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Abstract. The notions of metatechnology and metafrontier arise in applications of data envelopment

analysis (DEA) in which decision making units (DMUs) are not sufficiently homogeneous to be

considered as operating in the same technology. In this case, DMUs are partitioned into different

groups, each operating in the same technology. In contrast, the metatechnology includes all DMUs

and represents all production possibilities that can in principle be achieved in different production

environments. Often, the metatechnology cannot be assumed to be a convex set. In such cases

benchmarking a DMU against the common metafrontier requires implementing either an enumeration

algorithm and solving a linear program at each of its steps, or solving an equivalent mixed integer

linear program. In this paper we show that the same task can be accomplished by solving a single

linear program. We also show that its dual can be used for the returns-to-scale characterization of

efficient DMUs on the metafrontier.
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1. Introduction

Homogeneity of decision making units (DMUs) is a common assumption made in standard

applications of data envelopment analysis (DEA). This assumption allows the DMUs to be regarded

as members of the same production technology, which in turn allows the DMUs to be benchmarked

with respect to the common production frontier that such DMUs generate (Cooper et al., 2007). The

homogeneity assumption usually means that all DMUs have similar access to the same type of

resources (inputs) and produce the same range of products or services (outputs). It also implies that

the operating environments of all DMUs are sufficiently similar for the purposes of efficiency

evaluation (Dyson et al., 2001).

In many applications, the assumption of homogeneity may be problematic. O’Donnell et al.

(2008) give several possible reasons for this, including differences in access to labour and financial

capital, access to markets, natural environment, and other environmental characteristics.

For applications in which the homogeneity of DMUs cannot be accepted, Battese et al. (2004)

and, specifically for DEA, O’Donnell et al. (2008) develop the metafrontier approach that enables

analysis of efficiency of heterogeneous DMUs. According to this methodology, all DMUs are

classified into several groups. DMUs in the same group are considered sufficiently homogeneous and

represent the same group technology. The latter are usually modelled as the constant (CRS) or

variable (VRS) returns-to-scale technologies (Charnes et al., 1978; Banker et al., 1984). The within-

group efficiency of DMUs is measured against the corresponding group technology frontier.

The metatechnology includes all production possibilities achievable in different

environments. In particular, it includes each of the above group technologies as a subset. The

boundary of the metatechnology is referred to as the metafrontier. The latter can be viewed as

representing the best production possibilities that can be achieved in principle, by assuming that the

operating environment for DMUs can be changed.

The efficiency of a DMU measured against the metafrontier is referred to as its meta-

efficiency. O’Donnell et al. (2008) suggest that the gap between the within-group efficiency and its

meta-efficiency is interpretable as an indicator of the restrictive nature of the group’s operating

environment. Kerstens et al. (2015) provide an updated overview and discussion of the metafrontier

methodology.

In recent years, the use of metafrontiers has become well-established in DEA. As highlighted

by O’Donnell et al. (2008), there are two distinctly different ways in which the metatechnology, and

the metafrontier, could be defined, and there are reported applications of DEA that follow both

definitions.

First, the metatechnology may be defined as, for example, the single VRS or CRS technology

generated by all DMUs from all groups. This approach results in a convex metatechnology. For this

approach, calculation of meta-efficiency is unproblematic and requires solving a standard VRS or
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CRS model on the data set that includes all DMUs in all groups. For example, this approach was

implemented by Kontolaimou and Tsekouras (2010), Portela et al. (2011), Zhang et al. (2013) and

Zhang and Wei (2015).

Second, the metatechnology may be defined as the union of all group technologies. Even

though each group technology may be a convex set, the metatechnology defined as the union of such

sets is generally not convex. For this approach, the meta-efficiency of each DMU can be obtained by

either implementing an enumeration algorithm, each step of which requires solving a linear program,

or solving an equivalent mixed integer linear program (Cooper et al., 2007; Huang et al., 2013;

Tiedemann et al., 2011).1

As argued by Cooper et al. (2007, page 231), Tiedemann et al. (2011) and Asmild (2015),

assuming that the group technologies are convex (which is implied by the VRS or CRS models) does

not mean that convex combinations of DMUs from different groups are meaningful. In particular,

Asmild (2015) notes that the interpretation of benchmarks located on the metafrontier and constructed

from DMUs from different operating environments may be problematic. Kerstens et al. (2015) argue

that the large majority of reported applications use a convex metatechnology, which may result in a

“potentially poor approximation of the metafrontier” and introduce bias in the evaluation of meta-

efficiency.

It may therefore appear that the approach to modelling the metatechnology which does not

assume convexity between groups, should, as argued for by Kerstens et al. (2015), be more widely

acceptable in DEA applications. However, this approach is computationally less straightforward than

the approach for which the meta-efficiency is evaluated by solving a single conventional VRS or CRS

model, using standard DEA software.

In our paper, we address the above problem of practical use of nonconvex metatechnologies,

by developing a linear programming approach for the evaluation of meta-efficiency of DMUs,

without assuming convexity between groups.2 From a practical perspective, this approach should be

attractive because, for each DMU under the evaluation, we solve only one linear program which

always has a finite optimal solution. In contrast, using a standard enumeration algorithm for the same

purpose requires solving several linear programs, one for each group technology, and correctly

processing all occurrences of unbounded optimal solutions or infeasibility notifications, which needs

certain programming expertise and adds to the complexity of batch processing algorithms. In other

words, the advantage of the proposed approach is in the simplicity of its practical application.

The suggested linear programming approach allows the dual formulation which has a

meaningful interpretation. In DEA, the dual is often used for the returns-to-scale (RTS)

1 De Witte and Marques (2009) use the metafrontier approach for Free Disposal Hull (FDH) group technologies (Deprins et
al., 1984). In this case the metatechnology is also nonconvex.
2 Our paper can be seen as continuing the tradition of linearizing different nonconvex production technologies, such as FDH.
Examples of such approaches are discussed by Agrell and Tind (2001) and Leleu (2006).
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characterization of DMUs in the VRS technology. We show that, for metafrontiers, the RTS

characterization depends on the set of group frontiers on which the DMU under the evaluation is

located. We show how the dual linear program can be used for the identification of all such group

frontiers, which we further use to introduce a practical approach for the RTS characterization of

efficient metafrontiers.

This paper is structured as follows. In Section 2, we review the idea of modelling the

metatechnology as a nonconvex set and briefly introduce the existing enumeration and mixed integer

linear programming approaches to efficiency evaluation in this context. In Section 3, we develop a

new linear programming approach to efficiency evaluation in a nonconvex metatechnology. In

Section 4, we obtain the equivalent dual multiplier programs and discuss their meaning. In Section 5,

we develop a modification of the dual program that allows us to identify all group frontiers on which

the DMU is projected. In Section 6, we make further use of the dual by developing the notion of scale

elasticity and returns-to-scale characterization of DMUs on the metafrontier. In Section 7, we extend

our results to evaluation approaches based on directional distance functions. In Section 8, we present a

numerical example illustrating the calculation of scale elasticity and assessment of returns to scale for

a metafrontier. In Section 9, we summarize our contribution and outline further research avenues.

2. Preliminaries

Let a number of observed DMUs, be involved in a production process, characterized by inputs

1,...,i m and outputs 1,...,r s . Suppose that these DMUs operate under generally different

conditions that have an effect on their production performance. Depending on the context, these may

include natural, labour or regulatory environments, different access to resources, and other

characteristics. To represent such differences, we assume that all DMUs can be partitioned into 1G

distinct groups, so that DMUs in the same group {1,..., } g G operate in similar conditions.

Let each group g  include DMUs ( , )   g g m s
j jX Y , 1,..., gj , where

1 2( )g g g g
j j j mjX x ,x ,...,x and 1 2( )g g g g

j j j sjY y ,y ,..., y are nonnegative and nonzero vectors3 of inputs and

outputs, respectively.

Following O’Donnell et al. (2008), we view each group of DMUs as operating in a different

production technology gT , g  . To be specific, below we assume that all such technologies are

VRS technologies. This assumption is not essential: we comment on technologies for other returns-to-

scale assumptions in Remark 2 below. Using the conventional model of a VRS technology (Banker et

al., 1984), we define each group technology as follows.

