
 

Abstract—With the increasing popularity of electric-assist bikes 

(E-bikes) in China, U.S. and Europe, the corresponding safety issues at 

intersections have attracted the attention of researchers. Understanding 

the microscopic behavior of E-bike riders during conflicts with other 

road users is fundamental for safety improvement and simulation 

modeling of E-bikes at intersections. This study compared the conflict 

avoidance behaviors of E-bike and conventional bicycle riders using 

field data extracted from video recordings of different intersections. 

The impact of conflicting road user type and gender on E-bikes and 

bicycles were analyzed. Compared with bicycles, E-bikes appeared to 

enable more flexibility in conflict avoidance behavior. For example, 

E-bikes would behave like bicycles when conflicting with motor 

vehicles/E-bikes, and behave more like motor vehicles when 

conflicting with bicycles/pedestrians. Based on this, we built an 

Extended Cyclist Conflict Avoidance Movement (ECCAM) model. 

(What is the advantage of this model?) Field data were applied to 

validate the proposed model, and the results are promising. 

 

Index Terms—Bicycles, Conflict, E-bikes, Fuzzy Logic, 

Intersection, Transportation.    

 

I. INTRODUCTION 

N recent years, non-motorized vehicles have become 

important travel modes of commute in China, U.S and 

Europe [1-2]. Compared to conventional bicycles, 

electric-assist bikes (E-bikes) are faster and provide a more 

competitive alternative to the private car [3-4]. With the 

popularity of E-bikes, the corresponding safety issues have 

attracted the attention of researchers.  Chinese accident 

statistics have shown that the number of crashes involving 

E-bikes has risen recently, and that the majority of such 

crashes occur at intersections [5-7].    
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 Understanding of E-bike riders’ microscopic behavior 

during conflicts with other road users at un-signalized 

intersections is critical. First, it can provide a behavioral basis 

for improving facility design or traffic management to 

increase the safety of E-bikes at intersections. Second, 

characterizing E-bike conflict avoidance behavior can help to 

build the behavioral model for a microscopic traffic flow 

simulation models, which are widely used tools for intelligent 

transportation systems (ITS). Moreover, they could be applied 

to evaluate safety and performance improvements at 

intersections where E-bikes are likely to be present.  

Bicycle crash data analysis methods have been widely used 

and supported facility design and management enhancement 

for bicycles/E-bikes at intersections [8-10]. However, these 

methods are found unsuitable to build the E-bike/bicycle 

microscopic conflict avoidance behavior model at 

intersections [11]. 

Researchers pointed out that field observation on road user 

behavior is a promising alternative for the purpose of 

investigating E-bike conflicts [12]. Due to technical 

limitations, using on-board instruments to monitor E-bike 

rider behavior in a naturalistic way is just reported recently 

[13-15]. In this naturalistic approach, it was found that 

pedestrians, light vehicles and other bicycles are the primary 

threats to rider safety. Furthermore, this research (Ronghui: 

which research?) suggests that E-bikes travel faster than 

conventional bicycles and interact differently with other road 

users [16]. By comparing two types speeds of E-bikes and 

conventional bicycles, it was found that on average the both 

types of E-bikes travel significantly faster than bicycles. Later, 

by reviewing the differences between E-bikes and bicycle 

concerning the probability to be involved in a traffic conflict, 

it has been found that the probability of E-bikes to be involved 

in traffic conflicts is twice as high as that of bicycles[17]. 

Recently, research shows that cyclists’ riding and interacting 

behavior with other road users change when cyclists switch 

from conventional bicycles to E-bikes [18].  

Though the naturalistic approach provides more information 

on E-bike conflicts, this method also has limitations. A 

possible problem is the reliance on voluntary participation, 

which might bias the subject sample to experienced and 

healthy riders. This is important because frequent and 

experienced cyclists tend to have higher crash severity [19]. 

Another issue with the naturalistic approach is that cameras 

installed on the E-bikes cannot completely cover the full 

traffic environment during conflicts. Most importantly, this 

approach makes it difficult to extract accurate trajectory the 

conflicting vehicles, and so cannot provide sufficient 

trajectory data for microscopic conflict avoidance behavior 

analysis & modelling [20].  

Another suitable approach to collect cyclist conflict 

avoidance behavior data is to install an elevated 

high-definition camera with a top-down view of the facility 

(road section or intersection) to collect the video data of all 

road users. In this way, the full traffic environment during 

conflicts can be covered by the camera. By applying advanced 

computer vision technology for object detection & tracking, it 

is possible to extract the trajectories of bicycles and other 

vehicles/pedestrians [21- 22]. Other data, such as vehicle type, 

age, gender, volume and speed can then be collected manually 

[23]. This method is promising to overcome the insufficient 

camera coverage and trajectory data limitations of the above 

naturalistic approach.  

Using this method, the bicycle moving behavior under 

conflicts with other road users (motor vehicles, other bicycles, 

and pedestrians) at un-signalized intersections is investigated. 

They (Ronghui, who are they?) observed the microscopic 

conflicting avoidance behaviors of the bicycles when 

conflicting with different road users. They(Ronghui, who are 

they?) also built a Cyclist Conflict Avoidance Movement 

(CCAM) model for simulation purposes. However, this study 

did not include E-bike riders as road users [21, 31-35].   

The methods described in ref [21], are better choices for 

studying E-bike conflict avoidance behavior at intersections. 

