
	

	

LOUGHBOROUGH UNIVERSITY

Formal	Transformation	Methods	for	
Automated	Fault	Tree	Generation	from	

UML	Diagrams

A	Doctoral	Thesis	
Submitted	in	partial	fulfilment	of	the	requirements	for	the	award	of	

Doctor	of	Philosophy	of	Loughborough	University	
	
	

	
	

March	2019	
	

	

	

by	
Rosmira	Roslan	

	
	
	
	
	
	
	

Copyright	Rosmira	Roslan	2019	

i	

	

ACKNOWLEDGEMENTS	

	

I	would	like	to	express	my	deep	gratitude	to	Professor	Charles	E.	Dickerson	and	Doctor	

Siyuan	 Ji,	 my	 research	 supervisors,	 for	 their	 patient	 guidance,	 enthusiastic	

encouragement,	 valuable	 and	 constructive	 suggestions	 during	 the	 planning	 and	

development	of	this	research	work.	I	came	to	know	about	so	many	new	things	and	I	am	

really	thankful	to	them.	A	special	note	for	Charles	Jackson,	a	manager	at	BAE	Systems,	for	

his	 help	 in	 proofread	 some	 part	 of	 this	 thesis.	 His	 willingness	 to	 give	 his	 time	 so	

generously	has	been	much	appreciated.	

I	would	also	like	to	thank	Professor	Ron	Summers,	my	internal	examiner	for	his	advice	

through	the	viva	voce	in	the	first	two	years	before	he	resigned	from	the	Loughborough	

University.	 A	 special	 acknowledgement	 goes	 out	 to	 Doctor	 David	 Mulvaney,	 my	 new	

internal	examiner,	for	his	advice	for	my	progression	into	the	final	year.	

Besides	my	academic	supports,	I	must	express	my	very	profound	gratitude	to	Haji	Roslan	

Mohd	Noor	and	Hajjah	Nor	Hayati	Ramlan,	my	parents,	and	family	for	their	support	and	

encouragement	from	the	beginning	and	throughout	my	study.	A	special	thanks	to	Mohd	

Fadhil	Arshad,	my	husband,	for	his	support	and	understanding.	His	presence	in	my	final	

year	 gave	 me	 positive	 pressure	 for	 finishing	 this	 thesis.	 Words	 cannot	 express	 how	

grateful	I	am	for	all	their	continuous	prayers	and	thought	they	have	made	on	my	behalf.	

My	 journey	 could	not	have	 started	without	 the	 financial	 support	 from	Majlis	Amanah	

Rakyat,	 my	 sponsor,	 and	 throughout	 the	 four	 years	 for	 the	 tuition	 fees	 and	 living	

allowance	to	survive	alone	with	the	new	environment	far	from	home.			

Finally,	 I	 would	 also	 like	 to	 expand	my	 gratitude	 to	 all	 those	 who	 have	 directly	 and	

indirectly	guided	throughout	this	journey,	especially	my	colleagues	have	made	valuable	

comment	suggestions	on	my	work	which	gave	me	an	inspiration	to	improve	the	quality	

of	the	work.	

	

ii	

	

PUBLISHED	WORKS	

	

Two	publications	have	been	published	throughout	the	completion	of	this	doctoral	thesis.	

1.	 Conference	paper:	Formal	methods	for	a	system	of	systems	analysis	framework	

applied	to	traffic	management.	

Dickerson,	 C.E.,	 Ji,	 S.	 and	 Roslan,	 R.,	 2016,	 June.	 In	 11th	 System	 of	 Systems	

Engineering	Conference	(SoSE),	pp.	1-6.	

2.	 Journal	 paper:	 A	 formal	 transformation	 method	 for	 automated	 fault	 tree	

generation	from	a	UML	Activity	model.	

Dickerson,	C.E.,	Roslan,	R.	and	Ji,	S.,	2018.	IEEE	Transactions	on	Reliability,	67(3),	

pp.1219-1236.	

	

iii	

	

GLOSSARY	OF	TERMS	

	

AM-FPC-FT	 Activity	 model-Fault	 Propagation	 Chain-Fault	 Tree:	 An	

overarching	metamodel	presented	in	Subchapter	4.2.7.	

ARP	 Aerospace	Recommended	Practice:	An	international	guideline	for	

aircraft	development	by	the	Society	of	Automotive	Engineers.	

Attribute	 An	observable	characteristic	or	property	in	the	context	of	system	

or	 system	 element	 (International	 Council	 on	 Systems	

Engineering	2015).	

Behaviour	 The	manner	 in	which	a	 system	acts	under	 specified	 conditions	

(Umeda	et	al.	1990).	

CFT	 Component	Fault	Tree:	A	metamodel	developed	by	(Adler	et	al.	

2011)	 in	 which	 its	 development	 is	 based	 on	 the	 hierarchical	

decomposition	of	a	system.	

CM-FT	 Class	model-Fault	Tree:	A	metamodel	 presented	 in	 Subchapter	

4.3.8.	

CMF	 Conjunctive	Material	 Form:	 Adopted	 from	 Conjunctive	 Normal	

Form	for	conjunctions	of	material	implications.				

COMPASS	 Comprehensive	Modelling	 for	Advanced	Systems	of	 Systems:	A	

group	of	researchers	and	companies	to	collaborative	research	on	

iv	

	

model-based-techniques	for	developing	and	maintaining	systems	

of	systems	from	October	2011	to	September	2014.		

CoO	 Concept	of	operation:	Characteristics	of	a	proposed	system	that	

describe	 the	 capabilities	 of	 the	 system	 to	 achieve	 the	 desired	

purpose.		

CS	 Constituent	 system:	 A	 system	 of	 system	 of	 systems	 that	

contributes	 to	 the	performance	of	 system	of	 systems.	 It	 is	 also	

known	as	system	element	or	subsystem.	

CPS	 Cyber	physical	system:	System	that	integrated	with	computation	

and	physical	system.	

Error	 1.	 An	 occurrence	 arising	 as	 a	 result	 of	 an	 incorrect	 action	 or	
decision	 by	 personnel	 operating	 or	 maintaining	 a	 system	
(International	Society	of	Automotive	Engineers	1996).	

2.	 A	 mistake	 in	 specification,	 design,	 or	 implementation	
(International	Society	of	Automotive	Engineers	1996).	

3.	An	occurrence	that	triggering	fault	and	failure	of	a	system.	

Event	 1.	An	occurrence	which	has	its	origin	distinct	from	a	system,	i.e.	
external	 event	 (International	 Society	 of	 Automotive	 Engineers	
1996).	

2.	 An	 occurrence	 of	 an	 action	 that	 progress	 from	 one	 state	 to	
another	 state	 of	 each	 process	 in	 a	 system	 (Waldecker	 &	 Garg	
1991).	

Facility	 A	 terminology	 used	 in	 this	 thesis	 to	 describe	 physical	 object	

(presented	by	Class),	subsystem	and	system	(presented	by	Class),	

and	system	component.	

v	

	

Failure	 A	loss	of	function	or	a	malfunction	of	a	system	or	a	part	thereof	

(International	Society	of	Automotive	Engineers	1996).	

Fault	 An	 undesired	 anomaly	 in	 a	 system	 (International	 Society	 of	

Automotive	Engineers	1996).	

Formal	Methods	 A	specification	written	in	a	formal	notation,	often	for	use	in	proof	

of	correctness	

FPC	 Fault	 Propagation	 Chain:	 Graphical	 representation	 of	 faults	

presented	in	Subchapter	4.2.	

FTA	 Fault	Tree	Analysis:	A	safety	assessment	analysis	method.	

FTM	 Fault	Tree	Metamodel:	A	metamodel	for	Fault	Tree	presented	in	

Subchapter	3.2.3.	

fUML	 Foundational	 UML	 Subset:	 An	 executable	 subset	 of	 standard	

Unified	Modeling	Language.	

Function	 The	special	kind	of	proper	activity	or	the	mode	of	action	by	which	

is	fulfils	its	purpose	(Umeda	et	al.	1990).	

Graphical	

Language	

Information	 or	 knowledge	 expresses	 in	 graphical	 type	 rather	

than	 textual,	 i.e.	 Unified	 Modeling	 Language	 and	 Systems	

Modeling	Language.	

vi	

	

INCOSE	 International	Council	 on	 Systems	Engineering:	An	organisation	

that	 focuses	 to	 develop	 and	 disseminate	 systems	 engineering	

principles	and	practices.	

MBSE	 Model-based	 systems	 engineering:	 A	 methodology	 that	 uses	

models	in	the	processes	of	SE	such	as	to	define	and	design	rather	

than	documented-based.	

Modelling	

Language	

Information	or	knowledge	expresses	in	a	structure	that	is	defined	

by	a	 consistent	 set	of	 rules,	 e.g.	 graphical	 language	and	 textual	

language.	

Modelling	

Technique	

Method	 of	 expressing	 information	 or	 knowledge,	 e.g.	 Unified	

Modeling	Language,	Systems	Modeling	Language,	simulation,	and	

flowchart.	

OMG	 Object	 Management	 Group:	 An	 organisation	 that	 drives	 the	

development	 of	 technology	 standards	 for	 industry	 such	 as	

Unified	Modeling	Language	and	Systems	Modeling	Language.	

QVT	 Query/View/Transformation:	A	model	transformation	language	

defined	by	Object	Management	Group.	

RAMS	 Reliability,	 Availability,	Maintainability,	 Safety:	A	 principle	 that	

use	 as	 to	 measure	 in	 the	 design,	 implementation,	 and	

maintenance	phase.	

vii	

	

RMS	 Ramp	Meter	System:	A	constituent	system	of	Traffic	Management	

System	of	Systems	that	has	been	used	as	a	case	study	in	this	thesis	

(c.f.	Chapter	3,	Chapter	4,	and	Chapter	5).	

Safety	

Assessment	

Activity	taken	to	produce	evidence	of	safety.	

Safety	

Assessment	

Analysis	Method	

1.	 Method	 that	 used	 in	 the	 safety	 assessment,	 e.g.	 Fault	 Tree	

Analysis	and	Failure	Mode	and	Effects	Analysis.	

2.	Hazard	analysis	technique	(Leveson	2012).	

Safety	Critical	

System	

System	whose	failure	may	harm	the	user,	environment,	and	the	

system	itself.	

SE	 Systems	Engineering:	An	interdisciplinary	field	and	approach	for	

covering	 all	 aspects	 in	 engineering	 such	 as	 design,	 tools,	

resources,	 documents,	 installation,	 processes,	 and	

communication	to	enable	the	realisation	of	a	system.	

SoS	 System	 of	 systems:	 A	 system	 whose	 constituent	 systems	

(subsystems)	 are	 managerially	 and/	 or	 operationally	

independent	 systems	 (International	 Council	 on	 Systems	

Engineering	2015).		

SoSE	 System	of	Systems	Engineering:	It	 is	emerging	as	an	attempt	to	

address	integrating	complex	metasystems	(Keating	et	al.	2003).	

viii	

	

SSE	 System	 Safety	 Engineering:	 It	 is	 a	 compilation	 of	 engineering	

analyses	 and	 management	 practices	 that	 control	 dangerous	

situation	(Bahr	2014).	

SysML	 System	Modelling	 Language:	 A	 modelling	 language	 for	 model-

based	systems	engineering	to	visualise	a	system	customised	from	

Unified	Modeling	Language	by	Object	Management	Group.	

System	 A	 combination	 of	 inter-related	 elements	 to	 perform	 a	 specific	

function(s).	

System	Element	 Terminology	 used	 in	 (International	 Council	 on	 Systems	

Engineering	 2015)	 as	 to	 present	 subsystem	 or	 constituent	

system.	

TCC	 Traffic	 Control	 Centre:	 A	 constituent	 system	 of	 Traffic	

Management	 System	 of	 Systems	 that	 has	 been	 used	 as	 a	 case	

study	in	this	thesis	(c.f.	Chapter	3,	Chapter	4,	and	Chapter	5).	

TMSoS	 Traffic	Management	 System	 of	 Systems:	 A	 case	 study	 that	 has	

been	used	in	this	thesis	(c.f.	Chapter	3,	Chapter	4,	and	chapter	5).	

UML	 Unified	 Modelling	 Language:	 A	 modelling	 language	 for	 model-

based	 systems	 engineering	 to	 visualise	 a	 system	 adopted	 by	

Object	Management	Group.	

UML	Diagram	 The	standard	of	diagrams	used	for	representing	system	adopted	

by	Object	Management	Group.	

ix	

	

UML	System	

Model	

The	terminology	is	defined	in	this	thesis	for	representing	system	

models	 that	 modelled	 and	 represented	 in	 Unified	 Modeling	

Language.		

x	

	

ABSTRACT	

	

With	a	growing	complexity	in	safety	critical	systems,	engaging	Systems	Engineering	with	

System	Safety	Engineering	as	early	as	possible	in	the	system	life	cycle	becomes	ever	more	

important	to	ensure	system	safety	during	system	development.	Assessing	the	safety	and	

reliability	of	system	architectural	design	at	 the	early	stage	of	 the	system	life	cycle	can	

bring	value	to	system	design	by	identifying	safety	issues	earlier	and	maintaining	safety	

traceability	 throughout	 the	 design	 phase.	 However,	 this	 is	 not	 a	 trivial	 task	 and	 can	

require	upfront	investment.	Automated	transformation	from	system	architecture	models	

to	 system	 safety	 and	 reliability	 models	 offers	 a	 potential	 solution.	 However,	 existing	

methods	lack	of	formal	basis.	This	can	potentially	lead	to	unreliable	results.	Without	a	

formal	basis,	Fault	Tree	Analysis	of	a	system,	for	example,	even	if	performed	concurrently	

with	system	design	may	not	ensure	all	safety	critical	aspects	of	the	design.	

Therefore,	 motivated	 by	 the	 above	 challenge,	 this	 thesis	 develops	 transformation	

methods	that	promises	automated	Fault	Tree	generation	from	system	models	that	are	

presented	in	the	Unified	Modelling	Language	(UML).	These	methods	are	staged	into	three	

parts:	 (i)	 a	 transformation	 method	 that	 generates	 a	 functional	 Fault	 Tree	 from	 UML	

Activities	 to	 capture	 the	 behavioural	 failure	 aspect	 of	 a	 system,	 (ii)	 a	 transformation	

method	 that	 generates	 a	 component	 Fault	 Tree	 from	 UML	 Classes	 to	 capture	 the	

structural	failure	aspect	of	a	system,	and	(iii)	a	transformation	method	that	integrates	the	

previous	two	methods	to	enable	generation	of	hierarchical	fault	events	in	a	Fault	Tree	

that	 adhere	 to	 system	 functional	 allocation	 and	 hierarchical	 decomposition.	 The	 key	

features	of	the	transformation	methods	include:	(i)	the	use	of	propositional	calculus	and	

probability	 theory	 to	 establish	 a	mathematical	 foundation	 that	 ensures	 the	 generated	

Fault	Trees	are	semantically	equivalent	to	their	source	models,	(ii)	the	development	of	

the	Fault	Propagation	Chain	which	serves	as	a	bridge	to	connect	the	system	architectural	

viewpoint	and	system	failure	viewpoint,	and	(iii)	a	set	of	overarching	metamodels	that	

unifies	 relevant	 UML	 metamodels	 and	 Fault	 Tree	 metamodel	 to	 facilitate	 tool	

development.	

xi	

	

Unlike	existing	 transformation	methods,	 this	research	exploits	 the	relational	structure	

embedded	in	the	system	models	in	addition	to	system	model	elements.	As	demonstrated	

through	the	application	of	the	transformation	methods	to	a	Traffic	Management	System,	

it	 is	observed	 that	derived	Fault	Trees	preserve	 the	relational	structure	of	 the	system	

model.	This	key	finding	therefore	provides	a	means	to	assess	the	safety	and	reliability	of	

system	architecture	at	the	early	stage	of	a	system	life	cycle.	To	verify	the	methods	and	the	

finding,	these	transformation	methods	are	also	applied	to	a	Railway	System	case	study	in	

which	 the	 system	 architecture	 is	 evaluated	 through	 Fault	 Trees	 generated	 from	 the	

available	architecture	models.	

	

xii	

	

TABLE	OF	CONTENTS	

ACKNOWLEDGEMENTS	...	i

PUBLISHED	WORKS	..	ii

GLOSSARY	OF	TERMS	..	iii

ABSTRACT	...	x

TABLE	OF	CONTENTS	..	xii

LIST	OF	FIGURES	..	xv

LIST	OF	TABLES	...	xix

CHAPTER	1	..	20

INTRODUCTION	...	20

1.1	Current	Situation	and	Challenges	of	System	Development	20

1.2	Aim	and	Objectives	of	the	Research	..	25

1.3	Scope	of	the	Research	...	27

1.4	Structure	of	Thesis	...	29

CHAPTER	2	..	31

LITERATURE	REVIEW	..	31

2.1	Introduction	..	31

2.2	Systems	Engineering	as	a	Medium	of	System	Realisation	Error!	
Bookmark	not	defined.

2.3	Safety-critical	Systems	and	System	Safety	EngineeringError!	Bookmark	
not	defined.

2.4	Systems	Engineering	and	System	Safety	Engineering	in	Current	Practice
	..	Error!	Bookmark	not	defined.

2.5	Integration	of	Systems	Engineering	and	System	Safety	EngineeringError!	
Bookmark	not	defined.

2.6	Fault	Tree	as	a	Safety	Assessment	Method	..	42

2.7	Fault	Tree	Construction	in	Common	Practice	..	49

2.8	Model-based	Systems	Engineering	and	Modelling	Techniques	51

xiii	

	

2.9	Model	Transformation	of	Different	Domains	...	57

2.10	 Implementation	 of	 Formal	 Methods	 on	 Models	 and	 Model	
Transformation	..	61

2.11	Summary	of	the	Literature	Review	..	64

CHAPTER	3	..	67

FOUNDATIONAL	RESEARCH	KNOWLEDGE	..	67

3.1	Introduction	..	67

3.2	Model-based	Approach	for	System	and	Safety	...	69

3.3	Mathematical	Representation	on	Models	...	81

3.4	Traffic	Management	System	of	Systems	Case	Study	..	91

3.5	Summary	of	Foundational	Research	Knowledge	..	100

CHAPTER	4	..	102

A	 FORMAL	 TRANSFORMATION	 METHOD	 FOR	 AUTOMATED	 FAULT	 TREE	
GENERATION	FROM	SINGLE	UML	SYSTEM	MODEL	...	102

4.1	Introduction	..	102

4.2	From	Activities	to	Fault	Tree	...	104

4.3	From	Classes	to	Fault	Tree	...	130

4.4	Summary	of	Formal	Transformation	Method	 for	Automated	Fault	Tree	
Generation	from	Single	UML	System	Model	..	146

CHAPTER	5	..	149

AUTOMATED	 FAULT	TREE	GENERATION	 FROM	 INTEGRATED	UML	 SYSTEM	
MODELS	..	149

5.1	Introduction	..	149

5.2	Allocation	..	151

5.3	Facilitation	...	153

5.4	Ownership	..	170

5.5	 Summary	 of	 Automated	 Fault	 Tree	 Generation	 from	 Integrated	 UML	
System	Models	..	172

xiv	

	

	

CHAPTER	6	..	175

VERIFICATION	OF	THE	FORMAL	TRANSFORMATION	METHODS	175

6.1	Introduction	..	175

6.2	Railway	System	Case	Study	Review	..	177

6.3	Systems	Models:	Level	Crossing	Control	System	..	179

6.4	Application	of	Formal	Transformation	Methods	to	Level	Crossing	Control	
System	..	188

6.5	Comparative	Analysis	...	203

6.6	 Summary	 of	 Verification	 of	 the	 Developed	 Formal	 Transformation	
Methods	...	206

CHAPTER	7	..	210

CONCLUSION	AND	FUTURE	WORK	...	210

APPENDIX	A	..	215

Use	Case	Diagram	as	a	Behaviour	Model	..	215

Use	Case	Metamodel	..	218

APPENDIX	B	..	219

OR-Gate	and	Minimal	Cut	Set	...	219

REFERENCES	..	220

	

xv	

	

LIST	OF	FIGURES	

Figure	1.1	General	Processes	of	System	Development	..	21

Figure	 1.2:	 Unified	Modelling	 Language	 Taxonomy	 (Object	Management	 Group	

2017c)	...	24

Figure	2.1:	A	Part	of	International	Standards	and	Guidelines	for	an	Aircraft	39

Figure	 3.1:	 Reduced	 Activity	 Metamodel	 extracted	 from	 the	 OMG	 UML	

Specification	(Object	Management	Group	2017c).	74

Figure	3.2:	Reduced	Class	Metamodel	extracted	from	the	OMG	UML	Specification	

(Object	Management	Group	2017c)	...	79

Figure	3.3:	Fault	Tree	Metamodel	developed	based	on	ARP4761	81

Figure	3.4:	Two	Actions	connected	in	Series	...	88

Figure	3.5:	Two	Actions	connected	in	Parallel	..	89

Figure	3.6:	Elementary	Structure	of	Fault	Tree	with	(a)	AND-gate,	and	(b)	OR-gate

	..	90

Figure	3.7:	Informal	Layout	of	a	Single	Ramp	Meter	System	(Ingram	et	al.	2014)

	..	92

Figure	3.8:	High	Level	Use	Case	Model	of	the	Ramp	Meter	System	93

Figure	3.9:	Use	Case	model	of	the	Ramp	Meter	System	..	95

Figure	3.10:	The	Activity	Model	of	the	Ramp	Meter	System	...	97

Figure	3.11:	The	Class	Model	of	Ramp	Meter	System	..	99

Figure	3.12:	RMS	Fault	Tree	from	Fault	IdentificationError!	 Bookmark	 not	

defined.

Figure	4.1:	Example	of	Fault	Propagation	Chains	in	Series	Propagation	111

xvi	

	

Figure	 4.2:	 Example	 of	 Fault	 Propagation	 Chains	 in	 Bifurcated	 and	 Merged	

Propagation	...	113

Figure	4.3:	Example	of	Fault	Tree	transformed	from	Fault	Propagation	Chain	in	

Figure	4.1	...	116

Figure	4.4:	Example	of	Fault	Tree	transformed	from	Fault	Propagation	Chain	in	

Figure	4.2	...	117

Figure	4.5:	Example	of	Fault	Tree	transformed	from	Fault	Propagation	Chain	that	

derived	from	an	expanded	Contracted	Fault	Event	118

Figure	4.6:	A	Nested	Control	Flow	modelled	in	UML	Activity	119

Figure	4.7:	A	derived	FPC	for	the	nested	control	flow	as	described	in	(4.2.23)	.	120

Figure	4.8:	The	transformed	Fault	Tree	for	the	Nested	Control	Flow	121

Figure	 4.9:	 Activity	 model-Fault	 Propagation	 Chain-Fault	 Tree-Overarching	

Metamodel	..	125

Figure	 4.10:	 The	 Fault	 Propagation	 Chain	 Transformed	 from	 the	 RMS	 Activity	

Model	..	127

Figure	4.11:	The RMS Fault Tree transformed from the Fault Propagation Chain in

Figure 4.10	..	128

Figure	 4.12:	 (a)	 Composition	 Relationship	 Structure	 of	 two	 Classes	 (b)	 Euler	

Diagram	of	(a)	...	136

Figure	4.13:	Complementary	Class	as	presented	by	using	Euler	Diagram	137

Figure	4.14:	(a)	Aggregation	Relationship	Structure	of	Two	Classes	and	(b)	Euler	

Diagram	of	(a)	...	138

Figure	4.15:	Fault	Tree	of	Composite	Relationship	Structure	141

Figure	4.16:	Class	model-Fault	Tree	Overarching	Metamodel	144

xvii	

	

Figure	4.17:	The	Ramp	Meter	System	Structural	Fault	Tree	146

Figure	 5.1:	 Structure	 Level	 of	 Functions	 and	 System	 presented	 by:(a)	 System	

Hierarchy	(b)	Activity	Diagram	..	151

Figure	5.2:	Application	of	Allocation	for	an	Action	in	SysML	(Object	Management	

Group	2017a)	...	153

Figure	5.3:	Relationship	between	an	Action	and	a	Facility	..	156

Figure	5.4:	Facilitation	of	Three	Facilities	to	an	Action	...	159

Figure	5.5:	Multiple	Type	of	Facilitation	on	Fault	Propagation	Chain	160

Figure	5.6:	Integrated	Fault	Tree	derived	from	(5.4)	...	163

Figure	 5.7:	 Facilitation-Fault	 Propagation	 Chain-Fault	 Tree	 Overarching	

Metamodel	..	164

Figure	5.8:	Facilitation	on	Activity	Model	of	Ramp	Meter	System	166

Figure	5.9:	FPC	with	Facilitation	of	Facilities	Implementation	167

Figure	 5.10:	 RMS	 Fault	 Tree	 transformed	 from	 the	 Fault	 Propagation	 Chain	 in	

Figure	5.9	..	169

Figure	5.11:	(a)	Transfer	Out	Events	(b)	Transfer	In	Event	..	171

Figure	6.1:	Railway	Crossing	System	(Reif	et	al.	2000),	 (Schellhorn	et	al.	2002),	

(Xiang	et	al.	2004),	(Xiang	et	al.	2005)	..	179

Figure	6.2:	High	Level	Use	Case	Model	of	the	Level	Crossing	Control	System	180

Figure	6.3:	Use	Case	Model	of	the	Level	Crossing	Control	System	181

Figure	6.4:	Activity	Model	of	the	Level	Crossing	Control	System	186

Figure	6.5:	Class	Model	of	the	Level	Crossing	Control	System	187

xviii	

	

Figure	6.6:	Fault	Propagation	Chain	of	Level	Crossing	Control	System	189

Figure	6.7:	Functional	Fault	Tree	of	Level	Crossing	Control	System	192

Figure	6.8:	Facilitation	on	Activity	Model	of	Level	Crossing	Control	System	194

Figure	 6.9:	 Fault	 Propagation	 Chain	with	 Facilitation	 of	 Level	 Crossing	 Control	

System	...	195

Figure	6.10:	Integrated	Fault	Tree	of	Level	Crossing	Control	System	197

Figure	6.11:	Extended	Fault	Tree	of	Level	Crossing	Control	System	200

Figure	6.12:	Elaborated	Fault	Tree	of	Level	Crossing	Control	System	202

Figure	6.13:	Fault	Tree	of	f21	Transfer	In	Event	..	203

Figure	6.14:	Overview	of	Transformation	from	UML	System	Models	to	Fault	Tree	

Generation	..	208	

Figure	A.1:	Use	Case	Metamodel	………………………………………………………………….212	

Figure	B.1:	Fault	Tree	consisted	of	only	OR-Gates	………………………………………...213	

xix	

	

LIST	OF	TABLES	

Table	2.1:	Fault	Tree	Symbols	..	43

Table	2.2:	Events	of	Design	Intent	..	50

Table	3.1:	Activity	Model	Symbols	..	71

Table	3.2:	Class	Model	Symbols	...	77

Table	3.3:	Use	Case	Description	of	Ramp	Meter	System	...	96

Table	4.1:	Semantic	Mapping	Rules	...	107

Table	4.2:	Truth	Table	of	ai → aj	...	110

Table	5.1:	Truth	Table	of	Material	Equivalence	between	Action	and	Facility	157

Table	5.2:	Types	of	Facilitation	..	158

Table	5.3:	Truth	Table	of	Probability	of	Failure	...	161

Table	6.1:	“allow	Crossing”	Use	Case	Description	of	Level	Crossing	Control	System

	..	182

Table	6.2:	“exchange	Information”	Use	Case	Descriptions	of	Level	Crossing	Control	

System	...	183

Table	6.3:	“self-diagnosis”	Use	Case	Description	...	184	

Table	A.1:	Use	Case	Model	Symbols	……………………………………………………………..211	

	

	

20		

	

INTRODUCTION	

	

1.1	Current	Situation	and	Challenges	of	System	Development	

The	Systems	Engineering	(SE)	life	cycle	is	divided	into	stages	that	cover	end-to-

end	 processes	 of	 system	 development.	 Two	 examples	 of	 established	 standards	 are	

ISO/IEC/IEEE	 15288:2015	 (ISO/IEC	 2015)	 and	 United	 States	 (US)	 Department	 of	

Defense	(DoD)	Systems	Engineering.	These	standards	have	different	viewpoints	on	the	

SE	life	cycle	structure	for	ensuring	the	system	developed	meets	the	required	functionality	

(International	 Council	 on	 Systems	 Engineering	 2015).	 Additionally,	 Waterfall	 (Royce	

1970),	Spiral	(Boehm	1988),	and	Vee	(Forsberg	&	Mooz	1991),	are	the	three	most	well-

known	models	that	illustrate	SE	life	cycle.	The	first	two	models,	Waterfall	and	Spiral,	were	

developed	 specifically	 to	 address	 software	 development	 processes	 only	 of	 large-scale	

systems	(Estefan	2007).	The	Vee	was	developed	to	address	the	involvement	of	SE	in	a	

project	 life	 that	 is	 wider	 than	 just	 software	 development	 including	 cross-functional	

between	 engineering	 disciplines	 and	 non-engineering	 disciplines.	 In	 this	 thesis,	 four	

generic	stages	of	SE	life	cycle	that	consist	of	specification,	design,	implementation,	and	

testing	are	structured	by	using	Vee	model.	

System	Safety	Engineering	(SSE),	another	engineering	domain,	is	embedded	into	

SE	for	analysing	the	system	under	development	to	ensure	it	is	safe	for	the	end	users	and	

environment.	Similar	to	SE,	SSE	has	end-to-end	processes	that	can	be	grouped	into	three	

stages;	 system	 safety	 requirement,	 system	 safety	 assessment,	 and	 verification	 and	

validation.	 In	 IEC	 61508,	 Functional	 Safety	 of	 Electrical/Electronic/Programmable	

Electronic	 Safety-related	 Systems	 standard,	 16	 phases	 of	 system	 safety	 life	 cycle	 are	

stated	(International	Electrotechnical	Commission	2010).	The	phases	are	structured	into	

three	large	groups:	i)	Analysis;	ii)	Realisation;	and	iii)	Operation	(Redmill	1999).	Whilst	

US	DoD	System	Safety	standard,	MIL-STD-882,	has	25	safety	tasks	that	are	organised	into	

four	groups:	i)	Management;	ii)	Analysis;	iii)	Evaluation;	and	iv)	Verification	(Department	

Chapter	1	

	

21	

	

of	Defense	United	States	of	America	2012).	The	major	overlap	of	Analysis	is	principally	in	

system	requirement	analysis.	

SE	and	SSE	are	interdependent	in	development	of	any	system	as	depicted	in	Figure	

1.1	with	light	purple	and	bright	grey	respectively	(read	from	left	to	right).	The	stages	of	

SE	and	SSE	life	cycles	run	on	the	same	project	timeline.	In	reality,	the	life	cycle	is	not	linear	

as	it	shows.	In	order	to	ensure	effective	and	efficient	communication	that	accounts	for	

ongoing	 learning	 and	 decisions,	 iteration	 and	 recursion	 are	 applied	 to	 the	 life	 cycle	

processes	 with	 appropriate	 feedback	 loops	 (International	 Council	 on	 Systems	

Engineering	2015).	Nevertheless,	their	processes	are	performed	separately	as	SE	and	SSE	

establish	different	views	and	different	levels	of	details	(Mhenni	et	al.	2018).	During	the	

design	phase,	the	detailed	design	of	a	system	under	development	should	undergo	safety	

analysis	 before	 it	 is	 locked	 for	 the	 Implementation	 Stage.	 This	 is	 to	 ensure	 that	 the	

designed	system	has	satisfactory	safety	levels	(Mhenni	et	al.	2018).	However,	the	detailed	

design	 of	 a	 system	 can	 be	 analysed	 for	 reliability	 characteristics	 as	 soon	 as	 they	 are	

available	 (Pai	&	Dugan	2002).	This	may	occur	 late	 in	 the	design	phase	 (Mhenni	 et	 al.	

2014).	

	

	

Figure	1.1	General	Processes	of	System	Development	

	

System	Safety	Assessment	(SSA)	is	a	stage	in	the	SSE	life	cycle	that	is	associated	

with	the	detailed	design	of	a	system.	During	the	Detailed	Design	Stage,	a	comprehensive	

evaluation	is	undertaken	to	show	safety	requirements	of	the	developing	system	are	met.	

Chapter	1	

	

22	

	

A	 range	 of	 SSA	 analysis	 methods	 are	 recommended	 to	 be	 used	 within	 the	 safety	

evaluation	 process.	 The	 system	 design	 will	 be	 verified	 at	 multiple	 levels	 including	

decomposition	of	the	system	qualitatively	and	quantitatively	in	order	to	meet	the	system	

safety	requirements.	Fault	Tree	Analysis	(FTA),	Dependence	Diagram	(DD),	and	Markov	

Analysis	(MA)	are	three	model-based	methods	that	are	recommended	in	analysing	safety	

aspects	of	system	design	(Dai	et	al.	2018).	These	methods	facilitate	subdivision	of	system	

level	events	into	lower	level	events	for	ease	of	analysis.	The	events	are	failure	events	of	

the	system	which	are	 identified	either	being	 individually	or	collectively	 leading	 to	 the	

occurrence	 of	 undesired	 system	 failure.	 Amongst	 the	 three	methods,	 FTA	 is	 the	most	

popular	 one.	 It	 supports	 formal	 analysis	 as	 it	 uses	 Boolean	 logic	 gates	 in	 the	 tree.	

Compared	to	the	other	two,	FTA	can	evaluate	the	specific	situation	of	the	failure	events	

to	the	occurrence	of	the	undesired	system	failure.	

More	recently,	from	the	1990s	to	the	2000s,	researchers	and	practitioners	have	

been	automating	Fault	Tree	generation	to	reduce	the	time	required	by	producing	Fault	

Trees	manually	and	to	avoid	human	errors	in	manual	Fault	Tree	constructions	(Majdara	

&	Wakabayashi	2009),	(Bhagavatula	et	al.	2016).	The	key	challenge	 in	the	automation	

process,	 as	 identified	by	 researchers	 in	 the	 field,	 is	 actually	not	 the	 automation	 itself.	

Rather	 the	 challenge	 is	 to	 do	 with	 how	 the	 system	 should	 be	 modelled	 (Majdara	 &	

Wakabayashi	2009).	For	instance,	creating	a	comprehensive	model	for	a	complex	system	

while	 maintaining	 sufficient	 level	 of	 detail	 can	 be	 challenging.	 In	 addition,	 a	 good	

modelling	 technique	 in	 one	 domain	 may	 not	 be	 general	 enough	 to	 have	 a	 wide	

applicability	to	cover	other	engineering	domains.	To	tackle	this	challenge,	model	based	

approaches	 such	 as	 the	 use	 of	 diagraphs	 (Wang	 et	 al.	 2003),	 (Vemuri	 1999),	 state	

diagrams	(Rauzy	2002),	(Liggesmeyer	&	Rothfelder	1998),	component-based	modelling	

(Majdara	 &	 Wakabayashi	 2009),	 (Bhagavatula	 et	 al.	 2016),	 and	 knowledge-based	

approaches	as	reviewed	in	(G	2002)	are	included	in	modelling	techniques	developed	for	

automated	Fault	Tree	generation	in	the	past.	Despite	the	various	level	of	success	in	the	

adoption	of	these	methods	in	industrial	settings,	model	availability	has	been	one	of	the	

key	issues.	For	instance,	a	substantial	effort	may	be	required	to	create	the	sophisticated	

system	 models,	 which	 is	 in	 contradiction	 to	 this	 idea	 of	 reducing	 time	 required	 in	

producing	Fault	Trees.		

Chapter	1	

	

23	

	

Much	more	recently,	model-based	SE	(MBSE)	a	rapidly	growing	field	originated	

from	 defence	 and	 aerospace,	 has	 attracted	 attention	 from	 the	 reliability	 and	 safety	

community	 (Zeller	 et	 al.	 2016),	 (Thoma	 et	 al.	 2012),	 (Laz�r	 et	 al.	 2010).	 In	 MBSE,	

modelling	techniques	and	languages	have	been	developed	to	model	complex	systems	and	

system	of	systems	(SoS).	Many	of	modelling	languages	in	current	practice	do	not	have	

well-founded	semantics	to	support	MBSE	(Fitzgerald	et	al.	2013)	and	formal	methods	for	

MBSE	are	needed.	Of	the	various	modelling	languages,	Unified	Modelling	Language	(UML)	

(Jacobson	et	al.	1999),	which	was	originally	developed	for	software	engineering,	became	

popular	 in	 SE	 due	 to	 its	 general	 applicability	 and	 extendibility	 when	 it	 was	 first	

introduced	by	Object	Management	Group	(OMG)	 in	1997	 	 (Liebel	et	al.	2018).	 In	UML	

Specification	2.5.1,	the	latest	version	of	UML,	as	presented	in	Figure	1.2,	14	diagrams	of	

two	 major	 kinds	 of	 diagram	 types	 are	 established	 to	 support	 conceptual	 design	 of	

complex	system	(Object	Management	Group	2017a).	UML	diagrams	are	divided	into	two	

major	categories;	behaviour	diagram	and	structure	diagram	(Object	Management	Group	

2017d).	Respectively,	the	diagrams	classification	is	regarded	as	‘how’	is	the	performance	

of	the	system		and	‘what’	is	the	appearance	of	the	system	(Holt	2001).	The	functions	and	

behaviours	of	a	system	that	describe	a	series	of	changes	over	time	is	showed	by	behaviour	

diagrams,	i.e.	performance	of	the	system.	Element	specifications	that	are	irrespective	of	

time	and	represent	the	static	structure	of	objects	in	a	system	are	showed	by	structure	

diagrams,	i.e.	appearance	of	the	system.	UML	has	been	elaborated	into	domain-specific	

languages	such	as	the	System	Modelling	Language	(SysML)	for	general	purpose	system	

modelling	 (Object	 Management	 Group	 2007)	 and	 the	 UML	 profile	 for	 modelling	 and	

analysis	of	real-time	embedded	systems	for	embedded	systems	(Selic	&	Gerard	2014).	As	

compared	to	UML,	a	smaller	number	of	visual	modelling	 language	is	offered	by	SysML	

with	only	eight	diagram	types	(Amissah	et	al.	2018).	The	software	specific	components	

of	UML	elements	that	are	unnecessary	in	SE	design	are	explicitly	omitted.	The	Activity	

Diagram	 construct	 is	 also	 modified	 to	 support	 activity	 extensions	 and	 continuous	

functions,	i.e.	allocation	table,	and	action	and	object	in	a	diagram.	Two	structure	diagrams	

from	UML,	 Class	Diagram	 and	 Composite	 Structure	Diagram,	 are	 replaced	with	 Block	

Definition	Diagram	and	Internal	Block	Diagram	respectively.	Technically,	the	selection	of	

diagram	for	modelling	a	system	is	dependent	to	the	perception	of	the	user,	i.e.	designer.	

Chapter	1	

	

24	

	

	

	

Figure	1.2:	Unified	Modelling	Language	Taxonomy	(Object	Management	Group	
2017d)	

	

Unlike	the	previous	specific	modelling	techniques	developed	for	automatic	Fault	

Tree	generation,	the	modelling	of	systems	across	various	domains	can	be	facilitated	by	

UML	and	 its	 extensions.	Nowadays,	 domains	have	 started	 adopting	MBSE	 approaches	

using	UML;	and	its	extensions	are	becoming	widely	adopted.	Moreover,	researchers	and	

practitioners	have	also	started	using	UML	and	its	extensions	for	modelling	and	analysis	

from	a	system	safety	and	reliability	perspective	(Thoma	et	al.	2012),	(Laz�r	et	al.	2010),	

(Holt	2001),	(Friedenthal	et	al.	2014),	(Selic	&	Gerard	2014),	(Zoughbi	et	al.	2011).	As	

such,	for	the	purpose	of	automated	Fault	Tree	generation,	model	availability	is	becoming	

less	 of	 an	 issue.	 However,	 efficient	 and	 reliable	 transformation	 techniques	 between	

models	created	using	these	languages	and	Fault	Trees	remain	a	challenge.	

Thanks	 to	 the	 development	 of	 transformation	 languages,	 such	 as	 ATLAS	

Transformation	 Language	 developed	 by	 French	 Institute	 for	 Research	 in	 Computer	

Science	 and	 Automation	 (Jouault	 et	 al.	 2008)	 conforming	 to	 the	 Object	 Management	

Group	 (OMG)	 standards,	 Query/View/Transformation	 (Guduric	 et	 al.	 2009),	

Chapter	1	

	

25	

	

transformations	 between	 models	 developed	 in	 different	 languages	 and	 in	 different	

domains	can	be	more	easily	achieved	technically.	

Researchers	 and	 practitioners	 have	 developed	 various	 ways	 for	 transforming	

UML	models	(Kim	et	al.	2012),	(Hu	et	al.	2011),	(Zhao	&	Petriu	2015),	(Kim	et	al.	2010)	

and	SysML	models	to	Fault	Trees	(Mhenni	et	al.	2018),	(Xiang	&	Yanoo	2010),	(Yakymets	

et	al.	2013).	These	 transformations	share	 the	 following	commonalities:	 (i)	 they	define	

entity-to-entity	 types	of	mapping.	For	 instance,	a	Use	Case	 in	UML	 is	mapped	onto	an	

intermediate	 event	 in	 a	 Fault	 Tree	 (Zhao	 &	 Petriu	 2015),	 (ii)	 the	 transformations	

developed	 lack	 formality;	 hence	 they	 lack	 provable	 rationales	 to	 support	 the	 defined	

mapping.	Without	a	 formal	basis,	Fault	Tree	Analysis	of	a	system,	 for	example,	even	 if	

performed	concurrently	with	system	design	may	not	ensure	all	safety	critical	aspects	of	

the	 design.	 Further	 precision	 can	 be	 brought	 to	 modelling	 through	 semantic	

transformation	between	models.	

Given	that	Fault	Trees	are	meant	to	be	used	to	assess	system	reliability	and	safety,	

trustworthiness	 of	 an	 automatically	 generated	 Fault	 Tree	 from	 system	 models	 can	

become	 questionable	 if	 the	 transformation	 does	 not	 have	 a	 formal	 basis.	 To	 bring	

formality	into	the	development	of	system	models	and	Fault	Trees,	attempts	in	formalising	

UML	models	(Laz�r	et	al.	2010),	(Craciun	et	al.	2013)	and	Fault	Tree	models	(Xiang	&	

Yanoo	 2010),	 (Xiang	 et	 al.	 2004)	 have	 been	 made	 independently.	 Furthermore,	 to	

enhance	consistencies	between	models	developed	in	different	domains,	major	projects	

such	as	Comprehensive	Modelling	for	Advanced	Systems	of	Systems	(COMPASS)	(Ingram	

2014)	have	developed	tools	and	methods	for	engineers	from	all	range	of	disciplines	to	

provide	support	in	cross-domain	collaborations	(Andrews,	Ingram,	et	al.	2014),	(Bryans	

et	al.	2014).	Nonetheless,	a	formalised	transformation	method	between	UML	models	and	

Fault	Tree	models	is	still	missing.	

1.2 Aim	and	Objectives	of	the	Research	

The	 aim	of	 this	 thesis	 is	 to	 develop	mathematically	meaningful	 transformation	

methods	for	generating	Fault	Trees	automatically	from	system	models	that	are	modelled	

in	UML.	 The	 generated	 Fault	 Trees	 can	 then	 be	 used	 for	 analysing	 system	 safety	 and	

Chapter	1	

	

26	

	

reliability	 at	 the	 system	 architecture	 design	 stage.	 As	 briefed	 in	 Subchapter	 1.1,	 UML	

system	models	consist	of	14	types.	For	this	thesis,	of	the	14	types,	Activity	and	Class	are	

selected	as	representing	behaviour	and	structure	of	a	system	respectively.	By	using	the	

formal	 transformation	methods,	 the	 undesired	 event	 of	 the	 system	 derived	 from	 the	

system	models	 are	 presented	 in	 the	 generated	 Fault	 Tree	 that	 can	 be	 used	 to	 assess	

system	architecture	design	that	was	created	in	UML.	

To	achieve	the	aim,	three	major	ideas	are	to	be	explored:	(i)	definition	of	models	

and	 mathematical	 representation	 of	 the	 models,	 (ii)	 development	 of	 transformation	

methods,	 and	 (iii)	 verification	 of	 the	 transformation	 methods,	 which	 the	 details	 are	

further	elaborated	as	follows:	

1.	 To	develop	metamodels	–	As	the	system	models	in	this	thesis	are	concerned	with	

UML	 Activity	 and	 Class,	 two	 holistic	 metamodels	 of	 Activity	 and	 Class	 are	

developed	based	on	UML	Specification	by	the	OMG.	A	metamodel	of	Fault	Tree	is	

also	 developed	 based	 on	 ARP	 4761.	 The	 development	 of	 these	 metamodels	

concerns	the	elements	that	graphically	presented	in	the	respective	models.	

2.	 To	 define	 a	mathematical	 representation	 of	 system	models	 –	 The	 nodes	 in	 the	

respective	 system	 models	 are	 defined	 in	 a	 mathematical	 basis.	 In	 particular,	

propositional	 calculus	 is	 used	 to	 define	 Actions	 (function)	 and	 Facilities	

(component).	Hence,	a	precise	semantic	of	the	system	models	can	be	offered.	The	

approach	of	using	mathematical	basis	to	represent	the	models	also	assists	 later	

process	 such	 as	 verifying	 the	 models	 in	 a	 systematic	 way.	 The	 application	 of	

mathematic	is	also	used	to	define	the	fault	viewpoint	of	the	system	models	through	

the	actions	and	facilities.	

3.	 To	develop	formal	transformation	methods	from	single	perspectives	of	a	system	

to	Fault	Trees	 –	Based	on	 the	defined	propositions	 and	 fault,	 logical	models	 of	

system	behaviour	(Activities)	and	system	structure	(Classes)	together	with	their	

fault	viewpoints	are	identified	for	developing	semantic	mapping	rules.	In	addition,	

intermediate	steps	are	designed	to	support	the	transformation	methods:	(i)	Fault	

Chapter	1	

	

27	

	

Propagation	Chain	is	introduced	to	represent	fault	viewpoint	of	Activities,	and	(ii)	

Complementary	Class	is	introduced	for	a	complete	structure	of	Classes.	

4.	 To	develop	transformation	method	from	the	integration	of	two	system	models	to	

Fault	Tree	–	The	concepts	of	facilitation	and	ownership	are	introduced	to	integrate	

system	behaviour	and	system	structure	from	the	fault	viewpoint	for	the	Fault	Tree	

transformation.	

5.	 To	develop	overarching	metamodels	–	Overarching	metamodels	are	developed	for	

abstracting	the	domain-specific	metamodels.	The	development	of	the	overarching	

metamodels	 is	 concerned	 with	 metamodels	 that	 developed	 earlier	 and	

transformation	 methods	 including	 the	 introduced	 steps.	 The	 overarching	

metamodels	 is	 used	 to	 assist	 automated	 Fault	 Tree	 generation	 from	 system	

models	that	modelled	in	UML.	

6.	 To	 apply	 the	developed	methods	–	The	 transformation	methods	are	 applied	 to	

case	studies	to	demonstrate	automated	Fault	Tree	generation	from	system	models	

that	created	in	UML.	Furthermore,	the	generated	Fault	Tree	can	be	used	to	analyse	

the	system	models.	

	

1.3 Scope	of	the	Research	

The	coverage	of	this	thesis	is	limited	to	general	concepts	and	generic	description	

of	 processes,	 tools,	 and	 techniques.	 Formal	 testing	 of	 system	 safety,	 verification,	 and	

validation	from	the	viewpoint	of	regulators	are	not	being	considered	in	this	thesis.	The	

demonstration	 of	 the	methods	 developed	 in	 this	 thesis	 is	 via	modelling	 and	 analysis	

without	the	use	of	physical	testing.	

To	normalise	the	use	of	languages	from	different	domains	in	this	thesis,	definitions	

of	terminologies	used	in	the	following	two	standards	follows	are	adopted	and	listed	as	in	

the	Glossary	of	Terms.	

Chapter	1	

	

28	

	

1.	 UML	Specification	2.5.1	-	The	information	for	defining	system	models	in	Unified	

Modelling	Language	(UML)	is	provided	by	an	international	technology	standards	

consortium,	 Object	 Management	 Group	 (OMG)	 (Object	 Management	 Group	

2017d).	

2.	 ARP	4761,	Guidelines	 and	Methods	 for	 Conducting	 the	 Safety	Assessment	

Process	 on	 Civil	 Airborne	 Systems	 and	 Equipment	 –	 There	 are	 several	

international	 safety	 standards	 that	 provide	 guidelines	 on	 safety	 analysis	 and	

assessment	with	the	use	of	Fault	Tree	Analysis	(FTA)	across	different	domains	of	

application.	 To	 name	 a	 few,	 there	 is	 ARP	 4761	 (International	 Society	 of	

Automotive	 Engineers	 1996)	 which	 is	 a	 guideline	 for	 conducting	 safety	

assessment	process	in	aircraft	domain,	DO	178C	(Radio	Technical	Commission	for	

Aeronautics	 2011)	 which	 provides	 recommendations	 for	 the	 production	 of	

software	 for	 airborne	 system	 and	 equipment,	 and	 IEC	 61025	 (International	

Electrotechnical	Commission	2006)	which	describes	FTA	and	provides	guidance	

on	 its	 application.	 The	 intention	 of	 this	 research	 is	 not	 to	 normalise	 these	

standards	 for	one	unified	Fault	Tree	methodology	and	metamodel.	Rather,	 one	

particular	 standard,	which	ARP	4761	will	 be	 followed	 in	 this	 thesis	 due	 to	 the	

following	reasons.	Firstly,	 it	 is	an	authoritative	standard	that	provide	extensive	

knowledge	on	the	use	of	Fault	Tree	in	practice.	It	is	not	only	used	by	aerospace	

organisations,	but	also	by	practitioners	and	academia	in	other	domains	(Joshi	et	

al.	 2005).	 Secondly,	 there	 is	 an	alignment	between	ARP	4761	and	ARP	4754,	 a	

guideline	for	development	of	aircraft	from	systems	requirements	through	systems	

verification.	 The	 alignment	 allows	 safety	 assessment	 process	 in	 the	 systems	

engineering	(SE)	methodology	through	model-based	approach.	This	offers	a	good	

idea	of	model-based	systems	engineering	(MBSE)	and	model-based	safety	analysis	

(MBSA)	practices	in	the	industry.	Lastly,	it	has	relationship	to	other	international	

standards	which	constitute	materials	of	safety	analysis	such	as	ARP	4754	and	DO	

178	 (Xiaoxun	 et	 al.	 2011).	 The	 adoption	 of	 ARP	 4761	 in	 this	 thesis	 provides	

harmonisation	and	consistency	with	other	international	standards.	In	this	thesis,	

the	ARP	4761	is	used	as	to	refer	the	fundamental	of	Fault	Tree.	

Chapter	1	

	

29	

	

The	development	and	demonstration	of	Fault	Tree	in	this	thesis	are	supported	by	

published	works.	There	are	different	ways	of	Fault	Tree	development	applied	by	

practitioners	and	academia	that	can	be	referred	to	develop	formal	transformation	

methods	for	generating	Fault	Trees	in	this	thesis.	

	

1.4 Structure	of	Thesis	

This	thesis	is	structured	in	seven	chapters	as	follows:	

Chapter	1:	Introduction	

Brief	 overview	of	 the	 current	 situations	 and	 the	 challenges	of	 system	development	 in	

industry	are	discussed.	SE	and	SSE	life	cycles	for	the	system	development	are	provided.	

Methods	and	tools	that	are	commonly	used	in	the	system	development	are	also	included.	

Chapter	2:	Literature	Review	

In	 this	 chapter,	 detailed	 information	 on	 issues	 discussed	 in	 Chapter	 1	 is	 presented.	

Review	of	 literatures	for	the	research	area	are	also	included.	In	addition,	the	standard	

processes	used	in	SE	and	SSE	are	presented.	An	alternative	way	for	integrating	SE	and	

SSE	to	close	the	gap	between	processes	and	implementations	of	formal	methods	in	the	

integration	part	are	reviewed	and	discussed.	

Chapter	3:	Foundational	Research	Knowledge	

The	 formal	 transformation	methods	of	 this	 thesis	 that	concern	model-based	approach	

and	 formal	 methods	 are	 discussed.	 An	 authorised	 case	 study	 for	 demonstrating	

developed	methods	is	introduced.	In	this	chapter,	foundational	knowledge	of	technical	

segment	in	Chapter	4	and	5	is	presented.	

Chapter	4:	A	Formal	Transformation	Method	for	Automated	Fault	Tree	Generation	

from	Single	UML	System	Model	

Chapter	1	

	

30	

	

Development	 of	 formal	 transformation	methods	 for	 automated	 Fault	 Tree	 generation	

from	 system	models	 that	modelled	 in	UML	 are	 presented.	 The	 formal	 transformation	

methods	are	developed	separately	to	the	correspond	of	the	system	models.	In	particular,	

Fault	Trees	are	shown	to	be	generated	formally	and	automatically	from	system	models	

modelled	in	UML	Activity	and	UML	Class.	To	assist	formality	of	the	methods,	supporting	

methods	are	developed	based	on	 the	 foundational	 knowledge	discussed	 in	Chapter	3.	

Two	overarching	metamodels	are	developed	of	unifying	each	of	the	system	models	and	

Fault	 Tree	 together	 with	 the	 formal	 transformation	 method	 to	 describe	 the	 formal	

transformation	methods	between	models	in	the	abstract	level.	

Chapter	5:	Automated	Fault	Tree	Generation	from	Integrated	UML	System	Models	

The	formal	transformation	methods	developed	in	Chapter	4	are	expanded	for	integrating	

system	behaviour	and	system	structure	failures	in	a	single	Fault	Tree.	The	concepts	of	

allocation	is	reviewed	which	then	introducing	the	concepts	of	facilitation	and	ownership	

as	 to	 connect	 system	 behaviour	 and	 system	 structure.	 	 An	 overarching	metamodel	 is	

developed	for	abstracting	the	transformation	from	the	integrated	system	models	to	Fault	

Tree.	

Chapter	6:	Verification	of	the	Formal	Transformation	Methods	

The	proposed	formal	transformation	methods	in	Chapter	4	and	Chapter	5	are	applied	to	

an	authorised	case	study	 in	appropriate	order.	The	derivation	of	system	failure	states	

from	a	holistic	viewpoint	rather	identify	isolated	failure	states	based	on	ad	hoc	reasoning	

is	discovered.	Comparative	analysis	is	done	to	compare	result	of	the	proposed	methods	

with	related	researches.	

Chapter	7:	Conclusion	and	Future	Work	

Finally,	 the	 development	 of	 the	 formal	 transformation	 methods	 is	 concluded	 and	

limitations	 of	 proposed	 methods	 are	 discussed.	 At	 the	 end	 of	 this	 chapter,	 research	

direction	for	future	work	is	also	proposed.		

	

	

31		

	

LITERATURE	REVIEW	

	

2.1 Introduction	

The	 transformation	methods	 from	a	 system	architecture	modelled	 in	UML	 to	a	

safety	 analysis	 model	 in	 this	 thesis	 are	 supported	 by	 literature	 on	 model-based	

approaches,	 system	 safety	 assessment	 methods,	 and	 formal	 methods	 of	 system	

architecture	design.	Since	the	formal	transformation	methods	involve	transformation	of	

models	across	engineering	disciplines,	the	thesis	presents	the	implementation	of	model-

based	 approach	 in	 SE	 and	 SSE.	 Nevertheless,	 since	 the	 precise	 semantics	 in	 the	

transformation	from	model	to	model	is	a	concern,	formal	methods	are	also	applied	to	the	

transformation	methods.	

	

2.2 Key	Concept	of	Systems	

The	review	starts	by	setting	out	the	general	understanding	of	systems,	based	on	

the	 definitions	 of	 two	 independent	 international	 organisations	 and	 one	 collaboration	

between	three	other	international	organisations	specialising	in	standards	related	to	SE;	

namely,	 the	 International	 Council	 on	 Systems	 Engineering	 (INCOSE),	 the	 National	

Aeronautics	 and	Space	Administration	 (NASA),	 and	 the	 International	Organisation	 for	

Standardisation/	International	Electrotechnical	Commission/	Institute	of	Electrical	and	

Electronics	Engineers	 (ISO/IEC/IEEE).	According	 to	 these	organisations,	 a	 system	 is	 a	

collection	of	two	or	more	integrated	elements,	which	can	also	can	be	atomics,	that	can	be	

constructed	 in	 a	 vertical	 range	 of	 contexts	 such	 as	 hardware,	 software,	 human,	 and	

environment	 (International	 Council	 on	 Systems	 Engineering	 2015),	 (National	

Aeronautics	 and	 Space	 Administration	 2007),	 (ISO/IEC	 2015).	 These	 elements	 are	

organised	and	interact	with	each	other	to	achieve	and	serve	stated	purposes	defined	by	

the	stakeholders’	requirements.	On	a	large	scale	system,	a	system	may	include	a	number	

of	different	elements,	which	are	called	subsystems,	each	with	their	own	set	of	elements.	

Chapter	2	

	

32	

	

In	such	a	scenario,	where	the	operations	of	the	subsystems	can	be	recognised	individually,	

the	 system	as	a	whole	 is	 referred	 to	as	 system	of	 systems	 (SoS)	 (Boardman	&	Sauser	

2006).	

System	 of	 systems	 (SoS)	 is	 defined	 as	 a	 collection	 or	 decomposition	 of	

independent	complex	operational	system(s)	that	interact	among	themselves	to	achieve	a	

common	 goal	 in	 various	 applications	 including	 aerospace,	 military,	 space,	 and	

manufacturing	(Jamshidi	2008).	Although	for	more	than	a	decade,	the	concept	of	SoS	as	a	

presentation	 of	 a	 higher-level	 viewpoint	 of	 systems	 interactions	 has	 remained	 at	 a	

development	stage	(Jamshidi	2008).	Recently,	SoS	has	started	to	be	used	widely	even	in	

earth	 observation,	 and	 this	 means	 that	 many	 fields	 of	 applications	 are	 emerging	 to	

address	the	common	problems	of	integrating	many	independent,	autonomous,	and	often	

large,	systems	that	operate	together	in	order	to	satisfy	a	global	goal	(Nativi	et	al.	2015).	

Also,	the	concept	of	SoS	is	accepted	in	the	renewable	and	non-renewable	energy	areas	

which	deal	with	the	supply	of	environmental,	water,	land,	and	economic	including	trade-

off	between	resources,	i.e.	SoS	composed	of	independent	but	interacting	systems	dealing	

with	factors	such	as	water,	land,	the	climate,	and	economy	(Hadian	&	Madani	2015).	

	

2.2.1 The	Relationship	between	Systems	and	Systems	Engineering	

The	 fact	 that	 systems	 engineering	 (SE)	 has	 been	 adopted	 in	 various	

interdisciplinary	fields	means	that	there	are	a	number	of	definitions	of	SE	(Keating	et	al.	

2003),	 (Blanchard	 &	 Fabrycky	 2013),	 (International	 Council	 on	 Systems	 Engineering	

2015).	 Generally,	 SE	 is	 an	 interdisciplinary	 engineering	 management,	 process,	 or	

approach	that	seek	to	transform	descriptive	needs	into	a	successful	and	desirable	system	

by	means	of	a	complete	system	life	cycle	(Keating	et	al.	2003).	Here,	the	system	life	cycle	

encompasses	 requirement	specification,	design,	verification,	and	 the	retirement	of	 the	

system	in	a	balanced	set	of	people	and	process	solutions	including	tools	and	concepts.	SE	

should	not	be	organised	in	a	similar	manner	to	fields	in	speciality	engineering	disciplines	

such	as	civil	engineering	and	mechanical	engineering,	however,	since	a	well-planned	and	

highly	disciplined	approach	must	be	followed	(Blanchard	&	Fabrycky	2013).	At	the	level	

Chapter	2	

	

33	

	

of	SoS,	system	of	systems	engineering	(SoSE)	has	been	introduced	that	departs	from	SE	

to	integrate	multiple	complex	systems	that	address	specific	problems	or	need.	

Blanchard	and	Fabrycky	have	emphasised	four	areas	of	SE,	namely:	(i)	A	top-down	

approach	 which	 views	 a	 system	 as	 a	 whole	 from	 integrated	 subsystems	 to	 the	

components;	(ii)	A	life	cycle	structure	which	address	all	phases	of	system	development	

and	problem	solving;	(iii)	A	definition	of	system	requirements	which	marks	the	baseline	

of	decision	making	for	the	system	design	process;	and	(iv)	An	interdisciplinary	approach	

which	 addresses	 design	 objectives,	 methods,	 techniques,	 and	 tools	 to	 facilitate	 the	

implementation	of	the	SE	process.	These	four	areas	can	be	related	to	the	four	strengths	

of	SE	identified	by	Keating.	The	first	strength	is	systems	theory	and	principles	for	design,	

analysis,	 and	execution	of	a	 system	which	address	 the	phases	of	 the	system	 life	cycle.	

Second,	 the	 interdisciplinary	 focus	 in	 system	 development	 and	 problem	 solving.	 In	

essence,	since	 the	system	development	 is	addressed	through	the	system	life	cycle,	 the	

problem	solving	can	also	be	considered	on	the	basis	of	the	life	cycle	of	the	system.	The	

third	strength	of	SE	is	the	emphasis	on	a	disciplined	and	structured	process	to	achieve	

results.	The	definition	of	system	requirements	is	used	to	define	specific	criteria	for	the	

design	and	can	be	used	as	a	basis	for	the	development	of	a	successful	system.	The	fourth	

strength	is	an	iterative	approach	to	developing	systems	to	meet	expectations	for	problem	

resolution.	The	life	cycle	orientation	can	be	the	benchmark	throughout	the	development	

of	a	system	which	enables	a	traceable	iterative	process	for	the	achievement	of	a	desirable	

system.	

	

2.3 Safety-critical	Systems	

Safety	can	be	defined	as	the	condition	of	being	free	from	undergoing	or	causing	

hurt,	 injury,	 loss,	 or	potential	harm.	 Systems	whose	 failure	 could	 result	 in	 loss	of	 life,	

significant	 property	 damage,	 or	 damage	 to	 the	 environment	 such	 as	medical	 devices,	

aircraft	 flight	 controls,	 weapons,	 and	 nuclear	 systems	 are	 viewed	 as	 safety-critical	

systems	(Knight	2002).	For	example,	an	aircraft	is	a	complex	system	and	it	is	also	a	safety-

critical	system,	consisting	of	more	than	ten	integrated	main	systems	(Moir	&	Seabridge	

Chapter	2	

	

34	

	

2008).	These	main	systems	consists	of	elements	or	subsystems,	some	of	which	are	safety-

critical	 system,	 e.g.	 unlike	 the	 radar	 system,	 the	 failure	 of	 flight	 control	 system	 could	

cause	 the	 aircraft	 to	 crash.	Moreover,	 four	 years	 of	 search	 and	 rescue	 activities	 after	

Malaysia	Airlines	Flight	370	was	reported	missing	on	8th	of	March	2014	(Ashton	et	al.	

2015),	has	brought	safety	recommendations	and	regulation	revision	in	designing	safety-

critical	system	into	the	spotlight.	

Safety-critical	systems	and	SoS	can	be	found	in	a	variety	of	commercial	domains	

such	as	aerospace	and	commercial	nuclear	facilities,	to	name	just	two.	Failures	in	these	

types	 of	 systems	 can	 result	 in	 injury	 or	 even	 death.	 The	 increasing	 use	 of	 embedded	

systems	underscores	the	importance	of	understanding	the	behavioural	aspect	of	systems	

and	SoS.	Safety	is	normally	governed	by	international	safety	standards	for	systems	and	

software.	 For	 example,	 in	 the	 aerospace	 industry,	 compliance	 with	 RTCA	 DO-178C	

standard	 is	recognised	as	an	acceptable	means	 for	verifying	airworthiness	and	for	the	

certification	of	the	quality	assurance	of	the	airborne	software	systems.	Nonetheless,	such	

certification	 has	 been	 plagued	 by	 challenges	 such	 as	 miscommunication	 between	

engineers	and	certification	authorities	 (Zoughbi	et	al.	2011).	Thus,	ensuring	close	and	

continuous	 monitoring	 during	 the	 development	 process	 is	 an	 important	 element	 in	

tackling	these	challenges.	

	

2.3.1 Relationship	 between	 System	 Safety	 Engineering	 and	 Safety-critical	

System	

SSE	was	first	established	in	1962	for	the	development	of	United	States	Air	Force	

ballistic	missiles	 systems.	 SSE,	which	 is	 closely	 related	 to	 SE,	 seeks	 to	 design	 out	 the	

potential	causes	of	accidents	at	an	early	stage	in	the	design	process	and	whilst	systems	

are	 under	 development	 (i.e.	 SE	 life	 cycle).	Where	 hazards	 cannot	 be	 designed	 out	 of	

systems	 SSE	 seeks	 to	 minimise	 the	 probability	 of	 safety-critical	 failures	 (Roland	 &	

Moriarty	 1990).	 Safety-critical	 system	 failure	 occurs	 when	 there	 is	 a	 transition	 from	

correct	service	to	incorrect	service	delivered	by	a	system	(Avižienis	et	al.	2004).	Safety-

Chapter	2	

	

35	

	

critical	 systems	 such	 as	 in	 nuclear	 and	 aerospace	 applications	 are	 complex	 and	 need	

rigorous	safety	verification	(Ruijters	et	al.	2017).	

