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A Bifurcation Analysis of an Open Loop Internal Combustion Engine 

Abstract 

The process of engine mapping in the automotive industry identifies 

steady-state engine responses by running an engine at a given 
operating point (speed and load) until its output has settled. While the 

time simulating this process with a computational model for one set 

of parameters is relatively short, the cumulative time to map all 

possible combinations becomes computationally inefficient. This 
work presents an alternative method for mapping out the steady-state 

response of an engine in simulation by applying bifurcation theory. 

The bifurcation approach used in this work allows the engine’s 

steady-state response to be traced through the model’s state-
parameter space under the simultaneous variation of one or more 

model parameters. To demonstrate this approach, a bifurcation 

analysis of a simplified nonlinear engine model is presented. Using 

"throttle demand" and "desired load torque signal", the engine’s 
dynamic response is classified into distinct regions bounded by 

bifurcation points. These bifurcations are shown to correspond to key 

physical properties of the open-loop system: fold bifurcations 

correspond to the minimum throttle angle required for a steady-state 
engine response; Hopf bifurcations bound a region where self-

sustaining oscillations occur. The techniques used in this case study 

demonstrate the efficiency a bifurcation approach has at highlighting 

different regions of dynamic behavior in the engine's state-parameter 
space. Such an approach could speed up the mapping process and 

enhance the automotive engineer's understanding of an engine's 

underlying dynamic behavior. The information obtained from the 

bifurcation analysis could also be used to inform the design of future 
engine control strategies. 

Introduction 

Computer models of nonlinear automotive systems are 

conventionally analyzed using time-domain simulations. Using a 

mathematical model of the engine and conducting desktop-based 
analysis is extremely valuable to engineers, however simulations are 

not without limitations. A traditional time-domain analysis gathers 

information by running a time history simulation for a set of input 

parameters. Once the simulation has settled, the inputs can be 
mapped to a steady-state engine response. While a simulation for a 

single set of input parameters and initial conditions is relatively short, 

a full analysis requires multiple simulations for many combinations 

of input parameters and initial states. The cumulative time needed to 
fully map an engine with this approach alone makes the process a 

computationally-expensive task. When the interest of a time-domain 

analysis for engine mapping is the steady state response, time is 

wasted calculating transient behavior that occurs prior to reaching 
steady state. Another limitation of conventional time history 

simulations is that it can be difficult to identify the location of 

unstable equilibria. In practice, unstable equilibria often separate 

regions of the state space, so knowledge of their location can allow 
engineers to identify regions in their model’s state space where 

similar initial conditions may have quite different steady-state 

responses.  

A wide range of complementary approaches to time history 

simulations have been proposed in the literature to investigate the 

dynamic behavior of engine models. Recurrence plots have been used 

to provide insight into the deterministic nature of engine parameters 
injection impulse width and engine angular speed [1]. Recurrence 

plot and recurrence quantification analysis were used to investigate 

the dynamics associated with cycle-to-cycle variations in a diesel 

engine [2]. Multi-level sub structuring procedures were applied to 
study the periodic steady-state response of large engine models in a 

computationally-efficient way [3]. 0-1 testing, which is a relatively 

simple method of determining whether the system is regular or 

chaotic, was applied to study behavior of the combustion process [4]. 
Such approaches serve to enhance the automotive engineer’s toolbox 

of analysis techniques, allowing specific information from a dynamic 

model to be obtained efficiently. 

Another complementary approach to the analysis of nonlinear 
dynamic systems is to conduct a bifurcation analysis of the engine 

model. Bifurcation theory is the study of qualitative changes in the 

equilibria of a system of differential equations. The point at which the 

system undergoes a qualitative change is a "bifurcation point", or 
simply "bifurcation". By representing the dynamics of the non-linear 

engine as a series of first-order differential equations, a bifurcation 

study determines the position and nature of equilibria as one or more 

parameters are simultaneously varied. This is achieved with a method 
known as numerical continuation: starting from a known steady-state 

response, the continuation algorithm traces branches of equilibria as a 

parameter is varied, and identifies changes in these equilibria as 

bifurcation points. The results from a numerical continuation run can 
be displayed visually on a bifurcation diagram. These bifurcation 

diagrams provide a useful and efficient source of information that 

illustrates the long-term behavior of the nonlinear dynamic system in 

the state-parameter space. For further information on bifurcation 
theory, see [5,6].  