E-bikes and bicycles are quite similar in vehicle structures and 

sizes. However, their riding characteristic may differ in terms 

of speed, acceleration, deceleration, turning, etc. It is likely 

that these differences will lead to differences in conflict 

avoidance behavior at intersections. Therefore, the objective 

of this work is to investigate and compare the microscopic 

conflict avoidance behavior of E-bikes and bicycles in mixed 

un-signalized intersections. By identifying the similarity and 

differences between conflict avoidance behavior of E-bikes 

and bicycles, we seek to discover the factors contributing to 

the risk and severity of accidents involving E-bikes. In 

addition, we extended the original CCAM model by adding 

E-bike riders to the model and building a conflict avoidance 

behavior model for E-bikes. 

Here E-bikes refer to all two wheeled bicycles that are 

driven by electricity, including E-bikes, and scooters with 

vehicle weight less than 40 kg. It is assumed that the vehicle 

power is one of the important factors affecting the user’s 

microscopic behavior (such as speed and acceleration). 

Therefore, the microscopic behaviors of E-bikes and 

man-powered bicycles may be different in both riding speed 

and conflict avoidance behaviors. 

The paper is structured as follows: Section II introduces the 

research process; Section III describes the data collection and 

processing; section IV presents comparative analysis on 

conflict avoidance behaviors; section V proposes the extended 

cyclists’ conflict avoidance model; and section VI presents the 

discussions on our findings. Conclusions and future works are 

summarized in Section VII. 

II. METHODOLOGY 

Following are the assumptions and other basic issues of this 



 

work. (I do not think this sentence should be an independent 

paragraph. The same to the next paragraph) 

Here the widely accepted definition of a traffic conflict is 

adopted as "an observable situation in which two or more road 

users approach each other in space and time for such an extent 

that there is a risk of collision if their movements remain 

unchanged."  

According to the social force model, a road user is assumed 

to drive directly to (you should avoid ‘his’ or ‘he’, because 

you are not sure the road user is male) “destination” by current 

speed and direction if he does not involved in a conflict or 

affected by other road users [24, 39-41]. The “destination” 

here is the temporary destination (TD) rather than the final 

destination, but. The so-called TD refers to the place that an 

individual wants to reach in a relatively short period of time. 

For example, in this study TD often refers to somewhere in the 

bicycle lane across the intersection. That means, if a road 

user's speed suddenly changes, we consider the road user is 

under influence by other road users or involved in a conflict.  

Thus, the criteria to determine whether an E-bike or bicycle 

is in conflict situations are whether there is an explicit change 

in the direction and speed, and if any of the future positions 

coincide both spatially and temporally with other road users, 

as the author of ref [25] proposed in their study on pedestrians’ 

evasive action conflict measures analysis.  

We assume that even though the structure and size of the 

E-bikes is similar to that of conventional bicycle, there should 

be differences in collision avoidance behavior due to the 

different power sources for moving of E-bikes and bicycles. 

Under this assumption, we attempt to compare E-bikes and 

bicycles’ conflict avoidance behavior by investigating the 

changes in magnitude and direction of their instantaneous 

velocities in conflicts [26]. Therefore, we analyze the 

instantaneous velocity, speed change ratio in magnitude; 

turning angle and destination / direct angle (which represent 

the degree of detour) of the E-bikes and bicycles in conflicts 

(details see section IV A.). 

Because the calculation time interval ΔT for instantaneous 

velocity is very small (in this study， \Delta T= 0.4 second), 

requirements for the reliability and accuracy of road users’ 

trajectory data are very high. In Section III, we introduce the 

data acquisition and processing, including Kalman filter for 

smoothing the trajectory data and a new error analysis method. 

Thereafter, an Extended Cyclist’s Conflict Avoidance 

Movement (ECCAM) model is proposed for riders of E-bikes 

and bicycles based on the comparative analysis results on 

conflict avoidance behavior of E-bikes and bicycles. ECCAM 

is an extension of the original Cyclist’s Conflict Avoidance 

Movement (CCAM) model proposed by Zhang et al. (2017). It 

could be applied as a conflict avoidance behavior module in a 

mixed traffic flow simulation platform [27]. Considering that 

the E-bike riders’ complex situation of conflicts with other 

road users at intersections are similar to those of bicycle riders, 

ECCAM would follow the original CCAM, taking the fuzzy 

logic as main modelling method [21]. Detailed description is 

presented in Section V.   

 

III. DATA COLLECTION & PROCESS 

A. Data Collection 

A Large amount of reliable, high-quality trajectory data on 

each road users involved in conflicts is important for our 

research. We selected 6 different mixed traffic flow 

un-signalized intersections in three cities of China (two in 

Guangzhou, two in Nanning and two in Beijing) for field 

video data collection. At each intersection, at least two hours 

of videos were recorded, ranging from 6:00 am to 8:30 am. 

This period represented the buildup of mixed traffic flow 

volume of the six intersections during the morning peak hours. 

Fig. 1 shows one data collection site in Nanning. The average 

volumes of E-bike and bicycle during peak hours (7:30-8:30) 

at each of the six intersections are shown in Table I. For the 

sites in Nanning City, E-bikes had much larger volumes than 

bicycles, which is typical of the traffic characteristics of 

Nanning city. 

 

 

B. Data Process 

From [21], the software named VSpee was also used to track 

the moving objects and extract location information at a 

minimum interval of 0.04 seconds. To ensure the reliability 

and quality of dynamic E-bike and bicycle conflict avoidance 

behavior data, camera calibration and data validation were 

necessary procedures at each data acquisition site. 

