

C = 1 

310 IF(C.EQ.1) NT = N1 
IF(C.EQ.2) NT = N2 
IF(C.EQ.3) NT = N3 

DO 320 J = 1,NT 
IF(C.EQ.1) XVAL1(J) = ((X1(J)-XMIN)/(MAX-MIN))*100 
IF(C.EQ.1) YVAL1(J) = ((Y1(J)-YMIN)/(MAX-MIN))*100 
IF(C.EQ.2) XVAL2(J) = ((X2(J)-XMIN)/(MAX-MIN))*100 
IF(C.EQ.2) YVAL2(J) = ((Y2(J)-YHIN)/(MAX-MIN))'·'100 
IF(C.EQ.3) XVAL3(J) = ((X3(J)-XMIN)/(MAX-MIN))*100 
IF(C.EQ.3) YVAL3(J) = ((Y3(J)-YMIN)/(MAX-MIN))*100 
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320 CONTINUE 
C 

C = C+l 
IF(C.NE.NPLOT+1) GOTO 310 

C 
C OBTAIN THE NUMBER OF DATA PAIRS BY INTEGER DIVISION. 
C 

C 

C 

IF(NPLOT.GE.1) N1 = N1/2 
IF(NPLOT.GE.2) N2 = N2/2 
IF(NPLOT.EQ.3) N3 = N3/2 

CALL GINO 

C CALL GRAPHICS TERMINAL 
C 

IF(F.EQ.O) CALL S5664 
C 
C CALL LASER PRINTER 
C 

350 IF(F.EQ.1) CALL CNA2 
C 
C SELECT BLACK PEN. 

CALL PENSEL(l,O.O,O) 
C 
C SET UP AXES (AXES TYPE,OPTHIUM WINDOW ,LINEAR ,LINEAR,DIVISIONS 
C PER AXIS ,MINX,MAXX ,MINY ,MAXY ,XLABEL, YLABEL) 
C 

C 

C 

C 
375 

C 

C 

C 

C 

CALL AXIPLO(0,160.0,,160.0,3,3,7,7,-20.0,120.0,-20,120.0 
&XLAB,NX,YLAB,NY) . 

CALL SPAGRA(10.0,5.0,XTITLE,YTITLE) 
CALL GRAMOV(XTITLE, YTITLE) 
CALL CHASTR(TITLE) 

C = 1 

IF(C.EQ.1) NT = N1 
IF(C.EQ.2) NT = N2 
IF(C.EQ.3) NT = N3 

DO 400 J = 1,NT,4 
K = 2*J-1 
IF(C.EQ.1) X(l) = XVAL1(K) 
IF(C.EQ.1) Y(l) = YVAL1 (K) 
IF(C.EQ.1) X(2) = XVAL1 (K+l) 
IF(C.EQ.1) Y(2) = YVAL1(K+l) 

IF(C.EQ.2) X(l) = XVAL2(K) 
IF(C.EQ.2) Y(l) = YVAL2(K) 
IF(C.EQ.2) X(2) = XVAL2(K+1) 
IF(C.EQ.2) Y(2) = YVAL2(K+1) 

IF(C.EQ.3) X(l) = XVAL3(K) 
IF(C.EQ.3) Y(l) = YVAL3(K) 
IF(C.EQ.3) X(2) = XVAL3 (K+ 1) 
IF(C.EQ.3) Y(2) = YVAL3 (K+l) 

C SET UP SYMBOL AND NUMBER OF POI~7S PER GRAPH (DATA,No.,SYMBOL). 
C 

CALL GRASYM(X,Y,2,C,0) 
C 
C PLOT POINTS AND JOIN BY LI~~S. 
C 
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CALL GRAPOL(X,Y,2) 
C 

400 CONTINUE 
C 

C = C+1 
IF(C.NE.NPLOT+1) GOTO 375 

C 
CALL GINEND 

C 
C HARD COPY OPTION. 
C 

C 

F = 0 
WRITE (1,600) 

600 FORMAT('DO YOU REQUIRE A HARD COPY (Y/N) ') 
READ (* , ' (A) ') REPLY 
IF (REPLY .EQ. 'y') F = 1 
IF(F.EQ.1) GOTO 350 

C RE-RUN OPTION. 
C 

C 

C 

C 

WRITE (1,700) 
700 FORMAT('DO YOU REQUIRE A RE-RUN (Y/N) ') 

READ(*, '(A)') REPLY1 
IF(REPLY1.EQ. 'y') GOTO 1 

CALL EXIT 

END 

C ****************** ... ,:***************m,:* ... ,:**********.,:*** ... ,:* ... ,:********** 
C 

C 

C 
C 
C 

SUBROUTINE STRLEN(CHRVAL.L) 

INTEGER L,J 
CHARACTER*32,CHRVAR 

J = 0 
100 J = J+1 

C 

C 

C 

c 

C 

C 

C 

C 
C 
C 

IF(CHRVAR(J:J).NE.' ') GOTO 100 
L = J-1 

RETURN 
END 

SUBROUTINE TOTAL(X,Y,CN,N) 

INTEGER J,NPLOT N,CN 

REAL X(1000),Y(1000) 

COMMON/SET1/NPLOT 

C THIS SUBROUTINE CALCULATES THE TOTALS OF THE DATA FILES 
C 
C 

J = 0 
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100 J = J+1 
C 

IF(CN.LE.8) READ(CN,300,END=200) X(J),Y(J) 
GOTO 100 

C 

C 

C 

N = J-1 

300 FORMAT(2F11.4) 

RETURN 
END 

C **** ... tr**********************************,'r************************* 
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330 IF 1=2 THEN ST1=N 

340 IF 1=3 THEN S12=N 

350 IF 1=4 THEN SUM1=N 

.360 IF 1=5 THEN SUM2=N 

370 IF 1=7 THEN GT=N 

~)80 NEXT I 
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C 
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C 

C 

C 

C 

c 

C 

1 
.~ c , 
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: C , ; 

" 

o. r~UO"t1I'1 \",uont...NL-L" .rVI\ 

INTEGER X(30),YI30),FILDESI12) 

DOUBLE PRECISION LENGTH,MPX(20),MPYI20),LENI20),RADLENI20) 

DOUBLE PRECISION ORIG,LENTHI,Ll,L2,VERT,HORI,VMF,HMF,MF 

PROGRAM CUSHCALC COMPUTES CHANGES IN MAGNIFICATION FACTORS 
W't'fll 
INCREASING HEIGHT AND RADIAL DISTANCE FROM THE CENTRE OF THE 
, 1~AEt!E ' 
INTENsIFIER. 

010 
READ FILE DESCRIPTORS IGIVEN IN FIRST 6 LINES OF FILE BITPD( 

INTO FILDESI). NOTE 1 = DRIVE NUMBER. FIRST ITEM OF ANY 

,S~ON 
HAS A SEPARATE READ STATEMENT TO FACILITATE CODING OF ERROR 
MES)A6~. 

'FILE DESCRIPTORS ARE INITIALLY READ INTO A VECTOR FOR THE 
,~~ 
"REASON. 

OPEN FILES. 

CALL OPENI6,'BITPDCOORDS',O) 

READI6,20) IFILDESIJ),J=I,121 

READ DATA FROM FIRST SQUARE; 

DO 10 J = 1,5 

READI6,20) XIJ) 

READI6,20) YIJ) 

CONTINUE 

FORMAT I 17> 
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C 

VERT = 0.568 
, 

HORI = 0.562 

C 

C CALCULATE LENGTHS 

Ll = 0.0 

L2 = 0.0 

VMF = 0.0 

HMF = 0.0 

MF =.0.0 

C 

L1-= ILENTHIIX(2),YI2),XI3),YI3»/393.7) 

L2 = ILENTHIIX(3),YI3),XI4),YI4»t393.7) 

C 

..... , c CALCULTE MAG FACTORS 

! , 
. i 

I 

'. . ~ 

, 
i 

",.:' ! 
.. { 

.. :'?~!::- ',: . 
~r~,.'.~~~ .. :' 

",:' ..... < 

I. 

I 

j 

C 

VMF = L1t VERT 

HMF = L2/HORI 

MF = IVMF+HMF)/2.0 

C 

WRITEll,30) Ll,VMF 

WRITEll,30) L2,HMF 

WR ITE I 1 , 35) MF 

30 FORMATI2F12.5) 

35 FORMATI' OVERALL MF = ',F12.5) 

C 

READ OUTER FIELD DATA 

C' 

DO" 40 J = 6,28,2 

."- .. 



" 

i 
I·­
I 
I 

. , --' .' 
~;i'i"I' 

. , 

I 
I 

I 

~'. . 

LEN(J) = 0.0 

RADLEN(J) = 0.0 

C 

C READ ORIGINAL DIMENSION 

C 

WRI TE (1,45) 

45 FORMAT(' INPUT ORIGINAL DIMENSION IN CMS') 

C 

C 

READ(1,60)ORIG 

READ (6, 20) X (J) 

READ(6,20) Y(J) 

READ(6,20) X(J+l) 

READ(6,20) Y(J+l) 

LEN(J) = «LENTHI(X(J),Y(J),X(J+l),Y(J+l»/393.7)/ORIG)/M 

MPX (J) = (X (J)+X (J+l» 12.0 

MPY(J) = (Y(J)+Y(J+l»/2.0 

RADLEN(J) = (LENGTH(X(1),Y(1),MPX(J),MPY(J»/393.7) 

WRITE(1,50) LEN(J),RADLEN(J) 

50 FORMAT(2F12.5) 

40 CONTINUE 

60 FORMAT (F7.5) 

C 

I . C ... 
-, C 

C 

C 

STOP 

END 

**********************************************************i, 
FUNCTION LENTHI(XDUM1,YDUM1,XDUM2,YDUM2) 

;"". 

INTEGER XDUM1,YDUM1,XDUM2,YDUM2 

DOUBLE PRECISION XDISP,"YDISP,LENTHI 

.... ;. -,', ~.' 



XDISP = XDUM2 - XDUMl 

YDISP = YDUM2 - YDUMl 

C 

LENTHI = DSQRT(XDISP*XDISP + YDISP*YDISP) 

C 

RETURN 

END 

C 

C **********************************************************: 

C 

C 

1 C 
! 

C 

. C 
' . .. ~ 

C 
" ~ . 

J ,', •• 

FUNCTION LENGTH(XDUM1,YDUM1,XDUM2,YDUM2) 

INTEGER XDUM1,YDUMl 

DOUBLE PRECISION XDUM2,YDUM2,XDISP,YDISP,LENGTH 

XDISP = XDUM2 - XDUMl 

YDISP = YDUM2 - YDUMl 

LENGTH = DSQRT(XDISP*XDISP + YDISP*YDISP) 

RETURN 

END 

********************************************************** 

t;' . 

". 

v .. . ' 



9. Transferring files between the Vector 3 and the Prime 

System. 

In order to allow the transfer of ASCII data between two 

computers, each must have a program which allows each 

computer to act as a transmission and/or reception device. 

These are GETFILE for the Prime and MOVE-IT for the Vector 3 

(held on the MOVE-IT disk, PDPll room, Department of Human 

Sciences, Loughborough University). 

ego Transferring the file AXPTS from the Vector 3 to the 

Prime. 

Machine 

VECTOR3 

PRIME 

VECTOR3 

VECTOR 3 

(acting as a 

Prime 

terminal) 

Command/Proinpts 

A>MOVE-IT 

LOGIN etc. 
OK, A *>ARTDR 

TA 

GETFILE Filename 

(to be produced in 

in Prime subdir.) 

OK, READY FOR FILE 
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Meaning 

Boot up and run 

program 

Login and attach to 

sUbdirectory you 

want data to be sent 

to ego ARTDR 

Select option which 

allows Vector to 

TA(lk) to Prime. 

NB. Vector must be 

attached to Prime 

through the 

Cambridge ring. 

Terminal emulator 

mode now active. 

Call up GETFILE and 

create output file. 



VECTOR 3 

(acting as a 

Prime 
terminal) 

TRANSFER 

Type ESC then S 

Filename to be sent 

to remote computer: 

ego B:AXPTS. 

Protocol to use? X 

TRANSMISSION COMPLETE 

Type ESC then ESC 

OK, CLOSE ALL 

Return to CP/M level 

Enter filename to 

send to Prime. 

Use fastest transfer 

protocol. 

Data sent. 
Close file at CP/M 

end. 

Close file at Prime 

end. 