3 This allows some, but not all, components of vectors g
jX and g

jY to be equal to zero.
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Definition 1. Technology gT , g  , is the set of pairs of vectors ( , )   m sX Y for which there

exists a vector


  g such that the following conditions are true:

1







g

g g
j ij i

j

x x , i

1







g

g g
j rj r

j

y y , r

1

1






g

g
j

j

.

Let DMUo denote the DMU ( , )q q
o oX Y which belongs to technology qT , q  , and whose

efficiency is being evaluated. To be specific, below we consider the case of input radial efficiency.

The case of output radial efficiency is similar and is only briefly discussed in Remark 3 below.

The within-group input radial efficiency of DMUo may be evaluated against the frontier of

any individual technology gT , g  . It is found as the optimal value of the following linear

program:

( , ) min g q q
o oEff X Y (1)

s.t.
1







g

g g q
j ij io

j

x x θ , i

1







g

g g q
j rj ro

j

y y , r

1

1






g

g
j

j

,

0 g
j , j , θ free in sign.

Remark 1. If ( , )q q g
o oX Y T , program (1) has a finite optimal solution and we have ( , ) 1g q q

o oEff X Y .

If ( , )q q g
o oX Y T , then either program (1) is infeasible or its optimal value is strictly greater than 1.

The metatechnology for the group of technologies gT , g  , is defined as follows:

1 2 ...   M GT T T T . (2)

Even though each technology gT , g  , is convex, the metatechnology MT is generally not

a convex set. Assessing the input radial efficiency of DMUo against the metafrontier (frontier of

technology MT ) is equivalent to finding the minimum of the within-group efficiencies ( , )g q q
o oEff X Y ,

across all technologies gT such that ( , )q q g
o oX Y T , g  :

( , ) min { ( , ) | ( , ) , }  M q q g q q q q g
o o o o o oEff X Y Eff X Y X Y T g  . (3)

Formula (3) suggests an enumeration algorithm for calculating the meta-efficiency of DMU

( , )q q
o oX Y . For each g  , we solve linear program (1) and either identify the corresponding within-
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group efficiency ( , )g q q
o oEff X Y or establish that DMU ( , )q q g

o oX Y T (see Remark 1). We

subsequently take the minimum of all of the obtained within-group efficiencies, across all groups g

such that ( , )q q g
o oX Y T .

Cooper et al. (2007, page 231) present a single mixed integer linear program (MILP)

equivalent to the above enumeration algorithm. A variant of this program is also used by Huang et al.

(2013). These programs incorporate a set of binary variables, each corresponding to a particular group

g  . In any feasible solution, only one of such binary variables, corresponding to, say, *g g , is

equal to 1, while the remaining binary variables are equal to zero. For each such g , the MILP

program becomes program (1). Effectively, this approach is a compact statement of the enumeration

algorithm in the form of a single MILP program.

Example 1. Figure 1 shows three group VRS technologies 1T , 2T and 3T in two input dimensions.

The single output is assumed to be the same for all DMUs, and is not shown. The boundaries of

technologies 1T , 2T and 3T are, respectively, ABCDQ, FGHJR and KLMNP. The metatechnology

MT defined as in (2) is the union of the three group technologies and is shown as the shaded area

above the metafrontier ABCRHSMNP.

Figure 1. The metatechnology in Example 1

Input 2

Input 1100 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

10

11

11

12
QR

F

A

K

U

1U

3U

2U

D

C

G

H

J

L

M

N

B

P

R

S

Consider assessing the input radial efficiency of DMU U. Because this DMU is a member of

all three group technologies, its within-group efficiency (1) is defined for each of them. Namely,

1
1( ) /Eff U OU OU , 2

2( ) /Eff U OU OU , and 3
3( ) /Eff U OU OU . According to formula (3),

the meta-efficiency of DMU U is equal to the minimum of the above three ratios, i.e.,

2( ) /MEff U OU OU , and the input radial projection of U on the metafrontier is DMU 2U .
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3. The suggested approach

3.1. An intermediate nonlinear program

We start by noting that the enumeration algorithm based on formula (3) for the assessment of input

radial meta-efficiency of DMU ( , )q q
o oX Y can be equivalently stated by the following mixed integer

nonlinear program:

1

( , ) min


 
G

M q q g
o o

g

Eff X Y θ (4.1)

s.t.
1



 



g

g g g q g
j ij io

j

x x θ , ,g i (4.2)

1



  



g

g g g q g
j rj ro

j

y y , ,g r (4.3)

1



  



g

g g g
j

j

, g (4.4)

1

1



G

g

g

, (4.5)

{0,1} g , 0 g
j , gθ free in sign, ,g j . (4.6)

Because variables  g are binary, equality (4.5) implies that, in any feasible solution of

program (4), exactly one variable
*

1 g and, therefore, 0 g , for all *g g .

Consider any * g  such that
*

( , )q q g
o oX Y T . Because ( , )q q q

o oX Y T and q  , we have at

least one such *g . For *g g , constraints (4.2) – (4.4) are the constraints of program (1). The

minimal value
*

 g that satisfies these constraints is the within-group efficiency
*

( , )g q q
o oEff X Y .

Furthermore, for any *g g , constraints (4.2) – (4.4) are trivially satisfied by the zero vector  g and

0 g . Therefore, for the above *g , the minimum value of the objective function in (4.1) is equal to

*

( , ) 1g q q
o oEff X Y .

Now consider any * g  such that
*

( , )q q g
o oX Y T . By Remark 1, in this case program (4)

either does not have a feasible solution with
*

1 g or the corresponding minimum value of its

objective function is equal to
*

1 g . Therefore, the optimal value of program (4) cannot be attained

at a feasible solution with
*

1 g , such that
*

( , )q q g
o oX Y T .

The above implies that the optimum value of program (4) is equal to the minimum of the

within-group efficiencies ( , )g q q
o oEff X Y , calculated for all g  such that ( , )q q g

o oX Y T .4 This

4 Because we assume that ( , )q q q
o oX Y T and q , at least one such g q exists.
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coincides with formula (3) and proves that program (4) correctly assesses the meta-efficiency of

DMU ( , )q q
o oX Y .

Below we show that program (4) can be transformed to a linear program. The idea of this

transformation is the substitution of variables    g g g
j j , for all g  and 1,...,j n , which

transforms nonlinear inequalities (4.2) and (4.3) to linear inequalities. We also show that we can

replace the condition that variables  g are binary by the standard nonnegativity conditions.

To facilitate further discussion, we note that, if in an optimal solution ˆ ˆ ˆˆ , , |    g g  to

program (4) we have ˆ 0 g (and therefore, ˆ 0 g ), the vector ̂ g becomes an arbitrary vector

whose exact components do not affect the optimality of ̂ . It is clear that we can always redefine ̂

by changing such vectors ̂ g to zero vectors, while preserving the optimality of the resulting solution.

This leads to the following definition.

Definition 2. ˆ ˆ ˆˆ , , |    g g  is a proper optimal solution to program (4) if ˆ 0 g implies

ˆ 0 g , for all g  .

3.2. The linear program

Consider the following linear program:



1

( , ) min
GM

q q g
o o

g

Eff X Y θ


  (5.1)

s.t.
1







g

g g q g
j ij io

j

x x θ , ,g i (5.2)

1



 



g

g g q g
j rj ro

j

y y , ,g r (5.3)

1



 



g

g g
j

j

, g (5.4)

1

1



G

g

g

, (5.5)

0 g , 0 g
j , gθ free in sign, ,g j . (5.6)

Because DMUo is in technology qT , the linear program (5) is feasible (with 1 q ). By

inequalities (5.2), all components of vector  are nonnegative. Therefore, the objective function (5.1)

is bounded below and, consequently, program (5) has an optimal solution.
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Definition 3. , , |       g g  is an elementary optimal solution to program (5) corresponding to

group * g  , if vector  has a single strictly positive component
*

 g . (Taking into account equality

(5.5), we always have
*

1  g .)

Theorem 1. Let , , |       g g  be any optimal solution of program (5). Then, for each g  ,

(i) 0  g implies 0  g and 0  g
j , for all 1,..., gj ,

(ii) 0  g implies  ( , ) /   
M

q q g g
o oEff X Y .

Corollary 1. Let  be an elementary optimal solution to (5) corresponding to group * g  . Then

*

( , ) 
M

g q q
o oEff X Y , and 0  g , for all g  , *g g .