	

2.4 The	Relationship	between	System	and	Safety	

Systems	and	safety	are	observed	as	two	important	but	independent	domains	in	

engineering.	 Safety	 in	 SE	was	 introduced	 in	 the	 Institute	 of	 Aeronautical	 Sciences	 for	

more	than	a	decade	before	it	was	formally	applied	in	the	early	1960s	(Roland	&	Moriarty	

1990).	According	to	International	Council	on	Systems	Engineering	(INCOSE),	safety	must	

be	designed	into	developing	system	(International	Council	on	Systems	Engineering	2015).	

This	means	 the	 faults	and	 failures	of	a	 system	must	be	understood	during	 the	system	

design.	System	safety	has	 to	ensure	 that	 faults	and	 failures	are	prevented	before	 they	

happen	when	the	system	operates.	From	the	development	of	a	system	until	its	disposition,	

the	condition	of	the	system	and	environment	must	be	assured	as	safe.	The	difficulty	of	

safety	analysis	corresponds	to	the	level	of	complexity	of	a	system.	Safety	and	reliability	

are	part	of	system	design.	They	can	influence	the	subsequent	design	decisions	requiring	

trade-offs	and	affecting	system	cost	(Pai	&	Dugan	2002).	

	

2.4.1 Technical	Practices	of	System	Design	and	Safety	Analysis	

According	 to	 Nancy	 Leveson,	 system	 design	 is	 an	 independent	 process	 from	

system	 development	 with	 safety	 analysis	 (Leveson	 2012).	 Since	 SE	 and	 SSE	 are	 two	

different	domains,	the	developments	of	system	design	and	system	safety	are	assumed	to	

occur	 independently.	 Both	 (system	 design	 and	 system	 safety)	 have	 their	 separate	

activities	 in	 their	 own	 ‘time	 zone’.	 Although	 they	 are	 treated	 as	 independent,	 their	

activities	are	interrelated	at	some	point.	System	design	is	conducted	with	some	regard	

for	 safety	 issues	but,	 in	most	of	 the	 cases,	 a	 safety	 analysis	 is	 typically	done	after	 the	

detailed	design	has	been	produced	(Leveson	2012).	The	system	design	is	then	handed	

over	to	the	safety	engineers	who	analyse	the	safety	of	the	design.	It	will	be	handed	back	

over	to	the	system	engineers	with	comments	on	the	safety	design	and	often	requests	for	

Chapter	2	

	

36	

	

change	(Fenelon	et	al.	1994).	Though	this	practice,	the	potential	causes	of	accidents,	that	

is	scenarios	that	can	lead	to	losses	can	be	eliminated	or	controlled	in	the	design	of	overall	

system	 before	 damage	 occur.	 Safety	 assessment	 analysis	 has	 traditionally	 been	

performed	 manually	 by	 the	 safety	 engineers	 (Joshi	 &	 Heimdahl	 2005).	 This	 manual	

practice	has	been	upgraded	to	automatic	with	the	support	of	a	model-based	approach	to	

system	design.	

	

2.4.2 Safety	Analysis	at	the	End	of	System	Design	Stage	

Traditionally,	 safety	 analysis	 techniques	 rely	 solely	 on	 skill	 and	 expertise	 and	

experience	of	the	safety	engineer.	In	contrast	to	the	traditional	method,	and	now	that	the	

model-based	 approaches	 have	 become	 more	 prominent,	 the	 safety-related	 causal	

relationships	can	be	derived	from	a	system	model.	If	safety	analysis	is	performed	at	the	

early	stage	of	system	development,	safety	engineers	could	only	be	provided	with	a	broad	

system	 architecture	 design	 by	 system	 engineers.	 At	 this	 point,	 by	 using	 conventional	

Fault	Tree	Analysis	(FTA),	the	high	level	details	of	a	system	are	somehow	not	visible	in	

the	analysis.	The	details	of	 the	system	remains	unclear	and	hard	to	analyse,	making	 it	

difficult	 for	 safety	 engineers	 to	 provide	 system	 engineers	with	 feedback	 about	 safety	

consequences	and	potential	improvements	of	the	design	(Olmo	et	al.	2018).	In	order	for	

a	system	design	engineers	to	provide	sufficient	details	of	the	system	under	development	

to	system	safety	engineers,	it	has	become	a	practice	for	safety	assessment	analysis	to	be	

performed	at	the	end	of	detailed	design	stage.	

FTA	is	based	on	a	detailed	system,	operation	diagram,	and	therefore	needs	to	be	

done	after	the	system	design	stage.	In	ARP	4761,	however,	system	functional	analysis	is	

also	 considered	 in	 generating	 an	 FTA	 and	 the	 development	 of	 safety	 analyses	 is	

recommended	as	early	as	the	system	design	stage	(International	Society	of	Automotive	

Engineers	1996).	

Chapter	2	

	

37	

	

2.4.3 Challenges	of	the	Practices	

The	design	and	safety	departments	in	an	organisation	work	as	separate	entities	

which	are	populated	by	engineers	with	different	skills	(Fenelon	et	al.	1994).	Although	it	

is	 inevitable	 that	 engineers	 complete	 their	 tasks	 according	 to	 the	 objectives	 of	 their	

departments,	 poor	 cooperation	 between	 system	 design	 and	 safety	 analysis	 processes	

does	 not	 easily	 accommodate	 the	 development	 of	 systems,	 especially	 large-scale	 and	

safety-critical	 system.	 This	 becomes	 worse	 when	 there	 is	 a	 limitation	 in	 safety	

assessment’s	applicability	to	today’s	system.	

	

2.4.4 Proposed	Ideas	to	Tackle	the	Challenges	

Practitioners	and	researchers	have	proposed	a	number	of	approach	to	tackle	the	

challenges	 in	 respect	 to	 the	 integration	 of	 system	 design	 and	 safety	 analysis	 within	

system	development.	Safety	must	be	built	into	the	design	of	a	system,	it	cannot	simply	be	

an	add	on	or	measured	afterwards,	but	must	be	considered	in	the	context	of	the	system	

as	 a	 whole	 and	 not	 just	 as	 part	 of	 the	 individual	 components	 of	 the	 system	 such	 as	

hardware	and	software	(Leveson	2012).	

Safety	should	be	accommodated	at	an	early	stage	of	system	development,	when		

the	design	decisions	are	made.	The	implementation	of	safety	into	system	design	is	one	of	

keys	to	having	a	cost-effective	safety	effort	(Leveson	2012).	It	is	less	expensive	and	far	

more	effective	to	build	safety	early	than	try	to	tack	it	on	later.	This	supports	the	‘make	it	

right’	concept	during	the	design	stage,	including	then	thorough	testing.	

Fenelon	 et.	 al.	 propose	 a	 new	 way	 of	 organising	 and	 structuring	 system	

development	 and	 safety	 assessment	 processes	 (Fenelon	 et	 al.	 1994).	 Their	 aim	 is	 to	

facilitate	and	support	change	management	by	stipulating	that	design	and	safety	outputs	

must	be	agreed	by	both	design	and	safety	engineers	during	the	early	stages	of	system	

development	 to	 ensure	 that	 the	needs	 for	 the	 subsequent	 stages	 are	 considered.	 This	

often	entails	appropriate	trades	and	decisions	to	accommodate	the	needs	of	later	stages	

Chapter	2	

	

38	

	

in	 an	 affordable	 and	 effective	manner	 (International	 Council	 on	 Systems	 Engineering	

2015).	

	

2.4.5 International	Standards,	Guidelines,	and	Recommendations	

Standards,	 guidelines,	 and	 recommendations	 have	 been	 established	 as	 a	

benchmark	in	the	SE	life	cycle.	Most	safety	critical	system	in	domains	such	as	aerospace,	

railway,	 and	 automotive	 are	 subjected	 to	 international	 standards	 enforced	 by	 third	

parties	(e.g.	certification	authority)	as	a	way	of	ensuring	safety	and	reliability	(i.e.	that	

they	do	not	pose	undue	risks	to	people,	property,	and	the	environment)	(De	La	Vara	et	al.	

2016).	According	to	the	International	Organisation	for	Standardisation	(ISO),	a	leading	

standardiser,	22242	international	standards	have	been	published	by	the	organisation	to	

address	ways	of	doing	things	(i.e.	products)	 in	various	areas.	Of	 these,	 ISO	15288	was	

introduced	to	provide	a	generic	SE	life	cycle	framework	of	processes	and	life	cycle	stages.	

Furthermore,	 in	the	automotive	arena,	 ISO	26262	and	EN	61508	(European	standard)	

were	 established	 as	 a	 generic	 functional	 safety	 standards	 for	 electrical	 and	 electronic	

systems.			

A	 general	 view	 of	 civil	 aircraft	 development	 given	 by	 Benjamin	 Gorry,	 a	 lead	

engineer	 for	 product	 safety	 at	 BAE	 Systems,	 as	 depicted	 in	 Figure	 2.1,	 a	 collective	 of	

international	 standards	 and	guidelines	 are	 involved	 in	 the	development	of	 an	 aircraft	

(Gorry	2015).	Generally,	SAE	ARP	4754A	is	a	specific	guideline	that	was	established	for	

the	 development	 of	 civil	 aircraft	 and	 its	 systems.	 Furthermore,	 there	 are	 specific	

guidelines	for	fixed	wing	and	rotary	aircraft	for	specific	components	and	elements	in	an	

aircraft	system	such	as	software,	hardware,	and	integration	of	the	modular	avionics	for	

original	equipment	manufacturer	(OEM)	to	follow.	The	establishment	of	guidelines	and	

standards	is	recommended	and	mandatory	for	the	OEM	to	follow	as	a	proof	of	the	safety	

and	quality	of	the	product.	

Chapter	2	

	

39	

	

	

Figure	2.1:	A	Part	of	International	Standards	and	Guidelines	for	an	Aircraft	

	

Although	 the	 international	 standards,	 guidelines,	 and	 recommendations	offer	 a	

valuable	support	(i.e.	products),	they	tend	to	address	quite	general	issues	(Pietrantuono	

&	 Russo	 2013).	 The	 users	 might	 not	 find	 the	 right	 techniques	 to	 be	 used	 for	 their	

executing	 project	 directly	 from	 the	 international	 standards,	 guidelines,	 and	

recommendations.	 Furthermore,	 in	 the	 international	 standards,	 guidelines,	 and	

recommendations	might	not	provide	cost	 justification	for	the	users.	As	a	consequence,	

the	effectiveness	of	these	documents	is	questionable.	

2.5 Solution	 to	 the	 Challenge	 of	 Coordinating	 Systems	 Engineering	 and	 System	
Safety	Engineering	Processes		

In	the	early	1990s,	researchers	began	to	focus	on	safety	as	an	important	property	

to	 address	 in	 combination	 with	 design.	 Over	 the	 years,	 researchers	 have	 proposed	

approaches	to	harmonise	activities	within	the	design	and	safety	disciplines.	Despite	the	

academic	efforts	to	identify	interdependencies	and	to	propose	combined	approaches	for	

Chapter	2	

	

40	

	

design	and	safety,	there	is	still	lack	of	integration	between	them	in	the	industrial	context,	

as	they	have	separate	standards	and	independent	processes	and	are	often	addressed	and	

assessed	by	different	organisational	teams	and	authorities.	Specifically,	safety	concerns	

are	generally	not	covered	in	any	detail	in	design	specification.	

One	 	process	for	integrating	SSE	into	SE	is	deriving	detailed	designs	from	more	

abstract	designs	to	measure	safety	properties	(Fenelon	et	al.	1994).	This	occurs	one	step	

before	 a	 direct	 safety	 assessment	 of	 the	 existing	 design	 (Leveson	 2012).	 With	 the	

opportunities	afforded	by	technology,	this	analysis	can	be	done	using	a	range	of	classical	

and	computer-based	techniques.	The	process	must	be	observed	carefully,	however,	since	

there	 is	 poor	 integration	 between	 system	 design	 and	 safety	 analysis,	 especially	 for	

software-based	 systems	 (Fenelon	 et	 al.	 1994).	 The	 integration	 processes	 have	 to	 be	

documented	and	agreed	 in	a	company	since	communication	 is	critical	 in	handling	any	

upcoming	property	in	a	complex	system.	Today’s	systems	are	designed	and	built	by	at	

least	hundreds	of	engineers	with	different	skills	and	therefore	decision	making	has	to	be	

available	to	the	right	people	at	the	right	time,	especially	during	the	development	process.	

	

2.5.1 Positive	Insights	Regarding	Integration	from	Industry	

Practically,	the	integration	of	SE	and	SSE	is	done	at	an	early	stage	of	SE	cycle.	The	

information	supported	by	SSE	is	significant	to	ranges	of	SE	stages	especially	for	safety	

related	systems.	System	reliability	resulted	from	SSE	can	be	used	to	influence	subsequent	

design	 decision	 at	 the	 conceptual	 design	 stage	 (Pai	 &	 Dugan	 2002).	 For	 example	

according	to	Cepin	and	Markov	research,	requirement	specifications	can	be	improved	by	

FTA	 developed	 for	 particular	 system	 (Cepin	 &	 Mavko	 1999).	 Consequently,	 the	

estimation	of	reliability	requirements	estimation	during	the	conceptual	design	stage	is	

very	important	for	system	critical	computer-based	systems.	

Trade-off	 are	 most	 effective	 when	 key	 attributes	 of	 the	 system	 such	 as	

performance	and	reliability	are	measured	during	the	early	critical	design	stages	(Pai	&	

Dugan	 2002).	 Furthermore,	 consistency	 between	 SE	 and	 SSE	 can	 be	 ensured	 and	 a	

Chapter	2	

	

41	

	

common	 understanding	 can	 be	 reached	 about	 the	 optimal	 architecture	 from	 both	

perspectives.	These	are	the	keys	to	avoiding	the	late	detection	of	errors	and	thus	reducing	

the	 time	 needed	 to	 develop	 complex	 systems	 (Pai	&	Dugan	 2002).	When	 designing	 a	

complex	system,	time	and	cost	are	very	crucial.	Design	time	and	associated	resources	can	

be	reduced	when	system	design	and	its	reliability	characteristics	are	analysed	as	soon	as	

they	are	available	(Pai	&	Dugan	2002).	This	allows	design	engineers	to	decide	if	redesign	

is	required.	

	

2.5.2 Framework,	Life	Cycle	Models,	and	Integration	at	Early	Stage	

According	to	Jon	de	Olmo,	there	are	two	objectives	of	safety	analysis	during	the	

design	stage	(Olmo	et	al.	2018).	First,	the	drafting	of	a	safety	case	document	that	allows	

manufacturer	 to	 obtain	 a	 corresponding	 safety	 certificate.	 Second,	 analysis	 of	 the	

architecture	 of	 the	 system	 under	 development	 to	 ensure	 that	 it	 meets	 availability,	

reliability,	and	maintainability	requirements.	The	latest	objective	is	the	most	important	

for	bridging	the	gap	between	SE	and	SSE.	In	some	cases	and	complex	system,	analysing	

system	architecture	with	safety	analysis	is	an	iterative	process	between	SE	and	SSE.		

		A	methodology	 for	 the	effective	and	efficient	 integration	of	SE	and	SSE,	 called	

safety	integration	in	SE	(SafeSysE),	has	been	introduced	by	Faida	Mhenni	et.	al.	(Mhenni	

et	al.	2018).	SafeSysE	uses	a	system	modelling	language	(SysML)-based	approach	across	

three	scopes.	First,	a	 formalisation	of	SysML-based	 is	observed	 in	SafeSysE	to	support	

safety	 analyses.	 Second,	 SysML	 is	 extended	 to	 enable	 integration	 of	 specific	 safety	

concepts	 in	a	 system	model.	 Lastly,	 an	automated	exploration	of	 the	SysML	models	 is	

performed	to	generate	the	information	needed	to	elaborate	safety	artefacts	such	as	FTA	

and	Failure	Mode	and	Effects	Analysis	(FMEA).	

	

Chapter	2	

	

42	

	

2.6 Fault	Tree	Analysis	as	a	Safety	Assessment	Method	

FTA	 is	 a	 conventional	 system	 analysis	 technique	 for	 assessing	 safety	 in	 the	

development	of	a	system.	It	 is	a	deductive	failure	analysis	method	for	determining	the	

causes	of	undesired	events.	An	event	in	a	Fault	Tree	is	a	fault	event.	Fault	events	can	be	

classified	 as	 internal	 or	 external	 (Joshi	 et	 al.	 2005).	 Fault	modelling	by	means	of	 FTA	

begins	 by	 identifying	 an	 undesired	 top-level	 event,	 before	 then	 determining	 possible	

intermediate	 events	 until	 reaching	down	 to	 a	 sufficient	 level.	 FTA	has	 therefore	 been	

recommended	 to	 be	 constructed	 once	 the	 functioning	 of	 the	 entire	 system	 is	 fully	

understood.	FTA	facilitates	both	qualitative	and	quantitative	analyses.	A	list	of	basic	FTA	

notations	used	in	the	research	based	on	ARP	4761	is	presented	as	in	Table	2.1.	Events	

and	logic	gates,	and	the	branches	that	connect	them,	comprise	the	standard	structure	of	

FTA.	 The	 detailed	 description	 of	 the	 construction	 of	 a	 Fault	 Tree	 is	 specified	 in	 the	

international	 standards	 such	 as	 IEC	 61025	 which	 is	 intended	 for	 cross-industry		

(International	 Electrotechnical	 Commission	 2006),	 use	 including	 network	 data-loss	

prevention	(Dirksen	et	al.	2009).	Two	types	of	FTA	are	defined	in	IEC	61025:	static	and	

dynamic	(International	Electrotechnical	Commission	2006).	Unlike	ARP	4761,	however,	

the	IEC	61025	does	not	integrate	into	a	lifecycle	process	for	system	safety	engineering.	

Other	types	such	as	dynamic	FTA	(i.e.	time	related)	(Čepin	&	Mavko	2002),	formal	FTA,	

and	fuzzy	FTA	(Yuhua	&	Datao	2005)	will	not	be	considered	in	the	research.	

Fault	Tree	minimal	cut	set	is	the	main	concern	in	the	qualitative	evaluation	of	FTA.	

The	cut	set	defines	the	minimum	set	of	basic	events	that	must	occur	in	order	for	the	top	

level	undesired	event	to	occur.	This	consideration	straightens	the	independence	of	events	

to	avoid	significant	error	in	analysis.	When	a	Fault	Tree	is	organised	using	minimal	cut	

sets,	the	original	Fault	Tree	structure	that	reflects	the	hierarchical	deduction	is	often	lost,	

however.	 Quantitative	 FTA	 uses	 Boolean	 algebra	 and	 probability	 theory	 to	 evaluate	

mathematically	the	probability	of	faults	events	occurring.	In	brief,	in	conventional	FTA,	

qualitative	 evaluation	 is	 concerned	with	 identifying	 information	 such	 as	 failure	 paths	

with	 the	 use	 of	 minimal	 cut	 sets,	 while	 quantitative	 evaluation	 is	 concerned	 with	

determining	the	probability	of	the	top	event.	

	

Chapter	2	

	

43	

	

Table	2.1:	Fault	Tree	Symbols	

Symbol	 Description	

	
Output	 Event	 –	 output	 event	 (referred	 to	 as	 top	 event	 or	
intermediate	events)	

	
Basic	 Event	 –	 event	which	 is	 internal	 to	 a	 system	without	
further	development	

	
External	Event	–	event	which	is	external	to	a	system	

	
Undeveloped	Event	–	event	which	has	little	impact	on	the	top	
event	without	further	development	

	
Conditional	Event	–	a	necessary	condition	for	a	failure	mode	
to	occur	

	
Transfer	Event	–	where	fault	tree	information	is	transferred	
out	to	another	fault	tree	or	transferred	into	a	fault	tree	

	
AND-Gate	–	Boolean	logic	gate	–	output	event	occur	when	all	
intermediate	events	occur	

	
OR-Gate	 -	Boolean	 logic	gate	–	output	event	occur	when	at	
least	one	intermediate	event	occurs	

	

Priority	AND-Gate	-	Boolean	logic	gate	–	output	event	occurs	
when	all	intermediate	events	occurred	in	a	specific	sequence	
(sequence	usually	represented	by	a	conditional	event)	

	
Inhibit-Gate	–	require	an	input	and	conditional	event	for	the	
output	event	to	occur	

	

Chapter	2	

	

44	

	

2.6.1 The	Significance	of	Fault	Tree	Analysis	

FTA	has	been	a	recommended	method	for	system	safety	analysis	for	more	than	

five	decades,	based	on	its	focus	on	defining	faults	and	structuring	fault	processes	(Vesely	

et	al.	1981).	It	is	the	most	prominent	technique	for	analysing	complex	and	safety-critical	

systems	(Ruijters	et	al.	2017).	Fault	analysis	and	resolution	of	faults	should	be	part	of	any	

end-to-end	system	development	process.	For	example,	FTA	also	has	been	used	to	test	the	

functionality	and	reliability	of	a	system	(Paiboonkasemsut	&	Limpiyakorn	2016).	

Since	 the	 architecture	 of	 systems	 is	 widely	 designed	 using	 model-based	

approaches,	failure	of	a	system	to	function	as	intended	is	also	evaluated	through	a	model-

based	approach.	In	SSE,	FTA	is	a	prominent	model-based	approach	methods	(Volk	et	al.	

2018)	 for	 determining	 various	 combinations	 of	 hardware	 and	 software	 failures	 and	

human	error	that	could	cause	undesirable	events	(i.e.	top	level	events)	at	the	system	level	

(Simha	Pilot	2002).	The	 construction	of	 a	Fault	Tree	 is	based	on	a	deductive	 analysis	

technique	 and	 a	 top-down	 approach	 from	 the	 top	 level	 event	 to	 the	 basic	 level	 event	

(Dixon	2017).	The	connection	between	the	top	level	event	and	basic	level	event,	through	

intermediate	 level	 events,	 is	 demonstrated	 using	 Boolean	 logic	 gates	 (International	

Society	of	Automotive	Engineers	1996).	Consequently,	 finding	of	 the	original	common	

Fault	Tree	development	for	analysing	system	hardware	is	supported	(Xiang	et	al.	2005).	

	

2.6.2 Model-based	Safety	Analysis	

One	approach	to	utilising	systems	models	to	analyse	the	safety	of	a	system	is	called	

model-based	safety	analysis	(MBSA)	(Joshi	et	al.	2006).	The	safety	analysis	of	a	system	is	

a	process	of	evaluation	to	ensure	that	a	mishap	does	not	occur	as	the	system	performs	its	

mission	(Leveson	&	Stolzy	1987).	According	to	Leveson	and	Stolzy,	the	first	step	in	safety	

analysis	 is	 to	 identify	 hazards	 (path	 to	 a	 mishap)	 within	 the	 system	 followed	 by	

eliminating	(or	minimising)	faults	or	failures	leading	to	the	mishap.	These	processes	are	

aligned	to	ARP	4761.	

Chapter	2	

	

45	

	

Fault	and	failure	are	precisely	defined	by	ARP	4761.	An	undesired	anomaly	in	a	

system	can	 lead	 to	 the	 loss	of	 function	or	a	malfunction	of	 the	system	which	means	a	

failure	can	caused	by	a	fault	(International	Society	of	Automotive	Engineers	1996)	and	

(Andrews,	Bryans,	Payne	&	Kristensen	2014).	Faults	can	be	modelled	and	analysed	based	

on	the	functionalities	of	the	system	under	development	(Olmo	et	al.	2018).	In	the	process	

of	analysing	faults,	probability	of	occurrence	and	severity	of	the	system	functionalities	

are	 identified	 using	 systematic	 approaches	 that	 can	 include	model-based	 approaches.	

This	approach	has	been	recognised	amongst	safety	community	as	capable	of	overcoming	

the	limitations	of	the	conventional	techniques	when	analysing	complex	systems	during	

the	system	design	stage	(Olmo	et	al.	2018).	

MBSA	 methodologies	 can	 be	 divided	 into	 two	 main	 groups:	 (i)	 failure	 logic	

modelling	(FLM)	and	(ii)	behavioural	fault	simulation	(BFS)	which	is	also	known	as	fault	

injection	(Olmo	et	al.	2018).	These	methodologies	are	used	in	different	ways	and	result	

in	different	outcomes.	Examples	of	MBSA	tools	with	respect	to	their	methodologies	are	

presented	in	Table	2.2.	

	

Table	2.2:	Model-based	Safety	Analysis	Methodologies	and	Tools	

Failure	Logic	Modelling	 Behavioural	Fault	Simulation	

HiP-HOPS	

(Associate	with	Matlab	Simulink	

(Lisagor	et	al.	2011)	and	(Olmo	et	al.	

2018))	

(Associate	with	AADL	(Lisagor	et	

al.	2011))	

(Associate	with	NuSMV	(Sharvia	

&	Papadopoulos	2015))	

(Associate	with	SPL	(Oliveira	et	al.	

2016))	

SCADE	

(Lisagor	et	al.	2011)	

(Olmo	et	al.	2018)	

(Associate	with	PROVER	plug-in	

(Bozzano	et	al.	2003))	

FPTN	 Matlab	Simulink	

Chapter	2	

	

46	

	

(Lisagor	et	al.	2011)	 (Lisagor	et	al.	2011)	

(Bozzano	et	al.	2003)	

(Associate	with	HIL	platform	

(Olmo	et	al.	2018))	

(Associate	with	ErrorSim	

(Saraoğlu	et	al.	2017))	

AltaRica	

(Lisagor	et	al.	2011)	

Statement	

(Associate	with	VIS	model	

checker	(Bozzano	et	al.	2003))	

(Olmo	et	al.	2018)	

	

Cecilia-OCAS	

(Associate	with	AltaRica	(Bozzano	

et	al.	2003))	

(Associate	with	IC3	algorithm	

(Bozzano	et	al.	2015))	

(Associate	with	AltaRica	3.0	

(Prosvirnova	et	al.	2013))	

	

	

FaultTree+	

(Bozzano	et	al.	2003)	

	

FLM	 is	 based	 on	 the	 automatic	 generation	 of	 safety	 analysis	 through	 safety	

assessment	 methods	 (i.e.	 Fault	 Tree	 and	 Failure	 Modes	 and	 Effects	 Analysis)	 using	

information	stored	in	a	component	model	of	a	system.	Hierarchically	Performed	Hazard	

Origin	 &	 Propagation	 Studies	 (HiP-HOPS),	 Failure	 Propagation	 and	 Transformation	

Notation	(FTPN),	and	AltaRica	are	three	examples	of	FLM	method	of	MBSA.	The	safety	

assessment	models	that	are	generated	through	FLM	capture	failure	modes	exhibited	by	

other	 components	 of	 the	 system	 (Lisagor	 et	 al.	 2011).	 The	 failure	 modes	 are	 the	

dependencies	of	 the	components	 in	 terms	of	deviation	of	 their	behaviour	 from	design	

intent,	which	are	typically	defined	at	an	abstract	level	in	the	system	models	(Lisagor	et	al.	

Chapter	2	

	

47	

	

2011).	The	application	of	FLM	methods	requires	comprehensive	knowledge	of	the	system	

since	 the	 safety	analyses	are	done	based	on	design	 intent	or	what	has	been	modelled	

(Lisagor	et	 al.	 2011).	The	FLM	has	been	 linked	with	other	applications	 to	enhance	 its	

performance.	 For	 example,	 its	 association	 with	 software	 product	 lines	 allows	 the	

systematic	reuse	of	safety	related	information	within	the	MBSA	tools	(Oliveira	et	al.	2016).	

Safety	analysis	of	the	dynamic	behaviour	of	systems	is	a	challenge	for	FLM	tools,	however	

(Olmo	et	al.	2018).	

BFS	is	based	on	the	injection	of	faults	using	formal	models	into	modelled	system	

(i.e.	executable	models)	of	the	system	so	as	to	define	their	effects.	The	BFS	methodology	

is	therefore	fundamentally	based	on	formality	and	the	extension	of	models	(Bozzano	et	

al.	2003).	Safety	assessment	models	that	are	developed	using	BFS	methods	can	be	defined	

through	extension	of	the	system	models	in	the	system	design	stage	which	are	specified	in	

languages	such	as	SCADE	or	Matlab	Simulink	(Lisagor	et	al.	2011).	The	BFS	method	is	

therefore	usually	applied	after	designs	and	models	are	developed	in	the	later	stages	of	

the	development	process	(Olmo	et	al.	2018).	The	system	configuration	of	different	tools	

may	 have	 different	 input	 languages	 such	 as	 PROVER	 plug-in,	 VIS	model	 checker,	 and	

AltaRica	 (Bozzano	 et	 al.	 2003).	 The	 system	 models	 are	 extended	 with	 failure	 mode	

models	so	as	to	insert	failure	mode	in	the	flow	(Lisagor	et	al.	2011).	Unlike	failure	modes	

in	the	FLM	method,	in	BFS	they	are	defined	by	components	of	the	system	itself	through	

the	failure	mode	model	(Lisagor	et	al.	2011).	This	means	that	the	BFS	method	delivers	

consistency	between	the	safety	analyses	and	the	design	model	of	the	system	(Lisagor	et	

al.	 2011).	 Failure	 mode	 models	 may	 provide	 unnecessary	 constraints	 which	 lead	 to	

unintended	and	incomplete	analysis	results,	however	(Lisagor	et	al.	2011).	Furthermore,	

more	failure	fault	models	are	required	to	analyse	complex	systems	(Olmo	et	al.	2018).	

Linking	 FLMs	 with	 a	 tool	 for	 error	 propagation	 analysis	 of	 Simulink	models	 such	 as	

ErrorSim	can	tackle	the	above	challenge.	ErrorSim	allows	this	method	to	inject	different	

types	 of	 faults	 and	 analyse	 error	 propagation	 to	 critical	 system	 parts	 and	 output	

(Saraoğlu	 et	 al.	 2017).	 This	 method	 tightens	 the	 gap	 between	 system	 and	 safety	

development	stages	by	sharing	a	common	modelling	environment,	languages,	and	tools	

(Lisagor	et	al.	2011).In	addition,	more	accurate	analyses	of	dynamic	system	behaviour	

can	be	obtained	(Olmo	et	al.	2018).	

Chapter	2	

	

48	

	

The	MBSA	 techniques	 seek	 tighter	 integration	 between	 safety	 assessment	 and	

design	artefacts.	Research	has	been		done	to	address	the	challenge	so	as	to	provide	a	high	

level	of	intellectual	engagement	on	the	system	by	associating	FLM	with	BFS	approaches	

such	 as	 Matlab	 Simulink	 (Olmo	 et	 al.	 2018)	 and	 Architecture	 Analysis	 and	 Design	

Language	(AADL)	(Lisagor	et	al.	2011)	which	can	limit	safety	assessment	to	considering	

only	 intentional	 interactions	 between	 components.	 Furthermore,	 combining	 FLM	 and	

model	 checking,	 such	 as	 NuSMV,	 works	 to	 assess	 how	 well	 safety	 requirements	 are	

satisfied	 (Sharvia	 &	 Papadopoulos	 2015).	 Similar	 to	 FLM,	 research	 has	 been	 done	 to	

associate	BFS	with	other	applications	such	as	OPAL-Real-Time	Simulator	(Bozzano	et	al.	

2003).	This	allows	the	development	and	validation	of	a	system	based	on	hardware-in-

the-loop	(HIL)	platforms		to	improve	the	results	of	the	fault	analysis	with	quantitative	

information	about	the	effects	of	each	fault	mode	(Olmo	et	al.	2018).	The	MBSA	tools	are	

capable	to	generate	safety	assessment	such	as	Fault	Tree	and	FMEA	for	different	failure	

modes.	In	this	thesis,	both	methodologies	are	used	to	generate	Fault	Tree	results	from	

total	behavioural	failure	of	a	system	through	transformation	methods.	

	

2.6.3 Modelling	Methods	for	System	Safety	Analysis	

Modelling	methods	for	SSA	are	comprised	of	qualitative	and	quantitative	analysis	

techniques.	 For	 example,	 Fault	 Tree	 Analysis	 (FTA),	 Dependence	 Diagram	 (DD),	 and	

Markov	Analysis	(MA)	are	used	to	determine	failures	or	combinations	of	failures	at	the	

lower	 level	 that	 might	 affect	 safety	 objectives	 (i.e.	 assurance	 level	 in	 probability	

evaluation)	in	graphical	presentation.		

Of	 all	 the	 available	 SSA	methods,	 FTA	 is	 recognised	 as	 the	main	 conventional	

technique	to	perform	fault	analysis	(Olmo	et	al.	2018).	FTA	 is	also	used	together	with	

other	 SSA	 methods	 such	 as	 FMEA,	 as	 an	 input	 and	 output.	 The	 safety	 of	 systems	 is	

analysed	qualitatively	and	quantitatively	in	FTA.	FTA	is	used	for	dependability	analysis	

(Kabir	2017)	and	has	been	accepted	as	a	reliable	model	by	practitioners.	The	popularity	

of	FTA	as	a	reliable	SSA	method	has	led	to	the	expansion	of	conventional	FTA	through	

research	and	discussion	(i.e.	formal	and	fuzzy).	

Chapter	2	

	

49	

	

	

2.7 Fault	Tree	Construction	in	Common	Practice	

The	 capability	 of	 FTA	 being	 used	 for	 modelling	 and	 analysing	 failures	 of	

components	of	a	system	has	brought	FTA	to	originally	developed	for	hardware	system	

analysis	(Xiang	et	al.	2005).	Generally,	a	Fault	Tree	 is	constructed	based	on	 individual	

component	failures	within	a	system.	This	means,	the	details	of	hardware	components	that	

comprise	a	system	are	used	to	develop	the	tree.	System	design	engineers	have	the	most	

information	of	the	physical	components	of	the	developing	system.	This	means	that	Fault	

Trees	 were	 often	 constructed	 after	 a	 detailed	 system	 operation	 diagram	 had	 been	

provided	by	system	design	engineers,	i.e.	after	the	system	design	stage	(Xiang	et	al.	2005).	

Events	 and	 logic	 gates	 are	 considered	 as	 the	 main	 elements	 of	 Fault	 Trees.	

Furthermore,	events	are	associated	with	a	change	of	state,	 i.e.	a	change	of	value	of	an	

attribute	or	a	change	of	action	of	a	function.	Failure	events	in	Fault	Trees	should	therefore	

also	be	associated	with	a	change	of	state.	The	relationship	denoting	the	formation	of	a	

higher	event	is	supplied	by	intermediate	events	through	a	logic	gate	(Kim	et	al.	2010).	

From	 the	 perspective	 of	 Boolean	 algebra	 on	 a	 Fault	 Tree,	 a	 true	 (universal)	

formula	 is	sought	by	mathematicians,	whilst,	predicted	system	behaviour	 is	sought	by	

engineers.	 The	 system	 behaviour	 is	 the	 change	 of	 attribute	 or	 action	 (International	

Council	on	Systems	Engineering	2015).	This	change	of	action	is	starts	with	an	event	and	

ends	with	a	 state.	For	example,	 consider	a	 simple	 system	of	a	 light	bulb	 series	 circuit	

which	consists	of	a	light	bulb,	a	power	supply,	switch,	and	wires	to	connect	these	physical	

components.	As	depicted	in	Table	2.3,	the	design	intent	of	the	system	is	when	the	light	

bulb	and	switch	are	in	the	same	event.	This	means	the	light	bulb	follows	the	switch	if	it	is	

switch	‘ON’	or	‘OFF’.	In	this	case,	an	exclusive	NOR	logic	gate	is	applied	for	the	Boolean	

algebra	truth	values.	

	

	

Chapter	2	

	

50	

	

Table	2.3:	Events	of	Design	Intent	

Light	bulb	 Switch	 Design	Intent	

False	 False	 True	

False	 True	 False	

True	 False	 False	

True	 True	 True	

	

Formality	in	constructing	a	Fault	Tree	has	brought	to	the	attention	of	practitioners.	

A	formal	Fault	Tree	can	be	constructed	based	on	states	combination	of	components	in	a	

system	(Xiang	et	al.	2005).	The	construction	 is	grounded	 to	 the	 individual	component	

failures	 and	 conditions	 that	 cause	 system	 failures.	 For	 instance,	 a	 system	 failure	 can	

caused	by	a	combination	of	component	states	which	is	not	a	failure.	A	lot	of	research	has	

been	done	 to	 formalise	 Fault	 Trees	 and	 to	 generate	 Fault	 Trees	 from	 system	models.	

Formal	Fault	Trees	are	constructed	in	various	ways	including	using	formal	specifications	

to	define	the	entities	of	Fault	Tree	and	logic	to	form	the	structure	of	Fault	Tree.	

	

2.7.1 Fault	Tree	Support	Tools	

Nowadays,	in	this	technology	dependent	era,	systems	are	becoming	increasingly	

complex	and	analysing	the	safety	of	the	systems	which	integrate	elements	from	diverse	

disciplines	such	as	electrical,	mechanical,	and	software	has	become	more	challenging.	As	

this	 becomes	 a	matter	 of	 concern,	 significant	 efforts	 are	 being	made	 by	 industry	 and	

academia	to	developed	computerised	support	tool	that	can	help	to	reduce	the	difficulties	

in	safety	analysis	arising	 from	generating	Fault	Trees	manually	and	 from	traditionally	

based	on	requirements	and	informal	design	which	requires	knowledge	and	experiences.	

Since	FTA	is	the	prominent	system	safety	assessment	method,	the	support	tools	are	very	

useful	to	generate	Fault	Trees,	i.e.	from	static	Fault	Tree	and	its	extension.	Some	of	the	

Chapter	2	

	

51	

	

support	tools	come	with	packages	of	qualitative	and	quantitative	analysis,	while	others	

have	system	safety	assessment	method	generators.	

There	are	various	open	source	tools	for	Fault	Tree	generation,	such	as	OpenFTA	

(Auvation	n.d.),	Fault	Tree+	(Isograph	n.d.),	and	Fault	Tree	Analyser	(ALD	n.d.).	These	

tools	allow	users	 to	generate	Fault	Tree	manually	and	easily	by	dragging	components	

from	the	provided	list	and	dropping	them	into	a	worksheet	area.	This	free	concept	allows	

the	users	to	apply	their	knowledge	to	generate	Fault	Trees.	Normally,	the	users	need	to	

do	the	safety	analysis	of	the	system	in	a	separate	session	using	the	best	of	their	knowledge	

prior	 to	 the	 drag	 and	 drop	 stage.	 Another	 open	 source	 tool	 which	 requires	 user	

knowledge	 of	 programming	 language	 is	 FaultCAT	 (Dehlinger	&	 Lutz	 2006).	 The	 Fault	

Tree	 generated	 through	FaultCAT	needs	 to	be	written	 in	 Java.	By	using	FaultCAT,	 the	

generated	 Fault	 Tree	 can	 be	 applied	 to	 analyse	 a	 system	 for	 faults	 (Dehlinger	&	 Lutz	

2006).	 A	 more	 automatic	 support	 tool	 is	 Hierarchically	 Performed	 Hazard	 Origin	 &	

Propagation	Studies	(HiP-HOPS).	This	is		able	to	generate	Fault	Trees	automatically	but	

requires	data	from	architectural	models	specifically	on	system	structure	to	achieve	this	

(Papadopoulos	 n.d.).	 Furthermore,	 HiP-HOPS	 enables	 design	 optimisation	 alongside	

assessing	failures	of	the	system	(Papadopoulos	et	al.	2011).	The	structure	of	the	system	

can	be	redesigned	and	reanalysed	to	meet	safety	requirement,	thus	simplifying	both	SE	

and	SSE	aspects.	

	

2.8 Model-based	Systems	Engineering	and	Modelling	Techniques	

A	model	is	an	abstraction	of	a	context	which	includes	systems,	business	context,	

and	relationships	(De	La	Vara	et	al.	2016).	The	elements	of	a	system	such	as	boundary,	

organisation,	 structure,	 and	 interaction	 are	 abstracted	 into	 a	 model.	 A	 model	 that	

represents	 a	 system	 is	 simplified	 to	 the	 stage	of	 promoting	understanding	of	 the	 real	

system.	In	a	model,	essential	details	that	contain	all	the	elements	needed	to	describe	the	

system	are	emphasised	and	irrelevant	details	are	omitted.	Multiple	perspectives	of	the	

system	that	include	all	parts	of	the	entire	system	can	be	demonstrated	through	a	model.	

This	 distinguishes	 a	 model	 from	 the	 concept	 of	 a	 diagram,	 which	 presents	 a	 single	

Chapter	2	

	

52	

	

perspective	and	specific	information	of	a	part	of	a	whole	system.	There	are	two	uses	of	

models	in	industrial	practice	(Zeller	et	al.	2016).	First,	the	efficiency	of	safety	engineering	

can	 be	 assessed	 as	 a	 standalone	 sub-task	 of	 system	 development.	 Second,	 the	 gap	

between	functional	development	and	safety	assessment	can	be	bridged.	The	latter	use	

has	a	 significant	 impact	on	 the	 systems	engineering	 life	 cycle	 is	 focused	using	model-

based	approach	in	this	thesis.	

Models	 have	 an	 important	 role	 in	 system	 development	 through	 their	 ability	

abstract	the	complexity	of	the	system	(Liebel	et	al.	2018).	The	benefit	of	models	opens	up	

new	possibilities	for	creating,	analysing,	manipulating,	and	formally	reasoning	about	the	

system	at	a	high	level.	Model-based	approaches	have	gained	popularity	in	SE	(David	Long	

2016).	 Model-based	 systems	 engineering	 (MBSE)	 is	 about	 elevating	 models	 in	 the	

engineering	 process	 to	 a	 governing	 role	 in	 the	 specification,	 design,	 integration,	

validation,	operation,	and	safety	of	a	system	(Estefan	2007).	In	spite	of	its	model	centric	

approach	for	documenting	information,	MBSE	is	employed	in	the	development	of	safety	

critical	 systems	 	 such	 as	 NASA’s	 aeronautics	 research	 projects	 (Gough	 &	

Phojanamongkolkij	2018).	Generally,	the	focal	point	of	MBSE	is	in	its	methodology	that	

covers	processes	and	tools	(Estefan	2007).	

An	 industrial	 survey	 on	 MBSE	 has	 revealed	 positive	 feedback	 regarding	 the	

approach	 in	 various	 of	 domains	 such	 as	 providing	 abstractions	 of	 complex	 systems,	

simulation	and	testing,	and	support	for	performance-related	decisions	(Liebel	et	al.	2018).	

With	 implementation	of	MBSE,	 the	processes	 in	 the	system	development	 life	cycle	are	

enhanced	in	terms	of	time,	cost,	and	quality	of	the	products.	The	success	of	MBSE	in	an	

organisation	 can	 be	 seen	 through	 the	 enhanced	 understanding	 and	 communication	

among	the	team	members,	and	their	ability	to	control	the	project,	(Hutchinson	et	al.	2011)	

arising	from	the	abstraction	of	the	design	of	the	project	and	the	removal	of	unnecessary	

details	(Espinoza	et	al.	2009).	The	productivity	of	the	organisation	and	software	quality	

can	be	 improved	 (Baker	 et	 al.	 2005)	 (Mohagheghi	&	Dehlen	2008)	 and	 errors	 can	be	

detected	at	the	early	stage	of	development	(Kirstan	&	Zimmermann	2010).	This	leads	to	

a	reduction	of	defects	(Baker	et	al.	2005)(Mohagheghi	&	Dehlen	2008)	and	the	potential	

for	easy	validation	and	verification	(Espinoza	et	al.	2009).	The	MBSE	approach	can	deliver	

Chapter	2	

	

53	

	

a	higher	degree	of	automation,	and	cost	savings	by	reducing	accessible	time	and	defect	

products	(Kirstan	&	Zimmermann	2010).	

Model-based	 approaches	 can	 be	 used	 to	 present	 the	 requirements	 and	

specification	of	a	system	during	the	conceptual	design	phase.	This	happens	in	the	very	

first	phase	of	the	SE	life	cycle.	The	information	for	the	requirement	models	is	gathered	

from	 the	 stakeholders	 verbally	 or	 through	 documentation.	 Based	 on	 what	 has	 been	

specified	in	the	requirement	models,	behavioural	models	are	generated	for	the	behaviour	

and	function	of	the	system.	These	behavioural	models	can	have	multiple	presentations	

depending	 on	 the	 required	 level	 of	 detail.	 For	 example,	 the	 highest	 level	 of	 system	

behaviour	is	presented	in	informally	by	the	Use	Case.	In	the	UML	Use	Case,	the	interaction	

between	a	system	under	development	and	its	environment	can	be	analysed.	On	the	other	

hand,	 in	 UML	 Class	 Diagram,	 the	 components	 of	 the	 system	 can	 be	 presented	 using	

Classes.	System	models	developed	in	the	conceptual	design	phase	can	be	reused	in	the	

verification	and	validation	phase.	

The	flexibility	of	model-based	technique	means	that	it	can	be	implemented	as	a	

tool	for	organising	and	managing	requirements	including	specifications,	standards,	and	

guidelines	at	the	early	stage	of	system	development.	According	to	Gregory	et.	al.,	UML	

modelling	language	can	be	used	to	model	safety-related	concepts	for	aerospace	system	

software	 in	 order	 to	 achieve	 software	 quality	 assurance	 requirements	 of	 the	 DO-178	

standard	(Zoughbi	et	al.	2011).	The	achievement	of	this	assurance	level	supports	system	

certification	 through	 RTCA	 DO-178	 by	 improving	 communication	 and	 collaboration	

among	stakeholders.	

Seminal	work	regarding	the	mathematical	foundation	for	SE	and	MBSE	has	been	

done	 by	 one	 of	 the	 founders	 of	 SE,	 Albert	Wayne	Wymore,	 (Wymore	 1993),	 (Oren	&	

Zeigler	2012),	(Oren	et	al.	2018).	The	relationship	between	mathematics	and	MBSE	has	

been	 applied	 to	 develop	 real	 systems.	 As	 defined	 in	 INCOSE’s	 SE	 technical	 operation,	

MBSE	is	the	formalised	application	of	modelling	to	support	activities	throughout	the	SE	

life	cycle	phases	(International	Council	on	Systems	Engineering	2007).	

Chapter	2	

	

54	

	

The	 application	 of	 model-based	 technique	 is	 to	 acknowledge	 the	 heritage	 of	

traditional,	 document-driven,	 programmatic	 reviews,	 and	 the	 challenge	 organisations	

face	when	attempting	to	adopt	mode	advanced,	electronic	or	model-driven	techniques	

(Estefan	2007).	Although	a	model	provides	an	abstraction	of	 a	 system	 (or	 context),	 it	

considers	relevant	aspects	of	the	system.	The	interpretation	of	the	system	is	not	affected	

by	restriction	of	documentation	script.	

	

2.8.1 Modelling	Language	and	Modelling	Language	Tools	

There	 are	 two	 types	 of	 modelling	 techniques	 entailing	 graphical	 or	 textual	

presentation.	 Diagrams	 with	 notations	 and	 lines	 are	 used	 in	 the	 graphical	 modelling	

language.	In	this	form,	information	is	presented	in	structured	shapes	with	less	emphasis	

on	 text.	 In	 the	 textual	 modelling	 language,	 meanwhile,	 wording	 with	 standardised	

keywords	 and	 phrases	 are	 used	 in	 the	 presentation.	 A	modelling	 language	 is	 a	 semi-

formal	language	(Bondavalli	et	al.	2001)	as	the	syntax	of	the	presented	models	is	well-

defined	although	the	semantics	attached	to	the	individual	models	is	less	formal	(Fraser	

et	al.	1994).	Modelling	 languages,	 therefore,	 cannot	be	 regarded	as	a	 complete	 formal	

modelling	technique.	

Flowcharts,	 simulations,	 and	 UML	 are	 a	 few	 of	 the	 techniques	 available	 for	

modelling.	 UML	 together	 with	 SysML	 are	 the	 products	 developed	 by	 OMG	 and	 have	

become	the	most	popular	standard	of	modelling	language.	They	offer	a	practical	way	to	

present	 knowledge	of	 a	 system.	Various	modelling	 language	 tools	 are	 available	 in	 the	

market	 such	 as	 ATLAS	 Transformation	 Language,	 Papyrus,	 Eclipse,	 Microsoft	 Visio,	

Enterprise	Architect,	Rational	Rhapsody,	and	MagicDraw.	The	listed	tools	are	software	

applications	that	support	UML	functions.	Some	of	the	modelling	language	tools	are	open-

source	 software.	 Graph	 theory	 has	 been	 used	 in	 modelling	 complex	 architectures	

including	data	threads	regarding	the	mission	environment	using	MBSE	tools	i.e.	UML	and	

SysML,	 to	 validate	 viable	 complex	 architectures	 quantitatively	 early	 in	 the	 life	 cycle	

(Marvin	&	Garrett	2014).		

Chapter	2	

	

55	

	

One	 of	 the	 applications	 of	 MagicDraw,	 Class	 Diagram,	 can	 automatically	 be	

generated	 using	 the	 swimlane	 designed	 in	 Activity	Diagram	 as	 the	 basis.	 The	 built-in	

application	 reduces	 the	 time	 needed	 to	 generate	 multiple	 system	models	 by	 reusing	

information	 stored	 in	 the	database.	 System	architect	 engineers	need	 to	dig	 functional	

details	to	present	attributes	and	operations	as	a	complete	Class,	however.	Class	Diagram	

had	been	withdrawn	from	Enterprise	Architect,	however.	

	

2.8.2 Modelling	Language	Tool	with	Verification	Support	

Modelling	 language	 tools	 provide	 dependable	 information	 at	 an	 early	 stage	 of	

system	design.	In	2008,	the	first	precise	operational	and	base	semantics	for	a	subset	of	

UML	object-oriented	activity	modelling	was	provided	by	the	adoption	of	Foundational	

Subset	for	Executable	UML	(fUML),	and	it	has	been	applied	to	state	machine	and	class	

modelling	 constructs.	 The	 semantics	 defined	 by	 fUML	 specify	 a	 virtual	 machine	 for	

executing	models	compliant	 to	 the	subset	of	UML	 for	object-oriented	modelling.	 fUML	

Action	Language	(Alf)	was	developed	in	order	to	enhance	the	practical	viability	of	fUML	

(Seidewitz	2014).	Alf	notation	can	be	attached	to	a	UML	model	any	place	that	behaviour	

can	 be.	 Thus,	 this	 becomes	 the	 success	 in	 philosophy	 attribution.	 The	 mature	 initial	

results	of	base	semantics	for	a	subset	of	UML	models	play	an	important	role	in	the	model’s	

formal	verification.	Recently,	users	of	SysML	can	breathe	easily	due	to	the	establishment	

of	Executable	Systems	Modelling	Language	(ESysML).	Similar	to	fUML,	precise	language	

semantics	is	offered	by	ESysML	by	retaining	SysML	as	the	primary	modelling	construct	

(Amissah	et	al.	2018).	fUML	and	ESysML	are	not	required	for	a	modelling	language	but	

semantically	define	and	verify	behaviour	of	UML	and	SysML	models	respectively.	

2.8.3 Metamodel	as	a	Models	Managing	Agent	

Metamodela	are	a	higher	 level	of	 a	model	 that	 represents	a	 system,	basically	a	

model	 of	 models.	 Just	 as	 a	 model	 is	 an	 abstraction	 of	 a	 system,	 a	 metamodel	 is	 an	

abstraction	of	a	model	(Saeki	&	Kaiya	2006).	A	standardisation	and	concise	definition	of	

model	 elements	 are	 provided	 by	 a	 metamodel.	 The	 data	 flow	 diagrams	 and	 entity-

Chapter	2	

	

56	

	

relationship	diagrams	specified	 in	a	model	are	contained	 in	 the	respective	metamodel	

(Nakatani	et	al.	2001).	The	presentation	of	a	model	including	semantics,	structure,	and	

the	relationship	between	components	in	the	model	confors	to	the	respective	metamodel.	

The	most	prominent	metamodel	of	UML	is	described	in	Meta-Object	Facility	(MOF)	

by	OMG.	The	MOF	specifies	a	 standard	 for	metamodels	 that	 represent	object-oriented	

concepts	and	systems.	Models	that	are	compliant	to	MOF	can	be	exported	and	imported	

into	 different	 format,	 stored	 in	 a	 repository	 or	 transported	 across	 a	 network,	 and	

generated	 into	 codes.	Another	metamodel	 standard	 for	describing	models	 is	Ecore	by	

Eclipse	research	group.	Models	that	use	Ecore	are	supported	with	change	notification	and	

Java-based	implementation.	

Metamodeling	is	one	of	the	important	concepts	of	a	systematic	use	of	models	as	

primary	 engineering	 artefacts	 throughout	 the	 engineering	 life	 cycle	 (refer	 model	

transformation	in	Subchapter	2.8.1)	(Berramla	et	al.	2016).	Metamodels	have	been	used	

for	many	purposes	across	horizontal	business	domains.	Surprisingly,	metamodels	have	

been	 used	 to	 resolve	 issues	 of	 safety	 compliance	 by	 holistically	 specifying	 the	 safety	

compliance	needs	when	using	models	for	safety	critical	systems	(De	La	Vara	et	al.	2016).	

The	 implementation	 of	metamodels	 in	 a	 project	 gives	 an	 advantage	 in	modelling	 and	

managing	 specific	 information	 in	 the	process	of	 executing	models	 to	 create	 a	product	

compliant	with	standards	and	where	key	decisions	are	justified.		

The	benefits	of	metamodels	have	been	acknowledged.	The	absence	of	a	mature	

foundation	for	specifying	transformations	has	led	K.	Czarnecki	et.	al.	to	propose	a	model	

transformation	framework	using	metamodels	to	enable	transformation	between	models	

and	 transformation	 between	 models	 to	 code	 (Czarnecki	 &	 Helsen	 2006).	 The	

development	 of	 metamodels	 has	 been	 extended	 to	 integrating	 multiple	 models.	

According	to	(Banhesse	et	al.	2012),	metamodels	can	be	used	for	dynamic	integration	of	

elements	 from	multiple	 models	 during	 the	 process	 improvement	 cycle.	 Although	 the	

developed	metamodel	 is	 to	address	 the	challenges	 in	software	application,	 for	generic	

purposes,	metamodels	have	proved	to	be	advantageous	for	tasks	like	supporting	design	

changes	with	automated	model	development	and	model	transformation,	solving	specific	

Chapter	2	

	

57	

	

problem,	 improving	development	processes,	and	managing	 the	architecture	of	models	

with	intrinsic	characteristic,	as	well	as	model	transformation.	

Modelling	 in	 multiple	 perspectives	 can	 be	 supported	 by	 using	 an	 overarching	

metamodel.	 For	 example,	 requirements	descriptive	model	with	 capturing	 relationship	

between	resources	can	be	defined	by	using	integrated	Use	Case	Metamodel	and	Activities	

Metamodel	(Nakatani	et	al.	2001).	Furthermore,	the	developed	requirements	descriptive	

model	 based	 on	 the	 overarching	metamodel	 of	 Use	 Case	 and	Activities	 become	more	

manageable.	 A	metamodel	 that	 has	 encompassed	 both	 of	 safety	 and	 security	 analysis	

tools	has	been	presented	in	(Ruijters	et	al.	2017).	

	

2.9 Model	Transformation	of	Different	Domains	

Model	transformation	is	an	important	concepts	for	the	systematic	use	of	models	

as	primary	engineering	artefacts	throughout	the	engineering	life	cycle	(Berramla	et	al.	

2016).	 Model	 transformation	 enables	 translation	 of	 different	 models	 expressed	 in	

different	modelling	languages.	It	is	increasingly	used	in	software	design	and	development,	

especially	 for	synthesising	two	or	more	models,	 improving	the	development	of	model,	

verifying	models,	and	simulating	model.	Model	transformation	has	also	been	expanded	

for	use	as	a	medium	to	unify	analysis	tools	to	ensure	that	the	developed	model	is	the	most	

reliable	(Ruijters	et	al.	2017).	

Nevertheless,	 practitioners	 have	 to	 deal	 with	 the	 problem	 of	 debugging	 and	

correctness	testing	in	the	transformation	process	(Burgueño	et	al.	2015).	The	quality	of	

the	 resulting	 system	 is	 therefore	 highly	 influenced	 by	 the	 quality	 of	 the	 model	

transformations	that	are	employed	to	produce	the	system.	To	support	the	capability	of	

model	 transformation,	 languages,	 formalism,	 techniques	(Jilani	et	al.	2010),	processes,	

tools,	and	standards	are	needed.	

Frameworks	 such	 as	 Relational	 Oriented	 Systems	 Engineering	 and	Technology	

Tradeoff	Analysis	(ROSETTA)	have	been	introduced	to	capture	the	relationship	between	

entities	 of	 complex	 system	 such	 as	 SoS.	 This	 framework	 can	 be	 employed	 for	model	

Chapter	2	

	

58	

	

specification	 and	 relational	 transformation	 (Holden	 &	 Dickerson	 2013)	 as	 it	 uses	 a	

mathematical	 concept	 to	 support	 traceability	 across	 models.	 Research	 into	 fault	

discovery	from	system	functions	and	behaviour	modelling	(Zwolinski	et	al.	2000),	fault	

modelling	 (Ingram	 et	 al.	 2014),	 formal	 Fault	 Trees	 based	 on	 system	 state	 transition	

(Xiang	et	al.	2005),	and	structural	relationships	(Zhang	et	al.	2017)	can	be	meaningful	

with	the	implementation	of	semantic	transformation.	For	example,	the	Petri	net	model	

that	 uses	 a	 mathematical	 basis	 for	 node	 transitions	 can	 be	 generated	 from	 Activity	

Diagram	by	using	XML	transformation	(Latsou	et	al.	2017).	The	flows	of	actions	in	the	

behaviour	diagram	are	mapped	to	the	transition	in	a	graphical	representation	of	the	Petri	

net	model.	The	nodes	in	the	Petri	net	model	are	extracted	from	the	actions	and	behaviour	

description	of	the	Activity	Diagram.	

	

2.9.1 Transformation	 of	 Information	 between	 System	 Models	 and	 Safety	

Analysis	Models	

Model	transformation	can	be	used	to	bridge	the	gap	between	models	of	different	

domains	such	as	between	SE	and	SSE.	Since	SE	and	SSE	have	a	common	approach	of	using	

model-based	design	and	analysis,	model	transformation	is	one	the	best	approaches	for	

taking	 the	 details	 from	 one	 model	 and	 transforming	 them	 to	 another	 model.	 The	

transformation	 method	 in	 the	 perspective	 of	 integration	 between	 SE	 and	 SSE	 helps	

engineers	to	produce	system	models	and	safety	analysis	models	more	quickly.	

One	 of	 the	 purposes	 of	 the	 implementation	 of	 model	 transformation	 between	

domains	in	a	system	development	is	for	analysing	models	within	a	certain	timeframe.	For	

example,	 in	 the	 COMPASS	 project,	 a	 tool	 that	 has	 been	 developed	 using	 COMPASS	

technology	 to	 conduct	 analysis	 on	 the	 architectural	 modelling	 of	 SoS	 at	 constituent	

system	(CS)	level	(Andrews,	Bryans,	Payne,	Dider,	et	al.	2014).	An	abstraction	of	a	system	

model	is	needed	for	the	tool	to	generate	a	temporal	Fault	Tree	which	is	an	intermediate	

model	of	a	Fault	Tree.	The	process	continues	by	analysing	 the	system	model	with	 the	

composition	of	fault	events	in	the	generated	temporal	Fault	Tree.	

Chapter	2	

	

59	

	

In	 addition,	 with	 model	 transformation,	 safety	 assessments	 can	 be	 done	

concurrently	while	architecting	a	system.	For	example,	Fault	Tree	and	Failure	Model	and	

Effect	Analysis	(FMEA)	can	be	generated	from	Use	Case	and	Internal	Block	Diagrams.	The	

procedures	 and	 steps	 developed	 to	 carry	 on	 the	 transformation	 process	 cover	 the	

physical	aspects	of	the	system.	Similarly,	a	graphical	block	diagram	of	a	system	designed	

in	MATLAB-Simulink	Model	 can	 also	 be	 used	 to	 generate	 a	 Fault	 Tree.	 The	MATLAB-

Simulink	model	allows	the	ability	to	capture	the	dynamic	and	embedded	environment	of	

system,	static	and	dynamic	types	of	Fault	Tree	(Tajarrod	&	Latif-Shabgahi	2008).	This	is	

useful	for	a	process	combining	multiple	systems,	such	as	with	power	delivery	systems	

(Volkanovski	et	al.	2009).	

	

Transformation from System Models to Fault Tree

As	recognised	by	practitioners,	the	information	underpinning	in	system	models	

can	be	used	as	an	input	to	generate	Fault	Trees.	Hence,	safety	analysis	can	be	performed	

in	 conjunction	 with	 system	 design	 and	 can	 be	 established	 at	 the	 earlier	 stage	 of	

conceptual	 design.	 Many	 studies	 have	 processes	 for	 model	 transformation	 between	

OMG’s	standard	system	models	and	Fault	Tree	models.	

Practically,	UML	and	SysML	are	a	standard	commercial	modelling	technique	in	SE.	

The	 establishment	 of	 these	modelling	 techniques,	 however,	 requires	 knowledges	 and	

skills	 from	 various	 industries	 and	 offer	 different	 types	 of	 diagram	 to	model	 a	 system	

graphically.	For	further	development,	models	produced	through	these	techniques	can	be	

connected	to	a	variety	of	object-oriented	programming	languages	such	as	C++	and	Java,	

as	well	as	 to	architectural	description	 languages	such	as	VHSIC	Hardware	Description	

Language	 (VHDL).	 In	 SSE,	 meanwhile,	 Fault	 Tree	 is	 the	 most	 well-known	 safety	

assessment	method	and	the	model	best	suited	for	the	analysis	of	system	development.	

Frequently,	model	transformation	between	domains	involves	intermediate	tasks.	

There	is	no	Fault	Tree	generation	done	directly	from	the	SysML	system	model	(Mhenni	

et	al.	2014).	For	example,	the	connectors	and	ports	between	the	subsystem	modelled	in	

Chapter	2	

	

60	

	

the	SysML	Internal	Block	Diagram	(IBD)	illustrate	the	internal	structure	of	a	subsystem	

that	can	be	manipulated	fto	explore	fault	and	failure	propagation	through	that	subsystem	

(Mhenni	et	al.	2014).	Logic	gates	and	fault	events,	which	are	the	main	elements	in	Fault	

Trees,	can	be	derived	from	the	IBD	by	tracing	a	graph	traversal	algorithm	and	identifying	

entry	and	exit	patterns	within	the	diagram.	Another	method	for	transforming	IBD	to	Fault	

Tree	is	by	combining	with	Sequence	Diagram	and	using	a	reliability	configuration	model	

(RCM)	 (Xiang	 et	 al.	 2011).	 The	 structure	 of	 a	 system,	 and	 functional	 dependencies	

between	 the	 system	 components,	 are	 specified	 in	 RCM	 with	 Maude,	 an	 executable	

algebraic	formal	specification	language,	before	generating	a	static	type	of	Fault	Tree.	

From	a	UML	Activity	Diagram	perspective,	Activity	Diagram	can	also	be	used	to	

generate	Fault	Trees.	One	study	uses	Activity	Diagram	 to	generate	Fault	Trees	as	 test	

cases	in	respect	to	the	process	flow	illustrated	in	the	Activity	Diagram	(Paiboonkasemsut	

&	Limpiyakorn	2016).	The	process	flow	is	used	to	generate	a	condition-classification	tree	

model	which	is	ultimately	used	to	derive	a	table	of	test	cases.	The	test	cases	generated	

from	Activity	Diagram	cover	the	functionality	and	reliability	of	 the	developing	system.	

One	of	 the	advantages	of	using	Activity	Diagram	 for	generating	 test	 cases	 is	 the	early	

detection	 of	 faults	 and	 a	 reduction	 in	 development	 time	 (Patel	 &	 Patil	 2013).	 This	

proposed	 Fault	 Tree	 development	 technique	 is	 incompatible	 for	 a	 large	 number	 of	

decision	nodes,	however.	

Transformation	can	also	be	done	between	multiple	UML	system	models	and	Fault	

Trees.	For	example,	an	algorithm	used	to	synthesise	dynamic	Fault	Trees	automatically	

is	 logically	 developed	 based	 on	 multiple	 structure	 models	 (Pai	 &	 Dugan	 2002).	 The	

algorithm	that	encodes	structural	components	and	the	associations	between	components	

are	 extracted	 from	 Class,	 Object,	 and	 Deployment	 Diagrams.	 All	 the	 information	

comprised	in	those	models	are	compiled	in	Rational	Rose	before	generating	the	algorithm.	