Bifurcation analysis methods have been used in a variety of 

engineering disciplines, including aeronautical and automotive 

engineering: in [7], a bifurcation approach was used to determine safe 
and unsafe operating regions of an aircraft maneuvering on the 

ground, highlighting key parameter values that produced undesirable 

responses; in [8], bifurcations were discovered that corresponded to 

dangerous situations (such as the loss of cornering stability). 

The aim of this paper is to demonstrate a bifurcation analysis of a 

simple open-loop engine model to demonstrate the benefits of 

applying numerical bifurcation theory to engine modeling. The 

efficiency of mapping the state parameter space with branches is 
shown to be advantageous over time history simulations alone, and 

physical properties of the system can be linked to bifurcation points. 
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To conduct the bifurcation analysis in this work, the numerical 
continuation code AUTO [9,10,11] integrated into MATLAB via the 

dynamical systems toolbox [12] is used. An overview of the 

mathematical engine model is provided, followed by an initial 

bifurcation analysis of the engine’s dynamics for different throttle 
and desired load torque settings. The initial findings present key areas 

of the state parameter space which are then explored in a further 

analysis. After providing an overview of the system’s bifurcation 

behavior, the sensitivity of this behavior to changes in additional 
parameters is determined. Finally, the key findings are summarized 

and recommendations for future work are outlined.  

Mathematical Model 

This work uses a mean value model based on work by Guzella and 

Onder [13]. The spark ignition engine model is governed by three 
coupled first order nonlinear differential equations. Equations (1),(2) 

& (3) represent the dynamics associated with the intake manifold   , 

engine speed  , and torque,   , respectively. The model contains 

several parameters:   is the gas constant of air;  is the temperature 

of air in manifold;  is the volume of intake manifold;   is the 

engine inertia;  is a time constant. The system has two input 

parameters: "throttle demand",  which ranges from fully closed, 0, 

to fully open, 1;"desired load torque",   , which is measured in Nm. 

 (1) 

(2) 

(3) 
The first differential equation represents the dynamics that occur as 

the mass flow enters,   , and exits,   , the manifold. The throttle 

mass flow equation (4) uses a tanh approximation to ensure that the 

resulting model is smooth (a condition required for the bifurcation 
analysis): 

(4) 

Here, a, b, c and d are numerically fitted parameters that are chosen 

to approximate the piecewise throttle model from [13].    and    are 
ambient pressure and temperature respectively.  

The throttle area,  , depends on the input  as shown in equation 

(5): 

(5) 

Here;  is the diameter of the throttle;  is the offset; 

is the leakage area. 

(6) 

Here:  is the compression volume at top dead centre;  is the 

displacement volume;  is the exhaust-manifold pressure;   is 

isentropic exponent air;   ,   and  are gear ratios;   and  are the 

coefficient and the stoichiometric values for air to fuel ratio. 

The dynamics associated with the engine speed (2) is the scaled 

difference between torque generation (7) and load torque (3) 

(7) 

The terms   ,  are Willans parameters, which are 

simplifications of the engine’s characteristics, while  represents 

Enthalpy. 

The final differential equation represents load torque, and equals    
after a short delay. Here    is chosen to represent the sum of 
resistance forces that are applied to the engine such as air and rolling 

resistance. The numerical values for all parameters used in this work 

are summarized in table 1. 
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Table 1. Summary table of all parameters and numerical values used. 

Parameter Symbol Value Unit 

Gas constant air 287 

Temperature of air in manifold 340 

Volume of intake manifold 

Engine Inertia 0.2 

Time constant 0.02 

Ambient Pressure 

Ambient temperature 298 

Fitted parameter 1 -0.3540 [-] 

Fitted parameter 2 10 [-] 

Fitted parameter 3 7 [-] 

Fitted parameter 4 0.3531 [-] 

Throttle diameter 

Angle offset 7.9 

Leakage area 

Compression volume at top dead 

centre 

Displacement 

Back pressure exhaust manifold 

Isentropic exponent air 1.35 [-] 

Air to fuel ratio coefficient 1 [-] 

Stoichiometric air to fuel ratio 14.7 [-] 

Coefficient 1 0.45 [-] 

Coefficient 1 

Coefficient 1 

Willans parameter 1 0.16 

Willans parameter 2 

Enthalpy 42390000 

Willans parameter 3 15.6 

Willans parameter 4 

One-Parameter Bifurcation Analysis 

This section presents a bifurcation analysis of the previously 

introduced engine model, to demonstrate the results that can be 

obtained from a bifurcation approach.  