File A}:PTS will now be resident in the ARTDR subdirectory. 
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C PROGRA" ""UGA.FOR/OBJ/SAY· WRITTEN AT 
C RADIOISOTOPE I"AGING UNIT, GROBY ROAD HOSPITAL, lEICESTER 
C TO DRAW SEG"ENTAl REGIONS PROCESSABlE UNDER NEW SOFTAWARE 
C 

CO""ON/OYlADR/IOYl II"BUF/I"BUF1(256) IYD"AP/"AP(256) 
CO""ON/I"ODE/"ODE II"GBlK/NBlK IEXT/IEXT(32) ITEXT/ITEXT(4) 
CO""ON/FRA"E/IFR" ICOUNT/ICNT I"ASHST/"ASRES(32) 
CO""ON/IOPAC/lIT(36),FlOTl18) IWORK/IWORK(256) 
CO""ON/FIlE/IFIlE(6) 
CO""ON/AREA1/IAREAGl2,58) IAREA2/IAREASl2,58) IAREA3/IAREAIl2,58) 
CO""ON/AREA4/IAREAll2,58) IAREAB/IAREABl2,58) 
CO""ON/ACNT/IGPT, ISPT, IIPT, IlPT, IBPT 
DI"ENSION IPTS(3) 
TYPE 588 
CAll SETDAT 
CAll YIDSET 
CAll FETCHl) 
CAll FNDOY3(1) 
CAll DISP 

188 CAll DRWSEGlIPTS) 
TYPE 585 
GO TO l118,128,998),NOYESl) 

118 CAll FETCH(1) 
CAll DISP 
TYPE 518 
GO TO l188,128,988),NOYESl) 

128 CAll STOAOIlIPTS) 
CAll IYIDCO(9) 
STOP' PROCESSING CO"PlETE' 

988 STOP'PROGRA" ERROR' 
588 FOR"ATllll15X,'RADIOISOTOPE I"AGING UNIT'II 

1 28X,'GROBY ROAD HOSPITAl'llll 
2 15X'SEG"ENTAl AREA DRAWING PROGRA"'IIII) 

585 FOR"ATl'8CHECK WITH NEW I"AGE lY OR N) ? '$) 
518 FOR"ATl'8REDRAW AREAS lY OR N) ? '$) 

END 

C 

SUBROUTINE SETDAT 
CO""ON/EXT/IEXT(32) 
CO""ON/TEXT/ITEXT(4) 
CO""ON/WORK/IWORK(256) 
CO""ON/FIlE/IFIlE(6) 
CO""ON/AREA1/IAREAG(2,58) IAREA2/IAREAS(2,58) IAREA3/IAREAI(2,58) 
CO""ON/AREA4/IAREAl(2,58) IAREAB/IAREAB(2,58) 

DATA IEXT/'88','81','82','83','84','85','86','87','8B','89', 
1 ' 8A' , ' 8B' , ' 8C' , ' 8D' , ' 8E' , ' 8F' , ' 8G' , ' 8W , ' 8 I' , ' 8J' , ' 8K' , 
2 ' 8l' " 8"' " 8N' , ' 80' " 8P' " 8Q' " 9R' , ' 95' " 9T' " 9U' " 8Y' I 

DATA ITEXT/'. R','. "','81','89'1 
DATA IFIlE/'AD','1:','NA','"E','. "','81'1 
DATA IAREAG/188*81 
DATA IAREAS/188*81 
DATA IAREAI/188*81 
DATA IAREAl/188*81 
DATA IAREAB/188*81 
J=8 
DO 18 1=1. 256 
J=J+I-1 
IWORK( D=J 

18 CONTINUE 
RETURN 
END 
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188 

188 

18 
588 

SUBROUTINE YIDSET 
CO""ON/YD"AP/"AP(256) 
CO""ON/OYLADR/IOYL 
CO""ON/I"GBLK/NBLK 
CO""ON/I"ODE/"ODE 
DO 188 1=1. 256 
"AP(I)=INT((I-1)*63./255) 
CONTINUE 
MDE=4 
NBLK=256 
CALL REFALL(8.8.3) 
CALL YDINIH) 
CALL OYCLR 
CALL ZEROC(NBLK."ODE) 
CALL IYIDCO(6."ODE.NBLK) 
RETURN 
END 

SUBROUTINE FETCH(IFLAG) 
CO""ON/"ASHST/"ASRES(32) 
CO""ON/FILE/IFILE(6) 
CO""ON/EXT/IEXT(32) 
CO""ON/TEXT/ITEXT(4) 
IF (IFLAG. E~. 1)GO TO 188 
TYPE 588 
ACCEPT 18.IFILE(3).IFILE(4) 
CALL NEIIINY 
RETURN 
FOR"AH2A2) 
FOR"AH I 8ENTER PATI ENT 1. D. (4 CHRRS.) '$) 

END 
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~UD~UUII"~ "~RI"T 

C SUB. NEWINV TO RERD "RSTER FILE RND LIST I"RGES 
C FOR NEW SOFTWRRE DISCS 
C NEWINV VERSION 2 "ODIFIED 4-JUL-85 
C STOPS RFTER 16 I"RGES, PRO"PTS TO CONTINUE 
C 

CO""ON/COUNT/ICNT 
CO""ON/FILE/IFILE(6) 
CO""ON/TEXT/ITEXT(4) 
CO""ON/"RSHST/"RSRES(32) 
DI"ENSION ICHRRS(5) 
IFILE(5)=ITEXT{2) 
IFILE(6)=ITEXT{3) 
IBLK=IFILTH{IFILE) 
IF{IBLK.NE.-2)GO TO 58 
IFILE(6)=ITEXT{4) 
IBLK=IFILTH{IFILE) 
IF{IBLK. ER. -2)GO TO 988 
ICNT=8 

58 TYPE 588 
CRLL CLOSE(2) 
CRLL RSSIGN (2,IFILE,12,OLD) 
DEFINE FILE 2{32,32,U, IV) 
DO 188 1=1, 32 
IF{ICNT. ER. 17)PRUSE'HIT <RETURN} TO CONTINUE LIST' 
RERD{2'I)MSRES 
IF{"RSRES(1). ER.8)GO TO 188 
ICNT=ICNT+1 
DO 118 J=1,5 
ICHRRS{J)="RSRES{J) 

118 CO:. it NUE 
TYPE 585, I, ICHRRS 

188 CONTINUE 
128 RETURN 
988 TYPE 518,IFILE(3),IFILE{4) 

STOP'PROGRR" STOPPED --- NO PRTIENTS FOUND' 
588 FOR"RT{/18X,'I"RGE LIST:') 
585 FOR"RT{18X,I3,1X,5R2) 
518 FOR"RT{1118X,'PRTIENT ',2A2,' NOT FOUND'II) 

END 
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SUBROUTINE FNDOY3lIIN) 
C 
C TO FIND OYERLAY DIRECTORY AND CHECK IF IT EITHER 
C FULL OR E"PTY 
C IF FULL PRO"PT TO RECOPY PATIENT WITH LESS OVERLAYS. 
C IF E"PTY PRO"PT TO DO STANDARD "UGA PROCESSING FIRST 
C BOTH FULL AND E"PTY GIYE A STOP CONDITION, OTHERWISE 
C RETURN TO CALLING ROUTINE 
C 

CO""ON/I"BUF/I"BUF1l2S6) 
CO""ON/OYLADR/IOYL 
CO""ON/IOPAC/LIT(36),FLOTl18) 
CO""ON/FILE/IFILE(6) 
DI"ENSION IEND(4) 
DI"ENSION IDATA(16) 
DATA IEND/'.O','ZZ',' ',' 'I 

58 IFlIIN.EQ.8)TYPE 588 
IFlIIN.EQ.8)ACCEPT 18,IFILE(3),IFILEl4) 
CALL CLOSE(2) 
IEND(3)=IFILElS) 
IEND(4)=IFILEl6) 
IFILElS)=IENDl1) 
IFILE(6)=IENDl2) 
IBLK=IFILTHlIFILE) 
IFlIBLK. EQ. -2)GO TO 928 
CALL ASSIGNl2,IFILE,12,OLD) 
DEFINE FILE 2l16,16,U, IY) 
IZCNT=8 
DO 188 1=1. 16 
READl2' I >IDATA 
IFlIDATA(1). EQ. 8)IZCNT=IZCNT+1 

1" CONTINUE 
IF(IZCNT. EQ. 17)GO TO 918 
IFlIZCNT. EQ. 8)GO TO 988 
CALL CLOSE(2) 
IFILE(S)=IEND(3) 
IFILE(6)=IENDl4) 
CALL ASSIGN(2,IFILE,12,OLD) 
DEFINE FILE 2l32, 32, U, IY) 
RETURN 

18 FOR"ATl2A2) 
988 STOP'OYERLAY FILE FULL - - RE COpy WITH LESS OYERLAYS' 
918 STOP'NO OVERLAYS - PROCESSING REQUIRED' 
928 STOP'PATIENT NOT FOUND - - CHECK STUDY NA"E AND RE-RUN' 
588 FOR"ATl/18X,'ENTER 4 CHARACTER PATIENT 1.0. '$) 

END 
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SUBROUTl NE D I SP 
CO""ON/YD"RP/"RP(256) 
CO""ON/"RSHST/"RSRES(32) 
CO""ON/COUNT/ICNT 
CO""ON/TEXT/ITEXT(4) 
CO""ON/FILE/IFILE(6) 
CO""ON/EXT/IEXT(32) 
CO""ON/FRR"E/IFR" 
DI"ENSION IYIEW(5) 

11l1l TYPE 51l1l 
RCCEPT 11l,"REC 
IFl"REC. LT.1. OR. "REC. GT. ICNT)GOTO 11l1l 
RERDl2'"REC)"RSRES 
IFR"="RSRESl21l) 
"ODE="RSRES(8) 
IFILE(5)=ITEXTl1) 
IFILE(6)=IEXTl"REC) 
DO 111l 1=1. 5 

111l IYIEWlI)="RSRESlI) 
CRLL DISPI" 
CRLL CHRGENlIYIEW,11l,22,1Il) 
CRLL IYIDCOl6,"ODE,"RP,256) 
RETURN 

51l1l FOR"RTl'IlSELECT I"RGE FRO" LIST') 
ill FOR"RTlI5) 

END 

SUBROUTINE DISPI" 
C 
C TO DECIDE ON I"RGE TYPE, RETRIEYE FRO" DISC 
C 

CO""ON/I"ODE/"ODE 
CO""ON/FILE/IFILE(6) II"GBLK/NBLK 
CO""ON/FRR"E/IFR" 
I"TYPE=1 
IFlIFR". GT.1)GO TO 21l1l 
GO TO 251l 

21l1l I"TYPE=2 
TYPE 51l1l,IFR" 
RCCEPT 11l,IFRR"E 

251l CRLL I"GRWl IFILE, I"TYPE, IFRR"E, "ODE, 256, 2) 
RETURN 

51l1l FOR"RTl18X,'WHICH DYNR"IC FRR"E l1 - ',15,') ? '$) 
ill FOR"RTlI5) 

END 
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SUBROUTINE DRWSEG(IPTS) 
C 
C DRWSEG YERSION 2 
C INCLUDES YERIFICATION/ALTERATION OF SEG"ENT LINE POSITION 
C 

CO""ON/I"BUF/I"BUF1(2S6) 
CO""ON/FILE/IFILE(6) 
CO""ON/OYLADR/IOYL 
CO""ON/IOPAC/LIT(36),FLOT(18) 
CO""ON/A~EA1/IAREAG(2,S8) 
CO""ON/AREA2/IAREAS(2,S8) 
CO""ON/AREA3/IAREAI(2,58) 
CO""ON/AREA4/IAREAL(2,S8) 
CO""ON/AREAB/IAREAB(2,58) 
CO""ON/ACNT I I GPT, I SPT, I I PT. I LPT, I BPT 
DI"ENSION IPTS(3) 

188 CALL OYCLR 
TYPE 588 
CALL AOIDRW(IAREAG,IGPT) 
CALL COFGUAREAG, IGPT. IX, 1',1) 

185 TYPE 585 
CALL LIGHTP(IX1, 1',11) 
CALL GETNP U AREAG, I GPT, I Xl, I ',11, I CNT) 
CALL LINEUAREAG(l, ICNT), IAREAG(2, ICNT), IX, IY, 4) 

118 TYPE 587 
GO TO (128,115,118),NOYES() 

115 CALL LINE(IAREAG(1,ICNT),IAREAG(2, ICNT),IX,IY,8) 
GO TO 185 

128 TYPE 518 
CALL LIGHTP(IX2,IY2) 
CALL GETNP(IAREAG,IGPT,IX2, 1',12, ICNT2) 
CALL LINE( IAREAG(l, ICNT2), IAREAG(2, ICNT2)' IX, 1',1,4) 

138 TYPE 587 
GO TO (148,135,138),NOYES() 

135 CALL LINE( IAREAG(l, ICNT2), IAREAG(2, ICNT2), IX, IY, 8) 
GO TO 128 

148 TYPE 515 
CALL LIGHTP(IX3,IY3) 
CALL GETNP(IAREAG,IGPT,IX3, IY3,ICNT3) 
CALL LINE(IAREAG(1,ICNT3),IAREAG(2,ICNT3), IX,IY,4) 

145 TYPE 587 
GO TO (15S,158,145),NOYES() 

158 CALL LINE(IAREAG(1, ICNT3),IAREAG(2, ICNT3), IX,IY,8) 
GO TO 148 

155 TYPE 528 
CALL AOIDRW(IAREAB,IBPT) 
CALL CWCCWUAREAG, IGPT, IX, 1',1, ICW) 
CALL SEG"NH IAREAG, IAREAI. IGPT, IX, 1',1, ICNT2, ICNT3, ICW, IIPT) 
CALL SEG"NT(IAREAG,IAREAL, IGPT,IX, 1',1, ICNT3,ICNT, ICW, ILPT) 
CALL SEG"NH IAREAG, IAREAS, IGPT. IX, 1',1, ICNT, ICNT2, ICW, ISPT) 
CALL OYCLR 
PAUSE'HIT <RETURN) TO DISPLAY SEG"ENT l' 
CALL AOIDSP(IAREAS, ISPT,8) 
PAUSE'HIT <RETURN) TO DISPLAY SEG"ENT 2' 
CALL OYCLR 
CALL AOIDSP(IAREAI,IIPT,8) 
PAUSE'HIT <RETURN) TO DISPLAY SEG"ENT 3' 
CALL OYCLR 
CALL AOIDSP(IAREAL, ILPT,8) 
PAUSE'HIT <RETURN) TO DISPLAY BACKGROUND AREA' 
CALL OYCLR 
CALL AOIDSP(IAREAB, IBPT,8) 
PAUSE'HIT <RETURN) TO CONTINUE' 

- 439 -



C 

SUBROUTINE GETNP(AOIBND,IPOINT,IPX, IPY, ICNT} 
INTEGER AOIBND(2,58) 
INTEGER DISH58} 

DO 188 I=1,IPOINT-1 
IDISTA=(IPX-AOIBND(1,I»**2+(IPY-AOIBND(2,I»**2 
DISTA=SQRT(IDISTA*1. ) 
DIST(I)=INT(DISTA) 

188 CONTINUE 
C 
C FIND "IN DIST 
C 

ICNT=1 
"IN=DISH1> 
DO 118 I=2,IPOINT-1 
IF(DIST(I). GT. "IN)GO TO 118 
ICNT=I 
"IN=DISH I) 