In	the	implementation	of	the	method,	Class	Diagram	plays	an	important	role	as	each	class	

in	the	diagram	is	simply	taken	as	a	basic	event	for	the	Fault	Tree.	The	application	of	the	

algorithm	 is	 also	 known	 for	 transforming	 details	 from	 Fault	 Tree	 to	 generate	 State	

Machine	in	pseudo	code	(Kim	et	al.	2010).		

Chapter	2	

	

61	

	

In	one	study,	ATLAS	Transformation	Language	was	used	to	transform	a	number	

of	UML	system	models	to	Fault	Trees	using	entity	mapping	from	the	UML	system	models.	

The	basic	components	of	the	UML	Composite	Structure	Diagram,	Sequence	Diagram,	and	

Use	Case	Diagram	with	the	extension	of	Modelling	and	Analysis	of	Real-Time	Embedded	

systems	(MARTE)	and	Dependability	Modelling	and	Analysis	(DAM)	profiles,	are	taken	as	

the	inputs	to	generate	the	Fault	Tree	by	means	of	the	ATLAS	Transformation	Language	

to	generate	Fault	Tree	(Zhao	&	Petriu	2015).	In	the	research,	entities	mapping	is	applied	

to	generate	Fault	Tree	from	the	UML	system	models.	

	

2.10 Implementation	of	Formal	Methods	on	Models	and	Model	Transformation	

Formal	methods	are	a	particular	kind	of	mathematically-based	approach	in	which	

a	statement	can	be	formal	with	mathematically	correct.	It	is	used	extensively	in	formal	

language	 to	 pattern	 arguments	 (statement).	 For	 example,	 proposition	 and	 predicate	

calculus	are	used	to	design	and	pattern	a	complete	statement	with	premises,	conclusion,	

and	a	relationship	between	premises.	In	software	and	computing,	formal	language	has	

been	extensively	used	for	software	programming	such	as	Alloy,	Z,	B,	and	OCL.	

The	 formal	 method	 has	 advantages	 in	 terms	 of	 analysing	 and	 verifying	

development	in	any	part	of	the	SE	life	cycle.		The	implementation	of	formal	method	helps	

engineers	in	a	project	team	to	receive	the	same	standard	information	about	the	project.	

The	 formal	method	 has	 been	 implemented	 in	 various	 scopes	 such	 as	 for	 centralising	

details	to	a	primary	context	in	safety	cases	(Denney,	Pai,	&	Whiteside,	2015).	This	gives	a	

strong	 basis	 for	 identifying	 and	 ordering	 safety	 cases,	 which	 is	 useful	 for	 safety	

specification,	 safety	 analysis,	 and	 system	 testing.	 Other	 than	 safety,	 formal	 methods	

contribute	 to	 the	 reliability	 and	 robustness	 of	 a	 system	 design	 with	 respect	 to	 its	

requirements.	 For	 example,	 in	 the	 aerospace	 industry,	 formal	 methoda	 are	 used	 for	

integrating	the	design	and	safety	analysis	of	 the	system	(Bozzano	&	Villafiorita	2003).	

The	integration	work	provides	a	better	working	environment	 in	that	design	engineers	

can	 formally	 verify	 a	 system	 and	 safety	 engineers	 can	 automate	 safety	 assessment	

together	in	one	platform.		

Chapter	2	

	

62	

	

According	to	Daniel	M.	Berry,	there	are	three	main	groups	of	formal	method	for	

software-intensive	computer-based	systems,	namely	verification,	intensive	study	of	key	

problems,	 and	 refutation	 (Berry	 2002).	 The	 first	 group	 encompasses	 the	 partial	 or	

complete	proof	of	a	system.	The	second	group	delivers	the	intensive	mathematical	study	

of	an	aspect	of	the	whole	system.	The	third	group	verifies	that	the	requirements	of	the	

system	are	correct.	Benjamin	Gorry,	a	lead	engineer	for	product	safety	at	BAE	Systems,	

categorises	 formal	 methods	 into	 three	 different	 categories,	 namely	 theorem	 proving,	

model	checking,	and	formal	testing	(Gorry	2015).	These	types	of	formal	method	verify,	

respectively,	the	reasoning	of	programs,	system	models,	and	system	testing.	

	

2.10.1 Application	of	Formal	Methods	

Formal	methods	can	be	applied	at	any	point	in	the	SE	life	cycle.	For	example,	in	the	

development	of	 software-intensive	 computer-based	 systems,	 formal	methods	are	best	

applied	during	the	specification	stage	(Berry	2002).	Usually,	specification	of	the	system	

and	 requirements	 from	 stakeholders	 is	 articulated	 in	 natural	 language.	 Here,	 formal	

methods	help	to	minimise	the	associated	difficulties	and	ambiguity	for	determining	the	

actual	 specification	 of	 the	 developing	 system.	 With	 the	 finest	 specification,	 full	

traceability	to	test	cases	can	be	accommodated	(Pietrantuono	&	Russo	2013).	Through	

this	it	is	possible	to	reduce	the	incidence	of	major	errors	only	coming	to	light	at	the	end	

of	 the	 development	 process.	 Formal	 methods	 also	 support	 users	 when	 handling	

engineering’s	problem	domain	(Berry	2002).	For	example,	 fixing	accident	of	software-

based	system	increases	productivity	and	makes	coding	easier	and	less	error	prone.	

	

2.10.2 Industry	Feedback	on	Formal	Methods	

Formal	methods	are	no	 longer	a	strange	to	the	average	engineers,	especially	 in	

design	teams.	A	survey	has	been	carried	out	to	compare	the	practice	of	formal	methods	

between	 1990	 and	 2009	 (Woodcock	 et	 al.	 2009).	 According	 to	 this	 survey,	 the	

implementation	 of	 formal	 method	 technology	 as	 a	 part	 of	 industrial	 development	

Chapter	2	

	

63	

	

processes	was	discussed	in	the	early	1990s,	leading	to	improvements	in	practice	by	the	

following	decade.	Based	on	an	article	of	a	working	group	that	supports	the	application	of	

formal	methods	application,	it	is	recommended	for	implementation	in	industry	(Clarke	&	

Wing	 2002).	 The	 positive	 feedback	 has	 also	 led	 to	 National	 Aeronautics	 and	 Space	

Administration	 (NASA)	 publishing	 a	 guidebook	 on	 the	 use	 of	 formal	methods	 for	 the	

specification	and	verification	of	software	and	computer	systems	(Kelly	et	al.	1998).	The	

positive	feedback	of	formal	method	from	industry	can	be	seen	by	the	adaptation	of	formal	

method	within	the	most	critical	parts	of	a	system	and	in	safety-critical	systems	such	as	

automotive,	aerospace,	and	control	system	domains.	

2.10.3 Challenges	Facing	the	Application	of	Formal	Method	in	Industries	

Regulation	is	one	of	the	challenges	that	industry	has	to	accept.	For	example,	in	the	

development	of	systems	with	software	dependability,	industry	is	required	to	comply	with	

certification	standards	such	as	DO-178	(Pietrantuono	&	Russo	2013).	DO-178	is	a	safety	

standard	 for	 software	 in	 airborne	 systems,	 and	 has	 to	 be	 complied	 with	 by	 relevant	

manufacturing	 industries.	 In	 the	 standard,	 formal	 methods	 are	 highlighted	 as	 a	

verification	 technique	 for	 the	 software	 development	 (Brosgol	 2011).	 Engineers	 with	

specific	 skills	 are	 required	 to	 implement	 formal	 methods.	 Industry,	 especially	 for	

manufacturing	large-scale	systems,	has	to	bear	the	costs	associated	with	acquiring	the	

necessary	skills	and	technology.	

	

2.10.4 The	Need	for	Formality	in	Respect	to	Models	

Models	 are	 a	 medium	 of	 communication	 and	 documentation	 for	 reflecting	

important	information	about	a	given	context.	For	example,	Activity	models	can	be	used	

to	 understand	 the	 behaviour	 of	 a	 system	 (Object	 Management	 Group	 2017d).	 The	

behaviour	of	system	is	modelled	from	user	perspective	(Felderer	&	Herrmann	2018).	A	

challenge	with	Activity	models,	however,	is	that	if	two	system	architects	were	asked	to	

produce	an	Activity	model	for	the	same	system	behaviour	specification,	it	is	quite	likely	

that	 they	 would	 be	 different.	 This	 contrasts	 with	 formal	 analysis:	 it	 is	 probable	 for	

Chapter	2	

	

64	

	

example	that	two	different	safety	engineers	would	produce	the	same	unique	Fault	Tree	

representation	can	be	produced	by	two	safety	engineers.	

Since	UML	modelling	language	has	been	widely	used	in	industry,	multiple	users	

are	able	to	model	and	amend	UML	system	models	at	the	same	time	with	the	power	of	web	

technology	(Kurniawan	et	al.	2014).	This	approach	helps	the	users	to	easily	follow	up	on	

the	system	being	modelled	and	spot	any	changes	done	on	the	model.	The	application	of	

formality	in	the	system	models	could	bring	better	interpretation,	however.	In	order	to	

help	modelling	language	users,	many	applications	and	tools	for	complementing	informal	

modelling	 technique	 with	 formal	 methods	 have	 been	 established	 in	 the	 market.	 For	

example,	the	construction	of	Use	Case	applies	informal	techniques	to	define	and	analyse	

system	behaviour	at	 the	early	 stage.	The	UC-B	plug-in	 can	be	used	 to	perform	 formal	

assurance	on	 the	Use	Case	model	based	on	set	 theory	of	Event-B	(Murali	et	al.	2016).	

Furthermore,	the	application	of	fUML	can	supports	high	level	conceptual	models	for	the	

design	of	the	architecture	of	more	complex	systems	(Amissah	et	al.	2018).	By	using	fUML,	

behaviour	 models	 such	 as	 Activity	 and	 State	 Machine	 are	 developed	 with	 precise	

semantics.	

Formal	 methods	 can	 be	 used	 for	 proving	 any	 development	 outcomes,	 be	 it	

statement	or	model,	with	 specifications	and	 requirements.	Formal	methods	 support	 a	

consistent	form	of	specification	and	requirement	to	the	end	of	system	development.	With	

a	precise	system	architecture	and	design,	a	rigorous	analysis	can	be	made.	This	makes	

verification	and	validation	processes	easier	and	faster.	

	

2.11 Summary	of	the	Literature	Review	

Systems	 engineering	 and	 systems	 safety	 engineering	 are	 two	 different	

engineering	domains.	In	a	development	of	any	large	system,	which	is	complex	and	safety	

related,	both	domains	have	individual	line	processes	but	are	inherently	inseparable.	The	

system	design	and	safety	communities	are	aware	of	each	other’s	needs	understand	that	

design	 is	 not	 only	 for	 system	 functionality	 but	 for	 safety	 as	well.	 	 Since	model-based	

Chapter	2	

	

65	

	

approaches	are	being	implemented	for	the	realisation	of	some	of	the	processes,	there	is	

a	need	for	easy-to-use	tools	that	are	able	to	generate	reliable	models	automatically.	

Model-based	 Safety	 Analysis	 (MBSA)	 tools	 such	 as	 HiP-HOPS	 and	 SCADE	 are	

developed	 to	 adequate	 the	 demand	 from	 the	 communities.	 These	 tools	 are	 well	

established	 and	 used	 during	 design	 of	 safety	 critical	 system	 for	 generating	 reliable	

models.	The	tools	help	safety	engineers	to	generate	Fault	Trees	using	alternative	method	

particularly	by	using	system	model	as	 input.	By	setting	the	Fault	Tree	generation	as	a	

common	goal,	these	tools	have	also	been	used	as	a	starting	point	for	an	expanding	body	

of	research	work	by	looking	at	different	viewpoints	of	system	models.	

The	information	of	Fault	Tree	can	be	transformed	from	multiple	types	of	system	

models.	 For	 instance,	 Zhao	 and	 Petriu	 take	 inputs	 from	 UML	 Composite	 Structure,	

Interactions,	and	Use	Case	to	generate	Fault	Tree	by	using	ATL	(Zhao	&	Petriu	2015).	The	

transformation	from	multiple	types	of	system	model	can	represent	different	viewpoint	of	

a	system.	Furthermore,	the	inputs	from	different	types	of	models	give	different	level	of	

information	in	the	Fault	Tree.	For	instance,	the	input	from	Composite	can	be	traced	to	

basic	events	and	 the	gathered	 inputs	 from	Use	case	and	 Interactions	can	be	 traced	 to	

intermediate	events	in	the	Fault	Tree.	There	are	also,	 in	the	research	areas,	where	the	

generation	of	Fault	Tree	is	transformed	from	a	single	Use	Case	of	a	system	(Hu	et	al.	2011).	

However,	the	information	provided	by	the	Use	Case	just	to	support	top	event	and	some	

of	 intermediate	 events	 in	 the	 tree.	 In	 the	 research	 conducted	by	 (Paiboonkasemsut	&	

Limpiyakorn	2016),	a	Fault	Tree	that	generated	from	an	Activity	Diagram	is	an	approach	

to	 support	 validation	 test	 case	 for	 system	 functionality.	 The	 single	 type	 of	 diagram	

transformation	had	become	one	of	motivations	of	 this	 research	 to	generate	 fault	Tree	

from	behavioural	aspect	of	a	system	specifically	Activity	Diagram.	

This	 thesis	 is	concerned	about	 formality.	Most	of	 the	published	research	which	

regard	to	the	concern	present	the	ways	for	generating	formal	Fault	Tree.	For	instance,	as	

presented	in	(Xiang	et	al.	2005)	and	(Ortmeier	&	Schellhorn	2007),	disjunctive	normal	

form	is	applied	to	develop	formal	Fault	Tree.	The	analyses	of	the	developed	formal	Fault	

Tree	are	done	based	on	the	states	transition	concept	of	an	operating	system.	This	concept	

underlies	cause-consequence	relation	in	the	developed	formal	Fault	Tree.	The	generation	

Chapter	2	

	

66	

	

of	 fault	 Trees	 from	 model-based	 systems	 engineering	 (MBSE)	 lack	 of	 semi-formal	

transformation.	Many	of	the	published	research	apply	transformation	language	such	as	

AltaRica	(Yakymets	et	al.	2013)	and	ATL	(Zhao	&	Petriu	2015)	to	get	it	formal.	However,	

using	transformation	language	puts	formality	from	input	to	output	which	maps	entity-to-

entity.	As	a	result,	the	generated	Fault	Tree	is	absent	with	relational	structure	of	system	

models.	

Methods	for	transformation	between	UML	system	models	and	Fault	Tree	models	

are	proposed	in	this	thesis.	This	is	to	support	the	conventional	way	of	constructing	Fault	

Trees	 which	 do	 not	 support	 structured	 analysis.	 Mathematics	 is	 employed	 in	 the	

development	 of	 the	 methods	 in	 order	 to	 achieve	 semantic	 precision.	 By	 using	 these	

methods,	the	relational	structure	of	UML	system	model	 is	preserved	in	the	Fault	Tree.	

The	methods	 are	 suggested	 to	 be	 used	 at	 the	 early	 stage	 of	 system	 design	 since	 the	

elimination	 of	 fault	 at	 the	 earliest	 time	 is	 a	 key	 to	 improving	 the	 productivity	 of	 the	

development	process.	

	

67		

	

FOUNDATIONAL	RESEARCH	KNOWLEDGE	

	

3.1 Introduction	

A	set	of	foundational	knowledge	that	are	necessary	for	this	thesis	is	presented	in	

this	 chapter.	 The	 foundational	 knowledge	 provides	 a	 technical	 basis	 for	 formal	

transformation	methods	later	in	Chapter	4	and	Chapter	5.	Generally,	the	technical	basis	

is	 divided	 into	 two	 segments:	 (i)	 model-based	 approach,	 and	 (ii)	 mathematical	

representation.	In	this	thesis,	the	model-based	approach	is	used	as	representing	system	

at	the	architecture	level.	There	are	two	aspects	of	the	system	architecture	to	be	focused	

which	are	system	function	and	system	component.	These	aspects	will	be	presented	by	

using	UML	Activity	and	UML	Class	respectively.	Nevertheless,	the	model-based	approach	

is	also	used	in	assessing	safety	of	the	system.	In	particular,	Fault	Tree	models	faults	and	

errors	 that	 lead	 to	 the	system	failure.	These	models	are	 the	 focal	points	 in	 the	 formal	

transformation	methods.	Each	of	UML	Activity,	UML	Class,	and	Fault	Tree	model	which	

can	be	presented	by	a	higher	model	called	metamodel	are	also	described	in	this	chapter.	

Despite,	these	models	apply	graphical	presentation,	if	not	more	formal.	This	came	across	

the	second	segment	of	the	technical	basis	which	is	mathematical	representation.	In	this	

segment,	mathematics	that	can	be	performed	by	the	models	are	discovered	to	support	

the	formal	transformation	methods	later	in	Chapter	4	and	Chapter	5.	For	the	UML	models,	

propositional	 calculus	 is	 applied	 to	 the	models	 for	 a	 constructive	 proof	 of	 the	model	

elements	and	the	structure.	For	 the	Fault	Tree,	probability	 theory	 that	 lies	behind	the	

presentation	of	the	Fault	Tree	utilise	Boolean	algebra	for	estimating	failure	of	the	system	

is	 demonstrated.	 The	 mathematic	 representations	 are	 the	 key	 features	 of	 the	

transformation	methods.	Therefore,	a	precise	presentation	of	the	models	can	be	offered	

for	 formal	 transformation	 from	 system	 architecture	 to	 system	 safety	 and	 reliability	

models.	 The	 application	 of	 the	 developed	methods	 is	 demonstrated	 on	 an	 authorised	

Traffic	Management	 System	 of	 System	 (TMSoS)	 case	 study	which	 is	 reviewed	 in	 this	

chapter.	

Chapter	3	

	

68	

	

This	remainder	of	this	chapter	is	structured	as	follows:	

Subchapter	3.2:	Model-based	Approach	for	System	and	Safety	

As	 applicable	 for	 this	 research,	 specific	 characteristics	 of	 the	 system	models	 such	 as	

model	elements	and	structure	of	the	models	are	discussed.	Two	types	of	models	in	UML	

which	are	Activity	and	Class	are	considered	as	for	modelling	architecture	of	system	in	

this	 thesis.	 Nevertheless,	 one	model	 of	 safety	 assessment	method,	 Fault	 Tree,	 is	 also	

discussed.	Metamodel	that	described	each	model	are	also	presented.	

Subchapter	3.3:	Mathematical	Representation	of	Models	

As	 one	 of	 the	 key	 features	 of	 formal	 transformation	 methods,	 mathematical	 basis	 is	

provided	 to	 support	 the	 representation	 of	 the	 model-based	 approach.	 First,	 the	

propositional	calculus	is	applied	to	system	architecture	models	that	presented	in	UML.	

Logic	 operations	 are	 also	 applied	 along	with	 the	 propositional	 calculus	 that	 has	 been	

determined	for	the	system	models.	This	involves	the	negation	as	a	fault	representation	of	

the	models.	 Then,	 the	 probability	 theory	 that	 has	 been	 implemented	 in	 Fault	 Tree	 is	

explained.	Furthermore,	unlike	the	mathematics	provided	for	the	structure	of	the	system	

models,	the	symbols	in	the	tree	used	as	the	mathematics	operation	are	also	explained.	

Subchapter	3.4:	Traffic	Management	System	of	Systems	Case	Study	Review	

An	authorised	TMSoS	case	study	is	briefly	explained	in	this	subchapter.	The	TMSoS	case	

study	 is	 used	 to	 demonstrate	 the	 model-based	 approach	 for	 presenting	 system	

architecture	and	assessing	system	safety	and	reliability.	Nevertheless,	the	case	study	is	

also	used	 to	demonstrate	 formal	 transformation	methods	developed	 in	Chapter	4	and	

Chapter	5.	

Subchapter	3.5:	Summary	of	Foundational	Research	Knowledge	

In	 this	subchapter,	a	summarisation	on	the	 two	key	 features	of	 formal	 transformation	

methods	and	a	case	study	for	demonstrating	the	application	of	the	formal	transformation	

methods	is	presented.		

Chapter	3	

	

69	

	

3.2 Model-based	Approach	for	System	and	Safety	

In	 this	 thesis,	 formal	 transformation	methods	will	 be	developed	 for	 automated	

system	 safety	 assessment	 generation	 from	 system	 architecture	 design.	 The	 system	

architecture	 design	 and	 system	 safety	 assessment	 are	 defined	 by	 using	 model-based	

approach.	 The	 system	 architecture	 design	 used	 in	 the	 development	 of	 formal	

transformation	methods	 is	 modelled	 in	 two	 types	 of	 UML	 diagrams	 for	 representing	

behaviour	 and	 structure	 of	 a	 system.	 The	 behaviour	 and	 structure	 of	 the	 system	 are	

modelled	 in	UML	Activity	and	UML	Class,	 respectively.	The	scope	of	UML	Activity	and	

UML	Class	Diagrams	is	the	basic	notations	and	relationships	that	often	used	in	modelling.	

This	 means	 a	 subset	 of	 Activity	 and	 Class	 Diagrams	 is	 selected	 for	 the	 formal	

transformation.	For	generating	system	safety	assessment,	the	modelling	of	failure	will	be	

defined	based	on	the	transformation	of	the	subset	of	the	diagrams.	The	transformation	

suggests	relational	structure	mapping	with	formal	approach	to	the	methods.	The	work	

proposes	to	start	with	the	basic	structure	that	identifiable	in	these	models.	Fault	Tree	is	

one	of	the	safety	assessment	methods	that	presented	in	a	graphical	model.	Fault	Tree	is	

selected	for	designing	safety	assessment	for	the	system.	

In	 the	 rest	of	 this	 subchapter,	 the	model-based	approach	 to	 the	behaviour	and	

structure	 modelling,	 and	 safety	 analysis	 with	 the	 basic	 notations	 of	 the	 models	 are	

described.	Metamodels	that	emphasise	the	fundamental	structure	and	basic	notations	of	

the	subset	of	each	models	are	developed	and	are	also	described.	

	

3.2.1 Model-based	Approach	to	Behaviour	Modelling	

According	 to	 International	 Council	 on	 Systems	 Engineering	 (INCOSE)	

(International	 Council	 on	 Systems	 Engineering	 2015),	 behaviour	 of	 a	 system	 can	 be	

classified	into	two	types:	dynamic	and	emergent.	Dynamic	behaviour	of	a	system	is	based	

on	 the	 time	 evolution	 of	 the	 system	 state,	 whilst	 emergent	 behaviour	 can	 be	 seen	

collectively	 in	 a	 large	 scale	 as	 it	 cannot	 be	 understood	 in	 terms	 of	 individual	 system	

Chapter	3	

	

70	

	

elements	(International	Council	on	Systems	Engineering	2015).	This	thesis	is	primarily	

concerned	with	dynamic	behaviour.	

The	execution	of	system	functions	is	directly	associated	with	the	behaviours	of	a	

system.	And	a	change	of	system	states	is	often	led	by	the	execution	of	a	system	function.	

Hence,	the	modelling	of	the	behaviours	of	a	system	can	hold	a	functional	viewpoint	or	a	

state	 viewpoint.	 In	 model-based	 approach	 with	 UML,	 the	 two	 viewpoints	 of	 system	

behaviours	are	led	to	four	different	model	representations	namely	Use	Cases,	Activities,	

Sequences,	and	State	Machines.	First	semantic	 transformation	 is	demonstrated	on	Use	

Cases	 and	 Activities	 to	 analyse	 SoS	 design	 using	 the	 graphical	 language.	 Activities	 is	

further	analysed	for	the	development	of	an	overarching	metamodel	in	Chapter	4.	

	

Activity	Diagram	as	a	Behaviour	Model	

The	sequencing	of	actions	of	a	system	or	SoS	is	specified	by	UML	Activities.	Here,	

Action	is	the	technical	term	and	a	metaclass	used	in	UML	to	represent	the	fundamental	

unit	of	behaviour	specification	(Object	Management	Group	2017d).	For	the	rest	of	this	

thesis,	for	clarity,	Pascal	case	format	is	adopted,	i.e.	concatenating	capitalised	words,	in	

the	naming	of	metaclasses,	e.g.	ActivityNode.	In	the	case	of	modelling	system	behaviour	

with	 Activities,	 an	 action	 is	 represented	 by	 a	 node	 (ExecutableNode),	 refers	 to	 an	

elementary	step	to	be	executed	by	the	system.	To	show	the	sequencing	of	the	steps,	the	

nodes	are	then	connected	via	directed	edges	(ActivityEdge).	A	list	of	graphical	notations	

available	 to	 the	 modelling	 of	 system	 behaviour	 in	 Activities	 within	 the	 scope	 of	 the	

research	is	provided	in	Table	3.1.	In	addition	to	executable	node,	the	use	of	other	types	of	

nodes	such	as	control	nodes	and	objects	are	involved	in	Activity	modelling.	As	objects	do	

not	 represent	 system	 functions,	 they	 will	 not	 be	 considered	 in	 the	 research	 for	 the	

purpose	of	functional	fault	analysis.	The	graphical	complexity	of	an	Activity	model	is	also	

reduced	by	only	include	control	flows.	

To	describe	the	execution	of	an	action	and	the	flow	of	controls,	 the	concepts	of	

tokens	(which	are	not	explicitly	modelled	in	Activities)	and	guards	are	used	in	UML.	After	

Chapter	3	

	

71	

	

a	function	completes	its	execution,	a	control	token	will	be	offered	to	the	next	node	via	the	

edge	that	connects	them.	Furthermore,	edges	may	have	guards	on	them.	A	token	can	only	

pass	through	an	edge	with	a	guard	if	the	guard	evaluates	the	tokens	to	true	for	the	offered	

token.	Guard	is	commonly	used	on	the	outgoing	edges	of	a	decision	node	(DecisionNode).	

The	foundation	for	formalising	control	flows	by	using	propositional	calculus	is	provided	

by	the	concept	of	passing	a	token	after	the	successful	execution	of	an	action.	In	brief,	for	

two	connected	actions	via	an	edge,	if	the	execution	of	the	second	action	is	completed,	the	

first	action	is	supposedly	completed	its	execution	as	the	token	must	have	been	offered	

and	accepted	by	the	second	action	for	the	second	action	to	execute.	

	

Table	3.1:	Activity	Model	Symbols	

Symbol	 Description	

	
Action	–	action	state	of	system	behaviour	

	

Control	Flow	–	directional	activity	flow	of	control	nodes	

and	action	states	

	 Initial	Node	–	initial		state	of	activity	flow	

	 Activity	Final	Node	–	final	state	of	activities	completion	

	
Decision	Node		–	point	of	alternate	paths	decision	

Chapter	3	

	

72	

	

	

Merge	Node	–	point	of	multiple	flows	merge	to	a	single	

flow	without	synchronization	

	
Fork	Node	–	point	of	single	flow	splits	to	multiple	flows	

	

Join	Node	–	point	of	multiple	flows	synchronize	to	a	single	

flow	

	

Swimlane	–	classify	and	hold	activity	flows	according	to	

systems	in	partitions	

	

Reduced	Activity	Metamodel	

Activities	Metamodel	is	served	as	a	reference	to	Activity	modelling	by	defining	the	

abstract	 syntax	 and	 the	 interrelationship	 between	 model	 elements	 in	 the	 standard	

Activity	model	(Liu	2010).	As	depicted	in	Figure	3.1,	within	the	scope	of	this	research,	

only	a	subset	of	the	UML	Activities	metamodel,	such	as	ActivityNode	and	ActivityEdge,	is	

considered	 for	 the	 development	 of	 the	 overarching	 metamodel.	 Metaclasses,	 such	 as	

Object	and	ObjectFlow	are	neglected	due	to	their	irrelevance	to	fault	modelling	from	a	

functional	viewpoint.	These	metaclasses	hold	object	 (facility)	during	 the	course	of	 the	

execution	of	an	activity.	For	instance,	a	facility	has	a	potential	to	be	modelled	by	using	

variables.	This	means	that	a	facility	possibly	has	multiple	states.	Therefore,	in	defining	

the	fault	modelling	of	the	component	by	using	proposition	would	be	more	than	just	True	

or	 false.	 Nevertheless,	 the	 propositions	 could	 not	 systematically	 capture	 all	 of	 those	

variables.	In	addition	to	this	subset,	Action	metaclass	is	also	included	based	on	previous	

Chapter	3	

	

73	

	

discussions.	This	metamodel	will	be	referred	to	a	Reduced	Activity	Metamodel	(RAM)	in	

the	rest	of	the	thesis.	

In	 the	RAM,	at	 the	top	 level,	ActivityNode	and	ActivityEdge	are	associated	with	

each	 other	 through	 two	 relations.	 In	 the	 modelling	 of	 control	 flows,	 two	 cases	 are	

represented	by	these	relations:	(i)	an	edge	comes	after	a	node,	and	(ii)	a	node	comes	after	

an	edge.	Detailed	descriptions	of	the	lower	level	metaclasses	are	provided	as	follows:	

1.		 Two	 types	 of	 nodes	 are	 generalised	 by	 the	 ActivityNode:	 ExecutableNode	 and	

ControlNode.	 These	 activity	 nodes	 are	 points	 of	 intersection	 where	 respective	

operation	takes	place	in	the	Activity	model.	

2.		 The	ExecutableNode	is	the	generalisation	of	Action	which	specifies	the	actions	to	

be	 executed	 in	 the	 Activity	model.	 The	 proposition	 that	 describes	 an	 action	 is	

captured	within	the	Action	symbol	(Table	3.2).	

3.		 A	set	of	paired	nodes	that	are	used	to	manage	different	types	of	control	flows	is	

generalised	 by	 the	 ControlNode.	 These	 pair	 nodes	 are:	 (i)	 InitialNode	 and	

FinalNode	 which	 are	 used	 to	 indicate	 the	 starting	 and	 ending	 point	 of	 a	 flow	

respectively;	 (ii)	 ForkNode	and	 JoinNode	which	 are	used	 to	 specify	 concurrent	

flows;	and	(iii)	DecisionNode	and	MergeNode	which	are	used	to	specify	alternative	

flows.	Although	the	pairings	are	not	reflected	in	the	RAM,	paired	usage	has	been	

regarded	as	reflected	in	the	RAM,	paired	usage	has	been	regarded	as	necessary	

practice	for	semantic	consistency.	As	many	of	these	control	nodes	allow	multiple	

coexisting	 (concurrent	 and	 alternative)	 flows	 to	 be	 modelled,	 it	 is	 therefore	

possible	to	have	situations	where	a	single	activity	node	is	associated	to	multiple	

activity	edges.	These	situations	are	covered	by	multiplicity	on	the	association	line	

where	an	asterisk	symbol	is	depicted	toward	the	ActivityEdge	end.	

4.	 In	 the	UML	 2.5.1	 specification,	 guard	 is	 not	 explicitly	 captured	 by	 a	metaclass.	

Instead,	the	concept	of	ValueSpecification	is	used	by	the	metamodel.	

Chapter	3	

	

74	

	

Figure	3.1:	Reduced	Activity	Metamodel	extracted	from	the	OMG	UML	

Specification	(Object	Management	Group	2017d).	

3.2.2 Model-based	Approach	to	Structure	Modelling	

The	organisational	representation	of	system	structure	is	defined	by	elements	of	a	

system	 which	 also	 called	 components	 in	 this	 thesis	 and	 their	 interrelationship	

(International	Council	on	Systems	Engineering	2015).	The	structure	of	a	system	shows	

the	static	organisational	of	components	and	the	relation	to	each	other	in	the	achievement	

of	the	stated	purpose	of	a	system.	

There	are	seven	types	of	diagrams	that	have	been	categorised	for	UML	structure	

diagram	by	the	OMG	(c.f.	Figure	1.2).	Each	type	of	structure	diagram	presents	a	different	

view	of	the	system	structure.	One	of	the	structure	diagrams	of	UML	is	Class	Diagram	that	

shows	 structure	 of	 the	 designed	 components	 as	 classes	 with	 features	 and	 their	

relationships.	The	Class	Diagram	is	the	most	widely	used	structure	diagram,	as	it	is	the	

richest	diagram	in	terms	of	the	amount	of	syntax	available	to	the	modeller.	As	suggested	

by	 (Kurniawan	 et	 al.	 2014)	 using	 Class	 Diagram	 as	 the	 only	 structure	 diagram	 for	

describing	system	structure	in	UML	tools	collaboration	web-based	project	of	more	than	

one	 user	 at	 a	 time	 is	 sufficient.	 The	 capability	 of	 Class	 Diagram	 of	 providing	 much	

information	of	a	system	has	brought	to	the	establishment	of	Requirements	Analysis	and	

Class	 Diagram	Extraction	 (RACE).	 Class	 Diagram	 can	 be	 extracted	 directly	 from	 large	

Chapter	3	

	

75	

	

volumes	of	textual	requirements	including	interview	excerpts,	documents,	and	notes	by	

using	RACE	(Ibrahim	&	Ahmad	2010).	Despite,	being	a	semi-formal	modelling	tool,	an	

approach	 to	 verify	 Class	 Diagram	 in	 providing	 syntactic	 correctness	 with	 respect	 to	

requirements	has	to	be	introduced	(Chanda	et	al.	2009).	

Class	Diagram	as	a	Structure	Model	

The	connection	of	elements	of	a	system	or	SoS	through	the	features	of	the	objects	

is	specified	by	UML	Classes.	A	Class	symbol	is	the	primary	unit	in	a	Class	Diagram	that	

specify	classification	of	an	object	or	a	set	of	objects	in	a	system	through	structural	and	

behavioural	 features.	 Respectively,	 these	 features	 are	 named	 as	 properties	 that	 also	

known	 as	 attributes	 (Property)	 and	 operations	 (Operation).	 These	 features	 are	 also	

presented	 in	 the	 Class.	 Features	 of	 each	 Class	 are	 unapproachable	 by	 other	 Class.	

However,	Class	which	has	ancestor	is	allowed	to	approach	its	ancestor’s	features	as	the	

Class	presents	its	ancestor.	The	modelled	Classes	may	have	semantic	relationship	with	

each	other	represented	by	the	embedded	properties.	This	influence	the	configuration	of	

collection	of	Classes.	In	some	cases,	from	a	viewpoint	of	system	and	subsystem,	a	multiple	

of	 Classes	 are	 supressed	 into	 a	 single	 Class.	 A	 list	 of	 symbols	 of	 the	 Class	 Diagram	

discussed	above	is	provided	in	Table	3.2.	

For	 the	 diagrammatic	 presentation,	 without	 starting	 and	 ending	 points	 like	

Activities,	 the	 configuration	 of	 Classes	 is	 formed	 by	 the	 collection	 of	 Classes	 and	

connection	lines	called	relationship.	The	relationship	is	normally	drawn	as	a	solid	line	

connecting	two	Classes.		In	this	thesis,	four	common	types	of	relationships	are	focused.	

The	 types	 of	 relationships	 as	 specified	 by	 the	 OMG	 are	 Association,	 Generalisation,	

Aggregation,	and	Composition.	The	Association	is	used	to	indicate	a	direct	relationship	

between	Class	and	associated	Class.	In	a	way	to	read	the	modelled	Classes,	a	solid	pointing	

triangle	can	be	attached	on	the	connection	line	to	indicate	the	reading	direction.	

The	Generalisation	is	a	type	of	relationship	that	uses	to	organise	the	hierarchy	of	

Classes	 by	 a	 common	 feature.	 For	 simplicity,	 the	 concept	 of	 child	 and	 parent	 can	 be	

Chapter	3	

	

76	

	

applied	of	showing	one	or	more	child	Classes	attached	to	a	parent	Class	by	a	relationship.	

The	 parent	 Classis	 always	modelled	 on	 top	 of	 the	 set	 of	 Classes.	 In	 some	 literatures,	

Generalisation	is	called	Inheritance	as	the	set	of	child	Classes	seem	to	inherit	the	parent	

Class.	The	Classes	at	the	lower	hierarchy	presents	the	ancestor.	

The	Aggregation	 relationship	 is	 used	 to	model	 circumstance	 of	 container	 (also	

called	whole)	Class	and	part	Class	their	properties.	The	part	Class	can	stand	alone	if	the	

container	 deleted.	 Furthermore,	 one	 part	 Class	 could	 have	 more	 than	 one	 container	

Classes.	 For	 example,	 University	 and	 Professor	 are	 connected	 by	 Aggregation	 as	 a	

container	Class	and	part	Class	respectively.	The	professor	is	at	the	university	to	teach	and	

exist	whenever	the	university	does	no	longer	exist.	The	professor	also	can	teach	other	

than	 university	 which	 shows	 Professor	 can	 has	 Aggregation	 relationship	 to	 another	

container	Class.		

The	Composition	relationship	presents	stronger	relationship	as	owner	and	part	

Classes.	 The	 part	 Class	 is	 owned	 by	 the	 owner	 Class.	 For	 example,	 the	 Composition	

relationship	can	be	used	to	model	House	Class	and	Room	Class	as	owner	and	part	Classes	

respectively.	When	the	owner	Class	does	no	longer	exist	be	it	deleted,	the	part	Class	could	

never	be	existed.	

In	the	UML	Classes,	multiplicity	is	used	to	indicate	the	cardinality	of	objects	(Class)	

that	 have	 relationship	 to	 other	 Class.	 The	 multiplicity	 can	 be	 as	 lowest	 as	 zero,	 i.e.	

multiplicity	is	not	applicable.	The	multiplicity	can	be	placed	near	the	end	of	the	line	of	the	

particular	Class.	The	presentation	of	multiplicity	is	not	a	necessary.	If	no	multiplicity	is	

shown	on	the	diagram,	no	conclusion	may	be	drawn	about	the	multiplicity	in	the	model.	

	

	

	

	

	

Chapter	3	

	

77	

	

Table	3.2:	Class	Model	Symbols	

Symbol	 Description	

	

Class	–	represents	a	classification	of	an	element	or	a	set	of	

elements	in	a	system	

	

Association	–	relationship	that	shows	link	between	Classes	

	

Generalisation	–	relationship	that	generalises	features	of	one	

or	more	child	Class	by	the	parent	Class	(the	triangle	attaches	

to	parent	Class)	

	

Aggregation	–	relationship	that	describes	one	or	more	Class	

as	a	part	of	the	container	Class	(the	white	diamond	attaches	to	

container	Class)	

	

Composition	–	relationship	that	describes	one	or	more	part	

Class	as	the	composite	of	the	owner	Class	(the	black	diamond	

attaches	to	owner	Class)	

Reduced	Class	Metamodel	

Similar	to	the	purpose	of	Activities	Metamodel	to	serve	as	a	reference	of	a	specific	

type	of	modelling,	Structured	Classifiers	Metamodel	is	also	served	as	a	reference	to	three	

Chapter	3	

	

78	

	

types	of	 structure	modelling	by	defining	 the	abstract	 syntax	and	 the	 interrelationship	

between	model	elements	in	the	standard	structure	models	(Object	Management	Group	

2017b).	As	UML	Class	has	been	selected	for	presenting	structure	model	in	this	thesis,	the	

relevance	 metaclasses	 of	 the	 Structured	 Classifier	 Metamodel,	 such	 as	 Class	 and	

Relationship,	 are	 considered	 for	 the	 development	 of	 the	 overarching	 metamodel.	

Metaclasses	 such	 as	 EncapsulatedClassifiers	 and	 Collaborations	 are	 neglected	 due	 to	

their	purpose	of	specifying	interaction	between	Classes.	Furthermore,	metaclass	such	as	

Component	is	neglected	as	it	specified	modular	unit	which	require	more	than	True	and	

False	propositions	 for	modelling	 the	 fault.	For	 instance,	Component	covers	 ‘black-box’	

and	 ‘white-box’	views	of	an	element	of	a	system.	The	proposition	should	address	both	

views	 of	 what	 causes	 the	 faulty	 of	 modelled	 elements.	 In	 addition	 to	 the	 relevance	

metaclasses,	Generalisation	is	also	included	based	on	previous	discussions.	As	depicted	

in	Figure	3.2,	This	metamodel	will	be	referred	to	a	Reduced	Class	Metamodel	(RCM)	in	

the	rest	of	this	thesis.	

The	RCM	can	be	presented	according	to	the	metaclasses	at	the	top	level,	Class	and	

Relationship.	 These	metaclasses	marked	 the	 symbols	 presented	 for	 Class	 Diagram	 in	

previous	subchapter.	Detailed	descriptions	of	metaclasses	are	provided	as	follows:	

1.		 Class	owns	Operation	and	Property.	Operation	and	property	are	required	for	a	

Class	 as	 a	 Class	 classifies	 object	 or	 a	 set	 of	 object	 through	 the	 structural	 and	

behavioural	features.	

2.		 Association	 has	member	 ends	 that	 represented	 by	 Property.	 The	 Association	

relationship	 indicates	 semantic	 relationship	 of	 Classes	 that	 represented	 by	

properties.	

3.		 Relationship	 generalises	 Association	 and	 Generalisation.	 Association	 and	

Generalisation	are	type	of	relationship	of	Classes.	Association	may	also	represent	

Aggregation	and	Composition	relationships	according	to	group	Classes.	

Chapter	3	

	

79	

	

4.		 MultiplicityElements	 specify	 the	 collection	 of	 value	 that	 includes	 the	 value	 of	

property.	Multiplicity	is	presented	near	the	end	of	the	line	of	particular	Class	to	

indicates	the	cardinality	of	Class	that	presented	by	property	of	the	Class.	

	

	

Figure	3.2:	Reduced	Class	Metamodel	extracted	from	the	OMG	UML	Specification	
(Object	Management	Group	2017d)	

3.2.3 Model-based	Approach	to	Fault	Analysis	

As	mentioned	 in	 earlier,	model-based	 approach	 to	 fault	 analysis,	 such	 as	 FTA,	

Reliability	Block	Diagrams,	Binary	Decision	Diagrams,	Dependency	Diagram,	and	Markov	

Analysis	are	widely	used	for	system	safety	assessment.	These	model-based	techniques	

are	often	used	by	Safety	Analysts	to	evaluate	system	architecture	to	quantify	probabilities	

of	occurrence	of	system	failures,	and	to	identify	potential	related	risks.	In	this	subchapter,	

essential	background	knowledge	in	FTA	is	provided	and	a	Fault	Tree	Metamodel	(FTM)	

is	constructed	based	on	safety	standard	ARP	4761	(International	Society	of	Automotive	

Engineers	1996).	

	

Fault	Tree	Metamodel	

A	standardised	metamodel	for	Fault	Tree	currently	remains	unspecified	(Zhao	&	

Petriu	2015).	Several	research	efforts	have	contributed	to	the	construction	of	a	generic	

metamodel	 for	 Fault	 Tree.	 For	 instance,	 the	 generic	 Component	 Fault	 Tree	 (CFT)	

Chapter	3	

	

80	

	

Metamodel	 (Adler	 et	 al.	 2011)	and	a	Fault	Tree	Metamodel	 (Zhao	&	Petriu	2015)	are	

developed	 based	 on	 different	 viewpoints	 for	 particular	 research.	 CFT	 Metamodel	 is	

constructed	based	on	the	hierarchical	decomposition	of	a	system.	It	emphasises	on	the	

concepts	 of	 Component	 and	 Component	 Proxies	 based	 on	 component-based	 software	

development.	Whilst,	the	latter	metamodel	is	constructed	based	on	the	FaultCat	analysis	

tool.	 Despite	 the	 different	 viewpoints,	 the	 two	 metamodels	 share	 a	 common	 set	 of	

metaclasses,	e.g.	Event	and	Gate	(logic),	which	represent	the	backbone	structure	of	a	Fault	

Tree.	

	 Metamodels	 of	 Fault	 Tree	 developed	 in	 the	 research	 are	 further	 extended	 and	

applied	in	other	areas.	For	instance,	the	CFT	Metamodel	has	been	further	integrated	with	

Architecture	Domain	Specific	Modelling	Language	to	reduce	efforts	and	times	needed	for	

safety	 analysis;	 and	 the	 integration	 also	 leads	 to	 potential	 reusable	 models.	 The	

metamodel	developed	in	(Zhao	&	Petriu	2015)	is	being	used	for	dependability	analysis	

between	UML	model	and	Fault	Tree.	In	this	paper,	metamodel	of	Fault	Tree	is	developed	

for	the	purpose	of	unifying	system	functional	architecture	and	system	failure	analysis.	

	 The	FTM	developed	in	this	paper,	as	depicted	in	Figure	3.3	is	constructed	based	

on	 ARP	 4761	 (International	 Society	 of	 Automotive	 Engineers	 1996).	 Similar	 to	 the	

construction	 of	 the	 RAM,	 Pascal	 case	 format	 is	 used	 to	 denote	 a	 metaclass	 name	 to	

distinguish	it	from	the	name	of	an	actual	model	element.	Individual	metaclass	is	explained	

as	follows:	

1.	 The	main	 elements	 in	 Fault	 Tree	model	 are	 events,	 branches,	 and	 logic	 gates.	

Hence,	they	are	abstracted	into	metaclasses	at	the	highest-level	as	Event,	Branch,	

and	Logic	metaclasses	respectively	in	the	FTM.	Similar	to	how	ActivityEdge	and	

ActivityNode	are	connected	in	the	RAM,	Branch	is	associated	to	both	Event	and	

Logic	also	by	two-way	relations.	The	multiplicity	also	reflects	situations	where	an	

event	(or	logic	gate)	can	be	associated	with	one	or	more	multiple	branches	going	

into	the	event	(or	logic	gate)	and	out	of	the	event	(or	logic	gate).	

2.		 Event	 metaclass	 consists	 of	 OutputEvent,	 PrimaryEvent,	 TransferEvent,	 and	

ConditionalEvent,	each	representing	the	corresponding	type	of	event	seen	in	Fault	

Chapter	3	

	

81	

	

Trees	 (c.f.	 Table	 2.1).	 The	 PrimaryEvent	 further	 generalises	 BasicEvent,	

UndevelopedEvent,	and	ExternalEvent.	The	TransferEvent	 is	a	generalisation	of	

TransferredIn	 and	 TransferredOut	 which	 represent	 the	 existence	 of	 external	

branch	of	Fault	Trees.	For	the	purpose	of	the	research,	BasicEvent	can	be	further	

classified	into	two;	FunctionalBasicEvent	and	ComponentBasicEvent.	

	3.	 Logic	metaclass	consists	of	ANDGate,	PriorityGate,	ORGate,	and	InhibitGate	which	

is	used	to	evaluate	input	branches	and	tie	the	branches	together.	

4.	 	ConditionalEvent	is	associated	with	PriorityANDGate	or	InhibitGate.	This	reflects	

the	use	of	conditional	event	in	Fault	Tree	construction	where	a	priority	AND-gate	

and	inhibit-gate	 is	always	accompanied	with	a	conditional	event	specified	in	an	

oval	shape	(c.f.	Table	2.1).	

	

	

Figure	3.3:	Fault	Tree	Metamodel	developed	based	on	ARP4761	

	

3.3 Mathematical	Representation	on	Models	

Model-based	approach	is	widely	being	used	for	designing	conceptual	of	a	system.	

It	has	become	a	powerful	design	technique	especially	in	designing	safety-critical	cyber	

Chapter	3	

	

82	

	

physical	system	(Jensen	et	al.	2011).	In	one	hand,	by	using	model-based	approach,	least	

documentation	is	produced	in	the	abstracting	complex	system.	On	the	other	hand,	rich	

information	that	is	difficult	to	capture	through	documented	source	can	be	provided	by	

using	 the	 approach	 (Wylie	 et	 al.	 2016).	 The	 information	 stored	 in	 the	 mode-based	

document	is	the	baseline	decision	lock	before	the	progression	of	preliminary	and	detailed	

design	 (Woodward	 2018).	 Being	 a	 critical	 document	 for	 designing	 safety-critical	 and	

complex	system,	a	better	reasoning	is	the	vital	interest	in	modelling.	

As	 formality	 in	 models	 transformation	 method	 is	 the	 concern	 in	 this	 thesis,	

mathematics	on	the	correspond	UML	models	in	the	scope	of	this	research	is	emphasised.	

The	 logical	 models	 of	 UML	 are	 precisely	 presented	 by	 using	 mathematic.	 The	

presentation	of	the	logical	models	uses	the	basic	pattern	of	arguments	and	conditions:	

Propositional	Calculus.	This	includes	logical	operations	such	as	conjunction	and	negation.	

The	precise	semantics	of	UML	models	will	be	the	basis	of	Fault	Tree	transformation.	The	

formal	transformation	method	will	be	supported	with	probability	analysis	performed	by	

Boolean	logic	gate	in	the	Fault	Tree.	In	this	subchapter,	the	mathematic	applications	for	

the	formal	transformation	methods	are	discussed	for	UML	models	and	Fault	Tree	model.	

	

3.3.1 Mathematics	on	Unified	Modelling	Language	Model	

In	 this	 subchapter,	 mathematical	 representation	 on	 UML	 system	 models	 that	

related	to	this	research	is	discovered.	As	mentioned	earlier,	the	graphical	language	is	not	

a	formal	language.	It	is	less	formal	but	still	has	formality,	i.e.	semi-formal	language.	This	

is	 because,	 the	 construction	 of	 UML	 system	 models	 is	 formalised	 within	 the	 same	

specification	logic		based	on	predicates	over	arrow	diagrams	that	correspond	to	Category	

Theory	(Diskin	2003).	In	the	context	of	this	thesis,	the	predicates	is	related	to	the	concept	

of	 relation	 between	 constructed	 nodes	 such	 as	 normally	 done	 in	 structural	 and	

behavioural	 of	 UML.	 Correspondingly,	 sketch	 procedure	 used	 in	 Category	 Theory	 is	

implemented	in	UML	on	the	abstraction	of	a	system	in	visual	presentation	that	consist	of	

directed	multigraph	of	nodes	and	arrows,	and	marked	predicate	labels	(Diskin	2003).	As	

Chapter	3	

	

83	

	

discussed	in	(Diskin	2003)	on	mathematics	of	UML,	the	sketch	nodes	and	arrows	with	set	

and	mapping	including	ordered	pair	is	proven	in	Category	Theory.		

Application of Propositional Calculus

In	this	thesis,	the	system	behaviour	and	system	structure	are	modelled	by	using	

UML	Activity	 and	 Class	 respectively.	 Generally,	 each	 particular	 node	 in	 the	models	 is	

uniquely	 specified	 for	 designing	 a	 system.	 Thus,	 formalising	 the	 nodes	 by	 using	

propositional	calculus	will	distinguish	the	modelled	nodes	and	facilitate	transformation	

from	UML	system	models	to	Fault	Tree.	

Proposition	is	an	assertion	that	expresses	premise	conclusion	or	argument	which	

can	be	expressed	in	symbol	or	variable	(Lemmon	n.d.).	The	propositional	calculus	is	the	

part	of	mathematical	logic	where	the	validity	of	an	argument	depends	only	on	how	the	

propositional	sentences	are	formed	and	not	on	the	internal	structure	of	the	propositions.	

This	 is	 sufficient	 for	 the	 modelling	 and	 analysis	 of	 functional	 and	 structural	 faults.	

Specifically,	the	behavioural	proposition	of	interest	will	be	of	the	following	form:	

():	The	Action	*)completed	execution.	 	 	 	 (3.1)	

Note	that	this	is	a	decidable	declarative	statement	which	has	a	yes-no	answer;	and	

therefore	 adheres	 Boolean	 calculus	 of	 evaluation	 of	 truth.	 The	 Action	*) 	can	 then	 be	
associated	with	{1,0}	or	{True,False}	values.	The	truth	values	of	the	proposition	will	be	

regarded	as	outcomes	of	a	designed	experiment.	

It	is	useful	to	view	a	coin	tossing	experiment	from	the	behavioural	viewpoint.	The	

Action	*) 	can	be	 stated	as:	 the	 coin	was	 flipped.	 Specifying	 the	outcome	 is	part	of	 the	
design	of	the	experiment.	This	could	be	as	simple	as	specifying	the	coin	began	in	one	state	

{Head,Tail},	underwent	a	random	change	of	state,	and	resulted	in	the	coin	coming	to	rest	

in	a	state,	and	resulted	in	the	coin	coming	to	rest	in	a	state	determined	by	the	side	of	the	

coin	facing	up	when	the	process	completed	execution.	This	process	could	fail	to	complete	

execution	if,	for	example,	either	change	was	not	random	or	the	coin	somehow	came	to	

Chapter	3	

	

84	

	

rest	on	its	edge.	The	outcome	of	this	behaviour	is	silent	on	the	end	state	of	the	coin.	A	

second	proposition	could	be	introduced	to	complete	the	experiment;	but	this	would	not	

be	a	behavioural	proposition.	

In	the	relation	between	functions	and	components	of	a	system,	an	expected	system	

function	is	served	by	at	least	a	system	component.	In	recent	development	of	industrial	

equipment,	reliability,	availability,	maintainability,	and	safety	(the	latter	is	also	referred	

to	as	supportability)	(RAMS)	(Eti	et	al.	2007)	are	defined	as	four	key	features	that	have	

to	be	analysed	and	managed	throughout	complex	systems	life	cycle	(Olmo	et	al.	2017).	

The	practicality	of	the	key	features	are	dependent	on	systematic	efforts	as	they	can	also	

be	partly	applied	in	many	ways	convenient	to	the	industry	(Saraswat	&	Yadava	2008).	

According	 to	 the	 stated	 key	 features	 in	 the	 development	 of	 industrial	 equipment,	

availability	 (which	 depends	 on	 reliability	 and	 maintainability)	 is	 concerned	 with	

describing	system	component	(i.e.	facility,	element,	or	object).	In	this	thesis,	considering	

structural	 diagrams	 for	 system	 modelling,	 facility	 will	 be	 used	 to	 define	 a	 system	

component.	 The	 structural	 proposition	 of	 interest	 for	 the	 modelling	 and	 analysis	 of	

structural	faults	will	be	of	the	following	form:	

+):	The	Facility	,) 	is	available.	 	 	 	 (3.2)		

The	availability	of	facility	is	not	objectively	means	the	physical	availability	of	the	facility.	

However,	 the	 availability	 of	 facility	 is	 based	on	duration	of	 uptime	 and	downtime	 for	

operation.	The	availability	of	 facility	 is	 related	 to	 the	 service	period	of	 time	 (Eti	 et	 al.	

2007).	

From	structural	viewpoint,	using	the	same	coin	tossing	experiment	as	an	example,	

the	Facility	,) 	can	be	stated	as:	the	coin	and	tosser	were	existed.	The	achievement	of	the	
coin	flipping	process	is	facilitated	by	the	coin	and	tosser.	It	is	important	to	note	in	this	

simple	 example,	 how	 the	 specification	 of	 the	 experiment	 immediately	 led	 to	 details	

associated	with	the	internal	structure	of	the	propositions.	Further	analysis	of	system	and	

faults	 involving	non-functional	 properties	will	 need	 the	 predicate	 calculus,	which	 is	 a	

separate	concern	than	what	is	presented	in	this	thesis.	

Chapter	3	

	

85	

	

Representation of Faults

The	sentences	of	interest	will	be	well-formed	formulae	consisting	of	the	types	of	

propositions	 in	 (3.1)	 and	 (3.2).	 This	will	 be	 referred	 to	 as	 behavioural	 and	 structural	

propositions.	For	any	two	propositions,	taking	() 	and	(-of	behavioural	propositions	as	an	

example,	the	sentences	are	declarations	in	one	of	the	following	forms	or	a	negation	of	the	

form:	

¬() 	 	 () ∧ (- 		 () ∨ (- 		 () → (- 	 () ↔ (- .	 (3.3)	

where	¬() 	is	the	negation	of	() ,	() ∧ (- 	is	a	logical	conjunction	between	two	propositions	

(behavioural);	() ∨ (- 	is	 a	 logical	 disjunction	 between	 two	propositions	 (behavioural);	

() → (- 	is	material	 implication	which	 is	 read	 as	() 	implies	(- ;	 and	() ↔ (- 	is	material	

equivalence	which	is	read	as	() 	if	and	only	if	(- .	The	proposition	(2	will	also	be	used	and	

reserved	 for	 the	 completion	of	 the	overall	 execution	of	 the	 system	 functions	within	 a	

given	Activity	model.	 In	addition,	 the	proposition	+3 	will	be	used	and	reserved	 for	 the	
complementary	system	component	within	Composition	relation	Classes.	

The	 analysts	 has	 choices	 as	 to	 how	 faults	 should	 be	 presented.	 From	 a	 logical	

viewpoint	it	can	be	useful	to	consider	collections	of	propositions	in	disjunctive	normal	

form	(Xiang	et	al.	2005),	for	example:	

((5 ∧ (6) 	∨ 	((9 ∧ (:).		 	 	 	 (3.4)	

These	might	be	associated	with	a	logical	transition	to	a	system	behaviour	() 	or	its	
failure	¬() .	For	the	rest	of	the	thesis,	the	negated	proposition	is	also	defined	as	a	fault	
event,	

;) 	≝ 	¬() 	:	The	Action	*) 	failed	to	complete	execution,	 	 	 	

	=) 	≝ 	¬+) 	:	The	Facility	,) 	is	not	available.		 	 			(3.5)	

Correspondingly,	 the	 proposition,	 ;2 ,	 is	 reserved	 for	 overall	 system	 failure.	 In	 the	
language	of	Fault	Tree,	 this	will	be	 regarded	as	 the	 top	event	within	 the	scope	of	 this	

thesis.	

Chapter	3	

	

86	

	

3.3.2 Mathematics	on	Fault	Tree	Model	

FTA	offers	quantitative	analysis	for	analysing	the	safety	and	reliability	of	a	system.	

The	 quantitative	 analysis	 as	 discussed	 by	 (Nieuwhof	 1975)	 includes	 probability	

evaluation	and	 failure	rate	evaluation.	Both	evaluations	are	analytical	 techniques.	The	

probability	 evaluation	 is	 used	 to	 calculate	 the	 probability	 of	 occurrence	 of	 each	

combination	of	events	that	can	cause	the	top	event.	The	failure	rate	evaluation	is	used	to	

calculate	the	failure	rate	over	some	interval	to	further	calculate	system	reliability.	In	this	

thesis,	 since	 the	 model	 transformation	 concerns	 with	 success	 and	 failure	 of	 events,	

probability	theory	is	discussed	in	further	detail.	

The	quantitative	analysis	of	Fault	Tree	is	supported	by	employing	Boolean	algebra	

for	describing	logical	fault	of	a	system	in	numeric	relations.	In	Fault	Tree	model,	the	logic	

function	performed	by	Boolean	logic	gate	is	employed	in	the	construction	of	Fault	Tree	

to	describe	the	relationships	between	events,	i.e.	fault	events.	From	the	bottom	to	the	top	

of	a	Fault	Tree	structure,	commonly,	events	are	tied	together	as	the	inputs	to	the	Boolean	

logic	gate	that	lead	to	an	output	event.	The	two	most	basic	Boolean	logic	gates	commonly	

used	in	a	conventional	Fault	Tree	are	the	AND-gate	and	the	OR-gate.	

This	subchapter	is	divided	into	two	parts.	In	the	first	part,	probability	theory	on	

failure	of	events	(fault	events)	in	a	Fault	Tree	is	discussed.	For	the	quantitative	analysis	

of	Fault	Tree,	system	safety	is	determined	by	calculation	of	probability	of	failure	based	

on	constructed	fault	events	in	the	Fault	Tree.	In	the	second	part,	the	two	most	common	

logic	gates,	AND-gate	and	OR-gate,	that	describe	the	relationship	between	the	fault	events	

(input	 and	 output	 events)	 in	 a	 Fault	 Tree	 are	 discussed.	 The	 gates	 that	 derived	 from	

Boolean	symbols	are	related	to	the	set	of	operation	of	Boolean	logic	which	use	to	calculate	

the	probability	of	failure	of	the	fault	events.		

	

Probability Theory

The	 mathematical	 description	 of	 undesired	 events	 in	 Fault	 Tree	 is	 performed	

based	 on	probability	 theory	 (Vesely	 et	 al.	 1981).	 	 Probability	 is	 treated	 as	 a	measure	

Chapter	3	

	

87	

	

taking	 values	 between	 0	 and	 1	 of	 a	 probability	 space	 of	 a	 specific	 situation	 or	 an	

experiment.	 In	 the	probability	 space,	 a	 set	of	 all	 possible	outcomes	 is	 called	a	 sample	

space	and	any	specified	subset	of	these	outcomes	is	called	an	event.	Probability	assigned	

to	each	event	is	the	measure	of	likelihood	the	event	will	occur.	

In	this	thesis,	every	event	has	probability	of	success,	>2,	and	probability	of	failure,	
>? ,	of	its	occurrence.	Therefore,	each	event	has	two	possible	outcomes	that	are	mutually	

exclusive,	i.e.	success	and	failure	outcome.	The	sum	of	the	probabilities,	i.e.,	success	and	

failure,	gives	a	value	of	1	as	expressed	follows,	

>2 +	>? = 1.	 	 	 	 	 	 (3.6)	

An	event	in	a	Fault	Tree	is	an	undesired	event	in	which	the	probability	assigned	to	the	

undesired	event	 is	 failure	probability.	Similar	to	any	other	event,	 the	probability	of	an	

undesired	event	of	a	Fault	Tree	is	a	non-negative	real	number.	The	failure	probability	of	

an	event	in	Fault	Tree	is	the	value	of	unreliability.	This	value	is	calculated	by	one	minus	

the	probability	of	success,	

>? = 1 −	>2.	 	 	 	 	 	 (3.7)	

The	probability	of	success	is	the	probability	that	the	event	will	not	fail	over	a	specified	

time.	The	probability	of	success	can	be	defined	based	on	failure	rate,	D,	and	the	specified	

time,	E,	>2 = 	 FGHI .	Although	probability	in	Fault	Tree	has	a	relation	with	failure	rate,	but	
this	research	is	focused	on	probability.	Instead	of	using	failure	rate,	the	failure	probability	

can	 be	 derived	 by	 considering	 following	 a	 thought	 experiment.	 This	 experiment	 is	

designed	 for	 two	possibility	 situations	of	 two	actions,	Action	*) 	and	Action	*- ,	using	a	

simple	block	diagram.	In	the	first	situation,	As	depicted	in	Figure	3.4,	both	actions	are	

observed	to	be	connected	in	series,	 i.e.	Action	*) 	completed	execution	before	Action	*- 	

executes.	 Given	 the	 probability	 of	 the	 respective	 actions	 fail	 to	 execute	 are	>(;))	and	
>(;-),	i.e.	;) 	and	;- 	are	the	fault	events	of	the	respective	actions.		

	

Chapter	3	

	

88	

	

	

Figure	3.4:	Two	Actions	connected	in	Series	

	

A	system	is	run	for	J	times	and	the	number	of	system	failures	is	observed	by	an	
observer,	 i.e.	 failed	 to	 complete	 the	 intended	 system	 behaviour	 as	 modelled	 in	 UML	

Activity.	Each	action	will	have	probability	of	failure	and	success	for	J	times	of	experiment.	
The	expected	number	of	failure	of	Action	*) 	at	the	Jth	time	of	experiment	is	defined	as,	

J>(;)),	 	 	 	 	 			(3.8)	

and	by	using	 (3.6),	 the	expected	number	of	 success	of	 the	Action	*) 	at	 the	Jth	 time	of	
experiment	can	be	defined	as,	

J(1 − >(;))).		 	 	 	 	 (3.9)	

As	the	actions	modelled	in	series,	the	experiment	proceed	to	evaluate	probability	of	the	

next	 event	 after	 Action	*) ,	 Action	*- .	 At	 this	 point,	 one	 might	 observe	 the	 expected	

number	of	Action	*) 	executes	in	success	is	then	proceeds	in	the	experiment.	Taking	the	
expected	number	of	success	of	the	Action	*) 	in	(3.9)	as	the	number	of	experiment	that	
going	 through	Action	*- ,	 the	 expected	number	of	 failure	of	 failure	of	Action	*- 	can	be	

defined	as,	

J(1 − >(;)))>(;-).	 	 	 	 	 (3.10)	

Up	 to	 this	point,	 the	probability	of	 failure	of	 the	series	actions,	 from	Action	*) 	to	after	
Action	*- 	can	be	calculated	as,	

>KLM;MNONEP	L=	=;NOQKF	L=	*+ENLJ	*);JR	*+ENLJ	*-	NJ	SFKNFS

=
J>(;)) + JT1 − >(;))U>T;-U

J .	

(3.11)	

A1 A2
P(a1) P(a2)

Chapter	3	

	

89	

	

The	sum	of	probability	of	failure	of	Action	*) 	and	Action	*- 	in	the	J	times	of	experiment	

has	to	be	divided	with	the	total	number	of	experiment,	J,	to	obtain	probability	value.		

In	the	second	situation,	again,	the	two	actions	are	used	and	modelled	in	parallel	as	

depicted	in	Figure	3.5.	The	probability	of	actions	in	parallel	could	also	be	calculated	by	

taking	 probability	 of	 failure	 of	 Action	*) 	and	 Action	*- 	of	J 	times	 of	 experiments	 as	

J>(;))	and	J>T;-U	respectively.	

