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Abstract Recent developments in propulsion sys-
tems to improve energy efficiency and reduce haz-
ardous emissions often lead to severe torsional oscil-
lations and aggravated noise. Vibration absorbers are
typically employed to palliate the untoward effects of
powertrain oscillations, with nonetheless an adverse
impact on cost and constrained efficacy over a lim-
ited frequency range. Recently, the authors proposed
the use of nonlinear vibration absorbers to achieve
more broadband drivetrain vibration attenuation with
low complexity and cost. These lightweight attach-
ments follow the concept of targeted energy transfer,
whereby vibration energy is taken off from a primary
system without tuning requirements. In this paper, the
design and experimental investigation of a prototype
absorber is presented. The absorber is installed on a
drivetrain experimental rig driven by an electric motor
through a universal joint connection placed at an angle,
thus inducing the second-order torsional oscillations.
Vibration time histories with and without the absorber
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acting are recorded and compared. Frequency–energy
plots are superimposed to the system nonlinear nor-
mal modes to verify the previously developed design
methodology, whereas the achieved vibration reduc-
tion is quantified by comparing the acceleration ampli-
tudes of the primary system and monitoring the dis-
tribution of energy damped in the primary system and
the absorber. The absorber prototype was found to lead
to significant vibration reduction away from resonance
and near resonance with the additional feature of acti-
vation over a relatively broad frequency range.

Keywords Nonlinear vibration absorber · Targeted
energy transfer · Torsional oscillations · Propulsion
system

1 Introduction

Global legislations require the development of propul-
sion systems that produce lower levels of hazardous
emissions, with particular emphasis on diesel engines.
Lower emissions and improved energy economy are
achieved through recent technological advancements,
such as downsized engines [1]. However, there is an
increased propensity for severe torsional oscillations
due to reduced system weight. To mitigate these, man-
ufacturers are employing various palliative measures.
These include tuned vibration absorbers, such as clutch
pre-dampers, the dual mass flywheel (DMF) [2] and
DMF with centrifugal pendulum vibration absorbers
(CPVA) [3,4]. These palliatives are tuned to specific
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frequency range, and consequently, they are not acting
in a broadband manner over the powertrain response.
Thus, there is a requirement for vibration absorbers
that would respond effectively over a broad frequency
range without precise prior tuning. Nonlinear energy
sinks (NESs) can play this role. The NES is a pas-
sive absorber, which follows the concept of targeted
energy transfer (TET). The energy of mechanical oscil-
lations is shifted in an almost irreversible manner from
the donor (linear primary system) to a recipient (NES),
where it may be absorbed, redistributed or dissipated
[5].

Numerous publications in the available literature are
dedicated to the understanding of TET and its poten-
tial applications in systems undergoing translational
motion. Vakakis et al. [6] andGendelman et al. [7] have
studied TET in engineering systems that were excited
by impulses. 1:1 stable sub-harmonic orbits (i.e. p:1
periodic orbits with period equal to p-times the period
of the forcing term) were noted to act effectively on
transferring energy from the primary system donor to
the nonlinear vibration absorber. Vakakis et al. [8] stud-
ied the nonlinear normal modes (NNMs) activated in
order to describe how the nonlinear absorbers interact
with energy donors (linear primary systems). Kerschen
et al. [9] studied linear systems attached to grounded
and ungrounded NES to understand their nonlinear
dynamics and the absorbers’ effectiveness. Luo et al.
[10] designed a passive nonlinear vibration absorber
to mitigate vibrations of a large-scale nine-floor struc-
ture. The design of NES nonlinear springs was realised
through the use of pyramid-shaped elastomers, provid-
ing effective control on achieving the desired nonlinear
force profile.

Limited number of studies exists on applications
that include rotational NES, which are more suitable
for attenuating torsional oscillations. In this regard,
the application of a torsional NES to stabilise a drill-
string system was examined in [11]. Gendelman et al.
[12] studied the dynamics of a rotational NESmounted
within a linear oscillator. Hubbard et al. [13,14] stud-
ied experimentally the suppression of aeroelastic insta-
bilities on a flexible wing using a rotational nonlinear
vibration absorber. The NES was housed on the tip
of the wing with piano steel wires as a mechanism
for generating the cubic force nonlinearity. Recently,
Haris et al. [15–17] showed numerically that nonlin-
ear vibration absorbers with significantly low inertia

can be effective in attenuating torsional vibrations of
drivelines over a broader frequency range.

This paper presents the design and experimental
analysis of an NES for suppressing torsional oscilla-
tions in a propulsion system. To the best knowledge of
the authors, this is the first numerical and experimen-
tal demonstration of oscillation reduction for propul-
sion systems using NES hardware. In the next section,
numerical analysis of the subsystem model with NES
is presented, highlighting vibration attenuation over a
broad frequency range. The design and experimental
testing of the NES is then presented, correlating well
with the model results for operation away and near res-
onance.

