

Multi-Angle Valve Seat Machining:

Experimental Analysis and

Numerical Modelling

By

James R. Fletcher

A Doctorial Thesis

Submitted in partial fulfilment of the requirements for the award of

Degree of Doctor of Philosophy of Loughborough University

September 2018

© James Fletcher 2018

i

Abstract

Modern automotive manufacturers operate in highly competitive markets, heavily influenced by

Government regulation and ever more environmentally conscious consumers. Modern high-temperature,

high-pressure engines that use high hardness multi-angle valve seats are an attractive environmental

option, but one that manufacturers find requires more advanced materials and tighter geometric

tolerances to maintain engine performance.

Tool manufacturers meet these increasingly tougher demands by using, higher hardness cutting materials

such as polycrystalline cubic boron nitride (pcBN), that on paper, promise to wear at a lower rate, require

less coolant and deliver tighter tolerances than their carbide counterparts.

The low brittle fracture toughness of pcBN makes tools that use it vulnerable to minute chipping. A review

of literature for this work pointed to no clear answer to this problem, although suggestions range from

manufacturing defects, dynamic and flexibility problems with the production line machinery and fixtures,

and radial imbalances in the cutting loads.

This work set about experimentally investigating those potential explanations, coming to the conclusion

that the high radial imbalance of the cutting loads is responsible for pcBN cutting insert failure during multi-

angle valve seat machining, and that by simply relocating the cutting inserts around the multi angle cutting

tool, the imbalance can be reduced, thus extending the life of the cutting inserts.

It is not always easy to predict the imbalance due to the multiple flexibilities in the system, and simulating

such a system in 3D with all its associated cutting phenomena such as friction, thermal expansion, chip flow

and shearing, would call upon extraordinary computational power and extremely precise experimental

inputs to reduce cumulative error.

This thesis proves that such a 3D simulation can be made, that runs in exceptionally short durations

compared to traditional methods, by making a number of simplifications.

MSC Marc was used to host the simulation, with a parametric script written in Python responsible for

generating the model geometry and cutter layout. A Fortran program was developed that is called upon by

Marc to calculate the required cutting load outputs and generate new workpiece meshes as material is

removed.

ii

Conferences

 The 8th International Symposium on Mechanics of Materials and Structures – 31 May to 3 June,

2015, Augustow, Poland

 The 12th World Congress on Computation Mechanics (WCCM XII) and The 6th Asia-Pacific Congress

on Computational Mechanics (APCOM VI) – 24 to 29 July 2016, Seoul, South Korea

 The 7th International Conference on Computational Methods (ICCM2016) – 1 to 4 August 2016,

University of California Berkeley, California, USA

 Powertrain Modelling and Control, Testing, Mapping and Calibration (PMC2016) – 7 to 9 September

2016, Loughborough University, United Kingdom

 16th CIRP Conference on Modelling of Machining Operations – 15 to 16 June 2017, Cluny, Burgundy,

France

iii

Acknowledgements
This project was supported by the High Speed Sustainable Manufacturing Institute and Ford Motor

Company.

I would like to express my gratitude to my PhD supervisor, Dr Emrah Demirci, who has given me

unwavering support, both academically and personally despite many life challenges throughout my time at

Loughborough University.

I would also like to acknowledge the support of my family, without which, this submission would not have

been possible. In particular I would like to thank my mother, Janet Fletcher, who has always been on hand

to motivate and guide me, often turning me from the brink of giving up.

Also, my wife, Stephanie Fletcher, who despite living in another country has bravely faced the challenges of

living apart, putting up with my stress and endless lack of time, all the while having the energy to support

me emotionally throughout this process.

Scores of staff at Loughborough University deserve my thanks and gratitude, in particular I would like to

thank Rob Hunter and Michael Porter in the Wolfson School workshop for giving their time and guidance

during some experimental phases of this work, Jagpal Singh for his excellent metrology advice and

willingness to donate lab time to this work and finally Peter Bracey in the Electronics Workshop for lending

me measurement hardware for various experiments.

From Ford, I would like to thank Matthew Denham, whose interest in my work led to the amazing

opportunity to visit Ford’s plant in Craiova to perform a range of key experiments.

Thank you all.

This work is dedicated to my grandfather, Gordon Fletcher, who inspired me to pursue a life in science and

technology.

iv

Table of Contents

Abstract ... i

Conferences .. ii

Acknowledgements .. iii

Table of Contents ... iv

Chapter One – Introduction ... 1

 Case Study and Motivation .. 1 1.1

 Background .. 5 1.2

 Research Objectives .. 8 1.3

 Scope ... 8 1.4

 Thesis Outline .. 9 1.5

Chapter Two – Mechanics of Machining .. 11

 Process Zone .. 11 2.1

 Materials .. 13 2.2

 AR20 Copper Infiltrated High Speed Steel ... 13 2.2.1

 Cubic Boron Nitride ... 15 2.2.2

 Tungsten Carbide ... 17 2.2.3

 Cutting Fluids ... 17 2.3

 Chip .. 18 2.4

 Cutting speed and feed rate effects .. 19 2.5

 Heat in Machining .. 19 2.6

 Wear Mechanisms ... 20 2.7

 Cutting Tool Failure ... 21 2.8

 Stress ... 21 2.8.1

 Thermal Effects .. 22 2.8.2

 Vibration .. 22 2.8.3

 Chapter Summary .. 23 2.9

Chapter Three – Non-Linear Finite Element Analysis ... 24

 Theory of Non-Linear Finite Element Analysis .. 24 3.1

 Variational Methods .. 26 3.1.1

 Large Displacement and Strain Behaviour (Lagrangian Methods) .. 27 3.1.2

 Contact and Friction .. 28 3.1.3

 Convergence .. 29 3.1.4

 Basic Procedure of FEA in Solid Mechanics ... 30 3.2

v

 Mesh Refinement .. 31 3.3

 Remeshing ... 32 3.4

 Model Verification and Validation ... 33 3.5

 Modelling Software Selection ... 34 3.6

 Chapter Summary .. 36 3.7

Chapter Four – Techniques for Characterising and Modelling Cutting Systems .. 37

 Mechanical Characterisation of the System .. 37 4.1

 Modulus of Elasticity and Poisson’s Ratio ... 37 4.1.1

 Vibrational Properties ... 37 4.1.2

 Plastic Flow Curve Characterisation .. 38 4.1.3

 Friction ... 38 4.1.4

 Temperature .. 40 4.1.5

 Modelling Cutting Systems .. 42 4.2

 Johnson-Cook Constitutive Model .. 42 4.2.1

 Modelling Damage ... 43 4.2.2

 Modelling Vibration ... 44 4.2.3

 Numerical Model ... 45 4.3

 Chapter Summary .. 47 4.4

Chapter Five – Experimental Analysis of pcBN Cutting Inserts ... 48

 Schedule of Specimens .. 50 5.1

 Visual Inspection using Optical Microscopy .. 52 5.2

 Measurement of Corner Radius .. 52 5.2.1

 Inspection of Large Chip on Insert 14 .. 53 5.2.2

 Inspection of Small Chip on Insert 25 .. 55 5.2.3

 X-Ray Computed Tomography ... 57 5.3

 Scanning Electron Microscopy (SEM) .. 59 5.4

 Insert 14 – Chipped edge ... 59 5.4.1

 Insert 14 – Chemical Analysis of Speckle and Black Patterns .. 62 5.4.2

 Insert 16 – Tungsten Carbide Chemical Analysis ... 64 5.4.3

 Insert 16 – Wear Profile ... 64 5.4.4

 Insert 2 – Rake face deposits ... 65 5.4.5

 Insert 2 – Crack .. 68 5.4.6

 Insert 2 – Crystal Pattern ... 71 5.4.7

 Chapter Summary .. 72 5.5

Chapter Six – Dynamic Analysis of the Valve Seat Cutting Operation ... 73

 Introduction ... 73 6.1

 The Machining Process .. 74 6.2

 The Effect of ZPL Bolt Torque on Seat Positional Accuracy ... 78 6.3

vi

 Stiffness Analysis ... 81 6.4

 ZPL Preload .. 81 6.4.1

 Geometry and Mesh .. 84 6.4.2

 Boundary Conditions ... 86 6.4.3

 Material and Physical Properties ... 87 6.4.4

 Results ... 87 6.4.5

 Cylinder Head Resonance Analysis .. 94 6.5

 Experimental Design .. 94 6.5.1

 Calibration ... 100 6.5.2

 Results ... 100 6.5.3

 Chapter Summary .. 103 6.6

Chapter Seven – Experimental Characterisation of Cutting Force... 104

 Introduction ... 104 7.1

 Theory .. 105 7.2

 Experimental Methodology ... 111 7.3

 Parameter selection .. 114 7.3.1

 Data Processing ... 114 7.4

 Signal Conditioning .. 115 7.4.1

 Time Offset Approximation and Refinement .. 115 7.4.2

 Specific Force Calculation .. 115 7.4.3

 Results and Discussion ... 117 7.5

 Radial Force Analysis ... 117 7.5.1

 Specific Force Data .. 118 7.5.2

 Thermal Analysis .. 124 7.5.3

 Surface Analysis ... 128 7.5.4

 Chapter Summary .. 131 7.6

Chapter Eight – Development of Theoretical Finite Element Model ... 132

 Justification .. 133 8.1

 Objectives .. 135 8.2

 Strategy .. 135 8.3

 Model Design and Performance Constraints ... 138 8.4

 Assumptions .. 138 8.4.1

 Coordinate System .. 138 8.4.2

 Geometry ... 139 8.4.3

 Boundary Conditions ... 143 8.4.4

 Contact .. 144 8.4.5

 Material (Novofer AR20) .. 144 8.4.6

 Additional Output .. 144 8.4.7

vii

 Initial Parameter Configuration ... 145 8.4.8

 Parametric Compatibility ... 146 8.4.9

 Marc / Python Interface .. 147 8.5

 Python Model Generator Script .. 149 8.6

 Setup .. 150 8.6.1

 Valve Seat .. 150 8.6.2

 Spindle ... 154 8.6.3

 Cutters ... 155 8.6.4

 Contact Table ... 159 8.6.5

 Remeshing Instruction ... 159 8.6.6

 Loadcase Configuration ... 160 8.6.7

 Job Configuration ... 160 8.6.8

 Chapter Summary .. 161 8.7

Chapter Nine – Design and Development of Fortran Program .. 162

 Introduction ... 162 9.1

 Definitions ... 163 9.2

 Programming Terms .. 163 9.2.1

 Procedure Diagrams .. 164 9.2.2

 Pre-Processor Definitions .. 164 9.2.3

 Mesh Definitions .. 165 9.2.4

 Siding ... 168 9.2.5

 Development Environment ... 169 9.3

 Development Software .. 169 9.3.1

 The Relationship Between the Fortran Program and Marc .. 170 9.3.2

 Debugging Tools and Methods .. 171 9.3.3

 Program Theory ... 174 9.4

 Types and Objects.. 174 9.4.1

 User Subroutine Call Order .. 177 9.4.2

 Configuration File .. 178 9.4.3

 Procedure .. 179 9.5

 Runtime Setup ... 181 9.6

 SplitMesh ... 182 9.7

 Intersection Detection ... 183 9.7.1

 Hull Splitting .. 185 9.7.2

 2D Meshing – Cut Face .. 188 9.7.3

 Significance Check ... 189 9.7.4

 2D Meshing – Split Hull Facets .. 189 9.7.5

 Simplification I – Sweep ... 192 9.7.6

 Removal of Unwanted Hull Side .. 193 9.7.7

viii

 Simplification II – General Complexity Reduction ... 195 9.7.8

 Mesh Optimisation .. 197 9.7.9

 Facet Siding .. 200 9.7.10

 3D Volume Meshing .. 201 9.7.11

 Force Recovery and Allocation .. 202 9.7.12

 Low-Level Functions and Subroutines ... 205 9.8

 Volume of a Tetrahedron .. 205 9.8.1

 Ray Construction ... 206 9.8.2

 NURBS Surface Formula (NURBSSurface%S, CDBR) .. 206 9.8.3

 Reverse NURBS Surface Formula (NURBSSurface%GetUV) .. 207 9.8.4

 Circumscribed Triangle in R3 (Circumcircle) ... 209 9.8.5

 Circumscribed Tetrahedron (Circumsphere) ... 210 9.8.6

 Ray-Ray Intersection (Ray%RayIntersect) .. 211 9.8.7

 Ray-Triangle Intersection (Ray%TriIntersect) ... 213 9.8.8

 Triangle-Triangle Intersection (TriTriIntersect) .. 215 9.8.9

 Ray-NURBS Intersection (NURBSSurface%RayIntersect) ... 217 9.8.10

 Triangle-NURBS Intersection (NURBSSurface%TriIntersect) 220 9.8.11

 High-Level Functions and Subroutines .. 221 9.9

 Two-Dimensional Meshing (GiftWrap) ... 221 9.9.1

 Three-Dimensional Meshing (TetMesh) ... 224 9.9.2

 Chapter Summary .. 227 9.10

Chapter Ten – Results and Discussion .. 230

 Model Performance & Validation .. 230 10.1

 Speed ... 231 10.1.1

 Validation of Loads .. 232 10.1.2

 Validation of Geometry ... 234 10.1.3

 Progression of Mesh Complexity ... 241 10.1.4

 Validation of Volume Calculation .. 243 10.1.5

 Cutter Face Duty Cycle Map .. 244 10.1.6

 Multiple Cutters ... 246 10.2

 Configuration ... 246 10.2.1

 Validation of Balanced Configuration .. 249 10.2.2

 Radial Imbalance Reduction Study .. 250 10.2.3

 Simulation Stability .. 254 10.2.4

 Remeshing Algorithm .. 255 10.3

 Chapter Summary .. 256 10.4

Chapter Eleven – Conclusions .. 257

 Summary of Results ... 257 11.1

ix

 Future Research ... 257 11.2

 Conclusions .. 259 11.3

 Objective One .. 259 11.3.1

 Objective Two .. 259 11.3.2

 Objective Three ... 259 11.3.3

 Objective Four ... 260 11.3.4

 Novel Contributions ... 261 11.4

References .. 262

Appendix A – MarcTools ... 270

Appendix B – Fortran Source Code Procedure Headers .. 275

1

Chapter One – Introduction
Metal properties, such as strength and durability, make the use of metals in everyday life commonplace. It

is not surprising therefore that basic metals and fabricated metal products make up more than half of the

UK’s manufacturing consumption (Department for Business Innovation & Skills, 2010), the vast majority of

which require further processing in the form of metalworking. Metalworking is the process of shaping

metals to a given specification, through processes such as casting, forging, extrusion, welding and

machining. These techniques, in particular machining, have seen considerable investment in terms of

research and industry experience over hundreds of years throughout many countries.

Traditional machining, in its simplest form, is the removal of material by cutting with another stronger

material. The ability to machine metals is core to the automotive industry. Competition between

automotive manufacturers is fierce, especially since there is considerable pressure to continually improve

the quality of products, keep costs down, meet legislative demands and retain or grow market share.

Newer technologies such as high temperature, high pressure engines that boast superior power to weight

ratios and better emissions performance than previous generation engines necessitate higher hardness

engine components, in turn calling for state of the art cutting materials to increase the reliability and

quality of finished parts, and to reduce tooling cost.

Polycrystalline cubic boron nitride (pcBN) is a high hardness cutting material that has a great deal of

potential in metal working, particularly in multi-angle valve seat machining. The physical phenomena

governing the behaviour of materials such as pcBN is still comparatively unexplored to that of other

popular tool materials such as high speed steel (HSS) and tungsten carbide. This work aims to broaden our

understanding of multi-angle valve seat machining with pcBN so that the full potential of pcBN can be

realised.

 Case Study and Motivation 1.1
The motivation for this work stems from a production line phenomena observed by Ford Motor company

during multi-angle valve seat machining on the Ford Sigma and Fox internal combustion engine cylinder

heads. Ford reported that pcBN cutting inserts are prone to failure at seemingly random times throughout

the process and typically long before the scheduled tool change interval. The cutting surfaces of the inserts

are made using polycrystalline cubic boron nitride (pcBN). The cutting system typically uses three inserts

spaced 120° apart about the axis of rotation, each of which finishes a different angle on the valve seat. The

failure mode is typically minute chipping on the cutting edge, which causes rings of raised material to be

left on the valve seat surface. Those raised surfaces leave the finished part out-of-tolerance and will often

cause the seats to fail a leak test, necessitating scrapping of the cylinder head. It can sometimes be the case

that up to 200 cylinder heads progress from the valve seat finishing step, before quality inspection

identifies a failed valve seat. These heads cannot be reworked and must be scrapped at considerable cost

to the company.

Although the tool life and performance of tungsten carbide cutting inserts is much more predictable, pcBN

inserts boast a much a higher potential life and are successfully used by Ford in other processes such as

cylinder boring. If more knowledge can be developed about pcBN inserts and the dynamics of cutting three-

angled valve seats, it is hoped that the superior material properties of pcBN over tungsten carbide can be

harnessed to increase productivity and reduce machining costs.

2

Valve seats are an essential component of modern internal combustion engines. Their use allows

manufacturers to build cylinder heads from lightweight aluminium whilst still providing an extremely hard

surface against which the valves can seal. The seats are pressed into the cylinder head and face into the

cylinder. In this capacity they perform perhaps one of the most demanding roles of any component in the

engine. They are expected to hold a very tight geometric tolerance for the entire life of the vehicle under

high combustion pressures and repetitive impact from the valves as they open and close.

Ford’s material of choice for this application is a sintered high speed steel. The pores left by the sintering

process are filled with copper, leaving an extremely hard and durable material with excellent resistance to

thermal deformation and outstanding sealing performance.

‘Three-angle’ refers to the geometry of the contact surfaces between the valve and the valve seat. Three

surfaces of gradually decreasing angle, similar to that shown in the cross-section in figure 1-1, are used so

that the valve and valve seat, seal on three independent surfaces, thus increasing the effectiveness of the

seal.

Figure 1-1 - Valve seat cross-section

The sintering process produces rings of the approximate finished valve seat shape. Figure 1-2 shows valve

seat blanks for the exhaust (left) and air intake (right) as they are delivered to the production line.

Figure 1-2 - Valve seat blanks(scale divisions in mm)

3

Valve guides and seats are pressed into the cylinder head using hydraulic rams. This interference fit is

designed to keep the seats secured for the duration of their life. Some processes go a step further by

cryogenically cooling oversized seats before insertion so as to allow significantly tighter interference fits.

Once the valve seats are securely pressed in, the cylinder head is brought to a CNC machine where the

finishing cuts are made. Figure 1-3 (left) shows a photograph of a valve seat cutting tool and (right) a

simplified cross-section diagram showing the geometric relationship between the valve seat and valve

guide during the cutting operation.

Valve
seat

Valve
guide

Tool holder body

Cutting
insert

Reamer

Figure 1-3 – Valve seat cutting tool component layout

In some cases, the finishing cuts for all three angles of the valve seat as well as the valve guide are

performed by a single tool. In other cases, the valve guide and seat are finished in separate steps. The tool

has three cutting inserts, each of which corresponds to a different angle on the seat (these are the

components with a gold appearance in the above figure).

The failure mode for the pcBN inserts is chipping. The scale of chipping ranges from clearly visible, to

difficult to detect without optical inspection tools. Figure 1-4 shows one of the larger chips observed.

6.0 m
m

Chip

Figure 1-4 – Chipped pcBN insert (parallel edge to edge distance is 6 mm)

4

All of the cutting tools that Ford use for the operation are manufactured and supplied by MAPAL. Figure 1-5

shows images of the various pcBN cutting tool inserts used by Ford to cut valve seats.

Figure 1-5 – pcBN cutting tool inserts

The pcBN cutting surfaces are backed by a tungsten carbide reinforcement. Figure 1-6 shows the pcBN layer

(darker material) cemented to a tungsten carbide substrate (grey material). This layer is significantly less

brittle than the pcBN layer and thus provides additional strength to support the rake load during cutting.

Figure 1-6 – pcBN cutting tool inserts (side view)

5

 Background 1.2
Ford is not the first engine manufacturer to experience issues during multi-angle valve seat machining with

polycrystalline cubic boron nitride (pcBN) tools. Others have previously attempted to understand and

improve the reliability and performance of valve seat machining processes using pcBN tools. Three

significant studies were identified:

Evaluation of the wear mechanisms and surface parameters when machining internal combustion engine

valve seats using PCBN tools, Rocha et al., 2004.

A collaborative, experimental case study was performed in conjunction with Fiat-GM in Brazil which

specifically looked at the performance of hardened steel valve seat cutting, with pcBN. The valve seats

studied were of a similar chemical composition to those used by Ford. However the paper does not clarify

whether or not multiple pcBN tools are engaged at the same time (as in the Ford configuration) or how

many angles are cut into the valve seat.

The study identified the importance of seal quality between the valves and their seats for ensuring good

engine performance. It was found that the valve seat surface quality, and thus the cutting process, was the

most influential factor dictating seal quality. Their objective therefore was to show the influence of cutting

speed, feed rate and depth of cut on pcBN tool life and wear rate.

Experimental results were gathered using production line machines under normal operating conditions.

Tools were periodically removed from tool holders, measured and replaced in order to monitor wear at set

intervals. Care and attention was applied to ensure the entire machine, including coolant was at

equilibrium temperature so as not to distort the results. Vibrational measurements were also taken using

an accelerometer in order to characterise the dynamic instability of the system.

The study considered a wide variety of wear mechanisms, including chemical and attrition wear as a result

of ‘stick-slip’ contact between the tool and workpiece. It concluded that the discontinuous chip flow, tool

chipping and micro chipping observed was due to excessive vibration in conjunction with the low fracture

toughness of pcBN. Other conclusions of the study were that:

 cutting speed does not affect cutting force;

 cutting speed had the largest influence on temperature;

 the vibration response of the system to changes in cutting velocity was highly non-linear, with

small increases radically changing the tribological characteristics between the workpiece and

tool. It was found that in some cases, a cutting velocity which yielded 30 parts before failure,

could be modified by no more than 15% in order to yield 500 parts; and

 an increase in depth of cut increases the wear rate.

The study makes a series of predictions as to the performance of pcBN tools under certain conditions.

However, the results are highly dependent on the particular setup and it remains unclear whether or not

the same results would be observed using different equipment and workpiece materials. The study does

not present a numerical model or finite element study which can be used to apply the findings to new

problems and geometries.

This study is very important in the context of this work, since it proves a link between vibration, low

fracture toughness of pcBN and chipping failure. In Ford’s case, a number of factors can cause vibration

such as flexibilities within the system and imbalanced cutting loads.

6

Blade Geometry Effects on the Boring of Valve Seats of Internal Combustion Engines, Lacerda and

Siqueira, 2012.

This work examined a particular valve seat cutting process which was yielding seats with a poor surface

finish and was susceptible to tool failures.

The study also identified vibration as the cause, but took this a step further to identify what was causing

the vibration. The possible causes they investigated were:

 inhomogeneous valve seat material in the form of hardness and porosity variations around the ring,

 poor choice of pcBN material grade;

 poorly optimised cutting parameters;

 a dynamic stability problem within the tool, workpiece and fixture geometry leading to

regenerative chatter; and

 suboptimal cutting edge geometry.

The work ruled out some of these hypotheses and suggested small tweaks for others. One hypothesis

however stood out and required a substantial and very significant change to the process. That factor was

the layout of the cutting inserts themselves. It was suggested that because each cutter cuts a different

angle on the seat, the radial forces are different causing a dynamic imbalance to arise once machining has

started, in some cases exceeding 400 N of imbalance.

The research proposed a new tool holder design in which the individual cutting inserts are balanced by

opposing inserts of the same angle as shown in figure 1-7 taken from their work.

Figure 1-7 – Lacerda and Siqueira, 2012, current and proposed tool configurations

Although they were not able to test this modification, they concluded that this imbalance was the primary

factor which, in combination with the very poor fracture toughness of pcBN, led to tool failure.

The findings presented in their study bear a striking resemblance to the issues faced by Ford. Space

constraints prevented the authors from proposing a tool in which all four cutters in the original roughing

7

tool are opposed by an additional four. They instead proposed separating the cutters onto two separate

tools with each cutter being perfectly opposed. However, given the extremely large dynamic imbalance of

400 N, it may be possible to achieve stability by adding a single additional insert and changing the layout of

the remaining inserts. The cost of designing and producing new tooling is extremely high; simulation could

be undertaken to assist in the design, testing and optimisation of the reconfiguration of cutters in the way

proposed, whilst keeping costs to a minimum.

Wear Mechanism of CBN Inserts during Machining of Bimetal Aluminium-grey Cast Iron Engine Block,

Malakizadi, Sadik and Nyborg, 2013.

This work presented a 3D finite element model of the specific wear interaction between pcBN inserts and

Grey-Cast Iron (GCI) cylinder liners within aluminium engine blocks. Individual pcBN inserts were used to

machine both valve seat and parent metal materials alternately. This was significant as it demonstrated the

performance of inserts when repeatedly exposed to the very different cutting conditions (different forces

and temperatures) of soft non-ferrous aluminium and hard abrasive GCI. In the case study from Ford, it was

assumed that the pcBN insert only ever cuts the hardened steel valve seat, although preliminary visual

inspection of a cylinder head supplied by Ford suggested that occasionally the pcBN does in fact touch the

aluminium body of the cylinder head and, therefore, the influence of bimetallic machining should not be

ignored.

The study found through inspection using Scanning Electron Microscopy (SEM) that the propagation of

comb cracks was accelerated by the alternating thermal and mechanical stresses mentioned previously. It

was suggested that these comb cracks were responsible for the accelerated rate of chipping of the pcBN

insert.

The study went on to develop a 2D non-linear finite element model using the commercially available

DEFORM 2D package. The Johnson-Cook model was used to model plastic behaviour. The results of the 2D

analysis showed good agreement with experimental results. A 3D model was also developed using the

DEFORM 3D commercial software package. Using friction constants derived through validation of the 2D

model, the researchers simulated 5˚ of cutting. However it was acknowledged that access to computational

processing power was a limiting factor.

The study managed to successfully produce a 3D model of both aluminium cutting and CGI cutting.

However, the 3D model was not verified using experimental results and instead relied upon parameters

refined during the design of a 2D model. Neither the 2D nor 3D model implemented a damage model for

the pcBN insert. Perhaps because in each simulation only a tiny proportion of the machining operation was

simulated and so there was little opportunity for damage accumulation to be substantively expressed

within the model. Instead, the study used the simulations to predict peak stress and temperature points at

which chipping due to comb cracks would occur.

The literature review offered in the study conducted in 2013 suggested that there have been few successful

attempts to model valve seat cutting with pcBN tools in 3D.

In summary, the three studies presented here all identify issues when machining with pcBN cutting inserts.

In each case there is a role to play for simulation, however access to suitable methods and computational

processing power appears to have been a limiting factor in all cases.

8

 Research Objectives 1.3
The objectives of this work are to:

1. investigate Ford’s cylinder head and fixture geometry and determine whether or not it undergoes

resonance at typical valve seat cutting feed rates and speeds;

2. design and execute an experiment aimed at capturing specific feed and rake forces for the valve

seat cutting operation, using a range of feed rates and spindle speeds for both dry and minimum

quantity lubricant (MQL) conditions;

3. justify, design and develop a substantial body of code capable of calculating cutting forces for a

sub-segment of the valve seat cutting operation at typical feed rates and speeds; and

4. test the simulation code by using it to calculate the sub-segment cutting load of a single cutter up

to and beyond the typical cutting depth.

 Scope 1.4
The scope of this project is limited to studying the failure mechanisms affecting the pcBN cutting insert

samples provided by Ford. A narrow range of processes will be considered, specifically those used to finish

valve seats at the Ford plant in Bridgend, Wales UK and the Ford plant in Craiova, Romania for the Sigma

and Fox engines respectively.

These operations are fundamentally the same, involving three-bladed cutters, although there are variations

within the fixture design, feeds and speeds. The relative pitch between the blades and thus the cone angles

left on the seats is tightly controlled by Ford’s design.

With regards to materials, although several cutter materials can be used for valve seat cutting, for example,

tungsten carbide, this work will focus purely on pcBN. Although the reliability of tungsten carbide tools is

generally very good, pcBN has a superior wear rate than that of tungsten carbide and is therefore

theoretically able to hold the tight relative cone angles for longer durations than tungsten carbide. The

study of pcBN based cutting systems provides a greater opportunity to contribute to new knowledge.

For the valve seat material and geometry, this work focused purely on the specific sintered AR20 high

speed steel composition and blank part geometry used by Ford. Only the exhaust seat will be studied, but

the tools developed will be suitably parametric, such that they can be readily applied to other geometries

including the intake seat.

9

 Thesis Outline 1.5
The first three chapters following this introduction present a literature survey. The literature survey is

divided according to three specific areas:

 Chapter Two – Mechanics of Machining: Presents an overview of the current understanding of

metal cutting. The chapter also provides a review of theoretical and experimental methods used to

characterise various metal cutting phenomena. This chapter also addresses damage specifically

relating to pcBN cutting tools.

 Chapter Three – Non-linear Finite Element Analysis: Presents the fundamental concepts of non-

linear finite element analysis and its application in this project. The chapter also introduces the

MSC Marc Finite Element Solver used in this project.

 Chapter Four – Numerical Modelling of Machining: Presents an overview of the knowledge that

emerged at the juncture of the first two chapters, specifically how metal cutting physics is

implemented in finite element simulations. This chapter highlights the complexity of modelling

various machining physics.

As stated in the background for this project, significant pieces of previous work offered a plausible

explanation for the premature tool failure observed by Ford. However, following the literature review for

this work, many other factors were identified that could result in damage and mechanical failure of pcBN

cutting inserts and these must be investigated first.

 Chapter Five – Experimental Analysis of pcBN Cutting Inserts: This is an experimental chapter

which provides an analysis of several failed cutting inserts using a range of techniques including

optical microscopy, X-Ray computed tomography and Scanning Electron Microscopy (SEM) to look

for the presence of failure mechanisms and manufacturing defects identified in the literature, such

as comb cracking, chemical diffusion, fatigue failure and delamination between the two layers of

the insert and voids within the pcBN substrate itself. This chapter concludes that although the

presence of various damage phenomena can be detected, the root observation of wholly

unpredictable failure cannot be explained by these discoveries alone.

 Chapter Six – Dynamic Analysis of Real Valve Seat Cutting Operations: Another experimental

chapter which studies the cutting process cycle in particular to discover whether or not chipping

can be attributed to excessive vibrational amplitude brought about by resonance in the cylinder

head and fixture structures. In this experiment, evidence of resonance was found in some cases.

The knowledge gathered during the literature survey for this project and the two experimental

investigations provided a strong argument to suggest that the underlying causes for seemingly random

premature of failure of cutting inserts was due to vibration in conjunction with the low fracture toughness

of pcBN, caused by the dynamic imbalance that arises during cutting due to the different radial loads on

each cutter.

Chapter Seven – Experimental Characterisation of Cutting Forces: Presents the design and application of

an experiment aimed at determining which cutting parameters affect tool force when cutting AR20 valve

seats with pcBN tools. This chapter also presents experimental results and a cutting force prediction model

suitable for input into the numerical model developed in the final part of this thesis.

Chapter Eight – Development of the Numerical Model: Presents the design of a three-dimensional

numerical model capable of simulating valve seat cutting. Due to the high complexity, iteration count and

number of elements, this chapter also presents the numerous simplifications and optimisations required to

10

make the simulation possible within a reasonable time frame. This chapter also presents how the model is

made parametric through the use of a bespoke Python model building script and individual configuration

files for each process setup.

Chapter Nine – User Subroutine Design and Implementation: Presents the design of a Fortran program

intended to add functionality to MSC Marc in order to process cutting increments according to the

simplifications proposed in the previous chapter. This chapter explains how each component of the Fortran

program works, including the mathematical theory underpinning the more advanced features such as

NURBS surface generation and decomposition into triangles, ray-triangle intersection testing, triangle-

triangle intersection testing and other features.

Chapter Ten – Results and Discussion: Validates the model created in the body of this work by applying

and comparing it to the experiment developed in Chapter Seven. This chapter also discusses the quality of

various outputs from the Fortran program such as mesh stability, element density and force recovery.

Finally, this chapter applies the model to a hypothetical multi-angle problem and a proposed solution in

order to compare radial imbalance.

Chapter Eleven – Conclusion: A short chapter concluding this work and summerising the results with

reference to the objectives list given earlier in section 1.3. This chapter also presents ideas for future

research and how the tools developed can be used by tooling designers.

11

Chapter Two – Mechanics of Machining
This chapter provides introduction to the mechanics of machining. Machining is a subset of metalworking

techniques concerned with material removal from a workpiece using a tool material of superior mechanical

properties to that of the workpiece. The material that is removed is referred to as chip or swarf, with the

former term preferred in research literature (Oxley, 1989). The variation in machining configurations is

vast, encompassing many different combinations of tool material, workpiece material, cutting geometry,

speeds and fluids (lubricants and coolants). Parameter selection is based on a number of factors such as

cost, quality and reliability. This chapter will focus on various properties of machining of relevance to the

objectives stated in the introduction to this work. This review is written with reference to the book

‘Fundamentals of Machining and Machine Tools’ (Knight and Boothroyd, 2005).

 Process Zone 2.1
Cutting geometry of the process zone is either orthogonal or oblique. Examples of each are given in figure

2-1. In these diagrams, the tool is the darker shaded body.

Orthogonal Oblique

Figure 2-1 - Orthogonal vs. oblique cutting geometry

In orthogonal machining, chip flow is perpendicular to the cutting edge of the tool and forces can be fully

described in the context of two dimensions thus making numerical models of this configuration significantly

less complex than in oblique machining. In oblique machining, chip flow is directed by the inclination angle

of the tool and three dimensions are required to fully describe the forces.

12

Figure 2-2 illustrates the cutting process zone during orthogonal machining and establishes the

nomenclature used throughout this work.

Figure 2-2 - Process zone diagram

Material separation is primarily achieved by shearing. High forces cause the workpiece material to shear

along a shear plane, or more accurately a ‘shear zone’. As the shear angle decreases, thickness of the chip

increases. Friction between the tool rake face and chip play a fundamental role in maintaining the

regularity of the shearing events, controlling the chip length and controlling the shear plane angle. The

friction on this face is highly influential on cutting forces and heat generation (Olgun, Compton and

Chandrasekar, 2003).

The rake angle of the tool is another important factor influencing chip geometry and shear angle. In

experimental testing, increasing rake angle is found to correspond to increased efficiency since lower

cutting forces are required. The trade-off is that an increased rake angle shifts the higher stresses to the

narrowest part of the tool and therefore chipping and damage to the tool are more likely to occur

(Astakhov, 2006).

An increased rake angle can lead to a reduction in material accumulation between the chip and tool

referred to as built up edge (BUE). In general, BUE may reduce surface quality in the form of increased

surface roughness, sporadic deposits and poor dimensional control. However BUE can occasionally have

desirable effects such as reduced tool wear rate for chemically sensitive tool materials such as diamond (El-

Gallab and Sklad, 1998). The rake angle can also be negative, which can increase the tool durability at the

expense of much higher cutting forces and temperatures.

The flank angle, in contrast, plays no role in chip removal but is influential in determining the rate of certain

wear mechanisms. An increased flank angle reduces rubbing between the tool and workpiece and

13

therefore decreases wear at the cost of increased risk of fracture due to less structural support for the

cutting edge of the tool (Zhu, Zhang and Ding, 2013).

Cutting edge radius can have a substantial effect on cutting stability (resistance to chatter), tool force, wear

rate and surface roughness. Zhao et al., 2017, show that increasing cutting edge radius dramatically

increases cutting force whilst decreasing wear rate. Lacerda and Siqueira, 2012, show that increasing

cutting edge radius shares a nonlinear relationship with vibration and roundness deviation when machining

sintered valve seats with pcBN.

 Materials 2.2
The valve seats used in the case study for this work are manufactured from a sintered high speed steel,

branded ‘AR20’. Ideally, it should be possible to cut this material reliably with polycrystalline cubic boron

nitride (pcBN) tools. In reality however, cutting with pcBN has proved unreliable. This section introduces

and discusses the materials referred to in this work.

 AR20 Copper Infiltrated High Speed Steel 2.2.1

High speed steel (HSS) is known for its superior thermal durability and wear resistance compared to that of

conventional carbon steels. These properties make HSS ideal for cutting at higher speeds than could be

achieved with carbon steel, hence the name ‘high speed’ was given. The increasing demands of the modern

era have given HSS roles in other applications where the properties of normal carbon steel are no longer

sufficient. Well known early adaptations of HSS in final products can be found in the aerospace industry

where HSS was used for high durability bearings in jet engines. Nowadays the use of HSS in final products is

commonplace. The promotion of HSS brings with it the demand for even harder tool materials such as

tungsten carbide and more recently pcBN with which to cut HSS.

HSS can be hardened up to a level of 1000HV and resist softening up to 600°C depending on the chemical

composition (Hoyle, 1988). A typical HSS is an alloy of carbon steel and tungsten, molybdenum, vanadium

and chromium depending on requirements. More advanced HSS will contain cobalt. These alloying

elements have, throughout most of HSS’s history, been expensive. Consequently, studies in literature into

ideal compositions often focus on cost (Dobrzański, 1995). The precise balance of alloying chemicals is a

complex science. Generally speaking, tungsten and molybdenum contribute significantly to the superior

hardness of HSS and ensure these properties are maintained at elevated temperatures. Vanadium confers

wear resistance and abrasive qualities (Liujie et al., 2007). Alloys of these compositions require high

temperature heat treatment to complete the transition to HSS.

14

The valve seats studied in this work consist of Novofer AR20 which is a specially developed high speed steel

for valve seats. The valve seat blanks are sintered from a highly compacted AR20 powder, and the pores are

filled with copper in a process called copper infiltration. The material datasheet gives the material

composition as shown in table 2-1 (Bleistahl, 2006).

Element Wt.%

C 0.80 – 1.30

Co 15.0 – 22.0

Mo 9.0 – 14.0

W 2.5 – 4.5

V 1.3 – 2.3

Cr 3.5 – 5.5

Si 0.5 – 2.0

Mn 0.3 – 1.5

S 0.15 – 0.75

Cu 10.0 – 20.0

Fe balance

Others < 3

Table 2-1 - NOVOFER AR20 chemical composition

Figure 2-3 A) shows a scanning electron microscopy image of the valve seat surface. The data sheet

describes the microstructure as consisting of “fine distributed carbides and uniformly dispersed

intermetallic phases in a tempered martensitic matrix. The solid lubricates are uniformly distributed and

most of the pores are filled with copper”. Figure 2-3 B) shows an optical image of the surface indicating the

presence of a pore filled with copper.

Figure 2-3 – A) SEM and B) optical images of valve seat surface

15

Figure 2-4 shows the microstructure of AR20 taken from literature, giving a clearer sense of the grain

boundaries and sizes (Pierce et al., 2019).

Figure 2-4 – Novofer AR20 microstructure (Pierce et al., 2019)

Since the alloy is formed through sintering, it is expected to be porous. In the case of AR20 however, the

material has been infused with copper. During the high temperature sintering process, the copper forms a

liquid phase which readily flows into pores which would otherwise be empty. Materials & Design, state that

this process produces an alloy with increased density and toughness (Wong-Ángel et al., 2014). This type of

process represents a relatively rare and novel approach to further improving the qualities of HSS for use as

a valve seat material. Other product variations are gradually making their way to market also, for example,

Dura-Bond’s “Killer Bee” copper infiltrated valve seat material introduced in their 2014 catalogue (‘Dura-

Bond Catalog’, 2014).

 Cubic Boron Nitride 2.2.2

Cubic boron nitride (cBN / CBN / c-BN) super abrasive cutting tools are renown worldwide for their superior

tool life, high material removal rates, ability to cut hard and tough materials, premium surface finish and

low unit cost.

A reliable process for synthesising cBN was first developed by General Electric’s corporate Research and

Development Laboratory in 1957, to be later marketed under the trade name Borozon (Krar and Ratterman,

1990). cBN is comprised of equal parts boron and nitrogen and is the hardest of several allotropes of BN,

with hardness second only to diamond (Monteiro et al., 2013). cBN’s principle advantage over diamond is

that it can be used to machine ferrous alloys whereas diamond cannot. This is because at temperatures

exceeding 800°C, the chemically pure carbon of diamond reacts with iron and alloying agents in steels to

form carbides. At high temperatures diamond will also oxidise in air, which can only be avoided if

machining takes place in an inert atmosphere.

cBN is not normally found in nature, and therefore the primary source of cBN for tool materials is synthesis.

Synthesis of cBN is similar to that of diamond. Crystals averaging around 0.5 mm in diameter can be formed

by placing boron and nitrogen mixtures under pressures approaching 45,000 atm in the presence of

catalysis including magnesium, calcium or lithium nitrides (Wentorf Jr., 1961).

Liu, Wan and Ai, 2004, group cBN tools into three categories, high content (80 - 90 %wt), low content (50 –

65 %wt) and CBN coatings. These categories are described as follows:

 High content ‘Pure’ polycrystalline cubic boron nitride (pcBN) consists of many tiny individual

crystals of cBN which have been fused together using high temperatures and pressures. Tools of

16

this grade often exhibit a self-sharpening effect, since the cBN crystals tend to fail along internal

shear lines, exposing fresh surface (Fujimoto and Ichida, 2008). The crystals within pcBN materials

are randomly oriented in all directions and so pcBN tools often show excellent isotropy. High

Content pcBN tools are now the most popular variant of cBN based cutting material; and

 Low Content pcBN, also known as cBN composites, in which cBN crystals are interspersed within a

binder material such as tungsten carbide. Composites can show greater resistance to wear under

light cutting conditions, but with significantly reduced hardness (Edwards, 1993). Low content pcBN

tools were originally developed as a compromise between the superior qualities of cBN based tools

and the cost and expense of producing cBN (Eda, Kishi and Hashimoto, 1981). Improvements in the

synthesis and manufacturing process mean that this grade is manufactured less frequently in

favour of high content grades.

 Coatings (thin films), in which a thin cBN layer (typically) is applied to a durable substrate

such as tungsten carbide through processes such as:

o Physical Vapour Deposition (PVD); and

o Chemical Vapour Deposition (CVD).

The coating is best applied over other coatings such as titanium aluminium nitride (TiAlN) in order

to increase cBN binding. PVD and CVD coated carbides allow users to apply the superior hardness

and wear resistance of pcBN to a durable high-strength substrate material, thus avoiding pcBNs

brittle fracture failure mode (Uhlmann, Fuentes and Keunecke, 2009).

pcBN insert cutters are manufactured in a range of different shapes and sizes, including triangular, square

and circular shapes. The pcBN inserts that Ford use for valve seat cutting typically have a maximum

dimension less than 8mm. Figure 2-5 shows an engineering drawing of a typical triangular shaped insert.

The pcBN layer of the insert (dark hatching) is bonded to a tungsten carbide substrate (light hatching).

Tungsten carbide is used for its high impact resistance. The composite adds some toughness to the

otherwise brittle pcBN layer.

Figure 2-5 - Triangular-shaped pcBN insert

17

This type of insert would be secured with a tapered screw fixing through the hole in the centre.

Alternatively, tools can be secured using clamps or by brazing to a tool holder. pcBN tools are sometimes

provided as a ‘tipped insert’ where just one corner consists of pcBN.

 Tungsten Carbide 2.2.3

Tungsten carbide cutting tools are ubiquitous worldwide. Renowned for their high working temperature,

high cutting speed and high wear resistance they are an obvious choice for all but the very hardest

workpiece materials for maximising cutting productivity.

Tungsten carbide tools belong to a family referred to as cemented carbide tools. They are made by

combining carbon and tungsten powders at a ratio of 94:6 by weight, respectively. The mixture is then

combined with a binder (cobalt), compacted and sintered in a furnace at approximately 1400°C (Knight and

Boothroyd, 2005).

Tungsten carbide tools made in this fashion cannot be shaped after sintering and therefore normally take

the form of indexable inserts. Common problems affecting tungsten carbide tools include cratering when

machining steels. Resistance to this effect can be improved by adding tantalum carbide and titanium

carbide to the parent composition.

 Cutting Fluids 2.3
Cutting fluids can improve cutting performance by reducing temperature and cutting force. Often it is the

case that certain operations cannot be carried out without them. Fluids can be applied directly to the

process zone as a paste, gel or liquid using a brush, applicator or jet. In high-speed and CNC machining it is

commonplace for cutting fluids to be applied as a medium or high pressure jet targeted at the process

zone. Run-off is collected by the machine at the base, filtered, cooled and recirculated. Cutting fluids serve

the following purposes (Trent and Wright, 2000):

 lubrication, which helps reduce the friction between the tool and workpiece, and thus helps reduce

the cutting forces and power required;

 chip removal, which reduces the frequency of tool chipping or workpiece surface quality

imperfections that result from debris being swept between the tool and workpiece;

 chemical protection, for example, preventing the exposure of surfaces to oxygen in the air; and

 cooling, which helps to prevent excess temperature accumulating in the tool and workpiece. High

temperatures are associated with increase chemical wear rates and softening of the tool and

workpiece. In more extreme cases, failure to control temperature sufficiently may lead to:

o welding or fusing between the workpiece material and the tool;

o a temporary expansion of the workpiece and tool bodies which can increase cutting forces

and potentially prevent relative movement between the two;

o poor surface quality and roughness since any thermal expansion that develops during

machining will later shrink as the workpiece cools. Shrinkage may be uneven across a

surface, and thus the flatness of a machined surface may not persist after cooling; and

o an increase in the rate of chemical reactions between the tool and workpiece (such as

diffusion), as well as within the tool and workpiece, including hardening and accelerated

wear.

There is an increasing trend for manufactures to shift from using high quantities of coolant/lubricant fluid,

to minimum quantity lubricant (MQL) processes, or no lubricant at all. These pressures are driven primarily

18

by ecological and financial concerns. Despite the ubiquity of cutting fluid use, it is arguably often applied

when it is not actually necessary (Sreejith and Ngoi, 2000).

In MQL processes, the work zone is misted with the smallest quantity of lubricant which consistently

lubricates the processes to the desired parameters.

In MQL processes, there is no recirculation or fluid cooling equipment. MQL is generally regarded as better

for the environment and cheaper to maintain since less equipment (pipework, pumps and control systems)

is required.

 Chip 2.4
Material that is removed from the process zone is referred to as chip. The nature of chip produced by a

cutting process can reveal a lot about the process. For example, discolouration can indicate excess heat in

the process zone, variable chip lengths can indicate issues with vibration. As previously mentioned, chip

behaviour is strongly linked to phenomena such as built-up-edge (BUE) which can change the effective

geometry and chemical/mechanical properties of the tool.

For metal cutting applications, chip will tend to form as either a:

 continuous ribbon in ductile materials, straight (parallel edged) ribbon, wandering ribbon (small

variation in edge lengths either side), coiling ribbon (one edge of the chip longer);

 discontinuous, segmented chip, where continuous chip is prevented from forming due to periodic

fracture from excessive strain in the chip; or

 powder, ‘arc chip’, ‘elemental chip’ or ‘needle chip’ in brittle materials characterised by the

formation of very small irregular chips (Zsolt János Viharos, Markos and Szekeres, 2003).

The ductile properties of the chip are not necessarily those of the workpiece material. Chip is typically

subjected to considerable strain and is heated and cooled rapidly resulting in permanent intermolecular

changes.

Chip introduces a number of hazards to machine users. This is especially true for continuous chip which has

a tendency to form clusters of razor sharp ribbon. Continuous chip often wraps around nearby structures,

making its removal difficult. Continuous chip typically clumps in lower densities than its counterparts

reducing the efficiency at which it can be stored, transported and disposed of. In brittle materials, powder

and needle chipping can present respiratory and splinter risks. The more desirable type therefore is

discontinuous chip. A common approach to limiting the hazards introduced by these effects is to include

geometric features on the surface of cutting inserts which control and limit chip growth.

Moulded inserts, chip breakers and the use of varying rake angles are the most common approaches to

chip control. Since many inserts used today are manufactured from a sintering process, it is possible to

include quite complex geometries on their surface which direct the chip as required in order to break

within the desired length range (Milton C. Shaw, 2005). Chip breakers take the form of any obstruction in

the ejection path of the chip, typically on the tool face or tool holder.

19

 Cutting speed and feed rate effects 2.5
Cutting speed describes the rate of relative motion between the tool and workpiece and is defined in terms

of the following possible degrees of freedom:

 Spindle speed – the rate at which the cutting surfaces rotate, measured in RPM. This property is

linked to the cutter velocity, typically measured in ms-1.

 Feed rate – the rate at which the cutter moves relative to the workpiece, coaxial with the spindle

axis, typically measured in mm rev-1.

In metal cutting, cutting speed is the main factor dictating the rate of material removal, and therefore

secondary factors such as:

 the rate of plastic deformation, leading to heat generation and other strain rate related

phenomena;

 the frequency and amplitude of vibration, leading to fatigue, cracking and damage; and

 chip nucleation, growth and path due to strain rate hardening effects and chip body inertia. In high

speed machining, studies show that cutting speed has a profound effect on chip shear angle and

less of an effect on chip length (Sutter, 2005).

 Heat in Machining 2.6
Most process zone cutting power is dissipated through heat. Heat is generated in the process zone

primarily due to plastic deformation and friction between the tool and workpiece.

The resultant temperature rise and diffusion within a material is dictated by the material’s specific heat

capacity and thermal conductivity. The rate of heat rejection to the environment (to air or coolant) is

governed by the thermal conductivities of the material and environment and the surface emissivity.

Depending on the emissivity of the workpiece surface, the temperature during machining can be measured

using non-contact methods such as infra-red thermometers or cameras.

Temperature effects can influence a wide range of material properties. High cutting temperatures are

generally associated (either causally or by commonality) with,

 decreased hardness, (Zoya and Krishnamurthy, 2000), (for pcBN tools, the scale of decrease in

hardness in response to high temperatures is greatly influenced by binder content, (Harris, Brookes

and Taylor, 2004));

 increased cutting forces (Zoya and Krishnamurthy, 2000);

 increased rates of chemical wear processes such as oxidation, adhesive and diffusion wear (Tang et

al., 2019);

 thermal expansion (Hidnert, 1937; White, 1965; Roberts, White and Fawcett, 1983; Monteiro et al.,

2013);

 increased ductility (due to thermal softening);

 increased rates of damage mechanisms (Costes et al., 2007);

 changes in the probability of chatter (Hajmohammadi, Movahhedy and Moradi, 2014); and

 increased vaporisation rate (loss rate) of coolants and lubricants, (Bell et al., 1999).

Whilst these points are valid for most cases, occasionally negligible effect or the inverse effect is observed.

High temperatures are routinely used to ‘age’ or heat treat materials, since elevated temperature

accelerates natural reactions occurring within a material. In varieties of steel, temperature can be used to

20

change the mechanical properties by altering the nature of ferrite phases within the steel. Annealing and

case hardening are common examples of this application. This process can occur during machining, leaving

patches of hardened material in regions exposed to rapid heating and cooling cycles.

 Wear Mechanisms 2.7
Wear describes the process by which material is lost from one body to another or to the environment, as a

result of physical interaction between bodies. The study of wear belongs mainly to the science of Tribology.

Wear is regarded as a property of a system, rather than that of a material. Stachowiak, 2005, groups wear

mechanisms in the following categories:

 mechanical wear (deformation and fracturing), which includes:

o abrasive wear, the removal of ductile bulk surface;

o adhesive shear and transfer, ‘welding’;

o accumulated plastic shear flow; and

o fatigue, wear by crack initiation and propagation.

 chemical wear, governed by the growth rate of a chemical reaction film formed by tribochemical

interactions between the material and surrounding medium (such as air, lubricants, workpiece or

tool material). This can take the form of hard tribofilms such as iron oxide, or soft tribofilms such as

silica gel. The principle wear mechanisms for:

o hard tribofilms are:

 shear failure of ductile tribofilm; and / or

 delamination of brittle tribofilm.

o soft tribofilms are:

 accumulated plastic shear flow; and / or

 shaving of soft tribofilm.

 thermal, surface melting due to frictional heating:

o local melting; and

o transfer or scattering.

A principle vector for chemical wear is diffusion, or ‘diffusion wear’ in which chemical elements diffuse into

the tool material under the intense temperatures and pressures at the tool-chip interface. After diffusing,

they react with elements in the tool material (alloying agents in the case of steels or TiN or TiAlN binder

substrates in the case of pcBN). The reactions result in a layer with reduced mechanical properties (Trent

and Wright, 2000). The layer is either abraded slowly or sometimes removed spontaneously by chip flow

exposing fresh surface on which the wear mechanism starts again (Costes et al., 2007).

The potential of pcBN to replace tungsten carbide as the primary cutting material for machining hardened

steels has led to considerable research into its performance in machining. Manufacturers generally desire

tools with superior wear resistance. With pcBN tools, the most influential factors affecting wear rate are

cutting speed, followed by feed rate and depth of cut (Huang and Liang, 2005). This suggestion, proposed

by Yong Huang et. al. was substantiated by an experimentally-verified parametric numerical model. The

model invokes the Taylor equation for predicting tool life, given in equation 2-1, where is cutting speed,

 is the tool life in units of time and and are derived parameters based on experimental observation for

a specific machining configuration.

 (2-1)

21

Li et al., 2002, used the Taylor equation to optimise cutting speed for coated carbide and ceramic inserts.

They used experimental data gathered from turning experiments with Inconel 718 to derive values for

and for a range of tool grades and rake angles.

The Taylor equation does not account for feed rate, depth of cut, tool geometry, lubrication or any other

parameters that may change between operations. The Taylor equation was originally developed for HSS

(Taylor F.W, 1907) well before pcBN tools were in use, so it is unclear how well this equation describes

materials such as pcBN which have very different microstructural, inter-molecular and chemical properties.

Barry and Byrne, 2001, propose that chemical interactions are the dominant wear mechanism between

pcBN tools and workpiece materials containing elements such as Mn, Si, S, O, and in particular, those

containing Al. In which case the previous observation, that speed is the rate limiting factor, may be solely

due to the accelerated rates of chemical reactions due to higher temperatures which are known to develop

at higher cutting speeds.

The precise wear mechanisms of pcBN inserts appear to vary significantly between pcBN materials without

a binder and lower grade pcBN materials with a binder. Kato, Shintani and Sumiya, 2002, found that the

pure ‘binderless variants’ although lasting significantly longer than their binder-based counterparts do

seem more susceptible to thermal strain cracking. Binder-less pcBN tools seem to remain sharp for longer

and deliver a lower machined surface roughness.

 Cutting Tool Failure 2.8
Failure of super hard cutting tools such as pcBN typically occurs in the form of chipping on the cutting edge.

This type of damage is normally catastrophic and the tool can no longer be used for machining. This section

presents some of the causes and events that can weaken the tool and result in chipping of the cutting edge.

 Stress 2.8.1

A material loaded to a stress within its elastic limit shows no obvious damage. In cases where the loading is

sustained or oscillates over extended periods, damage due to creep or fatigue is likely to occur. Although

the crystalline structure of cBN crystals within pcBN tools might be expected to be vulnerable to brittle

fracture, this particular failure mode is less often seen in machining, primarily due to the dominance of

more aggressive life-limiting wear and damage mechanisms affecting pcBN tools such as chemical and

thermal damage (Liew, Ngoi and Lu, 2003).

Stresses beyond the elastic limit or yield stress, , of a material will cause plastic deformation. Under

tensile loading, plastic deformation reduces the cross-sectional area of a material and therefore the

effective stress increases. When stress reaches the material’s ultimate tensile strength, the material

will begin ‘necking’ until failure at the materials fracture stress, . Plastic deformation is less relevant to

cBN since ceramics typically show very little plasticity before failure.

22

 Thermal Effects 2.8.2

During multi-angle valve seat machining, pcBN cutting inserts are subjected to thermal cycling, which can

lead to premature tool failure due to thermal damage. Thermal damage can be caused by a number of

factors including:

 thermal shock, where uneven thermal expansion in a volume can cause cracking, ripping and

tearing;

 oxidization or other chemical reactions that result in poor internal cohesion; and

 molecular restructuring or decomposition, such as transitions between cubic boron nitride and

hexagonal boron nitride.

W. König et. al. compared the wear mechanisms of polycrystalline Diamond (pcD) and pcBN tools to

conclude that recrystallisation in the binder layer induced by elevated cutting temperatures is the

dominant damage mechanism in pcBN. This results in accelerated rates of crater wear during cutting (König

and Neises, 1993). However, their observation was entirely dependent on the particular binder material in

the study and no comment was made on damage within the cBN crystals. Other binder materials therefore

may behave differently.

 Vibration 2.8.3

Vibration in machining is well known as being one of the most aggressive factors affecting tool life and

machined surface finish. Whist high frequency and small amplitude vibration is sometimes intentionally

introduced to reduce tool force (Brehl and Dow, 2008), generally lower frequency and high amplitude

vibrations raise the peak cutting forces. This often leads to micro-chipping and micro-cracking which can

dramatically reduce tool life (Toh, 2004). Sources of vibration include:

 machine foundation noise (from other machines in close proximity);

 machine motor vibration from:

o noise in AC electrical power delivery;

o motor bearings; and

o motor imbalance;

 imbalance in moving parts including tools, gears, shafts, belts and bearings;

 imbalance in cutting force in tools with multiple cutting edges;

 fluid moment, such as coolant jets, air bubbles in fluid lines and pump action;

 shared air and fluid lines, shockwaves which can propagate through shared lines to be introduced

to the machine via fixtures and pipe harnesses;

 periodic metal shearing events in the workpiece shear zone; and

 other vibration arising from the tool and workpiece interface.

Vibrational energy accumulates in the system in bodies with natural frequencies matching the frequency of

vibration. Resonance is generally controlled at the machine/tool design stage by the addition of damping

structures which dissipate vibrational energy as heat or by controlling the layout of masses throughout the

system. Structures are selected which have natural frequencies in bands outside of the frequencies

expected during cutting.

The wide range of sources and exacerbating factors in machining operations make the characterisation of

vibration and its effects particularly challenging. Hamed Moradi et. al. looked specifically at nonlinearity,

internal resonance, tool wear and damping effects in milling processes (Moradi et al., 2013). It was found

that as cutting force increases, so does the amplitude of resonance for the first resonant frequency. Higher

23

spindle speeds increase the probability of resonance. Machine tools of higher stiffness produce less

vibration amplitudes.

Chatter is a dramatic and violent form of vibration at the tool and workpiece interface. It is caused by

interaction between the tool and workpiece but can be induced from external vibration. Chatter is often

regenerative in cases where extreme vibration causes deeper depths of cut (Fu and Zheng, 2014).

In this work, vibration introduced from unequal cutting radial forces between the pcBN inserts of the tool

holder may cause vibration which initiates chatter. This exact phenomenon was the cause of machining

problems observed in a very similar scenario studied by Lacerda and Siqueira, 2012. Production line

engineers initially decreased cutting speeds to work around the problem at the expense of reduced

productivity. The study allowed changes to the tool holder and tool geometry to be made which equalised

the cutting forces and thus reduced the vibration significantly.

Thermal effects can, under certain circumstances, contribute to chatter if thermal expansion is permitted to

increase the pressure between the tool and workpiece. Some research has been conducted predicting this

phenomena using finite element modelling (Hajmohammadi, Movahhedy and Moradi, 2014). Chatter was

shown to develop in both thermal and non-thermal models but the amplitude of chatter was higher in

models which did not take into account thermal effects. In this regard non-thermal models give more

conservative predictions as to when chatter will occur.

 Chapter Summary 2.9
This chapter has provided a good introduction to the fundamentals of metal cutting, in particular, how the

process zone works and what physical phenomena are present during metal cutting. The relationship

between cutting performance and various cutting parameters such as spindle speed, feed rate, lubrication

regimes and cutting materials was presented.

Also discussed were some of the pitfalls of machining, including wear, damage and vibration with reference

to investigations into each of these effects from literature. Some of these effects may be partially

responsible for the cutting insert failures observed in the case study for this work and are to be investigated

further.

Topics addressed in this chapter highlight the complexity of the cutting process zone. Simulating metal

cutting is core to the objectives of this work. Care must be taken to make sure these effects are given due

consideration in the design of the final model to ensure accuracy when simulating multiple passes of multi-

angle valve seat machining.

24

Chapter Three – Non-Linear Finite
Element Analysis
Finite Element Analysis (FEA) is one of the most powerful tools available to engineers for predicting the

performance of structures when subjected to real world physics. The inherit versatility of Finite Element

Analysis allows the simulation of individual or multiple physical phenomena including elasticity, plasticity,

fluid flow, heat conduction, magnetic flux, electrostatic attraction and electrical current.

Whilst Matrix Stiffness Methods (MSM) originate in the 1920s, the first reported computational

implementation of Finite Element Analysis comes from within the commercial environment of the

aerospace industry in 1956 (Turner et al., 1956). Since then, its capabilities and applications have grown

and diversified as computer power becomes more readily available and financial pressures shift the burden

of testing from the real world to the virtual world. FEA is now increasingly being applied to multi-physics

and non-linear (time dependant) problems.

This chapter looks at non-linear finite element methods with a focus on how they can be applied to meet

the objectives of this work. This chapter is written throughout with reference to:

 The Finite Element Method, Its Basis and Fundamentals, Zienkiewicz, Taylor and Zhu, 1967;

 The Finite Element Method For Three-Dimensional Thermomechanical Applications, Dhondt, 2004;

 The Finite Element Method in Engineering, Rao, 2010;

 Nonlinear Structural Mechanics, Lacarbonara, 2013;

 Non-Linear Finite Element Analysis of Solids Structures, Crisfield, 1996;

 Finite Elements – Their Design and Performance, MacNeal and Richard, 1993; and

 Programming the Finite Element Method, Meyers, Smith and Griffiths, 1989.

 Theory of Non-Linear Finite Element Analysis 3.1
FEA is the practical implementation of mathematical techniques such as the Finite Element Method (FEM).

FEA Studies can be 1D, 2D or 3D in either linear or non-linear configurations. FEM is very calculation and

memory intensive and is therefore best suited for computers.

FEM is based on the principle of simplifying a load case by dividing the geometry into elements and

calculating their response to a given physical condition, such as mechanical or thermal loads.

Each element within the structure is bounded by nodes through which physical interaction propagates

throughout the system. The behaviour of elements is governed by equations which approximate real-life

physics. The choice of equations used depends principally on the physics of interest, but may also be

influenced by factors such as speed of evaluation and the desired accuracy.

The simplest form of the FEM consists of the Direct Stiffness Method (DSM) in which a force vector { } is

related to a displacement vector { } by an element or global stiffness matrix [] as shown in equation 3-1.

{ } []{ } (3-1)

In this equation, the global stiffness matrix [] describes both the stiffness of elements as well as their

geometry. Typically a matrix solution method such as Gaussian elimination is used to resolve the unknown

displacement and force components.

25

For a one dimensional bar problem in uniaxial tension or compression, [] for an element, , would take

the form of equation 3-2 where is the cross sectional area of the element, the Length and the elastic

modulus.

[]

[

] (3-2)

Figure 3-1 shows a round bar of two different cross-sectional areas under uniaxial tension. The system can

be discretised as two elements with nodes at the interfaces.

F3

u2 u3

1

u1

2 3

(AE/L)12
(AE/L)23

Figure 3-1 - 1D FE Example

The two elements have a common node in the middle, therefore the equilibrium equation for this node is

shared. The global stiffness matrix of the system is assembled as shown in equation 3-3.

[]

[

]

 (3-3)

The boundary conditions are then set, , , allowing the unknown displacements

and to be solved as shown in equation 3-4.

{

}

[

]

{

} (3-4)

The performance of materials is defined in terms of stresses and strains rather than forces and

displacements. Further post-processing is therefore required to extract the stresses and strains from the

equilibrium equation.

26

 Variational Methods 3.1.1

In the previous example, nodal values are in direct equilibrium with one-another. For more sophisticated

elements which call upon relationships governed by partial differentials, it becomes necessary to use

variational or weighted-residual methods.

Variational methods in structural analysis work on the basis of energy equilibrium. The Rayleigh-Ritz

method when applied to structural finite element methods requires that for all points throughout a system,

the change in potential energy, , across a degree of freedom, , is zero as shown in equation 3-5.

 (3-5)

The potential energy within the system, is equal to the sum of the strain energy and the potential

energy of applied loads.

A shape function [] relates calculated intra-element displacements { } to system nodal displacements,

{ } as shown in equation 3-6.

{ } []{ } (3-6)

Equation 3-6 can be represented in terms of strains as shown in equation 3-7.

{ } {

} [

] { } []{ } (3-7)

Strain energy in an elastic system is given by equation 3-8, and the potential of applied loads by equation

3-9.

 ∫

∫

∫{ } []{ } (3-8)

 { }
 { } (3-9)

The potential energy of the system is therefore given by equation 3-10.

∫{ } []{ } { }

 { } (3-10)

Substituting equation 3-7 into 3-10 gives the relationship in equation 3-11. Finally, equation 3-11 can be

rearranged according to equation 3-1, yielding the formulation given in equation 3-12.