	

Figure	3.5:	Two	Actions	connected	in	Parallel		

	

In	this	case,	the	probability	of	failure	after	the	execution	of	both	actions	that	occurs	at	the	

same	time	is	defined	as,	

>KLM;MNONEP	L=	=;NOQKF	L=	*+ENLJ	*)	;JR	*+ENLJ	*-	NJ	(;K;OOFO	 =
J>(;))>T;-U	

J .	

(3.12)		

The	experiment	can	be	carried	on	to	calculate	required	actions,	i.e.	more	than	two	actions.	

With	the	technology	and	computerised	system,	the	probability	of	obtaining	outcome	fault	

event	for	the	whole	Fault	Tree	can	be	calculated	using	computer	programs	(Purba	et	al.	

2015).	

	

Ai

Aj
Initial Point

P(ai)

P(aj)

Chapter	3	

	

90	

	

Boolean Logic Gates

As	mentioned	earlier,	the	construction	of	Fault	Trees	is	consisted	of	Boolean	logic	

gates.	The	most	commonly	used	Boolean	logic	gates	in	a	Fault	Tree	are	AND-gates	and	

OR-gates	as	depicted	in	Figure	3.6.	The	Boolean	logic	in	Fault	Tree	does	not	only	calculate	

truth	value,	{True,False}	or	{1,0},	of	an	event	but	the	Boolean	logic	is	associated	in	the	

probability	of	failure	value	of	the	event.	

		

	

(a)	

	

(b)	

Figure	3.6:	Elementary	Structure	of	Fault	Tree	with	(a)	AND-gate,	and	(b)	OR-gate	

	

By	 referring	 Fault	 Tree	 elements	 in	 Figure	 3.6,	 at	 the	 top	 of	 each	 figure,	;2 	is	
referred	as	 the	overall	 system	 failure.	 It	 is	 an	output	 fault	 event	 from	 two	 input	 fault	

events,	;) 	and	;- .	These	two	input	fault	events	are	tied	together	with	Boolean	logic	gate,	

i.e.	an	AND-gate	as	in	(a),	and	an	OR-gate	as	in	(b).	The	AND-gate	represents	the	two	input	

fault	 events,	;) 	and	;- ,	 both	 have	 to	 occur	 to	 lead	 to	 the	 output	 fault	 event,	;2 .	 The	

probability	of	the	occurrence	of	;2	is	defined	as	in	(3.12).	The	equation	can	be	simplified	
as,	

>(;2) = >(;))>T;-U.	 	 	 	 	 (3.13)	

	The	attachment	of	two	input	fault	events	to	an	OR-gate	represents	the	occurrence	

of	any	or	both	of	the	input	fault	events	can	lead	the	output	fault	event.	This	can	be	referred	

to	the	derived	probability	in	(3.11)	and	simplified	as,	

ai aj

as

ai aj

as

Chapter	3	

	

91	

	

>(;2) = >(;)) + >T;-U − >(;))>T;-U.	 	 	 (3.14)	

	The	subtraction	of	the	product	of	the	probability	of	the	input	fault	events	is	considered	

as	 to	 eliminate	 the	overlap	 calculation	of	 the	probability.	As	 the	 failure	probability	 in	

practical	systems	is	rather	very	small,	e.g.	less	than	0.01%,	the	product	of	the	probability	

yields	an	even	smaller	value	that	is	often	negligible.	This	gives	approximation	of	the	sum	

of	the	inputs	fault	events	to,	

>(;2) ≈ >(;)) + >T;-U,	 	 	 	 (3.15)	

which	is	often	a	conservative	estimation	for	the	output	fault	event.	

	

3.4 Traffic	Management	System	of	Systems	Case	Study	

The	transformation	methods	and	overarching	metamodels	that	will	be	developed	

in	Chapter	4	and	Chapter	5	are	evaluated	through	an	application	to	Ramp	Meter	System	

(RMS)	 studied	 in	 (Ingram	 et	 al.	 2014).	 The	 RMS	 case	 study	 is	 extracted	 from	 Traffic	

Management	System	of	Systems	(TMSoS)	case	study	which	was	presented	by	(Ingram	et	

al.	2014)	at	 the	IEEE	SoSE	 in	2014	conference.	The	TMSoS	case	study	that	studies	the	

inter-urban	 road	 network	 in	 the	 Netherlands	 is	 supplied	 by	 West	 Consulting.	 Fault	

Modelling	 Architecture	 Framework	 (FMAF)	 is	 proposed	 in	 the	 paper	 to	 provide	 a	

systematic	approach	to	capture	fault	tolerance	aspects	of	SoS.	The	FMAF	study	was	done	

by	 collaborations	 between	 a	 research	 group	 from	 Newcastle	 University	 and	 West	

Consulting.	The	study	discovered	that	quality	tools	and	methods	are	needed	to	support	

reasoning	of	SoS	fault	and	fault-tolerant	design	at	the	architectural	level.	The	reasoning	

of	 SoS	 fault	 and	 fault-tolerant	 design	 at	 the	 architectural	 level	 is	 required	 for	 fault	

recovery	 strategies	which	 lead	 to	 affect	 SoS	 service	 quality.	 Extended	 FMAF	 views	 in	

SysML	were	produced	to	support	reasoning	of	degraded	level	of	SoS	service	(which	faults	

contribute)	 and	 the	 representation	 of	 failures.	 The	 fault	 tolerant	 functions	 of	 RMS	

situated	on	the	access	inter-urban	highway	was	described	using	FMAF.	

Chapter	3	

	

92	

	

By	using	the	Fault	Tolerant	Structure	View	(FTSV),	redundancy	of	similar	services	

and	 effects	 from	 CSs	 were	 identified.	 From	 the	 identified	 redundancy,	 architectural	

engineers	are	permitted	 to	 reason	 faults/failures	at	 the	SoS	 level	by	 the	negative	and	

positive	influences	of	CSs	towards	the	SoS	goal.	Exactly	five	SoS-level	faults	were	cited	

that	 could	arise	within	 the	RMS.	The	 faults	were	 then	stored	 in	a	Fault/Error/Failure	

View	Diagram	to	allow	the	relevant	CSs	failures	to	be	stated.	

	

3.4.1 System	Models:	Ramp	Meter	System	

The	RMS	is	a	CS	of	a	TMSoS.	The	RMS	is	situated	on	the	access	ramp	used	to	access	

inter-urban	highways.	An	informal	presentation	of	an	RMS	is	presented	in	Figure	3.7.		

	

	

	

Figure	3.7:	Informal	Layout	of	a	Single	Ramp	Meter	System	(Ingram	et	al.	2014)	

	

The	RMS	employs	two-phase	(red	and	green)	traffic	lights	to	control	the	rate	at	

which	 vehicles	 join	 the	 highway.	 The	RMS	 has	 access	 to	 data	 about	 traffic	 in	 its	 own	

immediate	vicinity	as	opposed	to	the	Traffic	Control	Centre	(TCC)	which	has	access	to	

region	wide	traffic	data.	To	model	the	behaviour	of	the	RMS,	an	operational	requirement	

Use	Case	as	known	as	high	level	Use	Case	as	depicted	in	Figure	3.8,	is	firstly	constructed	

Chapter	3	

	

93	

	

to	determine	the	stated	purpose	of	RMS.	The	stated	purpose	of	RMS	is	to	control	traffic	

flow	on	major	road	and	slip	road.	The	RMS	can	operate	in	three	different	modes	to	control	

the	 traffic	 light.	These	modes	are:	 (i)	 Fixed-time	Mode	with	 fixed	 length	of	 red/green	

phases;	(ii)	Responsive	Mode	in	which	a	varying	phase	is	adopted	to	respond	to	logical	

traffic;	and	(iii)	Collaborative	Mode	in	which	the	control	strategy	is	provided	by	the	TCC.	

	

	

Figure	3.8:	High	Level	Use	Case	Model	of	the	Ramp	Meter	System	

	

The	concept	of	operation	of	the	RMS	is	slightly	modified	to	allow	both	concurrent	

control	flows	and	alternative	control	flows	to	be	presented	in	the	Activity	model,	and	to	

avoid	control	loops	that	are	not	within	the	scope	of	the	research.	The	Activity	model	will	

be	transformed	into	a	Fault	Tree	and	its	structure	will	be	preserved	in	the	tree.	The	loops	

are	used	for	specifying	iteration	of	control	flows	in	Activity	model	and	are	not	compatible	

with	Fault	Tree.	A	Fault	Tree	has	 top-down	of	 construction	without	 iterative	or	 ‘loop’	

structure.	 The	 Fault	 Tree	 structure	 allows	 bottom-up	 calculation	 to	 measure	 the	

probability	of	a	system	to	fail	as	top	event	from	the	root	causes	defined	by	basic	events	

through	intermediate	events.	The	suggestion	of	using	loops	in	the	Fault	Tree	construction	

will	 allow	 top	 event	 or	 intermediate	 events	 cause	 lower	 fault	 event	 to	 happen	which	

break	down	the	tree	structure.	In	addition,	the	calculation	with	Boolean	algebra	would	

not	work,	as	the	calculation	would	add	up	infinitely	as	loop	continues.	The	avoidance	os	

using	control	loops	is	to	find	the	solution	by	applying	the	developed	semantic	mapping	

rules	in	Chapter	4.	However,	loops	are	not	completely	being	ignored	in	the	safety	analysis	

method	 as	 loops	 are	 convenient	 for	 the	 state	 transition	 which	 are	 allowed	 by	 using	

Chapter	3	

	

94	

	

Markov	Analysis.	 The	 compatibility	 between	 loops	 and	Markov	Analysis	 could	 be	 the	

subject	of	the	future	work	as	to	harmonise	the	use	of	loops	as	control	flows	in	modelling	

Activity	Diagram.	

The	RMS	begins	each	traffic	light	control	cycle	with	collecting	local	data	(vehicle	

flow	rate).	Then,	the	RMS	starts	to	analyse	the	data,	and	concurrently,	send	the	data	to	

the	TCC.	Based	on	the	data	received,	the	TCC	will	decide	whether	to	instruct	the	RMS	to	

operate	in	Collaborative	Mode.	The	analysis	result	by	the	RMS	and	the	instruction	from	

the	 TCC	 together	 form	 the	 basis	 on	 which	 operational	 mode,	 i.e.	 Fixed-time	 Mode,	

Responsive	Mode,	and	Collaborative	Mode,	to	be	selected.	The	decision	logic	 for	mode	

selection	follows	that	TCC	instruction	has	higher	priority	over	RMS	analysis	result	(note	

that	this	logic	will	not	be	modelled	explicitly	as	they	are	treated	as	a	detailed	design	at	

lower	 level).	 The	 RMS	 will	 then	 implement	 the	 mode	 being	 selected.	 The	 successful	

execution	of	a	control	cycle	will	lead	to	the	traffic	light	to	operate	in	a	pre-defined	mode.	

The	execution	of	the	next	control	cycle	may	or	may	not	change	the	mode	being	previously	

operated.	

The	 following	 requirements	 of	 TMSoS,	 including	 RMS	 and	 TCC,	 derived	 from	

(Ingram	 et	 al.	 2014)	 are	 grounded	 for	 system	models	 development	 to	 execute	model	

transformation:	

1.	 The	RMS	is	situated	on	the	access	ramp	of	a	slip	road.	The	ramp	is	used	to	access	

inter-urban	highways.	

2.	 Two-phase	(red	and	green)	traffic	lights	are	employed	by	RMS	to	control	the	

rate	at	which	vehicles	join	the	highway.	

3.	 At	the	time	when	there	are	too	many	vehicles	join	a	major	road,	the	bottlenecks	

being	 formed	 can	be	prevented	 by	RMS.	Vehicle	 distribution	 can	be	 improved	by	

breaking	up	platoons,	and	accidents	that	are	caused	by	high	speed	can	be	reduced.		

4.	 Typically,	data	 about	 traffic	 in	 immediate	 vicinity	 can	 be	 accessed	 by	 RMS.	 The	

function	is	opposed	to	region	wide	traffic	data	can	be	accessed	by	TCC.	

Chapter	3	

	

95	

	

5.	 One	of	several	modes	follows	is	operated	by	RMS:	

5.1	 A	fixed	time	mode,	with	fixed	length	red	or	green	phases;	

5.2	 an	adaptive	mode,	which	responds	to	current	traffic	conditions;	

5.3	 a	collaborative	mode,	where	RMS	decision	is	overridden	by	TCC.	

6.	 Local	data	might	be	gathered	by	RMS	and	decision	in	isolation	will	be	made	

by	the	RMS	in	isolation.	Otherwise,	an	instruction	from	TCC	is	received	to	override	

the	RMS.	

7.	 The	 data	 of	 local	 area	 is	 regularly	 collected	 and	 analysed	 by	 the	 RMS.	 A	

responsive	mode	of	 the	 adaptive	mode	will	 be	 selected	when	necessary	 to	

RMS	operates	in	making	ramp-metering	decisions	using	local	data	only.	

In	the	narrative	above,	RMS	is	identified	as	the	system	of	interest.	The	actors	of	the	system	

of	interest	are	underlined,	the	functional	requirements	of	the	RMS	are	in	bold,	and	the	

non-functional	requirements	of	the	RMS	are	in	italic.	A	lower	level	Use	Case	Diagram,	as	

depicted	in	Figure	3.9,	is	constructed	to	capture	all	of	the	system	functions	given	in	the	

concept	of	operation	(CoO).	

	

	

Figure	3.9:	Use	Case	model	of	the	Ramp	Meter	System	

Chapter	3	

	

96	

	

The	Use	Cases	is	then	expressed	in	a	table	as	a	list	of	activities	with	conditions	and	

extension	points	as	in	Table	3.3.	The	Use	Case	is	elaborated	by	adding	detail	of	interaction	

between	the	RMS	and	Actors.	Then,	the	functions	are	ordered	into	control	flows	based	on	

the	details	of	the	CoO.	

	

Table	3.3:	Use	Case	Description	of	Ramp	Meter	System	

Use	Case	name	 controls	Traffic	Flow	

Description	
RMS	control	vehicles	flow	using	one	of	the	operation	modes	at	a	
time.	

Actors	 Vehicle	(including	Pedestrian)	and	TCC	

Pre-conditions	
Vehicles	that	are	approaching	ramp	follow	the	traffic	light	signal	
controlled	by	RMS.	

Post-
conditions	

Vehicles	leave	the	ramp	according	to	the	traffic	light	signal	and	the	
RMS	operates	according	to	the	selected	mode.			

List	of	
activities	for	
basic	flow	

1.	RMS	collects	data	of	vehicles	at	the	ramp.	
2.	RMS	analyses	the	data.	
3.	RMS	sends	the	data	to	TCC.	
4.	TCC	sends	instruction	to	RMS.	
5.	RMS	selects	one	of	the	three	modes.	
6.	RMS	controls	the	traffic	light	according	to	the	mode	operation.	

Alternative	
flow	

5a.	RMS	implements	Fixed-time	Mode.	
5b.	RMS	implements	Responsive	Mode	of	Adaptive	Mode.	
5c.	RMS	implements	Collaborative	Mode	of	Adaptive	Mode.	

	

The	 corresponding	 Activity	 model	 is	 presented	 in	 Figure	 3.10.	 In	 the	 Activity	

model,	a	system	function	(action)	is	modelled	by	a	verb-noun	phrase	with	the	first	letters	

of	 the	nouns	capitalised.	 In	addition,	a	proposition	denoted	by	() 	is	used	 to	model	 the	
completion	of	the	execution	of	the	corresponding	system	action,	*) 	(note	that	N	is	integer).	
The	RMS	Activity	model	is	started	with	“collect	Data”	(*5)	action	and	flows	into	a	pair	of	
fork	node	and	 join	node.	 In	between	 the	 fork	and	 join	node,	 two	concurrent	 series	of	

actions	are	modelled.	One	series	on	the	left	is	modelled	with	a	single	action,	“analyse	Data”	

(*6);	and	the	other	series	on	the	right	is	started	with	“send	data”	(*9)	action	that	leads	to	
an	external	function,	“send	Instruction”	(*:),	owned	by	the	TCC.	And	then,	the	series	flows	
back	to	the	RMS	where	RMS	shall	“receive	Instruction”	(*W).	Immediately	after	the	join	

Chapter	3	

	

97	

	

node,	the	control	flow	is	continued	with	a	flow	into	“select	Mode”	(*X),	where	the	logic	of	
mode	selection	shall	be	modelled	at	the	next	level	of	detail.	Once	a	decision	is	made,	the	

control	flow	continues	into	a	pair	of	decision	and	merge	nodes	in	which	three	alternatives	

paths	are	modelled.	Each	path	involves	an	action	of	a	designated	mode	implementation,	

i.e.	“implement	Fixed-time	Mode”	(*Y)	with	“Fixed-time	Mode	selected”	(+Y),	“implement	
Responsive	 Mode”	 (*Z)	 with	 “Responsive	 Mode	 selected”	 (+Z),	 and	 “implement	
Collaborative	Mode”	(*[)	with	“Collaborative	Mode	selected”	(+[).	With	only	one	out	of	
the	three	modes	being	implemented	at	any	one	time,	the	RMS	flow	cycle	then	is	completed	

with	“control	Traffic	Light”	(*5\)	according	to	the	mode	implemented.	

	

	

Figure	3.10:	The	Activity	Model	of	the	Ramp	Meter	System	

	

The	 structure	 of	 CSs	 of	 TMSoS	 is	modelled	 by	 using	 UML	 Class	 as	 depicted	 in	

Figure	3.11.	In	this	thesis,	system	component	and	system	are	referred	as	facility.	In	the	

Chapter	3	

	

98	

	

Class	model,	a	Class	is	modelled	by	the	name	of	the	facility	with	the	first	letter	of	each	

word	 capitalised.	 Each	 presentation	 of	 Class	 is	 embedded	 with	 “attributes”	 and	

“operations”.	In	addition,	a	proposition	denoted	by	+) 	is	used	to	model	the	availability	of	
the	 corresponding	 facility,	,) 	(note	 that	N	is	 integer).	 From	 the	 technical	description	of	
TMSoS,	13	Classes	are	identified	to	model	as	facilities	of	the	TMSoS.	From	the	13	Classes,	

nine	of	them	are	modelled	for	RMS	and	the	rest	for	the	associate	systems;	TCC	and	vehicle.	

Three	types	of	relationships	that	include	Association,	Composition,	and	Generalisation,	

are	modelled	to	structure	the	relationships	of	the	Classes.	The	first	modelled	Class,	“Ramp	

Meter	System	Control	Unit”	(,5),	associates	with	five	other	Classes	that	modelled	for	RMS,	
“Data	Collector”	(,6),	“Data	Analyser”	(,9),	“Data	Transceiver”	(,:),	“Mode	Operator”	(,Y),	
and	“Traffic	Light”	 (,Z),	and	an	associate	system,	 “Traffic	Control	Centre”	 (,5\).	 In	 the	
Class	model,	the	RMS	control	unit	is	the	centre	of	RMS	which	has	most	relation	to	other	

facilities.	The	“Data	Collector”	(,6)	and	“Data	Analyser”	(,9)	has	Association	relationship	
between	 each	 other.	 The	 local	 traffic	 data	 is	 collected	 and	 gathered	 by	 data	 collector	

before	store	the	data.	The	stored	data	is	mined	by	data	analyser	to	analyse,	evaluate,	and	

measure	before	it	pass	to	RMS	control	unit.	Based	on	the	passed	local	traffic	data,	the	RMS	

control	unit	gives	instruction	to	mode	operator	to	implement	one	of	the	mode.	The	local	

traffic	 data	 is	 also	 sent	 to	 the	 TCC	 by	 data	 transmitter.	 The	 “Data	 Transmitter”	 (,W)	
together	 with	 “Data	 Receiver”	 (,X)	 are	 the	 part	 Classes	 that	 have	 Composition	
relationship	 with	 “Data	 Transceiver”	 (,:).	 This	 means	 the	 data	 transmitter	 and	 data	
receiver	are	included	in	the	data	transceiver.	The	relation	between	the	associate	systems,	

“Motorway	Vehicle”	(,59)	and	“Traffic	Control	Centre”	(,5\),	is	modelled	with	Association.	
The	TCC	collects	regional	traffic	data	of	vehicle	on	motorway	and	analyses	both	local	and	

regional	traffic	data.	When	it	is	necessary,	the	TCC	will	transmit	instruction	to	override	

RMS	control	unit’s	instruction.	The	override	instruction	is	received	by	data	receiver	of	

RMS.	This	means	the	RMS	has	to	give	immediate	instruction	to	the	mode	operator.	The	

“Traffic	Light”	(,Z)	and	“Induction	Loop”	(,[)	have	Association	relationship	with	the	same	
Class	that	modelled	for	associate	system,	“Ramp	Vehicle”	(,56).	The	traffic	light	switches	
to	red	and	green	as	an	indication	to	vehicle	at	ramp	which	has	relative	position	and	speed	

either	to	accelerate,	cruise,	or	stop	at	the	end	of	slip	road	before	entering	the	motorway.	

The	relative	position	of	the	vehicle	is	detected	by	induction	loop	as	a	local	traffic	data.	

Chapter	3	

	

99	

	

The	 vehicle	 in	 the	 TMSoS	 is	 generalised	 into	 two;	 vehicle	 on	 ramp	 and	 vehicle	 on	

motorway.	The	 “Ramp	Vehicle”	 (,56)	and	“Motorway	Vehicle”	 (,59)	 in	which	 the	child	
Classes	of	“Vehicle”	(,55)	are	modelled	with	Generalisation	relationship.	The	vehicle	can	
accelerate,	cruise,	and	stop	which	change	its	speed	and	give	its	relative	position.	

	

	

Figure	3.11:	The	Class	Model	of	Ramp	Meter	System	

	

3.4.2 Fault	Tree:	Ramp	Meter	System	

In	the	original	study	of	the	RMS	by	(Ingram	et	al.	2014),	five	faults	of	the	RMS	have	

been	identified	that	could	lead	to	non-optimal	traffic	flow.	The	faults	are:	

1.	 Lights	stuck	on	green	or	no	lights	at	all,	

2.	 RMS	fails	to	adopt	Collaborative	Mode	when	instructed,	

Chapter	3	

	

100	

	

3.	 Lights	stuck	on	red,	

4.	 RMS	fails	to	exit	Collaborative	Mode	when	instructed,	

5.	 RMS	calculates	an	incorrect	rate	for	vehicles	to	be	admitted.	

The	Fault	1	and	Fault	3	can	be	traced	to	the	faulty	of	traffic	light.	These	faults	(Fault	1	and	

Fault	3)	can	be	classified	as	component-based	(e.g.	 traffic	 light).	Whilst	 the	rest	of	 the	

faults	 (Fault	2,	Fault	4,	and	Fault	5)	can	be	classified	as	 functional-based.	These	 faults	

(Fault	2,	Fault	4,	and	Fault	5)	are	traced	back	to	the	operation	faults	of	the	RMS.		

	

3.5 Summary	of	Foundational	Research	Knowledge	

The	foundational	knowledge	of	a	technical	basis	provided	for	the	development	of	

the	formal	transformation	methods	later	in	Chapter	4	and	Chapter	5	is	divided	into	two	

segments:	(i)	model-based	approach,	and	(ii)	mathematical	representation.	As	the	aim	of	

this	research	is	the	transformation	methods	for	generating	Fault	Tree	from	UML	system	

models,	the	UML	Specification	and	ARP	4761	are	used	as	the	basis	of	the	model-based	

approach	 for	 the	 representation	 of	 system	 and	 occurrence	 of	 the	 system	 failure.	 The	

system	is	represented	in	functional	and	structural	viewpoints	by	using	UML	Activity	and	

UML	Class	respectively.	

The	development	of	 reduced	metamodels	consider	 the	connection	between	the	

respective	 models	 that	 include	 Activity,	 Class,	 and	 Fault	 Tree	 for	 the	 formal	

transformation.	However,	the	reduced	metamodels	do	not	provide	complete	metaclasses	

which	can	limit	the	capability	of	transforming	other	structure	of	the	system	models	into	

Fault	Trees.	For	the	future	work,	a	modification	of	respective	metamodels	is	required	for	

considering	 additional	 details	 of	 the	 original	 UML	 metaclasses.	 Furthermore,	 an	

extension	to	the	existing	methods	and	rules	is	needed	along	the	inclusion	of	the	additional	

metaclasses	 in	 the	 formal	 transformation	 from	 UML	 diagrams	 into	 Fault	 Tree.	 For	

instance,	the	application	of	Predicate	Calculus	allows	complex	element	of	presentation.	

The	extension	can	be	seen	as	a	significance	value	to	the	formal	transformation	methods.	

Chapter	3	

	

101	

	

The	 metamodel	 of	 the	 respective	 UML	 diagrams	 and	 the	 metamodel	 of	 Fault	 Tree	

developed	will	be	used	in	the	development	of	overarching	metamodel	later	in	in	Chapter	

4	and	Chapter	5.	

	Despite	of	 the	model-based	approach,	 for	UML	system	models	which	has	to	be	

seen	as	a	 less	 formal	graphical	 language,	propositional	calculus	 is	used	 to	present	 the	

system	models	in	mathematical-based.	The	use	of	negation	is	also	discussed	to	implement	

in	the	representation	of	fault	of	the	system	models.	For	Fault	Tree,	mathematical	basis	in	

the	Fault	Tree	representation	adheres	from	probability	theory	and	Boolean	logic	gates.	

The	 failure	 probability	 of	 an	 event	 that	 represents	 by	 fault	 event	 in	 the	 Fault	 Tree	 is	

explained.	 In	 the	Fault	Tree,	 the	Boolean	 logic	gates	 that	used	 to	 connect	 fault	 events	

express	the	mathematical	operation	in	the	probability	calculation.	

The	presented	TMSoS	in	the	Subchapter	3.4	is	an	authorised	system	operated	in	

Netherland.	The	presented	TMSoS	is	used	as	the	case	study	for	the	formal	transformation	

methods	in	Chapter	4	and	Chapter	5.	The	system	functions	and	system	components	of	the	

RMS,	 the	 focused	 system	of	TMSoS,	 are	modelled	by	using	behavioural	 and	 structural	

diagrams	of	 the	UML.	They	are	modelled	 in	UML	Activity	and	UML	Class	 respectively.	

Based	on	the	faults	identification	from	the	reference	study,	the	five	faults	can	be	classified	

into	 functional	and	structural	 faults	of	 the	RMS.	A	weak	Fault	Tree	can	be	mistakenly	

developed	with	the	faults	being	basic	events	and	functional	and	structural	faults	as	the	

intermediate	events	of	the	‘Non-optimal	traffic	flow’	top	event.	However,	the	faults	can	

be	used	as	reference	to	a	Fault	Tree	development	using	systematic	techniques	such	as	

transformation	of	models.	

	

	

102		

	

A	FORMAL	TRANSFORMATION	METHOD	FOR	AUTOMATED	FAULT	

TREE	GENERATION	FROM	SINGLE	UML	SYSTEM	MODEL	

	

4.1 Introduction	

In	 this	 chapter,	methods	of	 formal	 transformation	 from	UML	system	models	 to	

Fault	 Trees	 generation	 are	 developed.	 The	development	 of	 the	 formal	 transformation	

methods	are	separated	into	two	parts.	 In	the	first	part,	 the	development	of	 the	formal	

transformation	method	is	based	on	system	behaviour	that	modelled	in	UML	Activity.	The	

logical	model	of	control	flows	in	the	UML	Activity	is	defined	based	on	the	propositional	

calculus	and	material	implication	established	in	the	foundational	research	knowledge	in	

Chapter	 3.	 A	 new	 concept	 of	 Fault	 Propagation	 Chain	 (FPC)	 that	 formed	 based	 on	

contraposition	and	probability	theory	for	fault	viewpoint	is	introduced.	Thus,	a	semantic	

mapping	 rules	 is	 structured.	 The	 application	 of	 the	 transformation	method	 generates	

functional	Fault	Tree	which	defines	system	failure	as	the	top	event.	In	the	second	part,	

the	development	of	 the	 formal	 transformation	method	 is	based	on	system	component	

that	modelled	in	UML	Class.	In	the	UML	Class,	by	implementing	propositional	calculus,	

the	 relationships	 between	Classes	 are	 explored	 to	 define	 the	 structure	 of	 the	Classes.	

Similar	to	the	former	part,	the	contraposition	is	implemented	for	the	structure	in	the	fault	

viewpoint.	The	contraposition	is	applied	to	material	equivalence	that	structured	based	

on	 the	 correspond	Classes.	Based	on	 the	 formal	 transformation	method,	 a	 component	

Fault	 Tree	 is	 generated.	 An	 overarching	 metamodel	 of	 each	 formal	 transformation	

method	is	also	developed	to	bridge	the	correspond	metamodels	and	the	transformation	

method	in	the	abstraction	level.	The	formal	transformation	methods	are	applied	to	Traffic	

Management	System	 to	demonstrate	 the	 formal	 transformation	 from	 the	UML	system	

models	to	Fault	Trees	generation	that	preserve	the	relational	structure	of	the	UML	system	

models	into	the	generated	Fault	Trees.	

	

Chapter	4	

	

103	

	

The	remainders	of	this	chapter	are	structured	as	follows:	

Subchapter	4.2:	From	Activities	to	Fault	Tree	

This	subchapter	is	concerned	with	developing	a	formal	transformation	method	that	maps	

control	flows	modelled	in	UML	Activities	to	semantically	equivalent	Fault	Trees.	The	use	

of	 propositional	 calculus	 and	 probability	 theory	 are	 featured	 in	 the	 developed	

transformation	 method.	 The	 propositional	 calculus	 and	 together	 with	 material	

implication	 are	 used	 to	 define	 logical	 model	 of	 Activities	 elements.	 Contraposition	 is	

applied	to	the	logical	model	to	develop	another	logical	model	in	fault	viewpoints.	Fault	

Propagation	 Chains	 are	 introduced	 to	 facilitate	 the	 transformation	 method	 by	

cooperating	 the	 faults	 flows.	 Furthermore,	 probability	 of	 the	 functional	 faults	 of	 the	

system	 can	 be	 analysed	 and	 Fault	 Tree	 can	 be	 formed.	 An	 overarching	 metamodel	

comprised	of	transformations	between	models	is	developed.	The	formal	transformation	

method	is	applied	to	an	understood	RMS	Case	Study	to	demonstrate	the	approach.		

Subchapter	4.3:	From	Classes	to	Fault	Tree	

A	development	of	a	formal	transformation	method	from	Classes	to	Fault	Tree	is	discussed	

in	 this	 subchapter.	 Prior	 to	 the	 formal	 transformation	 method	 development,	 a	 logic	

representation	of	main	relationship	 types	between	Classes	 is	presented.	Propositional	

calculus	and	material	equivalence	are	applied	to	form	logical	model	of	the	Classes.		For	

the	fault	viewpoint,	similar	to	the	previous	method,	contrapositive	is	applied	to	the	logical	

model.	Probability	analysis	 is	applied	 to	 the	 fault	viewpoint	which	 lead	 to	component	

Fault	 Tree	 transformation.	 An	 overarching	 metamodel	 comprised	 of	 transformations	

between	 models	 is	 developed.	 The	 formal	 transformation	 method	 is	 applied	 to	 an	

understood	RMS	Case	Study	to	demonstrate	the	approach.	

Subchapter	4.4:	Summary	

The	development	of	the	formal	transformation	methods	from	single	UML	model;	Activity	

and	 Class,	 to	 generate	 two	 different	 Fault	 Trees;	 functional	 and	 component,	 and	 two	

respective	overarching	metamodels	are	summaries.	

Chapter	4	

	

104		

The	Subchapter	4.2	has	been	published	for	the	publication	in	IEEE	Transactions	on	
Reliability,	volume	67,	issue	3.	

4.2 From	Activities	to	Fault	Tree	

In	 this	 subchapter,	 based	 on	 stated	behavioural	 proposition	 in	 Subchapter	 3.3,	

logical	formalisation	of	UML	Activities	is	developed	to	logically	define	activities	flow	by	

using	material	implication.	The	logical	formalisation	of	UML	Activities	is	used	as	the	basis	

to	develop	a	set	of	semantic	mapping	rules	to	transform	system	behaviour	as	represented	

by	Activity	models	to	behavioural	faults.	Fault	Propagation	Chain	(FPC)	is	introduced	to	

represent	 the	 transformed	behavioural	 faults.	Probability	 theory	(Weiss	2006)	 is	 then	

applied	to	further	transform	the	FPCs	into	a	conventional	Fault	Tree	representation.	This	

subchapter	is	started	with	formalisation	of	control	flows	as	implication	chains	that	hold	

relational	 structure	 of	 system	 behaviour	 as	 represented	 by	 Activity	 models.	 This	

subchapter	 will	 be	 ended	 with	 demonstration	 of	 the	 approach	 by	 applying	 the	

transformation	method	to	the	authorised	TMSoS	case	study	presented	in	Subchapter	3.4.	

The	application	of	the	method	to	broader	classes	of	engineering	problems	can	be	

understood	in	two	ways.	The	first	includes	complicated	problems	(i.e.	with	similar	form	

but	 greater	 detail	 than	 the	 elementary	 forms	 and	 case	 study)	 that	 can	 be	 reduced	 to	

conjunctive	structures.	This	will	simply	result	in	longer	Conjunctive	Material	Form	(CMF),	

such	as	in	(4.2.3),	or	longer	conjunctions	than	the	elementary	form	in	(4.2.7).	On	the	other	

hand,	complexity	can	arise	from	combinations	of	disjunctive	forms	with	conjunctive	and	

material	forms	that	do	not	necessarily	admit	reduction	into	a	single	chain.	Complexity	is	

addressed	 at	 the	 end	 of	 this	 subchapter	 by	 means	 of	 transforming	 a	 nested	 control	

structure	into	a	Fault	Tree.	

4.2.1 Control	Flows	as	Implication	Chains	

A	control	flow	models	a	sequence	of	actions	in	an	Activity	model.	Two	adjacent	actions,	

*) 	and	*)]5,	 in	a	control	flow	can	then	described	as	*) 	proceeds	to	*)]5.	Assuming	that	
there	are	no	other	actions	preceding	*)]5 ,	 one	can	 infer	 that	 if	*)]5 	has	 completed	 its	
execution,	 then	 the	 action	 *) 	must	 have	 also	 completed	 its	 execution.	 Using	 the	

Chapter	4	

	

105	

	

propositions	introduced	in	(3.1),	the	above	statement	is	logically	expressed	by	a	material	

implication,	

()]5 	→ 	() .		 	 	 	 	 	 (4.2.1)	

Control	flows	involving	concurrent	and	alternative	flows	can	then	be	expressed	by	

conjunctions	 and	 disjunctions	 of	 these	 implications	 to	 form	 a	 Logical	 Model,	 e.g.	 the	

control	 flows	 depicted	 in	 the	 Activity	model	 in	 Figure	 3.10	 of	 Subchapter	 3.4.	 In	 the	

following	subchapter,	this	thesis	shows	how	to	transform	these	implications	to	describe	

fault	structures.	

	

4.2.1 Fault	Propagation	Chains	

To	 transform	 a	 Logical	Model	 into	 behavioural	 fault	 representation,	 instead	 of	

using	the	negation	of	individual	action	proposition,	e.g.	¬() ,	the	contrapositive	is	applied	
to	the	material	implication	in	(4.2.1).	Incorporating	the	definition	of	a	behavioural	fault	

event	given	in	(3.5),	the	contrapositive	form	of		()]5 → () 	is	defined	as,	

;) 	→ 	;)]5 	≝ 	¬	() 	→ 	¬	()]5	.	 	 		 	 (4.2.2)	

This	 expression	 can	 be	 interpreted	 as	 follows:	 if	 the	 Action	 *) 	failed	 to	 complete	
execution,	then	action	*)]5	will	fail	to	execute.	This	statement	also	makes	sense	from	the	
behavioural	 viewpoint	 described	 in	 an	 Activity	 model.	 For	 instance,	 if	 *) 	failed	 to	
complete	execution,	a	token	will	not	be	generated	and	passed	onto	the	next	action	*)]5.	
Hence,	*)]5	will	not	execute.	The	consequence	of	*)]5	failing	to	execute	can	be	therefore	
understood	by	the	concept	of	fault	propagation.	Multiple	chains	may	be	combined	by	a	

conjunction	 or	 disjunction;	 and	 this	 will	 be	 discussed	 later	 in	 detail.	 Some	 event	

structures	may	involve	the	use	of	disjunctions,	for	example:	

;) ∨ ;- → ;^ 	.			 	 	 	 	 (4.2.4)	

	

Chapter	4	

	

106		

	

By	refactoring,	a	form	using	conjunctions	instead,	may	be	produced:	

(;) → ;^) ∧ (;- → ;^).		 	 	 	 	 (4.2.5)	

However,	 note	 that	 this	 is	 not	 a	 chain	 because	 the	 antecedent	 of	 the	 second	material	

implication	is	not	the	consequence	of	the	first	material	implication.	

For	situations	where	an	event	structure	reads,	

;) ∧ ;- → ;^ ,		 	 	 	 	 	 (4.2.6)	

the	 conjunction	of	 the	multiple	 fault	 events	 as	 a	 contracted	 fault	 event	 is	 defined,	 for	

example,	two	events	in	conjunction	is	defined	as		

;),- 	≝ 	;) 	∧ 	;- .		 	 	 	 	 (4.2.7)	

Logical	forms	used	in	(4.2.3),	(4.2.5),	(4.2.6),	and	(4.2.7)	are	defined	for	describing	

fault	event	structures	Conjunctive	Material	Form	(CMF).	Specifically,	this	is	a	conjunction	

of	material	implications	in	which	the	two	propositions	within	each	material	implication	

can	be	a	conjunction.	The	primary	reason	for	introducing	CMF	and	contracted	fault	events	

is	to	simplify	the	representation	of	a	long	logic	formula	into	simpler	chains	of	implications.	

Although	 not	 all	 logic	 formulae	 can	 be	 written	 in	 CMF,	 the	 transformation	 method	

demonstrated	later	is	applicable	to	chains	that	are	in	CMF	as	well	as	combined	chains	that	

are	 not	 in	 CMF.	 In	 the	 rest	 of	 this	 thesis,	 the	 graphical	 representation	 of	 chains	 of	

implications	will	be	referred	to	as	a	Fault	Propagation	Chain	(FPC).	

	

4.2.2 Semantic	Mapping	Rules:	Activities	to	Fault	Propagation	Chains	

Based	 on	 the	 formalisation	 introduced	 in	 the	 previous	 chapter,	 representative	

types	of	elementary	control	flows	seen	in	typical	Activity	model	are	semantically	mapped	

into	logical	models,	i.e.	implication	chains,	and	then	transformed	into	FPCs	by	applying	

the	contraposition	of	the	logical	models.	Finally,	graphical	representations	of	the	FPC	are	

Chapter	4	

	

107	

	

depicted	in	Table	4.1.	Detailed	discussion	on	the	various	control	flow	structures	and	their	

associated	semantic	mapping	rules	are	provided	follows:	

	

Table	4.1:	Semantic	Mapping	Rules	

Control	Flow	 Logical	
Model	 Contrapositive	 Fault	Propagation	

	

(6	
↓	
(5	

¬	(5	
↓	

¬	(6	
≝	

;5	
↓	
;6	

	

(a)	

	

(6 	∨ 	(9	
↓	
(5	

¬	(5	
↓	

¬	(6		
∧	

	
¬	(5	
↓

¬	(9	
	

≝	
;5	
↓	
;6	

∧	
;5	
↓	
;9	 	

(b)	
	

	
	

	
(:	
↓	

(6 	∧ 	(9	
	

	
¬	(6	

↓	
	¬	(:	
	

∧	

	
¬	(9
↓

¬	(:	
		

≝	

	
;6	
↓	
;:	

	

∧	

	
;9	
↓	
;:	

	

	

	
	

(c)	
	

	
	

(6 	∨ 	(9	
↓	
(5	

¬	(5	
↓	

¬	(6 ∧ ¬	(9	
≝	

;5	
↓	

;6	∧	;9	
	

(d)	
	

	
	

(:	
↓	

(6 ∨	(9	

¬	(6 ∧ ¬	(9	
↓	

¬	(:	
≝	

;6 ∧	;9	
↓	
;:	

	

(e)	

	

Chapter	4	

	

108	

	

1.	 The	control	flow	presented	in	(a)	consists	of	two	actions	sequenced	in	series.	As	

already	 discussed	 in	 Subchapter	 3.3.1,	 this	 control	 flow	 can	 be	 modelled	 by	 using	

propositional	 logic	 as	(6 	→ 	(5 ,	 i.e.	 the	 completed	 execution	 of	*6 	implies	 that	 the	
execution	of	*5	must	have	been	completed.	Then,	applying	contraposition	to	the	logical	
model,	a	Fault	Propagation	Chain	that	reads	;5 	→ 	;6	is	derived.	

2.	 Row	(b)	and	(c)	are	concerned	with	the	control	flows	that	involve	a	pair	of	folk	

and	join	nodes.	In	(b),	one	action	flows	into	two	concurrent	actions	via	a	fork	node	while	

in	(c),	two	concurrent	actions	flow	into	a	single	action	via	a	join	node.	

The	logical	model	for	(b)	can	be	formulated	as	(6 ∨ (9 → 	(5,	which	means	that	the	
completed	 execution	 of	 either	*6 	or	*9 	implies	 that	*5 	has	 been	 executed.	 Applying	
contraposition	to	the	logical	model	leads	to	the	expression	;5 → (;6 ∧ ;9)	or	equivalently,	
(;5 → ;6) ∧ (;5 → ;9).	

The	logical	model	in	(c)	can	be	formulated	as		(: → ((6 ∧ (9),	which	means	that	
the	completed	execution	of	 	*:	implies	that	both	*6	and	*9	must	have	been	completed.	
Applying	 contrapositive	 to	 the	 logical	 model	 leads	 to	 the	 expression	(;6 ∨ ;9) → ;: .	
However,	this	is	not	in	the	CMF	introduced	in	Subchapter	4.2.2.	Hence,	by	using	(4.2.5),	

the	expression	is	refactored	into	a	CMF	that	reads	as	(;6 → ;:)	∧	(;9 → ;:).	Immediately,	
one	realises	that	how	this	CMF	connects	naturally	with	the	previous	CMF	(;5 → ;6) 		∧
(;5 → ;9)	in	 (b)	 to	 form	 two	 concurrent	 chains,	(;5 → ;6)	 ∧	(;6 → ;:)	 and	(;5 → ;9)	
∧	(;9 → ;:).	The	FPC	is	depicted	in	the	last	column	in	(b)	and	(c),	where	;5	bifurcates	into	
two	chains	and	converge	back	into	one	chain	at	;:.	

3.	Row	(d)	and	(e)	are	concerned	with	the	control	flows	involving	a	pair	of	decision	

and	merge	nodes.	Different	from	(b),	one	action	can	only	flows	into	one	of	the	two	paths	

based	on	the	decision	being	made.	Hence,	only	one	of	the	two	later	actions,	*6	and	*9	can	
be	 executed.	 Then,	 in	 (e),	 the	 two	 paths	merge	 into	 a	 single	 path	 where	 the	 control	

sequence	flows	either	from	*6	to	*:	or	from	*9	to	*:.	

Although	the	control	 flow	in	(d)	 is	very	different	 from	(b),	 they	share	the	same	

logical	model	((6 ∨ (9) → 	(5.	This	is	because	that	no	matter	which	path	is	taken,	as	long	

Chapter	4	

	

109	

	

as	 there	 is	 a	 completed	 execution	 of	 either	*6 	or	*9 ,	*5 	must	 have	 been	 executed.	
Similarly,	 the	 contrapositive	 of	 the	 logical	model	 can	 be	 expressed	 as	;5 → (;6 ∧ ;9) .	
Further	using	the	definition	of	a	contracted	fault	event	introduced	in	(4.2.7),	a	FPC	for	(d)	

that	reads	;5 → ;6,9	is	attained.	

The	control	flows	in	(b)	and	(d)	present	execution	of	actions	with	two	different	

control	nodes.	The	complete	execution	of	actions	of	using	both	control	flows	leads	them	

to	share	the	same	logical	model.	Both	have	exactly	the	same	interpretation	in	their	logical	

model	build	up.	However,	 the	application	of	contraposition	to	the	 logical	model	of	 the	

respective	control	flows	must	reflect	their	semantic	relational	structure.	The	additional	

semantic	of	the	logical	model	in	(b)	means	both	*6	and	*9	have	been	executed	and	the	
logical	model	does	not	consider	the	merging.	Whilst,	in	(d)	the	logical	model	means	*6	
and	*9 	are	 exclusive	 paths.	 The	 control	 flows	 in	 (b)	 and	 (d)	 are	 not	 captured	 by	 the	
propositions	 and	 the	 logical	 models	 reflect	 the	 formal	 implication.	 Therefore,	 the	

contrapositive	structures	of	the	two	different	control	flows,	in	(b)	and	(d),	by	looking	at	

backward	 implication,	 which	 are	 used	 to	 assist	 the	 construction	 of	 fault	 propagation	

chain,	hold	different	expressions.	

The	 logical	model	 for	 (e)	 can	 be	 formulated	 as	(: → ((6 ∨ (9)	(this	 is	 different	
from	(c)),	which	means	that	the	completed	execution	of	*:	implies	that	either	*6	or	*9	
has	been	executed.	Applying	contraposition	to	the	logical	model	leads	to	the	expression	

(;6 ∧ ;9) → ;:.	Similarly,	this	expression	becomes	;6,9 → ;:	by	defining	the	conjunction	

on	the	left	as	a	contracted	fault	event.	The	two	FPC	in	(d)	and	(e)	also	connect	naturally	

to	 form	 a	 single	 chain,	(;5 → ;6,9)	∧	(;6,9 → ;:),	 where	;6,9 	≝ ;6 ∧ ;9 	is	 a	 contracted	

fault	event	as	defined	in	(4.2.7).	

The	formal	semantic	of	elementary	control	flow	structures	has	been	demonstrated	

by	applying	material	implication	and	contraposition	to	form	the	semantic	mapping	rules.	

The	semantic	mapping	rules	will	be	used	in	the	transformation	for	fault	Tree	generation	

from	Activity	Diagram	which	is	comprised	of	the	elementary	control	flows.	A	modification	

of	Activity	Diagram	which	is	comprised	of	other	than	the	elementary	sontrol	flows	such	

as	 control	 loops	 and	 object	 flows	 is	 needed	 for	 using	 the	 semantic	 mapping	 rules.	

Chapter	4	

	

110	

	

However,	 the	 essential	 purpose	 of	 using	 control	 loops	 and	 object	 flows	 such	 as	 for	

modelling	 redundant	 systems	 will	 be	 discussed	 in	 Subchapter	 4.3	 from	 facilities	

viewpoint.	

	

4.2.3 Fault	Propagation	Chains:	Probability	Analysis	

In	conventional	FTA,	the	edges	connecting	lower	and	higher	level	events	do	not	

possess	a	well-defined	semantic	meaning.	For	instance,	an	edge	may	mean	composition	

where	a	higher	 level	event	 is	composed	by	a	 lower	event	and	another	different	 lower	

event	by	an	AND-gate;	an	edge	can	also	mean	causality	where	an	intermediate	event	is	

caused	by	either	one	of	the	basic	events	that	are	connected	by	an	OR-gate.	In	contrast,	the	

directed	edges	in	the	FPC	proposed	in	this	thesis	mean	exactly	material	implications	and	

fault	propagates	along	these	directed	edges.	

In	the	case	of	series	(and	non-exclusive),	an	FPC	can	be	thought	as	the	conjunction	

of	a	combination	of	non-repeating	elementary	unit	of	the	form	;) → ;-, (N ≠ b)	where	;) 	

can	be	a	contracted	fault	event;	and	a	disjunction	in	the	case	of	exclusive	chains.	For	every	

elementary	unit,	one	can	ask	the	question:	what	is	the	truth	value	of	;- 	given	a	truth	value	

of	;) 	being	True	(or	False)?	The	answer	can	be	obtained	from	building	a	truth	table	as	in	
Table	4.2:	if	;) 	is	True,	then	;- 	is	True;	but	if	;) 	is	False,	;- 	can	be	either	True	or	False.	

	

Table	4.2:	Truth	Table	of	cd → ce	

;) 	 ;) 	 cd → ce	=	(¬;) ∨ ;-)	

True	 True	 True	

True	 False	 False	

False	 True	 True	

False	 False	 True	

Chapter	4	

	

111	

	

Assuming	that	one	can	define	a	probability	 for	 the	 fault	event	;) 	being	True,	an	
observation	experiment	to	count	the	number	of	times	that	event	;- 	has	returned	a	True	

value	can	then	be	conducted.	Then,	one	would	observe	that	the	probability	of	;- 	denoted	

as	>(;-),	 is	 greater	 than	 the	probability	of	;)denoted	as	>(;)),	 i.e.	>(;-) ≥ >(;)).	 This	

mathematical	fact,	interpreted	in	the	language	of	fault	analysis,	immediately	leads	to	the	

concept	 of	 fault	 propagation.	 For	 instance,	 if	 the	 fault	 event,	;) 	has	 happened,	 one	
concludes	 automatically	 that	;- 	will	 happen;	 and	 if	;) 	had	 not	 happened,	;- 	may	 still	

happen.	

To	better	describe	the	probability	of	the	occurrence	of	these	fault	events,	with	the	

aid	of	Figure	4.1,	the	following	definitions	and	notations	will	be	adopted:	

Definition	1:	>(;))	is	defined	as	the	probability	of	the	fault	event,	;) ,	independent	
of	the	occurrence	of	any	other	fault	events,	i.e.	prior	faults	propagated	to	;) ,	if	any,	are	not	
counted	toward	>(;)).	

Definition	2:	>(;)])	is	defined	as	the	probability	of	observing	a	system	failure	right	
after	 the	 (supposed)	 execution	 of	 *) .	 Similarly,	 one	 can	 also	 define	 a	 probability	
measurement,	>(;)G),	 as	 the	 probability	 of	 observing	 a	 system	 failure	 just	 before	 the	
execution	 of	 action	*) .	 In	 the	 simple	 construct	 shown	 in	 Figure	 4.1,	 one	 notices	 that	
>(;)]) = 	>(;-G) .	 Note	 that	;)] 	and	;)G 	are	 fictitious	 events	 that	 are	 not	 originally	

presented	in	the	Activity	model.	

	

	

Figure	4.1:	Example	of	Fault	Propagation	Chains	in	Series	Propagation	

	

ai aj
P(ai) P(aj)

P(ai+) P(aj-) P(aj+)P(ai-)

Chapter	4	

	

112	

	

Using	 the	 above	 definitions,	 for	 any	 given	 chain,	 ;) → ;- ,	 the	 following	

mathematical	relation	can	be	established:	

g
>(;)]) = >(;)G) + >(;)) − >(;)G)>(;))
>T;-]U = >(;)]) + >T;-U − >(;)])>T;-U

,		 	 (4.2.8)	

with	>(;)]) = 	>(;-G).	 To	 see	 how	 these	 relations	 are	 derived,	 the	 following	 thought	

experiment	 is	 considered	 (Weiss	2006).	An	observer	 runs	 the	 system	 for	J	times	 and	
observes	 the	 number	 of	 system	 failures,	 i.e.	 failed	 to	 complete	 the	 intended	 system	

behaviour	as	modelled	in	the	UML	Activity.	Up	to	the	point	at	where	system	function	*) 	
is	about	to	execute,	the	observer	would	measure	a	probability	of	system	failure	equals	to	

>(;)G) 	based	 on	 Definition	 2.	 Then,	 statistically,	 there	 are	 J>(;)G) 	number	 of	
experiments	 in	which	the	system	would	fail	at	this	point	and	J(1 − >(;)G))	number	of	
experiments	in	which	the	system	successfully	proceed	to	the	execution	of	*) .	Given	that	
there	is	a	probability	of	failure	in	the	execution	of	*) ,	i.e.	>(;)),	based	on	Definition	1,	in	
addition	 to	 the	experiments	 in	which	 the	system	 failed	before	 the	execution	of	*) ,	 the	
observer	would	further	expects	a	h = J(1 − >(;)G))(>(;)))	number	of	experiments	in	
which	the	system	would	fail	right	after	the	supposed	execution	of	*) .	Therefore,	one	can	
calculate	>(;)])	by	the	quotient	of	the	total	number	of	failed	events	at	this	point	and	the	
total	number	of	experiments	as,	

>(;)]) =
J>(;)G) + h

J 	

= >(;)G) + (1 − >(;)G))(>(;)))	

= >(;)G) + >(;)) − >(;)G)>(;)).	 	 	 	 (4.2.9)	

The	second	relation	in	(4.2.8)	can	be	derived	by	using	exactly	the	same	concept.	

In	a	simplified	case	where	;) 	is	assumed	to	be	the	 first	 fault	event	 in	the	entire	
chain,	i.e.	>(;)G) = 0,	the	relations	is	reduced	to:	

>T;-]U = >(;)) + >T;-U − >(;))>(;-).	 	 	 (4.2.10)	

Chapter	4	

	

113	

	

The	relation	 in	(4.2.9)	and	(4.2.10)	will	 form	the	basis	of	 the	analysis	of	FPCs	and	the	

transformation	of	FPCs	to	Fault	Trees.	

	 As	shown	in	Table	4.1,	certain	control	flows	after	the	transformation	can	lead	to	

bifurcation	and	convergence	in	the	FPC.	In	these	cases,	the	probability	calculation	needs	

to	be	carefully	dealt	with	to	avoid	over-counting	of	the	probability	of	repeated	events.	

Using	the	example	depicted	in	Figure	4.2,	based	on	the	derived	relations	in	(4.2.8)	and	

(4.2.10),	one	can	establish	the	following	relations:	

⎩
⎪
⎨

⎪
⎧ >(;)]) = >(;n) + >(;)) − >(;n)>(;))

>(;-]) = >(;n) + >T;-U − >(;n)>(;-)
>(;^G) = >(;)]) + >T;-]U − >(;)])>T;-]o;)]U
>(;^]) = >(;^G) + >(;^) − >(;^G)>(;^)

,		 	 (4.2.11)	

with	;n	being	an	initial	fault	event,	i.e.	no	other	fault	propagates	to	it.	The	first	and	second	
relations	 in	 (4.2.11)	 are	 derived	 based	 on	 the	 result	 in	 (4.2.10)	 by	 considering	 the	

bifurcation	as	two	parallel	(non-exclusive)	chains,	i.e.	;n	to	;);	and	;n	to	;- 	respectively.	

The	fourth	relation	can	be	derived	using	the	same	thought	experiment	 in	deriving	the	

relations	in	(4.2.8).	

	

	

Figure	4.2:	Example	of	Fault	Propagation	Chains	in	Bifurcated	and	Merged	
Propagation	

	

The	 derivation	 of	 the	 third	 relation	 in	 (4.2.11)	 requires	 a	 consideration	 of	 the	

repeated	 event,	;n 	in	 the	 convergence	 of	 the	 two	 paths.	 Instead	 of	 directly	 using	 the	

ao
ai

aj
akInitial Point

P(ao)

P(ai)

P(aj)

P(ak)

P(ai+)

P(aj+)

P(ak-) P(ak+)

Chapter	4	

	

114	

	

relations	derived	in	(4.2.8),	again	the	thought	experiment	in	which	the	observer	runs	the	

system	of	J	times	is	considered.	Based	on	previous	derivations,	the	observer	would	first	
expect	J>(;n)	number	of	system	failures	due	to	the	failed	execution	of	*n .	The	observer	
would	 also	 expect	 an	 additional	h = J(1 − >(;n))(>(;))) 	number	 of	 system	 failures	

right	 after	 the	 supposed	 execution	 of	*) ;	 and	 an	 additional	p = JT1 − >(;n)U(>T;-U)	

number	of	 system	 failures	 right	 after	 the	 supposed	 execution	of	*- .	 As	 such,	 the	 total	

number	of	system	failures	right	before	the	execution	of	*^ 	is	given	by	J>(;n) + h + p.	
This	then	allows	>(;^G)	to	be	calculated	as,	

>(;^G) =
J>(;n) + h + p

J 	

= >(;n) + >(;)) − >(;n)>(;)) + >T;-U − >(;n)>T;-U	

= >(;)]) + >(;-]) − >(;n),		 	 	 (4.2.12)	

where	the	last	step	has	used	the	first	two	relations	in	(4.2.11)	as	substitutions.	 In	this	

representation,	as	seen	in	Figure	4.2,	;n	is	a	repeated	event,	and	hence,	can	be	considered	
as	the	intersection	of	the	two	events,	;)]	and	;-]	in	which	

>(;)] ∩ ;-]) = >(;)])>(;-] ∣ ;)]) = >(;n),	 	 	 (4.2.13)	

where	>T;-]o;)]U 	is	 the	 conditional	 probability	 of	;-] 	given	;)] .	 Substituting	 (4.2.13)	

into	(4.2.12)	would	arrive	the	third	relation	in	(4.2.11).	It	is	worth	noting	that	due	to	the	

presence	 of	 the	 repeated	 event,	 ;)] 	and	 ;-] 	can	 be	 dependent.	 For	 instance,	 if	 an	

observation	 of	;)] 	returns	 a	 True	 value	 due	 to	 the	 occurrence	 of	 the	 repeated	;n ,	
immediately,	 one	 would	 expect	;-] 	may	 or	 may	 not	 return	 a	 True	 value	 depending	

whether	;- 	has	occurred	or	not.	The	situation	where	a	repeated	fault	event	happens	in	a	

FPC	is	analogous	to	a	repeated	basic	event	seen	in	a	conventional	Fault	Tree.	

A	contracted	fault	event,	such	as	;),- ,	can	be	viewed	identically	as	a	normal	fault	

event	such	that	it	follows	exactly	the	same	analysis	rule.	However,	from	both	the	system	

modelling	viewpoint	 and	 fault	 analysis	 viewpoint,	 it	 can	be	useful	 to	understand	how	

individual	 fault	event	embedded	 in	 the	contraction	can	affect	 the	overall	FPC.	Tracing	

Chapter	4	

	

115	

	

back	to	the	Activity	model,	a	contracted	event	embeds	exclusive	paths,	i.e.	if	one	path	is	

taken,	no	other	paths	will	be	taken.	Theoretically,	it	is	possible	to	attribute	each	of	the	

paths	 a	 probability	 for	 which	 it	 might	 be	 taken.	 The	 sum	 of	 the	 probabilities	 of	 the	

conditional	events,	such	as	+) 	and	+- ,	has	to	be	exactly	one.	At	a	time,	only	one	conditional	

event	contributes	to	the	probability	of	the	contracted	event;	this	is	to	reflect	that	a	path	

is	always	 taken.	Now,	 coming	back	 to	 the	 fault	analysis	viewpoint,	 an	embedded	 fault	

event	then	becomes	only	relevant	when	its	corresponding	path	(in	the	Activity	model)	is	

taken.	This	allows	one	to	establish	the	mathematical	relation	as	follows:	

>(;),-) = >(;))>(+)) + >T;-U>(+-),		 	 	 (4.2.14)	

where	>(+))	is	the	probability	of	the	system	taking	the	path,	+) .	Note	also	that	+) 	and	+- 	are	

not	 fault	 events	 and	 that	 they	 are	mutually	 exclusive.	 In	 this	 case,	 unlike	 conditional	

events,	the	sum	of	probabilities	for	the	contracted	fault	event,	such	as	in	(4.2.14),	is	not	

equal	one.	The	conditional	statement,	+) ,	traces	back	to	the	guard	contents	on	an	activity	
edge	in	a	control	flow	that	contains	a	decision	node	(c.f.	first	column	of	Table	4.1(d)).	

4.2.4 Semantic	Transformations:	Fault	Propagation	Chains	to	Fault	Tree	

The	 probability	 definition	 proposed	 for	 the	 FPCs	 are	 based	 on	 a	 theoretical	

concept	where	the	failed	execution	of	an	action	(system	function),	i.e.	;) ,	can	be	somehow	
observed	experimentally.	However,	in	reality,	a	failed	execution	of	a	system	function	may	

only	be	observed	when	 the	 function	 is	 implemented,	 for	example	on	hardware.	 In	 the	

perspectives	 of	 system	 behaviour	 and	 structure	 modelling,	 the	 execution	 of	 system	

function	is	often	referred	to	as	allocation	of	system	functions	to	system	components.	For	

example,	 if	 a	 system	 function	*) ,	 is	 allocated	 to	 two	 system	 components,	 then	 each	
individual	 failure	 rate	of	 the	 two	components	will	 contribute	 to	 the	 calculation	of	 the	

probability	of	functional	failure,	>(;)).	As	such,	a	different	allocation	strategy	will	likely	
result	in	different	Fault	Tree	structure	when	physical	components	are	considered.	As	this	

subchapter	is	only	concerned	with	system	functional	faults,	the	allocation	mechanism	is	

Chapter	4	

	

116	

	

pushed	into	the	next-level	of	detail	in	the	decomposition	process	of	FTA,	and	this	will	be	

a	topic	of	next	subchapter.	

Taking	the	FPC	in	Figure	4.1	as	an	example,	with	a	simplified	situation	where	;) 	is	
the	first	fault	event	in	the	entire	chain,	i.e.	>(;)G) = 0,	the	FPC	can	be	transformed	into	a	
Fault	Tree	that	consists	of	an	OR-gate	as	depicted	in	Figure	4.3.	This	is	because	that	based	

on	(4.2.10),	>(;-])	can	be	considered	as	a	union	of	>(;))	and	>(;-),	where	;) 	and	;- 	are	

basic	 events,	 and	 ;-] 	is	 an	 intermediate	 event	 that	 can	 further	 contributes	 to	 the	

probability	calculation	of	fault	events	after	;- .	If	there	is	no	fault	event	after	;- ,	then	the	

intermediate	event	;-]	can	be	replaced	by	the	top	event,	“system	failure”,	;2.	

	

	

Figure	4.3:	Example	of	Fault	Tree	transformed	from	Fault	Propagation	Chain	in	
Figure	4.1	

	

For	the	FPC	in	Figure	4.2,	following	the	transformation	developed	above,	the	set	

of	equations	in	(4.2.10)	is	translated	exactly	into	Fault	Tree	probability	calculations	in	the	

following	way:	

⎩
⎨

⎧
>(;)]) = >(;n	OR	;))
>(;-]) = >(;n	OR	;-)
>(;^G) = >(;)]	OR	;-])
>(;^]) = >(;^G	OR	;^)

’	 	 	 	 (4.2.15)	

with	

>(;)	OR	;-) = >(;) ∪	;-) = >(;)) + >(;-) − >(;) ∩ ;-),		 (4.2.16)	

ai aj

aj+

Chapter	4	

	

117	

	

and	the	intersection	

>(;) ∩ ;-) = >(;))>T;-o;)U = >(;-)>T;)o;-U,	 	 (4.2.17)	

if	;) 	and	;- 	are	dependent	events.	And	the	intersection	is	reduced	to	

>(;) ∩ ;-) = >(;))>(;-),	 	 	 	 (4.2.18)	

if	;) 	and	;- 	are	independent	events,	but	both	are	not	necessarily	mutually	exclusive.	

	 The	new	set	of	equation	in	(4.2.15)	can	be	immediately	depicted	graphically	in	a	

Fault	 Tree,	 as	 shown	 in	 Figure	 4.4,	 by	 defining	 ;n, ;), ;- ,	 and	 ;^ 	as	 basic	 events	

(independent	of	each	other),	and	;)], ;-], ;^G,		and	;^]	as	intermediate	events.	

	

	

Figure	4.4:	Example	of	Fault	Tree	transformed	from	Fault	Propagation	Chain	in	
Figure	4.2	

	

	 For	a	contracted	fault	event,	at	the	contraction	level,	it	can	be	treated	similar	to	a	

normal	 fault	 event.	Hence,	 the	mapping	 to	Fault	Tree	 is	 straightforward.	For	 the	 fault	

events	embedded	in	the	contraction,	(4.2.14)	can	be	translated	into	

>(;)-) = >((;) ∩ +)) ∪ (;- ∩ +-)).	 	 	 	 (4.2.19)	

ak

ak+

ak-

ao ai

ai+

ao aj

aj+

Chapter	4	

	

118	

	

The	Fault	Tree	corresponding	to	(4.2.19)	is	depicted	in	Figure	4.5.	Because	+)and	
+- 	are	not	fault	events,	but	conditional	statements,	instead	of	using	the	normal	AND-gates,	

inhibit-gates	are	used.	Moreover	expanding	the	expression	on	the	right	hand	side	of	the	

(4.2.19),	an	intersection	term	that	reads	(;) ∩ +)) ∩ (;- ∩ +-)	is	expected.	However,	this	

term	yields	zero	as	+) 	and		+- 	are	mutually	exclusive	events.	

	

	

Figure	4.5:	Example	of	Fault	Tree	transformed	from	Fault	Propagation	Chain	that	
derived	from	an	expanded	Contracted	Fault	Event	

	

4.2.5 Nested	Control	Flows	

In	 this	 subchapter,	 the	 unrestricted	 of	 transformation	 method	 to	 simple	

connections	of	elementary	control	flows	is	demonstrated.	The	transformation	method	is	

also	applicable	to	complex	control	flows	that	involve	the	nesting	of	elementary	control	

flows.	The	transformation	method	is	applied	to	the	nested	control	flow	shown	in	Figure	

4.6	to	obtain	a	semantically	equivalent	Fault	Tree.	It	is	worth	noting	that	in	this	nested	

control	flow,	Action,	*- 	does	not	proceed	to	the	Action,	*v.	