118 CONTINUE 
RETURN 
END 

SUBROUTINE CIICCIHAOIBND, IPOINT, ICX, ICY, ICII) 
INTEGER AOIBND(2,58) 
DI"ENSION IXDF(58) 
DI"ENSION IYDF(58) 
DI"ENSION IYDF2(58) 
DO 188 I=1,IPOINT 
IXDF(I)=ICX-AOIBND(1, I) 
IYDF(I)=ICY-AOIBND(2, I) 
IYDF2(I)=IYDF(I)**2 

188 CONTINUE 
IY"IN=255 
I"ARK=8 
DO 118 I=1,IPOINT 
IF(IYDF2(I). GT. IY"IN.OR. IXDF(I).LT.8)GO TO 118 
IY"IN=IYDF2d) 
I"ARK=I 

118 CONTINUE 
ICII=1 
IF((ICY-AOIBND(2,(I"ARK+1»).LT. (ICY-AOIBND(2,I"ARK»)ICII=-1 
RETURN 
END 
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188 

288 

118 

128 

215 

138 

148 
228 

388 

988 
588 
585 
587 
518 
515 

528 
525 

INTEGER ROIBNO(2,58) 
INTEGER ROIX(2,58) 
IF(ICNTR. GT. ICNTB. RNO. ICW. EQ. -1)GO TO 288 
IF(ICNTB. GT. ICNTR. RNO. ICW. EQ. 1)GO TO 215 
LOOP=8 
DO 188 I=ICNTB,ICNTR, ICW 
LOOP=LOOP+1 
ROIX(1. LOOP)=ROIBNO(1. 1> 
ROIX(2, LOOP)=ROIBND(2, 1) 
CONTINUE 
GO TO 228 
LOOP=8 
DO 118 I=ICNTR,IPOINT 
LOOP=LOOP+1 
ROIX(1,LOOP)=ROIBND(1,I) 
ROIX(2, LOOP)=ROIBND(2, 1) 
CONTINUE 
DO 128 1=2, ICNTB 
LOOP=LOOP+1 
ROIX(1,LOOP)=ROIBND(1,I) 
ROIX(2,LOOP)=ROIBND(2,I) 
CONTINUE 
GO TO 228 
LOOP=8 
DO 138 I=ICNTB,IPOINT 
ROIX(1,LOOP)=ROIBND(1,I) 
ROIX(2,LOOP)=ROIBND(2,I) 
CONTINUE 
DO 148 I=1,ICNTR 
LOOP=LOOP+1 
ROIX(1. LOOP)=ROIBND(1. 1) 
ROIX(2, LOOP)=ROIBND(2, 1) 
CONTINUE 
CONTINUE 
LOOP=LOOP+1 
ROIX(1,LOOP)=ICX 
ROIX(2,LOOP)=ICY 
LOOP=LOOP+1 
ROIX(1,LOOP)=ROIX(1,1) 
ROIX(2,LOOP)=ROIX(2,1) 
RETURN 
END 

TYPE 525 
GO TO (188,388,988),NOYES() 
CRLL OYCLR 
CRLL ROIOSP(IRRERS, ISPT,8) 
CRLL ROIOSP(IRRERI, IIPT,8) 
CRLL ROIDSP(IRRERL,ILPT,8) 
CRLL ROIOSP(IRRERB,IBPT,8) 
CRLL CLOSE(2) 
IPTS(i)=ICNT 
IPTS(2)=ICNT2 
IPTS(3)=ICNT3 
RETURN 
STOP' ERROR IN ROUTINE DRWSEG. PROGRR" TER"INRTEO' 
FOR"RT('80RRW LY OUTLINE WITH LIGHT PEN') 
FOR"RT('8"RRK TOP OF SEPTU" WITH LIGHT PEN'). 
FOR"RT(/'8IS THIS O. K.? (Y OR N) '$) 
FOR"RT('8"RRK BOTTO" OF SEPTU" WITH LIGHT PEN') 
FOR"RT('8"RRK JUNCTION OF INFERIOR RNO 

1 LRTERRL WRLLS WITH LIGHT PEN') 
FOR"RT('8DRRW BRCKGROUND RRER WITH LIGHT PEN') 
FOR"RT('8REDRRW RRERS ? (Y OR N) '$) 
END - 441 -



C 

SUBROUTINE STOAOI 
CO""ON IFILE/IFILE(6) 
CO""ON/AREA1/IAREAG<2,58) 
CO""ON/AREA2/IAREAS<2, 58) 
CO""ON/AREA3/IAREAI<2,58) 
CO""ON/AREA4/IAREAL<2, 58) 
CO""ON/AREAB/IAREAB<2,58) 
CO"MN/ACNT 1I GPT, I SPT, II PT, I LPT, I BPT 
DI"ENSION IPACK(188) 
DI"ENSION IPK<12S) 
DI"ENSION IODT(16) 
DI"ENSION IOYLXT(2) 
DI"ENSION 10YNA"<S) 
DI"ENSION INA"(38) 
DATA IPACK/188*81 
DATA IPK/12S*81 
DATA 10YLXT/'.0','ZZ'1 
DATA 10YNA"I'SE','G"','EN','TA','L ','AR','EA','S 'I 
DATA INA"I'GL','OB','AL',' ','AR','EA','SE','PT','AL',' 

1 'AR',' EA',' IN' ,'FE' ,'RI' ,., OR' " , " , ,'LA' ,'TE' ,'RA',' L " 
2 'AR',' EA' ,'BA' , 'CK' ,'GR' ,'OU' ,'NO' , .. , I 

IFILE(5)=IOYLXT<1) 
IFILE(6)=IOYLXT<2) 
CALL CLOSE(2) 
I=IFIL TH<lFILE) 
IF<I. EQ. -2)GO TO 928 
CALL ASSIGN <2,IFILE,12,OLD) 
DEFINE FILE 2<16,16,U, IY) 
DO 199 IOYREC=1,16 
REAO<2'IOYREC,ERR=988)100T 
IF<IOOT(1).EQ.8)GO TO 118 

188 CONTINUE 
TYPE 588 
GO TO 918 

118 CONTINUE 
IF<IOYREC.EQ.1)GO TO 928 
DO 115 1=1, S 
10DT<I)=IOYNA"<I) 

115 CONTINUE 
100H9)=8 
WRITE<2'IOYREC)100T 
IFILE(6)=100T<18) 
CALL AOIPAK<IAREAG, IGPT, IPACK) 
CALL CLOSE(2) 
CALL ASSIGN <2,IFILE,12,NEW) 
DEFINE FILE 2<S,128,U, IY) 
1 PK (1) = 1 GPT 
DO 128 1=1, 188 
IPK<I+1)=IPACK<I) 

128 CONTINUE 
IPK(116)=9 
IPK(117)=8 
DO 125 1=1, 6 
IPK<122+1)=INA"<I) 

125 CONTINUE 
WRITE<2'1>IPK 
DO 138 1=1,188 

138 IPACK<I)=9 
CALL AOIPAK<IAREAS, ISPT, IPACK) 
IPK(1)=ISPT 
DO 148 1=1, 188 
IPK<I+1)=IPACK<I) 

148 CONTINUE 
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VU 1.1It~ 1;:;:1./0 

IPK(122+I)=INA"(I+6) 
145 CONTINUE 

WRITE(2' 2>IPK 
DO 158 1=1. 188 

158 IPACK(I)=8 
CALL AO I PAK d AREA I, I I PT, I PACK) 
IPK(i)=IIPT 
DO 155 1=1. 188 
IPK(I+1)=IPACK(I) 

155 CONTINUE 
DO 168 1=1. 6 
IPK(122+I)=INA"(I+12) 

168 CONTINUE 
WRITE(2' 3>IPK 
DO 165 1=1. 18e 

165 IPACK(I)=8 
CALL AO I PAK ( I AREAL. I LPT. I PACK) 
IPK(i)=ILPT 
DO 178 1=1,188 
IPK(I+1)=IPACK(I) 

178 . CONTI NUE 
DO 175 1=1,6 
IPK(122+I)=INA"(I+18) 

175 CONTINUE 
WRITE(2'4>IPK 
DO 188 1=1. 188 

188 IPACK(I)=8 
CALL AOIPAK(IAREAB,IBPT,IPACK) 
IPK(1)=IBPT 
DO 185 1=1. 18e 
IPK(I+1)=IPACK(I) 

185 CONT I NUE 
DO 198 1=1. 6 
IPK(122+I)=INA"(I+24) 

198 CONTINUE 
WRITH2' 5) IPK 
CALL CLOSE(2) 
RETURN 

588 FOR"AT(18X, 'OVERLAY FILE FULL') 
988 STOP'READ ERROR FOR OVERLAY DIRECTORY' 
918 STOP'RECOPY PATIENT FILES WITH LESS THAN 16 OVERLAYS' 
928 STOP'DO NOR"AL "UGA PROCESSING FIRST' 

END 
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C OF T. J. HEARD, "EDICAL PHYSICS, G. R. H 
C AND ". JACKSON, LOUGHBOROUGH UNIYERSITY OF TECHNOLOGY 
C 
C TO ANALYSE DATA FILES GENERATED FRO" PHASE HISTOGRA"S 
C BY PROGRA" FOURAN 
C 
C 

C 

CO""ON/ARRAY/ARR1l1S8,2) I"XS"NS/X"AX,X"IN,Y"AX,YKIN 
CO""ON/IKBUF/I"BUF1(256) IYDKAP/KAP(256) 
CO""ON/OYLADR/IOYL II"GBLK/NBLK IIKODE/"ODE 
DI"ENSION ILIT(62) 
DIKENSION AREA(S) 
DI"ENSION NFRA"E(18) 
DI"ENSION RATE(18) 
DI"ENSION COUNTS(S) 
DI"ENSION IFILE(6) 
DI"ENSION IEXT(3) 
DIKENSION ITEXT(S) 
DATA IEXT/'.N','. T','DF'I 
DATA IFILE/'AD','1:','NA','KE','. N','DF'I 
CALL YI DSET 
TYPE 588 

C CALL FOR PT. NA"E 
C 
1 PAUSE'INSERT PATIENT DISC, HIT <RETURN) TO CONTINUE' 

TYPE 585 
ACCEPT 18, IFILE(3), IFILE(4) 

C 
C OPEN DIRECTORY AND READ, AND TYPE 
C 
2 IFILE(5)=IEXT(1) 

IFILH6)=IEXH3) 
CALL ASSIGN (2,IFILE,12,OLD) 
DEFINE FILE 2(32,S,U,IY) 

5 TYPE 518 
DO 188 1=1,32 
READ(2'1)lTEXT 
IF(ITEXT(1). EQ.8)GO TO 118 
TYPE 515,1, lTEXH1), lTEXH2), lTEXH3), lTEXH4), 

1 ITEXT(5),ITEXT(6) 
188 CONTINUE 
118 CONTINUE 
C 
C SELECT N.D. FILE 
C 

C 

TYPE 528 
ACCEPT 15, IND 
IF(IND. EQ.8) GO TO 918 
IF(IND.LT.1.0R. IND.GT. (I-1»GO TO 5 
READ (2' 1 ND)1 TEXT 
CALL CLOSE(2) 
IFILE(5)=IEXT(2) 
IFILE(6)=ITEXT(7) 

C OPEN SELECTED FILE 
C 

CALL ASSIGNl2,IFILE,12,OLD) 
CALL NDHEAD(2,NRCHAN, ILIT, IFIRST,OEXT,IAREA,AREA,NFRAKE,RATE, IERR) 
J=8 
DO 155 I=1,NFRAKE(1),2 
J=J+1 
CALL NDREAD(2,8,8,2,NRCHAN, IFIRST, ISEQ,TIKE,COUNTS, IERR) 
ARR1(J,1)=COUNTS(1) 
ARR1(J, 2)=1*1. +1. 
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165 

178 

171 

172 

173 

174 
175 

176 
177 

C 

178 

C 

181 
188 

185 

186 

198 

\lr1l .. '- "''''U,;;jl~' Co, 
DO 165 1=1,188 
IF(ARR1(I,2).LE. 278. )ARR1(I,2)=ARR1(I,2)-98. 
IF(ARR1(I,2).GT. 278. )ARR1(I,2)=ARR1(I,2)-458. 
CONTINUE 
CALL OYCLR 
CALL ItAXItNH 
CALL AXISH 
CALL POINTH 

. TYPE 525 
CALL LIGHTP(IX1,IY1) 
TYPE 538 
CALL LIGHTP(IX2,IY2) 
IF(IX2. LT. IX1)GO TO 178 
CALL LINE(IX1,228, IX1,128,6) 
CALL LINE(IX2,228, IX2,128,6) 
TYPE 535 
GO TO (173,172,171),NOYES() 
CALL LINE(IX1,228,IX1,128,8) 
CALL LINE(IX2,228, IX2,128,8) 
GO TO 178 
IS=IX1-48 
IF=IX2-48 
DO 174 1=15, IF 
IF(ARR1(I,1). GT. 8.8)GO TO 175 
CONTINUE 
NS=I 
DO 176 I=IF, 15,-1 
IF(ARRH 1.1). GT. 8. 8)GO TO 177 
CONTINUE 
NF=I 
TOTCNT=8.8 
PHPTOT=8. 8 
PIXTOT=8.8 
TYPE 788,NS,NF 
DO 178 I=NS,NF 
PHPTOT=PHPTOT+(ARR1(I,1)*ARRllI,2» 
PIXTOT=PIXTOT+ARR1(I,1) 
CONTINUE 
IF(PIXTOT. ER. 8. 8)GO TO 172 
AItEAN=PHPTOT/PIXTOT 
SDIFF2=8. 8 
SDIFF3=8. 8 
DO 188 I=NS,NF 
K=IFIX(ARR1(I,1» 
IF(K.EQ.8)GO TO 188 
DIFF=ARR1(I,2)-AltEAN 
DO 181 J=1. K 
DIFF=ARR1lI,2)-AltEAN 
SDIFF2=SDIFF2+DIFF**2 
SDIFF3=SDIFF3+DIFF**3 
CONTINUE 
CONTINUE 
SDIFF2=SDIFF2/lPIXTOT-1) 
SDIFF2=SQRT(SDIFF2) 
SDIFF3=SDIFF3/lPIXTOT*SDIFF2**3) 
N=5 
WRITElN,555)PIXTOT,AltEAN,SDIFF2,SDIFF3 
IFlSDIFF3. GE. 8. 5. OR.SDIFF3. LE. -8. 5)WRITElN,560) 
IF(SDIFF3. LT. 8. 5. AND. SDIFF3. GT. -8. 5)WRITE(N,565) 
IF(N.EQ.6)GO TO 198 
TYPE 598 
GO TO (186,198,988),NOYES() 
N=6 
GO TO 185 
CALL CLOSElN) 
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918 