 

For camera calibration, we adopt the method proposed by 

the ref [27], using a few planers patterns shown at least two 

orientations. Here, the checkerboard planers were derived 

from the pedestrian crossings at the sites. According to the 

method, three different 6*6 data matrix are sufficient to get a 

 

Fig. 1.  Data Collection Sites in Nanning. 

*Actually, this intersection is an un-operating signalized intersection. The 

lights were not working when we recorded the video in 2013. 



 

unique solution for the camera calibration problem. Therefore, 

at each data collection site, the width, length and spacing of 

the crossings were measured in the field. And 3-5 

checkerboard matrixes on the road surface were taken 

manually for camera calibration, as illustrated in Fig. 2. The 

yellow frame is the detection area and the checkerboard black 

frames were the calibration matrixes. 

By camera calibration, the Vspeed could track the manually 

selected road users and transform the screen position to the 

real world position data at each frame. The output position 

data would be validated by field data before use. 

After camera calibration, the Vspeed is able to track 

manually selected objects and output object trajectories from 

the video data. The output position data were validated before 

use. 

 

 

As our research was mainly focused on the relative distance, 

speed, or direction between two Road users, we chose the 

fixed relative distance of different vehicles (such as the 

wheelbase) as validation measurements. For example, Santana 

from Volkswagen (with wheelbase of 2.5 m), regular bus 

(with wheelbase of 6 m), E-bike and e -scooter (with 

wheelbase of 1.1 m). The relative distance error erdi for each 

position were calculated as follows: 

       (1) 

where  and   stood for the ith estimated 

positions of front and rear wheel of the vehicle, respectively; 

and  for the wheelbase of vehicle of type j, m. 

Here, we used the mean relative distance error  as the 

validation index: 

       (2) 

For better analyzing the E-bikes and bicycles’ conflict 

avoidance behavior, a time interval of ΔT = 0.4 s was taken as 

time step length as it is similar to the average person’s reaction 

time. 

A Kalman filter method proposed in ref [28] was applied to 

the raw estimated position data of each object at every frame. 

The filtered position data were extracted by a time interval 

length of ΔT and then used for validation. Table II shown the 

relative distance error analysis of data collection sites. The 

maximum relative distance error erd calculated by (1) was 0.48 

m, and the mean relative distance error  calculated by (2) 

was 0.21 m, which seemed to meet the data quality 

requirements for analyzing dynamic E-bikes and bicycle 

conflict avoidance behaviors. After camera calibration and 

validations, the following analysis and definitions on E-bike 

and bicycle riders’ conflict avoidance behaviors were all based 

on these trajectory data. And by the conflict judgment 

introduced in Section II, we got 4424 observations on the 

tracks and speeds of E-bike and bicycle and related conflicting 

road user in 316 conflict cases, and 1482 observations in 112 

non-conflict cases. The conflict cases were judged manually 

by the criteria described in Section II. In conflicts, the 

E-bikes/bicycles with less right-of-way were taken as conflict 

subjects, as they usually had obvious evasive actions; and their 

counterparts in conflicts were with more or equal 

right-of-way. The travel directions of the two road users in a 

conflict were all vertically intersected. We randomly selected 

3104 observations (about 70% of all observations) for the 

comparative analysis sample and parameter calibration, and 

the remaining 1320 observations for the model validation for 

ECCAM. 

IV. COMPARATIVE ANALYSIS ON CONFLICT AVOIDANCE 

BEHAVIOR 

A. Conflict Avoidance Behavior Variables 

Zhang et al. (2017) (Please unify the reference format!) 

defined 4 motion variables to analyze bicycle conflicts. 

However, each of the motion variables applied were averaged 

over entire trajectories , which makes them unable to represent 

the microscopic changes in behavior of cyclists in conflict [21]. 

To address this limitation, the following four instantaneous 

conflict behavior variables are proposed: 

1) Instantaneous velocity  

The E-bikes or bicycle rider α’s instantaneous velocity 

erdi = (x̂ fi - x̂r i )
2 + (ŷ fi - ŷr i )

2 - Dl j

x̂ fi , ŷ fi( ) x̂ri , ŷri( )

Dl j

Erd

Erd =
1

n
erdii=1

n

å

Erd

 

Fig.2 Illustration of Camera Calibration at Nanning Intersection 

Matrix 1
Matrix 2

Matrix 3 Matrix 4

TABLE I 

E-BIKE AND BICYCLE TRAFFIC VOLUMES OF DATA COLLECTION SITES 

Volumes Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 

Bicycles 

(bike/h) 

3808 2060 236 310 2544 1884 

e-bikes 

(bike/h) 

324 248 1388 2220 880 236 

Location* BJ BJ NN NN GZ GZ 

*Note: BJ stands for the Beijing, NN stands for the Nanning and GZ stands 

for the Guangzhou city. 

 

 



 

 was derived from the positions at time t and the last 

time step (t-ΔT), i.e.: 

 

with         (3) 

where  and  stand for the postion vectors α 

of at time t and (t-ΔT), respectively; TO
α and TD

α stand for the 

time when α is located at the Origin and Destination point of 

the conflict event; while ΔT stands for the time step length 

(selected to be 0.4 s). 

The mean speed V is defined as the arithmetic mean of 

overall instantaneous velocity  samples: 

         (4)

 

where n stands for the sample size of instantaneous 

velocities.  

2) Instantaneous speed change ratio λα(t) 

Instantaneous speed change ratio λα(t) is defined as the 

instantaneous speed ratio compared to the instantaneous speed 

at last time step: 

 

 with       (5) 

The mean speed change ratio is defined as the arithmetic 

mean of all instantaneous speed change ratio overall: 

       (6) 

where m stand for the sample size of instantaneous speed 

change ratios.