	

ai aj

aij

ci cj

Chapter	4	

	

119	

	

	

Figure	4.6:	A	Nested	Control	Flow	modelled	in	UML	Activity	

	

	 Using	the	elementary	control	flows	as	the	basis,	the	structure	of	the	nested	control	

flow	can	be	logically	expressed	by	the	following	expressions,	

⎩
⎪
⎨

⎪
⎧ T() ∨ (-U → (n
(w → T() ∨ (-U
((v ∨ (w) → ()
(? → ((v ∨ (w)

.	 	 	 	 	 (4.2.20)	

Applying	contraposition	to	the	expression	in	(4.2.20),	 the	following	elementary	unit	 is	

attained,	

⎩
⎪
⎨

⎪
⎧ (;n → ;)) ∧ T;n → ;-U = ;n → T;) ∧ ;-U
(;) → ;w) ∨ T;- → ;wU = T;) ∧ ;-U → ;w
(;) → ;v) ∧ (;) → ;w) = ;) → (;v ∧ ;w)
T;v → ;?U ∨ T;w → ;?U = (;v ∧ ;w) → ;?

′	 	 	 (4.2.21a)	

or	alternatively,	using	the	concept	of	contracted	fault	event,	(4.2.21a)	is	arrived	to	

	y

;n → ;),-
;),- → ;w
;) → ;v,w
;v,w → ;?

.	 	 	 	 	 (4.2.21b)	

Although	the	conjunction	of	the	above	relations,	

(;n → ;),-) ∧ (;),- → ;w) ∧ (;) → ;v,w) ∧ (;v,w → ;?),	 	 (4.2.22)	

Chapter	4	

	

120	

	

is	in	CMF,	this	is	not	a	chain	as	described	in	(4.2.3)	because	it	breaks	at	…	;w) ∧ (;) ….	To	
resolve	this	issue,	only	one	contracted	fault	event,	;v,w	is	introduced,	such	that	the	FPC	

can	be	expressed	by	a	disjunction	of	the	two	relations,	

g
(;n → ;)) ∧ T;) → ;v,wU ∧ T;v,w → ;?U
T;n → ;-U ∧ T;- → ;wU ∧ T;w → ;?U

,	 	 	 (4.2.23)	

in	which	these	two	chains	are	two	mutually	exclusive	paths.	As	the	relation	in	(4.2.23)	is	

emphasised	as	a	FPC,	(4.2.23)	is	not	in	CMF	due	to	having	a	disjunction	in	between	the	

two	relations.	

	 Continuing	with	(4.2.23),	the	FPC	is	depicted	as	in	Figure	4.7.	In	addition	to	the	

bifurcation,	 the	necessary	condition	 for	each	of	 the	exclusive	chains	resulted	 from	the	

disjunction	of	the	two	relations	in	(4.2.23)	is	indicated.	

	

	

Figure	4.7:	A	derived	FPC	for	the	nested	control	flow	as	described	in	(4.2.23)	

	

Based	on	the	transformation	method	developed	in	the	previous	subchapter,	the	FPC	is	

transformed	into	a	Fault	Tree	that	depicted	in	Figure	4.8,	in	which	the	detailed	probability	

analysis	for	the	FPC	in	Figure	4.7	is	provided.	

	

Chapter	4	

	

121	

	

	

Figure	4.8:	The	transformed	Fault	Tree	for	the	Nested	Control	Flow	

	

To	 demonstrate	 that	 the	 FPC	 in	 Figure	 4.7	 indeed	 maps	 into	 the	 Fault	 Tree	

depicted	in	Figure	4.8,	a	detailed	probability	analysis	for	this	FPC	is	performed.	Again,	the	

concept	of	running	the	system	for	J	times	and	observing	the	number	of	system	failure	is	
used.	

	 By	 running	 the	 system	 for	J 	times,	 based	 on	 the	 derivation	 of	 (4.2.10),	 the	
expected	number	of	system,	failure,	p5,	up	to	the	point	at	;n]	can	be	determined	as,	

p5 = J>(;n).	 	 	 	 	 	 (4.2.24)	

The	FPC	then	bifurcates	into	two	chains	with	exclusive	conditions	after	the	fault	event,	

;n .	The	number	of	system	success	that	goes	through	the	top	chain	with	condition,	+) ,	can	
be	calculated	as,	

h = JT1 − >(;n)U>(+)).	 	 	 	 	 (4.2.25)	

Then,	the	additional	number	of	system	failure	as	;)]	can	be	calculated	as,	

as

af-

am,n+

af

ao

an+

ao

an

cj

aj
am,n

am

cm

an

cn

ci

ai

Chapter	4	

	

122	

	

p6 = h>(;)),	 	 	 	 	 	 (4.2.26)	

and	the	additional	number	of	system	failure	at	;v,w]	as,	

p9 = hT1 − >(;))U>(;v,w),	 	 	 	 	 (4.2.27)	

where	>(;v,w)	is	the	probability	of	the	contracted	fault	event,	;v,w,	and	can	be	calculated	

based	 on	 the	 formula	 derived	 in	 (4.2.14).	 Using	 (4.2.24)	 to	 (4.2.27),	>(;v,w]) 	can	 be	

calculated	by	

>(;v,w]) =
p5 + p6 + p9

J 	

= >(;n) + T1 − >(;n)U>(+))(>(;)) + T1 − >(;))U>T;v,wU)	

= >(;n) + T1 − >(;n)U>(+))>T;) ∪ ;v,wU	

= >(;n ∪ {+) ∩ T;) ∪ ;v,wU|)	

= >(;n ∪ }+) ∩ {;) ∪ T(;v ∩ +v) ∪ (;w ∩ +w)U|~)	,	 	 (4.2.28)	

where	the	last	step	has	used	the	derived	result	provided	in	(4.2.19)	for	a	contracted	fault	

event.	

	 For	the	bottom	chain,	condition	+- 	is	required	to	proceed	to	;- .	Hence,	similar	to	

(4.2.25),	the	number	of	system	success	that	goes	through	the	bottom	chain	with	condition,	

+- ,	can	be	calculated	as,	

h′ = JT1 − >(;n)U>(+-).	 	 	 	 	 (4.2.29)	

Then,	the	additional	number	of	system	failure	at	;-]can	be	calculated	as,	

p: = h′>(;-),		 	 	 	 	 (4.2.30)	

and	the	additional	number	of	system	failure	at	;w]	as,	

pW = h� {1 − >T;-U|>(;w).	 	 	 	 	 (4.2.31)	

Using	(4.2.24),	(4.2.28)	to	(4.2.30),	>(;w])	can	be	calculated	by,	

Chapter	4	

	

123	

	

>(;w]) =
p5 + p: + pW

J 	

= >(;n) + T1 − >(;n)U>T+-U }>T;-U + {1 − >T;-U| >(;w)~	

= >(;n) + T1 − >(;n)U>T+-U>T;) ∪ ;-U	

= >(;n ∪ {+- ∩ T;) ∪ ;-U|).	 	 	 	 	 (4.2.32)	

	 For	the	convergence	of	the	two	chains,	the	third	relation	in	(4.2.11)	and	in	(4.2.15)	

are	used,	to	obtain	>(;?G),	where	

>(;?G) = >(;v,w]) + >(;w]) − >T;v,w]U>(;w] ∣ ;v,w])	

= >(;v,w] ∪ ;w]),	 	 	 	 	 (4.2.33)	

with	>T;v,w]U>(;w] ∣ ;v,w]) 	containing	 the	 repeated	 events,	;n .	 Finally,	 the	 derived	

relation	in	(4.2.8)	is	used	to	obtain	the	top	event	probability,	>(S),	as,	

>(S) = >(;?]) = >(;?G) + >(;?) − >T;?GU>(;?)	

= >(;?G ∪ ;?).	 	 	 	 	 (4.2.34)	

	 In	 the	 above	 transformations,	 basic	 events,	;n, ;), ;-, ;v, ;w,	and	;^ ;	 conditional	

events,	+), +-, +v,	and	+w;	and	specifically	defined	intermediate	events,	;v,w], ;w],	and	;?G,	

are	used.	Representing	relations	in	(4.2.27),	(4.2.31),	(4.2.32),	and	(4.2.33)	all	together	

gives	the	Fault	Tree	depicted	in	Figure	4.8.	The	minimal	cut	sets	of	this	Fault	Tree	are:	

{;n}, {;), +)}, Ç;-, +-É, {+), +v, ;v}, {+), +w, ;w}, Ç;w, +-É,	and	{;?}.	

	 The	nested	control	flow	example	demonstrates	that	the	transformation	method	

can	be	applicable	to	complex	control	flows	in	which	the	five	elementary	control	flows	as	

shown	in	Table	4.1	are	used	as	building	blocks.	

	

Chapter	4	

	

124	

	

4.2.6 Overarching	 Metamodel	 of	 the	 Formal	 Transformation	 from	 UML	

Activity	Model	to	Fault	Tree	

This	subchapter	abstracts	the	developed	rules	of	mapping	an	Activity	model	to	a	

FPC	 and	 rules	 of	 transforming	 the	 FPC	 to	 a	 Fault	 Tree	 into	 an	 Activity	 model-Fault	

Propagation	Chain-Fault	Tree	(AM-FPC-FT)	overarching	metamodel	as	depicted	in	Figure	

4.9.	The	overarching	metamodel	is	composed	of	12	metaclasses	that	are	differentiated	by	

a	white-grey-dark	scale	(white,	yellow,	and	blue	for	the	coloured	version).	On	the	 left,	

three	 metaclasses	 (shown	 in	 grey),	 ControlFlow,	 Action,	 and	 ValueSpecification	 (for	

guard),	are	inherited	from	the	RAM.	In	the	middle,	four	metaclasses	(shown	in	white),	are	

introduced	for	the	metamodeling	of	FPCs.	In	particular,	the	elementary	structure	of	a	FPC	

is	 in	 the	 form	 of	 fault	 events	 connected	 by	 directed	 edges	 (material	 implications).	

Therefore,	similar	to	ControlFlow	and	Action	 in	the	RAM,	two	metaclasses,	FaultEvent	

and	MaterialImplication	are	introduced	to	reflect	this	structure.	In	addition,	FaultEvent	

in	the	FPC	metamodel	is	further	specialised	into	two	types:	SingleFault	and	ContractFault.	

On	 the	 right,	 five	 metaclasses	 (shown	 in	 dark),	 ORGate,	 InhibitGate,	 OutputEvent,	

BasicEvent,	and	ConditionalEvent,	are	inherited	from	the		FTM.	The	metaclasses,	where	

relevant,	inherit	the	relations	established	in	their	domain	metamodel.	These	include	the	

relations	 between	 the	 three	 metaclasses	 inherited	 from	 the	 RAM.	 The	 overarching	

metamodel	is	developed	and	depicted	in	a	way	such	that	it	also	reflects,	from	left	to	right,	

the	transformation	method	in	which	an	Activity	model	 is	mapped	into	a	FPC	and	then	

transformed	into	a	Fault	Tree.	

	

Chapter	4	

	

125	

	

	

Figure	4.9:	Activity	model-Fault	Propagation	Chain-Fault	Tree-Overarching	
Metamodel	

	

The	 mapping	 from	 an	 Activity	 model	 to	 a	 FPC	 is	 captured	 by	 a	 stereotype,	

<<contrapositive>>,	which	is	introduced	to	refer	to	the	Semantic	Mapping	Rules	shown	

in	Table	4.1.	As	these	mapping	are	structure-based	rather	than	component-based,	instead	

of	associating	individual	elements,	the	ControlFlow	-	Action	structure	is	connected	to	the	

MaterialImplication	 -	 FaultEvent	 structure	 (circled	 in	 dash	 lines)	 via	 the	

<<contrapositive>>	relation.	As	different	elementary	control	flows	would	give	different	

fault	 propagation	 structure,	 an	 additional	 note	 is	 attached	 to	 the	 <<contrapositive>>	

relation	to	indicate	the	detailed	rules	as	captured	in	Table	4.1.	

Moving	on	with	the	transformation	from	FPCs	to	Fault	Trees,	an	<<equivalence>>	

stereotype	is	defined	to	 illustrate	a	relation	in	which	an	entity	 is	mapped	exactly	onto	

another	 entity	without	 the	need	of	modifications.	 In	particular,	 three	 transformations	

that	 satisfy	 an	 <<equivalence>>	 relation:	 (i)	 SingleFault	 is	 mapped	 exactly	 onto	

BasicEvent;	 (ii)	 ContractFault	 is	 mapped	 exactly	 onto	 an	 OutputEvent	 (as	 per	

intermediate	 event);	 and	 (iii)	 Guard	 information	 as	 captured	 by	 ValueSpecification	 is	

mapped	exactly	onto	a	ConditionalEvent.	All	of	the	above	exact	mappings	are	apparent	

from	 Figure	 4.1	 to	 Figure	 4.5.	 In	 addition	 to	 the	 <<equivalence>>	 stereotype,	 an	

Chapter	4	

	

126	

	

<<expansion>>	stereotype	is	introduced	to	capture	the	expansion	of	a	contracted	fault	

event	into	basic	events	as	seen	in	Figure	4.5.	and	Figure	4.8.	Since,	a	contracted	fault	event	

contains	 at	 least	 two	 exclusive	 paths,	 the	 multiplicity	 for	 the	 BasicEvent	 on	 the	

<<expansion>>	relation	 is	defined	as	2…*.	Additional	notes	are	given	 to	each	of	 these	

stereotypes	 relations	 to	 provide	 detail	 explanations	 on	 the	 specific	 transformation	

mechanism.	

As	seen	in	the	resultant	Fault	Trees,	the	transformations	further	impose	a	specific	

set	of	relationships	between	Fault	Tree	metaclasses.	These	are	captured	in	the	AM-FPC-

FT	overarching	metamodel.	Firstly,	an	OR-gate	can	be	connected	directly	to	one	or	more	

inhibit-gates	as	seen	in	Figure	4.5	and	Figure	4.8	due	to	the	expansion	of	the	contracted	

fault	 event.	 This	 is	 captured	 by	 an	 association	 between	 the	 metaclasses	 ORGate	 and	

InhibitGate	with	multiplicity	1	and	1	…	*	on	each	side.	Secondly,	depending	whether	a	

basic	event	is	transformed	from	an	Action	that	is	within	an	exclusive	path,	i.e.	proceed	

from	satisfying	its	guard	condition,	or	not,	the	basic	event	is	either	directly	connected	to	

an	 OR-gate	 or	 an	 inhibit-gate.	 Again,	 corresponding	 multiplicities	 are	 defined	 and	

additional	notes	are	provided	on	the	associations	to	provide	details	explanation.	

4.2.7 Transformation	Method	Application	to	Traffic	Management	System	of	

Systems	Case	Study	

In	 this	 subchapter,	 the	 developed	 transformation	 method	 and	 the	 AM-FPC-FT	

overarching	metamodel	are	evaluated	through	an	application	of	both	to	the	RMS	studied	

in	(Ingram	et	al.	2014).	

	

Ramp Meter System Functional Fault Trees

In	the	rest	of	this	subchapter,	the	transformation	method	is	applied	to	the	Activity	model	

in	Figure	3.10	and	how	the	generated	Fault	Tree	can	provide	useful	information	in	the	

Chapter	4	

	

127	

	

identification	of	functional	faults	as	well	as	inferring	a	fault	structure	is	demonstrated.	

The	fault	structure	is	then	used	to	analyse	the	original	design	model.	

For	convenience,	a	set	of	fault	events	as	the	negation	of	the	propositions,	;) ≝ () ,	
is	defined.	Based	on	the	semantic	mapping	rules	(a),	(b),	and	(c),	the	initial	fault	event	;5	
is	 bifurcated	 into	 two	 chains,	 (;5 → ;6) ∧ (;5 → ;9),	with	 one	 chain	has	 a	 single	 fault	
event,	;6 ,	 and	 the	 other	 chain	 has	 three	 fault	 events	 connected	 in	 series,	(;9 → ;:) ∧
(;: → ;W).	Then,	the	two	chains	are	merged	into	a	single	chain	that	leads	to	fault	event	;X	
with	 (;6 → ;X) ∧	(;W → ;X) .	 The	 fault	 event	;X 	is	 continued	 into	 a	 contracted	 event,	
;Y,Z,[= ;Y ∧ ;Z ∧ ;[.	The	contracted	 fault	event,	;Y,Z,[,	 is	 further	propagated	to	the	 last	

fault	event,	;5\,	through	the	unitary	implication	;Y,Z,[→ ;5\.	Grouping	all	of	the	unitary	

implications	 together,	 a	 complete	FPC	 is	generated	and	depicted	graphically	 in	Figure	

4.10.	An	initial	point	and	an	end	point	are	added	to	the	chain	to	show	where	the	fault	

propagation	starts	and	ends.	These	points	are	mapped	to	the	Initial	Node	and	Activity	

Final	Node	in	the	original	Activity	model.	

	

	

Figure	4.10:	The	Fault	Propagation	Chain	Transformed	from	the	RMS	Activity	
Model	

	

	 Next,	the	FPC	is	transformed	to	a	Fault	Tree	using	the	established	transformation	

method.	 The	 detailed	 physical	 architecture,	 i.e.	 allocation	 of	 functions	 to	 system	

component	will	 not	 be	 considered.	Without	 going	 through	 the	 detailed	mathematical	

derivation,	one	can	obtain	the	Fault	Tree	by:	firstly,	elaborating	the	relations	in	(4.2.15)	

for	the	bifurcation	and	convergence	of	the	two	parallel	chains	(;5 → ;6) ∧ (;6 → ;X)	and	
(;5 → ;9) ∧ (;9 → ;:) ∧ (;: → ;W) ∧ (;W → ;X) ;	 and	 then	 elaborating	 the	 relation	 in	
(4.2.19)	for	the	contracted	event,	;Y,Z,[for	three	exclusive	chains;	and	finally	using	the	

a2

a3 a4 a5
a7,8,9 a10Initial Point a1 a6

Chapter	4	

	

128	

	

relations	in	(4.2.15)	again	to	integrate	everything	to	obtain	the	final	RMS	Fault	Tree	as	

depicted	in	Figure	4.11.	The	top	event	of	the	RMS	Fault	Tree,	system	failure,	;2,	is	defined	
as	the	system	failing	to	complete	the	intended	system	behaviour	as	modelled	in	the	UML	

Activity.		

	

	

Figure	4.11:	The RMS Fault Tree transformed from the Fault Propagation Chain in

Figure 4.10

	

Qualitative Analysis of the Transformed Fault Tree

Without	 a	 designated	 probability	 for	 each	 of	 the	 basic	 events,	 it	 is	 difficult	 to	

provide	a	meaningful	quantitative	analysis.	Nonetheless,	based	on	the	structure	of	 the	

RMS	Fault	Tree,	the	following	qualitative	analyses	are	provided:	

System failure, as

a1 a2 a1

a10

Fixed-time Mode selected,

c7

a7,8,9

Responsive Mode selected,

c8
Collaborative Mode selected,

c9

a2+ a3+

a3

a4

a4+ a5

a6- a6

a6+

a9a8a7

a7,8,9+

Chapter	4	

	

129	

	

Firstly,	 every	 system	 function,	 as	modelled	 by	 actions,	 becomes	 a	 basic	 (fault)	

event	 in	 the	 final	RMS	Fault	Tree	after	 the	 transformations.	The	minimal	cut	sets	are:	

{;5}, {;6}, {;9}, {;:}, {;W}, {;Y, +Y}, {;Z, +Z}, {;[, +[},	and	{;5\}.	The	single	event	minimal	cut	
sets	 align	 with	 the	 formal	 interpretation	 of	 the	 Activity	 model	 based	 on	 the	 UML	

specification	where	failed	execution	of	an	action	stops	the	control	flow.	In	addition,	fault	

events	;Y, ;Z,	and	;[do	not	individually	lead	to	system	failure	unless	their	corresponding	
conditions	are	met.	This	also	aligns	with	the	Activity	model	in	which	the	three	alternative	

paths	are	exclusive,	i.e.	only	one	mode	is	adopted	at	a	time.	Hence,	despite	the	detailed	

structure	of	the	Fault	Tree,	 it	 is	obvious	that	ensuring	a	high	reliability	for	each	of	the	

designed	 system	 function	 is	 a	 straightforward	way	 to	minimise	 the	probability	 of	 the	

occurrence	of	the	top	event.	

Secondly,	on	the	right-hand	side	of	the	RMS	Fault	Tree,	the	set	of	inhibit-gates	used	

for	 the	 contracted	 fault	 event,	 ;Y,Z,[,	 implies	 that	 the	 actual	 contributions	 from	

>(;Y), >(;Z),	and	>(;[)	to	>(;Y,Z,[)	is	 suppressed	subject	 to	 the	statistical	probabilities	

of	their	corresponding	mode	selection.	For	instance,	if	Responsive	Mode	is	rarely	selected	

for	a	particular	local	RMS,	the	contribution	of	>(;Z)	to	the	top	event	will	be	insignificant	
(note	 that	 this	 is	 not	 to	 say	 that	 the	 “implement	 Responsive	 Mode”	 function	 is	

insignificant).	 Reversely,	 ensuring	 a	 high	 reliability	 for	 the	 operational	 mode	 mostly	

selected	can	reduce	the	top	event	probability.	

Lastly,	on	the	left-hand	side	of	the	RMS	Fault	Tree,	one	of	the	basic	events,	;:,	is	
observed	 can	 be	 considered	 as	 an	 external	 event.	 Tracing	 this	 fault	 event	 and	 its	

surrounding	Fault	Tree	structure	to	the	original	functional	design,	it	is	realised	that	if	TCC	

fails	to	“send	Instruction”	to	the	RMS	or	the	RMS	fails	to	“receive	Instruction”	from	the	

TCC,	the	system	will	not	be	able	to	“select	Mode”.	Instead	of	letting	the	system	stuck	at	

this	point,	the	designer	may	want	the	system	to	treat	this	situation	as	if	no	TCC	instruction	

is	 received.	As	such,	 though	 the	 local	RMS	will	not	operate	 in	an	optimal	mode,	 it	 can	

continue	to	operate.	The	designer	then	has	various	choices	to	model	this	mechanism.	For	

instance,	 the	 modelling	 can	 be	 done	 through	 revising	 the	 current	 Activity	 model	 to	

include	an	additional	decision	point	or	 through	embedding	this	decision	 logic	 into	the	

next	level	detail	under	the	function,	“select	Mode”.	

Chapter	4	

	

130	

	

The	top	events	in	the	two	Fault	Trees	are	different,	the	top	event,	system	failure,	

;2 ,	 is	 recognised,	 in	 fact,	 is	 contributed	 to	 the	 top	 event,	 non-optimal	 traffic	 flow	 as	
discussed	in	Chapter	3.	This	is	because	when	system	failure	happens,	vehicles	entering	

the	ramp	would	not	be	controlled	under	 the	desired	strategy,	hence	 leading	 to	a	non-

optimal	 traffic	 flow.	 In	 addition,	 overlaps	 between	 the	 two	 Fault	 Trees	 are	 identified.	

‘Fails	to	adopt	Collaborative	Mode’	as	captured	in	the	original	Fault	Tree	is	also	captured	

in	 the	 transformed	 Fault	 Tree	 y	 the	 basic	 event,	;[.	 However,	 as	 suggested	 by	 the	
transformed	Fault	Tree,	this	fault	event	itself	will	not	be	a	minimal	cut	set.	In	fact,	it	will	

only	lead	to	system	failure	and	eventually	non-optimal	flow	when	the	system	decides	to	

adopt	Collaborative	Mode.	Similarly,	the	fault	event,	‘Fails	to	exit	Collaborative	Mode’	can	

be	considered	as	an	overlap	 to	;Y	and	;Z	collectively	 in	which	 the	system	situationally	
decides	to	adopt	one	of	 the	two	other	modes	when	it	 is	originally	 in	the	Collaborative	

Mode.	Again,	an	inhibit-gate	is	necessary	in	these	two	cases.	From	the	above	arguments,	

the	 developed	 transformation	 is	 concluded	 with	 firstly	 can	 identify	 additional	 basic	

events	 based	 on	 system	 behaviour	 models;	 and	 secondly	 can	 provide	 meaningful	

revisions	to	a	Fault	Tree	constructed	by	engineers.	From	the	comparison,	it	is	also	clear	

that	due	to	the	scope	of	the	transformation	method,	the	transformed	Fault	Tree	does	not	

capture	component	failures	and	faults	that	relate	to	objects,	e.g.	incorrect	rate	calculation.	

To	 summarise	 the	 case	 study	 evaluation,	 a	 functional	 Fault	 Tree	 has	 been	

successfully	 generated	 by	 applying	 the	 proposed	 transformation	 method	 to	 the	 RMS	

Activity	 model.	 As	 the	 generated	 Fault	 Tree	 preserves	 structural	 knowledge	 of	 the	

original	 model,	 the	 qualitative	 of	 Fault	 Tree	 is	 analysed	 to	 derive	 important	 system	

reliability	information	and	provide	design	improvements.	By	comparing	the	transformed	

Fault	Tree	to	the	one	derived	based	on	common	practice,	the	transformation	can	provide	

meaningful	addition	and	revision.	

4.3 From	Classes	to	Fault	Tree	

In	 this	 subchapter,	 the	 discovery	 of	 logical	 formalisation	 of	 Composition	

relationship	of	UML	Classes	 is	 justified	 for	 the	basis	 to	 transform	system	structure	as	

Chapter	4	

	

131	

	

represented	by	Class	models	to	structural	faults	as	represented	by	Fault	Tree.	Prior	to	the	

discovery	 of	 logical	 formalisation	 of	 Composition	 relationship,	 the	main	 relationships	

which	include	three	other	relationships	(Association,	Aggregation,	and	Generalisation)	in	

UML	Classes	are	discussed	as	for	the	pertinent	transformation.	Probability	theory	(Weiss	

2006)	 is	 then	 applied	 to	 further	 transform	 the	 Composition	 Classes	 structure	 into	 a	

conventional	 Fault	 Tree	 representation.	 The	 subchapter	 starts	 with	 discussion	 of	

mathematical	 semantic	 used	 for	 Classes	 relationships	 in	 UML	 Class	 diagrams.	 The	

subchapter	will	end	with	demonstration	of	the	approach	by	applying	the	transformation	

method	to	the	authorised	case	study	introduced	earlier.	

System	structures	that	modelled	by	using	UML	Classes	likely	employs	to	generate	

Fault	Tree	as	relation	amongst	the	Classes	can	be	interpreted	as	causal	relationships	and	

failure	 propagation	 for	 fault	 events	 (Cepin	&	Mavko	 1999).	 A	 framework	 to	 facilitate	

automated	dependability	analysis	in	Fault	Tree	representation	by	using	UML	Class	model	

as	 introduced	 by	 Pai	 et.	 al.	 applies	 semantic	 construction	 based	 on	 types	 of	 Classes	

relationships	such	as	Generalisation	and	Dependencies	(Dependencies	is	not	emphasise	

in	this	thesis).	The	constructed	semantic	is	used	to	define	stereotype	for	indicating	the	

existence	 of	 Generalisation	 and	 Dependencies	 relationships	 in	 UML	 Class	 model	 and	

developing	 an	 algorithm	 (Pai	 &	 Dugan	 2002).	 The	 developed	 algorithm	 is	 used	 in	

converting	the	UML	Class	model	to	dynamic	type	of	Fault	Tree.	All	the	modelled	Classes	

including	hardware	and	software	is	converted	into	basic	event	for	the	tree.	In	the	Fault	

Tree,	only	one	logic	gate,	OR-gate,	is	used	to	connect	all	the	basic	events	to	the	top	event	

of	the	tree.	By	using	the	proposed	framework,	a	dynamic	Fault	Tree	can	be	developed	as	

concerning	 fault	 tolerant	 system	 that	 considers	 redundant	 components	 for	 spare	 and	

functional	 dependencies.	 However,	 as	 claimed	 by	 	 (Cepin	&	Mavko	 1999)	 and	 (Pai	 &	

Dugan	 2002),	 the	 application	 of	 formal	methods	 to	 precisely	 define	modelled	models	

removes	any	ambiguities	about	the	models	from	the	designer’s	mind	is	absence	in	their	

research.	

4.3.1 Mathematical	Semantic	Used	for	Classes	

Although	the	purpose	and	way	of	modelling	system	structure	by	using	UML	Class	

have	been	recognised,	there	is	a	considerable	difference	of	users’	interpretation	on	the	

Chapter	4	

	

132	

	

relationship	 types	 by	 the	 means	 of	 mathematical	 semantic.	 Schmitt	 defined	 the	

mathematical	semantic	of	Association,	Aggregation,	and	Composition	as	a	binary	relation	

presentation	 between	 Classes	 (Schmitt	 2003).	 This	means	 two	 Classes	 are	 connected	

together	 as	 a	 pair.	 Whilst,	 Souri	 et.	 al.	 defined	 only	 Association	 is	 used	 to	 realise	

relationship	between	Classes	and	Aggregation	is	used	to	present	a	Class	as	a	collection	of	

Classes	(Souri	et	al.	2011).	The	Aggregation	defined	by	Souri	et.	al.	brings	almost	the	same	

presentation	as	Generalisation.	Classes	that	are	connected	by	Generalisation	to	a	Class	

had	subset	and	set	relationship	(Schmitt	2003).	However,	Souri	et.	al.	call	it	as	Inheritance	

which	 is	 not	 specified	 as	 in	 OMG	 UML	 Specification	 as	 the	 subset	 of	 Classes	 inherits	

attributes	of	the	set	Class	(Souri	et	al.	2011).	For	example,	Car	and	Bike	are	two	Classes	

that	connected	together	to	Vehicle	Class	with	Generalisation	relationship,	as	car	and	bike	

are	the	types	of	vehicle.	

The	semantic	of	the	relationships	can	be	used	to	model	Class	Diagram	from	textual	

interpretation.	Another	research	on	Class	Diagram,	the	diagram	can	be	constructed	from	

natural	language	processing	(NLP)	in	C	language	(Ibrahim	&	Ahmad	2010).	In	the	scope	

of	NLP	on	textual	requirement	basis,	two	contexts	(based	on	noun,	noun	phrase,	and	verb	

analysis)	in	a	text	which	define	as	Classes	can	be	designed	using	Association	relationship	

between	them.	The	application	of	Association	 is	observed	to	have	a	similar	concept	of	

binary	 relation	 as	 defined	 by	 Schmitt.	 A	 part	 of	 the	 research,	 the	 means	 of	 using	

Generalisation,	Aggregation,	and	Composition	to	design	textual	requirement	 in	a	Class	

Diagram	are	also	defined.	An	extraction	element	from	the	context	requirements	can	be	

presented	as	element	of	Class	to	the	context	Class.	The	relationship	between	the	element	

Class	and	the	context	Class	can	be	modelled	by	using	Generalisation.	Whilst,	when	the	

context	is	found	to	be	contained	in	something	else,	Aggregation	and	Composition	are	used	

(Ibrahim	 &	 Ahmad	 2010).	 Similar	 to	 UML	 specification,	 the	 implementation	 of	

Aggregation	and	Composition	is	subjected	to	strong	level	of	relationship	in	the	context.	

In	this	thesis,	a	total	failure	of	a	system	is	considered	as	the	sole	failure	semantic.	

The	total	failure	is	modelled	by	using	propositional	calculus.	For	instance,	the	failure	of	a	

facility	is	when	the	facility	is	partially	not	available	such	as	being	out	of	operating	range,	

erroneous,	and	malfunction.	Note	that,	inthis	case,	the	structural	proposition	of	interest	

Chapter	4	

	

133	

	

for	 the	 modelling	 is	 facility	 is	 available	 such	 as	 in	 the	 range	 of	 0-1	 Although	 the	

proposition	can	be	defined,	a	 systematic	way	of	defining	 the	proposition	could	not	be	

taken	without	knowing	 the	possible	 failures.	 Furthermore,	 at	 this	point,	 the	UML	and	

SysML	do	not	 facilitate	 the	modelling	of	 such	 failures.	For	 instance,	even	when	all	 the	

possible	failures	semantics	of	a	facility	are	defined,	i.e.	the	facility	is	operating	at	the	range	

of	>1,	the	failure	logic	cannot	be	defined	through	Boolean	logic	from	the	UML	diagrams	

presentation.	However,	 the	OMG	has	 an	 intention	 to	 extend	 the	UML	with	 safety	 and	

reliability	to	facilitate	the	modelling	of	failure	conditions	and	logics	(Object	Management	

Group	2017c).	

	

4.3.2 Application	of	Binary	Relation	

In	this	thesis,	binary	relation	is	used	for	mathematically	defining	two	Classes	in	a	

relationship.	Classes	with	a	specific	relationship	are	gathered	in	a	group	according	of	the	

binary	relation.	All	Classes	are	assigned	with	unique	identification,	i.e.	,) 	with	N	being	an	
integer.	Taking	Composition	relationship	of	 two	connected	Classes	as	an	example,	 the	

Classes	in	binary	relation	is	presented	as,	

Ñ3nvÖn2)I)nw(,\, ,5)	.	 	 	 	 	 (4.3.1)	

The	ordered	pair	of	Class	,\	and	Class	,5	in	(4.3.1)	has	a	Composition	relation.	It	is	worth	
to	note	that	the	expression	is	a	set	of	collection	of	ordered	pairs	with	specific	relations.	

For	 the	 set	 presentation,	 the	 ordered	 pair,	 Class	,\ 	and	 Class	,5 ,	 is	 the	 element	 of	
Composition	relationship,	Ñ3nvÖn2)I)nw,	which	can	be	illustrated	as,	

(,\, ,5) ∈ Ñ3nvÖn2)I)nw.	 	 	 	 (4.3.2)	

For	consistency,	element	on	the	left	of	the	ordered	pair	is	the	owner	Class	and	element	

on	the	right	of	the	ordered	pair	is	part	Class.	When	there	are	two	part	Classes	owned	by	

,\,	the	ordered	pair	of	binary	relation		Ñ3nvÖn2)I)nw	is	illustrated	as,	

{(,\, ,5), (,\, ,6)} ∈ Ñ3nvÖn2)I)nw.	 	 	 	 (4.3.3)	

Chapter	4	

	

134	

	

This	reads	as	the	ordered	pairs	of	(,\, ,5)	and	(,\, ,6)	are	the	elements	of	binary	relation	
of	 Composition	 relationship.	 The	 same	 rule	 can	 be	 applied	 for	 elements	 in	 the	

Aggregation	binary	relation	set	as,	

{(,\, ,5), (,\, ,6)} ∈ ÑáààâäàáI)nw,	 	 	 	 (4.3.4)	

with	the	element	on	the	left	of	the	ordered	pair	is	the	container	Class	and	the	element	on	

the	right	of	the	ordered	pair	is	the	part	Class.	

Composition	 and	 Aggregation	 relationships	 are	 specialisations	 of	 Association	

relationship.	The	Association	in	a	diagram	shows	the	application	of	binary	relation	which	

can	also	be	applied	onto	Generalisation.	The	Composition	and	Aggregation	relationships	

are	classified	as	giving	close	relationship	between	Classes.	Unlike	Composition,	which	has	

the	concept	of	child	‘belongs	to’	a	parent,	Aggregation	implies	a	relationship	where	the	

part	Class	can	exist	independently	from	the	container	Class(es).	In	this	subchapter,	the	

formal	transformation	methods	are	focused	on	transformation	of	hierarchical	structure	

into	component	Fault	Tree.	Classes	with	Composition	and	Aggregation	relationships	are	

modelled	in	hierarchical	structure.	The	Association	between	Classes	is	not	considered	as	

it	applies	on	the	Classes	at	the	same	level.	Furthermore,	the	Association	can	lead	to	varies	

interpretation	of	the	actual	relationship	being	modelled.	For	example,	a	Class	called	Clerk	

represents	a	clerk	and	has	an	Association	with	a	Class	called	report	which	represents	a	

report.	One	can	read	the	diagram	as	a	clerk	write	a	report	and	it	also	can	be	read	as	a	clerk	

compile	a	report.	This	create	the	Association	to	be	pessimistic	as	it	can	be	informal	and	

general	which	open	to	various	interpretation.	In	a	case	where	the	Association	is	specified,	

the	Association	is	commonly	referred	to	as	behaviour	which	is	not	defined	in	the	UML	

specification.	 For	 example,	 the	 relation	 specified	 on	 the	 Association	 link	with	 a	 solid	

triangle	indicates	the	order	of	reading	the	Association	of	the	Classes.	The	Class	structure	

only	meaningful	with	semantic	of	 the	modelled	Association	which	can	be	case-by-case	

situation.	 Therefore,	 general	 rule	 for	 the	 Association	 may	 find	 it	 difficult	 to	 apply.	

Furthermore,	 the	 consideration	 of	 the	 Association	 behaviour	 is	 beyond	 the	 scope	 of	

component	 Fault	 Tree	 which	 only	 composes	 structural	 fault	 events.	 Similar	 to	 the	

application	 of	 Generalisation,	 the	 transformation	 of	 the	 Generalisation	 can	 lead	 to	

Chapter	4	

	

135	

	

fictitious	 fault	 events	 in	 the	 Fault	 Tree.	 The	 Generalisation	 is	 used	 to	 represent	 sub-

Classes	 by	 a	 general	 Class.	 In	 the	 actual	 practical	 system,	 the	 general	 Class	 is	 not	

presented	as	an	individual	and	physical	component.	The	transformation	of	the	Class	may	

have	 been	 counted	 by	 other	 fault	 events	 of	 the	 exact	 component	 in	 the	 tree.	 Thus,	

Association	 and	 Generalisation	 are	 not	 considered	 in	 the	 transformation	 from	 Class	

model	to	Fault	Tree.	

	

4.3.3 Relationships	between	Classes	as	Application	to	Logical	Statement	

In	this	subchapter,	the	Composition	and	Aggregation	relationship	between	Classes	

is	demonstrated	by	using	set	and	relationship.	This	demonstration	is	used	as	a	basis	of	

formal	transformation	from	Classes	to	Fault	Tree.	

A	structure	of	Classes	with	Composition	relationship	is	depicted	in	Figure	4.12(a).	

The	Classes	 can	be	 interpreted	 as	 sets	 as	presented	 in	Euler	Diagram	given	 in	Figure	

4.12(b).	In	the	Figure	4.12(a),	Facility	(,\)	and	Facility	(,5)	that	represent	owner	and	part	
Classes	respectively	are	connected	together	with	Composition	relationship	which	uses	

solid	coloured	diamond	shape	at	one	end	of	the	edge	of	the	owner	Class.	This	relationship	

means	that	Facility	(,5)	is	owned	by	Facility	(,\).	This	relationship	can	also	be	illustrated	
by	using	Euler	Diagram	as		,5	is	a	subset	of		,\	depicted	as	in	Figure	4.12(b).	The	relations	
between	part	and	owner	Classes	can	be	interpreted	as	in	code	programming.	The	part	

Class	in	code	programming	simply	means	reference	which	is	created	in	the	main	program.	

If	the	reference	is	deleted,	the	code	programming	could	not	execute	accurately.	

	

	 	

F0

F1

Chapter	4	

	

136	

	

(a)	 (b)	

Figure	4.12:	(a)	Composition	Relationship	Structure	of	two	Classes	(b)	Euler	
Diagram	of	(a)	

	

By	applying	structural	proposition	in	(3.2)	on	the	Classes	structure	in	Figure	4.12(a),	the	

relationship	can	be	presented	as,	

+\ ↔ +5.	 	 	 	 	 (4.3.5)	

The	 relation	 is	 read	as	 the	availability	of	Facility	,\ 	is	necessary	and	sufficient	 for	 the	
availability	of	Facility	,5	in	an	operational	system.	

For	the	multiple	of	part	Classes	that	connect	to	an	owner	Class	by	Composition	

relationship,	the	use	of	conjunction	is	applied	to	form	the	material	equivalence	relation.	

By	 using	 the	 ordered	 pairs	 of	 Composition	 relationship	 in	 (4.3.3)	 as	 example,	 two	

material	 equivalence	 statements	 can	 be	 produced	with	 the	 use	 of	 conjunction:	(+\ ↔
+5)∧(+\ ↔ +6).	The	relations	can	be	simplified	as,	

+\ ↔ (+5 ∧ +6).	 	 	 	 	 (4.3.6)	

This	relation	means	as	the	Facility	,5	and	Facility	,6	are	available	when	the	Facility	,\	is	
available	 and	 when	 the	 Facility	 ,\ 	is	 available,	 the	 Facility	 ,5 	and	 Facility	 ,6 	are	
understood	to	be	available	as	well.	

However,	 practically,	 the	 part	 Classes	 are	 not	 necessarily	 complete	 when	

modelling	the	Classes.	This	does	not	fit	to	identify	a	complete	set	and	complete	structure	

of	the	Classes.	To	complement	the	complete	set	of	Composition	relationship,	one	has	to	

define	the	complete	part	Classes.	The	complete	set	of	Composition	relationship	can	be	

defined	as,	

,3nvÖãäIä = (,5 ∧ ,6 ∧ …,w) ∧ ,3 .	 	 	 	 (4.3.7)	

Note	 that,	 in	 this	 case,	,3nvÖãäIä ≝ ,\ ,	 	,w 	represents	 the	 last	 modelled	 Class,	 and	,3 	

represents	 a	 complementary	 Class.	 The	 complementary	 Class	 ,3 	is	 introduced	 to	

Chapter	4	

	

137	

	

acknowledge	the	unpresented	part	Class	that	assumed	to	be	the	remaining	unpresented	

part	 Classes	 of	 the	 owner	 Class.	 The	 complementary	 Class	,3 	could	 be	 null	 and	 it	 is	
fictitious.	For	brevity,	with	the	extension	to	Figure	4.12(b),	an	Euler	Diagram	of	the	set	

that	represents	the	Classes	in	(4.3.7)	is	illustrated	as	in	Figure	4.13.	The		,5,	,6,	and	,w	are	
the	subset	of	,\.	When	the	subsets	are	taken	out	from	the	set	,\,	the	remaining	set	of	the	
,\	can	be	assumed	as	complementary	set.	The	complementary	set	is	represented	by	,3 .	

	

	 	 	 				 	

Figure	4.13:	Complementary	Class	as	presented	by	using	Euler	Diagram	

	

Based	 on	 the	 relation	 in	 (4.3.7),	 the	material	 equivalence	 of	 the	 Classes	 Composition	

relationship	is	defined	as,	

+\ ↔ (+5 ∧ +6 ∧ …	+w) ∧ +3 .	 	 	 	 (4.3.8)	

The	relation	is	read	as	the	Facility	,\	is	available	if	and	only	if	the	Facility	,5,	Facility	,6,	…,	
Facility	,w,	 and	complementary	Facility	,3 	are	available.	The	…	 in	 the	array	of	 facilities	
represents	all	the	facilities	that	modelled	in	the	structure.	

A	structure	of	Classes	with	Aggregation	relationship	and	the	set	representation	in	

Euler	Diagram	are	illustrated	as	in	Figure	4.14.	Relatively,	the	Aggregation	relationship	

between	part	Class	and	container	Class	is	not	as	strong	as	Composition	relationship.	One	

of	the	part	Classes	can	have	Aggregation	relationship	with	more	than	one	container	Class	

which	make	the	container	Classes	have	the	same	part	Class.	Furthermore,	 in	the	Class	

model,	the	part	Class	can	stand	alone	without	its	container	Class.	

F0

F1

Fn

F2

Fc

Chapter	4	

	

138	

	

	

	 	

(a)	 (b)	

Figure	4.14:	(a)	Aggregation	Relationship	Structure	of	Two	Classes	and	(b)	Euler	
Diagram	of	(a)	

	

As	depicted	in	Figure	4.14(a),	only	a	part	Class	and	a	container	Class	are	required	to	form	

the	simplest	structure	of	Aggregation.	Contrary	to	Composition	relationship	which	the	

existence	of	part	Class	is	dependent	to	its	owner	Class,	the	existence	of	the	part	Class	and	

the	 container	 Class	 in	 Aggregation	 relationship	 are	 independent	 to	 each	 other.	 The	

implication	 of	 container	 and	 part	 Classes,	+\ → +5 ,	 that	 reads	 as	 if	 the	 Facility	,\ 	is	
available,	 then	 the	 Facility	,5 is	 available	 cannot	 hold	 the	 logical	 statement	 for	 the	
Aggregation.	In	particular,	the	deletion	of	container	Class	does	not	affect	the	part	Class,	

i.e.	the	availability	of	Facility	,\	does	not	imply	the	availability	of	Facility	,5.	In	addition,	
the	part	Class	can	have	more	than	one	container	Class	which	cannot	hold	the	implication	

structure.	Therefore,	the	logical	statement	of	Classes	in	Aggregation	relationship	cannot	

be	formed.	

	

4.3.4 Application	of	Contrapositive	to	Classes	with	Composition	Relationship	

A	material	 equivalence	 statement	 remains	True	 if	 the	 first	 (left-hand	side)	and	

second	(right-hand	side)	propositions	change	the	position.	This	 is	because	both	of	 the	

propositions	 are	 necessary	 for	 each	 other.	 For	 a	 standardisation,	 by	 using	 the	 same	

concept	 of	 forming	 functional	 fault	 event	 from	 Activities,	 contrapositive	 is	 used	 for	

forming	fault	from	the	viewpoint	of	system	structure,	i.e.	structural	faults	of	a	system.	By	

Chapter	4	

	

139	

	

applying	contrapositive	to	the	material	equivalence	statement	of	Composite	relationship	

structure	 in	 (4.3.5)	 and	 considering	 complementary	 Class	 as	 described	 in	 (4.3.7)	 and	

(4.3.8),	 the	 fault	 viewpoint	 form	 is	 presented	 as	¬+5 ∧ +3 ↔ ¬+\ .	 And	 by	 using	 the	
structural	fault	event	as	declared	in	(3.5),	the	proposition	statement	can	be	simplified	as,	

=5 ∨ =3 ↔ =\.	 	 	 	 	 (4.3.9)	

The	relation	of	the	structural	fault	events	in	(4.3.9)	is	read	as	Facility	,5	or	Facility	,3 	or	
both	unavailable	if	and	only	if	Facility	,\is	unavailable.	

	

4.3.5 Failure	of	Structural	Probability	Analysis	

In	the	conventional	Fault	Tree,	the	basic	events	of	the	tree	are	consisted	of	system	

structure	(facility)	failures	that	lead	to	the	system	function	(action)	failures.	For	instance,	

the	probability	of	top	event	of	the	tree	is	calculated	by	the	given	probability	of	failure	of	

facilities	defined	in	the	basic	events	through	intermediate	event.	

Here,	 the	 defined	 relation	 of	 structural	 fault	 events	 can	 be	 used	 to	 express	

probability	of	 failure	of	 the	 facilities.	 In	 the	case	where	 the	complementary	 structural	

fault	event	=3 	of	the	relation	in	(4.3.9)	is	not	required,	=3 	is	null.	Therefore,	the	probability	
of	the	complementary	structural	fault	event	is	zero,	i.e.	>(=3) = 0.	The	new	relation	of	the	
structural	fault	can	be	presented	as,	

=\ ≡ =5.	 	 	 	 	 (4.3.10)	

Thus,	the	probability	of	=\	is	equal	to	the	probability	of	=5,	>(=\) = >(=5).	For	the	relation	
of	two	part	Classes	and	an	owner	Class	as	in	(4.3.6),	the	fault	viewpoint	of	the	Classes	

can	be	presented	as,	

	=\ ≡ =5 ∨ =6.	 	 	 	 	 (4.3.11)	

Similar	to	the	previous	case,	assuming	that	the	declared	complete	Classes	structure	do	

not	require	complementary	Class.	A	related	point	to	consider	is	the	complementary	Class	

does	 not	 involve	 in	 the	 transformation	 into	 Fault	 Tree	 and	 it	 is	 introduced	 for	 the	

Chapter	4	

	

140	

	

architecture	 design	 analysis.	 Therefore,	 the	 probability	 of	 the	 relation	 in	 (4.3.11)	 is	

defined	as	>(=\) = >(=5 ∪ =6)	with	>(=3) = 0.	The	probability	of	failure	can	be	calculated	
as	>(=\) = >(=5) + >(=6) − >(=5 ∩ =6).	The	intersection	of	probability	of	=5	and	=6,	>(=5 ∩
=6) ,	 is	 less	 than	 0.001%	 and	 the	 value	 does	 not	 give	 a	 big	 impact	 to	 the	 probability	
calculation.	 Thus,	 the	 probability	 analysis	 on	 the	 complete	 form	 as	 in	 (4.3.8)	 for	

Composition	relationship	is	allowed.	The	material	equivalence	statement	in	(4.3.8)	can	

be	expressed	with	equivalence	sign,	≡,	as,	

=\ ≡ (=5 ∨ =6 ∨ …∨ =w) ∨ =3 .	 	 	 	 (4.3.12)	

The	relation	can	be	defined	as,	with	disjunction	related	concept	in	set	theory	(Thomas	

1968),	

>(=\) = >((=5 ∪ =6 ∪ …∪ =w) ∪ =3).	 	 	 	 (4.3.13)	

Based	on	the	(4.3.13),	the	probability	of	fault	event	=n ,	>(=n),	is	equal	to	the	probability	of	
the	union	of	fault	events	=5,	=6,	…,	=w,	and	=3 .	The	generic	equation	for	the	result	as	defined	
by	(Weiss	2006),	

>(=n) = ⋃ >(=))w
)é5 .	 	 	 	 	 (4.3.14)	

According	to	the	relation,	one	can	understand	that	the	union	of	probability	of	fault	events	

which	 transformed	 from	 part	 Classes	 of	 Composition	 relationship	 is	 equal	 to	 the	

probability	 of	 fault	 event	 which	 transformed	 from	 owner	 Class	 of	 the	 Composition	

relationship	with	the	assumption	of	the	part	Classes	are	complete.	

4.3.6 Classes	to	Fault	Tree	Transformation	

The	probability	equation	of	fault	events	(4.3.13)	is	used	to	structure	the	Fault	Tree	

that	shown	in	Figure	4.15.	The	complete	set	of	fault	events	=5,	=6,	…,	=w,	and	=3 	are	defined	
as	basic	events	of	the	tree	with	the	fault	event	=\	is	defined	as	intermediate	event	or	top	
event	of	the	tree.	All	the	basic	events	are	connected	by	OR-gate	as	translated	from	the	

probability	calculation	in	(4.3.13).	

	

Chapter	4	

	

141	

	

	 	

Figure	4.15:	Fault	Tree	of	Composite	Relationship	Structure	

	

4.3.7 Multiplicity	of	Relationships	for	Fault	Tree	Transformation	

In	 this	 subchapter,	 the	 multiplicity	 that	 specifies	 the	 cardinality	 (numbers	 of	

facilities)	 in	 a	 Class	 model	 is	 observed	 to	 expand	 the	 structural	 fault	 events	 in	 the	

component	Fault	Tree	that	have	been	transformed	from	Classes.	Two	logic	gates	are	used	

to	connect	the	expanded	structural	fault	events	in	the	component	Fault	Tree	based	on	the	

classification	of	redundant	facilities	or	multiple	facilities	that	operate	concurrently.	The	

expansion	of	structural	fault	events	is	limited	to	the	unlimited	number	of	element	which	

uses	asterisk,	‘*’,	for	multiplicity	in	the	Class	model.		

Every	component	(facility)	that	designed	for	a	system	has	to	be	counted	because	

the	quantity	gives	significant	impact	to	the	design	and	safety	of	the	system.	A	system	may	

be	consisted	of	more	than	one	of	the	same	facility.	In	the	development	of	safety-critical	

system,	the	same	facilities	that	supply	the	same	function	can	be	observed	to	be	designed	

in	a	system	as	redundant	or	back-up.	This	is	because	the	redundant	facilities	are	designed	

for	 the	 safety	 of	 the	 system.	As	 referring	 to	ARP	4761,	 redundancy	 is	 an	 approach	of	

reliability	 and	 availability	 improvement	 even	 for	 short	 time	 operation	 (National	

Instruments	2008).	There	is	also	more	than	one	facility	that	fabricated	in	a	system	which	

operate	at	the	same	time.	For	example,	two	traffic	lights	of	a	traffic	management	system	

that	give	indicator	to	two	different	roads	are	operated	at	the	same	time	but	not	interfering	

each	other.	

fo

f1 f2 fn fc...

Chapter	4	

	

142	

	

In	 system	structure	modelling,	 the	multiplicity	 is	used	 to	define	 the	number	of	

facility	 in	 a	 system.	 The	 details	 of	 the	 facilities	 can	 be	 further	 explored	 with	 the	

consideration	of	Object	Diagram	in	the	system	design.	Class	Diagram	and	Object	Diagram	

can	be	thought	as	in	metamodelling	of	abstraction	layers	of	higher	model	(instance	graph)	

and	lower	model	(type	graph)	(Gogolla	et	al.	2005).	This	defines	the	closed	relationship	

between	the	respective	diagrams.	 	Thus,	all	of	 the	abstraction	layers	can	be	presented	

into	 a	 single	Object	Diagram	 (Gogolla	 et	 al.	 2005).	Object	Diagram	and	Class	Diagram	

provide	 relationship	 and	 multiplicity	 of	 specific	 Objects	 that	 instance	 to	 the	 Classes	

(Kuske	&	Gogolla	2002).	The	information	of	Classes	 is	broken	down	in	depth	with	the	

presentation	 of	 Objects.	 In	 this	 thesis,	 the	 system	 structure	modelling	 for	 Fault	 Tree	

transformation	is	limited	to	the	Class	Diagram.	

In	the	fault	viewpoint,	for	the	facilities	that	have	the	same	function	and	fabricated	

in	a	system,	the	failure	of	these	facilities	could	affect	the	function.	For	the	Fault	Trees	of	

this	thesis,	at	the	lowest	level	of	the	tree,	the	fault	events	of	these	facilities	can	be	tied	

together	with	two	logic	gates:	OR-gate	or	AND-gate.	The	OR-gate	is	used	to	tie	structural	

fault	events	of	facilities	that	operate	at	the	same	time.	These	facilities	are	not	redundant	

as	the	failure	of	only	one	facility	can	lead	to	the	failure	of	the	function.	In	the	Fault	Tree,	

the	output	event	of	these	structural	fault	events	(basic	events)	can	be	identified	as	the	

general	name	of	the	basic	events	and	it	is	fictitious.	This	means	the	output	event	will	occur	

if	any	of	the	connected	basic	events	occurs.	In	another	case,	the	AND-gate	is	used	to	tie	

the	basic	events	of	facilities	that	are	not	operated	at	the	same	time	but	redundant	to	each	

other.	 This	 refers	 to	 the	 redundant	 facilities	 in	 a	 system.	When	one	 of	 the	 redundant	

facilities	 is	 failed,	 the	 system	 can	 depends	 on	 the	 redundant	 facility	 to	 operate	 and	

continue	to	serve	the	function.	Thus,	when	all	of	the	redundant	facilities	are	failed,	the	

function	that	should	be	provided	by	the	facilities	cannot	be	executed	and	could	affect	the	

overall	system	performance.	

Chapter	4	

	

143	

	

4.3.8 Overarching	Metamodel	of	the	Formal	Transformation	from	UML	Class	

Model	to	Fault	Tree	

In	this	subchapter,	the	developed	method	for	transforming	Classes	in	Composition	

relationship	 to	 a	 Fault	 Tree	 is	 abstracted	 into	 Class	 model-Fault	 Tree	 (CM-FT)	

overarching	 metamodels.	 The	 CM-FT	 overarching	 metamodel	 bridges	 the	 Reduced	

Classes	Metamodel	(RCM),	the	transition	method,	and	Fault	Tree	Metamodel	(FTM)	as	

depicted	in	Figure	4.16.	

The	 CM-FT	 overarching	 metamodel	 is	 composed	 of	 11	 metaclasses	 that	 are	

differentiated	by	white-grey-dark	scale	(white,	grey,	and	blue	for	the	coloured	version).	

On	 the	 left,	 four	 metaclasses	 (shown	 in	 grey),	 Class,	 Property,	 Association,	 and	

Multiplicity,	are	inherited	from	the	RCM.	These	metaclasses	are	the	instance	of	Classes	

(including	 owner	 and	 part	 Classes)	 in	 Composition.	 In	 the	middle,	 three	metaclasses	

(shown	in	white),	are	introduced	for	the	metamodeling	of	transition	method.	In	particular,	

the	transition	method	is	in	the	form	of	the	relation	of	structural	fault	events.	On	the	right,	

four	metaclasses	(as	shown	in	blue),	ORGate,	ANDGate,	OutputEvent,	and	BasicEvent,	are	

inherited	 from	 the	 FTM.	 These	 metaclasses	 inherit	 the	 relations	 established	 in	 their	

domain	metamodel.	

The	transformation	 from	Class	model	 to	Fault	Tree	 involves	 transition	method.	

The	 mapping	 of	 Classes	 in	 Composition	 to	 the	 transition	 method	 is	 captured	 by	 a	

stereotype,	 <<contrapositive>>.	 The	 mapping	 is	 a	 structure-based	 which	 connects	

Property	 (owned	 by	 Class)-Association	 (presented	 as	 Composition)	 structure	 to	 the	

FacilityFault-MaterialEquivalence	 structure.	 These	 structures	 are	 circled	 in	 dash	 lines	

and	connected	via	the	<<contrapositive>>	relation.		

The	transformation	from	transition	method	to	Fault	Tree	structure	is	classified	as	

entity-to-entity	mapping.	 The	 <<equivalence>>	 stereotype	 is	 introduced	 to	 define	 the	

mapping	 without	 the	 need	 of	 modification.	 Two	 transformations	 are	 defined	 by	 the	

<<equivalence>>	stereotype	from	Facilityfault:	

1.	 FacilityFault	transformed	from	owner	Class	is	mapped	onto	OutputEvent.	

Chapter	4	

	

144	

	

2.	 Facilityfault	transformed	from	part	Class	is	mapped	onto	BasicEvent.	

In	 the	 resultant	 Fault	 Tree,	 the	 BasicEvent	 are	 connected	 by	 ORGate	 to	 the	

OutputEvent	when	the	number	of	the	BasicEvent	is	more	than	one	which	can	refer	to	the	

multiplicity	1…*	to	1.	In	the	CM-FT	overarching	metamodel,	the	Class	is	associated	with	

MultiplicityElement	to	specify	the	cardinality	of	 the	modelled	Class	which	may	or	may	

not	 present	 redundancy.	 The	MultiplicityElement	 provides	 the	 information	 to	 expand	

fault	event	through	BasicEvent.	The	BasicEvent	are	connected	via	two	types	of	logic	gates:	

ORGate	or	ANDGate.	Respectively,	the	use	of	different	types	of	logic	gate	is	dependent	to	

the	redundant	facilities	or	multiple	facilities	as	discussed	in	the	previous	subchapter.	

	

	

Figure	4.16:	Class	model-Fault	Tree	Overarching	Metamodel	

4.3.9 Ramp	Meter	System	Component	Fault	Tree	

In	the	Subchapter	3.4.2,	the	constructed	conventional	Fault	Tree	based	on	the	five	

RMS	faults	identified	in	the	original	study	of	the	RMS	in	(Ingram	et	al.	2014)	as	depicted	

in	the	Error!	Reference	source	not	found.	is	revisited	in	Subchapter	4.2	for	the	basis	of	

functional-based	 faults	 (Operational	 faults).	Again,	 in	 this	 subchapter,	 the	 constructed	

conventional	Fault	Tree	is	revisited	for	the	basis	of	structural-based	faults	(Faulty	traffic	

light)	of	RMS.	The	developed	transformation	method	is	applied	to	the	Class	model	of	RMS	

Chapter	4	

	

145	

	

in	Figure	3.11	to	generate	a	component	Fault	Tree	that	concerns	the	facilities	of	the	RMS	

that	modelled	in	UML	Classes.	

Based	on	the	Classes	to	Fault	Tree	transformation	discussed	in	Subchapter	4.3.3,	

Classes	with	 Composition	 relationship	 are	 allowed	 for	 the	 Fault	 Tree	 transformation.	

Classes	with	other	relationships	such	as	Association,	Generalisation,	and	Aggregation	are	

not	involved	in	the	Fault	Tree	transformation.	According	to	the	Class	model	of	RMS,	three	

Classes	in	Composition	are	identified:	“Data	Transceiver”	(,:),	“Data	Transmitter”	(,W),	
and	“Data	Receiver”	(,X).	The	part	Classes,	“Data	Transmitter”	(,W),	and	“Data	Receiver”	
(,X),	are	assumed	as	a	complete	part	Classes	to	the	owner	Class,	“Data	Transceiver”	(,:).	
Therefore,	complementary	Class	is	not	necessary	to	consider	in	the	Class	structure.	

The	 material	 equivalence	 statement	 of	 the	 Class	 is	 structured	 as	+: ↔ +W ∧ +X .	
Then,	contrapositive	is	applied	to	the	statement	for	fault	viewpoint.	Without	considering	

the	probability	analysis,	by	applying	the	rules	developed	in	(4.3.9.),	(4.3.10),	(4.3.11),	and	

(4.3.12),	the	fault	events	of	the	facilities	are	generated	as	=: ≡ =W ∨ =X.	Finally,	based	on	
the	 structural	 fault	 events,	 a	 component	 Fault	 Tree	 of	 the	 facilities	 is	 generated	 as	

depicted	in	Figure	4.17.	The	top	event	of	the	generated	Fault	Tree	is	transformed	from	

the	 owner	 Class	 and	 all	 the	 part	 Classes	 are	 transformed	 into	 basic	 events	 which	

connected	by	OR-gate	to	the	top	event.	The	 facilities	of	RMS	is	modelled	 in	UML	Class	

without	multiplicity.	Therefore,	the	consideration	of	multiplicity	for	redundant	and	more	

than	 one	 of	 the	 same	 facilities	 in	 the	 system	 is	 not	 applicable	 for	 the	 expansion	 of	

structural	fault	events.	

	

	

f4

f5 f6

Chapter	4	

	

146	

	

Figure	4.17:	The	Ramp	Meter	System	Structural	Fault	Tree	

	

The	Class	model	 in	Figure	3.11	 is	a	modified	version	 from	the	original	work	 in	

(Ingram	et	al.	2014).	In	the	original	work,	the	TMSoS	model	is	structured	for	considering	

fault	tolerant	design	within	the	SoS.	The	fault	tolerant	is	designed	for	analysing	redundant	

CSs	in	the	SoS.	In	this	thesis,	a	complete	Class	model	is	considered	for	a	holistic	viewpoint	

of	the	corresponding	traffic	management	system.	The	complete	Class	model	of	TMSoS	can	

be	used	to	demonstrate	the	transformation	from	facilities	that	modelled	in	UML	Class	to	

Fault	Tree.		

	

4.4 Summary	 of	 Formal	 Transformation	 Method	 for	 Automated	 Fault	 Tree	
Generation	from	Single	UML	System	Model	

In	 this	 chapter,	 two	 formal	 transformation	 methods	 have	 been	 separately	

developed	 for	generating	static	 type	of	Fault	Trees	 from	system	models	developed	by	

using	the	graphical	language,	UML.	The	methods	developed	align	with	current	industrial	

practices	 in	 early	 state	 system	 assurance	 (Zeller	 et	 al.	 2016)	 and	 advances	 existing	

approaches	 in	 terms	 of	 accommodating	 system	 model	 availability	 (Majdara	 &	

Wakabayashi	 2009),	 (Bhagavatula	 et	 al.	 2016)	 and	 incorporated	 mathematical	 rigor	

(Mhenni	et	al.	2014),	(Yakymets	et	al.	2013).	

The	development	 of	 the	 first	 transformation	method	 is	 based	on	propositional	

logic	 and	 probability	 theory	 to	 allow	 control	 flows	 modelled	 in	 UML	 activities	 to	 be	

transformed	into	semantically	equivalent	Fault	Trees.	A	new	concept,	FPC,	is	introduced	

as	an	intermediate	step	to	facilitate	the	transformation	method.	The	formal	basis	of	the	

transformation	method	guarantees	the	generated	fault	Tree	to	be	semantically	correct.	

An	 important	 finding	 is	 revealed	where	 the	 formal	 approach	 suggests	 that	mappings	

should	be	based	on	the	relational	structure	between	entities	and	not	just	entity-to-entity	

relationships.	 Therefore,	 as	 the	 relational	 structure	 of	 system	 behaviour	 is	 preserved	

Chapter	4	

	

147	

	

through	the	transformation,	the	generated	Fault	Tree	will	be	named	functional	Fault	Tree	

in	the	rest	of	this	thesis.	

The	development	of	the	second	transformation	method	is	based	on	propositional	

logic	and	 relationship	 to	allow	 the	hierarchical	 structure	of	 systems	modelled	 in	UML	

Classes	 to	 be	 transformed	 into	 semantically	 equivalent	 Fault	 Trees.	 To	 enable	 the	

transformation,	 complementary	 Class	 is	 introduced	 as	 an	 assumption	 to	 ensure	

completeness	in	the	hierarchical	modelling	of	the	system.	In	this	transformation,	only	the	

hierarchical	 structure	 of	 a	 system	 is	 considered,	 the	 operations	modelled	 in	 the	UML	

Classes	will	 be	 considered	 in	 the	 transformation	method	 in	Chapter	5.	 The	 generated	

Fault	Tree	will	be	named	as	component	Fault	Trees	in	the	rest	of	this	thesis.	

