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Abstract—Unmanned aerial vehicles (UAVs), aka drones, are
widely used civil and commercial applications. A promising one is
to use the drones as relying nodes to extend the wireless coverage.
However, existing solutions only focus on deploying them to
predefined locations. After that, they either remain stationary
or only move in predefined trajectories throughout the whole
deployment. In the open outdoor scenarios such as search and
rescue or large music events, etc., users can move and cluster
dynamically. As a result, network demand will change constantly
over time and hence will require the drones to adapt dynamically.

In this paper, we present a proof of concept implementation
of an UAV access point (AP) which can dynamically reposition
itself depends on the users movement on the ground. Our solution
is to continuously keeping track of the received signal strength
from the user devices for estimating the distance between users
devices and the drone, followed by trilateration to localise them.
This process is challenging because our on-site measurements
show that the heterogeneity of user devices means that change
of their signal strengths reacts very differently to the change of
distance to the drone AP. Our initial results demonstrate that
our drone is able to effectively localise users and autonomously
moving to a position closer to them.

Index Terms—UAV access point, Flying access point, Drone
based user localisation

I. INTRODUCTION

With continuous cost reduction and device miniaturisation
the unmanned aerial vehicles (UAVs), also known as drones,
have seen proliferated adoption for civil and commercial
applications. Of which an increasingly more popular one is
rapid deployment as relays to meet the networking needs in
places where network infrastructure [1] [2] [3] [4] [5] [6].
Researchers have investigated a wide range of topics including
architecture design [1] [3], placement [6], coverage [5], chan-
nel optimisation [4] and routing [7] [8]. However, existing
works simply assume networking demands are known and
hence once UAVs are deployed they either remain stationary
or only move on predefined paths regardless the movement of
the users on the ground.

We argue that the user mobility can greatly challenge the
the quality of wireless connectivity as when users move both
the demand and networking environment will change [9]. In
fact, our real-world measurements demonstrate great radio
heterogeneity among user equipments (see Section IV): dif-
ferent devices (i.e. a mobile phone and a laptop) can emit
distinctively different strength radio signal and weaker signal
emitting devices (e.g. mobile phones) are more prone to the
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change of distance. This means in order to maintain overall
best signal to all connected mobile devices, the drone should
dynamically reposition itself according to the latest snapshot of
users’ locations. Repositioning of drone requires a mechanism
to determine users current locations and to which direction
that they are moving. This can be easily done if the drone has
multiple uni-directional antennas that periodically send/receive
probing signals [10]. Unfortunately, this is impractical in
reality as doing so will not only increase the cost and sizes of
the drone APs but also shorten their battery lives.

In this paper, we present our proof-of-concept implementa-
tion of a drone based AP that can autonomously readjust its po-
sition for providing best connectivity to users below. We have
built a drone using off-the-shelf components with a Raspberry
Pi1, a single board computer, as a WiFi access point (AP). We
have employ a novel technique to localise user devices. This
include first flying a small square trajectory and then use the
reference points gathered to trilaterate user locations. We have
tested our algorithms and initial results show that drone can
effectively localise users and autonomously reposition itself
closer to them.

The remainders of this paper are organised as follows.
Section II presents related work in drone-based internet provi-
sioning and techniques for user localisation. Section III details
our drone AP building experience, followed by Section IV
which describes the experimental and analytical development
of device localisation. Section V presents our initial implemen-
tation and preliminary evaluation result. Section VI discusses
our future directions and concludes this work.

II. RELATED WORK

Using drones for wireless communication has been a subject
of significant interest recently. In this section, we present
related literature and highlight our contributions to the state
of the art.

UAV-enabled communication is one of the key emerging
applications [3] [1]. However, most of existing works mainly
focus on millimeter wave (mmWave) bands, for long range
communication. On the contrary, we use off-the-shelf WiFi
for its prevalence, technological matureness, and low-cost as
well as reasonable distance of coverage.

