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Abstract (150 words) 

Operators of highly automated driving systems may exhibit behaviour characteristic for overtrust 

issues due to an insufficient awareness of automation fallibility. Consequently, situation 

awareness in critical situations is reduced and safe driving performance following emergency 

takeovers is impeded. A driving simulator study was used to assess the impact of dynamically 

communicating system uncertainties on monitoring, trust, workload, takeovers, and 

physiological responses. The uncertainty information was conveyed visually using a stylised 

heart beat combined with a numerical display and users were engaged in a visual search task. 

Multilevel analysis results suggest that uncertainty communication helps operators calibrate their 

trust and gain situation awareness prior to critical situations, resulting in safer takeovers. 

Additionally, eye tracking data indicate that operators can adjust their gaze behaviour in 

correspondence with the level of uncertainty. However, conveying uncertainties using a visual 

display significantly increases operator workload and impedes users in the execution of non-

driving related tasks. 

Keywords:  vehicle ergonomics; attitudes and behaviour; attention and vigilance; human-

computer-interaction; information displays 

Practitioner summary (50 words): This paper illustrates how the communication of 

system uncertainty information helps operators calibrate their trust in automation and, 

consequently, gain situation awareness. Multilevel analysis results of a driving simulator study 

affirm the benefits for trust calibration and highlight that operators adjust their behaviour 

according to multiple uncertainty levels. 
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Automation Transparency: Implications of Uncertainty Communication for Human-Automation 

Interaction and Interfaces 

Interaction with imperfect, inanimate agents 

Knowingly or subliminally, humans routinely react to and account for uncertainties. Our 

decisions and actions are, to some degree, affected by the uncertainties associated with the 

information they are based on (Preuschoff, Mohr, & Hsu, 2013). 

The impact of uncertainties on decision-making and action selection is thereby not 

limited to humans but extends to inanimate, automated agents in equal measure (Gal, 2016). 

Incorrect or incomplete inputs and imperfect or simplified algorithms induce uncertainties into 

automated systems, promoting unexpected or erratic behaviour. Considering that automated 

technologies are integrated into safety-critical systems such as aircraft, vehicles, and power 

plants whose failures can lead to devastating consequences, the operator's knowledge of the 

system’s inherent uncertainties is essential for safe performance. 

Yet, cases of inappropriate trust and over-reliance indicate that humans are not 

sufficiently aware and critical of the fallibility and limitations of automated agents when 

interacting with them (Manzey, Reichenbach, & Onnasch, 2012; Parasuraman & Riley, 1997). 

The human operator, however, cannot be identified as the primary culprit. Rather, the fault lies 

with the designed human-automation interaction, in particular its opacity (Endsley, 2017; 

Norman, 1989). Informing operators about the system’s inherent uncertainties could help 

operators identify when they may be required to take over the system, thereby improving safety. 

This paper investigates the influence of communicating automated system uncertainties 

on operator behaviour within a driving context. An anthropomorphic interface for dynamically 

communicating system uncertainties and a driving simulator protocol were used to 
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comprehensively evaluate the impact of uncertainty communication under consideration of 

workload, eye movement and physiological measures in addition to trust, takeover performance 

and situation awareness (SA). 

Uncertainty Communication 

The term uncertainty signifies doubt and implies a lack of exact knowledge (BIPM, 

2008), whereby its specific definition depends on the usage context (Uggirala, Gramopadhye, 

Melloy, & Toler, 2004; Zimmermann, 2000). Within this publication, the term includes all 

uncertainties induced to automated systems during data acquisition, transformation, and output 

generation (see Figure 1) (Endsley & Jones, 2012; Kiureghian & Ditlevsen, 2007; Pang, 

Wittenbrink, & Lodha, 1997; Uggirala et al., 2004). 

Implications for Appropriate Trust, Attention Allocation and SA 

Automating systems under the expectation that a fallback-ready user can resume the 

previously automated task in case of system failures entails several human factors challenges, 

foremostly a lack in SA at the time of a system failure (Endsley, 1995; Endsley & Kiris, 1995).  

Several models for SA exist (Stanton, Salmon, Walker, Salas, & Hancock, 2017), with the 

Endsley (1995) model of SA being the most cited and widely used (Golightly, Wilson, Lowe, & 

Sharples, 2010). In this model, SA is interpreted as three ascending, but not necessarily linear 

levels (Endsley, 2015): the first level refers to the spatial and time-specific perception of 

elements and events in the environment; level 2 is the comprehension of these elements and 

events; level 3 concerns the projection of their future state. 

In the context of driving automation, SA can be gained by glancing towards the field relevant for 

driving (FRD) and by surveying the operational state of the automated system, supported by 

information provided by the automation interface (Baumann & Krems, 2007). To assist users 
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with the acquisition and maintenance of SA, their attention management can be influenced 

through trust calibration (Hergeth, Lorenz, Vilimek, & Krems, 2016; Lee & See, 2004; 

Parasuraman & Manzey, 2010).  

Attention can be classed into two disparate functions, namely top-down, endogenous 

attention and bottom-up, exogenous attention (Katsuki & Constantinidis, 2014). The former is an 

internally induced process based on present goals, conscious plans, and prior knowledge while 

the latter is an externally induced attention guidance process driven by the relative salience of 

external stimuli (Connor, Egeth, & Yantis, 2004; Corbetta & Shulman, 2002; Itti, Koch, Way, & 

Angeles, 2001). Thus, operators can actively allocate their attention to the automation interface 

and the FRD (endogenous) or the interface can invoke the attentional shift itself, for instance 

through an increase in the salience of system parameters (exogenous). 

