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Abstract

A non-oscillatory forward-in-time (NFT) integrator is developed to provide solu-
tions of the Navier-Stokes equations for incompressible flows. Simulations of flows
past a sphere are chosen as a benchmark representative of a class of engineering
flows past obstacles. The methodology is further extended to moderate Reynolds
number, stably stratified flows under gravity, for Froude numbers that typify the
characteristic regimes of natural flows past distinct isolated features of topography
in weather and climate models. The key elements of the proposed method consist of
the Multidimensional Positive Definite Advection Transport Algorithm (MPDATA)
and a robust non-symmetric Krylov-subspace elliptic solver. The solutions employ a
finite volume spatial discretisation on unstructured and hybrid meshes and benefit
from a collocated arrangement of all flow variables while being inherently stable.
The development includes the implementation of viscous terms with the detached-
eddy simulation (DES) approach employed for turbulent flows. Results demonstrate
that the proposed methodology enables direct comparisons of the numerical solu-
tions with corresponding laboratory studies of viscous and stratified flows while
illustrating accuracy, robustness and flexibility of the NFT schemes. The presented
simulations also offer a better insight into stably stratified flows past a sphere.
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1 INTRODUCTION

External incompressible flows past immersed bodies have numerous applica-
tions in fluid dynamics and engineering. Despite its geometric simplicity, the
sphere plays an important role in a study of such flows. Incompressible flows
past the sphere can involve an abundance of complex phenomena that are of
general importance, and the research into numerical methods resolving them
adequately at a range of regimes is on-going. This interest extends to density
stratified flows, since the experimental studies of flows past a sphere are tradi-
tionally used to gain insights into physics common to atmospheric flows past
orography, also relevant to oceanographic applications.

Finite-volume discretisations on hybrid meshes combining prismatic elements
near solid boundaries and tetrahedra elements elsewhere have become increas-
ingly popular in simulations of viscous engineering flows [22]. In contrast, al-
though unstructured meshes have been a subject of meteorological interest
for some time—see [58] for an extended overview—their intrinsic flexibility,
have been put to practical use only at the beginning of the present century, in
the context of forecasting high-impact weather, air quality and environmen-
tal hazard [2]. Since then, there has been a continuously growing research into
modelling atmospheric flows on unstructured meshes. In comparison to the es-
tablished finite-difference techniques, the finite volume discretisations are not
constrained to rigid connectivity of regular grids. This flexibility turns par-
ticularly instrumental for the advancement of global atmospheric models for
weather and climate with quasi uniform horizontal resolution supporting both
the finite volumes and spherical harmonics [57]. However, benefits of the flexi-
ble meshing are not limited to global flows, and they can be equally important
at finer-scale problems of computational meteorology; for example, in research
and forecasting of weather in mountainous areas or over island archipelagoes.
In their very essence, such problems can be thought of as flows past blunt
bodies, among which a flow past a sphere historically plays a special role—
complementary to a flow past a cylinder—and comprises a large portfolio of
works employing theoretical, experimental and numerical methods [1,5,16,13].

Many schemes, especially those building on the pressure correction approach,
have been devised as solution methods for the Navier-Stokes equations gov-
erning incompressible viscous flows. However, the application of the non-
oscillatory forward-in-time, NFT, integrators is new in this context. The NFT
integrators were proposed in the early nineteen nineties for problems related
to geophysical flows [49], as a class of fully second-order-accurate, either semi-
Lagrangian or Eulerian, algorithms built on two-time-level nonlinear advection
techniques that control numerical oscillations characteristic of higher-order lin-
ear schemes. The NFT solvers were originally developed for finite-difference
discretisations on structured grids and only recently their applicability was
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extended to finite-volume discretisation on unstructured meshes, giving rise
to a class of NFTFV integrators. The initial developments of unstructured
meshes based NFTFV schemes resulted in inviscid compressible flow models,
documented for supersonic, transonic and subsonic aerodynamics [52,53]. Fur-
ther developments focused on atmospheric flows, and included a selection of
nonhydrostatic models for mesoscale orographic flows, with a range of internal
gravity wave phenomena in two and three spatial dimensions [65,54,56], gen-
eralisations of shallow-water equations to global spherical geometry [64] and
a class of three dimensional global hydrostatic models [64,65].

All of these NFTFV schemes use the unstructured meshes based MPDATA
[50,51,24] for the nonlinear advection operator. This choice provides several
benefits. Apart from the MPDATA’s sign-preservation property—one of the
primary requirements of atmospheric modelling—the algorithm also provides
inherent ability to control numerical oscillations resulting, e.g., from discon-
tinuous representation of shock waves in compressible flows [53] or use of
non-staggered meshes for incompressible flows. In the implementations pre-
sented here all dependent flow variables are collocated, to lower memory and
communication requirements compared to staggered arrangements as well as
to facilitate the design of elaborate semi-implicit time integrations schemes
[57,58,24,59]. For incompressible engineering flows and anelastic atmospheric
flows, instabilities arise with the collocated variables from the coupling be-
tween velocity and pressure. In the NFT schemes these are regularised by
MPDATA working in synergy with an implicit solution of the Poisson equation
for the pressure perturbation. Subsequently, the schemes allow a construction
of low-numerical-diffusion models which are nonlinearly stable. Another use-
ful feature of these schemes is the direct availability of the leading truncation
error compensated by MPDATA, which can be exploited for the purpose of
constructing error indicators for mesh adaptivity [63,66].

A further benefit that MPDATA brings to the NFT schemes is its proven im-
plicit large eddy simulation (ILES) capability [31,10,37,55]. This by-product
of the MPDATA iterative apparatus reverses the filtering operation of the
low-order upwinding, leaving the leading-order truncation terms dissipative
and acting as a higher-order filter at the limit of grid resolution. This self-
regularisation property allows for a quality large-eddy simulation without in-
voking subgrid scale models, thus eliminating the need of evaluating viscous
stress for high Reynolds number flows [37]. Examples of ILES with the NFTFV
integrators applied to atmospheric flows are included in [66]. An important ver-
ification of such ILES was provided in [56], by comparing NFTFV results with
the results from explicit LES on structured grids, in simulations of convective
planetary boundary layer epitomising high-Reynolds-number stochastic flows
with predicable integral characteristics.

In this paper, we complement our earlier work with new developments of
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NFTFV models that provide capabilities for simulation of viscous effects for
solutions obtained on unstructured/hybrid meshes. While the successful per-
formance of ILES has been documented for stratified geophysical flows, this
work explores alternative methodologies for providing means of including vis-
cous effects and explicit turbulence modelling required for simulating incom-
pressible and anelastic flows through a range of Reynolds number regimes.
The implementation of the NFTFV integrator is presented in the context of a
general scheme that is suitable for simulating the incompressible Navier-Stokes
equations with constant mass density, and the anelastic Lipps-Hemler equa-
tions [27,28] with significant vertical variations of a static environment. The
resulting NFTFV integrator exploits the mathematical commonalities of the
two PDE systems, namely the diagnostic form of the mass continuity equation
and the operator form of the viscous forcings. The focus of the Navier-Stokes
solver is on the solution dependence on the Reynolds number, Re(= VoL/ν)
where Vo and ν refer to free stream velocity and kinematic viscosity, while L is
the characteristic length scale of the problem. The focus of the anelastic solver
is on the solution dependence on the Froude number, Fr(= Vo/Nh) with N
and h to be defined shortly. The two numbers characterise the relative impact
of the dominant right-hand-side (rhs) forcing on the mass flow, by providing
the ratio of the characteristic time scales of the viscous and buoyant forcings to
the time scale of inertia, respectively, for the Navier-Stokes and Lipps-Hemler
equations. Having a common solver for both systems, particularly benefits the
atmospheric applications.