2 Subsystem model equipped with NES

In recent publications, the authors demonstratednumer-
ically that a single NES with cubic stiffness nonlinear-
ity can attenuate the torsional oscillations of a drive-
line [15,16]. In comparison with current state-of-the-
art palliatives, the NES has the potential of being sig-
nificantly lightweight, nevertheless capable of achiev-
ing more broadband vibration attenuation. Other types
of stiffness nonlinearity were analysed, whereby it
was conjectured that the lack of impacts in the drive-
line leads to ineffectiveness of vibro-impact NES. The
authors have also demonstrated that the NES func-
tions either by absorbing energy from the primary sys-
tem while dissipating a fraction of energy locally or
through redistribution of energy to the higher modes
where it is dissipated easier due to their higher struc-
tural damping content [17]. These criteria were used
in [15] to study the effect of different types of non-
linearity on reducing the amplitude of torsional vibra-
tions, including cubic, quintic and vibro-impact. A
large number of numerical simulations led to the con-
clusion that an NES with cubic stiffness can efficiently
reduce the amplitude of torsional vibrations of automo-
tive drivetrains within a higher frequency range. NES
absorberswith vibro-impacts and fifth-order nonlinear-
ity did not demonstrate better performance. For prac-
tical reasons related to the realisation of the nonlin-
earity, the cubic NES has been prioritised for experi-
mental validation in this paper. Owing to the effective
numerical performance of the NES, a prototype was
designed and built for testing in a small-scale propul-
sion system rig, similarly to the model layout depicted
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(a) (b)

Fig. 1 a Subsystem rig schematic, b Inertia 2 acceleration amplitudes of the 1.5 Engine Order contribution with NES parameters
JNES = 10.7% of Inertia 2, kn = 2.2 × 103 Nm/rad3 and cn = 0.001 Nms/rad

Fig. 2 Angular velocity
time history of Inertia 2 with
Active and Locked NES
(JNES = 10.7% of Inertia 2,
kN = 2.2 × 103 Nm/rad3,
cN = 0.001 Nms/rad)

in Fig. 1a. The two main inertias of the propulsion
system are excited by the cyclic irregularities origi-
nating from an engine or motor. Brief description of
the numerical model (originally presented in refer-
ence [16]) comprising the equations of motion, key
parameter values and methods employed to generate
the results presented in Figs. 1, 2 and 3 is provided in
“Appendix A”.

Considering that low vibration absorber inertia is
desirable in propulsion systems, the following set of
NES characteristics has been selected: JNES = 10.7%

of Inertia 2, kN = 2.2 × 103 Nm/rad3 and cN = 0.001
Nms/rad. A vehicle manoeuvre in first gear at 100%
throttle is used to analyse the performance of the NES
through the entire engine speed range. The 1.5 Engine
Order (EO) acceleration amplitudes observedon Inertia
2 with (Active) and without (Locked) the NES acting
are depicted in Fig. 1b, clearly indicating significant
vibration attenuation in the frequency range 55–70 Hz.
The time history of Inertia 2 angular velocity is shown
in Fig. 2 for the aforementioned vehicle manoeuvre.
The input speed range where the NES suppresses the
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Fig. 3 NES torque–deflection curve

1.5 EO torsional oscillations is ranging approximately
between 2200 and 3000 rpm (55–70 Hz). In the inset of
Fig. 2 (starting around 1.8 s), the angular velocity fluc-
tuations for the system with Active NES are noticeably
reduced when compared to the system with Locked
NES. The torque–deflection curve (generated by the
numerical model) resulting in this effective NES per-
formance is shown in Fig. 3. During peak performance,
the NES would be producing approximately 15 Nm
torque with a corresponding deflection of about 11◦.

3 NES identification (quasi-statically)

Based on the numerical analysis and the identified non-
linear stiffness and inertia properties, a concept NES
prototype was manufactured. The NES comprises two
discs representing the inertia of the NES with two con-
ical springs (Fig. 4) housed 180◦ apart for targeting
both the positive and negative regions of the torque–
deflection characteristic curve (Fig. 3).

In order to ascertain that the designed NES con-
forms to the required parameters, quasi-static torque–
deflection tests were performed. The NES was loaded
and increasing torque was applied. The recorded
torque–deflection curve is shown in Fig. 5a. It can be
observed that the experimental curve follows the theo-
retical design characteristics closely. Nevertheless, the
experimental torque–deflection curve shows a linear
component at small deflections, which is expected to
influence the NNMs of the system. Moreover, it is seen
that a quintic function is more accurate than the cubic
one. Therefore, the NES torque function selected for
the computations to follow reads TNES = kn θ +knl θ5.
The experimental curve has a small amount of hys-
teretic damping, which can be computed by evaluating
the area enclosed by the hysteretic loop. The energy
loss in the NES (Fig. 5a) during quasi-static testing

Conical 
springs Spring 

compression 
arm

NES 
Disks

(a) Rivets

Bearing
Shaft 1 
mounting 
hub

(b)

Fig. 4 Schematic of the NES prototype a front view and b side view
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Fig. 5 a Comparison of the NES torque–deflection curves (model vs. experiment), b testing machine hysteretic curve

(a) (b)UJ NES hub END 
NES

Jaw 
coupling UJ

Fig. 6 a CAD drawing of the experimental rig and b rig photograph showing the NES, jaw coupling and universal joint

was 0.3934 Nm. The energy loss of the testingmachine
itself was evaluated to be 0.3933 Nm (Fig. 5b) for the
same test. This signifies that the NES has indeed low
damping content.