The	semantic	interpretation	of	the	Activity	and	Class	Diagrams	is	grounded	to	the	

used	 of	 propositional	 calculus.	 The	 semantics	 interpretation	works	 based	 on	 the	 five	

control	flows	in	Activity	Diagram	and	Composition	relationship	in	Class	Diagram	which	

are	 used	 in	 system	 modelling.	 By	 using	 propositional	 calculus,	 the	 semantic	

interpretation	of	the	five	control	flows	and	Compositional	relationship	become	formal.	

This	 gives	 a	direct	 and	 fixed	 interpretation.	However,	 the	models	have	 to	be	 changed	

whenever	new	specification	is	needed	for	the	system.	Furthermore,	the	failure	semantics	

for	the	Activity	Diagram	and	Class	Diagram	are	addressed	at	the	crash	failure.	This	means	

the	failure	modelling	is	designed	from	the	perspective	of	total	failure	of	the	system.	

To	 support	 the	 implementation	 of	 the	 transformations,	 two	 overarching	

metamodels	were	developed	 to	bridge	 the	domain-specific	metamodels	 introduced	 in	

Chapter	 3.	 First,	 an	 AM-FPC-FT	 overarching	metamodel	was	 developed	 to	 bridge	 the	

metamodels	 of	 Activity	 models,	 FPC,	 and	 Fault	 Trees.	 Second,	 a	 CM-FT	 overarching	

metamodel	 was	 developed	 to	 bridge	 the	 metamodels	 of	 Classes	 in	 Composition	

relationship	and	Fault	Trees.	The	 formal	basis	of	 the	 transformation	method	 together	

with	 the	 overarching	 metamodels	 should	 facilitate	 platform-independent	

implementations	of	automated	Fault	Trees	generation	from	well-formed	UML	models.	

To	 demonstrate	 and	 evaluate	 the	 applicability	 of	 the	 methods,	 the	 developed	

transformation	methods	were	applied	 to	 the	RMS	case	study	 introduced	 in	Chapter	3.	

Chapter	4	

	

148	

	

Fault	 Tree	 qualitative	 analyses	 were	 then	 carried	 out	 to	 evaluate	 the	 quality	 of	 the	

modelled	system	architectures.

	

149		

	

AUTOMATED	FAULT	TREE	GENERATION	FROM	INTEGRATED	UML	

SYSTEM	MODELS	

5.1 Introduction	

The	functional	and	component	Fault	Trees	in	the	previous	chapter	are	generated	

from	 the	 respective	 UML	 Activity	 and	 Class	 models	 by	 using	 two	 separated	 formal	

transformation	methods.	However,	in	a	conventional	Fault	Tree,	functional	and	structural	

aspects	of	 fault	and	failure	are	often	bounded	in	one	tree.	Therefore,	 in	this	chapter,	a	

transformation	method	 Fault	 Tree	 is	 developed	 to	 integrate	 functional	 and	 structural	

aspects	of	system	failure	based	in	one	tree.	The	implementation	of	allocation	for	system	

modelling	in	SysML	is	discussed	in	this	chapter.	The	concept	of	allocation	is	adopted	in	

facilitation	 that	 will	 be	 introduced	 in	 the	 transformation	 method.	 The	 concept	 of	

facilitation	is	introduced	to	differentiate	the	usual	use	of	allocation	in	SysML	which	is	not	

capable	to	model	complicated	situations	in	which	individual	functions	are	not	allocated	

to	 individual	 components.	 The	 implementation	 of	 the	 concept	 in	 the	 transformation	

method	uses	Activity	model	as	the	backbone	for	generating	Fault	Tree	that	will	be	named	

integrated	 Fault	 Tree.	 The	 presentation	 of	 the	 integrated	 Fault	 Tree	 demonstrates	 a	

hierarchy	structure	of	functional	and	structural	fault	events.	The	transformation	method	

with	 facilitation	 also	 introduces	 separation	 of	 contracted	 fault	 event	 in	 the	 FPC	 into	

individual	fault	event	for	identifying	structural	fault	event	that	forms	basic	events.	The	

embedded	functions	(operations)	in	the	Classes	can	then	be	used	to	decompose	the	basic	

events	of	 the	 integrated	Fault	Event.	By	using	 the	concept	of	ownership	by	which	 the	

Classes	 own	 the	 respective	 functions,	 an	 elaborated	 Fault	 Tree	 is	 generated.	 The	

elaborated	 Fault	 Tree	 presents	 transfer	 fault	 events	 and	 an	 insight	 of	 exploring	 the	

transformation	method.	The	transformation	method	with	facilitation	and	ownership	for	

integrated	 Fault	 Tree	 and	 elaborated	 Fault	 Tree	 generation	 is	 applied	 to	 TMSoS	 case	

study.	The	generated	Fault	Trees	can	be	used	to	analyse	the	safety	and	reliability	of	a	

system	through	system	functions	and	system	components.		

Chapter	5	

	

150	

	

The	remainder	of	this	chapter	is	organised	into	three	subchapters	as	follows.	

Subchapter	5.2:	Allocation	

In	the	modelling	language,	the	concept	of	allocation	has	been	introduced	by	the	OMG.	The	

allocation	is	implemented	in	SysML	as	a	stereotype.	The	application	of	allocation	in	SysML	

is	discussed.	The	discussion	also	includes	the	types	of	allocation	that	has	been	organised	

in	SysML.	

Subchapter	5.3:	Facilitation	

The	 concept	 of	 facilitation	 is	 introduced	 in	 a	development	of	 a	 formal	 transformation	

method	for	generating	a	Fault	Tree	that	integrates	functional	and	structural	faults.	The	

Fault	 Tree	 which	 then	 called	 integrated	 Fault	 Tree	 presents	 hierarchy	 structure	 of	

functional	and	structural	fault	events.	The	transformation	method	uses	Activity	model	as	

the	backbone	for	the	facilitation	and	the	integrated	Fault	Tree	generation.	An	overarching	

metamodel	of	the	formal	transformation	method	is	developed	to	bridge	the	metamodels	

of	FPC	and	Fault	Tree.	The	formal	transformation	method	is	applied	on	TMSoS	case	study	

for	demonstrating	the	concept	of	facilitation	in	the	transformation	method.		

Subchapter	5.4:	Ownership	

A	concept	of	ownership	is	also	introduced	as	a	part	of	the	transformation	method.	The	

ownership	 is	 applied	 to	 Classes	 by	 which	 facilities	 own	 the	 embedded	 functions,	 i.e.	

Operations.	With	 the	 implementation	of	ownership,	 the	basic	events	 in	 the	 integrated	

Fault	Tree	will	be	elaborate.	A	new	Fault	Tree	named	elaborated	Fault	Tree	is	presented	

with	the	implementation	of	transfer	events.	

Subchapter	 5.5:	 Summary	 of	 Automated	 Fault	 Tree	 Generation	 from	 Integrated	

UML	System	Models	

A	development	of	formal	transformation	method	for	integrating	functional	and	structural	

viewpoints	 of	 UML	 system	 models	 in	 a	 Fault	 Tree	 is	 summarised.	 In	 addition,	 the	

structure	 of	 formal	 transformation	methods	developed	 in	 Chapter	 4	 and	Chapter	 5	 is	

presented.	

Chapter	5	

	

151	

	

5.2 Allocation	

A	function	needs	a	medium	in	order	to	be	realised,	i.e.	a	component.	A	collection	

of	 functions	 can	 also	 produce	 a	 higher-level	 functionality	 that	 can	 be	 understood	 as	

emergent	behaviour.	As	mentioned	in	Subchapter	4.2.4,	through	allocation	of	functions	

to	 system	 components,	 the	 achievement	 of	 system	 behaviour	 can	 be	 observed.	

Furthermore,	in	system	thinking	and	modelling,	function	at	the	system	level	is	initiated	

by	functions	at	subsystem	level.	As	depicted	in	Figure	5.1(a),	a	system	can	be	composed	

of	subsystems	 that	may	or	may	not	have	 further	composition.	According	 to	 INCOSE,	a	

system	 can	 be	 presented	 as	 a	 black	 box	 which	 supressing	 the	 subsystems	 and	 their	

interrelation.	 These	 subsystems	 are	 established	 and	has	 their	 interrelations	by	which	

enable	 the	 system	 to	 achieve	 its	 stated	 purpose	 (International	 Council	 on	 Systems	

Engineering	 2015).	 The	 interrelation	 between	 subsystems	 can	 be	 interpreted	 in	 the	

presentation	 of	 Activity	 Diagram	 as	 shown	 in	 Figure	 5.1(b).	 The	 functions	 of	 both	

subsystems,	Subsystem	1	and	Subsystem	2,	are	manifested	by	sequence	of	actions	which	

started	 with	 Action	*5 	of	 Subsystem	 1	 and	 ended	 with	 Action	*: 	of	 Subsystem	 2.	
Therefore,	the	functions	of	Subsystem	1	and	Subsystem	2	are	interrelated.	Each	of	the	

functions	are	contributed	to	the	functionality	of	the	system.	

	

	

	

(a)	 (b)	

Figure	5.1:	Structure	Level	of	Functions	and	System	presented	by:(a)	System	
Hierarchy	(b)	Activity	Diagram	

Chapter	5	

	

152	

	

Allocation	 of	 functions	 plays	 an	 important	 role	 in	 system	modelling	 especially	

system	architecture	modelling.	As	stated	in	(Price	1985),	allocation	of	function	is	the	most	

basic	system	design	decisions	in	design	phase.	This	is	because,	allocation	of	functions	has	

become	a	systematic	approach	in	designing	man	and	machine	integrated	system.	This	is	

supported	by	(Lowe	&	Lowe	2015)	which	emphasises	on	how	system	design	influences	

human	 performance	 and	 safety	 with	 different	 parts	 of	 system	 can	 be	modelled	 with	

allocation	of	functions.	The	concept	of	allocation	of	functions	is	an	approach	for	modelling	

based	on	multiple	viewpoints.	Hence,	system	modelling	can	be	decomposed	into	several	

categories	 such	 as	 behaviour	 and	 structure	 modelling.	 This	 includes	 interaction	 and	

dependencies	in	the	system	that	can	be	viewed	on	the	system	architecture	design.	

In	UML	Activity,	allocation	of	functions	can	be	presented	by	using	swimlane	(c.f.	

Table	3.1).	However,	SysML	has	an	improvised	version	for	modelling	Activities	with	the	

implementation	of	allocation.	The	concept	of	allocation	is	extensively	defined	in	which	to	

organise	cross-association	elements	within	various	structure	models.	Allocation	 is	 the	

term	used	to	represent	general	relationships	 that	map	one	model	element	 to	another.	

Allocation	can	be	used	in	various	ways	for	specific	purpose	such	as	to	allocate	functions	

to	structure	of	a	system.	In	some	cases	that	involve	computing,	allocation	technique	can	

be	applied	to	allocate	software	to	hardware.	Based	on	SysML	Specification,	 the	typical	

types	of	allocation	in	system	engineering	are	organised	as	follows	(Object	Management	

Group	2017a):	

1.	 Behaviour	 allocation.	 Allocation	 of	 behaviour	 (function)	 to	 structure,	 or	
behaviours	(functions)	to	behavioural	(functional)	features	such	as	operation.	

2.	 Flow	allocation.	Allocation	of	flow	of	one	system	representation	to	flow	in	other	
system	representation	such	as	flow	in	functional	to	flow	in	structural,	i.e.	flow	in	
Activity	and	flow	in	Block,	and	control	flow	to	object	flow	in	a	Activity.	

3.	 Structure	allocation.	Allocation	of	components	between	separated	systems.	

According	 to	SysML	specification,	 the	 common	practice	of	using	allocation	 is	with	 the	

allocation	of	Activities	to	Blocks.	This	is	classified	as	behaviour	allocation	that	allocate	

functions	 to	 components.	 In	 system	modelling,	 allocation	 can	 be	 presented	 in	 several	

ways.	As	depicted	in	Figure	5.2,	in	SysML	Activity	Diagram,	a	compartment	of	‘allocatedTo’	

Chapter	5	

	

153	

	

is	 displayed	 on	 an	 action	 to	 define	which	 element	 in	 system	model	 that	 the	 action	 is	

allocated	to	the	stated	place.	

Figure	5.2:	Application	of	Allocation	for	an	Action	in	SysML	(Object	Management	
Group	2017a)	

	

In	another	example	on	the	presentation	of	using	allocation	 in	SysML	Activity	model,	a	

swimlane	that	specified	for	<<allocate>>	is	displayed.	The	<<allocate>>	is	continued	with	

specific	system	component’s	name.	With	this	presentation,	one	can	notice	that	all	actions	

that	modelled	in	the	specific	swimlane	are	allocated	to	the	system	component	(facility).	

	 Nevertheless,	 the	 application	 of	 behaviour	 allocation	 is	 restricted	 to	 view	 the	

allocation	from	the	lens	of	action.	In	addition,	the	structure	allocation	which	can	allocate	

to	multiple	facilities	is	typically	applied	to	just	between	facilities.	Therefore,	an	improved	

concept,	 namely	 Facilitation,	which	 extends	 the	 concept	 of	 allocation	 is	 introduced	 to	

enable	 a	 clearer	 representation	 of	 more	 complex	 allocations.	 The	 idea	 is	 look	 the	

allocation	reversely	by	describing	the	mechanism	through	facility	(facilities)	facilitating	

action(s).	This	enables	the	modelling	of	complicated	allocations	such	as	a	set	of	facilities	

facilitating	an	action.	The	main	contribution	of	facilitation	is	to	allow	modelling	a	subset	

of	a	set	of	facilities	facilitating	one	action,	while	another	subset	of	the	same	set	of	facilities	

facilitating	another	action.	

	

5.3 Facilitation	

In	 this	 subchapter,	 the	 concept	 of	 allocation	 is	 adopted	 into	 the	 concept	 of	

facilitation	 that	 will	 be	 introduced.	 In	 the	 transformation	 method,	 facilitation	 allows	

Chapter	5	

	

154	

	

different	viewpoint	through	the	system	modelling.	The	concept	of	facilitation	combines	

system	models	that	modelled	in	UML	Activity	and	UML	Class.	Facilities	in	the	UML	Class	

are	identified	to	which	facilitate	actions	in	the	UML	Activity.	The	unique	identification	of	

facility	in	the	Class	model	is	used	to	remark	the	facilitation	on	the	actions	in	the	Activity	

model	and	keep	the	traceability	during	the	facilitation	process.	

The	application	of	facilitation	is	not	a	new	innovation.	The	facilitation	can	be	seen	

as	allocation	of	information	in	UML	Deployment	Diagram.	The	allocation	of	information	

in	 UML	 Deployment	 Diagram	 shows	 the	 distribution	 of	 logical	 or	 physical	 artefacts	

including	software.	Similar	to	other	UML	diagrams,	the	information	in	the	Deployment	

Diagram	is	represented	as	nodes.	The	nodes	are	connected	to	create	networked	systems.	

The	networked	system	is	described	as	an	architecture	of	a	system	at	specification	level	

or	instant	level.	The	idea	of	facilitation	is	not	recreating	the	Deployment	Diagram	but	to	

locate	 lower	 level	 into	 higher	 level	 information	 of	 a	 system	 being	 modelled.	 As	 the	

developed	 method	 is	 based	 on	 transformation	 from	 the	 behavioural	 viewpoint,	 the	

facilitation	connects	a	higher	level	to	a	lower	level	through	the	use	of	a	system	element	

(i.e.	 physical	 or	 abstract)	 facilitating	 a	 function.	 This	 allows	 hierarchical	 structure	

between	Activity	and	Class.	

Facilitation	 of	 component	 to	 function	 of	 an	 individual	 system	 has	 a	 strong	

correlation.	For	a	normal	condition	of	a	system,	multiple	components	are	integrated	as	a	

system	to	facilitate	the	system	for	serving	its	specified	functions.	This	can	be	illustrated	

by	an	example	of	a	cyber-physical	system	(CPS),	functionality	of	a	vehicle	control	system	

is	relied	upon	integrated	various	subsystems	(Baheti	&	Gill	2011).	Another	example	of	

facilitation	 of	 system	 component	 to	 system	 function,	 in	 a	 viewpoint	 of	 computerised	

system,	a	multiple	of	software	application	is	supported	by	a	piece	of	hardware	(Laprie	et	

al.	 1990).	 Apart	 of	 achieving	 specified	 purposes,	 from	 a	 failure	 viewpoint,	 both	 are	

anticipated	 for	 the	 system	 failure	 dependency.	 For	 example,	 from	 a	 viewpoint	 of	 on	

ground	transport	system,	the	function	of	fuel	system	for	supplying	fuel	to	engine	can	be	

affected	by	broken	cylinder	or	leaked	storage	tank.		Conversely,	structural	failure	can	be	

caused	by	 functional	 failure	 as	well	 as	by	malfunction.	 For	 example,	with	 considering	

filament	wound	 composite	 tubes,	 an	 operating	 tube	 is	 subjected	 by	 internal	 pressure	

Chapter	5	

	

155	

	

(Martins	et	al.	2012).	This	means	a	higher	internal	pressure	can	damage	the	composite	

tube.	

The	concept	of	 facilitation	 is	 implemented	 for	 the	 transformation	method	 from	

UML	system	models	 to	Fault	Tree	generation.	Practically,	 a	Fault	Tree	 is	generated	 to	

analyse	 safety	 and	 reliability	 of	 a	 system	 through	 the	 elements	 of	 the	 system	 such	 as	

function	 and	 components.	 Therefore,	 by	 implementing	 the	 concept	 of	 facilitation,	 the	

transformation	method	integrates	functional	failure	and	structural	failure	of	a	system	in	

the	generated	Fault	Tree.	The	concept	is	applied	to	the	system	modelling.	The	actions	that	

modelled	in	UML	Activity	are	facilitated	by	facilities	that	have	been	modelled	in	UML	Class.	

Then,	the	model	is	viewed	in	the	fault	viewpoint	prior	the	transformation	to	Fault	Tree.	

In	the	rest	of	this	thesis,	the	generated	Fault	Tree	will	be	named	integrated	Fault	Tree.	

	

5.3.1 Activity	Model	as	the	Backbone	for	Facilitation	of	Class	

In	the	work	presented	in	Chapter	4,	by	using	the	formal	transformation	method,	a	

complete	 transformation	 from	 UML	 Activity	 model	 to	 Fault	 Tree	 generation	 with	

preserved	 relational	 structure	 of	 system	 behavior	 through	 the	 transformation	 is	

observed.	However,	 in	the	work	presented	in	Subchapter	4.2,	the	generated	functional	

Fault	Tree	is	exclusively	consolidated	of	only	functional	faults	and	failures.	Therefore,	the	

UML	Activity	model	will	be	used	as	the	backbone	to	implement	the	concept	of	facilitation	

in	 the	 transformation	 method.	 Furthermore,	 in	 the	 common	 practice	 of	 Fault	 Tree	

construction,	 the	 system	 failure	 is	 defined	 earlier	 for	 deductive	 reasoning	 of	 the	

occurrence	of	the	failure.	

To	implement	mathematical	basis	in	the	facilitation,	the	propositions	for	action,	() 	
=	The	Action	N	complete	execution,	and	facility,	+) 	=	The	Facility	N	is	available,	defined	in	
Chapter	 3,	 (3.1)	 and	 (3.2),	 are	 employed.	 Rationally,	 for	 an	 action	 to	 complete	 its	

execution,	the	action	must	be	facilitated	by	at	least	one	facility.	Similarly,	in	vice	versa,	

the	availability	of	a	facility	means	execution	of	action	is	expected.	Thus,	mathematically,	

the	relationship	between	action	and	facility	can	be	depicted	by	using	Euler’s	diagram	as	

Chapter	5	

	

156	

	

depicted	 in	 Figure	 5.3.	 From	 the	 Euler’s	 diagram,	 one	 can	 relate	 that	 the	 Facility	 N	
facilitates	Action	N	to	complete	its	execution.	

	

	

Figure	5.3:	Relationship	between	an	Action	and	a	Facility		

	

With	the	defined	propositions,	the	relation	between	Action	N	and	Facility	N		can	be	formed	
as	follow,	

() ↔ +) .	 	 	 	 	 (5.1)	

Similar	 to	 the	 concept	 implemented	 for	 Composition	 relationship,	 the	 formation	 of	

material	equivalence	statement	can	be	read	as	Activity	N	complete	execution	if	and	only	if	
the	Facility	N	is	available.	This	means,	in	reverse	direction,	this	statement	can	be	also	read	
as	 Facility	N 	is	 available	 if	 and	 only	 if	 the	 Activity	N 	completes	 its	 execution.	 Thus,	 as	
depicted	 in	 Table	 5.1,	 when	 both	 of	 Activity	 N 	and	 Facility	 N 	are	 equivalent	 then	 the	
statement	is	True.	This	means,	the	Activity	N	will	completes	its	execution	only	with	the	
availability	 of	 Facility	N .	 In	 other	words,	 the	 Activity	N 	will	 not	 complete	 its	 execution	
without	the	availability	of	Facility	N.	

	

	

	

	

	

Chapter	5	

	

157	

	

Table	5.1:	Truth	Table	of	Material	Equivalence	between	Action	and	Facility		

	() 	 +) 	 () ↔ +) 	

False	 False	 True	

False	 True	 False	

True	 False	 False	

True	 True	 True	

	

In	most	of	the	cases,	at	the	high	level	system,	a	function	(action)	could	be	facilitated	by	

more	 than	 one	 component	 (facility),	 and	 a	 component	 can	 facilitate	 more	 than	 one	

function.	For	example,	when	two	facilities	(assume	these	 facilities	are	not	redundant),	

Facility	,5	and	Facility	,6,	are	required	to	facilitate	only	one	Action	*5,	mathematically,	
the	statement	can	be	performed	as,		

(5 ↔ +5 ∧ +6.	 	 	 	 	 	 (5.2)	

This	statement	represents	the	Action	*5complete	its	execution	if	and	only	if	both	Facility	
,5	and	Facility	,6	are	available.	From	system	modelling	viewpoint,	one	can	observe	that	
the	Action	*5is	facilitated	by	both	Facility	,5and	Facility	,6.	

The	 facilitation	are	categorised	 into	 two	 types:	 single	and	multiple.	Both	of	 the	

types	of	facilitation	can	be	applied	to	a	facility.	Based	on	the	discussion	of	the	facilitation	

of	system	components	to	system	functions,	one	way	to	present	the	facilitation	relation	in	

system	modelling	is	by	using	UML	system	models.		The	facilitation	is	firstly	presented	in	

Activity	model.	The	facilitation	can	be	presented	on	each	action	that	has	been	modelled	

in	UML	Activity.	The	action	is	facilitated	by	at	least	one	facility	which	has	been	modelled	

in	Class	model	of	the	same	system.	The	facilitation	provides	a	representation	of	a	subset	

of	a	set	of	facilities	facilitating	one	action,	while	another	subset	of	the	same	set	of	facilities	

facilitating	another	action	although	these	actions	are	modelled	in	the	same	swimlane.	The	

facilitation	uses	a	dashed	box	with	identification	number	of	the	respective	facility	in	the	

Class	model	located	at	the	top	left	corner.	The	dashed	box	is	placed	as	the	outer	layer	of	

Chapter	5	

	

158	

	

the	 corresponding	 action	 to	 express	 the	 facilitated	 facility	 of	 the	 action.	 Further	

description	and	example	of	each	type	of	facilitation	are	explained	in	Table	5.2.	

	

Table	5.2:	Types	of	Facilitation	

Types	of	Facilitation	 Description	

	
Single	

A	facilitation	of	one	facility	to	an	action.	This	type	of	

facilitation	is	used	as	the	one	facility	facilitates	an	

action.	

	
Multiple	

A	facilitation	of	multiple	facilities	to	an	action.	This	

type	 of	 facilitation	 is	 used	 as	 a	 set	 of	 facilities	

facilitates	an	action.	

	

The	example	of	multiple	type	of	facilitation	in	which	three	facilities	facilitate	an	

action	is	depicted	as	in	Figure	5.4.	The	action	is	surrounded	by	a	dashed	box.	At		the	top	

left	corner	of	the	dashed	box	are	the	unique	identification	of	the	facilities	that	facilitate	

the	particular	action.		Based	on	the	figure,	the	“collect	Data”	(*5)	action	is	facilitated	by	
three	facilities,	Facility	,5,	Facility	,6,	and	Facility	,[.	The	Action	*5	has	an	outer	layer	of	
dashed	 line	with	,5, ,6,	and	,[identification	 number	 of	 facilities	 that	 can	 be	 traced	 in	
Class	model	located	at	the	top	left	corner	of	the	box.	

	

Chapter	5	

	

159	

	

	

Figure	5.4:	Facilitation	of	Three	Facilities	to	an	Action	

	

5.3.2 Facilitation	in	Fault	Propagation	Chain	

In	 this	 subchapter,	 the	 facilitation	of	 facilities	 to	 actions	 in	 the	UML	Activity	 is	

applied	 to	 transformation	 method	 for	 generating	 integrated	 Fault	 Tree.	 As	 the	 UML	

Activity	 can	be	 transformed	 into	 FPC	 for	 functional	 fault	 viewpoint,	 the	 facilitation	of	

facilities	to	action	can	also	be	transformed	into	the	FPC	for	structural	fault	viewpoint.	This	

transformation	integrates	structural	fault	events	and	functional	fault	events	into	the	FPC	

presentation.	

For	the	FPC	presentation,	following	the	formal	transformation	methods	in	Chapter	

4,	 contrapositive	 is	 applied	 to	 present	 the	 facilitation	 of	 facilities	 to	 actions	 in	 fault	

viewpoint.	 By	 using	 the	 statement	 in	 (5.2)	 as	 the	 example,	 the	 fault	 viewpoint	 of	 the	

statement	is	formed	as	follows,	

¬(5 ↔ ¬+5 ∨ ¬+6,	 	 	 	 	 (5.3)	

and	the	negated	propositions	can	be	simplified	as,	

;5 ↔ =5 ∨ =6.	 	 	 	 	 	 (5.4)	

The	application	of	contrapositive	is	to	acquire	fault	viewpoint	for	Fault	Tree	generation.	

As	 the	 contraposition	 statement	presented	 in	 (5.4),	 Action	*5 	is	 failed	 to	 complete	 its	
execution	if	and	only	 if	either	Facility	,5	or	Facility	,6	is	not	available	at	the	 least.	This	
relates	back	 to	 the	 logic	of	Action	and	Facility	 in	 the	 first	 row	of	Table	5.1	where	 the	

statement	is	True	when	Action	and	Facility	are	both	False.	

Chapter	5	

	

160	

	

The	facilitation	of	facilities	to	actions	in	the	fault	viewpoint	can	be	presented	into	

the	 FPC.	 The	 structural	 fault	 events	 are	 also	 presented	 by	 using	 blocks	 with	 specific	

identification.	The	structural	fault	events	are	connected	to	the	corresponding	functional	

fault	events,	as	 facilitate	 to	 in	 fault	viewpoint,	by	using	double	(start	and	end)	dashed	

arrow.	For	example,	as	depicted	in	Figure	5.5,	the	two	facilities	fault	events	are	connected	

to	an	action	fault	event	by	using	the	double	dashed	arrow.	The	double	dashed	arrow	is	

used	as	 following	 logical	model	as	 in	(5.4),	 i.e.	material	equivalence.	The	 facilitation	 is	

classified	as	multiple	type	of	facilitation.	

	

	

Figure	5.5:	Multiple	Type	of	Facilitation	on	Fault	Propagation	Chain	

	

The	facilitation	of	facilities	to	actions	can	be	observed	in	both	success	and	fault	

viewpoints.	Based	on	the	concept	of	facilitation	of	facilities	to	actions,	in	fault	viewpoint,	

one	can	observe	the	failure	of	facilities	contributes	to	the	failure	of	correspond	actions.	

This	 can	 be	 clarified	 by	 presenting	 the	 calculation	 of	 probability	 of	 the	 failures.	 The	

probability	calculation	is	supported	by	two	assumptions	as	follows:	

1.	 Every	facility	has	probability	of	failure,	and	

2.	 Probability	of	failures	of	different	facilities	is	independent	to	each	other.	

The	latter	assumption	leads	to	another	level	of	detail	which	is	not	considered	in	

this	current	situation,	i.e.	where	anything	propagates	into	facility	is	independent	to	the	

facility.	 Therefore,	 the	 probability	 of	 failure	 of	 action	 which	 is	 discrete	 as	 defined	 in	

a1

f1 f2

Chapter	5	

	

161	

	

Chapter	4,	is	determined	by	probability	of	failure	of	the	contributed	facility,	i.e.	the	output	

of	action	is	determined	by	facility.	

Probability	of	failure	of	each	fault	event	on	the	chain	in	Figure	5.5	is	denoted	as	

>(;5)	for	;5,	>(=5)	for	=5,	 and	>(=5)	for	=6.	With	 the	consideration	of	Assumption	1	and	
Assumption	 2,	 the	 probability	 of	 failure	 of	 the	 Action	*5 ,	>(;5) ,	 is	 contributed	 by	
probability	of	failure	of	Facility	,5	and	Facility	,6,	>(=5)	and	>(=6).	One	way	to	calculate	
the	probability	of	 failure	 is	 through	calculating	 the	probability	of	success	which	 is	 the	

yield	of	one	minus	the	value	of	probability	of	success.	This	can	be	calculated	based	on	J	
experiment	 runs	 on	 the	 system.	 To	 calculate	 the	 probability,	 a	 truth	 table	 of	 the	 two	

facilities	is	constructed	as	in	Table	5.3.	

	

Table	5.3:	Truth	Table	of	Probability	of	Failure	

=5	 =6	 =5 ∧ =6	

Failure	 Failure	 J>(=5)>(=6)
J 	

Failure	 Success	
J>(=5)(1 − >(=6))

J 	

Success	 Failure	 J(1 − >(=5))>(=6)
J 	

Success	 Success	 J(1 − >(=5))(1 − >(=6))
J 	

	

In	the	las	row	of	the	right	column	of	the	table	defines	the	probability	of	success	of	

both	Facility	,5	and	Facility	,6.	The	alternative	way	to	calculate	the	probability	of	failure	
of	both	Facility	,5	and	Facility	,6	is	by	deducting	the	probability	of	success	from	one.	Thus,	
based	on	the	facilitation	of	facilities	to	action,	probability	of	failure	of	Action	*5	can	be	
calculated	from	the	probability	of	failure	of	Facility	,5	and	Facility	,6	as	follows,	

	

Chapter	5	

	

162	

	

>(;5) = 1 − (1 − >(=5))(1 − >(=6)),	

>(;5) = >(=5) + >(=6) − >(=5)>(=6).	 	 	 (5.5)	

From	the	probability	calculation	in	(5.5),	one	can	relate	with	(5.4)	of	facilitation	

of	facilities	to	action.	Furthermore,	the	calculation	can	be	observed	having	the	same	

operation	 with	 OR-gate	 in	 Fault	 Tree.	 Therefore,	 a	 Fault	 Tree	 of	 structural	 and	

functional	fault	illustrated	as	in	Figure	5.6	can	be	generated	with	two	structural	faults	

as	basic	events	and	functional	fault	as	the	top	event.	The	failure	probability	of	the	top	

event	can	be	calculated	based	on	statistical	probabilities	of	 the	corresponding	basic	

event	on	facility	failure.	

The	probability	definitions	proposed	for	the	analysis	of	facilitation	is	based	on	

probability	calculation	on	conventional	Fault	Tree.	The	probability	is	defined	based	on	

the	failure	rate	of	facility	which	can	be	calculated	accordingly.	This	is	because,	in	reality,	

a	failed	system	component	may	often	be	noticed	when	the	expected	system	function	

has	not	been	served.	In	terms	of	structure	and	behavior	modelling,	this	is	referred	to	

as	facilitation	of	system	components	to	system	functions	in	this	research.	For	example,	

if	two	system	functions	are	facilitated	by	a	system	component,	then	the	probability	of	

failure	of	the	system	component	contributes	to	probability	of	 failure	of	each	system	

function.	

Taking	 the	 facilitation	 on	 FPC	 in	 Figure	 5.5	 as	 an	 example,	 based	 on	 the	

probability	calculation,	the	FPC	can	be	transformed	into	a	Fault	Tree	that	consists	of	

two	basic	events	that	are	connected	by	an	OR-gate	to	an	intermediate	event	as	depicted	

in	 Figure	 5.6.	 Furthermore,	 based	 on	 probability	 equation	 in	 (5.5),	>(;5) 	can	 be	
considered	as	a	union	of	>(=5)	and	>(=6).	By	considering	the	Fault	Tree	structure,	the	
occurrence	 of	 a	 functional	 failure	 caused	 by	 the	 occurrence	 of	 a	 collection	 of	 basic	

events	of	structural	failures	can	be	observed.	

The	connection	between	basic	event	(structural	fault	event)	and	intermediate	

event	(functional	fault	event)	is	determined	by	the	type	of	facilitation,	i.e.	single	and	

multiple.	In	the	case	of	single	category	of	facilitation,	one	will	observe	a	basic	event	is	

Chapter	5	

	

163	

	

attached	to	its	 intermediate	event	without	any	logic	gate.	However,	a	group	of	basic	

events	that	connect	together	by	an	OR-gate	to	the	intermediate	event	is	obeyed	to	the	

multiple	type	of	facilitation.	

	

	

Figure	5.6:	Integrated	Fault	Tree	derived	from	(5.4)	

	

The	derivation	of	(5.5)	can	go	beyond	facilitation	of	two	facilities	to	an	action	i.e.	

three	 or	more	 facilities	 are	 facilitating	 an	 action.	 Therefore,	 a	 generic	 equation	of	 the	

contributing	failure	probability	is	derived	as,	

>(;)) = J − J∏ (1 − >(=)))v
) .	 	 	 	 (5.6)	

The	probability	of	failure	of	Action	*) ,	>(;)),	 is	contributed	by	the	deduction	of	sum	of	
probability	of	success	of	h	number	of	facilities	from	the	total	number	of	experiment,	J.	
Note	that,	N	of	functional	fault,	;,	and	N	of	structural	fault,	=,	are	not	the	same	but	they	are	
related	in	terms	of	failure	contribution	of	‘to’	and	‘from’,	i.e.	facilitation.	

	

5.3.3 Overarching	Metamodel	of	the	Transformation	of	Modelled	Facilitation	

to	Fault	Tree	

In	 this	 subchapter,	 the	metamodels	 of	 FPC	with	 facilitation	 and	 Fault	 Tree	 are	

considered	for	the	overarching	metamodel.	The	metamodel	of	facilitation	of	facilities	to	

actions	 is	 not	 considered	 	 for	 the	 overarching	 metamodel	 as	 the	 facilitation	 can	 be	

f1 f2

a1

Chapter	5	

	

164	

	

presented	 exactly	 in	 fault	 viewpoint	 of	 FPC.	 An	 F-FPC-FT	 overarching	 metamodel	 is	

presented	to	bridge	modelled	facilitation	in	FPC	presentation	and	Fault	Tree	Metamodel.	

The	 F-FPC-FT	 overarching	 metamodel	 is	 composed	 of	 seven	 metaclasses	 that	 are	

differentiated	 by	 white	 and	 dark	 scale	 (white	 and	 blue	 for	 the	 coloured	 version)	 as	

depicted	in	Figure	5.7.	Respectively,	the	two	colours	are	used	to	differentiate	the	FPC	and	

Fault	Tree	groups,	i.e.	left	and	right	positions	in	the	F-FPC-FT	overarching	metamodel.	

	

	

Figure	5.7:	Facilitation-Fault	Propagation	Chain-Fault	Tree	Overarching	
Metamodel	

	

In	FPC,	there	are	three	types	of	fault	events	identified	as	SingleFault,	ContractFault,	

and	FacilityFault	metaclasses	in	the	F-FPC-FT	overarching	metamodel.	The	first	two	fault	

events	are	defined	for	functional	fault	(c.f.	refer	AM-FPC-FT	overarching	metamodel	in	

Subchapter	4.2.7)	and	the	later	fault	event	is	defined	for	structural	fault.	The	SingleFault	

and	ContractFault	are	generated	from	transformation	method	developed	in	Subchapter	

4.2.	The	FacilityFault	in	the	FPC	is	generated	based	on	the	facilitation	of	facility	to	action	

discussed	in	previous	subchapters.	The	connections	between	functional	and	structural	

faults	based	on	facilitation	are	captured	by	<<facilitation>>	stereotype.	

The	functional	faults	are	transformed	as	output	event	in	Fault	Tree.	This	is	shown	

by	the	mapping	from	SingleFault	and	ContractFault	to	OutputEvent.	The	<<equivalence>>	

stereotype	on	the	mapping	lines	means	the	entity	from	FPC	is	mapped	exactly	onto	the	

entity	in	Fault	Tree.	For	the	structural	fault,	in	the	Fault	Tree,	it	is	transformed	to	the	basic	

Chapter	5	

	

165	

	

event.	This	presents	the	position	of	structural	fault	events	are	at	the	lowest	level	of	the	

Fault	Tree	that	shown	by	the	connection	between	FacilityFault	and	BasicEvent.	Similar	to	

connection	 between	 functional	 faults	 and	 output	 event,	 the	 connection	 between	

structural	 fault	and	basic	event	applies	<<equivalence>>	stereotype	to	show	the	exact	

mapping	 between	 entities.	 In	 the	 presentation	 of	 Fault	 Tree,	 all	 the	 basic	 events	 are	

connected	by	OR-gate	to	their	correspond	output	events	in	Fault	Tree.	

The	 F-FPC-FT	 overarching	 metamodel	 is	 the	 guideline	 for	 mapping	 the	

transformation	of	faults	defined	in	the	modelled	facilitation	in	FPC	to	the	integrated	Fault	

Tree	 generated.	 By	 using	 the	 overarching	 metamodel	 as	 a	 guideline,	 the	 process	 of	

transformation		which	includes	structural	fault	and	functional	fault	are	presented	in	the	

generated	Fault	Tree.	

	

5.3.4 Facilitation	Application	to	RMS	Case	Study	

The	Activity	model	and	Class	model	of	the	RMS	are	referred	to	demonstrate	the	

concept	 of	 facilitation.	 By	 using	 the	 transformation	 method	 with	 facilitation,	 the	

integration	of	functional	and	structural	fault	events	are	presented	in	the	generated	Fault	

Tree.	The	generated	Fault	Tree	will	be	named	integrated	Fault	Tree.	The	Fault	Tree	 is	

then	 used	 to	 analyse	 the	 safety	 and	 reliability	 of	 system	 through	 the	 occurrences	 of	

functional	and	structural	fault	events.	

The	modelled	facilities	in	the	Class	model	are	identified	by	which	facilitate	each	of	

actions	and	displayed	by	using	the	 introduced	 facilitation	presentation	on	the	Activity	

model.	 The	 facilities	 of	 TMSoS	 that	 facilitate	 each	 of	 the	modelled	 actions	 in	 Activity	

model	are	depicted	as	in	Figure	5.8.	Based	on	the	figure,	four	single	types	of	facilitation	

are	observed.	The	single	type	of	facilitation	is	applied	to	the	set	(,5\, *:),	(,Y, *Y),	(,Y, *Z),	
and	 (,Y, *[).	 In	 this	 case,	 only	 one	 facility	 facilitates	 one	 action.	 The	multiple	 type	 of	
facilitation	 is	applied	 to	 the	six	set	of	 (,5, ,6, ,[, *5),	 (,5, ,9, *6),	 (,5, ,W, *9),	 (,5, ,X, *W),	
(,5, ,Y, *X),	and	(,5, ,Z, *5\).	From	the	set	of	multiple	type	facilitation,	one	can	observe	
multiple	 facilities	 facilitate	 to	 one	 action.	 In	 an	 operating	 system	 that	 one	 can	 really	

Chapter	5	

	

166	

	

observe,	 several	 functions	 are	 facilitated	by	 the	 same	 facility.	 For	 this	 case	 study,	 the	

Facility	,5	and	Facility	,Y	can	be	seen	to	facilitate	more	than	one	action.		

	

	

Figure	5.8:	Facilitation	on	Activity	Model	of	Ramp	Meter	System	

	

Since	 the	Activity	model	 can	 be	 presented	 in	 fault	 viewpoint	 on	 FPC,	 by	 using	

material	 equivalence,	 the	 structural	 fault	 can	 also	 be	 presented	 on	 the	 same	 FPC	 as	

depicted	in	Figure	5.9.	At	this	point,	system	functions	and	system	components	of	RMS	can	

be	seen	in	fault	of	view	in	FPC.	For	the	contracted	fault	event	;Y,Z,[,	as	it	is	composed	of	

more	than	one	functional	fault	event,	for	the	facilitation	application,	the	contracted	event	

can	 be	 designed	 with	 an	 envelope	 of	 individual	 functional	 fault	 events.	 As	 the	 same	

Facility	,Y	facilitates	Action	*Y,	Action	*Z,	and	Action	*[,	 the	structural	 fault	event	=Y	is	

Chapter	5	

	

167	

	

attached	to	outer	box	that	rounded	the	separated	functional	fault	events	;Y,	;Z,	and	;[.	
However,	the	separated	functional	fault	events	of	the	pairs	are	gathered	into	a	block	to	

preserve	the	original	structure	of	the	whole	FPC.	The	structure	of	expanded	fault	event	

must	be	grouped	as	the	structure	of	FPC	can	turns	into	the	same	structure	as	the	sequence	

of	actions	modelled	from	the	initial	to	final	nodes.	In	Activity	model,	the	contracted	fault	

events	are	 traced	back	to	 the	actions	 that	 flow	after	decision	nodes.	The	separation	 is	

performed	 to	 assist	 facilitation	 (double-dashed-arrow)	 to	 each	 fault	 event.	 This	 gives	

more	 meaningful	 reason	 if	 there	 are	 different	 facilities	 facilitate	 the	 actions	 when	

implementing	facilitation.	

	

	

Figure	5.9:	FPC	with	Facilitation	of	Facilities	Implementation	

	

The	FPC	can	be	transformed	into	a	Fault	Tree	by	adding	the	structural	fault	events	

as	the	new	basic	events	in	the	Fault	Tree	created	in	Subchapter	4.2	(c.f.	refer	Figure	4.11).	

The	generated	Fault	Tree	based	on	the	facilitation	called	integrated	Fault	Tree	is	depicted	

as	 in	 Figure	 5.10.	 The	 basic	 events	 =Y 	and	 =5\ 	are	 connected	 to	 the	 corresponding	
intermediate	 events	 without	 logic	 gate.	 This	 can	 be	 referred	 to	 the	 single	 type	 of	

facilitation	which	only	one	facility	facilitates	one	action.	This	is	different	from	multiple	

type	facilitation	in	terms	of	the	connection	between	basic	events	and	intermediate	event.	

The	basic	events	are	connected	in	a	group	(according	to	the	group	of	multiple	facilitation)	

by	 an	 OR-gate	 to	 the	 corresponding	 intermediate	 events.	 The	 frequency	 of	 the	 basic	

a2

a3 a4 a5
a10Initial Point End Point

a1 a6

f2

f3

f5

f10

f6

f7

f7

f8f9

a8
a7

a9

f1

f1

f1

f1

f1 f1

Chapter	5	

	

168	

	

events	to	appear	in	the	Fault	Tree	can	be	observed	based	on	how	many	time	of	a	facility	

involved	in	the	facilitation	to	the	actions.	For	example,	basic	event	=5	appears	six	times	in	
the	integrated	Fault	Tree.	

As	the	basic	events	are	consisted	of	structural	fault,	the	probability	of	failure	at	

each	level	of	the	tree	up	to	the	top	event	can	be	identified.	The	tree	has	a	similar	structure	

with	 previous	 tree	 (functional	 Fault	 Tree)	 except	 the	minimum	 cut	 set	 of	 the	 tree	 is	

consisted	of	structural	fault,	i.e.	all	the	basic	events	in	integrated	Fault	Tree	are	structural	

fault	events.	The	minimal	cut	sets	are	{=5},	{=6},	{=9},	{=W},	{=X},	{=Y},	{=Z},	{=[},	and	{=5\}.	

	

	

169		

	

	

Figure	5.10:	RMS	Fault	Tree	transformed	from	the	Fault	Propagation	Chain	in	Figure	5.9	

f2 f9

a1

f3

f10

a2+

f5

a3+

a4+

f6

a5+

a6-

f7

a6+

f7

Fixed-time Mode selected,

c7

a7+

a7,8,9

a7,8,9+

f8

System failure, as

f7

Responsive Mode selected,

c8

a8+

f7

Collaborative Mode selected,

c9

a9+

a2

f2 f9

a1 a3

a4

a5

a6

a7 a8 a9

a10

f1 f1 f1 f1

f1

f1

f1

Chapter	5	

	

170		

	

5.4 Ownership	

At	the	early	stage	of	system	design,	at	some	point,	the	UML	Class	model	optimises	

the	design	aspect	with	safety	analysis	aspect.	For	example,	a	Class	model	 can	provide	

information	of	a	system	for	generating	integrated	Fault	Tree	(Cepin	&	Mavko	1999).	As	

the	UML	Class	model	represents	relation	amongst	Classes,	the	faults	and	failure	structure	

of	 the	Fault	Tree	 is	constructed	based	on	causal	 relationships	and	 failure	propagation	

through	the	Classes.	The	fault	and	failures	of	facilities	and	actions	embedded	in	the	Fault	

Tree	are	derived	from	Classes	that	represent	facilities	and	actions	that	integrated	in	the	

Classes.	To	examine	failure	from	intended	design	of	a	system,	Cepin	et.	al.	applied	logic	

rules	 to	 the	 information	 provided	 for	 the	 system	 such	 as	 requirement	 specification	

similar	to	work	done	in	Subchapter	4.2.	

System	 modelling	 by	 using	 UML	 allows	 flexibility	 to	 explore	 fault	 and	 failure	

viewpoints	of	the	system	in	this	research.	The	concept	of	allocation	introduced	in	SysML	

can	be	used	in	UML	in	different	perspective	-	Ownership.	For	system	component	(facility)	

modelling	by	using	UML	Class,	Operations	that	embed	in	the	Class	are	owned	by	Class.	In	

comparison	to	UML	Activity	which	models	sequences	of	actions	of	systems,	functions	in	

the	Operations	of	a	Class	are	decomposed	to	a	lower	detail	such	as	from	system	to	lower	

level	subsystem.	For	example,	“Ramp	Meter	System	Control	Unit”	(!"),	one	of	the	facilities	
that	facilitate	“collect	Data”	(#")	action,	owns	‘control’	action	(c.f.	Figure	3.11).	The	action	
that	 owned	 by	 “Ramp	Meter	 System	 Control	 Unit2	 (!")	 is	 located	 in	 the	 Operations	
compartment.	However,	these	actions	could	not	be	found	in	the	Activity	model	earlier	(c.f.	

Figure	 3.10).	 Hence,	 the	 ownership	 of	 actions	 represents	 hierarchy	 decomposition	 of	

actions	in	subsystem	level.	For	example,	nowadays,	complex	systems	are	embedded	with	

software	 that	 does	 lower	 level	 actions.	 Similar	 to	 system	 hardware,	 software	 has	

behaviour.	 The	possible	 behaviour	 of	 the	 software	 includes	 computing,	 synchronising	

data,	 and	 data	 handling.	 These	 lower	 level	 function	 initiates	 facilities	 to	 achieve	

behaviour	at	system	level.	

	 The	actions	that	owned	by	Classes	can	be	used	to	decompose	integrated	Fault	Tree	

generated	previously	into	elaborated	Fault	Tree.	Instead	of	continues	down	the	tree	with	

new	branches,	the	fault	Tree	is	elaborated	for	new	separated	Fault	Trees	based	on	the	

Chapter	5	

	

171	

	

basic	events	of	structural	fault	event	in	the	integrated	Fault	Tree	be	the	top	events	of	the	

new	trees.	Therefore,	the	basic	events	will	be	replaced	by	transfer	out	event.	The	actions	

defined	 in	Operation	are	used	to	expand	the	new	developed	trees	as	 the	 intermediate	

fault	 events.	 Taking	 “Ramp	Meter	 System	 Control	 Unit”	 (!")	 earlier	 as	 example,	!" 	is	
transformed	as	$"	in	the	integrated	Fault	Tree	as	a	basic	event.	For	the	decomposition	of	
the	basic	event	$",	$"	becomes	a	transfer	out	event	in	the	elaborated	Fault	Tree.	Noting	
that	every	transfer	out	event	in	the	original	Fault	Tree,	i.e.	in	this	case	integrated	Fault	

Tree,	produces	another	tree	that	takes	it	as	a	top	event,	i.e.	transfer	in	event.	In	the	new	

tree,	the	top	event	$"	has	a	basic	event.	The	Fault	Tree	depicted	as	in	Figure	5.11(a)	is	a	
partial	of	elaborated	Fault	Tree	with	transfer	out	events	of	$",	$%,	and	$&.	A	note	of	number	
of	page	is	enclosed	on	each	transfer	out	event	to	determine	the	location	of	the	details.	The	

details	of	the	transfer	out	event	are	continued	to	the	Page	2	depicted	as	in	Figure	5.11(b).	

In	the	Page	2,	the	basic	event	of	$"	is	!"fails	to	complete	its	behaviour	which	relates	to	
‘control’	action	that	owned	by	!".	

	

	

(a)	

	

	

	

(b)	

Figure	5.11:	(a)	Transfer	Out	Events	(b)	Transfer	In	Event	

	

	 In	reality,	the	actions	that	owned	by	facility	could	be	expand	and	organised	such	

as	by	using	control	flow.	System	architect	can	continue	to	model	the	actions	in	Activities	

a1

f1 f9 f2

Page	2 Page	3 Page	4

f1
F1	fails	to	
complete	its	
behaviour

Page	1

Chapter	5	

	

172	

	

and	apply	formal	transformation	method	proposed	in	Subchapter	4.2	to	generate	Fault	

Tree.	However,	at	best	of	the	system	architect’s	knowledge,	 if	the	actions	could	not	be	

modelled	in	Activities,	it	could	be	modelled	in	different	system	model	such	as	Sequence	

Diagram	 and	 State	 Machine	 Diagram.	 Consequently,	 new	 methods	 to	 formally	

transforming	the	models	to	Fault	Tree	could	be	explored.	

	

5.5 Summary	 of	 Automated	 Fault	 Tree	Generation	 from	 Integrated	UML	 System	
Models	

Generally,	the	conventional	Fault	Tree	used	for	analysing	safety	and	reliability	of	

system	under	development	is	comprised	of	functional	and	structural	faults	and	failures.	

In	the	previous	chapter,	two	Fault	Trees	are	generated	based	on	a	single	perspective	of	

system,	i.e.	functional	and	structural,	which	do	not	support	the	conventional	Fault	Tree.	

To	 complement	 the	 conventional	 Fault	 Tree	 practiced	 in	 the	 industry,	 a	 formal	

transformation	method	of	integrating	functional	and	structural	perspectives	of	system	is	

proposed	in	this	chapter.	The	integrated	perspectives	are	based	on	UML	system	models,	

i.e.	Activity	and	Class.	

The	 integration	 of	 behavioural	 (action)	 and	 structural	 (facility)	 perspectives	 is	

initiated	 by	 using	 the	 concept	 of	 facilitation	 which	 adopts	 allocation	 in	 SysML.	 The	

concept	of	facilitation	is	introduced	to	support	multiple	facilities	that	facilitate	a	function	

of	a	 system	 that	 is	not	 common	 in	SysML	practice.	By	using	material	 equivalence,	 the	

facilitation	is	applied	to	Activity	model	that	turns	to	be	the	backbone	of	the	generated	

Fault	Tree	and	FPC	introduced	in	the	previous	chapter	which	consisted	only	functional	

fault	 event.	 The	 facilitation	 is	 classified	 into	 two	 types:	 single	 type	 of	 facilitation	 and	

multiple	 type	 of	 facilitation.	 According	 to	 the	 TMSoS	 case	 study	 demonstration,	 four	

single	 and	 seven	 multiple	 type	 of	 facilitation	 can	 be	 observed.	 One	 can	 observe	 the	

number	of	facility(ies)	facilitates	to	each	of	the	actions	which	can	result	in	the	attachment	

of	 structural	 fault	 events	 (basic	 events)	 to	 the	 functional	 fault	 events).	 For	 the	 single	

facilitation,	the	basic	event	is	attached	directly	to	the	output	event	without	any	logic	gate.	

For	the	multiple	facilitation,	a	group	of	basic	event	are	attached	to	output	event	through	

Chapter	5	

	

173	

	

an	OR-gate.	 The	 facilities	 also	 can	 be	 observed	 in	 how	many	 times	 they	 facilitate	 the	

actions	 in	the	Activity	model	which	can	result	 in	the	appearance	of	 the	corresponding	

structural	 fault	 events	 in	 the	 integrated	 Fault	 Tree.	 In	 the	 integrated	 Fault	 Tree	

presentation,	 the	 probability	 of	 failure	 of	 structural	 fault	 event	 is	 contributed	 to	 the	

probability	of	failure	of	functional	fault	event.	The	implementation	of	the	transformation	

method	is	supported	by	a	development	of	the	F-FPC-FT	overarching	metamodel	to	bridge	

the	metamodels	of	FPC	and	Fault	Tree.	

Based	on	the	transformation	method,	three	notes	for	the	transformed	integrated	

Fault	Tree	are	remarked.	The	first	note	is	drawn	from	an	operating	system.	Some	system	

functions	 are	 facilitated	 by	 the	 same	 system	 component.	When	 they	 are	modelled	 as	

functional	and	structural	fault	events	for	the	integrated	Fault	Tree,	the	same	structural	

fault	 event	 can	 be	 seen	 in	 more	 than	 one	 branch	 of	 the	 tree.	 This	 can	 relate	 to	 the	

frequency	of	a	facility	involves	in	the	facilitation.	

On	 the	 second	 note,	 the	 facilitation	 of	 facilities	 to	 actions	 is	 dependent	 to	 the	

actions	 and	 facilities	 that	 have	 been	 modelled.	 In	 some	 cases,	 one	 can	 observe	 that	

functional	fault	event	is	rightly	attached	by	one	structural	fault	event	in	the	integrated	

Fault	Tree,	i.e.	without	any	logic	gate.		For	this	case,	the	facility	can	be	decomposed.	In	

addition,	if	facilitation	cannot	be	done	due	to	irrelevance	modelled	facilities	to	facilitate	

actions,	a	revision	of	the	Class	model	need	to	be	done.	The	approach	of	the	concept	of	

facilitation	on	 the	system	modelling	can	be	 improved	by	profiling.	An	 identification	of	

each	 Action	 and	 Class	 can	 be	 introduced	 as	 an	 attribute	 which	 uses	 combination	 of	

number	and	letter.	The	additional	dashed	box	of	facilitation	that	wrap	around	the	action	

can	 be	 replaced	 by	 specifying	 the	 facility	 identification	 profile	 in	 the	 action.	 At	 the	

moment,	 the	 use	 of	 dashed	 box	 is	 remained	 to	 give	 a	 flexible	 modelling	 and	

demonstration.		

The	 third	note	 is	 on	 the	 separation	 from	contracted	 fault	 event	 into	 individual	

functional	 fault	 events.	 The	 facilitation	 of	 facility	 should	 be	 carried	 onto	 individual	

functional	 fault	 event.	 The	 functional	 fault	 events	 of	 the	 contracted	 event	 should	 be	

represented	in	individual	block	to	avoid	the	ignorance	of	different	facilities	that	might	

facilitate	the	functional	fault	events.	

Chapter	5	

	

174	

	

To	conclude	formal	transformation	methods	developed	in	this	thesis,	the	concept	

of	ownership	is	applied.	This	illustrates	a	complete	cycle	of	Fault	Tree	transformation.	

The	current	state	of	approach	leaves	the	Fault	Tree	with	functional	fault	as	the	lowest	

detail.	 For	 future	work,	 the	 functional	 fault,	 in	 the	 system	architecture	modelling,	 the	

function	can	further	be	modelled.	This	is	not	limited	to	Activity	but	it	can	be	modelled	in	

other	 types	 of	 behavioural	 diagrams	 such	 as	 in	 Sequence	Diagram	and	 State	Machine	

Diagram.	 Further	 for	 the	 future	work,	 research	 on	 how	 to	 transform	 the	 behavioural	

diagrams	to	Fault	Tree.	

	

175		

	

VERIFICATION	OF	THE	FORMAL	TRANSFORMATION	METHODS	

	

6.1 Introduction	

In	this	chapter,	the	formal	transformation	methods	developed	in	Chapter	4	and	

Chapter	 5	 are	 applied	 to	 a	 Level	 Crossing	 Control	 System	 (LCCS)	 extracted	 from	 an	

authorised	 Railway	 System	 case	 study,	 for	 an	 insight	 of	 verifying	 applicability	 of	 the	

developed	transformation	methods	 into	real	system	development.	The	 transformation	

methods,	which	have	been	individually	developed	based	on	single	and	integrated	aspects	

of	system	function	and	system	component	for	Fault	Tree	generation	are	reorganised	for	

a	systematic	demonstration.	Technically,	four	types	of	Fault	Tree	are	generated	from	the	

four	transformation	methods.	The	four	types	of	generated	Fault	Tree	are	functional	Fault	

Tree,	integrated	Fault	Tree,	extended	Fault	Tree	(comprises	of	component	Fault	Tree),	

and	elaborated	Fault	Tree.	The	demonstration	of	the	developed	transformation	methods	

begins	with	transformation	from	UML	Activities	to	functional	Fault	Tree	generation.	The	

method	 is	supported	by	application	of	semantic	mapping	rules	 in	Subchapter	4.2.	The	

demonstration	 is	 followed	 by	 an	 application	 of	 the	 concept	 of	 facilitation	 for	 the	

integrated	 Fault	 Tree	 generation	which	 involves	 UML	 Classes.	 As	 a	 result,	 failures	 of	

system	function	and	system	component	are	embedded	in	a	Fault	Tree.	Then,	the	Classes	

with	 Composition	 relationship	 are	 identified.	 These	 Classes	 are	 transformed	 for	

generating	 extended	 Fault	 Tree	 by	 extending	 the	 existed	 Fault	 Tree.	 Finally,	 the	

demonstration	 of	 the	 developed	 transformation	methods	 through	 LCCS	 case	 study	 is	

ended	with	application	of	ownership.	This	demonstrates	the	ownership	of	Class	(facility)	

on	the	attribute	(function)	in	elaborated	Fault	Tree	with	transfer	out	and	transfer	in	fault	

event.	

	

	

	

Chapter	6	

	

176	

	

The	remainder	of	this	chapter	is	structured	as	follows:	

	Subchapter	6.2:	Railway	System	Case	Study	Review	

The	LCCS	is	extracted	from	the	authorised	Railway	System	and	taken	as	a	case	study	for	

demonstrating	 transformation	 methods	 developed	 in	 Chapter	 4	 and	 Chapter	 5.	 A	

technical	description	of	 the	particular	Railway	System	is	presented	 to	accommodate	a	

holistic	view	of	the	system	under	analyse	for	the	demonstration.	

Subchapter	6.3:	System	Models:	Level	Crossing	Control	System	

In	 this	 subchapter,	 system	models	of	 the	LCCS	which	modelled	 in	UML	are	presented	

based	on	the	technical	description	in	Subchapter	6.2.	Use	Case	model,	Activity	model,	and	

Class	model	are	selected	for	presenting	the	architecture	design	of	LCCS.	

Subchapter	6.4:	Application	of	Formal	Transformation	Method	to	Level	Crossing	

Control	System	

The	application	of	four	transformation	methods	developed	in	Chapter	4	and	Chapter	5	to	

the	 LCCS	 is	 demonstrated.	 The	 four	 transformation	methods	 are	 demonstrated	 in	 an	

order	as	mentioned	in	the	first	paragraph	of	Subchapter	6.1.	The	four	types	of	Fault	Tree	

generation	 are	 expected	 from	 the	 application	 of	 each	 transformation	 method.	 The	

hierarchical	elements	in	Fault	Tree	can	be	observed	through	fault	events.	

Subchapter	6.5:	Comparative	Analysis	

The	developed	transformation	methods	are	compared	with	methods	developed	in	other	

researches	by	which	transformation	aspect	from	system	models	to	Fault	Tree	generation.	

The	comparison	of	the	developed	transformation	methods	is	categorised	into	two	sets.	In	

the	first	set,	the	transformation	from	system	models	to	Fault	Tree	is	concerned.	In	the	

second	set,	the	formalism	of	the	transformation	methods	is	concerned.	

	

	

Chapter	6	

	

177	

	

Subchapter	6.6:	Summary	of	Verification	of	the	Developed	Formal	Transformation	

Methods	

A	trial	run	of	the	developed	transformation	methods	on	Railway	System	case	study	for	

verifying	the	transformation	methods	is	summarised.	

	

6.2 Railway	System	Case	Study	Review	

An	authorised	Railway	System	in	German	is	taken	as	a	case	study	to	demonstrate	

formal	transformation	from	UML	models	to	Fault	Tree.	The	Railway	System	is	fully	under	

control	of	a	German	railway	company,	Deutsche	Bahn.	The	Deutsche	Bahn	works	on	the	

techniques	 of	 controlling	 LCCS	 for	 the	 system.	 Decentralised	 system	 and	 radio	 based	

LCCS	are	two	systems	that	concern	the	control	techniques.	For	that	reason,	the	on	route	

signals	and	sensors	as	in	conventional	system	are	replaced	by	radio	communication	and	

software	computations	installed	on	the	LCCS	and	trains.	The	technology	implemented	on	

the	Railway	System	offers	cheaper	and	more	flexible	solutions	by	reducing	involvement	

of	many	systems.	Nevertheless,	the	safety	critical	functionality	of	the	system	of	systems	

(SoS)	also	shifts	from	hardware	to	software.	

The	 respective	 Railway	 System	 has	 been	 studied	 by	 many	 practitioners	 and	

academicians	(Reif	et	al.	2000),	(Schellhorn	et	al.	2002),	(Xiang	et	al.	2004),	(Xiang	et	al.	

2005).	The	studies	contribute	to	the	extension	of	knowledge	of	the	Railway	System	either	

technically	or	theoretically.	The	narratives	for	the	LCCS	case	study	have	been	collectively	

gathered	and	modified	to	achieve	a	relevant	sequence	of	the	system	flow.	It	is	presented	

in	next	paragraph	and	the	image	of	Railway	System	is	illustrated	in	Figure	6.1.	

The	 train	computes	 the	position	where	 it	has	 to	send	a	signal	 to	 the	LCCS.	The	

signal	is	sent	by	the	train	to	the	LCCS	in	order	to	check	the	status	for	the	train	to	passing	

the	level	crossing.	The	signal	has	to	be	sent	shortly	before	the	train	arrives	at	the	latest	

braking	point	which	is	the	possible	position	of	the	train	to	stop	before	the	level	crossing	

if	it	has	to,	e.g.	due	to	safety	reasons.	After	the	LCCS	receives	the	command,	it	switches	on	

yellow	traffic	lights	from	green	traffic	lights	as	indication	to	the	vehicles	on	the	roadsides	

Chapter	6	

	

178	

	

to	be	ready	to	stop	before	entering	the	level	crossing.	The	indication	from	the	traffic	lights	

also	 applies	 to	 pedestrian	 on	 the	 roadsides	 which	 is	 assumed	 to	 be	 the	 same	 as	 the	

vehicles.	Then,	the	traffic	lights	turn	to	red.	After	the	traffic	lights	turn	to	red,	barriers	

start	closing.	When	the	barriers	start	closing,	an	assumption	of	unoccupied	level	crossing	

with	vehicles	can	be	made	since	the	vehicles	receive	indication	to	stop	before	entering	

the	level	crossing,	e.g.	traffic	lights	are	on	red	before	the	barriers	start	closing.	The	closed	

barriers	show	the	status	of	the	level	crossing	is	safe	for	a	certain	period	of	time	for	the	

train	to	cross	the	level	crossing.	One	of	two	feedback	signals	will	be	sent	by	the	LCCS	to	

the	train	at	a	time.	One,	a	‘release’	feedback	signal	is	sent	to	indicate	that	the	train	may	

pass	the	level	crossing.	Second,	a	‘stop’	feedback	signal	is	sent	to	indicate	unsafe	crossing	

which	also	initiated	by	computation	and	communication	of	the	LCCS	and	the	train.	The	

train	passes	or	breaks	on	the	 level	crossing	depending	to	the	signal	received	from	the	

LCCS.	When	 the	 train	needs	 to	stop,	 it	will	 stop	 for	a	while	as	LCCS	 the	 level	crossing	

clearing	the	level	crossing	from	vehicles	and	then	crossing	the	level	crossing.	Despite	of	

mobility	control,	the	LCCS	periodically	performs	self-diagnosis.	The	LCCS	automatically	

informs	central	office	about	problem	detected,	e.g.	defect.	The	central	office	is	responsible	

for	repairing	and	also	providing	route	descriptions	to	trains.		Basically,	the	information	

provided	to	the	trains	is	positions	indication	of	the	LCCS	and	maximum	speed	on	route,	

e.g.	route	with	maximum	speed	of	160	km/h.	After	the	train	has	passed	the	crossing,	it	

sends	back	a	‘passed’	signal	to	the	LCCS	which	allows	the	LCCS	to	switch	back	to	its	initial	

state;	traffic	lights	are	green	and	barriers	are	open.	If	there	is	no	signal	is	being	received	

in	the	safe	period,	the	LCCS	waits	for	some	minutes	before	it	switches	to	the	initial	state	

to	protect	vehicles	against	endless	waiting.	This	is	the	unsafe	period	for	the	train	to	cross	

the	level	crossing.	