Natural flows past topography are subject to intricate realisations largely de-
pending on the Froude number. Even for the elementary uniform profiles of
ambient buoyancy frequency N and velocity Vo, such canonical flows vary
from 3D potential flow over the obstacle with height h, as Fr ↗∞, to quasi
2D potential flow around it, as Fr ↘ 0. In between, more complex responses
comprise gravity waves aloft, obstacle-scale eddies in the lee and the upwind
blocking. Apart from verifying new capabilities of NFTFV MPDATA class of
solvers for engineering applications, the aim of the present development is to
provide a reliable tool capable of shedding light on the long-lasting controversy
on the relative roles of viscosity and density stratification in generating the
intricate solutions throughout the high to low Fr regimes. The objective of the
development is to harness the flexibility of the NFTFV integrators to enable
direct comparisons of the numerical solutions with corresponding laboratory
studies of viscous, stably stratified flows past a sphere. The presented numer-
ical results offer new insights, while demonstrating the accuracy, robustness
and flexibility of the NFT schemes.

The remainder of the paper is organized as follows. In the next section, the
outline of the NFTFV integrator for viscous flows and its implementation on
unstructured and hybrid meshes is provided. A systematic numerical study of
flows past a sphere at a range of Reynolds numbers is documented in Section 4.
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Section 5 reports on an investigation of a sphere moving horizontally in a
stratified laminar flow. Remarks in Section 6 conclude the paper.

2 GOVERNING EQUATIONS

2.1 Incompressible Navier-Stokes equations

The incompressible Navier-Stokes equations for isothermal flows can be com-
pactly written as

∇ · (Vρo) = 0 , (1a)

∂ρoVI
∂t

+∇ · (VρoVI) = −ρo
∂ϕ

∂xI
+ (∇ · τττ )I , (1b)

where VI (=1,2,3) denote the velocity components in xI Cartesian coordinate
directions, ρo is a constant reference density, and ϕ = (p−pe)/ρo is the density-
normalized pressure perturbation with respect to static environmental profile
pe. Herein we consider small laboratory scales such that the reference density
can be assumed constant. The entries of the deviatoric stress tensor τττ in (1)
are given by

τIJ = (µ+ µT )

(
∂VI
∂xJ

+
∂VJ
∂xI

)
, (2)

where µ is the dynamic viscosity of the fluid, and the dynamic eddy viscosity
µT has a flexible meaning, switching between a Reynolds-Averaged Navier-
Stokes (RANS) turbulence model with µT = µt or an LES turbulence model
with a subgrid-scale viscosity µT = µsgs.

For simulation of turbulent incompressible flows we adopt detached-eddy sim-
ulation (DES) approach originally proposed by Spalart [60]. DES is a hybrid
of RANS and LES, where RANS applies to most of the boundary layer re-
gion near the solid walls, while LES is employed in the remaining part of the
computational domain. Consequently in the governing equations the flow vari-
ables are considered to be either time-averaged in RANS computational zones
or spatially filtered in LES zones. In our implementation, the dynamic eddy
viscosity µt is approximated using the modified Spalart-Allmaras model [61].
In particular,

µt = ρoν̂fv1 , with fv1 =
χ3

χ3 + c3v1
, χ =

ν̂

ν
, and ν =

µ

ρo
, (3)
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where ν is the kinematic viscosity, and ν̂ is prognosed by the transport equa-
tion

∂ν̂

∂t
+ V · ∇ν̂ = cb1Ŝν̂ +

1

σ
∇ · [(ν + ν̂)∇ν̂] +

cb2
σ

(∇ν̂)2 − cw1fw
(
ν̂

d

)2

. (4)

Here

Ŝ = S +
ν̂

κ2d2
fv2 , fv2 = 1− χ

1 + χfv1
, S = (2

∑
I,J=1,3

ΩIJΩIJ)1/2 , (5)

where the entries of the rotation tensor are given by

ΩIJ =
1

2

(
∂VI
∂xJ
− ∂VJ
∂xI

)
, (6)

and the remaining coefficient are specified as

fw = γ

(
1 + c6w3
γ6 + c6w3

)1/6

, γ = r + cw2(r
6 − r) , r =

ν̂

Ŝκ2d2
. (7)

Furthermore, the constants appearing in (3)-(7) are set as

cb1 = 0.1355 , σ = 2/3 , cb2 = 0.622 , κ = 0.41 , (8)

cw1 = cb1/κ
2 + (1 + cb2)/σ , cw2 = 0.3 , cw3 = 2.0 , cv1 = 7.1 .

The parameter d appearing in (4), (5) and (7) has dual meaning. In RANS
d = dw, where dw is the actual distance to the nearest wall, whereas in DES
d = min(dw, CDES∆), where CDES = 0.65 is used after [42] and [5]. In the
adopted finite volume method, the dual mesh cell size naturally limits the
cut-off width in the spatial filter; therefore, in our calculations ∆ is estimated
according to ∆ = 3

√
VP , where VP is the dual cell volume encompassing mesh

node P .

2.2 Anelastic Lipps-Hemler equations

Next we consider the Lipps-Hemler [27,28] anelastic system (9). The gov-
erning conservation laws of mass, momentum and entropy fluctuations 1 are
taken in the Boussinesq limit—mathematically isomorphic for stratified flows

1 For the ideal gas, the specific entropy s and the potential temperature θ ≡
T (p/po)

−R/cp are related via ds = cpd ln θ, with the usual symbols T , p, po, R and cp
corresponding to temperature, pressure, constant reference pressure, gas constant
and specific heat at constant pressure.
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of ideal gas and saline solution—unifying the atmospheric, oceanic and labora-
tory interest in the flows past a sphere investigated numerically in Section 5.
Reminiscent of the incompressible system (1), these anelastic equations are
compactly expressed as

∇ · (Vρo) = 0 , (9a)

∂ρoVI
∂t

+∇ · (VρoVI) = −ρo
∂ϕ

∂xI
+ ρog

θ′

θo
δI3 + (∇ · τττ )I , (9b)

∂ρoθ
′

∂t
+∇ · (Vρoθ′) = −V · ∇θe . (9c)

Here, the perturbation pressure is meant as ϕ = cpθo(π − πe), where π ≡
(p/po)

R/cp denotes the Exner-function of pressure. For the ideal gas, the formu-
lae ρ−1∇p = cpθ∇π and π = T/θ interrelate (1) and (9). Unlike (1), the anelas-
tic system accounts for the gravitational acceleration g via the buoyancy term
on the rhs of the momentum equation (9b), in which θ′ = θ−θe is the potential
temperature perturbation about a static ambient profile θe(x3) = θo + Sox3,
with So marking a constant stratification, and δIJ denotes the Kronecker delta.
The reference constants ρo, po and θo are assumed to coincide with surface val-
ues of the ambient profiles. They enter the mass continuity equation (9a), the
definition of the pressure perturbation as well as the denominator of the buoy-
ancy term in the momentum equation—in effect of the assumed Boussinesq
limit of the anelastic approximation. In a more general Lipps-Hemler system,
these reference values would be replaced with the vertically varying reference
profiles. The entropy equation (9c) is equivalent to assuming adiabatic motions
with potential temperature constant along a flow trajectory, dθ/dt = 0. The
diffusion of heat is neglected, consistently with the laboratory experiments
and their related numerical simulations [29,15] conducted in saline solutions
with large Schmidt numbers. The perturbation forms of the momentum and
thermodynamic equation, cf. [54], are chosen to simplify the implementation
of initial and boundary conditions and to benefit the solution accuracy.