As trust is often associated with a willingness to act, it affects endogenous attention 

(Johns, 1996; Mayer, Davis, & Schoorman, 1995). Lee and See (2004) identified three essential 

aspects for achieving appropriate trust: calibration, resolution, and specificity. Calibration refers 

to the agreement between the user's trust in automation and the capabilities of the automation. 

Resolution is the degree to which the user's trust judgement differentiates different capability 

levels. Specificity refers to the degree of differentiation between different components or aspects 

of the trustee. A combination of calibrated trust as well as a high resolution and specificity 

facilitates appropriate trust and thereby helps to alleviate both disuse and misuse of automation. 

Systems can support the user with the buildup of appropriate trust by providing information 

along the dimensions abstraction and detail (Lee & See, 2004). Abstraction refers to information 

regarding the performance, process, and purpose of the automation (Lee & Moray, 1992), with 

the former being the most crucial (Hoff & Bashir, 2015). Detail describes the entity that is to be 
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trusted, ranging from the overall system to its single functions and modes (Lee & See, 2004). 

The provision of information along the two presented dimensions does, however, not exclusively 

determine the trust of the operator. As a result of a meta-analysis of studies, Hoff & Bashir 

(2015) define three distinct layers of trust, namely dispositional, situational, and learned trust. 

 By providing information along the dimension abstraction, for instance about a system’s 

inherent uncertainties, to a certain detail, for instance regarding the overall system, the dynamic 

learned component of trust can be affected to achieve a more appropriate trust calibration (Hoff 

& Bashir, 2015). Dynamic learned trust refers to the trust component that is affected by the users’ 

current interaction with the system as mediated by design features and prior knowledge about the 

system’s capabilities. The remaining trust components are not considered to be varying during 

interactions but are rather determined in advance of the interaction (Hoff & Bashir, 2015). 

A closely related concept is that of complacency, which ‘represents an active reallocation 

of attention away from the automation to other manual tasks in cases of high workload 

(Parasuraman & Manzey, 2010)’. Complacent behaviour is thereby thought to be influenced by 

trust (Parasuraman & Manzey, 2010) and was shown to be particularly significant in highly 

automated systems that fail only on a single occasion (Bailey & Scerbo, 2007; de Waard, van der 

Hulst, Hoedemaeker, & Brookhuis, 1999; Molloy & Parasuraman, 1996). An attention allocation 

strategy that places more attention on competing tasks rather than the automated system may be 

the result of an initially high trust in system capabilities which is further reinforced if the system 

performs faultlessly, thereby promoting complacent behaviour (Parasuraman & Manzey, 2010). 

Complacency is a predictor of visual attention (Bailey & Scerbo, 2007; Metzger & 

Parasuraman, 2005; Parasuraman & Manzey, 2010) and, as a result, affects failure detection. 

Similar to trust, complacency is directly related to automation reliability (Bagheri & Jamieson, 
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2004; Wickens, Sebok, Li, Sarter, & Gacy, 2015) and, additionally, to the fluctuation of that 

reliability (May, Molloy, & Parasuraman, 1993). Even if operators exhibit appropriate trust levels 

without complacent behaviour and therefore maintain an optimal attention allocation strategy, 

failures may be missed (Moray & Inagaki, 2000). Particularly highly reliable automated systems 

that justify increased trust levels afford users to allocate more attention to concurrent tasks and 

therefore decrease the likelihood of an overlap between system failures and monitoring. Thus, 

systems should ideally support the operator with exogenous stimuli that shift the users’ attention 

towards the automation in critical situations, whereby detrimental secondary effects of alarms, 

such as the cry wolf effect (Yang, Unhelkar, Li, & Shah, 2017), are to be avoided. 

An additional challenge relevant to automated driving is the presence of concurrent tasks, 

which further promote the attention allocation away from the automated task (Wickens & Dixon, 

2007). Thereby, the attention allocation to concurrent tasks may be expanded with an increasing 

degree of automation (Carsten, Lai, Barnard, Jamson, & Merat, 2012). Moreover, workload 

affects the attention allocation strategy of operators (Young & Stanton, 2002), as does the type of 

concurrent tasks (Diekfuss, Ward, & Raisbeck, 2017). This emphasises that not only the 

implications of uncertainty communication on trust are relevant, but also those on operator 

workload under consideration of concurrent tasks. 

Figure 2 summarises the outlined relationships between the factors influencing SA with a 

focus on trust-related processes. For the purpose of comprehensiveness and in accordance with 

the model proposed by Endsley (2017), the influence of an operator’s mental model on SA is 

taken into account. Further, specific aspects of the human-machine interface that were shown to 

influence trust in a meta-analysis of studies are depicted (Hoff & Bashir, 2015). 
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 The flow of the continuous, green line depicts the five principal steps how the 

communication of system uncertainties affects the dynamic learned component of trust (1), 

appropriate trust (2), attention allocation (3), and SA (4,5) under consideration of principal 

concepts affecting this functional chain, such as concurrent tasks or workload. 