18 
15 
588 
585 
518 
515 
528 

1 
525 
527 
538 
535 
555 

1 
2 
3 

568 
565 
598 
595 

1 
2 
3 
4 

788 

TYPE 595 
ACCEPT 15, I 
IF(I. EQ. 8)GO TO 988 
CALL OVCLR 
IF(I. EQ.1)GO TO 2 
IF(I.EQ.2)GO TO 1 
GO TO 198 
CALL IVIDCO(8) 
STOP'"JHIST CO"PLETED' 
CALL IVIDCO(8) 
STOP'NO DATA SELECTED - - "JHIST TER"INATED' 
FOR"AT(2A2) 
FOR"AT(I5) 
FOR"AT('8PROGRA" "JHIST TO ANALYSE PHASE HISTOGRA"S') 
FOR"AT('8ENTER 4 CHAR PT. I. D. : '$) 
FOR"AT(14X,'SELECT PHASE DATA FRO" LIST: ') 
FOR"AT(18X,I5,1X,6A2) 
FOR"AT(14X,'8 NO SELECTION DESIRED'I 
14X$) 
FOR"AT('8"ARK LOWER PHASE LI"IT WITH L. P. ') 
FOR"AH '8IFLAG = ',15,' I = ',15,' COUNTS( I) = ',Fa. 8) 
FOR"AT('8"ARK UPPER PHASE LI"IT WITH L.P. ') 
FOR"AT('8ARE THESE LI"ITS OK ? (Y OR N)') 
FOR"AT(1X,'TOTAL NU"BER OF PIXELS = ',Fa. 81 
1X,'"EAN PHASE VALUE = ',F15. 181 
iX, 'STANDARD DEVIATION = ',F15. 181 
1X,'SKEW VALUE = ',F15. 181/) 
FOR"AT(1X,'SKEW VALUE SIGNIFICANT') 
FOR"AT(1X,'SKEW VALUE NOT SIGNIFICANT') 
FOR"AT(1X'DO YOU WANT THIS PRINTED? (Y OR N) '$) 
FOR"AT(1X,'SELECT:'1 
1X,'1. ANALYZE "ORE DATA FRO" THIS PATIENT'I 
1X,'2. ANALVZE ANOTHER PATIENT'I 
1X,'8. STOP THE PROGRA"'I 
1X$) 
FOR"AT('8NS=',I5,' NF=',I5) 
END 
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C 

C 
CO""ON/ARRAY/ARR1(lS8,2) I"XS"NS/X"AX,X"IN,Y"AX,Y"IN 

X"IN=999S. 
X"AX=-9999. 
Y"IN=9999. 
Y"AX=-9998. 
DO 188 1=1,188 
IF(ARR1(I,1). LT.Y"IN)Y"IN=ARR1(I,1) 
IF(ARR1(I,1).GT. Y"AX)Y"AX=ARR1(I,1) 
IF(ARR1(I,2).LT. X"IN)X"IN=ARR1(I,2) 
IF(ARR1(I,2).GT. X"AX)X"AX=ARR1(I,2) 

188 CONTINUE 
C TYPE S88,X"IN,X"AX,Y"IN,Y"AX 
S88 FOR"RT('8X"IN=',F18. 3,'X"AX=',F18. 3,'Y"IN=',F18. 3,'Y"AX=',F18. 3) 

RETURN 

C 

C 

END 

SUBROUTINE AXISH 

CO""ON I"AX"NS/X"AX,X"IN,Y"AX,Y"IN 

CALL OYCLR 
CALL LINE(8S,48,8S,228,2) 

18S IF(Y"IN.LT.8)GO TO 118 
CALL LINE(48,228,228,228,2) 
GO TO 115 

118 IY=248-INT(-188*Y"IN/(Y"AX-Y"IN» 
CALL LINE(48,IY,228,IY,2) 

11S CONTI NUE 
RETURN 
END 

C 

C 

SUBROUTINE POINTH 

CO""ON/ARRAY/ARR1(188,2) I"XS"NS/X"AX,X"IN,Y"AX,Y"IN 

IX1=48 
IY1=228-INT(188*(ARR1(1,1)-Y"IN)/(Y"AX-Y"IN» 
DO 188 1=2,188 
IX=48+I 
IY=228-INT(188*(ARR1(I,1)-Y"IN)/(Y"AX-Y"IN» 
CALL LINE<lXl, IYl, IX, IY, 1) 

IX1=IX 
IY1=IY 

188 CONTINUE 
RETURN 
END 

- 447 -



C PROGRA" "EFDVDT" TO CALCULATE GLOBAL AND SEG"ENTAL 
C EJECTION FRACTION AND DV/DT USING NU"ERIC DATA 
C GENERATED BY "NEW SOFTWARE" BASED 
C ON SEG"ENTAL AREAS PRODUCED BY ""UGA". 
C 
C PROGRA" SET UP ON 1-FEB-S5 
C 
C PROPERTY OF T. J.HEARD, DISTRICT DEPART"ENT OF "EDICAL PHYSICS 
C RADIOISOTOPE I"AGING UNIT, GROBY ROAD HOSPITAL, LEICESTER. 
C 

CO""ON/REST/IREST(2) 
CO""ON/I"GSLK/NBLK 
CO""ON/I"ODE/"ODE 
CO""ON/OVLADR/IOVL 
CO""ON/ARRATE/F(4) 
CO""ON/ARR1/BY(188,9) 
CO""ON/"AX"IN/A"AXS(4),I"X"N(4,2) 
CO""ON/VARS/Y(32,5),T,IPR 
DI"ENSION INA"E(18) 
DI"ENSION IN"(2) 
DI"ENSION IDATE(5) 
DI"ENSION INU"(3) 
DI"ENSION IREFER(15) 
DATA Y/168*8.81 
CALL SETVID 

188 CALL OVCLR 
TYPE 588 
ACCEPT 18, IPRINT 
IF(IPRINT.EQ.1)GO TO 185 
IF(IPRINT.EQ.2)GO TO 118 
GO TO 188 

185 IPR=5 
GO TO 115 

118 IPR=6 
115 TYPE 585 

ACCEPT 15, INA"E 
TYPE 586 
ACCEPT 16,IAGE 
IN"(1)=INA"E(1) 
IN"(2)=INA"H2) 
IF(IPR. EQ. 5)GOTO 128 
TYPE 518 
ACCEPT 28,INU" 
TYPE 515 
ACCEPT 25, IDATE 
TYPE 528 
ACCEPT 38,IREFER 
IF(IPR. EQ.5)GO TO 128 
PRINT 525, INA"E, INU", IDATE 
PRINT 538,IREFER 

128 CALL OVCLR 
CALL NDGET2(IN",IAGE) 
CALL DVDT"J(N) 
CALL "XRATE(N) 
CALL PLOT 
CALL CLOSE(IPR) 

125 TYPE 535 
ACCEPT 18,IGO 
GO TO (128,188,988),IGO 
IF(IGO.LT.1.0R. IGO.GT.3)GO TO 125 

988 CALL IVIDCO(8) 
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15 
16 
28 
25 
38 
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1 
+ 
2 
3 
4 

585 
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1 
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3 
4 

188 

FOR"RHI5) 
FOR"RH18R2) 
FOR"RH 15) 
FOR"RT(3R2) 
FOR"RH5R2) 
FOR"RH 15R2) 
FOR"RT(18X.'PROGRR" "EFDVDT". THIS VERSION IS FOR USE'I 
18X.'WITH DRTR FRO" PRTIENT DISCS ONLY.'I 
18X.'DO YOU WRNT RESULTS :-'1 
18X.'1. LISTED ON TER"INRL'I 
18X.'2. LISTED ON PRINTER'I 
28X$) 
FOR"RT('8SURNR"E & INITIRL (28 CHRRS."RX):'$) 
FOR"RT('8ENTER RGE OF PRTIENT (YRS.): '$) 
FOR"RT('8HOSPITRL NU"BER (6 CHRRS."RX):'$) 
FOR"RT('8DRTE OF TEST (DD-"""-YY)(9 CHARS."AX):'$) 
FOR"RT(1X.'RERSON FOR TEST (38 CHRRS."AX):'$) 
FOR"RT(1X.18A2.5X.3R2.5X.5R2/) 
FOR"RT(1X.15R211) 
FOR"RT('8DO YOU WANT TO:'I 
5X.'1. DO RNOTHER RUN ON THIS PATIENT'I 
5X.'2. DO RNOTHER RUN ON ANOTHER PRTIENT'I 
5X.'3. TER"INATE PROGRR"'I 
5X$) 
STOP/PROGRP.~ "EFDVDT" TER"INATED' 
END 

SUBROUTINE SETVID 
CO""ON/OVLADR/IOVL 
CO""ON/I"GBLK/NBLK 
CO""ON/I"ODE/"ODE 
DI"ENSION "RP(256) 
DO 188 1=1. 256 
"RP(I)=INT((I-1)*63./255) 
CONTINUE 
"ODE=2 
NBLK=256 
CRLL REFRLL(8.8.3) 
CRLL VDINITO 
CRLL OVCLR 
CRLL ZEROC(NBLK."ODE) 
CRLL IVIDCO(6."ODE."AP.NBLK) 
RETURN 
END 
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SUBROUTINE NDGET2(IN",IAGE) 
C SUB. NDGET2 TO RETRIEYE DATA FRO" DISC,LOAD TO ARRAY 
C NEW YERSION FOR USE WITH EFDYDT 
C 
C INPUT/OUTPUT PARA"ETERS 
C IFRA"E = NU"BER OF FRA"ES 
C T = FRA"E TI"E 
C Y = DATA ARRAY (DI"ENSION Y(32,5) 
C IPR = PRINT/TYPE FLAG 
C F = AREA FACTORS 
C IN" = PATIENT'S NA"E 
C 
C 

C 
C 

CO""ON/REST/IREST(2) 
CO""ON/ARRATE/F(4) 
CO""ON/YARS/Y(32,5),T,IPR 
DI"ENSION IN"(2) 
DI"ENSION ILIT(62) 
DI"ENSION AREA(S) 
DI"ENSION NFRA"E(18) 
DI"ENSION RATE(18) 
DI"ENSION COUNTS(S) 
DI"ENSION IFILE(6) 
DI"ENSION IEXT(2) 
DI"ENSION ITEXT(S) 
DRTA I EXT I' . N' , ' . T' 1 
DATA IFILE/'AD','1:','NA','"E','.N','DF'1 

I F I LE( 3) = I N" (1) 
IFILE(4)=IN"(2) 

C CHECK N.D. DIRECTORY ON DISC 
C 

C 

IBLK=IFILTH(IFILE) 
IF(IBLK.EQ. -2) GO TO ~18 

C OPEN DIRECTORY AND READ, AND TYPE 
C 

CRLL CLOSE(2) 
CRLL RSSIGN (2,IFILE,12,OLD) 
DEFINE FILE 2(32,S,U,IY) 

5 TYPE 585 
DO 188 1=1, 32 
READ(2' I>ITEXT 
IF(ITEXT(1). EQ.8)GO TO 118 
TYPE 518, I, ITEXH1L ITEXH2), ITEXH3), ITEXH4), 

1 ITEXT(5),ITEXT(6) 
188 CONTINUE 
118 CONTINUE 
C 
C SELECT N.D. FILE 
C 

TYPE 515 
ACCEPT 15,IND 
IF(IND.EQ.8) GO TO ~88 
IF(IND.LT.l.0R. IND.GT. (1-1»GO TO 5 
RERD(2'IND)ITEXT 
WRITE(IPR,516)ITEXT(1), ITEXT(2), ITEXT(3), 

1 ITEXH4), ITEXH5L ITEXH6) 
CRLL CLOSE(2) 
IREST(1)=ITEXT(5) 
IREST(2)=ITEXT(6) 
I F I LE( 5) = I EXH 2) 
IFILE(6)=ITEXT(7) 

C CHECK SELECTED N.D.FILE IS ON DISC 
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C 

C 

IBLK=IFILTH(IFILE) 
IF(IBLK. EQ. -2)GO TO 928 

C OPEN SELECTED FILE 
C 

CALL ASSIGN(2,IFILE,12,OLD) 
CALL NDHEAD(2, NRCHAN, IUT. IFIRST, OEXT, IAREA, AREA, NFRA"E. RATE, IERR: 

C WRITE(IPR,517)AREA(1),ARER(2),AREA(3),AREA(4),RREA(5) 
DO 128 IFLAG=1,NFRA"E(1) 
CALL.NDREAD(2,8,8,1,NRCHAN,IFIRST, ISEQ,TI"E,COUNTS,IERR) 
Y(IFLAG,1)=COUNTS(1) 
Y(IFLAG,2)=COUNTS(2) 
Y(IFLAG,3)=COUNTS(3) 
Y(IFLAG,4)=COUNTS(4) 