{ }
 ∫[] [][] { } { } (3-11)

[] ∫[] [][] (3-12)

With this equation it is possible to formulate an element stiffness matrix from exact governing equations

witch rely upon partial differentiation.

27

 Large Displacement and Strain Behaviour (Lagrangian Methods) 3.1.2

The approach discussed up to this point is based on the principle of energy conservation. For each element,

the work required for deformation of that element should equal the boundary work on that element and

therefore, the total work required for deformation of the system should equal the boundary work on the

system.

Equation 3-10 requires that energy is calculated by integrating through the volume of the element. This

approach is permissible only where nodal points throughout the geometry do not move significantly from

their origins, implying that element volume is constant. For larger displacements, this approach is

inappropriate since the element volume will change significantly.

Any given time step within a finite element simulation has a start and end state. Both states must remain at

energy equilibrium or in other words, no unaccounted energy can be allowed to enter or leave the

boundary of the simulation between the initial and final state of the time step.

To account for volume changes whilst maintaining energy equilibrium creates a cyclic dependency, where

the displacements of nodes as they are at the end of the time step are required as inputs to the element

formulation at the beginning of the time step.

Lagrangian methods tackle this problem by introducing a transformation that allows the integrals, such as

those introduced in section 3.1.1 to be evaluated over a fixed volume.

Equation 3-13 gives equation 3-10 in terms of the Piola-Kirchhoff stress tensor { } and Green’s strain

tensor { } . This relationship is known as the Total Lagrangian formulation in which all integrals are

calculated using the initial undeformed state of the structure.

∫{ }
 { } { }

 { } (3-13)

The Updated Lagrangian (UL) formulation given in equation 3-14 uses states from the next time increment.

∫{ }

{ }
 { }

 { } (3-14)

Where { } is the Almansi strain tensor, { } is the Cauchy stress tensor and refers to the next

time increment.

Lagrangian methods are sensitive to large element distortions. In structures which change shape

significantly during the simulation, remeshing is often required to prevent excessive elemental distortion.

Remeshing works by generating a new mesh over the deformed geometry and interpolating previous nodal

values to new nodal values. This process often results in a smoothing effect between nodal values. Mesh

structure and element choice have a significant effect on simulation results, and there is much interest in

reducing this error when using remeshing and Lagrangian methods.

The sensitivity of quadrilateral elements in metal forming simulations using the Updated Lagrangian (UL)

formulation and remeshing have been analysed and discussed in depth by Srikanth and Zabaras, 2001,

where it is shown that the presence of severely distorted elements may lead to premature termination of

the simulation due to inability to converge. The study highlights that robust automatic/adaptive remeshing

capabilities are required in order to deploy UL methods successfully.

28

 Contact and Friction 3.1.3

In FEA, many problems can be evaluated using a single body subjected to nodal loads and boundary

conditions. Those that cannot, such as machining must be simulated using multi-body contact physics.

Contact detection is required to determine when two bodies moving relative to one another come into

contact with one another. Figure 3-2 shows a scenario where contact detection is required because the

light blue mesh is approaching the static black mesh with a fixed velocity (purple).

Figure 3-2 – 2D meshes approaching contact

Without contact detection, nodes and meshes that are not directly connected, will move freely through

one another. This is also true for self-contact. Contact detection works only between iterations and not

during.

The common types of contact handling approaches are discussed as follows.

Node-to-node is by far the simplest method in which the finite element code will watch for nodes moving

near one another. When one node enters the detection radius of another node, the two will become

‘locked’ together until the direction of force changes to induce a separation or sliding motion. Figure 3-3

(left) shows where contact would be detected.

Figure 3-3 – 2D node-to-node points of contact detection

As the figure shows, the detection radius must be sufficiently large so as not to leave gaps between nodes.

3-3 (right) shows how the leading node can penetrate without detection and, in this case, how detection

only occurs late when a trailing node enters a detection radius. Node-to-node contact is appropriate for

contact bodies with mesh conformity, in which it can be guaranteed that approaching nodes will only ever

contact on other nodes. For less conformal models, other approaches must be used such as:

29

Node-to-segment, which requires additional computational power to extend the contact detection zone

between nodes. The contact detection zone will only detect nodes entering this region and so segments

will not be detected. Figure 3-4 shows a node-to-segment contact detection.

Figure 3-4 – 2D node-to-segment point of contact detection

Segment-to-segment contact is the most computationally expensive approach which can detect

intersecting segments. Contact-dependant effects, such as friction and sliding will be evaluated over the

entire segment as opposed to approximated at nodes.

Contact detection requires that a suitable time step is used. This is important since if the time step between

iterations is large, nodes may move from outside a contact detection radius to beneath the surface of

bodies and skip contact detection zones altogether. This can introduce numerical error and cause

remeshing algorithms to fail.

Contact detection and handling is computationally expensive, and should be reserved for bodies which are

expected to come into contact with one another. Once contact has been established, contact mechanics

algorithms are used to calculate the balance of forces (stress projection), friction, separation criteria and

adaptive mesh requirements. Wriggers, 2005, gives an in-depth explanation of this process.

 Convergence 3.1.4

For any discretised system, the energy relationship given by equation 3-5 will approach zero as element

density increases. For all but the very simplest problems however, it will never reach zero. The

minimisation of this error in energy methods is known as convergence and is a useful criterion for judging

the fitness of a particular discretisation for the problem it represents. In recursive iterative processes, it can

be used to judge at which point the accuracy of the current iteration is sufficient to move to the next

iteration.

The designer of a finite element study has the option of increasing element densities either globally or

locally in areas of increased interest in order to achieve greater numerical accuracy at the cost of

computational power. Often this relationship is exponential, and eventually, the increase in accuracy

achieved in exchange for further increases in computational effort diminishes. Typically, a balance

between the two pressures of computational power and accuracy is required, at this point a simulation is

said to have ‘converged’. The point at which a simulation converges is up to the designer of the study, and

can be influenced by project specifications, experience, safe margins or phenomena of interest.

30

 Basic Procedure of FEA in Solid Mechanics 3.2
The following points outline a typical approach to solving a problem with FEA.

 Problem definition

The problem definition serves as a statement of intended outcomes, as well as the time frames allowed,

boundary conditions, computer power available, desired accuracy and resources available (such as material

property information). This stage is critical for on-going verification and validation.

 Simplification

It is often the case in FEA that a problem can be simplified. For example, parts of a structure which are

unlikely to influence results can be removed. Symmetry is very common in design, allowing most structures

to be sectioned. Some three dimensional interactions can be modelled in two dimensions, for example,

uniform loading on a uniform structure.

 Discretisation

Discretisation is the process of dividing the problem or model into discrete sections or elements. In

structural analyses, this step would constitute the design and implementation of a suitable element mesh.

Important decisions must be made during this step, such as element density, element type, the style of

mesh (for example, conformal or non-conformal) opportunities for simplification and domain boundaries

(for multi-processor solvers).

In non-linear simulations involving large deformation, it is also important to configure iterative / adaptive

meshing. Unlike the initial mesh structure in which nodes can be placed manually, iterative meshing is

purely rules-based. Rules that are appropriate for remeshing early in a simulation may not suit interactions

later. In these scenarios, manual remeshing between increments is an option. Some finite element solvers,

for example MSC Marc allow parts of the simulation to be divided into sequential load cases in which rules

for adaptive remeshing can vary, (MSC Software, 2016a).

 Apply boundary conditions

All FEA models must specify suitable boundary conditions. Boundary conditions are applied to nodes and

typically take the form of one or more fixed displacements and one or more applied forces.

 Material Selection

The most basic material models required in structural FEA require the materials Young’s Modulus, and

Poisson’s Ratio. Material models can be developed to include many parameters and functions including

plastic strain, damage and thermal effects, which may or may not be called upon depending upon the

choice of element. FEMs can use multiple material models to represent where different materials are used

in the real system.

 Assembly of the Element Stiffness Matrix, []

The Element Stiffness Matrix (ESM) represents the geometry and stiffness of all the elements involved in

the study. The ESM typically takes the form of a large diagonal matrix comprised of mostly zeros. This

assembly is performed by finite element software and is usually invisible to the user, but due to the size of

the matrix, consideration must be made to ensure enough system memory is available to contain it.

31

 Solution

Construction of the system’s governing equilibrium equation leaves unknowns in the applied nodal forces

and nodal displacement vectors. Solving for these unknowns is done using mathematical techniques such

as Gaussian elimination. Depending on the size and complexity of the model, this step is very

computationally expensive and can be accelerated by using multiple processors.

 Recovery of results

The solutions obtained from the previous step yield nodal values for forces and displacements. These can

be used to calculate meaningful information such as stress, strain and damage fields.

 Mesh Refinement 3.3
A significant source of error in non-linear finite element studies derives from discretisation both in space

and time. Significant errors are introduced when the element density is too low in the area of interest.

Refinement techniques can be used to minimise these errors whilst making efficient use of processing

power. Some common approaches to 2D mesh refinement are shown in figure 3-5, Wriggers, 2005,

p rh

Figure 3-5 – Mesh refinement examples

Where:

 the blue mesh is the parent mesh from which the h, p and r meshes derive,

 h refinement refers to the addition of hanging nodes,

 p refinement increases the order of polynomials but requires considerably more computation

power per refinement, and

 r refinement both increases the density at points of interest and reduces density where limited

activity is taking place. R refinement is the optimum choice where computation power is limited.

32

 Remeshing 3.4
The accuracy of elements deteriorates as they are skewed by deformations taking place during simulation.

This, and factors such as separation and material flow that take place in large strain models, make it

necessary to periodically regenerate the geometry mesh.

Once a solution to a single time step has been calculated, remeshing algorithms have an opportunity to

refine the mesh for the next iteration. For machining simulations, remeshing typically aims to further

subdivide elements which, in the previous iteration, have been heavily distorted or damaged. A good

remeshing algorithm will refine areas that show a high gradient in the phenomenon of interest, such that

the jump from element to element in the magnitude of the phenomenon is more or less consistent

throughout all elements in the model (Marusich and Ortiz, 1995).

Remeshing should be used sparingly, however, since quality is lost between steps. This is because using

nodes from the previous iteration is not always possible in the newly generated mesh, which can be

illustrated as follows:

Consider the triangular mesh with seven elements in figure 3-6.

Figure 3-6 - Original seven element mesh

The simplest way to remesh this structure and preserve node locations and data is to subdivide each

element. This produces the element mesh in figure 3-7

Figure 3-7 – Nodes preserved, fourteen element remesh

However, this simple subdivision has doubled the element density in this area. In practical implementations

of FEA, a doubling of element density can be expected to give a four-fold increase in the time required to

solve the problem. For most applications, this cost far outweighs the benefits of preserving nodal

information and so remeshing algorithms will instead create new nodes as shown in figure 3-8.

Figure 3-8 – Interpolated nine element remesh

The remesher approximates the quantities for the new nodes based on the nodes surrounding it. The

interpolation process can be linear or polynomial, or based on more advanced material models. The

interpolation process itself will add processing demand but this is generally less than that from adding

33

elements. Any approach used will introduce error which will multiply with each repeat of this process.

Common errors introduced are smoothing effects, which can reduce peak values as well as volume loss and

rounding of sharp corners.

 Model Verification and Validation 3.5
Ensuring model quality is only achieved through correct model validation and verification. Verification

ensures that all inputs to the model are correct and that solution methods evaluate accurately. This

includes the justifications and reasoning behind assumptions and simplifications, measured numerical

values from material specimens, measured system parameters and solver source code bugs.

Verification ensures that numerical results compare well to data collected from experimentation. One does

not necessarily guarantee the other. Both must be achieved, especially in parametric models where the

models value is in its ability to accurately simulate the system across a wide range of different parameters.

NASA’s FEMCI book is a reference inspired by real world uses of the NASTRAN finite element code, (Irish

and Simmons, 2009). The book lists four basic mathematical checks applicable to almost thermo-

mechanical finite element models. Specifically:

 Unit enforced displacement and rotation – where the model is translated and rotated to ensure

boundary conditions behave as expected and no hidden unwanted boundary conditions exist in the

model.

 Free-Free Dynamics with a Stiffness Equilibrium Check – a check to ensure that the model will act

as a rigid body when unconstrained and unloaded. In this mode the geometry should not collapse,

deform or inflate and there should be no significant stress fields present.

 Unit Gravity Loading – one of the most basic tests in which the model is subjected to 1 G gravity

and its weight compared to the real world model weight.

 Unit Temperature Increase – where a structurally unloaded model has its temperature raised by a

fixed amount and the resultant thermal expansion compared to real models.

A valid model is one which outputs data that closely resembles data that would be observed in the real

physical model, (Law, 2001). This match is never absolute and so model validity is described in terms of

percentage confidence. Unfortunately, definitions rarely agree upon a more definitive description than this

and it is therefore left to the user to define their own validity criteria from the project objectives and

specification.

Borvik et al., 2001, verified their complex model of viscoplasticity and ductile damage for ballistic impact

and penetration mechanics by performing numerical simulations of a simpler plate perforation test with

the same material and physical models. The simulations were compared to high speed imagery of a physical

experiment. The authors were satisfied with the approach, concluding that the numerical model showed

good agreement with the experimental results. This is a useful example of how confidence in a model can

be judged.

34

 Modelling Software Selection 3.6
There are many commercial and free finite element analysis packages available. Careful selection of an

appropriate package is necessary to meet the objectives of this project within a reasonable time frame.

Since this work aims to deliver a fully parametric simulation tool supported by bespoke code to implement

the model developed, familiarity with supported languages is also an important factor influencing the

amount of progress that can be made.

The following software features have been identified as essential to meeting the objectives of this work:

 Support for large deformation / non-linear solver – The solver must support solutions for large

deformation and non-linear physics. This feature is essential since the workpiece will undergo

significant geometry changes during machining.

 Mesh generation – Ideally the package must have reliable built-in support for generating a mesh.

Most packages offer support for importing mesh geometry generated in third party meshing

packages such as MSC Patran. For the end user, this process would add additional complication and

so it would be more ideal to have a fully integrated solution that doesn’t require external mesh

generation.

 Parametric model definitions (scripting support) – The final model must be capable of reconfiguring

for different cutter layouts. Parametric support is commonly implemented through the use of

scripting languages such as Python, MATLAB and Java. For this work, Python is strongly preferred

due to the author’s familiarity and experience with this language.

 User subroutine support – User subroutines can be used to implement supplemental physical

behaviour during simulation. They are compiled from low level languages such as Fortran and C++,

and can therefore execute with higher efficiency than higher level interpreted languages such as

Python. The core functionality identified as necessary for the objectives of this work was not

present in any of the packages reviewed and therefore must be implemented through user

subroutines. And finally;

 The user interface should be easy to learn and intuitive since the final model is intended to be used

by third parties.

Four commonly used packages stand out, including:

 MSC Marc developed by MSC Software and based on MSC NASTRAN finite element code. Marc is a

very mature package and is frequently used in machining studies, such as modelling orthogonal

cutting (Bil, Kiliç and Tekkaya, 2004); ultrasonically assisted turning (Mitrofanov et al., 2005); and

metal cutting with plasticity modelling (Svoboda, Wedberg and Lindgren, 2010);

 Deform 3D Machining, which has been used to model 3D turning (Ceretti et al., 2000), tool wear

(Attanasio et al., 2008) and drilling (Majeed, Iqbal and Lv, 2018);

 ABAQUS, developed by Dassault Systèmes, which has been used to simulate drilling of fibre metal

laminates (Giasin et al., 2017) and model the influence of various friction models on finite element

results (with comparisons to DEFORM 2D results) (Malakizadi et al., 2017); and finally

 COMSOL Multiphysics, which has been used to simulate nonlinear heat flux problems on a turning

cutting tool (Brito, Carvalho and Lima E Silva, 2015) and simulation of cutting tool temperature

during turning (Mourad, Mourad and Abderrahim, 2017).

35

MSC Marc, ABAQUS and COMSOL are general purpose packages capable of simulating a number of physical

phenomena including fluid flow, electrical circuits and magnetism. Deform 3D on the other hand was

developed specifically for machining simulations, with particular attention paid to mesh adaptivity. All four

packages support user subroutines written in low level languages such as Fortran (Marc, Deform 3D and

ABAQUS) and C (COMSOL). Furthermore, all four packages support basic functionality such as three-

dimensional problems, initial mesh generation and geometry modelling.

Both MSC Marc and ABAQUS can be controlled externally using Python, however COMSOL only provides

Java and MATLAB programming interfaces. There is no evidence to suggest that DEFORM 3D has native

support for external control by Python (Scientific Forming Technologies Corporation, 2014).

Of Marc and ABAQUS, ABAQUS has a superior user interface with a more modern design and informative

error messages. This study aims to deliver a methodology that requires an end user to interact with the

finite element software and so the quality of the user interface must not be ignored. However, the MSC

Marc interface, shown in figure 3-9 is satisfactory and has undergone many improvements over recent

years.

Figure 3-9 – MSC Marc 2016 Interface

Although both Marc and ABAQUS support user subroutines, ABAQUS has some limitations as to what can

be overridden by the user in the form of a user subroutine. Most notably ABAQUS offers no documented

method to override remeshing during simulation from a user subroutine (Dassault Systèmes, 2014),

whereas Marc offers the user subroutine UMAKNET with can be used to implement a custom remeshing

algorithm (MSC Software, 2016b). For this reason, and the reasons discussed previously, MSC Marc was

selected as a suitable finite element analysis package to build the model in.

36

 Chapter Summary 3.7
This chapter presented the core theory underpinning how non-linear finite element methods work and how

they can be used when building finite element simulations. Understanding how such approaches work is

key to resolving the many issues that arise during simulation and to help optimise the inputs and make

reasonable assumptions about what can be achieved with FEA and more importantly, what cannot be

achieved.

This chapter has shown that a great deal of factors must be taken into account in order to verify the

accuracy of simulation inputs and outputs. Key steps such as carefully considering the discretisation

approach to use to ensure accuracy of the simulation and the importance of simplification in reducing

simulation time have been highlighted.

Four very strong non-linear finite element packages were considered for this work. Of these packages, MSC

Marc and ABAQUS stand out due their proven applicability to a wide range of problems documented in

literature. Ultimately, although ABAQUS has a superior interface and documentation, MSC Marc was

selected due to its ability to implement a custom remeshing algorithm through user subroutines.

37

Chapter Four – Techniques for
Characterising and Modelling Cutting
Systems
The previous chapter covered the theory and methodology underpinning non-linear finite element analysis.

This chapter looks at various experimental techniques available for characterising cutting systems. This

chapter also discusses various numerical models for modelling machining phenomena such as friction,

wear, plastic flow, etc.

 Mechanical Characterisation of the System 4.1
The accuracy of any numerical model depends upon the quality of inputs. Accurate characterisation of the

system is therefore essential to accurately model the overall machining operation. This section discusses

various techniques available to capture cutting system parameters and material mechanical properties.

 Modulus of Elasticity and Poisson’s Ratio 4.1.1

Linear elastic behaviour in a material is governed by the Modulus of Elasticity, E and Poisson’s Ratio .

Tensile testing is commonly used to determine these parameters. During tensile testing the force (and

therefore stress) is measured using a load cell and the in-plane displacements (and therefore Poisson’s

ratio) are measured using an extensometer. Tensile testing typically requires the preparation of large

material samples such as those shown in figure 4-1.

Figure 4-1 – ‘Dog bone’ tensile testing sample

Tensile testing works well for homogeneous material samples, however in the case of the AR20 valve seat

material studied in this work, it is not economically possible to sinter a dog bone specimen for tensile

testing. Furthermore, sintered materials often exhibit different material properties at their surfaces

compared to their interiors.

 Vibrational Properties 4.1.2

Chapter Two discussed the influence of vibration on machining processes. Ideally, vibration should be

controlled and minimised to avoid chatter and damage such as chipping. Realistically, vibration will always

be present in some form within the machining process. The vibrational characteristics of a system can be

used as an input to numerical models, for example by specifying an oscillating displacement boundary

condition at some surface or node within the model. Vibration can also be used as a means of validating a

numerical model, for example by comparing the dominant vibrational frequencies and amplitudes

calculated by the numerical model to those observed through experimentation.

38

Measurement equipment can be fitted to the machine, its spindle, the workpiece or fixtures. There are

various different approaches to capturing the vibrational characteristics of a cutting system, for example:

 Laser Doppler Vibrometry (LDV), which is a technique that allows high speed, non-contact

measurements of vibration. LDV can be used to measure the vibration from the surfaces of rotating

structures such as machine spindles. LDV is truly non-contact unlike accelerometers and force

transducers. LDV is less common, but successful studies using LDV do exist for example that

presented by Tatar, Rantatalo and Gren, 2007. Although LDV is non-contact, some surface

preparation is required to ensure that the measurement surface is optically smooth. This helps to

reduce speckle noise;

 accelerometers, either solid-state or micro-transducers which can be fixed to a surface using

adhesives or mechanical fixings. Accelerometers can output vibration data in up to three axes.

Huang et al., 2008, use this technique to show that accelerometer data can be used to detect tool

breakage in CNC machines. Modern CNC machines often come fitted with accelerometers in key

locations to monitor vibration; and,

 dynamometers and force sensors. Suh, Khurjekar and Yang, 2002, used force meters fixed to a

workpiece base to record vibrational data at a sample rate of 6 kHz. They processed the captured

vibrational data using Fast Fourier Transforms (FFT) to obtain the frequency spectrum for a simple

milling operation. The frequency data showed strong peaks at harmonic frequencies responsible

for causing chatter.

 Plastic Flow Curve Characterisation 4.1.3

During machining of ductile materials such as steel, material entering the process zone is deformed

plastically before damage accumulates and shearing of the chip occurs. During plastic deformation, the

material undergoes strain rate dependant hardening. Ludwik, 1909, developed a model for this behaviour

as represented by equation 4-1, where is the materials yield stress, is the equivalent plastic strain,

is the material’s strength index and is the materials strain hardening exponent.

 (4-1)

The model has previously been compared to others including Holkmon, Swift, Samanta, Voce and Misiolek,

for use in FEM studies describing the behaviour of dog bone steel specimens under uniaxial tensile load.

Ludwik’s equation was found to give results very close to experimental results (as was Swift’s), (Dan et al.,

2007).

ASTM details a procedure for measuring the strain hardening constants, and for metallic sheet

materials (ASTM, 2000). Specific dimensions are given for the test sample and all experimental data are

obtained through tensile testing. These data are processed using equations given in order to find the strain

hardening constants.

 Friction 4.1.4

The friction between a cutting surface and workpiece depends on a vast array of factors such as surface

roughness, material microstructure, temperature, vibration and material flow stress. Despite the

complexity of characterising friction, its effect in numerical modelling is profound. Aside from the obvious

contribution of friction to cutting forces, friction plays a core role in determining the character of chip

formation (Maranhão and Paulo Davim, 2010). For this reason, any numerical model designed to predict

the behaviour of machining should incorporate a representative friction model.

39

Like wear (and for many of the same reasons as wear), friction is a system property that exists where two

bodies in contact move relative to one another. Friction is both dependent and influential on a number of

factors in machining as shown by the relationships given in table 4-1 (Boisse, Altan and Luttervelt, 2003),

using parameters defined according to the friction schematic given in figure 4-2.

 : cutting force

 : feed force

 : orthogonal rake angle

 : area of contact

 : cutting velocity

 : chip velocity

 : friction force

 : normal force

 : uncut chip thickness

 : chip thickness

Figure 4-2 – Cutting friction schematic

Friction force (4-2)

Normal force (4-3)

Normal contact stress

 (4-4)

Shear contact stress

 (4-5)

Mean coefficient of sliding
friction

 (4-6)

Chip thickness compression
ratio

 (4-7)

Frictional heat flux

 (4-8)

Table 4-1 – Friction dependant relationships

To represent friction in a finite element study requires the development of a representative friction model.

Özel, 2006, studied the influence of five different friction models on continuous chip cutting of low carbon

steel, supported by experimental results. It was shown that higher complexity friction models based on

both the measured normal and frictional stresses on the tool rake face are the most accurate, including

when used to predict the geometry of chip formation.

Friction between moving bodies in contact can, under certain circumstances, express stick-slip phenomena.

Stick-slip contact occurs when the static friction is greater than the kinetic friction. When the applied force

is large enough to overcome the static friction, the movement that follows causes the kinetic friction to

drop giving rise to a sudden increase in velocity. This process repeats as the bodies move relative to one

another and can be a major source of vibration. Leine et al., 1998, propose a practical approach to

developing simple stick-slip friction models for finite element studies.

40

 Temperature 4.1.5

The temperatures of regions within a cutting system can be used as both inputs for a numerical study and

as validation criteria. Most energy within cutting systems is dissipated through heat. Furthermore heat and

temperature affect a wide range of cutting phenomena. These factors make temperature measurements

important to understanding a cutting system. There are many approaches to measuring temperature

depending on the requirements. Table 4-2 shows various temperature measurement techniques available

for both contact and non-contact applications.

Contact Non-Contact

Point Planar Point Planar

-Thermocouple
-Thermistor
-Resistance Temperature Detector
-Mercury based
-Optical fibre thermography, (Sato,
Ueda and Tanaka, 2007).

-Thermoelectric
-Bimetallic strip

-Pyrometer -Thermography (Infrared
Thermal Camera)

Table 4-2 – Temperature measurement methods

In this work, the main temperatures of interest are those that develop at the interface between the cutting

insert and workpiece. Measurement of temperatures in these areas is complicated by an inability to access

the areas or achieve a clear line of sight during cutting.

Typically the cutting system studied in this work is cooled using high pressure coolant, which floods the

process zone and completely obscures the line of sight. Non-contact based methods such as thermal

cameras cannot accurately measure temperatures obscured by films of water since water heavily

attenuates and refracts infrared radiation. For minimum quantity lubricant (MQL) variants of the cutting

system, infrared temperature measurement is ideal.

Another common issue faced when trying to measure the temperature at the tool workpiece interface is

that the tool is in constant high speed motion. Sutter et al., 2003, overcame this limitation by designing a

representative experiment of the cutting system to be measured, in which the sample workpiece material

was fired at cutting velocity past a static tool. The process zone was thus easily observed by a thermal

camera since the tool was static. The thermal camera used was calibrated using a He-Ne laser which shares

a common line of sight with the thermal camera by means of a beam splitter. The images captured in this

example gave a good map of temperatures at the tool-chip interface. A short exposure time of was

used to limit the effects of motion blur. This approach to thermal imagery gives superior visual access to

the process zone when compared to imagery taken from unmodified machines. However this approach

requires careful design and construction of a representative experiment.

Others have applied thermal imagery to dry milling processes without modifying the machining

configuration. Lauro et al., 2013, used an infrared camera aimed at the process zone of a simple dry milling

operation. Good results were achieved with minimal experimental setup, but the quality of captured data

was poor compared to the resolution, frame rate and sensitivity of the He-Ne laser calibrated setup

discussed previously.

When thermal imagery cannot be used in circumstances where there is no clear line of sight, direct

measurement methods must be used. In some cases, direct measurement methods may be preferred, even

where a clear line of sight exists, due to the superior accuracy and measurement speed that is possible.

41

Embedded or surface mounted thermocouples are commonly used to monitor the temperatures of

components in the process zone. When modifying a structure to embed a thermocouple, it is good practice

to ensure the modification is represented in any simulations using the data, since the modification will

often affect the system.

Data from the transducers must be passed along signal wires to a data recorder. Since wires must always be

attached, these sensors can only normally be used on static components. Despite this limitation, the

technique is routinely and successfully used to verify numerical studies, either as a component in a static

workpiece (Chen et al., 2013), or static tool (Saglam, Yaldiz and Unsacar, 2007).

Werschmoeller and Li, 2010, successfully demonstrated a technique to embed temperature sensors within

a purpose built pcBN cutting insert. Ten thin-film thermocouples were layered in a pattern between two

pcBN substrates diffusion bonded to one another. The sensors, spaced 0.1 mm apart, were arranged in an

‘L’ shape with three on an axis parallel to the flank face, six on an axis parallel to the rake face and the final

sensor sharing their common axis in the corner. The cutting insert was evaluated for sensitivity and

dynamic response, showing and a rise time of . Experimental studies using the tool

showed excellent repeatability and endurance of the diffusion bond. It was found that the temperature

gradients are often very steep. In a high speed test, (feed rate) a

temperature difference of was observed over a span of .

Le Coz et al., 2012, were able to successfully embed thermocouples in rotating tools, by using a radio

frequency connection to transfer data from the rotating spindle to a static radio frequency receiver. The

study successfully acquired temperature data from both drill bits and mills and there appears to be no

reason why the same technique could not be applied to cutting inserts. This method showed high

repeatability and accuracy. However, implementation of a system such as this would require the design and

construction of a bespoke tool holder or heavy modifications to an existing tool holder in order to

incorporate a radio frequency transmitter, amplifier and power source. This particular study did not

consider balance issues and other changes to the dynamic response of the system.

42

 Modelling Cutting Systems 4.2
This section discusses a number of methods available for modelling various cutting system phenomena in

numerical finite element simulations.

 Johnson-Cook Constitutive Model 4.2.1

The Johnson and Cook, 1983, model has played a fundamental role in modelling the complex material

response exhibited by metals which are subjected to high strains, high strain rates and high temperatures.

The model was initially developed for ballistics research for use in finite element models.

Equation 4-9 gives the original Johnson-Cook constitutive equation in terms of von-Mises flow stress,

where:

 is the material’s yield stress;

 is the equivalent plastic strain;

 and describe the effects of strain hardening;

 is the strain rate constant;

 ̇ is the plastic strain rate and is equal to
 ̇

 ̇
, a dimensionless property where ̇ is the strain used in

the quasi-static tension test to determine the parameters , and , normally ;

 is the homologous temperature, given by the ratio

, where is a given

reference temperature, usually room temperature and is the material’s melting point

temperature; and

 is the thermal softening exponent.

 [][̇][] (4-9)

The expression in the first set of brackets gives the stress as a function of strain. This component closely

follows Ludwik’s equation as discussed in section 4.1.3. The second set of brackets modifies the equation to

take into account the effects of strain rate. The final set of brackets modifies the equation to take into

account the effects of temperature. This part is also known as the thermal softening function, .

The Johnson-Cook constitutive equation is frequently referred to in literature that involves numerical

modelling of materials. The equation naturally lends itself well to numerical modelling since within finite

element simulations, the parameters, , ̇ and are readily available for each element. Modified versions

of the Johnson-Cook equation are also ubiquitous in literature, especially where the model is used to

predict damage due to the way the Johnson-Cook model modifies the material response of individual

elements as they are worked.

Thanks to its popularity, the Johnson-Cook model has benefitted from considerable validation from the

scientific community. Umbrello, M’Saoubi and Outeiro, 2007, studied five different sets of Johnson-Cook

parameters as used by other researchers, for their effect on the quality of finite element studies. An

individual finite element model simulating orthogonal cutting was created from each set. The outputs of

the finite element models were verified using experimental results. The investigation suggests that the

choice of parameters has a very large effect on the results produced by finite element studies, including

forces, temperatures, chip morphology and residual stresses. Only one of the five parameter sets was

found to give representative results for the orthogonal machining simulation within the study when

compared to experimental data. The inference from the conclusion is that, although some parameters may

43

work in a particular zone (as they have done for the researchers from which they were taken) they are not

guaranteed to be accurate over a wider range of conditions and can often be wildly inaccurate. However,

carefully selected parameters for the Johnson-Cook constitutive equation when used in finite element

studies can give very accurate results in specific circumstances.

Table 4-3 gives a summary of Johnson-Cook parameters developed by Tounsi et al., 2002 and used by

Guerra Silva et al., 2015 to create a material model for sintered AISI 316L.

A (MPa) B (MPa) C n m

514 514 0.042 0.508 0.533

Table 4-3 – Johnson-Cook parameters for AISI 316L steel developed by Tounsi et al., 2002

 Modelling Damage 4.2.2

Modelling damage is an essential component of machining simulations. Damage in machining occurs in

both the tool and workpiece. In this study, damage in the tool is of particular interest. However, modelling

damage in the workpiece is also an important factor, since damage can affect cutting forces and vibration.

Modelling damage is also essential if material removal from a workpiece is to be modelled in terms of chip

shearing and separation.

Plasticity can always be explained in terms of damage. Plasticity is expressed mainly under extreme loads

and results in permanent changes to the materials shape and strength. On the nano-scale, plasticity is the

result of dislocations, void formation, cracking and tearing within the material. In finite element

simulations, many models are not run to failure and so simple plasticity models such as the Johnson-Cook

model are both accurate and computationally efficient. If left to run indefinitely, a model governed only by

the Johnson-Cook equation would show plasticity forever and never fracture.

Plasticity always requires damage, but damage does not necessarily lead to plasticity. Many models such as

the Gurson and Cockcroft-Latham models calculate damage by predicting void formation and reducing

material strength accordingly. There is therefore an overlap between damage accumulation modelled by

damage models which results in plasticity-like effects, and plasticity modelled by the Johnson-Cook

equation. This distinction separates this section on damage models and section 4.2.1 discussing the

Johnson-Cook model. Care must be taken not to model the same physical phenomena twice.

The simplest criteria for modelling the effects of damage could take the form of a maximum principle stress

or maximum Von-Mises stress criteria. When an element passes a given threshold it is simply deactivated.

Numerically speaking, this means that the stiffness of the element would be set to zero. Whilst this

approach is very easy to implement, it requires relatively high element densities in the areas where damage

modelling is required. This approach can work very well in ceramics and may be appropriate for modelling

failure of the pcBN cutting insert.

The Johnson-Cook model is commonly used as a template for damage modelling around which damage

criteria or separation criteria can be based. In finite element simulations, these criteria might disable or

weaken any elements that have passed a certain plastic strain, plastic strain rate or plastic stress. This is

useful because the customisation can be highly representative of the specific material based on

experimental results. Also it guarantees that there is no overlap between plasticity from the J-C model and

fundamental damage calculated by models such as Gurson’s.

44

Shams and Mashayekhi, 2012, looked at creating to develop a damage model for orthogonal cutting FE

simulations that aims to be both accurate and independent of element size. Because the Johnson-Cook

constitutive equation alone cannot be used in finite element simulations to determine the point of material

separation, they focused on developing a separation criteria which showed good agreement with

experimental results. However, their model was only developed for orthogonal (2D) cutting.

The Gurson, 1977, model estimates damage in porous plastic materials by predicting the nucleation and

growth of microscopic voids and their effect on overall material strength. The more recent adaptation of

the model proposed by Tvergaard and Needleman, 1995, is preferred in finite element software such as

Marc and Deform 3D. The model progressively weakens elements until a virtual void fraction reaches a

critical limit after which the element is disabled. Xie, Bayoumi and Zbib, 1998, used the Gurson model to

predict separation in a finite element simulation of metal cutting which produced excellent results,

especially with respect to predicting chip geometry. As with many finite element implementations that

model was 2D, however the Gurson model is available for 3D models in Marc.

The Lemaitre, 1985, model was developed specifically for ductile damage in ferrous materials undergoing

manufacturing processes. The Lemaitre model calls upon on thermodynamic concepts to predict damage

and is sensitive to temperature (lacking in Gurson’s model) which could be ideal for the high thermal

gradients in machining. The model gradually weakens elements until failure, as opposed to abrupt

deactivation. This model is also supported by Marc.

Vaz et al., 2007, used the Lemaitre damage model in a 3D machining simulation. Those results are of

particular interest because the model was used to predict the nucleation and development of shear within

the shear zone in machining. This was then compared to a failure model based on a plastic strain criteria.

The two were different with the Lemaitre model predicting crack nucleation from the top of the shear chip

and the plastic strain criteria from the base. Unfortunately, the model was not compared to experimental

results.

Hambli, 2001, compared finite element implementations of the Lemaitre and Gurson models used for sheet

metal blanking and found that the Lemaitre model gave superior results.

 Modelling Vibration 4.2.3

Dynamic instabilities in the system can be modelled in a number of ways. Perhaps the most obvious way is

to accurately model the masses and eccentricities of all moving parts and allow the FEM software to

resolve vibrations. However, this approach would require precise measurements of every moving part

within the system. Such an approach would require potentially hundreds of measurements throughout the

system and the result would likely suffer heavily from cumulative measurement error and numerical

approximation (rounding) errors in the FEM software.

Alternatively, the vibrational characteristics of the system can be measured at the tool holder and

workpiece fixture and input into the simulation as a reciprocating waveform which drives a fixed

displacement boundary condition. To achieve this, the vibration or displacement amplitude against time for

the machine and fixture should be captured at sufficient resolution to feed into the simulation.

45

 Numerical Model 4.3
A preliminary 3D test simulation was developed in MSC Marc to better understand the performance of

Marc and become familiar with the simulation challenges. The simulation was configured to cut a thin layer

of material from the top surface of a rectangular mesh. The cutter in the model was defined as rigid. Typical

Young’s Modulus and Poisson’s ratio values for steel were used for the mesh material. An adaptive

remeshing criterion was added to refine the mesh in proximity to the cutter.

The simulation was run on computer hardware according to the following specification:

• 2 x 3.1GHz Intel Xeon E5-2687W Processors (8 physical cores each, hyper-threading disabled);

• 256 GB RAM;

• 500 GB Solid state hard drive;

• 1 x NVIDIA Quadro 6000 GPU; and

• 1 x NVIDIA Tesla C2075 GPU (for GPU processing).

Figure 4-3 shows the state of the simulation at the point of failure after three days of processing. As the

figure shows, hardly any significant progress has been made. Furthermore, the mesh suffers a number of

degeneracies, such as rounding off of the mesh on the right hand side under the cutter. Although this

model is far from optimised, it is clear that multiple valve seat cutting passes, with multiple cutters is

completely impossible without extensive simplifications.

Rounding off

Figure 4-3 – Preliminary oblique cutting model developed in Marc 2013

46

Progression of the model is limited, mainly due to problems during remeshing. The host computer has 16

physical cores (spread across two physical chips) as well as GPU processing capability. Many of the solvers

available for Marc offer parallel processing which takes advantage of all available cores (including graphics

processors). However, Marc does not include support for multiple processors during remeshing. Figure 4-4

shows the load sharing pattern followed by Marc during the different phases of simulation.

. . .

Matrix Solution
and Recovery

Remeshing

Processor
#1

Processor
#2

Processor
#16

Processor
#3

Processor
#1

GPU
#1

GPU
#2

Figure 4-4 – Processor utilisation during solving and remeshing

47

Clearly the remeshing stage is a substantial bottleneck for simulations requiring it, such as machining in

which it is essential due to the large plastic deformations which occur. Optimisation priority must therefore

be given to reducing the dependency of the simulation on remeshing. Some widely used techniques

include:

 modelling regions of a single body which could potentially undergo plastic deformation as a separate

contact body to those regions which will only deform elastically. The two separate bodies are then

‘glued’ to one another and remeshing is only applied to the most deformed body. This saves some

overhead as it reduces the volume through which the remesher is required to generate mesh. Si, 2015,

show that for three different 3D tetrahedral mesh generators, as geometric complexity increases so

does the time required to generate a 3D mesh. By removing subsections of a mesh that aren’t involved

in the phenomenon under test, the geometric complexity can be reduced and therefore so can

computation time;

 sacrifice element aspect ratio and mesh quality (accuracy) for improved performance, by meshing less

frequently;

 split parts of the model into domains with fixed mesh interfaces which can be remeshed in parallel

processes. Yagawa and Shioya, 1993, show that this technique (also known as ‘domain

decomposition’) can be used to dramatically reduce computation time at the cost of slightly increased

memory demand. In their example a problem executing in 99,684 seconds was reduced to just 4,496

seconds using 105 subdomains and 26 cores. Noor, 1988, review other ways in which parallel

processing can be used to greatly accelerate finite element structural analysis; and

 only remeshing a sub mesh of the parent mesh based on its proximity to a cutter. This technique is

commonly known as ‘local remeshing’ (as opposed to ‘global remeshing’) and is routinely employed to

remove global remeshing steps which are costly, unnecessary and vulnerable to introducing

interpolation error (Zheng et al., 2016).

 Chapter Summary 4.4
The objectives of this work call for the creation of a numerical model capable of simulating multi-angle

valve seat cutting over many increments to a high degree of accuracy and with a minimum of

computational and experimental effort. Chapter Two revealed the complexity of the cutting process zone

and Chapter Three set out the fundamental numerical modelling techniques necessary for modelling non-

linear systems.

This chapter has presented a review of various techniques developed in literature aimed at characterising

and modelling cutting systems. It has also shown how others have integrated models designed to simulate

machining in to finite element studies with varying degrees of success.

Although many of the methods presented in this chapter have been proven in literature to deliver

reasonable results, many require complex experiments to capture the necessary input data. There are few

examples in literature of models that incorporate all of the physics of cutting. It is clear from the findings of

this chapter that attempting to build a composite model that incorporates every necessary process zone

model presented in literature, to the high degree of accuracy necessary to support multiple cutting passes,

would be practically impossible. Furthermore, the experimental burden required to support each model

would be prohibitive.

Despite these issues, this chapter has provided good insight into the types of phenomena which must be

modelled, albeit through some other more simplified means.

48

Chapter Five – Experimental Analysis of
pcBN Cutting Inserts
The literature review for this work presented a number of mechanisms that could potentially damage

polycrystalline cubic boron nitride (pcBN) cutting inserts during multi-angle valve seat machining, leaving

them vulnerable to chipping. This chapter aims to analyse a selection of cutting inserts to determine if any

manufacturer defects or any of the damage mechanisms reported in literature were present.

The pcBN inserts studied were a selection of new, chipped and worn inserts collected from Ford’s Sigma 1.6

Engine production line in Craiova, Romania. The inserts were supplied without history and with varying

degrees of wear and damage ranging from visually perfect, to worn and chipped along some edges.

The inserts were categorised into three types of geometry, as shown in figure 5-1, referred to from left-to-

right as, hex, tri and bar respectively. These specific types of inserts all have a negative rake face.

Figure 5-1 – Cutting inserts

Only tri and hex inserts are used during valve seat machining on the production line referred to in the case

study for this work. The case study suggests that hex inserts are generally more likely to fail. For these

reasons, hex inserts form the main area of interest for this investigation.

49

Hex inserts are approximately 2.49 mm in height and measure 6 mm between parallel edges; similarly, tri

inserts are approximately 2.42 mm in height and measure 7.93 mm from corner to edge as shown in figures

5-2 and 5-3 respectively. Both inserts have identical cutting edge dimensions.

Figure 5-2 – Hex insert dimensions

Figure 5-3 – Tri insert dimensions

50

 Schedule of Specimens 5.1
Table 5-1 gives a schedule of the specimens inspected, with a description of their visual condition listed in

the final column. For the hex inserts, the code found on the part refers to the last three digits of the

supplier part code.

Ref Type Code on Part Visual condition

1 Hex 410 Slight chip on one edge

2 Hex 485 Slight wear visible on one edge, chip on one edge

3 Hex 485 Slight wear visible on one edge

4 Hex 485 Slight wear visible on one edge

5 Hex 485 Chip visible on two edges, wear visible on two edges

6 Hex 485 Perfect

7 Hex 485 Perfect

8 Hex 485 Perfect

9 Hex 485 Perfect

10 Hex 485 Slight wear visible on one edge

11 Hex 485 Perfect

12 Hex 485 Slight chip on one edge

13 Hex 485 Perfect

14 Hex 485 Large chip on one edge, wear on three edges

15 Hex 485 Chip visible on one edge

16 Hex 810 Slight wear visible on three edges, Chip on point of corner

17 Hex 810 Heavy wear on one edge, heavy wear and chipping on one edge, slight wear on three edges

18 Hex 810 Wear on four edges, very large chip on one edge

19 Hex 810 Wear on five edges

20 Hex 810 Slight wear on one edge, chipping on one edge

21 Hex 835 Slight wear on all six edges

22 Tri Perfect

23 Tri Perfect

24 Tri Perfect

25 Tri Wear in one corner

26 Tri Slight wear on one edge

27 Tri Perfect

28 Tri Wear at two corners

29 Tri Wear on one edge

30 Tri Perfect

31 Tri Wear on one edge

32 Bar 30185065
L2

Perfect

33 Bar 30185065
L6 L5 L4 L3 L2
L1

Perfect

34 Bar 30185065
L3 L2 L1

Perfect

35 Bar 30185066
L4 L3 L2 L1

Perfect

36 Bar 30185066
L4 L3 L2 L1

Slight wear on edge

37 Bar 30185065
L5 L4 L3 L2 L1

Perfect

38 Bar 30185065
L1

Perfect

39 Bar 30185073
L2

Perfect

40 Bar 30185066 Perfect

41 Bar 30033462
L2 L1

Slight chip on edge

42 Bar 30266906
L1

Missing tool tip

43 Bar 30185068
L1

Perfect

44 Bar 30185068 Perfect

45 Bar 30185068 Perfect

Table 5-1 – Cutting insert defects found on examination of samples

51

In previous chapters, the weight of literature reviewed suggested that the premature failure of pcBN tools

when used in valve seat cutting operations occurs as a result of pcBN’s vulnerability to vibration, primarily

due to its poor fracture toughness. Dynamic instability is inherent in the valve seat machining process as

multiple independent surfaces at different angles are cut simultaneously.

However, the literature also suggests a number of other possible mechanisms that could explain the failure

of pcBN tools during high speed machining. In order to have confidence in the dynamic imbalance

explanation, these other potential explanations must be ruled out.

 Tool geometry (cutting radius): It is known that sharp cutting radii on pcBN inserts increases the

amplitude of vibration and thus the probability of chipping (Lacerda and Siqueira, 2012). It is

sometimes desirable therefore to modify the cutting radius and chamfer using precision grinding

techniques, brushing or magnetic field assisted finishing (Ventura, Köhler and Denkena, 2013).

pcBN tools are generally supplied with a negative rake face and can be used with a cutting radius

anywhere between 0μm (sharp) through 30μm (sharp, with edge preparation) to 200μm (worn).

The cutting radius is defined as the radius between the rake and flank faces of the tool. It can be

measured using optical microscopy combined with calibrated digital image measurement software.

 Flank and crater wear: Some researchers have identified an erratic relationship between cutting

speed and wear rate when using pcBN tools that results in flank and crater wear (Rocha et al.,

2004).

The flank of a tool is the edge leading away from the cutting edge radius which is not in contact

with the chip. Flank wear causes a thinning of the tool between the rake and flank faces thus

weakening the cutting edge and increasing the probability that volume will be chipped away.

Crater wear is characterised by pitting and chipping that builds up to form a crater on the rake face.

It is typically visible on images obtained under optical microscopy or scanning electron microscopy

(SEM). Physical mechanisms responsible for flank and crater wear include chemical, adhesion,

solubility and melt between the tool material (pcBN) and chip (sintered steel workpiece material).

The rate of flank wear can be measured by analysing and comparing the surface roughness of the

flank face at intervals before and during machining. Evidence of chemical interaction, diffusion and

melt can be obtained by Energy-dispersive X-ray spectroscopy (EDS).

 Manufacturing Defects: Inhomogeneous material, poor fusion, crystal clumping, voids, cracks and

chips are several types of defect that can occur in sintered materials such as pcBN cutting inserts.

Sufficiently large defects (>1μm) within the material may be detected using X-Ray tomography.

Smaller defects within the material may only be detected by slicing the cutting insert at intervals

and inspecting using SEM. Small pre-existing chips on the cutting edges of the inserts that result

from the manufacturing process e.g. flash or dirt in the mould, can lead to premature chipping

during machining. Such chips can be detected on new inserts using optical microscopy or SEM.

 Comb-cracking due to high temperature: Cemented carbides such as pcBN with a tungsten carbide

binder material are particularly vulnerable to a phenomenon referred to as comb cracking. Comb

cracks are not to be confused with thermal shock cracks. Thermal shock cracks develop

spontaneously by a sudden and rapid change in temperature, for example, after sudden exposure

to coolant during turning. Comb cracks however develop after exposure to several periodic

temperature induced stress cycles and thus develop more slowly (Klocke, 2011). Figure 5-4, A)

shows the orientation of comb cracks (in green) with respect to the rake and flank faces of the tool.

52

The lines in purple show the orientation of transverse cracking which is a similar phenomenon that

forms as a result of pressure-induced stress cycles from the cutting force. B) shows an SEM

micrograph of comb cracks found on a pcBN cutting insert (Malakizadi, Sadik and Nyborg, 2013).

Flank face

Rake face

Transverse
cracks

Comb
cracks

A) Comb crack diagram
B) SEM micrograph of comb cracks

(Malakizadi, Sadik and Nyborg, 2013)

Figure 5-4 – Comb and transverse cracking diagram

 Visual Inspection using Optical Microscopy 5.2
Visual inspection of the inserts was performed, primarily using an Olympus BX60M microscope. Further

visual inspection and digital measurement was performed using a Nikon Optiphot microscope using 5 X, 10

X and 20 X optical zoom. Images were captured using a GXCAM-5 ISH500 5.0MP camera directly attached

to the microscope. GT Vision GXCapture version 8.0 was used to process the captured images.

 Measurement of Corner Radius 5.2.1

Both hex and tri inserts were inspected and found to have undergone edge preparation. In almost all cases

they had unworn corner radius of approximately 30μm. Figure 5-5 shows a corner radius measurement.

Flank
Face

Rake
Face

Radius: 28.37 μm

Figure 5-5 – Corner radius measurement

53

Six measurements were made across four hex inserts yielding a mean radius of 29.77μm and a further two

measurements were made on two tri tools giving a mean radius of 28.12μm.

A radius of 60μm was suggested in literature to be the optimum radius for the minimisation of vibration

when cutting valve seats with pcBN tools when compared against radii of 0μm, 30μm and 200μm (Lacerda

and Siqueira, 2012).

 Inspection of Large Chip on Insert 14 5.2.2

Insert 14 had one of the largest chips observed. Figure 5-6 shows the top-down view of insert 14 with the

position and relative size of the chip visible on the South edge. The North, NE and SE edges were also

heavily worn.

Figure 5-6 – Insert 14

Figure 5-7 shows a large chip on the edge of insert 14 from region 1 in figure 5-6. The focal plane was set to

the top surface of the insert. The chip boundary on the top surface appeared to be clean and there are no

cracks leading away from the broken edge.

The dark region in the upper right hand corner of the figure is the chip breaker cavity. Six such cavities exist

and radiate from the centre of the insert to the corners between edges.

54

500 μm

1

Figure 5-7 – Large chip on insert 14 viewed at 5 X optical zoom

No evidence of voids within the material on the exposed interior surface was observed and there was no

obvious nucleation point for the crack. The cutting edge and radius were unworn, suggesting that the edge

failed early during its duty cycle. However, several other edges were heavily worn, but showed no evidence

of chipping. It would be reasonable to assume that before this chip occurred, the bulk material of the insert

would have been exposed to multiple heating cycles during use on other edges.

55

 Inspection of Small Chip on Insert 25 5.2.3

Figure 5-8 shows a chipped edge of insert 24 which was initially indexed as visually perfect. For this image,

magnification was set to 10 X optical zoom and the focal plane was aligned with the corner radius between

the rake and flank faces.

Figure 5-8 – Small chip on insert 24 viewed at 10 X optical zoom

In this image, the light out-of-focus region in the top left is the top surface of the insert. The dark band with

parallel striations is the negative rake face of the insert. A small chip is visible at approximately image

centre. The depth of the chip at its deepest point is approximately 4.6 μm.

The chip depth is sufficiently large to leave a raised band on the finished part which would cause the valve

seat to fail during a cylinder leak test. The surface finish roughness specification for valve contact faces on

the seat is 3.2μm.

56

The chip character and dimensions initially appeared consistent with flank and crater wear. However, the

chip was the only one of its kind along the edge. If the edge was exposed to even cutting conditions along

its length, flank and crater wear would be evident across the entire edge. However, during valve seat

machining, wear is not even across the edge. Figure 5-9 shows a section view of the cutting operation,

where the blue line is the centre of rotation, and the radii of the inside and outside edges of one of the

seat’s angles are marked in red.

pCBN

Insert

ri

ro

Figure 5-9 – Cutting radius cross section diagram

From the diagram, it is clear to see that since ω is constant at all points on the insert, and therefore

the cutting conditions cannot be said to be constant along the length of the cutting insert edge. As

discussed earlier, an erratic relationship exists between cutting velocity and the rate of flank and crater

wear when using pcBN tools.

Since the area around the chip appeared unworn, it is also possible that the chip may have resulted from a

manufacturing defect, a common cause of premature chipping. DeVries, 1992, suggests that once chipping

on this scale occurs, catastrophic failure of the insert is inevitable.

Optical microscopy inspection has allowed measurement of the cutting radius of the hex and tri inserts,

both of which were found to have radii inconsistent with the optimum edge preparation radii for the

minimisation of vibration as suggested in literature. Optical microscopy provided a better visualisation of

large scale chipping along the edges of some inserts and also revealed the presence of small-scale damage

that was previously invisible to the naked eye.

The large-scale chipping observed on insert 14 may or may not have been nucleated by manufacturing

defects within the insert, but was too large to be the result of flank and crater wear alone. Closer inspection

using SEM would be required to look for further evidence on and around the exposed chip surface.

The small-scale damage on insert 24 was likely to be flank and crater wear (although the physical

mechanism responsible was not clear), but may also be due to a manufacturing defect.

57

 X-Ray Computed Tomography 5.3
pcBN is known to have a very poor fracture toughness, and therefore when exposed to excessive

vibrational loads, pcBN can be expected to fail. In the previous section, it was suggested that the large scale

chip shown in figure 5-7 may be consistent with manufacturing defects within the insert. The defects may

take the form of internal voids or cracks.

X-Ray Computed Tomography can be used to inspect the cutting inserts for internal defects. A Metris XT H

160Xi X-Ray imager was used in conjunction with VGStudio MAX 2.2 software to produce a tomogram of

insert 14. Figure 5-10 shows the position of the insert and polymer stage relative to the X-Ray source.

Stage

pcBN
hex

insert

Emission
source

Figure 5-10 – X-Ray stage

Figure 5-11 shows an X-Ray image captured through the side-on view of insert 14. The dark tapered layer in

the image centre is the tungsten carbide substrate on which the lighter layer (the pcBN layer) is bonded.

The contrast between the two layers was consistent with their densities at and

for CBN and tungsten carbide respectively.

0
.4

5
2

.0
4

Figure 5-11 – X-Ray side view of insert 14

58

Figure 5-12 shows the computed tomogram of insert 14 as viewed in VG studio.

Figure 5-12 – Computed tomogram of insert 14

Thorough inspection of the body of the insert, in particular the region around the chip, revealed no

evidence of internal defects such as voids and cracks larger than 1 μm. However, unwanted noise (clearly

visible around the outside of the insert in the figure) may have been hiding internal detail.

Figure 5-13 below shows a close up view of the left hand side of the insert first shown in figure 5-11

previously.

Figure 5-13 – X-Ray side-on view of insert 14 (close up)

59

The image shows what appeared to be a horizontal crack extending into the insert. It is possible that this

was evidence of a crack or a separation of two bonded layers of the tungsten carbide substrate. It may also

be flair from the sharp edge. In either case, the anomaly was located far away from the pcBN layer and is

therefore not significant. Furthermore, the anomaly was not visible in the 3D tomogram, nor was it visible

under optical microscopy, suggesting it most likely just an artefact in this single image.

 Scanning Electron Microscopy (SEM) 5.4
Scanning Electron Microscopy (SEM) can offer superior magnification compared to optical microscopy. This

can be combined with Energy-dispersive X-ray spectroscopy (EDS) to perform chemical analysis on parts of

the cutting insert surface.

All images in this section were obtained using secondary electron detection in a Hitachi TM3030 table top

scanning electron microscope.

 Insert 14 – Chipped edge 5.4.1

Figure 5-14 shows a SEM image of insert 14 focused on region 1 defined previously in figure 5-7. The image

width is 862.5μm and was captured using an acceleration voltage of 15 kV.

Figure 5-14 – SEM image of large chip on insert 14

The image shows what appeared to be cracks or steps that radiate away from the edge (indicated in red in

figure 5-15). The speckle pattern was consistent with pcBN crystal dispersion in a tungsten carbide binder.

60

The black spots were most likely to be oil or loosely bonded carbon deposits that diminished the

conductivity of the exposed surface accessible to the electron beam. Whilst every effort was made to keep

the samples clean for SEM analysis, they were retrieved from a working production line and have been

exposed to coolants, lubricants and other contaminants. The inserts were not cleaned prior to SEM analysis

as cleaning solvents and chemicals can mask the presence of cracks.

1

Figure 5-15 – SEM image of large chip on insert 14 showing crack boundaries

The nature of the cracking pattern indicated in red appears characteristic of tungsten carbide failure

following exposure to vibrational and cyclic thermal loading (Dogra et al., 2012).

61

Figure 5-16 shows a higher magnification of region 1 (green) in figure 5-15. At this level of magnification a

distinctly different surface becomes visible as indicated by region 3 (blue).

1

2

3

Figure 5-16 – SEM image of large chip on insert 14 (high magnification)

The texture of this region was smooth compared to the surrounding speckle pattern of the pcBN. Its

appearance was not dissimilar to that of comb and parallel cracking found by Malakizadi, Sadik and Nyborg,

2013, suggesting thermal and stress related cracking.

62

 Insert 14 – Chemical Analysis of Speckle and Black Patterns 5.4.2

Insert 14 was analysed using EDS to determine the chemical makeup of the speckle textured surface and

the black spots. Figure 5-17 shows a higher magnification of region 2 (red) in figure 5-16. An average

chemical spectrum was acquired from region 1 (green) and point 2 (red). The dominant elements found in

each zone are given in tables 5-2 and 5-3 respectively.

1

2

3

Figure 5-17 – EDS chemical spectrum sample regions

Element Weight % Weight % σ Atomic %

Carbon 28.613 0.554 36.631

Nitrogen 18.845 0.607 20.687

Boron 16.819 1.035 23.922

Oxygen 14.113 0.321 13.564

Tungsten 8.358 0.167 0.699

Table 5-2 – Dominant chemical elements found in speckle zone indicated by region 1 (green)

Element Weight % Weight % σ Atomic %

Carbon 56.094 6.812 55.310

Boron 37.908 7.532 41.527

Oxygen 3.505 0.444 2.594

Cobalt 0.682 0.093 0.137

Tungsten 0.419 0.059 0.027

Table 5-3 – Dominant chemical elements found in black spot indicated by point 2 (red)

63

Region 1 (green) in figure 5-17 shows approximately balanced parts boron and nitrogen as was to be

expected from cBN (having the chemical composition BN). The region also had high concentrations of

carbon which was consistent with the tungsten carbide binder material and contamination from oils.

Point 2 (red) in figure 5-17 showed very high concentrations of carbon, consistent with carbon deposits or

dirt. Interestingly, this region showed disproportionately high concentrations of boron which was balanced

by nitrogen.

B2O3 can be used to accelerate the synthesis of hexagonal boron nitride (hBN). hBN is used in the synthesis

of cBN, which again, can be accelerated by the addition of B2O3 (Choi et al., 1993). B2O3 will bond with

carbon to form boron carbide (B4C) at sufficiently high temperatures (1350˚C). It is not known as to

whether or not B2O3 had been used in the manufacture of this insert, but if it had, it may support a

hypothesis that clumps of boron carbide exist in the pcBN substrate. Boron carbide has a strength

comparable to cBN, nonetheless, it is still regarded as an undesirable impurity.

The chemical analysis from the speckle zone was used to estimate the chemical composition of the insert.

Cubic boron nitride has the chemical formula BN, thus consists of equal parts boron and nitrogen. Similarly

tungsten carbide has the chemical formula WC and consists of equal parts tungsten and carbon. In each

case, only tungsten and boron are unique to their respective materials as carbon and nitrogen may be

introduced from other sources, thus the ratio of CBN to tungsten carbide can be approximated as shown in

equation 5-1.

 (5-1)

However this equation assumes that the chemical makeup of the surface spectrum represents the average

of the interior which is unlikely due to the skin effects of the cBN binding process, wear, cleaning solvents

and oxidisation of WC (occurring above temperatures of 500°C).

Figure 5-18 shows a high magnification scan of region 1 (green) in figure 5-16. In this image the very dark

and very light speckle pattern is interrupted by a grey substance. This substance was found predominantly

near failed or damaged zones across all inserts inspected.

Figure 5-18 – Region 1 (green) from figure 5-16

64

Two possible theories are proposed. The first is that the grey material revealed itself as a result of surface

stretching, wherein cBN crystals clump and were not uniformly distributed as the material stretched. The

second theory is that the grey material was composed mainly of workpiece material that had been driven

into troughs on the materials surface. A more detailed analysis of this material is given later in section

5.4.6.

 Insert 16 – Tungsten Carbide Chemical Analysis 5.4.3

An EDS chemical analysis was performed on the bright spot indicated in figure 5-19 (from region 3 (blue) of

figure 5-17) and the weights of tungsten and carbon are given in table 5-4 below.

Figure 5-19 – Region 3 (blue) from figure 5-17

Element Weight % Weight % σ Atomic %

Tungsten 52.498 1.093 7.609

Carbon 23.323 0.932 51.744

Table 5-4 – Chemical analysis of bright spot

The spectrum showed that the bright spot consisted mainly of tungsten. The ratio of tungsten to carbon

was higher than expected for WC tungsten carbide, but matched that of W2C which is commonly found in

powdered tungsten carbide used during the sintering process. Nonetheless, the presence of W2C suggests

poor homogeneity of the binder material.

 Insert 16 – Wear Profile 5.4.4

Figure 5-19 shows the wear profile from a worn edge on insert 16. Several dark deposits were visible along

the edge, these were most likely carbon rich deposits such as oil or dirt.

Wear from heavy
to light

Figure 5-20 – SEM image of worn edge on insert 16

65

The figure shows that the wear was not linear across the cutting edge, transitioning from heavy at the

leftmost edge to light at the rightmost edge. This pattern was expected as discussed earlier and shown in

the diagram in figure 5-9.

The width of the wear pattern was approximately 0.7 mm in length and matched the width of the cut

indicated in figure 5-21.

Figure 5-21 – Width of inside angle

The radius at the leftmost point of the face is 11.00mm and at the rightmost point on the face is 10.52mm.

At 1646 RPM, the velocities at the right and left points are 1.90 ms-1 and 1.81 ms-1 respectively, making the

velocity at outermost extreme of the wear profile 5% higher than the innermost.

 Insert 2 – Rake face deposits 5.4.5

Insert 2 shows signs of normal wear on one edge and chipping on another, thus inspection of this insert

may yield clues as to the processes in action on the run-up to failure.

Figure 5-22 below shows insert 2, loaded on its side, at 40x magnification. From this view, it was possible to

look down at the wear zone and flank face (where comb cracks were most likely to be visible).

Figure 5-22 – SEM image of damaged edge on insert 2

66

Figure 5-23 shows the damaged zone at higher magnification. The location of the red line indicates the

approximate location of the cutting radius (heavily worn). The area below the cutting radius was material

that had been exposed after the rake face had been chipped away.

Flank Face

Figure 5-23 – SEM image of damaged edge on insert 2 (high magnification)

The figure shows several different aberrations across what remained of the cutting radius. It is broken by a

series of bright deposits scattered in a horizontal line from left to right. The flank face shows obvious

scaring, and perhaps metallurgical changes, including evidence of diffusion.

67

Figure 5-24 shows a close-up view of one of the bright deposits found near the cutting radius. The deposit

did not appear to be raised above the surface of the rake face but instead seemed to be flush with it.

Figure 5-24 – SEM image of deposits on insert 2

Table 5-5 shows the chemical spectrum from the area indicated in figure 5-24, as well as the quoted

chemical composition of the Novofr AR20 (the copper infiltrated sintered high speed steel workpiece

material).

Element Weight % Weight % σ Atomic % Weight % in
Novofer AR20

Oxygen 30.799 0.560 53.792 0.00 - 0.00

Iron 16.692 0.378 8.352 23.15 - 56.95

Chromium 12.661 0.286 6.804 3.50 - 5.50

Tungsten 11.237 0.409 1.708 2.50 - 4.50

Carbon 7.317 0.511 17.023 0.80 - 1.30

Manganese 6.986 0.272 3.553 0.30 - 1.50

Copper 6.475 0.423 2.848 10.00 - 20.00

Cobalt 2.338 0.283 1.109 15.00 - 22.00

Silicon 2.279 0.143 2.268 0.50 - 2.00

Sulphur 1.790 0.109 1.560 0.15 - 0.75

Vanadium 1.009 0.128 0.553 1.00 - 2.30

Table 5-5 – EDS chemical spectrum of deposit found on insert 2

The presence of chemical elements correlates with the constituent elements of Novofr AR20, but not at

their original concentrations. The elements were also supplemented by disproportionately large amounts

of tungsten, suggesting that diffusion and other chemical processes had occurred in this region.

The ratio of iron to oxygen in this region was 1.63:3.00 and very similar to that of iron oxide which is

2.00:3.00. Oxidisation of iron in the deposit is not likely to have taken place after machining as the

concentration of chromium was sufficiently high in the sample to protect the iron. If oxidisation had

occurred, it must have done so at elevated temperatures.