The following theorem establishes that, instead of assessing the meta-efficiency of DMUo by

solving the nonlinear program (4), which is equivalent to the definition of meta-efficiency by formula

(3), we can equivalently solve the linear program (5).

Theorem 2. The following statements are true.

(i) The optimal value of program (5) is equal to the optimal value of program (4), i.e.,

( , ) ( , )
M

M q q q q
o o o oEff X Y Eff X Y .

(ii) Any proper optimal solution ˆ ˆ ˆˆ , , |    g g  of program (4) is an elementary optimal

solution of program (5).

(iii) Any elementary optimal solution , , |       g g  of program (5) is a proper optimal

solution of program (4).

(iv) Let , , |       g g  be any optimal solution to program (5). Define the set

* { | 0 },   gg g  . Then  is the convex combination of *| | elementary optimal

solutions g to program (5), each corresponding to a different group *g  , and taken with

the weight  g (component of vector  ).

Corollary 2. The set of optimal solutions to program (5) is the convex hull of the set ̂ of proper

optimal solutions to program (4): con ˆv  .

Remark 2. The above results extend to the case of CRS, and also the cases of non-increasing (NIRS)

and non-decreasing (NDRS) returns to scale, with some minimal adjustments. Thus, in the CRS

variant of program (5), we remove the normalizing equality (5.4). In the cases of NIRS and NDRS,

we replace the equality sign in (5.4) by the inequality sign “≤” and “≥”, respectively.  A similar 

adjustment is made to constraint (4.4) of program (4).
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After the above modifications of programs (4) and (5), both Theorems 1 and 2, and their

Corollaries remain true in the case of CRS (and also, NIRS and NDRS). The proofs of these

statements given in the Appendix are equally applicable in all these cases.

Remark 3. It is also straightforward to extend our results to the case of output radial efficiency. To

transform model (5) to its output-oriented analogue, we swap  g and  g on the right-hand side of

inequalities (5.2) and (5.3) (making them equal to q g
iox and q g

roy , respectively), and also change

the minimization of the objective function in (5.1) to its maximization. Program (4) is changed in a

similar way. The output radial efficiency of DMUo with respect to the metafrontier is equal to the

inverse of the optimal value of either of the resulting programs. Both Theorems 1 and 2, and their

Corollaries remain true with just minor obvious modifications.

3.3. Alternative optimal solutions

It is clear that, in most practical applications, the input radial projection of DMUo on the metafrontier

occurs on a single individual frontier of some technology gT . However, the radial projection may

also occur on the intersection of several individual frontiers at the same time. The latter may be

possible for several reasons. For example, different groups of observed DMUs may include several

common DMUs that generate the same part of the frontier in different group technologies. Thus, in an

efficiency assessment of agricultural farms, there may be common farms in the groups of wheat

producing farms and organic farms. Furthermore, there may be a common minimum level of some

input for DMUs in different technologies, especially if such input is measured in integer units. For

example, in the assessment of schools of different types there may, perhaps accidentally, be a

common minimum number of teachers, treated as input, in the data sets for different school types.

Suppose that the radial projection of DMUo on the metafrontier is simultaneously located on

several group frontiers, referred to as active group frontiers (for the given DMUo).

Definition 4. The frontier of group technology gT , g  , is active if DMU ( , )q q g
p pX Y T and

( , ) ( , )g q q M q q
o o o oEff X Y Eff X Y .

Denote 0 the set of all g  such that the frontier of technology gT is active, i.e.,

0 ( , ) , ( , ) ( , )}{ |   q q g g q q M q q
o o o o o og X Y T Eff X Y Eff X Y  .

For brevity, we refer to the set 0 as the set of all active group frontiers. Program (5) has

different elementary optimal solutions each corresponding to a single active group frontier 0g 

(identified by component 1  g ). The following example clarifies this observation.

Example 2. Consider two VRS technologies with two inputs and one output. For simplicity, we

assume that the output of all DMUs is the same. Figure 2 depicts these technologies in the input

dimensions only.
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Figure 2. Group technologies in Example 2

Input 2

Input 1100 1 2 3 4 5 6 7 8 9
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Technology 1T is generated by observed DMUs A, B, C, and D, and its boundary is

VABCDW. Technology 2T is generated by observed DMUs E, B, C and F. Its boundary is UEBCFW.

Note that the observed DMUs B and C are members of both technologies, which illustrates the first of

the above scenarios. DMUs D and F, although belonging to different technologies, have the same

minimum level of Input 2, and illustrate the second scenario.

Consider assessing the input radial efficiency of DMUs P, Q, R and S measured against the

metafrontier UES*ABCDW. Table 1 shows the input radial efficiency of these DMUs calculated by

solving program (5) and possible alternative optimal solutions, identified by a different number in

parentheses in the first column.

DMU and
optimal
solution

1A
1B

1C
1D

2E
2B

2C
2F

1 2 1 2  (.)
M

Eff

P 0 0 0.5 0.5 0 0 0 0 1 0 0.5 0 0.5
Q (1) 0 0.5 0.5 0 0 0 0 0 1 0 0.6667 0 0.6667
Q (2) 0 0 0 0 0 0.5 0.5 0 0 1 0 0.6667 0.6667
Q (3) 0 0.1 0.1 0 0 0.4 0.4 0 0.2 0.8 0.1333 0.5333 0.6667
R (1) 0 0 0 0 0 0 0 1 0 1 0 0.8333 0.8333
R (2) 0 0 0 1 0 0 0 0 1 0 0.8333 0 0.8333
S (1) 1 0 0 0 0 0 0 0 1 0 0.6667 0 0.6667
S (2) 0 0 0 0 0.5 0.5 0 0 0 1 0 0.6667 0.6667

Table 1. Alternative optimal solutions to program (5) for DMUs P, Q, R and S in the example. The

first column shows the DMU under the assessment. The number in parentheses identifies a different

alternative optimal solution for the corresponding DMU.
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The input radial projection of DMU P on the metafrontier is DMU P*, located on the

boundary of the single technology 1T . The input radial efficiency of DMU P is equal to 0.5. In this

case program (5) has a unique optimal solution.

The radial projection of DMU Q is DMU Q* located on the boundaries of two technologies

1T and 2T , both of which are viewed as active frontiers. As noted, in this case, program (5) has two

corresponding elementary optimal solutions. The first has 1 1  , and the second has 2 1  ,

indicating that the projections are on the boundaries of technologies 1T and 2T , respectively. The

third solution for DMU Q is the convex combination of the first two optimal solutions for Q, taken

with the weights 0.2 and 0.8, respectively. Note that the ratios 1 1/  and 2 2/  are both equal to

the input radial efficiency 0.6667 of DMU Q, as stated by Theorem 1.5

The cases of DMUs R and S are similar, as both are projected simultaneously on the

boundaries of two technologies.

The above analysis also extends to the input radial efficient DMUs. For example, DMU B is

located on the boundaries of both technologies 1T and 2T . The optimal value of the corresponding

program (5) is equal to 1, and there are two elementary optimal solutions (not shown in Table 1), one

with 1 1  and another with 2 1  .

4. The dual program

Noting that, by Theorem 2,  ( , ) ( , )
M

q q M q q
o o o oEff X Y Eff X Y , we state the dual to program (5) as

follows:

( , ) maxM q q
o oEff X Y  (6.1)

s.t.
1

 


 
s

g q g
r ro

r

u y , g (6.2)

1

1



m

g q
i io

i

v x , g (6.3)

1 1

0
 

   
s m

g g g g g
r rj i ij

r i

u y v x , ,g j (6.4)

, 0g g
r iu v ,  g ,  free in sign, , ,g i r . (6.5)

In this model, g
iv and g

ru are the input and output weights specific to group g  . These

variables are dual to the corresponding inequalities (5.2) and (5.3). Variables  g are dual to

constraints (5.4), and  is dual to (5.5).

5 It is straightforward to verify that this solution, identified as Q(3) in Table 1 is indeed optimal, as stated by Corollary 2 of
Theorem 2. Note that this solution is not basic and therefore cannot be obtained by solving program (5) by the simplex
method.



13

For any fixed g  , maximizing  in program (6) is equivalent to maximizing the left-hand

side of inequality (6.2). In this case program (6) becomes the standard input-oriented VRS multiplier

model stated as follows:

1

( , ) max 


 
s

g q q g q g
o o r ro

r

Eff X Y u y (7)

s.t.
1

1



m

g q
i io

i

v x ,

1 1

0
 

   
s m

g g g g g
r rj i ij

r i

u y v x , j

, 0g g
r iu v , ,i r ,  g free in sign.