Following the successful identification of the NES
torque–deflection characteristics, it is essential to eval-
uate the designed prototype inertia. The NES device
was loaded on a pendulum machine, where the pendu-
lum plate was initially displaced and then released to
perform 100 oscillations for which the total time was
noted down. The process was repeated a few times, and
an average inertia value was found to be within 2% of
the designed value. This difference is not expected to
significantly affect the NES performance.

4 Experimental set-up

The identification tests validated the designed NES
stiffness and inertia to match the performance exhib-
ited in the numerical simulations presented in Sect. 2.
An experimental rig was built capable of producing
speed harmonics of a rotating assembly driven by an
electric motor. The set-up, shown in Fig. 6, includes an
electric motor with a universal joint (UJ) connected to
the motor’s output shaft. This type of connection intro-
duces the second-order harmonics of the input speed,
and it is therefore consistentwith engine ormotor-order
vibrations typically observed in propulsion systems.
The UJ output shaft is connected to a jaw coupling,
which is used to induce an independent degree of free-
dom at the end of the set-up. This is required to assess
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the NES effectiveness in reducing the vibrations of a
component that is not directly driven by the motor. The
end connection of the jaw coupling is attached to a
solid steel shaft, which will be hereafter referred to
as the coupling shaft. The latter accommodates a hub
to mount the NES onto the rotating component. The
coupling shaft is connected to a weight disc represent-
ing the END inertia (see Fig. 6a) via a bellow cou-
pling with high torsional stiffness. The whole rotating
assembly was supported by self-aligning pillow block
bearings.

The purpose of the experiments is to assess the
torsional vibration reduction experienced by the cou-
pling shaft due to the NES action. This is accom-
plished by running speed (frequency) ramps between
0-2000 rpm motor speed under two scenarios (namely,
Active NES and Locked NES). In the first case of the
Active NES scenario, the END inertia disc is removed
and the system is excited at a range away from any
resonant frequency. In the second of the same sce-
nario, the END inertia is attached and resonance can
be observed in the primary system. In both cases, the
NES is attached to the coupling shaft and measure-
ments are recorded using non-contact, rotational laser
Doppler vibrometers at three of the following locations
depending on the scenario: (i) the UJ output; (ii) the
coupling shaft; (iii) the NES inertia disc and iv) the
END inertia disc. In the LockedNES scenario, theNES
is replaced by a mock solid disc (with a centred mount-
ing hole) that matches the NES inertia. In this way,
any change in the coupling shaft oscillations is due to
the NES action, rather than to any additional inertia
on the system. During the Locked NES scenario, the
vibrations of the UJ output, coupling shaft and END
inertia disc (in the second resonant case) are recorded
and then used as baseline data to assess the NES
performance.

4.1 Universal joint harmonics

The kinematics of the universal joint running at an
angle β is governed by the relationship : tan θin =
cosβ tan θout [18], with respect to the angles of rota-
tion of the input shaft, θin, and the output shaft, θout.
Differentiating this equation leads to a formula for the
angular velocities:

ωin = ωout cosβ

1 − sin2 β sin2 θout
. (1)

A Taylor expansion of Eq. (1) leads to:

ωin = ωout cosβ

∞∑

n=0

sin2n β sin2n θout. (2)

Then, recall the following trigonometric identity [19]:

sin2n x = 1

22n

(
2n
n

)
+ (−1)n

22n−1

n−1∑

k=0

(−1)k

(
2n
k

)
cos 2 (n − k) x, (3)

where

(
a
b

)
is the binomial coefficient. Constraining

the expansion to terms of the second harmonic, i.e.
n − k = 1, we get:

ωin = ωout + ωout cosβ

∞∑

n=1

sin2n β
(−1)n

22n−1 (−1)n−1

(
2n

n − 1

)
cos 2θout, (4)

which is a converging series, yielding:

ωin = ωout

[
1 − 2 sin2 β

(1 + cosβ)2
cos 2θout

]

= ωout [1 − A cos 2θout] , (5)

where A is a constant depending on angle β.

4.2 Numerical model of the experimental layout

A model has been built in MATLAB® environment
to simulate the torsional response of the system (with
and without the NES), as shown in Fig. 7. The UJ input
shaft is connected to amotorwith large inertia, which is
considered as ideal excitation for modelling purposes.
Three inertias constitute the independent degrees of
freedom: J1, J2 and Jn . The equations of motions are
then expressed as follows:

J1θ̈1 + c1
(
θ̇1 − θ̇out

) + k1 (θ1 − θout) − c2
(
θ̇2 − θ̇1

)

− k2 (θ2 − θ1) − cn
(
θ̇n − θ̇1

) − kn (θn − θ1)

− knl (θn − θ1)
5 = 0,

Jn θ̈n+cn
(
θ̇n−θ̇1

)+kn (θn − θ1)+knl (θn−θ1)
5=0,

J2θ̈2 + c2
(
θ̇2 − θ̇1

) + k2 (θ2 − θ1) = 0, (6)

where J1 is the coupling shaft inertia; J2 is the End iner-
tia; Jn is the NES inertia; θi (i = 1, 2, n) are angular
displacements; k1 and k2 are linear stiffness coefficients
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k1, c1

JUJ, out
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Fig. 7 Sketch of the experimental rig model