When a drone is needed, it’s deployment location can have
vital impact on the effectiveness. A multi-drone placement

1https://www.raspberrypi.org/



problem is investigated in [6] with an aim to maximise
the minimum throughput in the downlink communication by
jointly optimising the traffic scheduling and the drones simple
circular trajectory and power control. The problem is formu-
lated as a mixed integer non-convex optimisation problem that
is solved using an iterative heuristic. [5] studies a network
coverage recovery problem which consists of two parts. First,
drones navigate in predefined regions in zigzag patterns to
scan for the presence of existing (damaged) networking in-
frastructure nodes. Then the drones send probing packets to
discover partial network topology and routes. In both cases,
fixed trajectories are defined and maintained throughout. To
contrast, in our work new flying trajectories are determined
by the drone autonomously using received signal strength.

Author in envisions a use case in which Besides UAV-
aided communication, UAVs can be used in fog computing
infrastructure [11] [12]. More specifically, [12] is the first
technical work to address this and tackles the problem of
optimising the bit allocation for communication in uplink
and downlink and for computing at the cloudlet, the UAV’s
trajectory, with the goal of minimising the mobile energy
consumption. In comparison, our drone AP is also a general
computer, making it ideal for computation offloading and
therefore will complement this branch of work.

Radio channel optimisation are investigated in [13] [4]
[9]. [4] performs measurements and simulations to study the
impact of interference and path loss when transmitting data to
and from the UAV in LTE networks. Their results show that
while a single drone can improve signal to interference ratio
but increasing the density of drone deployment will hurt it.
These findings are confirmed in [13]. Comparing physical and
MAC layers optimisation, we fully focus on application layer.

There is also a body of work on improving routing [7] [8].
[7], for example, investigates a layered UAV swarm network
architecture and proposes a low latency routing algorithm
(LLRA) for this network architecture. Similarly [14] surveys
and analyses the suitability of traditional mobile adhoc net-
work protocols for flying adhoc networks. Our work will
complement on these works.

Another domain of work focusing on localising users in
order to best position drones with respect to the users’ loca-
tions. [15] uses WiFi’s probe requests, RSSI and random forest
algorithm to localise users but its granularity of accuracy is
coarse. One possible technique is triangulation [16] but this
requires knowledge of the angle from the drone to the user. In
comparison we have applied trilateration [17] as this technique
is able to locate a target by using the distance information
between the target and several reference points.

III. BUILDING THE DRONE

We have built a drone, as shown in Fig. 1, with readily
available commercial components including a Raspberry Pi as
the AP, listed as follows:

1) Raspberry Pi 3 Model B in clear case.
2) Crius CN-06 v2.0 GPS module
3) DJI 2312E motors

(a) Top view (b) Bottom view

Fig. 1: Completed drone

Fig. 2: General setup used for measuring RSS from the Pi

4) CRIUS All in One Pro Flight Controller (FC) v2.0
5) DJI Flame Wheel F450 ARF frame
6) Multistar 3S 3000mAh batteries
7) Electronic Speed Controller (ESC)
8) HobbyKing Lipoly Low Voltage Alarm (2s-4s)

IV. LOCALISING USER DEVICES

A. Test Setup
Fig. 2 shows the concept of the test setup: measurements

on the floor with one metre increments, where the drone,
with the Pi attached to it, is placed at one end and the
laptop and/or phone moving away from the drone, along the
measurements. The maximum distance was 40m as this was
considered to be furthest away the drone would optimistically
be from the user, in this proof of concept. In order for the
tests to be consistent, we used the same laptop and smartphone
throughout all experiments.

All of the tests were performed at a remote, empty, outdoor
car park with a concrete/gravel surface, walled by hedges.
This was chosen so that markings could easily be made
on the ground and there would be little reflection from the
area. Importantly, the test was not performed indoors, as
that is not the intended purpose for this project. The drone
remained directly on the floor in the same place (facing
forward for all range tests). Similarly, all testing was recorded
on the same day and where possible recording comparable sets
successively (e.g. when rotating the drone at a fixed distance).
All experiments were repeated 3 times. The logging of the
data was all performed internally on the Raspberry Pi. The Pi
was set to a static WiFi channel

All devices were left connected to the drone for at least
a minute to ensure any initial handshaking protocols were
avoided and did not affect the results. We have also attempted
to minimise the human element: the devices were all held in
a similar fashion and stepping between the markers was kept
as uniform as practicable.