For initial analysis, a case is chosen to represent an automobile on an 

incline;    is fixed to 100Nm. As only one of the inputs,     is varied, 

the results are presented in the form of a one-parameter bifurcation 

diagram. Note that the state space is three dimensional, however for 

readability the results are displayed graphically in 2 dimensions, with 

each state being shown as a function of the continuation parameter 

  As        =    for      only the states    and    are shown. 

Figure 1 shows the engine’s steady-state response as a function of 

throttle angle, in the form of a bifurcation diagram. Figure 1(a) shows 

the manifold pressure of the system as a function of  while figure 

1(b) shows the systems engine speed as a function of  . Here and 

throughout the paper, blue solid lines indicate dynamically-attracting 

equilibria; red dashed lines indicate dynamically-repelling equilibria. 
The black circle indicates a fold bifurcation and is the point at which 

the branches change from repelling to attracting. For this single 

desired torque single, the state parameter space has been mapped 

efficiently across the entire         . The system undergoes a fold 

bifurcation at      0.0916: for throttle settings below this value, the 
engine cannot sustain a non-zero steady-state engine response; for 

throttle settings above this value, equilibria exist so the engine can 

reach a non-zero steady-state. Therefore, the fold bifurcation is the 

system’s minimum throttle demand. 

Figure 1. One-parameter bifurcation diagram showing the response of (a) 

manifold pressure and (b) engine speed for a fixed load torque       Nm. 

Blue solid lines indicate dynamically-attracting equilibria; red dashed lines 

indicate dynamically-repelling equilibria. A black circle indicates the location 

of a fold bifurcation. 

The bifurcation diagram enables the trajectory of any initial condition 

(i.e. initial value at t=0 for manifold pressure and engine speed) in the 

state parameter space to be inferred. Attracting equilibria cause 

nearby states to tend towards them over time; repelling equilibria 

cause nearby states to move away over time. The transient trajectory 

for any initial condition can therefore be predicted based on the 

location of the attracting and repelling equilibrium branches. 

Figure 2 provides some examples of this predictive capability. With a 

throttle demand of       , the outcome of a time history 

simulation with initial condition A (        will produce a 

steady-state response, as the trajectory tends away from the repelling 

branch and towards the attracting branch. Similarly, if the initial 

condition of engine speed is raised as in example B (       , the 

bifurcation diagram shows that a steady state response will be 

achieved, as the trajectory will tend towards the attracting branch.  
However, if the initial condition of engine speed is lowered so it is 

below the repelling branch as in example C (      , the 

bifurcation diagram can be used to infer that the engine speed will be 

repelled towards 0. For completeness, for simulation D (       , 
which has a throttle demand of          , there is no equilibria and 

therefore the trajectory heads towards zero engine speed. Here, the 

role of repelling equilibria is clear in that they create a boundary 

between initial conditions that do or do not lead to a non-zero steady-
state engine response.  
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Figure 2. Four example initial conditions (A,B,C,D), are shown on the 

bifurcation diagram and as a time history. Green trajectories arrive at the 

stable branch while blue trajectories do not reach this steady state response. 

To see how the system behaves in another area of the state-parameter 

space, a different load torque can be chosen. For a second analysis, 

the case of an automobile cruising is chosen, so    is fixed to 10Nm.  

Figure 3 shows a bifurcation diagram for fixed   Nm. A Hopf 
bifurcation, represented here and throughout by a purple star, is 

observed at           . A Hopf bifurcation indicates the point at 

which a periodic response arises, in the form of a limit cycle 

oscillation. The amplitudes of these limit cycle oscillations, shown in 
green, grow from the Hopf bifurcation as the throttle demand 

decreases. This Hopf bifurcation is a key point in the state parameter 

space, as throttle demands below            will result in self-

sustaining periodic responses, while throttle demands above   
 result in attracting equilibrium behavior. 

Figure 3.  One-parameter bifurcation diagram showing the response of (a1) 

manifold pressure and (b1) engine speed (with zoomed view (a2) and (b2) 

below) for      Nm. A purple star indicates the location of a Hopf 

bifurcation. 