Program (7) is the dual to the envelopment program (1). If DMU ( , )q q g
o oX Y T , this program

evaluates its input radial efficiency ( , )g q q
o oEff X Y in technology gT . If ( , )q q g

o oX Y T , then either the

optimal value of program (7) is strictly greater than 1 or its objective function is unbounded.6

Taking into account inequality (6.2), it is clear that the maximum of the objective function 

of program (6) is equal to the minimum of all within-group efficiencies ( , ) 1g q q
o oEff X Y taken over

all g  such that ( , )q q g
o oX Y T . Therefore, solving program (6) is theoretically equivalent to

implementing the enumeration algorithm based on formula (3), but performed in a single step and in

the dual space of the input and output weights.

Remark 4. As noted in Remark 2, in the case of CRS, we remove equalities (5.4) from program (5).

In the dual programs (6) and (7), we remove the corresponding variables g , g . In the case of

NIRS and NDRS technologies, the variables g are subject to additional constraints 0g  and

0g  , g , respectively. It is also straightforward to state an analogue of the dual program (6) in

the case of output radial efficiency.

5. Using the dual to identify active group frontiers

In Section 3.3, we defined the set 0   of active group frontiers for any DMUo in the

metatechnology MT . Identifying the set 0 is important for practical applications, for example, for

returns-to-scale characterization of efficient DMUs, which is considered in detail in the next section.

It might appear that the set 0 is identified by those groups g for which the inequality

(6.2) is satisfied as equality, for an arbitrary optimal solution of program (6). Let us show that this is

not so, and suggest a simple modification of the dual that identifies the set 0 correctly.

6 This follows from Remark 1 and the fact that program (7) is feasible for any g .
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Let , , , |g g gu v g       be any optimal solution to program (6). Denote ( ) the

corresponding set of all group technologies g for which the inequality (6.2) is satisfied as

equality.

Theorem 3. For any optimal solution  of program (6), we have 0 ( )   . Furthermore, for any

set * such that 0 *    , there exists an optimal solution * of program (6), for which

* *( )   .

The above result implies that the set ( ) identified by an arbitrary optimal solution  of

program (6) always includes the set of active group frontiers 0 as a subset. However, it may also

include any additional number of frontiers 0g  . Therefore, a zero slack in inequality (6.2) for a

particular g does not imply that 0g .

A simple modification of the dual (6) allows us to overcome the above problem. Note that the

optimal value of program (6) is equal to the input radial efficiency ( , ) 1M q q
o oEff X Y  of DMUo =

( , )q q
o oX Y in the metatechnology MT . By the definition of active frontiers, for any 0g , the optimal

value of program (7) is equal to ( , )M q q
o oEff X Y . For any 0\g  , the optimal value of the program

(7) is either unbounded above or is strictly greater than ( , )M q q
o oEff X Y . Consider the following

modification of the dual (6) that utilizes technology-specific variables g , g :

1

max
G

g

g



 (8)

s.t.
1

s
g q g g
r ro

r

u y  


  , g

g L  , g

1

1
m

g q
i io

i

v x


 , g

1 1

0
s m

g g g g g
r rj i ij

r i

u y v x 
 

    , ,g j

, 0g g
r iu v  , g , g free in sign, , ,g i r .

In the above program, L is any constant such that 1L  . This guarantees that

( , )M q q
o oL Eff X Y . Solving program (8) is equivalent to solving programs (7), separately for each

g , in which the objective function is bounded above by constant L .7

7 It is straightforward to show that all programs (7) with their objective functions bounded above by L are feasible and
hence have a finite optimal solution. Their feasibility follows from the following observation. Consider any feasible solution

, ,g g gu v   such that the objective function of (7) is greater than L . Replace the vector gu and scalar g by zeros. Then

0, ,0gv is feasible in program (7) with the upper bound L on its objective function.
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Let , , , |g g g gu v g        be any optimal solution of program (8). Define

min{ }|g g     . (9)

Theorem 4. Solution , , , |g g gu v g        is optimal in program (6).

The above theorem implies that the input radial efficiency ( , )M q q
o oEff X Y evaluated by

solving the dual (6) can also be identified by solving the modified dual (8), i.e., we have

( , ) min{ | }M q q g
o oEff X Y g   . (10)

Theorem 5. We have ( , )g M q q
o oEff X Y  for 0g , and ( , )g M q q

o oEff X Y  for 0\g  .

This result implies that the set of active group frontiers 0 is identified by any optimal

solution  of the modified dual program (8) as the set of all g for which min{ }|g g g    

where, by (10), the right-hand side is also equal to ( , )M q q
o oEff X Y .

6. Returns to scale for metafrontiers

Similar to the case of conventional VRS technology, we can use the set of optimal solutions to the

dual program (6) for the characterization of returns to scale (RTS) on the efficient frontier of

metatechnology MT .

In the VRS technology, the type of RTS exhibited by an efficient DMUo is defined by the left-

hand and right-hand scale elasticities o
 and o

 evaluated at this DMU. Following Banker and Thrall

(1992) and Førsund and Hjalmarsson (2004), these one-sided scale elasticities can be expressed via

the minimum and maximum optimal values of the sign-free variable  in the standard input-oriented

VRS multiplier model, denoted min and max , respectively.8 The latter model is program (7) in

which the superscript g is omitted. Then

max

1

1
o


 


,

min

1

1
o


 


.9 (11)

It is known that, in the VRS technology, we have

o o   .10 (12)

8 The use of the input-oriented multiplier model for the calculation of scale elasticity requires that DMUo be both input and
output radial efficient. Alternative computations of scale elasticity based on the output-oriented multiplier model require that
DMUo be only output radial efficient. See Podinovski et al. (2009) and Podinovski and Førsund (2010) for details.
9 In order to avoid considering special cases, we formally let o

   if max 1  and 0o
  if min   . The former

case implies that a marginal proportional reduction of the input vector q
oX of DMUo is impossible as it leads outside the

VRS technology (Podinovski and Førsund 2010). This situation arises when DMUo is located on a “vertical” weakly
efficient facet generated by the assumption of free disposability of outputs.
10 For an arbitrary convex technology, the inequality (12) is proved by Podinovski (2017).
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Using the definition of RTS given by Banker and Thrall (1992), DMUo exhibits IRS if

1 o o    , DRS if 1o o    , and CRS if 1o o    . These three cases correspond to the

inequalities min 0  , max 0  and min max0   , respectively.

Extending the notion of RTS to the metafrontier of several VRS technologies is relatively

straightforward. The only difference that requires careful treatment arises in possible cases when

DMUo is located at the intersection of several (more than one) group frontiers. This possibility is

illustrated by the example considered at the end of this section.

Let DMUo = ( , )q q
o oX Y be efficient in metatechnology MT .11 Intuitively, the left-hand and

right-hand scale elasticities M
o

 and M
o

 evaluated at DMUo on the metafrontier should depend on

the corresponding one-sided scale elasticities g
o
 and g

o
 evaluated on all active group frontiers

0g . The following theorem establishes this relationship formally.

Theorem 6. The one-sided scale elasticities M
o

 and M
o

 exist (we allow M
o

   ) and

0min { }|M g
o o g    , 0max { }|M g

o o g    .

Corollary 3. If 0| | 1 , i.e., DMUo belongs to a single group technology qT , then M q
o o   and

M q
o o   .

According to Theorem 6, in order to calculate the one-sided scale elasticities M  and M  at

DMUo, it suffices to evaluate the one-sided scale elasticities g  and g  , separately for each active

group frontier 0g , and then take their minimum and maximum, respectively. The set of all active

group frontiers 0 can be found by solving program (8). For each 0g , gT is the standard VRS

technology, and the one-sided scale elasticities g  and g  can be found by identifying the

maximum and minimum values of variable g among all optimal solutions to program (7) and

applying formula (11).

Example 3. Figure 3 shows three VRS technologies, 1T , 2T and 3T , with a single input and a single

output. The efficient frontier of technology 1T is the broken line ABCDE. The efficient frontier of

technology 2T is the line GBH, and the efficient frontier of technology 3T is the line KDL. The

efficient metafrontier is the line GBCDL.