Table 1 Model parameters in the two experimental set-ups

Parameter Away from resonance Near resonance

J1 (kgm−2) 2.08 × 10−4 2.08 × 10−4

J2 (kgm−2) – 2.931 × 10−3

Jn (kgm−2) 4.0085 × 10−4 4.0085 × 10−4

c1 (Nm s rad−1) 0.15 0.15

c2 (Nm s rad−1) – 0.2

cn (Nm s rad−1) 0.015 0.015

k1 (Nm rad−1) 540 270

k2 (Nm rad−1) – 8500

kn (Nm rad−1) 10.89 10.89

knl (Nm rad5) 38870 38870

β (◦) 20 20

of the corresponding shaft and coupling combinations;
kn and knl are the NES linear and nonlinear stiffness
coefficients, respectively; ci (i = 1, 2, n) are damping
coefficients. Table 1 shows the values used for the sys-
tem parameters. The driving angle θout is acting as base
excitation of the torsional system and is taken from Eq.
(5). Equation (6) describes the dynamicswhen theEND
inertia is attached (case near resonance). In the non-
resonance case, the third equation in Eq. (6) is mute.
Thus, the stiffness and damping forces (proportional to
c2 and k2) entering the first equation are also omitted.

5 Results and discussion

This section presents the experimental results obtained
with the rig shown in Fig. 6 away and near resonance.

The latter is practically induced by the presence of the
END inertia disc. In what follows, time histories of the
NES and the corresponding primary system are pre-
sented, the acceleration amplitudes are processed and
compared between the Locked and Active NES cases,
whereas the system energy is calculated and plotted
along with the system’s NNMs.

5.1 Away from resonance

Figure 8 exhibits the rotational velocity time histories
during a forward speed sweep between 0 and 2000 rpm,
with an additional backward sweep in Fig. 8e showing
the NES nonlinearity. Equation (5) signifies that the
torsional excitation depends on motor’s speed not only
regarding the frequency content but for the amplitude
as well. The system is therefore subjected to an excita-
tion of increasing amplitude as the sweep progresses.
The results correspond to a UJ angle of β = 20o. Com-
paring the Active NES results with the time history of
the Locked NES case, a vibration reduction of the pri-
mary system is observed, located around 20–35 s in the
time domain. The magnitude of the reduction is more
clearly shown in the zoom-in extracts of Fig. 8c, d. It
can also be noted that multiple co-existing solutions for
the NES are realised in this region (see Fig. 8e, f).

The achieved reduction is more apparent when the
acceleration amplitudes are compared. In Fig. 9, the
acceleration amplitudes are plotted against the instanta-
neous excitation frequency, as this was computed from
the spectrograms of the time histories. The observed
reduction is consistent with the remarks made for the
time histories. As the NES vibration grows, energy is
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Fig. 8 Rotational velocity time histories without the End inertia: a Locked NES, b Active NES, c zoom-in plot from a, d zoom-in plot
from b, e NES in forward and backward sweeps, f zoom-in plot from e

extracted from the primary system which results in
the corresponding vibration amplitude reduction. As
soon as the NES motion “jumps down” (detaching
from the high amplitude response), the primary system

oscillations in the Active NES case are almost identi-
cal to these of the Locked NES cases. This indicates
that the achieved reduction is due to the NES action,
and further investigation using the frequency–energy
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Fig. 9 End shaft acceleration amplitude for the Active NES case
versus the Locked NES case

Fig. 10 Frequency–energy plot of the Active NES case com-
puted using Eq. (7), superimposed to the NNMs branch

plots becomes pertinent. The system’s vibratory energy
(excluding the rigid body motion) reads:

EV = KV +UV = 1

2
J1

(
θ̇1 − θ̇RB

)2

+1

2
Jn

(
θ̇n − θ̇RB

)2 + 1

2
k1 (θ1 − θout)

2

+1

2
kn (θn − θ1)

2 + 1

6
knl (θn − θ1)

6 , (7)

where θ̇RB is the rigid body motion velocity of the sys-
tem. Figure 10 shows the frequency–energy plot of the
system with the branch of NNMs superimposed. The
latter describes the locus of the conservative solutions
of the system in the frequency–energy space. The dis-
tribution of energy in the NNMs has been shown to

influence TET in impulsive and forced systems with
light damping and is therefore essential to design an
NES. Figure 11 shows examples of these NNMs for
selected cases. Note that this is not the only branch
that exists for this system. A second branch exists in
a higher frequency range due to the relatively high
stiffness of the primary system; however, this sec-
tion explores TET away from resonance, and there-
fore, the higher frequency NNM branch is only rele-
vant for Sect. 5b, where TET in a resonant region is
discussed. NNMs were computed using the NNMcon-
t®computational package [20]. It is noticed that the
NES amplitude grows (see Fig. 8e) when the excita-
tion frequency drives the system energy close to over-
lapping with the NNMs. The region where the NNM
crosses through the system energy is the range of the
observed vibration reduction. This confirms previous
observations in the development of a graphical method
to design an NES vibration absorber [15,16], where an
overlap of the system energy with the NNMs has been
identified as key to the design of effective absorbers.
Moreover, Fig. 10 also suggests that vibration reduc-
tion is most effective when the forced response of the
system is closely related to the conservative system’s
NNMs. When the NES detaches from the high ampli-
tude response and thus, its vibration mitigation capa-
bility diminishes, the system energy also recedes from
the NNMs in the frequency–energy plot, indicating a
direct correlation of the system’s NNMs with the NES
capability to absorb energy.