Uncertainty Communication Methods 

Multiple studies have indicated the specific benefits of conveying uncertainty or 

reliability information of automated systems to human operators (Beller, Heesen, & Vollrath, 

2013; Chen et al., 2018; Helldin, Falkman, Riveiro, & Davidsson, 2013; Louw et al., 2017; 

Louw & Merat, 2017; Mercado et al., 2016). In a driving context, Beller, Heesen & Vollrath 

(2013) investigated the impact of displaying a schematised uncertain face in the instrument 

cluster in unclear situations. The results indicate that the communication of system uncertainties 

increases driving safety, specifically the time to collision (TTC). 

Expanding upon these findings, Helldin, Falkman, Riveiro, & Davidsson (2013) explored 

the communication of uncertainty using seven bars in the instrument cluster, each bar 

representing one level. The results show that users who were presented with the uncertainty 

information could afford to allocate their attention away from the FRD and perform concurrent 

tasks for a longer time than the control group. Nonetheless, the participants of the experimental 

group were able to take over the driving task faster than those of the control group. 

In line with these findings, studies in aviation and the military confirmed the benefits of 

presenting uncertainty information on task performance (Dzindolet, Peterson, Pomranky, Pierce, 

& Beck, 2003; Finger & Bisantz, 2002; McGuirl & Sarter, 2003; L. Wang, Jamieson, & 

Hollands, 2009). 
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Implications for uncertainty communication on factors other than takeover performance 

and trust have yet to be investigated. Specifically, the monitoring of an additional display is 

expected to increase the workload of operators and may therefore affect their attention allocation 

(Young & Stanton, 2002). Further, the communication of uncertainties may lead to feelings of 

unease in human operators due to a confrontation with the fallibility of the system and the 

associated risks, prompting the necessity to take physiological measurements. As suggested by 

Lee & See (2004), a higher resolution of trust may positively impact its appropriateness, 

however no studies known to the authors have explored this in a driving context. 

Anthropomorphic Uncertainty Display 

One way to communicate uncertainty information is by anthropomorphic features, which 

are a suitable means to promote greater trust in automation (de Visser et al., 2012; Hoff & Bashir, 

2015; Pak, Fink, Price, Bass, & Sturre, 2012; Waytz, Heafner, & Epley, 2014). This begs the 

question which anthropomorphic features are suitable to communicate several levels of 

uncertainty. While facial expressions, as employed by Beller et al. (2013), may invoke the 

strongest responses when the intensity difference between expressions is large, subtle differences 

for communicating multiple uncertainty levels require more attentional resources and are more 

difficult to identify (Gollan, McCloskey, Hoxha, & Coccaro, 2010). Instead, other natural human 

responses must be considered. When humans experience (mentally) stressful situations such as 

making critical decisions based on uncertain information, a series of events is set off amongst 

which is an increase in heart rate (Hubbard & Workman, 1998; Steptoe & Voegele, 1991). 

Further, increases in focus and alertness were shown to raise human heart rate (X. Wang, Pinol, 

Byrne, & Mendelowitz, 2014). While not obvious in other people, the simulated heart rate of a 
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system can be visualised, resulting in intuitive, natural levels of uncertainty that map human 

responses to stressful, uncertain situations to an inanimate agent. 

Objectives and Hypotheses 

The current study differs from previous work in that it (a) evaluates the impact of 

uncertainty communication more comprehensively, i.e. under consideration of workload, eye 

movement and physiological measures in addition to trust, takeover performance and situation 

awareness (SA), (b) analyses the behavioural implications of presenting uncertainty content with 

higher resolution, and (c) uses a heartbeat animation to dynamically convey uncertainties with 

multiple levels in a natural, anthropomorphic manner. The following hypotheses were 

investigated: 

1. The experimental group adapts their behaviour better to the visibility range than the control 

group as indicated by the solving rate of concurrent tasks, ratio of correctly answered 

SAGAT questions, trust values, and attention allocation. 

2. The experimental group performs a safer takeover than the control group as indicated by 

MTTC, acceleration, and TTC values. 

3. The experimental group experiences higher subjective workload than the control group due 

to having to monitor an additional display. 

4. There is an observable relationship between trust and visual attention. 

5. Physiological effects differ between groups as indicated by heart rate. 

 

Method 

A driving simulator study was conducted to investigate the impact of presenting 

uncertainty information using a stylised heartbeat on operator trust, attention allocation, SA, 
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takeover performance, workload, and physiological parameters. Ethical approval was granted by 

the Ethics Approvals Sub-Committee of Loughborough University. 

Participants 

A total of 34 participants (14 female) with an average age of 30.82 years (SD = 9.52) 

volunteered to take part in the experiment. Participants held a driving license for a mean time of 

11.18 years (SD = 9.70, range: 1-36) and averaged 6248.53 miles per year (SD = 5122.15). 

Experiment Design 

The study employed a 2 (uncertainty display, between) × 4 (fog conditions, within) mixed 

design. The first factor was the uncertainty display (UD) and had two levels (UD unavailable; 

UD available). The second factor was the visibility range as a consequence of fog density that 

was varied in four equidistant levels between 91.44m (thick fog)1 and 1005.84m (no/low fog) 

(Met Office UK, 2018). Fog was chosen as an indicator for uncertainty as its small water 

droplets scatter transmit pulses of lidar radar systems and affect the sensors’ reliability 

(Rasshofer, Spies, & Spies, 2011). Further, fog was considered to be relatable for novice users of 

an automated vehicle as a reason for system uncertainties. The group to which the UD was 

available, hereafter referred to as experimental group, was made aware of the increase in 

uncertainty through a change in system heart rate. The conveyed system heart rate changed 

linearly with the visibility range, with a lower limit of 50bpm indicating a high visibility range of 

more than 1005.84m and an upper limit of 140bpm signifying a visibility range of less than 

91.44m (see Figure 3). 