11 It suffices that DMUo be both input and output radial efficient in the metatechnology MT (see Footnote 8).
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Figure 3. Group technologies in Example 3
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Table 2 shows the one-sided scale elasticities M  and M  evaluated at the five DMUs

located on the metafrontier. DMUs C, G and L are located on single group frontiers. By Corollary 3,

for these DMUs, the one-sided scale elasticities M  and M  are the same as the one-sided scale

elasticities g  and g  evaluated on the corresponding single group frontiers to which these DMUs

belong. For example, for DMU C, we have 1 1.3125M
C C    and 1 0.4375M

C C    .12 Therefore,

DMU C exhibits CRS on the metafrontier.

DMU Input Output
0
M 

0
M 

A 4 2 N/A N/A
B 5 5 0.6667 1.5
C 7 8 1.3125 0.4375
D 9 9 0.5 0.6667
E 13 10 N/A N/A
G 2 3  0.4444
H 10 6 N/A N/A
K 8 7 N/A N/A
L 12 11 0.7273 0

Table 2. DMUs in Example 3 and the one-sided scale elasticities 0
M  and 0

M  evaluated on the

metafrontier. The notion of scale elasticity does not apply (N/A) to all DMUs that are inefficient in

the metatechnology MT .

12 As an alternative to evaluating the one-sided scale elasticities by using formula (11), which requires solving two linear
programs, we use the known equivalent definition of scale elasticity as the ratio of the marginal to average productivity
(valid in the case of a single input and single output). For example, the right-hand marginal productivity at DMU C is the
slope of the line CD, equal to 1/2. The average productivity at C is the ratio of its output to input, equal to 8/7. Then

1 (1 / 2) / (8 / 7) 0.4375C
   . Similarly, 1 (3 / 2) / (8 / 7) 1.3125C

   , where 3/2 is the slope of the line BC.
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In contrast, each DMU B and D is located on two group frontiers. As seen from Figure 3 and

is formally established by Theorem 6, the right-hand scale elasticity M
B

 evaluated at DMU B on the

metafrontier is equal to the maximum of the right-hand scale elasticities g
B
 , evaluated at this DMU

on the group frontiers 1,2g  , i.e., max{1.5,0.2} 1.5M
B

   . Similarly, the left-hand scale elasticity

M
B

 is equal to the minimum of the left-hand scale elasticities g
B
 evaluated for group frontiers

1,2g  , i.e., min{3,0.6667} 0.6667M
B

   . For DMU D, we have

max{0.25,0.6667} 0.6667M
D

   and min{0.5,2} 0.5M
D

   .

The interpretation of one-sided scale elasticities M
o

 and M
o

 evaluated on the metafrontier

is similar to the case of a single VRS technology, but also takes into account the meaning of the

metatechnology. For example, if the input vector q
oX of DMUo is increased in a marginal proportion,

e.g., by 1%, the maximum proportional increase of the output vector q
oY in the metatechnology MT

(i.e., assuming that DMUo is able to operate within any group technology gT ), is M
o

 percent.

Similarly, if the input vector q
oX is reduced by 1%, the maximum level of the output vector q

oY

available in the metatechnology is proportionally reduced by M
o

 percent.

Using DMU B as an example, increasing its input level of 5 by 1% leads to a maximum

increase of its output level of 5 by 1.5%M
B

  . This corresponds to the modified DMU B electing to

stay within technology 1T and moving along its efficient segment BC. However, reducing the input

level of DMU B by 1% would lead to the reduction of its maximum possible output by

0.6667%M
B

  , which corresponds to staying in technology 2T and moving along its efficient

segment GB.

The difference between the right-hand scale elasticity evaluated on the metafrontier and any

of the active group frontiers 0g is interpretable as the gap between the optimal output growth rate

achievable on the metafrontier and the frontier of the single technology g . For example, the optimal

marginal growth rate for DMU B is described by 1.5%M
B

  achievable if DMU B follows the

frontier of technology 1T . Note that the fastest marginal growth rate for DMU B in technology 2T is

1 0.2%B
  . The difference 1.5 0.2 1.3%  quantifies the gap between the growth opportunities for

DMU B in the two technologies.

Similarly, the difference between the left-hand scale elasticity evaluated on any active frontier

0g and the metafrontier identifies the gap between the output reduction rate for the frontier of the

single technology g and the metafrontier, in the case of marginal proportional input reduction. For

example, if DMU B marginally reduces its input, then the output is reduced by 1 3%B
  on the

frontier of technology 1T and only 0.6667%M
B

  on the metafrontier (which is the frontier of
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technology 2T ). The difference 3 0.6667 2.3333%  is the additional loss of output for DMU B

arising from staying in technology 1T in contrast with following technology 2T , which provides the

best opportunity in the metatechnology if the input is to be marginally reduced.

Let us now refer to the RTS characterization of DMUs on the metafrontier. Corollary 3 shows

that the only difference between the RTS characterization on the standard VRS frontier and the

metafrontier arises in the case when 0| | 1 . As illustrated by DMUs B and D, the inequality (12)

may not hold for the one-sided scale elasticities M
o

 and M
o

 evaluated on the metafrontier. This

creates various situations which are not properly categorized by the standard definition of RTS.

However, in all such situations we still have correctly defined one-sided types of RTS that have a

clear practical meaning.

For example, for DMU B, we have 1M
B

  and 1M
B

  . Therefore, DMU B exhibits DRS on

the left and IRS on the right (when its input is, respectively, reduced and increased in a marginal

proportion). This situation is impossible in a single group VRS technology.

Another nonstandard situation is illustrated by DMU D for which we have 1M
D

  and

1M
D

  . This means that DMU D exhibits DRS for any marginal change (increase or decrease) of its

input. However, because M M
D D   , the DRS characterization is stronger (identified by the higher

scale elasticity) on the right of DMU D than on the left. This situation cannot arise in the standard

VRS technology for which we always have inequality (12). A similar example can be given for the

case of IRS.

Remark 5. As in the conventional case of standard VRS technology, if DMU ( , )q q q
p pX Y T is output

radial inefficient in the metatechnology MT , its RTS type is undefined. However, we may consider

projecting this DMU on the metafrontier and apply the above classification to the projected DMU. As

in the conventional single VRS technology, the resulting RTS characterization depends on the

particular projection that we use, e.g., the RTS type is generally different for the input and output

radial projections.

7. Extensions for directional distance functions

In a more general framework of measuring performance, the efficiency of a DMU can be

characterized by evaluating its distance to the boundary of a benchmark technology (e.g., individual

group technology or the metatechnology) along a predetermined direction which may simultaneously

seek to expand the outputs and contract the inputs (Afsharian and Ahn, 2014). Below we briefly

outline how the above linearization approach developed for the radial measures of efficiency can be

applied to the case of directional distance functions.
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Let m sT    be a production technology. Consider any DMU ( , ) m sX Y    and a

user-specified direction ( , )x y m sd d    such that ( , ) 0x yd d  . Following Chambers et al. (1998),

the directional distance function can be defined as follows:

 ( , ; , ) sup | ( , ) ( , ) ,x y x yD X Y d d X Y d d T       . (13)

Remark 6. If DMU ( , )X Y T , then ( , ; , ) 0x yD X Y d d  , which is interpreted as a measure of

DMU’s inefficiency, for the chosen directions ( , )x yd d . If DMU ( , )X Y T , then either

( , ; , ) 0x yD X Y d d  or the supremum in (13) is undefined (often formally taken to be  ).

Using our previous notation, suppose we wish to assess the efficiency of DMUo = ( , )q q
o oX Y in

the group technology gT , g , using the directional distance function in (13). This leads to the

following linear program:

( , ; , ) maxg q q x y
o oD X Y d d  (14)

s.t.
1

g

g g q x
j ij io i

j

x x d


 


  , i

1

g

g g q y
j rj ro r

j

y y d


 


  , r

1

1
g

g
j

j






 ,

0g
j  , j ,  free in sign.