	

Chapter	6	

	

179	

	

	

Figure	6.1:	Railway	Crossing	System	(Reif	et	al.	2000),	(Schellhorn	et	al.	2002),	(Xiang	
et	al.	2004),	(Xiang	et	al.	2005)	

	

6.3 Systems	Models:	Level	Crossing	Control	System	

In	this	subchapter,	the	behaviour	and	structure	models	of	the	LCCS	are	presented.	

The	system	behaviour	of	LCCS	is	modelled	in	UML	Use	Case	and	UML	Activity,	and	the	

system	structure	of	LCCS	is	modelled	in	Class.	In	the	presentation	of	system	models	of	

LCCS,	elaborated	Use	Case	description	is	also	included	in	between	the	presentation	of	Use	

Cases	and	Activities.	

For	the	Use	Case	presentation,	two	levels	of	Use	Cases	of	the	LCCS	are	modelled.	

In	the	first	level	Use	Case	as	depicted	in	Figure	6.2,	which	known	as	high	level	Use	Case,	

three	Use	Cases	are	identified	and	presented	in	eclipse	shape.	Three	constituent	systems	

(CSs)	that	interact	with	the	LCCS	are	identified	as	Actors	that	presented	as	stick	man.	The	

first	Use	Case,	 “allow	Crossing”,	 involves	 interaction	between	the	LCCS	and	two	of	 the	

Actors,	i.e.	Train	and	Vehicle.	These	CSs	interact	with	the	LCCS	for	getting	permission	to	

cross	 the	 level	 crossing.	 The	 second	 Use	 Case,	 “exchange	 Information”,	 presents	

interaction	between	the	focused	system,	LCCS,	and	the	three	CSs,	i.e.	Train,	Vehicle,	and	

Central	Office.	All	of	the	Actors	interact	with	the	LCCS	by	exchanging	information.	The	

third	 Use	 Case,	 “self-diagnosis”,	 is	 associated	 to	 Central	 Office.	 However,	 the	 indirect	

interaction	between	the	LCCS	and	the	Central	Office	through	the	third	Use	Case	can	be	

Chapter	6	

	

180	

	

further	explained	in	lower	level	Use	Case	model.	Based	on	the	presentation	of	the	high	

level	 Use	 Case,	 one	 can	 observe	 three	 operational	 requirements	 of	 the	 LCCS	 can	 be	

determined	according	to	the	identified	Use	Cases.	

	

	

Figure	6.2:	High	Level	Use	Case	Model	of	the	Level	Crossing	Control	System	

	

In	the	second	Use	Case	depicted	as	in	Figure	6.3,	one	can	observe	the	expansion	of	

the	high-level	Use	Case.	The	“allow	Crossing”	Use	Case	with	the	association	to	Train	and	

Vehicle	 is	 remained	 as	 it	 does	 not	 need	 any	 Use	 Case	 elaboration.	 The	 “exchange	

Information”	 Use	 Case	 is	 elaborated	 into	 three	 distinct	 lower	 level	 Use	 Cases	 using	

<<include>>	 relationship.	 These	 distinct	 lower	 level	 Use	 Cases	 include:	 (i)	 “report	

Problem”,	(ii)	“transmit	Signal”,	and	(iii)	“receive	Signal”.	From	the	elaboration	result,	the	

“exchange	Information”	Use	Case	is	indirectly	connected	to	Train	and	Central	Office.	For	

example,	the	“report	problem”	Use	Case	is	connected	to	the	Central	Office.	This	shows	the	

relationship	between	LCCS	and	Central	Office	is	to	report	problem	to	Central	Office.	The	

“receive	Signal”	and	“transmit	Signal”	Use	Case	can	be	further	elaborated	as	additional	

behaviour	under	specific	conditions,	i.e.	safe	and	unsafe	crossing.	For	example,	“transmit	

Traffic	Signal”	and	“transmit	 ‘Release’	Signal”	Use	Case	are	the	extending	Use	Cases	to	

“transmit	Signal”	Use	Case.	Technically,	with	the	specific	conditions	and	specific	types	of	

signal,	LCCS	transmit	traffic	signal	to	the	vehicle	and	transmit	‘release’	signal	to	the	train.	

The	 “self-diagnosis”	 Use	 Cases,	 can	 be	 elaborated	 into	 distinct	 lower	 level	 Use	 Cases,	

“detect	Problem”,	using	<<extend>>	 relationship.	As	 the	LCCS	performs	 self-diagnosis	

Chapter	6	

	

181	

	

and	report	to	the	central	office	of	any	detected	problem,	the	“detect	Problem”	Use	Case	

and	“report	Problem”	can	be	connected	by	<<extend>>	relationship	and	“report	Problem”	

can	hold	the	interaction	between	“self-diagnosis”	Use	Case	and	Central	Office.	Thus,	this	

supports	the	indirect	relationship	between	“self-diagnosis”	Use	Case	and	Central	Office	

in	 the	 high	 level	 Use	 Case.	 At	 this	 level	 of	 Use	 Case	 information,	 a	 comprehensive	

information	of	LCCS	functional	requirements	are	specified.	

Figure	6.3:	Use	Case	Model	of	the	Level	Crossing	Control	System	

	

From	 the	 presented	 Use	 Cases,	 three	 Use	 Case	 descriptions	 can	 be	 formed	 to	

describe	the	specific	behaviours	of	system	in	detail.	The	behaviour	of	the	LCCS	and	the	

interaction	of	the	LCCS	with	other	CSs	which	accommodate	its	behaviour	can	be	identified.	

The	Use	Case	description	depicted	as	in	Table	6.1	describes	the	“allow	Crossing”	Use	Case	

process	of	the	responsibility	of	LCCS	to	the	level	crossing.	The	LCCS	controls	either	train	

or	vehicle	by	which	should	be	on	the	level	crossing.	For	the	safety	reason,	one	of	them,	i.e.	

train	or	vehicle,	can	enter	the	level	crossing	while	the	other	stops	from	entering	the	level	

crossing	 at	 a	 certain	 time.	 There	 are	 eight	 activities	 for	 basic	 flows	 including	 four	

alternative	flows	are	 identified	for	LCCS	to	control	the	level	crossing.	The	LCCS	allows	

Chapter	6	

	

182	

	

train	to	enter	the	level	crossing	by	sending	‘release’	feedback	signal.	This	means	the	train	

is	safe	to	cross	the	level	crossing.	When	the	level	crossing	is	unsafe	for	the	train	to	enter,	

the	LCCS	will	send	‘stop’	feedback	signal	and	the	train	has	to	pull	the	brake	to	stop.	The	

LCCS	allows	vehicle	to	enter	the	level	crossing	by	controlling	the	traffic	lights	to	switch	

on	green		and	the	barriers	to	open.	In	the	case	where	the	level	crossing	has	been	passed	

by	the	train,	the	LCCS	needs	to	receive	‘passed’	signal	from	train	or	wait	for	several	time	

before	allows	the	vehicle	and	pedestrian	to	enter	the	level	crossing.	The	LCCS	resumes	to	

the	initial	state	at	the	end	of	the	process.	

	

Table	6.1:	“allow	Crossing”	Use	Case	Description	of	Level	Crossing	Control	System	

Use	Case	Name	 allow	Crossing	

Description	
LCCS	is	controlling	the	position	of	train	and	vehicles	on	the	level	
crossing.	

Actors	 Train	and	Vehicle	

Pre-conditions	
1.	LCCS	controls	traffic	light	to	switch	on	green.	
2.	LCCS	controls	barriers	to	open	
3.	Vehicles	enter	the	level	crossing.	

Post-conditions	 LCCS	resumes	to	the	initial	state.	

	
List	of	Activities	
for	Basic	Flow	

1.	LCCS	receives	‘secure’	signal	from	the	train.	
2.	LCCS	controls	traffic	light	to	switch	on	yellow.	
3.	LCCS	controls	traffic	light	to	switch	on	red.	
4.	LCCS	controls	barriers	to	start	closing.	
5.	LCCS	sends	feedback	signal	to	the	train.	
6.	LCCS	receives	or	not	receive	‘passed’	signal	from	the	train.	
7.	LCCS	opens	the	barriers.	
8.	LCCS	controls	the	traffic	lights	to	switch	back	on	green.	

Alternative	Flow	

5a.	LCCS	sends	‘release’	signal	to	the	train.	
5b.	LCCS	sends	‘stop’	signal	to	the	train.	
	
6a.	LCCS	prevents	counter	from	counting.	
6b.	LCCS	enables	counter	for	counting.	

	

Next,	in	Table	6.2,	the	“exchange	Information”	Use	Case	description	is	presented	

for	describing	the	exchange	information	between	the	LCCS	and	other	CSs.	For	this	Use	

Case,	 four	pre-conditions	 and	one	post-condition	 are	 required	 in	 the	 execution	of	 the	

“exchange	Information”	Use	Case.	From	the	technical	description	provided	in	Subchapter	

Chapter	6	

	

183	

	

6.2,	the	“exchange	Information”	Use	Case	process	can	be	divided	into	two	paths.	First,	the	

LCCS	is	exchanging	information	with	the	train	and	giving	information	to	the	vehicle	in	

managing	which	one	of	them	can	enter	to	and	stop	from	entering	the	level	crossing.	In	

the	first	path,	the	LCCS	requires	exchanging	information	with	the	train.	The	vehicle	has	

to	be	aware	of	the	signal	provided	by	the	LCCS	based	on	the	exchanging	information	with	

the	train.	Two	alternative	flows	are	identified	for	the	feedback	signal	that	has	to	be	sent	

by	the	LCCS	to	the	train.	In	the	second	path,	the	LCCS	interacts	only	with	central	office	by	

reporting	any	detected	problem.	These	 two	paths	are	executed	 independently	 to	each	

other.	

	

Table	6.2:	“exchange	Information”	Use	Case	Descriptions	of	Level	Crossing	Control	
System	

Use	Case	Name	 exchange	Information		

Description	

LCCS	is	exchanging	information	with	train	and	giving	information	
to	vehicle.	LCCS	also	communicating	with	the	central	office	to	
report	any	defect	or	problem	detected	during	the	self-diagnosis	
process.	

Actors	 Train,	Vehicle,	and	Central	Office	

Pre-conditions	

1.	Train	identifies	distance	to	send	‘secure’	signal	to	LCCS.	
2.	LCCS	controls	traffic	light	to	switch	on	green.	
3.	LCCS	controls	barriers	to	open	
4.	LCCS	executes	self-diagnosis.	

Post-conditions	 LCCS	waits	signal	from	the	train.	

List	of	Activities	
for	Basic	Flow	

1.	LCCS	receives	‘secure’	signal	from	the	train.	
2.	LCCS	controls	traffic	lights	to	switch	on	yellow.	
3.	LCCS	controls	traffic	lights	to	switch	on	red.	
4.	LCCS	sends	feedback	signal	to	the	train.	
5.	Train	receives	feedback	signal	from	the	LCCS.	
6.	Train	break	or	pass	the	level	crossing.	
7.	Train	sends	‘passed’	signal	to	the	LCCS.	
8.	LCCS	receives	‘passed’	signal	from	the	train.	
	
9.	LCCS	reports	problem	to	central	office.	
10.	Central	office	receives	problem	reported	by	the	LCCS.	

Alternative	Flow	 4a.	LCCS	sends	‘release’	signal	to	the	train.	
4b.	LCCS	sends	‘stop’	signal	to	the	train.	

Chapter	6	

	

184	

	

The	 “self-diagnosis”	Use	 Case	 description	 presented	 in	 Table	 6.3	 presents	 self-

diagnosis	process	executed	by	LCCS.	In	the	self-diagnosis	process,	there	is	involvement	

of	central	office.	Self-diagnosis	has	a	short	process	with	only	two	basic	activity	flows	in	

the	description.	This	short	process	does	not	require	any	pre-conditions	and	alternative	

flow.	 During	 the	 execution	 of	 self-diagnosis,	 LCCS	 detects	 problem	 which	 has	 been	

occurred	and	reports	the	problem	to	the	central	office.	The	central	office,	i.e.	operator,	

will	 then	 take	 action	 to	 solve	 the	 reported	 problem.	 The	 execution	 of	 self-diagnosis	

process	will	stop	at	that	point	and	the	LCCS	resumes	the	self-diagnosis	process	again.	

	

Table	6.3:	“self-diagnosis”	Use	Case	Description	

Use	Case	Name	 self-diagnosis	
Description	 LCCS	is	executing	self-diagnosis.	
Actors	 Central	Office	
Pre-conditions	 None	
Post-conditions	 LCCS	resumes	the	self-diagnosis.	
List	of	Activities	
for	Basic	Flow	

1.	LCCS	detects	problem.	
2.	LCCS	reports	problem	to	the	central	office.	

Alternative	Flow	 None	

	

According	to	the	Use	Case	descriptions,	one	can	observe	some	of	the	activities	for	

basic	flows	and	alternative	flows	in	a	Use	Case	description	can	be	found	again	in	other	

Use	Case	description.	For	example,	“LCCS	controls	traffic	lights	to	switch	on	red”	can	be	

found	 in	 “allow	 Crossing”	 Use	 Case	 description	 and	 “exchange	 Information”	 Use	 Case	

description.	 This	 shows	 the	 overlap	 activities	 that	 required	 during	 execution	 of	 the	

system	behaviour	that	serve	different	functions.	Furthermore,	the	particular	activity,	i.e.	

LCCS	controls	traffic	lights	to	switch	on	red,	is	a	kind	of	information	given	by	the	LCCS	to	

vehicle	and	pedestrian	and	permission	given	by	the	LCCS	to	the	vehicle	and	pedestrian	to	

enter	 level	 crossing.	 The	 generated	 Use	 Case	 descriptions	 are	 used	 to	 support	 the	

modelling	of	activities	of	the	Railway	System	in	UML.	

The	 activities	 is	modelled	with	 three	 subsystems;	 (i)	 LCCS,	 (ii)	 Train,	 and	 (iii)	

Central	Office,	as	depicted	in	Figure	6.4.	The	Vehicle	which	is	another	subsystem	is	not	

Chapter	6	

	

185	

	

considered	in	the	modelling	as	the	Railway	System	does	not	require	any	input	from	them.	

The	actions	are	modelled	with	an	 initial	 state	where	 two	traffic	 lights	are	switched	 to	

green	and	two	barriers	are	opened.	A	pair	of	a	traffic	light	and	a	barrier	is	located	on	each	

roadside.	At	the	initial	state,	the	vehicles	are	safe	and	allowed	to	cross	the	level	crossing	

with	the	indicators	given	by	the	traffic	lights	and	barriers.	From	the	entry	point,	the	path	

flows	into	a	fork	node	before	flowing	into	two	concurrent	series	of	actions.	These	actions	

flow	in	two	different	paths.	These	paths	are	ended	with	one	activity	final	node	flows	from	

a	join	node.	The	first	path,	on	the	left	side,	is	crossing	on	the	level	crossing	activities	path.	

The	activities	path	flows	into	three	actions	in	series	“receive	‘Secure’	Signal”	(#"),	“control	
Traffic	Light”	(#%),	and	“control	Barrier”	(#')	where	the	traffic	lights	are	switching	to	red	
and	barriers	are	closing	for	safe	level	crossing	for	the	Train.	Once	the	decision	for	the	safe	

level	crossing	is	made,	the	control	flow	continues	into	a	pair	of	decision	and	merge	nodes	

in	which	two	alternative	paths	are	modelled.	Each	path	involves	an	action	of	instruction	

feedback,	 i.e.	 “send	 ‘Release’	Feedback”	(#()	with	“safe	crossing”	()(),	and	“send	 ‘Stop’	
Feedback”	(#*)	with	“unsafe	crossing”	()*).	With	only	one	instruction	feedback	being	sent	
at	any	one	time	to	the	external	function,	“send	‘Passed’	Signal”	(#+),	owned	by	the	Train.	
And	the	series	flows	back	to	the	LCCS,	where	LCCS	shall	“receive	 ‘Passed’	Signal”	(#,).	
However,	the	LCCS,	in	other	possibility,	may	not	receive	the	signal.	Therefore,	the	control	

flow	 leads	 into	 the	second	pair	of	decision	and	merge	nodes	 in	which	 two	alternative	

paths.	Each	path	involves	an	action	of	designated	counter,	i.e.	“prevent	Counter”	(#-)	with	
“signal	receive”	()-),	and	“enable	Counter”	(#&)	with	“signal	not	receive”	()&).	Any	path	of	
the	series	taken	leads	LCCS	to	be	in	initial	state	again.	The	second	path,	on	the	right	side	

is	self-diagnosis	activities	path.	This	path	is	the	shortest	that	involves	a	series	of	three	

actions.	The	activities	path	is	started	with	“detect	Problem”	(#".)	that	flows	into	“report	
Problem”	(#"")	action.	Then,	the	action	leads	to	an	external	function	owned	by	Central	
Office,	“receive	Report”	(#"%)	before	the	path	ends.	

	

Chapter	6	

	

186	

	

	

Figure	6.4:	Activity	Model	of	the	Level	Crossing	Control	System	

	

The	Railway	System	is	modelled	 in	UML	Classes	with	20	Classes	as	depicted	 in	

Figure	6.5.	The	first	Class,	“LCCS	Control	Unit”	(!"),	is	associated	to	six	Classes,	e.g.	“Traffic	
Light”	(!%),	“Barrier”	(!'),	“LCCS	Transceiver”	(!(),	“Counter”	(!,),	“Self-diagnosis	System”	
(!-),	and	“Level	Crossing”	(!&),	as	presenting	direct	relationship	with	the	Classes	during	
its	initial	state	and	normal	operation.	As	a	user	of	the	level	crossing	at	the	initial	state,	

“Vehicle”	(!".)	is	associated	to	three	of	the	Classes,	“Traffic	Light”	(!%),	“Barrier”	(!'),	and	
“Level	Crossing”	(!&).	Another	user	of	level	crossing,	“Train”	(!""),	is	also	associated	to	
the	 “Level	 Crossing”	 (!&).	 The	 “Train”	 (!"")	 has	Composition	 relationship	with	 “Train	
Transceiver”	(!"%)	and	“Train	Driver”	(!"*)	as	the	owner	Class.	The	central	office	forms	a	
Class	 as	 “Central	 Office	 (CO)”	 (!"+)	 which	 also	 decomposed,	 with	 Composition	
relationship,	by	“Operator”	(!",)	and	“CO	Transceiver”	(!"-).	In	both	of	(!"")	and	(!"+),	

Chapter	6	

	

187	

	

human	 is	modelled	 as	 a	 system	which	 to	 operate	 them,	 i.e.	 “Train	 Driver”	 (!"*)	 and	
“Operator”	 (!",).	All	of	 the	modelled	 transceivers,	 e.g.	 “LCCS	Transceiver”	 (!(),	 “Train	
Transceiver”	(!"%),	and	“CO	Transceiver”	(!"-),	are	decomposed	by	a	pair	of	receiver	and	
transmitter,	 i.e.	“LCCS	Transmitter”	(!*)	and	“LCCS	Receiver”	(!+)	are	owned	by	“LCCS	
Transceiver”	 (!(),	 “Train	Transmitter”	 (!"')	 and	 “Train	Receiver”	 (!"()	 are	owned	by	
“Train	Transceiver”	(!"%),	and	“CO	Transmitter”	(!"&)	and	“CO	Receiver”	(!%.)	are	owned	
by	 “CO	 Transceiver”	 (!"-).	 Since	 the	 Railway	 System	 is	 a	 computerised	 system,	 the	
communication	is	made	through	the	transceivers.		

	

	

Figure	6.5:	Class	Model	of	the	Level	Crossing	Control	System	

	

Chapter	6	

	

188	

	

6.4 Application	 of	 Formal	 Transformation	 Methods	 to	 Level	 Crossing	 Control	
System	

In	 this	 subchapter,	 the	 four	 developed	 transformation	methods	 are	 applied	 to	

demonstrate	 transformation	 from	 UML	 systems	model	 to	 Fault	 Tree	 generation.	 The	

demonstration	is	led	by	formal	transformation	method	from	Activities	to	Fault	Tree.	The	

application	 of	 the	 method	 will	 produce	 a	 functional	 Fault	 Tree	 which	 preserves	 the	

relational	structure	of	system	functionality.	Then,	the	concept	of	facilitation	is	applied	to	

integrate	system	functions	and	system	components	aspect	in	the	Fault	Tree	which	will	

produce	 integrated	 Fault	 Tree.	 The	 integrated	 Fault	 Tree	 is	 elaborated	 with	 the	

transformation	method	from	Classes	to	Fault	Tree.	The	transformation	is	ended	with	the	

concept	of	ownership	with	the	implementation	of	transfer	event	of	Fault	Tree.	However,	

the	 limitation	of	 the	demonstration	 is	 the	details	of	probability	of	 failure	which	 is	not	

publicly	available.		

	

6.4.1 Activities	to	Fault	Tree	

In	 this	subchapter,	 the	 formal	 transformation	method	developed	 in	Subchapter	

4.2	 is	 applied	 to	 the	 Activity	 model	 of	 LCCS	 in	 Figure	 6.4.	 By	 using	 the	 formal	

transformation	method,	the	useful	information	in	the	identification	of	behavioural	faults	

as	 well	 as	 inferring	 a	 fault	 structure	 in	 FPC	 presentation	 is	 demonstrated.	 The	 fault	

structure	 in	 the	 FPC	 presentation	 is	 then	 transformed	 into	 a	 Fault	 Tree	 of	 LCCS	

functionality	(behavioural).	The	generated	functional	Fault	Tree	of	LCCS	is	then	used	to	

analyse	the	original	Activity	model	of	LCCS.	

A	set	of	fault	events	is	defined	as	the	negation	of	the	proposition	of	actions,	/0 ≝
¬30 ,	modelled	in	the	Activity	model	of	LCCS.	Based	on	the	first	control	flow	of	Activity	
model	 of	 LCCS	 and	 semantic	mapping	 rules	 (b)	 in	 Table	 4.1,	 Initial	 Point	 of	 the	 FPC	

bifurcates	into	two	chains	with	two	separate	fault	events,	/"and	/".,	as	the	initial	fault	
events	of	each	chain.	These	two	chains	represent	two	different	failure	functions	of	LCCS.	

The	first	chain	denoted	by	initial	fault	event	/"is	formed	by	a	series	of	eight	other	fault	

Chapter	6	

	

189	

	

event	 including	 two	 contracted	 fault	 events,	 (/" → /%) ∧ (/% → /') ∧ (/' → /(,*) ∧
(/(,* → /+) ∧ (/+ → /,) ∧ (/, → /-,&).	This	is	the	chain	of	failure	to	control	level	crossing	
system.	 The	 two	 contracted	 events	 are	/(,* 	and	/-,& .	 Both	 contracted	 fault	 events	 are	
conjunction	of	two	fault	events,	/(,* = /(∧ /*	and	/-,& = /- ∧ /&.	The	other	chain	of	FPC	
has	three	single	fault	events	(non-contracted	fault	events)	connected	in	a	series,	(/". →
/"") ∧ (/"" → /"%).	This	is	the	chain	of	failure	self-diagnosis.	Grouping	all	of	the	unitary	
implications	together,	a	complete	FPC	is	generated	and	depicted	graphically	in	Figure	6.6.	

The	two	chains	of	FPC,	based	on	semantic	mapping	rule	(c),	are	merged	together	into	a	

single	chain	that	leads	to	the	End	Point.	This	marks	the	ends	of	the	FPC	and	map	to	the	

Initial	Node	and	End	Node	of	Activity	model	of	LCCS.	

	

	

Figure	6.6:	Fault	Propagation	Chain	of	Level	Crossing	Control	System	

	

Next,	 the	 developed	 FPC	 is	 transformed	 to	 a	 Fault	 Tree	 using	 the	 established	

formal	 transformation	 method.	 Without	 going	 through	 the	 detailed	 mathematical	

derivation,	the	Fault	Tree	can	be	obtained	by	elaborating	the	relation	in	(4.2.15)	for	the	

bifurcation	 and	 convergence	 of	 the	 two	parallel	 chains,	(/" → /%) ∧ (/% → /') ∧ (/' →
/(,*) ∧ (/(,* → /+) ∧ (/+ → /,) ∧ (/, → /-,&)	and	(/". → /"") ∧ (/"" → /"%).	For	the	two	
contracted	 fault	 events	 in	 the	 middle	 of	 the	 first	 chain,	 the	 relation	 in	 (4.2.14)	 is	

elaborated	 for	 two	 exclusive	 chains	 of	 each	 contracted	 fault	 event,	/(,* 	and	/-,& .	 The	
relation	in	(4.2.15)	is	elaborated	again	to	integrate	all	of	the	fault	events	to	obtain	the	

functional	 Fault	Tree	of	 LCCS	as	depicted	 in	Figure	6.7.	There	 are	nine	 fictitious	 fault	

events,	 {/%:},	 {/':},	 {/(,*:},	 {/+:},	 {/,:},	 {/-,&:},	 {/".:},	 {/"":},	 {/"%:};	 twelve	 basic	
events,	 {/"},	 {/%},	 {/'},	 {/(},	 {/*},	 {/+},	 {/,},	 {/-},	 {/&},	 {/".},	 {/""},	 {/"%};	 and	 four	

Initial Point End Point

a1 a2 a3 a4,5 a6 a7

a10 a11

a8,9

a12

Chapter	6	

	

190	

	

conditional	events,	{)(},	{)*},	{)-},	{)&};	are	captured	in	the	Fault	Tree.	The	top	event	of	
the	 functional	Fault	Tree	of	LCCS,	system	failure,	/;,	is	defined	as	the	system	failing	to	
complete	the	intended	LCCS	behaviour	as	modelled	in	the	Activity	model	of	LCCS.	

Based	on	the	structure	of	the	functional	Fault	Tree	of	LCCS,	qualitative	analyses	

can	be	done.	Every	system	function,	as	modelled	by	actions,	becomes	a	basic	event	in	the	

behavioural	 Fault	 Tree	 of	 LCCS	 after	 the	 transformations	 as	 listed	 in	 the	 previous	

paragraph.	As	subject	to	the	basic	events,	the	minimal	cut	set	of	the	Fault	Tree	are	{/"},	
{/%},	{/'},	{/(,)(},	{/*,)*},	{/+},	{/,},	{/-,)-},	{/&,)&},	{/".},	{/""},	and	{/"%}.	The	single	
event	of	minimal	cut	sets	contributes	to	the	occurrence	of	the	top	event,	/;,	and	align	with	
the	 formal	 interpretation	of	 the	Activity	model	based	on	the	UML	specification,	where	

failed	execution	of	an	action	stops	the	control	flow.	In	addition,	the	fault	events	which	

associated	 by	 conditional	 events,	/(,	/*, /-,	and	/&,	do	 not	 individually	 lead	 to	 system	
failure	unless	their	corresponding	conditions,)(,)*,)-,	and)&,	are	met.	This	also	aligns	
with	the	Activity	model	in	which	the	two	alternative	paths	of	the	pairs	of	/(,	/*	and	/-,	/&	
are	 exclusive,	 i.e.	 ‘release’	 or	 ‘stop’	 feedback	 is	 sent	 (first	 pair)	 and	 ‘passed’	 signal	 is	

received	or	not	received	(second	pair)	happened	at	a	time.	

There	are	two	fault	events,	/+	and	/"%,	of	other	CSs	that	contribute	to	the	failure	
of	LCCS	are	identified.	The	fault	event	/+	is	belonged	to	Train	and	the	fault	event	/"%	is	
belonged	 to	 Control	 Office.	 Tracing	 the	 fault	 event	/+ 	and	 its	 surrounding	 Fault	 Tree	
structure	to	the	original	 functional	design,	can	obviously	see	 if	 the	Train	fails	to	“send	

‘Passed’	Signal”	to	LCCS,	this	could	cause	LCCS	fails	to	function,	i.e.	return	to	initial	state;	

control	 traffic	 lights	 to	 turn	 green	 and	 control	 barriers	 to	 open.	 However,	 with	 the	

sufficient	design	intent	of	functionality	of	LCCS	modelled	in	UML	Activity,	if	the	‘Passed’	

signal	is	not	received	by	LCCS,	the	function	of	LCCS	is	return	to	initial	state	after	some	

minutes	to	allow	vehicles	and	pedestrians	on	the	roadsides	to	cross	the	level	crossing.	

However,	 it	 is	 technically	 different	with	 fault	 event	/"% ,	where	when	 any	 of	 the	 LCCS	
functions	is	fail	but	Control	Office	fails	to	“receive	Report”,	the	self-diagnosis	function	of	

LCCS	 is	 failed.	 Supposedly,	 any	 failure	 of	 LCCS	 can	 be	 detected	 by	 the	 self-diagnosis	

function.	

Chapter	6	

	

191	

	

The	functionality	of	the	Railway	System,	based	on	the	technical	description,	can	

be	modelled	in	several	ways.	In	this	thesis,	as	LCCS	is	selected	as	the	focused	system,	by	

using	UML	Activity,	 the	 system	 functionality	 is	modelled	 in	 the	 viewpoint	 of	 LCCS.	 In	

system	engineering,	a	system	that	is	designed	with	less	human-based	control	(replaced	

by	 computer-based	 control)	 can	 reduce	 potentiality	 of	 a	 system	 to	 break	 down	 that	

caused	by	human	error.	The	computerised	system	is	also	easy	to	control	and	maintain.	

However,	putting	many	tasks	on	a	system,	the	system	must	go	through	extensive	design	

and	safety	analysis.		

	

192		

	

	

Figure	6.7:	Functional	Fault	Tree	of	Level	Crossing	Control	System	

a1 a2

a2+ a3

a3+

System failure, as

a7

a4

Safe crossing,

c4

a5

Unsafe crossing,

c5

a8

Signal received,

c8

a9

Signal not received,

c9

a4,5

a8,9

a4,5+

a7+

a8,9+ a10

a11

a12

a10+

a11+

a6

a6+

Chapter	6	

	

193		

	

6.4.2 Transformation	Method	with	Facilitation	for	Integrated	Fault	Tree	

This	subchapter	presents	an	integrated	Fault	Tree	with	behavioural	and	structural	

failures	of	LCCS	by	applying	the	concept	of	facilitation	to	Activity	model	in	based	on	Class	

model	as	depicted	 in	Figure	6.8.	The	 facilitation	 is	observed	based	 the	 types	and	how	

many	times	a	facility	involves	in	the	facilitation.	The	multiple	type	of	facilitation	is	applied	

to	 the	set	 (!", !$, !%, &"),	 (!", !', &'),	 (!", !(, &(),	 (!), !%, &*),	 (!), !%, &)),	 (!%, !"', !"), &$),	
(!$, !%, &+),	(!", !+, !%, &,),	(!", !+, !%, &%),	(!", !,, &"-),	(!", !), &""),	and	(!"+, !'-, &"').	One	
can	observe	that	each	of	the	action	is	facilitated	by	multiple	facilities.	The	multiple	type	

of	facilitation	can	be	seen	through	all	the	12	actions	in	the	Activity	model,	which	leave	

none	of	single	type	of	facilitation	in	the	demonstration.	

The	frequent	of	facilitation	reflects	the	availability	of	facility	that	needs	to	facilitate	

the	execution	of	the	actions.	Based	on	the	Figure	6.8,	seven	facilities	appear	one	time	and	

five	 facilities	 appear	more	 than	 one	 time	 for	 the	 facilitation.	 The	 seven	 facilities	 that	

shown	up	 for	 one	 time	 in	 the	 facilitation	 are	!' ,	!(, !,,	!"', !"), !"+ ,	 and	!'- .	 However,	
these	facilities	are	shown	up	as	a	group	that	facilitate	the	corresponding	actions.	The	five	

facilities	that	shown	up	more	than	one	time	in	the	facilitation	are	!", !), !$,	!+,	and	!%.	One	
can	identify	each	of	the	facility	to	facilitate	more	than	one	action.	For	example,	!"	appears	
seven	times	in	the	facilitation.	The	“Level	Crossing	Control	System	(LCCS)	Control	Unit”	

(!")	 is	 the	 central	 system	 in	 the	 LCCS.	 Being	 the	 central	 of	 computerised	 system,	 the	
control	unit	directs	the	operation	of	the	system	and	other	systems	that	connected	to	it	by	

informing	 the	 computer’s	 memory,	 arithmetic	 unit,	 logic	 unit,	 and	 input	 and	 output	

devices.	Therefore,	most	of	the	functions	of	the	LCCS,	instead	of	govern	by	the	respective	

facilities,	the	functions	are	also	reliant	on	the	control	unit.	The	facilities	of	a	group	that	

facilitate	an	action	is	not	necessarily	have	to	be	with	the	same	group	or	even	can	be	alone	

to	facilitate	another	action.	

	

Chapter	6	

	

194	

	

	

Figure	6.8:	Facilitation	on	Activity	Model	of	Level	Crossing	Control	System	

	

In	 the	 FPC,	 with	 the	 application	 of	 facilitation,	 the	 useful	 information	 of	 the	

identification	of	the	system	component	that	cause	functional	faults	as	well	as	inferring	a	

fault	 structure	 is	 demonstrated.	 The	 FPC	 is	 embedded	 with	 functional	 (action)	 and	

structural	(facility)	fault	events.	Another	set	of	fault	events	of	facilities	is	defined	as	the	

negation	of	the	proposition	of	facilities,	./ ≝ ¬2/ ,	modelled	in	the	Classes	model	of	LCCS.	
The	type	of	facilitation	in	the	FPC	is	expected	to	be	the	same	as	in	the	previous	facilitation	

on	Activity	model.	

In	 the	 application	 of	 the	 concept,	 the	 contracted	 event	 in	 FPC	 is	 expanded	 for	

separating	fault	events	to	be	in	individual	presentation	to	assist	the	facilitation	process.	

This	 also	 applied	 to	 fault	 events	 of	 the	 contracted	 events,	3*, 3), 3,, 	and	3% ,	 which	

Chapter	6	

	

195	

	

facilitated	by	multiple	facilities.	In	addition,	both	fault	events	of	a	contracted	event	are	

facilitated	by	 the	same	 facilities,	 e.g.	3* 	and	3) 	are	 facilitated	by	.) 	and.% .	By	using	 the	
relation	 in	 (4.2.7),	 the	 two	 contracted	 functional	 fault	 events,	3*,) 	and	3,,% ,	 can	 be	
presented	as	two	pairs	of	two	individual	functional	fault	events,	3*,) = 3* ∧ 3)	and	3,,% =
3, ∧ 3% ,	 in	 the	 FPC.	 The	 structure	 of	 expanded	 fault	 event	 must	 be	 grouped	 as	 the	
structure	of	FPC	can	turns	into	the	same	structure	as	the	sequence	of	actions	modelled	

from	the	pair	of	fork	and	join	nodes,	i.e.	bifurcate	into	multiple	chains.	The	new	FPC,	with	

expansion	of	contracted	functional	fault	events	and	facilitation	of	structural	fault	events	

is	depicted	in	Figure	6.9.		

	

	

Figure	6.9:	Fault	Propagation	Chain	with	Facilitation	of	Level	Crossing	Control	
System	

	

The	 fault	 arrangement	 of	 functional	 and	 structural	 of	 a	 system	 in	 the	 FPC	

presentation	 is	 then	 transformed	 into	an	 integrated	Fault	Tree	of	LCCS	as	depicted	 in	

Figure	6.10.	The	types	of	facilitation	can	infer	the	connection	between	facility	fault	event	

(basic	 event)	 and	 action	 fault	 event	 (intermediate	 event)	 in	 Fault	 Tree.	 From	 the	

observation,	one	can	expect	none	of	single	structural	fault	event	is	directly	connected	to	

functional	fault	event	without	any	logic	gate	as	the	facilitation	involves	none	of	single	type	

of	facilitation.	Therefore,	 in	the	integrated	Fault	Tree,	all	of	the	transformed	structural	

fault	events	are	connected	by	OR-gate	to	the	correspond	intermediate	event,	e.g.	multiple	

Initial Point End Point

a1 a2 a3 a5
a4 a6 a7

a10 a11

f6

f5f1

f12f9

f8

f3

f2 f9

f20

f15

a9
a8

a12

f9

f1f9f1

f1

f1

f5 f6

f9f7

f1 f17

Chapter	6	

	

196	

	

basic	event	of	structural	fault	are	connected	together	by	an	OR-gate	to	output	event	of	

functional	fault.	For	example,	basic	events	.",	.$and	.%	are	tied	together	(group)	with	OR-
gate	to	the	intermediate	3".	

Based	 on	 the	 frequency	 of	 a	 facility	 involves	 in	 the	 facilitation,	 the	 repeated	

appearance	of	basic	events	of	the	same	structural	faults	is	reflected	in	the	integrated	Fault	

Tree.	The	basic	events	of	structural	fault	can	be	seen	once	in	the	integrated	Fault	Tree	if	

the	 corresponding	 facilities	 appear	 one	 time	 in	 the	 facilitation.	 For	 example,	.' ,	.(, .,,	
."', ."), ."+,	and	.'-basic	 events	 are	 seen	 for	 one	 time	 in	 the	 integrated	 Fault	 Tree.	 As	
compared	to	structural	fault	evens	that	their	corresponding	facilities	appear	more	than	

one	time	 in	 facilitation,	.", .), .$, .+,	and	.%,	after	 they	have	been	transformed	 into	basic	
events,	 they	 have	 more	 than	 one	 time	 appearance	 in	 the	 integrated	 Fault	 Tree.	 For	

example,	the	facilitation	of	structural	fault	event	."	can	be	found	as	one	of	the	basic	events	
of	seven	functional	fault	events	3", 3', 3(, 3,, 3%, 3"-,	and	3"".	

For	simplicity,	all	the	basic	events	of	functions	failures	in	the	previous	functional	

Fault	 Tree,	 based	 on	 the	 facilitation	 and	 integrated	 FPC,	 are	 transformed	 into	

intermediate	 events.	 These	 intermediate	 events	 are	 connected	 by	 the	 basic	 events	 of	

structural	faults.	Thus,	the	minimal	cut	sets	are	only	consisted	of	the	twelve	structural	

faults,	{."},	{.'},	{.(},	{.)},	{.$},	{.+},	{.,},	{.%},	{."'},	{.")},	{."+},	and	{.'-}.	Similar	to	the	
previous	 functional	 Fault	 Tree,	 every	 single	 structural	 fault	 event	 of	minimal	 cut	 sets	

contributes	to	the	occurrence	of	 the	top	event,	37,	and	this	align	with	the	allocation	of	
system	functions	to	system	components,	where	the	failure	rate	of	facility	will	contribute	

to	the	calculation	of	the	probability	of	functional	failure.	For	example,	the	probability	of	

failure	of	functional	fault	event	3",	8(3"),	 is	contributed	by	the	probability	of	failure	of	
collectively	three	structural	fault	event	.", .$,	and	.%,	 i.e.	8(3") = 	8(.") + 8(.$) + 8(.%).	
From	the	generated	Fault	Tree,	one	can	analyse	the	relevancy	of	the	facilities	that	have	

been	modelled	in	UML	Classes	to	facilitate	function	(action)	of	system.	For	example,	“LCCS	

Control	Unit”	(!")	is	the	most	common	facility	to	facilitate	in	the	functionality	of	LCCS.	
This	can	be	seen	from	the	time	of	facilitation	which	in	fault	viewpoint,	the	facilitation	of	

."	occurs	seven	time.	

	

197		

	

	

Figure	6.10:	Integrated	Fault	Tree	of	Level	Crossing	Control	System	

a2+

a3+

System failure, as

Safe crossing,

c4

Unsafe crossing,

c5

Signal received,

c8

Signal not received,

c9

a4,5

a8,9

a4,5+

a7+

a8,9+

a10+

a11+

f6 f2

f3
f5 f5

f6

f1 f1

f8

f1

f20

f5

a6+

f12 f9 f15

a2a1

a3

a4 a5

a6

a7

a8 a9

a10

a11

a12

f1 f9 f1

f1
f9 f9

f9

f9 f7 f7 f9

f1

f17

Chapter	6	

	

198		

	

6.4.3 Classes	to	Fault	Tree	

In	this	subchapter,	the	structural	faults	of	the	integrated	Fault	Tree	are	analysed	

into	 a	 lower	 detail	 based	 on	 the	 facilities	 relation	 in	 Class	model	 of	 LCCS	depicted	 in	

Figure	6.5.	The	subchapter	starts	with	the	identification	of	Composition	relationship	of	

Classes	 in	 the	 Class	 model	 to	 generate	 an	 extended	 Fault	 Tree	 which	 comprises	

component	Fault	Tree.	This	identification	leads	to	the	decomposition	of	basic	events	of	

the	integrated	Fault	Tree	generated	in	previous	subchapter.	As	structural	faults	are	the	

main	 concern	 in	 this	 subchapter,	 the	 quantity	 of	 the	 same	 facility	 is	 traced	 from	 the	

multiplicity	of	a	Class	which	is	then	horizontally	extended	the	basic	events	in	the	Fault	

Tree.	The	extended	Fault	Tree	of	LCCS	is	then	used	to	analyse	the	system	models	based	

on	design	intent	of	LCCS.	

Based	on	the	structural	fault	events	that	have	been	facilitated	to	functional	fault	

events	 in	the	 integrated	FPC	and	tracing	back	to	the	Classes	modelled	for	LCCS,	“LCCS	

Transceiver)”	 (!"),	 “Train”	 (!##),	 	 “Train	Transceiver”	 (!#$),	 and	 “Central	Office	 (CO)”	
(!#%),		are	modelled	as	owner	Class	of	two	part	Classes	with	Composition	relationship.	By	
assuming	that	the	part	Classes	presenting	the	complete	Classes	for	the	owner	Class,	the	

logical	 connective	 as	 in	 Relation	 (4.3.12)	 can	 be	 applied.	 For	 example,	 the	 material	

equivalence	of	the	structural	faults	is	presented	as	&#$ ≡ &#(∨ &#".	

Furthermore,	 the	 number	 of	 component	 is	 also	 considered	 based	 on	 the	

multiplicity	of	Class.	As	referring	to	the	Class	modelled	for	LCCS	based	on	the	technical	

description,	 “Traffic	 Light”	 (!$)	 and	 “Barriers”	 (!()	 are	 two	 Classes	 that	 represent	
facilities	which	designed	with	two	of	each	facility	for	LCCS.	The	same	facilities	serve	the	

same	function.	A	pair	of	a	traffic	light	and	a	barrier	is	located	each	of	two	crossroads	(c.f.	

refer	 Figure	 6.1).	 Noting	 the	 same	 facilities	 which	 serve	 the	 same	 functions	 are	 not	

redundant,	i.e.	one	facility	is	operating	at	a	time	and	another	is	serving	as	a	backup.	

Based	 on	 the	 Composition	 relationship	 and	 multiplicity	 identification,	 the	

integrated	 Fault	 Tree	 is	 extended	 as	 depicted	 in	 Figure	 6.11.	 Two	 differences	 can	 be	

spotted	between	the	integrated	Fault	Tree	and	extended	Fault	Tree.	First,	in	the	extended	

Fault	Tree,	 the	basic	 event	&#$ 	is	 transformed	 into	 an	 intermediate	 event	of	 two	basic	

Chapter	6	

	

199	

	

events,	&#(and	&#".	This	is	due	to	the	Composition	relationship	discussed	earlier.	Second,	
basic	events	&$ 	and	&(are	decomposed	by	 two	 fault	events	of	each.	They	are	 identified	
with	&$#	and	&$$	for	basic	events	&$	and	&(#	and	&($	for	basic	events	&(.	This	is	to	present,	for	
example,	either	traffic	light	1	fails	to	available,	&$#,	or	traffic	light	2	fails	to	available,	&$$,	
traffic	light	is	failed	to	available,	&$.	The	extension	part	of	the	extended	Fault	Tree	is	the	
component	Fault	Tree.	Therefore,	 the	extended	Fault	Tree	 is	comprised	of	component	

Fault	Tree.	However,	based	on	the	transformation,	it	is	not	necessary	for	generating	an	

extended	Fault	Tree	if	Composition	and	redundancy	are	not	applicable.	

For	the	extended	Fault	Tree,	all	the	basic	events	are	also	consisted	of	structural	

faults.	 The	 functional	 faults	 as	 represented	 as	 intermediate	 events	 in	 the	 tree	 are	not	

affected	by	the	Class	model	transformation.	The	minimal	cut	sets	for	the	extended	Fault	

Tree	are	{&#},	{&$#},	{&$$},	{&(#},	{&($},	{&*},	{&%},	{&+},	{&,},	{&-},	{&#(},	{&#"},	{&#*},	{&#+},	and	
{&$. }.	 The	 basic	 event	&#$ 	is	 no	 longer	 in	 the	 minimal	 cut	 sets	 list	 as	 it	 has	 been	
decomposed	 by	 {&#(}	 and	 {&#" }.	 The	 minimal	 cut	 sets	 in	 the	 extended	 Fault	 Tree	 is	
lengthier	that	minimal	cut	sets	in	integrated	Fault	Tree	as	more	structural	faults	events	

are	identified	in	the	contribution	to	the	system	failure,	/0.	For	example,	instead	of	a	traffic	
light	failure,	the	two	traffic	lights	as	in	intended	design	are	separated	and	its	individual	is	

considered	in	the	contribution	to	the	system	failure.	Although	the	occurrence	of	one	of	

the	basic	events	leads	to	the	system	failure,	since	all	of	the	logic	gates	are	OR-gate,	the	

separation	as	individual	when	there	is	a	redundant	facility	can	be	identified.	Therefore,	

the	occurrence	of	the	top	event	will	not	be	affected	by	the	occurrence	of	fault	event	of	

redundant	 facility.	 Furthermore,	 the	 extended	 Fault	 Tree	 presents	 a	 lower	 detail	 of	

structural	fault	events	which	can	be	used	to	analyse	the	system	architecture	design.	For	

example,	 if	 the	 Train	 is	 modelled	 with	 “receive	 ‘Passed’	 Signal”	 together	 with	 “send	

‘Passed’	 Signal”	 (1%)	 in	 Activity	model,	 the	 generated	 Fault	 Tree	will	 consist	 of	 basic	
events	&#(and	&#"	from	facilitation	on	FPC	directly	in	the	integrated	Fault	Tree	instead	of	
decomposed	from	&#$	in	the	extended	Fault	Tree.	

	

	

	

200		

	

	
Figure	6.11:	Extended	Fault	Tree	of	Level	Crossing	Control	System	

a2+

a3+

System failure, as

Safe crossing,

c4

Unsafe crossing,

c5

Signal received,

c8

Signal not received,

c9

a4,5

a8,9

a4,5+

a7+

a8,9+

a10+

a11+

f6

f22

f13

f5 f5

f6

f1 f1

f8

f1

f20

f5

a6+

f13

f9 f15

a2a1

a3

a4 a5

a6

a7

a8 a9

a10

a11

a12

f1 f9 f1

f1

f9 f9

f9

f9 f7 f7 f9

f1

f17

f12

f2

f3

f23

f14

f12

Chapter	6	

	

201		

	

6.4.4 Functions	Ownership	of	Class	for	a	Complete	Fault	Tree	Transformation	

In	this	subchapter,	ownership	of	LCCS	facilities	on	specific	function(s)	modelled	

by	 using	 UML	 Class	 is	 identified.	 The	 identified	 functions	 are	 transformed	 into	 fault	

viewpoint	for	elaborating	structural	fault	events	of	extended	Fault	Tree.	The	elaboration	

is	observed	as	to	conclude	the	transformation	methods	from	system	models	in	UML	to	

Fault	Tree.	

There	are	15	basic	events	in	the	minimal	cut	sets,	{!"},	{!#"},	{!##},	{!$"},	{!$#},	{!%},	
{!&},	 {!'},	 {!(},	 {!)},	 {!"$},	 {!"*},	 {!"%},	 {!"'},	and	{!#+},	are	 identified	 from	the	extended	
Fault	 Tree	 of	 LCCS	 from	 previous	 subchapter.	 These	 basic	 events	 represent	 LCCS	

structural	fault.	As	the	LCCS	structural	faults	in	the	Fault	Tree	are	traceable	in	the	LCCS	

Class	 model,	 the	 function(s)	 (Operation)	 of	 each	 facility	 can	 be	 identified	 from	 the	

corresponding	 Classes.	 Therefore,	 each	 facility	 is	 associated	 with	 function(s).	 For	

example,	 the	 functions	 of	 a	 traffic	 light	 which	 used	 to	 give	 indicator	 to	 vehicle	 and	

pedestrian	in	the	LCCS	as	specified	 in	“Traffic	Light”	(,")	Class	are	switch	and	display.	
However,	in	fault	viewpoint,	the	failure	of	traffic	light	to	function	as	intended	leads	to	the	

failure	of	 the	 traffic	 light	!#.	The	basic	events	!#"	and	!##	can	be	elaborated	by	 inserting	
transfer	events	(transfer	out)	of	the	failure	functionality	of	the	traffic	lights.	This	applies	

to	all	the	basic	events	of	extended	Fault	Tree	for	the	elaborated	Fault	Tree	as	depicted	in	

Figure	6.12.	

	

202		

	

	

Figure	6.12:	Elaborated	Fault	Tree	of	Level	Crossing	Control	System

Page	16

a2+

a3+

System failure, as

Safe crossing,

c4

Unsafe crossing,

c5

Signal received,

c8

Signal not received,

c9

a4,5

a8,9

a4,5+

a7+

a8,9+

a10+

a11+

a6+

a2a1

a3

a4 a5

a6

a7

a8 a9

a10

a11

a12

f2

f3

f12

f1 f6 f9 f1

f12 f22

f1

f13 f23

f5 f9 f5 f9

f9

f13 f14

f15

f6 f9

f1 f7 f9 f1 f7 f9

f1 f8

f1 f5

f17 f20
Page	15

Page	9Page	2

Page	14Page	2

Page	4Page	13Page	2Page	4Page	13Page	2

Page	3 Page	4

Page	12

Page	10 Page	11

Page	4

Page	4Page	9

Page	2 Page	4Page	3 Page	2

Page	5 Page	6

Page	7 Page	8

Page	9 Page	4

Chapter	6	

	

203		

	

The	 basic	 events	 are	 replaced	 by	 transfer	 out	 events	 by	 connecting	 the	 top	 of	

transfer	out	event	(triangle)	to	the	bottom	of	output	event	(rectangle),	i.e.	a	pair	of	each	

basic	event.	Under	the	transfer	out	events,	an	indicator	of	the	location	of	the	transfer	is	

specified.	 For	 example,	 under	 the	 transfer	 out	 event	 of	!"# ,	 an	 indicator	 of	 “Page	5”	 is	
marked.	 This	 means	 the	 lower	 details	 of	!"# 	can	 be	 found	 in	 page	 5.	 Assuming	 the	
elaborated	Fault	Tree	is	the	on	Page	1	as	it	is	the	first	constructed	tree.	In	the	page	3,	the	

same	intermediate	event	of	!"#	with	a	connected	transfer	in	event	(triangle)	next	to	each	
other	is	presented.	Under	the	transfer	in	event,	an	indicator	of	“Page	1”	is	specified	to	link	

back	to	the	original	Fault	Tree.	The	transfer	in	event	of	!"#	is	depicted	as	in	Figure	6.13.	

	

	

Figure	6.13:	Fault	Tree	of	$%&	Transfer	In	Event	

	

6.5 Comparative	Analysis	

In	 this	 subchapter,	 the	 developed	 transformation	 methods	 are	 evaluated	 by	

conducting	 a	 qualitative	 comparison	 against	 established	 transformation	 methods.	

Technically,	 modelling	 and	 problem	 solving	 concerned	 in	 the	 establishment	 of	 the	

transformation	 methods	 can	 be	 related	 to	 system	 methodology	 suggested	 by	 Klir	 in	

1980’s.	 According	 to	 the	 Klir’s	 system	 methodology,	 an	 abstraction	 of	 system	 that	

interpret	into	a	model	of	a	system	is	an	approach	of	discovering	the	whole	system	(Zeigler	

1985).	A	model	that	abstracts	problem	of	a	system	the	model	can	demonstrate	solution	

to	the	problem.	The	problem	solving	is	also	an	approach	of	concept	of	structured	analysis.	

The	 concept	 supports	 separation	 of	 problems	 from	 a	 system	 scale	 before	 solves	 the	

f12
F2	(facility	1)	

fails	to	complete	
its	behaviour

Page	1

Chapter	6	

	

204	

	

problem.	 This	 can	 reduce	 the	 complexity	 of	 problem	 solving	 process	 by	 focusing	 on	

particular	concerns	within	the	system.		

For	this	comparison,	the	established	transformation	methods	are	categorised	into	

two	 sets.	 The	 first	 set	 concerns	 with	 transforming	 systems	 models	 developed	 in	

standardised	modelling	languages	such	as	UML	(Kim	et	al.	2012),	(Hu	et	al.	2011),	(Zhao	

&	Petriu	2015),	(Kim	et	al.	2010)	and	SysML	(Mhenni	et	al.	2014),	(Xiang	&	Yanoo	2010),	

(Yakymets	et	al.	2013)	to	Fault	Trees;	while	the	second	set	concerns	with	formalism	of	

the	 transformation	 methods.	 These	 comparisons	 can	 be	 referred	 to	 the	 MBSA	 tools	

categories	(fault	modelling,	FLM,	and	behavioural	fault	simulation,	BFS)	in	Table	2.2.	

The	four	proposed	transformation	methods	from	system	models	modelled	in	UML	

to	Fault	Tree	generation	covers:	(i)	A	transformation	of	UML	Activity	model	into	a	Fault	

Tree,	(ii)	A	transformation	of	Classes	with	Composition	relationship	model	into	a	Fault	

Tree,	(iii)	A	transformation	of	integrated	behavioural	and	structural	from	UML	Activity	

and	Class	models	to	extend	the	Fault	Tree.	A	comparison	to	other	transformation	to	Fault	

Tree	from	information	modelled	in	other	techniques	such	as	diagraphs	(Wang	et	al.	2003),	

(Vemuri	 1999),	 component-based	 modelling	 (Majdara	 &	 Wakabayashi	 2009),	

(Bhagavatula	 et	 al.	 2016),	 knowledge-based	 approach	 (G	 2002),	 and	 architecture	

description	 language	 (Joshi	 et	 al.	 2007)	 would	 require	 a	 comparison	 between	 the	

modelling	techniques,	which	would	be	beyond	the	scope	of	this	research.	

The	proposed	methods	are	unique	in	two	ways:	firstly,	one	of	the	method	is	the	

first	attempt	 in	 transforming	an	Activity	model	with	a	 focus	on	system	behaviour	and	

fault	propagation;	secondly,	the	methods	gather	two	single	perspectives,	 i.e.	functional	

and	structural,	and	integrate	both	perspectives.	In	comparison,	on	the	UML	side,	similar	

to	 the	 proposed	 methods,	 there	 are	 methods	 developed	 based	 on	 system	 model	

presented	in	a	single	type	of	diagram:	Use	Case	in	(Hu	et	al.	2011);	and	State	Machine	in	

(Kim	et	al.	2010).	In	both	research,	rules	and	algorithm	are	the	two	proposed	practices	

for	 analysing	 system	 safety	 based	 on	 system	 model.	 However,	 both	 research	 apply	

different	category	of	MBSA	tools.	Rules	and	algorithm	in	(Hu	et	al.	2011)	applies	FLM	as	

they	are	used	to	analyse	safety	on	the	modelled	system.	While	rules	and	algorithm	used	

in	(Kim	et	al.	2010)	extend	State	Machine	with	hazard	from	Fault	Tree	to	develop	primary	

Chapter	6	

	

205	

	

fault	events	which	applies	BFS	of	MBSA	method.	Some	other	methods	developed	consider	

multiple	diagrams:	 for	 instance,	 (Zhao	&	Petriu	2015)	has	a	wider	 focuses	by	utilising	

UML	Composite	Structure,	Sequence,	and	Use	Case	Diagrams.	The	information	from	each	

UML	diagrams	is	transformed	to	the	different	level	of	fault	events	in	Fault	Tree.	On	the	

SysML	side,	methods	developed	in	(Mhenni	et	al.	2014)	transform	information	captured	

in	SysML	Internal	Block	Diagrams;	and	the	method	developed	in	(Yakymets	et	al.	2013)	

utilises	both	Block	and	Internal	Block	Diagrams.	Mhenni	et.	al.	utilise	directed	graph	to	

perform	graph	traversal	as	intermediate	processes	from	the	structural	diagram	to	Fault	

Tree	generation.	Different	patterns	are	 identified	 through	 the	processes	as	 to	provide	

safety	analysis	artefacts.	The	transformation	performed	by	Mhenni	et.	al.	is	classified	as	

FLM.	Dissimilar	to	BFS	category	proposed	by	Yakymets	et.	al.	onto	their	transformation	

activites.	 The	 structural	 diagrams	 are	 further	 annotated	 with	 failure	 behaviour	 to	

represent	deviation	from	internal	failures	of	the	diagrams.	Although	many	of	the	above	

methods	have	considered	system	behaviours,	none	of	them	emphasises	the	concept	of	

fault	propagation	 that	 is	manifested	 from	control	 flows	as	modelled	 in	UML	or	SysML	

Activities.	

In	addition,	to	facilitate	the	transformation	methods	developed	in	most	of	these	

works,	 additional	 stereotype	 are	 introduced	 to	 the	 standard	UML	and	 SysML	models;	

whereas	the	proposed	methods	do	not.	As	such,	the	advantage	of	the	proposed	method,	

i.e.	 transformation	 of	 UML	 Activity	 model	 into	 a	 Fault	 Tree,	 that	 reflect	 exactly	 the	

reliability	of	system	behaviour	architecture	is	claimed;	while	the	limitation	of	the	method	

is	 that	 it	 only	 concerns	 one	 type	 of	 fault,	 which	 is	 functional	 failure.	 The	 method	 is	

extended	with	facilitation	to	integrate	structural	failure	in	the	developed	Fault	Tree.	The	

developed	formal	transformation	methods	in	this	thesis	can	be	classified	as	FLM	of	MBSA	

tools.	The	methods	transform	system	models	without	any	failure	mode	models	extension	

to	generate	Fault	Tree.	This	presents	the	safety	analyses	are	done	based	on	what	have	

been	modelled	for	the	system.	

In	comparison,	on	the	formalism	side,	similar	to	the	developed	methods,	there	is	

a	method	developed	based	on	conjunctions	of	predicates	for	constructing	a	formal	Fault	

Tree	(Xiang	et	al.	2005).	The	conjunctions	of	predicates	are	applied	to	states	transition	of	

Chapter	6	

	

206	

	

a	SoS	as	transition	rule	that	identify	a	normal	state	(not	failure	state)	such	as	barriers	are	

open	could	also	lead	to	system	failure	(top	event	of	the	tree)	which	in	this	case	is	collision	

between	 crossing	 train	 and	 vehicles	 (c.f.	 Railway	 System	 case	 study).	 However,	 the	

system	 analysis	 is	 grounded	 to	 security	 of	 the	 system	 in	 which	 the	 system	 can	 be	

disturbed	in	any	course	such	as	train	is	hijacked.	Furthermore,	the	root	(top	event)	of	the	

tree	for	analysing	the	safety	of	the	system	is	an	unintended	situation	(collision	between	

crossing	train	and	vehicles)	instead	of	failure	of	LCCS	in	serving	its	function.	

In	addition,	the	concept	of	negation	is	being	used	in	many	Fault	Tree	research	from	

computer	 science	 background	 for	 identifying	 fault	 or	 failure	 from	 system	 design.	 For	

example,	as	Fault	Tree	is	a	deductive	safety	analysis	technique,	Xiang	et.	al.	identified	the	

negation	of	 safety	 regulation	and	requirement	of	a	 system	as	 the	 top	 level	of	 the	 tree	

(Xiang	et	al.	2004).	Although,	the	logical	reasoning	for	the	top	event	has	been	formally	

verified	with	CafeOBJ,	the	engineering	practices	and	system	viewpoint	are	leaving	behind.	

6.6 Summary	of	Verification	of	the	Developed	Formal	Transformation	Methods	

In	this	chapter,	a	trial	run	of	the	developed	transformation	methods	is	conducted	

as	 a	 part	 of	 verifying	 the	 methods	 that	 developed	 in	 this	 research.	 The	 developed	

transformation	 methods	 including	 metamodels	 have	 been	 applied	 to	 an	 authorised	

Railway	 System	 case	 study.	 The	 technical	 description	 of	 the	 system	 is	 gathered	 from	

several	published	papers	to	acquire	a	comprehensive	understanding	of	the	system		for	

the	application	of	the	methods.	The	Activity	and	Class	models	of	the	Railway	System	are	

developed	in	UML	as	the	sources	for	the	Fault	Trees	transformation.	For	the	purpose	of	

this	chapter,	LCCS	is	selected	as	the	main	CS	of	the	Railway	System	together	with	three	

other	 CSs:	 (i)	 Train,	 (ii)	 Central	 Office,	 and	 (iii)	 Vehicle.	 The	 system	 architecture	 is	

designed	from	the	viewpoint	of	 the	LCCS.	The	methods	developed	in	this	research	are	

observed	to	be	able	to	apply	to	complex	system.	

The	overview	of	 the	 transformations	 from	UML	system	models	 to	Fault	Tree	 is	

depicted	as	in	Figure	6.14.	In	the	application	of	the	transformation	methods,	four	types	

Chapter	6	

	

207	

	

of	Fault	Tree	are	generated.	First,	functional	Fault	Tree	is	generated	from	Activity	model	

of	 the	 LCCS	 with	 the	 supporting	 methods:	 semantic	 mapping	 rules	 and	 FPC.	 In	 the	

functional	Fault	Tree,	a	top	event	is	defined	as	system	failure	and	the	intermediate	fault	

events	are	composed	of	functional	fault	events	(top	event	and	functional	events	at	level	

1).	Taking	the	functional	Fault	Tree	as	the	backbone	of	further	Fault	Tree	generation	and	

Class	model	as	presentation	of	facilities	of	LCCS,	the	concept	of	facilitation	is	applied.	As	

a	result,	an	integration	of	functional	and	structural	failures	(structural	fault	events	at	level	

1)	 is	reflected	 in	the	generated	 integrated	Fault	Tree.	The	extended	Fault	Tree	 is	 then	

generated	 by	 transforming	 Classes	 in	 Composition	 relationship	 which	 has	 material	

equivalence	structure.	The	extended	Fault	Tree	is	comprised	of	component	Fault	Tree	at	

the	 structural	 faults	 decomposition	 (structural	 fault	 event	 at	 level	 2).	 Finally,	 the	

elaborated	Fault	Tree	 is	generated	by	applying	 the	concept	of	ownership	of	 facility	 to	

function.	In	this	thesis,	the	basic	event	of	structural	event	is	transformed	from	facilities	

that	have	been	designed	in	UML	Class.	The	Class	that	presents	facility	could	be	hardware	

or	software.	When	the	facility	is	not	atomic	level,	its	failure	can	be	caused	by	fault	or	error	

from	other	element.	Therefore,	the	transformation	methods	allow	decomposition	of	fault	

events	in	a	hierarchy	structure.	When	necessary,	the	fault	events	can	be	decomposed	into	

the	next	level,	i.e.	decomposition	of	basic	event	of	structural.	

	

Chapter	6	

	

208	

	

	

Figure	6.14:	Overview	of	Transformation	from	UML	System	Models	to	Fault	Tree	

Generation	

	

Technically,	 the	 transformation	 methods	 are	 established	 based	 on	 two	 key	

features	model-based	approach	and	separation	of	concerns.	These	key	features	can	be	

reflected	to	system	methodology	suggested	by	Klir	and	the	concept	of	structured	analysis.	

The	 establishment	 of	 the	 transformation	 methods	 are	 compared	 according	 the	

transformation	 from	 system	 models	 to	 Fault	 Tree	 approach	 and	 formality	 of	 the	

concerned	 in	 the	 transformation	methods.	 The	 transformation	 is	 the	 first	 attempt	 of	

transforming	Activity	model	to	Fault	Tree.	The	formality	concerned	in	the	transformation	

methods	enables	preservation	of	the	relational	structure	of	Activity	model	and	Classes	in	

compositional	relationship	in	the	Fault	Trees.	In	addition,	the	transformation	methods	

Chapter	6	

	

209	

	

lead	to	the	decomposition	of	 fault	events	from	behavioural	 failure	to	structural	 failure	

and	elaboration	of	the	basic	events.		