.Y(IFLAG,5)=COUNTS(5) 
128 CONTINUE 
C 
C CALC. HR, PREDICTED "AX HR & ? ACHIEYED 
C 

T=RATE( 1) . 
H=3. 3751T 
FH"=216-(IAGE*8.8) 
P"FH=18I1*H/FH" 
IFRA"E=NFRA"E(1) 
WRITE(IPR,525)IAGE,FH",H,P"FH 
WRITE( IPR, 538) 
DO 125 1=1,IFRA"E 
WRITE( IPR, 535)Y( 1.1), Y( 1. 2), Y( 1,3), Y( 1,4), Y( L 5) 

125 CONTINUE 
C 
C CALC. BACKGROUND WEIGHTING FACTORS (AREA(I)/AREA(BGD» 
C 

00.138 1=1. 4 
F(I)=AREA(I)/AREA(5) 

138 CONTINUE 
WRITE(IPR,517)AREA(1),F(1),AREA(2),F(2),AREA(3),F(3), 

1 AREA(4),F(4).AREA(5) 
CALL CLOSE(2) 

C 
C BGD SUB DATA 
C 

DO 135 1=1. IFRA"E 
DO 148 J=1. 4 
Y ( I. J) =Y ( 1. J) - (Y ( 1. 5) *F (J) ) 

148 CONTINUE 
Y( 1. 5)=8.8 

135 CONTINUE 
WRITE( IPR. 548) 
DO 145 1=1. IFRA"E 
WRITE( IPR. 545 )Y(J, 1). Y(l. 2), Y( 1. 3), Y (J. 4) 

145 CONTINUE 
RETURN 
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918 
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1 

538 
1 
2 

535 
548 

1 
2 

545 

STOP'"ANUAL STOP IN "NDGET2"' 
STOP'NO N.D. DIRECTORY ON DISC - DO "UGA PROCESSING' 
STOP' SELECTED N.D. FILE IS NOT ON DISC' 
FOR"AT{I5) 
FOR"AT{'8ENTER PATIENTS AGE (YRS.): '$) 
FOR"AT{14X.'SELECT NU"ERIC DATA: ') 
FOR"AT{18X.I5.1X.6A2) 
FOR"AH14X.' 8 NO SELECTION D'ESIRED' / 
14X$) 
FOR"AT{1X.'DATA NAME: '.6A2/) 
FOR"AT(II1X.'NA"E'.18X.'AREA (PIXELS)'.18X.' FACTOR 'I 
1X.'GLOBAL .'.5X.F8.4.13X.F8.41 
1X.'SEPTAL '.5X.F8.4.13X.F8.41 
1X.'INFERIOR '.5X.F8. 4.13X.F8. 41 
1X.'LATERAL '.5X.F8.4.13X.F8.41 
1X.'BACKGROUND '.3X.F8.411) 
FOR"AT{1X.'PREDICTED "AX. HEART RATE FOR AGE '.15.' IS '.F8. 31 
1X.'PATIENT ACHIEVED '.F8. 3.' ('.F8. 3.' ~ OF "AXIMIU")'II) 
FOR"AT{1X.'ORIGINAL DATA'II 
1X.'GLOBAL SEPTAL INFERIOR LATERAL BACKGROUND' I 
1X. '=============================================' 11) 
FOR"AH5F8.8) 
FOR"AT{II1X.'AREA NOP."ALISED. BACKGROUND SUBTRACTED DATA'II 
1X.'GLOBAL SEPTAL INFERIOR LATERAL'I 
1X. '==================================' 11) 
FOR"AH1X. 4F8. 8) 
END 
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C SUB. DYDT"J. FOR/OBJ TRANSLATION OF PROGRA" 
C SUPPLIED BY "ARK JACKSON FRO" LOUGHBOROUGH UNIYERSITY 
C "ODIFIED TO USE REAL*4 ARRAYS RATHER THAN DOUBLE PRECISION 
C 
C THIS YERSION IS "ODIFIED TO OPERATE WITH COUNTS 
C AFTER AREA NOR"ALISED BACKGROUND SUBTRACTION 
C INPUT PARA"ETER. TO BE USED WITH PROGRA" EFDYDT 
C 
C PROGRA" SET UP 31-JAN-85 
C LAST "ODIFIED 29-APR-86 
C 

C 

CO""ON/YARS/Y < 32,5), 1, I PR 
CO""ON/ARR1/BY<188,9) 
DI"ENSION CCX<181,4) 
DI"ENSION AK(181) 
DI"ENSION AY(181) 
DI"ENSION AKX(181) 
DI"ENSION X(181) 
DI"ENSION DX(181) 
DI"ENSION SPX(3) 

C CALCULATE N 
C 

N=16 
IF<Y<17,1).GT.8)N=32 
DO 12 I=LN 
AKU )=1*1 

12 CONTINUE 

C 

C 

DO 15 ILOOP=L 4 

A"AX=-99999. 
A"IN=99999. 

C LOAD DATA 
C 

DO 28 1 LOAD=L N 
AY< ILOAD)=Y< ILOAD, ILOOP) 

28 CONTINUE 
C 
C 
C CALCULATE S"OOTHING FACTOR 
C 

COUNT=8.8 
DO 21 I=1,N 
COUNT=COUNT+AY<I) 

21 CONTINUE 

C 
C 

C 

C"EAN=COUNT/N*1.8 
C"RT=SQRT<C"EAN) 
SF=1. 25*C"RT*9758. IC"EAN/121. 8 
SF=SF*C"EAN/188. 
TYPE 588,SF 

X(1)=8*AY<1)-11*AY<2)+4*AY<3) 
X(2)=5.5*AY<1)-7*AY<2)+2.5*AY<3) 
X(3)=3*AY<1)-3*AY<2)+AY<3) 

DO 38 I=4,N+3 
X<I>=AYU-3) 
AKX< I>=AKU-3) 

38 CONTINUE 
C 

X<N+6)=8*X<N+3)-11*X<N+2)+4*X<N+1) 
X<N+5)=5.5*X<N+3)-7*X<N+2)+2.5*X<N+1) 
X<N+4)=3*X<N+3)-3*X<N+2)+X<N+1) 
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C 

C 

AKX(3)=2.AKX(4)-AKX(5) 
AKX(2)=2.AKX(3)-AKX(4) 
AKX(1)=2.AKX(2)-AKX(3) 

AKX(N+4)=2.AKX(N+3)-AKX(N+2) 
AKX(N+5)=2.AKX(N+4)-AKX(N+3) 
AKX(N+6)=2.AKX(N+5)-AKX(N+4) 

DD 411 1=1. N+6 
DX(I)=SF 

411 CONTINUE 
C 

S=II.9.(N+6) 
CALL REINSH(CCX,(N+6),AKX,X,DX,S) 

C 
C IF(ILOOP.EQ.1)WRITE(IPR,5111) 
C IF(ILOOP.EQ.2)WRITE(IPR,511) 
C IF(ILOOP.EQ.3)WRITE(IPR,512) 
C IF(ILOOP.EQ.4)WRITE(IPR,513) 
C 
C WRITE(IPR,5211) 
C DO 511 I=1,N 
C CALL YALC3(SPX, AK( I), CCX, (N+6), AKX, IPR) 
C WRITE(IPR,25)AK(I),AY(I),SPX(1),SPX(2) 
C Y(I,ILOOP)=SPX(2) 
C511 CONTI NUE 
C WRITE(IPR,5311) 

ATT=(AK(N)-AK(1»/11111. 
DO 51 1=1,11111 
AT=AK(1)+(I-1).ATT 
CALL YALC3(SPX,AT,CCX, (N+6),AKX,IPR) 

C WRITE(IPR,535)AT,SPX(1),SPX(2),SPX(3) 

51 
15 

25 
51111 
5115 

1 
5111 
511 
512 
513 
5211 

1 
525 

1 
2 

5311 
1 

535 
551 
553 
555 
5611 
565 

1 
2 

5711 
1 
2 

575 

BY (1. I LOOP) =SPX (1) 
BY (1. 11 LOOP+4» =SPX (2) 
BYIl,9)=AT 
CONTINUE 
CONTINUE 
RETURN 
FOR"AT(F8. 6,3(5X,F8. 11» 
FOR"AT(/1X,'SF = ',F8. 2) 
FOR"AT(1X,'PREDICTED HEART RATE FOR AGE ',15,' IS ',F8. 2,' BP"'I 
1X'PATIENT ACHIEYED ',F8. 3,' ~ OF "AXI"U" ') 
FOR"AT(/1X,'GLOBAL AREA'II) 
FOR"AT(/1X,'SEPTAL AREA'II) 
FOR"AT(/1X,'INFERIOR AREA'II) 
FOR"AT(/1X,'LATERAL AREA'II) 
FOR"AT(1X,' TI"E COUNTS CORR DERIY'I 
1X,'============================================='II) 
FOR"AT(111X'"AXI"U" RATE OF E"PTYING = ',F8.1I1 
1X,'"AXI"U" RATE OF FILLING = ',F8. 1111 
1X,'J1 = ',15,' J2 = ',15) 
FOR"ATl1X,' TI"E CORR. COUNTS 1ST DERIY. 2ND DERIY.' I 
1X' ===============================================' 11) 
FOR"AT(1X,F8.6,3(F111.1I» 
FOR"ATlI11X, 'RR=', F8. 4,' J=', 15,' J1=', 15,' J2=", 15/1> 
FOR"AT(1X,'~ SEG"ENTAL COUNT') 
FOR"ATl1X,' PER = " F8. 11,' PFR = " F8. 11,' PFRI2 = " F8. 11) 
FOR"AT(1X,'~ GLOBAL COUNT') 
FOR"AT(1X,'~ R-R INTERYAL TI"ES TO:'I 
1X,' PER PFR PFR/2'1 
1X,3F8.1I) 
FOR"AT(1X,'TI"E TO PER(X5TI) = ',F8.1I1 
1X,'TI"E TO PFR(~DTI) = ',F8.1I1 
1X,'TI"E TO PFR/2(~DTI) = ' ,F8. 11) 
FOR"AT(1X,'PER/PFR = ',F8. 11,' PER/(PFR/2) = ',F8.1I) 
END 
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SUBROUTINE VRLC3(SP,T,CC,N,RK, IPR) 
C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C. 
C. VRLC3 EVRLURTES R CUBIC SPLINE RND ITS FIRST TWO DERIVRTIVES 
C. 
C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C 

C 
DI"ENSION CC(181,4),RK(181),SP(3) 

N1=N-1 
DO 18 1=1, N1 
11=1+1 
IF(T. LT. RK(1»GO TO 18 
IF(T. GT.RK(N»GO TO 14 
IFlT. GE. RK(I). RND.T.LT.RKlI1»GO TO 28 
IFlT. ER. RKlN»GO TO 16 

18 CONTINUE 
14 WRITElIPR,588)T,RK(N) 
16 I=N-1 

GO TO 28 
18 WRITElIPR,585)T,RK(1) 
C 
28 R=CClI,1) 

C 

B=CCl1. 2) 
C=CCl1.3) 
D=CCl1.4) 

H=T-RKlI) 
SP(1)=R+B.H+C.H •• 2+D.H •• 3 
SP(2)=B+2. 8.C.H+3. 8.D.H •• 2 
SP(3)=2. 8.C+6. 8.D.H 

C 

588 
585 

RETURN 
FOR"RTl1X,'T } RK(N) 
FOR"RTl1X,'T < RK(1) 
END 

T = ",F8.4,' RKlN) = ',F8.4) 
T = ',F8.4,' RK(1) = ',F8.4) 
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:lUrn~UUll"~ Kl:.l"~n''''''''''R"n'', "V"J' 
C 
C SUB. REINSH - - - FITS S"OOTH~ST CUBIC SPLINE III 

C 
C PARA"ETERS: 
C CC - SPLINE COEFFICIENTS 
C N2 - NU"BER OF DATA POINTS 
C AK - ARRAY OF INDEPENDENT VARIABLES 
C - FRA"E NU"BER WHEN SPLINING TI"E VALUES 
C, Y - ARRAY OF DEPENDENT VARIABLE 
C DY - ARRAY OF ESTI"ATE OF ERROR IN Y 
C S - CONSTANT DETER"INING OF FIT 
C 
C •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C 

C 

C 

C 

C 

C 

C 

C 

DI"ENSION A(181) 
DI"ENSION B(181) 
Dl"ENSI0N C(181) 
D 1 "ENS 1 ON D (181) 
Dl"ENSI0N CC(181,4) 
DI"ENSION AK(181) 
DI"ENSION Y(181) 
DI"ENSION DY(181) 
Dl"ENSION R(181),R1(181),R2(181),T(181),T1(181),U(181),V(181) 

N1=1 

"1=N1-1 
"2=N2+1 

R("1)=8.8 
R(N1)=8.8 
R1(N2)=8.8 
R2(N2)=8.8 
R2("2)=8.8 
Ut"1)=8.8 
U(N1)=8.8 
U(N2)=8.8 
U("2)=8. 8 
P=8. 8 

"1=N1+1 
"2=N2-1 
H=AK ("1> -AK (N1) 

F=(Y("1)-Y(N1»/H 

DO 18 1 ="1. "2 
11=1+1 
IN1=1-1 
G=H 
H=AK(11)-AK(I) 
E=F 
F=(Y(11)-Y(I»/H 
A(I)=F-E 
T(I)=2.8.(G+H)/3.8 
TH l)=H13. 8 

R2(1)=DY(IN1)/G 
RU)=DY(11)IH 
R1(1)=-DY(I)/G-DY(I)/H 

18 CONTINUE 
C 

DO 28 1 ="1. "2 
11=1+1 
12=1+2 
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28 
C 

25 
C 

C 

C 

0(I)=R(I)*R2(I2) 
CONTINUE 

F2=-S 
CONTINUE 

00 38 I=IU."2 
IN1=I-1 
IN2=I-2 

R1(IN1)=F*R(IN1) 
R2(IN2)=G*R(IN2) 
R(I)=1.8/(P*B(I)+T(I)-F*R1(IN1)-G*R2(IN2» 
U(I)=R(I)-R1(IN1)*U(IN1)-R2(IN2)*U(IN2) 