 
3) Instantaneous turning angle Δθ(t) 

Instantaneous turning angle Δθv(t) is defined as the absolute 

direction difference between current time t and last time step 

t-ΔT, i.e.:
 

     (7)
 

where θv(t) stands for α’s instantaneous direction at time t, 

which could be derived from the instantaneous velocity by:  

      (8)
 

where  stands for the X-axis component of . 

The mean turning angle is defined as the arithmetic 

mean of turning angles of all observed data: 

         (9) 

where m stands for the sample size of the instantaneous 

turning angles.  

4) Instantaneous dest/dir angle θd-v(t)  

The instantaneous dest/dir angle θd-v(t) is defined by the 

absolute direction difference between the destination angle 

θd(t) and the moving direction θv(t), i.e.: 

       (10) 

The mean turning dest/dir angle  is defined as the 

arithmetic mean of the dest/dir angles of all observed data: 

      (11) 

where m stands for the sample size of the instantaneous 

dest/dir angles. Readers can refer to ref [21] for illustrations of 

the turning angle and destination / direct angle. 

B. Comparative Analysis on Conflict Behavior 

To verify our hypothesis on road users’ behaviors in 

conflicts in section II, we compared the above conflict 

behavioral variables of E-bikes and bicycles between 

non-conflict and conflict situations. To investigate the 
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TABLE II 

RELATIVE DISTANCE ERROR ANALYSIS OF DATA COLLECTION SITES 

Sites 
Relative Distance Error (m) 

Num. of 
Validation Record 

Mean S.D. Max. 

Site 1 0.21 1.01 0.45 156 

Site 2 0.19 0.89 0.28 163 

Site 3 0.17 0.91 0.32 142 

Site 4 0.23 1.31 0.39 138 

Site 5 0.22 1.25 0.41 159 

Site 6 0.25 1.42 0.48 178 

Total  0.21 1.19 0.48 936 

 



 

significance of the difference between conflict and 

non-conflict behaviors, we applied the student t-test for H0: 

equal means and two samples with different deviations. The 

significance level is 5% (which means all p-value equal to 

0.05) and, as the sample sizes are all over 30, the threshold is 

1.96. Statistics results are shown in Table III. The 85% value 

stands for the 85% percentile value, which is a useful value for 

parameter for behavioral models. 

Table III shows that there were significant statistical 

differences between the conflict and non-conflict riding 

behavior of riders of both E-bikes and bicycles. Specifically, 

for both E-bike and bicycle, their speeds are lower while the 

turning angle and dest/dir angels are larger when involved in 

conflicts. The instantaneous speed change ratios are nearly 1, 

turning angle and dest/dir angle are almost zero, which 

indicate that our hypothesis on road users’ behaviors in 

non-conflicts is reasonable.  

Fig.3 shows the distribution of behavior variables in 

conflicts. 

C. Influence of Conflicting Road User Type 

To analyze the influence of conflicting user types on E-bike 

and bicycle riding behaviors, we compared the statistics of 

riding behavior variables for different conflicting user types in 

Table IV. Here, we use a capital to stand for each road user 

type: “V” sands for motor vehicles; “E” for E-bikes; “B” for 

bicycles and “P” for pedestrians. For example, “EV” stands 

for the conflict situation that an E-bike being in confliction 

with a motor vehicle. There are totally eight kinds of conflicts: 

EV, BV, EE, BE, EB, BB, EP and BP. The t-test method was 

also applied to test the difference significance between equal 

means in Table IV. 

For both E-bikes and bicycles, the mean speeds seemed to be 

the highest when conflicting with pedestrians, and the lowest 

when conflicting with E-bikes, which indicate that the 

conflicting E-bikes seem to have the most impact on riding 

speeds of E-bikes and bicycles. In general, the turning angle of 

E-bikes was smaller than that of bicycles, except the cases 

conflicts with other E-bikes (see Table IV). 

Fig.4 showed the differences of mean riding speed and 

turning angles of E-bikes and bicycles when conflicting with 

different road users. It seems that when conflicting with the 

motor vehicle and E-bikes, there were minor differences 

between behaviors of E-bikes and bicycles. While conflicting 

with the bicycles and pedestrians, there were obvious 

differences.  This seemed to imply that the riding behaviors 

of E-bikes in conflicts were more flexible than bicycles. They 

  

(a) Instantaneous velocity        (b) Instantaneous speed change ratios 

  

 (c) Instantaneous turning angles           (d) Instantaneous dest/dir angles 

Fig. 3 Distribution of Behavior Variables in Conflicts. 

TABLE III 

COMPARISONS OF THE BEHAVIORS STATISTICS IN NON-CONFLICT AND CONFLICT SITUATIONS 

E-bikes 

or 

Bicycles 

  

Situation 

Instantaneous velocity 

v (km/h) 

 Instantaneous speed 

change ratio λ 

Instantaneous turning 

angle Δθv(°) 

Instantaneous dest/dir 

angle θd-v(°) 

 85% 

value 

Mean S. D.  85% 

value 

Mean S. D. 85% 

value 

Mean S. D.  85% 

value 

Mean S. D. 