Figure 4(a) contains a time history simulation for          . It 
shows that the system exhibits an oscillatory response, and that the 

amplitude of these oscillations reaches a constant value after an initial 

transient period of about 20 seconds. Figure 4(b) shows a time-

history simulation for           , which shows that the system is 

able to reach a steady-state response. The behavior in figure 4 arises 

because of the presence of a supercritical Hopf bifurcation.  

Figure 4.  A time history simulation for            (a) showing a periodic 

response and a time history simulation for            (b) showing the 

solution decaying to steady state, as could be inferred from the bifurcation 

diagram. 

The Hopf bifurcation and behavior in figures 3 & 4 represent the 

physical properties that occur in the engine as the throttle angle 

transitions from closed to open. For low throttle positions, the throttle 

is open to the point at which there is enough air to increase the 

engine’s speed for a short duration. As the engine speeds up, its 

momentum causes it to overshoot the speed that could be maintained 

with the current flow of air through the throttle. This causes there to 

be a lack of airflow at the peak engine speed, which means that the 

engine begins to slow down. As the engine decelerates, the airflow 

through the throttle becomes sufficient to increase the engine’s speed 

once more, and the cycle repeats itself. This behavior is shown by the 

out of phase response in figure 4. As throttle is increased past the 

Hopf bifurcation point, the engine receives enough airflow to 

maintain a steady engine speed. 
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Two-Parameter Bifurcation Analysis 

To understand where each bifurcation exists throughout system, the 
evolution of both the fold and the Hopf bifurcations can be traced 

numerically as throttle position and load torque are varied 

simultaneously – this process is referred to as a two-parameter 

continuation run. In a two-parameter continuation run, the fold and 
Hopf bifurcations observed in figures 1 and 3 are traced as throttle 

angle and load torque are varied simultaneously. The results are 

presented in a two-parameter continuation diagram, as shown in 

figure 5. This shows the location of these two bifurcations in terms of 
throttle position and torque value. The purple dashed purple line 

indicates the loci of Hopf bifurcations and the black line indicates the 

loci of fold bifurcations. For higher values of load torque, a single 

fold bifurcation occurs. This indicates that the one-parameter 
bifurcation diagram will be similar to that shown in figure 1. For very 

low torques, only a Hopf bifurcation is present, so the behavior will 

be similar to that described in figure 3.  

The grayed-out section represents the region of the parameter space 
where no attracting equilibria exist: running any time history 

simulation at an operating with parameter values in this region will 

drive the engine speed towards zero as seen in figure 2(b2). Such 

observed behavior in this region is independent of the choice of 
initial condition – a result that highlights the analysis power offered 

by performing a bifurcation analysis. To explain how this shaded 

region can be inferred, the behavior that occurs between the 

previously identified low (figure 3) and high (figure 1) load torque 

cases will be examined. 

Figure 5. Two-parameter continuation of the fold and Hopf bifurcation points 

for (a)           and a zoomed view (b) of the point where both bifurcations 

collide: black lines indicate loci of fold bifurcations; purple dashed lines show 

loci of Hopf bifurcations. The shaded region indicates parameter values that 

do not lead to a steady-state engine response.  

Between the two load cases considered in the one-parameter 

bifurcation analysis section, where the curves overlap and turn back 
on themselves, multiple fold and Hopf bifurcations may be present 

depending on the exact value of load torque chosen. The grayed out 

sections shows operating points in which no equilibria exist. For 

other regions, both attracting and repelling equilibria exist in the 
parameter space and therefore running a time history simulation at 

these operating points means the behavior is dependent upon initial 

conditions. An added conclusion of a two-parameter continuation is 

that the system peak load torque is also found in a two-parameter 
continuation, as for a throttle completely open the maximum torque 

demand that can be met by the engine is given by the peak of the fold 

curve, which occurs around 282Nm. 

To explore exactly what behavior exists in the parameter region 

where the two bifurcation curves overlap, further one-parameter 

bifurcation diagrams can be created at specific torque values. The 

five horizontal lines in figure 6 indicate load torque values that will 

be considered in subsequent one-parameter bifurcation diagrams. 

Each line represents torque values that have different bifurcation 

behavior in their state parameter space. Case v was shown in figure 5, 

and is representative of the dynamics from      until the system 

undergoes what is called a cusp bifurcation – a point at which two 

fold bifurcations meet. 