F=P*C(I)+T1(l)-H*R1(IN1) 
G=H 
H=O(l hP 

38 CONTINUE 
C 

C 

DO 48 1 ="2. "1. -1 
11=1+1 
12=1+2 

U(I)=R(I)*U(I)-R1(I)*U(I1)-R2(I)*U(I2) 
48 CONTINUE 

C 

E=8. 8 
H=8. 8 

00 58 I =N1. "2 
11=1+1 
G=H 
H=(U(I1)-U(I»/(RK(I1)-RK(I» 
V(I)=(H-G)*OY(I)**2 
E=E+V( I )HH-G) 

58 CONTINUE 
C 

C 

C 

C 

C 

Y(N2)=-H*OY(N2)**2 
G=V(N2) 
E=E-G*H 
G=F2 
F2=E*P**2 

IF(F2. GE.S.OR.F2.LE.G) GO TO 65 

F=8.8 
H=(V("1)-Y(N1»/(RK("1)-RK(N1» 

DO 68 1="1."2 
11=1+1 
IN1=I-1 
IN2=I-2 

G=H 
H=(V(11)-Y(I»/(RK(11)-RK(I» 
G=H-G-R1(IN1)*R(IN1)-R2(IN2)*R(IN2) 
F=F+G*R( 1 hG 
R(I)=G 

68 CONTINUE 
C 

C 

H=E-P*F 
IF(H. LE. 8. 8) GO TO 65 

P=P+(S-F2)/((SQRT(S/E)+P)*H) 
GO TO 25 
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• 
, 71'1 

C 

" 

~ 81'1 

DO 71'1 I =N1. N2 
R(I)=Y(I)-P*Y(I) 
C(1)=U{l) 
CC{l. 1)=R( 1) 
CC{l. 3)=C( 1) 
CONTINUE 

DO 81'1 I =N1. "2 
11=1 +1 
H=RK (l 1) -RK (l) 

0(I)=lClI1)-ClI»/H/3,1'I 
B(I)=(R(I1)-RlI»/H-(H*D(I)+C(I»*H 
CC{l.4)=D(1) 
CC( 1. 2)=B( 1) 
CONTINUE 
RETURN 
END 
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C 

C 

C 

C 

., - UI.\"-t'r\ t=- ..... - I 

CO""ON/RRR1/BYl1BB,9) 
CO""ON/YRRS/Yl16,5),T,IPR 

DI"ENSION ITl4,2) 
DI"ENSION C"RXS(4) 
DI"ENSION IDH4,2) 
DI"ENSION IDT2(4) 

FH=3. 3751T 

DO 1BB 1=1,4 

C CRLCULRTE LI"ITS OF YRRIRTION 
C CY1 IS UPPER LI"IT 
C CY2 IS LOWER LI"IT 
C 

COUNT=B.B 
DO 5B J=1. 18B 
COUNT=COUNT+BYlJ, I) 

5B CONTINUE 

C 

COUNT=S~RTlCOUNT/1BB) 
CY=2.BB156/COUNT 
CY2=1-CY 
CY1=1+CY 

C FIND FIRST "RX. ,ED FRR"E) 
C 

Y"RX=-9999. 
Y" I N=99999. 
DO 185 J=1,3B 
IF,BY,J, IL GT. Y"RX>IHL1)=J 
IF,BY'J, 1). GT. YMX)Y"AX=BYlJ, 1) 

1B5 CONTINUE 
C 
C FIND "IN 
C 

DO 11B J=25,75 
IFlBYlJ, 1). LT. Y"IN>IH I, 2)=J 
IFlBY'J,I). LT.Y"IN)Y"IN=BYlJ,I) 

11B CONTI NUE 
C 

C 

C 

C"AXSlI)=Y"AX 
SY=YI1AX-Y"IN 
EF=lY"AX-Y"IN)*1BB. /Y"AX 
~=SY*FH 
RR=N*T/B.9 
PEP=BY,IT'I,1),9)*1BB. /RR 
STI=,BYlIT,I,2),9)-BY,IT'I,1),9»*1BB. /RR 
DTI=1BB. -STI-PEP 
IF'I. E~. 1)WRITE'IPR,5BB) 
IF'I. E~. 2)WRITElIPR,5B5) 
IF'l.E~. 3)WRITE,lPR,51B) 
IF'I. E~. 4)WRITE,IPR,515) 
WRITE'IPR,52B)SY,EF,~ 
WRITE'IPR,525)RR,PEP,STI,DTI 

DY"RX=-9999. 
DY"lN=99999. 

C FIND I1AX,"IN DY/DT 
C 

DO 115 J=lTlI,1)+1,1BB 
IF'BY'J"I+4».GT. DY"AX)IDT'I,1)=J 
IF,BY,J,'I+4».GT.DY"AX)DY"AX=BY,J"I+4» 
IF,BY,J, U+4». LT. DY"IN)IDHI, 2)=J 
IF,BY,J, U+4». LT. DY"IN)rIYtlIN=BYlJ, ,1+4» 

115 CONTINUE - 459 -



588 
585 

;<1 • 518 
" 515 
'. 

}? 528 
.. ~ • 525 

<4 538 

'.~ 
;rJ 

,"! 535 -1 
548 

:~~ 
: ... \ 
;oh 

~ 545 ': '.' ,', 
".:'.,. 558 
.-,;~.~ 

688 

1 

+ 
1 

+ 
1 

1 
2 
3 
4 
5 

FOR"RTIII11X,'GLOBAL DATA'II) 
FOR"RT(1111X,'SEPTAL DATA'II) 
FOR"RT(1111X,'INFERIOR DATA'II) 
FOR"RT(1111X,'LRTERRL DATA'II) 
FOR"RT(1X,'SV • ',FB. 3,' EF • ',FB.3,' CRRD. OUTPUT • ',E12.6/) 
FOR"RT(1X,'R-R INTERVAL I"SEC) • ',FB. 61 
1X, 'PEp. ',FB. 2,' Sl1 • ',FB. 2,' 011 • ',FB. 2,' IX R-R)' I> 
FOR"RT(1X,'RESULTS RELATIVE TO THIS ARER'I 
1X,'······························'11 1X, 'PER • ',FB. 4,' PFR • ',FB. 4,' PFR/2 • ',Fa. 41> 
FOR"RT(1X,'PER/PFR • ',FB.4,' PER/IPFR/2) • ',Fa. 4/) 
FOR"RT(1X,'RESULTS RELRTIVE TO GLOBAL AREA'I 
1X,'··········~···················'11 1X, 'PER • ',Fe. 4,' PFR • ',Fe. 4,' PFR/2 • ',FB. 41> 
FOR"RT(1X,'PER/PFR • ',Fe. 4,' PER/IPFR/2) • ',Fe. 4/) 
FOR"RT(/1X,'TI"E TO PER IX R-R) • ',Fe. 41 
1X,'TI"E TO PFR IX R-R) • ',Fe. 41 
1X,'TI"E TO PFR/2 (X R-R) • ',Fe. 41 
1X,'TI"E TO PER (X STI) = ',FB. 41 
1X,'TI"E TO PFR IX DTI) • ',Fe. 41 
1X,'TI"E TO PFR/2 IX DTI) • ',Fe. 4111) 
FOR"RTl1X,' Ill" • ',15) 
END 
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c 
c 

1 • c 
FIND IF FULL BY END OF FRA"ES 

PCNT1=BY{ IT{ L 1), I>*CY1 
PCNT2=BY{IHL1),I>*CY2 

:..; 

128 

DO 128 J=68,188 
IF{BY{J, 1>. GE. PCNT1)GO TO 125 
CONTINUE 

• • GO TO 135 
Yl 125 

• 
• 
• 
• 

138 

135 
148 

C 
C 

• C 

• 
• 145 

C 

I Ll"=J 
CnAX=BY{J, I> 
DO 138 J2={J+1),188 
IF{BY{J2, I). LT.PCNT1)GO TO 138 
IF{BY{J2, I). LT.CT"AX)GO TO 138 
CT"AX=BY (J2, 1) 

ILl"=J2 
CONTINUE 
GO TO 148 
III "=111 
ILI"=INT{8. 5+IT{I,2)+lILI"-IT{I,2»/2.) 
TYPE 688. Ill" 

FIND AND STORE FRA"E FOR PFR/2 

DYMX=-9999. 
DO 145 J=IHL2),ILl" 
IFlBYlJ, lI+4». GT. DY"AX)ICNT=J 
IFlBYlJ. 1l+4». GT. DY"AX)DYI'1AX=BYlJ, (1+4» 
CONTINUE 
IDT2(I)=ICNT 

PER=BYl IDH L 2), l 1+4) )/C"AXSl I) 
• PFR=BYllDTlL1), 1l+4»/C"AXSll> 

PFR2=BYl IDT2{ I), (1+4) >lC"AXSl I) 
C • 
C 

• 
• C 

• C 

RATE1=PER/PFR 
RATE2=PERlPFR2 

IFlI.EQ.1)GO TO 158 
PERG=BYlIDTlI,2),lI+4»/C"AXS(1) 
PFRG=BYlIDTlI,1),ll+4»/C"AXSl1) 
PFR2G=BYlIDT2lI), ll+4»/C"AXS{1) 

RATE1G=PERG/PFRG 
RATE2G=PERG/PFR2G 

158 Tl"E1=BYllDT{1,2),9)*188./RR 
• TI "E2=BY(}DH L 1),9)*188. IRR 

Tl"E3=BY{lDT2{I),9)*188./RR 
Tl"E4={BY{IDT{I,2),9)-BY{lT{I,1),9»*188. I 

• 1 (BYllHL2),9)-BY{IHL1),9» 

• C 

155 
188 

TI"E5={BY{lDT{1,1),9)-BY{IT{1,2),9»*188. I{RR-BY{IT{1,2),9» 
TI"E6=(BYlIDT2lI),9)-BYlITlI,2),9»*188. I{RR-BYlITlI,2).9» 

WRITE{IPR.538)PER,PFR.PFR2 
WRITE{IPR,535)RATE1.RATE2 
IFlI. EQ. 1)GO TO 155 
WRITE{IPR,548)PERG,PFRG,PFR2G 
WRITE{lPR, 545)RATE1G,RATE2G 
WRITE{IPR,558)TI"E1,TI"E2,TI"E3.TI"E4.TI"E5.Tl"E6 
CONTINUE 
CALL CLOSE (} PR) 
RETURN 
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• 
• 
• 
• 
• 
• 
• 
, 

• 
• 
• 
• 51l 

• 
11l1l • 

• 
• 
• 111l 

• 121l 

SIl 

CO""ON/OYLADR/IOYL 
CO""ON/REST/IREST(2) 
DI"ENSION ICHAR1(4) 
DI"ENSION ICHAR2(4) 
DI"ENSION ICHAR3(4) 
DI"ENSION ICHAR4(4) 
DI"ENSION ILEG1(3) 
DI"ENSION IlEG2(3) 
DATA ICHAR1/'Gl','OB','Al',' 'I 
DATA ICHAR2/'SE','PT','Al',' 'I 
DATA ICHAR3/'IN','FE','RI','OR'1 
DATA ICHAR4/'lA','TE','RA','l 'I 
DATA IlEG1/'CO','UN','TS'1 
DATA IlEG2/'DY','/D','T 'I 
CAll CHRGEN(IREST,1Il,Il,4) 
IF(I.EQ.1)CAll CHRGEN(ICHAR1,1,Il,S) 
IF(I.EQ.2)CAll CHRGEN(ICHAR2,1,Il,S) 
IF(I.EQ.3)CAll CHRGEN(ICHAR3,1,Il,S) 
IF(I.EQ.4)CAll CHRGEN(ICHAR4,1,Il,S) 
CAll CHRGEN(IlEG2,22,1l,6) 
CAll CHRGEN(IlEG1,22,1,6) 
CAll lINE(221l,18,241l,18,4) 
CAll lINE(221l,27,241l,27,1) 
RETURN 
END 

CO""ON/REST/IREST(2) 
CO""ON/I~JBLK/NBlK 
CO""ON/I"ODE/"ODE 
CO""ON/OYLADR/IOYL 
CO""ON/ARR1/BY(11l1l,9) 
CO""ON/YARS/Y(16,5),T,IPR 
DO 81l l=1. 4 
CAll OYClR 
J=l 
CAll TITlE(U 
Y"AX=-9999. 
Y" I N=99999. 
DO iIlll 1=1. iIlll 
IF(BY(I,J). LT. Y"IN)Y"IN=BY(I,J) 
IF(BY(I,J). GT. Y"AX)Y"AX=BY(I,J) 
CONTINUE 
YR=(Y"AX-Y"IN) 
DO HIl 1=1,99 
I X1=4IlH I-i) *2 
IY1=241l-INT(21l1l*(BY(I,J)-Y"IN)/YR) 
IX2=41l+h2 
IY2=241l-INT(21l1l*(BY«I+1),J)-Y"IN)/YR) 
IF(J.lT.5)K=1 
IF(J. GE. 5)K=4 
CAll lINE(IX1, IY1, IX2, IY2,K) 
CONTINUE 
IF(J.GE.5)GO TO 121l 
J=J+4 
GO TO 51l 
CONTINUE 
CAll ITTOUR (7) 
PAUSE'TAKE PHOTO OF CURVES - - HIT <RETURN) TO CONTINUE' 
CONTINUE 
RETURN 
END 
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C PROGRAM "MOVCEN" TO CALCULATE MOVEMENT OF CENTROID OF 
C VENTRICLE FROM DIASTOLE TO SYSTOLE RELATIVE TO DIASTOLIC 
C DIAMETER AND TO GIVE DIRECTION OF MOVEMENT 
C 

C 

C 
C 

COIIIION/VDIIAP/IIAP(2S6) 10VLADR/IOVL IIIIGBLK/NBLK IIHODE/MODE 
DIIIENSION DIFF(S0), IPTS(2), IPACKi.i00), IPK(128) 
DIMENSION IBIT(4) 
DIMENSION IADIAS(2, 50), IASYSH2, 50), IODH16) 
DIMENSION IFILE(6) 

DATA I B IT I' , , '- ','. 0·> , 'ZZ' I 
DATA IFILE/'IP','i:','NA','ME','. O','ZZ'/ 

C SET VIDEO 
C 

C 
C 
C 
5 

200 

HI0 

C 
C 
C 
C 

110 

1-15 

MODE=2 
NBLK=256 
CALL LINMAPlMAP,0) 
CALL REFALL(0,0,3) 
CALL VDINIT() 
CALL OVCLR 
CALL ZEROClNBLK,HODE) 
CALL IViDCOl6,MODE,MAP,NBLK) 

ENTER PATIENT I.D. AND OPEN,READ AND LIST OVERLAY DIRECTORY 

lFILE(S)=IBIH3) 
1 FI LE (6) = I B IT (4) 
CALL ASSIGNli,'AD0:SC~TCH. FIL',14,SCR) 
DEFINE FILE 1<1.1. U, IV) 
CALL CLOSE (1) 
TYPE 500 
ACCEPT 10, IFILE(3), IFILE(4) 
IFlIFILE(3).EQ. IBIT(1).OR. IFILE(3).EQ. IBIT(2»GO TO 900 
CALL ASSIGNl2,IFILE,12,OLD) 
DEFINE FILE 2l16,16,U, IV) 
TYPE 505 
DO 100 1=1. 16 
READl2' I )lODT 
lFdODT(1). NE. 0HYPE SHI, 1. IODT(1), IODT(2), IODH3), IODT(4), 

1 IODTlS), IODT(6), IODH7), iODT(8) 
CONTINUE 
TYPE 515 
ACCEPT 15, IREC 
IFlIREC. EQ.0)STOP'NO OUTLINES EQUALS NO RESULTS Ill' 

READl2'IREC)IODT 
IF(IODT(1).EQ.0)GO TO 200 
IFILE(6)=IODTl10) 
CALL CLOSE(2) 

OPEN AND READ OVERLAY FILE,READ FIRST TWO RECORDS ONLY, 
DISPLAY AREAS. 