Assessing the efficiency of DMUo against the metafrontier (i.e., in the metatechnology MT )

using the directional distance function (13) leads to the following mixed integer nonlinear program

similar to program (4):

1

( , ; , ) max
G

M q q x y g
o o

g

D X Y d d 


  (15.1)

s.t.
1

g

g g g q g g x
j ij io i

j

x x d


   


  , ,g i (15.2)

1

g

g g g q g g y
j rj ro r

j

y y d


   


  , ,g r (15.3)

1

g

g g g
j

j



  


 , g (15.4)

1

1
G

g

g




 , (15.5)

{0,1}g  , 0g
j  , g free in sign, ,g j . (15.6)

Taking into account that variables g are binary, equality (15.5) implies that, in any feasible

solution of program (15), exactly one variable
*

1g  and, therefore, 0g  , for all *g g . Then
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(15.2) and (15.3) imply 0g  , for all *g g .13 Therefore, for the fixed *g g , program (15)

becomes program (14). Taking into account Remark 6, we have

( , ; , ) max{ ( , ; , ) | ( , ) , }M q q x y g q q x y q q g
o o o o o oD X Y d d D X Y d d X Y T g   ,

which confirms that ( , ; , )M q q x y
o oD X Y d d is the directional distance function (13) evaluated in the

metatechnology MT .

Following a similar approach as in Section 3 based on the transformation of variables

g g g
j j   , for all g and 1,...,j n , we linearize program (15) as follows:

1

ˆ ( , ; , ) max
G

M q q x y g
o o

g

D X Y d d 


  (16.1)

s.t.
1

g

g g q g g x
j ij io i

j

x x d


  


  , ,g i (16.2)

1

g

g g q g g y
j rj ro r

j

y y d


  


  , ,g r (16.3)

1

g

g g
j

j



 


 , g (16.4)

1

1
G

g

g




 , (16.5)

0g  , 0g
j  , g free in sign, ,g j . (16.6)

The equivalence of programs (15) and (16) and relationship between their optimal solutions

can be established in the same way as the equivalence of programs (4) and (5) proved in Section 3. To

avoid repetition, below we prove only the main result confirming the equivalence of programs (15)

and (16). Similar to Definitions 2 and 3, we refer to ˆ ˆˆ ˆ , , |g g     as a proper optimal solution

to program (15) if ˆ 0g  implies ˆ 0g  , for all g . We refer to ̂ as an elementary optimal

solution to program (16) corresponding to group *g  , if vector  has a single strictly positive

component
*

1g  .

Theorem 7. The optimal values of programs (15) and (16) are equal, i.e.,

ˆ ( , ; , ) ( , ; , )M q q x y M q q x y
o o o oD X Y d d D X Y d d . Any proper optimal solution ̂ of program (15) is an

elementary optimal solution of program (16) and vice versa, any elementary optimal solution of

program (16) is a proper optimal solution of program (15).

The above linearization approach is applicable to the general definition of the directional

distance function (13) with an arbitrary direction ( , ) 0x yd d  . In the special case when x q
od X and

13 Let 0g  . If 0xd  then (15.2) implies 0g  . If 0yd  then (15.3) implies 0g  .
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0yd  , program (16) becomes equivalent to program (5) that evaluates the input radial efficiency of

DMU ( , )q q
o oX Y in the metatechnology MT .14 Similarly, the case 0xd  and y q

od Y results in

program (16) leading to the assessment of the output radial efficiency of DMU ( , )q q
o oX Y .

It is straightforward to modify the linear program (16) to the cases of CRS, NIRS and NDRS,

by removing or modifying the normalizing equality (16.4). This is similar to the case of input radial

efficiency discussed in Remark 2.

8. A computational example

To illustrate the calculation of one-sided scale elasticities and evaluation of RTS, consider the data set

in Table 3. It contains 32 DMUs that belong to four group technologies: group 1 (9 DMUs), group 2

(12 DMUs), group 3 (11 DMUs) and group 4 (8 DMUs). Note that six of these DMUs are members of

more than one technology. Each DMU is characterized by three inputs and two outputs.

Input Output Input Output

DMU Group I1 I2 I3 O1 O2 DMU Group I1 I2 I3 O1 O2

1 1 5.75 8.63 7.19 9.05 16.41 17 2 9.49 13.27 11.24 9.07 17.06

2 1 5.50 7.20 6.00 7.00 13.45 18 2, 3 22.20 32.00 28.10 6.50 13.00

3 1 4.00 6.00 5.00 8.00 15.00 19 3 17.66 26.49 22.08 19.33 36.25

4 1 14.00 8.00 8.10 6.00 14.00 20 3 20.10 27.00 28.30 18.80 35.00

5 1 7.50 11.25 9.38 10.10 17.81 21 3 18.20 31.10 25.00 19.90 33.00

6 1 5.38 7.81 7.49 7.03 14.26 22 3 17.00 25.49 21.25 20.00 37.50

7 1, 2 11.00 16.50 13.75 11.00 20.63 23 3 23.00 27.40 30.00 15.00 30.34

8 1, 2, 3 24.50 33.12 31.00 4.80 9.54 24 3 20.60 29.25 27.50 17.45 31.67

9 1, 2 16.10 23.40 19.45 7.00 14.10 25 3 20.33 26.95 26.04 17.17 33.29

10 2 15.70 20.00 18.00 10.25 20.40 26 3, 4 21.00 31.49 26.24 22.00 41.25

11 2, 3, 4 15.00 22.50 18.75 16.00 30.00 27 4 27.00 40.49 33.75 26.00 48.75

12 2 15.19 20.49 18.09 12.62 21.98 28 4 24.00 35.99 29.99 21.00 41.25

13 2 12.97 19.47 16.22 13.50 25.31 29 4 29.00 38.00 32.00 20.50 38.98

14 2 11.98 17.98 14.98 12.25 22.97 30 4 26.20 40.10 32.00 20.00 37.80

15 2 17.70 21.34 19.35 12.85 22.55 31 4 26.40 38.39 32.55 19.38 38.35

16 2 13.98 20.98 17.48 14.75 27.66 32 4 18.40 25.00 21.48 16.30 33.75

Table 3. The data set for four groups of DMUs with three inputs (I1, I2 and I3) and two outputs (O1 and O2).

To be specific, consider assessing the input radial meta-efficiency of these DMUs under the

assumption of VRS, either by the envelopment model (5) or its dual multiplier model (6). Table 4

shows the resulting efficiency scores.

14 In this case, we denote g g g    and restate the right-hand side of constraints (16.2) as g q
iox , for all g and i . Then

maximizing the objective function in (16.1) is equivalent to minimising
1 1 1 1

1
G G G Gg g g g

g g g g
   

   
       , where

the first equality follows from (16.5).



23

DMU  (.)
M

Eff DMU  (.)
M

Eff DMU  (.)
M

Eff DMU  (.)
M

Eff

1 1.000 9 0.257 17 0.742 25 0.884

2 0.833 10 0.783 18 0.188 26 1.000

3 1.000 11 1.000 19 0.944 27 1.000

4 0.750 12 0.878 20 0.911 28 0.875

5 1.000 13 1.000 21 0.931 29 0.733

6 0.768 14 1.000 22 1.000 30 0.677

7 1.000 15 0.858 23 0.826 31 0.699

8 0.181 16 1.000 24 0.806 32 0.960

Table 4. The input radial meta-efficiency of DMUs.

Note that 11 DMUs are input radial efficient against the metafrontier. 15 According to

Theorem 6, the one-sided scale elasticities M
o

 and M
o

 at each of these DMUs are computed by

evaluating the one-sided scale elasticities g
o
 and g

o
 , separately for each of its active group

frontiers 0g , and then by taking their minimum and maximum, respectively. The set of all active

group frontiers 0 can be found by solving program (8). Table 5 summarizes the results.

DMU
Active group

frontiers 0
M 

0
M  Type of RTS

1 1 0.381 0.281 DRS

3 1  0.214 CRS

5 1 0.446 0.191 DRS

7 1, 2 0.429 1.275 DRS-IRS

11 2, 3, 4 1.150 1.875 IRS-IRS

13 2 1.213 1.189 IRS

14 2 1.247 1.233 IRS

16 2 1.176 1.159 IRS

22 3 1.705 0.425 CRS

26 3, 4 0.478 0.635 DRS-DRS

27 4 0.692 0.000 DRS

Table 5. Active group frontiers of the efficient DMUs, their one-sided scale

elasticities 0
M  and 0

M  , and the type of RTS evaluated on the metafrontier.

As can be seen from Table 5, all but three DMUs are located on a single group frontier.