Figure 6.  Two parameter bifurcation diagram (a) with zoom (b) showing 5 (i-

v) key desired torque signals that will be taken forward for further analysis. 

Figure 7 shows the one-parameter bifurcation diagram that 

corresponds to case iv in figure 6, just after the system has passed the 

cusp point. Here, two fold bifurcations are observed along with a 

Hopf bifurcation. The size of the amplitudes from the Hopf point 

rapidly grow until they collide with the branch of repelling equilibria 

to create a homoclinic orbit. To the left of this homoclinic orbit, no 

periodic behavior is present and only repelling equilibria exist. Time 

history simulations in this region would show the trajectories heading 

towards a zero engine speed: for very low throttle angles, not enough 

air can get through so the engine speed is driven towards zero. The 

homoclinic orbit and Hopf bifurcation bound the region in which 

periodic oscillations occur.  

Figure 7. One-parameter bifurcation diagram showing the response of (a1) 

manifold pressure and (b1) engine speed (with zoomed view (a2) and (b2) 

below)  for      Nm. 

As torque is increased further, one of the two fold bifurcations moves 

further from the other until it leaves the range of physically-

meaningful throttle positions. Case iii from figure 6 is shown as a 
one-parameter bifurcation diagram in figure 8: for this load torque 

value, no equilibria exist at low throttle angles. 
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Figure 8.  One-parameter bifurcation diagram showing the response of (a1) 

manifold pressure and (b2) engine speed (with zoomed view (a2) and (b2) 

below) for      Nm. 

As the torque is raised further still, a second Hopf bifurcation arises 

from a point known as a Bogdanov-Takens bifurcation. Figure 9 is 

the one-parameter bifurcation diagram for case ii: the periodic limit 

cycle is bound by two Hopf bifurcations, rather than one Hopf 

bifurcation and a homoclinic orbit. 

Figure 9.  One-parameter bifurcation diagram showing the response of (a1) 

manifold pressure and (b1) engine speed (with zoomed view (a2) and (b2) 

below) for      Nm. 

As torque is increased even more, these Hopf bifurcations grow 

closer and closer until they collide and are destroyed. Figure 10 is the 

one-parameter bifurcation diagram for case i, and shows the behavior 
that is like that of figure 1. The qualitative description in figure 1 is 

relevant for torque values until the peak load torque of   , as the 

minimum throttle demand increases until it outside the physically 

meaning region. 

Figure 10.  One-parameter bifurcation diagram showing the response of (a) 

manifold pressure and (b) engine speed for      Nm. 

It is noted in figures 8, 9 and 10 that the branch of attracting 
equilibria has a very similar structure: this information could be 

obtained, albeit in a more time consuming way, via conventional time 

history simulations. Detecting the changes in the branch of repelling 

equilibria would be much more difficult to do with traditional time 
history simulations alone. With traditional methods many simulations 

would be needed to approximate this branch. For a single    and   , 
time history simulations would have to be ran for many different 

initial conditions either side of the branch of repelling equilibria. This 
process would then have to be repeated for further combinations of 

   and    which, when pieced together, would only approximate the 

location of the repelling branch. 

Sensitivity Analysis of the Bifurcation Diagrams 

With an overview of the bifurcations present in the system's state-
parameter space, a bifurcation sensitivity analysis can be conducted. 

Here, some of the nominal parameter values of the model are altered 

to determine the extent to which parameter variations could change 

the steady-state behavior of the system. Running the two-parameter 
continuations when one or more nominal parameters are changed will 

show how sensitive these bifurcations are to changes in certain 

parameters.  

Air-fuel ratio  , which in the model is assumed be fixed at the 

stoichiometric value     by a controller, is likely to undergo some 

deviation during driving. Figure 11 shows the bifurcation sensitivity 

analysis for  . Running continuations for different   values either 

side of     show no qualitative change to the bifurcation behavior. 
These two-parameter continuations are performed at extremely rich 

and lean values that far exceed any legal boundaries, to capture the 

insensitivity of the model to changes in  . 
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Figure 11.  Two two-parameter bifurcation diagrams for (a1)  0.6, and (b1) 

 1.4 (with zoomed view (a1) and (b2) below). 