The above described correlation is more evident
at the system’s time histories and the corresponding
NNMs, shown in Fig. 11. Time histories from three
time snapshots corresponding to qualitatively different
responses are shown in the left-hand side column, with
the NNMs acting at that time in the right-hand side
column. The top set of figures is taken before the NES
reaches the high amplitude response at about 15.5 s.
The system energy is not broadly affected by the NNM
due to the frequency mismatch: energy is supplied at
a frequency of about 21 Hz, whereas the frequency of
the NNM is monochromatic and close to 35 Hz. As the
sweep progresses, the NES gains energy and reaches
higher oscillating amplitudes. Themiddle set of figures
corresponds to the region of effective vibration reduc-
tion at about 34 s. The NES NNM amplitude is more
than an order of magnitude larger than primary sys-
tem’s NNM and out of phase. Due to the overlap of the
system energy with the NNM locus, this is manifested
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Fig. 11 a–c–e NES and End shaft velocity time histories, b–d–f corresponding dominant NNMs

as strong vibration reduction in the forced response.
When the system detaches from the NNM branch (bot-
tom set of figures), the influence of the conservative
dynamics diminishes, leading to the primary system
vibrating at amplitudes similar to the locked case.

Another important metric worth considering is the
energy that the NES damping consumes, given by
the integral over time of the NES damping power,
cn

(
θ̇n−θ̇1

)2
. Figure 12 shows the ratio of the total
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Fig. 12 Percentage of total energy damped by theNES over total
input energy

energy damped by the NES over the total input (oscil-
latory) energy, as described by Eq. (8), where Ein(t) is
the instantaneous input energy.

Er =
∫ tend
0 cn

(
θ̇n−θ̇1

)2
dt

∫ tend
0 Ein(t)dt

. (8)

A steep increase in the plotted ratio occurs between 20
and 35 s, which is the region identified from previous
graphs as the vibration reduction area. This plot shows a
remarkable ability of theNES to absorb energy from the
primary systemwhen it is operatingwithin its effective,
overlapping frequency range. Up until 35 s, the NES
has damped more than 70% of the total energy input
between 0 and 35 s. After 35 s, the primary system
has much higher instantaneous damped energy, which
leads to the ratio slightly declining.

A comparison is also carried out between the exper-
imentally obtained data versus model predictions to
verify the predictive capabilities of the model and the
validity of the design method. Figure 13 depicts this
comparison, starting with NES and primary system
time histories in Fig. 13a, b. The region of strong NES
performance is well captured by the model for both
the NES and primary system, whereas a minor devia-
tion in the NES response is observed at higher running
speeds. Recalling that NES damping is dominated by
metallic interactions in the conical springs, it is antic-
ipated that a viscous damping model would not accu-
rately describe all forcing conditions. However, this is
not concerning since the NES vibrates at low ampli-
tudes away from the region of interest. Moreover, the

acceleration amplitudes predicted by the model match
well the experimental data (Fig. 13c), whereas the rela-
tion of the predicted amplitudes of the Active NES case
to the LockedNES case is similar towhat is experimen-
tally obtained (Fig. 13d).

This section has revealed that the NES is capable of
extracting energy from the primary system, even away
from the main resonance. The methods employed have
been verified, and the model’s predictive power has
been reaffirmed. The next section will consider the sys-
tem response near resonance.

5.2 Near resonance

This section examines the NES capability to mitigate
the primary system resonance. In order to induce reso-
nant conditions (within the frequency limitations of the
experimental apparatus), twomodifications aremade in
the experimental set-up. First an inertia disc is attached
at the end of the coupling shaft using a bellow coupling
with torsional stiffness coefficient of 20,000 Nm/rad.
Combining this with the additional shaft’s torsional
stiffness yields a value of equivalent stiffness coeffi-
cient k2 = 8, 500 Nm/rad. A second identical jaw cou-
pling is added in series to the existing one, reducing
the torsional stiffness coefficient to k1 = 270Nm/rad,
whereas the END inertia disc further reduces themodal
frequencies of the primary system. The rig layout cor-
responds to the set of Eq. (7)

Figure 14 shows the recorded time histories during a
forward motor speed sweep from 0 to 2000 rpm. Even
though the excitation amplitude is increasing during the
sweep, there is a clear resonant region in the vibrations
of the END inertia at around 1400 rpm, as shown in the
Locked NES case time history of Fig. 14a. The aim is
to evaluate the NES effectiveness on mitigating the pri-
mary system resonance oscillations by performing an
identical sweep with the NES attached to the mounting
hub (instead of the mock disc). Figure 14b, c includes
the time histories of the END inertia and NES, respec-
tively. It is readily observed that the NES vibrates with
relatively large amplitudes for awide range of input fre-
quencies. Moreover, it appears that the NES engages
with—qualitatively—two different response regimes.
Up until 1400 rpm, the response builds up in the same
way as in the non-resonance case. After that, instead
of jumping down, the NES continues to vibrate with
almost constant amplitude for about 200 rpm, before
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Fig. 13 Experiment versus numerical model response comparisons a, b NES and End shaft velocity time histories, c End shaft
acceleration amplitude, d ratio of End shaft acceleration amplitude for Active over Locked NES