According to Corollary 3, for these DMUs, the interpretation of one-sided scale elasticities M
o

 and

M
o

 evaluated on the metafrontier is similar to the case of a single VRS technology. For example,

15 These DMUs are also output-radial efficient in the metatechnology and thus satisfy the assumption stated in Footnote 11.
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for DMU1 (for which the only active frontier is that of group 1 to which DMU1 belongs) we have

1 0.381M   and 1 0.281M   . Because 1 1 1M M    , DMU1 exhibits DRS on the metafrontier. This

implies that, if the input vector of this DMU is increased in a marginally small proportion, e.g., by

1%, its output vector would increase in a smaller proportion, by 0.281%. If its input vector is reduced

by 1%, the output vector would decrease by 0.381%.

In contrast, for those DMUs which are located at the intersection of more than one group

frontier, the inequality (12) for the one-sided scale elasticities M
o

 and M
o

 evaluated on the

metafrontier may not hold. Hence, the interpretation of the one-sided scale elasticities requires a more

careful treatment that goes beyond the standard definition of RTS.

For example, for DMU11 (which is a member of groups 2, 3 and 4) we have 11 1.150M   and

11 1.875M   . For this DMU, we have 11 1M   and 11 1M   . This means that that DMU11 exhibits IRS

for any marginal change (increase or decrease) of its input vector. However, because 11 11
M M   , the

IRS characterization is stronger (identified by the higher scale elasticity) on the right of DMU11 than

on the left. For example, the right-hand scale elasticity 11 1.875M   is equal to the right-hand scale

elasticity 3
11 1.875G   , which is evaluated at this DMU on the frontier of the technology 3T , i.e.

 2 3 4
11 11 11 11max 0, 1.875, 0.938M G G G         . This suggests that the highest increase of the

output vector of DMU11 is achieved if DMU11 stays in technology 3T and moves along its efficient

frontier. Similarly, DMU26 exhibits DRS both on the right and on the left (i.e., in the increasing and

decreasing scenarios). However, in contrast with the standard case of a single VRS technology, the

DRS characterization of DMU26 is stronger on the left (as identified by the lower scale elasticity) than

on the right.

Another nonstandard situation can be seen where 0 1M   and 0 1M   . Using DMU7 (which is

a member of groups 1 and 2) as an example, we have 7 0.4 129M    and 7 1.2 175M    . Therefore,

this DMU exhibits DRS on the left and IRS on the right, which is impossible in the single VRS

technology. Details of our computations show that the right-hand scale elasticity 7 1.275M   is equal

to the right-hand scale elasticity 2
7 1.275G   , i.e.  1 2

7 7 7max 0, 1.275M G G       . The left-hand

scale elasticity 7 0.429M   is, however, equal to the left-hand scale elasticity 1
7 0.429G   , i.e.

 1 2
7 7 7min 0.429 1.278,M G G       . This implies that increasing the input vector of DMU7 by 1%

leads to a maximum increase of the output vector by 7 1. 5%27M   if this DMU stays within

technology 2T and moves along its efficient frontier. However, reducing the input vector of DMU7 by

1% would lead to the reduction of its maximum possible output by 7 0. 9%42M   provided that

DMU7 stays within technology 1T and moves along its efficient frontier.
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9. Conclusion

The metafrontier approach to efficiency assessment of DMUs that belong to different group

technologies is well-established in DEA. According to this approach, the efficiency of each DMU is

assessed with respect to all DMUs in the same group, and also with respect to the metatechnology that

includes all DMUs in all group technologies. As noted by O’Donnell et al. (2008), the gap between

the efficiency of a DMU in its group technology and its efficiency in the metatechnology is

interpretable as a measure of potential performance improvement of the DMU, provided it is possible

to change the environment in which it operates.

In practical applications, individual group technologies are often assumed to be convex sets

and are modelled by the conventional, usually VRS, DEA models. However, the metatechnology may

not always be assumed to be a convex set. In this case, assessing the efficiency of a DMU against the

metafrontier requires either implementing an enumeration algorithm and solving a linear program at

each of its steps, or solving an equivalent mixed integer linear program.

In our paper we show that the task of evaluating the efficiency of a DMU in a nonconvex

metatechnology can be accomplished by solving a single linear program, both in the primal

(envelopment) and dual (multiplier) forms. We show that our method is applicable in the cases in

which group technologies satisfy different returns-to-scale assumptions, including VRS and CRS, and

also in both the input and output orientations. Our main development concerns the task of assessing

the input and output radial efficiency of DMUs, but we subsequently extend our approach to the more

general framework of directional distance functions.

From a practical perspective, our approach offers the convenience of solving a single linear

program for each DMU under the evaluation, which always has a finite optimal solution. We also

show the usefulness of the programs stated in the dual space for the RTS characterization of efficient

DMUs on the metafrontier.

Our development opens up further research avenues. In particular, it is worth considering a

similar linearizing approach for technologies other than the conventional VRS or CRS technologies.

This includes technologies with weakly disposable bad outputs (Kuosmanen, 2005; Kuosmanen and

Podinovski, 2009), the hybrid RTS technology of Podinovski (2004a), a similar in spirit FDH

technology of Afsharian et al. (2015), and technologies expanded by the specification of production

trade-offs (Podinovski, 2004b). Furthermore, it would be useful to develop a general linearizing

approach applicable to any polyhedral DEA technology defined by Podinovski et al. (2016), of which

most of the above examples are special cases.
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Appendix: Proofs

Lemma 1. Let , , |g g        be any optimal solution of program (5). Then, for any g ,

0g  implies 0g  and 0g
j  , for all 1,..., gj  .

Proof of Lemma 1. By (5.2), 0g  . Treating g g   as a constant, g minimizes g , subject to

constraints (5.2) − (5.4). If 0g  then the values 0g  and 0g
j  , for all 1,..., gj  , satisfy

constraints (5.2) − (5.4). Therefore, 0g  , and (5.4) implies 0g
j  , for all 1,..., gj  . Note that

this implication can also be proved without a reference to equality (5.4), e.g., under the assumption of

CRS for which (5.4) is missing from (5). Indeed, because 0g  , the left-hand side of (5.2) is a zero

vector. Because each DMU 1,..., gj  has at least one positive input 0g
ijx  , we have 0g

j  , for all

1,..., gj  . ■ 

Lemma 2. Let , , |g g        be any optimal solution of program (5). Then

1 1 2 2/ /g g g g       , for any *
1 2, { | 0 },gg g g g     .

Proof of Lemma 2. Assume that Lemma 2 is not true. Then there exist 1 2
*,g g  such that

1 1 2 2/ /g g g g       . Then 2 1 1 2g g g g       . Let us show that solution  can be improved and

therefore is not optimal. Indeed, define vector ˆ g as follows. For 1g g , define 1 1ˆ ˆ 0g g   and let

1ˆ 0g
j  for all

1
1,..., gj  . Define 2 1 2ˆ g g g     . This increases 2g from the value 2g in

solution  to 2ˆ g , i.e., by the factor 1 2 2( ) /g g g       . Define 2 2ˆg g   and 2 2ˆ g g
j j   for all

2
1,..., gj  . Finally, for all 1 2,g g g , we leave the corresponding components of  unchanged, i.e.,

we let ˆ g g   , ˆg g   and ˆ g g
j j   , for all 1,..., gj  .

It is straightforward to verify that the new solution ˆ ˆ ˆˆ , , |g g     is feasible in

program (5). Comparing the objective function at solutions ̂ and  , we have

 
1 2 1 2 2 1

2 1 2

2 2
1 1

ˆ 0 0.
g g g g g gG G

g g gg g

g g
g g

θ θ
     

  
  

  
       

 
 

     
   

 

Therefore,  is not an optimal solution to program (5). ■ 

Proof of Theorem 1. Statement (i) of this theorem is proved as Lemma 1. To prove statement (ii), let

0g  . Suppose *| | 1 , i.e., the set * consists of a single element *g . Taking into account (5.5),
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*

1g  and 0g  , for all *g g , g . By Lemma 1, 0g  for all *g g , g . Therefore,

 * * *

( , ) /
M

p p g g g
o oEff X Y       .