68

 Insert 2 – Crack 5.4.6

A small crack was present at the far left of the damaged area running nearly parallel with the cutting edge

as shown in region 1 (green) of figure 5-25. The crack was approximately 38μm in length.

1

Figure 5-25 – SEM image of crack found on insert 2

The material to the left of the crack was unworn rake face material, whereas the material to the right was

what remained after the tool material had been chipped and worn away. Figure 5-26 shows a higher

magnification view of region 1 (green) indicated in figure 5-25.

Figure 5-26 – SEM image of crack found on insert 2 (high magnification)

In this figure, it is clear to see the growth of a primary crack through the cutter material. This crack

appeared to be filled with a secondary material which itself was cracked. The chemical composition of the

region of secondary material shown in figure 5-27 is given in table 5-6.

69

Figure 5-27 – EDS chemical spectrum sample zone

Element Weight % Weight % σ Atomic %

Cobalt 36.066 3.084 33.359

Iron 31.157 2.784 30.411

Manganese 17.611 2.102 17.473

Chromium 7.364 1.360 7.720

Tungsten 4.013 1.184 1.190

Table 5-6 – EDS chemical spectrum of secondary crack material found on insert 2

The secondary material contained large amounts of iron, manganese and chromium and was likely to be

workpiece material that was forced into the primary crack due to the high cutting pressure. It was similar in

appearance to other lightly colour veins of material found on insert 14 and again on insert 2 in regions that

were exposed to the workpiece.

Large amounts of cobalt were detected which was unexpected. Despite official data for the tungsten

carbide substrate being unavailable, cobalt was not expected to be a component of the WC substrate since

it was only found in trace amounts elsewhere on the sample in undamaged areas. Cobalt was present in

large quantities in the AR20 sintered valve seat material, although not in concentrations as high as 36%.

This could be an indicator that valve seat material had undergone melt or diffusion at this location which

had increased the concentration of cobalt.

It is possible that the secondary material seen here was accelerating the growth rate of the primary crack. If

secondary material (from the workpiece) with a higher rate of thermal expansion was forced into primary

cracks in the tool material by high cutting pressures, then when that material expanded due to elevated

cutting temperatures, it may have forced open the primary crack. When the cutters retracted from the

70

workpiece, the secondary material cooled and cracked centrally, thus providing a void for more secondary

material to fill.

Table 5-7 shows coefficients of linear thermal expansion of the cutter materials and elements found in the

crack shown in figure 5-27.

Compound / Element Coefficient of linear
thermal expansion,

()

Reference

CBN 1.2 Monteiro et al., 2013

Tungsten carbide 5.9 Hidnert, 1937

Weighted group average (Based on 66% cBN
content)

4.3

Cobalt 11.8 White, 1965

Iron 12.7

Manganese 24.5

Chromium 5.2 Roberts, White and
Fawcett, 1983

Weighted group average (Based on % weights
given in table 5-6)

14.0

Table 5-7 – Weighted coefficients of thermal expansion for cBN and tungsten carbide

A weighted average is given for the cutter material, based on 66% CBN content (found earlier using

equation 5-1) and likewise for the workpiece material found in the crack as shown in table 5-6. The

weighted group average for the tool material was found according to equation 5-2, and likewise for the

workpiece material according to equation 5-3.

 (5-2)

∑

 (5-3)

The weighted coefficients of linear thermal expansion show that the composite material found in the crack

had a coefficient of thermal expansion more than three times greater than that of the pcBN insert. This

supports the hypothesis that the mismatch in workpiece and tool material coefficients of thermal

expansion, coupled with the ability of AR20 to melt and diffuse into the pcBN substrate, may have

accelerated the growth rate of cracks running parallel along the cutting insert rake face.

71

 Insert 2 – Crystal Pattern 5.4.7

Figure 5-28 shows what appears to be a crystal growth pattern found on insert 2, approximately 100μm

from the boundary line between the top surface of the insert and the rake face, near a worn section of the

rake face.

This section of the chip was exposed to high temperature and is unlikely to have come into contact with the

workpiece. Survival of crystals of this size and shape that existed before sintering is extremely unlikely due

to the mixing and compression that would have taken place during the sintering process. The surface

topology of the crystal pattern was flat and none of the crystals appeared to be growing out of the

material. These two observations suggested that the crystals must have grown during manufacturing under

the high temperature and pressure of the sintering process.

Figure 5-28 – SEM image of crystal pattern found on insert 2

Chemical analysis of the crystals and surrounding area indicated high concentrations of boron with low

concentrations of nitrogen as shown below in table 5-8. Where boron was found on the insert, it was

expected to be balanced by nitrogen, since both elements are equal components of boron nitride (BN). This

was approximately true for all previous chemical spectra taken across unworn surfaces of the insert. The

imbalance in this region suggested that a chemical reaction had taken place which had broken down the BN

crystals in favour of boron crystal growth. The dark region engulfing the crystals was similar in chemistry to

the crystals themselves.

Table 5-8 shows the chemical spectra taken from one of the crystals compared to the spectra of the

material surrounding the crystal.

72

Element Weight %

Weight %

Difference %

Boron 52.115 55.829 +3.714

Carbon 39.121 36.882 -2.239

Oxygen 3.684 2.747 -0.937

Nitrogen 2.494 1.896 -0.598

Potassium 0.554 0.491 -0.063

Silicon 0.498 0.346 -0.152

Iron 0.404 0.535 +0.131

Table 5-8 – EDS chemical spectrum of crystal pattern found on insert 2

As the table shows, the spectra for the two regions is very similar, but the imbalance between boron and

nitrogen shows that BN had broken down in this region. The crystals were rich in boron and carbon

suggesting that they could be crystals of boron carbide.

There was almost no trace of tungsten in this region which was unexpected. This could be due to a

manufacturing process defect that had led to poor homogeneity of the powdered sintering material

mixture.

 Chapter Summary 5.5
Chapter Two presented a literature review that documented various possible damage mechanisms that

could explain the random chipping, observed in the case study for this work, when pcBN cutting inserts are

used to cut multi-angle valve seats.

This chapter presented experimental attempts to identify damage and manufacturer defects in a series of

cutting inserts, recovered from the valve seat cutting process referred to in the case study.

Evidence was presented that shows the presence of evolving damage conditions such as flank and crater

wear, diffusion and chemical changes brought about as a result of heat exposure. Without complete tool

history however, it has not been possible to determine the rates of wear or damage. This chapter also

produced evidence to support a hypothesis that the relatively large difference in coefficients of thermal

expansion between pcBN and steel may be accelerating crack growth.

No evidence of manufacturing defects such as voids or pre-existing cracks or faults in the inserts was found.

All of the damage observed was regarded as typical for cutting inserts towards the end of their rated life.

The evidence presented in this chapter cannot explain, however, the sudden and random nature of pcBN

cutting insert failure when machining multi-angle valve seats.

Failure to identify clear manufacturing or material defects in the pcBN cutting inserts adds further support

to the argument presented in this work. Specifically, that: in conjunction with the low fracture toughness of

pcBN, random pcBN cutting insert failure is due to vibration caused by the radial imbalance that develops

during multi-angle valve seat cutting.

73

Chapter Six – Dynamic Analysis of the
Valve Seat Cutting Operation

 Introduction 6.1
Ford’s own investigations raise concerns about the valve seat machining process. Some of these concerns

could explain why Ford were seeing chipping when using pcBN cutting inserts. Specifically:

 the way the cylinder head is held during machining is suboptimal for reducing flex and may lead to

the head flexing away from the tool if cutting thrust loads are sufficiently high;

 the quick release zero point locators (ZPL) that clamp to the head and are responsible for

maintaining a known relative offset between the head and machine may be slipping relative to the

head. Any subsequent misalignment may lead to tools engaging earlier or at different locations

than expected; and

 the cylinder head and fixture system may be vulnerable to low and medium frequency resonance

during machining.

The literature review for this work identified excessive vibration due to some imbalance in the system and

vibration due to resonance as common causes of instability and damage within cutting systems (Lacerda

and Siqueira, 2012; Moradi et al., 2013; Fu and Zheng, 2014; Iglesias et al., 2016). As stated in earlier

chapters, the prevailing theory is that cutting inserts chip randomly due to the radial imbalance that arises

due to each cutter machining a different angle on the valve seat. To have confidence in this theory, it is

important to first rule out the possible causes of tool damage listed above.

This chapter looks at the cutting system for the Fox cylinder head, shown in figure 6-1, and investigates the

stiffness of the cutting system and the structural stability of the ZPL support structures with reference to

finite element studies. This chapter also presents an experiment performed to determine whether or not

the system is affected by resonance.

Figure 6-1 – Fox Upgrade 1.0L cylinder head rendering

74

Valve seat and valve guide geometric tolerances are amongst the most restrictive of anywhere in the

engine. This is largely due to the high quality seal that must be achieved to reach engine emissions and

performance targets and to ensure longevity of the engine. The seat and guide must maintain a tight

coaxial tolerance, as well as meet tight deck, seat and throat angle location tolerances and surface finishes.

Simultaneous cutting of the three angles greatly improves the potential of the operation to maintain tight

coaxial tolerances and reduces the time required to perform the operation since it involves fewer tool

changes. However, these advantages come at the cost of greater cutting forces, more complicated dynamic

behaviour and the risk that imbalanced radial loading will create displacements in the cutting system that

lead to out-of-round error and diminished effectiveness of some cutters.

 The Machining Process 6.2
The process studied in this chapter is the valve seat and guide semi-finish and finishing operations

performed during manufacture of the Fox 1.0L cylinder head. This process was selected because it was

observed during production that certain cutting parameters were leading to tool breakages and yielding

seats of poor surface finish, often displaying evidence of chatter.

The primary goal of studying this process is to determine if a lack of stiffness in the current fixture design

could explain why cutting inserts appear to break randomly during production. Evidence of this may be

large displacements of the cylinder head during machining or resonant vibration. This study also aims to

determine the relationship between cutting thrust force and cylinder head displacement.

This study looks at the actual production line CNC machine, fixture and cylinder head. The boundary

conditions of the system are imposed by the process design and cannot be changed.

75

The cylinder heads are loaded and unloaded from CNC machines using a quick release mechanism. Central

to this mechanism is a structure called a zero point locator (ZPL), shown in figure 6-2 A). Before entering

the production line, three ZPLs are bolted to the lower surface of each cylinder head using an M8 bolt as

shown in figure 6-2 B). The lower portion of the ZPL mates with a hydraulic clamping system embedded in

the CNC machine fixture. The compound structure (cylinder head and three ZPLs) can then be quickly

clamped and released from CNC machines throughout the production line.

Figure 6-2 – A) ZPL-bolt cross section, B) ZPL bolted joint schematic

Figure 6-3 shows the layout of the cylinder head as it was fitted into the CNC machine. The figure also gives

the port and bank definitions as used throughout this chapter. The ports are numbered in the order in

which they were cut.

6 5 4 3 2 1

Exhaust Bank

Intake Bank

ZPL (Left)

ZPL (Right)

ZPL (Centre)

6 5 4 3 2 1
Exhaust Bank

Intake Bank

Figure 6-3 - Cylinder head port definitions

76

The ZPLs must resist a large moment that arises in response to the cutting load. The distance between the

foot of the ZPL for the intake and exhaust bank is 163.4 mm and 197.6 mm respectively. For equal forces,

the moment applied when machining the exhaust bank is more than 20% higher than the moment applied

when machining the intake bank.

As can be seen from figure 6-3, the geometry of the support system is far from ideal for this particular

cutting system. Figure 6-4 shows a side view of the cylinder head and ZPL fixture system. The blue and red

arrows show the force directions for the intake and exhaust port cutter thrust forces respectively. A) shows

the current configuration with the ZPLs on the bottom of the cylinder head. In a more ideal layout, the ZPLs

would be placed on the rear of the cylinder head, similar to the hypothetical arrangement shown in B) so

that the head would be supported by a compressive load. However such an arrangement was not possible

due to the demands of other processes on the production line that require access to the rear of the head.

A) Current ZPL configuration B) More ideal hypothetical ZPL configuration

Intake cutting
force direction

Exhaust cutting
force direction

CNC
fixture
(fixed)

CNC fixture (fixed)

CNC
fixture
(fixed)

ZPL

ZPL

ZPL

ZPL

Cylinder
head

Cylinder
head

Figure 6-4 – A) Current ZPL configuration, B) more ideal hypothetical ZPL configuration

77

Figure 6-5 indicates some approximate locations around the head (again, these definitions are used

throughout this chapter).

Front
Face

ZPL
(Left)

ZPL
(Right)

Back
Face

ZPL
(Centre)

Displacement
Location (Right)

Displacement
Location (Centre)

Displacement
Location (Left)

Figure 6-5 - Cylinder head location definitions

Figure 6-6 shows a typical cutting cycle diagram for a two-step process. In cycle 1 the valve guide is piloted

and a semi-finish pass is applied to the seat. In cycle 2 the valve guide is reamed and a finishing pass is

applied to the seat. During normal production, both cycles are required to fully finish both the intake and

exhaust banks. Some cycles perform the valve guide finish ream in a separate third step. However, all cycles

incorporate a critical seat and guide finishing step.

Rapid Advance

Feed Rate 1
Valve guide pilot

Feed Rate 2
Valve guide chamfer
and seat semi-finish

Backfeed

Dwell
Typ: 0.8 s

Feed Rate 2
0.3 mm

Rapid Return

MQL On

MQL Off

Rapid Advance

Feed Rate 1
Contact on valve

guide inside and seat

Backfeed Rapid Return

MQL On

MQL Off

Cycle 1: Valve guide pilot and seat semi finish Cycle 2: Valve guide ream and seat finish

Figure 6-6 – Cutting cycle diagrams

Typical cutting parameters for these cycles are given in table 7.

Parameter Cycle 1 Cycle 2

Spindle Speed (RPM) 1600 4200 - 6000

Feed Rate 1 (mm rev-1) 0.06 0.06

Feed Rate 2 (mm rev-1) 0.08

Table 6-1 – Typical cutting parameters

78

 The Effect of ZPL Bolt Torque on Seat Positional Accuracy 6.3
The ZPL bolt torque was studied to better understand its influence on the cutting system. The default

intake and exhaust seat finishing cycle was run on two cylinder heads according to cycle 1 shown earlier in

figure 6-6, using a typical process spindle speed of 1600 RPM and feed rates of 0.06 mm rev-1. Two bolt

torques were trialled, 21 Nm and 27 Nm. Bolt torque was set using a computer controlled torque wrench to

ensure consistency.

After cutting, both heads were analysed on a Carl Zeiss CenterMax Coordinate-Measuring Machine (CMM).

The CMM was used to generate a representative cone by sampling a series of points on the deck, seat and

throat angles according to the definitions given in figure 6-7.

Figure 6-7 – Valve seat cross section showing deck, seat and throat angle definitions

For each cone, the cone angle, and two orientation angles as defined in figure 6-8 were recovered. All

parameters were compared against a nominal target design figure for each cone and a deviation was

calculated. The results are given in table 6-2.

Intake
valve seat

(6 off)

ZPL
(3 off)

Valve guide
(6 off)

Guide and
seat centre

line

Cylinder
head

Figure 6-8 – CMM angle definitions ∠ and ∠

79

Table 6-2 - CMM results

Figure 6-9 shows the summary of position deviations for 27 Nm and 21 Nm for both the exhaust and intake

seats.

Exhaust Intake

Figure 6-9 – Summary of deviations for position angles (lower is better)

As the figure shows, increasing the bolt torque to 27 Nm decreased the cone position deviation for the

exhaust seat on all measures except for the lateral throat angle (∠2). For the intake bank, the results were

unexpectedly much more varied, with the 27Nm configuration performing significantly worse on the critical

seat lateral angle (∠2).

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

D
ec

k
(∠

1
)

D
ec

k
(∠

2
)

Se
at

 (
∠

1
)

Se
at

 (
∠

2
)

Th
ro

at
 (
∠

1
)

Th
ro

at
 (
∠

2
)

D
e

vi
at

io
n

 (
°)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

D
ec

k
(∠

1
)

D
ec

k
(∠

2
)

Se
at

 (
∠

1
)

Se
at

 (
∠

2
)

Th
ro

at
 (
∠

1
)

Th
ro

at
 (
∠

2
)

D
e

vi
at

io
n

 (
°)

C
o

n
e

R
e

fe
re

n
ce

21 Nm 27 Nm

Exhaust Intake Exhaust Intake

Actual (°) Nominal (°) Dev. (°) Actual (°) Nominal (°) Dev. (°) Actual (°) Nominal (°) Dev. (°) Actual (°) Nominal (°) Dev. (°)

D
e

ck

∠C 121.141 120.000 1.141 119.969 120.000 -0.031 121.189 120.000 1.189 119.940 120.000 -0.060

∠1 -21.933 -21.900 -0.033 20.700 20.700 0.000 -21.925 -21.900 -0.025 20.706 20.700 0.006

∠2 0.033 0.000 0.033 0.028 0.000 0.028 -0.013 0.000 -0.013 0.000 0.000 0.000

Se
at

∠C 89.706 90.000 -0.294 89.814 90.000 -0.186 89.761 90.000 -0.239 89.728 90.000 -0.272

∠1 -21.869 -21.900 0.031 0.021 0.000 0.021 -21.896 -21.900 0.004 0.012 0.000 0.012

∠2 -0.022 0.000 -0.022 -0.003 0.000 -0.003 0.020 0.000 0.020 -0.040 0.000 -0.040

Th
ro

at
 ∠C 60.023 60.000 0.023 59.997 60.000 -0.003 59.990 60.000 -0.010 60.033 60.000 0.033

∠1 -21.876 -21.900 0.024 0.015 0.000 0.015 -21.886 -21.900 0.014 0.019 0.000 0.019

∠2 0.019 0.000 0.019 -0.029 0.000 -0.029 -0.023 0.000 -0.023 0.002 0.000 0.002

80

Figure 6-10 shows the deviations for the cone angle for both the exhaust and intake banks.

Exhaust Intake

Figure 6-10 – Summary of deviations for cone angles (lower is better)

Overall, the cone angle measurements suggested that the increased bolt torque resulted in a slightly worse

cone angle. Despite these results, the most significant observation was the comparatively very large

deviation on the exhaust bank for the deck cone.

Cutting load can be reduced to normal and perpendicular components relative to the ZPL axial symmetry

axis. For the exhaust bank, the cutting load is applied further away from the ZPLs than the intake bank,

therefore the moment applied to the head and thus the displacement is greater for a given tool force.

Furthermore, due to the orientation of the seats, the normal component of the intake cutting load on the

ZPLs is compressive, whereas for the exhaust bank, the normal component is tensile. These factors

combined make the exhaust bank significantly more sensitive to flexibility in the ZPL support system.

For this reason, the significantly higher deviation on the exhaust bank deck cone may have been due to a

weakness in the ZPL support system which allowed the head to flex away from the tool as a result of tool

force and therefore change the angle at which the seat was being machined.

0.000
0.200
0.400
0.600
0.800
1.000
1.200
1.400

D
ec

k
(∠

C
)

Se
at

 (
∠

C
)

Th
ro

at
 (
∠

C
)

D
e

vi
at

io
n

 (
°)

0.000
0.200
0.400
0.600
0.800
1.000
1.200
1.400

D
ec

k
(∠

C
)

Se
at

 (
∠

C
)

Th
ro

at
 (
∠

C
)

D
e

vi
at

io
n

 (
°)

81

 Stiffness Analysis 6.4
A digital test indicator was used to measure the deflection of the cylinder head during machining. In rare

cases it was observed that points on the top of the cylinder head were deflecting by around 40 µm.

To better understand the flexibility of the cutting system, a representative finite element model was

created in MSC Marc. The objectives of this model were to:

 determine the load required to reproduce the observed deflections of 40μm;

 establish the relationship between cutting load and deflection;

 show the effect of 21 Nm and 27 Nm ZPL bolt torques on cylinder head deflection for a given

cutting force; and

 characterise the twist of the head depending on the port and bank cut.

The model was verified using cutting force data from prior Ford tool force measurements and observed

deflections during the real machining operation.

The following assumptions were made in order to simplify the model:

 the machine trunnion is rigid;

 there is only a touching contact between the tops of the ZPLs and the head (a touching contact

resists penetration but allows the bodies to breakaway);

 the head is simulated without valves and guides to reduce the tool contact complexity;

 contact stress between the seats, guide and head are ignored as are all internal casting stresses

within the head; and

 all materials are considered to be purely elastic.

Sixteen configurations were simulated as shown in table 6-3. The purpose of configurations 1 to 12 were to

understand the twist of the head in response to every operation and the purpose of configurations 13 to 16

was to determine the difference between 27 Nm and 21 Nm ZPL bolt torques.

Configuration Ref Bank Ports ZPL Torque (Nm)

1 – 6 Exhaust 1 to 6 27 Nm

7 – 12 Intake 1 to 6 27 Nm

13, 14 Exhaust 1 and 6 21 Nm

15, 16 Intake 1 and 6 21 Nm

Table 6-3 – Simulation properties

 ZPL Preload 6.4.1

When there is no torque applied to the ZPL bolt, compressive forces on the support system are borne

purely by the ZPL itself, whereas under tensile loads the stresses are borne purely by the M8 bolt. However,

by introducing a preload to the bolt, the flexibility of the support system becomes a function of both the

ZPL and the bolt stiffness as if they were one part. This is true until the tensile load on the system exceeds

the bolt preload, at which point the cylinder head would break away from the ZPL and they would no

longer be in contact.

82

The bolt preload was estimated using equation 6-1, where C is the coefficient of friction, D is the nominal

bolt diameter (8 mm) and T is the applied torque.

 (6-1)

The coefficient of friction used was 0.3, based on Ford material specifications for the ZPL and bolt fixture

assembly model (FORD, 2016c).

Table 6-4 gives the axial loading conditions for bolts under both torque configurations.

Bolt Torque Estimated Axial Bolt Force (kN) Axial Stress (MPa)

21 Nm 8.75 174.10

27 Nm 11.25 223.80

Table 6-4 – Table of bolt torques vs. estimated axial load and stress

The effect of bolt preload can be demonstrated by using a simple progressive loading finite element model

to compare a bolted ZPL to a bolt-only variant. Figure 6-11 A) shows a section view of the ZPL – cylinder

head bolted joint. B) shows the equivalent finite element model, indicating the boundary conditions and

contact setup.

Bolt (20 beam
elements)

“Bolt Head”
glue contact to ZPL

“Cylinder Head”
touching contact to

ZPL

ZPL

External nodes
fixed

Axial load

20 kN

t=20 t=220

A) Schematic of ZPL – cylinder head bolted joint

B) Finite element model ZPL – cylinder head bolted joint

ZPL

Bolt

Bolt
head

ZPL – cylinder head
contact

Cylinder
head

CNC
fixture
(fixed)

Figure 6-11 – ZPL-Bolt boundary conditions and contact

83

The system was loaded by a tensile load applied axially to the bolt gradually from at to at

 . An initial stress condition (given in table 6-4) was applied axially to the bolt in order to include the

preload effect.

Figure 6-12 shows a graph of the axial bolt strain vs. axial bolt load for the combined and bolt-only

configurations. In each configuration, the final applied load on the bolt was greater than that of the bolt

preload to ensure breakaway was observed.

Figure 6-12 – 27 Nm axial bolt strain vs. axial bolt load for default and bolt-only configurations

As the figure shows, the final axial strain of the bolt was the same for both configurations. At the start of

the simulation, the effect of the initial preload can be observed (applied in increment 1). The load increases

until it reached 11.25 kN (the estimated bolt preload) at which point the strain rate increased. Up until the

inflection point, the strain of the system was a function of both the ZPL and bolt. After the inflection point

the strain rate was dictated purely by the properties of the bolt. In the bolt-only configuration (blue) the

strain rate was constant throughout the simulation.

By preloading the bolt using a sufficient torque, it can be seen that axial strain (and therefore head

deflection) can be kept to a minimum. However, if the preload selected is incorrect and the head breaks

away from the ZPL, there will be a sudden change in strain rate during loading.

It would be extremely undesirable for break away to occur at any point during machining. Since the

advance of the tool is position controlled as opposed to load controlled, the reduced stiffness that follows

breakaway would create ideal conditions for chatter to develop.

-1.50E-03

-1.00E-03

-5.00E-04

0.00E+00

5.00E-04

1.00E-03

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

A
xi

al
 b

o
lt

 s
tr

ai
n

 (
ε)

Axial bolt load (N)

Bolt Only ZPL and Bolt

84

Figure 6-13 shows a cross-section view of the ZPL – cylinder head bolted joint. As the tensile load on the

bolt increases, the clamping force between the ZPL and head (red shaded area) decreases, therefore

reducing the force required to make the head slip on the top of the ZPL.

Base

Locator
(green)

Cylinder
Head

Head
contact

(red)

Figure 6-13 – ZPL Diagram

 Geometry and Mesh 6.4.2

A STEP format CAD file of the cylinder head was provided by Ford. The STEP file was imported into UGS

NX10.0 as a collection of surfaces. Small gaps in the surface geometry were repaired manually using

reasonable assumptions. The ZPL geometry was recreated in NX10.0 from an engineering drawing. Both the

head and ZPL geometry were meshed in NX10.0 using a target mesh edge length of 13 mm. All seat and

guide geometry was removed to simplify the model.

A mesh sensitivity analysis was performed to keep the element count low without compromising quality.

Convergence against an equivalent 5 mm mesh was reached at a target edge length of 14 mm. Ultimately, a

13 mm target was used, as this gave better transitioning from the refined zones around the seat to the

surrounding bulk of the cylinder head.

85

Figure 6-14 shows the cylinder head geometry and mesh at different element densities. The optimised

mesh (left) consists of 239,268 elements (including ZPLs, bolts and head).

Converged mesh, L=14mm
Element count = 239,268

Fine reference mesh, L=5mm
Element count = 663,219

Figure 6-14 – Cylinder head and ZPL mesh showing ZPL boundary conditions

Figure 6-15 shows the bolt and ZPL contact geometry. All three ZPLs and bolts were modelled in the same

way. The bolt was modelled as 20 beam elements (Marc type 98) with a diameter of 8 mm. There is no

direct contact between the bolt and ZPL. The bolt had a glue contact condition to two rigid body surfaces at

each end. One surface represents the bolt head which made a touching contact with the ZPL. The second

represents the thread which made a glue contact with the cylinder head.

Bolt
(20 Beam
Elements)

Bolt face
displacement
control node

Bolt face
rotation

control node

Thread
contact

displacement
control node

Thread
contact
rotation

control node
ZPL

ZPL Fully-fixed
boundary
condition

(outside face)

Bolt face
(Rigid Body)

Bolt thread
face

(Rigid Body)

ZPL Side View Bolt Side View
Bolt Isometric

View

Figure 6-15 – ZPL and bolt geometry and contact

86

Mesh refinement was applied to all 12 seats to ensure a good contact performance in these areas as shown

in figure 6-16.

Exhaust and Intake seat mesh refinement ZPL contact (left)
ZPL contact

(centre)
ZPL contact (right)

Figure 6-16 – Head mesh refinement

 Boundary Conditions 6.4.3

The ZPL was fully fixed on the lower surface to represent the interface with the CNC machine. An initial

stress condition of 220 MPa was set for each bolt (calculated previously and given in table 6-4).

Only the thrust cutting force was considered for the simulation due to its dominant role in head deflection.

The cutting load was applied to the head using a cylindrical position controlled rigid body which moved at

fixed velocity as shown in figure 6-17. This method prevents the applied loads from following the head as it

deflects, which is more representative of the real cutting system. Furthermore, this loading strategy

allowed non-uniform tool pressure around the seat to be visualised wherever the head deflection was large

enough to give rise to such an imbalance.

Figure 6-17 – Tool force loading

87

 Material and Physical Properties 6.4.4

Table 6-5 gives a summary of the mechanical properties used throughout all simulations. The physical

behaviour of the bolt was modelled in accordance with ISO 898-1:2009.

Property Cylinder Head (FORD, 2016b) ZPL Body (FORD,
2016c)

M8 Bolt (FORD, 2016c)

Material Aluminium (WSS-M2A178-A3) Steel (16MnCr5) Grade 12 bolt steel

Young’s Modulus (GPa) 73.189 205.000 200

Poisson’s Ratio 0.3 0.3 0.3

Coefficient of Friction 0.3 (Cylinder Head-ZPL contact)

 0.3 (ZPL-Bolt contact)

Table 6-5 – Simulation properties

Prior tooling calculations made by Ford estimated the total thrust force of the tool to be 392.8 N for the

exhaust seat and 310.7 N for the intake seat, at a spindle speed of 1000 rpm and feed rate of 0.06 mm / rev

(FORD, 2016a).

 Results 6.4.5

Table 6-6 shows a summary of the simulation results for the six exhaust machining operations modelled.

Ref ZPL Torque Bank Port Force required to deflect 40 μm (N)

Left Centre Right

1

27 Nm

Exhaust

1 842 1109 1742

2 2 937 1114 1463

3 3 1060 1126 1269

4 4 1198 1139 1134

5 5 1399 1159 1015

6 6 1633 1181 934

7

Intake

1 1143 1642 3092

8 2 1328 1689 2487

9 3 1564 1734 2049

10 4 1850 1780 1779

11 5 2262 1812 1539

12 6 2865 1838 1362

13

21 Nm

Exhaust
1 805 1081 1759

14 6 1616 1162 916

15
Intake

1 1089 1595 3087

16 6 2858 1803 1332

Table 6-6 – Simulation results

As the cutter moved from left to right, the deflection increased from left to right suggesting that the head

also twists on the ZPL support system. However it can be seen from the data that the tool forces required

to induce such an extreme displacement in the head were generally high.

88

Figure 6-18 shows the cylinder head displacement at the top right of the head (using reference locations

established earlier in figure 6-5). It can be seen that, the displacement was linear until the vertical blue line,

after which the stick slip criteria allowed the head to slip on the contact surface of the ZPL (giving rise to the

erratic force-displacement relationship beyond the blue line). The vertical red line shows the maximum

realistic cutting load calculated by Ford (FORD, 2016a), therefore at no point within any realistic tool force

did the head break away from the ZPLs, suggesting that the use of an M8 bolt is sufficient to prevent the

head from breaking away under normal tool forces.

Displacements of 40 μm were achieved at points on the top of the cylinder head at forces around 1000N.

The physical response of the simulation showed good agreement with prior Ford simulations that show

peak displacements of 19 to 23μm for forces of 400N (FORD, 2016a).

Figure 6-18 – Cylinder displacement at top right

89

Figures 6-19 and 6-20 show the head displacement simulations for all six ports on both the intake and

exhaust banks respectively. Each image represents a different simulation, where the only variable is the

port on which a load is applied. The images are given at 200 X deflection to help visualise twist in the head.

The states are captured at the increment immediately after the tool force exceeds 2000 N (the maximum

possible thrust force). The green arrow indicates the port and load direction for each simulation (unloaded

ports are indicated by a white cross).

Exhaust port 2 (increment 44) Exhaust port 3 (increment 43)Exhaust port 1 (increment 47)

Exhaust port 5 (increment 44) Exhaust port 6 (increment 46)Exhaust port 4 (increment 45)

100.0

76.0

88.0

64.0

52.0

40.0

28.0

16.0

4.0

-8.0

-20.0

D
isp

lacem
en

t (μ
m

)

Load direction
(>2000 N)

No load

Figure 6-19 – Exhaust deflections (200X)

90

Intake port 2 (increment 40) Intake port 3 (increment 39)Intake port 1 (increment 43)

Intake port 5 (increment 39) Intake port 6 (increment 41)Intake port 4 (increment 38)

100.0

76.0

88.0

64.0

52.0

40.0

28.0

16.0

4.0

-8.0

-20.0

D
isp

lacem
en

t (μ
m

)

Load direction
(>2000 N)

No load

Figure 6-20 – Intake deflections (200X)

As the figures show, the twist of the head follows the loading position. Deflection when machining the

intake ports was significantly lower than the deflection when machining the exhaust ports. Whilst both the

exhaust and intake banks showed twist in the head, the effect is much more pronounced when machining

the exhaust bank.

91

Figure 6-21 shows the exhaust deflections for ports 1 and 6 for both 27 Nm and 21 Nm, coloured according

to the same scale colouring used in figures 6-19 and 6-20 previously. As the figure shows, there was no

difference for port 6 and only minimal difference for port 1.

 Port 6 Port 1

2
1

 N
m

2
7

 N
m

Figure 6-21 – Exhaust deflections, 27 Nm vs. 21 Nm

92

Likewise, figure 6-22 shows the same grid for the intake bank. Again, there was no significant difference

between the different torque settings with regards to head deflection.

 Port 6 Port 1

2
1

 N
m

2
7

 N
m

Figure 6-22 – Intake deflections, 27 Nm vs. 21 Nm

Overall the analysis shows that the ZPL torque made minimal difference to the magnitude of deflection

within the possible range of cutting loads. The most significant factor in determining the deflection was the

93

cutting system geometry, specifically, the distance from the base of the ZPL to the region where cutting

forces were applied.

No significant deformation was observed in the head structure itself and no part of the structure exceeded

the true yield stress of the material. When the tool force was position controlled such that the head

deflected 100μm, all points within the cylinder head were significantly below the yield strength of Ford

standard WSS-M2A178-A3 aluminium. The simulation therefore indicated that the head is not likely to be

undergoing any detectable plastic deformation during machining.

Figure 6-23 shows a close-up view of the head in un-deflected and deflected states. Deformation in the

figure is pictured at 1000 X actual deflection. The colour bands on the plot represent equivalent Von Mises

Stress in Pa. As the figure shows, the maximum deflection occurred around the rear ZPL. Stress peaks at the

contact point between the rear ZPL and cylinder head. This ZPL is the only support structure on the rear of

the head.

A) No defomation

B) 1000 X deflection

C) 1000 X deflection
(front view)

Figure 6-23 – ZPL support deformation and stress

The deflection in the head has helped to explain why some seats showed slight out-of-round error. Figure

6-24 shows the tool contact status for port 2 taken from the last increment (>2000N cutting load) of the 21

94

Nm exhaust bank simulation. As the figure shows, the contact was biased towards the lower left. This

occurred as a result of the head flexing away from the tool due to the cutting load. Not only would this

create an out-of-round error on seats, but it may also create an imbalanced radial cutting load which could

lead to tool damage and chatter. However, the force required to produce this level of twist is significantly

higher than the typical cutting forces observed.

Figure 6-24 – Exhaust seat contact status on port 2

Given the observed flexibility of the system in response to static thrust loading, it is concerning to consider

that the radial cutting imbalance during valve seat machining can exceed 400N (Lacerda and Siqueira,

2012). This could create sufficient lateral displacement to initiate chatter or lateral vibration in the cylinder

head which could damage the cutting inserts.

 Cylinder Head Resonance Analysis 6.5
This section aims to look for and measure (if present) any resonance in the cylinder head, that arises as a

result of inadequate stiffness of the cylinder head, fixture system or trunnion. If resonance can be identified

at typical valve seat cutting speeds and feed rates, then tool breakages could possibly be reduced by

altering feed rates and speeds. This section draws reference to a modal analysis simulation performed by

Ford Motor Company that aimed to simulate flexibilities in these structures and calculate a series of natural

modes in order to determine safe cutting speeds and feed rates. The first 10 natural frequency modes from

that study are summarised in table 6-7. (FORD [Praveen. T], 2016).

 Mode Frequency
(Hz)

 Mode (cont.) Frequency
(Hz)

 1 261 6 735

 2 306 7 808

 3 354 8 864

 4 393 9 1101

 5 453 10 1493

Table 6-7 – Modal analysis of Fox GTDI

 Experimental Design 6.5.1

The frequency range of interest, 0 Hz to 1500 Hz intersects with what is considered as the low frequency

range - 0.1 to 10 Hz. When structures resonate at low frequencies, they typically do so at high amplitudes

(Wilcoxon, 2018). High amplitude oscillation of a structure like a cylinder head can cause severe damage

95

including warping of the parent metal. High amplitude oscillation within this range that causes relative

motion between the tool and workpiece can also lead to significant out of round error, significant tool

loading and misalignment of tool and workpiece that can create a bending load on tools such as drills and

reamers.

A commercially available ADXL326 acceleration transducer was used to measure the surface acceleration

on the cylinder head. The ADXL326 was selected due to its ideal bandwidth intersection with the range of

frequencies, including low frequencies, anticipated in this experiment (0.5 to 1600 Hz) (Analog Devices Inc.,

2009). The transducer was queried using a 12-bit analogue to digital converter (ADC) on an Arduino DUE.

The data was sent via a serial connection to a Raspberry Pi where it was recorded to a comma separated

values (CSV) file. The system was powered by an external battery to decouple it from factory mains noise.

Figure 6-25 shows the accelerometer circuit diagram.

Raspberry PIArduino DUEADXL326

5V

GND

X

Y

Z

A0

A1

A2

GND GND

5V5V

Rx

RxTx

Tx

0V

5V

Figure 6-25 - Accelerometer circuit diagram

Bespoke code was written in Python to process and display the acceleration data. This code was used to

isolate the cutting events from the overall acceleration data, apply calibration factors, calculate wave

power and perform Fourier transform (FFT) analysis to extract the key vibrational frequencies and their

magnitudes.

A validation step was performed to improve confidence in the timing of both the logging hardware and

software. The accelerometer was attached to the cone of a loud speaker. A tone generator attached to the

loud speaker was used to generate sine waves of various frequencies from 5 Hz to 1600 Hz. This range was

selected to completely encompass the range of resonant modes shown previously in table 6-7. For each

frequency, 10 seconds of data was logged and converted to the frequency domain using FFT. Figure 6-26

shows a typical FFT spectrum from this validation, in this case from the 200 Hz excitation frequency test. As

the figure shows, the main response is sharply focused on 200 Hz, with decaying modes at 200 Hz intervals

thereafter. There are no significant artefacts or unexplained responses in this spectrum.

Figure 6-26 – 200 Hz FFT Spectrum

96

The calculated frequency was compared to the excitation frequency and the percentage error was

calculated and plotted for each validation test frequency as shown in figure 6-27. As the figure shows, the

maximum frequency error was 0.17% but generally below 0.05%.

Figure 6-27 – Accelerometer data logger frequency response error

The accelerometer was attached to the cylinder head using a cyanoacrylate based adhesive at a location

just above the intake ports as shown in figure 6-28.

Figure 6-28 - Accelerometer attachment location

0.00%

0.05%

0.10%

0.15%

0.20%

0 200 400 600 800 1000 1200 1400 1600 1800

Er
ro

r
(%

)

Frequency (Hz)

97

The accelerometer data coordinate system is given in figure 6-29. This coordinate system and colour coding

is used for all vibration data presented in the remainder of this chapter.

X

YZ

Figure 6-29 - Accelerometer axis orientation

The CNC machine used to perform the vibration study was a five axis MAG SPECHT 600 A/B. The machine

used was a live production line machine and therefore represents the real production operation perfectly.

The five axes of the machine are divided between the workpiece fixture and the tool spindle. The

workpiece fixture can move in translations through Z and rotations about X and Y. The tool spindle can

move in translations through Y and X. This division of axes helps to improve the overall stiffness of both the

fixture and spindle. Furthermore, inertial excitations from translations through Z are clearly visible on the

accelerometer data, but translations in X and Y are not picked up. This shows excellent isolation between

the workpiece fixture and spindle.

98

Figure 6-30 shows the raw data collected from a typical valve guide and seat semi finish cycle. The graph

shows the acceleration measured in each axis according to the coordinate system given in figure 6-29. Cycle

1 given in figure 6-6 is overlaid on the acceleration data for reference.

R
ap

id
A

d
van

ce

Feed Rate 1 R
ap

id
R

etu
rn

Dwell 0.8 s B
ackfeed

Valve seat & Guide

chamfer

Feed Rate 2

Valve guide pilot

Figure 6-30 – Raw data from valve guide and seat semi finish cycle

99

Similarly for cycle 2, the valve guide reaming operation, a typical plot of the acceleration data is given in

figure 6-31.

R
ap

id
A

d
van

ce
Feed Rate 1 R

ap
id

R
etu

rn

Backfeed

Figure 6-31 – Raw data from finish ream

100

 Calibration 6.5.2

A calibration step was performed in order to determine a first degree polynomial relationship in the form of

equation 6-2, that relates a measured ADC quantity, (an integer division between 0 and), to

acceleration, , with units ms-2.

 (6-2)

Calibration factors, and , were found through experimentation by adjusting the location of gravity

(taken to be 9.81 ms-1) relative to the sensor, such that for each axis, two readings were taken, one with the

relevant axis pointing towards the ground and the other with the axis pointing away from the ground.

Minimum and maximum values of recorded over a 0.2 second settling period corresponded to an

acceleration of plus and minus 9.81 ms-1 respectively. The calculated calibration factors and are given

in table 6-8 for each axis.

Axis m (ms-2 division-1) c (ms-2)

X 0.0246 -50.1931

Y 0.0241 -49.0360

Z 0.0243 -51.0539

Table 6-8 - Acceleration calibration factors

 Results 6.5.3

During the trials run, three failed reamers were observed. Figure 6-33 shows that last of these reamers

embedded in a valve guide. This reamer failed on a 6000 RPM experiment according to cycle 2 shown

earlier in figure 6-6.

Figure 6-32 – Reamer 3 failure

101

Figure 6-33 A) shows the typical acceleration data observed during a successful reaming operation at 4200

RPM. B) shows the same cycle, but at 6000 RPM. The feed period in B) was of noticeably higher energy than

the same period in A). Before the end of the feed phase was reached the amplitude of vibration started to

build, resulting in failure of the reamer, after which the reamer underwent a violent disintegration.

R
ap

id
A

d
van

ce

Feed Rate 1 R
ap

id
R

etu
rn

Backfeed

Imbalanced rotation

Reamer failure

Figure 6-33 – Charts to show A) ideal reamer vibration data and B) failed reamer vibration data

Figures 6-34 and 6-35 show FFT spectra for a series of data immediately before two reamer failures set with

the same cutting parameters. As the figures show, there are regular resonant peaks at multiples of 100Hz.

In both experiments, the RPM was 6000, which corresponds to an excitation frequency of 100Hz. The

strong peak at 200 Hz strongly suggests that the head underwent resonance at this frequency.

Figure 6-34 – Reamer 1 failure (real-positive FFT)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0 200 400 600 800 1000

A
cc

e
le

ra
ti

o
n

 (
m

s-
2

)

Frequency (Hz)

X

Y

Z

102

Figure 6-35 – Reamer 2 failure (real-positive FFT)

Both spectra exhibit a smaller peak just to the right of the major peak at 200 Hz, which may indicate the

exact location of the resonant frequency in this range. The smaller peak is located at approximately 215 Hz,

within 46 Hz of the first resonant mode of the head given earlier in table 6-7 on page 94 as 261 Hz. The 46

Hz discrepancy may be due to inaccuracies in the Ford modal analysis. Figure 6-36 shows the exploded

geometry used in the Ford modal analysis. As the figure shows, fixed boundary conditions were used at the

fixture trunnion, as opposed to the machine base (or some static component in-between). Furthermore the

modal analysis did not take into account the mass of fluids (MQL and hydraulic fluid) and sub-assemblies

(such as motors and hydraulic actuators) within the complex machine trunnion.

Cylinder head

Fixture
(including ZPLs)

Trunnion
attachement

Trunnion

Trunnion
bearing

Fixed connection

Figure 6-36 – Ford modal analysis, exploded geometry (FORD [Praveen. T], 2016)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0 200 400 600 800 1000

A
cc

e
le

ra
ti

o
n

 (
m

s-
2

)

Frequency (Hz)

X

Y

Z

103

 Chapter Summary 6.6
Approximately 100 operations were observed containing a mix of valve seat finishing and valve guide

reaming at various spindle speeds, feed rates and ZPL torque settings. No cutting inserts were observed to

fail, however this was not unexpected since the pcBN cutting inserts will often survive hundreds of passes

before randomly failing.

A stiffness analysis was used to show that in the worst case scenario, cutting thrust loads in excess of 800 N

were required to deflect the head by 40 µm. In most cases actual cutting loads were significantly below this

at around 390 N. Deflections of 40 µm were only observed in the most extreme cases and changes in feed

rate and spindle speed were able to significantly reduce this.

Several reamers were observed to fail only when using spindle speeds of 6000 RPM. Resonant vibration

was evident in the periods leading up to reamer failure. A strong resonant mode was observed at around

215 Hz, which agreed with a prior modal analysis which suggested a resonant frequency of approximately

261 Hz. Excessive high amplitude resonance in the head will cause the reamer and valve guide centrelines

to deviate from one another, placing a bending load on the reamer.

Stiffness, structural and resonance issues were identified as possible causes of tool failure when machining

valve seats. This chapter looked at the Fox cylinder head valve seat machining process to verify whether or

not any of these phenomena are present and could explain cutting insert chipping. This chapter presented

evidence to support the following conclusions:

 a stiffness analysis showed that for typical cutting forces, deflection of the head was minimal and

unlikely to affect the cutting inserts in all but extreme cases. This theory is substantiated by the fact

that insert chipping was also observed on the Sigma cylinder head which uses a rear mounted

fixture plate;

 slipping of the head relative to the ZPLs was extremely unlikely given the exceptionally high tool

force required to initiate a slip (> 3000 N) compared to the relatively low maximum observed tool

force (approximately 400 N); and

 no evidence of resonance was found during the valve seat cutting cycles. However, resonant

vibration did occur in some finishing cycles leading to failure of valve guide reamers. This vibration

is likely to have arisen due to the radial cutting imbalance in conjunction with the relatively flexible

cylinder head.

104

Chapter Seven – Experimental
Characterisation of Cutting Force

 Width of cut as function of depth of cut
 Width of cut

 Feed displacement of the cutter as a function of feed rate and absolute
spindle angle, where , is the point at which the cutter first

touches on to the workpiece.
 Feed displacement of the cutter where is the point where the cutter

first touches on to the workpiece
 Volume of cut as a function of depth of cut, height of cut and a change in

spindle angle
 Depth of cut as a function of the feed displacement of the cutter

 Depth of cut
 Time
 Time zero, the time in force data representing the start of cutting
 Selection start time for calculating K values
 Selection end time for calculating K values
 Feed rate
 Spindle angular velocity
 Cross sectional area of cut,
 Volume weighted mean rake cutting velocity
 Measured rake force
 Measured feed force

 Specific rake force per unit width
 Specific feed force per unit width

 Introduction 7.1
This chapter introduces and discusses an experiment aimed at determining the influence of lubrication

regime, spindle speed and feed rate on cutting force and surface finish when machining AR20 high speed

steel (HSS) valve seats using polycrystalline cubic boron nitride (pcBN) cutting inserts at typical production

line spindle speeds and feed rates.

The data collected will be used to generate a prediction model for tool forces as a function of influential

cutting parameters. The model will be used as an input to the numerical model developed in the final part

of this work.

The advantage of a tool force model for use in a simulation such as the one proposed is that it removes the

need to simulate the majority of phenomena presented in Chapter Two and only deals with the behaviour

of the system as a generalized model on the scale of interest. This has benefits in that it reduces the

number of models invoked and thus the number of experimentally gathered parameters required. It also

reduces the computation burden since many of the models presented in Chapter Two require high element

densities to function with any reasonable degree of accuracy (e.g. Thepsonthi and Özel, 2015, 3D finite

element model of micro-end milling).

The key disadvantages however are the limited number of dimensions the model can support, for example,

a change in flank angle would require a rerun of experiments presented in this chapter to gather new

specific cutting forces. The model cannot tolerate any deviation outside of the limited number of

independent variables that it uses. A further disadvantage is that this model cannot be used to predict chip

105

flow, geometry or breaking. In summary, the performance benefits of using a cutting force model outweigh

the disadvantages when considering the aims of this work where it is more important to study the effects

of cutter configuration on cutting load imbalance, than chip characteristics or the influence of cutter

geometry.

Bölling, Kuhne and Abele, 2017 applied a similar approach in their study of machining sintered steel valve

seats with pcBN. They created a multivariate prediction model to calculate cutting force as a function of

tool edge angle, cutting speed, feed rate, width of undeformed chip and pcBN cutting insert wear state

measured in volume of material removed.

There is an economic and environmental interest in reducing the quantity of lubrication used during

cutting, therefore this experiment aimed to determine the extent to which the lubrication regime has an

effect on both rake and feed cutting forces. The two possible options tested were, dry (no lubrication) and

minimum quantity lubrication (MQL). The MQL lubrication used is Castrol Hyspray A 1536.

A series of pcBN cutting inserts and AR20 HSS valve seat blanks were acquired for the experiment. The

cutting inserts were all brand new, supplied in manufacturer packaging and had an initial edge radius of 30

µm. The seats were made from a propriety sintered material which was not available in larger specimens.

This cutting force experiment was therefore designed around the cylindrical valve seat geometry without

any modification. Consequently, cutting was oblique, which was not ideal for analysis since this adds

complexity during processing of the experimental data. Reasonable adjustments and approximations as

described in this chapter were applied to the cutting force data to offer results that are valid in a universal

context.

 Theory 7.2
Figure 7-1 shows the local coordinate system for each cutting insert. For any intersection between the valve

seat and cutter there would be a force applied in the rake and feed axes, normal and perpendicular to the

rake face respectively. Ideally there would be no radial component relative to the cutting insert. In this

experiment, the radial direction of the cutter was aligned with the radial axis of rotation, therefore there

would be minimal radial component. For the full scale numerical model discussed later in this thesis, there

will be a radial component relative to the central tool holder for any case where a cutting insert is not

aligned with the tool holder axis.

rake

feed feed

radial

Figure 7-1 – Cutting insert local coordinate system, radial, rake and feed directions

In order to produce generalised tool force prediction model, a mapping was created that related

measurements taken from the oblique cutting system to equivalent values in an orthogonal system. In the

physical experiment, cutting was oblique, there was a non-zero feed rate and a varying width of cut. In the

simplified orthogonal equivalent, the material removed over a given time is represented by a simple

106

rectangular cuboid with zero feed rate. Figure 7-2 shows an example of this approximation for a segment

removed after a partial spindle rotation, .

Segment of
valve seat

Cut section with
oblique dimensions

Representative
orthogonal section

Approximation

Tangential
velocity, v

t

C
u

tter feed

d
isp

lacem
en

t, u
f

Tangential
Velocity, vt

D
ep

th
o

f cu
t, d

D
ep

th
o

f cu
t, d

Equivalent w
idth of

cut, w

Angle of cut, θ

Rake
velocity, vr

Oblique Orthogonal

Figure 7-2 – Discrete cutting mapping from oblique (left) to orthogonal (right)

The dimension representing depth of cut is the same for both domains. In the orthogonal, the rake velocity

is equal to the cutting tangential velocity at a radius that splits the cut volume into two sections of equal

volume. Finally, a balance width is calculated such that the volume of the orthogonal approximation is

equal to the volume of the oblique section.

Cutting forces are divided by this width to give the force per unit width parameters, as shown in equation

7-1.

 (7-1)

To use the mapping as described, the simplified oblique model must be fully defined for any set of

parameters (feed rate, RPM etc.) and for any condition likely to arise during simulation.

107

The coordinate system used throughout this chapter is defined according to figure 7-3. The degrees of

freedom in the experiment were fixed in all translations and rotations, except for rotations of the

workpiece about its axial symmetry axis and translations of the cutter through the feed axis. The cutter is

pictured at zero feed displacement, , the point where the cutter first touches on the workpiece.

rad

rr

f

radial, radrake, r

feed, f

Axial symmetry axis, a

 Figure 7-3 – Coordinate system definition

The displacement of the cutter is given as a function of feed rate and absolute spindle angle by equation

7-2 where , is the point where the cutter first touches the workpiece.

 (7-2)

The depth of cut is given as a function of cutter displacement, , and feed rate, f, as shown in equation

7-3. This function is plotted in figure 7-4.

 () {

 (7-3)

Figure 7-4 – Depth of cut as a function of cutter feed displacement

f × 1 rpm

-∞ 0 f × 1 rev ∞

D
e

p
th

 o
f

cu
t

Cutter displacement, uf

108

The width of cut was calculated analytically as a function of the distance offset from the initial contact point

where cutting begins.

The valve seats are sintered from two powders of two different material compositions. Only the upper

layer is machined during manufacturing. This layer extends at least 3.4 mm down from the top surface and

the interface between the two materials is parallel with the base of the valve seat. For this reason, cutting

data is only valid for the first 3.4 mm of cut. The experiment was designed such that this depth was not

exceeded.

Figure 7-5 shows the dimensions of the exhaust valve seat. From these dimensions it was possible to derive

a function that gives the width of cut for a given feed displacement of the cutter, , as shown in equation

7-4.

Figure 7-5 – Exhaust valve seat diagram

 ()

{

 √

√ ()

 (7-4)

109

Figure 7-6 shows the curve generated by this function when plotted to the maximum cutting depth.

Figure 7-6 – Width of cut as a function of cutter feed displacement

The primary purpose of this function is to help calculate the volume of cut for a discrete segment of the

valve seat. Each segment is removed as a result of the cutter moving through a helical path which adds

considerable complexity to deriving an exact integral solution for segment volume as a function of depth

and cutter angle. The segment volumes are more easily calculated as groups of discrete slices in

translations through, and rotations about, the workpiece axial symmetry axis.

The front-facing area of the valve seat during a cut is approximated by the polygon MNPO as shown in

figure 7-7, where MN is a straight line. Two areas, bounded by the workpiece axial symmetry axis and the

lines MN and OP respectively are defined in preparation for integration.

M O

PN

uf

d

13

Axial
symmetry

axis, a

f

rad

Figure 7-7 – Discrete area diagram for volume calculation

Let and define the width of cut for the horizontal lines MO and NP at their respective depths of

cut as shown in equation 7-5, where is the depth of cut as shown in equation 7-6.

 () () (7-5)

 (7-6)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

W
id

th
 o

f
cu

t
(m

m
)

Cutter depth uf (mm)

110

Thus, equations for the vertical lines OP and MN are expressed as shown in equations 7-7 and 7-8

respectively.

 (7-7)

() (7-8)

The cross sectional disc area as a function of feed depth is given by equation 7-9.

 [] (7-9)

This formulation can be expanded as shown in equations 7-10 to 7-13.

 (7-10)

 (7-11)

 (7-12)

 [

] (7-13)

Finally, an integral for the volume can be formulated from equation 7-14 as shown in equations 7-15 and

7-16.

 ∫

 (7-14)

 ∫

 (7-15)

 (

)|

 (7-16)

Equation 7-16 gives the volume of a full revolution about the workpiece axial symmetry axis. The

integration can be broken into discrete steps to account for the pitch of the cutter path as it feeds into the

workpiece. Equation 7-17 gives the volume of a segment revolved through discrete angle, α.

 (7-17)

The method is further discretised by taking slices through feed direction i.e. using smaller values of

instead of selecting an value which is equal to the feed rate.

Using this method combined with a discrete angle, , of and a maximum discrete feed step of

 , gives convergence to the exact solution (as computed using NX10.0) to within 0.2%.

111

 Experimental Methodology 7.3
The experiment was performed using a Harrison M300 lathe. The lathe was partially controlled by an ABB

IP20 three-phase Variable Frequency Drive (VFD). The VFD allowed the spindle speed to be finely adjusted

after setting the approximate range using the appropriate gears on the lathe itself.

Forces were measured using a Kistler 9257B dynamometer which has a range of ±5 kN. The dynamometer

outputs three signals which were fed into three independent Kistler Type 5015 charge meters, which each

output a signal between ± 5V proportional to force. All three outputs were captured by a PicoScope 4424

USB oscilloscope and logged using PicoScope 6 oscilloscope data logging software.

A series of trial experiments were performed at a different range of feeds and speeds (designed to give the

best spread of probable forces) to determine the ideal charge meter settings. The criteria for the maximum

force selection (and therefore the output sensitivity) was that which provided the highest possible

amplification for any cutting load in the experiment, but which did not exceed a 5 volt output, thus making

maximum possible use of the oscilloscope analogue to digital converter (ADC) range. The figures in table

7-1 show the final charge meter settings which were used for all experiments.

Channel X (radial) Y (rake) Z (feed)

Output range +/- 5 volts

Input sensitivity (pC / N) -7.5 -7.5 -3.5

Max force (N) 500 1000 1000

Output sensitivity (N/V) 100 200 200

Table 7-1 – Charge meter settings

The X dimension represents the radial direction, therefore should not be subject to any significant net

force. The input sensitivity was determined according to the Kistler 9257B datasheet. Any forces detected

in this direction, other than expected vibrations, would have been possible indicators of alignment error

between the cutter and the intended cutting plane of the valve seat.

The logging software was configured to log at approximately 80 kHz. This rate was selected to allow the

experimental data to be used for vibration and resonance analysis in the event that chatter or other surface

irregularities occurred.

A bespoke tool holder was built to hold the cutting insert and clamp rigidly to the dynamometer. In

addition, a bespoke set of chuck jaws were machined to ensure the valve seat was clamped firmly and

evenly around its diameter. This was particularly important, since the limited height of the seat and base

radius presented very little surface available for clamping. Any unintended movement of the seat in the

chuck jaws during machining could chip or damage the cutting insert or tool holder. The bespoke jaws also

feature a flat-bottom surface on the inside to guarantee consistent flatness of the seats to speed up

changes.

The valve seat was clamped in the lathe chuck and the tool holder was mounted directly to the

dynamometer. This was in contrast to the production line configuration, where the valve seat is fixed

throughout machining and the cutting inserts rotate. In both cases the relative motion between the tool

and workpiece is the same.

Figure 7-8 shows the relative locations of the main experimental components including the cutting insert,

the valve seat and the thermal camera. The figure also shows the direction of rotation of the lathe chuck

(indicated by the blue arrow) and the feed direction and contact point on the valve seat (red arrow).

112

Tool holder

Thermal
camera

Cutting
insert

Cutting insert
clamp screw

Cutting force
dynamometer

Lathe chuck

Bespoke jaws

Valve seat

Figure 7-8 – Experimental layout

A SPI dial test indicator was used to assist in meeting or exceeding the geometric tolerances as defined in

figure 7-10. The dynamometer alignment was set once for the entire experiment. The cutting insert

alignment was set after each tool change and the seat total run out and front edge run out was set for

every seat change. Figure 7-9 shows an example of how the dial test indicator was used to ensure proper

alignment of a seat prior to machining.

Figure 7-9 – Valve seat alignment check

113

Figure 7-10 – Geometric tolerances

A light gate sensor tachometer was used in conjunction with a logic controller and LCD display to inspect

the instantaneous RPM of the lathe during fine tuning as shown in figure 7-11 (c). The sensor (b) generated

one pulse per rotation, which was fed to the RPM display (a) and oscilloscope to be recorded sequentially

with the cutting force data. A recorded RPM reference allows the data to be corrected during processing to

accommodate changes in speed due to loading conditions.

Screen
showing
live RPM

PWM
Speed

Control

Feed to
oscilloscope

Live RPM

min max

Sensitivity

Sensor

Reflective
reference

Spindle

b) RPM Sensor, side of machine

c) Example display

a) RPM sensor controller

Figure 7-11 – RPM sensor

A Micro-Epsilon TIM400 thermal imaging camera was used to capture thermal images during cutting to

show the temperature gradient across the cutting edge. The camera was also used to log the ambient room

temperature for the experiment. The camera was attached to the lathe carriage between the bed bearings

and aimed up at the cutting insert. This configuration ensured that the camera remained focused on the

cutting insert and that the camera perspective remained constant, regardless of carriage movement during

feeding and rapid withdrawal.

114

 Parameter selection 7.3.1

All combinations of the parameters shown in table 7-2 were tested, totalling 32 cuts.

Speed (RPM) Feed Rate (mm rev-1) Lubrication

1200 0.03 Dry

1433 0.04 MQL

1667 0.05

1900 0.08

Table 7-2 – Experimental parameter selection

These parameters were selected to create a range that fully encompassed the full range of possible feed

rates and spindle speeds used during multi-angle valve seat machining.

All dry cuts were performed before any MQL cuts to prevent contamination of the work area. A new cutter

was used for the experiment, furthermore, the cutter was rotated to its opposite edge after completing the

dry cutting set, such that all dry cuts were performed on a common edge and all MQL cuts were performed

on a common edge opposite to the edge used for the dry cuts.

The MQL oil was applied manually using an atomising spray bottle to both the seat and cutting insert until

both were saturated.

As well as the cuts listed above, two verification cuts, one for each dry and MQL sets, were performed at

the end of each set at the initial 1200 RPM, and 0.03 mm rev-1 feed rate. Those cuts were performed to set

a benchmark to enable the cutter degradation to be measured and monitored as the experiment

progressed. These additional data set also enabled independent validation of at least two other data sets

recorded.

 Data Processing 7.4
The aim of processing the data is to compute the specific force per unit width, values, based on equation

7-1, for given cutting parameters such as spindle speed, depth of cut and lubrication regime.

All raw data were processed using a common algorithm written in Python. Each experiment yielded one

thermal video and one comma separated values file containing columns for time, radial, rake and feed

loads and tachometer state from the oscilloscope software. Processing was performed sequentially as

described in the following sections for each data file.

115

 Signal Conditioning 7.4.1

The files were read into memory by the script where the sensitivity factors for the charge meters were

applied to each column to convert the recorded voltages to forces in Newtons according to the values given

in table 7-1.

For the signal representing the tachometer input, the entire data file was stepped through to identify all

points where the tachometer signal rises from a logic low to a logic high state, indicating a tachometer

pulse corresponding to one rotation of the spindle. The time difference between each rising edge was used

to calculate the rotational frequency and thus the RPM value as shown in equation 7-18 where is the

timestamp corresponding to the rising edge. These values were recorded against a time value that falls

approximately half way between the pulses used to calculate it. Once all pulses were resolved to RPM

readings, the remaining data points were assigned RPM values based on a linear regression between the

calculated RPM readings as shown in equation 7-19 where is the at time , and and

are the calculated and its timestamp respectively.

 (7-18)

 (7-19)

All three force channels were zeroed individually using an average taken from to to

compensate for constant offset error due to factors such as tool weight, etc.

Since the data were recorded at a very high sample rate, data points were then binned into discrete time

step bands to improve the processing and display time. Each band was represented by its average for all

columns including RPM.

 Time Offset Approximation and Refinement 7.4.2

An approximate time offset was used for each data set to synchronise the calculated width of cut with the

cutting force data. The offset was judged by eye and later refined by the processing algorithm using a

convergence-based technique. The technique worked by introducing ever decreasing time offsets to the

initial time approximation and repeating the analysis in order to discover the offset that gave the smallest

standard deviation for an average taken from the curve between two predefined representative margins,

 and . The refinement algorithm starts with an initial scan width of .

Points and were selected manually by looking at the plotted data and judging a range which was

safely inside the period of sustained, full-depth cutting. The criteria for selection was to make the range as

wide as possible (to increase the signal to noise ratio), but to also ensure that the range did not cover any

period before the cutter was fully engaged, nor any point after the cutter was moved away.

 Specific Force Calculation 7.4.3

Figure 7-12 shows an example construction of the steps up to this point for experiment 12. In that

experiment the target spindle speed was 1667 RPM with a feed rate of . The graph shows

the point as discovered by the refinement algorithm to be . In this case the initial cutting start

guess was , meaning the refinement algorithm would theoretically have found this true cutting

116

start time, so long as it was within the light blue shaded region. The boundaries and indicate the

sample width over which the specific force curve is averaged.

The blue line shows the measured rake force in Newtons (primary axis), the red line shows the theoretical

width of cut as calculated using equation 7-4 (secondary axis) and the green line shows the values

according to equation 7-1 (primary axis).

Figure 7-12 – Graph to show Kr function construction and quality

As the figure shows, the curve between the selection boundaries approximates a flat line. This shows

good agreement with the theoretical model proposed in this chapter which asserted that cutting force

varies linearly with width of cut. The average of the curve between these two boundaries was used as

the final specific force for this dataset. This analysis was repeated again for the feed data which also shared

this pattern.

During the initial force ramp, there was some disagreement between the force and width of cut profiles.

This was because as the cutter began the cut, there was a brief period when the depth of cut was also

ramping up to its otherwise constant level.

t0

ts1

ts2

0.0

0.5

1.0

1.5

2.0

2.5

0

100

200

300

400

500

600

1.0 1.5 2.0 2.5 3.0 3.5

W
id

th
 o

f
cu

t
(m

m
)

Fo
rc

e
 (

N
)

/
Fo

rc
e

 p
e

r
u

n
it

 w
id

th
 (

N
 m

m
-1

)

Time (s)

Force Y (N) Kr (N mm^-1) Width of Cut (mm)

117

 Results and Discussion 7.5
This section discusses the quality of results and presents the cutting force data and thermal data.

A full data set was recovered according to the planned experimental specification. No repeat experiments

were required and no visible cutting insert damage was observed.