In contrast to closely related work, the current study does not involve multiple takeovers 

as part of the scenario as this cannot be considered representative of the failure rate of real-world 

systems. Rather, it follows other publications, e.g. (Molloy & Parasuraman, 1996), that 
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investigated automated systems that fail on only one occasion. This failure rate is still to be 

considered higher than realistic, however, it allows for empirically testing participants in a 

controlled laboratory environment. Further, prior research implies that the successful detection of 

automation failures decreases with a reduction in failure rates (Davies & Parasuraman, 1982; 

Parasuraman & Manzey, 2010). 

The system failure was communicated to the operator with a takeover request (TOR). The 

TOR was issued with 7 s TTC remaining (Gold, Damböck, Lorenz, & Bengler, 2013) using 

combined visual and abstract auditory cues (Bazilinskyy, Petermeijer, Petrovych, Dodou, & de 

Winter, 2018; Politis, Brewster, & Pollick, 2015). 

To account for the influence of concurrent tasks, participants were instructed to engage in 

a visual search task while the automation was activated. In the visual search task, participants 

had to identify if a certain target is present within a field of distractors (Treisman & Gelade, 

1980), mimicking real-world situations in which operators are engaged in concurrent tasks. 

Apparatus 

The study was conducted in a static driving simulator consisting of a mock-up Land 

Rover cockpit and three 160cm × 90cm projection screens, placed 160cm away from the steering 

wheel with the outer screens inclined towards the driver and generating a 135° horizontal field of 

view. The simulator employed the STISIM Drive system and three projectors with a combined 

resolution of 5760 × 1080 pixels projected the rendered images onto the planes. Further, a digital 

instrument cluster with a resolution of 1280 × 480 pixels was used to display the animated heart 

beat. It consists of a stylised, animated heartbeat and a number indicating the heart rate in beats 

per minute (see Figure 4). To incorporate the need for exogenous stimuli, the screen turned red 

for 500 ms to indicate an increase in heart rate. 
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The visual search task was performed on an Apple iPad Air 2 firmly attached to the centre 

console. Eye-tracking data was recorded using Tobii Pro 2 glasses with a gaze sampling 

frequency of 100 Hz. The data was subsequently analysed with Tobii Pro Lab (Tobii, 2018). The 

heart rate of participants was measured with a frequency of 1 Hz using a Polar A370 with optical 

heart rate monitoring capabilities. 

Scenario and Procedure 

Participants were briefed about the experiment using a pre-recorded video and were 

subsequently asked to fill in a consent form and a demographic survey. Throughout the 

experiment, all instructions were presented in a consistent manner to prevent effects of differing 

introductions on dependent variables such as trust (Körber, Baseler, & Bengler, 2018). As part of 

the introduction, participants were made aware of the fallibility of automated driving systems 

and the specific consequences of system failures, particularly TORs. The experimental group was 

further introduced to the UD. 

Following the introduction, participants adjusted seat and steering wheel position and 

completed several practice scenarios with a fixed distance and a total duration of 30 to 40 

minutes that involved multiple emergency manoeuvres and ensured a basic familiarisation with 

the simulation vehicle. 

Immediately after the training sessions, participants were rebriefed about the experiment 

and subsequently commenced with a 20-min scenario in a vehicle equipped with a conditionally 

automated driving system (SAE International, 2016). In the scenario, the system drove 

autonomously on a two-lane UK motorway with moderate traffic, performing a series of lane 

switches and overtaking manoeuvres while keeping the speed constant at 70 mph. Figure 3 
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depicts how the visibility range changed due to fog and shows the resulting heart rate on the UD. 

Further, the graphic indicates when measures of trust and SA were taken.  

Takeover 

Figure 3 illustrates the takeover situation which was modelled after recent automation 

failures in which a stopped vehicle caused crashes (Shepardson, 2018; Stewart, 2018). For a 

successful takeover, operators had to perceive both the stopped vehicle and the vehicle passing 

on the right-hand side, understand the consequences, and project the future state of the own and 

surrounding vehicles – thus possess SA. During a test of situation awareness (see dependent 

variables) midway through the scenario, the situation was replicated, with exception of the 

stopped vehicle. This way, participants’ SA could be directly measured in a situation similar to 

that of the takeover while avoiding to interfere with the takeover itself.  

Immediately following the scenario, participants were asked to fill in a workload 

questionnaire and were briefly interviewed about how they experienced the experiment. 