To	develop	a	Fault	Tree	by	using	 traditional	way	after	waiting	 the	architecture	

design	 completed	 is	 time	 consuming.	 The	 application	 of	 the	 developed	 methods	 can	

leverage	the	safety	analysis	by	generating	Fault	Tree	from	the	UML	system	models.	The	

application	of	the	developed	methods	enables	analysing	safety	of	system	design	which	is	

a	step	of	closing	the	gap	between	SE	and	SSE.	

	

	

	

	

210		

	

CONCLUSION	AND	FUTURE	WORK		

	

Four	transformations	methods	have	been	developed	based	on	propositional	logic	

and	probability	theory	to	allow	a	system	modelled	in	UML	to	be	transformed	semantically	

into	 its	 equivalent	 Fault	 Tree.	 The	 methods	 developed	 align	 with	 current	 industrial	

practices	 in	 early	 stage	 system	 assurance	 (Zeller	 et	 al.	 2016)	 and	 advance	 existing	

approaches	 in	 terms	 of	 accommodating	 system	 model	 availability	 (Majdara	 &	

Wakabayashi	2009),	(Bhagavatula	et	al.	2016)	while	incorporating	mathematical	rigour	

(Mhenni	et	al.	2014),	 (Yakymets	et	al.	2013).	A	 few	concepts	have	been	 introduced	 to	

assist	 the	 transformation	methods;	 FPC	 as	 an	 intermediate	 step	 and	 facilitation	 as	 an	

extension	 step.	 Three	 overarching	metamodels	were	 then	 developed;	 the	 AM-FPC-FT	

overarching	metamodel	bridging	the	metamodels	of	Activity	model,	FPC,	and	Fault	Tree,	

the	CM-FT	overarching	metamodel	bridging	the	metamodels	of	Classes	in	Composition	

relationship	 and	 Fault	 Tree;	 and	 the	 F-FPC-FT	 overarching	 metamodel	 bridging	 the	

metamodels	 of	 FPC	 with	 facilitation	 and	 Fault	 Tree.	 The	 formal	 basis	 of	 the	

transformation	methods,	 together	with	 the	overarching	metamodels,	assist	automated	

Fault	Tree	generation.	The	main	contribution	of	the	formal	transformation	methods	to	

the	 Fault	 Tree	 generation	 is	 the	 relational	 structure	 mapping.	 Furthermore,	 the	

transformation	methods	developed	in	this	thesis	support	formal	approach	for	generating	

Fault	Trees	from	system	architecture	models.	As	discussed	by	Xiang	et.	al.,	the	relational	

structure	mapping	which	can	be	seen	as	a	practical	way	of	helping	engineers	in	the	line	

to	understand	the	developing	Fault	Tree	by	using	formal	methods	(Xiang	et	al.	2004).	The	

relational	 structure	mapping	 can	 potentially	 add	 new	 knowledge	 in	 the	 discovery	 of	

faults	 and	 fault	 structure	 (i.e.	 fault	 logic	 such	 as	 teo	 faults	 associated	with	AND-gate)	

which	are	not	manifested	from	a	conventional	entity-to-entity	mapping.	

To	demonstrate	and	evaluate	the	applicability	of	these	developed	transformation	

methods,	they	were	applied	to	the	RMS	case	study	previously	studied	in	(Ingram	et	al.	

2014)	and	the	LCCS	case	study	previously	studied	in	(Reif	et	al.	2000),	(Schellhorn	et	al.	

Chapter	7	

	

211	

	

2002),	 (Xiang	 et	 al.	 2004),	 and	 (Xiang	 et	 al.	 2005).	 The	 application	 of	 the	 formal	

transformation	methods	to	these	case	studies	demonstrates	their	compatibility	with	SoS	

problems.	The	transformation	methods	developed	in	this	thesis	utilise	system	models	in	

UML	to	generate	Fault	Trees.		The	elements	in	the	generated	Fault	Trees	are	traced	back	

to	the	elements	of	the	corresponding	system	models.	Additionally,	the	methods	enable	

the	preservation	in	the	transformed	Fault	Tree	of	the	relational	structure	between	system	

behaviour	and	system	structure.	Qualitative	analyses	of	the	Fault	Trees	were	then	carried	

out	 to	 examine	 the	 quality	 of	 the	 system	 architecture	 designs.	 The	 designer	 will	 be	

informed	by	the	safety	engineer	of	safety	and	reliability	features	based	on	the	outcomes	

of	 the	 analyses.	 Furthermore,	 the	 developed	 overarching	 metamodels	 bridging	 the	

metamodels	 of	 UML,	 FPC,	 and	 Fault	 Tree	 can	 be	 used	 as	 the	 basis	 of	 a	 software	

automation	tool.	

Despite	the	successful	application	of	the	methods	to	the	cases	studies,	there	are	

limitations	of	the	approaches	presented	in	this	thesis.	For	instance,	loops	are	particularly	

useful	in	modelling	control	systems,	but	have	been	deliberately	avoided	in	control	flows	

as	 they	 do	 not	 naturally	 fit	 into	 the	 structure	 of	 a	 standard	 Fault	 Tree.	 Majdara	 and	

Wakabayashi	 in	 (Majdara	 &	 Wakabayashi	 2009)	 also	 suggested	 that	 events	 that	 are	

encountered	repeatedly	can	lead	to	an	infinite	loop	structure	in	a	Fault	Tree.	In	addition,	

the	configuration	of	components	 in	a	system	supports	the	 identification	of	component	

redundancy	structure	and	error	propagation	that	leads	to	system	failure	(Pai	&	Dugan	

2002).	Work	needs	to	be	undertaken	in	future,	therefore,	to	resolve	these	issues	by	using	

of	UML	Structured	Activity	Nodes	such	as	LoopNode,	as	well	as,	Connector	in	the	UML	

Composite	Structure.	

Furthermore,	because	the	current	state	of	 the	approach	 is	concerned	only	with	

control	flows	of	behavioural	model	and	the	Composition	relationship,	the	transformation	

methods	are	not	applicable	to	object	flows	and	interaction	of	components.	In	this	context,	

four	pathways	are	envisioned	to	extend	the	current	work	and	to	make	the	methods	more	

widely	applicable.	These	are	extensions	of	the	transformation	of	control	flows,	facilitation,	

and	ownership	to:	

1)	object	flows;	

Chapter	7	

	

212	

	

2)	state	machines;	

3)	interactions;	

4)	non-functional	aspect;	

The	 following	discusses	each	pathway	 in	more	detail.	With	 these	extensions,	 it	

should	then	be	possible	to	evaluate	the	reliability	of	the	transformed	Fault	Tree	in	great	

depth	by	comparing	it	to	similar	work.	

Object	 flow,	 which	 was	 not	 included	 in	 the	 scope	 of	 this	 thesis,	 is	 the	 other	

important	aspect	of	UML	Activities.	Errors	presented	in	an	Object,	e.g.	incorrect	data	that	

are	passed	between	system	components,	may	lead	to	undesired	system	functions	such	as	

malfunctions,	in	addition	to	the	fault	events	that	this	work	is	concerned	with.	Developing	

a	 formal	 representation	of	Objects	and	 their	associated	 faults	 can	be	 challenging.	 It	 is	

anticipated	 that	 the	 use	 of	 Predicate	 Calculus	 to	 capture	 the	 states	 of	 an	 object	 can	

provide	insights	into	the	inclusion	of	object	flows.	

In	 practice,	 the	 modelling	 of	 system	 behaviour	 is	 also	 concerned	 with	 the	

modelling	 of	 system	 states.	 In	 UML,	 these	 system	 states	 are	 modelled	 using	 State	

Machines.	Since	the	executions	of	system	functions	is	closely	related	to	the	changing	of	

system	states,	 the	 transformation	between	the	 two	types	of	behavioural	models	could	

provide	 insights	 in	 elaborating	 current	 transformations	 to	 further	 consume	 State	

Machines	as	system	behavioural	models.	It	would	also	be	useful	to	utilise	and	elaborate	

other	 existing	 works,	 such	 as	 that	 of	 (Kim	 et	 al.	 2010).	 In	 addition,	 an	 overarching	

metamodel	 of	 both	 behavioural	 diagrams	 can	 be	 developed	 by	 abstracting	 related	

elements	owned	between	Activity	and	State	Machine.	

The	behaviour	of	a	system	can	be	modelled	according	to	the	execution	of	system	

functions.	In	UML,	other	than	Use	Case,	Activity	and	State	Machine,	the	system	functions	

are	modelled	 at	 varying	 levels	 of	 detail	 by	 using	 Interactions.	 Sequence,	 one	 of	 these	

Interactions,	 is	 used	 to	 model	 functions	 precisely	 up	 to	 the	 level	 of	 inter-processes	

according	 to	 sequence	 of	 occurrence.	 The	 Operation	 of	 a	 Class	 that	 addresses	 the	

functions	of	the	modelled	system	can	be	modelled	using	Sequence.	Since	the	Fault	Tree	

Chapter	7	

	

213	

	

generated	by	using	the	developed	methods	concluded	with	failure	of	system	components	

to	 complete	 its	 behaviour,	 the	 methods	 can	 be	 explored	 to	 include	 Fault	 Tree	

transformation	from	functions	that	are	designed	by	using	non-Activity	model.	

	 Lastly,	 the	 non-functional	 aspect	 of	 a	 system	 can	 also	 be	 considered	 in	 the	

generation	of	 Fault	Trees	based	on	 the	 transformation	 from	UML	 system	models.	 For	

example,	a	failure	in	the	aircraft	Traffic	Alert	and	Collision	Avoidance	System	(TCAS)	can	

lead	to	incorrect	colours	and	shapes	being	displayed	on	the	Resolution	Advisory	display	

which	can	in	turn	lead	to	inappropriate	aircraft	manoeuvres,	potentially	putting	the	plane	

at	 risk	 (Department	 of	 Transportation	 Federal	 Aviation	 2011).	 A	 failure	 of	 a	 system	

analysed	in	a	Fault	Tree	can	be	triggered	by	an	error	or	malfunction.	State	machine	and	

Object	 can	 therefore	 offer	 positive	 insights	 by	 analysing	 non-functional	 aspects	 of	 a	

system.	

	 The	presented	approach	 in	 this	 thesis	 to	 transform	Activity	Diagram	and	Class	

Diagram	into	Fault	Trees	is	rooted	in	the	use	of	propositional	calculus	to	capture	failure	

semantics	and	 failure	 logics	(relational	structure).	Extension	of	 this	approach	to	other	

models	 such	 as	 State	 Machines	 and	 Interactions	 would	 therefore	 imply	 the	 use	 of	

propositions	to	capture	different	failure	semantics	and	failure	logics.	If	the	thesis	scope	

failure	semantics	to	be	only	complete	failure	(e.g.	“message	is	unavailable”)	similar	to	the	

approach	 of	 this	 thesis,	 capturing	 these	 failure	 semantics	 involved	 in	 additional	 UML	

diagrams	 would	 be	 straightforward.	 However,	 capturing	 the	 different	 failure	 logics	

embodied	in	the	additional	UML	diagrams	would	be	much	more	challenging.	For	instance,	

in	State	Machines,	 transitions	between	states	can	be	triggered	by	various	mechanisms	

such	 as	 pre-planned	 events,	 operator	 actions,	 and	 environment	 changes.	 These	

mechanisms	involving	both	discrete	and	continuous	dynamical	behaviour,	would	likely	

lead	to	the	need	of	different	failure	logics	to	be	captured	using	advanced	and	complex	

inference	in	propositional	calculus.	

	 In	addition	to	the	above,	as	already	mentioned	in	Subchapter	4.3.2,	extension	of	

the	 current	 work	 also	 means	 going	 beyond	 complete	 failure	 to	 include	 other	 failure	

semantics	such	as	malfunction	and	erroneous	outputs.	Therefore,	this	brings	additional	

Chapter	7	

	

214	

	

challenge	 in	 using	 solely	 propositional	 calculus	 to	 capture	 different	 semantics	 with	

various	types	of	failure	logics	between	them	in	the	additional	UML	diagrams.	

	 The	 second	 challenge	 is	 concerned	 with	 creating	 an	 integrated	 picture	 of	 the	

transformed	 Fault	 Trees.	 Extension	 of	 the	 method	 does	 not	 stop	 at	 transform	 an	

additional	diagram	into	a	Fault	Tree,	but	 it	 is	also	necessary	to	 integrate	the	resultant	

Fault	Tree	with	the	hierarchical	Fault	Tree	that	is	transformed	from	an	integrated	Activity	

and	 Class	 diagrams	 as	 presented	 in	 Chapter	 5,	 with	 using	 the	 concept	 of	 facilitation.	

Therefore,	it	is	important	that	an	integration	mechanism,	similar	to	facilitation,	needs	to	

be	developed	in	a	formal	language,	such	as	propositional	calculus,	to	properly	integrate	

the	diagrams,	and	the	 transformations	of	 these	diagrams	such	that	 the	resultant	Fault	

Tree	is	also	an	integrated	one.	

	 Last	 but	 not	 least,	 defining	 probability	 calculation	 for	 looping	 mechanism	 is	

certainly	 required.	 This	 is	 especially	 true	 for	 Interactions	 and	 State	 Machines	 where	

various	types	of	looping	(e.g.	iterative,	alternative,	and	breaking)	are	captured.	This	thesis	

has	currently	deliberately	avoided	transforming	loop	structure	due	to	Fault	Trees	being	

incapable	 of	 handling	 it	 using	 the	 classical	 probability	 theory	 and	 Boolean	 logic.	

Therefore,	extension	of	the	current	method	would	mean	to	find	an	alternative	to	allow	

transformation	of	 loop	mechanism	into	a	proper	combination	of	 failure	semantics	and	

logics	 that	 adhere	 to	 the	metamodel	 needs	 to	 be	 redesigned	 to	 allow	modelling	 and	

analysis	of	loops	often	used	in	system	behaviour.	

	

	

215		

	

Use	Case	Diagram	as	a	Behaviour	Model	

	

The	behavioural	view	of	a	system	that	emphasises	on	the	highest	level	of	system	

functionality	 can	be	 realised	by	using	Use	Cases.	 In	 the	Use	Cases	presentation,	 three	

levels	 of	 requirements	 can	 be	 observed.	 The	 Use	 Case	 requirement	 levels	 include	

operational	requirement,	functional	requirement,	and	elaborated	functional	requirement	

(listed	 from	 highest	 to	 lower	 details	 of	 Use	 Case).	 The	 highest	 level	 of	 Use	 Case	 is	

expanded	for	a	lower	level	Use	Case	to	capture	lower	level	of	system	details.	The	level	of	

the	 system	 details	 can	 be	 marked	 and	 compared	 amongst	 the	 Use	 Cases.	 The	 most	

detailed	Use	Case	can	be	very	helpful	to	system	engineers	as	Use	Case	provides	technical	

information	to	develop	a	system.	The	system	behaviour	can	be	effectively	expressed	by	

use	 case	 description	 in	 which	 showing	 the	 relationships	 	 (Some	 2007).	 The	

comprehensive	 information	 of	 the	 system	 behaviour	 from	 the	 elaborated	 functional	

requirement	Use	Case	is	proposed	for	Use	Case	description	as	presented	in	Table	A.1.	The	

coherent	system	function	for	Use	Case	description	can	be	used	as	a	system	test	case	to	

check	the	system	function	flow.	The	performance	and	interaction	between	a	system	and	

its	boundary	are	also	presented	as	part	of	the	system	functionality.	Requirements	and	

context	 of	 a	 system	 is	 primarily	 modelled	 by	 using	 Use	 Case	 model	 that	 emphasise	

missions	and	stakeholder	goals.	Use	Case	presents	an	abstraction	of	a	system	function	

including	 an	 overview	 of	 SoS.	 The	 abstraction	 presented	 is	 sufficient	 for	 the	 least	

understanding	of	the	system	function	to	the	stakeholders.	The	Use	Case	can	be	presented	

in	several	levels	of	details	which	derived	from	the	highest	level	of	Use	Case.	The	Use	Cases	

presentation	emphasise	what	systems	are	supposed	to	do.	

A	Use	Case	diagram	is	made	up	of	three	key	concepts	which	are	subject,	Use	Cases,	

and	 Actors	 (Object	Management	 Group	 2017d).	 The	 subject	 is	 defined	 as	 the	 system	

boundary	 that	 presented	 in	 rectangle	 shape.	 It	 is	 used	 to	 describe	 the	 context	 of	 the	

system.	 Specifically,	 a	 behaviour	 of	 the	 system	 of	 interest	 is	 specified	 by	 a	 Use	 Case	

presented	 in	 oval	 shape.	Usually,	 the	 content	 of	 a	Use	 Case	 is	written	 in	 a	 verb	noun	

	

216	

	

phrase	with	small	letters	except	first	letter	of	the	noun	e.g.	use	Case	and	control	Vehicle	

Flow	(refer	to	Figure	3.9).	However,	this	has	not	been	specified	by	OMG.	The	functions	of	

a	system	is	specified	within	Use	Cases	are	defined	at	the	level	which	Actor,	presented	in	

‘stick	man’	icon,	of	the	system	can	achieve.	A	role	or	a	user	including	the	environment	

that	 interacts	with	 the	 system	of	 interest	 is	modelled	 using	 an	Actor.	 The	 interaction	

between	 an	 Actor	 to	 the	 specific	 behaviour	 of	 the	 system	 interest	 is	 modelled	 by	

Association.	An	Actor	can	interacts	with	more	than	one	use	cases.	In	the	case	where	the	

behaviour	 of	 a	 system	 (at	 the	 highest	 level	 of	 information)	 can	 be	 further	 defined,	

<<extend>>	and	<<include>>	relationships	are	applied	between	Use	Cases.	Both	of	them	

are	represented	by	directed	dashed	arrows.	They	are	differentiated	by	pointing	opposite	

direction	to	or	from	first	(base)	level	Use	Case.	A	dashed-directed	arrow	pointing	from	

extending	 Use	 Case	 into	 extended	 (base)	 Use	 Case	 labelled	 with	 <<extend>>	 as	 a	

relationship.	 The	<<extend>>	 relationship	 is	 used	 to	 define	 optional	 behaviour	 of	 the	

extending	Use	Case	to	the	extended	Use	Case.	For	example,	‘Help’,	denoted	as	extending	

Use	Case,	is	an	optional	behaviour	(function)	of	‘Bank	Automated	Teller	Machine	(ATM)	

Transaction’,	denoted	as	extended	(base)	Use	Case.	The	optional	function	is	not	necessary	

for	 a	 user	 to	make	 a	 transaction	 from	 the	 ATM.	 Another	 further	 defined	 relationship	

<<include>>,	can	be	defined	as	an	extraction	behaviour	of	the	including	(base)	Use	Case	

behaviour.	A	dashed-directed	arrow,	 labelled	with	<<include>>,	 is	pointed	away	 from	

including	 Use	 Case	 into	 included	 Use	 Case.	 The	 <<include>>	 relationship	 shows	 the	

included	Use	Case	as	an	 independent	behaviour	and	 it	 is	 a	necessary	 to	 the	 including	

(base)	Use	Case.	For	example,	an	including	Use	Case	of	 ‘Bank	ATM	Transaction’	has	an	

included	Use	Case	of	 ‘Customer	Authentication’.	This	means,	the	user	needs	to	insert	a	

bank	card	and	pin	number	as	for	proving	identification	prior	to	do	a	transaction.	The	basic	

symbols	of	a	Use	Case	Diagram	are	listed	as	in	Table	A.1.	

	

	

	

	

	

217	

	

Table	A.1:	Use	Case	Model	Symbols	

Symbol	 Description	

	

Actor	–	Usually,	an	Actor	is	represented	by	a	

“stick	man”	icon	labelled	with	the	name	of	the	

Actor.	

	

Use	Case	–	An	ellipse	shape	with	verb-noun	

written	in	the	shape.	

	

Subject	–	A	rectangle	shape	that	holds	a	set	of	use	

case	behaviours	labelled.	

	
Association	–	A	line	that	connects	Actor	and	Use	

Case.	

	
Extend	–	Shows		the	included	Use	Case	as	an	

extraction	of	the	including	(base)	Use	Case		

	

Include	–	Shows	optional	behaviour	of	the	

extended	(base)	Use	Case	by	the	extending	Use	

case		

	

	

218	

	

Use	Case	Metamodel	

Within	the	scope	of	this	thesis,	a	metamodel	for	Use	Cases	modelling	is	derived	by	

simplifying	OMG	UML	Specification.	The	Use	Cases	Metamodel		is	depicted	in	Figure	A.1.	

Actor	and	UseCase	are	classified	as	BehaviouredClassifier	that	declares	a	set	of	offered	

behaviours	 (Object	 Management	 Group	 2017d)	 Actor	 and	 UseCase	 are	 associated	

between	each	other	and	can	be	involved	in	multiple	associations.	The	Use	Case	is	owned	

by	 Classifier	which	 represents	 the	 subject	holding	 the	 performed	 behaviours.	 For	 the	

relationships	 between	 Use	 Cases,	 both	 Extend	 and	 Include	 are	 classified	 as	

DirectedRelationship.	Metaclasses	such	as	ExtensionPoint	and	Constraint	are	discarded	

to	limit	the	scope	of	the	research.			

Figure	A.1:	Use	Case	Metamodel	

	

219		

	

OR-Gate	and	Minimal	Cut	Set	

	

In	a	Fault	Tree	which	merely	has	OR-Gate	connecting	all	of	the	events,	all	of	the	

basic	events	including	any	event	at	the	bottom	of	the	Fault	Tree	are	the	minimal	cut	sets	

in	the	tree	by	themselves.	The	events	at	the	bottom	of	the	tree	can	be	comprised	of	the	

event	that	cannot	be	developed	further	for	some	reason	such	as	undeveloped	event	and	

external	event.	As	depicted	in	Figure	B.1,	in	the	particular	structure,	the	occurrence	of	top	

event	of	the	tree	is	contributed	by	at	least	by	one	the	events.	However,	when	minimal	cut	

set	 applied	 to	 the	 Fault	 Tree,	 some	 of	 the	 tree	 especially	 the	middle	 part	 of	 the	 tree	

structure	is	missing.	

Figure	B.1:	Fault	Tree	consisted	of	only	OR-Gates	

	

220		

	

Adler,	R.	et	al.,	2011.	Integration	of	Component	Fault	Trees	into	the	UML.	In	J.	Dingel	&	A.	

Solberg,	 eds.	 Models	 in	 Software	 Engineering.	 MODELS	 2010.	 Lecture	 Notes	 in	

Computer	Science.	Springer,	Berlin,	Heidelberg,	pp.	312–327.	

ALD,	 Fault	 Tree	 Analyser.	 Available	 at:	 http://www.fault-tree-analysis-

software.com/contact-ald-engineering	[Accessed	January	6,	2019].	

Amissah,	M.	 et	 al.,	 2018.	 Towards	 a	 framework	 for	 executable	 systems	modelling:	 An	

executable	Systems	Modelling	Language	(SysML).	In	Proceedings	of	the	Model-driven	

Approaches	for	Simulation	Engineering	Symposium,	Mod4Sim.	

Andrews,	Z.,	Bryans,	J.,	Payne,	R.,	Dider,	A.,	et	al.,	2014.	COMPASS	Advanced	Modelling	and	

Analysis,	

Andrews,	Z.,	Bryans,	 J.,	Payne,	R.	&	Kristensen,	K.,	2014.	Fault	modelling	on	system	of	

systems	 contracts.	 In	 Proceedings	 of	 the	 Workshop	 on	 Engineering	 Dependable	

Systems	of	Systems,	EDSoS.	

Andrews,	Z.,	Ingram,	C.,	et	al.,	2014.	Traceable	engineering	of	fault	-	tolerant	SoSs.	INCOSE	

International	Symposium,	24(1),	pp.258–273.	

Ashton,	C.	et	al.,	2015.	The	search	for	MH370.	Journal	of	Navigation,	68(1),	pp.1–22.	

Auvation,	OpenFTA.	Available	at:	http://www.openfta.com/	[Accessed	January	6,	2019].	

Avižienis,	 A.	 et	 al.,	 2004.	 Basic	 concepts	 and	 taxonomy	 of	 dependable	 and	 secure	

computing.	IEEE	Transactions	on	Dependable	and	Secure	Computing,	1(1),	pp.11–33.	

Baheti,	 R.	 &	 Gill,	 H.,	 2011.	 Cyber-physical	 systems.	The	 Impact	 of	 Control	 Technology,	

12(1),	pp.161–166.	

Bahr,	N.J.,	2014.	System	safety	engineering	and	risk	assessment:	A	practical	approach	2nd	

ed.,	

Baker,	P.,	Loh,	S.	&	Weil,	F.,	2005.	Model-driven	engineering	in	a	large	industrial	context—

	

221	

	

Motorola	case	study.	Model	Driven	Engineering	Languages	and	Systems,	pp.476–491.	

Banhesse,	 E.L.,	 Salviano,	 C.F.	 &	 Jino,	 M.,	 2012.	 Towards	 a	 metamodel	 for	 integrating	

multiple	models	for	process	improvement.	In	38th	Euromicro	Conference	on	Software	

Engineering	and	Advanced	Applications,	SEAA.	pp.	315–318.	

Berramla,	K.,	Deba,	E.A.	&	Benhamamouch,	D.,	2016.	Model	transformation	generation	a	

survey	of	the	state-of-the-art.	In	International	Conference	on	Information	Technology	

for	Organizations	Development,	IT4OD.	

Berry,	D.M.,	2002.	Formal	methods:	The	very	idea,	some	thoughts	about	why	they	work	

when	they	work.	In	Science	of	Computer	Programming.	pp.	11–27.	

Bhagavatula,	A.	 et	 al.,	 2016.	A	new	methodology	 for	 automatic	 fault	 tree	 construction	

based	on	Component	and	Mark	Libraries.	Safety	and	Reliability	Society,	36,	pp.62–76.	

Blanchard,	B.S.	&	Fabrycky,	W.J.,	2013.	Systems	Engineering	and	Analysis	5th	ed.,	Pearson	

Education	Limited.	

Boardman,	 J.	&	 Sauser,	 B.,	 2006.	 System	of	 systems	 -	 the	meaning	 of	 of.	 In	 IEEE/SMC	

International	Conference	on	System	of	Systems	Engineering.	pp.	118–123.	

Boehm,	 B.W.,	 1988.	 A	 spiral	 model	 of	 software	 development	 and	 enhancement.	 ACM	

SIGSOFT	Software	Engineering	Notes,	21(5),	pp.61–72.	

Bondavalli,	 A.	 et	 al.,	 2001.	 Dependability	 analysis	 in	 the	 early	 phases	 of	 UML-based	

system	 design.	 International	 Journal	 of	 Computer	 Systems	 Science	 &	 Engineering,	

16(5),	pp.265–275.	

Bozzano,	M.	et	al.,	2015.	Efficient	anytime	techniques	for	model-based	safety	analysis.	In	

International	Conference	on	Computer	Aided	Verification.	pp.	603–621.	

Bozzano,	M.	et	al.,	2003.	ESACS :	An	integrated	methodology	for	design	and	safety	analysis	

of.	In	Proceedings	ESREL.	Balkema.	

Bozzano,	M.	&	Villafiorita,	A.,	2003.	Improving	system	reliability	via	model	checking:	The	

FSAP/NuSMV-SA	safety	analysis	platform.	Computer	Safety,	Reliability,	and	Security,	

	

222	

	

2788,	pp.49–62.	

Brosgol,	B.M.,	2011.	Do-178c:	The	next	avionics	safety	standard.	In	SIGAda.	pp.	5–6.	

Bryans,	 J.	 et	 al.,	 2014.	 SysML	 contracts	 for	 systems	 of	 systems.	 In	 9th	 International	

Conference	 on	 System	of	 Systems	Engineering:	 The	 Socio-Technical	 Perspective.	 pp.	

73–78.	

Burgueño,	 L.	 et	 al.,	 2015.	 Static	 fault	 localization	 in	 model	 transformations.	 IEEE	

Transactions	on	Software	Engineering,	41(5),	pp.490–506.	

Cepin,	M.	&	Mavko,	B.,	1999.	Fault	tree	developed	by	an	object-based	method	improves	

requirements	 specification	 for	 safety-related	 systems.	 Reliability	 Engineering	 &	

System	Safety,	63(2),	pp.111–125.	

Čepin,	M.	&	Mavko,	 B.,	 2002.	 A	 dynamic	 fault	 tree.	Reliability	 Engineering	 and	 System	

Safety,	75(1),	pp.83–91.	

Chanda,	J.	et	al.,	2009.	Traceability	of	requirements	and	consistency	verification	of	UML	

UseCase,	Activity	and	Class	Diagram:	A	formal	approach.	International	Conference	on	

Methods	and	Models	in	Computer	Science,	pp.1–4.	

Clarke,	E.M.	&	Wing,	J.M.,	2002.	Formal	methods:	state	of	the	art	and	future	directions.	

ACM	Computing	Surveys,	28(4),	pp.626–643.	

Craciun,	F.,	Motogna,	S.	&	Lazar,	I.,	2013.	Towards	better	testing	of	fUML	models.	In	6th	

International	Conference	on	Software	Testing,	Verification	and	Validation.	pp.	485–

486.	

Czarnecki,	 K.	 &	 Helsen,	 S.,	 2006.	 Feature-based	 survey	 of	 model	 transformation	

approaches.	IBM	Systems	Journal,	45(3),	pp.621–645.	

Dai,	W.	et	al.,	2018.	A	cloud-based	decision	support	system	for	self-healing	in	distributed	

automation	 systems	 using	 fault	 tree	 analysis.	 IEEE	 Transactions	 on	 Industrial	

Informatics,	14(3),	pp.989–1000.	

David	 Long,	 2016.	 Time	 to	 drop	 MBSE?	 Available	 at:	

	

223	

	

http://community.vitechcorp.com/home/post/Time-to-Drop-

MBSE.aspx#continue	[Accessed	November	1,	2018].	

Dehlinger,	J.	&	Lutz,	R.R.,	2006.	PLFaultCAT:	A	product-line	software	fault	tree	analysis	

tool.	Automated	Software	Engineering,	13(1),	pp.169–193.	

Department	 of	 Defense	 United	 States	 of	 America,	 2012.	MIL-STD-882E	 Department	 of	

Defense	Standard	Practice	System	Safety,	

Department	of	Transportation	Federal	Aviation,	2011.	Introduction	to	TCAS	II	Version	7.1,	

Dirksen,	J.,	Ten	Veldhuis,	J.A.E.	&	Schilperoort,	R.P.S.,	2009.	Fault	tree	analysis	for	data-

loss	 in	 long-term	 monitoring	 networks.	 Water	 Science	 and	 Technology,	 60(4),	

pp.909–915.	

Diskin,	Z.,	2003.	Mathematics	of	UML:	Making	the	odysseys	of	UML	less	dramatic,	Springer,	

Dordrecht.	

Dixon,	J.,	2017.	Fault	tree	analysis	for	system	safety.	John	Wiley	&	Sons.	

Espinoza,	H.	et	al.,	2009.	Challenges	 in	combining	SysML	and	MARTE	for	model-based	

design	of	embedded	systems.	 In	R.	F.	Paige,	A.	Hartman,	&	A.	Rensink,	eds.	Model	

Driven	 Architecture	 -	 Foundations	 and	 Application,	 ECMDA-FA.	 Sringer,	 Berlin,	

Heidelberg,	pp.	98–113.	

Estefan,	J.A.,	2007.	Survey	of	model-based	systems	engineering	(MBSE)	Methodologies.	

INCOSE	MBSR	Focus	group,	25(8),	pp.1–12.	

Eti,	 M.C.,	 Ogaji,	 S.O.T.	 &	 Probert,	 S.D.,	 2007.	 Integrating	 reliability,	 availability,	

maintainability	and	supportability	with	risk	analysis	for	improved	operation	of	the	

Afam	thermal	power-station.	Applied	Energy,	84(2),	pp.202–221.	

Felderer,	 M.	 &	 Herrmann,	 A.,	 2018.	 Comprehensibility	 of	 system	 models	 during	 test	

design:	 A	 controlled	 experiment	 comparing	 UML	 activity	 diagrams	 and	 state	

machines.	Software	Quality	Journal,	pp.1–23.	

Fenelon,	 P.	 et	 al.,	 1994.	 Towards	 integrated	 safety	 analysis	 and	 design.	 ACM	 SIGAPP	

	

224	

	

Applied	Computing	Review,	2(1),	pp.21–32.	

Fitzgerald,	J.,	Larsen,	P.G.	&	Woodcock,	J.,	2013.	Foundations	for	model-based	engineering	

of	 systems	 of	 systems.	 In	 Complex	 Systems	 Design	 and	 Management	 -	 4th	

International	Conference	on	Complex	Systems	Design	and	Management,	CSD	and	M.	pp.	

1–19.	

Forsberg,	K.	&	Mooz,	H.,	1991.	The	relationship	of	systems	engineering	to	the	project	cycle.	

In	 National	 Council	 On	 Systems	 Engineering	 (NCOSE)	 and	 American	 Society	 for	

Engineering	Management	(ASEM).	

Fraser,	 M.D.,	 Kumar,	 K.	 &	 Vaishnavi,	 V.K.,	 1994.	 Strategies	 for	 incorporating	 formal	

specifications	in	software	development.	Communication	of	the	ACM,	37(10),	pp.74–

86.	

Friedenthal,	 S.,	Moore,	 A.	 &	 Steiner,	 R.,	 2014.	A	 practical	 guide	 to	 SysML:	 The	 systems	

modeling	language,	Morgan	Kaufmann.	

G,	 L.-S.,	 2002.	 Comparing	 selected	 knowledge-based	 fault	 tree	 construction	 tools.	 In	

IASTED	International	Conference.	

Gogolla,	M.,	Favre,	J.-M.	&	Buttner,	F.,	2005.	On	squeezing	M0,	M1,	M2,	and	M3	into	a	single	

Object	 Diagram.	 In	 MoDELS	 Workshop	 on	 Tool	 Support	 for	 OCL	 and	 Related	

Formalisms.	pp.	1–14.	

Gorry,	B.,	2015.	Explanation	of	international	standards	for	aircraft	development.	

Gough,	 K.M.	 &	 Phojanamongkolkij,	 N.,	 2018.	 Employing	 model-based	 systems	

engineering	(MBSE)	on	NASA	aeronautics	research	project:	A	case	study.	In	Aviation	

Technology	,	Integration,	and	Operation	Conference.	

Guduric,	 P.,	 Puder,	A.	&	Todtenhoefer,	R.,	 2009.	A	 comparison	between	 relational	 and	

operational	 QVT	 mappings.	 In	 6th	 International	 Conference	 on	 Information	

Technology:	New	Generations.	pp.	266–271.	

Gullo,	L.J.	&	Dixon,	J.,	2017.	System	safety	program	planning	and	management.	John	Wiley	

	

225	

	

&	Sons.	

Hadian,	 S.	&	Madani,	K.,	 2015.	A	 system	of	 systems	 approach	 to	 energy	 sustainability	

assessment:	Are	all	renewables	really	green?	Ecological	Indicators,	52,	pp.194–206.	

Holden,	 T.	 &	 Dickerson,	 C.,	 2013.	 A	 ROSETTA	 framework	 for	 live/	 snthetic	 aviation	

tradeoffs:	Preliminary	report.	In	8th	International	Conference	on	System	of	Systems	

Engineering,	 SoSE:	 Cloud	 Computing	 and	 Emerging	 Information	 Technology	

Applications.	pp.	218–223.	

Holt,	J.,	2001.	UML	for	systems	engineering:	Watching	the	wheels	P.	Thomas	&	R.	Macredie,	

eds.,	The	Institution	of	Electrical	Engineers.	

Hu,	W.,	Deng,	Z.	&	Hong,	Y.,	2011.	A	method	of	FTA	base	on	UML	Use	Case	Diagram.	In	9th	

International	Conference	on	Reliability,	Maintainability	and	Safety.	pp.	757–759.	

Hutchinson,	J.	et	al.,	2011.	Empirical	assessment	of	MDE	in	industry.	In	33rd	international	

conference	on	Software	engineering	-	ICSE.	p.	471.	

Ibrahim,	M.	&	Ahmad,	R.,	2010.	Class	diagram	extraction	from	textual	requirements	using	

natural	 language	processing	(NLP)	 techniques.	 In	2nd	International	Conference	on	

Computer	Research	and	Development,	ICCRD.	pp.	200–204.	

Ingram,	C.,	2014.	COMPASS	Roadmap	for	research	in	model-based	SoS	engineering.	,	(1.0),	

p.121.	

Ingram,	C.	et	al.,	2014.	SysML	fault	modelling	in	a	traffic	management	system	of	systems.	

In	9th	International	Conference	on	System	of	Systems	Engineering,	SoSE:	The	Socio-

Technical	Perspective.	pp.	124–129.	

International	Council	on	Systems	Engineering,	2007.	INCOSE	Systems	Engineering	Vision	

2020,	San	Diego.	

International	Council	 on	Systems	Engineering,	2015.	Systems	 engineering	handbook:	A	

guide	for	system	life	cycle	processes	and	activities	4th	ed.	D.	D.	Walden	et	al.,	eds.,	John	

Wiley&	Sons,	Inc.	

	

226	

	

International	Electrotechnical	Commission,	2006.	IEC	61025	Fault	Tree	Analysis.	

International	 Electrotechnical	 Commission,	 2010.	 IEC	 61508-1	 Functional	 safety	 of	

electrical/electronic/programmable	 electronic	 safety-related	 systems,	 Available	 at:	

https://webstore.iec.ch/preview/info_iec61508-1%7Bed2.0%7Db.pdf.	

International	Society	of	Automotive	Engineers,	1996.	ARP	4761	Guidelines	and	methods	

for	conducting	the	safety	assessment	process	on	civil	airborne	systems	and	equipment	

12th	ed.,	Society	of	Automotive	Engineers.	

ISO/IEC,	2015.	15288:2015	-	Systems	and	software	engineering	-	System	life	cycle	processes,	

IEEE.	

Isograph,	 Fault	 Tree+.	 Available	 at:	 https://www.isograph.com/software/reliability-

workbench/fault-tree-analysis-software/	[Accessed	January	6,	2019].	

Jacobson,	 I.,	Grady,	B.	&	Rumbaugh,	 J.,	1999.	The	unified	software	development	process,	

Addision-Wesley.	

Jamshidi,	M.,	2008.	System	of	Systems	-	Innovations	for	21st	Century.	In	IEEE	Region	10	

and	the	3rd	International	Conference	on	Industrial	and	Information	Systems.	pp.	6–7.	

Jensen,	J.C.,	Chang,	D.H.	&	Lee,	E.A.,	2011.	A	model-based	design	methodology	for	cyber-

physical	 systems.	 In	 7th	 International	 Wireless	 Communications	 and	 Mobile	

Computing	Conference.	pp.	1666–1671.	

Jilani,	 A.A.A.,	 Usman,	 M.	 &	 Halim,	 Z.,	 2010.	 Model	 transformations	 in	 model	 driven	

architecture.	Universal	Journal	of	Computer	Science	and	Engineering	Technology,	1(1),	

pp.50–54.	

Joshi,	A.	et	al.,	2006.	Model-based	safety	analysis.	,	p.60.	

Joshi,	A.	&	Heimdahl,	M.P.E.,	2005.	Model-based	safety	analysis	of	simulink	models	using	

SCADE	 design	 verifier.	 In	 Lecture	 Notes	 in	 Computer	 Science	 (including	 subseries	

Lecture	Notes	in	Artificial	Intelligence	and	Lecture	Notes	in	Bioinformatics).	pp.	122–

135.	

	

227	

	

Joshi,	A.,	Vestal,	S.	&	Binns,	P.,	2007.	Automatic	generation	of	static	fault	trees	from	AADL.	

In	Workshop	on	Architecting	Dependable	Systems,	DSN.	

Joshi,	A.,	Whalen,	M.	&	Heimdahl,	M.P.E.,	2005.	Model-based	safety	analysis	 final	report,	

NASA	Techreport.	

Jouault,	 F.	 et	 al.,	 2008.	 ATL:	 A	 model	 transformation	 tool.	 Science	 of	 Computer	

Programming,	72(1–2),	pp.31–39.	

Kabir,	 S.,	 2017.	 An	 overview	 of	 fault	 tree	 analysis	 and	 its	 application	 in	model	 based	

dependability	analysis.	Expert	Systems	with	Applications,	77,	pp.114–135.	

Keating,	C.	et	al.,	2003.	System	of	Systems	Engineering.	Engineering	Management	Journal,	

15(3),	pp.36–45.	

Kelly,	J.	et	al.,	1998.	Formal	methods	specification	and	verification	guidebook	for	Software	

and	computer	systems	Volume	I:	Planning	and	technology	insertion.	Nasa,	I(July).	

Kim,	 H.J.	 et	 al.,	 2010.	 Bridging	 the	 gap	 between	 fault	 trees	 and	 UML	 State	 Machine	

Diagrams	 for	safety	analysis.	Asia	Pacific	Software	Engineering	Conference,	APSEC,	

pp.196–205.	

Kim,	J.,	Ghang,	S.	&	Lee,	E.,	2012.	Run-time	fault	detection	using	automatically	generated	

fault	tree	based	on	UML.	In	Communications	in	Computer	and	Information	Science.	

Kirstan,	 S.	 &	 Zimmermann,	 J.,	 2010.	 Evaluating	 costs	 and	 benefits	 of	 model-based	

development	 of	 embedded	 software	 systems	 in	 the	 car	 industry–Results	 of	 a	

qualitative	Case	Study.	In	ECMFA	Workshop	C2M:	EEMDD-	from	An	empirical	study	of	

the	state	of	the	practice	and	acceptance	of	model-driven	engineering	in	four	industrial	

cases.	pp.	18–29.	

Knight,	J.C.,	2002.	Safety	critical	systems:	Challenges	and	directions.	In	24th	International	

Conference	on	Software	Engineering,	ICSE.	pp.	547–550.	

Kurniawan,	 A.,	 Harefa,	 B.B.	 &	 Sujarwo,	 S.,	 2014.	 Unified	 modeling	 language	 tools	

collaboration	for	use	case,	class	and	activity	diagram	implemented	with	html	5	and	

	

228	

	

javascript	framework.	Journal	of	Computer	Science,	10(9),	pp.1440–1446.	

Kuske,	S.	&	Gogolla,	M.,	2002.	An	 integrated	semantics	 for	UML	class,	object	and	state	

diagrams	based	on	graph	transformation.	Integrated	Formal	Methods	Lecture	Notes	

in	Computer	Science,	2335,	pp.11–28.	

De	 La	Vara,	 J.L.	 et	 al.,	 2016.	Model-based	 specification	 of	 safety	 compliance	needs	 for	

critical	systems:	A	holistic	generic	metamodel.	Information	and	Software	Technology,	

72,	pp.16–30.	

Laprie,	J.C.	et	al.,	1990.	Definition	and	analysis	of	hardware	and	software	fault-tolerant	

architectures.	Computer,	23(7),	pp.39–51.	

Latsou,	C.,	Dunnet,	S.J.	&	Jackson,	L.M.,	2017.	Automated	generation	of	a	petri	net	model:	

application	 to	 an	 en	 of	 life	 manufacturing	 process.	 In	 27th	 European	 Safety	 and	

Reliability	Conference,	ESREL.	Portoroz,	Slovenia.	

Lazǎr,	C.L.	et	al.,	2010.	Tool	support	for	fUML	models.	International	Journal	of	Computers,	

Communications	and	Control,	5(5),	pp.775–782.	

Lemmon,	E.J.,	Beginning	logic	2nd	ed.,	Chapman	&	Hall.	

Leveson,	N.G.,	2012.	Engineering	a	safer	world:	Systems	thinking	applied	to	safety,	

Leveson,	N.G.	&	Stolzy,	J.L.,	1987.	Safety	analysis	using	petri	nets.	IEEE	Transactions	on	

Software	Engineering,	SE-13(3),	pp.386–397.	

Liebel,	 G.	 et	 al.,	 2018.	Model-based	 engineering	 in	 the	 embedded	 systems	domain:	 an	

industrial	 survey	 on	 the	 state-of-practice.	 Software	 and	 Systems	Modeling,	 17(1),	

pp.91–113.	

Liggesmeyer,	P.	&	Rothfelder,	M.,	1998.	Improving	system	reliability	with	automatic	fault	

tree	generation.	In	Fault-Tolerant	Computing,	1998.	Digest	of	Papers.	Twenty-Eighth	

Annual	International	Symposium	on.	pp.	90–99.	

Lisagor,	 O.,	 Kelly,	 T.	 &	 Niu,	 R.,	 2011.	 Model-based	 safety	 assessment:	 Review	 of	 the	

discipline	 and	 its	 challenges.	 In	 9th	 International	 Conference	 on	 Reliability,	

	

229	

	

Maintainability	and	Safety,	ICRMS.	pp.	625–632.	

Liu,	Q.,	2010.	Metamodel	evolution	through	metamodel	inference.	In	ACM	International	

Conference	 Companion	 on	 Object	 Oriented	 Programming	 Systems	 Languages	 and	

Applications	Companion.	pp.	209–210.	

Lowe,	C.	&	Lowe,	M.,	2015.	Using	system	architecture	considerations	to	analyze	allocation	

of	functions.	Procedia	Manufacturing,	3,	pp.1273–1280.	

Majdara,	 A.	 &	 Wakabayashi,	 T.,	 2009.	 Component-based	 modeling	 of	 systems	 for	

automated	 fault	 tree	 generation.	Reliability	 Engineering	 and	 System	 Safety,	 94(6),	

pp.1076–1086.	

Martins,	L.A.L.,	Bastian,	F.L.	&	Netto,	T.A.,	2012.	Structural	and	functional	failure	pressure	

of	filament	wound	composite	tubes.	Materials	and	Design,	36,	pp.779–787.	

Marvin,	 J.W.	&	Garrett,	R.K.,	2014.	Quantitative	SoS	architecture	modeling.	 In	Procedia	

Computer	Science.	pp.	41–48.	

Mhenni,	F.,	Nguyen,	N.	&	Choley,	 J.-Y.,	2018.	SafeSysE :	A	safety	analysis	 integration	 in	

systems	engineering	approach.	IEEE	Systems	Journal,	12(1),	pp.161–172.	

Mhenni,	F.,	Nguyen,	N.	&	Choley,	J.Y.,	2014.	Automatic	fault	tree	generation	from	SysML	

system	 models.	 In	 IEEE/ASME	 International	 Conference	 on	 Advanced	 Intelligent	

Mechatronics.	pp.	715–720.	

Miguel,	 M.A.	 de	 et	 al.,	 2008.	 Integration	 of	 safety	 analysis	 in	 model-driven	 software	

development.	Software,	IET,	2(3),	pp.260–280.	

Mohagheghi,	P.	&	Dehlen,	V.,	2008.	Where	ss	the	proof?	-	A	review	of	experiences	from	

applying	MDE	in	industry.	In	Lecture	Notes	in	Computer	Science	(including	subseries	

Lecture	Notes	in	Artificial	Intelligence	and	Lecture	Notes	in	Bioinformatics).	pp.	432–

443.	

Moir,	 I.	 &	 Seabridge,	 A.,	 2008.	 Aircraft	 systems:	 Mechanical,	 electrical,	 and	 avionics	

subsystems	integration	3rd	ed.,	John	Wiley	&	Sons.	

	

230	

	

Murali,	R.,	Ireland,	A.	&	Grov,	G.,	2016.	UC-B:	Use	case	modelling	with	event-B.	In	Lecture	

Notes	in	Computer	Science	(including	subseries	Lecture	Notes	in	Artificial	Intelligence	

and	Lecture	Notes	in	Bioinformatics).	pp.	297–302.	

Nakatani,	T.	et	al.,	2001.	A	requirements	description	metamodel	for	use	cases.	8th	Asia-

Pacific	Software	Engineering	Conference,	pp.251–258.	

National	 Aeronautics	 and	 Space	 Administration,	 2007.	 NASA	 systems	 engineering	

handbook.	 ,	 NASA/SP-20(December),	 p.360.	 Available	 at:	

http://adsabs.harvard.edu/full/1995NASSP6105.....S	[Accessed	July	4,	2018].	

National	 Instruments,	 2008.	 Redundant	 system	 basic	 concepts.	 Available	 at:	

http://www.ni.com/en-gb/innovations/white-papers/08/redundant-system-

basic-concepts.html	[Accessed	May	5,	2018].	

Nativi,	S.	et	al.,	2015.	Big	data	challenges	in	building	the	global	earth	observation	system	

of	systems.	Environmental	Modelling	and	Software,	68,	pp.1–26.	

Nieuwhof,	G.W.E.,	1975.	An	introduction	to	fault	tree	analysis	with	emphasis	on	failure	

rate	 evaluation.	 Microelectronics	 Reliability,	 14(2),	 pp.105–119.	 Available	 at:	

https://www.sciencedirect.com/science/article/pii/0026271475900244	

[Accessed	April	22,	2018].	

Object	Management	Group,	2007.	OMG	Systems	Modeling	Language	(OMG	SysMLTM)	V1.0.	

Object	 Management	 Group,	 2017a.	 OMG	 Systems	 Modeling	 Language	 TM	 Version	 1.5.	

Available	 at:	 http://www.omg.org/spec/SysML/1.2/PDF/	 [Accessed	 January	 1,	

2019].	

Object	Management	Group,	2017b.	OMG	Unified	Modeling	Language	(OMG	UML)	Version	

2.5.1.	 Available	 at:	 https://www.omg.org/spec/UML/About-UML/	 [Accessed	

January	1,	2019].	

Object	Management	Group,	2017c.	Safety	and	reliability	for	UML	-	Request	for	proposal,	

Object	 Management	 Group,	 2017d.	 Unified	 Modeling	 Language	 Version	 2.5.1.	 Object	

	

231	

	

Management	Group.	Available	at:	https://www.omg.org/spec/UML/2.5.1	[Accessed	

June	2,	2018].	

Oliveira,	 A.L.	 De	 et	 al.,	 2016.	 Model-based	 safety	 analysis	 of	 software	 product	 lines.	

International	Journal	of	Embedded	Systems,	8(5/6),	pp.412–426.	

Olmo,	J.	del	et	al.,	2018.	Model-based	fault	analysis	for	railway	traction	systems.	Modern	

Railway	 Engineering,	 IntechOpen.	 Available	 at:	

https://www.intechopen.com/books/modern-railway-engineering/model-based-

fault-analysis-for-railway-traction-systems	[Accessed	July	23,	2018].	

Olmo,	 J.	 del	 et	 al.,	 2017.	 Model	 driven	 hardware-in-the-loop	 fault	 analysis	 of	 railway	

traction	 systems.	 In	 IEEE	 International	 Workshop	 of	 Electronics,	 Control,	

Measurement,	Signals	and	their	Application	to	Mechatronics,	ECMSM	2017.	

Oren,	 T.,	 Mittal,	 S.	 &	 Durak,	 U.,	 2018.	 A	 shift	 from	 model-based	 to	 simulation-based	

paradigm:	Timeliness	and	usefulness	for	many	disciplines.	International	Journal	of	

Computer	and	Software	Engineering,	3(126).	

Oren,	T.I.	&	Zeigler,	B.P.,	2012.	System	theoretic	foundations	of	modeling	and	simulation:	

A	 historic	 perspective	 and	 the	 legacy	 of	 A	Wayne	Wymore.	 SIMULATION,	 88(9),	

pp.1033–1046.	

Ortmeier,	F.	&	Schellhorn,	G.,	2007.	Formal	Fault	Tree	Analysis	-	Practical	Experiences.	

Electronic	Notes	in	Theoretical	Computer	Science,	185(SPEC.	ISS.),	pp.139–151.	

Pai,	G.J.	&	Dugan,	J.B.,	2002.	Automatic	synthesis	of	dynamic	fault	trees	from	UML	system	

models.	 13th	 International	 Symposium	 on	 Software	 Reliability	 Engineering,	 ISSRE,	

pp.243–254.	

Paiboonkasemsut,	P.	&	Limpiyakorn,	Y.,	2016.	Reliability	tests	for	process	flow	with	fault	

tree	 analysis.	 In	 IEEE	 2nd	 International	 Conference	 on	 InformationScience	 and	

Security,	ICISS.	

Papadopoulos,	Y.	et	al.,	2011.	Engineering	failure	analysis	and	design	optimisation	with	

HiP-HOPS.	Engineering	Failure	Analysis,	18(2),	pp.590–608.	

	

232	

	

Papadopoulos,	Y.,	HiP-HOPS.	Available	at:	http://www.hip-hops.eu/index.php/contact-

us	[Accessed	January	6,	2019].	

Patel,	 P.E.	 &	 Patil,	 N.N.,	 2013.	 Testcases	 Formation	 Using	 UML	 Activity	 Diagram.	

International	Conference	on	Communication	Systems	and	Network	Technologies,	CSNT,	

pp.884–889.	

Pietrantuono,	R.	&	Russo,	S.,	2013.	Introduction	to	safety	critical	systems.	In	Innovative	

Technologies	for	Dependable	OTS-Based	Critical	Systems.	Springer	Milan,	pp.	17–27.	

Price,	H.E.,	1985.	Allocation	of	functions	in	systems.	Human	Factors,	27(1),	pp.33–45.	

Prosvirnova,	T.	et	al.,	2013.	The	AltaRica	3.0	Project	for	Model-Based	Safety	Assessment.	

In	 4th	 Workshop	 on	 Dependable	 Control	 of	 Discrete	 Systems	 The	 International	

Federation	 of	 Automatic	 Control,	 IFAC.	 IFAC,	 pp.	 127–132.	 Available	 at:	

https://linkinghub.elsevier.com/retrieve/pii/S1474667015339999.	

Purba,	 J.H.	 et	 al.,	 2015.	 Fuzzy	 probability	 based	 fault	 tree	 analysis	 to	 propagate	 and	

quantify	epistemic	uncertainty.	Annals	of	Nuclear	Energy,	85,	pp.1189–1199.	

Radio	 Technical	 Commission	 for	 Aeronautics,	 2011.	 RTCA	 DO-178	 Software	

Considerations	in	Airborne	Systems	and	Equipment	Certification,	

Rauzy,	 A.,	 2002.	 Mode	 automata	 and	 their	 compilation	 into	 fault	 trees.	 Reliability	

Engineering	and	System	Safety,	78(1),	pp.1–12.	

Redmill,	F.,	1999.	An	introduction	to	the	safety	standard	IEC	61508.	System	Safety	Society,	

35(1).	

Reif,	W.,	 Schellhorn,	 G.	 &	 Thums,	 A.,	 2000.	 Safety	 Analysis	 of	 a	 Radio-based	 Crossing	

Control	 System	 Using	 Formal	 Methods.	 In	 9th	 IFAC	 Symposium	 Control	 in	

Transportations	Systems.	

Roland,	H.E.	&	Moriarty,	B.,	1990.	System	safety	engineering	and	management	2nd	ed.,	

John	Wiley&	Sons,	Inc.	

Royce,	 W.W.,	 1970.	 Managing	 the	 development	 of	 large	 software	 systems.	 In	 IEEE	

	

233	

	

WESCON.	pp.	328–338.	

Ruijters,	E.	et	al.,	2017.	Uniform	analysis	of	fault	trees	through	model	transformations.	In	

Annual	Reliability	and	Maintainability	Symposium.	

Saeki,	M.	&	Kaiya,	H.,	2006.	On	relationships	among	models,	meta	models	and	ontologies.	

6th	OOPSLA	Workshop	on	Domain-Specific	Modeling,	DSM,	p.140.	

Saraoğlu,	M.	 et	 al.,	 2017.	 ErrorSim:	 A	 tool	 for	 error	 propagation	 analysis	 of	 Simulink	

models.	 In	Lecture	Notes	 in	Computer	Science	(including	subseries	Lecture	Notes	 in	

Artificial	Intelligence	and	Lecture	Notes	in	Bioinformatics).	pp.	245–254.	

Saraswat,	S.	&	Yadava,	G.S.,	2008.	An	overview	on	reliability,	availability,	maintainability	

and	 supportability	 (RAMS)	 engineering.	 International	 Journal	 of	 Quality	 and	

Reliability	Management,	25(3),	pp.330–344.	

Schellhorn,	 G.,	 Thums,	 A.	 &	 Reif,	W.,	 2002.	 Formal	 fault	 tree	 semantics.	 In	 Integrated	

Design	and	Process	Technology.	

Schmitt,	P.H.,	2003.	UML	and	its	meaning.	Vorlesungsskript,	Universität	Karlsruhe.	

Seidewitz,	E.,	2014.	UML	with	meaning:	Executable	modeling	in	foundational	UML	and	

the	alf	action	language.	ACM	SIGAda’s	Annual	International	Conference	High	Integrity	

Language	Technology,	HILT,	pp.61–68.	

Selic,	B.	&	Gerard,	S.,	2014.	Modeling	and	analysis	of	real-time	and	embedded	systems	with	

UML	and	MARTE:	Developing	cyber-physical	systems,	Morgan	Kaufmann.	

Sharvia,	 S.	 &	 Papadopoulos,	 Y.,	 2015.	 Integrating	 model	 checking	 with	 HiP-HOPS	 in	

model-based	safety	analysis.	Reliability	Engineering	and	System	Safety,	135,	pp.64–

80.	

Simha	Pilot,	2002.	What	is	fault	tree	analysis?	Quality	Progress,	35,	p.120.	

Some,	S.S.,	2007.	Specifying	use	case	sequencing	constraints	using	description	elements.	

In	ICSE	2007	Workshops:	6th	International	Workshop	on	Scenarios	and	State	Machines,	

SCESM.	

	

234	

	

Souri,	A.,	Ali	Sharifloo,	M.	&	Norouzi,	M.,	2011.	Formalizing	class	diagram	in	UML.	In	IEEE	

2nd	International	Conference	on	Software	Engineering	and	Service	Science,	ICSESS.	pp.	

524–527.	

Tajarrod,	F.	&	Latif-Shabgahi,	G.,	2008.	A	novel	methodology	for	synthesis	of	fault	trees	

from	 MATLAB-Simulink	 Model.	 World	 Academy	 of	 Science,	 Engineering	 and	

Technology,	41(July),	pp.630–636.	

Thoma,	A.,	Kormann,	B.	&	Vogel-Heuser,	B.,	2012.	Fault-centric	system	modeling	using	

SysML	 for	 reliability	 testing.	 In	 IEEE	 International	 Conference	 on	 Emerging	

Technologies	and	Factory	Automation,	ETFA.	

Thomas,	N.L.,	1968.	Modern	Logic,	

Umeda,	 Y.	 et	 al.,	 1990.	 Function,	 behaviour,	 and	 structure.	 Applications	 of	 Artificial	

Intelligence	 in	 Engineering	 V,	 1,	 pp.177–193.	 Available	 at:	

http://diyhpl.us/~bryan/papers2/Function,	 behaviour,	 and	 structure	 -	 Umeda	 -	

1984.pdf.	

Vemuri,	K.K.,	1999.	Automatic	synthesis	of	fault	trees	for	computer-based	systems.	IEEE	

Transactions	on	Reliability,	48(4),	pp.394–402.	

Vesely,	W.E.	et	al.,	1981.	Fault	Tree	Handbook,	

Volk,	 M.,	 Junges,	 S.	 &	 Katoen,	 J.-P.,	 2018.	 Fast	 dynamic	 fault	 tree	 analysis	 by	 model	

checking	techniques.	IEEE	Transactions	on	Industrial	Informatics,	14(1),	pp.370–379.	

Volkanovski,	A.,	Čepin,	M.	&	Mavko,	B.,	 2009.	Application	of	 the	 fault	 tree	analysis	 for	

assessment	 of	 power	 system	 reliability.	 Reliability	 Engineering	 &	 System	 Safety,	

94(6),	pp.1116–1127.	

Waldecker,	B.	&	Garg,	V.K.,	1991.	Detection	of	strong	predicates	in	distributed	programs.	

In	3rd	IEEE	Symposium	on	Parallel	and	Distributed	Processing.	pp.	692–699.	

Wang,	Y.	et	al.,	2003.	Algorithmic	 fault	 tree	synthesis	 for	control	 loops.	 Journal	of	Loss	

Prevention	in	the	Process	Industries,	16(5),	pp.427–441.	

	

235	

	

Weiss,	N.A.,	2006.	A	Course	in	Probability,	Pearson	Education	International.	

Woodcock,	 J.	 et	 al.,	 2009.	 Formal	 methods:	 Practice	 and	 experience.	 ACM	 Computing	

Surveys,	 41(4),	 pp.1–36.	 Available	 at:	

http://portal.acm.org/citation.cfm?doid=1592434.1592436.	

Woodward,	D.M.,	2018.	Space	launch	vehicle	design:	Conceptual	design	of	rocket	powered,	

vertical	 takeoff,	 fully	 expandable,	 and	 first	 stage	 boostback	 space	 launch	 vehicles.	

University	of	Texas	Arlington.	

Wylie,	M.,	Harvey,	D.	&	Liddy,	T.,	2016.	Model-based	conceptual	design	through	a	system	

implementation	 -	 Lesson	 from	 a	 structured	 yet	 agile	 approach.	 In	 Systems	

Engineering	Test	and	Evaluation	Conference.	

Wymore,	A.W.,	1993.	Model-based	systems	engineering	1st	Editio.	A.	T.	Bahill,	ed.,	Florida.	

Xiang,	J.	et	al.,	2011.	Automatic	synthesis	of	static	fault	trees	from	system	models.	In	5th	

International	Conference	on	Secure	Software	Integration	and	Reliability	Improvement,	

SSIRI.	pp.	127–136.	

Xiang,	 J.,	 Futatsugi,	 K.	&	He,	 Y.,	 2004.	 Fault	 tree	 and	 formal	methods	 in	 system	 safety	

analysis.	In	4th	International	Conference	on	Computer	and	Information	Technology,	

CIT.	pp.	1108–1115.	

Xiang,	 J.,	 Ogata,	 K.	 &	 Futatsugi,	 K.,	 2005.	 Formal	 fault	 tree	 analysis	 of	 state	 transition	

systems.	5th	International	Conference	on	Quality	Software,	QSIC,	pp.124–134.	

Xiang,	J.	&	Yanoo,	K.,	2010.	Automatic	static	fault	tree	analysis	from	system	models.	In	

Pacific	Rim	International	Symposium	on	Dependable	Computing.	pp.	241–242.	

Xiaoxun,	 L.	 et	 al.,	 2011.	 A	 comparison	 of	 SAE	 ARP	 4754A	 and	 ARP	 4754.	 In	 2nd	

International	Symposium	on	Aircraft	Airworthiness	(ISAA).	pp.	400–406.	

Yakymets,	N.,	Jaber,	H.	&	Lanusse,	A.,	2013.	Model-based	system	engineering	for	fault	tree	

generation	and	analysis.	1st	International	Conference	on	Model-Driven	Engineering	

and	Software	Development.	

	

236	

	

Yuhua,	D.	&	Datao,	Y.,	2005.	Estimation	of	failure	probability	of	oil	and	gas	transmission	

pipelines	 by	 Fuzzy	 Fault	 Tree	 Analysis.	 Journal	 of	 Loss	 Prevention	 in	 the	 Process	

Industries,	18(2),	pp.83–88.	

Zeigler,	 B.P.,	 1985.	 The	 architecture	 of	 systems	 problem	 solving	 by	 George	 J.	 Klir.	

International	Journal	of	General	System,	13(1),	pp.83–84.	

Zeller,	M.,	Ratiu,	D.	&	Kai,	H.,	2016.	Towards	the	adoption	of	model-based	engineering	for	

the	 development	 of	 safety-critical	 systems	 in	 industrial	 practice.	 In	 International	

Conference	Computer	Safety,	Reliability,	and	Security,	SAFECOMP.	Springer,	Cham,	pp.	

322–333.	Available	at:	http://link.springer.com/10.1007/978-3-319-45480-1.	

Zhang,	 J.,	 Yao,	 H.	 &	 Rizzoni,	 G.,	 2017.	 Fault	 diagnosis	 for	 electric	 drive	 systems	 of	

electrified	 vehicles	 based	 on	 structural	 analysis.	 IEEE	 Transactions	 on	 Vehicular	

Technology,	66(2),	pp.1027–1039.	

Zhao,	 Z.	 &	 Petriu,	 D.C.,	 2015.	 UML	 Model	 to	 Fault	 Tree	 Model	 Transformation	 for	

Dependability	Analysis.	Proceedings	of	the	International	Conference	on	Computer	and	

Information	Science	and	Technology,	(127),	pp.1–9.	

Zoughbi,	G.,	Briand,	L.	&	Labiche,	Y.,	2011.	Modeling	safety	and	airworthiness	(RTCA	DO-

178B)	 information:	 Conceptual	 model	 and	 UML	 profile.	 Software	 and	 Systems	

Modeling,	10(3),	pp.337–367.	

Zwolinski,	M.,	Yang,	Z.R.	&	Kazmierski,	T.J.,	2000.	Applying	mutual	information	theory	to	

behavioural	 analogue	 fault	modelling.	 International	 Journal	 of	Electronics,	 87(12),	

pp.1461–1471.	

	