 Radial Force Analysis 7.5.1

As explained in the introduction to this chapter, this experiment was designed with the assumption that

there would be minimal radial force on the cutter. Any excessive radial force could suggest poor alignment

of the cutter relative to the workpiece. Figure 7-13 shows the measured radial force as a function of feed

rate for all spindle speeds in both MQL and dry sets overlaid. The graph also shows the largest standard

deviation calculated for each data point.

Figure 7-13 – Radial force as a function of feed rate

As the graph shows, the radial force magnitude is extremely low (in the range 2 N to 7 N) compared to the

typical cutting force readings (around 350 N). Neither spindle speed, nor lubrication regime affected the

radial force, however there was a slight increasing trend with feed rate. As presented in the next section,

feed rate also increased the other force components, so this is to be expected of the radial forces since the

alignment error is likely to be proportional to the other force components. Overall, the error is extremely

low, suggesting good alignment of the tool and workpiece. Furthermore, the standard deviation is also very

narrow, further suggesting that the stiffness of the experimental setup is adequate.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

0.03 0.04 0.05 0.06 0.07 0.08

Fo
rc

e
 (

N
)

Feedrate (mm / rev)

1200 RPM (MQL)

1433 RPM (MQL)

1667 RPM (MQL)

1900 RPM (MQL)

1200 RPM

1433 RPM

1667 RPM

1900 RPM

+1 σ

-1 σ

118

 Specific Force Data 7.5.2

Table 7-3 shows a summary of cutting force coefficients as computed by the processing algorithm for all

experiments. For each experiment the quoted RPM value was computed based on an average over the cut

from the tachometer data. For both rake and feed force, a standard deviation is given as a percentage of

each respective value.

 Exp.
ID

Real
RPM

Feed rate
(mm / rev)

 () ()
 Standard

Deviation

 Standard

Deviation

D
ry

1 1188.11 0.03 1.06E+05 1.13E+05 3.39% 2.69%

2 1187.40 0.04 1.33E+05 1.30E+05 3.35% 3.04%

3 1182.05 0.05 1.63E+05 1.54E+05 3.00% 2.92%

4 1173.85 0.08 2.20E+05 1.83E+05 2.54% 3.58%

5 1401.68 0.03 1.08E+05 1.21E+05 3.05% 2.25%

6 1396.39 0.04 1.36E+05 1.41E+05 2.79% 2.29%

7 1389.27 0.05 1.56E+05 1.53E+05 2.73% 2.60%

8 1370.36 0.08 2.21E+05 1.90E+05 2.24% 3.33%

9 1635.33 0.03 1.04E+05 1.20E+05 3.07% 2.18%

10 1628.42 0.04 1.35E+05 1.45E+05 2.85% 2.39%

11 1622.74 0.05 1.57E+05 1.57E+05 2.55% 2.26%

12 1600.50 0.08 2.08E+05 1.81E+05 2.00% 3.11%

13 1820.87 0.03 1.05E+05 1.25E+05 3.11% 2.30%

14 1795.17 0.04 1.32E+05 1.43E+05 2.83% 2.31%

15 1793.06 0.05 1.54E+05 1.57E+05 2.78% 2.36%

16 1754.07 0.08 2.05E+05 1.82E+05 2.69% 3.48%

17 1187.08 0.03 1.09E+05 1.30E+05 3.23% 2.51%

M
Q

L

18 1187.56 0.03 1.07E+05 1.19E+05 3.34% 2.26%

19 1183.71 0.04 1.35E+05 1.40E+05 2.78% 2.32%

20 1181.62 0.05 1.56E+05 1.50E+05 2.71% 2.44%

21 1174.13 0.08 2.10E+05 1.81E+05 2.63% 3.65%

22 1404.69 0.03 1.07E+05 1.23E+05 3.20% 2.41%

23 1396.87 0.04 1.35E+05 1.45E+05 3.45% 3.10%

24 1391.02 0.05 1.56E+05 1.55E+05 2.39% 2.50%

25 1372.09 0.08 2.13E+05 1.89E+05 2.34% 3.12%

26 1637.85 0.03 1.06E+05 1.26E+05 3.59% 2.56%

27 1627.61 0.04 1.34E+05 1.43E+05 3.08% 2.51%

28 1624.06 0.05 1.58E+05 1.64E+05 2.89% 2.88%

29 1603.97 0.08 2.06E+05 1.87E+05 2.84% 3.95%

30 1827.06 0.03 1.06E+05 1.31E+05 3.16% 2.25%

31 1814.99 0.04 1.31E+05 1.46E+05 3.18% 2.54%

32 1796.71 0.05 1.52E+05 1.60E+05 2.65% 2.45%

33 1750.60 0.08 2.04E+05 1.90E+05 2.40% 3.56%

34 1187.07 0.03 1.04E+05 1.32E+05 2.91% 2.65%

Table 7-3 – Summary of results

For all experiments, the curve fitting standard deviation was less than 4% suggesting good agreement with

the theoretical model. A larger deviation would suggest that cutting force does not share a linear

119

relationship with width of cut and/or other unidentified factors have a greater influence on the cutting

forces.

Each experiment was performed in the order as listed in the table. Experiments 1 to 17 are for the dry set

and experiments 18 to 34 are for the MQL set. Experiments 17 and 34 are the check experiments for 1 and

18 respectively.

In each pair of check experiments, the RPM values were well matched to draw fair comparisons between

the specific force values. For rake force, both pairs of check experiments showed good agreement, to

within 2.0% and 2.2% for dry and MQL respectively.

However, for the feed specific force values, the check experiments suggested an increase in force of 12.1%

and 14.7% for dry and MQL respectively. Although the check experiments suggested a wide margin of error,

they are consistent with one another which suggests that this increase in force was primarily due to

degradation of the cutting edge over the course of each set. If this was the case, the data suggests that

MQL slows this degradation slightly.

For all relationships, it was found that cutting force per unit width varies only with depth of cut and that

rake velocity produced no appreciable variation for the ranges tested. One possible explanation is due to

minimal plastic deformation of the valve seat due the high hardness of the sintered material. In this

circumstance the cutter loads the exposed cut face until the force exceeds the yield limit of the material

and the chip shears from the bulk of the material.

Figures 7-14 to 7-17 show the relationships for dry and MQL, rake and feed specific force values

respectively. In each figure, the red crosses represent the check experiments. The solid horizontal line

serves as a datum for the dotted lines which represent the limits for each set of data points.

Figure 7-14 – Kr,dry - Dry set, rake force per unit width vs. depth of cut

Kr,dry = 1.758E+08d7.103E-01

0.00E+00

5.00E+04

1.00E+05

1.50E+05

2.00E+05

2.50E+05

2.00E-05 3.00E-05 4.00E-05 5.00E-05 6.00E-05 7.00E-05 8.00E-05 9.00E-05

K
r,

d
ry

 (
N

 m
-1

)

Depth of cut, d (m)

120

Figure 7-15 – Kf,dry - Dry set, feed force per unit width vs. depth of cut

Figure 7-16 – Kt,MQL - MQL set, rake force per unit width vs. depth of cut

Kf,dry = 1.004E+07d4.228E-01

0.00E+00

5.00E+04

1.00E+05

1.50E+05

2.00E+05

2.50E+05

2.00E-05 3.00E-05 4.00E-05 5.00E-05 6.00E-05 7.00E-05 8.00E-05 9.00E-05

K
f,

d
ry

 (
N

 m
-1

)

Depth of cut, d (m)

Kr,MQL = 1.380E+08d6.871E-01

0.00E+00

5.00E+04

1.00E+05

1.50E+05

2.00E+05

2.50E+05

2.00E-05 3.00E-05 4.00E-05 5.00E-05 6.00E-05 7.00E-05 8.00E-05 9.00E-05

K
r,

M
Q

L
(N

 m
-1

)

Depth of cut, d (m)

121

Figure 7-17 – Kf,MQL - MQL set, feed force per unit width vs. depth of cut

The two rake check experiments on each the dry and MQL sets were in close agreement with one another,

suggesting good repeatability of the experiment. However, as the feed data shows, the check experiments

consistently disagreed by approximately the same amount in both the dry and MQL check pairs. For each

feed check pair, the second of the pair (the very last cut performed by the cutting insert edge) was always

lower, which suggests that as the cutting insert ages during cutting, the feed force required to remove

material drops regardless of lubrication.

As the error bars show, the distance between the initial and check experiment data points was significantly

larger than one standard deviation from the mean which suggests that this anomaly cannot be explained by

error alone and is instead due to physical change in performance of the cutting insert.

The specific force for both dry and MQL sets can be calculated as a function of depth of cut using the

equations given in table 7-4. This relationship is used by the simulation presented in Chapter Nine to

calculate the correct cutter force to apply for any given interaction between the cutter and workpiece.

Lubrication Axis Relationship

Dry Rake

Feed

MQL Rake

Feed

Table 7-4 – Specific force relationships for dry and MQL conditions

Kf,MQL = 8.131E+06d3.993E-01

0.00E+00

5.00E+04

1.00E+05

1.50E+05

2.00E+05

2.50E+05

2.00E-05 3.00E-05 4.00E-05 5.00E-05 6.00E-05 7.00E-05 8.00E-05 9.00E-05

K
f,

M
Q

L
(N

 m
-1

)

Depth of cut, d (m)

122

The model developed by Bölling, Kuhne and Abele, 2017, based on identical AR20 workpiece material and

similar 65%wt. pcBN cutting inserts was used to generate equivalent specific force data as a function of

depth of cut for the range of cutting parameters used in this work. These data are compared to the dry rake

specific force relationship (given in table 7-4) as shown in figure 7-18. As the data show, the two models

largely agree, especially at lower feed rates, but begin to diverge by approximately 10% at higher feed

rates. This divergence could be explained by a difference in pcBN coating or cutting edge radius

(unspecified in the referenced work).

Figure 7-18 – Bölling, Kuhne and Abele, 2017, model vs. dry rake specific force

123

Figures 7-19 and 7-20 show the MQL and dry sets overlaid for both rake and feed specific forces

respectively. As the graphs show, the presence of MQL confers no appreciable benefit in reducing cutting

force.

Figure 7-19 – MQL & Dry, rake force per unit width vs. depth of cut

Figure 7-20 – MQL and Dry, feed force per unit width vs. depth of cut

0.00E+00

5.00E+04

1.00E+05

1.50E+05

2.00E+05

2.50E+05

2.00E-05 3.00E-05 4.00E-05 5.00E-05 6.00E-05 7.00E-05 8.00E-05 9.00E-05

K
r (

N
 m

-1
)

Depth of Cut (m)

Dry MQL

0.00E+00

5.00E+04

1.00E+05

1.50E+05

2.00E+05

2.50E+05

2.00E-05 3.00E-05 4.00E-05 5.00E-05 6.00E-05 7.00E-05 8.00E-05 9.00E-05

K
f (

N
 m

-1
)

Depth of Cut (m)

Dry MQL

124

 Thermal Analysis 7.5.3

A Micro-Epsilon TIM400 thermal imaging camera was used to capture thermal images of the exposed tool

tip face immediately after cutting. Figure 7-21 shows the location of the camera relative to the cutting

insert.

Figure 7-21 – Thermal camera position

Figure 7-22 shows the view from the thermal camera (left) and the corresponding schematic view (right).

The camera was directly below the cutting insert looking up at the process zone. From this perspective the

camera could capture images of the cutting insert edge as well as the bulk temperature of the valve seat.

Temperatures were sampled from area 2 as indicated in the figure.

Valve Seat
Cutting
Insert

Tool Post

Rotating Chuck
Assembly

Valve seat cross
section

Cutting
insert

Tool post

Axis of rotation

Contact view
(upside down)

Contact view
(Thermal camera)

Fixings

Figure 7-22 – Thermal camera perspective

125

All TIM-400 cameras are factory calibrated using a LandCal P550P calibration source with emissivity of

>0.995, and uncertainty of <±2 K. (AMETEK, 2009). During calibration, readings are compared to a

reference device calibrated by Physikalisch-Technische Bundesanstalt (PTB) and calibration parameters are

selected to force agreement to within 5%. During operation, the camera performs an offset correction

every few minutes. A physical flag is placed in front of the image sensor and each image element is

adjusted to achieve uniformity (Micro-Epsilon, 2012).

Figure 7-23 shows the maximum recorded temperatures of the valve seat bulk for all feed and speed

settings for the dry set. Likewise, figure 7-24 shows the same data for the MQL set.

From the dry set it was clear that feed rate played an important role in heat generation, and that this role

was not linear. Cuts performed at a feed rate of 0.04 mm rev-1 consistently produced the largest amount of

heat regardless of the RPM.

Figure 7-23 – Dry valve seat bulk maximum temperatures

For the MQL set, the same correlation between feed rate and temperature exists, albeit slightly attenuated.

In all cases, the presence of MQL lubricant reduced the cutting temperature, up to 20% but typically around

9%.

Figure 7-24 – MQL valve seat bulk maximum temperatures

100.00

105.00

110.00

115.00

120.00

125.00

130.00

135.00

140.00

145.00

150.00

0.03 0.04 0.05 0.06 0.07 0.08

Te
m

p
e

ra
tu

re
 (

ºC
)

Feedrate (mm / rev)

1200 RPM

1433 RPM

1667 RPM

1900 RPM

100.00

105.00

110.00

115.00

120.00

125.00

130.00

135.00

140.00

145.00

150.00

0.03 0.04 0.05 0.06 0.07 0.08

Te
m

p
e

ra
tu

re
 (

ºC
)

Feedrate (mm / rev)

1200 RPM

1433 RPM

1667 RPM

1900 RPM

126

Figure 7-25 shows the maximum MQL valve seat bulk temperature as a fraction of the maximum dry valve

seat bulk temperature for all feed rates and spindle speeds. As the figure shows, the MQL set developed

consistently lower temperatures during cutting than its dry counterpart for all cases except for a feed rate

of 0.05 mm rev-1 at 1433 RPM. The effect is more pronounced at lower feed rates, with a feed rate of 0.08

mm rev-1 showing negligible difference in all but one case.

Figure 7-25 – MQL valve seat bulk temperature as a fraction of dry temperature

As discussed earlier in this chapter, the experiments were all performed sequentially according to the

experiment number. No repeat experiments were performed and the cutting insert was rotated to a new

edge for the MQL set. This feature of the experiment gives some insight into life-dependant effects taking

place in the cutting insert.

Figure 7-27 shows the cutting edge temperature gradients for all experiments viewed from the perspective

shown in figure 7-26. As the perspective diagram shows, only the tip of the hexagonal cutting insert was

visible, since the bulk of it was obscured by the tool post. The images were taken from the frame

immediately visible after the cut finished. Prior to this point, the view was obscured by chip. Some images

were not available due to unfortunately timed internal calibration cycles performed by the camera in which

the frame was frozen for a short period of time.

Figure 7-26 – Detail A as indicated in figure 7-22

As the figure shows, generally the MQL set thermal gradients were smoother and were less likely to show

thermal inclusions into the cutting insert compared to their dry counterparts.

0

0.2

0.4

0.6

0.8

1

1.2

1200 1433 1667 1900

M
Q

L
/

D
ry

 T
e

m
p

e
ra

tu
re

 R
at

io

RPM

0.03

0.04

0.05

0.08

127

Dry and MQL cuts, 4 and 21, both show a thermal gradient along the cutting edge with most thermal

energy centred around the part of the insert which cuts at the largest radius. This is understandable since

this part of the insert has the most demanding duty cycle.

Figure 7-27 – Cutting insert edge temperature gradients

Examination of the dry set, 0.08 mm rev-1 feed group (experiments, 4, 8, 12 and 16), revealed that as the

experiment progressed, the phenomenon reversed and in fact the edge exposed to the largest duty cycle

was the coolest immediately after the cut. Not only was it the coolest, but it was also below the bulk

temperature of the surrounding material. This suggests that a chemical change may have been occurring in

the insert as the number of heat cycles increased, which reduced the thermal conductivity of the affected

areas rendering them less able to store heat from the cut.

The effect was more pronounced when compared to the dry check experiments 1 and 17 which were

performed at the same spindle speed and feed rate. In those images, which represent the very start and

end of the cutting insert edge life, it was apparent that significant change had occurred in the insert which

changed the conductivity of the substrate.

128

 Surface Analysis 7.5.4

The surface finish of valve seats shares a complicated relationship with engine performance. High surface

roughness can detrimentally affect leak resistance (LoRusso et al., 1984), limit the rate of heat transfer

from the valve to the cylinder head (Stotter, 1965) inhibit fuel film atomisation during lift which can lead to

higher hydrocarbon emissions (Wang, Wilkinson and Drallmeier, 2004) and accelerate valve recession due

to increased rates of adhesion wear (Wang et al., 1995; Lakshminarayanan, 2001). Since valve seats are

commonly finished by cutting as opposed to grinding (Lin and Chen, 1995), it is important to understand

the relationship surface roughness shares with cutting parameters.

An Alicona InfiniteFocus surface finish measurement device was used to capture the topology of the

machined valve seat faces. The Alicona was set to 20 X optical magnification providing a Ra sensitivity of

150 nm. Figure 7-28 shows the scan area (to scale) captured by the Alicona to determine the surface

roughness.

Cut surface

Scan area t r

Figure 7-28 – Location of scan area for roughness measurements

129

Figure 7-29 shows the Ra roughness valves for the valve seats from all experiments measured in

accordance with the ISO 4287 specification.

The upper and lower rows show the measured roughness values for a set of points taken along a tangential

and radial path respectively. As the figures show, the roughness was generally anisotropic especially for the

dry cuts. The dominant factor influencing roughness was the presence of MQL oil, which decreased the

surface roughness. For radially measured roughness, a feed rate of 0.05 mm rev-1 produced the most

consistent roughness across all speeds tested. For the tangentially measured roughness however, a feed

rate of 0.04 mm rev-1 was consistently better than 0.05 mm rev-1.

 Dry MQL

Ta
n

ge
n

ti
al

R
ad

ia
l

Figure 7-29 – Seat roughness (Ra) values for all experiments

Figure 7-30 shows surface morphology from experiment three performed at 1200 RPM and 0.05 mm rev-1.

This morphology was typical of all seats inspected. In this figure, the tangential direction shows the

direction of the cutter motion relative to the seat. As the figure shows there were clear striations in the

cutting direction which gave rise to the anisotropic surface roughness. Pitting was also visible on many of

the seats inspected, however from prior experiments these pits are known to be exposed pores which were

formed during the sintering process. The orange details on the surface are copper present in the seat from

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.03 0.04 0.05 0.06 0.07 0.08

R
a

(µ
m

)

Feedrate (mm / rev)

0.03 0.04 0.05 0.06 0.07 0.08

Feedrate (mm / rev)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.03 0.04 0.05 0.06 0.07 0.08

R
a

(µ
m

)

Feedrate (mm / rev)

0.03 0.04 0.05 0.06 0.07 0.08

Feedrate (mm / rev)

130

the copper infiltration process. These orange artefacts were smeared in the direction of cut suggesting that

the relatively soft copper deposits were smeared during cutting rather than shearing neatly with the

remaining bulk of the valve seat.

100 µm

t

rad

Figure 7-30 – Surface morphology

The Alicona was also used to check the final state of both the dry and MQL cutting edges using 50 X

magnification as shown in figure 7-31. The view perspective for each edge is indicated in the figure. As the

figure shows, the quality of the edge shows no appreciable degradation or damage. This is expected due to

the extremely light life cycle of the cutting insert.

Figure 7-31 – MQL and dry cutter edge quality

131

 Chapter Summary 7.6
The experimental data presented in this chapter shows that the experiment to determine cutting forces as

a function cutting parameters was a success. A full data set was acquired which displayed a clear

relationship between depth of cut and cutting force. The assumption that cutting force varies linearly with

width of cut has also been proven by the data presented.

Despite initial expectations, it was found that the key factor in determining the cutting force was depth of

cut and that rake velocity has a negligible effect. This outcome is attributed to the high hardness of the

sintered valve seat material and the lack of plastic energy absorption.

These data have allowed the formulation of a tool force prediction model that describes the cutting force

per unit width as a function of depth of cut for both dry and MQL cutting conditions, as summarised earlier

in table 7-4.

This experiment demonstrated that MQL offered no benefit in reducing either rake or feed cutting forces

when compared to dry conditions. MQL lubricant did however improve the thermal gradient across the

cutting edge and generally reduced the measured temperature in the valve seat bulk up to 20% in some

cases. However, it is important to note that MQL oil was applied only once for each cut whereas CNC

machines are capable of continuously misting the newly exposed workpiece face. This was a limitation of

this experiment, however since the MQL oil was not used for chip ejection and because both the workpiece

and tool were saturated throughout the MQL experiments, it was unlikely to have dramatically affected the

cutting force data. This assumption is supported by the data which show MQL does affect temperature,

indicating that MQL oil was present throughout cutting.

The thermal data showed that cuts with a feed rate of 0.04 mm rev-1 generated significantly more heat

than any other feed rate tested, (including faster and slower feed rates). There was strong evidence in the

thermal data to suggest that cutting insert underwent a chemical change which affected thermal

conductivity.

A surface inspection of the cut valve seats revealed that surface finish shares a complex relationship with

spindle speed and feed rate. However it was found that MQL oil generally improved the surface finish.

132

Chapter Eight – Development of
Theoretical Finite Element Model
In the research for this thesis, it was suggested that valve seat cutting systems using polycrystalline cubic

boron nitride (pcBN) are particularly vulnerable to tool chipping due to the high radial forces that develop

during imbalanced multi-angle machining, in conjunction with the poor fracture toughness of pcBN.

The ability to simulate this imbalance in order to test alternative designs would be beneficial to tooling

manufacturers. Many numerical models in literature over several decades have gone to great lengths to

simulate metal cutting processes. Traditionally these simulations attempt to directly model a wide range of

physical phenomena including plasticity, chemical changes in the material, shear flow, friction and chip

geometric formation and flow. Whilst these models often achieve a noteworthy degree of accuracy, the

results they produce are not universal and are not readily transferable to new tool or workpiece

combinations. Furthermore they are extremely sensitive to scale, with many only achieving very small scale

models and none presenting models that make multiple passes over previously worked material.

Alternatively, a tool force prediction model, developed in the previous chapter can be used within a

simulation to determine tool forces based on the geometry of intersection between the tool and

workpiece. This simplification drastically decreases the computation demand vs. more precise models that

model chip flow and other complex cutting phenomena.

This chapter therefore presents the design and development of a parametric numerical model aimed at

simulating multi-angle valve seat cutting operations in 3D based on the tool force prediction model

developed in the previous chapter.

133

 Justification 8.1
During the machining operation, three individual inserts spaced 120° apart around the axis of rotation cut

three different angles of the valve seat. Each insert engages the workpiece at a different time and has a

unique inclination and depth of cut and, therefore, varying cutting loads and states of wear. All inserts are

orientated such that cutting velocity is not constant across the cutting edge. All of these factors combined

result in an arrangement of cutters that each develop significantly different radial loads.

Lacerda and Siqueira, 2012, show that unopposed inserts when cutting valve seats leads to high amplitude

vibration. In their research they found that this vibrational energy dissipates into the workpiece causing an

unacceptable roundness deviation. However their seat material was notably less hard than that used in the

case study for this work at approximately 390 HV versus more than 480 HV in the case study. For the harder

material, it is reasonable to assume that more of the vibrational energy would be reflected back into the

cutting insert. pcBN is particularly susceptible to cracking and chipping when exposed to sudden high loads

due to its poor fracture toughness, (Rocha et al., 2004).

One solution to Ford’s problem, might be to redesign the tool holder, so that instead of using three tools

(one per angle of the seat) it uses six tools (two per angle) where common angles oppose one another.

However, this solution would not always be practical, since space would need to be found within the

relatively small ring diameter for the insert clamps, coolant channels and clamping system for the reamer.

In this work, the valve seats used have an outer diameter of 26 mm, and an inner diameter of 20 mm.

H. Lacerda and I. Siqueira report that for their configuration, imbalanced radial loads of up to 400 N were

observed. The starting configuration in this work is likely to suffer from imbalanced radial loads near that

magnitude. It would be reasonable to assume that stability can be achieved at some peak imbalance below

this level, but not necessarily zero.

This presents the possibility of a compromise, for example, only three inserts are used again, but are set at

unequal offsets around the tool (e.g. 330°, 30° & 180°), or as another alternative only the insert that is most

responsible for the imbalance is opposed at 180° and the remaining two angles are left unopposed, calling

for just four cutting inserts. Many possible configurations exist, some of which may reduce the magnitude

of the imbalanced load just enough to drastically increase the predictability of pcBN insert life when used

for valve seat cutting.

Further research on this topic may be interested in a number of other properties of this machining system,

such as the wear profile along the edge of each cutter, the temperature distribution along the edge, the

engagement times and durations, the effect of lubrication and so on.

To simulate multi-angle valve seat machining using conventional finite element methods would take

considerable computational effort due to the complexities of simulating machining as presented in Chapter

Four. Phenomena such as chip plasticity, shear failure, built-up-edge (BUE), friction, heat dissipation,

thermal expansion and many others would need to be first measured experimentally and then simulated to

a high degree of accuracy to ensure stability over the entire duration of the cutting simulation.

134

Figure 8-1 shows an early attempt at modelling this type of detail for this work. Although far from

optimised, it is clear that such detailed representation of the geometry is an unaffordable luxury. The

simulation progress shown in this model took several days to reach and suffers from a number of

degeneracies (see rounding off of right hand side). Ultimately this model failed as Marc’s internal mesher

was unable to create a mesh for the next increment. Although Marc’s tetrahedral mesher is considered to

be extremely capable, it is by no means stable enough to trust for a prolonged simulation with very large

geometry changes. It would be completely impractical to simulate a full valve seat machining operation

using this approach.

Figure 8-1 – Failed chip flow modelling attempt

The chip geometry and flow is of little interest to those concerned with balancing the cutting process.

Furthermore, such a simulation would require extremely precise material and friction models as geometric

error will compound with each increment.

These constraints are not practicable for industry where there is pressure to produce speedy results at low

cost, nor do they yield sufficient data to justify the cost.

In summary, it is clear that a numerical model to simulate multi-angle valve seat machining would be very

beneficial to tooling designers. Current numerical methods and software packages do not provide a means

to create reliable simulations that produce results in cost-effective time frames. Therefore it is necessary to

create a new model that uses a wide range of simplification techniques to greatly accelerate the simulation

process whilst maintaining accuracy.

135

 Objectives 8.2
This thesis will demonstrate that this type of simulation can be drastically accelerated using a number of

simplifications and specially written code. The following simulation design objectives are established. The

model must:

 be very easily adjusted with parametric inputs to control the workpiece geometry, cutter geometry,

cutter count, cutter layout and cutting parameters (such as RPM, feed rate, etc.);

 require the minimum possible experimental effort to determine material and cutting system

properties for input into the simulation;

 simulate the cutting process in a number of hours, rather than a number of days or weeks; and

 not be constrained to some fixed coordinate system, but instead should be free to configure in any

orientation so that the model can be coupled to a larger simulation, for example a flexible cylinder

head and fixture model.

The required outputs must be the;

 individual cutter loads and moments;

 overall spindle load and moment;

 overall workpiece load;

 cutting face duty cycle map; and

 incremental changes in workpiece geometry due to cutting.

Furthermore, the following further work outputs must be considered where possible:

 roughness of the finished surface; and

 temperature of the surface during cutting.

Section 8.4.1 gives a list of assumptions required in order to simplify the model sufficiently to meet these

objectives.

 Strategy 8.3
Marc does not contain the necessary built-in features to directly meet these objectives. However, Marc

does provide an exceptionally powerful interface through its user subroutine subsystem. User subroutines

are precompiled functions and subroutines that Marc can be instructed to call at key points during

simulation. The subroutines are written in Fortran and are compiled to an executable for high performance

execution. This feature of Marc allows key functionality, such as calculating the cut workpiece geometry, to

be implemented by writing bespoke Fortran code.

Furthermore, almost every aspect of the Marc interface can be controlled using Python, which is perfectly

suited to meeting the parametric objectives of this model. This feature can be used to build geometry, set

boundary conditions and input the job and loadcase settings.

With these objectives, and the relevant strengths and weaknesses of Marc in mind, the following strategy is

established.

Chapter Eight (this chapter) – will present the design and implementation of a series of Python scripts to

generate and set the initial process geometry, boundary conditions and other Marc settings within the

Marc user interface from a user defined parametric configuration file. The model will contain instructions

136

for Marc to invoke a series of user subroutines at key points during simulation to calculate outputs, such as

cutting forces, reaction forces and changes in geometry.

Chapter Nine – will present the design and implementation of a Fortran program, the engine underpinning

the model, which contains user subroutines and other code to be called by Marc during simulation in order

to process cutter-workpiece intersections, modify newly cut geometry and output data such as cutting

forces based on the cutting force prediction model developed in the previous chapter.

For the end user, the basic workflow will follow the procedure as shown in figure 8-2. The user must first

gather experimental data in order to create a cutting force prediction model for their particular valve seat

and cutter combination, according to the methodology presented in Chapter Seven. The user must then run

simulations for each cutter layout configuration by first generating a Marc model using the parametric

model building script developed in this chapter, and finally run the simulation in Marc using the Fortran

program developed in this next chapter. Once several configurations have been simulated, the user can

compare the results to select the superior configuration based on their criteria, for example, lowest peak

radial force or lowest sustained radial force.

Define spindle speeds and feed rates in the
simulation configuration file

Run the Marc simulation, assisted by the
Fortran program.

The simulation outputs the normal Marc post
file as well as specific physics data for the

cutters, workpiece and spindle

Gather experimental data for input into
the cutting force prediction model

developed in Chapter Seven

Define cutter geometry and layout in the
model builder configuration file

Start

Use the Python script to build a Marc model

Finish

For each cutter configuration to be compared

En
d

Compare results to select the
configuration with the most desirable
characteristics e.g. lowest peak force,
lowest sustained force, lowest out-of-

round final part

Chapter Seven

Chapter Eight

Chapter Nine

Figure 8-2 – User workflow

137

Figure 8-3 shows the development environment diagram. The diagram shows the control relationship and

data flow between the key components discussed throughout the remainder of this thesis. The branches

coloured blue and red relate to development and debugging and are not required for the end user.

MSC Marc 2016

Model Builder Configuration File
(*.cfg)

Contains parameters such as feed
rate, RPM, and cutter definitions.

Python Model Builder (*.py)
Contains general methods for interacting

with Marc, and builder routines for exhaust
seat and cutter geometry.

MARC Model (*.mud) MARC Data File
(*.dat)

Contains full model geometry, materials,
boundary conditions, settings, user
subroutine configuration objects. Fortran Program Source Code (*.f)

Fortran code containing bespoke functions
required for model.

Simulation Configuration File
(*.cfg)

Contains parameters for the user
subroutine and cutting force
prediction model equations.

Compiled Fortran Program (*.exe)
Compiled executable containing functions

required by the model.

The model builder will attempt to read
some data from the source code such
as user defined output quantities.
However, the script will use defaults if
the source code is not available.

Intel Fortran Compiler

Visual Studio 2015

Invoke

Launcher Routine
Custom written

executable to launch Marc
after compilation and

attach debugger after the
simulation starts.

In
vo

ke

Instruct Marc to
run simulation

Marc Results File (*.t16)
Contains the mesh and nodes
for each increment, including

element scalar results and
nodal scalar and vector results.

Invoke

Wait for exe to start
Instruct Visual Studio to attach to process

and load debugging symbols

A
tt

ac
h

 t
o

 p
ro

ce
ss

Physics Data (*.csv)
Contains positions, velocities,
forces and contact status for

workpiece and cutters.

Cutter Face Profile (*.csv)
Contains contact counts for
patches on the cutter face.

MSC Marc 2016

Standalone application

File (*.extension)
Represents a file. Leaders

indicate where the file is used
as an input or created as an

output.

Key

Developer flow

General flow

Launcher routine flow

Inter-process
control (dashed)

Data flow (solid)

Chapter Eight

Chapter Nine

Figure 8-3 – Development environment design

As the diagram shows, this work also calls for the development of a number of ancillary programs to make

Marc work with Microsoft Visual Studio. These are discussed in greater detail in Chapter Nine.

138

 Model Design and Performance Constraints 8.4
In order to model the machining operation from start to finish, it is necessary to process many spindle

rotations, potentially thousands of increments. For this reason, great care must be taken to simplify every

aspect of the model both in the geometry input stage and the Fortran program processing stage.

This section deals with presenting the model that will be built using the parametric generator script.

 Assumptions 8.4.1

The following assumptions are made in order that the model can be simplified as much as possible:

 no significant vibration enters the valve seat from the machine fixture (e.g. from other machines on

the production line. This assumption is made since the machine is isolated from the factory floor by

a spring-damper foundation.);

 the valve seat fixture is perfectly rigid, to represent the most ideal case;

 the machine turret, quill and spindle are all perfectly rigid since their CNC machine equivalents are

significantly more rigid than the workpiece;

 the tool holder is perfectly balanced when rotating unloaded, since the tool supplier balances the

tools before delivery;

 cutting inserts form a rigid connection to the tool holder, to represent the most ideal case;

 all components are at room temperature - 20°C since the production line is held at room

temperature;

 there is no wear or damage (such as chipping) on inserts throughout the simulation (the inserts are

modelled as new);

 forces due to interaction with fluids (coolants and lubricants) and gasses (narrow air gap between

workpiece and tool holder) are negligible, since there is no reason to suspect the momentum of

fluids affects balancing of the operation;

 the valve seat material is homogenous as specified by the supplier datasheet (this is only true down

to a depth of 3.4 mm, however no material below this point is removed);

 the pressure applied to the outside of the valve seat from the interference fit in the cylinder head

has negligible effect on the machining process. As the valve seat is thinned, one might expect this

pressure from the interference fit to cause the valve seat to deform due to its diminished strength.

It is assumed that if this process is occurring, it is negligible;

 spindle rotational velocity is constant, even under load and is not affected by power supply ripple

or phase since the production line machines are computer controlled to maintain spindle speed

and feed rate.

 Coordinate System 8.4.2

From a design and programming point of view, although it would be greatly beneficial to use a fixed

coordinate system (for example, feed always in the negative Z direction) this would limit the layout of the

simulation. One of the design objectives of this work is to produce a model that could work with valve seat

139

geometry embedded in flexible cylinder head geometry. This would greatly enhance the usefulness of this

work by allowing end users to visualise the magnitude of fixture displacement, which in turn could help to

quantify out-of-round error during cutting.

For rigid fixture simulations, the components are laid out as shown in figure 8-4. The valve seat base is

aligned with the XZ plane. The centre axis of the valve seat is coaxial with the Y axis. The feed direction is

along negative Y axis. Each cutter has its own local coordinate system representing the local rake, radial and

feed directions.

xz

y

Valve seat
base

Cutting
inset

rake
fe

ed
radial

Local
cutter

coordinate
system

Figure 8-4 – Coordinate system

 Geometry 8.4.3

Figure 8-5 shows the simulation geometry with a cross section of the valve seat and three cutter edges at

various angles.

Figure 8-5 – Simulation domain diagram

140

The cutting insert geometry is reduced down to just the portion of the cutting edge in contact with the

workpiece. All non-contacting parts are omitted. Furthermore, there is no cutter radius as its effect is not

significant since no plasticity or chip flow is modelled directly. Each cutting insert has three nodes

associated with it to define the local coordinate system. The vector from the origin node to the rake

direction node, defines the local rake axis and likewise the vector from the origin node to the local feed

direction node defines the feed axis.

Similarly, there are two nodes defining the spindle axis. Cutters rotate around a vector from the spindle

origin node to the spindle direction node according to the right hand rule. Modelling the spindle as rigid is

considered to be a fair assumption since it was discovered during experiments described in Chapter Six that

the aluminium valve seat head and head fixture was by far the most flexible part of the cutting system.

The workpiece geometry is split into two parts, the workpiece bulk and workpiece itself. These bodies are

separate to reduce the number of nodal proximity checks required, and to reduce the local volume near

the cutter that must be remeshed during simulation.

The workpiece is attached to a rigid foundation plane. It must be stressed however, that this is a

simplification imposed for development of the model and it is not a limitation of any part of the model

developed in this chapter and Chapter Nine. Further work investigations can easily remove this rigid base

plane and instead attach the workpiece to another deformable mesh using a glue contact i.e. a cylinder

head on a fixture.

For sub segments, like the one modelled in this work, the two exposed ends of the ring are glued to a rigid

plane. This better represents a sub-segment of a full ring model by adding resistance to distortion in

response to cutting torque.

At the start of simulation, the workpiece geometry is represented by 8-node, hexahedral, Marc type 7

elements. These elements are used because they are very easy to generate in a parametric script,

furthermore, they very accurately and uniformly represent the workpiece geometry.

When the simulation starts, this mesh is immediately remeshed into 4-node, tetrahedral, Marc type 157

elements as shown in figure 8-6. Tetrahedral elements are used (instead of hexahedral elements) during

simulation due to the ability of tetrahedral elements to transition from fine to coarse elements whilst

maintaining the aspect ratio of all elements in the mesh. This feature allows a tetrahedral mesh to be

adjusted to conform to the new cut geometry. This is not possible with hexahedral brick elements in Marc

because hexahedral elements can only be adjusted during simulation by subdivision and adjacent elements

with similar edges must share at least one node on that edge.

141

A) Hexahedral seed mesh B) Tetrahedral mesh

Figure 8-6 – Tetrahedral remesh of hexahedral workpiece mesh

Figure 8-7 shows a series of brick element subdivisions from n=1, to n=3. As the figure shows, element

count increases exponentially with each subdivision. This is unsustainable given that the cutter must make

multiple passes.

Refine Level = 1
n=1

Refine Level = 2
n=8

Refine Level = 3
n=64

Figure 8-7 – 3D brick element subdivisions

Using the UMAKNET Marc user subroutine, it is possible to set the positions of new nodes introduced to

accommodate subdivision, furthermore it is also possible to set the subdivision order in each direction of

brick elements. This can drastically reduce the number of elements required to satisfy a split, however

there are further caveats that cannot be overcome when using brick elements.

Marc requires that the transition between brick elements is limited to single steps in refine level. Consider

the diagram given in figure 8-8. The number inside each element shows the refine level, where 1 is the

initial level. A) shows two connected brick elements that share two nodes, B) shows the state of the mesh

after the left hand side element in A) has been subdivided. Both A) and B) represent legal mesh states. C)

shows the mesh when the level two elements have been subdivided again. This state is illegal because the

difference in refine levels between adjacent elements is greater than one. This kind of subdivision would

force the right hand side element in C) to subdivide as indicated by the dotted line, to satisfy the transition

criteria.

142

1 1

2

1

2

3

3

3

3

1

A) refine level 1

B) refine level 2

C) refine level 3

Figure 8-8 – 2D brick element subdivisions

This property quickly leads to runaway subdivision due to historical subdivisions. Consider the diagram

given in figure 8-9. Mesh A1) shows the proposed split line overlaid on the mesh. This split is legal because

none of the resulting elements will be adjacent to an element which differs by more than one refine level,

as shown in B1).

The split line is then moved over the new mesh in A2) and a new split is calculated as shown in B2). This

time, the new elements created from splitting level two elements are all level three. Some of these

elements are adjacent to a level one element, thus forcing its subdivision.

1 1

2 2

2
2

1

1
2

2

2 3 3 3
3

3
3

3
2

2

2 2

3

3

4 4

3

2

A)

2)

3)

B)

1)

4)
Fixed
node

Fixed
node

2

Split line

Figure 8-9 – Hexahedral element splitting

The next split that takes place in A3) is blocked by the fixed node (indicated in red). To split this geometry a

sacrificial subdivision must be made to consume the fixed node. After that, the mesh is free to be

subdivided according to the blue split line as shown in B3), resulting in the mesh shown in B4).

Performing such sacrificial subdivisions simply to free nodes is obviously not sustainable, particularly when

those subdivisions trigger the wasteful subdivision of surrounding elements. Hexahedral subdivision

143

methods can work for very simple cutting models (e.g. models that could be represented in 2D), but after

several passes, especially if several different cutter angles are used, the method quickly breaks down.

Tetrahedral elements do not suffer from this fundamental limitation, but the programming effort required

to generate local tetrahedral meshes is extreme, but nonetheless possible and necessary to deliver the

objectives of this work.

The workpiece bulk mesh is represented by 8-noded, hexahedral, Marc type 117 elements. Type 117

elements are a reduced integration version of type 7 elements. This element type is selected to take

advantage of the reduced computational effort required to process these elements between increments. A

reduced integration element is considered acceptable in this case as the valve seat bulk is not expected to

undergo any large deformation.

Reduced integration elements are traditionally vulnerable to hourglass modes, which is characterised by a

warping of elements to form an hourglass shape as shown in figure 8-10.

Parent Mesh Hourglass Modes

Figure 8-10 – Hourglass modes

This happens because reduced integration elements are formulated using a single integration point at their

centre. Energy balance is reached based on a measure of distortion that uses the distances between the

integration point (at the centre of the element) to the midpoints of the boundaries (lines connecting

nodes). These distances are marked in the figure for one element by the dotted red lines. For both the

parent and hourglass modes mesh diagrams, the lengths of, and angles between the red lines are the same.

The diagrams demonstrate that this element has no way of resisting this kind of distortion, since the

connecting lines, integration point and midpoint positions remain unchanged.

Fortunately however, Marc type 117 elements are protected against this weakness by the inclusion of an

additional stiffness term, whilst maintaining the majority of the performance increase offered by reduced

integration elements.

 Boundary Conditions 8.4.4

There is only one explicitly prescribed boundary condition in the Marc model, which is the workpiece

reaction force load. All workpiece elements are assigned to a element volume pressure load, managed by

the Marc user subroutine, FORCEM. User subroutines are described in greater detail in Chapter Nine.

Movement of the cutters is controlled by the MOTION user subroutine. However, no explicit boundary

condition needs to be applied in Marc. The cutters are detected automatically during simulation and their

positions are updated according to the effective spindle speed and feed rate at that time.

144

The foundation plane is defined as a position controlled rigid body and is therefore fixed by default.

 Contact 8.4.5

Contact between the cutters and workpiece is entirely controlled by user subroutines (described in greater

detail in Chapter Nine).

There are three contact definitions in the model, which are as follows:

 the workpiece bulk is attached to the foundation plane using a glue constraint;

 the workpiece is attached to the workpiece bulk via a glue constraint; and

 for sub-segment models, the two exposed ends of the workpiece and workpiece bulk are glued to

rigid end cap surfaces.

There is no direct contact between the workpiece and foundation to avoid over constraining the workpiece.

 Material (Novofer AR20) 8.4.6

The valve seat material is Novofer AR20, a copper-infiltrated high speed steel. For purposes of this

simulation, under smooth cutting conditions this material is not required to deform plastically, nor is its

damage behaviour required to decide when to deactivate elements.

The Young’s modulus of the valve seat is taken to be 150 GPa, as indicated on the material datasheet

(Bleistahl, 2006). Poisson’s ratio is estimated to be 0.3 based on similar powder metallurgy compositions

(ASTM, 2004). This material property is applied within MARC to both the workpiece and workpiece bulk

contact body elements.

 Additional Output 8.4.7

A key metric of interest to engineers is the duty cycle of each cutter. Aside from imbalanced forces, the

cutting system studied in this work also imposes imbalanced duty cycles on each cutter. This means that

after the first cut, cutting inserts will continuously exist at different states of wear throughout subsequent

cuts. Figure 8-11 below shows the section view of a valve seat blank with the dimensions of the finished cut

overlaid in red.

1

2

3

Figure 8-11 – Valve seat material removal zones

Figure 8-11 shows three zones, each corresponding to the volume of material removed by each cutter

respectively. As the diagram shows, the material removed by the cutter responsible for zone two is much

larger in volume than that which is removed by the third cutter in zone three. Naturally it is reasonable to

expect the middle cutter to wear at a much faster rate than the innermost cutter.

Wear acts to decrease the cutting radius of the tool, as well as damages the flank and rake faces. As

previously discussed in literature (Lacerda and Siqueira, 2012), an increase in cutting radius alone can have

a dramatic effect on the amplitude of vibration during the cutting process and therefore some cutters will

145

contribute to vibration more than others. It is therefore important that the varying duty cycle on the

cutters can be predicted during simulation.

This functionality is implemented by a feature of the Fortran program developed in Chapter Nine that

tracks the contact areas on the cutter face and outputs the cutting power dissipated per unit area into a

comma separated values (CSV) file. The CSV file can be loaded by a support program written in Python

which plots the distribution over a diagram of the cutter face using a heat map colour gradient to

distinguish areas of low and high contact duty cycle.

 Initial Parameter Configuration 8.4.8

The initial parametric configuration is based on a tool trial conducted by Ford at their Bridgend engine

manufacturing plant in Wales, United Kingdom. In their experiment, pcBN tools were compared to coated

tungsten carbide tools. The tests confirmed that pcBN inserts were prone to minute chipping which left

difficult to detect defects on the valve seat. The parameters of their experiment are given in table 8-1.

Parameter Value

Cutting Speed (m min-1) 120.00

RPM 1646.00

Feed rate (mm min-1) 66.00

Feed rate (mm s-1) 1.10

Cut time (s) 6.22

Expected tool life (min) 27.00

Expected tool life (parts) 450

Table 8-1 – Table of parameters known to lead to failure of pcBN inserts

These parameters were based on manufacturer recommendations and no other parameters were tested.

These parameters are known to lead to a scenario in which chipping will spontaneously occur on pcBN

inserts.

146

 Parametric Compatibility 8.4.9

A key component of the model is the ability to simulate the machining operation under varying parameters.

As discussed in the introduction to this chapter, this ability is implemented using a Python script.

The Python script loads a configuration file containing the parameters for the desired simulation. The user

may keep multiple such configuration files and does not need to alter the Python script itself to change the

simulation parameters. Table 8-2 gives the list of available parameters that a user can specify in the

configuration file.

Parameter Name Description Units Required

toolRPM The spindle speed in revolutions per minute
(RPM).

RPM Yes

feed rate The spindle feed rate. mm / rev Yes

depthToRunTo The minimum depth to simulate, after which
the simulation stops.

mm Yes

degreesPerIncrement The target number of degrees to jump per
increment (temporal resolution).

Degrees /
increment

Yes

seatAngle The user can opt to only simulate a segment of
the valve seat to increase performance. This
approach yields data that is not valid for a full
force balance unless all cutters contact the
slice at the same time, however the option is
useful for testing and validation.

Degrees No
(default = 360)

degreesPerSlice The element thickness resolution around the
perimeter. Element thickness will target the
number of degrees specified here.

Degrees Yes

rapid Rapid mode is only applicable when the user
specifies a seatAngle of less than 360 degrees.
When enabled, if the Fortran program detects
that none of the cutters are near the
workpiece, the spindle speed will temporarily
accelerate. This mode can dramatically reduce
the number of increments required to simulate
a segment.

(Boolean) No
(default = False)

rapidMultiplier See ‘rapid’ above. This setting specifies how
much faster rapid speed is than normal speed.

(multiplier) No (default = 1)

processorCount Allows the user to specify how many processor
cores to use on the system. If omitted the
script will use one core.

(count) No (default = 1)

Table 8-2 – Configuration file parameters

In addition to these parameters, the user must also use the configuration file to specify the cutter

configuration. A cutter configuration is made according to the following example:

[CUTTER] 0.0, 9.418762, 0.65+0.349, 0.0, 4.5, 0.0, X6
 1 2 3 4 5 6 7

147

The definition starts with the keyword [CUTTER] and is followed by seven comma separated parameters.

These parameters are as follows:

1. inclination – the inclination of the cutter rotated about it’s local feed axis;

2. radius – the distance from the spindle to the control node of the cutter;

3. height – the relative height offset (all heights are automatically adjusted by the script so that

cutting starts very soon into the simulation and no increment cycles are wasted on simple motion);

4. angle – the angle of the cutter control node about the rotation axis of the spindle;

5. width – the width of cutting edge to generate;

6. slide offset – the control node is not necessarily at the midpoint of the portion of cutter face in

contact with the workpiece, so this parameter allows the user to correct this by sliding the width of

cutter as defined earlier, radially towards or away from the spindle;

7. type code – which refers to the type of insert. This is used for labelling purposes and, in output

files, to allow automatic type detection when plotting the cutter face duty cycle over the outline of

the applicable cutter.

 Marc / Python Interface 8.5
One of Marc’s best features is its ability to be controlled by an external Python script. Almost every

operation in Marc, including geometry building, adding elements, defining materials etc. can be executed

by feeding commands directly to the command line window within the user interface, shown in figure 8-12.

Figure 8-12 – Marc command line window

The interface is made available by importing the py_mentat library (which is provided with Marc along with

Python version 2.7.1). This library makes available a very limited number of commands in Python, which

can be used to send any number of a much larger array of commands to Marc. The commonly used Python

commands are py_send, py_get_int, py_get_float and py_get_string.

Although it is possible to generate complex geometry using just these four commands to send Marc

commands and retrieve data, it is very cumbersome. This is both a strength and a weakness of the Marc /

Python interface. Its strength lies in the absolute power it provides over the Marc interface, but its

weakness is in the complexity of code required to model effectively.

When sending instructions to Marc, the exact command must be sent as a string. Consider the following

examples:

Example 1, to add a node at the coordinates, :

py_send(“*add_nodes 0 0 -2”)

Example 2, to rotate a node about the axis by 90 degrees:

py_send(“*move_reset”)
py_send(“*set_move_rotation x 90”)
py_send(“*move_nodes 1 #”)

148

By far the biggest problem with creating geometry in this way is keeping track of entity IDs. In the examples

above, the second example would affect the node added in the first example. However, the user can only

be sure of this since it is observed that no nodes already exist in the model and then one node was added

which Marc will number sequentially as node 1, then the move command in example 2 is executed which

refers to node 1. If however, the model was already partially populated before the node was added, the

user would have to try something similar to the following to ensure they use the correct node ID:

py_send(“*add_nodes 0 0 -2”)
lastNodeId = py_get_int("node_id(-1)")
py_send(“*move_reset”)
py_send(“*set_move_rotation x 90”)
py_send(“*move_nodes {} #”).format(lastNodeId)

These issues make for messy, repetitive code and compound as the complexity of the model grows. A

further level of abstraction would be helpful in this case. For this reason, a separate Python script of

approximately 1,000 lines was developed, called MarcTools that provides this abstraction. A technical

description of MarcTools is given in Appendix A. This script was kept separate to the model script to make it

easier to use in other projects and share with colleagues. MarcTools has a number of powerful features to

make interfacing with Marc much easier. MarcTools maintains a parallel database of entity IDs, freeing the

user from worrying about this aspect. Using MarcTools, examples 1 and 2 above can be reduced to one line

as follows:

MarcNode(z=-2).Rotate(tx=90)

MarcTools seamlessly manages node IDs, caches data to reduce communication with Marc, prevents

contamination between uses of user interface tools (e.g. when the user may forget to reset user interface

tools) and protects against other traps that commonly slow development. MarcTools also incorporates a

powerful feature selection tool, e.g. selecting entities in a box, along a path, by association, etc.

149

 Python Model Generator Script 8.6
This section deals with the technical aspects of the model generator script itself, including how it interfaces

with Marc, how it works and how the model design considerations raised in section 8.4 are implemented

within the script.

The model generator script is approximately 1,200 lines and relies heavily on MarcTools discussed in the

previous section, to create and manipulate geometry. Figure 8-13 shows the order in which the model

generator script builds the model.

Revolve valve seat and valve
seat bulk cross-sections

Generate foundation plane

Generate spindle

For each cutter described in the
configuration file

Generate and orientate
cutter geometry

En
d

Configure contact table

Configure loadcase

Configure job (including result
scalars and vectors)

Set colour style and view
orientation

Finish

Setup (import MARCTools.py,
load configuration file,
prepare user interface)

Generate valve seat and valve
seat bulk cross-section

Start

Figure 8-13 – Model builder task order

150

 Setup 8.6.1

The user calls the model generator script from the Marc user interface. The first responsibilities of the

script are as follows:

 check that MarcTools.py is present in the current working directory and import if possible;

 check for the presence of a parametric configuration file in the current working directory. If

present, then parse its contents, and store the settings in a global dictionary named

configuration;

 clear the model domain;

 disable drawing (this speeds up geometry building by instructing Marc not to draw every

incremental change);

 set the model length mode to millimetres; and

 create the ”Steel” material type in Marc according to the specification given in section 8.4.6.

 Valve Seat 8.6.2

The valve seat generation phase encompasses the generation of three contact bodies, the workpiece,

workpiece bulk and foundation plane. The valve seat can be generated in both closed and open ring

configurations depending on the seatAngle configuration parameter. The angular element density is

controlled by the degreesPerSlice configuration parameter.

Figure 8-14 shows the dimensions of the valve seat cross section. This is the geometry that the valve seat

generation in this model generator script is based on.

Figure 8-14 – Exhaust valve seat blank dimensions

151

Figure 8-15 shows a cross section of the valve seat before and after machining. As the figure shows, the

difference is minimal, and the lower portions of the seat are not touched at all. For this reason, only the

upper 4.9 mm of valve seat geometry is modelled.

Figure 8-15 – Valve seat cross section before (left) and after (right) machining

Construction of the valve seat starts by adding cross section nodes, as shown in figure 8-16 A). The

following commands are used to construct the points shown in A):

 pt0 = MarcPoint(x0,y0).Make()
 pt1 = MarcPoint(x1,y1).Make()
 pt2 = MarcPoint(x2,y2).Make()
 pt3 = MarcPoint(x3,y2).Make()

Likewise, the following commands are used to construct the profile curves of the valve seat shown in B):

 line1 = MarcCurve(MarcPoint(x_arc,y_arc),pt1,pt0)
 line2 = MarcCurve(pt1,pt2)
 line3 = MarcCurve(pt2,pt3)

A) Cross section points B) Cross section curves

pt0 (x0 , y0)

line1

line2
pt1 (x1 , y1)

pt2 (x2 , y2)

pt3 (x3 , y2) line3

Figure 8-16 – Cross section points and curves

152

Next, curve divisions are applied evenly to lines 2 and 3, and transitionally to line 1. Meshing these divisions

yields the line element mesh shown in figure 8-17 A). This line mesh is expanded using the following expand

tool command to yield the quadrilateral mesh shown in B):

wrokpieceMesh =

 Expand(rep=n,oX=o.x,sX=scale,sY=scale,*Filter(MarcElement,workpieceMesh))

In this command, o is the origin MarcPoint object, n is the number of repetitions, scale is a scale factor

less than 1, but greater than zero, and workpieceMesh initially contains the MarcNode and MarcElement

objects that make up the line mesh shown in A), which is later updated by Expand to contain the MarcNode

and MarcElement objects that make up the quadrilateral mesh shown in B).

A) Line elements B) Expanded elements

expand
origin

Figure 8-17 – Cross section element expansion

153

The construction lines generated in the initial step are then transformed to the inner edge of the new mesh

using the Move command, these curves are then closed by adding two additional curves that attach to the

origin node as shown in figure 8-18 A).

A) Closed workpiece bulk curve loop B) Quadrilateral workpiece bulk mesh

line1

line2
line3

line4

line5

Figure 8-18 – Cross section workpiece bulk mesh

A MarcCurveLoop is created from the new set of curves, which is then meshed using the QuadMesh function

to yield the mesh shown in B). This mesh is created using the following command:

bulkMesh = MarcCurveLoop(line1,line2,line3,line4,line5).QuadMesh()

This concludes construction of the valve seat cross section. However, before revolving the cross section to

generate the 3D geometry, a number of configuration tasks are performed as follows:

 element type 7 is applied to all elements in the workpieceMesh list;

 element type 117 is applied to all elements in the bulkMesh list;

 the Steel material type is applied to all elements in both the workpieceMesh and bulkMesh lists;

 a foundation contact body, and foundation plane geometry is created.

 two deformable contact body entities are created in Marc to represent the workpieceMesh and

bulkMesh elements respectively; and

 all elements in the workpieceMesh list are assigned a force / volume boundary condition, which is

set to defer to the user subroutine FORCEM.

154

The final step of workpiece generation is to revolve the cross section around the spindle axis, according to

the seatAngle parameter loaded from the configuration file, yielding the geometry as shown in figure 8-19.

Element properties set in the steps above are automatically inherited by the 3D mesh generated by

revolving the 2D mesh.

Figure 8-19 – Valve seat and foundation plane geometry

 Spindle 8.6.3

The spindle is little more than just an axis of revolution definition. This definition is represented by two

nodes, a spindle origin node, and a spindle direction node.

Positive rotation about the spindle occurs according to the right hand rule, where the vector from the

origin node, to the direction node is the axis of rotation. The spindle axis vector is calculated by the Fortran

program developed in Chapter Nine. It is not necessary to normalise the vector in the Marc model, as this is

done automatically by the Fortran program.

For this development model, the spindle rotation axis is collinear with the model Y axis. Therefore these

nodes are created according to the following commands:

spindleOriginNode = MarcNode().Make()
spindleDirNode = MarcNode(y=-1.0).Make()

The first line creates a node at , , , and likewise, the second line creates a node at ,

 , .

There is no dedicated tool to assign a special meaning to a particular node in Marc. However, it is possible

to create and name sets that contain just one node. These sets can be queried during simulation by the

Fortran program. This serves as a convenient method of designating particular nodes, for both the spindle

axis definition and cutter axes definitions.

155

These sets are simply added according to the following two commands, where spindle_origin and

spindle_dir are the set names that the Fortran program will look for at initialisation:

py_send("*store_nodes spindle_origin {} #".format(spindleOriginNode.MarcId()))
py_send("*store_nodes spindle_dir {} #".format(spindleDirNode.MarcId()))

 Cutters 8.6.4

All cutters in the model are defined as rigid contact bodies, represented by one or more NURBS surfaces.

Since only a very small portion of each cutter has the potential to contact the workpiece, most of the cutter

geometry is omitted. Figure 8-20 shows an example of the modelled portion of the cutter shown in red,

relative to the full cutter geometry.

Cutting
insert

Modelled portion
of insert

Rake face

Flank face

Figure 8-20 – Modelled portion of cutter geometry

Furthermore, since there is no chip flow or plasticity being directly modelled in this simulation, the radius of

the cutter has no effect, but does however complicate remeshing. For this reason, the cutting radius

is also omitted.

All cutters are generated on the model X-Y axis before being transformed to their final positions as dictated

by the configuration file. Figure 8-21 shows the side view of a cutter after construction of the 2D profile.

controlNode

rakeDirNode

feedDirNode

flankPoint

rakePoint

cornerPoint

line1

line2

Figure 8-21 – Side view of cutter geometry construction

156

Each cutter requires a local coordinate system definition for compatibility with the cutting force prediction

model developed in the previous chapter. These definitions are made by adding an origin node, feed

direction node and rake direction node according to the following commands:

 originOffset = 0.6

controlNode = MarcNode(originOffset ,originOffset).Make()
feedDirNode = MarcNode(originOffset-0.3,originOffset).Make()

 rakeDirNode = MarcNode(originOffset ,originOffset-0.3).Make()

As with the spindle direction nodes, these nodes are communicated to the Fortran program by placing

them in specially named sets.

The Fortran program will automatically detect the number of cutters according to contact body names. All

rigid contact bodies that start with the keyword cutter_ are assumed to be cutters. This model generator

script will name the contact body representing each cutter according to the following pattern,

cutter_angle_geometryType where angle refers to the relative starting angle offset around the spindle

(which is assumed to be unique), and geometryType is a type code, detected by post processing scripts to

load the correct cutter profile to plot duty cycle data over. For example, a six sided cutter starting at 120

degrees around the spindle, would be named, cutter_120_X6.

Building on this pattern, the Fortran program will look for the following set names when collecting the local

coordinate system direction nodes.

 Control (origin) node: cutter_angle_geometryType_origin, (e.g. cutter_120_X6_origin)

 Rake direction node: cutter_angle_geometryType_x, (e.g. cutter_120_X6_x)

 Feed direction node: cutter_angle_geometryType_y, (e.g. cutter_120_X6_y)

Like the spindle direction nodes, the vectors formed between the origin, feed direction and rake directions

nodes do not need to be normalised during construction of the model, as this is done automatically by the

Fortran program.

The cutter profile is extruded away from the spindle origin along the z axis, by a length set by the width

parameter in the cutter configuration file definition, according to the following command and as shown in

figure 8-22:

cutter = Expand(dZ=width,*Filter(MarcCurve,cutter))

width controlNode
x=0, y=0, z=0

Figure 8-22 – Cutter extrusion

157

The extruded body surfaces are then moved such that the direction nodes are on the X-Y mid-plane of the

cutter. If a non-zero slideOffset parameter is given in the cutter configuration, then this is also applied in

the same step, according to the following command, yielding the configuration shown in figure 8-23:

Move(dZ=-width/2+slideOffset,*cutter)

width / 2

slideOffset

Figure 8-23 – Cutter radial offset

The next operation is to apply the inclination angle of each cutter, according to the following command,

where figure 8-24 A) shows before and B) shows after inclination:

Rotate(tX=-inclination,*cutter)

A) Before applying inclination B) After applying inclination

Centre of rotation
x=0, y=0, z=0

inclinationAngle

Figure 8-24 – Before, A) and after, B) inclination of cutter

The radius and height offsets are applied in one step according to the following command:

Move(dY=height,dZ=radius,*cutter)

And finally, the spindle angle offset is applied according to the following command:

Rotate(tY=angle+90,*cutter)

158

These steps are shown in figure 8-25, A) before transformation, B) after height and radius offset and C)
after spindle angle offset.

A) Original state B) After height & radius offset C) After spindle angle offset

Figure 8-25 – Height, radius and spindle angle transformations of cutter

A velocity controlled rigid contact body is created to represent this cutter and named according to the

pattern explained earlier in this section. No boundary conditions associated with cutters are input via the

Marc model. Instead, the Fortran program discussed in Chapter Nine, automatically detects the cutters and

applies the appropriate change in rotation and position using the MOTION user subroutine, according to

the feed rate and RPM parameters set in the model configuration file.

This approach is used as it gives the Fortran program total control over the position of cutters. In

simulations that only model a segment of the valve seat, the ability to have total control over cutter

positions allows the implementation of a rapid mode setting which reduces the number of simulation

increments spent on pure motion by temporarily increasing the feed rate and RPM until any cutter moves

near the workpiece again.

Future implementations of the model may find controlling motion in this way is the most straightforward

way of implementing the production line feed cycles, which are often complex and include rapid periods,

withdrawal motion and, in some cases, even relative motion between cutting surfaces.

The entire process explained up to this point in this section is repeated for every cutter defined in the

configuration file. By changing the configuration file cutter definitions, end users can quickly reconfigure

the simulation environment to a new layout. There is no formal limit on the number of cutters allowed.

Figure 8-26 shows some examples generated within seconds of one another.

Figure 8-26 – Various cutter configurations

159

 Contact Table 8.6.5

Most contact is handled directly by the Fortran program developed in Chapter Nine. However, some basic

contact constraints are added by the model generator script. These are glue contact between the

workpiece and workpiece bulk, and the glue contact between the workpiece bulk and the foundation plane.

It was found during experimentation that the third obvious contact, between the workpiece itself and

foundation plane, caused some issues with convergence in the solver. This was not investigated to

conclusion as the two glue contacts described above are sufficient to constrain the mesh.

 Remeshing Instruction 8.6.6

A global remeshing instruction is added for the workpiece geometry. This remeshing instruction serves two

important purposes:

 Firstly, it converts the hexahedral input mesh into tetrahedral elements for the reasons discussed

earlier in section 8.4.3. Put briefly, although hexahedral elements are easy to work with when

generating the model geometry, they cannot be used with the Fortran mesh splitting algorithm

developed in Chapter Nine. For this reason, the valve seat geometry must be remeshed using

tetrahedral elements at the start of simulation.

 Secondly, it instructs Marc to call the UMAKNET user subroutine every increment, which is the

entry point the Fortran program developed in Chapter Nine uses to generate a new mesh that

represents the cut geometry.

The remeshing instruction is created by sending the evaluated Python strings shown in table 8-3 to Marc

using the py_send command.

Command Effect
“*new_adapg *adapg_type patran_tetra" Creates the remeshing instruction.
"*adapg_name {}".format(ADAPT) Names the instruction.
"*adapg_option immediate_crit:on" Signals to execute immediately at the start of

simulation (increment 0).
"*adapg_param increment_freq 1" Signals to process the instruction every

increment (required by UMAKNET).
"*adapg_param pat3_edge_len {}".format(
configuration["targetElementEdgeLength"])

Sets the target element edge length from the
user configuration file parameter.

"*adapg_option change_el_type:on" Signals to immediately change the element
type from hexahedral to tetrahedral.

"*adapg_rmsh_body {} #".format(BODY_VALVE_SEAT) Selects the contact body to be remeshed.

Table 8-3 – Global remeshing commands

Although the meshing instruction is global (as opposed to local), it should be noted that aside from the

initial mesh, remeshing during simulation is performed on a strictly local basis by the code developed for

UMAKNET in Chapter Nine.

160

 Loadcase Configuration 8.6.7

All Marc simulations require a loadcase definition that defines the type and duration of simulation. The

loadcase in this model is defined according to table 8-4.