B. Range Tests
We first set to answer this question: is there a discernible

difference in the RSS when the user moves away from the



(a) Phone (b) Laptop

Fig. 3: The effect on the RSS received by the Pi, when varying
the distance of the user devices

drone within a reasonable range of values? Every five seconds
a metre step was taken along the line. The laptop was
disconnected from the Pi’s WiFi whilst the phone tests were
executed.

Both Fig. 3a & and Fig. 3b show the strong correlation
between distance and RSS up until 5 - 10m away from the
drone, however beyond that there is a lack of fidelity - this
means that ideally the drone needs to be as close as possible
to devices to gain greater accuracy above the significant noise.
Hence, the lower the height of the drone the better, but
balanced with safety, a hovering height of approximately 5
- 6m would minimise error. Notably they are not at the same
level - e.g. when the drone receives an RSS value of -72 dBm
from the phone it is at approximately 5m away from the drone;
conversely receiving this level from the laptop, it is more likely
to be 20 - 30m away. This difference is most likely caused by
a stronger transmitter in the laptop.

C. Directional Tests
Next we want to see if the WiFi antenna on the Raspberry

Pi, when attached to the drone, was at all directional. If there
is a strong correlation then the drone could simply rotate at a
number of points, providing an angle at each and triangulation
could be used to localise the user.

In a similar vein to the previous tests, the directional tests
were setup in the same manner. The routine for these tests
was to leave the laptop and phone connected whilst rotating
the drone 90° clockwise every 2:05 minutes - in order to log
50 points of data every 2.5 seconds for each orientation. The
test was performed with the laptop and phone 5m, 10m and
20m away from the drone as these would be common distances
in flight. The tests were performed in the order: forward, left,
backward, right, where left means the phone is to the left and
vice-versa for the other directions.

The box plots shown in Fig. 4a – Fig. 4h show the results
from these tests - with the box representing the 25th - 75th

percentile data points, the central line as the median, the
whiskers indicating the minimum and maximum values and
the marker showing the mean of the values. Fig. 4a shows an
ideal case of rotating the drone, where it should be possible

to discern the direction to the user from recording a few data
points in each orientation. Unfortunately, the findings from the
laptop at the same range, Fig. 4b, are slightly less conclusive as
the mean values are less than 4dBm apart. There is a notable
level of noise in the readings, meaning to draw meaningful
conclusions a number of data points should be averaged. The
reason the best reception is found towards the back of the
drone is possibly due to the location of the WiFi antenna
on the Pi board, hence receiving very little electromagnetic
inference from other boards. In the context of the drone the
antenna has few obstructions when it is directly behind and
this is best reflected in data from when the laptop was 10m
away, Fig. 4d – the greater the angle from the back of the
drone, the worse the signal, but this is inconsistent with the
signal received from the laptop at 20m, Fig. 4f.

Comparing the data at 10m against 20m, Fig. 4c & Fig. 4d
and 4e & 4f respectively, there is a greater overlap in data
but there is still a distinctly higher trend for the backward
values. However, in Fig. 4f, the forward and backward data is
quite close - meaning that it would not be reliable to base the
drone’s movements solely from these readings. Using the data
from the aforementioned tests, Fig. 4g and Fig. 4h compare
the forward facing values from the various distances for the
phone and laptop. This determines the distance between the
points used to trilaterate the user. Based on Fig. 4g, within a
horizontal plane it may be possible to use a distance between
the points of 5m, however due to the sizeable overlap, for
greater certainty and considering the larger distances when the
drone is airborne, a distance of 10m or more would mean there
is likely to be a more identifiable difference in the readings.

D. Drone Operation States
Once the drone is flying, localisation can essentially be

reduced down to a maximisation problem. For example, Fig.
5 shows how the RSS is perceived by the drone from two
devices at two separate locations, where one device has a more
powerful transmitter than the other, e.g. a laptop and a phone.
Given this plot, it is trivial to locate the optimum position
for the drone to provide the best signal to the two devices.
This is the entire search space at only a single point in time,
however the drone can only sample at single (x, y) coordinate.
Furthermore, the devices can move, the drone’s WiFi antenna
is slightly directional and the drone’s position is difficult to
exactly locate in all six degrees of freedom. With these points
in mind, the following algorithm has been designed.