3 NUMERICAL METHOD

3.1 A semi-implicit, non-oscillatory forward-in-time finite-volume (NFTFV)
integrator

In the proposed development, the numerical integrator is designed for the
general anelastic system of PDEs—EQS. 9 with ρo, πo and θo being reference
profiles in function of x3 rather than reference constants—with the Boussinesq
and incompressible PDEs realised as options.
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The spatial discretisation follows the finite volume implementation using me-
dian dual meshes with edge-based connectivity, detailed in [51,66], proven
suitable for integrating the governing PDEs over arbitrary shaped irregular
polyhedral cells. Figure 1 shows a schematic of the edge connecting mesh
node P with one of its immediate neighbours Q, and the corresponding face
Sq of the dual cell surrounding point P . A dual cell is constructed by joining
centres of the edges with the barycentres of polyhedra and faces of the primary
mesh elements sharing edge P −Q. All dependent variables are collocated in
the nodes exemplified by P and Q.

qS

P

Q

q

Fig. 1. The median-dual cell face in 3D. The edge connecting nodes P and Q pierces
(at the edge centre q) the face Sq of a computational (dual) cell surrounding node
P; open circles represent barycenters of polyhedral elements from the primary mesh
sharing the edge. Dashed lines mark a cell face of the dual mesh.

Each of the PDEs in the system (9) can be written in a form of a generalised
inhomogeneous transport equation for a specific scalar variable ξ advected
with the vector field VVV and the rhs subsuming all inviscid and dissipative
forcing/source terms,

∂ρoξ

∂t
+∇ · (VVVρoξ) = ρoR , (10)

where ρoR amounts to the right-hand-sides of the prognostic PDEs in (9).
After [49], (10) can be integrated to the second-order accuracy in time and
space with the non-oscillatory forward-in-time (NFT) algorithm

ξn+1
P =AP

(
ξn + 0.5δtRn, VVVn+1/2, ρo

)
+ 0.5δtRn+1

P (11)

≡AP
(
ξ̃, VVVn+1/2, ρo

)
+ 0.5δtRn+1

P ≡ ξ̂P + 0.5δtRn+1
P ,
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where n and P refer, respectively, to an arbitrary instant and node location
on the mesh. The operator A is a shorthand for the edge-based option of
MPDATA [51], and it already accounts for a division of the discrete integral
of (10) by ρo. Furthermore, Rn+1 is a second-order-accurate finite volume
representation of R; whereas the VVVn+1/2 argument of A denotes an O(δt2)
estimate of ρoV at t+0.5δt. Herein, Vn+1/2 is linearly extrapolated from Vn−1

and Vn, thus assuring vanishing of the discrete ∇· (Vρo), given it vanished at
the n− 1 and n instants. Notably, the algorithm in (11) is congruent with the
semi-Lagrangian, trajectory-wise trapezoidal integral of the ODE dξ/dt = R
that underlies the Eulerian conservation form (10).

The derivation of our NFTFV integrator for the entire system (9) starts with
extending the NFT template (11) to the prognostic equations for all velocity
components VI and θ′:

V n+1
1 = V̂1 − 0.5δt

∂ϕ

∂x1

n+1

, (12a)

V n+1
2 = V̂2 − 0.5δt

∂ϕ

∂x2

n+1

, (12b)

V n+1
3 = V̂3 − 0.5δt

∂ϕ

∂x3

n+1

− 0.5δt g
θ′

θo

n+1

, (12c)

θ′
n+1

= θ̂′ − 0.5δt
∂θe
∂x3

V n+1
3 , (12d)

where V n+1
I and θ′ n+1 are the unknown solutions at the instant tn+1 and node

P . Because all the terms in (12) are evaluated consistently at the same P
location, the symbol P is dropped for conciseness. It will be omitted in the
remainder of the paper, unless desired for clarity. Furthermore, the auxiliary
fields ṼI and θ̃′ of the respective explicit counterparts V̂I and θ̂′ of the solution
in (12) are written as

Ṽ1 = V n
1 + 0.5δt

− ∂ϕ
∂x1

+
2

ρo

∑
J=1,3

∂τ1J
∂xJ

n , (13a)

Ṽ2 = V n
2 + 0.5δt

− ∂ϕ
∂x2

+
2

ρo

∑
J=1,3

∂τ2J
∂xJ

n , (13b)

Ṽ3 = V n
3 + 0.5δt

− ∂ϕ
∂x3

+ g
θ′

θo
+

2

ρo

∑
J=1,3

∂τ3J
∂xJ

n , (13c)

θ̃′ = θ′
n − 0.5δt

∂θe
∂x3

V n
3 . (13d)

The system (13) modifies the template (11), in that the viscous forcing terms
are integrated explicitly to O(δt2), in the manner congruent with the Euler-
forward semi-Lagrangian integral along the flow trajectory [53,55]. The latter
is manifested by the factor 2 in front of the stress divergence.
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3.2 A discrete Poisson boundary-value problem (BVP)

The system (12), supplied with a discretised mass continuity equation (9a)
taken at tn+1 and all nodes P

∀ P

 ∑
J=1,3

∂ρoV
n+1
J

∂xJ


P

= 0 , (14)

is implicit because all five dependent variables are unknown at tn+1 and de-
pend on each other. However due to the collocated data arrangement, further
solution procedure is fairly straightforward. Starting with substitution of (12d)
into the buoyancy term in (12c), modifies the latter into

V n+1
3 =

(
V̂3 + 0.5δt

g

θo
θ̂′ − 0.5δt

∂ϕ

∂x3

n+1
)/(

1 + (0.5δt)2
g

θo

∂θe
∂x3

)
. (15)

The inspection of (15) inspires streamlining the presentation, by defining the
auxiliary coefficients (or more generally fields thereof)

αI =
g

θo
δI3 , and βI = 1 + (0.5δt)2 αI

∂θe
∂x3

, (16)

that apart from α3 and β3, take values α1 = α2 = 0 and β1 = β2 = 1. Given
(16), the velocity updates (12a)-(12c) can be rewritten as

V n+1
I =

̂̂
VI − 0.5δt β−1I

∂ϕ

∂xI

n+1

, (17)

where

̂̂
VI = β−1I

(
V̂I + 0.5δt αI θ̂′

)
. (18)

For J = 1, 2, (18) implies
̂̂
VJ ≡ V̂J , upon which (17) reproduces (12a) and

(12b), respectively. However, for J = 3, (17) amounts to (15). Consequently,
substituting (17) into the discretised mass continuity equation (14) leads to a
discrete elliptic Poisson equation for ϕn+1

∀ P

 ∑
J=1,3

∂

∂xJ

[
ρo

(̂̂
VJ − 0.5δt β−1J

∂ϕ

∂xJ

n+1
)]

P

= 0 . (19)

The BVP (19) is solved using the generalised conjugate residual approach
detailed in [54], subject to the Neumann boundary conditions for ϕn+1 implied
by the Dirichlet boundary conditions for Vn+1

Vn+1 · n =
(̂̂
V − 0.5δt βββ−1∇ϕn+1

)
· n = V⊥B . (20)
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Here βββ−1 is the 3 × 3 diagonal matrix with the entries equal to reciprocals
of βI . Furthermore, V⊥B refers to a normal flow specified at the boundary
∂ΩΩΩ of the integration domain ΩΩΩ, and n marks the outward unit normal to
∂ΩΩΩ. By construction V⊥B satisfies the integrability condition

∮
∂Ω ρoV

⊥
B dσ = 0

to machine precision, and so (20) implies this same for Vn+1. The results
discussed later in the paper satisfy (19) with tolerance ε defined in terms of
the BVP’s residual errors as

‖ δt× lhs(EQ. 19) ‖∞< ε C , (21)

with a typical ε = 10−5 assuming maximal Courant numbers C<∼1; see §4.3 in
[55] for an extended discussion.

3.3 Implementation

3.3.1 Advection operator

Evaluating the action of the advective-transport operator A on the auxiliary
variable ξ̃ in (11) is a most elaborate part of the model code, comparable
in complexity to the elliptic solver. Various versions of MPDATA were doc-
umented in the literature over the last three decades. Here we give the key
details of the “infinite-gauge” option used solely in this study. The crux of the
gauge option is a linearisation of the basic MPDATA about an infinite con-
stant background. The presented scheme derives from the unstructured-mesh
MPDATA proposed in [51].