Setting Value Comment
Loadcase type Structural / static
Time stepping mode Fixed Fixed, as opposed to variable depending

on the convergence quality
Total loadcase time (s) (calculated according to

equation 8-1)

Time step between increments
(s inc-1)

(calculated according to
equation 8-2)

Table 8-4 – Loadcase settings

 (8-1)

 (8-2)

 Job Configuration 8.6.8

The final step in producing the model is configuring the job definition. Job definitions in Marc define the

solver type and system resources that should be used. The job definition also configures the desired results

that should be calculated in post processing. Table 8-5 shows the job configuration used in this model.

Setting Value Comment
Nonlinear proceedure Large strain
MOTION user subroutine Enabled The MOTION user subroutine is used to

drive the cutters.
Solver Pardiso Direct Sparse
Number of cores 1 Must be run in single core mode due to

an unsolved bug in the Fortran program
described below.

User subroutine file usub.f Source code of the Fortran program

Table 8-5 – Job settings

It was found during testing that the Marc database would occasionally become unstable and nodal

coordinates would no longer be recoverable, returning NaN (not-a-number) instead of a real value. This bug

is almost certainly due to a multithreading problem with the Fortran program developed in Chapter Nine,

or an incorrect or missing compiler flag. Unfortunately, there is very limited literature in this area of Marc

user subroutine development so this problem remains unsolved. Fortunately, it was found that the speed

difference is very minimal and in some cases the multithreaded variant was slower. Multi-core processing

would be more beneficial if the mesh contained much larger quantities of elements.

The Fortran program described in Chapter Nine outputs a number of custom element scalars, nodal scalars

and nodal vector post values. The model generator script developed in this chapter will locate the Fortran

program source code and attempt to extract the definitions automatically. However, if the source code is

not available, the model generator script will silently revert to an internal list. This facility saves time during

development, as it is often the case during debugging, that a particular variable is useful to have plotted

over the mesh. In such a situation, the model generator script does not need to be modified.

161

 Chapter Summary 8.7
This chapter opened by taking stock of the experimental findings to this point, in that:

 the cutting inserts related to the case study in this work, did appear to be of good material

consistency and were free from manufacturing defects; and

 although the processes used in the case study are vulnerable to resonant vibration at specific

spindle speeds and over-flexibility of specific fixtures, these findings do not explain why other

spindle speeds also develop the chipping problem and why other, significantly more rigid fixtures

also suffer from the chipping problem.

The literature already suggests that cutting imbalance can create seemingly random chipping. With all

other plausible explanations ruled out, this chapter set about designing a numerical model aimed at

predicting these out of balance forces throughout machining.

A discussion was offered, reasoning that simulating all these effects, in 3D and with high enough accuracy

to support many hundreds of simulation increments, would be nearly impossible with today’s technology,

especially if the simulation is to be used to examine many cutter configurations and would be expected to

produce results in a very short time frame.

This chapter proposed using a cutting force prediction model developed in the previous chapter to take

into account all these effects, without separately measuring them and creating individual material and

system models for friction, plasticity, damage, etc.

This chapter then proposed a simulation model that would be split into two parts, a parametric script to

assemble the inputs in a Marc simulation file and a Fortran program used to perform the advanced

remeshing and force calculations required during simulation.

This chapter then set about presenting a design for the model, considering geometry, element

performance, remeshing, materials, further work objectives and parametric compatibility. Following that

design, this chapter then presented the technical implementation of the model generator script in the form

of two Python scripts.

The scripts presented represent powerful modelling tools that can be used to generate a wide variety of

cutter configurations for simulation. A lot of attention has been paid to preparing the scripts for further

work expansion, such as incorporating the valve seat into a 3D cylinder head mesh.

The simulation procedure laid out in this chapter and illustrated in figure 8-2, consists of the following

steps, the end user first:

 applies the methodology developed in Chapter 7 to a workpiece-tool material combination in order

to determine specific force values for a given geometry, feed rate and width of cut, then

 programs tool and workpiece geometry and spindle speed into the parametric model generator

developed in this chapter. The output of this generator is a finite element model complete with

geometry, contact bodies, boundary conditions, materials and positional data for each cutter, then

 executes the simulation which invokes the Fortran Program developed in the next chapter which

incrementally computes the cutting loads and machined geometry, and finally,

 compares the data from multiple simulations of different configurations to determine an ideal

cutter configuration for minimising radial load.

162

Chapter Nine – Design and Development
of Fortran Program

 Introduction 9.1
In section 3.6, MSC Marc was identified as a suitable finite element package for the cutting simulation

developed in this work. However, since MSC Marc does not contain all the prerequisite functionality

required e.g. splitting the workpiece mesh along a cutting plane and calculating cutting forces based on the

cutting force prediction model developed earlier in Chapter Seven, this functionality must be added to

Marc through user subroutines in the form of a Fortran program. The design and development of the

Fortran program is the subject of this chapter. The Fortran program is the most substantial component of

this research. The full source code is over 15,000 lines and represents thousands of hours of development.

To fully implement the numerical model requires tools to manipulate points and shapes in 3D space. Unlike

many higher level languages, such as Matlab, that have pre-written tools to carry out low-level functionality

e.g. vector based mathematics, Fortran provides no such features, and no such functionality is provided by

Marc libraries (at least none is mentioned in the Marc user literature).

For this reason, achieving the higher level aims of this model, for example, slicing a group of elements along

a plane, requires the development of many lower level functions, such as, calculating the intersection point

between a ray and plane. The distinction between these two levels of programming is a convenient point to

split this chapter. Section 9.8 deals with low level mathematical techniques and sections 9.7 and 9.9 deal

with higher level functionality.

This chapter deals with the development, design and implementation of a Fortran program containing a

series of user subroutines which are used by MSC Marc to calculate the cutting forces and simulate the

removal of material in a highly optimised way.

This chapter will cover the following areas:

 introduction to the development environment, development tools and debugging practices;

 the broad design of the Fortran program, including a rationale for the how data in the

subroutine is structured, accessed and stored, taking into account memory efficiency,

computational speed, source code readability and ease of debugging;

 a board explanation showing how the Fortran program configures itself at the beginning of a

simulation and a walk through of each step of the program during an increment;

 low-level functions – methods that are not specific to this problem, but are required by the

higher level functionality of the program, e.g. ray tracing, vector transforms, volume

calculations. These functions are typically characterised by their:

o ability to perform a very limited number of very specific functions (simple well defined

inputs and outputs);

o design for efficiency and high call counts;

o ease of transferability to other projects.

 High-level functions - methods that are directly responsible for delivering the stated aims of the

program, including higher level concepts such as generating a volume mesh. These functions

are typically characterised by their:

163

o long procedural flow (many steps, jumping between concepts and ‘building’ the end

result from some starting point);

o design for high levels of input tolerance, with multiple possible paths depending on the

state of the input;

o robustness against errors and recourse to contingency strategies; and

o highly bespoke nature - not readily transferable to other projects.

 Definitions 9.2
This chapter frequently refers to certain programming, geometric and finite element concepts. This short

section defines the terminology and introduces some basic concepts used in this chapter.

 Programming Terms 9.2.1

Program – This term is used to refer to the complete set of code compiled for this work, including all

private functions and subroutines, custom Marc user subroutines and everything else that is compiled to an

executable and called upon by Marc.

Subroutine – A subroutine is a routine isolated from the scope of the calling routine that accepts zero or

more arguments of any type and returns no values. Subroutines can modify the variables specified in the

calling statement.

Function – A function is identical to a subroutine, with the one key difference being that a function can

directly return a single value of any type.

User Subroutines – The term ‘user subroutine’, not to be confused with ‘subroutine’ has a very specific

meaning in this work. A user subroutine is a subroutine defined in the source code that is called directly

from Marc. The calling header of user subroutines is predefined and must match the Marc definition (even

if variables in the calling header are not required). The body of user subroutines can be defined entirely by

the programmer, but the headers and requirement to return certain variables cannot be changed.

User subroutines are set in various places throughout the Marc interface, for example, when adding a nodal

boundary condition, the user has the option to activate the FORCDT user subroutine. When adding an

element boundary condition, the user can activate FORCEM. Or elsewhere in the program, for example when

setting up remeshing, the user can defer to the UMAKNET user subroutine. Whenever a user subroutine is

activated in this way, Marc will attempt to call it at runtime.

Although private functions and subroutines can be defined, Marc can only be configured to call subroutines

with the predefined user subroutine headers listed in the Marc literature. Calling a custom subroutine or

function can only be achieved via a user subroutine.

164

 Procedure Diagrams 9.2.2

For procedure diagrams used throughout this chapter, the key defining their shape meanings is given in

figure 9-1.

Bulk
execution

block

Decision, yielding a
boolean value

STOP

Inner loop
activity

En
d

Stop events
terminate the
simulation

For example,
an if statement

For loop, (leaving via
‘end’ when finished)

Key input variables Function Start

Key return variablesFunction Finish

Figure 9-1 – Procedure diagram key

 Pre-Processor Definitions 9.2.3

Before compiling, the source code is fed through a text pre-processor that can be used to modify the code

and substitute values. Pre-processor definitions are used to include certain extra code blocks in debug

mode, and to define mathematical constants (e.g.). Several other useful mesh constants are defined

using these definitions which are explained as follows.

EPSILON, . Unlike integers, floating point numbers will rarely equate neatly to one another. For

example, the floating point arithmetic core of most processors will often find the assertion in equation 9-1

to be False (despite being True for all practicable purposes in reality).

|

| (9-1)

This quirk of floating point arithmetic is due to small uncertainties that manifest as the least significant bits

of the floating point number are culled to fit the data in the space allocated to the variable. For this reason,

it is necessary to define an epsilon value. Values that differ by a magnitude less than epsilon are considered

equal. For example, the assertion in equation 9-2 would evaluate to True.

|

| (9-2)

SWEEP = . The SWEEP parameter is a distance threshold, below which, two or more nodes are

considered to be coincident. Geometric detail below this level is not required (and very often creates

problems) and so where possible, these nodes are merged to simplify the mesh.

SWEEP_NURBS = . It was found during development that Non-Uniform Rational B-Spline (NURBS)

based operations, such as parametric to real, and real to parametric routines cannot quite generate

coordinates that consistently agree to less than EPSILON, however they were significantly more precise

than SWEEP requires, hence the need for a special point equivalence threshold somewhere between SWEEP

and EPSILON.

COARSE = , This parameter is used very similarly to SWEEP, but typically to resolve issues of

intersection and detection problems. COARSE is considered to be the maximum amount the program can

165

modify the mesh, to avert some disaster, before that mesh is considered to have been significantly

modified. COARSE will commonly be used to perturb nodes in a mesh, where a glancing intersect makes it

difficult to determine with certainty on which of two adjacent triangles a particular ray intersected.

 Mesh Definitions 9.2.4

The mesh topology used in this work is based on tetrahedral volumes. There are four types of geometric

simplex referred to in this chapter, these simplices have an analogous concept when used in a finite

element mesh indicated in brackets. The definitions of these types are as follows:

 Point (node) – a single coordinate in 3D space;

 Segment (edge) – all points along the shortest line that connects two points (nodes);

 Ray – a straight line that emits from some defined origin, that travels along some defined unit

direction, for a given distance;

 Facet (face) – a plane bounded by three lines that form a closed loop; and

 Tetrahedral (tetrahedral element) – a four faced, four node, 3D geometric shape that represents

some discrete volume.

Throughout this chapter, there are references to various types of mesh artefacts, including wedges,

needles, caps and clusters. These features are defined here and shown in figures 9-2 and 9-3.

A) Wedge B) Needle C) Cap

To
p

 v
ie

w
Si

d
e

vi
ew

Figure 9-2 – Mesh artefact types

The common characteristic of these artefacts is that all nodes that make them up are approximately on the

same plane (this is an important observation, core to eliminating them during mesh simplification).

When taken to their extremes, these artefacts represent poor quality elements not suited to finite element

equations. These artefacts are particularly hazardous, as they can often be Delaunay and meet other

criteria required to form naturally during volume meshing.

Clusters are small groups of nodes in close proximity. They can form as a result of floating point error

during mesh splitting and if not resolved, they will typically lead to the formation of intersecting elements.

Fortunately, clusters are easily dealt with by ‘sweeping’ – a process where nearby nodes are merged. The

sweep algorithm is discussed later in section 9.7.6.

166

A) Cluster B) Cluster (after Sweeping)

Figure 9-3 – Node cluster, A) before and B) after sweeping

The Delaunay property of a mesh element applies in both 2D and 3D and refers to a core theory

underpinning mesh generation and judging mesh quality.

An element is Delaunay if its circumcircle (2D) or circumsphere (3D) contains no nodes in its interior and

only its own nodes on its radius (strongly Delaunay) or its own nodes and other nodes on its radius (weakly

Delaunay).

167

Figure 9-4 illustrates the difference between a A) Delaunay and B) non-Delaunay mesh for the same set of

nodes. Aside from simply being more aesthetically pleasing, Delaunay meshes carry essential properties.

Firstly, they form elements with superior aspect ratios to randomised methods, which are much better

suited for finite element simulations. Secondly, and importantly for this section of this work, the gift

wrapping techniques used for meshing surfaces (described in detail in section 9.9.1) and volumes (section

9.9.2) have a strong affinity for forming Delaunay triangles and tetrahedrals (Shewchuk, 2002). That being

the case, the gift wrapping techniques used will more likely create a mesh that agrees with edges and

facets used to bound the mesh, if those edges and facets can be made Delaunay in advance. This is an

important observation for improving the probability of a successful mesh generation.

A) Delaunay B) Not Delaunay

Figure 9-4 – Circumscribed Delaunay and non-Delaunay triangulations of the same set of nodes

168

 Siding 9.2.5

Both segments and facets can have a side. This is important when choosing which side of a segment or

facet to generate a mesh element on. Since the concept of sided segments and facets is used in various

places throughout the Fortran program, common definitions must be established.

p1

p2

p3

Side 1 (facet normal)

Side 2
y

x

z

Side 1

Side 2
y

x

p1

p2

A) Segment B) Facet

Figure 9-5 – Segment and facet side definition diagrams

For segments similar to that shown in figure 9-5, A), the vector that results from the cross product, , of

the plane normal vector, , and segment vector, , defines side 1, as shown in equation 9-5, where is

defined according to equation 9-3, where and are the segment points. Equation 9-4 shows the plane

normal vector for the example given in figure 9-5, A).

 (9-3)

 〈 〉 (9-4)

 (9-5)

For facets similar to that shown in Figure 9-5, B), the facet normal vector, , is used to denote side 1,

according to equation 9-8, where and are the edge vectors defined in equations 9-6 and 9-7, where

 , and are the corner points shown in figure 9-5, B).

 (9-6)

 (9-7)

 (9-8)

169

 Development Environment 9.3
This section gives an introduction to the development software used, including its configuration and

prerequisite packages for compiling and running the Fortran program. This section also discusses the

relationship between Marc and the Fortran program, including how code in the Fortran program is invoked

by Marc, and how information is retrieved from Marc’s databases. Finally, this section shows some

development and debugging methods used in this project.

 Development Software 9.3.1

Marc is designed in such a way that user subroutines run at a low level, in line with the Marc solver itself.

User subroutines in Marc are compiled from Fortran source code. This approach provides a much greater

potential for speed, at the cost of longer development times.

The following software is used to set up the development environment and test the user subroutines. For

end users, only Marc is required and the compiled program can be supplied as a standalone executable

package:

 Microsoft Windows 7 (x64)

 MSC Marc 2016

 Visual Studio Professional 2012 (or above)

 Intel Fortran Compiler (Parallel Studio XE 2015 – Update 6) (ifort)

Marc acquires the path to the Intel Fortran compiler and Visual Studio linker from the path environmental

variable, therefore the following path variables must be present in Windows.

C:\Program Files (x86)\Intel\Composer XE 2015\bin\intel64\ifort.exe
C:\Program Files (x86)\Microsoft Visual Studio 11.0\VC\bin\link.exe

Furthermore, the following common library folders must be declared in the LIB environmental variable for

use by the compiler.

C:\Program Files (x86)\Microsoft Visual Studio 11.0\VC\lib
C:\Program Files\Microsoft SDKs\Windows\v7.1\Lib\x64
C:\Program Files (x86)\Intel\Composer XE 2015\compiler\lib\intel64

In order to prepare the environment for compiling the Fortran user subroutine, the Marc *.mud is opened

from a Windows batch file which first executes vcvarsall.bat, located in the Visual Studio installation folder.

The most important function of vcvarsall.bat is to declare the library path environmental variables to

ensure the compiler links libraries for the correct processor architecture.

call "C:\Program Files (x86)\Microsoft Visual Studio 11.0\VC\vcvarsall.bat" x64

170

 The Relationship Between the Fortran Program and Marc 9.3.2

The user subroutines developed for this project are called by Marc. They do not have control of the root

process and must yield the execution pointer back to Marc at the end of every user subroutine. The Fortran

program cannot interrupt Marc, nor can it execute code in parallel with Marc’s internal execution. In

practice, this execution pattern is not a major hindrance. User subroutines cannot guarantee the

persistence of data between calls, but with a number of programming techniques, data can be persistently

stored across increments by defining a number of variables inside a Fortran module and including that

module in user subroutines using Fortran’s use statement.

Marc offers a wide range of user subroutines, the subroutines used in this work are given in table 9-1.

User Subroutine Purpose
FORCEM Applies a reaction force to the workpiece.
MOTION Sets the rotational and feed velocity of the cutters.
UMAKNET Outputs a new mesh every increment to replace the workpiece mesh.
PLOTV Sets element scalars for viewing in the post file.
UPSTNO Sets nodal scalars and nodal vectors for viewing in the post file.
UBGINC Called at the beginning of each increment, used to call Setup on increment 0 and test

the output of UMAKNET every increment thereafter.
UEDINC Called at the end of each increment, used to reset the statistics module (not discussed

in this chapter).

Table 9-1 – User subroutine headers used in this program

The headers for these subroutines are fixed, the definitions for each can be found in the Marc user

subroutine programming guide (MSC Software, 2016b) and at the end of Appendix B.

During simulation, Marc must keep track of the simulation state. Marc does this by storing data in a vast

array of variables that correspond to things such as simulation time, node and element counts, nodal loads,

material data, NURBS surface information, element connectivity data and so on.

A surface level query of Marc’s internal databases can be made using some predefined functions, such as

elnodes (to get a list of nodes associated with an element) or getbodyid (to retrieve the contact body ID of

an element). For more detailed information, Marc common blocks must be included in the Fortran

program, using the Fortran include keyword. Marc’s predefined functions and some common block

variable definitions are defined in Marc’s programming guide (MSC Software, 2016b), however the vast

majority have no publicly available documentation. Many of these undocumented common blocks have

been used in this work, with their meanings interpreted by inspecting the common block headers, memory

analysis and trial and error.

171

 Debugging Tools and Methods 9.3.3

Microsoft Visual Studio is a very well developed programming environment. Whilst it would be completely

possible to develop the entire program from a simple text editor such as Notepad++, thanks to Marc’s

ability to invoke the Fortran Compiler directly and compile the source at runtime, it is infinitely more useful

to use Visual Studio thanks to its comprehensive debugging capabilities. Breakpoints are special

instructions that Visual Studio can seamlessly embed in the compiled machine code at runtime, that when

hit by the processor execution pointer, ‘raise’ that breakpoint. This causes the program to temporarily

pause. During this pause, Visual Studio inspects the program memory and populates variable names with

their values. For example, figure 9-6 below shows how the origin property of object splitRay can be

inspected in the moment before the program raises the highlighted exception. Equally as useful, the

execution pointer can be moved to a different section of code and the stack trace can be inspected and

traversed.

Figure 9-6 – Breakpoint example in Microsoft Visual Studio

The following ifort compiler switches are required to activate the inclusion of debugging symbols in the

compiled program:

/traceback /debug:full

Although Visual Studio has no problem working with executables developed in Fortran, compiled with

Intel’s Fortran compiler, it was never designed to work with Marc. To make this functionality work, a series

of bespoke tools were written which help to interface Visual Studio with Marc and seamlessly run the

simulation when selecting ‘Build and Run’ in Visual Studio.

At the time of writing, there appears to be no evidence in literature that anyone else has configured Marc

to work with Visual Studio in this way.

Aside from the debugging symbols previously introduced, it is essential to have some facility to log data to a

file and monitor the data being written to the file in real time. It is often the case that by the time the

172

program hits an exception breakpoint, it is already too late to inspect the state of the program that led to

that condition. For this reason, key variables can be persistently written to a log file as and when their state

changes. For example, the local coordinate system of a particular cutter or the progress of mesh

generation.

At runtime, Marc and the solver each create a log file named after the simulation and end in the

extensions, *.log and *.out respectively. A script (named ‘tail’ after a similar utility built into Linux) was

written in Python to monitor these files in real time. The output file can be written to by the Fortran

program using unit file number 6. A typical output from this log is shown in figure 9-7.

.

 Time line retrieved from file

 Line number in log file

 Line number in source code

 Subroutine state data increment:cutback:cycle/time since simulation start (seconds)

 Message data

 Monitored file name Tail script status Time now

Figure 9-7 – Real-time log viewer support program

In this output, only messages generated by the Fortran program are shown. Lines added by Marc are

filtered out automatically for clarity.

The first column shows the time the line was retrieved from the output file. It is not necessarily the time

the data was written to the file by Marc, since the operating system will often delay file writes to better suit

the mechanical demands of the hard disk. The second column shows the line number in the output file.

These columns, shown in green, are generated by the tail script itself. The third column is the time in

seconds since execution started in the Fortran program. The fourth column is the line number in the source

code that generated the output and the remainder of the line is the message. These components in red are

generated by the Fortran program.

173

In addition to these log tracking features, a number of functions have been written within the Fortran

program itself to aid with debugging and performance tuning. Figure 9-8 below, shows an example of a

summary table which is generated at the end of every increment. The summary table contains important

information regarding the time taken to execute each section of code. The data is presented in a tree

format so that key information can be inferred at a glance (this is important when scrolling through many

increments worth of summary data).

Step duration (s)

Root function
indicators

Total time (s)

Percentage of parent node time

Increment

Figure 9-8 – Hierarchical CPU time tree view

174

 Program Theory 9.4
This section deals with the broad theory underpinning the program, including how it is laid out in source

code, how it initialises at runtime, and the procedural steps it follows at runtime. This section has been

distilled down to a high level explanation with definitions and mathematical concepts dealt with separately

in sections 9.2 and 9.8 respectively.

The primary functions of the program are to:

 detect cutting events that occur between cutters and the workpiece, by computing the proximity

between cutter and workpiece and using an intersection algorithm (developed in 9.7.1) to compute

intersections;

 generate new workpiece geometry that approximates what the true cut geometry would look like

based on the principle that once a cutter has moved through space occupied by the workpiece, any

workpiece material in that region is subsequently removed; and

 calculate the forces that develop during the cutting event for the cutter, spindle and workpiece

based on the cutting force prediction model developed in Chapter Seven.

It must achieve these goals using the following inputs:

 the mesh geometry of the workpiece;

 the geometry, position and velocity of the cutting edges; and

 two specific force equations that output the rake and feed cutting forces based on a given depth

and width of cut (according to the cutting force prediction model developed in Chapter Seven).

The thesis of this project is that cutting simulations such as these can be run in 3D in vastly reduced times

over that of traditional cutting simulations. In order to assist with this aim, it is necessary to reduce

computational effort wherever possible. This is especially important in parts of the code that are executed

many thousands, in some cases hundreds of thousands of times per increment. Several efficiency strategies

have been applied to improve execution times, such as:

 in loops that are likely to end early due to disqualifying criteria, expensive tasks are delayed until

absolutely necessary to avoid wasted computational effort;

 simplification of equations, for example:

o pre-calculating all parts of an equation that can be calculated before compiling;

o layout equations to reduce the number of divisions and square root operations;

o normalise direction vectors when setting, rather than every time the direction is used;

o avoid rigidly following an equation if just the relationship will do (e.g. no need to compute

the radius from circle diameters, if the radii will only be used to compare sizes); and

 the use of caches, memory maps and lookup-tables to avoid repeated calculations and database

queries.

 Types and Objects 9.4.1

Fortran is not traditionally an object orientated programming (OOP) language, however Fortran has long

supported user defined types, and since Fortran 2003, type-bound procedures are also supported. These

features of Fortran types can be used to implement many OOP techniques which suit the objectives of this

project well.

175

User defined types are primarily used in this work to improve readability, reduce repeated code and

establish rigid specifications for exchanging data between functions. They are not used for speed or

memory efficiency (and often decrease the speed and memory efficiency potential).

Wherever an object is instantiated, Fortran always allocates enough memory to contain the entire object

(the combined memory required to contain all of its properties). This often leads to cases where an object

supports multiple contexts but, whilst being used in one context, variables defined for another context are

not being used, thus reducing memory efficiency.

Steps must be taken to reduce the memory footprint of objects, especially when those objects are being

used in lists of many hundreds or thousands of instances.

An unfortunate feature of the way ifort allocates memory for logical (Boolean) values means that 64 bits

are reserved by the compiler to store a single logical value1. In the majority of cases, this isn’t a problem,

however, when the logical value forms part of a frequently instantiated type, this can amount to

considerable memory waste. To overcome this waste, logical values within the Node, Element and Ray

types are encoded in a single integer value, status, using bitwise Boolean logic. This allows the storage of

64 Boolean values in the memory space of a single integer.

A brief summary of the user defined types developed for the Fortran program is given as follows. For more

detail about the properties and type bound procedures associated with these types, please see Appendix B.

 Element: Generated for each element entity in Marc and supports elements with up to 8 nodes.

This support is required as the workpiece bulk mesh and initial workpiece mesh is hexahedral

before Marc generates the initial tetrahedral mesh.

 Node: Generated for each node entity in the simulation. Node objects are key to maintaining the

‘elements at node’ cache commonly used throughout this work. This functionality is implemented

using an allocatable array, elementsInt, within the Node object itself. The array is allocatable to

conserve space at the cost of longer initialisation times (due to reallocations). However, the time

saved throughout the program by using the ‘elements at node’ cache is worth this small upfront

cost.

 Ray: A fundamental and very frequently used type to represent geometric rays, lines and segments.

Ray objects, as described in section 9.8.2, are defined by an origin, unit direction vector and

distance magnitude.

 NURBSSSurface: NURBS surface entities are used in several contexts throughout the program,

including contact detection, mesh splitting, 2D meshing and force distribution. It is useful therefore,

to have a common structure to package the numerous properties associated with NURBS surface

entities. For an explanation of how NURBS surface coordinates are calculated, see section 9.8.3.

 Cutter: Created for each cutter entity in the model, like NURBSSurface objects, Cutter objects are

used in various places throughout the code, often as the subject of a loop. It is therefore helpful to

have access to properties associated with Cutter objects in a common structure.

The Fortran program maintains two important indexes in the global scope. These are nodeIndex and

elementIndex. As the names imply, these are lists consisting of Node type objects and Element type objects

respectively. At the start of the simulation, these indexes are populated with objects to represent all

1 This behaviour is flexible, the length of a logical value can easily be reduced to 8-bit, however this creates
compatibility problems with built-in functions that accept logical inputs. The alternative used in this project is
significantly more memory efficient.

176

elements and nodes in the mesh. Both lists are largely redundant, since Marc’s database can be queried

directly in most subroutines. However, there are many properties of node and element entities that are

required by this program, for example, nodes associated with elements, elements associated with nodes,

the position of a node, the volume of an element, the contact body ID of an element and so on. The

method used to recover each piece of data from Marc’s internal database is surprisingly variable,

obfuscated and in some cases, slow. For this reason alone, the bulk collection and storage of all properties

in one batch function, justifies the memory redundancy of the elementIndex and nodeIndex.

Furthermore, the indexes allow the storage of custom data against a particular Node or Element. For

example marking a Node as near a particular Cutter, or storing the cutting pressure applied to a particular

Element.

Aside from the memory inefficiency of keeping these indexes, there is also the burden of keeping them

updated. The offset of an Element or Node object within the index is also its Marc internal ID. For example,

the Element found at offset 32 in elementIndex, represents the element entity with Marc ID 32. This is an

important feature of the lists which is used extensively throughout the program. In order to preserve this

property across increments, after adding and removing node and element entities during meshing, code is

required to anticipate where Marc will reorganise node and element entities within its own internal lists. To

understand Marc’s indexes, the following rules are established:

 UMAKNET (as an agent of this program) can only add and remove workpiece element and node

entities;

 Element entities can never be shared between two or more contact bodies, however, node entities

can; and

 Marc will not shrink its internal element or node entity lists, (the lengths of which can be

determined by the Marc global variables, numel and numnp, respectively).

With these constraints in mind, Marc will organise its internal element list according to the following rules:

An element entities place in the list should be thought of as occupying a ‘slot’.

Element entities:

 Non-workpiece elements are never moved to another slot;

 If an element is killed, its slot is marked as vacant;

 After the removal of elements, existing elements are redistributed to fill vacant slots; and

 New elements are added sequentially into vacant slots after redistribution of existing elements, if

no vacant slots remain, the list will expand to accommodate new elements.

Node entities:

 Non-workpiece nodes, or nodes that are shared between contact bodies are never moved to

another slot;

 If a node was only ever associated with a workpiece element, but now no longer has any references

to it, its slot will be marked as vacant;

 After the removal of nodes, remaining workpiece-only nodes are redistributed to fill vacant slots;

 New nodes are added sequentially into vacant slots after redistribution of existing nodes, if no

vacant slots remain, the list will expand to accommodate new nodes.

177

At the end of UMAKNET, the Fortran program will reorganise its own nodeIndex and elementIndex lists

according to these rules, with the intention that at the start of the next increment, Marc will have done the

same and all node entities will be represented by a Node object in nodeIndex and likewise, element entities

will be represented by an Element object in elementIndex. The object offsets in their respective indexes

will match the Marc ID of their corresponding entities.

 User Subroutine Call Order 9.4.2

This section is intended to show the calling order of user subroutines within this program. User subroutines

are called by Marc sequentially at the appropriate points during simulation. As described in the

programming definitions section, 9.2.1 earlier, the headers and calling order of user subroutines is a hard

coded feature of Marc. However, the programmer is free to add additional functions and subroutines,

providing they are called from within one of Marc’s user subroutines. Marc cannot be made to call a

custom function or subroutine without first going through a user subroutine.

Increments of this program are not neatly aligned with the increment progression of the simulation. To

help describe this misalignment, the concept of a session is introduced. Sessions can be thought of as a

period in time in which some bulk of data is delivered, worked on and then returned. Sessions end with the

discarding of almost all associated data except for the return values and certain pieces of meta-data (such

as the time required to complete the session). Figure 9-9 shows the boundary lines of sessions from the

point of view of Marc (red) and the Fortran program (blue).

inc

inc-1

inc+1

inc

Displacements visible in MARC

M
ar

c
se

ss
io

n

Fo
rtran

 p
ro

gram
 sessio

n

Call SplitMesh

Write new mesh to file

Store loads for FORCDT and FORCEM

Write element scalars to post

Write node scalars and vectors to post

Update cutter positions

MARC performs FE calculation MARC writes nodal loads to post

Set element loads

UBGINC

UPSTNO

MOTION

PLOTV

UEDINC

FORCEM

UMAKNET

UMAKNET (inc-1)

UBGINC (inc+1)

Call Setup if inc zero

Figure 9-9 – Session overlap and subroutine call order

178

Marc calls the functions shown sequentially until the simulation terminates. SplitMesh, the core function

within this project is called from within UMAKNET. SplitMesh is responsible for calculating three key

outputs, the new (cut) mesh geometry, the cutter and workpiece loads and various nodal scalar and vector

values. After SplitMesh returns, UMAKNET immediately writes out the new workpiece mesh to a file and

stores its other outputs, such as the calculated cutter reaction load and workpiece load, in memory (this

remains accessible until the session ends). At some point before Marc calls FORCEM, it reads in the new

mesh and replaces the workpiece contact body mesh. Portions of the data calculated in SplitMesh are

referenced by Marc as Marc steps through the subroutines.

 Configuration File 9.4.3

The Fortran program uses a configuration file to allow the user to tweak simulation parameters, turn

features on or off and specify the cutting force equations. Table 9-2 lists the available configuration file

parameters and their meanings.

Parameter Name Description Units Required

ProximityRadius The search cylinder radius centred around the
cutter proximity Ray used to determine which
elements are near.

mm Yes

OutputPhysicsData Switch to enable or disable outputting of
incremental physics data for each contact
body. Physics data includes information such
as the contact body forces, spindle angle,
contact status etc.
When enabled, physics data for each contact
body will be output to a Comma Separated
Values (CSV) file in the model directory.

(Boolean) No (default =
Yes)

OutputCutterFaceProfile Switch to enable or disable outputting of
incremental cutter face profile information for
each cutter. This information is used by a
Python script to plot the contact ‘heat-map’
over a diagram of the cutter face.

(Boolean) No (default =
Yes)

NoReactionForce Switch to enable or disable the application of
reaction force to the Workpiece. If workpiece
reaction force is not required, enabling this
option can speed up the simulation slightly.

(Boolean) No (default =
False)

Feed rate The feed rate of the cutters. mm / rev Yes

RPM The spindle RPM. RPM Yes

RapidMultiplier How many times faster than normal speed the
cutters will move if not near the workpiece.

(Multiplier) Yes (set to 1 to
disable rapid)

FlexibleSpindle Legacy option to enable flexible spindle
mode2.

(Boolean) Not (default =
False)

Fr The rake force equation (see Chapter Seven). Yes

Ff The feed force equation (see Chapter Seven). Yes

Table 9-2 – Configuration file parameters

2 The Fortran program has full support for a flexible spindle mode. However this mode is not discussed in this chapter
since experimental data for the spindle flexibility could not be acquired.

179

 Procedure 9.5
This section gives a high level overview of the main subroutines discussed in this chapter, they are; the

built-in user subroutine headers listed earlier in table 9-1, as well as Setup and SplitMesh. The call order

relationship between these subroutines during simulation is given in the master procedure diagram in

figure 9-10.

Increment start

Simulation Start

Is increment zero?

Marc generates
initial workpiece

mesh

Yes

Write out new
workpiece mesh

file

Update
elementIndex and

nodeIndex

Marc loads new
workpiece mesh

Update the position of each cutter
according to the spindle speed and

mode (rapid or normal)

For each cutter

End

Is increment zero?
Yes

Setup

No

UBGINC

MOTION

Apply loads (if any) calculated
during SplitMesh to element

For each workpiece
element

End

FORCEM

Write element scalars to post file

For each element

End

PLOTV

Write node scalars and vectors to
post file

For each node

End

UPSTNO

MARC

Marc performs finite element
calculation

UEDINC

No

UMAKNET

SplitMesh

Figure 9-10 – Master procedure diagram

The basic function of each subroutine referenced in figure 9-10 is given as follows:

 UBGINC: Called at the beginning of each increment. On the first increment, this subroutine calls

Setup. On all other increments, if the DEBUGMODE pre-processor definition was set when compiling,

this subroutine compares nodeIndex and elementIndex to Marc’s internal database to make sure

Node and Element objects are configured correctly.

 MOTION: Called by Marc for every contact body in the model when processing geometry updates. If

called for a non-cutter contact body, the Fortran program dismisses the call. If called for a cutter

contact body, the Fortran program returns the spindle speed and feed rate (or rapid spindle speed

and feed rate) specified in the configuration file.

180

Due to the exceptionally high call counts of FORCEM, PLOTV and UPSTNO, great care is taken to reduce their

computational demand. Therefore, unlike most other functions, these functions contain no statistics

tracking code.

 FORCEM: Used to set element reaction pressures calculated at the end of the previous increment by

SplitMesh. FORCEM is called for every integration point, in every element that was assigned the

FORCEM volume pressure boundary condition.

 PLOTV: Used to assign element scalar post variables. PLOTV is called for every element post scalar

selected in the simulation job, for every element in the model.

 UPSTNO: Used to assign node scalar and node vector post variables. UPSTNO is called for every node

scalar and vector selected in the simulation job, for every node in the model.

 UMAKNET, is called once at the start of the Fortran program session, or at the end of each increment

(with the exception of increment 1, where Marc will call it at the start, or increment 0). For

increment 0, UMAKNET instructs Marc to use its own advancing-front tetrahedral mesher to

generate a mesh for the entire workpiece, after which UMAKNET returns. For all other increments,

UMAKNET performs the following functions:

 resets all Element and Node states;

 calls SplitMesh;

 writes out the new mesh generated by SplitMesh (Marc requires the new mesh to be written

to a file so it can import it from that file);

 anticipates how the removal and addition of elements and nodes will affect Marc’s internal

indexes and updates elementIndex and nodeIndex to match Marc’s internal indexes; and

 updates the positions of cutters ready for the next increment.

 SplitMesh, performs the following tasks for each Cutter in the model:

 identifies Element objects that must be split based on their proximity to a Cutter, and the

intersection of their edges with a Cutter;

 generates an external hull of facets from the near by / intersected Elements;

 generates an intersection loop of edges and uses it to:

o seed an interface mesh for the surface occupied by both the Cutter and workpiece,

generated by calling GiftWrap; and

o split external facets, again, by calling GiftWrap.

 identifies the side of the split hull to keep by calling FacetWalker;

 simplifies the remaining hull mesh;

 calls TetMesh to generate a 3D mesh within the interior of the hull;

 appends the new Element and Node objects generated by TetMesh to the end of elementIndex

and nodeIndex respectively; and

 calculates the cutting loads and stores them for later assignment by FORCEM.

181

 Runtime Setup 9.6
This section describes the setup phase of the Fortran program. These are tasks that are executed just once

during simulation. The Setup function is responsible for the following tasks:

 loading the configuration file;

 discovering the workpiece body ID and making sure there is only one workpiece;

 discovering cutter body IDs and making sure there is at least one cutter;

 configuring the cutters (discovering associated direction nodes and setting the local coordinate

system of each cutter);

 discovering the spindle direction nodes; and

 populating up elementIndex and nodeIndex.

The procedure diagram for the Setup function is shown below in figure 9-11. The Setup function is called

from UMAKNET on increment zero.

Read in configuration file and
use the data within to set

certain global variables

The simulation cannot
continue because it is

missing vital inputs

Start Setup

STOP

Is there a file named “usub.cfg” in
the model directory?

For each body in the
model

En
d Is this body rigid or

deformable?

Does the name of this body start
with the exact characters

“workpiece”

Has workpieceBodyId already
been set?

Yes

STOP
Workpiece is ambiguous, only
one workpiece is allowed so the
simulation cannot continue.

N
o

No

Does the name of this body start
with the exact characters “cutter”Rigid

Has workpieceBodyId been set?

The simulation requires
at least one deformable

workpiece body

Does cutterIndex contain at least
one entry

The simulation requires
at least one cutter

For each set in the
model

Is this set named
“bcSpindleBearing_nodes”?

No Set the workpieceBodyId
global variable

 Create an entry in cutterIndex that references this body id
 Populate cutter properties

Set the spindleDriverNodeInt
global variable

En
d

Exit

Has the spindleDriverNodeInt
variable been set?

The simulation must contain a
set that defines the spindle

driver node. This node is
required to drive the cutters.

For each set in the
model

Deformable

Does this set name start with the
name of this cutter?

Does this set name end with the
characters “x” or “y”?

STOP
Direction set incorrectly
configured

Does this set contain exactly one
node?

STOP
Direction set incorrectly
configured

Use the position of this node in relation
to the position of the translation node
of this cutter to set the rake (x) or feed
(y) direction of this cutter. This defines

the cutters local coordinate system.

For each NURBS surface
in the model

En
d

Does this NURBS reference this
cutter?

 Set the NURBS start id to this NURBS (if
not already set).

 Set the NURBS finish id to this NURBS
(always).

NURBS surfaces are sequential, so this policy
always leaves the cutters containing two
indices representing the first and last NURBS
surfaces associated with the cutter. It can be
safely assumed that the cutter also contains
every NURBS id in-between.

End

No

Yes

No

Yes

YesYes

Yes

Yes

Yes Yes

No

Yes

Yes

IndexMesh Finish Setup

No

No

Yes

STOP

STOP

No

No

Allocate and populate
nodeIndex and elementIndex

global variables

STOP

No

No

Figure 9-11 – Setup procedure diagram

182

 SplitMesh 9.7
SplitMesh is a very long and complex function. The responsibilities of SplitMesh are carried out in just one

subroutine as opposed to a set of subroutines due to the overlapping contexts between its responsibilities.

For example, split Rays are used in remeshing the intersection face and then again much later when

allocating forces. This helps to reduce the programming effort required to write additional subroutine

headers and duplicate variable definitions for single use subroutines.

SplitMesh is laid out analogously to a production line where value is added at each step. Each block of

code within SplitMesh systematically changes something about the mesh. This approach makes SplitMesh

highly modular, certain blocks can be ‘turned off’ and the blocks following can still attempt their duties

without modification (though often with a reduced chance of success). Figure 9-12 shows a high level

procedure diagram for SplitMesh, giving reference where necessary to sections within this chapter

describing the detailed methodology underpinning each block.

All facets on chip side of hull are now disabled

For each cutter

End

splitRays GiftWrap (§9.9.1)

internalFacets: A list of internal facets
representing the intersection surface

between the cutter and workpiece (§9.7.3)

Let splitRays be a list of rays representing the
outline of intersection between the cutter

and workpiece (§9.7.2)

Let hull be a list of facets external to
subMesh

-Add internalFacets to hull

hull TetMesh (§9.9.2) subMesh (§9.7.11)

Identify a subMesh of elements in the path of
the cutter (§9.7.1)

Simplify hull to reduce the facet count and
improve facet aspect ratio (§9.7.8)

Calculate cutter forces according to the list of
splitRays describing the intersection between

cutter and workpiece (§9.7.12)

For each original, external facet in hull

-Let facetEdges be a list of rays representing
the three edges of facet
-Disable facet (§9.7.5)

Add subFacets to hull

Repair facets in hull to guarantee Delaunay
property (§9.7.9)

Sweep facets in hull to close gaps in mesh
(§9.7.6)

Is the area represented by internalFacets significant?
(§9.7.4)

Designate internal side of facets (§9.7.10)
Let seedFacet be a facet in hull with a free

side freeSide that faces away from the
volume of the workpiece

All facets in hull are now sided

Remove chip side facets from hull (§9.7.7)
Let seedFacet be a facet in hull on the side of

the cutter-workpiece intersection where
facets touch the parent workpiece mesh

seedFacet
hull KeepKillWalker

seedFacet
freeSide

hull
SideWalker

End

End SplitMesh

Start SplitMesh

No

Yes

facetEdges
+ splitRays GiftWrap (§9.9.1)

subFacets: A list of triangles that fill facet but

respect boundaries imposed by splitRays

Figure 9-12 – SplitMesh procedure diagram

183

The remainder of this section walks through this procedure, explaining in detail how each step is

accomplished with reference to the example workpiece-cutter intersection shown in figure 9-13.

A) B)

Figure 9-13 – Cutter-workpiece intersection

As the figure shows, the cutter is forming a full intersection, in other words, there is no path from a node

on one side of the cutter, to the other side. This is an essential characteristic of intersections. SplitMesh

will fail if the cutter only forms a partial intersection.

 Intersection Detection 9.7.1

Once the cutter is moved to its new location at the start of an increment, SplitMesh must identify the ‘sub-

mesh’ or local portion of the workpiece mesh to remesh. The following steps are performed to narrow

down the selection of sub-mesh elements. These steps are as follows:

 Let be a set containing every Node in the model that carries the F_Workpiece flag (assigned by

IndexMesh to all workpiece Node objects).

 Let be a subset of containing only Node objects that are within some proximity distance of any

point on a Ray that runs parallel to the cutters local radial direction, that lies on the maximum rake,

maximum feed edge of a bounding box that surrounds the Cutter, as shown in figure 9-14. The

proximity radius is set in the configuration file. This test is reasonably fast, however, it does require

one square root operation per Node.

184

Proximity ray
radialrake

feed

max feed

max rake

Cutter

Proximity ray

A) Proximity ray B) Proximity ray construction

Figure 9-14 – Cutter proximity ray relative to cutter geometry

 Let be a set of Element objects, that have Node objects in . This test is very fast thanks to the

precomputed elements-at-node cache.

 Let be a subset of , whose Element objects all have at least one edge intersected by the Cutter.

This test is much slower than the others, since intersection testing is very expensive. Intersection

testing is performed using the NURBSSurface%RayIntersect method described later in section

9.8.10. Rays are generated for Element edges so that they can be used with

NURBSSurface%RayIntersect. Since edges are shared, whenever an edge is tested it is entered

into a cache with the result of the intersection test recorded alongside it. This greatly reduces the

number of intersection tests that must be performed.

The set in is flagged as F_Remesh. These Elements fit together to form the sub-mesh, or part of the

workpiece mesh that will be removed and replaced by a mesh of the newly cut geometry. The external

facets of form the hull, which will be split, simplified and volume meshed in the following steps.

185

 Hull Splitting 9.7.2

After the sub-mesh external hull has been identified, it is split according to the cutter geometry. Figure

9-15, shows a discretisation problem that arises when attempting to split the hull, due to the way the

cutter traverses the mesh.

A) Cutter-workpiece intersection

B) Primitive solution (saw tooth pattern)

C) Modified solution

Cutter
geometry

Cutter
geometry

Workpiece

Workpiece
Rake face

Flank face

Figure 9-15 – Approximations of removed material

The cutter is shown in A) from a side view of the workpiece. The cutter has just traversed the vector shown

in green. The rake and flank faces of the cutter are defined according to the cutter geometry, invariably the

flank face is not parallel with the cut surface. In reality, the cutter has moved through the workpiece

material, leading to its removal, however, since this is a finite simulation, the cutter can only jump from one

location to another. If the cutter were used as a tool to split the mesh in each location and remove the chip

side, then this would lead to the saw tooth pattern shown in B). To achieve the desired solution, shown in

C) several further steps are required.

When UMAKNET updates the positions of the Cutter objects for the next increment, it attaches two invisible

NURBS surfaces to the lowest point of the Cutter to act as additional tool surfaces. The first of these tool

surfaces is the extrusion of the lowest edge of the cutter through the inverse of the cutters affine transform

(which describes its displacement from the last increment to the current). This method takes into account

the curvature and descent path of the Cutter as it rotates. The second tool surface attaches to the

rearmost end of the previous tool surface and projects up at approximately a 45 degree angle. This surface

only intersects the workpiece due to floating point rounding error, and is intended to guarantee a full

intersection is formed. The vast majority of increments will not require this surface. All non-front facing

parts of the Cutter NURBS surfaces are disabled for the remainder of the increment. The algorithm

developed for this work performs this non-front facing removal on a sub-NURBS basis, meaning that it is

capable of subdividing a curved NURBS and only removing part of it to satisfy the front facing criteria.

Figure 9-16 shows a side view of the cutter with these additional tool surfaces.

186

Displacement
vector

Rake face

First invisible tool surface
Equal in length and slope
to displacement vector

Second invisible tool surface
Attached to the first tool
surface, with 45 degree slope
up

Flank Face
Non-front facing cutter
geometry removed

Figure 9-16 – Invisible tool surfaces

The new tool surfaces are created as NURBSSurface objects allowing them to seamlessly interface with

other parts of the program that operate on NURBS. This removes the requirement to write special routines

to handle invisible tool surface NURBS.

Figure 9-17 A) shows several cutters in the simulation domain (purple) with the tool surface NURBS shown

(green). B) Shows several angles of one cutter with both tool surface NURBS. In this figure, the sweep angle

of the tool surface NURBS is doubled for better visualisation of the curvature.

A) Simulation domain, multiple cutters (X2 tool surface
NURBS expression)

B) Single cutter from multiple angles (X2 tool
surface NURBS expression)

Foundation
plane

Workpiece Cutters
Tool surface

NURBS

Tool surface
NURBS

Cutter

Tool surface
NURBS

Figure 9-17 – Cutters and tool surface NURBS (x2 expression of new tool surface NURBS)

All hull facets are submitted to the NURBSSurface%TriIntersect algorithm (described in section 9.8.11)

for each Cutter NURBS, including the two newly formed tool surface NURBS. For each call, if an

intersection is found, a list of split Ray objects is returned.

187

All split Ray objects are assembled into a single list. This list is ordered so that the Ray objects run end to

end. Figure 9-18 below shows an example of the split Ray objects plotted in green over the sub mesh

region. The parent mesh shape is shown in light grey in the background.

Figure 9-18 – Split Ray objects overlaid on workpiece

It will often be the case that a split Ray falls almost exactly on a pre-existing mesh segment. This is because

the cutter must begin almost exactly where it last finished in order to preserve the continuity of the cut.

This creates a problem as the more exact the overlap, the more ambiguous it becomes as to which facet

the split Ray splits.

To resolve this issue, two steps are taken. Firstly, the triangle-triangle intersection algorithm will not report

an intersection for triangles that intersect on their edges. This causes the broader cutter/workpiece

intersection routine to fail to generate a Ray for that part of the intersection loop. Once all Rays are

generated, the gap between Rays is tested to make sure they join up, this gives the algorithm an

opportunity to detect the missing Ray. If a missing Ray is detected, the algorithm will create a small

perturbation in near by Nodes and repeat the intersection detection. This process will repeat until a fully

closed loop is formed or a recursion limit is reached.

188

 2D Meshing – Cut Face 9.7.3

Before the hull mesh can be split according to the split Rays generated in the previous step, a new surface

mesh must be produced to cap the void that would be exposed by removing part of the hull. This surface is

equal to the region of space occupied by both the Cutter tool surfaces and workpiece volume.

Although GiftWrap (the two dimensional mesher developed for this project described in section 9.9.1)

works in R3, it requires the calling function to guarantee all point and edge seeds passed to it are on the

same plane (the orientation of the plane is irrelevant). For this reason, the 3D intersection Rays must be

flattened.

The method used here takes advantage of the fact that all NURBS surfaces can be represented easily in a

2D parametric domain, and that all intersection mesh facets will lie on a NURBS surface.

A map is created in parametric space that contains all the adjacent Cutter NURBS surfaces in relation to

one-another. The edge Rays are aware of which NURBS surface they were generated on and are

subsequently mapped to the parametric domain with the appropriate offsets so that they maintain their

positions relative to one-another. Figure 9-19 below shows an example of this mapping, A) shows the

intersection Rays in 3D space. The green line indicates the transition between two NURBS surfaces. B)

shows the split rays mapped to the parametric domain. This is achieved using the NURBSSurface%GetUV

function discussed in section 9.8.4.

A) Real domain split Rays
B) Parametric domain split Rays and
Delaunay corner edge subdivisions

Rake face NURBS

Invisible tool surface NURBS (not
flank face)

Additional mesh constraints
added to preserve real-domain
change in angle between NURB
surfaces

D) Real mesh C) Parametric mesh

Figure 9-19 – Progression of cutter face mesh

Additional edge constraints are added at the interfaces between NURBS surfaces if they form a steep angle

to one another. This prevents the mesher from placing a facet that overlaps this fold, as such a facet would

create a web when mapped back to the real domain.

After a parametric domain mesh has been created as shown in C), the connectivity data is directly copied

and the mesh is rendered using the list of real coordinates (as they were before conversion to parametric

189

coordinates). This results in the final real mesh shown in D). This set of mesh facets is simply inserted in the

same list as the general hull facets.

 Significance Check 9.7.4

Once SplitMesh has reached this stage, it performs a check to make sure this cut should be processed.

SplitMesh will stop processing this Cutter and move to the next one, if:

 the Cutter was not in contact with the workpiece in the previous increment; and

 the cut face area is below some minimum threshold.

This check is performed to prevent SplitMesh subdividing the mesh for grazing intersections that

commonly occur when running the simulation in intermittent cutting mode. These intersections can be

processed, but they can unnecessarily increase the complexity of the wider mesh, and increase the risk of a

failed mesh.

 2D Meshing – Split Hull Facets 9.7.5

Next, the hull facets that are split by the intersection of the Cutter and hull must be meshed. These facets

are meshed individually due to the requirement of GiftWrap that all points are on one plane. During

splitting, an ordered list of closed loop split Rays are generated. Due to the way Triangle-Triangle

intersection testing works, Rays in this list are guaranteed to originate and terminate only on facet

boundaries or corners.

Figure 9-20, A) shows a group of facets, A through E, split by Rays 1 through 7.

C

A
B

4

1
2

3

D
5

6

C

A

B

E

D

A) Intersection Rays B) Facet edge seeds

7
E

C) Split facets (replacement facet meshes)D) Recombination of split facets

Figure 9-20 – Progression of hull facet meshing

190

Each of the facets in A) contains a different type of split that can occur, handled as described in table 9-3,

below.

Facet Ray(s) Features & special handling steps

A 1 Rays start on a point and end on an edge. A new node is added on the
edge, but the corner node can be shared.

B 2,3 More than one Ray. Nodes are added everywhere a Ray starts or ends.

C 4,5 One ray runs partially along an edge. The partially intersected edge is split
where the Ray starts, but the Ray itself is discarded to avoid an overlap.

D 5,6 One Ray runs partially along an edge and another runs entirely along an
edge. Although nothing disrupts the middle of this facet, it must still be
split because one of its edges were split as described when processing
facet C.

E 7 One Ray entirely on one edge. Despite being associated with a Ray, the
Ray starts and ends on pre-existing corners of this facet and therefore
nothing needs to be done, since the result of a split would be a facet
identical to the root facet.

Table 9-3 – Facet characteristics

191

All facets associated with a split Ray are submitted to the routine described in figure 9-21. Ray

deactivations in this routine are temporary until the next facet is checked.

No

Is rays empty?

No

Does rays contain at least one ray
bounded by a point not already in

this facet?

Yes

Let edges be list containing the
three edges of this facet. Activate

the side of each edge in edges that
faces into the facet

For each edge in edges

For each ray in rays

Do ray and edge share two
common nodes?

No

Does ray intersect edge?

Yes

 Let edge2 be a copy of edge.
 Let I be the intersection of edge and ray
 Change edge so that it ends on I
 Change edge2 so that it starts on I
 Add edge2 to edges

En
d

En
d

Submit active
edges to
GiftWrap

Activate both sides of active rays
Add active rays to edges

Do ray and edge share one
common node?

No

Deactivate
rayYes

Yes

Deactivate this facet

For each facet in facets

Let rays be a list of rays associated
with this facet

No

Yes

Does ray completely overlap a sub
segment of edge ?

 Let edge2 be a copy of edge.
 Change edge so that it ends on the nearest

end of ray to the start of edge.
 Change edge2 so that it starts on the nearest

end of ray to the end of edge2
 Add edge2 to edges

Is the length of edge near zero?

Merge edge
and ray

Is the length of edge2 near zero?

Merge edge2
and ray

No

Yes Yes

No

Yes

No

Figure 9-21 – Facet mesh procedure diagram

192

Figure 9-22 shows the state of the hull facet mesh up to this point. Although the hull is now split and the

interior cutter face intersection mesh is generated, the facets are not optimised for volume meshing. There

are needles, sharp changes in mesh density and unnecessarily non-Delaunay triangles.

Figure 9-22 – Result of hull splitting, where the highlighted elements are on the opposite side of the split to
non-highlighted elements

 Simplification I – Sweep 9.7.6

Sweep, so named after the similar tool in the Marc user interface, is a very simple routine that merges tight

clusters of nodes. Such clusters arise in a number of scenarios, usually as a result of the cutter splitting a

facet very near the tip of that facet. If not eliminated, these clusters can create a number of hazards, for

example, needle elements, point elements and inside-out elements, all of which are highly likely to result in

a failed mesh. Figure 9-23 shows an example of a node cluster before and after sweeping.

D) Cluster E) Cluster (after Sweeping)

Figure 9-23 – Facets before and after sweeping

193

Sweep will typically generate a new coordinate for the sweep node from an average of coordinates within

the cluster. An exception to this rule is that if the cluster contains one or more legacy nodes (nodes that

existed in the previous increment) then sweep will only use the legacy nodes to generate an average for the

new coordinate. This helps to preserve the current workpiece shape rather than performing actions which

may ‘dent’ or ‘pinch’ the external geometry when merging a cluster.

 Removal of Unwanted Hull Side 9.7.7

Sweep (described previously) and General Complexity Reduction (described next) are both simplification

strategies. It may seem odd therefore to remove the unwanted side between executing the simplification

routines. However this is done for the following important reasons:

 Sweep must run before the removal of the unwanted side because small clusters will often confuse

KeepKillWalker (the function used to ‘paint’ which sides to keep and which to remove) due to the

small and often overlapping facet edges that occur in clusters, thus causing it generate an

undesired result without failing; and

 General complexity reduction should run after the removal of the unwanted side because it will

have more freedom to make simplifications if not constrained by the chip side which will not be

present in the final mesh anyway.

As mentioned, KeepKillWalker is the name given to a function which paints facets as ‘keep’ or ‘kill’.

KeepKillWalker is a simple recursive function that follows the procedure shown in figure 9-24.

KeepKillWalker is seeded with one facet that will appear in the final mesh. This seed facet is selected

based on its nodes, if all of its nodes are shared by an element which is not marked as near the cutter. In

other words, an interface element that the new mesh will mate with.

2 (facet and other)

For each edge in facet

Has other already been marked as
keep? Yes

How many facets in hull share this
edge?

3
Finish KeepKillWalker End

No

facet
hull Start KeepKillWalker

other
hull KeepKillWalker

Mark facet as keep

Figure 9-24 – KeepKillWalker procedure diagram

194

This method works because the cutter face intersection mesh is inserted inside the hollow hull. Therefore,

the external edges of the cutter face mesh will always be shared by three facets, whereas every other edge

in the hull will only be shared by exactly two facets. This property of the cut plane mesh external boundary

edges is exploited to determine the side to keep by preventing KeepKillWalker from crossing edges

shared by three facets. Figure 9-25 shows a cross section of the hull showing the external hull facets, split

plane facets and edges that are shared by three facets.

External hull facets Split plane facets

Three facets share
this edge (running

into the plane)

Figure 9-25 – Hull cross-section showing internal cut face mesh facets

KeepKillWalker is called with the known ‘keep’ facet. Once it returns, all facets (excluding split plane

facets) not flagged as ‘keep’ are disabled. Figure 9-26 A) shows the facets marked for removal, and B)

shows the resulting mesh with the newly exposed cutter face facets highlighted.

A) Kill facets B) Chip side removed, exposing cutter face facets

Figure 9-26 – Hull facets A) before, and B) after, removal of unwanted side

195

 Simplification II – General Complexity Reduction 9.7.8

The success of TetMesh is never guaranteed. Some hull meshes are impossible to tetrahedralise, however,

it is NP-hard to determine before trying, whether or not a mesh will generate successfully. Although it is

not impossible for TetMesh to create a mesh of the raw hull facets generated up to this point, the chances

of success are drastically increased by first simplifying the mesh.

General complexity reduction attempts to reduce complexity by merging coplanar facets that share

collinear edges. General complexity reduction can easily identify candidates for simplification, but is

complicated by the large number of checks that must be performed to prevent a potential simplification

from breaking the mesh. Some of the challenges that can arise are as follows.

Firstly, general complexity reduction must detect the case where it is about to create a ‘fold over’ facet.

Figure 9-27 shows how this type of case can arise. Consider the four facets, A through D in A) in the figure.

The algorithm has identified that facets that share the red node, A, B and C are all coplanar. Furthermore

the lower edges of A and B are collinear. The common node is identified as a suitable candidate for the

simplification shown by the red arrow. However, as the figure shows, B would be eliminated (which is a

desired outcome), but C would fold over D. The combined area of C and D would also be partially

overlapped by A. In this scenario, the general complexity reduction algorithm caches the normal vector of

each facet (according to the global side definitions given in section 9.2.5). If the new direction vector is

opposite to the cached normal vector, then the facet (C) is eliminated as are any facets that share all of the

fold over facets points (D). In this example, only A would remain as shown in B) in the figure, as would one

orphaned point which is removed in a subsequent step.

Collinear edges

Proposed
simplification

A
B

C D

A

Orphaned
node

B) After proposed simplificationA) Before proposed simplification

Figure 9-27 – Mesh simplification that would lead to overlap

196

Simplifications that cause significant changes in external geometry are not allowed. In figure 9-28, every

external edge depicted in blue has a facet that extends into the plane. Figure 9-28 A) shows a proposed

simplification that would eliminate facets C and D, however, it would also significantly change the external

geometry (including the facets extending into the plane). To check if a simplification will significantly

change the external geometry, the new position of the common node (red) must be within COARSE of all

affected facets as they are in their pre-simplification state, measured along each facet’s normal vector.

Figure 9-28 B) however, shows a legal simplification. In this example, no external edges are disturbed.

A

B

C

D

Proposed
simplification

External edges

A

B

C

D

E

A) Illegal simplification due to significant
distortion of external edges

A

B

Collapsed
elements
removed

External edge
significantly distorted

A

B

E

Proposed
simplification

B) Legal simplification

>
CO
AR
SE > COARSE

Figure 9-28 – Facet simplification that would significantly change the external mesh shape

Nodes are free to move so long as they remain on the planes of all facets associated with the node. This

method is very robust at preserving the sharp corners of the mesh whilst still allowing the smoother edges

and interior to be simplified.

197

Figure 9-29 shows the hull facets before and after general complexity reduction.

A) Before general complexity reduction B) After general complexity reduction

Figure 9-29 – Hull facets A) before, and B) after, general complexity reduction

 Mesh Optimisation 9.7.9

The gift wrapping algorithm used within TetMesh will naturally try to generate Delaunay elements and

Delaunay facets. However, since the algorithm is being used in this work to generate a sub mesh that mates

with a parent mesh, it must respect the boundaries of the parent mesh.

Conflicts can occur when the gift wrapping algorithm attempts to generate a tetrahedral with a facet that

conflicts with another facet occupying the same space. Mesh optimisation attempts to resolve this problem

with two strategies.

Prevention - Before meshing, all facets are checked to see if they are free, or if they mate with the

surrounding mesh. Those that are free are subjected to an edge flip algorithm. The edge flip algorithm

checks all pairs of facets that share an edge, to see if they are Delaunay. Those that are not, are replaced

with the same quadrilateral, but split along the counter-segment instead (making them Delaunay). There

are some exceptions where it is not possible to use the counter-segment, for example, pairs of facets that

form concave quadrilaterals, however these are always Delaunay anyway.

198

Figure 9-30, A) shows the state of the sub-mesh before edge flipping. The particular triangulation of

quadrilateral facet pairs depends entirely on which simplifications were made in the previous step.

Simplifications are considered even if they would result in non-Delaunay facets. After the edge flipping

routine, non-Delaunay facets are adjusted where possible producing the mesh seen in B).

A) Before edge flipping (non-Delaunay) B) After edge flipping (Delaunay)

Figure 9-30 – Hull facets before and after edge flipping (red dot indicates one example of a flipped edge)

Restriction - Restriction uses a list of illegal segments, to flag certain segments that TetMesh maybe

tempted to create, that should not be present in the final volume mesh.

Figure 9-31 shows A) shows the external hull triangle that must be tetrahedralised. TetMesh identifies as

the best candidate to complete the tetrahedral (see section 9.9.2 on TetMesh for an explanation of how

this point is selected).

y

x

z

p1

A) Facet to tetrahedralise B) Delaunay tetrahedralisation C) Forced tetrahedralisation

p2

p1p1

Figure 9-31 – Delaunay segment vs. interface segment conflict

 would generate a tetrahedral that has four Delaunay facets, however, as part B) shows, one of the

facets conflicts with a pre-existing hull segment. During tetrahedral meshing, if TetMesh attempts to make

a tetrahedral that contains an illegal segment, then the next best point will be considered to avoid creating

199

the illegal counter-segment. This is illustrated in C), where the illegal segment is shown in red. The presence

of the illegal segment forces the algorithm to consider - the next best point, and so on to until the

tetrahedral is resolved, or the number of points has been exhausted.

There are two types of illegal segments, mandatory and exclusive. Mandatory illegal segments must not

appear in the mesh under any circumstances. These are the segments that would prevent the sub mesh

from mating perfectly with the parent mesh. Exclusive illegal segments are not preferred by TetMesh, but

will be considered as a last resort providing their counter-segment does not already exist in the mesh.

These are the external segments that may or may not share a glue contact with the workpiece bulk.

All counter-segments of segments that share two coplanar facets are illegal. Counter-segments, of

segments that exist in the non-remeshed portion of the workpiece, are mandatory illegal segments.

Figure 9-32 shows an example of mandatory illegal counter segments (light blue) overlaid on top the

mating facets (blue) of the sub mesh hull facets. There are three mandatory illegal counter segments in

total in this mesh. The counter-segments of all non-mating segments that share coplanar facets are

exclusive illegal segments (not-shown). The counter-segments of non-coplanar facets are extremely

unlikely to form and do not need to be registered as an illegal segment.