Dependent Variables 

In accordance with related work (Beller et al., 2013; Hergeth et al., 2016), subjective trust 

was measured using single-item trust ratings on a percentage scale. Thereby, the experimenter 

prompted participants to answer the following question during dynamic simulation: ‘To what 

percentage do you currently trust the automated system to safely perform the driving task?’ A 

single-item trust scale was preferred over alternative, more comprehensive measures (Jian, 

Bisantz, & Drury, 2000) as it allows the repeated, time-efficient collection of trust data and thus 

interferes less with participant behaviour. 
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Further, the visual attention allocation of operators was recorded employing eye tracking 

(direct measurement) and a visual search task (indirect). Eye tracking data was analysed using 

monitoring frequency and ratio (Hergeth et al., 2016): 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑀𝑀𝑜𝑜𝑀𝑀𝑀𝑀𝑜𝑜 𝑓𝑓𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑀𝑀𝑓𝑓𝑓𝑓 =  𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑔𝑔𝑔𝑔𝑔𝑔
𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑀𝑀𝑜𝑜𝑀𝑀𝑀𝑀𝑜𝑜 𝑜𝑜𝑟𝑟𝑡𝑡𝑀𝑀𝑀𝑀 =  
∑ 𝑡𝑡𝑓𝑓𝑚𝑚𝑓𝑓𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚
𝑚𝑚=1
𝑚𝑚

𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
�  

Monitoring glances were thereby defined as any fixations on driving-related areas of 

interest (AOIs), including FRD, instruments, and UD. Consecutive fixations to the same AOI 

were combined if they were separated by blinks of less than 120 ms or if the fixations were 

shorter than 120 ms (Hergeth et al., 2016; Jacob & Karn, 2003). The monitoring data was 

analysed for a period of 80 s prior to the TOR. In the first 40 s, i.e. between 80 s and 40 s before 

the TOR (TOR-80-40), the visibility was high (≥3300 ft) and the corresponding heart rate on the 

UD at its minimum. For the following 40 s up until the TOR (TOR-40-0), the visibility was at its 

minimum and the heart rate at its maximum. One participant was excluded from the analysis of 

eye tracking data due to a failure of the processing unit, resulting in a sample size of 33. 

Regarding the visual search task, the achieved solving rate was recorded. Additionally, 

the user heart rate was measured as an indicator for trust (Waytz et al., 2014) as well as stress and 

participants were asked to fill in a subjective workload assessment questionnaire using 7-point 

Likert scales in accordance with the NASA-TLX (Hart, 2006; Hart & Staveland, 1988). 

To achieve a direct and objective measure of SA, the situation awareness global 

assessment technique (SAGAT) was used (Endsley, 2000; Nguyen, Lim, Duy Nguyen, Gordon-

Brown, & Nahavandi, 2018). For this, the simulation was frozen without prior notification and 

all displays were blanked before the participant was queried about the current state of the driving 

environment. To avoid the introduction of noise to other dependent variables such as operator 



UNCERTAINTY COMMUNICATION 16 

heart rate, subjective trust or gaze behaviour as a result of freezing the simulation, the SAGAT 

test was followed by a recovery section where no dependent measures were taken (see Figure 3). 

Following the TOR, minimum TTC (MTTC) as well as lateral and longitudinal 

acceleration values were recorded to determine driving safety and takeover quality. Further, time-

to-takeover (TTT) was measured as the time between TOR and first driver input, i.e. change in 

steering angle, brake or accelerator input. 

Data Analysis 

To increase validity, multiple measures of dependent variables on individual participants 

were taken. While this reduces the risk that results are due to chance, it leads to non-independent 

data points. Instead of aggregating the data, which would not take advantage of all collected data 

points, multilevel analysis (Snijders & Bosker, 2012) using R and lme4 (Bates et al., 2018) was 

applied. Unless stated otherwise, random effects were implemented using intercepts for subjects. 

The visibility range was treated as a continuous variable to account for its ordinal characteristics 

while the presence of the UD was implemented as a categorical variable. The assumption of 

homoscedasticity was validated through visual inspection of residual plots. Degrees of freedom 

and p values for t values were approximated based on Satterthwaite’s method using lmerTest 

(Kuznetsova, Brockhoff, & Christensen, 2018). 

Results 

Hypothesis 1: Behavioural implications 

Solving Rate of Concurrent Tasks 

The impact of UD and visibility range on the solving rate of concurrent tasks was 

assessed using a linear mixed model (LMM) under consideration of the interaction between the 

two independent variables (see Table 3). The interaction between UD and visibility range had a 
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significant effect (𝑡𝑡(304.00) = 4.914,𝑝𝑝 < .001), indicating that the visibility range affected the 

solving rate depending on the presence of the UD. Figure 5 depicts the effects of the LMM, 

showing that the solving rate was significantly impacted by the visibility range if the UD was 

present. Irrespective of the visibility range, the mean solving rate was lower for the experimental 

group, indicating significant differences between groups in addition to the interaction. 

SAGAT responses 

Table 1 shows the ratio of correctly answered SAGAT questions for each group. For all 

individual questions, the experimental group achieved a higher correct response ratio. Across 

questions there was a significant difference regarding the frequency of correct replies between 

groups, as indicated by the results of a chi-square test with Yates’ continuity correction, 𝜒𝜒2(1) =

4.349,𝑝𝑝 = .037. 

Subjective Trust 

The impact of UD and visibility range on trust was evaluated using a LMM under 

consideration of interactions. The interaction between visibility range and UD was significant 

(𝑡𝑡(236.00) = 6.795,𝑝𝑝 < .001), whereby subjective trust ratings only varied with the visibility 

range when the UD was present (see Figure 6). Further, there was a main effect of UD on 

subjective trust ratings. However, the effect cannot be considered meaningful as the trust ratings 

are not lower for the experimental group regardless of the visibility range (see Figure 6). 