Ambient pressure is also assumed to be fixed at           
 . An 

increase in ambient pressure as shown in figure 12 provides a crude 
representation of the effects of turbocharging an engine. The results 

show that an increase in peak load torque occurs as pressure increases 

to        and     . Increasing the value of     also causes a 

change in the Hopf bifurcation curve: it reaches a higher torque value 
before turning around and colliding with the fold locus, indicating a 

growth in the region where periodic responses are expected. The 

figures also show a non-linear relationship between peak load torque 

and ambient pressure as an increase of a factor of     and 2 increase 
the peak load torque by more than these amounts. 

Figure 12.  Two two-parameter bifurcation diagrams for (a1)  1.5 bar and 

(b1)    2 bar (with zoomed view (a1) and (b2) below). 

A decrease in ambient pressure, along with a decrease in the ambient 
temperature, can be used to replicate the effects of the engine 

operating at higher altitudes: two-parameter bifurcation diagrams for 

such a case is shown in figure 13. Increasing the altitude to 2000m 

and 5000m will replicate the engine running in extreme physical 
conditions. Opposite changes are observed to those shown by the 

previous result in figure 12: a higher altitude limits the airflow into 

the system, reducing the amount of torque that can be demanded at a 

given throttle angle; the Hopf bifurcation is reduced until it is no 
longer present in the physically-meaningful region. As before, the 

relationship is non-linear. At 5000m, the Hopf bifurcation no longer 

exists in the physically possible region as it has been suppressed 

below     .  

Figure 13.  Two two-parameter bifurcation diagrams for an altitude of (a1) 

2000m and (b1) 5000m (with zoomed view (a1) and (b2) below). 

A final parameter is chosen to replicate a change that could be made 

in the design process: the engine inertia value is altered in figure 14, 

replicating an increase or decrease in the size of the flywheel. There 

is no qualitative change in the fold bifurcations behavior; however a 
smaller flywheel increases the amount of demand torque the Hopf 

bifurcation is present for. A larger flywheel decreases the range of 

Hopf bifurcation and causes the Bogdanov-Takens bifurcation to 

occur outside the physically-meaningful range, meaning that only one 
Hopf bifurcation will be observed at any single torque value. 

Figure 14.  Two two-parameter bifurcation diagrams for (a1) , 

and (b1)   (with zoomed view (a1) and (b2) below). 

The four alterations in lambda, ambient pressure, and altitude and 
engine inertia are a demonstration that shows how a bifurcation 

sensitivity analysis can quantify the effects of additional parameters 

that may cause a qualitative change should they deviate from their 

fixed value. Mechanical alterations, such as changing the size of the 
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flywheel, alter the location of the Hopf bifurcation. In comparison, 
alterations involving the airflow, such as changing altitude, disturb 

the location of the fold bifurcation. This demonstrates the capability 

that a bifurcation analysis has in determining the location of 

qualitatively different behavior based on a change in one or more 
parameters. Furthermore, a bifurcation approach has the ability to 

classify which type of alteration, such as mechanical, are likely 

modify which behavior. 

Conclusions 

This work demonstrates how a bifurcation analysis can be used to 
offer a complementary approach to analyze the dynamics of a non-

linear engine model. The tool of numerical continuation offers an 

efficient method of mapping the state parameter space, enabling key 

properties of the system to be highlighted. By tracing a steady-state 
response across an entire parameter range, branches of dynamically-

repelling and dynamically-attracting equilibria allow the user to 

determine the output of any time history simulation in the state-

parameter space. Bifurcation points observed, such as fold and Hopf 
bifurcations, can provide physical boundaries to the engine’s 

operation, such as the minimum throttle angle or peak load torque. A 

subsequent bifurcation sensitivity analysis highlights the parameters 

that may cause a qualitative change in the system’s dynamics. 
Alterations in the parameters which relate to the mechanical and air 

flow properties are shown to affect the state-parameter regions in 

which different types of bifurcation exist – such information could 

help inform the design of future engine control strategies. 

Future work could be conducted on a more realistic engine model, as 

a full bifurcation study on a more representative model could develop 

fundamental knowledge about how computational engine models 

behave. Running a similar analysis on an emissions model could 
prove to effective tool to analyzing the influence of control 

parameters on emissions output. Furthermore, knowledge of where 

bifurcations exist, and how they change, could aid the development 

of future engine control strategies, by informing engineers of where 
qualitative changes in the system’s dynamic response will occur. 
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