 Non-Conf. 27.31 22.69 4.85  1.06 1.01 0.13 4.7 2.4 2.6  6.4 3.3 2.46 

 Conflict  20.40 14.49 7.91  1.11 1.02 0.22 7.2 4.8 3.2  10.2 5.5 8.29 

E-bikes Difference# 6.91 8.2 -3.06  -0.05 -0.01 -0.09 -2.5 -2.4 -0.6  -3.8 -2.2 -5.83 

 t. value -- 6.06 --  -- 1.99 -- -- -3.25 --  -- -2.97 -- 

 p-value  0.000    0.020   0.001    0.001  

                

 Non-Conf. 26.87 16.81 3.21  1.08 1.01 0.15 5.2 3.7 11.8  7.3 3.8 6.73 

 Conflict  15.98 11.85 3.50  1.12 1.02 0.21 7.9 5.8 13.5  18.2 10.3 16.41 

Bicycles Difference 10.89 4.96 -0.29  -0.04 -0.01 -0.06 -2.7 -2.1 -1.7  -10.9 -6.5 -9.68 

 t. value -- 2.01 --  -- -2.27 -- -- 4.14 --  -- 2.45 -- 



 

tend to behave like bicycle when conflicting with motor 

vehicles and turn to behave like motor vehicles when 

conflicting with more vulnerable road users such as bicycle 

and pedestrians 

D. Influence of Gender 

To analyze the influence of gender on riders’ conflict 

avoidance behaviors, we compared the mean difference 

significance of the above behavior variables between male and 

female riders of E-bike and bicycle in conflicts. Again, the 

t-test method was applied to test the equal means at a 

significant level of 0.05 with a threshold t-value of 1.96. 

Statistics results shown that for both E-bikes and bicycles, the 

gender of riders had a significant influence on the mean 

conflict speeds   in all conflict situations. The male riders 

tended to be 5~25% faster than their female counterparts in all 

situations. While the difference in mean speed change ratio, 

mean turning angels and dest/dir angles between male and 

female riders is negligible or insignificant. 

  

V. EXTENDED CYCLISTS’ CONFLICT AVOIDANCE MODEL 

(ECCAM) 

The above comparative analysis show that there exit 

significant differences between E-bike and bicycle riders’ 

conflict avoidance behavior.  These differences should be 

fully considered in developing the ECCAM model including 

factors such as E-bikes and different conflict situations. Thus, 

the model framework of ECCAM needs modification from 

that of the CCAM. 

From the modeling perspective, these differences between 

E-bike and bicycle riders’ conflict behaviors can be 

represented in the different behavior choice sets for riders of 

E-bike and bicycle. For example, under conflict with a motor 

vehicle, E-bike riders tend to change their speeds rather than 

 

(a) Mean instantaneous velocity    (b) Mean instantaneous turning angle 

Fig. 4 Differences of the impact of conflicting road user type on e-bikes and 

bicycles. 
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TABLE IV 

STATISTICS OF RIDERS’ CONFLICT AVOIDANCE BEHAVIOR VARIABLES OF DIFFERENT GROUPS 

Conflict  Number 

of cases 

Instantaneous velocity v 

(km/h) 

Instantaneous speed 

change ratio λ 

Instantaneous turning angle 

Δθv(°) 

Instantaneous dest/dir 

angle θd-v(°) 

situations 85% value Mean S.D. 85% 

value 

Mean  S.D. 85%  

value 

Mean  S.D. 85% 

value 

Mean  S.D. 

EV 42 17.96 11.92 10.37 1.14 1.02 0.25 4.7 3.1 5.82 11.0 6.0 8.76 

BV 60 15.73 12.28 3.20 1.11 1.01 0.17 8.9 5.0 6.91 20.7 10.6 10.82 

Difference 2.23 -0.36 7.17 0.03 0.01 0.08 -4.2 -1.9 -1.09 -9.7 -4.6 -2.06 

t. value   -0.68   0.42   -6.00   -7.84  

p-value   0.249   0.338   0.000   0.000  

              

EE 32 15.95 9.79 6.55 1.16 1.04 0.31 5.3 3.7 7.76 10.3 5.6 10.22 

BE 25 11.70 9.07 3.02 1.05 1.01 0.04 4.1 2.5 2.18 12.5 6.6 6.27 

Difference 4.25 0.72 3.53 0.11 0.03 0.27 1.2 1.2 5.58 -2.2 -0.8 3.95 

t. value   2.08   1.98   3.23   -1.94  

p-value   0.019   0.023   0.001   0.026  

             

EB 25 19.12 14.36 6.01 1.06 1.01 0.05 3.5 2.1 3.82 8.9 4.7 6.65 

BB 56 15.77 11.99 3.78 1.11 1.02 0.25 6.7 6.9 16.89 80.7 50.3 58.50 

Difference 3.35 2.37 2.23 -0.05 -0.01 -0.2 -3.2 -4.8 -13.07 -71.8 -45.6 -51.85 

t. value   6.19   -0.84   -5.53   27.96  

p-value   0.000   0.198   0.000   0.000  



 

directions to avoid the conflict. This suggests a choice set with 

smaller turning angles would be suitable for this conflict 

situation. While conflicting with other E-bikes, E-bikes tended 

to change both their speeds and directions to avoid the 

conflict, suggesting that a choice set with moderate turning 

angles would be suitable. Other aspects of the ECCAM such 

as the membership function of the fuzzy evaluation indexes 

associated with the E-bike behavioral features would also be 

considered. 

Following were descriptions of the model framework, 

choice sets and the member functions of fuzzy evaluation 

index for E-bikes in ECCAM. (What do you mean??) 