Visual Attention 

Results of a LMM with monitoring frequency as a dependent variable and UD as well as 

Section (TOR-80-40, TOR-40-0) as predictors showed a significant main effect of UD 

(𝑡𝑡(44.16) = 6.877, 𝑝𝑝 < .001) as well as a significant interaction, 𝑡𝑡(32.00) = −4.752,𝑝𝑝 <

.001. Figure 8 illustrates the effects of the interaction, showing that the monitoring frequency 
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increased only for the experimental group between the two sections. Further, it confirms the 

main effect of UD on monitoring frequency. 

Figure 9 depicts the monitoring ratio as another indicator for visual attention. For the 

control group, the distribution of attention did not significantly change between the two analysed 

sections. The experimental group, on the other hand, allocated more attention to the FRD 

(MD=0.219), Instruments (MD=0.009) and UD (MD=0.073) while focusing less on the 

concurrent task (MD=-0.221) in the high uncertainty section (TOR-40-0). 

Hypothesis 2: Takeover performance 

Minimum Time-to-Collision 

Participants of the experimental group (M=2.765s) achieved significantly higher MTTC 

values than the control group (M=1.641s), 𝑡𝑡(29.329) = −2.251, 𝑝𝑝 = .032, 𝑑𝑑 = 0.772 

(medium). 

Maximum Lateral and Longitudinal Acceleration 

Lateral and longitudinal acceleration can be considered as indicators for takeover quality 

(Bubb, Bengler, Gruenen, & Vollrath, 2015), whereby a value of 0.3m/s2 delineates the limit of 

comfortable lateral acceleration. Maximum lateral acceleration values were significantly higher 

for the control group (M=2.450m/s2) compared to the experimental group (M=1.635m/s2), 

𝑡𝑡(21.91) = 2.809,𝑝𝑝 = .010,𝑑𝑑 = 0.963 (large). Longitudinal acceleration did not significantly 

differ between groups. 

Time-to-Takeover 

Participants of the experimental group (M=2.090s) averaged a faster TTT than those of 

the control group (M=2.356s), however without statistical significance. 
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Hypothesis 3: Operator workload 

Unpaired (two sample) t-tests were used to analyse the results of each workload survey 

question individually (Sullivan & Artino, 2013). Table 2 summarises the results, whereby only 

the perceived effort differed significantly between the groups, with the experimental group 

reporting higher values, 𝑡𝑡(24.123) = −4.352,𝑝𝑝 < .001. 

Hypothesis 4: Relationship between trust and visual attention 

Solving Rate Relative to Subjective Trust 

Figure 7 depicts the relationship between solving rate and subjective trust. Implementing 

UD and trust as fixed effects, subjective trust significantly affected the solving rate (t(268.07) =

2.770, p = .006), raising it by 0.064 1/min (SE=0.023) for each percent of trust.  

Subjective Trust Relative to Visual Attention 

Entering group and the frequency of monitoring glances as fixed effects into the model, 

monitoring frequency significantly affected subjective trust (𝑡𝑡(12.31) = −2.157,𝑝𝑝 = .0389), 

lowering it by 29.184 (SE = 13.529) for each glance per second. 

Solving Rate Relative to Visual Attention 

With group and monitoring frequency as fixed effects, monitoring frequency significantly 

affected the solving rate of concurrent tasks (𝑡𝑡(62.95) = −3.861,𝑝𝑝 < .001), lowering it by 

22.385 1/min (SE=5.798) for each glance per second to driving-related AOIs. 

Hypothesis 5: Physiological effects 

The absolute, offset, and relative heart rate of participants was not significantly affected 

by either subjective trust ratings or the visibility range, neither did it significantly differ between 

groups. Similar to prior publications (Waytz et al., 2014), the heart range change as a 

consequence of an event (here: TOR) was analysed with the two fixed effects group and TOR, 
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whereby TOR had two levels (20s interval before TOR; 20s interval after TOR). The TOR had a 

significant effect on heart rate, raising it by 1.010bpm (SE=0.129), 𝑡𝑡(1359) = −7.840,𝑝𝑝 <

.001. The factor UD did not have a significant effect. 

Discussion 

The current study was conducted to examine the effects of dynamically communicating 

uncertainties on behavioural, physiological as well as performance-related outcome variables. 

Consistent with prior publications from the automotive (Beller et al., 2013; Helldin et al., 2013) 

and other domains (McGuirl & Sarter, 2003), the results of the current study suggest a number of 

significant implications of communicating uncertainty information on human-automation 

interaction. 

Hypothesis 1: Behavioural implications 

The results of the study confirmed Hypothesis 1 as there was a significant impact of 

uncertainty communication on the solving rate of concurrent tasks, SAGAT responses, subjective 

trust, and visual attention. 

As predicted, the experimental group solved less concurrent tasks with a lower visibility 

range – an effect which could not be observed in the control group. This indicates that the 

presentation of uncertainty information affects the (endogenous) attention allocation of human 

operators (Katsuki & Constantinidis, 2014). This is reaffirmed by the analysed eye tracking data, 

whereby both the monitoring frequency and monitoring ratio indicate an attentional shift from 

the concurrent task to driving-related AOIs in critical situations. SAGAT measures confirmed 

that this had positive implications for SA. Further, the results indicate that presenting uncertainty 

information in a higher resolution, i.e. not binary (Beller et al., 2013) but in several distinct 

degrees (in this case 50, 80, 110, and 140bpm), helps users to differentiate between different 
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system capability levels and may lead to more appropriate behaviour. This is emphasised by the 

progressive increase in both trust scores and solving rate with higher visibility ranges in the 

experimental group (see Figure 5 and Figure 6). 