CALL OVCLR 
CALL ASSIGN(2, IFILE, 12, OLD) 
DEFINE FILE 2(8,128, U, IV) 
READ(2' 1)lPK 
DO 110 1=1. l0a 
IPACK(I)=IPK(I+1) 
CONTINUE 
IPTS(1)=IPK(l) 
CALL AOIUPKdPACK, IPK(1)' IRDIAS) 
CALL AOIDSPl IADIAS, IPK(1), (;) 
READ(2'2)IPK 
DO 115 1=1. 1130 
IPACK(I)=IPK(I+l)_ 463 _ 
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C 

CALL AOIUPK\ IPACK, IPKd), iASYST, 
CALL AOIt>5Pi IASVST, :PK'.ll. 0) 
CALL CLOSE(2) 

CFIND AND MARK CENT~OIDS 
C 

C 

CALL COFOi IADIAS, IPTSdi .. IT;L 1'11) 
CALL COFOilASY3T, IP~Si2', 1)\2. [1'2) 
CALL LINEi(1X1+3), 1'/1, dl;i··3). Hi. L 
CALL LINEdliL (1'11+3), IXL (1"1-);.1) 
CALL LINE\dX2-3), iiY2-3) .. ~n;2+3!, (i12+j),l) 
CALL LINEi i Ili2-3), i IY2+3),', n:2+3)' '.IY2-3i, 1) 

C CALCULATE EQUATION OF LINE JOINING CENTROlt>S 
C 

C 

IYDIFF=IY2-I'H 
IXDIFF=IX2-IX1 
IFiIXDIFF. EQ. 8)IXDIFF=1 
IFiIYDIFF.EQ.8)IYDIFF=1 
Ai'I=1.*IYDIFF/IXDIFF 
C=IY1-Ai'I*IX1 

C CALCULATE NEARNESS OF EACH POINT TO LINE 
C 

DO 128 I=1,IPTS(1) 
DIFFil)=ABSiAi'I-(1. hIADIASi2, l)-C>/iADIASiL I») 

128 CONTINUE 
C 
C FIND ONE END OF DIASTOLIC DIAi'lETER 
C 

ICH=8 
ICT2=8 
Ai'lIN1=999. 
Al'IIN2=999. 
DO 125 I=1,IPTS(1) 
IFiDIFFiI). GT. AMIN1)00 TO 125 
DISH=SQRTi i IADIASi1, I)-IX1)**2+\ IADIASi2, !)-IY1)**2) 
DIST2=SllRTi i IADIASd, I )-IX2)**2+i IADIAS(2, I )-IY2)**2) 
IFiDIST2. OT. DIST1)GO TO 125 
AMIN1=DIFF( I) 
ICll=I 

125 CONTINUE 
C 
C FIND OTHER END OF DIASTOLIC DIAMETER 
C 

DO 138 1=1, IPTS(1) 
IF(DIFFiI). OT. AMIN2)GO TO 138 
DISH=SQRH i IADiAS(L Ii-IH)u2+\ IADIAS\2, I)-IY1)u21 
DIST2=SQRTi \ IADIAS\:l., I )-I:,2)H2+i IADIASi2, !)-IY2)**2) 
IFiDIST1. OT. DIST2)00 TO 130 
AP1IN2=DIFFn) 
ICT2=I 

138 CONTINUE 
C 
C FIND DISTANCE BETWEEN CENTROIDS,DIASTOLIC DIAMETER AND 
C CALCULATE i'lOYEP1ENT OF CENTROIDS AS PERCENT OF DIASTOLIC 
C DIAi'lETER AND CALCULATE DIRECTION OF MOYEMENT 
C 

IXDIFF=IADIASil, ICT2)-IADIAS(1, ICH) 
IYDIFF=IADIAS\2, ICT2)-IADIASi2, ICH) 
CALL LINEiIADIASi!, ICH), IADIASi2, Iell), IADIAS\1, ICT2), 

1 IADIAS(2, ICT2), 4) 
DLEN=SQRTi1.8*\IXDIFF**2+IYDIFF**2)) 
IFiDLEN. EQ. e. S)STOP'WHAT? NO DIASTOLIC DIAMETER??!" 
COFOD=SQRTi1.8*iiIY2-IY1l**2+iIX2-IX1)**2) 
RELM=188. ~COFOD/DLEN 
IYDIR=IY1-IY2 _ 464 -
T)Wli<.=IX1-U\2. 



I,; 

C TYPE RESULTS 
C 

900 

10 
15 
500 

+ 
1 
2 

505 
519 
515 

1 
520 

1 
2 

525 
530 
535 
540 
545 

TYPE 520, IFILE(3), IFILE(4), RELM, COFGD, DLEfl 
PRINT 520, IFILE',3i, IFILE(4), RELI'I .. COFG[l, DLEN 
IF(IYDIR. GT. 0)PRINT 525 
IF(IYDIR. LT. 0)PRINT 530 
IF(IXDIR. G7. 0)PRINT 535 
IF(IXDIR.LT.0iPRINT 54e 
IF(IXDIR. E~.0.~ND. IYDIR.E~.0)FRINT 545 
IF(IYDIR. GT. 6)TYPE 525 
IF(IYDIR. LT. 0)TYPE 530 
IF(IXDIR.GT.0iTYPE 535 
IF(IXDIR. LT. 0)TYPE 540 
IF(IXDIR.E~. 0. AND. IYDIR.E~. 0)TYPE 545 
GO TO 5 
CALL I V lOCO un 
STOP'FIRST I WILL FIUI5H PRItHING, THEN ITS UGOODBYE" D.' 

FORI'1AT(2A2) 
FORI'1AT(I5) 
FORMAT(1110X,'MOVEMENT OF CENTROID PROGRAM'!; 
15X,'INSERT (OR CHANGE) PATIENT DISC IN DRIVE fi 1 ,THEN" 
15X,'ENTER PATIENT NAME (4 CHARS. )'1 
15X,'OR ENTER DASH (-) TO 5TOP;'$) 
FORMAT(14X,'SELECT OVERLAY') 
FORMAT(10X,I5,1X,8A2) 
FORI'1AT(14X,'0 NO OVERLAY DESIRED'I 
15X$) 
FORMAT(lltX,'PATIENT ',2A2,' RELATIVE MOVEMENT =',F1e.5,' X'I 
t0X,'COFGD = ',Ft9. 51 
t0X,'DLEN = ',Ft0. 51) 
FORMAT(t0X,'I'IOVEMENT IS UP') 
FORMAT(t9X,'MOVEMENT IS DOWN') 
FORI'1AT(t0X,'1'10VEI'1ENT IS LEFT') 
FORI'1AT(t9X,'1'10VEMENT IS RIGHT') 
FORI'1AT(t0X, 'NO 1'10VE~ENT AT ALL !! !") 
END 
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C PROGRA" "AOICOP.FOR/OBJ/SAY· WRITTEN AT 
C RADIOISOTOPE I"AGING UNIT, GROBY ROAD HOSPITAL, LEICESTER 
C TO COPY AREAS FRO" ONE PATIENT DISC TO ANOTHER, TRANSLATE 
C AND ROTATE THE AREA TO ALLOW FOR DIFFERENCE IN POSITIONING 
C RE-CALCULATE THE SEG"ENTS AND STORE 
C 

CO""ON/OYLADR/IOYL II"BUF/I"BUF1(256) IYD"AP/"AP(256) 
CO""ON/I"ODE/"ODE II"GBLK/NBLK IEXT/IEXT(32) ITEXT/ITEXT(4) 
CO""ON/FRA"E/IFR" ICOUNT/ICNT I"ASHST/"ASRES(32) 
CO""ON/IOPAC/LIT(36),FLOTl19) IWORK/IWORK(256) 
CO""ON/FILE/IFILE(6) 
CO""ON/AREA1/IAREAGl2,59) IAREA2/IAREASl2,59) IAREA3/IAREAIl2,59) 
CO""ON/AREA4/IAREALl2,59) IAREAB/IAREABl2,59) 
CO""ON/ACNT/IGPT, ISPT, IIPT, ILPT, IBPT 
CO""ON/SEGBND/ICNT1, ICNT2, ICNT3 
DI"ENSION IREST(2) 
DI"ENSION IEND(4) 
DATA IEND/'.P','NT',' ',' 'I 
TYPE 588 
CALL SETDAT 
CALL YIDSET 
PAUSE'INSERT PATIENT DISC TO COPY FRO" (HIT RETURN TO CONTINUE)' 
CALL FNDOY3(8) 
IEND(3)=IFILEl5) 
IEND(4)=IFILEl6) 
CALL OYFINDlIREST) 
I Fl LE (5) = I END (3) 
IFILE(6)=IENDl4) 
CALL CLOSE(1) 
PAUSE'CHANGE TO NEW PATIENT DISC (HIT RETURN TO CONTINUE)' 

199 TYPE 585,IFILE(3),IFILEl4) 
GO TO l185,119,188),NOYESl) 

185 1=1 
GO TO 115 

119 1=9 
115 IFILE(5)=ITEXTl2) 

IFILE(6)=ITEXTl3) 
CALL FETCHlI) 
CALL DISP 
CALL OYTRAN 

129 TYPE 518 
GO TO l125,988,128),NOYESl) 

125 CALL STAOI2lIREST) 
CALL IYIDCO(8) 
STOP'PROCESSING CO"PLETE - - OUTLINES STORED' 

999 CALL IYIDCO(8) 
STOP'PROGRA" TER"INATED - - OUTLINES NOT STORED' 

599 FOR"ATllll15X,'RADIOISOTOPE I"AGING UNIT'II 
1 29X,'GROBY ROAD HOSPITAL'IIII 
2 15X'SEG"ENTAL AREA COPYING PROGRA"'IIII) 

595 FOR"ATl'8IS NEW PATIENT NA"E ',2A2,' lY OR N) '$) 
519 FOR"ATl'8STORE THESE AREAS lY OR N) ? '$) 

END 
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SUBROUTINE OYFIND<IREST) 
CO""ON/I"BUF/I"BUF1<25~) 
CO""ON/OYLADR/IOYL 
CO""ON/IOPAC/LIT(36),FLOT<18) 
CO""ON IFILE/IFILE(6) 
CO""ON/AREA1/IAREAG<2,58) 
CO""ON/ACNT IIGPT. ISPT. IIPT, ILPT, IBPT 
CO""ON/SEGBND/ICNT1,ICNT2,ICNT3 
DI"ENSION IREST(2) 
DI"ENSION IPACK(188) 
DI"ENSION IPK<12S) 
DI"ENSION IODT(16) 
DI"ENSION IOYLXT(4) 
DI"ENSION IOEXT(2) 
DATA IPACK/188*81 
DATA IPK/12S*81 
DATA 10YLXT/'.0','ZZ',' ',' '1 
DATA 10EXT/'.Q',' '1 
IOYLXT(3)=IFILE<5) 
IOYLXT(4)=IFILE<6) 
IFILE(5)=IOYLXT<1) 
IFILE(6)=IOYLXT<2) 
CALL CLOSE(2) 
CALL ASSIGN <2,IFILE,12,OLD) 
DEFINE FILE 2<16,16,U, IY) 

288 TYPE 588 
DO 188 1=1, 16 
READ<2' 1) IODT 
IF<10D1(1). NE. 8>TYPE 585, J, IODT(1), IOD1(2), IOD1(3), 

1 IOD1(4), IODT(5), IOD1(6), 10D1(7), 10DT<S) 
188 CONTINUE 

TYPE 518 
ACCEPT 18, IREC 
IF<IREC. EQ. 8)GO TO 988 
READ<2'IREC)IODT 
IF<IODT(1). EQ. 8)GO TO 288 
IFILE(6)=IODT<18) 
CALL CLOSE(2) 
CALL ASSIGN <2, IFILE, 12, OLD) 
DEFINE FILE 2<S,12S,U, IY) 
READ<2'1>IPK 
CALL CLOSE < 2) 
DO 128 1=1, 188 
IPACK<I)=IPK<I+1) 

128 CONTI NUE 
CALL AOIUPK<IPACK, IPK(1), IAREAG) 
IREST(1)=IOD1<5) 
IREST(2)=IODT<6) 
IGPT=IPK<i) 
IFILE(5)=IOEXT<1) 
IFILE(6)=IODT<5) 
IBLK=IFILTH<IFILE) 
IF<IBLK. EQ. -2)GO TO 918 
CALL ASSIGN <2,IFILE,12,OLD) 
DEFINE FILE 2<1,3,U,IY) 
READ<2'1>ICNTl, ICNT2, ICNT3 
CALL CLOSE(2) 
RETURN 

18 FOR"AT(15) 
588 FOR"AT<14X,'SELECT OYERLAY') 
585 FOR"AT<18X,I5,1X,SA2) 
518 FOR"AT<14X,'8 NO OYERLAY DESIRED'I 

1 15X$) 
988 STOP' OPERATOR TER"INATION IN ROUTINE "OYFIND"' 
918 STOP'NO POINT FILE FOUND !!!!!' 