A. Model Framework 

Fig. 5 shows the model flow chart of ECCAM, where the 

modified module is marked with *. In the first step, the model 

is initialized with the start parameters for target object (E-bike 

or bicycle) α and the potentially conflicting object β, including 

road user type, initial positions, current/expected moving 

speed and direction, origin and destinations points, system 

start time, and so on. The influence of the rider's gender is 

reflected in different expected speeds, according to the above 

analysis results. The next step is the Conflict Judgement 

module. Because the vehicle size of E-bikes and bicycles are 

similar, ECCAM follow the original Conflict Judgement 

module in CCAM. If there is no conflict, the model proceeds 

directly to the Decision module. If a conflict is present, 

conflict situation is judged according to the user type of α and 

β. In the next step, the fuzzy index and choice set are built 

according to the conflict situation, and fuzzy evaluation rules 

are applied to evaluate each discrete movement choice j. The 

Decision module then determines the final output of the next 

movement of α. The dynamic state of both α and β is then 

updated to reflect the movement choices. The model operates 

at a time step of ΔT. This process is repeated until α is near 

his/her Destination Dα, i.e. until: 

     (12) 

where  stands for the position of α at time t, and  

for the distance error, here . 

B. Conflict Situation 

Results show that the conflict situation has a significant 

influence on the riders’ most conflict avoidance behaviors. 

The influence factors mainly include the types of the rider 

(E-bike or bicycle) and conflicting road user (motor vehicle, 

E-bike, bicycle or pedestrian). Thus, there are 8 different 

conflict situations “α- β” according to the rider type “α” and 

the conflicting road user type “β”: “E-V”, “E-E”, “E-B”, 

“E-P”, “B-V”, “B-E”, “B-B” and “B-P” conflict situation. The 

extended discrete choice sets would be different for different 

conflict situations. 

 

 

C. Extended Discrete Choice Sets 

The extended discrete choice set Cα(β, t) is a dynamic 

variation that is influenced by the state of α and conflicting 

object β. It consists of a combination of direction change Δθ 

α(β, t) and speed change Δvα(β, t).  

Following the original CCAM model, the speed change 

Δvα(β, t) has 3 choice items:0, - γαβvα(t) and + γαβvα(t), where 

vα(t) is the speed of α at time t and γαβ an 

acceleration/deceleration factor.  

The direction change Δθ α(β, t) has 7 choice items, - θ αβ L, - 

θ αβ M, - θ αβ S, 0, +θ αβ S, +θ αβ M and + θ αβ L , the θ α S, θ αβ M and 

θ αβ L stand for the small, moderately and large turning angel of 

α when conflicting with β. Thus, a choice set Cα(β, t) at most 

includes 21 choices as shown in Fig. 6. Each choice j stands 

for the future state of the riders speed and direction at next 

time step. 

The major difference of the extended choice sets is that 

these parameters for direction change Δθ α(β, t) and speed 

change Δvα(β, t) is different according to the conflict situation 

“α-β”. The parameters of speed and direction changes in 

different conflict situations are estimated from the field 

behavior statistics in Table V. 

In CCAM, the γαβ was taken as 0.2. In ECCAM, the γαβ is 

taken according to the median of the difference between 85% 

and 15% values of the of speed change ratio λ, i.e.: 

     (13) 

Because θ αβS of bicycles in CCAM is taken as 5°, and the 

stability of E-bikes is better than that of bicycles, here the θαβS 

of E-bikes is taken as 3°. The θαβMAX of E-bikes and bicycles 

are estimated from the maximum values of the turning angle 

in the corresponding conflict situations. While θαβM, θαβL are 
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Fig. 5 Flow Chart of Extended Cyclists’ Conflict Avoidance Model 

(ECCAM) 
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estimated to be 1/5 and 1/2 of the corresponding maximum 

turning angle θαβMAX, as the 15% and 50% values of turning 

angles were too small. The estimated parameters for extended 

discrete choice sets are shown in Table VI. 

 

D. Fuzzy Evaluation Index for E-bikes 

Similar to the original CCAM, the fuzzy evaluation of 

ECCAM includes 4 indices: {Safety, Directness, Quickness, 

and Comfort}. 

In the origin CCAM model, the evaluation index of Safety 

was actually the cyclist’s expected time-to-collision (TTC), 

and the membership function was built based on study results 

on the cyclists’ lag acceptance behaviors when crossing 

conflicting motor traffic streams [29]. So far, we have not 

found any published papers on E-bikes’ lag acceptance 

behaviors when crossing conflicting traffic flows. Therefore, 

we observed 283 E-bikes lag acceptance samples crossing the 

conflicting motorcar traffic flow in the video data, the 15%, 50% 

and 85% value of the accepted lag are 1.29 s, 2.25 s and 3.38 s. 

The membership function is built on this basis (see Fig. 7(a)). 

The Directness index of E-bikes was built based on the 

distribution of the dest/dir angles in Fig.3 and Table III. 

Here, the Quickness index is a fuzzy evaluation of α’s 

current speed vα (t) and the speed change ratio λ of choice j at 

time t+ΔT. We follow the fuzzy rules for the Quickness index, 

and adjusted the current speed membership function for 

E-bikes by the distribution of speed in Fig. 3 and Table III. 

The membership function of the Comfort index is built 

according to the distribution of turning angles of E-bikes in 

Fig.3 and Table III. Fig.7 shows the membership function of 

the fuzzy index for E-bikes and bicycles for comparison 

except the Safety index. 