Given the arguments ξ̃, VVVn+1/2 and ρo, the procedure that forms the AP (., ., .)
term in (11) commences with calculating the upwind fluxes normal to the cell
face Sq (see Fig. 1 for the cell geometry and symbols)

F⊥q = [v⊥q ]+ ξ̃P + [v⊥q ]− ξ̃Q , (22)

where

v⊥q = Sq · 0.5[VVVn+1/2
Q + VVVn+1/2

P ] ≡ Sq · VVVn+1/2
q , (23)

Sq denotes the oriented surface area of the face Sq, and the nonnegative/nonpositive
parts of v⊥q always coincide with the outflow/inflow from the P cell. The first-
order upwind solution is subsequently computed as

ξ∗P = ξ̃P −
δt

(ρoϑ)P

l(P )∑
q=1

F⊥q , (24)

where ϑP is the control volume of the dual cell built about a P node con-
nected with l(P ) edges to its neighbours. The field ξ∗ provides the input to
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the analytically derived truncation-error compensative flux through the cell
face associated with a q edge evaluated as

F ∗⊥q = |v⊥q |0.5(ξ∗Q − ξ∗P )− 0.5δtv⊥q
(
VVVn+1/2
q · 〈ρ−1o ∇ξ∗〉q

)
. (25)

wherein

〈ρ−1o ∇ξ∗〉q =
ϑP∇ξ∗|P + ϑQ∇ξ∗|Q

(ρoϑ)P + (ρoϑ)Q
(26)

is the weighted average of the expressions evaluated in the mesh points P and
Q connected by the edge q. In particular, ∇ξ∗|P and ∇ξ∗|Q represent values
of spatial partial derivatives of ξ∗ calculated utilising the Gauss divergence
theorem. For example, applying the Gauss theorem to the divergence of a
vector field composed of two zeros and a generic scalar field ξ for the Ith
component leads to

∂ξ

∂xI

∣∣∣∣
P

=
1

ϑP

l(P )∑
q=1

0.5(ξP + ξQ)SIq (27)

where, SIq denotes the Ith area component of the oriented surface element Sq.

To assure monotonicity of the solution, F ∗⊥q is suitably limited, using the
limiters similar to those exposed in EQS. (24)-(26) of [51], but customised
(and actually simpler) for the ”infinite-gauge” option. The limited flux can be
compactly written as

F̂⊥q = [F ∗q
⊥]+ min(1,Υ↓P ,Υ

↑
Q) + [F ∗q

⊥]− min(1,Υ↑P ,Υ
↓
Q) , (28)

where the coefficient fields Υ↓ and Υ↑ correspond to the coefficients β↓ and
β↑ in EQS. (25) of [51], with the exception that the cell volumes in the de-
nominators of the latter are multiplied by the densities ρo associated with
the considered nodes. Even though the numerical experiments of this paper
assume constant reference densities, the provided formulae are generally valid
for ρo varying in space.

Having (28), the transported variables ξ̂ in (11) are calculated as

ξ̂P = ξ∗P −
δt

ρoϑP

l(P )∑
q=1

F̂q (29)

3.3.2 Solution procedure

Granted the finite-volume discretisation in space, the entire solution proce-
dure for (9), or in its reduced form for (1), can be now reduced to the six
conceptually distinct steps.
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• Step 1: The procedure commences with the linear extrapolation of the ad-
vective mass flux components ρoV

n−1
I and ρoV

n
I to the tn+1/2 instant at each

mesh node P

ρoV
n+1/2
I = 1.5ρoV

n
I − 0.5ρoV

n−1
I . (30)

This provides an O(δt2) estimate of the VVVn+1/2 argument of the NFTFV ad-
vection in (11), while assuring the solenoidality thereof, given both ρoV

n−1

and ρoV
n were solenoidal.

• Step 2: Denoting the rhs forcings in (13a)-(13c) and (13d), respectively,
as RV and Rθ′ , the auxiliary variables Ṽ = (V + 0.5δtRV)n and θ̃′ =
(θ′+0.5δtRθ′)n that form the first argument the NFTFV advection in (11) are
assembled using the preceding-time-step solutions and their respective forc-
ings detailed in (13) but evaluated in Step 6 of the preceding time step. Analo-
gously, for calculations using DES, the auxiliary variable ν̃ = ν̂+0.5δt (2Rν̂) is
assembled beforehand the conservative NFTFV solution for ν̂n+1, in the spirit
of the Euler-forward trajectory integral of (4), manifested by the factor 2 in
front of Rν̂ that marks the rhs of (4).

• Step 3: MPDATA transports the auxiliary variables Ṽ and θ̃′ assembled in
Step 2, to provide their respective counterparts V̂ and θ̂′ that form the explicit
part of the solution in (12). For calculations with DES, MPDATA transport

of ν̃ completes the prediction of ν̂n+1 = A
(
ν̃, VVVn+1/2, ρo

)
.

• Step 4: A subsequent solution of the elliptic problem (19) subject to appro-
priate boundary conditions, leads to the update of the pressure perturbation
ϕn+1 and its gradients which are then employed in the computations of veloc-
ity components at n+1. The evaluation of all partial derivatives that compose
(19) relies on (27).

• Step 5: The evaluation of VI
n+1 from (17) and θ′ n+1 from (12d) completes

the solution.

• Step 6: Finally, in preparation for Step 2 of the subsequent time step, the
complete forcings RV and Rθ′ are evaluated and stored, subsuming all their
respective counterparts detailed in (13). As all dynamics forcings are already
available at the end of Step 5, the computational effort of this step is focused on
evaluating the viscous terms. In particular, the components of a discrete form
of stress tensor (2) are evaluated, relying on (27) to obtain partial derivatives of
the velocity components. For solutions using DES, the dynamic eddy viscosity
µt is obtained from the Spalart-Allmaras model using ν̂n+1 already predicted
in Step 3 of the solution procedure.
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4 NUMERICAL RESULTS FOR INCOMPRESSIBLE VISCOUS
FLOW PAST A SPHERE

4.1 Preamble

To verify the accuracy of the NFTFV solver, a simulation series of flow past a
sphere at moderate Reynolds numbers is performed; hereafter Re abbreviates
“Reynolds number” or “Reynolds numbers”. The results are compared with
both numerical and experimental data available from the literature.

Incompressible flows past a sphere at moderate Re numbers evince astound-
ingly complex features. Experimental studies, e.g. [68], have shown that when
Re<∼20, 2 the laminar boundary layer remains attached to the solid wall. How-
ever, as Re increases, separation occurs and the axisymmetric vortex ring is
formed behind the sphere. Up to Re ≈ 210 flow can reach steady state. For
Re ∈ [210, 270], the ring becomes unstable and the vortices start loosing the
symmetry. When 300 < Re < 420, vortices begin to periodically shed from
the sphere [39]. The position of the rolling-up vortex sheet moves closer to the
sphere with increasing Re [1], and the periodic shedding of hairpin vortices oc-
curs. This regime is also known as a “regular shedding mode”, and it changes
to an “irregular mode” when 420 < Re < 800 [40] in which the shedding
direction onsets spontaneously. Approximately at Re = 800 a high frequency
Kelvin-Helmholtz instability of the separated shear layer appears, which co-
exists with the large scale instability in the wake due to the vortex shedding
[39]. For higher Re up to about 3.7× 105, the wake becomes turbulent while
the boundary layer remains laminar and the values of the drag coefficient little
change with Re. According to [69], the separation position stays nearly the
same for 104 < Re < 3.5×105 while the wake undergoes periodic fluctuations.
For 6000 < Re < 3.5×105 the Strouhal number of the vortex shedding remains
almost constant, and the vortex separation point rotates around the sphere
[1]. At about Re = 3.7×105 a distinct drop of drag coefficient is detected. For
even higher Re values, the boundary layer becomes turbulent and an attached
hairpin vortex appears, behind which the streamwise line vortices are formed
and then rotate slowly about the large-scale lee flow axis [68]. In the present
study we selected cases for Re = 200, 300 that cover the moderate Reynolds
number regime and the Re = 5000 case to highlight a developed turbulent
regime.