Let *| | 1 . Consider any **g  . First, let us prove that there exists an alternative optimal

solution ˆ ˆ ˆˆ , , |g g     such that the only positive component of vector ̂ is
*ˆ 1g  . For

*g g , define *

*ˆ 1g g

g
 


  


. This increases the value of variable

*g from
*g in solution 

to
*ˆ 1g  , i.e., by the factor   * *

* / 1 /g g g

g
  


   


. To keep all constraints satisfied, define

* * *ˆ /g g g     and
* * *ˆ /g g g

j j     for all *1,...,
g

j  . For all *g , define ˆ ˆ 0g g   and let

ˆ 0g
j  for all 1,..., gj  . For all *\g  , we leave the corresponding components of 

unchanged, i.e., we let ˆ 0g g   , ˆ 0g g   and, taking into account Lemma 1, ˆ 0g g
j j   ,

for all 1,..., gj  .

The new solution ˆ ˆ ˆˆ , , |g g     is feasible in (5). Calculating the difference between

the values of the objective function at ̂ and  , we have

 **

*

* *

*

* *

*1 1

ˆ ˆ 0

g g g gg
G G

ggg g g g g g

g g
g g g g

θ
θ θ θ θ θ

  


 



   


      


   

  
  

 


 

,

where the last equality follows from Lemma 2, which implies that
* *g g g gθ      , for all *g .

Therefore, solution ̂ is optimal in program (5). Because the only positive component of vector ̂ is

*ˆ 1g  , we have *ˆ ( , )
M

g q q
o oEff X Y  . Finally, by the definition of

*ˆ g and
*ˆg , and by Lemma 2,

for all *g , we have

* * * * *ˆ ˆ ˆ/ / / /1 ( , )
M

g g g g g g g q q
o oEff X Y             . ■

Lemma 3. The optimal value of program (5) is equal to the optimal value of program (4), i.e.,

( , ) ( , )
M

M q q q q
p p o oEff X Y Eff X Y .

Proof of Lemma 3. It suffices to prove the following two statements:

(i) For any feasible solution  of program (4) there exists a feasible solution  of program (5) such

that, for these solutions, the objective functions of programs (4) and (5) are equal.

(ii) For any optimal solution  of program (5) there exists a feasible solution ̂ of program (4) for

which the objective functions of programs (5) and (4) are equal.
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To prove (i), let , , |g g     be a feasible solution to program (4). Define vectors

g g g   , for all g . Then , , |g g       is feasible in (5). The objective functions of

both programs for these solutions are equal.

To prove (ii), let , , |g g     be an optimal solution to program (5). Select any

* * { | 0}gg g      . Define a feasible solution ̂ to program (4) as follows. For *g g , let

*ˆ 1g  ,
* * *ˆ /g g g   , and define vector

* * *ˆ /g g g   . For all g , *g g , let ˆ ˆ 0g g   ,

and let ˆ g be zero vectors. Then ˆ ˆ ˆˆ , , |g g     is a feasible solution to program (4). For this

solution, the objective function of program (4) is equal to
* * *ˆ /g g g   . By Theorem 1, this is equal

to the optimal value of program (5). ■ 

Proof of Corollary 1. By Definition 3, for the vector  in the elementary optimal solution  we

have
*

1g  . Then statement (ii) of Theorem 1 implies *

( , )
M

g q q
o oEff X Y  . Furthermore, by

statement (i) of Theorem 1, we have 0g
j  , for all 1,..., gj  and all g , *g g . Therefore,

from (5.2), 0g  , for all g , *g g . ■ 

Proof of Theorem 2. Statement (i) is proved as Lemma 3. Statements (ii) and (iii) are elementary. In

particular, the proof of statement (iii) uses Lemma 1. Let us prove statement (iv). Let

, , |g g        be any optimal solution to program (5), and let * 0 }{ | ,gg g    . It

suffices to consider the case *| | 1 . In this case, by Lemma 1, all vectors g , *g  , are zero

vectors.

Repeating the proof of Theorem 1 for the case *| | 1 , we establish that there exists an

elementary optimal solution g to (5) corresponding to each group *g . (In the proof of Theorem

1, g is denoted ˆ ˆ ˆˆ , , |g g     .) By the definition of components of vectors ̂ , ̂ and ˆ g ,

g , in the proof of Theorem 1,  is the convex combination of solutions g taken with the

weights g , *g . ■ 

Proof of Corollary 2. By statement (iv) of Theorem 2, any optimal solution  of program (5) is a

convex combination of a finite number of elementary optimal solutions g of program (5). By

statement (iii) of Theorem 2, each such elementary optimal solution is a proper optimal solution of

program (4). Therefore, con ˆv  . Conversely, let ˆ co ˆnv  . By Carathéodory's theorem, ̂ is a

convex combination of a finite number of proper optimal solutions ˆ
k  , 1,...,k K , of program
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(4). By statement (ii) of Theorem 2, every such k is optimal in (5). Because (5) is a linear program,

the set of its optimal solutions is convex. Therefore, ̂  , and ˆconv    . ■

Proof of Theorem 3. For any g , because , , , |g g gu v g       is a feasible solution of (6),

, ,g g gu v   is feasible in (7). Assume that there exists a 0g such that the corresponding

inequality (6.2) is strict. Then, for the solution , ,g g gu v   , the objective function of (7) is strictly

greater than ( , )M q q
o oEff X Y  , which contradicts the definition of the set 0 . Therefore, for all

0g , the inequalities (6.2) are satisfied as equalities, and the first statement of Theorem 1 follows.

To prove the second statement, consider any set * such that 0 *    . Define the

optimal solution * as follows. For each 0g , let ˆˆ ˆ, ,g g gu v  be any optimal solution to the

corresponding program (7). By the definition of the set 0 , for all 0g , we have

( , ) ( , )g q q M q q
o o o oEff X Y Eff X Y . Denote ˆ ( , )M q q

o oEff X Y  .

Now let 0g  . Then the optimal value of the corresponding program (7) is either strictly

greater than ̂ or it is unbounded. Therefore, there exists a feasible solution ˆˆ ˆ, ,g g gu v  of program

(7) for which its objective function is
1

ˆ ˆ ˆˆ
sg g q g

r ror
u y  


   . If * 0g  , we further define

ˆ ˆ ˆ ˆ ˆˆ ˆ, , ( / ) , ,( / )g g g g g g g gu v u v      . Because ˆ ˆ/ 1g   , the solution , ,g g gu v  is feasible in

program (7), and the corresponding objective function of (7) is equal to ̂ . This implies that the

solution , ,g g gu v  satisfies (6.2) as equality. Finally, if *g  , we keep the solution

ˆˆ ˆ, ,g g gu v  unchanged.

We now consider the following solution * , , , |g g gu v g    . Let ˆ  be as defined

above. For all 0g and *g  , we take ˆˆ ˆ, , , ,g g g g g gu v u v  . For all * 0g  , we take

, , , ,g g g g g gu v u v  . Then * is feasible in program (6), and the corresponding objective

function of (6) is equal to ˆ ( , )M q q
o oEff X Y  . Therefore, * is optimal in program (6). We finally

note that, for the solution * , the constraints (6.2) are satisfied as equalities for all

0 * 0 *( \ )g      , and (6.2) are strict inequalities for *g  . Therefore, * *( )   . ■ 

Proof of Theorem 4. By Theorem 5 proved below we have ( , )M q q
o oEff X Y  . Because solution 

is feasible in program (8), and by formula (9),  is a feasible solution of program (6), for which its
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objective function is equal to ( , )M q q
o oEff X Y  . Therefore,  is an optimal solution of program (6) .

■

Proof of Theorem 5. For each g , the scalar g is equal to the optimal value of program (7)

with the incorporated upper bound L on the objective function. If 0g , the bound L is redundant

and we have ( , ) ( , )g g q q M q q
o o o oEff X Y Eff X Y   . If 0\g  , we have ( , )M q q g

o oEff X Y L  . ■

Proof of Theorem 6. In line with Podinovski and Førsund (2010), define the output response function

 
0 0

( ) max{ | ( , ) } max max { | ( , ) } max ( )M g g
o o o o

g g
a b aX bY T b aX bY T a 

 
    

 
.

As follows from formula (3) in Podinovski and Førsund (2010), ( ) (1)g g
o 


 , for all 0g . Then

0 0
max ( ) (1) maxM g g

o o
g g

   


 

 
 

. The case of M
o

 is similar. ■

Proof of Theorem 7. The proof follows by repeating Lemmas 2 and 3 proved for programs (4) and

(5). In these lemmas and their proofs, we only need to change notation  to  , and programs (4) and

(5) to programs (15) and (16), respectively. ■
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