E. Model Validation 

In model validation, we developed a mixed traffic flow 

Extended Cyclist’s Conflict avoidance model demo based on 

the flowchart of Fig.5. Field trajectory data with 1320 

observations of E-bikes, bicycles and the conflicting road 

users at each step are used as the validation data set.  

The inputs of the demo include speeds and positions of 

target E-bike or bicycle α and the conflicting vehicle β, the 

actual trajectory of β and destination position of α. The 

outputs to be validated include the k highest possible choices 

evaluated by fuzzy evaluation rules and the final choice m 

from the Decision module for the next time step (t+ΔT). The 

Fuzzy Evaluation Rules module follows the CCAM. 

In model validation, we converted the position of the field 

trajectory data to the choice j of the according choice set Cα 

(β,t) and compared it with the model output. For the fuzzy 

logic outputs of k plausible choices, 92.2% of them included 

the actual movement choices of E-bikes and 90.7% of them 

included those of bicycles. This illustrates the validity of fuzzy 

logic in E-bike and bicycle conflict avoidance behavior 

modelling. 

The estimated trajectories from the ECCAM were also 

compared with the actual trajectories of E-bikes and bicycles 

in different conflict scenarios, and the Root Mean Squared 

Error (RMSE) is taken as a model error evaluation measure: 

       (14) 

where  stands for the predicted value of sample xi . Table 

VII shown the RMSE of speed vx and vy (the speed in x and y 

axle, respectively) and trajectory px , py (the position in x and 

y axle, respectively) of E-bike and bicycle in different conflict 

situations. Fig. 8 compared the total speed and trajectory 

RMSE of E-bikes and bicycles in vx , vy , px and  py in all 

conflict situations. 

To some extent, the validation results shown that the 

ECCAM model could represent the conflict avoidance 

behaviors of the E-bikes and bicycle in mixed traffic flow 

situations. 

 

VI. DISCUSSIONS 

In this paper, we compared the dynamic behavioral 

variables of E-bike and bicycle riders by field data taken at six 

different un-signalized intersections. We first compared the 4 

behavioral variables of E-bikes and bicycles in conflict and 

non-conflict situations. For both E-bikes and bicycles, the 

behavioral variables were significantly different in conflict 

and non-conflict situations. And in both situations, E-bikes 

tend to have higher speeds and smaller turning angles 

compared to bicycles, which verified our assumption that 

different power sources for moving E-bikes and bicycles 

leading to the differences in collision avoidance behaviors. 

The speeds of bicycles and E-bike are consistent with previous 

studies. 

We further compared the impacts of conflicting road user 

types on E-bike and bicycle riders’ conflict avoidance 

behavior.  

Interestingly, the E-bikes have different conflict avoidance 

modes in different types of conflicting road users----They tend 

to behave like bicycle when conflicting with motor vehicles 

(we called it bicycle mode) and turn to behave like motor 

vehicles when conflicting with non-motorized road users such 

as bicycle and pedestrians (we called it motor mode).  

The so-called bicycle mode refers that the bicycles prefer 

turning to slowing down in the conflict avoidance behavior. 

And the so-called motor mode refers that motor vehicles tend 

to decelerate more than turning in the conflict avoidance 

behaviors. This indicates that E-bike riders are more flexible 

RMSE(x) =

(x̂i - xi )
2

i=1

n

å

n

x̂i



 

in collision avoidance behaviors than bicycles.  

Therefore, we think the road user’s conflict avoidance 

behaviors can be categorized into three main styles: motor 

mode--- mainly speed change (with little direction change); 

bicycle mode ---mainly direction change (with little speed 

change), and E-bike mode---change speed and direction 

flexibly. 

In this sense, we may explain why people (both E-bikes and 

bicycles) tend to be more cautious (with lower speeds and 

smaller turning angles) when conflicting with E-bikes. This 

may be due to the greater flexibility of E-bikes in conflict 

avoidance behaviors, making the corresponding conflicting 

road users hard to estimate their speeds and directions, and 

hence increasing uncertainty and risk of the conflict avoidance 

process. This might help to explain why E-bikes have a much 

higher risk of being involved in a conflict with motor cars than 

bicycles. 

We considered the difference in power source and vehicle 

weights were the leading reasons for the differences in their 

conflict avoidance behaviors. E-bikes are powered by 

batteries, thus, acceleration and deceleration is much easier 

than bicycles. Thus, it is reasonable for E-bikes to accelerate 

and decelerate in conflicts with the bicycle and pedestrian, 

who is usually slow in speeds and flexible in direction. 

VII. CONCLUSIONS & FUTURE WORKS 

Here, we compared and analyzed the conflict avoidance 

behaviors of E-bikes and bicycles at six un-signalized 

intersections. The differences of E-bike and bicycles mainly 

included speed change and turning behavior when conflicting 

with bicycles and pedestrians. In conflicts with bicycles and 

pedestrians, E-bike riders tend to decelerate, while bicycles 

tend to change their direction. The phenomena indicates that 

E-bikes have more flexible conflict avoidance behavior than 

bicycles.E-bikes can behave like bicycles when conflicting 

with E-bikes and motor vehicles, and behave like motor 

vehicles when conflicting with bicycles and pedestrians. We 

think this is the unique behavior characteristic of E-bikes and 

motorcycles(‘We think’ is not rigorous!). Understanding of 

this unique behavior characteristic of E-bikes is important for 

traffic safety, facilities design and traffic management for 

E-bikes [36-38].   