However, the communication of uncertainties did entail side-effects. As such, the 

experimental group solved significantly less concurrent tasks than the control group, even if only 

considering periods for which the UD indicated the lowest uncertainty. As indicated by the 

monitoring frequency, the experimental group glanced more frequently to the UD in high 

visibility situations than the control group. The findings highlight a drawback of presenting 

uncertainty information using visual displays as this requires operators to constantly monitor its 

state to perceive possible changes. Specifically, the experimental group monitored the UD with a 

ratio of 12.06% prior to the TOR. This share contributes to the glance time off road and thereby 

increases the risk of missed changes and crashes (Seppelt et al., 2017). The ratio could be 

reduced through improved display design, for instance peripheral awareness displays (Kunze, 

Marshall, Summerskill, & Filtness, 2017; Kunze, Summerskill, Marshall, & Filtness, 2018a, 

2018b). Additionally, prior research has indicated that the prolonged monitoring of visual 

uncertainty displays leads to missed uncertainty changes (Large, Burnett, Morris, Muthumani, & 

Matthias, 2017), thus reaffirming the adverse consequences of using displays that require focal 

attention for uncertainty communication. 

Further, the experimental group did not trust the system significantly more than the 

control group in situations of low uncertainty, as could have been predicted due to the use of an 

anthropomorphic interface and based on the findings of previous studies (Beller et al., 2013). 

This finding supports prior research which indicated that effects as a result of anthropomorphism 

are only activated if automated agents possess easily recognisable physical human-like attributes 
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such as faces (de Visser et al., 2017). The subjective trust ratings in conjunction with the solving 

rate of the concurrent task and the recorded monitoring behaviour do, however, indicate that 

participants of the experimental group were better able to calibrate their trust: In situations with a 

reduced visibility range, they focused more towards the FRD and solved less concurrent tasks 

while reporting lower trust scores, indicating more appropriate reliance and showing less signs of 

automation misuse. 

Hypothesis 2: Takeover performance 

The current study confirms the prediction that the communication of uncertainty 

information improves both takeover performance and quality. Consistent with prior findings, 

MTTC values were significantly higher for the experimental group, indicating that the provision 

of uncertainty information prepared drivers for potential automation failures. Similarly, 

significantly lower maximum lateral acceleration values indicate a less abrupt takeover for the 

experimental group. 

In contrast to previous research (Helldin et al., 2013), TTT values were not significantly 

affected. Potentially, the engagement in concurrent tasks prevented participants of both groups 

from showing signs of drowsiness (Miller et al., 2015) and they were equally quick to react. The 

recorded TTT values correspond to data recorded by other research projects (Zhang, Varotto, & 

Happee, 2018). 

Hypothesis 3: Operator workload 

For both groups, mental and temporal demand were higher than optimal values of around 

half the range of the scale (Stanton, Dunoyer, & Leatherland, 2011). Brief interviews following 

the experiment indicated that participants perceived a high mental workload due to the execution 

of a visually demanding task while having to regularly monitor the driving scene. Temporal 
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demand was perceived as high due to the emergency TOR. Further, the experimental group 

indicated a significantly higher perceived effort. Thereby, participants particularly disliked that 

they constantly had to monitor the UD to notice changes, which was also confirmed by the eye 

tracking data. For extended usage, operators may not be willing to put that degree of effort in 

monitoring the display, particularly if the system is performing safely (Large et al., 2017). In 

contrast to the phrased concerns, the UD did not make participants feel more uneasy, as 

suggested by the scores for frustration (see Table 2). 

Hypothesis 4: Relationship between trust and visual attention 

The current study confirms the predicted relationship between trust and attention, as 

indicated by significant effects of subjective trust indications on both the solving rate of 

concurrent tasks as well as the monitoring frequency. As such, the solving rate increases with 

subjective trust while the monitoring frequency is lowered with trust. This affirms the results of 

prior publications (Hergeth et al., 2016; Muir & Moray, 1996). 

Hypothesis 5: Physiological effects 

The heart rate of participants of the experimental group was not significantly affected by 

the heart rate on the UD and did not differ significantly from that of the control group. While 

there was a significant change in heart rate due to the TOR, the experimental group did not show 

a different response from that of the control group. 

Limitations 

Analogue to prior publications (Beller et al., 2013; Helldin et al., 2013; Hergeth et al., 

2016), all participants drove through the same scenario. Thus, the order of the visibility range 

levels may have had an impact on the results. However, this was deliberately accepted as the 

current design assured that all participants experienced a scenario that would likely invoke the 
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strongest complacency effects as the most critical conditions were at or near the end of the 

simulation (Lee & Moray, 1992, 1994). 

Further, the study only varied the factor visibility range due to fog as an indicator for 

uncertainty to achieve internal validity. Other factors such as unclear lane markings, traffic 

density, or other weather conditions may also affect dependent variables such as trust of 

participants. 

Additionally, the current study may have benefited from the tracking of other 

physiological measures, such as heart rate variability (HRV). Although this did not significantly 

predict trust in prior publications (Wintersberger, von Sawitzky, Frison, & Riener, 2017), it will 

be explored in future experiments to specifically investigate HRV in the context of uncertainty 

communication. 