The drone takes off and looks for the best direction to start
searching, then performs a square, starting in that direction.
Once the square is completed, the drone trilaterates the users
and moves to the position which it decides will give the best
signal to the users.

We have also defined the following states for our drone AP.
TAKEOFF: The drone’s initial state. Gets the drone up to its
minimum height of 6m - this is based from the data shown in
Fig. 3a & Fig. 3b: the best WiFi distance fidelity is within the
10m range, however for safety, a height of 6m is a balance.
LANDING: Lands the drone in its takeoff position and then
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(d) Laptop RSS at 10m
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(h) Laptop RSS at 5m, 10m, 20m

Fig. 4: The effect of varying the distance on the RSS received by the Pi

Fig. 5: Representation of the RSS from two devices, with
noise, when the drone moves in the horizontal plane

powers it down. STARTSEARCH: Rotates the drone and waits
in each orientation for three seconds in order to log three RSS
readings - this is in an effort to assess the direction where the
most users are, utilising the slight directionality of the antenna
on the Pi, shown in Fig. 4a – Fig. 4f. SEARCH: The search
consists of performing a 10m square. This was chosen because
there is approximately only 10m of fidelity in RSS values,
shown in Fig. 4g & Fig. 4h. From the data collected whilst
performing the square, the drone will trilaterate the position of
each user using the lateration formula, equation 4. OPTIMAL:
The drone moves to where it believes is the best position to
provide the best coverage to the devices which have recently
connected.

E. Finding the Optimal Location

As there is not a constant correlation between RSS and
distance, shown by the difference in magnitudes between Fig.
3a & Fig. 3b, it is necessary to approximate the values for A,
the RSS from the device at one metre, and n, the path loss
exponent, in equation 1 [18] so that the only unknown is r

Line of Best Fit Equation n (3 d.p.)
Phone Test 1 y = �23.670 log10 x� 52.918 2.367
Phone Test 2 y = �21.472 log10 x� 56.28 2.147
Phone Test 3 y = �20.719 log10 x� 59.532 2.072
Laptop Test 1 y = �21.006 log10 x� 44.648 2.101
Laptop Test 2 y = �21.571 log10 x� 42.413 2.157
Laptop Test 3 y = �21.041 log10 x� 42.664 2.104

Average 2.157

TABLE I: Lines of best fit from Fig. 3a & Fig. 3b in log10
(where S is the RSS from the device), which is the distance
from drone:

r = 10
S�A
�10n (1)

Rearranging equation 1 to make A the subject gives equa-
tion 2:

A = S + 10n log10 r (2)

It will be assumed that the lowest absolute RSS values
received during the duration of the flight are logged when the
drone is above the user and hence both S and r will be known:
the drone hovers at 6m and the user’s device is assumed to be
at approximately 1m from the ground, so r = 6 � 1 = 5. To
reduce the effect of noise, shown by the box plots in Fig. 4a
- Fig. 4f, three values will be averaged.

The value for n can be approximated from the test data
shown in Fig. 3a & Fig. 3b.Converting these from expressions
in the form y = m lnx + c to those with base 10 (to match
equation 2) using the method y = m

log10 e log10x+ c produces
table I:

From this, the value for n is approximated to 2.2, giving
allowances for anything blocking line of sight and other ex-
traneous factors. Filling in the previous unknowns in equation
2 gives equation 3, where S is the average of the three best
RSS recordings:

A = S + 10 · 2.2 · log10 5 (3)
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Fig. 6: The drone AP is able to localise in 150s and maintain
strong RSS for the smartphone

It is then a matter of applying equation 4 [17] and equation
5 to all devices:
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C & D correspond to the matrices in equation 5.

V. IMPLEMENTATION AND EVALUATION

We have implemented the key algorithms of our autonomous
flying AP on a Raspberry Pi, which controls the flight con-
troller, using Python. We have performed a number of tests
in one of the university’s sports pitches, which are large and
clear of people and obstacles. At the beginning of each test
we connected a laptop and a smartphone to the AP, both were
10m away to the front of it.