The analysis results show that the conflicting road user type 

did have（why do you use ‘did have’ here?） a significant 

impact on both E-bike and bicycle riders’ conflict avoidance 

behaviors. While the gender was not proven to have 

significant impacts on the speed change ratio and turning 

angles of E-bike and bicycle riders, though the mean 

conflicting speeds were different significantly.  

Based on the analysis results, we proposed an extended 

CCAM (ECCAM) by improving the model framework, adding 

choice sets for different conflict situations and fuzzy index 

membership function for E-bikes. Compared to the original 

CCAM, ECCAM can reasonably reproduce the conflict 

avoidance behavior of E-bikes at un-signalized intersections. 

The validation results show that the ECCAM performs 

satisfactorily by capturing the true movement choice in 91.3% 

of all validation samples.  

Traffic management departments could hence base on 

E-bike conflict motion characteristics or/and apply ECCAM 

simulation model to improve the un-signalized intersection 

facilities with a lot E-bikes volumes, such as reasonable 

channelization and, if necessary, signal control. In addition, 

setting a sigh of E-bike at appropriate locations might help in 

improving driver's attention and reducing E-bike crash. 

Future work will be focused on comparisons of the riders’ 

gap acceptance behavior of E-bike and bicycles. Petzoldt et 

al.(2015) has investigated drivers’ gap acceptance in front of 

E-bikes and bicycles, and found that drivers appeared to select 

shorter gap times when conflicting with E-bikes [30, 42-44]. 

Considering this phenomenon, it is possible (Are you not 

assure?) that the E-bike riders’ gap acceptance behavior would 

be different from cyclists.  

ACKNOWLEDGMENT 

The research presented in this paper was funded partly by 

Science and Technology Planning Project of Guangdong 

Province, China (2017A040405021), National Natural Science 

Foundation of China (Grant Nos. 51408237, 51775565). The 

authors would like to thank Kristian C. Henrickson for his 

help in grammar. Ronghui Zhang is the Corresponding author 

for this paper.   

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

E-bike

1.3 2.3 3.5

G M B
1

Lag (sec)  1.5 2.5 4

G M B
1

Lag (sec)

Bicycle

 

(a) Safety for E-bikes         (b) Safety for bicycles 

5 10 30

G M B
1

Dest/dir 

angle (°)

E-bike

 
10 20 45

G M B
1

Dest/dir 

angle (°)

Bicycle

 

   (c) Directness for E-bikes         (d) Directness for bicycles 

15 23 27

Low Median High
1

V (km/h)

E-bike

  12 17 27

Low Median High
1

V (km/h)

Bicycle

 

(e) Current speed for E-bikes  (f) Current speed for bicycles  

Turning

angle (°)
5 10 30

G M B
1

E-bike

  
10 18 45

G M B
1

Turning 

angle (°)

Bicycle

 

(g) Comfort for E-bikes        (h) Comfort for bicycles  

TABLE VII 

SPEED AND TRAJECTORY RMSE OF E-BIKE AND BICYCLE IN DIFFERENT 

CONFLICT SITUATIONS. 

Conflict 

Situations 

vx 

(m/s) 

vy 

(m/s) 

px 

(m) 

py 

(m) 

Num. of  

Observations 

E-V 0.56 0.49 0.77 0.98 120 

E-E 0.45 0.61 0.69 0.85 178 

E-B 0.53 0.62 0.82 0.65 85 

E-P 0.39 0.59 0.67 0.70 176 

E-bike 

Sub-total 
0.47 0.58 0.72 0.80 559 

B-V 0.49 0.44 0.89 0.63 308 

B-E 0.66 0.42 0.97 0.68 83 

B-B 0.49 0.55 0.75 0.51 289 

B-P 0.47 0.50 0.49 0.69 81 

Bicycle 

Sub-total 
0.51 0.49 0.80 0.60 761 

 

 

 

Fig. 6 Extended Discrete Choice Set. 
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TABLE V 

STATISTICS OF BEHAVIOR VARIABLES IN DIFFERENT CONFLICT SITUATIONS. 

Conflict  

Situations 

Turning angle Δθv(°)  Speed change ratio λ 

15% value 50% 
value 

85% 
value 

Max. 15% value 50% 
value 

85% value Max. 

E-V  0.4 2 5 49 0.88 1.01 1.14 2.23 

E-E  0.5 2 5 58 0.88 1.01 1.16 1.87 

E-B 0.2 1 3 52 0.95 1.02 1.06 1.19 

E-P 0.2 1 3 15 0.92 1.00 1.06 1.15 

B-V 0.7 3 9 87 0.91 1.01 1.11 2.36 

B-E 0.6 2 4 13 0.96 1.01 1.05 1.08 

B-B 0.4 2 7 81 0.89 1.00 1.11 2.21 

B-P  0.5 2 12 89 0.83 1.00 1.15 1.76 

 

TABLE VI 

ESTIMATED PARAMETERS OF SPEED AND DIRECTION CHANGES FOR EXTENDED 

DISCRETE CHOICE SETS. 

Conflict situations θαβS (°) θαβM (°) θαβL (°) θαβMAX (°) γαβ 

E-V  3 10 25 50 0.15 

E-E  3 12 30 60 0.15 

E-B 3 10 25 50 0.05 

E-P 3 7 30 40 0.10 

B-V 5 17 45 85 0.10 

B-E 5 10 30 60 0.05 

B-B 5 16 40 80 0.10 

B-P 5 20 45 90 0.15 

 

 

 



 

 

  

 

Fig.8 Comparisons of Total RMSE of Speed and Trajectory for E-bike and 

Bicycle.  
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