Conclusion and Outlook 

The results of the study confirm the outlined implications (see Figure 2) of uncertainty 

communication on attention allocation, situation awareness, and takeover performance. As such, 

dynamically presenting uncertainty information leads operators to employ more appropriate 

attention allocation strategies. This is indicated by more monitoring glances to driving-related 

AOIs as well as a reduced solving rate of concurrent tasks with lower visibility range and 

therefore higher uncertainty. Thereby, participant behaviour differed between low, intermediate, 

and high uncertainty situations, indicating benefits of communicating uncertainty information 

with several levels. 

The visual uncertainty display required users to regularly check the system state, leading 

to a higher perceived effort and more time spent off concurrent tasks and the field-relevant for 

driving. Future work should concentrate on how to best present uncertainty information, for 
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instance by unobtrusive means that do not increase operator workload and require fewer 

additional glances (Kunze et al., 2017). Acknowledging the uncertainty of automated agents may 

aid the shift from viewing automation as a tool to collaborative automation (de Visser, Pak, & 

Shaw, 2018). 
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Footnotes 

1 The simulation was run using imperial units. Figures show the visibility range in feet. 
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Tables 

Table 1 

Ratio of correctly answered SAGAT questions 

Group SAGAT1 SAGAT2 SAGAT3 SAGAT4 
Control 0.47 0.59 0.41 0.47 
Experimental 0.76 0.88 0.53 0.53 

 

Table 2 

Mean and standard deviation of NASA TLX scores 

Group Mental 
demand 

Physical 
demand 

Temporal 
demand Performance Effort Frustration 

Control 4.65 
(1.66) 

2.24 
(1.48) 

4.59 
(1.54) 

5.29 
(0.99) 

3.71*** 
(1.53) 

3.24 
(2.22) 

Experimental 4.88 
(1.41) 

2.47 
(1.42) 

5.12 
(1.41) 

5.00 
(1.62) 

5.53*** 
(0.80) 

3.29 
(1.83) 

***p<.001. **p<.01. *p<.05 

 

Table 3 

Analysis of variance table with approximated degrees of freedom and p values based on 

Satterthwaite’s method 

Variables Estimate Standard 
Error df t p 

Solving rate of concurrent tasks 

Visibility range 0.368 0.460 304.00 0.800 .424 

UD -15.007 2.396 91.35 -6.264 < .001*** 

Visibility range × UD 3.196 0.650 304.00 4.914 < .001*** 

Solving rate of concurrent tasks 

Subjective trust 0.06387 0.02306 268.07 2.770 .006* 
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Variables Estimate Standard 
Error df t p 

UD -6.8737 1.7043 32.36 -4.033 < .001*** 

Subjective trust 

Visibility range 0.605 1.591 236.00 0.380 .704 

UD -48.052 7.484 147.500 -6.420 < .001*** 

Visibility range × UD 15.286 2.250 236.00 6.795 < .001*** 

Monitoring frequency 

UD 0.385 0.0560 44.16 6.877 < .001*** 

Section 0.00441 0.0322 32.00 0.137 0.892 

UD × Section -0.216 0.0455 32.00 -4.752 < .001*** 

Subjective trust 

Monitoring frequency -29.184 13.529 12.31 -2.157 .0389* 

UD 3.288 4.803 31 0.685 .499 

Solving rate of concurrent tasks 

Monitoring frequency -22.385 5.798 62.950 -3.861 < .001*** 

UD -1.648 3.079 38.680 -0.535 .596 

***p<.001. **p<.01. *p<.05 
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Figures 

Sources of uncertainties 

 

Figure 1: Sources of system uncertainties (Endsley & Jones, 2012; Kiureghian & Ditlevsen, 2007; Pang 
et al., 1997; Uggirala et al., 2004) 
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Overview Model 

 

Figure 2: Overview model depicting the functional net of trust, attention, concurrent tasks and 
automation attributes. The continuous green lines indicate how the communication of uncertainties can 
affect situation awareness (Diekfuss et al., 2017; Endsley, 2017; Hoff & Bashir, 2015; Lee & See, 2004; 
Parasuraman & Manzey, 2010; Wickens & Dixon, 2007; Young & Stanton, 2002)  
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Experimental scenario and Takeover Situation 

 

 

Figure 3: Visibility range and system heart rate across the experimental scenario (top); location of own 
vehicle (A), passing vehicle (B), and stopped vehicle (C) at the time of the TOR (bottom) 
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Figure 4: Uncertainty display consisting of a stylised heartbeat and a numeric indication for beats per 
minute (Kunze, 2018) 
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Effects of linear mixed model 

 

Figure 5: Effects of the linear mixed model predicting the impact of visibility range and UD on the 
solving rate of concurrent tasks 
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Effects of linear mixed model 

 

Figure 6: Effects of the linear mixed model predicting the impact of visibility range and UD on subjective 
trust ratings 
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Concurrent tasks solved relative to subjective trust 

 

Figure 7: Concurrent tasks solved per minute relative to subjective trust scores 
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Monitoring frequency relative to section prior to TOR 

 

Figure 8: Monitoring frequency towards driving-related AOIs in a low uncertainty section (TOR-80-40) 
and high uncertainty section (TOR-40-0) 
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Relative glance duration for each area of interest between groups 

 

Figure 9: Monitoring ratio for each AOI and two sections between groups, FRD = field relevant for 
driving, NDRT = non-driving related / concurrent task, UD = uncertainty display 
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