Mating facets (blue)

Mandatory
illegal

segments

Material removed
from this area

Facets glued to
workpiece bulk (green)

Free
facets

Figure 9-32 – Illegal segments overlaid on immovable mating facets

200

Restriction is the least desirable control, because once a tetrahedron has been forced in this way, the mesh

becomes unstable and the probability of failure is slightly increased. The presence of the non-Delaunay

element, may nucleate other non-Delaunay elements around it. Furthermore, it should be noted that the

alternative shown in figure 9-31 is generous. Many real-world next-best points create distorted

tetrahedrons. For this reason, the mesher creates as many Delaunay elements as possible before it resorts

to generating non-Delaunay elements.

 Facet Siding 9.7.10

The final step before submitting the hull facets to TetMesh is to flag free sides. Facets have two sides, and

all hull facets defined up to this point have just one free side (the internal side). TetMesh will only create

tetrahedrals on free sides. All internal facets that may be created by the formation of new tetrahedrals will

have their side which faces away from the new tetrahedral, set to free.

Siding of facets is critical for TetMesh to know which side of the hull to start constructing the tetrahedral

mesh on. Siding works by first finding any facet that has a definite obvious external and internal side. Once

this nucleating facet is found, SideWalker traverses all facets in the hull, assigning their free side relative to

the last facet side assigned. This process uses the common side definitions as defined in section 9.2.5.

The nucleating facet is the first hull facet which has one side that can see at least one other facet and

another side that can see no other facets. This test must be prepared to iterate through all potential

nucleating hull facets as concave hulls can contain external facet sides that can see other hull facets. This is

a very expensive test which is performed by testing a Ray that originates at the centre of the potential

nucleating facet, against every other facet in the hull, using Ray%TriIntersect.

Once the nucleating facet is found, its free side is set according to the convention established in section

9.2.5, where the free side is the one that can see any other facet. This facet is passed to the recursive

function, SideWalker which propagates the siding throughout the hull.

Facets are recorded in terms of their corner point IDs. SideWalker uses the rule that, if an adjacent facet

defines the common edge in the same order as the root facet (clockwise or anti-clockwise) then the free

side of the adjacent facet is opposite to that of the root facet. Figure 9-33 shows two adjacent triangles,

and . In case A), the node ID loop definitions for each facet specify the shared edge in the same order.

Using the right hand rule, the reader can observe that the normal directions of each facet oppose one

another. Therefore, whichever side facet has free, facet must have the opposing side free. In the second

case B), each facet has an opposing definition for the common edge. The normal direction of these facets is

the same, therefore, whichever side has free, has the same side free.

1

2

3
2

1

3

35

21

16

49

i
j

i: 49, 35, 16

j: 35, 16, 21

1

2

3
1

2

3

35

21

16

49

i
j

i: 49, 35, 16

j: 16, 35, 21

B) Same side caseA) Opposite side case

Loop definitions: Loop definitions:

Figure 9-33 – Facet siding propagation rule

201

Figure 9-34 shows the procedural flow diagram of SideWalker.

For each adjacent other
facet in hull

Does other’s definition of the
common edge run in the same

direction (clockwise or anti-
clockwise) as facet’s definition?

Yes
Finish SideWalker End

seedFacet
freeSide

hull
Start SideWalker

other
newSide

hull
SideWalker

Has other already been assigned a
free side?

Let newSide equal freeSide
Let newSide be the opposite

of freeSide

No

No

Yes

Mark freeSide side of facet as
free

Figure 9-34 – SideWalker procedure diagram

 3D Volume Meshing 9.7.11

After identification, simplification, optimisation, siding of the facets and the definition of certain constraints

(such as the illegal segments list) the facet list is passed to TetMesh. TetMesh is a very complex function

based on the gift wrapping tetrahedral meshing algorithm. TetMesh is discussed in detail in section 9.9.2.

TetMesh returns a list of tetrahedrals and points. These lists are parsed by SplitMesh, such that all active

tetrahedrals returned are appended to a newElements list as Element type objects. Likewise, all points

referenced by at least one active tetrahedral are added to a newNodes list as Node type objects.

SplitMesh delays appending these new Elements and Nodes to elementIndex and nodeIndex until all

Cutters have been processed. This is because doing so would require the reallocation of nodeIndex and

elementIndex. Node types contain an allocatable array of element IDs that are associated with the Node.

Reallocation of the nodeIndex causes all allocatable arrays within Nodes to become unallocated. The

elements at node caches are used extensively by SplitMesh and functions SplitMesh calls. To update the

nodeIndex after every Cutter would require updating these internal caches, adding unnecessary

202

computational burden. It is safe to delay adding new Elements and Nodes to the master indexes because of

the assumption that if a Node or Element is near one Cutter, it is not near another.

 Force Recovery and Allocation 9.7.12

In Chapter Seven, cutting forces at different depths of cut were measured directly using a force

dynamometer. The data gathered was used to produce a cutting force prediction model that allows cutter

rake and feed force to be extracted from a known depth of cut and width of cut. Interestingly, that chapter

also found that velocity has very little effect on cutting forces within the range of spindle speeds and

depths of cut used during the real cutting operation. This section deals with implementing the force model

(developed in Chapter Seven) in code for use in the simulation.

Figure 9-35, A) below shows a set of intersection Rays overlaid in purple on the cutter geometry. These

intersection Rays are the same Rays generated earlier during mesh splitting. All Rays are projected to the

Cutter’s local Feed-Radial plane as shown in red, in B).

A) Intersection rays overlaid on cutter B) Intersection Rays projected to
Radial-Feed plane

feed

rake

radial

fe
ed

radial

Figure 9-35 – Intersection ray projection for force recovery

Projection works by updating the split Ray boundary coordinates with their equivalent radial and feed

components, relative to the Cutter’s local coordinate system. Figure 9-36 shows an example local

coordinate system for a Cutter. The red, green and blue vectors denote the Cutter’s local radial, rake and

feed coordinate system. is some Ray boundary point in the global coordinate system that must be

expressed in terms of the Cutter’s local rake-feed plane, and . Projection this results in a vector to .

feed

p

Global coordinate
systemx

y

z

R

Rake-Radial plane
F

p’
ra

dial

o

rake

Figure 9-36 – Intersection point projection in terms of local feed-radial plane

203

First, the vector, from the origin, , to is calculated according to equation 9-9.

 (9-9)

Next, the radial and feed components, and , are calculated according to equations 9-10 and 9-11

respectively, where ̂ and ̂ are the radial and feed unit direction vectors respectively.

 ̂ (9-10)

 ̂ (9-11)

Figure 9-37 shows the result of projection to the cutters local radial-feed plane. The area below the

projected intersection Rays is subdivided into vertical strips. The width, , and height, , of each strip is fed

into the constitutive equations shown in equations 9-12 and 9-13 to recover the rake and feed forces.

Subdivided intersection rays on
Radial-Feed plane

w
feed

radial

h

Figure 9-37 – Discretised strips

 (
) (9-12)

 (
) (9-13)

Equations 9-12 and 9-13, for the rake and feed cutting loads are specific to the cutting system characterised

in Chapter Seven. These equations are passed to the Fortran program via the configuration file lines shown

as follows.

Fr = V1 * (1.758E+08 * V2^7.103E-01)
Ff = V1 * (1.004E+07 * V2^4.228E-01)

These textual representations of equations 9-12 and 9-13 respectively are compiled to a list of instructions

using the Compile function once per simulation. The compiled equations are evaluated during simulation

by the Evaluate function. The keywords V1 and V2 are special designations interpreted by Evaluate.

Whenever a call to Evaluate is made, V1 and V2 are substituted with width, , and height, , respectively,

as defined in figure 9-37.

The sum of forces for each strip is computed and stored in the first three degrees of freedom in the dp

property of the Cutter. This value is later recovered from the post file when checking the cutter loads.

204

To calculate the Cutter moment, the centre of area of each strip, shown in figure 9-38 A), is projected to

the front face of the Cutter by generating a Ray that originates from the centre of area and travels in the

direction of the cutters affine transform (provided by Marc to describe the change in position of the

Cutter).

Each infinite Ray is tested against the front face of the Cutter using the NURBSSurface%RayIntersect

method described in section 9.8.10. A vector is created from the Cutter’s control node to the intersection

point, as shown in blue, in B).

A) Centres of area viewed from the
front

B) Centres of area viewed from
above after projection to front face.

Force vectors overlaid in red, and
displacement vectors overlaid in

blue

Cutter control
node

feed

radial

rake

radial

Figure 9-38 – Centres of area for calculating cutter moment

The cross products of the force vectors calculated in the previous step, and shown in red in figure 9-38 B)

and the displacement vectors is taken for each strip. The sum of which is applied to degrees of freedom 4

through 6 in the dp property of the Cutter.

Next, force recovery must assign a reaction load to the workpiece elements. Fortunately, this is a much

simpler procedure. Loads are assigned to elements via Marc’s FORCEM user subroutine. This subroutine

assigns element loads based on a pressure and unit direction vector.

The load is divided based on the crude approximation that all cut face elements will more or less share the

cutting load. This is of course not exactly how workpiece loads are applied in reality. However, it is regarded

as a fair simplification since, the main loads of interest are those on the cutter and, the workpiece does not

undergo any significant deformation other than the removal of volume.

The pressure and direction vector must be calculated. The first step is to sum the volume of all F_CutFace

elements, , according to the formulation given in section 9.8.1. Pressure, , is thus resolved from

equation 9-14, where is the Cutter force vector (degrees of freedom 1 through 3 in Cutter%dp).

| |

 (9-14)

The unit direction vector is simply ̂. and ̂ for a given cutter are stored on all F_CutFace elements near

that cutter. These loads are distributed later when Marc calls FORCEM.

205

 Low-Level Functions and Subroutines 9.8
This section describes the mathematical basis underpinning the bespoke functions and subroutines written

to solve certain mathematical problems encountered during the higher level functions of the wider Fortran

program.

 Volume of a Tetrahedron 9.8.1

Tetrahedrons are the only simplex used to represent the volume of material. The difference between the

volume of the pre-cut and post-cut mesh is used to calculate the volume of material removed, and the

elemental cutting pressures.

The volume, , of an -dimension simplex, with vertices can be recovered from the Cayley-

Menger determinant as shown in equation 9-15, where is the distance between vertices and . A proof

for this formulation is given in literature (Blumenthal, 1970).

[

]

 (9-15)

Figure 9-39 shows a schematic of a Marc type 157 element, represented by four nodal points, , ,

and , where is the distance between node points and . Equation 9-15 can be used to derive

equation 9-16, from which the volume of the element, , can be recovered.

p1

p2

p3

p4

d 1
4

d34

d
13 d

2
3

d
12

d24

Figure 9-39 – Tetrahedral element

[

]

 (9-16)

206

 Ray Construction 9.8.2

Ray objects can be either infinite (mathematical rays) or finite (mathematical segments). They contain

properties Ray%orign, and Ray%unitDirection. For finite Rays, a Ray%d value is also prescribed that

describes the distance along the Ray to some significant point. Rays are typically constructed from a call to

Ray%Make which takes a start point and end point (or any point defining the direction). Ray parameters are

defined according to equations 9-17, 9-18 and 9-19, where is the start point, is the end point, is the

origin of the Ray, is the distance along the direction vector and ̂ is the direction vector (with magnitude

1).

 (9-17)

 | | (9-18)

 ̂

 (9-19)

 NURBS Surface Formula (NURBSSurface%S, CDBR) 9.8.3

Rigid body surfaces in Marc are represented by Non-Uniform Rational B-Spline Surfaces (NURBS Surfaces).

NURBS Surfaces are a two dimensional extension of NURBS curves. Their strength lies in their ability to

represent smooth and varied surface curvature, but they can easily be used to represent flat surfaces.

A NURBS surface is defined by a series of weighted control points and knot vectors. Control points can be

thought of as magnets that attract the path of the NURBS, knot vectors determine the limits of effect for

each control point and weights control the intensity of the attraction.

Like general NURBS curves, the coordinates of a given point on a NURBS surface are calculated using basis

functions. Basis functions can have an order depending on the required complexity of curves or surfaces.

Points on the NURBS surface are calculated by NURBSSurface%S, which is based on equation 9-20, where

and are parametric points on a grid that fits within the upper and lower bounds of the knot vectors

and , for the and axes respectively. is the basis function, is the weight for the homogeneous

control point coordinate, . and are the degree in the and axes respectively.

∑ ∑

∑ ∑

 (9-20)

The basis functions are blended using equations 9-21 and 9-22 which are slightly adapted versions of the

Cox-de Boor recursion formula. These functions are processed by the CDBR function.

 (9-21)

 {

 (9-22)

207

Since there is significant overlap within the CDBR recursion function, a cache is used to store the results of

the recursion function. Whenever the recursion function is called, the cache is checked, if a value is

present, that value is returned, otherwise the recursion function will evaluate as normal and record its

result in the cache before returning a value.

 Reverse NURBS Surface Formula (NURBSSurface%GetUV) 9.8.4

Occasionally the parametric coordinates of a known real point on a NURBS surface are required, for

example, when meshing the NURBS surfaces of cutters during hull splitting in SplitMesh.

As can be seen in the previous section, the recursive nature of the NURBS equations mean that parametric

coordinates are not easily recovered from real coordinates. A converging trial and error based method is

used in this work. The method used converges extremely quickly (one increment for flat NURBS) due to the

proportional approach used to adjust the parametric coordinate in search of the real coordinate.

In this section, a bar is used to differentiate parametric coordinates from their equivalent real coordinates,

equation 9-23 shows an example, where is the NURBS surface function described in the previous section.

 (9-23)

Let be some real coordinate known to exist approximately on the surface of a NURBS surface. The

parametric coordinate, , is to be found, such that when fed into the NURBS Equation described in section

9.8.3 previously, yield a coordinate, which is less than SWEEP_NURBS away from .

Let be a set of real points on the NURBS surface generated from a 2 X 2 array of parametric coordinates,

 , between the maximum and minimum and values, using the recommended step size prescribed by

Marc. This step size changes depending on the complexity of the NURBS based on some internal formula

within Marc.

Let , with equivalent parametric coordinate , be the closest coordinate to . Let be the

real vector from to . Let and be Rays, both centred around , representing some small

perturbation in the parametric and axes respectively. Figure 9-40 below, shows and after

conversion to real coordinates.

u

v

x

y

z

Vδu

n

p

n

Vnp

B) Real result

p

Vδv

Vδu

Vδv

Vnp

A) Parametric perturbation

Figure 9-40 – Parametric perturbation and real result

208

In the figure, the unknown vector can be expressed in terms of a parametric error, and as shown

in equation 9-24.

 (9-24)

Likewise, the real equivalent is defined as shown in equation 9-25, where is some very small error

introduced to make the equivalence solvable in the real domain and is the cross product of real

vectors as shown in equation 9-26.

 ̂ (9-25)

 (9-26)

This relationship is shown in figure 9-41.

n

Vδv Vδu
Vnorm

V np

d
v V

δv

duVδu

p

x

y

z

Figure 9-41 – Real vectors to through , and

Equation 9-14 can be expanded to form the matrix equation shown in equation 9-27.

[

] [

] [

 ̂

 ̂

 ̂

]

 (9-27)

After solving equation 9-27, and can be fed into equation 9-24 to recover which can be used to

determine from , and thus by using the NURBS surface equation presented in the previous section.

The convergence error is computed according to equation 9-28.

 | | (9-28)

If is less than SWEEP_NURBS, the function returns ̅, else the recursive portion of the routine is

repeated up to twenty times, after which the code will raise a divergence exception, and execution will

cease. Each time the routine repeats, takes the value of .

209

 Circumscribed Triangle in R3 (Circumcircle) 9.8.5

During 2D meshing, it is necessary to determine whether or not a triangle in R3 is Delaunay or not. A

Delaunay triangle is a triangle whose circumcentre contains no other points in the mesh. A strongly-

Delaunay triangle only has its own points on the circumcircle radius and a weakly Delaunay triangle may

contain other mesh points on the circumcircle radius.

A circumscribed triangle, as shown in figure 9-42, is characterised by having all points at an equal radius

from the circumcentre. All un-collapsed triangles have a circumcentre and radius.

C

p1

p2

p3

r

Figure 9-42 – Circumscribed triangle

Calculating the circumcentre and radius of a triangle in R3 is a straightforward process. Firstly the normal

vector, , of the plane containing the triangle is determined from the cross product of edge vectors and

 , as shown in equation 9-31, where the edge vectors are given in equations 9-29 and 9-30, where ,

& are the triangle corner points.

 (9-29)

 (9-30)

 (9-31)

Next, the vector to the centre of the circumcircle from , , can be computed from equation 9-32.

 | |

 | |

 | |
 (9-32)

Finally the centre coordinate, , and radius, , can be calculated from equations 9-33 and 9-34

respectively.

 (9-33)

 | | (9-34)

210

 Circumscribed Tetrahedron (Circumsphere) 9.8.6

Calculating the centre coordinate and radius of a circumscribed tetrahedron is a little more challenging

than its triangular counterpart. The method used in this work is based on that described by Weisstein,

2017, where the centre, , of a circumscribed tetrahedron can be found from equation 9-35, where , ,

 and are the tetrahedron vertices.

|

|

|

|

 (9-35)

Solving for begins by expanding the determinate according to the form given in equation 9-36.

 (

) () (9-36)

This expansion yields expressions for, , , , and as shown in equations 9-37, 9-38, 9-39, 9-40 and

9-41.

 ||

|| (9-37)

 |
|

|
| (9-38)

 |
|

|
| (9-39)

 |
|

|
| (9-40)

 |
|

|
| (9-41)

211

Completing the square yields equation 9-42.

 (

)

 (

)

 (

)

 (9-42)

Equation 9-42 is the equation of the circumsphere with the form given in equation 9-43.

 ()

 (9-43)

Therefore, the circumcentre coordinates are given in equation 9-44 as follows.

 (9-44)

Finally, the radius can be determined from equation 9-45.

√

 | |

(9-45)

 Ray-Ray Intersection (Ray%RayIntersect) 9.8.7

The intersection between two Rays in 3D space is a surprisingly difficult problem compared to its 2D

counterpart. This is largely due to the property of 3D space that lines can glance one another forming an

intersection in all practical purposes, but differing by some floating point error sufficient to suggest they do

not intersect.

Figure 9-43 shows two finite Rays, 1 and 2, in R3. The Rays make a glancing pass, separated at their mutual

closest point by the perpendicular vector, , indicated in green. If the magnitude of is sufficiently small,

the infinite Rays can be said to have intersected.

x

y

z

Figure 9-43 – Ray-Ray intersection diagram showing perpendicular vector

212

If the two Rays are parallel, this function terminates early, indicating that there is no single intersection

point. For all other cases, the shortest distance between the two Rays, is a vector, , that forms a right

angle to both Rays. The direction of this vector is given by the cross product of the Ray direction vectors as

shown in equation 9-46.

 ̂
 ̂ ̂

| ̂ ̂ |
 (9-46)

 can be expressed in terms of its length, the error, , and its unit direction ̂ as shown in equation 9-47.

 ̂ (9-47)

In 9-43, it can be observed that the equivalence given in equation 9-48 is true.

 ̂

 ̂ ̂ ̂ (9-48)

Equation 9-48 can be rearranged to give equation 9-49, which can be solved to give the two Ray

magnitudes corresponding to their respective nearest points to one another, and , the error or distance

between the two points.

[

]

 [

 ̂
 ̂

 ̂

]

[

 ̂ ̂ ̂
 ̂ ̂ ̂

 ̂ ̂ ̂

]

 (9-49)

If | | > EPSILON (or SWEEP in some cases depending on the desired accuracy of the calling function) then the

Rays do not intersect and the function returns False.

Finally the values along each Ray can be tested against their limits and the appropriate result returned

according to equation 9-50.

{

(9-50)

213

 Ray-Triangle Intersection (Ray%TriIntersect) 9.8.8

Ray triangle intersection testing is used in a variety of contexts, for example, during visibility testing in

TetMesh (9.9.2), NURBSSurface%RayIntersect (9.8.10) and facet siding during SplitMesh (9.7.10).

The algorithm developed for this program can be used in several modes. Its principle function is to

determine whether or not a finite Ray intersects a triangle and return the intersection coordinate and Ray d

value. Ray%TriIntersect can be made to work in infinite Ray mode and in which case will return True if

the Ray is on target, even if that Ray does not pass through the triangle.

Ray%TriIntersect is based on a modified fast intersection detection algorithm developed by Moller and

Trumbore, 1998, in which triangular facets are used to represent surfaces. Aside from the high

performance of their algorithm, it is not sensitive to the sidedness of the triangle like other algorithms.

Points on a triangle, , as a function of the barycentric coordinates & are given by equation 9-51, where

 , and are the corner points of the triangle, and where and , must satisfy the criteria given in

equations 9-52 and 9-53.

 (9-51)

 (9-52)

 (9-53)

A Ray is defined by its origin, , unit direction, ̂, and direction magnitude, . The intersection point

between a Ray and triangle is therefore given by equation 9-54, where is some distance along the

infinite Ray.

 ̂ (9-54)

Equation 9-54 can be rearranged to give equation 9-55, Where & are the triangle edge vectors given

in equations 9-56 and 9-57 respectively.

[̂] [

] (9-55)

 (9-56)

 (9-57)

214

Before this formulation can be applied, the parallel case must be ruled out in which the Ray is parallel with

the plane of the triangle. This is done by taking the cross product of edge vectors to find a plane normal

vector, , as shown in equation 9-58.

 (9-58)

If the Ray is parallel to the triangle plane, then the angle between this normal vector and the unit direction,

 ̂, of the Ray will be approximately 90 degrees. The angle, , is found according to the dot product

relationship given in equation 9-59.

 ̂

| || ̂|
 (9-59)

The parallel relationship can be established without solving for , since as approaches 90 degrees,

approaches zero. Thus, the condition given in equation 9-60 can be used to determine if the Ray is parallel

to the plane of the triangle.

{
 | |

(9-60)

If intersection is possible according to equation 9-60 then the matrix equation 9-55 is solved, yielding ,

and . To make sure that the intersection point is within the boundary of the triangle, and are checked

against the criteria given in equations 9-52 and 9-53.

When called in infinite ray mode, Ray%TriIntersect terminates at this point and returns the result of the

boundary check. However, if intersection of the finite Ray is to be determined, must be tested against

the criteria given in equations 9-61 and to make sure it lies on the finite Ray.

{

(9-61)

215

 Triangle-Triangle Intersection (TriTriIntersect) 9.8.9

Triangle-Triangle intersection is used by the NURBSSurface%TriIntersect intersection algorithm given in

section 9.8.11. Triangle-Triangle intersection takes as its inputs, two triangles defined by their corner

coordinates, and outputs a logical value, where True indicates the two triangles intersect. If an intersection

occurs, the function also outputs the finite intersection Ray.

Triangle-Triangle intersection detection is performed in two steps, firstly, by finding the infinite intersection

Ray, , between the two triangles, and secondly, by generating a collinear finite intersection Ray, ’, by

finding the boundaries of intersection, limited at each end by the most restrictive triangle.

Before intersection testing, the coplanar case must be ruled out. This can be done efficiently by calculating

the angle between the triangle normal vectors, and , according to equation 9-62, where and

are calculated for triangles 1 and 2 respectively, according to equation 9-63.

| || |
 (9-62)

 (9-63)

Edge vectors for each triangle, and are calculated according to equations 9-64 and 9-65 respectively,

where , and are the corner points.

 (9-64)

 (9-65)

As approaches 90 degrees, approaches 0. Thus, the condition given in equation 9-66 can be used to

determine if the triangles are coplanar.

{
 | |

(9-66)

If no finite intersection is possible, the function simply returns False at this point. Determining the

direction vector of the infinite intersection Ray, , is performed by taking the cross product of the

normal vectors of each triangle as shown in equation 9-67.

 (9-67)

The origin of , (simply any point on) must be found. This is done by constructing two spur Rays, and

 , one for each triangle, coplanar with their respective triangles.

The origin of is (any known point on the triangle will suffice), and the direction, is the cross product

of and the triangle normal vector, , as shown in equation 9-68.

 (9-68)

216

Both spur Rays intersect , but do not necessarily intersect one another, however, since both spur Rays are

perpendicular to , their closest points to one another are both on . Therefore, either point on can be

determined according to Ray%RayIntersect described in section 9.8.7. By testing an intersection between

 and , two
 values will be returned. Either

 value can be used to determine an origin for , , for

example, as shown in equation 9-69.

 ̂ (9-69)

The next phase is to find the finite intersection Ray, from . Figure 9-44 shows some triangle intersection

examples. This figure omits the case where one or both triangles do not intersect at all. A) shows two

triangles that both intersect in the portions shaded blue. However, there is no overlap between the blue

spans, and so no Triangle-Triangle intersection. B) shows an example where (red) is bounded partially by

one triangle and partially by the other, and finally C) shows an example where is fully bounded by just

one triangle.

A) Fully separate intersection B) Partial intersection C) Full intersection

No triangle intersection
Single triangle intersection
Dual triangle intersection (only this portion is desired)

Origin of infinite
intersection ray (can be
external to all triangles)

Triangle-Triangle
Intersection ray

oI oI oI

oI+∞DI oI+∞DIoI+∞DI

Figure 9-44 – Triangle-Triangle intersection types

Figure 9-45 defines two intersecting triangles, and . The portion of that intersects each triangle is

defined by and for triangles and .

j

i

d
i,min

d
i,max (d

I,max)

d
j,max

d
j,min (d

I,min)

oI

oI+∞DI

Figure 9-45 – Triangle-Triangle intersection defined as a series of intersection ray values

217

For each triangle, and can be determined by creating finite Rays for each edge on each triangle

and testing them against using Ray%RayIntersect described earlier in section 9.8.7. For all Ray pairs that

intersect, a record is kept of the minimum and maximum values of along , returned by

Ray%RayIntersect, and respectively. In all cases, at least one edge Ray won’t intersect . In

some cases, two or three edge Rays won’t intersect , in those cases there is no triangle-triangle

intersection.

Once and value pairs have been found for each triangle, the maximum of minimum values is

selected as the final minimum, , and likewise, the minimum of maximum values is selected as the

final maximum, , as shown in equations 9-70 and 9-71 respectively.

 {

 (9-70)

 {

 (9-71)

Finally, the finite intersection Ray, is created according to equations 9-72, 9-73 and 9-74.

 ̂ ̂ (9-72)

 (9-73)

 (9-74)

The finite intersection Ray has a field called boundFlags(2). Offsets one and two in this array refer to the

first and second triangles passed to this function respectively. Each offset in boundFlags can store any

combination of the flags RF_Default, RF_Start, RF_End. RF_Default is the default state. For each triangle,

RF_Start and RF_End can be used (and combined) to signal that the Ray starts or ends on the respective

triangle.

For example, the following code signals that testRay has an origin that is on an edge of triangle 1, and an

end point on an edge of triangle 2.

testRay%boundFlags(1) = RF_Start !Discrete NURBS triangle
testRay%boundFlags(2) = RF_End !Mesh facet

This information is used in SplitMesh to determine which ends of which split Rays to use to subdivide hull

facets. SplitMesh always passes a NURBS triangle in the first argument and a mesh triangle in the second.

 Ray-NURBS Intersection (NURBSSurface%RayIntersect) 9.8.10

NURBSSurface%RayIntersect is an extension of Ray%TriIntersect, with some additional features to

improve the accuracy of the intersection coordinate.

Figure 9-46 A) shows an intersection between a Ray and curved NURBS surface. Determining the

intersection coordinate works by first subdividing the NURBS surface into smaller triangles as shown in B).

Marc recommends subdivision values based on some unknown internal algorithm. The subdivision values

typically increase as the curvature of a NURBS surface increases. These recommended subdivision values

218

are used to create triangles that approximate the NURBS surface as shown in figure 9-46, B). By default, all

the triangle points required for this construction are cached in the NURBSSurface%surfaceGrid property.

A) Ray-NURBS surface
intersection

NURBS Surface

Ray

B) NURBS surface
subdivisions

Intersected
triangle

n=4

n=1

Figure 9-46 – Ray-NURBS surface intersection

Each of these triangles is passed in turn to Ray%TriIntersect discussed previously in section 9.8.8. Since

Rays can penetrate NURBS surfaces multiple times (due to the curved nature of NURBS surfaces), only the

smallest value along the intersection test Ray is returned.

As with Ray%TriIntersect, NURBSSurface%RayIntersect also supports infinite Ray and finite Ray modes.

When operating in finite Ray mode, this function must correct for discretisation error. Figure 9-47 shows an

intersection between a Ray and NURBS surface viewed from the side.

Analytical NURBS
surface

Discrete surface
triangulation

Ray

error

Infinite ray
intersection point

Figure 9-47 – Ray-NURBS intersection discretisation error

As the figure shows, the Ray penetrates the NURBS surface but ends somewhere in between the NURBS

surface and discrete triangle surface. With no correction, this function would report no intersection, even

though one has occurred.

If the error (the distance between the end of the finite Ray and the infinite Ray intersection point) is less

than the maximum edge length of the discrete triangle, the algorithm will proceed to a refinement step.

To perform the refinement, the infinite Ray intersection point is mapped to the parametric NURBS surface

domain using the NURBSSurface%GetUV function described in section 9.8.4. Points are generated around

the parametric coordinate, such that four slightly overlapping triangles can be created between them as

shown in figure 9-48 A), where the point in red is the parametric infinite Ray intersection point.

219

h

A) Parametric refinement triangles B) Refinement triangles mapped
back to real domain

Figure 9-48 – Refinement triangles (one of which highlighted in blue)

These triangles are then mapped back to the real domain as shown in figure 9-48 B), using the NURBS

equation described in section 9.8.3. The initial Ray is then tested against each of these triangles until a

suitable intersection point is found.

If the distance between the new intersection and this intersection is greater than SWEEP_NURBS, this

process is repeated, up to three times, with gradually decreasing triangle sizes.

A demonstration of the refinement algorithm was developed in Python and plotted using Matplotlib as

shown in figure 9-49.

Parametric
representation

Discrete
representation of

NURBS surface

z
ax

is

y axis (
parametric

 v axis)

x axis (parametric u axis)

Refinement triangles of
decreasing size, yellow >

orange > red

Ray

Figure 9-49 – Relationship between parametric NURBS coordinates and real coordinates, as plotted in the
same coordinate system

220

 Triangle-NURBS Intersection (NURBSSurface%TriIntersect) 9.8.11

NURBSSurface%TriIntersect is a simple extension of TriTriIntersect that returns a set of Rays

representing the intersection between a triangle and a NURBS surface. Unlike the

NURBSSurface%RayIntersect method, NURBSSurface%TriIntersect does not refine the discretisation of

the NURBS surface any greater than the base subdivision values recommended by Marc. This choice is

made to reduce the number of intersection Rays created and to reduce the computational burden of

intersection testing.

Figure 9-50 A) shows the intersection of a triangle and NURBS surface. This NURBS surface is discretised

according to the recommended subdivision values provided by Marc, as shown in B). Every discrete triangle

generated is tested against the test triangle using TriTriIntersect described previously in section 9.8.9. If

an intersection is found, the intersection Ray will be added to a list. Once all combinations have been

tested, the complete list of intersection Rays, shown in red in C) and D), are returned to the calling

function.

3

A) Triangle relative to NURBS surface

NURBS Surface Test triangle

B) NURBS surface subdivisions

C) Intersection rays

x

y

z

D) Intersection rays (X3 scale)

True NURBS surface
curvature

Discrete set of
rays

n=4

n=1

1

2

4

Figure 9-50 – Progression of Triangle-NURBS intersection testing

221

 High-Level Functions and Subroutines 9.9
This section describes the higher level subroutines developed for this work. The subroutines discussed in

this section are complex and it does not benefit the reader to examine the minutia of how they work

exactly, therefore this section focuses on the broad principle of how each function works.

 Two-Dimensional Meshing (GiftWrap) 9.9.1

GiftWrap, so named after the triangular meshing algorithm of the same name is responsible for generating

two dimensional meshes during the hull construction phase after the hull has been split. Two dimensional

meshes are required to mesh the region of space occupied by both the cutter and workpiece during an

intersection. They are also required to replace intersected external workpiece facets with a facet set that

conforms to the cutter geometry.

‘Gift wrapping’ is one of several methods used in literature to create two-dimensional meshes. To

understand why this method is used, it is helpful to consider its main alternative, which is the ‘point

insertion method’. The gift wrapping method as described by Shewchuk, 2002, and point insertion methods

are the most widely discussed methods in literature. Both methods have many variations and

optimisations, but broadly speaking, the methods work as follows.

The point insertion method, is simple to describe, simple to implement and a reasonably fast executing

method to construct a Delaunay triangulation from a set of points. The method starts by constructing a

super triangle that would enclose all points.

Points are added to the mesh sequentially. Whenever a point is added, all triangles whose circumcircle

encloses the new point are deleted, exposing a perimeter of edges. New triangles are formed between all

exposed edges and the newly added point. This process repeats until the points list has been exhausted.

The procedure ends by returning all active triangles that do not share a point with the super triangle. Figure

9-51 below shows the procedure diagram for this method.

222

For each point in points

Let superTriangle be a triangle that
encloses every point in points.
Add superTriangle to triangles.

En
d

For each triangle in
triangles

Is point inside the circumcircle of
this triangle?

Yes

Let edges be
an empty list

For each edge in this
triangle

Is this edge in edges?

Delete edge
from edges

Yes

Add edge to
edges

N
o

For each edge in edges

Construct a new
triangle from edge
and point and add

to triangles.

En
d

End

No

For each triangle in
triangles

Does triangle share a point with
the superTriangle

Delete triangle

End

Yes

No

End

points: a list of all
mesh points

Start Point Insertion

Method
triangles

Finish Point Insertion

Method

Figure 9-51 – Point insertion method procedure diagram

The major drawback to the point insertion method is its inability to respect segment boundaries that may

enclose the mesh. This method will always generate a mesh that encloses the convex hull. Concave hulls

will lose any voids and inclusions into the convex perimeter. Although rare, it is possible the meshes

required for this work will be concave.

The inability to respect segment boundaries also creates a problem when attempting to generate a mesh

that will interface with some other adjacent mesh, as the segments created by the point insertion method

are not guaranteed to match those of the adjacent mesh, despite both meshes sharing the same points.

Gift Wrapping begins with a list of points to be meshed and a list of edges that contains at least one edge.

Each edge joins two points, but no edge can cross any other edge. Generally speaking however, this is an

extreme case. In most cases the edge list would contain at least one closed loop representing the perimeter

and some internal edges representing geometric features that must be respected.

Each edge has two sides defined according to the common side definition given in section 9.2.5. Sides can

be either free or not free. Edges in the external loop have only one free side (facing the inside of the

perimeter), whereas internal edges have both sides free.

223

The end goal of the algorithm is to close every edge by constructing a triangle above its free side using the

available points, keeping in mind that whenever a new triangle is added, it may introduce new edges, the

sides of which facing away from the triangle are automatically free. Figure 9-52 shows how the gift

wrapping algorithm works.

For each edge in edges

Does this edge have a free side?

For each point in points

Is this point above this side of this
edge?

For each secondEdge in
edges

Does this secondEdge block the
visibility of point from midPoint?

Let midPoint, be some point on
edge

N
o

En
d

Construct a triangle that includes
edge and finishingPoint and add

triangle to triangles

For each newEdge in the two
edges of triangle that aren’t edge

Is newEdge in edges?

Deactivate the side of newEdge
that faces into triangle

Add newEdge to edges and enable
the side that faces away from

triangle

Deactivate side
Unset finishingPoint

Yes

Yes

No

Yes

No
Let finishingPoint be

point

Is finishingPoint unset, or
Is the centre of the circumscribed circle
of edge and point, further below side
than that of edge and finishingPoint?

Yes

No

Yes

En
d

Is finishingPoint set?STOP
No

Yes

No

End

 points : All points in mesh points
 edges : All edges in mesh
 triangles : An empty list of triangles

Start GiftWrap

trianglesFinish GiftWrap

End

Figure 9-52 – 2D gift-wrapping procedure diagram

Unlike the point insertion method, the gift wrapping method will respect segment boundaries and can be

used to generate a concave hull containing voids and inclusions. However, as the diagram shows, the gift

wrapping algorithm has a high level of recursion. This is one of the major drawbacks of the algorithm, the

price of which must be weighed against the relative simplicity of the algorithm for its ability to make a

conforming mesh.

There are of course further caveats to the gift wrapping method, principally, that it does not make for an

efficient algorithm. This is because gift wrapping must perform side tests, to ensure potential finishing

224

points are on the correct side of the edge. Furthermore, an even more expensive visibility test is necessary,

to ensure that no pre-existing edges in the mesh block the visibility of the potential finishing point.

 Three-Dimensional Meshing (TetMesh) 9.9.2

Both the point insertion and gift wrapping methods discussed in the previous section scale neatly to R3,

with edges becoming facets and triangles becoming tetrahedrals.

Generating a tetrahedral mesh is never guaranteed. Many factors can cause a tetrahedral mesh to fail,

especially when one must be created with a certain number of fixed external facets.

Despite these challenges, TetMesh is ruggedized against potential stumbling blocks and may pursue some

drastic options to force a mesh to generate. Generally speaking, TetMesh will prefer to preserve ideal

qualities of a mesh (Delaunay property and aspect ratio), but will gradually lower its standards if an ideal

mesh cannot be generated. The following descriptions of strategies available to TetMesh are given below

alongside their relative frequency of occurrence (observed during development), expressed as a

percentage.

First priority (70%): A fully Delaunay mesh where all facets and tetrahedrals are Delaunay. No illegal

segments, needles or caps are present in the mesh.

Second priority (20%): The nature of fixed facets and the order in which tetrahedrals were generated

means that not every tetrahedral can be Delaunay. As many Delaunay elements will be created as possible,

but some non-Delaunay elements will be considered where there is no choice. No illegal segments, needles

or caps are present in the mesh.

Third priority (disaster recovery, 8%): A facet exists where no finishing point (that would not create a

needle or cap) can be used to complete a tetrahedral on its free side. Disaster recovery traces a Ray

through any existing tetrahedrals to an ideal occluded point. All tetrahedrals in the path of the Ray are

deleted. Gift wrapping then resumes normally. In disaster recovery, illegal segments that do not mate with

the surrounding mesh will be considered (providing their counter segments do not yet exist). This strategy

is normally successful, but the result will highly likely contain a mix of Delaunay and non-Delaunay

tetrahedrals. There may be some illegal (but not significant) external segments, but no needles or caps.

Forth priority (panic mode ~1%): All strategies are allowed including pre-existing tetrahedral destruction,

use of illegal segments and freedom to consider a point that would generate a needle or cap. This is a last

resort to attempt to force a mesh, but the mesh will definitely contain one or more needles or caps.

Mesh failure (<1%) is the next step, which causes the simulation to terminate.

Unacceptable solutions: Although failure occurs before unacceptable solutions are considered, there are

some very poor options for forcing the mesh to generate beyond failure. These are listed simply for

completeness, but no code has been developed to implement these. These options are given as follows:

 relax the side constraints of facets – normally segments are tested for externality to the hull.

Relaxing this requirement may allow the mesh to proceed, but external tetrahedrals will form,

significantly changing the geometry and volume;

 allow the creation of illegal segments against the surrounding mesh. This method would create a

significant amount of flexibility, however, it will generate voids and intersecting volumes at the

interface with the surrounding mesh; and

225

 delete incomplete facets and move on. Mesh failure normally occurs after the vast majority of

tetrahedrals have been created, this approach would allow the simulation to continue, but with

voids in the mesh.

The gift wrapping algorithm developed for this work is by far the most complex function in the program -

not necessarily due to the gift wrapping procedure itself, but more due to all the exceptions and

complications that can arise and must be addressed. Figure 9-53 shows a flow diagram of the essential

steps of TetMesh.

Due to the complexity of this function, this is not the true layout in code, but this does represent the same

effect. As the reader will notice, particularly around point fitness testing, this diagram suggests an

extremely inefficient design. In reality the function of point fitness testing is supported by caches and has

satellite code dispersed throughout TetMesh to reduce the effort required to find suitable finishing points

for facets.

226

tets

For each facet in facets

Is this side free?

End

For each side of facet

Add this facet side to queue

Yes

Let queue be an empty list of
facet sides

Let tets be an empty list of
finished tetrahedrals

Let illegalSegments be a list of
possible segments that must not

appear in the final mesh

En
d

No
For each facet, side in

queue

Is this side free?

No

Is this point above this free side?

For each enabled point
in points

No

No

Unset bestPoint
Enable all points

No Is TetMesh in disaster recovery
mode?

Yes

Is TetMesh in panic mode?
Yes

Yes

No

No

YesNo

Yes

No Have all Delaunay options been
exhausted?

Yes Yes

No

Is this point visible from facet?

Would this point complete this
facet to form a Delaunay

tetrahedral?

Is this point at a low angle to the
plane of facet? (would it form a

cap tetrahedral)?

Is bestPoint set? Is the centre of the
circumsphere of facet and point

further beneath the plane of
facet than the centre of the
circumsphere of facet and

bestPoint?No

Let bestPoint be point

Yes

No

End

Is bestPoint set?

Are all queue items complete?
End

Is TetMesh in disaster recovery
mode?

Yes

Is TetMesh in panic mode?

Yes

STOP

TetMesh has exhausted all
acceptable strategies and can’t
complete the mesh. Simulation
must stop

Yes

Activate disaster
recovery mode

Activate panic
mode

No

No

Yes

Are any protoTet edges external to
the hull?

No

Let protoTet be a
tetrahedral that consists

of bestPoint and the
three points on facet

Yes

Deactivate disaster
recovery

Deactivate panic mode

Is TetMesh in disaster recovery
mode or panic mode?

Yes
Let conflictingFacets be

a list of facets that
prevent point being
visible from all three

corners of facet

For each tet in tets

End

No

Strict

For each subFacet in tet

Is subFacet in conflictingFacets?

Deactivate tet
Free the side of subFacet that

faces into tet

Yes

No

For each subFacet in tet

Strict

Yes

Free the side of subFacet
that faces into tet

Are both sides of subFacet free?

Yes

Is subFacet one of the original
facets passed to TetMesh?

No

Deactivate subFacet

Yes

No

End

Unset
bestPoint

Disable point

Yes

End

Disaster recovery

Has protoTet been created &
disabled more than 10 times

before?

No

STOP

Yes

Is TetMesh in disaster recovery
mode?

Yes

Is the segment strict or flexible?

Flexible

Yes

Does the counterSegment exist
anywhere in tets?

Update illegalSegments,
swapping segment and

counterSegment

NoFor each segment in
protoTet

Is segment in illegalSegments?

Yes

No

End

Add protoTet to tets
For each subFacet in

protoTet
End

Is subFacet in facets?

No

Add subFacet to facets
Add the side of subFacet

that faces away from
protoTet to queue

Disable the side of
subFacet that faces into

protoTet

Yes

No

End

No

Illegal segment protection

Point fitness testing

Enqueuing

Enquiring new facets

Key
Bulk

execution
block

Decision, yielding a
boolean value

STOP

Inner loop
activity

Stop events
terminate the
simulation

For example,
an if statement

For loop, (leaving via
‘end’ when finished)

Start TetMesh

points
facets Start TetMesh

Key input variables Function Start

Key return variablesFunction Finish
End

Figure 9-53 – TetMesh procedure diagram

227

 Chapter Summary 9.10
The aim of this chapter was to document a bespoke Fortran program built to perform mesh splitting,

remeshing and force calculation of a machining operation, including implementation of all the associated

house keeping functionality required to interface with Marc, and update the simulation.

This chapter presented the technical implementation of that program, including the mathematical basis

underpinning the more advanced functions of the program.

Above all, the development of this program has focused on speed. Many simplifications and optimisations

have been made to increase simulation speed by reducing the computational work load as much as

reasonably possible whilst maintaining the ability to calculate and produce realistic cutting force results.

The result is highly parametric, making it easy for the end user to efficiently modify geometry, speeds, feed

rates, and other features.

Careful attention has been paid to keep the model expandable to different scenarios including scenarios

that involve a flexible spindle, or those where the valve seat is fixed in the cylinder head. Since the spindle

is being driven by a user subroutine, it could even be possible to program a real cutting cycle into the

model, where the spindle feeds and retracts into several valve seats pressed into the same cylinder head.

Although there are still advancements possible with this model, its implementation is regarded as a

success. The next chapter will deal with comparing the model to experimental data, to show if it is capable

of producing reasonable results.

In its current state, the tetrahedral mesher developed for this work is not robust enough to have total

confidence in any given simulation running to completion. For this reason, the algorithm is only applied to a

30 sub-segment in the next chapter. Building a meshing algorithm to accommodate all possible hulls is

extremely difficult. Even Marc’s internal advancing front 3D meshing algorithm is not stable in all cases and

regularly fails, especially during simulations that include large deformations.

The main issue affecting reliability of the mesher developed in this work is its inability to detect and deal

with Schönhardt’s polyhedrons. Schönhardt, 1928, showed that there are polyhedra for which no

tetrahedralisation exists. A simple illustration of how to create a Schönhardt’s polyhedron is given in figure

9-54. Starting with a regular polyhedron (left), take the top facet (shaded blue) and twist it slightly creating

a kink in each of the three quadrilateral faces. There is now no way to fully tetrahedralise the space

occupied by the polyhedron using only its own vertices.

228

These kinds of polyhedrons rarely emerge naturally, but when they do, it will cause the meshing algorithm

to fail. The meshing algorithm’s default response to a failed geometry containing a Schönhardt’s polyhedral

is to carve out a portion of the interior and begin filling it again from a different facet. This approach only

works for cases where the initial untetrahedrlisable region was caused by an element quality or other issue

and not a Schönhardt’s polyhedral (although the mesher currently has no way of detecting Schönhardt’s

polyhedrals).

Regular polyhedron Schönhardt polyhedron

Figure 9-54 – Schönhardt’s polyhedron

A more reliable approach to resolving Schönhardt’s polyhedrals is to insert a Steiner point, either on an

edge or within the interior of the space. Referring to figure 9-54, a single Steiner point inserted at the

geometric centre of this shape would decompose the region and allow the existing meshing code to

tetrahedralise the space.

Selecting where and how many Steiner points to insert is still hotly debated in literature. There is no

deterministic method that works for all cases. Figure 9-55 shows a simple Steiner point insertion algorithm

developed for this project but not active in the mesher.

229

For each open and unconsumed facet

No

Start

Create tets for (and therefore close) as many
open facets as possible

Mark all facets as not consumed

Let space be an infinite volume

Do any open and unconsumed facets remain? End

Yes

Does space have a non-zero
volume?

Remove the side of space that intersects with
the infinite volume below the open side of

facet

Yes

No

Revert the change

Insert a (Steiner) point at the geometric
centre of space

Mark facet as
consumed

Figure 9-55 – Steiner point insertion procedure diagram

This method works in many scenarios, but will occasionally produce very poor aspect ratio elements and

elements with glancing segments. Three specific pieces of further work would contribute substantially to

increasing the reliability of the mesher:

 develop a more robust method to insert Steiner points superior to that described in figure 9-55;

 develop a method for Steiner point insertion on element edges; and

 implement a method to refine poor quality elements as they emerge to prevent glancing segment

issues.

230

Chapter Ten – Results and Discussion
This work set out to prove that multi-angle valve seat machining operations can be simulated in three

dimensions in a number of hours rather than days, by using a range of simplifications. The model developed

for this work is highly parametric and requires a minimum amount of experimental effort when setting up

for a new cutting system.

This chapter presents a validation of the model against data gathered from three configurations used in the

experiment presented in Chapter Seven. A review of performance indicators such as computation time,

mesh quality and mesh sensitivity is also offered. Finally, this chapter applies the model to a hypothetical

multi-angle problem and its proposed solution.

 Model Performance & Validation 10.1
To validate the model, a series of test simulations were performed and compared to experimental data

gathered in Chapter Seven. The experiment in Chapter Seven was based on a single cutter held rigidly with

a rotating workpiece. The simulations generated to mimic that experiment have a fixed workpiece and

single rotating cutter. As discussed in previous chapters, the relative motion between the tool and

workpiece is the same.

Validation aims to ensure that the mesh splitting algorithm developed in section 9.7 and the 3D meshing

algorithm developed in section 9.9 is fast and can process cutter-workpiece intersections and generate new

geometry for each simulation increment, sufficient to model a sub-segment of cutting. This section also

tests the ability of the code written to recover cutting forces based on the algorithm developed in section

9.7.12.

Validation was based on cutting forces measured in Chapter Seven according to the parameter selection

given in table 10-1 for three different configurations. The simulations were allowed to run until a final feed

depth of 0.7 mm (the final maximum feed depth for Sigma exhaust valve seats).

Parameter Configuration 1 Configuration 2 Configuration 3

Target spindle speed 1666.7 RPM 1666.7 RPM 1666.7 RPM

Feed rate 0.08 mm / rev 0.03 mm /rev 0.08 mm / rev

Lubrication Dry Dry MQL

Table 10-1 – Configurations tested

A 30° sub-segment of the workpiece was modelled for the reasons discussed in section 9.10. This provides

an opportunity to demonstrate the intermittent cutting and rapid mode capabilities built into the Fortran

program.

The simulation was run using a single core on a computer with an Intel Core i7-3630QM processor, 16 GB of

random access memory (RAM) and a 500GB solid state drive (SSD).

The target element edge length was set to 0.6 mm (however the vast majority of edges were less than this

due to curvature controls). The initial workpiece mesh contained 4048 nodes and 3234 elements and the

workpiece bulk mesh contained 391 nodes and 220 elements.

Preparing the Marc model for simulation follows the procedure given in figure 8-3. First, the configuration

file for each simulation was defined according to section 8.4.9 using the parameters given in table 10-1. For

231

each configuration, Marc was used to invoke the Python model builder script described in section 8.6,

which sets up the Marc simulation including geometry, boundary conditions, contact bodies and materials

as defined in sections 8.4.3 through 8.4.6 respectively. The script also sets up the contact table, remeshing,

load case and job instructions as defined in sections 8.6.5 through 8.6.8 respectively. This process takes

approximately 20 seconds and once complete, no further changes are required in Marc.

The next step is to simply run the simulation in Marc through its ‘Run Job’ user interface. Very soon after

launch, Marc calls the user subroutine UMAKNET in the Fortran code. The first time this is called, the

Fortran program defers to Marc’s internal mesher to generate an initial tetrahedral mesh from the seed

hexahedral mesh. For all subsequent calls to UMAKNET, the Fortran code uses its own mesher to generate

meshes according to the procedure laid out in section 9.7. The relationship between Marc’s call hierarchy

and the Fortran code is detailed in section 9.5.

During simulation, the Fortran code logs load and position data for the spindle, workpiece and cutters to

individual files. These files are used to generate the plots shown throughout this chapter.

 Speed 10.1.1

Figure 10-1 shows a chart of cutting operation time vs. computation time in seconds for configuration one.

As the chart shows, the simulation runs in approximately linear time. The steps visible within the data

distinguish the periods of time where the cutter was in rapid mode and where the cutter was in contact

with the workpiece. The times shown here include the time required by Marc to assemble and solve the

stiffness matrix as well as process the post file outputs.

Figure 10-1 – Chart showing computation time (s) vs. cutting operation time (s)

232

As the figure shows, the 11 passes were completed in 378 seconds on the hardware stated above. An

equivalent simulation with adaptive remeshing that models chip flow plasticity and damage would take

considerably much more time.

 Validation of Loads 10.1.2

For configurations one through three, the charts in figures 10-2 through 10-4 respectively, show

comparisons between the experimentally measured loads, simulation loads and theoretical loads according

to the cutting force prediction model developed in Chapter Seven (see table 7-4). In each chart, the

experimentally measured loads are shown in red, the simulation loads in blue and the theoretical loads in

green. The simulation loads were intermittent as only 30° of the seat was modelled. The first cutting load

shown on the chart represented the initial contact load as the cutter fed into the workpiece.

Figure 10-2 – Dry, f=0.08 mm rev-1, rake and feed, experimental, theoretical and simulation loads

For configuration one, shown in figure 10-2, the theoretical model and simulation results show close

agreement for both rake and feed loads. From a feed depth of 0.08 mm, these data also show close

agreement with the experimental data. Before this point however, the experimental data immediately

ramps to full load in contradiction with the theoretical model. One possible explanation for this is that the

initial friction rubbing between the cutter and workpiece generates some thermal expansion in the

workpiece that temporarily accelerates the rate of penetration of the tool into the workpiece. Zhou,

Andersson and Ståhl, 2004, identify thermal expenasion of both the tool and workpiece as a considerable

source of error in precision machining. This is not taken into account in the theoretical model, due to its

complexity and the lack of a good justification for refining the initial contact representation given that this

portion represents a very short period during machining.

233

Figure 10-3 – Dry, f=0.03 mm rev-1, rake and feed, experimental, theoretical and simulation loads

For configuration two, shown in figure 10-3, the simulation produces rake and feed forces significantly

lower than those shown in configuration one due to its shallower depth of cut. These are as expected when

comparing the simulation loads with the theoretical model and experimental data.

Figure 10-4 – MQL, f=0.08 mm rev-1, rake and feed, experimental, theoretical and simulation loads

Configuration three, shown in figure 10-4 also shows good agreement between experimental, theoretical

and simulation loads. When comparing configurations one and three, it can be seen that the presence of

MQL lubricant has little effect on the cutting load as expected based on the findings made in Chapter

Seven.

234

 Validation of Geometry 10.1.3

When considering the quality of the geometry between passes, the most important output is the shape,

according to the following properties:

 the cut material shape should closely follow the path the cutter has taken through the material;

 the surviving surface should be flat, free from steps and without the saw-tooth pattern discussed in

Chapter Nine; and

 the top surface should match the height of the bottom of the cutter.

These features are critical because subsequent cutter passes are affected by earlier passes, particularly

when calculating the depth of cut. Secondary to these requirements, the following properties are desirable:

 decreasing, stable (or at least not significantly increasing) element and node counts;

 absence of needles and caps;

 absence of sharp changes in mesh density;

 absence of gaps, voids or cavities; and

 absence of noticeable nodal perturbations (nodes may sometimes be perturbed to help generate a

closed split line or during simplification to avoid creating a cluster. If this mechanism is not correctly

controlled, it can lead to nodes being raised above the cut surface creating lumps on the cut

surface).

These properties primarily address requirements of Marc’s finite element calculations, where smooth

uniform meshes with ideal aspect ratio elements are desirable. They also decrease the probability that the

tetrahedral mesher developed in Chapter Nine would fail to generate a mesh.

Figure 10-5 shows the original mesh from configuration one followed by the first five passes, likewise figure

10-6 shows passes 6 through 11. Passes 5 through 7 showed a lower quality representation of the width of

cut. This stems from the mesh generated by Marc’s tetrahedral mesher from the original input mesh and

not from errors made in the Fortran program. If a shorter target edge length were used, Marc’s mesher

could generate a more accurate initial tetrahedral mesh, which would reduce the deviation seen on the

width of cut in these passes.

Each pass in figures 10-5 and 10-6 represents the result of at least eight new mesh generations as the

cutter traverses the exposed workpiece surface. The original mesh in figure 10-5 defines the width of cut,

w, and depth of cut beyond first contact, d. Each subsequent mesh gives values for these parameters.

Figure 10-2, labels the pass number corresponding to each cluster of simulation rake force points (in blue).

235

Pass 0 (Original Mesh)
d = 0.00, w=N/A

Pass 1
d = 0.09 mm, w = 1.13 mm

Pass 2
d = 0.16 mm, w = 1.27 mm

Pass 3
d = 0.24 mm, w = 1.41 mm

Pass 4
d = 0.32 mm, w = 1.55 mm

Pass 5
d = 0.40 mm, w = 1.69 mm

d
w

Figure 10-5 – Original mesh and passes 1 through 5

236

Pass 6
d = 0.48 mm, w = 1.76 mm

Pass 7
d = 0.56, w = 1.81 mm

Pass 8
d = 0.64, w = 1.85 mm

Pass 9
d = 0.72 mm, w = 1.90 mm

Pass 10
d = 0.80, w = 1.94 mm

Pass 11
d = 0.88 mm, w = 1.99 mm

Figure 10-6 – Passes 6 through 11

237

As figures 10-5 and 10-6 show, the variation between each new mesh is subtle despite the entire mesh

being regenerated eight times per pass. This is a strength of the meshing algorithm developed for this work

in that mesher is able to generate incremental meshes while minimising the number of points inserted or

moved and maximising the number of facets recycled from the previous increment. This helps reduce

interpolation error, since the vast majority of nodal locations are the same, interpolation is barely required

at all.

Other algorithms such as TetGen and Marc’s own internal mesher will commonly re-discretise the entire

volume in the pursuit of elements that have superior aspect ratios and angles. This is not surprising since

they are both designed to generate a high quality mesh for a given piecewise linear complex (PLC), they are

not designed to generate a mesh from a PLC and then continually update that mesh as elements are cut by

a tool (Si, 2015; MSC Software, 2016a).

While they can both respect hard edges of the mesh they readily discard soft edges (edges between facets

that share a shallow angle to one another) and will place nodes in locations best suited for element quality

without considering interpolation. This would cause Marc to interpolate more frequently over longer

distances, introducing error at every step.

The strategy employed by both Marc and TetGen can also lead to rounding off error (observed earlier in

section 4.3), particularly in regions where the cutter has disrupted a hard edge. This can introduce

significant error both in tracking the volume of material removed and calculating the cutting forces when

the cutter revisits that region of the mesh. The mesher developed for this work is completely immune to

rounding off error as shown in the figures.

Poor aspect ratio elements can be a source of error in non-linear simulations, it is therefore advisable to

reduce the number of poor aspect ratio elements wherever possible. Despite the undesirability of poor

aspect ratio elements, it was not critical in this work that the mesh was completely free from them, since

there is no plastic deformation and no large elastic deformation of the mesh.

In the case of the simulation developed for this work, a balance needed to be struck between element

count and the number of poor aspect ratio elements, since removing poor aspect ratio elements without

affecting the external shape of the contact body would necessitate the insertion of many more elements.

For this reason, the edge simplification procedure developed in Chapter Nine focused more on reducing

element counts and respecting existing geometry features over generating ideal aspect ratio elements.

238

Table 10-2 shows a summary of poor aspect ratio element counts discovered in the output mesh according

to Marc’s element quality check tool. These summary data were taken at the end of each cutting pass. It is

important to note therefore, that poor aspect ratio elements may have existed in intermediate mid-cut

increments, these increments are not shown in this table.

Pass Reference increment Count of poor aspect ratio elements Percentage of
workpiece elements
that are poor aspect
ratio

Original 1 0 0.00%

1 11 2 0.87%

2 48 0 0.00%

3 87 1 0.41%

4 127 1 0.39%

5 164 2 0.74%

6 203 9 3.32%

7 243 13 4.78%

8 280 10 3.72%

9 319 2 0.77%

10 359 0 0.00%

11 396 7 2.79%

12 435 46 18.40%

Table 10-2 – Summary of poor aspect ratio element counts

As the table shows, with the exception of the last pass, the number of poor aspect ratio elements that

appeared in the mesh was generally low. This demonstrates that a good balance had been reached

between preserving the shape of the workpiece mesh and the quality of the mesh.

The last pass listed in the table was made beyond the 1 mm total depth of cut specified. Figure 10-7 shows

the poor aspect ratio elements on the final pass highlighted. Those elements generated because they

contained the freshly exposed cut surface and the glue contact between the workpiece and workpiece bulk

contact bodies and are therefore naturally thinner than elements created on earlier passes.

239

Thin elements

Workpiece bulk
contact body

elements
(hexahedral)

Workpiece contact
body elements
(tetrahedral)

Figure 10-7 – Poor aspect ratio elements on final pass

This increase in poor aspect ratio element count where the workpiece contact body mesh thins, highlights

the importance of including sufficient extra material below the final depth of cut to maintain compatibility

with the remeshing algorithm developed in Chapter Nine.

In terms of quality, the cut face shape (the flatness and level of the exposed cut surface), was perfect across

all passes.

240

Figure 10-8 shows the simulation depth of cut according to the cutter face projection algorithm developed

in Chapter Nine. The data shows close agreement to the spindle feed rate of 0.08 mm per revolution.

Figure 10-8 – Depth of cut vs. feed depth beyond first contact

Perfect agreement was not reached for several reasons. Firstly, the projection algorithm works by

projecting all split lines to the local feed-radial plane of the cutter. This method does not take into account

the curvature of the cutter path and so the proximity of split lines to the feed-radial plane affects the radial

error. For this reason, the peaks of the data during periods of contact are not flat, as they would normally

be expected to be.

Secondly, the average of the peaks was clearly below 0.08 mm. This is because the feed-radial plane is

aligned with the control node rather than the front face of the cutter. Split lines are projected along the

incremental change in position vector, which is at a gradient to the global coordinate system. Therefore the

relative position of the local feed-radial plane affects the height (along the feed axis) of the projected split

lines. The front face of the cutter is not guaranteed to be coplanar with the feed-radial plane so there is no

obvious position, other than the position of the control node, for the local feed-radial plane to intersect.

These two factors could be improved by reducing the cutter step size between increments and by moving

the control node to the front plane of the cutter.

Finally, the split lines are further discretised by the algorithm described in Chapter Nine, which results in

some loss of quality where the split lines form a curve or slope. This introduces some noticeable noise

between increments. This error could be reduced by increasing the cutter face discretisation resolution,

which is set in the simulation configuration file.

241

 Progression of Mesh Complexity 10.1.4

A problem that can plague non-linear simulations with many increments is a drift towards increasing

element and node counts. In some cases this can be a dominant limiting factor that restricts how much

progress certain simulations can achieve.

The type of simulation developed in this work is particularly vulnerable to this problem, as the frequent and

significant changes in geometry, especially around the step change at the cutter / workpiece intersection,

require increased numbers of elements to represent the increase in complexity.

Chapter Eight discussed a hexahedral subdivision based technique that would have eliminated the need for

the tetrahedral mesher developed in Chapter Nine. Whilst the temptation to use a subdivision based

adaptive mesh technique was great due to the reduced effort required in development, that chapter

showed how the hexahedral element subdivision technique discussed is vulnerable to runaway neighbour

subdivisions.

The number of elements and nodes is by far the most dominant factor affecting simulation speed, both

within Marc and the Fortran program developed for this work.

Subdivision methods generally leave behind many more elements than are deactivated by the cutting pass

that led to their creation. This leads to a constant upward trend in element and node count, with the only

possible options available limited to controls that help reduce the rate of increase.

By using the bespoke tetrahedral meshing algorithm developed in Chapter Nine, many more possible

options were available to control element and node counts, such as local only meshing and edge

coarsening. For the model proposed in this work to be effective, it was essential that progression of the

simulation was not dependant on increasing element and node counts. The simulation must be capable of

reducing element and node counts wherever the opportunity arises, without compromising quality.

Figure 10-9 shows the workpiece element and node count change over time for configuration one. As the

figure shows, there was no runaway increase in element and node count. Furthermore, as the simulation

progressed, the element count gradually decreased.

The initial increase represents an initial convergence towards an element count that satisfies the target

edge length and element count required to accurately model the shape of the geometry over time.

Throughout the simulation, the workpiece volume was gradually decreasing, the dip in element count

towards the end of the simulation shows that the tetrahedral remesher developed for this work is capable

of successfully capitalising on opportunities to reduce element counts.

242

Figure 10-9 – Element and node counts vs. simulation increment

Figure 10-10 shows the relationship between rake force and feed depth beyond first contact for five

different target element edge lengths. These data are based on the first ten passes of configuration one. As

the data show, the rake force does not vary significantly regardless of target element edge length.

Providing the input geometry can be represented to a sufficient degree of detail (based on user preference

for curvature control) the force recovery algorithm and mesher developed for this work is not sensitive to

element edge length. This means that simulations can be run with dramatically fewer elements than

traditional simulations that model chip flow, plasticity and other phenomena that require high element

densities.

Figure 10-10 – Element density sensitivity

243

 Validation of Volume Calculation 10.1.5

Unlike the volume of hexahedral elements (which can have ambiguous volumes), tetrahedral elements

always have certain volumes.

Element volume calculations were used to output the volume of material removed per increment, as well

as in the calculation of the workpiece cutting pressure. Although tracking the volume is a trivial accounting

problem, it is important to verify that both the tetrahedron calculation used is implemented correctly and

that the correct elements were included by the Fortran program in the overall sum.

Figure 10-11 shows the total workpiece contact body volume for every increment in blue (not including the

workpiece bulk contact body volume which never changes). The figure also shows a series of manual check

volume calculations performed using Marc’s element volume tool from the user interface. These check

volumes were taken from the point immediately after the cutter finishes a pass. As these data show, the

volume calculation implemented in the Fortran program shows perfect agreement with the manual

calculations performed in Marc.

Figure 10-11 – Analytical volume vs. simulation volume

The close agreement between analytical and simulation calculated volume verifies that the volume

calculation algorithm presented in section 9.8.1 is functioning correctly. Furthermore these data prove that

the workpiece continues to lose volume throughout the simulation (as expected during cutting) and that

the rate of volume loss accelerates with simulation increment as the width of cut and front facing area

increases. The constant volume points between contact passes indicate that no mesher activity is taking

place and no rounding off error is accumulating.