starting a beating-like motion. Eventually, just before
1800 rpm, its response reduces to low amplitude vibra-
tions. Cross-checking with Fig 14b, the effect of the
NES on the END inertia time history can be concurred.
Interestingly, the initialNESactivation leads to increas-
ing amplitude of the END inertia vibrations. In order
though to evaluate the magnitude of this increase, a
closer look is taken on the acceleration amplitudes in
Fig. 15a. In fact, the vibration amplitudes of the END
inertia are almost identical to the locked case, leading
to the conclusion that the NES is not affecting the pri-
mary system to this point (∼ 1350 rpm). As soon as
the NES reaches its peak amplitude (and for the second
region), a simultaneous significant reduction in the End
inertia vibrations is observed, which lasts until the third
region of the beating and can be distinguished even in

the time history of the response. This effect is more evi-
dent if the primary system’s kinetic energy is consid-
ered. In Fig. 15b, the energy transferred away from the
primary system ismore prominent, reaching a peakmit-
igation of 79.76%, calculated based on the maximum
instantaneous difference between the active and locked
curves:

(
KP,Locked − KP,Active

)
/KP,Locked|t=t0 , where

KP is the primary kinetic energy and t0 is the time
instance when the maximum difference occurs.

The energy interactions between the NES and the
primary systemcan be better elucidated via juxtaposing
the system’s response energy with the NNM branches.
It is worth mentioning that in this case, two NNM
branches are falling within the speed range of inter-
est (Fig. 16a). The system energy in the case near
resonance is computed from the experimental data by
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Fig. 14 Velocity time histories near resonance a, b End inertia for the Locked and Active NES cases, c NES

Fig. 15 a Primary system acceleration amplitude and b kinetic energy ratio for the Active and Locked NES cases
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Fig. 16 a Frequency–energy plot of the system energy with NNMs, b damped energy ratios of the NES and End inertia with the NNMs,
c damped energy ratios for the NES and End inertia, superimposed to their time histories

adding to Eq. (8) the End inertia kinetic and potential
energies: 0.5 J2

(
θ̇2 − θ̇RB

)2 + 0.5 k2 (θ2 − θ1)
2. The

damped energy ratios for the NES and the END iner-
tia are computed in an analogous way to the previous
section. Figure 16a exhibits the system energy super-
imposed to the system NNMs. The first region of NES
activation is dominated by the lower frequency NNM
branch. The system is drawn to follow this branch until
about 1400 rpm (or 46.67 Hz in excitation frequency
terms), leading to the response observed in the time his-
tories of Fig. 14. Even though the vibration amplitudes

are not mitigated in this region, it is interesting to see
how damping is distributed in the system (recall that in
a forced system, the energy input depends on system
dynamics, in contrast with impulsively excited system
where the energy input is given). Indeed, as Fig. 16b
shows, there is a lively interaction between the NES
and the primary system (note that the bottom horizon-
tal axis of this plot refers to the NNMs, whereas the top
horizontal axis refers to the damping ratios).

At the beginning of the sweep test, the NES follows
a nearly rigid bodymotion andmost of the input energy
is damped by the END inertia damper, indicating that
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Fig. 17 a Zoom-in plot of the NES time history modulated response, b steady-state NES response at 1555 rpm

this energy is maintained within the primary system.
Moving to higher frequencies and as soon as the sys-
tem energy reaches the first NNM branch (at about 25
Hz in Fig. 16b), there is a steep change in the damped
energy distribution. This is a rapid energy shift from the
primary damper to the NES, leading the NES damping
ratio to surpass the END inertia ratio, reaching a peak
shortly above 30 Hz. After that, and for as long as the
response is dominated from the first NNM, there is a
reversal of the damped energy distribution to the previ-
ous state of the END inertia damper prevalence. This is
consistent with previous observation of targeted energy
transfer via the 1:1 resonance, due to the magnitude of
the NNMs along the first branch. After the system is
detached from the first NNM, there is a second region
of strong energy transfer from the primary system to
the NES, evidenced by the rapid recurrence of the NES
damped energy ratio located in the region of the sec-
ond NNM (corresponding to the second response tier
based on the time histories of Fig. 14). The correlation
of the damped energy ratios with the time histories is
shown in Fig. 16c, where it is even clearer that the NES
absorbs energy from the primary system while vibrat-
ing in the second response region. In fact, this is the
region of the most effective vibration mitigation where
the primary system has been seen to vibrate with as low
as 79.76% reduced amplitudes.

The relatively high damped energy ratio persists in
the region of beating response as well, even though the
NES damping ratio attains significantly lower values.
The attachment of an NES to a forced primary sys-
tem is known to induce modulated response, either in a

strong modulation regime (SMR) or in a weak modula-
tion regime (WMR) [21,22]. Herein, the main aim was
to establish the effectiveness of the NES to mitigate
vibrations based on the previously developed design
techniques targeting the 1:1 resonance and the action
of the relevant superharmonics. It is observed that the
NES engages with a modulated response, shown in the
zoom-in plot of Fig. 17a. This is an important observa-
tion that corroborates the activation of nonlinear energy
transfer, utilised in this work for achieving mitigation
of torsional oscillations. To further validate the mani-
festation ofmodulated response, steady-state testswere
recorded with themotor running at 1555 rpm. TheNES
modulated response shown in Fig. 17b confirms the
nonlinear energy transfers. However, a detailed analy-
sis of the slow invariantmanifold thatwould be required
to predict the forcing conditions and the design param-
eters leading to this modulation is out of the scope of
this paper.