END 
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C 

SUBROUTINE OYTRAN 
CO""ON/FILE/IFILE(6) 
CO""ON/SEGBND/ICNT1,ICNT2,ICNT3 
CO""ON/AREA1/IAREAG{2,50) 
CO""ON/AREA2/IAREAS{2,50) 
CO""ON/AREA3/IAREAI{2,50) 
CO""ON/AREA4/IAREAL{2,50) 
CO""ON/AREAB/IAREAB{2,50) 
CO""ON/ACNT/IGPT, ISPT, IIPT, ILPT, IBPT 
INTEGER AOIBND{2,50) 

100 CALL OYCLR 
CALL COFG{IAREAG,IGPT, IX,IY) 
CALL AOIDSP{IAREAG, IGPT,0) 
CALL LINE{ {lX-3), (IY+3), (IX+3), (}Y-3)' 1) 
CALL LINE\{ IX-3), (}Y-3), (}X+3), (}Y+3)' 1) 
TYPE 500 
CALL LIGHTP{IX1,IY1) 
CALL LINE{IX1,{IY1+4),IX1,{IY1-4),1) 
CALL LINE{{IX1-4), IY1, (IX1+4), IY1,1) 
TYPE 505 
GO TO (105,100,100),NOYES{) 

105 DO 110 I=1,IGPT 
AOIBND{1, I>=IAREAG{1. I>-{ IX-IX1) 
AOIBND{2, I)=IAREAG{2, I)-{IY-IY1) 

110 CONTINUE 
CALL AOIDSP{AOIBND,IGPT,0) 
TYPE 510 
GO TO (120,100,100),NOYES{) 

120 CALL AOIERS{IAREAG,IGPT,1) 
DO 125 I =1. I GPT 
IAREAG(1,I)=AOIBND{1, I) 
IAREAG{2,I)=AOIBND{2,I) 

125 CONTI NUE 
CALL OYCLR 
CALL AOIDSP(IAREAG,IGPT,0) 

126 TYPE 511 
GO TO (127,129,125),NOYES() 

127 TYPE 512 
CALL LIGHTP(I"X,I"Y) 
CALL LIGHTP(INX,INY) 
CALL GETNP( IAREAG, IGPT, I"X, I"Y, IPOS) 
IAREAG{1,IPOS)=INX 
IAREAG(2,IPOS)=INY 
CALL OYCLR 
CALL AOIDSP(IAREAG,IGPT,0) 
GO TO 126 

129 CALL COFG(IAREAG,IGPT,IX,IY) 
CALL CIICCII {l AREAG, I GPT, I X, I y, I CW) 
CALL SEG"NT(IAREAG,IAREAS, IGPT,IX,IY,ICNT1,ICNT2,ICII,ISPT) 
CALL SEG"NT{lAREAG, IAREAI. IGPT. IX, IY, ICNT2, ICNT3, ICII, IIPT) 
CALL SEG"NT(IAREAG, IAREAL, IGPT, IX, IY, ICNT3,ICNT1, ICII, ILPT) 
ICHAR=ITTOUR(7) 
PAUSE' HIT RETURN TO DISPLAY SEG"ENTS' 
CALL OYCLR 
CALL AOIDSP(IAREAS, ISPT,0) 
CALL AOIDSP(IAREAI,IIPT,0) 
CALL AOIDSP(IAREAL,ILPT,0) 
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131l TYPE 515 
GO TO (135,141l,131l),NOYES() 

135 CALL OYROT(IX,IY) 
CALL OYCLR 
GO TO 125 

141l TYPE 521l 
GO TO (1IlIl,145,141l),NOYES() 

145 TYPE 531l 
CALL AOIDRW(IAREAB, IBPT) 
RETURN 

ill FOR"AT(I5) 
51l1l FOR"AT('Il"ARK NEW POSITON OF CENTRE OF YENTRICLE 

1 WITH LIGHT PEN'/) 
51l5FOR"AT('IlIS THIS ACCEPTABLE (Y OR N)'$) 
511l FOR"AT('1l DOES THIS FIT? (Y OR N) '$) 
511 FOR"AT('IlEDIT AREA POINTS (Y OR N) ? '$) 
512 FOR"AH'Il"ARK THE POINT TO BE "OYED AND ITS NEW POSITION' I 

1 1X,'WITH THE LIGHT PEN') 
515 FOR"AT('IlDO THESE AREAS NEED ROTATION (Y OR N)/$) 
521l FOR"AT('IlTRANSLATE AREAS (Y OR N) ? '$) 
531l FOR"AT('IlDRAW BACKGROUND AREA WITH L. P.') 

END 
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C 

188 

118 

115 

128 

125 

138 

148 

SUBROUTINE STAOI2(IREST) 
CO""ON IFIlE/IFIlE(6) 
CO""ON/AREA1/IAREAG(2,58) 
CO""ON/AREA2/IAREAS(2,58) 
CO""ON/AREA3/IAREAI(2,58) 
CO""ON/AREA4/IAREAl(2, 58) 
CO""ON/AREAB/IAREAB(2, 58) 
CO""ON/ACNT/IGPT, ISPT, IIPT, IlPT, IBPT 
DI"ENSION IREST(2) 
DI"ENSION IPACK(188) 
DI"ENSION IOYlXT(2) 
DI"ENSION IPK(12S) 
DI"ENSION IODT(16) 
DI"ENSION IOYNA"(S) 
DI"ENSION INA"(38) 
DATA IOYlXT/'.O','ZZ'1 
DATA IPACK/188*81 
DATA IPK/128*81 
DATA IOYNA"I'SE','G"','EN','T ',' ',' ',' 2',' 'I 
DATA INA"I'Gl', 'OB', 'Al',' ',' ',' ','SE', 'PT', 'AV,' , 

1 ' ',' ','IN','FE','RI','OR',' ',' ','lA','TE','RA','l' 
2 I I I I I I I BK' , I G I I I I, I I I I I I I .. I 

IOYNA"(5)=IREST(1) 
IOYNA"(6)=IREST(2) 
IFIlE(5)=IOYlXT(1) 
IFIlE(6)=IOYlXT(2) 
CALL ClOSE(2) 
I=IFIl THUFIlE> 
IF!I. EQ. -2)GO TO 928 
CAll ASSIGN (2,IFIlE,12,OlD) 
DEFINE FILE 2(16,16,U,IY) 
DO 188 IOYREC=1,16 
READ(2' IOYREC, ERR=988)IODT 
IF(IODT(1).EQ.8)GO TO 118 
CONTINUE 
TYPE 588 
GO TO 918 
CONTINUE 
IF(IOYREC.EQ.1)GO TO 928 
DO 115 1=1. S 
IODT(I)=IOYNA"(I) 
CONTINUE 
IODH9)=S 
WRITE(2'IOYREC)IODT 
IFIlE(6)=IODT(18) 
CAll AOIPAK(IAREAG, IGPT, IPACK) 
CAll ClOSH2) 
CAll ASSIGN (2,IFIlE,12,NEW) 
DEFINE FILE 2(S,12S,U,IY) 
I PK (1) = I GPT 
DO 128 1=1. 188 
IPK(I+1)=IPACK(I) 
CONTINUE 
IPK(116)=8 
IPK(117)=8 
DO 125 1=1. 6 
IPK(122+I)=INA"(I) 
CONTINUE 
WRITH2'1 >IPK 
DO 138 1=1. 188 
IPACKU )=8 
CAll AOIPAK(IAREAS,ISPT,IPACK) 
IPK(1)=ISPT 
DO 148 1=1,188 
IPK(I+1)=IPACK(I) 
CONTINUE 
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DO 145 1=1. 6 
IPK(122+I)=INAK(I+6) 

145 CONTINUE 
IIR lTE (2' 2)1 PK 
DO 158 1=1. 188 

158 IPACK(I)=8 
CALL AOIPAK(IAREAI, IIPT, IPACK) 
IPK(i)=l1PT 
DO 155 1=1. 188 
IPK(I+1)=IPACK(I) 

155 CONTINUE 
DO 168 1=1. 6 
IPK(122+I)=INAK(I+12) 

168 CONTINUE 
IIR lTE( 2' 3)1 PK 
DO 165 1=1. 188 

165 IPACK(I)=8 
CALL AOIPAK(IAREAL, ILPT, IPACK) 
IPK(i)=ILPT 
DO 178 1=1,188 
IPK(I+1)=IPACK(I) 

178 CONTINUE 
DO 175 1=1. 6 
IPK(122+I)=INAK(I+18) 

175 CONTINUE 
IIRITE(2' 4)1PK 
DO 188 1=1. 188 

188 IPACK(I)=8 
CALL AOIPAK(IAREAB, IBPT, IPACK) 
IPK(1)=IBPT 
DO 185 1=1,188 
IPK(I+1)=IPACK(I) 

185 CONTI NUE 
DO 198 1=1. 6 
IPK(122+I)=INAK(I+24) 

198 CONTINUE 
IIRITE(2'5)1PK 
DO 195 1=1. 128 

195 IPK(})=8 
IIRITE(2' 6) IPK 
IIRITE(2' 7) IPK 
IIR lTE( 2' 8)1 PK 
CALL CLOSE(2) 
RETURN 

588 FORKAT(18X,'OYERLAY FILE FULL') 
988 STOP'READ ERROR FOR OYERLAY DIRECTORY' 
.918 STOP'RECOPY PATIENT FILES IIITH LESS THAN 16 OVERLAYS' 
928 STOP'DO NORKAL KUGA PROCESSING FIRST' 

END 
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SUBROUTINE OYROT(IX, IY) 
C TO ROTRTE RN OUTLINE BY RN R"OUNT 
C 

C 

CO""ON/RRER1/IRRERG(2,58) 
CO""ON/RCNT/IGPT, ISPT, IIPT, ILPT, IBPT 
CO""ON/SEGBND/ICNH, ICNT2, ICNT3 
TYPE 588 
CRLL LIGHTP(IPX, IPY) 

C REDUCE RRER TO 8,8 
C 

DO 188 I=l,IGPT 
IRRERG(1, I)=IRRERG(1, I)-IX 
IRRERG(2, I)=IRRERG(2, I)-IY 
IF(IRRERG(1, I). EQ. 8)IRRERG(1, 1)=1 
IF(IRRERG(2, I). EQ. 8)IRRERG(2, 1)=1 

188 CONTINUE 
C 
C REDUCE L. P. PO I NTS 
C 

C 

IPX=IPX-IX 
IPY=IPY-IY 

C CRLCULRTE RNGLE OF ROTRTION 
C 

C 

PY=FLORT(IPY) 
PX=FLORHIPX) 
RX=FLORT(IRRERG(1,ICNT1» 
RY=FLORT(IRRERG(2,ICNT1» 
IF(RY.EQ.8. 8.RND. RX. LT. 8. 8)R=8.8 
IF(RY. EQ.8.8. RND. RX.GT. 8. 8)R=1. 578796327 
IF(RX. EQ. 8.8.RND. RY. GT. 8. 8)R=8. 785398163 
IF(RX. EQ. 8. 8.RND. RY. LT. 8. 8)R=2. 35619449 
IF(RX.NE.8. 8. RND. RY. NE. 8. 8)R=RTRN2(RY,RX) 
IF(PY. EQ. 8. 8. RND. PX. GT. 8. 8)B=9. 9 
IF(PY. EQ.8.8. RND. PX. LT. 8. 8)B=1. 578796327 
IF(PX. EQ.8.8.RND. PY. GT. 9. 8)B=8. 785398163 
IF(PX.EQ. 8. 8.RND. PY. LT. 8. 9)B=2. 35619449 
IF(PX. NE.8. 8. RND. PY. NE. 8. 8)B=RTRN2(PY,PX) 
RLPHR=R-B 

C SHIFT POINTS 
C 

DO 118 1=1, IGPT 
IF(IRRERG(1, I). EQ. 9)BETR=2. 35619449+RLPHR 
IF(IRRERG(2, I). EQ. 8)BETR=RLPHR 
IF(IRRERG(2, I). EQ. 8. OR. IRRERG(1,I). EQ. 8)GO TO 58 
RX=FLORT(IRRERG(1, I» 
RY=FLORT(IRRERG(2, I» 
BETR=RTRN2(RY,RX)-RLPHR 
R=SQRT(RX**2+RY**2) 
GO TO 55 

58 R=SQRT((1. *IRRERG(2, 1)**2)+(1. *IRRERG(L 1)**2» 
55 IRRERG(1,I)=INT(R*COS(BETA» 

IAREAG(2,I)=INT(R*SIN(BETR» 
118 CONTINUE 
C 
C RELOCATE POINTS 
C 

DO 115 1=1, IGPT 
IRREAG(1, 1)=IRRERG(1, I)+IX 
IAREAG(2, 1)=IAREAG(2, I)+IY 

115 CONTINUE 
RETURN 

588 FOR"AT('9ENTER NEW POSITION OF TOP OF SEPTU" WITH L.P.') 
END 
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