244

 Cutter Face Duty Cycle Map 10.1.6

With a typical valve seat cutting operation, each cutting insert has a different duty cycle. Furthermore this

duty cycle varies along the length of the cutting edge. This causes variation in wear level between the

cutters in the cutting system.

The simulation developed for this work can output incremental cutting energy which can be viewed as a

heat map across an illustration of the cutter. By enabling this feature in the configuration file, the

simulation will incrementally dump the cutter face intersection profile to a comma separated values (CSV)

file for each cutter. The data are saved in terms of each cutters local coordinate system. The force and

rotational displacement associated with each point in the profile is also output to the file.

These data can be loaded by a bespoke Python utility that reconstructs the intersection profile and

generates a heat map which is plotted over the cutter shape using Matplotlib. The script automatically

selects an appropriate cutter geometry illustration to overlay on the data to give the user a better sense of

where the profile is relative to the boundaries of the cutter.

Figure 10-12 shows an example of this plot for configuration one (defined in table 10-1) limited to a depth

of 0.7 mm as in the real cutting operation. As the figure shows, the relative area of intersection was very

small compared to the size of the cutting insert. Figure 10-13 shows a high zoom view of the intersection

region.

En
ergy d

issip
ated

 (jo
u

les / m
m

2)

Local radial axis (mm)

Lo
ca

l f
ee

d
 a

xi
s

(m
m

)

Illustration of cutter geometry

Figure 10-12 – Cutter duty cycle heat map

245

En
ergy d

issip
ated

 (jo
u

les / m
m

2)

Local radial axis (mm)

Lo
ca

l f
ee

d
 a

xi
s

(m
m

)

Figure 10-13 – Cutter duty cycle heat map (high zoom)

Also included in figure 10-13 is an overlay of the tapered wear profile observed on insert 16, shown in

figure 5-19. This overlay has been scaled to match the plot axes.

Figure 10-13 clearly shows an increasing energy dissipation density from left to right. Between radial axis

1.00 mm and 2.00 mm, this increase is more gradual. This section represents the flat top of the valve seat

and increases with radial distance due to the increase in distance the cutter must travel (as illustrated in

figure 5-9). The left hand side of the plot shows a sharper change in energy dissipation as expected due to

the tapered throat of the seat.

It is not possible to link these energy dissipation density data directly to temperature as the energy

dissipation vectors and rates from the tool tip to the environment are unknown. It is however very likely

that the areas of highest energy dissipation density correspond to areas of highest temperature.

The area of highest energy dissipation is on the far right hand side, this correlates well with a taper wear

profile across the cutting edge first observed in Chapter Five. The taper wear profile is likely to result from

high temperatures at the heavily worn end which act to accelerate chemical wear processes in pcBN

(Arsecularatne, Zhang and Montross, 2006).

Chapter Five cited some possible failure modes relating to variations in cutting load across the cutting edge.

The production of this duty cycle map could assist end users in reducing the duty cycle gradients along each

edge or balancing the duty cycle between multiple cutters in order to reduce wear.

246

 Multiple Cutters 10.2
Section 10.1 gave a validation of the model and showed that it was able to simulate the experimental

configurations presented in Chapter Seven. In this section, the model is used to evaluate the cutting load

imbalance for two additional configurations, in order to determine and compare the radial spindle loading

characteristics for a hypothetical multi-angle problem and its proposed solution.

 Configuration 10.2.1

The simulations presented are configured identically to those given in section 10.1 and were run to the

same 0.7 mm depth of cut, but with the feed, speed, lubrication and cutter configurations given in table

10-3.

Configuration four is based on a two-cutter configuration presented by Lacerda and Siqueira, 2012 (shown

in figure 1-7, b) and configuration five is based on a proposed solution configuration using three cutters.

Additionally, a control simulation was run as a further validation of the model with two perfectly opposing

cutters. The expectation with two opposing cutters is that the combined radial imbalance of the spindle

when both cutters are engaged is zero.

Parameter Configuration 4 Configuration 5 Configuration 6 (control)

Target spindle speed 1666.7 RPM 1666.7 RPM 1666.7 RPM

Feed rate 0.08 mm / rev 0.08 mm /rev 0.08 mm /rev

Lubrication Dry Dry Dry

Number of cutters 2 3 2

Cutter reference A B C D E F G

Cutter inclination
(cone angle)

0° 45° 0° 45° 45° 10° 10°

Cutter angle (-ve
about spindle axis)

10° 190° 90° 230° 10° 10° 190°

Table 10-3 – Multiple cutter configurations

Figure 10-14 gives the simulation coordinate system. Radial, feed and rake loads are output by the

simulation both relative to the cutter local coordinate system and relative to the simulation coordinate

system. The simulation also outputs the cumulative spindle load for all simulation increments.

Figure 10-14 – Local cutter, and global simulation coordinate systems

247

Cutters are placed according to their configuration as specified in table 10-3, following the order of

operations as defined in section 8.6.4. For example, the first cutter, A) has an inclination of 0° rotated about

the cutter’s local rake axis and a spindle angle offset rotated negative 10° about the spindle axis.

Figure 10-15 shows the simulation domain at the start of simulation for all configurations. As the figure

shows, only a sub-segment of the valve seat was used to determine loads for each cutter.

Figure 10-15 – Cutter configurations as viewed MSC Marc

248

During periods where a cutter was moving at cutting depth, but not in contact with the sub-segment, loads

were linearly interpolated between clusters of data generated during periods of contact. For example,

figure 10-16 shows the rake force for cutter B) in black and the linearly interpolated loads between clusters

for every increment in blue.

Figure 10-16 – Load interpolation for intermittent cutting

249

 Validation of Balanced Configuration 10.2.2

Figure 10-17 a) shows the X-axis spindle loading for cutters F) and G) in control configuration six. The

combined spindle loading in both the X and Z axes for cutters F) and G) is given in b). Markers show the

engagement times of cutters as labelled. As the data show, in a), the load applied to the spindle by each

cutter is equal, but 180° out of phase. The X-Z spindle loading given in b) which represents the combined

load applied by both cutters, shows that after both cutters engage, the total radial load on the spindle

drops to near zero.

Figure 10-17 – a) Individual and b) combined spindle loading for configuration 6)

Before settling at approximately 0.1 seconds, there is some error in the spindle load. This error comes from

discretisation errors in the mesh where the geometry is curved. These errors slightly affect the width of cut

and thus the calculated load. The data also misrepresent the engagement profile (the region of data after

engagement of G) and before engagement of F)). This is due to the way in which load data is interpolated

for periods where the cutter is not in contact with the sub-segment mesh. Interpolation needs at least one

historic non-zero cutter load to function. Overall, these data show the simulation is correctly evaluating a

scenario in which radial loading is expected to be near zero.

250

 Radial Imbalance Reduction Study 10.2.3

Configuration five represents a proposed solution to the large imbalance expected in configuration four. In

this solution a third cutter is added to counter the cutter likely to generate the highest radial load (the 45°

cutter). In the solution proposed by Lacerda and Siqueira, 2012, (shown in figure 1-7, d), two additional

inserts were added. Whilst their solution has the potential to reduce radial loading to negligible levels

(providing near identical engagement times), it does not consider difficulties in developing a tool to hold

four inserts and provide adequate coolant and space for chip ejection. Configuration five cannot reduce

radial imbalance to zero, but if it can reduce it by any amount, it may help to extend the life of cutting

inserts by reducing the amplitude of vibration.

Figure 10-18 shows configuration four spindle loading in the X-Z plane for all increments, where each point

represents a unique increment and points are joined sequentially according to increment number. The first

increment, at t=0 seconds, is at coordinate 0,0 (no load) since all simulations start with no cutter-workpiece

contact. Each datapoint thereafter is separated from the preceeding point by 4E-4 seconds. As the figure

shows, cutter A) rapidly spirals out to a radial imbalance of approximately 240 N and consistently holds this

magnitude throughout the simulation. This is expected as the 45° cutter, B), has the effect of regulating A)’s

width of cut throughout the simulation, despite what would otherwise be a gradually increasing width of

cut for A), assuming B) was not present.

Cutter B) has a much more dramatic loading profile that converges gradually towards 400 N at the full

depth of cut. Again, this is expected as the cutter’s 45° inclination directs load away from the spindle thrust

direction (it’s most rigid axis) and applies it as a bending load against the spindle.

Figure 10-18 – Individual spindle loads for cutters A) and B)

251

Figure 10-19, shows like data from configuration five for cutters C), D) and E). Cutter C), representing the

single 0° inclination cutter shows a similar loading profile to that of A) in figure 10-18. As expected, sharing

the 45° inclination cutting load between two cutters, D), and E) has the effect of reducing the peak load on

each when compared to B) in figure 10-18.

Figure 10-19 – Individual spindle loads for cutters C), D) and E)

252

Figure 10-20 shows the combined spindle loading for configurations four and five. As the data show, both

configurations exhibit a similar loading profile, however, configuration five converges to a maximum radial

imbalance near 120 N, whereas configuration four continues growing until the final increment of the

simulation where it reaches 220 N.

The 45% decrease in maximum radial load in configuration five vs. that of configuration four shows that the

cutting insert configuration and layout has a considerable effect on radial imbalance.

Figure 10-20 – Total spindle loading for configurations 4) and 5)

The combined loading data features several abrupt corrections as cutters sequentially come into contact

with the workpiece. Although not considered in this work, the timing and magnitude of these artefacts may

also help tooling designers select for configurations that minimise the magnitude of sudden changes in

radial imbalance, in order to reduce the probability of nucleating chatter.

253

Figure 10-21 shows spindle loading comparisons for configurations four and five in the X and Z planes

respectively. The time of engagement is indicated for all five cutters. As the data show, each time a new

cutter engages, it affects both the phase and magnitude of radial loading. The combined radial loading of

configuration five is consistently lower than that of configuration four in both the X and Z planes.

Figure 10-21 – X & Z plane spindle loading comparisons for configurations 4) and 5)

In an ideal configuration, there would be no radial loading. In both configurations four and five, the spindle

loading is cyclical with the load vector shifting dramatically around the spindle axis as it rotates. An

equivalent, but opposite reaction load is applied to the valve seat itself. The magnitude of these loads must

be borne by the spindle, cylinder head and fixture structures. Insufficient stiffness in any of these structures

can lead to excessive relative displacement between the tool and workpiece and out-of-round error as

shown in Chapter Six. In extreme cases, the radial imbalance can also cause resonance within surrounding

structures which can lead to excessive vibration and tool damage.

Lacerda and Siqueira, 2012 show that excessive radial imbalance can accelerate wear of the cutting edge

and destroy the workpiece surface. Likewise Rocha et al., 2004 identify the vulnerability of pcBN to

chipping due to its low fracture toughness. Evidence of tool chipping was shown throughout Chapter Five.

Tool configuration comparisons such as the one presented in this section can help designers configure tools

to minimize reciprocal loading in the cutting plane, thus reducing vibration and the probability of tool

damage.

254

 Simulation Stability 10.2.4

Both simulations ran beyond the required depth of cut of 0.7 mm and were terminated at a final depth of

cut of 0.98 mm. Computation time for configurations four and five was 674.8 seconds and 981.6 seconds

respectively.

Figure 10-22 shows A) the condition of the mesh prior to simulation and C) after a final depth of cut of 0.7

mm for configuration four. Likewise, B) shows the initial and D) final state for configuration five. A) and B)

show both simulations start with a uniform mesh that approximates curvature well. C) shows that for

configuration four, quality and curvature representation has been maintained well through to the final

iteration. The same is largely true for configuration five, as shown in D) although there are fewer Delaunay

elements as can be seen at the extremes of the 0° and 45° surfaces. Both meshes remain free from needles,

caps and wedges.

Figure 10-22 – Mesh condition at start and end of simulation for both configurations

255

 Remeshing Algorithm 10.3
The previous chapter dealt with the technical implementation of a tetrahedral meshing algorithm based on

the ‘gift-wrapping’ technique. As highlighted in that chapter, the algorithm developed cannot handle

Schönhardt’s polyhedra and is not guaranteed to generate a mesh in other circumstances, despite the

many contingency strategies implemented in the algorithm developed for this work. It is not possible to

predict with certainty whether or not a given set of input parameters will guarantee successful mesh

generation for every increment in the simulation. Meshing failures are therefore exceptionally troublesome

since they can result in lost time and are not possible to resolve from careful parameter selection alone.

The meshing algorithm developed for this project is generally very robust, however it will occasionally fail.

Failure is almost always indicated by the exception “No valid point to complete tetrahedral.” This error

message is raised when a facet remains open, but there were no points in front of it that could be used to

complete a tetrahedral on the facet. This error message only ever occurs after all recovery strategies have

been trialled (as described in Chapter Nine).

There is normally a weak relationship between certain types of geometry and the probability of failure. For

example, small facets at sharp angles to neighbour facets in a mesh of otherwise large facets have a higher

probability of failure as the resulting tetrahedral will contain both small and large facets, serving as a bridge

between dense and coarse elements. This characteristic of the meshing algorithm is particularly relevant as

the mesh will almost always have a collection of elements somewhere that creates a step between depths

of cut at the workpiece-cutter interface.

Another difficult geometric feature is surface, almost cap-like, elements on the inner edge of the valve seat

ring. Although creation of these types of elements is normally avoided, in some cases they are a viable

solution necessary to form the curvature of the inner surface of the valve seat ring, where necessary. These

types of elements can cause further caps and wedges to form on their sides that face into the workpiece

volume.

With these limitations in mind, the following solutions are offered:

 Almost all state of the art meshing algorithms will seed the interior of the volume with nodes. This

is an essential step to maintain smooth transitions between element densities and to disrupt the

formation of poor aspect ratio elements. In this work, interior seeding was considered using a

crude pseudo-random node insertion method that targets abrupt changes in density, however it

was found that this method had little affect on stability, but did increase complexity. Interior

seeding was ultimately scrapped, however a more targeted method could possibly improve

reliability. Interior seeding is not critically important in this work, since the method developed only

remeshes a subsection of the parent mesh. As only one or two layers of elements are selected to

be replaced, the mesh is generally well protected against the formation of sharp density transitions

and poor aspect ratio elements. This is because the sub mesh hull contains many facets from the

parent mesh (at the interface between the parent mesh and sub mesh), and has also undergone

simplification and optimisation of its own unique facets; and

 Ideally the meshing algorithm should not fail catastrophically. Some obvious resolution strategies

may include:

o Offer the user a chance to change some parameters to recompute a mesh, for example,

change the target edge length, discard external caps (if these are the only errors), exporting

the mesh for manual repair before reimporting. These features would increase the

256

probability of salvaging the bulk of simulation effort, however they would require human

intervention to monitor and control.

o Introduce a method that relaxes the natural characteristic of the splitting algorithm to

require exact geometry. For example, where a sharp change in surface angle occurs,

perhaps a slope can be tolerated if it would avoid catastrophic failure.

o Where a mesh cannot be formed, the simulation could advance the cutters slightly and try

again. To the end user, this would be an insignificant deviation from the specified spindle

speed and feed rates, but to the remeshing algorithm, this would present a fundamentally

different arrangement of external hull facets that would be as different to the failed facets

as they are to the successful sets of facets that proceeded.

 Chapter Summary 10.4
This chapter presented the model in its final state at the end of this work. As demonstrated, the model is

capable of running and outputting a range of results including cutter loads and cutter face duty cycle data.

These cutter load results agree well with experimental data gathered and presented in Chapter Seven.

Furthermore, the calculated geometry closely follows the expected depth of cut and the calculated volume

of elements removed matches manual measurements taken directly from Marc.

This chapter also showed that the tools developed can be used to compare cutter layouts in order to select

a configuration that significantly reduces radial loading. In a pair of trial simulations based on a real

problem identified by Lacerda and Siqueira, 2012 and a solution proposed in this work, it was shown that

radial imbalance could be reduced by more than 45 % by adding an additional cutting insert.

Various internal aspects of the Fortran program were reviewed in this chapter, including the performance

of the tetrahedral mesher developed for this work in terms of stability and quality. Whilst the tetrahedral

mesher developed for this work was found to be by no means perfect, it is stable enough under the

conditions tested to run to the end of a machining operation when using a sub-segment valve seat model.

Furthermore, the quality of elements produced is generally very good, especially since no internal seed

nodes are added under any circumstances. This performance is largely due to careful selection of sub mesh

elements to remesh and the extensive preconditioning steps taken to simplify the sub mesh as described in

Chapter Nine.

257

Chapter Eleven – Conclusions
 Summary of Results 11.1

This work identified that multi-angle valve seat cutting tools, although balanced dynamically during

manufacture, are not balanced during cutting. This is clear from the imbalance of cutter angles around the

tool and varying engagement times. Real world uses of such tools rarely lead to issues until manufacturers

attempt to use them with pcBN cutting inserts. pcBN cutting inserts are vulnerable to chipping when

exposed to excessive vibration due to their low brittle fracture toughness. Close inspection of damaged

pcBN cutting inserts show many defects characteristic of brittle fracture.

A review of literature suggested that pcBN tools can be used, but only in circumstances where vibration is

kept low. A simulation model was designed that would be able to model radial loading of the spindle during

multi-angle valve seat machining. The intent of the model was to be able to simulate various different

cutter configurations in order to identify those with lower radial imbalance during machining.

This work has shown that it is possible to simulate multi-angle valve seat machining with a minimum of

computation effort in order to determine the loads applied to the spindle during multi-angle valve seat

machining. To achieve this, a cutting force model was developed that relates feed rate and width of cut to

cutting force. This model was applied to a finite element model using a vast body of code to parametrically

generate simulation files and calculate changes in geometry and cutting forces for each increment.

Although only a sub-segment of a valve seat could be simulated due to on-going issues with the 3D

tetrahedral mesher developed for this work, it was shown that the model could simulate cutting and

produce results which agree with experimentally gathered data. Using this model, it was shown that

different cutter configurations have a substantial effect on spindle loading and that by reorganising and

inserting additional inserts, imbalanced spindle loading can be reduced.

 Future Research 11.2
Future research objectives include both use-based objectives and development objectives. The primary

future research objective is to use the model developed to simulate various cutting tool configurations and

present an optimised configuration that features significantly reduced radial cutting force imbalance.

Section 9.10 offered a comprehensive overview of a limitation in the code that reduces its reliability. The

mesher developed currently has no way of resolving Schönhardt’s polyhedra and will crash whenever one is

encountered. Section 9.10 laid out one possible stratergy for overcoming the issue but potentially other

stratergies could be developed to improve stability of the mesher. These should be explored to fully realise

the potential of the work developed.

With sufficient manufacturer interest, it would be possible to design, simulate and manufacture several

alternative configurations and test them on production line representative machines for their effect on

stability and tool life. Although the cost of this work would be significant due to the specialised tooling that

must be manufactured and the CNC machine time required, the potential benefits of a positive verification

could justify the expense to tooling manufacturers and the industries that utilise them. It is envisaged that,

with the assistance of multi-angle valve seat machining tool manufacturers, this model can be used to

redesign tools to reduce imbalance and extend tool life.

Although this model can predict cutting forces and changes in geometry and will theoretically increase

cutting load and remove more material in response to some feed facing cutter perturbation (originating

258

due to vibration), no claim is made as to the model’s ability to predict regenerative chatter. Whilst the

foundational mechanism is simulated within the model (increased non-linear loading in response to depth

of cut) no experiments were performed to measure spindle flexibility, or chatter, to confirm that the cutter

load responds in exactly the same way it does to depth of cut. It is highly unlikely that cutting loads respond

the same way under chatter conditions as they do under normal cutting conditions. Despite this, it may be

possible to incorporate a model that is capable of predicting chatter and regenerative chatter. However,

many further experiments would need to be done in this area. Unlike the cutting force experiment

discussed in Chapter Seven, it is unlikely a similar experiment aimed at characterising chatter could be

simplified to a point where it would be economically justifiable. This area of research was ignored due to

the following reasons:

 The main area of interest for this work was random chipping of polycrystalline cubic boron nitride

(pcBN) cutting inserts during multi-angle valve seat machining, observed by Ford to occur under

stable cutting conditions where no significant vibration was reported (assuming that vibration

would have been audible) and where no evidence of regenerative chatter was found on the seat.

Lacerda and Siqueira, 2012, found evidence of chatter in their experiments, however their cutting

and workpiece materials were significantly less hard than the ones used by Ford. Furthermore data

is not available to draw a comparison between the stiffness of their cutting system vs. that of

Ford’s. Despite the differences in expression, this work asserts that dynamic imbalance is

responsible for both failure modes, thus there is no reason to require regenerative chatter in Fords

case to agree with the theory presented by Lacerda and Siqueira.

 Furthermore, simulating the nature of regenerative chatter for some measurable effect (period,

amplitude, energy, etc.) is of little interest to tooling manufacturers, since these properties

manifest beyond the point of failure. It is infinitely more important to manufacturers to study the

physics leading up to the point where regenerative chatter occurs. In cases such as the one

presented by Lacerda and Siqueira, this model may help to determine a safe zone, measured in

maximum radial imbalance in Newtons, below which regenerative chatter is extremely unlikely to

occur. The probability of chatter nucleation shares no relationship with cutter load, however it

may share a relationship with radial imbalance.

Chapter Five found evidence of variable wear along the cutter face. The literature review for this work

highlighted the importance of cutting edge radius on cutting performance, particularly with regards to

cutting loads, the quality of surface finish and vulnerability of the system to chatter. The model developed

in this work can accurately track the relative duty cycle of the cutting edge, revealing potential

opportunities for optimisation or to guide tool change schedules. It may be possible to add another

dimension to the cutting force prediction model developed in Chapter Seven, that takes into account the

wear state of the cutting edge, in addition to width and depth of cut. Currently, the model does not adjust

cutting force based on wear level, but by extending the governing equations in this way, the simulation

could model combinations of cutters with different wear states. However, capturing this data would

require considerably more experimental data, since varying spindle speeds and feed rates, must also be

repeated for varying known states of cutter wear.

259

 Conclusions 11.3
This work set out to help overcome the issue of random pcBN cutting tool failure during multi-angle valve

seat machining by developing tools to help reduce radial imbalance. The motivation came from a case study

concerning the Ford Sigma and Ford Fox engines. In that case study, manufacturer specifications for pcBN

promised to offer superior tool life and greater potential to hold tighter tolerances for longer and thus

more economical yields than traditional tungsten carbide alternatives. Ford commonly used pcBN on other

operations such as cylinder boring, but had little success with valve seat machining.

This section reviews the objectives set out in section 1.3 as follows:

1. investigate Ford’s cylinder head and fixture geometry and determine whether or not it undergoes

resonance at typical valve seat cutting feed rates and speeds;

2. design and execute an experiment aimed at capturing specific feed and rake forces for the valve

seat cutting operation, using a range of feed rates and spindle speeds for both dry and minimum

quantity lubricant (MQL) conditions;

3. justify, design and develop a substantial body of code capable of calculating cutting forces for a sub-

segment of the valve seat cutting operation at typical feed rates and speeds; and

4. test the simulation code by using it to calculate the sub-segment cutting load of a single cutter up to

and beyond the typical cutting depth.

 Objective One 11.3.1

A visit to Ford’s engine plant in Craiova, Romania was arranged in order to take a first-hand look at the

valve seat machining process. For this trip, an accelerometer system was designed specifically to look for

low and medium frequency resonance in the valve seat cutting operation at typical feed rates and spindle

speeds. Although the cylinder head fixture system had some stability issues (such as inadequate stiffness

and excessive flex at high thrust loads) evidence was collected that shows the head does not undergo

resonance during valve seat machining.

The accelerometer system was used to test other cutting operations such as valve guide reaming in which

resonance was found. Not only did this show that the data capture system was working as expected, it also

showed that other parts of the valve seat and guide machining process had stability issues.

 Objective Two 11.3.2

Chapter Seven laid out the design of an experiment which used a lathe to simulate the valve seat machining

operation using Ford supplied pcBN cutting tools and valve seats. Cutting speeds, feed rates and lubrication

settings were selected to encompass the full range of conditions that Ford can use for the operation.

In Chapter Seven, it was shown that cutting velocity has negligible effect on cutting load contrary to initial

expectations. The only factors that played a significant role in determining cutting load were width of cut

and feed rate.

These data were successfully used to construct a cutting force model for dry and MQL conditions that can

predict cutting load for a given width and depth of cut.

 Objective Three 11.3.3

Justify: Chapter Two introduced the numerous and broad fundamental concepts of cutting processes and

discussed the complexities and factors that influence cutting operations such as cutting materials, cutter

geometry, cutting fluids, speeds, feed rates, heat and wear.

260

Chapter Three introduced finite element analysis as a commonly used approach to modelling cutting

phenomena. This section presented the fundamentals of finite element modelling, including aspects such

as linear vs. non-linear, meshing and mesh refinement, verification and a review of available finite element

software options.

Chapter Four discussed some of the ways in which the phenomena discussed in Chapter Two could be

modelled by the tools introduced in Chapter Three. Many of the methods presented were commonly used

in isolation and presented in literature in the form of simulations covering very limited durations.

The chapter showed that combining the models in order to produce a single 3D numerical model of valve

seat machining that can run for multiple passes and multiple iterations was unrealistic. This work suggested

that by using simplifications such as a cutting force model and specialised techniques for remeshing, the

setup time and computation time required to simulate valve seat cutting could be drastically reduced.

Section 8.1 presented a justification for a building a substantial body of code for performing the functions

discussed, such as intersection detection, mesh splitting, remeshing and resolving forces.

Design: Chapter Eight, section 8.4 presented a comprehensive design for the model, including how a

specially developed Python script would build the geometry in MSC Marc according to parametric inputs.

Section 8.3 explained how this parametric model would fit together with the simulation engine developed

in Chapter Nine.

Develop: Chapter Eight, section 8.6 walked through how the parametric model generator script builds the

finite element model geometry and sets up the job, load case and mesh configuration.

Chapter Nine, section 9.7 presented a detailed step-by-step explanation of how the Fortran code developed

for this work treats each increment, including isolating a sub-section of the mesh, calculating where to split

the mesh, generating 3D tetrahedral elements to represent the newly machined surface and resolving

cutting forces. Section 9.8 covers in detail how low level operations such as ray-ray intersection and NURBS

surface modelling are performed.

 Objective Four 11.3.4

Chapter Ten applied the model to a 30° valve seat sub-segment, cut according to three different

configurations given in table 10-1. The testing showed that the simulation produces results which closely

approximate both the experimental data and theoretical cutting force model.

Further analysis showed that the algorithm developed was able to keep element and node counts low and

reliably generated new tetrahedral meshes for every increment in which the cutter was engaged with the

workpiece.

The model was applied to a multi-angle problem raised by Lacerda and Siqueira, 2012, and a proposed

solution was developed to reduce radial loading. The simulations performed showed that by introducing a

third cutter, maximum radial load could be reduced by 23%.

261

 Novel Contributions 11.4
This work proves that it is possible to simulate the radial imbalance of cutters in a multi-angle valve seat

cutting system, by developing a parametric numerical model and bespoke software.

Furthermore, this work shows that it is possible to carry out such a simulation in drastically reduced time

compared to traditional finite element methods.

It also offers a novel experimental design to measure the cutting forces acting on a single cutter of a multi-

angle valve seat cutting tool. The experiment developed works by recreating an equivalent cutting system

using production valve seat blanks and pcBN cutting inserts. The data yielded are used to establish a map

that relates lubrication regime, depth of cut and width of cut to cutting force, suitable for use in a

numerical model.

It is envisaged that the numerical model developed for this work will enable tooling designers to cost-

effectively simulate multi-angle valve seat machining tool designs in future. This will enable designers to

compare various cutter layouts and select for those which produce the lowest radial imbalance, leading to

more radially balanced configurations with lower vibrational amplitudes and therefore reduced pcBN tool

damage. These optimised tool configurations will help automotive manufacturers take full advantage of

cutting materials such as pcBN.

262

References
AMETEK 2009 ‘LANDCAL - A Range of Temperature Calibration Sources’.

Analog Devices Inc. 2009 ‘ADXL326 Small, Low Power, 3-Axis ±16g Accelerometer’. Available at:
http://www.analog.com/en/products/mems/mems-accelerometers/adxl326.html.

Arsecularatne, J. A., Zhang, L. C. and Montross, C. 2006 ‘Wear and tool life of tungsten carbide, PCBN and
PCD cutting tools’, International Journal of Machine Tools and Manufacture, 465, pp. 482–491. doi:
10.1016/j.ijmachtools.2005.07.015.

Astakhov, V. P. V. 2006 Tribology of Metal Cutting, Volume 52 (Tribology and Interface Engineering). doi:
10.1097/00000542-200203000-00013.

ASTM 2000 ‘E646 - Standard Test Method for Tensile Strain-Hardening Exponents (n-Values) of Metallic
Sheet Materials’.

ASTM 2004 ‘B783 - Standard Specification for Materials for Ferrous Powder Metallurgy (P/M) Structural
Parts’.

Attanasio, A. et al. 2008 ‘3D finite element analysis of tool wear in machining’, CIRP Annals - Manufacturing
Technology, 571, pp. 61–64. doi: 10.1016/j.cirp.2008.03.123.

Barry, J. and Byrne, G. 2001 ‘Cutting tool wear in the machining of hardened steels. Part II: Cubic boron
nitride cutting tool wear’, Wear, 2472, pp. 152–160. doi: 10.1016/S0043-1648(00)00528-7.

Bell, D. D. et al. 1999 ‘Modeling of the environmental effect of cutting fluid©’, Tribology Transactions, 421,
pp. 168–173. doi: 10.1080/10402009908982204.

Bil, H., Kiliç, S. E. and Tekkaya, A. E. 2004 ‘A comparison of orthogonal cutting data from experiments with
three different finite element models’, International Journal of Machine Tools and Manufacture, 449, pp.
933–944. doi: 10.1016/j.ijmachtools.2004.01.016.

Bleistahl 2006 ‘NOVOFER AR20’.

Blumenthal, L. M. 1970 Theory and applications of distance geometry.

Boisse, P., Altan, T. and Luttervelt, K. van 2003 Friction & flow stress in forming & cutting.

Bölling, C., Kuhne, M. and Abele, E. 2017 ‘Modeling of process forces with consideration of tool wear for
machining of sintered steel alloy for application to valve seat in a combustion engine’, Production
Engineering. Springer Berlin Heidelberg, 114–5, pp. 477–485. doi: 10.1007/s11740-017-0759-y.

Borvik, T. et al. 2001 ‘A computational model of viscoplasticity and ductile damage for impact and
penetration’, European Journal of Mechanics, A/Solids, 205, pp. 685–712. doi: 10.1016/S0997-
7538(01)01157-3.

Brehl, D. E. and Dow, T. A. 2008 ‘Review of vibration-assisted machining’, Precision Engineering, 323, pp.
153–172. doi: 10.1016/j.precisioneng.2007.08.003.

Brito, R. F., Carvalho, S. R. and Lima E Silva, S. M. M. 2015 ‘Experimental investigation of thermal aspects in
a cutting tool using comsol and inverse problem’, Applied Thermal Engineering. Elsevier Ltd, 86, pp. 60–68.
doi: 10.1016/j.applthermaleng.2015.03.083.

Ceretti, E. et al. 2000 ‘Turning simulations using a three-dimensional FEM code’, Journal of Materials
Processing Technology, 981, pp. 99–103. doi: 10.1016/S0924-0136(99)00310-6.

263

Chen, G. et al. 2013 ‘Measurement and finite element simulation of micro-cutting temperatures of tool tip
and workpiece’, International Journal of Machine Tools and Manufacture. Elsevier, 75, pp. 16–26. doi:
10.1016/j.ijmachtools.2013.08.005.

Choi, J. et al. 1993 ‘Effect of B2O3 and hBN Crystallinity on cBN Synthesis’, Journal of the American Ceramic
Society, 7610, pp. 2525–2528. doi: 10.1111/j.1151-2916.1993.tb03976.x.

Costes, J. P. et al. 2007 ‘Tool-life and wear mechanisms of CBN tools in machining of Inconel 718’,
International Journal of Machine Tools and Manufacture, 477–8, pp. 1081–1087. doi:
10.1016/j.ijmachtools.2006.09.031.

Le Coz, G. et al. 2012 ‘Measuring temperature of rotating cutting tools: Application to MQL drilling and dry
milling of aerospace alloys’, Applied Thermal Engineering. Elsevier Ltd, 361, pp. 434–441. doi:
10.1016/j.applthermaleng.2011.10.060.

Crisfield, M. a 1996 Nonlinear Finite Element Analysis of Solids and Structures, Non-Linear Finite Element
Analysis of Solids and Structures, Second Edition. doi: 10.1017/CBO9781107415324.004.

Dan, W. J. et al. 2007 ‘An experimental investigation of large-strain tensile behavior of a metal sheet’,
Materials and Design, 287, pp. 2190–2196. doi: 10.1016/j.matdes.2006.07.005.

Dassault Systèmes 2014 ‘Abaqus 6.14 - Abaqus User Subroutines Reference Guide’.

Department for Business Innovation & Skills 2010 Manufacturing in the UK : An economic analysis of the
sector.

DeVries, W. R. 1992 Analysis of Material Removal Processes. doi: 10.1007/978-1-4612-4408-0.

Dhondt, G. 2004 The Finite Element Method for Three-Dimensional Thermomechanical Applications.
Chichester, UK: John Wiley & Sons, Ltd. doi: 10.1002/0470021217.

Dobrzański, L. A. 1995 ‘Effects of chemical composition and processing conditions on the structure and
properties of high-speed steels’, Journal of Materials Processing Tech., 481–4, pp. 727–737. doi:
10.1016/0924-0136(94)01715-D.

Dogra, M. et al. 2012 ‘Tool life and surface integrity issues in continuous and interrupted finish hard turning
with coated carbide and CBN tools’, Proceedings of the Institution of Mechanical Engineers, Part B: Journal
of Engineering Manufacture, 2263, pp. 431–444. doi: 10.1177/0954405411418589.

‘Dura-Bond Catalog’ 2014.

Eda, H., Kishi, K. and Hashimoto, H. 1981 ‘The Newly Developed CBN Cutting Tool’, in Proceedings of the
Twenty-First International Machine Tool Design and Research Conference. London: Macmillan Education
UK, pp. 253–258. doi: 10.1007/978-1-349-05861-7_33.

Edwards, R. 1993 Cutting Tools.

El-Gallab, M. and Sklad, M. 1998 ‘Machining of Al/SiC particulate metal-matrix composites Part I: Tool
performance’, Journal of Materials Processing Technology, 831–3, pp. 151–158. doi: 10.1016/S0924-
0136(98)00054-5.

FORD 2016a ‘[Ford confidential internal document / 1.0L I3 Fox GTDI Upgraded Head Valve Seat Machining
Deformation Analysis / 2016MY]’.

FORD 2016b ‘[Ford confidential internal document / Cylinder Head / WSS-M2A178-A3]’.

FORD 2016c ‘[Ford confidential internal document / ZPL Fixture Model / Steel 16MnCr5 /
016ZE00AO10001]’.

264

FORD [Praveen. T] 2016 ‘[Ford confidential internal document / 1.0L I3 Fox GTDI Upgrade for C344 MA4
Modal Analysis]’.

Fu, X. and Zheng, S. 2014 ‘New approach in dynamics of regenerative chatter research of turning’,
Communications in Nonlinear Science and Numerical Simulation. Elsevier B.V., 1911, pp. 4013–4023. doi:
10.1016/j.cnsns.2014.04.003.

Fujimoto, M. and Ichida, Y. 2008 ‘Micro fracture behavior of cutting edges in grinding using single crystal
cBN grains’, Diamond and Related Materials, 177–10, pp. 1759–1763. doi: 10.1016/j.diamond.2008.03.008.

Giasin, K. et al. 2017 ‘3D Finite Element Modelling of Cutting Forces in Drilling Fibre Metal Laminates and
Experimental Hole Quality Analysis’, Applied Composite Materials. Applied Composite Materials, 241, pp.
113–137. doi: 10.1007/s10443-016-9517-0.

Guerra Silva, R. et al. 2015 ‘Finite element modeling of chip separation in machining cellular metals’,
Advances in Manufacturing, 31, pp. 54–62. doi: 10.1007/s40436-015-0099-0.

Gurson, A. L. 1977 ‘Continuum theory of ductile rupture by void nucleation and growth: Part 1 - yield
criteria and flow rules for porous ductile media’, Journal of Engineering Materials and Technology,
Transactions of the ASME, 991, pp. 2–15. doi: 10.1115/1.3443401.

Hajmohammadi, M. S., Movahhedy, M. R. and Moradi, H. 2014 ‘Investigation of thermal effects on
machining chatter based on FEM simulation of chip formation’, CIRP Journal of Manufacturing Science and
Technology. CIRP, 71, pp. 1–10. doi: 10.1016/j.cirpj.2013.11.001.

Hambli, R. 2001 ‘Comparison between Lemaitre and Gurson damage models in crack growth simulation
during blanking process’, International Journal of Mechanical Sciences, 4312, pp. 2769–2790. doi:
10.1016/S0020-7403(01)00070-4.

Harris, T. K., Brookes, E. J. and Taylor, C. J. 2004 ‘The effect of temperature on the hardness of
polycrystalline cubic boron nitride cutting tool materials’, International Journal of Refractory Metals and
Hard Materials, 222–3, pp. 105–110. doi: 10.1016/j.ijrmhm.2004.01.004.

Hidnert, P. 1937 ‘Thermal expansion of cemented tungsten carbide’, Journal of Research of the National
Bureau of Standards, 181, p. 47. doi: 10.6028/jres.018.025.

Hoyle, G. 1988 High Speed Steels.

Huang, S. et al. 2008 ‘Detecting tool breakage using accelerometer in ball-nose end milling’, 2008 10th
International Conference on Control, Automation, Robotics and Vision, ICARCV 2008. IEEE, December, pp.
927–933. doi: 10.1109/ICARCV.2008.4795642.

Huang, Y. and Liang, S. Y. 2005 ‘Effect of cutting conditions on tool performance in CBN hard turning’,
Journal of Manufacturing Processes, 71, pp. 10–16. doi: 10.1016/S1526-6125(05)70077-3.

Iglesias, A. et al. 2016 ‘Analytical expressions for chatter analysis in milling operations with one dominant
mode’, Journal of Sound and Vibration. Elsevier, 375, pp. 403–421. doi: 10.1016/j.jsv.2016.04.015.

Irish, S. and Simmons, R. 2009 ‘Finite Element Modeling Continuous Improvement: Validity Checks’, in Finite
Element Modeling Continuous Improvement. Available at: https://femci.gsfc.nasa.gov/index.html.

Johnson, G. R. and Cook, W. H. 1983 ‘A constitutive model and data for metals subjected to large strains,
high strain rates and high temperatures.pdf’, International Symposium on Ballistics, pp. 541–547.

Kato, H., Shintani, K. and Sumiya, H. 2002 ‘Cutting performance of a binder-less sintered cubic boron nitride
tool in the high-speed milling of gray cast iron’, Journal of Materials Processing Technology, 1272, pp. 217–
221. doi: 10.1016/S0924-0136(02)00145-0.

265

Klocke, F. 2011 Manufacturing Processes 1: Cutting, Rwthedition. doi: 10.1007/978-3-642-11979-8.

Knight, W. A. and Boothroyd, G. 2005 Fundamentals of Metal Machining and Machine Tools, Third Edition.
doi: 1574446592.

König, W. and Neises, A. 1993 ‘Wear mechanisms of ultrahard, non-metallic cutting materials’, Wear, 162–
16412–21, pp. 12–21. doi: 10.1016/0043-1648(93)90479-6.

Krar, S. F. and Ratterman, E. 1990 Superabrasives: Grinding and Machining With Cbn and Diamond.

Lacarbonara, W. 2013 Nonlinear structural mechanics: Theory, dynamical phenomena and modeling,
Nonlinear Structural Mechanics: Theory, Dynamical Phenomena and Modeling. doi: 10.1007/978-1-4419-
1276-3.

Lacerda, H. B. and Siqueira, I. L. 2012 ‘Blade geometry effects on the boring of valve seats of internal
combustion engines’, International Journal of Advanced Manufacturing Technology, 631–4, pp. 269–280.
doi: 10.1007/s00170-012-3905-x.

Lakshminarayanan, P. A. et. al. 2001 ‘Solving Inlet Valve Seat Wear Problem in High BMEP Engines’,
Symposium on International Automotive Technology 2001, p. 8. doi: 10.4271/2001-26-0024.

Lauro, C. H. et al. 2013 ‘Monitoring the temperature of the milling process using infrared camera’, Scientific
Research and Essays, 723, pp. 1112–1120. doi: 10.5897/SRE12.579.

Law, A. M. 2001 ‘How to Build Valid and Credible Simulation Models’, in Proceedings of the Winter
Simulation Conference, 2005. IEEE, pp. 24–32. doi: 10.1109/WSC.2005.1574236.

Leine, R. I. et al. 1998 ‘Stick-Slip Vibrations Induced by Alternate Friction Models’, Nonlinear Dynamics, 161,
pp. 41–54. doi: 10.1023/A:1008289604683.

Lemaitre, J. 1985 ‘A Continuous Damage Mechanics Model for Ductile Fracture’, Journal of Engineering
Materials and Technology, 1071, pp. 83–89. doi: 10.1115/1.3225775.

Li, L. et al. 2002 ‘High speed cutting of Inconel 718 with coated carbide and ceramic inserts’, Journal of
Materials Processing Technology, 1291–3, pp. 127–130. doi: 10.1016/S0924-0136(02)00590-3.

Liew, W. Y. H., Ngoi, B. K. A. and Lu, Y. G. 2003 ‘Wear characteristics of PCBN tools in the ultra-precision
machining of stainless steel at low speeds’, Wear, 2543–4, pp. 265–277. doi: 10.1016/S0043-
1648(03)00002-4.

Lin, Z. C. and Chen, D. Y. 1995 ‘A study of cutting with a CBN tool’, Journal of Materials Processing Tech.,
491–2, pp. 149–164. doi: 10.1016/0924-0136(94)01321-Q.

Liu, Z. Q., Wan, Y. and Ai, X. 2004 ‘Recent Developments in Tool Materials for High Speed Machining’,
Materials Science Forum, 471–472, pp. 438–442. doi: 10.4028/www.scientific.net/MSF.471-472.438.

Liujie, X. et al. 2007 ‘Optimisation of chemical composition of high speed steel with high vanadium content
for abrasive wear using an artificial neural network’, Materials and Design, 283, pp. 1031–1037. doi:
10.1016/j.matdes.2005.10.015.

LoRusso, J. A. et al. 1984 ‘Electrohydraulic gas sampling valve’, Review of Scientific Instruments, 555, pp.
786–792. doi: 10.1063/1.1137818.

Ludwik, P. 1909 Elemente der Technologischen Mechanik, Elemente der Technologischen Mechanik. doi:
10.1007/978-3-662-40293-1.

MacNeal and Richard 1993 Finite Elements: Their design and performance.

266

Majeed, A., Iqbal, A. and Lv, J. 2018 ‘Enhancement of tool life in drilling of hardened AISI 4340 steel using
3D FEM modeling’, International Journal of Advanced Manufacturing Technology. The International Journal
of Advanced Manufacturing Technology, 955–8, pp. 1875–1889. doi: 10.1007/s00170-017-1235-8.

Malakizadi, A. et al. 2017 ‘Influence of friction models on FE simulation results of orthogonal cutting
process’, International Journal of Advanced Manufacturing Technology, 889–12, pp. 3217–3232. doi:
10.1007/s00170-016-9023-4.

Malakizadi, A., Sadik, I. and Nyborg, L. 2013 ‘Wear mechanism of CBN inserts during machining of bimetal
aluminum-grey cast iron engine block’, Procedia CIRP. Elsevier B.V., 8, pp. 188–193. doi:
10.1016/j.procir.2013.06.087.

Maranhão, C. and Paulo Davim, J. 2010 ‘Finite element modelling of machining of AISI 316 steel: Numerical
simulation and experimental validation’, Simulation Modelling Practice and Theory. Elsevier B.V., 182, pp.
139–156. doi: 10.1016/j.simpat.2009.10.001.

Marusich, T. D. and Ortiz, M. 1995 ‘Modelling and simulation of high-speed machining’, International
Journal for Numerical Methods in Engineering, 3821, pp. 3675–3694. doi: 10.1002/nme.1620382108.

Meyers, V. J., Smith, I. M. and Griffiths, D. V. 1989 Programming the Finite Element Method., Mathematics
of Computation. doi: 10.2307/2008738.

Micro-Epsilon 2012 ‘Operating Instructions thermoIMAGER TIM’.

Milton C. Shaw 2005 Metal cutting principles: Second Edition, New York: Oxford university press. doi:
10.1016/0025-5408(96)80018-3.

Mitrofanov, A. V. et al. 2005 ‘Effect of lubrication and cutting parameters on ultrasonically assisted turning
of Inconel 718’, Journal of Materials Processing Technology, 162–163SPEC. ISS., pp. 649–654. doi:
10.1016/j.jmatprotec.2005.02.170.

Moller, T. and Trumbore, B. 1998 ‘Fast, minimum storage ray-triangle intersection’, Doktorsavhandlingar
vid Chalmers Tekniska Hogskola, 1425, pp. 109–115. doi: 10.1145/1198555.1198746.

Monteiro, S. N. et al. 2013 ‘Cubic boron nitride competing with diamond as a superhard engineering
material - An overview’, Journal of Materials Research and Technology. Korea Institute of Oriental
Medicine, 21, pp. 68–74. doi: 10.1016/j.jmrt.2013.03.004.

Moradi, H. et al. 2013 ‘Forced vibration analysis of the milling process with structural nonlinearity, internal
resonance, tool wear and process damping effects’, International Journal of Non-Linear Mechanics. Elsevier,
54, pp. 22–34. doi: 10.1016/j.ijnonlinmec.2013.02.005.

Mourad, A., Mourad, B. and Abderrahim, B. 2017 ‘Measurement and numerical simulation of the cutting
temperature in cutting tool during turning operation’, Journal of Engineering Science and Technology, 125,
pp. 1307–1317.

MSC Software 2016a ‘Marc User Documentation Volume A: Theory and User Information’, A.

MSC Software 2016b ‘Marc User Documentation Volume D: User Subroutines and Special Routines’, D.

Noor, A. K. 1988 ‘Parallel Processing in Finite Element Structural Analysis’, 241, pp. 225–241.

Olgun, E., Compton, W. D. and Chandrasekar, S. 2003 ‘The effect of superimposed low-frequency
modulation on lubrication in machining’, pp. 727–735.

Oxley, P. L. B. 1989 Mechanics of Machining: An Analytical Approach to Assessing Machinability, Journal of
Applied Mechanics. doi: 10.1115/1.2888318.

267

Özel, T. 2006 ‘The influence of friction models on finite element simulations of machining’, International
Journal of Machine Tools and Manufacture, 465, pp. 518–530. doi: 10.1016/j.ijmachtools.2005.07.001.

Pierce, D. et al. 2019 ‘High temperature materials for heavy duty diesel engines: Historical and future
trends’, Progress in Materials Science. Elsevier Ltd, 103, pp. 109–179. doi: 10.1016/j.pmatsci.2018.10.004.

Rao, S. S. 2010 The Finite Element Method in Engineering. 5th edn, The Finite Element Method in
Engineering: Fifth Edition. 5th edn. doi: 10.1016/C2009-0-04807-7.

Roberts, R. B., White, G. K. and Fawcett, E. 1983 ‘Thermal expansion of Cr and Cr-V alloys’, Physica B+C,
1191–2, pp. 63–67. doi: 10.1016/0378-4363(83)90167-5.

Rocha, C. A. et al. 2004 ‘Evaluation of the wear mechanisms and surface parameters when machining
internal combustion engine valve seats using PCBN tools’, Journal of Materials Processing Technology,
1453, pp. 397–406. doi: 10.1016/j.jmatprotec.2003.10.004.

Saglam, H., Yaldiz, S. and Unsacar, F. 2007 ‘The effect of tool geometry and cutting speed on main cutting
force and tool tip temperature’, Materials and Design, 281, pp. 101–111. doi:
10.1016/j.matdes.2005.05.015.

Sato, M., Ueda, T. and Tanaka, H. 2007 ‘An experimental technique for the measurement of temperature
on CBN tool face in end milling’, International Journal of Machine Tools and Manufacture, 4714, pp. 2071–
2076. doi: 10.1016/j.ijmachtools.2007.05.006.

Schönhardt, E. 1928 ‘Über Die Zerlegung Von Dreieckspolyedern in Tetraeder’, Mathematische Annalen, 98,
pp. 309–312.

Scientific Forming Technologies Corporation 2014 ‘DEFORM 3D Machining Product Brochure’.

Shams, A. and Mashayekhi, M. 2012 ‘Improvement of orthogonal cutting simulation with a nonlocal
damage model’, International Journal of Mechanical Sciences. Elsevier, 611, pp. 88–96. doi:
10.1016/j.ijmecsci.2012.05.008.

Shewchuk, J. R. 2002 ‘Constrained Delaunay Tetrahedralizations and Provably Good Boundary Recovery’,
11th International Meshing Roundtable, pp. 193–204. doi: 10.1.1.11.9064.

Si, H. 2015 ‘TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator’, ACM Transactions on
Mathematical Software, 412, pp. 1–36. doi: 10.1145/2629697.

Sreejith, P. S. and Ngoi, B. K. A. 2000 ‘Dry machining: Machining of the future’, Journal of Materials
Processing Technology, 1011, pp. 287–291. doi: 10.1016/S0924-0136(00)00445-3.

Srikanth, A. and Zabaras, N. 2001 ‘An updated Lagrangian finite element sensitivity analysis of large
deformations using quadrilateral elements’, International Journal for Numerical Methods in Engineering,
5210, pp. 1131–1163. doi: 10.1002/nme.245.

Stachowiak, G. W. 2005 Wear - Materials, Mechanisms and Practice. Edited by G. W. Stachowiak.
Chichester, England: John Wiley & Sons Ltd. doi: 10.1002/9780470017029.

Stotter, A. 1965 ‘Exhaust Valve Temperature ■ A Theoretical and Experimental Investigation = J ’: doi:
10.4271/650019.

Suh, C. S., Khurjekar, P. P. and Yang, B. 2002 ‘Characterisation and identification of dynamic instability in
milling operation’, Mechanical Systems and Signal Processing, 165, pp. 853–872. doi:
10.1006/mssp.2002.1497.

Sutter, G. et al. 2003 ‘An experimental technique for the measurement of temperature fields for the
orthogonal cutting in high speed machining’, International Journal of Machine Tools and Manufacture, 437,

268

pp. 671–678. doi: 10.1016/S0890-6955(03)00037-3.

Sutter, G. 2005 ‘Chip geometries during high-speed machining for orthogonal cutting conditions’,
International Journal of Machine Tools and Manufacture, 456, pp. 719–726. doi:
10.1016/j.ijmachtools.2004.09.018.

Svoboda, A., Wedberg, D. and Lindgren, L. E. 2010 ‘Simulation of metal cutting using a physically based
plasticity model’, Modelling and Simulation in Materials Science and Engineering, 187. doi: 10.1088/0965-
0393/18/7/075005.

Tang, L. et al. 2019 ‘Wear performance and mechanisms of PCBN tool in dry hard turning of AISI D2
hardened steel’, Tribology International. Elsevier Ltd, 1321, pp. 228–236. doi:
10.1016/j.triboint.2018.12.026.

Tatar, K., Rantatalo, M. and Gren, P. 2007 ‘Laser vibrometry measurements of an optically smooth rotating
spindle’, Mechanical Systems and Signal Processing, 214, pp. 1739–1745. doi:
10.1016/j.ymssp.2006.08.006.

Taylor F.W 1907 On the art of cutting metals, Transactions of ASME. doi: 10.1109/SUTC.2008.30.

Thepsonthi, T. and Özel, T. 2015 ‘3-D finite element process simulation of micro-end milling Ti-6Al-4V
titanium alloy: Experimental validations on chip flow and tool wear’, Journal of Materials Processing
Technology, 221, pp. 128–145. doi: 10.1016/j.jmatprotec.2015.02.019.

Toh, C. K. 2004 ‘Vibration analysis in high speed rough and finish milling hardened steel’, Journal of Sound
and Vibration, 2781–2, pp. 101–115. doi: 10.1016/j.jsv.2003.11.012.

Tounsi, N. et al. 2002 ‘From the basic mechanics of orthogonal metal cutting toward the identification of
the constitutive equation’, International Journal of Machine Tools and Manufacture, 4212, pp. 1373–1383.
doi: 10.1016/S0890-6955(02)00046-9.

Trent, E. M. and Wright, P. K. 2000 Metal Cutting. 4th edn, Butterworth-Heinemann Ltd., 1991,. 4th edn.

Turner, M. J. et al. 1956 ‘Stiffness and Deflection Analysis of Complex Structures’, Journal of the
Aeronautical Sciences, 239, pp. 805–823. doi: 10.2514/8.3664.

Tvergaard, V. and Needleman, A. 1995 ‘Effects of nonlocal damage in porous plastic solids’, International
Journal of Solids and Structures. Elsevier Science Ltd, 328–9, pp. 1063–1077. doi: 10.1016/0020-
7683(94)00185-Y.

Uhlmann, E., Fuentes, J. A. O. and Keunecke, M. 2009 ‘Machining of high performance workpiece materials
with CBN coated cutting tools’, Thin Solid Films. Elsevier B.V., 5185, pp. 1451–1454. doi:
10.1016/j.tsf.2009.09.095.

Umbrello, D., M’Saoubi, R. and Outeiro, J. C. 2007 ‘The influence of Johnson-Cook material constants on
finite element simulation of machining of AISI 316L steel’, International Journal of Machine Tools and
Manufacture, 473–4, pp. 462–470. doi: 10.1016/j.ijmachtools.2006.06.006.

Vaz, M. et al. 2007 ‘Modelling and simulation of machining processes’, Archives of Computational Methods
in Engineering, 142, pp. 173–204. doi: 10.1007/s11831-007-9005-7.

Ventura, C. E. H., Köhler, J. and Denkena, B. 2013 ‘Cutting edge preparation of PCBN inserts by means of
grinding and its application in hard turning’, CIRP Journal of Manufacturing Science and Technology, 64, pp.
246–253. doi: 10.1016/j.cirpj.2013.07.005.

Wang, Y. P., Wilkinson, G. B. and Drallmeier, J. A. 2004 ‘Parametric study on the fuel film breakup of a cold
start PFI engine’, Experiments in Fluids, 373, pp. 385–398. doi: 10.1007/s00348-004-0827-x.

269

Wang, Y. S. et al. 1995 ‘Wear Mechanisms of Valve Seat and Insert in Heavy Duty Diesel Engine’, SAE
Technical Paper, 412. doi: 10.4271/952476.

Weisstein, E. W. 2017 MathWorld - A Wolfram Web Resource - ‘Circumsphere’. Available at:
http://mathworld.wolfram.com/Circumsphere.html.

Wentorf Jr., R. H. 1961 ‘Synthesis of the Cubic Form of Boron Nitride’, The Journal of Chemical Physics, 343,
p. 809. doi: 10.1063/1.1731679.

Werschmoeller, D. and Li, X. 2010 ‘Measurement of tool internal temperatures in the tool-chip contact
region by embedded thin film micro thermocouples’, ASME 2010 International Manufacturing Science and
Engineering Conference, MSEC 2010. Elsevier Ltd, 12, pp. 371–377. doi: 10.1115/MSEC2010-34176.

White, G. K. 1965 ‘Thermal expansion of magnetic metals at low temperatures’, Proceedings of the Physical
Society, 861, pp. 159–169. doi: 10.1088/0370-1328/86/1/320.

Wilcoxon 2018 ‘Low frequency machinery monitoring : measurement considerations’.

Wong-Ángel, W. D. et al. 2014 ‘Effect of copper on the mechanical properties of alloys formed by powder
metallurgy’, Materials and Design, 58, pp. 12–18. doi: 10.1016/j.matdes.2014.02.002.

Wriggers, P. 2005 Adaptive methods for contact problems, CISM International Centre for Mechanical
Sciences, Courses and Lectures. doi: 10.1007/3-211-38060-4_6.

Xie, J. Q., Bayoumi, A. E. and Zbib, H. M. 1998 ‘FEA modeling and simulation of shear localized chip
formation in metal cutting’, International Journal of Machine Tools and Manufacture, 389, pp. 1067–1087.
doi: 10.1016/S0890-6955(97)00063-1.

Yagawa, G. and Shioya, R. 1993 ‘Parallel finite elements on a massively parallel computer with domain
decomposition’, Computing Systems in Engineering, 44–6, pp. 495–503. doi: 10.1016/0956-0521(93)90017-
Q.

Zhao, T. et al. 2017 ‘Effect of cutting edge radius on surface roughness and tool wear in hard turning of AISI
52100 steel’, International Journal of Advanced Manufacturing Technology. The International Journal of
Advanced Manufacturing Technology, 919–12, pp. 3611–3618. doi: 10.1007/s00170-017-0065-z.

Zheng, J. et al. 2016 ‘An improved local remeshing algorithm for moving boundary problems’, Engineering
Applications of Computational Fluid Mechanics, 101, pp. 403–426. doi: 10.1080/19942060.2016.1174888.

Zhou, J. M., Andersson, M. and Ståhl, J. E. 2004 ‘Identification of cutting errors in precision hard turning
process’, Journal of Materials Processing Technology, 153–1541–3, pp. 746–750. doi:
10.1016/j.jmatprotec.2004.04.331.

Zhu, D., Zhang, X. and Ding, H. 2013 ‘Tool wear characteristics in machining of nickel-based superalloys’,
International Journal of Machine Tools and Manufacture. Elsevier, 64, pp. 60–77. doi:
10.1016/j.ijmachtools.2012.08.001.

Zienkiewicz, O. C., Taylor, R. L. and Zhu, J. Z. 1967 ‘The Finite Element Method: Its Basis and Fundamentals’,
in The Finite Element Method: its Basis and Fundamentals. 7th edn. Elsevier. doi: 10.1016/B978-1-85617-
633-0.00019-8.

Zoya, Z. . and Krishnamurthy, R. 2000 ‘The performance of CBN tools in the machining of titanium alloys’,
Journal of Materials Processing Technology, 1001–3, pp. 80–86. doi: 10.1016/S0924-0136(99)00464-1.

Zsolt János Viharos, Markos, S. and Szekeres, C. 2003 ‘ANN-based chip-form classification in turning’, XVII
IMEKO World Congress, pp. 1469–1473.

270

Appendix A – MarcTools
This appendix explains the technical implementation of MarcTools. MarcTools relies heavily on object

inheritance and polymorphism to drastically reduce the quantity of code required to generate models in

MSC Marc with Python. The Python classes defined below, show an example of how object inheritance can

be used to avoid re-implementing methods that are common between multiple subclasses.

class RoundGeometry(object):

 def Radius(diameter):

 return radius / 2.0

class Circle(RoundGeometry):

 def Area(diameter):

 return math.pi * self.Radius(diameter) ** 2.0

class Sphere(RoundGeometry):

 def Area(diameter):

 return 4.0 * math.pi * self.Radius(diameter) ** 2.0

In this example, RoundGeometry inherits the object class from Python and contains a method named

Radius. Object is a base class defined by Python, in later Python builds, this inheritance is not necessary,

but in Python 2.7 used by Marc, this step is necessary to define a ‘new-style’ class.

Circle inherits RoundGeometry, and adds one of its own methods – Area. Instances of Circle have both

methods, Radius and Area, due to the inheritance of Radius from RoundGeometry. Likewise, Sphere can

also make use of Radius, but must implement a different solution for Area.

The following reference gives a list of key classes defined in MarcTools to handle geometry creation in

Marc. Of these objects, those that represent some entity in Marc do not create themselves in Marc until a

method named Make is called. This is to allow the calling code to delay creating the entity in Marc until

absolutely necessary, an adaptation which drastically speeds up geometry creation as there is often a

significant delay between sending a command to Marc and observing the result. Furthermore, it allows

MarcObject based objects to be used in construction contexts, without having to involve Marc and add

processing overhead (e.g. the origin point of an arc does not need to exist in Marc). If the calling code

queries the object’s ID in Marc, or attempts an operation that requires that the corresponding entity exists

in Marc, then the objects will silently create their respective entities in Marc automatically.

271

MarcObject(object): Base class for all other classes that represent some entity in Marc.

 MarcID(): Method to return the ID of this object, or if this object has not yet been made in Marc,

this method makes a corresponding entity in Marc first, then returns the ID of the entity just made.

CoordinateBased(MarcObject): Base class for entities defined by a coordinate (nodes and points).

 __init__([x=0.0],[y=0.0],[z=0.0]): Method to instantiate this class, and set the
x, y and z properties

 x, y & z: properties to represent a point in space.

 Position(): Method to return an array of this CoordinateBased object’s position.

 Invalidate(): Method to signal that future calls to Position must retrieve the latest position
from Marc rather than from the local cache.

 Distance(other): Method to return the distance from this CoordinateBased object to another
CoordinateBased object, other.

 VectorToOther(other): Method to return the vector from this CoordinateBased object to
another CoordinateBased object, other.

MarcPoint(CoordinateBased): Represents a point entity in Marc.

 __init__([x=0.0],[y=0.0],[z=0.0]): Method to instantiate this class, and set the
x, y and z properties.

 Make(): Method to create this point as an entity in Marc and return itself.

MarcNode(CoordinateBased): Represents a node entity in Marc.

 __init__([x=0.0],[y=0.0],[z=0.0]): Method to instantiate this class, and set the
x, y and z properties.

 Make(): Method to create this node as an entity in Marc and return itself.

MarcCurve(MarcObject): Represents a curve entity (line, arc or circle) in Marc.

 __init__([*points]): Method to instantiate this class with a list of zero or more MarcPoint
objects.

 Make(): Method to make a curve between the two points used to instantiate this class and return
itself.

 MakeArc(): If this class is instantiated with points, a, b & c. Then this method makes an arc entity in
Marc between b and c, with centre a (a does not need to exist in Marc).

 MakeCircle(radius): If this class is instantiated with point a, this method makes a circle entity in
Marc with a given radius, using a as the centre.

 MidPoint(): Returns the average coordinate of all points used to instantiate this class.

 CurveDivisions(L1,[L2],[Count]): Creates mesh seeds along this curve according to the
following rules.

o If just L1 is prescribed, spans will have a target length of L1
o If L1 and L2 are prescribed, spans will have a target length of L1 at one end transitioning to

L2 at the other end.
o If L1, L2 and Count are prescribed, there will be Count spans, where the length of spans at

one end is related to the length of spans at the other end by the relationship L1 / L2

 Mesh(): Creates line MarcElement objects corresponding to line element entities along this curve. If
mesh seeds are prescribed, they will be used to set the element edge lengths.

272

MarcCurveLoop(MarcObject): A collection of MarcCurve objects.

 __init__([*curves]): Method to instantiate this class with a list of zero or more
MarcCurve objects.

 QuadMesh(): Method to call self.Mesh(“quadmesh”).

 TriMesh(): Method to call self.Mesh(“trimesh”).

 Mesh([meshType=”quadMesh”]): Method to generate a mesh of type, meshType, that fills this
curve loop area. If any of the curves involved have mesh seeds, they will be used in the creation of
this area mesh. This method returns a list of MarcObject objects corresponding to the MarcNode
and MarcElement objects created during meshing.

MarcSurface(MarcObject): Represents a surface entity in Marc.

 __init__([*points]): Instantiates this class with a list of zero or more MarcPoint objects.

 Make(): Method to create a surface entity in Marc between the MarcPoint objects prescribed
when instantiating this class and returns itself.

 Flip(): Surfaces are sided (required by Marc to process contact), this method flips the surface so
that the surface can be reoriented to face the object it is intended to contact.

MarcElement(MarcObject): Represents an element entity in Marc.

 __init__([*nodes]): Instantiates this class with a list of zero or more MarcNode objects.

 Make(): Method to make element entities in Marc from MarcNode objects prescribed when
instantiating this MarcElement, depending on the number of MarcNode objects prescribed,

o if two, this method makes a line element entity, and
o if three, this method makes a triangle element entity, and finally,
o if four, this method makes a quadrilateral element entity.

Aside from these classes, MarcTools also offers two highly polymorphic functions, Move and Expand, that

control the move and expand tools within the Marc user interface, shown side by side in figure 1.

Figure 1 – Marc Move tool (left) and Expand tool (right)

273

The primary function of move, as the name implies, is to move any type of entity from one location to

another. However, this tool can also be used to rotate, skew, deflate and inflate geometry. Expand is similar

to ‘extrude’ commonly found in computer aided design (CAD) packages. Expand can be used to extrude

nodes into line elements, line elements into quadrilateral elements and quadrilateral elements into

hexahedral elements. Likewise, with points to curves and curves to surfaces.

Both tools are indispensible when modelling in Marc with Python, therefore MarcTools offers functions to

control these tools. To reduce programming effort, these functions manage the setting of default

parameters, and are highly polymorphic. For example, all of the following are valid uses of Move.