The dimensionless computational domain used in all simulations consists of
a 20 × 20 × 20 cube with a solid sphere of diameter D = 1 located in its
centre. It contains a primary tetrahedral mesh, except within a specified radial

2 The precise Reynolds numbers for the outlined regimes of the flow past the sphere
differ between various literature sources.
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distance from the sphere’s surface where prismatic element layers are built
on the basis of the triangular faces of the surface mesh. Figure 2 illustrates
a typical structure of the primary mesh and shows a triangular mesh on a
sphere’s surface together with a fragment of the central plane cut trough
the volume mesh indicating the location of triangular prisms and tetrahedral
elements. The finite volume integration uses a dual mesh which is generated
from such a primary mesh as demonstrated in Fig. 1.

Fig. 2. A fragment of the y = 0 cross-section of the primary mesh for flow past a
sphere and the triangular surface mesh.

The sphere is placed in a fluid having a constant free stream velocity, set
to Ve = (Vo, 0, 0) = (1, 0, 0) at the inflow and outflow. A no-slip boundary
condition is imposed on the solid surface of the sphere, and the remaining
boundaries are free-slip. Absorbers that attenuate the solution toward the
free stream velocity components are used near the inlet and outlet, with the
absorbing layers activated at the location of 2.0D away from these boundaries.
The potential flow initialises the solution, and subsequently the Navier-Stokes
equations (1) are solved using the NFTFV scheme.

For viscous flow past the sphere, the drag force Fd comprises the form drag
Fp and the frictional drag Ff . In the analysis of results, the drag force acting
on the sphere is integrated over the surface of the sphere S and is calculated
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from

Fd = Fp+Ff , Fp = −
∮
ρoϕn1dS , Ff =

∮
µ

(
∂V1
∂xJ

+
∂VJ
∂x1

)
nJdS , (31)

where dS indicates a boundary element (face) and nI the I th component
of the unit normal vector to the surface, and the repeating J indices imply
the summation. The corresponding dimensionless drag force coefficients are
defined as

Cζ =
Fζ

0.5ρoVo
2A

, for ζ = d, p, and f , (32)

where A is the reference area; A = Π(D/2)2 for the sphere.

4.2 Results and discussion for Re = 200

The mesh used in computations in this and the subsequent section consists
of 190327 nodes. The region of prismatic elements is 0.3D thick. There are 9
layers of prisms and their thickness increases in the radial direction from the
sphere. The thickness of the first layer from the solid sphere is 0.014, while
the average edge length on the solid sphere is 0.03.

Fig. 3. Streamlines for the steady-state flow past a sphere at Re=200, in x−y (top)
and x− z (bottom) planes.

The top plate of Fig. 3 shows the flow streamlines in the x-y plane cutting
through the centre of the sphere while the bottom plate shows the streamlines
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in the x-z plane. It can be observed that the two recirculations in the wake
region of the sphere are symmetric about the centre line (y=0, z=0), which is
noteworthy as the streamlines are plotted based on irregularly spaced points in
the unstructured mesh. The planar symmetry in these two figures implies that
the flow in the wake region is axisymmetric-symmetric. This result confirms
the experimental observation in [68].

Table 1
Flow past a sphere at Re=200, comparison of experimental and numerical results for
drag coefficient Cd, recirculation length ratio to diameter Lr and separation angle
φs.

Cd Lr φs

NFTFV 0.774 1.429D 116.6◦

[34] (experiment) - - 116.5◦

[3] 0.77 1.43D 116.3◦

[70] - 1.429D 116.1◦

[14] 0.768 1.436D -

[17] 0.776 1.427D 116.2◦

[4] 0.775 1.430D 116.7◦

[30] 0.749 - 114.3◦

[7] - 1.436D 116.3◦

[67] 0.771 - -

[62] 0.784 1.310D 118◦

[25] 0.772 - -

Table 1 documents that the computations obtained with the new NFTFV
scheme are in good agreement with the earlier numerical and experimental
results. Due to the irregularity of the triangular surface mesh, the separation
angle φs = 116.6◦ was averaged from 23 points and its measured maximum
and minimum values were equal to 116.8◦ and 116.4◦ respectively. The position
of separation point on the sphere surface is found by checking the first point in
the volume mesh above the sphere that has an inverse velocity gradient. The
azimuthal angle is then used to describe the position separation point on the
sphere surface. The recirculation bubble length was measured in both x-y plane
and x-z plane to be 1.429D. Furthermore, the position of recirculation bubble
focus which is also demonstrated in Figure 3 is at (xc = 0.36D, yc = 0.88D).
The same result is reported in [20]. Furthermore, the top plate of Fig. 8 in
section 5 demonstrates the contour plots of vertical velocity component V3 at
z = 0 plane (left panel) and V2 at y = 0 plane (right panel), together with
corresponding in-plane velocity vectors, for the same case. It can be observed
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that both contour plots are symmetric around the centre line.

4.3 Results and discussion for Re = 300

At Re=300 the vortices shed periodically from the sphere. Figure 4 shows
the history of the drag coefficient Cd over a dimensionless time (T = t Vo/D)
from T = 250 to 300, and illustrates the periodic character of the vortex
shedding. The drag coefficient is averaged over the same time interval, leading
to Cd = 0.665 with the amplitude C ′d = 0.003. This is in good agreement
with [20], where Cd = 0.656 and C ′d = 3.5× 10−3 were reported for this case.
Reference [36] used vortex methods and provided a slightly higher value of
Cd = 0.683 with C ′d = 2.5×10−3 while [32] reported an empirical expression for
Cd in terms of Reynolds number based on the previous experimental results,
providing Cd = 0.654. Overall, Cd and C ′d obtained from the present study
agree well with the results reported in the literature.

Fig. 4. The history of the Cd drag coefficient; Re=300.

.

The Strouhal number obtained from the simulation is St = 0.131. The result
given in [20] is St = 0.137, [21] reported St = 0.133, while [36] obtained St =
0.135. Additionally, [5] reported St = 0.136, whereas [70] obtained St = 0.136.
Based on these comparisons, the St calculated in the present study is about
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2% lower than the average St from the literature—most likely due to the use
of differently sized domains; cf. section 5.3 in [36] for a discussion—and all six
values remain within three standard deviations of their mean.

Fig. 5. A perspective visualization of the wake vortex structure for Re = 300.

Figure 5 shows an instantaneous level set of the positive second invariant Q of
the deformation tensor; Q = 0.5(ΩIJΩIJ −DIJDIJ), where DIJ is half of the
tensorial part of (2), ΩIJ was defined in (6) and repeating indices imply the
summation. This presentation is known as the Q-method for vortex identifica-
tion [19]. In Fig. 5 it effectively illustrates the 3D structure of the wake flow.
In particular, it evinces the structure of the hairpin vortex in the further wake
region, where the mesh coarsens as approaching the outlet boundary. In the
NFTFV simulation the hairpin vortex is symmetric about the central plane
that corresponds to a rotated x− z plane by ≈ −45◦ about the abscissa. Im-
portantly, this confirms the conclusion in [21] that the planar symmetry still
exists when Re = 300. The presented structure is consistent with experimental
images provided in Fig. 8 of [39], and with the numerical results obtained in
[20] where a further review and an extensive discussion of the flow mechanism
at Re = 300 are also provided.