6 Conclusions

Acombinednumerical and experimental studywaspre-
sented on the design and validation of an NES for tor-
sional vibration mitigation purposes of a propulsion
system. The set-up comprised an electric motor driving
aprimary (propulsion) systemof shafts and inertia discs
through a universal joint, which induces the second-
order torsional oscillations. The NES was designed
following previously developed techniques, for the pur-
pose of experimentally validating themethodology fol-
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lowed and the predicted vibration reduction of the pri-
mary system. The NES prototype included two coni-
cal springs as the elements providing essential stiffness
nonlinearity. The prototype stiffness and dampingwere
identified to feed inputs to a model, used for validation
purposes. Two different forcing scenarios were consid-
ered, away from resonance and near resonance bymod-
ifying the set-up of the primary system accordingly. In
both cases, the NES was found to lead to significant
vibration reduction with the additional feature of acti-
vation over a relatively broad frequency range, particu-
larly for mitigating resonant oscillations. This capacity
of the NES to suppress vibrations over broad frequency
ranges is advantageous, especially when compared
with typical tunedmass dampers. Post-processing anal-
ysis was used to derive frequency–energy plots that
signified the importance of the NNM branches in the
forced response of the nonlinear system. Different
regions were identified where the conservative dynam-
ics drive the system to increasing energy transfer to the
NES, evidenced not only by the reduction of the pri-
mary system’s kinetic energy, but also via the increase
in the energy damped by the NES. Noteworthily, rapid
energy exchanges between the NES damper and the
primary damper were observed that could lead to effi-
cient vibration mitigation. The nonlinear energy inter-
actions were confirmed through the manifestation of
modulated response—characteristic of the essentially
nonlinear dynamics—both in speed sweeps (transient)
and steady-state (constant speed) tests. These results
establish an encouraging background for further devel-
opment and optimisation of the nonlinear vibration
absorber for real-world applications.
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Appendix A

The drivetrain dynamic model of Fig. 1a equipped with
an NES has been presented in detail in reference [16]
and is described by the following matrix set of equa-
tions of motion:
⎡

⎣
J1 0 0
0 J2 0
0 0 Jn

⎤

⎦

⎡

⎣
θ̈1
θ̈2
θ̈n

⎤

⎦ + [CN]

⎡

⎣
θ̇1
θ̇2
θ̇n

⎤

⎦

+
⎡

⎣
k2 + k1 −k2 0
−k2 k2 0
0 0 0

⎤

⎦

⎡

⎣
θ1
θ2
θn

⎤

⎦

=
⎡

⎣
k1θF + c1θ̇F − kN(θ1 − θn)

3

−TRes
kn(θ1 − θn)

3

⎤

⎦

TRes is the resisting torque on the transmission input
shaft. More details about the derivation of the damping
matrix [CN] and TRes can be found in reference [16].

The typical range of the drivetrainmodel parameters
and the NES data are as follows [16]:

Inertia (kgm2) Stiffness (Nm/rad)

J1 = 0.0005 − 0.005 k1 = 500 − 5000
J2 = 0.001 − 0.006 k2 = 5000 − 30000

Jn = 10.7% of transmission input shaft inertia (J2)
and Kn = 2, 200 Nm/rad3.

The NES performance is evaluated for the three-
cylinder engine case study by comparing the acceler-
ation amplitude of the transmission input shaft at 1.5
Engine Order (EO) for systems with (Active) and with-
out (Locked) NES. Thismetricwas selected as themain
performance indexbecause the 1.5EO is the fundamen-
tal firing order of a three-cylinder engine.

The Matlab command Pwelch is used to obtain the
acceleration amplitudes corresponding to the 1.5 EO
harmonics by calculating the power spectral density
(PSD) of the transmission input shaft acceleration sig-
nal using Welch’s overlapped segment-averaging esti-
mator. The resultant PSD output (units rad2/s4/Hz)
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is processed as
√
PSD × 1.5Engine Order Frequency,

where the nominated frequency is the 1.5 EOharmonic.

References

1. Turner, J., Popplewell, A., Patel, R., Johnson, T., et al.: Ultra
boost for economy: extending the limits of extreme engine
downsizing. SAE Int. J. Engines 7(1), 387–417 (2014)

2. Theodossiades, S., Gnanakumarr, M., Rahnejat, H., Kelly,
P.: Effect of a dual-mass flywheel on the impact-induced
noise in vehicular powertrain systems. Proc. Inst. Mech
Eng., Part D: J. Automob. Eng. 220(6), 747–761 (2006)

3. Alsuwaiyan, A.S., Shaw, S.W.: Performance and dynamic
stability of general-path centrifugal pendulum vibration
absorbers. J. Sound Vib. 252(5), 791–815 (2002)

4. Newland, D.E.: Nonlinear aspects of the performance of
centrifugal pendulum vibration absorbers. ASME J. Manuf.
Sci. Eng. 86, 257–263 (1964)

5. Vakakis, A., Gendelman, O.V., Bergman, L.A., McFar-
land, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted
Energy Transfer in Mechanical and Structural Systems:
Solid Mechanics and its Applications, 1st edn. Springer,
Berlin (2008)