Our preliminary testing results showed that the drone was
capable of flight. The drone performed an approximate square
whilst logging the RSS values once per second, from which it
determined an estimate for the position of the users and moved
itself appropriately, as demonstrated in Fig. 6. Unfortunately
the precision of GPS positioning meant that the drone was not
able to move to desired optimal location with great precision.
Improving this remains a part of our future work.

VI. FUTURE DIRECTIONS AND CONCLUSION

A. Radio Frequency Source Localisation
We have demonstrated that it is challenging to localise the

radio frequency (RF) source accurately due to the noisy nature
of the RSS samples. In the following, we briefly introduce
several methods that can be applied to improve design of flight
trajectory for localising RF sources.

Markov Decision Processes (MDPs) [19]: MDP is a typical
model for decision making in which an agent perceive the
state in the environment and take actions accordingly. To

UAV Using 
Omnidirectional Antenna

Trajectory of UAVSmartphones

Fig. 7: The drone navigates to the RF source based on the
RSS value.

Method Flight Time (s) RMS (m)
POMDP [19] 724 12.4
Q-learning [21] 200  10

TABLE II: Performance Comparison of Different Locali-
sation Methods

estimate the state robustly, filtering modules can be used to
remove the RSS outliers before making trajectory decisions.
For example, the Baysian filtering can provide the probability
information about the system state based on the last action
and current observation. For some cases requiring real-time
planning in uncertain environments, the partially observable
Markov decision process (POMDP) can be used to solve these
problems. However, it is known to be intractable for computing
the optimal policy of a large-scale POMDP with nonlinear
state space model.

Maximum Likelihood (ML) [20]: The aim of ML is to
estimate the parameters of a statistical model by maximising
a likelihood function. In this method, the joint likelihood
function can be designed to estimate whether the target is
detected by the drone or not. The applicability of ML is limited
as it requires knowledge of the statistics of both the signal and
noise.

Q-learning [21]: Q-learning is a type of machine learning
method in which learning is achieved through the interaction
with the environment. It can be viewed as a model-free
solution to an MDP with unknown state transition model. In Q-
learning, actions, states, and rewards are trained to maximise
the long-term expected reward. Similar to applying Q-learning
for RF source localisation in the indoor environment [21], the
Q-learning algorithm can be used to navigate the drone to the
RF source even in a GPS-denied environment. As shown in
figure 7, the drone can autonomously determine flight direction
based on the stored Q-table when receiving the RSS data.
Table II compares the performances of flight time and root
mean square (RMS) for drone to localise the RF source.

B. Drone-based Edge Caching

Further to being an AP, the drone can also be an edge
node to cache the popular content in advance for improving
network service performance. The wireless coverage can be
dynamically expanded with the help of aerial-to-aerial (A2A)
and aerial-to-ground (A2G) communications [22].
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Fig. 8: The latency components with edge caching [24].

The optimal contents need to be cached at drones based
on the users’ cell association and content request distributions
[23]. The caching strategy can be generally classified into two
categories: reactive caching and proactive caching. In reactive
caching, only the previously used data are stored. On the other
hand, proactive caching predicts what data will be needed in
the next period of time and stores these data in advance.

To provide low-latency vehicular transmissions, more re-
search efforts are needed to evaluate the latency performance
in the air-ground integrated vehicular network with edge
caching. Figure 8 shows the latency components with mobile
edge caching [24]. By caching the data close to the end user,
the data can be delivered without routing to the central core
network. With cache’s help, the latency can decrease from
hundreds of miliseconds to dozens of miliseconds. To further
achieve performance guarantees, network theoretic approaches
such as network calculus (NC) [25] can be applied to examine
the delay bounds with the required violation probability.

C. Conclusion

In this paper we have presented our design and imple-
mentation of an autonomous flying WiFi AP. While AP is
used as an example some potential applications include edge
computing system that can be quickly deployed in ad-hoc
fashion. Our initial evaluation has demonstrated that our drone
can dynamically re-position itself to give best possible signal
strength to user devices. We have also discussed two future
directions of this work including better trajectory design for
device localisation and using the AP for edge caching.

Another strand of the future work includes deploying mul-
tiple drones and develop algorithms and protocols for them to
interact with one another.
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