4.4 Results and discussion for Re=5000

The primary hybrid mesh used in this calculation is generated using a similar
strategy as in Sections 4.2 and 4.3, however, the thickness of the prismatic
mesh region is now equal to the diameter D of the sphere; as Re increases a
finer resolution is required near the solid boundary. The prismatic mesh used
in this section consists of 26 layers. The thickness of the first layer from the
solid sphere is 0.005, or y+ = 0.98 in wall units. 3 The average size of an edge

3 The y+ is calculated assuming the shear velocity uτ = 0.04U∞ and following the
estimation of [6] with y+ = y′uτ/ν and uτ =

√
τw/ρ, where y′ is the distance from
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Fig. 6. The history of the Cd drag coefficient (top) and the power spectrum (bottom);
Re=5000.

.

on the surface of the sphere is 0.02 and the total number of points in the mesh
is 777506 points.

The NFTFV solution of the Navier-Stokes equations (1) with the DES option
was used in this test case. The resulting history of drag coefficient for the non-

the wall and τw is the wall shear stress.
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dimensional time interval from T = 30 to 60 and the corresponding power
spectrum are shown in Fig. 6. The mean drag coefficient Cd = 0.527 was
obtained by taking a time-average value over the interval. The upper panel of
Fig. 6 shows that the oscillation frequency of Cd is now much higher than that
for the case with Re = 300. This frequency is mainly due to the occurrence
of the instability in the detached shear layer [6]. The value Cd = 0.468 was
obtained from the LES calculation for Re = 5000 in [16]. The value Cd =
0.38 was obtained using DNS in [41], and Cd = 0.393 using DES in [7]. An
experimental result from [29] is Cd = 0.52. Overall, the value of Cd obtained
from the NFTFV scheme is higher than the cited numerical results, but is
reasonably close to the experimental result in [29], although the latter one
includes a small effect of a thread used in the experiment to suspend a sphere,
cf. their Fig. 3. We also note that there is some influence of the irregularity
of the unstructured surface mesh in our analysis of the drag coefficient. The
frequency of Cd shown in the bottom panel of Fig. 6 indicates that the mean
value from the dominant frequency obtained from the NFTFV simulation
agrees well with the numerical and experimental results [23,7,6,16,35].

The separation angle of the laminar boundary layer is determined by the forces
acting on the surface of the sphere. The NFTFV scheme using DES predicts
θs = [88◦, 89◦], which is in good agreement with the literature; e.g. [41] reports
θs = 89.5◦ while [38] reported θs = 89◦.

Fig. 7. A perspective visualisation of the wake vortex structure at Re = 5000.

.

Similar to Fig. 5, Fig. 7 shows the 3D structure of the wake flow at one order of
magnitude larger Re = 5000. In contrast to the Re = 300 case, a large number
of vortex rings with a range of scales and irregular rotation can be observed in
the wake region. This indicates a higher frequency of the vortex shedding mode
and a more complex interaction between different scales of vortexes in the near
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wake than at Re = 300. Additionally, it can be seen that the large-scale vortex
consists of several smaller scale vortex rings, which are topologically similar
to the finding in [38]. A closer examination of the shedding of vortex tubes
on the sphere’s surface shows that the detached shear layer breaks down into
rings just after the separation point. The rings then travel downstream and
form vortex tubes behind the sphere. A similar vortex tubes formation is
documented in [23]. This pattern also agrees well with the experimental result
in [39] for the transitional region C (3 × 103 < Re < 6 × 103) specified and
illustrated in their Table 1 and Fig. 8d, respectively.

5 STRATIFIED LAMINAR FLOW PAST A SPHERE

5.1 Motivation

Numerical models for global flows are the staple of computational meteorol-
ogy. However, from the perspective of numerical designs there is an essential
difference between the atmospheric models for global weather and climate and
the models for external flows past a sphere discussed in this paper. The former
are posed in a thin spherical shell with radial extent small compared to the
radius of the sphere [64,57], whereas the latter are formulated in a Cartesian
domain of a substantially larger extent than the radius of a sphere. These lat-
ter models bear a resemblance to mesoscale atmospheric models for simulating
orographic flows [56,66] with the exception of the disparity of scales. The ver-
tical extent of natural mountains and volcanic islands is sufficiently large to
make relevant the effects due to the vertical variability of physical properties
of the atmosphere, and this atmospheric stratification adds another dimension
to the problem of viscous and inviscid flows past immersed bodies.

For illustration, consider that for an inviscid adiabatic flow in a stably strati-
fied atmosphere the momentum equation (9b) can be written in a dimension-
less form

dV

dt
= −∇ψ − η

Fr2
k , (33)

where V and ψ mark the dimensionless velocity vector and pressure pertur-
bation, respectively, while η denotes the displacement of a fluid parcel from
its datum zo far upstream of the body immersed in a uniform ambient flow
Vo = [Vo, 0, 0]; k ≡ ∇x3 is the vertical unit vector. 4 The equation (33) hints

4 Note that dθ/dt = 0 implies θ(x, t) = θe(zo) ≡ θe(x3−η), so expanding the latter
in the first order Taylor series about η = 0 reveals the buoyancy in terms of η.
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that variation of flow realisations for Fr ∈ [0,∞] must be intricate. Multiply-
ing (33) by Fr2 and taking the limit Fr ↘ 0 implies η ≡ 0, i.e. flat isentropes
and a 2D potential flow around the body. On the other hand, taking in (33)
the Fr ↗ ∞ limit implies vanishing buoyancy and thus a 3D potential flow.
In effect, the stated problem cannot be properly posed (cf. §III.6.2 in [8]), as
at some Fr there must be a discontinuous transition from simply to multi-
ply connected isentropes, comprising holes through which the body protrudes.
Furthermore, if an inviscid flow transitions from large to small Froude num-
bers in a finite-time [9], the connectivity of the material surfaces must not
change, and if it does than some form of viscosity must be involved [33]. Still,
inviscid linear [43,44] and asymptotic [11] theories provide insights into flows
at, respectively, large and small Fr. While the linear theory is quite powerful
in providing meaningful predictions in terms of Fr for the upwind stagna-
tion and the associated phenomena of flow reversal and upwind blocking, the
asymptotic theory merely hints the tendency for the fluid to pail up on the
the lower upwind side and solution approaching the horizontal potential flow
in the limit of vanishing Fr; see [48] for a discussion. Neither of the two the-
ories captures the flow morphology in the range of 0<∼Fr

<
∼0.5 where the flow

evinces pronounced vortical structures in the horizontal and vertical (horse-
shoe, cowhorn and lee eddies) observed in nature, laboratory, and numerical
simulations; cf. [18,46,47,71,12]. In the lack of discriminating measurements
or theory, there is a long-lasting controversy on the relative roles of viscosity
and stratification in generating the intricate solutions throughout the high to
low Fr regimes; cf. [71,12] for discussions.