6. Vakakis, A.F., Gendelman, O.: Energy pumping in nonlinear
mechanical oscillators: part II—resonance capture. J. Appl.
Mech. 68, 42–48 (2001)

7. Gendelman, O., Manevitch, L.I., Vakakis, A.F., M’Closkey,
R.: Energy pumping in nonlinear mechanical oscillators:
part I—dynamics of the underlying Hamiltonian systems.
J. Appl. Mech. 68, 34 (2001)

8. Vakakis, A.F., Manevitch, L.I., Gendelman, O., Bergman,
L.: Dynamics of linear discrete systems connected to local,
essentially non-linear attachments. J. Sound Vib. 264, 559–
577 (2003)

9. Kerschen, G., Lee, Y.S., Vakakis, A.F., McFarland, D.M.,
Bergman, L.A.: Irreversible passive energy transfer in cou-
pled oscillators with essential nonlinearity. SIAM J. Appl.
Math. 66(2), 648–679 (2005)

10. Luo, J., et al.: Design, simulation, and large-scale testing of
an innovative vibration mitigation device employing essen-
tially nonlinear elastomeric springs. Earthq. Eng. Struct.
Dyn. 43(12), 1829–1851 (2014)

11. Viguié, R., Kerschen, G., Golinval, J.C., McFarland, D.M.,
Bergman, L.A., Vakakis, A.F., et al.: Using passive nonlin-
ear targeted energy transfer to stabilize drill-string systems.
Mech. Syst. Signal Process. 23, 148–169 (2009)

12. Gendelman, O.V., Sigalov, G., Manevitch, L.I., Mane, M.,
Vakakis, A.F., Bergman, L.A.: Dynamics of an eccentric
rotational nonlinear energy sink. J. Appl. Mech. 79, 011012
(2012)

13. Hubbard, S.A., McFarland, D.M., Bergman, L.A., Vakakis,
A.F.: Targeted energy transfer to a rotary nonlinear energy
sink, Collect. Tech. Pap.—AIAA/ASME/ASCE/AHS/ASC
Struct. Struct. Dyn. Mater. Conf., pp. 1–13 (2010)

14. Hubbard, S.A., et al.: Targeted energy transfer between
a swept wing and winglet-housed nonlinear energy sink.
AIAA J. 52(12), 2633–2651 (2014)

15. Haris,A.,Motato,E., Theodossiades, S.,Rahnejat,H.,Kelly,
P., Vakakis, A., Bergman, L., McFarland, D.: A study on tor-
sional vibration attenuation in automotive drivetrains using
absorberswith smooth and non-smooth nonlinearities.Appl.
Math. Model. 46, 674–690 (2017)

16. Haris, A., Motato, E., Mohammadpour, M., Theodossiades,
S., Rahnejat, H., O’ Mahony, M., Vakakis, A., Bergman, L.,
McFarland, D.: On the effect of multiple parallel nonlinear
absorbers in palliation of torsional response of automotive
drivetrain. Int. J. Non-Linear Mech. 96, 22–35 (2017)

17. Motato, E., Haris, A., Mohammadpour, M., Theodossiades,
S., Rahnejat, H., Kelly, P., Vakakis, A., Bergman, L.,McFar-
land,D.M.:Targeted energy transfer andmodal energy redis-
tribution in automotive drivetrains. Nonlinear Dyn. (2017).
https://doi.org/10.1007/s11071-016-3034-4

18. Seherr-Thoss, H.-C., Schmelz, F., Aucktor, E.: Univer-
sal Joints and Driveshafts: Analysis, Design, Applications,
2nd edn. Springer, Berlin (2006). https://doi.org/10.1007/
3-540-30170-4. (translated by J.A. Tipper, S.J. Hill)

19. Zwillinger, D.,Moll, V., Gradshteyn, I.S., Ryzhik, I.M.: Ele-
mentary Functions. Table of Integrals, Series, and Products,
Eighth edn, pp. 25–62. Academic Press, London (2014)

20. Peeters, M., Viguie, R., Serandour, G., Kerschen, G., Golin-
val, J.C.: Nonlinear normal modes, part II: toward a prac-
tical computation using numerical continuation techniques.
Mech. Syst. Signal Process. 23, 195–216 (2009)

21. Gendelman, O.V., Starosvetsky, Y., Feldman, M.: Attrac-
tors of harmonically forced linear oscillator with attached
nonlinear energy sink I: description of response regimes.
Nonlinear Dyn. 51(1–2), 31–46 (2008)

22. Starosvetsky, Y., Gendelman, O.V.: Attractors of harmoni-
cally forced linear oscillator with attached nonlinear energy
sink. II: optimization of a nonlinear vibration absorber. Non-
linear Dyn. 51, 47–57 (2008)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123

https://doi.org/10.1007/s11071-016-3034-4
https://doi.org/10.1007/3-540-30170-4
https://doi.org/10.1007/3-540-30170-4

	Design and validation of a nonlinear vibration absorber  to attenuate torsional oscillations of propulsion systems
	Abstract
	1 Introduction
	2 Subsystem model equipped with NES
	3 NES identification (quasi-statically)
	4 Experimental set-up
	4.1 Universal joint harmonics
	4.2 Numerical model of the experimental layout

	5 Results and discussion
	5.1 Away from resonance
	5.2 Near resonance

	6 Conclusions
	Acknowledgements
	Appendix A
	References