The results of the preceding section bolster our confidence in the integrity
of the NFTFV solvers, and the approach appears well-positioned to address
viscous stratified flows past sphere. In the context of the above-mentioned con-
troversy, the sphere is especially attractive because there are published results
of earlier pertinent laboratory and numerical studies that have been inacces-
sible for decades to the state-of-the-art atmospheric models, predominantly
based on structured grid discretisations of simply connected domains. The past
experimental and numerical studies include [29,26,15]. Experiments [29] mea-
sured the drag on a sphere moving horizontally through stratified fluid, over
a wide range of Reynolds and Froude numbers. These experiments provided
quantitative data for corresponding drag coefficients. Moreover, [26] provides
visualisations from experiments for Fr ∈ [0.005, 20] and Re ∈ [5, 10000] show-
ing a range of characteristic flow phenomena. Numerical investigations in [15]
focused on stratified flows at Re = 200 and employed a structured grid that
extended in the radial direction from a sphere. In the following subsection, we
repeat simulations proposed in [15] but use a hybrid mesh providing relatively
high spatial resolution both close to the sphere surface and in the wake.
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5.2 Flow patterns for Fr ↗∞, 1 and 0.25

The construction of computational mesh, problem domain and boundary con-
ditions are essentially the same as in Section 4.2. However, the distance be-
tween the first layer of points off the sphere is decreased to 0.0096 and there
are 24 prismatic layers. The mesh consists of 770331 points and the aver-
age edge length on the sphere is 0.02. As before, the sphere is placed in
a constant flow Ve = (Vo, 0, 0) = (1, 0, 0)ms−1 and the kinematic viscosity
ν = 0.005m2s−1 is chosen to give Re = 200, fixed through all calculations.
Since both Vo and the diameter of the sphere D are constant, the Froude
number Fr = 2Vo/ND is changed between Fr ∈ [0.25, 200] by varying the
buoyancy frequency N = (g So)

1/2; recall that stratification So was introduced
at the occasion of (9). 5 Computations for a range of Fr were carried out using
the procedure outlined in section 3.3 until flow patterns have been established.
This required a simulation over the non-dimensional time T = t Vo/D = 30 to
allow the flow to travel a distance of 30D.

The simulated flow patterns are illustrated in Fig. 8 that displays the relevant
velocity contours and vectors on the central vertical (y ≡ x2 = 0) and hori-
zontal (z ≡ x3 = 0) cross-sections. 6 All contour plots use 0.1 interval with the
maximum and minimum contour values set at ±0.5 ms−1 respectively and the
dashed lines indicating negative values. The displayed patterns compare well
with Fig. 3 in [15]. In particular, the top row of Fig. 8, for Fr ↗∞, represents
a limit where the flow becomes neutrally stratified, hence reduced to a laminar
flow past a sphere at Re=200. As discussed in section 4.2, the results show a
formation of a steady axisymmetric re-circulation bubble behind the sphere
with the flow near the central line (y = z = 0) being advected back towards
the sphere. The fluid parcels symmetrically flow around and over the sphere.
The contour plots, streamline patterns, and the velocity vectors on both y = 0
and z = 0 planes are almost identical. Since the eddy is axisymmetric, planes
y = 0 and z = 0 divide the lee-side flow into four identical regions. The flow
patterns for Froude number Fr = 200 (not shown), remain almost unchanged
from those depicted for the neutrally stratified flow.

At Fr = 1, the central row of Fig. 8 demonstrates that the flow is very different
from the neutral case. Clearly, the symmetry is broken between the horizontal
and the vertical flow pattern. This is due to the buoyancy-induced gravity
waves radiating in the lee, and the resulting 3D structure of the wake. The
Fr = 1 case is special, as for the inviscid flows crude estimations based on

5 Because V3 = dη/dt, (33) reveals the buoyancy in a stably stratified fluids as a
restoring force with oscillation frequency proportional to N .
6 The velocity vector plots are shown after mapping the results onto a relatively
coarse Cartesian mesh
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Fig. 8. Contour plots of vertical velocity component V3 at y = 0 plane (left) and
a transverse velocity component V2 at z = 0 plane (right) together with velocity
vectors for stratified flow past a sphere at Re = 200; top Fr ↗ ∞, centre Fr = 1
and bottom Fr = 0.25.

the Bernoulli equation [45] predict the incipient stagnation at the obstacle
top—leading to the concept of the dividing streamline height hs = h(1− Fr)
implying flow trajectories with datums zo < hs to impact on the obstacle
surface, while going over the top otherwise [18]. However, refined linear theory
[43,44] past smooth hills with gentle slopes ≈ 0.1 and the accordant numerical
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simulations [48] show this to occur at about twice smaller Fr. Noteworthy,
the dividing-streamline idea has been tested in the laboratory experiments
for smooth hills with slopes ≈ 1 [18], and illustrated by means of numerical
simulation for Fr = 0.33 in [66]. In case the concept of the dividing streamline
applies literally, its one consequence is that the lee-wave amplitude approaches
its maximum at Fr = 1, because for smaller Fr the lee waves are excited by
effectively lower obstacles with heff = hFr; cf. Figs. 7 and 8 in [66] for
illustration.

At Fr = 0.25, the bottom row of Fig. 8 shows that the vertical wave motion
becomes weaker, while the horizontal eddies become larger. Qualitatively, this
is due to sixteenfold stronger stratification compared to Fr = 1 case, upon
which the majority of the mass flow is confined below hs ≈ 0.75(D/2) and
diverted around the sphere. More quantitatively, the linear theory estimates
the vertical wavelength of the stationary wave radiated aloft as λ ∼ ΠFrD.
This is consistent with λ ≈ 3D measured in the left panel of the central
row of Fig. 8 and λ ≈ 0.7D measured in the left panel of the bottom row.
Consequently, a meagerly looking gravity wave at Fr = 0.25 is actually well
resolved in vicinity of the sphere. Its about fourfold weaker amplitude than in
the Fr = 1 case can be partially explained by the diminished mean slope of the
effective obstacle above the dividing streamline, that roughly scales as [Fr/(2−
Fr)]1/2 as Fr decreases from unity to zero. As this only accounts for about
half of the difference, the other half is due to the dissipation. Indeed, on the
scale of the gravity wavelength λ = 0.7D the dissipative effects are significant
as the dimensionless e-folding time scale of the dissipative attenuation of the
dominant wavenumber k = [Fr(D/2)]−1 mode is τV o/D ∼ 0.25Fr2Re ≈ 3,
i.e. threefold of the time scale of advection and the tenth of the duration of the
experiment. As all processes are well resolved in the vicinity of the sphere, and
all examined flow patterns compare well with those in [15], it is meaningful to
quantify the relative importance of viscosity and stratification.

5.3 Quantification of relative effects due to stratification and viscosity

Following [29,15], the impact of stratification on a viscous flow past a sphere is
measured with the departure ∆Cd(Re, 1/Fr) of the drag coefficient at 1/Fr >
0 relative to the reference value Cd(Re, 0) for the neutrally stratified flow

∆Cd = Cd(Re, 1/Fr)− Cd(Re, 0) . (34)

Figure 9—inspired by Fig. 4 in [29]—documents the variation of ∆Cd in func-
tion of 1/Fr for Re = 200. The numerical NFTFV and [15] solutions (shown
with the solid and dashed line, respectively) were both computed for Re = 200.
However, the laboratory experiments were conducted in series with fixed values
of N ∝ Re/Fr but varying Vo, and so with varying Fr and Re. All the labo-
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Fig. 9. ∆Cd in function of the inverse Froude number 1/Fr for numerical solutions at
Re = 200, NFTFV (solid line) and [15] (dashed line) as well as for the experimental
data [29] (circles) at variable Re ∈ [102, 104].

ratory data (marked with circles in Fig. 9) were obtained for Re ∈ [102, 104],
with the majority for 1/Fr ∈ [0.5, 2] with Re > 1000.

Figure 9 shows that for 1/Fr ∈ [0.1, 0.5], ∆Cd is close to zero, implying that
the impact of weak stratification on the drag coefficient Cd (defined in EQ. 32)
is insignificant. For 1/Fr ∈ [0.5, 2], ∆Cd increases considerably, roughly dou-
bling the Table 1 values. At 1/Fr = 1.0, the slope of the numerical solution
[15] decreases sharply (perhaps too sharply in our paraphrase of the original
Fig. 8 in [15]) and then continuously increases matching reasonably the labo-
ratory data read from Fig. 4 in [29] in the range 1/Fr ∈ [0, 2]. However, the
slope of the solid line for the NFTFV result changes little until 1/Fr = 2, and
only then is followed by a sharp decrease; see also §6 in [71] for a discussion. In-
terestingly, the sharp transition at Fr = 1 emphasises the dividing streamline
concept of [18], whereas a smooth transition through Fr = 1 with the subse-
quent regime change at Fr ≈ 0.5 is consistent with the linear theory of [43,44]
and the numerical/laboratory results in [48,71]. The measured heights of the
dividing streamline summarized in Fig 30 of [26] show that crude energetic
estimations of [45] only verify for Fr < 0.7, otherwise being overwhelmed by
viscous boundary layer effects (sensitive to Re) near the obstacle base. Over-
all, the agreement of the NFTFV results with the experimental data of [29]
is quite reasonable in the entire range of the Froude numbers 1/Fr ∈ [0.1, 8]
even though the laboratory experiments were mostly conducted at substan-
tially larger Re. The latter is consequential, because the sharpness of the
above-discussed transition at Fr = 1 appears to diminish with decreasing Re,
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Fig. 10. NFTFV results at Re = 200, change of ∆Cd (solid line), ∆Cp (dashed line)
and ∆Cf (dotted line) as 1/Fr increases from 0.1 to 8.0.

as indicated by Figs. 3 and 4 of [29]. Notably, the numerical results of [15]
poorly capture the measured values of ∆Cd for 1/Fr > 2 when the flow is
strongly stratified and can be spectacularly intricate [66].

Figure 10 shows the total drag departure defined by (34) in function of the
inverse Froude number for Re = 200, and its breakdown into viscous (∆Cf )
and the form drag (∆Cp) components, defined accordingly as

∆Cp = Cp(Re, 1/Fr)− Cp(Re, 0) , (35)

∆Cf = Cf (Re, 1/Fr)− Cf (Re, 0) ,

with the drag coefficients Cp, Cf defined in (32). The values of ∆Cf are gen-
erally small compared to ∆Cp, and equally small compared the neutral flow
values listed in Table 1. The variability of all three ∆Cζ with 1/Fr values
is well correlated up to 1/Fr ≤ 2, while for 1/Fr > 2 the decrease of ∆Cf
precedes that of ∆Cp. The magnitude of ∆Cf is close to the analogous re-
sult in Fig. 9 in [15], and the difference in ∆Cd comes mainly from Cp. The
differences in pressure distribution can also be assessed by comparing distri-
bution of NFTFV ϕ around the sphere with Fig. 4 in [15]. For Froude number
Fr = 200, 2 and 1, these distributions (not shown) compare well with each
other, and this is also where the values of ∆Cd in the two studies agree. For
Froude number Fr = 0.7, 0.5 and 0.25, the ϕ distributions show considerable
departure from each other, and this is also where the values of ∆Cd disagree.

Altogether, the results shown in the paper strongly suggest that for natural
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Fig. 11. Contour plots of vertical velocity component V3 at y = 0 plane (left) and
a transverse velocity component V2 at z = 0 plane (right) together with velocity
vectors for stratified flow past a sphere at Re↗∞ and Fr = 0.25.

atmospheric/oceanic flows it is the stratification that controls the flow, and
that viscosity mostly diminishes the amplitude of, and smears, the buoyantly
induced perturbations. To amplify, Fig. 11 shows the flow pattern for implicit
large-eddy simulation (ILES) of the strongly stratified flow with zero explicit
viscosity and Fr = 0.25. While the solution evinces small scale features, the
large aspects of the flow organization are similar to those in the bottom row of
Fig. 8 for the same Fr and Re = 200. Clearly the viscosity plays the role in the
latter, however the former develops in the absence of the solution independent
viscosity. The dissipation in ILES is flow dependent and confined to the scales
comparable with the mesh resolution, just like intermittent viscosity of explicit
subgrid-scale models for high Reynolds number flows [10,37,55,57]. It might
be argued that such a viscosity determines the flow realisation. On the other
hand, Fig. 12 attests that in the absence of stratification, the NFTFV solver
maintains the potential flow—initiated from the uniform ambient state Ve =
(Vo, 0, 0) = (1, 0, 0) ms−1—over a long simulation time with high fidelity, as
measured by the drag coefficient Cd = 2.03 × 10−5 averaged over the T =
20 ÷ 30 interval. This implies that even if the viscosity plays a role in the
incipient stagnation or flow reversal, it must do so in response to the flow
induced by buoyant perturbations.

6 CONCLUDING REMARKS

The main contribution of this paper is a new numerical approach for ac-
curate simulation of viscous, neutrally and stably stratified flows at moder-
ate Reynolds numbers. The MPDATA-based non-oscillatory forward-in-time
finite-volume (NFTFV) schemes were originated over decade ago [50,51] and
have been since advanced to provide simulation tools for high Reynolds num-
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Fig. 12. Potential flow solution for T=30. Contour plots of vertical velocity com-
ponent V3 at y = 0 plane (left) and a transverse velocity component V2 at z = 0
plane (right); the contour interval and extrema are 0.5 and ±2ms−1, respectively,
with dashed lines indicating negative values.

ber flows in predominantly geophysical applications. The proven implicit large-
eddy simulation (ILES) capability of the MPDATA has been particularly en-
abling for these advancements; cf. [58] for a recent review. Yet, because ILES
fundamentally relies on dissipative properties of the leading truncation terms
of non-oscillatory advection, it lacks the implicit filtering action in a no-flow
direction, and especially in the direction normal to an impermeable boundary.
To alleviate this drawback, the ILES codes can be supplied with remedies in
some form of subgrid-scale turbulence models or, in particular, wall models
near solid boundaries [56]. In contrast, the presented NFTFV approach to
the Navier-Stokes equations accounts for viscous effects using the complete
stress tensor. This extension of the NFTFV schemes enables a broad range
of simulation strategies from direct, to detached-eddy and explicit large-eddy
simulations.

Generally, the semi-implicit time-stepping is beneficial both in terms of accu-
racy and computational economy, but it can lead to cumbersome implemen-
tations. However the collocated data arrangement makes the presented herein
semi-implicit integrators simple to implement. In many schemes data colloca-
tion is notorious for supporting nontrivial null spaces of the discrete differential
operators and needs to be judiciously stabilised. In the NFTFV schemes for
high Reynolds number flows such stabilisation is not required, thanks to the
ILES properties of MPDATA. However, this benefit may not extend to flows
with the characteristic time scales of the physical forcings comparable to, or
much shorter than, the time scale of advection. An important practical aspect
of this paper, is the demonstration that the MPDATA-based NFTFV semi-
implicit integrators provide adequate solution regularisation at the limit of the
mesh resolution, but do not dilute the resolved scales. In effect, this regular-
isation seamlessly complements genuine collocated median-dual unstructured
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discretisation of the viscous terms at a range of the Reynolds numbers. This
shows that the inherent dissipation of the NFTFV solver does not add but
adapts to the physical dissipation present in the system.

The presented extension of the NFTFV integrators to incompressible viscous
flows at moderate Reynolds numbers utilises topological flexibility of the finite
volume discretisation on unstructured/hybrid meshes to enable a systematic
study of flows past a sphere. Such flows have been studied extensively, both
numerically and experimentally, in that they provide a representative range
of benchmarks for external flows past immersed obstacles. Technical develop-
ments presented in the paper are verified against the notable laboratory and
numerical experiments that capture the key aspects of canonical laminar and
turbulent flows past a sphere. This analysis is supplemented with a study of
challenging stably stratified flows past a sphere that verifies the NFTFV sim-
ulations against eminent experimental and numerical results. It demonstrates
the potential of the advocated approach for research of intricate natural flows
past complex terrain, combining dynamics of frictional and planetary bound-
ary layers with gravity wave dynamics aloft.
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J. Szmelter, N.P. Wedi, A finite-volume module for simulating global all-scale
atmospheric flows, J. Comput. Phys. 315 (2016) 287-304.

[58] P.K. Smolarkiewicz, J. Szmelter, F. Xiao, Simulation of all-scale atmospheric
dynamics on unstructured meshes, J. Comput. Phys. 322 (2016) 267287.
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