Let mesh be a tuple or list of MarcPoint, MarcCurve, MarcSurface, MarcNode and MarcElement objects.

Move(dx=10,dy=-2,*mesh) #Moves all objects in ‘mesh’ 10 along x, and -2 along y

Move(sX=2,*mesh) #Doubles (scales) the x component of all entities in ‘mesh’

Move(tz=45,oy=10,*mesh) #Rotates all entities in ‘mesh’, 45 degrees around an axis
parallel with the model z axis, and intersecting a point with origin x=0, y=10,
z=0.

Move has an alias named Rotate that simply redirects all of its inputs to Move.

Expand is slightly more complex as this function must manage the destruction of entities (and their

corresponding MarcTools objects) to be expanded and the creation of new MarcTools objects for new

entities created as a result of expansion.

The creation of new entities is detected by checking the last ID of that particular type of entity before the

operation and then again after the operation. Since Marc assigns IDs sequentially, it can be assumed that

every ID added in between checks corresponds to a new entity.

When using mixed lists of objects, Expand carries out the expansion per input category. Table 1 shows the

types of objects created when expanding certain objects. After all categories have been expanded, the

combined list of created objects is returned.

Input Category Types of objects created after expansion
MarcPoint MarcCurve, MarcPoint
MarcCurve MarcPoint, MarcSurface
MarcNode MarcNode, MarcElement
MarcElement MarcNode, MarcElement

Table 1 – Table of entities created after expansion

MarcTools also implements a number of miscellaneous methods that help with communicating with Marc.

All(*marcObjects): All is a class that behaves like a function. Any method can be called with All, which

All will try to call on all objects passed to it during initialisation. For example:

All(point1, point2, line1).Make()

is the same as:

point1.Make()
point2.Make()
line1.Make()

274

Filter(filterClass,objectList): Filter returns a tuple of objects in objectList that are instances of

filterClass. For example, the following returns a tuple of all the MarcCurve type objects in mesh:

Filter(MarcCurve,mesh)

SendIds(*idList): SendIds sends a list of values (typically entity IDs) to Marc using the py_send

command. If the list is longer than the maximum length allowed in Marc, then SendIds will break up the list

into smaller chunks. SendsIds also automatically sends the “#” identifier to signify the end of a list. For

example, the following sequence would hide all elements belonging to mesh:

py_send(“*select_elements”)
SendIds(*Filter(MarcElement,mesh))
py_send(“*invisible_selected”)

275

Appendix B – Fortran Source Code
Procedure Headers
This appendix shows important variable definitions, type definitions, and procedure headers for key

functions and subroutines developed for the Fortran program.

162 ! Mathematics definitions

163 #define EPSILON 1E-11 ! The error below which two floating point numbers are

 ! regarded as equal

164 #define SWEEP 5E-4 ! The distance below which two locations are cooincident in the

 ! mesher

165 #define SWEEP_ALPHA 2E-2 ! If two lines are within this angle, they are colinear

166 #define SWEEP_NURBS 1E-7 ! Used to determine if two NRUBS are touching

167 #define COARSE 8E-3

168 #define ALPHA_COLINEAR 6.1E-4 ! 3.8E-5 is approximately 0.5 degrees

169

179 ! Facet flags

180 #define FF_Default 0 ! Default state

181 #define FF_Disabled 1 ! Disabled facets are ignored by all routines operating

 ! on facet lists

182 #define FF_Side1Free 2 ! Side 1 free, (direction of cross product of v1→v2

 ! v1→v3)

183 #define FF_Side2Free 4 ! Opposite of side 1 free (Side 2 must be the left shift

 ! of Side 1)

184 #define FF_KeepHull 8 ! Keep because this facet is part of the hull

185 #define FF_KeepInterface 16 ! Keep because this facet is part of the

 ! cutter-workpiece interface

186 #define FF_Occluding 32 ! Facet blocks the visibility of some point, from some

 ! other facet

187 #define FF_Split 64 ! Facet has split rays associated with it

188 #define FF_Sides FF_Side1Free + FF_Side2Free

189

190 ! Point flags

191 #define PF_Default 0 ! Default state

192 #define PF_Disabled 1 ! Disabled points are ignored by all routines operating

 ! on point lists

193 #define PF_Mating 2 ! Node mates with the parent mesh

194 #define PF_Movable 4 ! Node is not significant to the shape of the mesh and

 ! can be moved without distorting the shape

195 #define PF_Missing 8 ! Associated with a missing facet

196 #define PF_Required 16 ! Required in mesh

197

198 ! Ray flags

199 #define RF_Default 0 ! Default state

200 #define RF_MeshTri 1 ! Boundary flag, set in TriTriIntersect to indicate

 ! termination on mesh facet

201 #define RF_NURBSTri 2 ! Boundary flag, set in TriTriIntersect to indicate

 ! termination on NURBS facet

202 #define RF_Disabled 4 ! Disabled rays are ignored by all routines operating on

 ! ray lists

203 #define RF_Side1Free 8 ! 1→P • (1→2 X 1→N) > 0 if P is on side one of

 ! ray 1→2, on a plane with normal vector N

204 #define RF_Side2Free 16 ! Same as above, but less than zero

205 #define RF_External 32 ! Mesh ray (edge of facet) is external (doesn't mate

 ! with parent mesh)

206 #define RF_Checked 64 ! Ray has been checked during simplification

207 #define RF_Consumed 128 ! Ray has been assigned to an island

208 #define RF_ErrTooNarrow 256 ! Ray cast from a workpiece node against the cutter does

 ! not intersect the cutter (in other words, the cutter

 ! geometry is too narrow for the job)

209 #define RF_Sides RF_Side1Free + RF_Side2Free

210

211 ! Element and node flags

212 #define F_Default 0 ! Default state

213 #define F_Workpiece 1 ! Element or node is associated with the workpiece

214 #define F_NotUsed 2 ! Slot in elementIndex/nodeIndex is not occupied

215 #define F_ProximityChecked 4 ! Node has been checked for proximity to the cutter

216 #define F_PosSet 8 ! Cached position is up to date

217 #define F_Required 16 ! Workpiece node is used by at least one element

218 #define F_Remesh 32 ! Must be remeshed

219 #define F_Killed 64 ! Element deactivated on current increment

220 #define F_NonWorkpiece 128 ! Node is shared with a non-workpiece element Nodes can

 ! have both workpiece and non-workpiece if there are

276

 ! shared between two bodies

221 #define F_CutFace 256 ! Associated with part of the mesh touching a cutter

222 #define F_Expansion 512 ! Element should be included with sub-mesh elements

 ! during selection expansion

223 #define F_VolSet 1024 ! Cached volume is up to date

224 #define F_Adjusted 2048 ! Node has been snapped to another location

 ! (NODE%adjustment)

225 #define F_Counted 4096 ! Node has been counted during reindexing

226 #define F_New 8192 ! Element or node has been newly created in a virtual

 ! state in SplitMesh()

227 #define F_Perturbed 16384 ! Node is microscopically shifted to overcome EPSILON

 ! problem (NODE%perturbation)

228 #define F_FaceChecked 32768 ! Elements faces have been checked during hull discovery

229 #define F_Track 65536 ! Highlight node in post file

230 #define F_ConfirmSplit 131072 ! Confirm that element must be split

391 module JamesMod

398 include 'spacenu' ! NURBS information │nurinf, rnuinf, nnurbs

399 include 'spaceco' ! Rigid body data │adie

400 include 'dimen' ! Simulation geometry state │numel,numnp,nnodmx

401 include 'concom' ! Simulation time/increment state │inc, ncycle

402 include 'spaceset' ! Sets │ndset, isetdat, setnam,

 ! lsetdat

403 include 'autoin' ! Time stepping │iforcrsta

404 include 'creeps' ! Simulation time │cptim

405 include 'elemdata' ! Element states │ieltype, nelgroups

406 include 'elmcom' ! Element types │igroup, jtype

412 type SPINDLE

414 character(255) :: name ! Name of this spindle

415 real(8) :: originPos(3) ! Spindle origin at definition

416 real(8) :: originDir(3) ! Spindle direction cosines at definition

 ! (The spindle rotates around this vecotr)

417 real(8) :: RPM ! Base RPM

418 real(8) :: feed rate ! Feed rate in mm / rev

419 real(8) :: rapidMultiplier ! In rapid mode, this factor is multiplied

 ! by the normal speed to calculate the

 ! rapid speed

420 integer :: originNodeInt, dirNodeInt ! Origin and direction, internal node IDs

421 integer :: originNodeExt, dirNodeExt ! Origin and direction, external node IDs

422 integer :: incLastStep ! Increment number of last update

423 integer :: nearCount ! Number of elements near bodies attached

 ! to this spindle

424 real(8) :: proximityRadius ! The distance nodes must be away from

 ! bodies attached to this spindle to be

 ! conisdered as far (not near)

425 real(8) :: contactDistance ! The feed distance until cutters on this

 ! spindle make contact with the workpiece

426

427 logical :: physFileStarted ! Flag indicating whether or not an output

 ! file has been created for this spindle

428 character(255) :: physFileName ! Name of the spindle data file

429 real(8) :: physFileLastTime ! Computation time at last write to output

 ! file

430

431 ! State tracking

432 real(8) :: curRPM ! Current RPM (affected by rapid mode state)

433 real(8) :: curAngle ! Current spindle angle in radians

434 real(8) :: dAngle ! Last change in angle in radians

435 real(8) :: curPos(3) ! Current position

436 real(8) :: dPos(3) ! Change in position since last step

437 real(8) :: curDir(3) ! Current direction cosines

438 real(8) :: dDir(3) ! Change in direction cosines since last step

439 real(8) :: dTime ! Time since last step

440

441

442 logical :: rapidMode

443 real(8) :: angularVelocity

444 real(8) :: velocity(3)

445 real(8) :: dp(6) ! 6 DOF's for the load on this spindle

446

447 contains

448

449 procedure, public, pass :: Init => SPINDLE_Init

450 procedure, public, pass :: Reset => SPINDLE_Reset

451 procedure, public, pass :: Step => SPINDLE_Step

452 procedure, public, pass :: DumpPhysicsData =>

453 * SPINDLE_DumpPhysicsData

454 procedure, public, pass :: CalculateFirstcontact =>

277

455 * SPINDLE_CalculateFirstContact

457 end type SPINDLE

465 type RAY

473 real(8) :: origin(SIM_DIM) ! Starting coordinate of this ray

474 real(8) :: unitDirection(SIM_DIM) ! Unit direction vector of this ray

475 real(8) :: d ! Length of ray

476 integer :: boundPnts(2) ! If this Ray is bounded by some real Node in

 ! nodeIndex, or a coordinate in a

477 ! coordinates list, then the index of that boundary

 ! node/coordinate can be stored

478 ! in this property. Offsets 1 and 2 refer to

 ! boundary objects at the start and

479 ! end of the Ray, respectively.

480 integer :: boundFlags(2) ! 'RF_' bitwise encoded status flags

481 ! Populated during Ray%TriIntersect intersection

 ! detection if this Ray starts or ends on the edge

 ! of a triangle. Offsets 1 and 2 refer to boundary

 ! objects at the start and end of the Ray,

 ! respectively.

482 integer :: facetIdxs(3) ! facetIdxs(1): Primary facet (the facet on which

 ! this split ray is based)

483 ! The split ray is always entirely inside this facet

484 ! facetIdxs(2): Adjacent facet that is affected by

 ! the start of this ray

485 ! facetIdxs(3): Adjacent facet that is affected by

 ! the end of this ray

486 logical :: intersected ! General purpose flag to indicate intersection

487 integer :: elemInt ! An element associated with this ray gets removed

 ! if an intersection occours

488 integer :: nodeInt

489 integer :: nurbsIdx ! General purpose storage for a NURBS index if this

 ! ray is associated with a NURBS surface

490 integer :: pntIdx

491 integer :: status ! 'RF_' bitwise encoded status flags

492 integer :: loopPosition(2) ! General purpose storage for next and previous ray

 ! indicies if this ray is in a chain

493

494 integer :: island ! Island index that this ray is associated with

495

496 contains

497

498 procedure, public, pass :: EndPoint => RAY_EndPoint

499 procedure, public, pass :: Vector => RAY_Vector

500 procedure, public, pass :: Transform => RAY_Transform

501 procedure, public, pass :: Make => RAY_Make

502 procedure, public, pass :: MakeFromIds

503 * => RAY_MakeFromIds

504 procedure, public, pass :: MakeFromTransform

505 * => RAY_MakeFromTransform

506 procedure, public, pass :: Print => RAY_Print

507 procedure, public, pass :: PrintX => RAY_PrintX

508 procedure, public, pass :: VectorD => RAY_VectorD

509 procedure, public, pass :: Angle => RAY_Angle

510 procedure, public, pass :: Flip => RAY_Flip

511 procedure, public, pass :: NormalD => RAY_NormalD

512 procedure, public, pass :: RayIntersect

513 * => RAY_RayIntersect

514 procedure, public, pass :: PerpDistance

515 * => RAY_PerpDistance

516 procedure, public, pass :: PointOnRay=> RAY_PointOnRay

517 procedure, public, pass :: Collinear => RAY_Collinear

518 procedure, public, pass :: RotateTransform

519 * => RAY_RotateTransform

520 procedure, public, pass :: TriIntersect

521 * => RAY_TriIntersect

522 procedure, public, pass :: PlaneIntersect

523 * => RAY_PlaneIntersect

525 end type RAY

531 type ELEMENT

533 integer :: status ! 'F_' bitwise encoded status flags

534 integer :: nearCutterIdx ! cutterIdx of the cutter that this element is near

535 integer :: nodesInt(8) ! Internal node IDs associated with this element

536 ! corresponding to offsets in nodeIndex.

537 integer :: firstInc ! The first increment this element was present on

538 integer :: nodeCount ! The number of nodes associated with this element

539 integer :: type ! Element type number according to MARC 2016 Volume B

 ! Element Library

278

540 real(8) :: dp(SIM_DIM) ! Volume pressure direction vector

541 real(8) :: press ! Volume pressure (N m-3)

542 real(8) :: vol ! Cached volume of this element, invalidated at the end

543 ! of each increment and set by a call to Volume()

544 real(8) :: UserQuantityS(ELEMENT_SCALAR_COUNT)

545

546 real(8) :: pos(SIM_DIM) ! Cached position of this element, populated by a call to

 ! Position

547

548 integer :: intId ! The MARC internal ID of this element

549 #ifdef DEBUGMODE !

550 integer :: extId ! The MARC external (user) ID of this element

551 #endif

552

553

554 contains

555 procedure, public, pass :: Position => ELEMENT_Position

556 procedure, public, pass :: Volume => ELEMENT_Volume

557 procedure, public, pass :: Active => ELEMENT_Active

559 end type ELEMENT

585 type NODE

587 real(8) :: dp(SIM_DOF) ! Loads associated with this node

588 integer :: status ! 'F_' bitwise encoded status flags

589 integer :: nearCutterIdx ! Cutter index of cutter that this node is

 ! near. Nodes can never be near two or more

 ! cutters at the same time.

590 ! The user is expected to specify a near field

 ! search radius in the configuration file

 ! sufficient to meet this requirement.

591 integer,allocatable :: elementsInt(:) ! Array of element offsets in elementIndex

 ! associated with this node. This array is

 ! used to give effect to the elements-at-node

 ! cache.

592 ! References get broken if a list containing

 ! this object gets reallocated.

593 real(8) :: pos(SIM_DIM) ! Cached position of this node

594 real(8) :: perturbation(3) ! Perturbation vector

595 real(8) :: adjustment(3) ! Snap coordinate that this node should be

 ! moved to

596

597 ! <User quantity definitions>

598 real(8) :: UserQuantityS(NODE_SCALAR_COUNT)

599 real(8) :: UserQuantityV(NODE_VECTOR_COUNT,SIM_DIM)

600

601 integer :: firstInc ! The first increment this node was present on

602 integer :: intId ! MARC internal ID

603 #ifdef DEBUGMODE

604 integer :: extId ! Marc external ID

605 #endif

606 integer :: seqId ! Sequence ID to assist with sorting lists of nodes

607 integer :: mergeId ! If a merge ID is set, then this node is just a place holder

608 ! that will be substitudeted by another node

609 ! MergeID uses the +/- numbering convention

610

611 contains

612

613 procedure, public, pass :: Position =>

614 * NODE_Position

615 procedure, public, pass :: Reset =>

616 * NODE_Reset

617 procedure, public, pass :: Perturb =>

618 * NODE_Perturb

620 end type NODE

625 type NURBSSURFACE

627 integer :: uNCtrlPnt, ! Number of control points in the parametric u and v axis

628 * vNCtrlPnt ! respectively

629 integer :: uDiv, vDiv ! Recommended number of divisions in the parametric u and v

630 ! axes respectively

631 integer :: uOrder, vOrder ! NURBS entity order in the parametic u and v axes

632 ! respectively

633 integer :: minU, maxU, ! If set, these values limit the minimum and maximum

634 * minV, maxV ! parametric u and v values to use when calculating the

635 ! effective surface of this NURBS surface entity during

636 ! cutter-workpiece intersection detection.

637 integer :: marcId ! The Marc ID of this NURBS in Marc's internal database

638 logical :: disabled ! NURBS can be flagged as disabled if no part of them is

639 ! involved in cutting (not front facing)

279

640 real(8) :: crudeNormal(3) ! A normal vector assembled from the cross product

641 ! of any three non-collinear points on this NURBS surface

 ! entity.

642

643 ! The following information deals with mapping this NURBS surface in relation to

 ! neighbour NURBS surfaces

644 logical :: mapped ! Used to signal if this NURBS surface has been mapped

645 real(8) :: transform(3,3) ! An affine transform for transforming this NURBS

 ! entity’s parametric coordinates from local to

 ! relative parametric coordinates (relative to adjacent

 ! NURBS entities in the same contact body). This

 ! transform is used when meshing across multiple NURBS

 ! surfaces.

646 real(8) :: invTransform(3,3) ! The inverse transform of transform (above).

647 real(8) :: scales(2) ! Required scaling factors required to make this NURBS

 ! surface fit in the map. 1 = u scale, 1 = v scale

648 logical :: uvFlip(2) ! 1 = flipped on U, 2 = flipped on V

649 real(8) :: uOrigin, vOrigin ! Parametric origin in global map

650 real(8) :: angleOffset ! Angle offset in relation to neighbours

651 integer :: mapI(4,5) ! Map data describing surrounding NURBS surfaces

652 ! (x,:), where x=1=top, x=2=right, x=3=bottom, x=4=left

653 ! (:,1) = nurbId (relative to the cutter this NURBS is

 ! associated with)

654 ! (:,2) = edgeId on neighbour

655 ! (:,3) = orientation, 1=same (clockwise), 2=opposite

656 ! (:,4-5) = 4&5=u&v

657 real(8) :: mapR(4,3) ! Real coordinates of corners

658

659 real(8), allocatable :: uKnotVector(:), vKnotVector(:) ! Parametric u and v knot

 ! vectors respectively

660 real(8), allocatable :: homoCoords(:,:,:) ! (u,v,XYZ) Homogenenous

 ! control point coordinate grid

661 real(8), allocatable :: weights(:,:,:) ! (u,v,1) The control point

 ! weights grid

662 real(8), allocatable :: uGridVector(:), vGridVector(:) ! The parametric u and v

 ! vectors (used for seeding

 ! surfaceGrid. Unlike

 ! surfaceGrid, these don't need

 ! to be a grid as all columns

 ! have the same u value and

 ! likewise all rows have the

 ! same v value)

663 real(8), allocatable :: surfaceGrid(:,:,:) ! A cached matrix of

 ! precomputed real coordinates

 ! on the surface of this NURBS

 ! surface entitiy. Used in a

 ! number of places, for

 ! example, to accelerate the

 ! calculation of discrete

 ! surface triangles in

 ! TriIntersect intersection

 ! detection.

664

665 contains

666

667 procedure, public, pass :: Configure =>NURBSSURFACE_Configure

668 procedure, public, pass :: Populate =>NURBSSURFACE_Populate

669 procedure, public, pass :: Centre =>NURBSSURFACE_Centre

670 procedure, public, pass :: RayIntersect =>

671 * NURBSSURFACE_RayIntersect

672 procedure, public, pass :: TriIntersect =>

673 * NURBSSURFACE_TriIntersect

674 procedure, public, pass :: DumpToMARC =>

675 * NURBSSURFACE_DumpToMARC

676 procedure, public, pass :: GetUV => NURBSSURFACE_GetUV

677 procedure, public, pass :: S => NURBSSURFACE_S

679 end type NURBSSURFACE

684 type CUTTER

686 integer :: spindleIdx ! Spindle index used to drive this cutter

687 integer :: incLastUpdate ! Increment number of last position update

688 integer :: bodyId ! MARC internal contact body ID

689 integer :: nodeTransInt, nodeRotInt ! Marc internal IDs for this cutters

 ! translation and rotation nodes

 ! respectively

690 integer :: nodeTransExt, nodeRotExt ! Marc external IDs for this cutters

 ! translation and rotation nodes

 ! respectively

691 logical :: selfCheck ! Set to true if this cutters control node

280

 ! is seen in FORCDT

692 character(128) :: cutterName ! The name of this Cutter (used when

 ! printing summary information)

693 real(8) :: originPosition(SIM_DIM) ! The position of this Cutter at the start

 ! of the simulation.

694 real(8) :: position(SIM_DIM) ! The position of this Cutter in the

 ! current increment.

695 real(8) :: positionDelta(SIM_DIM) ! Change in position vector of this cutter

 ! from the previous increment

696 logical :: engaged ! A flag indicating if this Cutter is in

 ! contact with the workpiece or not.

697 type(RAY) :: proximityRay ! A representative Ray that runs the width

 ! of this Cutter, which is used to test

 ! for nodal proximity.

698 integer :: localCysNodes(2)

699 real(8) :: volumeNear

700 real(8) :: sliceArea ! Area of intersection between this cutter

 ! and the workpiece on this increment

701

702 integer :: nurbCount ! Number of NURBS surfaces

 ! associated with this cutter

703 type(NURBSSURFACE), allocatable :: nurbsSurfaces(:) ! A list of NURBSSurface objects

 ! that make up the geometry of

 ! this Cutter,

704 ! including two invisible

 ! NURBSSurface objects at index 1

 ! and 2, that assist with mesh

 ! splitting.

705

706 ! Coordinate systems

707 ! Dimension 1 : X, Y, Z, Homogenous coordinate (1)

708 ! Dimension 2 : Rake, Feed, Radial

709 real(8), dimension(4,SIM_DIM) :: originalCS ! Coordinate system at the start of

 ! simulation (see table below)

710 real(8), dimension(4,SIM_DIM) :: currentCS ! Coordinate system in the current

 ! increment (see table below)

711

712 ! Depth Reference: This is the vector along the feed direction

713 ! from the control node to the lowest point of the cutter.

714 ! This defines the depth of cut

715 real(8) :: pathRadius

716 real(8) :: depthOffset

717

718 real(8) :: maxDOC, avgDOC ! Approximate maximum and average depths

 ! of cut

719 real(8) :: WOC ! Approximate width of cut

720

721 real(8) :: dShape(3,2) ! The min and max d values in all three

 ! local axis that create

722 ! rays from the cutter origin to the min

 ! and max points

723

724 real(8) :: dp(6) ! Cutter loads in global coordinates

725 real(8) :: dpLocal(6) ! Cutter loads in local coordinates

726

727 ! Affine Transforms:

728 real(8) :: affineTransform(4,4) ! Transform from position in previous

 ! increment to current increment position

729 real(8) :: affineTransformInv(4,4) ! Inverse of affineTransform describing

 ! the reverse action

730 real(8) :: affineTransformAbs(4,4) ! Absolute transform from starting

 ! position to current position

731

732 real(8), allocatable :: VolHistory(:) ! Array of volumes removed per increment.

733

734 integer :: meshErrorCount ! Number of mesh errors in SplitMesh

 ! associated with this cutter

735

736 integer :: NURBSID_Start ! The index of the first NURBS in nurinf

737 integer :: NURBSID_Finish ! The index of the last NURBS in nurinf

738

739 logical :: physFileStarted ! Switch indicating whether or not a

 ! physics output file has been started for

 ! this cutter

740 character(255) :: physFileName ! Name of this cutter physics file

741 real(8) :: physFileLastTime ! Last time data was written to this

 ! cutters physics file

742 logical :: profileFileStarted ! Switch indicating whether or not a

 ! profile output file has been started for

281

 ! this cutter

743 character(255) :: profileFileName ! Name of this cutters profile file

744

745 contains

746 procedure, public, pass :: UpdatePosition =>

747 * CUTTER_UpdatePosition

748 procedure, public, pass :: Title => CUTTER_Title

749 procedure, public, pass :: SetToolSurfaces =>

750 * CUTTER_SetToolSurfaces

751 procedure, public, pass :: DumpPhysicsData =>

752 * CUTTER_DumpPhysicsData

754 end type CUTTER

986

987 ! Global indexes

988 type(ELEMENT), allocatable, target :: elementIndex(:)

989 type(NODE), allocatable, target :: nodeIndex(:)

990 type(CUTTER), allocatable, target :: cutterIndex(:)

991 type(SPINDLE), allocatable, target :: spindleIndex(:)

1060 contains ! In root of JamesMod

1062 subroutine SPINDLE_Init(this,name)

1064 ! Function: Initialise this spindle using default values

1065 ! Inputs:

1066 class(SPINDLE), intent(inout) :: this ! This spindle

1067 character(*), intent(in) :: name ! Name of this spindle

1141 end subroutine SPINDLE_Init

1144 subroutine SPINDLE_Reset(this)

1146 ! Function: Resets increment dependent values, e.g. loads and near count

1147 ! Inputs:

1148 class(SPINDLE), intent(inout) :: this ! This spindle

1153 end subroutine SPINDLE_Reset

1155 subroutine SPINDLE_Step(this,dTime)

1157 ! Function: Advances this spindle by a given time step

1158 ! Inputs / Outputs:

1159 class(SPINDLE), intent(inout) :: this ! This spindle

1160 real(8), intent(in) :: dTime ! Time step to advance this spindle

1202 end subroutine SPINDLE_Step

1204 subroutine SPINDLE_DumpPhysicsData(this)

1206 ! Function: Writes key data about this spindle out to a data file

1207 ! Inputs:

1208 class(SPINDLE), intent(inout) :: this ! This spindle

1296 end subroutine SPINDLE_DumpPhysicsData

1298 subroutine SPINDLE_CalculateFirstContact(this)

1300 ! Function: Estimates the spindle displacement excepted at the point

1301 ! of first contact between any cutter and the workpiece and

1302 ! stores the result on this spindle for reference.

1303 ! Input:

1304 class(SPINDLE), intent(inout) :: this ! This spindle

1425 end subroutine SPINDLE_CalculateFirstContact

1427 function CUTTER_Title(this)

1429 ! Function: Returns an exact length string containing a description of this cutter

1430 ! Input:

1431 class(CUTTER), intent(in) :: this ! This cutter

1432 ! Returns:

1433 character(len=:), allocatable :: CUTTER_Title ! Cutter description

1452 end function CUTTER_Title

1454 subroutine CUTTER_SetToolSurfaces(this,basePlaneEdge)

1456 ! Function: -Culls non-front facing potions of this cutters NURBS surfaces

1457 ! -Populates map information in associated NURBS to describe their

1458 ! positions relative to one another

1459 ! Inputs:

1460 class(CUTTER), target, intent(in) :: this ! This cutter

1461 real(8), intent(inout) :: basePlaneEdge(SIM_DIM,2) ! The lowest front

1462 ! -facing edge

1463 ! of this cutter

1836 end subroutine CUTTER_SetToolSurfaces

1838 subroutine CUTTER_UpdatePosition(this)

1840 ! Function: -Updates the cached position of this cutter

1841 ! -Generates additional tool surfaces to prevent saw-tooth cuts

1842 ! -Updates the position of the proximity ray

1843 ! Inputs / Outputs:

1844 class(CUTTER), target, intent(inout) :: this ! This cutter

282

2422 end subroutine CUTTER_UpdatePosition

2424 subroutine CUTTER_DumpPhysicsData(this)

2426 ! Function: Writes physics information about this cutter to a file

2427 ! Inputs:

2428 class(CUTTER), intent(inout) :: this ! This cutter

2515 end subroutine CUTTER_DumpPhysicsData

2552 function ELEMENT_Position(this)

2554 ! Function: -Approximates the centre of an element by taking an average of all it's

 ! nodes

2555 ! -Caches the calculated position for future calls

2556 ! Input / Output:

2557 class(ELEMENT), intent(inout) :: this ! This element

2558 ! Returns:

2559 real(8) :: ELEMENT_Position(SIM_DIM) ! The position

2560 ! coordinate of

2561 ! this element

2580 end function ELEMENT_Position

2582 function ELEMENT_Volume(this)

2584 ! Function: -Returns the volume of this element (tetrahedral elements only)

2585 ! -Caches the calculated volume for future calls

2586 ! Input / Output:

2587 class(ELEMENT), intent(inout) :: this ! This element

2588 ! Returns:

2589 real(8) :: ELEMENT_Volume ! The volume of this element

2654 end function ELEMENT_Volume

2657 function ELEMENT_Active(this)

2659 ! Function: Checks to see if this element is active or not

2660 ! Inputs:

2661 class(ELEMENT), intent(in) :: this ! This element

2662 ! Returns:

2663 logical :: ELEMENT_Active ! True if active, else False

2673 end function ELEMENT_Active

2678 recursive function NODE_Position(this)

2680 ! Function: -Caches the position of this node from the MARC database if no

2681 ! cached position currently exists

2682 ! -Returns the cached position of this node.

2683 ! Note: Unless the position is cached, this function cannot return

2684 ! the correct coordinates during certain phases of simulation

2685 ! Inputs / Outputs:

2686 class(NODE), intent(inout) :: this ! This Node

2687 ! Returns:

2688 real(8) :: NODE_Position(SIM_DIM) ! Coordinate of this node

2731 end function NODE_Position

2733 subroutine NODE_Perturb(this,optDeltaMax)

2735 ! Function: Creates some perturbation in this node

2736 ! position to help overcome EPSILON problems.

2737 ! The perturbation created here is undone by

2738 ! clearing the F_Perturbed flag

2739 ! Inputs / Outputs:

2740 class(NODE), intent(inout) :: this ! This Node

2741 real(8), optional, intent(in) :: optDeltaMax ! Optional maximum perturbation limit

2764 end subroutine NODE_Perturb

2766 subroutine NODE_Reset(this,optDefaultState)

2768 ! Function: -Resets the cached user quantities, IDs and position of this node

2769 ! -Optionally sets a default state

2770 ! Input / Outputs:

2771 class(NODE), intent(inout) :: this ! This node

2772 integer, intent(in), optional :: optDefaultState ! Optional default 'F_'

2773 ! status flag to set

2786 end subroutine

2788 subroutine NURBSSURFACE_Configure(this, nurbId)

2790 ! Function: Queries the MARC database and caches information about

2791 ! this NURBS surface, such as control points, homogenous

2792 ! coordinates, knot vectors and addresses

2793 ! Inputs / Outputs:

2794 class(NURBSSURFACE), intent(inout) :: this ! This NURBS surface

2795 integer, intent(in) :: nurbId ! Marc NURBS ID

2980 end subroutine NURBSSURFACE_Configure

2985 subroutine NURBSSURFACE_Populate(this)

2987 ! Function: Queries Marc database for NURBS surface information to cache

283

2988 ! on this NURBS surface object. This subroutine also generates

2989 ! a cache of real grid coordinates on this NURBS surface

2990 ! Inputs / Outputs:

2991 class(NURBSSURFACE), intent(inout) :: this ! Thus NURBS surface

3021 end subroutine NURBSSURFACE_Populate

3023 function NURBSSURFACE_Centre(this)

3025 ! Function: Returns an average of this NURBS surface's corner coordinates

3026 ! Inputs / Outputs:

3027 class(NURBSSURFACE), intent(inout) :: this ! This NURBS surface

3028 ! Returns:

3029 real(8) :: NURBSSURFACE_Centre(SIM_DIM) ! Centre coordinate

3038 end function NURBSSURFACE_Centre

3475 end function NURBSSURFACE_RayIntersect

3477 function NURBSSURFACE_TriIntersect(this, testTri,

3478 * intersectionRayCount,

3479 * intersectionRays)

3481 ! Function: Determines the intersection rays that described the intersection

3482 ! between a given triangle and this NURBS surface.

3483 ! Inputs / Outputs:

3484 class(NURBSSURFACE), intent(in) :: this ! This NURBS surface

3485 real(8), intent(in) :: testTri(SIM_DIM,3) ! Triangle to test

3486 integer, intent(inout) :: intersectionRayCount ! Number of intersection

3487 ! rays generated

3488 type(RAY), target,

3489 * allocatable, intent(inout) :: intersectionRays(:) ! List of intersection

 ! rays

3490 ! Returns:

3491 logical :: NURBSSURFACE_TriIntersect ! True if at least

3492 ! one intersection ray

3493 ! generated, else

 ! False

3557 end function NURBSSURFACE_TriIntersect

3559 subroutine NURBSSURFACE_DumpToMARC(this,optResetT)

3561 ! Function: Prints Marc commands to log suitable for copying and pasting

3562 ! into Marc in order to generate this NURBS surface in Marc

3563 ! Inputs:

3564 class(NURBSSURFACE), intent(in) :: this ! This NURBS surface

3565 logical, optional, intent(in) :: optResetT ! Optionally reset the persistant

3566 ! starting Marc entity ID

3617 end subroutine NURBSSURFACE_DumpToMARC

3621 function NURBSSURFACE_GetUV(this,coordinate) result (error)

3623 ! Function: Convergence based technique to recover

3624 ! the parametric coordinates of a given

3625 ! point on a NURBS surface, assuming that

3626 ! point lies on the NURBS surface.

3627 ! Inputs / Outputs:

3628 class(NURBSSURFACE), intent(in) :: this ! This NURBS surface

3629 real(8), intent(inout) :: coordinate(3) ! In as real coordinate to test,

 ! out as

3630 ! corresponding parametric

 ! coordinate

3631 ! Returns:

3632 real(8) :: error ! Distance between initial real

 ! coordinate and real coordinate

 ! generated after finding

 ! parametric coordinates

3781 end function NURBSSURFACE_GetUV

3786 subroutine NURBSSURFACE_S(this,u,v,output)

3788 ! Function: Calculates the real coordinate on a NURBS

3789 ! surface from parametric coordinates, u and v

3790 ! Inputs / Outputs::

3791 class(NURBSSURFACE), intent(in) :: this ! This NURBS surface

3792 real(8), intent(in) :: u, v ! NURBS parametric coordinates

3793 real(8), intent(out) :: output(SIM_DIM) ! Real coordinate

3841 end subroutine NURBSSURFACE_S

3847 subroutine RAY_Transform(this,affineTransform)

3849 ! Function: Transforms a ray according to a given affine transform

3850 ! Inputs:

3851 class(RAY), intent(inout) :: this ! This ray to transform

3852 real(8), intent(in) :: affineTransform(4,4) ! Affine transform

3869 end subroutine RAY_Transform

3871 function RAY_Vector(this)

284

3873 ! Function: Returns this ray as a simple vector

3874 class(RAY), intent(in) :: this ! This ray

3875 ! Returns:

3876 real(8) :: RAY_Vector(SIM_DIM) ! This ray as a vector

3877 RAY_Vector = this%d * this%unitDirection

3878 end function RAY_Vector

3880 function RAY_EndPoint(this,optD)

3882 ! Function: Returns the end point coordinate of this ray, or optionally some other

3883 ! coordinate, optD along this ray from the origin

3884 ! Inputs:

3885 class(RAY), intent(in) :: this ! This Ray

3886 real(8), optional, intent(in) :: optD ! Optional d value to use, else ray's d value is

 ! used

3887 ! Returns:

3888 real(8) :: RAY_EndPoint(SIM_DIM) ! End point coordinate

3898 end function RAY_EndPoint

3900 subroutine RAY_MakeFromIds(this,optPointsReal)

3902 ! Function: Makes a ray from internal node numbers stored in this%boundPnts

3903 ! using the +/- id system, where +ve indicated the position is found in nodeindex

3904 ! and -ve indicating that the position is found in optPointsReal

3905 ! Inputs:

3906 class(RAY), intent(inout) :: this ! This ray

3907 real(8), optional, intent(in) :: optPointsReal(:,:) ! Reference points list for -ve

 ! IDs

3930 end subroutine RAY_MakeFromIds

3932 subroutine RAY_Make(this,startPoint,endPoint,optReset)

3934 ! Function: Configures a given ray it such that it has a given

3935 ! given start and end point

3936 ! Inputs / Outputs:

3937 class(RAY), intent(inout) :: this ! This ray

3938 real(8), intent(in) :: startPoint(SIM_DIM) ! Origin of the ray

3939 real(8), intent(in) :: endPoint(SIM_DIM) ! End point of the ray

3940 logical, optional, intent(in) :: optReset ! Optional switch to reset

3941 ! ray properties to defaults

3962 end subroutineRAY_Make

3964 subroutine RAY_MakeFromTransform(this,startPoint,

3965 * affineTransform)

3967 ! Function: Creates a ray that describes the displacement of startPoint from it's

3968 ! origin through a given affine transform, affineTransform

3969 ! Inputs / Outputs:

3970 class(RAY), intent(inout) :: this ! This ray

3971 real(8), intent(inout) :: startPoint(SIM_DIM) ! Start point

3972 real(8), intent(inout) :: affineTransform(4,4) ! Affine transform through which

3973 ! to transform affine transform

3984 end subroutine RAY_MakeFromTransform

3986 subroutine RAY_Print(this,optComment)

3988 ! Function: Prints a ray start and end coordinates to the log

3989 ! Inputs:

3990 class(RAY), intent(in) :: this ! This ray

3991 character(*), optional, intent(in) :: optComment ! Optional comment to display

3992 ! next to the info

4007 end subroutine RAY_Print

4009 subroutine RAY_PrintX(this,Id,optComment)

4011 ! Function: Prints a ray start and end coordinates to the log, as well as extra

4012 ! information about the ray including flags, end point IDs, loop position etc.

4013 ! Inputs:

4014 class(RAY), intent(in) :: this ! This ray

4015 integer, intent(in) :: Id ! Calling function's ID of this ray

4016 character(*), optional, intent(in) :: optComment ! Optional comment to display

4017 ! next to the info

4049 end subroutine RAY_PrintX

4051 function RAY_Angle(this,otherRay)

4053 ! Function: Returns the angle between this ray and another ray

4054 ! The angle returned is always the smallest angle

4055 ! The angle is always zero or positive

4056 ! Inputs:

4057 class(RAY), intent(in) :: this, otherRay ! Rays to test

4058 ! Returns:

4059 real(8) :: RAY_Angle ! Angle in radians between this ray and

 ! otherRay

4076 end function RAY_Angle

285

4078 subroutine RAY_Flip(this)

4080 ! Function: Flips the origin and end point of this ray, including

4081 ! all end-sensitive flags.

4082 ! Inputs:

4083 class(RAY), intent(inout) :: this ! This ray

4093 end subroutine RAY_Flip

4095 function RAY_VectorD(this,newDirection)

4097 ! Function: Returns the end point of this ray as d value along a another

4098 ! given direction vector originating at the origin of this ray

4099 class(RAY), intent(in) :: this ! This ray

4100 real(8), intent(in) :: newDirection(3) ! New director vector

4101 ! Returns:

4102 real(8) :: RAY_VectorD ! d value of this rays end point along

 ! newDirection

4111 end function RAY_VectorD

4114 function RAY_NormalD(this,point)

4116 ! Function: Returns the distance along this ray, to the closest point on this ray to

 ! point

4117 ! Inputs:

4118 class(RAY), intent(in) :: this ! This ray

4119 real(8), intent(in) :: point(3) ! Coordinate to test

4120 ! Returns:

4121 real(8) :: RAY_NormalD ! Distance along this ray to closest point to

 ! point

4129 end function RAY_NormalD

4131 function RAY_RayIntersect(this,other,d1,d2,error,optInfiniteRay)

4133 ! Function: Tests two rays for intersection and returns the respective distances

4134 ! from each rays origin, along the ray to the intersection point

4135 ! Inputs / Outputs:

4136 class(RAY), intent(in) :: this ! This ray

4137 class(RAY), intent(in) :: other ! Other ray to test against this

 ! ray

4138 real(8), intent(out) :: d1, d2 ! D values to intersection along

4139 ! this ray and other respectively

4140 real(8), intent(out) :: error ! Distance between ray and other

4141 ! at thier closest point

4142 logical, optional, intent(in) :: optInfiniteRay ! Optional flag to treat the rays

4143 ! as infinite

4144 ! Returns:

4145 logical :: RAY_RayIntersect ! Returns True if the rays

4146 ! intersect, else False

4238 end function RAY_RayIntersect

4240 function RAY_PointOnRay(this,point)

4242 ! Function: Test to see of a point is on a ray

4243 class(RAY), intent(in) :: this ! Ray to test

4244 real(8), intent(in) :: point(3) ! Point to test

4245 ! Returns:

4246 logical :: RAY_PointOnRay ! True if the point is on the ray, else False

4258 end function RAY_PointOnRay

4260 function RAY_PerpDistance(this,point)

4261 ! Function: Returns the length of the shortest possible line that joins a given

4262 ! point to any other point on this infinite ray

4263 implicit none

4264 ! Inputs:

4265 class(RAY), intent(in) :: this ! This ray

4266 real(8), intent(in) :: point(3) ! Point to test

4267 ! Returns:

4268 real(8) :: RAY_PerpDistance ! Shortest distance between point and ray

4297 end function RAY_PerpDistance

4300 function RAY_Collinear(this,other,error)

4302 ! Function: Determines if this ray is colinear with another ray, other

4303 ! by testing the perpendicular distance of the end point of the

4304 ! shortest ray to the axis of the longest ray. The distance

4305 ! is tested against a given error, error

4306 ! Inputs / Outputs:

4307 class(RAY), intent(in) :: this, other ! This and other ray to test

4308 real(8), intent(inout) :: error ! In as error limit for collinear,

4309 ! out as actual error

4310 ! Returns:

4311 logical :: RAY_Collinear ! True if collinear, else false

4333 end function RAY_Collinear

4335 subroutine RAY_RotateTransform(this,alpha,coordinates)

286

4337 ! Function: Uses this ray as a rotation axis to rotate a coordinates

4338 ! list, coordinates, about a given angle, alpha

4339 ! Inputs:

4340 class(RAY), intent(in) :: this ! This Ray

4341 real(8), intent(inout) :: coordinates(:,:) ! Coordinates to rotate around this ray

4342 real(8), intent(in) :: alpha ! Angle in radians to rotate coordinates

4343 ! about this ray

4378 end subroutine RAY_RotateTransform

4383 function RAY_TriIntersect(this,triangle,intersection,

4384 * infiniteRay,refineRecommended,d)

4386 ! Function: Finds the intersection coordinate between a given ray and triangle

4391 ! Inputs / Outputs:

4392 class(RAY), intent(in) :: this ! This Ray

4393 real(8), intent(in) :: triangle(SIM_DIM,3) ! Triangle defined by three

 ! vertices

4394 real(8), intent(out) :: intersection(SIM_DIM,1) ! Intersection coordinate

4395 logical, value, intent(in) :: infiniteRay ! Switch to enable infinite ray

 ! mode

4396 logical, intent(out) :: refineRecommended ! If the ray narrowly stops

 ! before hitting the triangle,

 ! then recommend refine

4397 real(8), intent(out) :: d ! Distance along ray to

 ! intersection point

4398 ! Returns:

4399 logical :: RAY_TriIntersect ! True if intersect, else false

4476 end function RAY_TriIntersect

4478 function RAY_PlaneIntersect(this,planeOrigin,planeNormal,

4479 * intersection,infiniteRay,d,alpha)

4481 ! Function: Calculates the intersection coordinate between a ray and plane

4482 ! Inputs / Outputs:

4483 class(RAY), intent(in) :: this ! This Ray

4484 real(8), intent(in) :: planeOrigin(SIM_DIM) ! The origin coordinate of the plane

 ! to test

4485 real(8), intent(in) :: planeNormal(SIM_DIM) ! The normal vector of the plane to

 ! test

4486 real(8), intent(out) :: intersection(SIM_DIM) ! Output for intersection coordinate

4487 logical, intent(in) :: infiniteRay ! Flag for infinite ray mode

4488 real(8), intent(out) :: d ! Output for distance along ray until

 ! intersection

4489 real(8), intent(out) :: alpha ! Angle between ray and plane normal

 ! vector

4490 ! Returns:

4491 logical :: RAY_PlaneIntersect ! True if intersection occured,

 ! else False

4519 end function RAY_PlaneIntersect

4521 recursive subroutine NURBSMapWalker(pCutter,nurbsAIdx)

4523 ! Function: The aim of NURBS mapping is to allow coordinates specified on a global

4524 ! plane to be mapped to their appropriate NURBS surface and vice versa.

4525 ! This function walks NURBS surface belonging to pCutter, calculating, scale, rotation

4526 ! and translation factors and the accompyning affine and inverse affine transforms.

4527 ! Inputs / Outputs:

4528 type(CUTTER), target, intent(inout) :: pCutter ! Pointer to cutter

4529 integer, intent(in) :: nurbsAIdx ! Next NURBS surface to position in

 ! map

4663 end subroutine

4666 subroutine NURBSMapWalker_TransZero(pNurbs,dUB,dVB)

4668 ! Function: Applies a translation affine transform to this NURBS surface's

4669 ! internal transform, according to a given change in parametric

4670 ! coordinates

4671 ! Inputs / Outputs:

4672 type(NURBSSURFACE), pointer, intent(inout) :: pNurbs ! Pointer to NURBS surface

4673 real(8), intent(inout) :: dUB, dVB ! Translation coordinates

4689 end subroutine NURBSMapWalker_TransZero

4691 subroutine NURBSMapWalker_Scale(pNurbs)

4693 ! Function: Applies a scale affine transform to this NURBS surface's

4694 ! internal transform, according to NURBS surface scale factors

4695 ! stored in %scale(1:2)

4696 ! Inputs / Outputs:

4697 type(NURBSSURFACE), intent(inout), pointer :: pNurbs ! Pointer to NURBS surface

4706 end subroutine NURBSMapWalker_Scale

5090 subroutine DumpElements(listElements)

5092 ! Function: Print a list of all elements in listElements.

5093 ! Information contains associated nodes, flags,

287

5094 ! type and contact body id

5096 ! Inputs:

5097 type(ELEMENT), intent(inout), allocatable,

5098 * target :: listElements(:) ! List of elements to print

5149 end subroutine

5151 subroutine DumpNodes(listNodes)

5153 ! Function: Print a list of all nodes in listNodes.

5154 ! Information contains flags,

5155 ! special designations and workpiece status

5157 ! Inputs:

5158 type(NODE), intent(inout), allocatable,

5159 * target :: listNodes(:) ! List of nodes to print

5186 end subroutine

5188 subroutine DumpRays(listRays,optResetT)

5190 ! Function: Writes a list of Marc commands to the log to generate

5191 ! all rays in listRays as nodes and 1d elements

5192 ! Inputs / Outputs

5193 type(RAY), intent(inout), allocatable,

5194 * target :: listRays(:) ! List of rays to print

5195 logical, optional, intent(in) :: optResetT ! Optionally reset the persistant

 ! starting Marc entity ID

5229 end subroutine DumpRays

5231 subroutine DumpTri3D(pt1, pt2, pt3, optResetT)

5233 ! Function: Dumps triangle vertices to log, for copy and paste into Marc user

 ! interface

5234 ! Inputs:

5235 real(8), dimension(3), intent(in) :: pt1, pt2, pt3 ! Triangle vertex coordinates

5236 logical, value, optional, intent(in) :: optResetT ! Optionally reset an output ID

 ! offset

5254 end subroutine DumpTri3D

5256 subroutine DumpMesh(pointsReal, nPoints, facetsInt,

5257 * nFacets, optSideFlags)

5259 ! Function: Generate Marc commands necessary to recreate a point and triangle

5260 ! list in MSC Marc

5261 ! Inputs / Outputs:

5262 real(8), allocatable, intent(in) :: pointsReal(:,:) ! Points to dump

5263 integer, intent(in) :: nPoints ! Number of points in

 ! pointsReal

5264 integer, allocatable, intent(in) :: facetsInt(:,:) ! Triangles to dump

5265 integer, intent(in) :: nFacets ! Number of triangles in tris

5266 logical, optional, value, intent(in) :: optSideFlags ! Optional side flag mask

 ! filter

5299 end subroutine DumpMesh

5301 subroutine Transform3D_SINGLE(coordinate,affineTransform)

5303 ! Function: Transforms a single R3 coordinate by a given affine transform

5304 ! Inputs / Outputs:

5305 real(8), intent(inout) :: coordinate(SIM_DIM) ! R3 coordinate to transform

5306 real(8), intent(in) :: affineTransform(4,4) ! Affine transform

5313 end subroutine Transform3D_SINGLE

5315 subroutine Transform3D_MULTI(coordinates,affineTransform)

5317 ! Function: Transforms a list of R3 coordinates by a given affine transform

5318 ! Inputs / Outputs:

5319 real(8), intent(inout) :: coordinates(:,:) ! (n,3) R3 coordinates to transform

5320 real(8), intent(in) :: affineTransform(4,4) ! Affine transform

5329 end subroutine Transform3D_MULTI

5332 subroutine Transform2D_SINGLE(coordinate,affineTransform)

5334 ! Function: Transforms a single R2 coordinate by a given affine transform

5335 ! Inputs / Outputs:

5336 real(8), intent(inout) :: coordinate(2) ! Coordinate to transform

5337 real(8), intent(in) :: affineTransform(3,3) ! Affine transform

5344 end subroutine Transform2D_SINGLE

5346 subroutine Transform2D_MULTI(coordinates,affineTransform)

5348 ! Function: Transforms a R2 coordinate list by a given affine transform

5349 ! Inputs / Outputs:

5350 real(8), intent(inout) :: coordinates(:,:) ! (n,2) coordinates to transform in

 ! place

5351 real(8), intent(in) :: affineTransform(3,3) ! Affine transform

5360 end subroutine Transform2D_MULTI

5402 subroutine Raise(lineNumber,strE)

5404 ! Function: Raise allows exceptions that occur during execution to be handled

288

5405 ! in a safe way that outputs a message to the console, making sure it is

5406 ! written (and not stuck in a buffer) and then terminating execution

5407 ! Inputs:

5408 integer, intent(in) :: lineNumber ! Line number error was raised on

5409 character(*), optional, intent(in) :: strE ! Warning message

5444 end subroutine Raise

5446 subroutine Warn(lineNumber,strE)

5449 ! Functions: -Presents a warning message but doesn't halt execution

5450 ! -Writes warning message to log file

5451 ! -Sets warning indicator so all future prints indicate a

5452 ! historical warning

5454 ! Inputs:

5455 integer, intent(in) :: lineNumber ! Line number warning was raised

 ! on

5456 character(*), optional, intent(in) :: strE ! Warning message

5484 end subroutine Warn

5487 subroutine LogException(strError)

5490 ! Function: Logs an error message to a dedicated error log file

5492 ! Input:

5493 character(2048), intent(in) :: strError ! The error string to log

5517 end subroutine LogException

5520 function SingleShot(lineNumber)

5522 ! Function: Used to detect whether or not a previous call to SingleShot

5523 ! was made from a given line number

5525 ! Input:

5526 integer, intent(in) :: lineNumber ! The calling line

5528 ! Returns:

5529 logical :: SingleShot ! True if previous call was from another line, else

 ! false

5535 end function SingleShot

5537 subroutine LogStat(msg,tier)

5539 ! Function: Records a timestamped event.

5540 ! The information is used to later to work out the time between events

5541 ! and therefore the time each section of code took to execute.

5542 ! The information can be dumped as a hierarchical table of operation durations

5543 ! Inputs:

5544 character(*), intent(in) :: msg ! Message to log

5545 integer, optional, intent(in) :: tier ! Hierarchy level

5578 end subroutine LogStat

5581 subroutine FlushStat()

5582 ! Function: Prints out the statistics tracking timestamps and durations

5694 end subroutine FlushStat

5700 subroutine TimerStart()

5702 ! Function: Starts the timer

5703 call SystemClock(timeStart)

5704 timeSet = True

5705 end subroutine TimerStart

5707 function TimerNow()

5709 ! Function: Returns the current value of timer

5711 ! Returns:

5712 real(8) :: TimerNow ! Current timer value in seconds

5720 end function TimerNow

5722 subroutine TimerPrint()

5723 ! Function: Prints the current timer value in seconds to the console

5726 end subroutine TimerPrint

5741 subroutine SystemClock(seconds)

5743 ! Function: Sets seconds since this function was first called

5746 ! Outputs:

5747 real(8), intent(out) :: seconds ! System time in seconds since some unspecified time

 ! in the past

5759 end subroutine SystemClock

6260 subroutine GetModelPathAndName(path,modelName)

6262 ! Function: Gets the path to this model and returns the model name

6263 ! Outputs:

6264 character(*), intent(out) :: path ! The path to the folder containing the model

6265 character(*), intent(out) :: modelName ! The base name of the model

6287 end subroutine GetModelPathAndName

6289 subroutine PrintToLog(line, msg, optChannel)

289

6291 ! Function: Writes the characters in msg to unit file 6 (or optionally optChannel)

6292 ! The message is prefixed by an information string that includes the line

6293 ! number, line

6294 ! Inputs:

6295 integer, intent(in) :: line ! Originating line

6296 character(*), intent(in) :: msg ! Message to write to log

6297 integer, optional, intent(in) :: optChannel ! Optional channel ID (used by tail

 ! script)

6317 end subroutine PrintToLog

6319 function Bool(str)

6321 ! Function: Interprets a user defined string and returns a best guess

6322 ! for its boolean meaning

6323 ! Inputs:

6324 character(*), intent(in) :: str ! String to test

6325 ! Returns:

6326 logical :: Bool ! True of string looks like True

6327 ! (e.g. 'yes', 'enabled'), else false

6345 end function

6350 function itoa(intVal,optFixedLength)

6352 ! Function: Utility function to convert an integer value to an exact length string

6353 ! Inputs:

6354 integer, intent(in) :: intVal ! Value to format as integer

6355 integer, optional, intent(in) :: optFixedLength ! Optional length to pad

6356 ! Returns:

6357 character(len=:), allocatable :: itoa ! Exact length string containing

 ! formatted value

6377 end function itoa

6379 function etoa(floatVal,optDecimalPlaces)

6381 ! Function: Utility function to convert an scientific value to an exact length string

6382 ! Inputs:

6383 real(8), intent(in) :: floatVal ! Value to format as scientific

 ! number

6384 integer, optional, intent(in) :: optDecimalPlaces ! Optional number of decimal places

 ! to use

6385 ! Returns:

6386 character(len=:), allocatable :: etoa ! Exact length string containing

 ! formatted value

6407 end function etoa

6409 function ftoa(floatVal,optDecimalPlaces)

6411 ! Function: Utility function to convert an float value to an exact length string

6412 ! Inputs:

6413 real(8), intent(in) :: floatVal ! Value to format as floating point

6414 integer, optional, intent(in) :: optDecimalPlaces ! Optional number of decimal places

 ! to use

6415 ! Returns:

6416 character(len=:), allocatable :: ftoa ! Exact length string containing

 ! formatted value

6437 end function ftoa

6495 subroutine Sort(realArray,nRealArray,optReverse)

6497 ! Function: Sorts an array from high to low

6498 ! Inputs / Outputs:

6499 real(8), allocatable, intent(inout) :: realArray(:) ! Array of data to sort in

 ! place

6500 integer, intent(in) :: nRealArray ! Number of items in array

6501 logical, optional, value, intent(in) :: optReverse ! Optional switch to reverse

 ! the sort order

6525 end subroutine Sort

6529 function Circumcircle(tri, centre, radius)

6531 ! Function: Returns the circumcircle origin and radius of a triangle in R3

6535 ! Inputs / Outputs:

6536 real(8), intent(in) :: tri(3,3) ! (3 points, XYZ) Triangle vertex coordinates

6537 real(8), intent(out) :: centre(3) ! Centre coordinate of circumcircle

6538 real(8), intent(out) :: radius ! Radius of circumcircle

6540 ! Returns:

6541 logical :: Circumcircle ! True if valid circumcircle, else False

6542 ! (points are colinear)

6561 end function Circumcircle

6563 function Circumsphere(tet, centre, radius)

6565 ! Function: Returns the circumsphere of a tetrahedral

6571 ! Inputs / Outputs:

6572 real(8), intent(in) :: tet(4,3) ! (4 points, XYZ)

6573 real(8), intent(out) :: centre(3) ! Coordinate of the centre of the circumcircle

290

6574 real(8), intent(out) :: radius ! Radius of the circumcircle

6575 ! Returns:

6576 logical :: Circumsphere ! This function can fail if points are colinear

6646 end function Circumsphere

6652 end function

6657 recursive function CDBR(i,degree,knotVector,x,Cache) result(Nout)

6659 ! Function: Cox-de Boor Recursion Formula (accelerated by buffers)

6661 ! Inputs:

6662 integer, value, intent(in) :: i, degree ! See CDBR equation

6663 real(8), allocatable, intent(in) :: knotVector(:) ! See CDBR equation

6664 real(8), intent(in) :: x ! See CDBR equation

6665 real(8), allocatable, intent(inout) :: Cache(:,:) ! (i, degree) Cache to store the

 ! results of prior calls with

 ! identical parameters

6667 ! Returns:

6668 real(8) :: Nout ! Product of CDBR equation

6705 end function CDBR

6711 subroutine Setup()

6713 ! Function: -Loads in settings from configuration file

6714 ! -Initialises elementIndex and nodeIndex

6715 ! -Discovers and sets up cutters

6716 ! -Discovers and sets up spindle

7446 end subroutine Setup

7448 subroutine GetSetNodes(setName,setNodes,setLength)

7450 ! Function: Queries the Marc database and gets the nodes associated

7451 ! with a given set, specified by name

7453 ! Inputs / Outputs:

7454 character(*), intent(in) :: setName ! The name of the set to query

7455 integer, intent(inout) :: setNodes(*) ! Node IDs in the set

7456 integer, intent(inout) :: setLength ! Number of nodes in the set

7497 end subroutine GetSetNodes

7499 function ElementType(elemInt)

7502 ! Function: Returns the element type of element with internal ID, elemInt

7504 ! Inputs:

7505 integer, intent(in) :: elemInt ! Internal element ID

7507 ! Returns:

7508 integer :: ElementType ! Element type ID (See Marc 2016 Volume B)

7521 end function ElementType

7523 subroutine IndexMesh(optReset)

7525 ! Function: Creates and populates the nodeIndex and elementIndex arrays

7527 ! Inputs:

7528 logical, optional, intent(in) :: optReset ! Optionally reset node flags is present and

 ! True

7702 end subroutine IndexMesh

7704 subroutine PrintIndexSummary()

7706 ! Function: Prints brief summary information about elementIndex

7707 ! and nodeIndex

7708 print(" Number of elements: " //itoa(numel))

7709 print(" of which indexed: " //

7710 * iff(numel == ubound(elementIndex,1),

7711 * "(all)",

7712 * itoa(ubound(elementIndex,1))))

7713 print(" Number of nodes: " //itoa(numnp))

7714 print(" of which indexed: " //

7715 * iff(numnp == ubound(nodeIndex,1),

7716 * "(all)",

7717 * itoa(ubound(nodeIndex,1))))

7718 end subroutine PrintIndexSummary

7759 subroutine CompileEquation(instructionBuffer,equationIn)

7761 ! Function: Generates an equation instruction sequence compatible with 'Evaluate()'

7762 ! from a string equation

7764 ! Inputs / Outputs:

7765 real(8), intent(out) :: instructionBuffer(:,:) ! Equations are limited to

7766 ! 255 instructions

7767 character(*), intent(in) :: equationIn ! Input string equation

8102 end subroutine CompileEquation

8104 function Evaluate(instructions,varTable)

8106 ! Function: Evaluates a given precompiled equation with reference to

8107 ! variables stored in varTable

8131 ! Inputs:

8132 real(8), intent(in) :: instructions(:,:) ! Instruction list to evaluate

291

8133 real(8), optional, intent(in) :: varTable(:) ! Variables table for reference by

 ! instructions

8135 ! Returns:

8136 real(8) :: Evaluate ! Value of evaluated equation

8286 end function Evaluate

8496 function Cross(a,b)

8498 ! Function: Calculates and returns the cross product of vectors a and b

8500 ! Inputs:

8501 real(8), intent(in) :: a(3), b(3) ! Vectors to operate on

8502 ! Returns:

8503 real(8) :: Cross(3) ! Cross product vector

8509 end function Cross

8511 function TriTriIntersect(tri1,tri2,pRay)

8513 ! Function: Tests two triangles for intersection and generates a ray at their line

8514 ! of intersection

8515 ! Inputs / Outputs:

8516 real(8), intent(in) :: tri1(3,XYZ) ! Triangle 1

8517 real(8), intent(in) :: tri2(3,XYZ) ! Triangle 2

8518 type(RAY), target, intent(inout) :: pRay ! Intersection ray output

8519 ! Returns:

8520 logical :: TriTriIntersect ! True if intersection

8521 ! occured, else False

8750 end function TriTriIntersect

8752 function TriPointDistance(testTri,point,optNormDir)

8754 ! Function: Returns the distance above of below the plane of a given triangle

8756 ! Inputs:

8757 real(8), intent(in) :: testTri(3,XYZ) ! Triangle to test

8758 real(8), intent(in) :: point(3) ! Point to test

8759 real(8), optional, intent(in) :: optNormDir(3) ! Optional chance to provide the

 ! normal dir of the triangle to reduce

 ! computation effort

8760 ! Returns:

8761 real(8) :: TriPointDistance ! Perpendicular distance of point to

 ! plane of testTri

8778 end function TriPointDistance

8832 end function GetBodyType

8836 subroutine DumpPhysicsDataWorkpiece(contactStatus,dp,

8837 * thisVol, totalVol)

8839 ! Function: Writes incremental physics data about the workpiece

8840 ! to a local csv file

8842 ! Outputs:

8843 logical, intent(in) :: contactStatus ! True if workpiece is in contact with any cutter

8844 real(8), intent(in) :: dp(SIM_DOF) ! Total load acting on workpiece

8845 real(8), intent(in) :: thisVol ! Volume removed this increment

8846 real(8), intent(in) :: totalVol ! Total volume removed this simulation

8918 end subroutine DumpPhysicsDataWorkpiece

8922 subroutine DumpCutterFaceProfile(pCutter,

8923 * profilePoints,nProfilePoints)

8925 ! Function: Writes out the cutter face intersection profile data to a file

8928 ! Inputs / Outputs:

8929 type(CUTTER), pointer, intent(inout) :: pCutter ! This cutter

8930 real(8), allocatable, intent(in) :: profilePoints(:,:) ! Profile line points

8931 integer, intent(in) :: nProfilePoints ! Number of profile points

8983 end subroutine DumpCutterFaceProfile

8985 subroutine DeleteFile(fileName)

8988 ! Function: Attempts to delete a file, retrying every second until success

8990 ! Input:

8991 character(*), intent(in) :: fileName ! The path to the file to delete

9023 end subroutine DeleteFile

9025 subroutine ProtectedWrite(fileName,strData,optFileUnit)

9027 ! Function: Attempts to write given data to a specified file

9028 ! using an optional unit number.

9029 ! If it fails to open the file or fails to write to

9030 ! the file, it will keep trying every second to infinity

9032 ! Inputs:

9033 character(*), intent(in) :: fileName ! Path to file to write to

9034 character(*), intent(in) :: strData ! Data to write to file

9035 integer, optional, value, intent(in) :: optFileUnit ! Optional unit file number to use

9109 end subroutine ProtectedWrite

9143 function TetMesh(points,

9144 * facetsInt, nFacets,

292

9145 * protoTets, nTets,

9146 * keepFacets) result (errCode)

9148 ! Function: Generates a tetrahedral mesh inside a given hull of facets

9149 ! Inputs / Outputs:

9150 real(8), allocatable, intent(inout) :: points(:,:) ! points(nPoints,3): A list of n

 ! coordinates, that may or may

 ! not be referenced by

 ! triangles.

9151 ! If the TetMesh generates

 ! additional points, they will

 ! be added to points.

9152 integer, allocatable, intent(inout) :: facetsInt(:,:) ! facetsInt(nFacets,3)

9153 ! A list of corner nodes that

 ! make up triangles. If the

 ! value is +ve, the number

 ! refers to nodeIndex, else the

 ! absolute number refers to an

 ! offset in points

9154 ! There is guaranteed to be one

 ! and only one tet that shares a

 ! face with each

9155 ! of the supplied triangles.

 ! Many will generate naturally

 ! during the meshing

9156 ! process, but if one fails to

 ! generate, the tets occupying

 ! the contested volume will be

 ! removed and the

9157 ! remaining hull will be mesh

 ! with a different strategy

 ! ("Gift Wrapping")

9158 ! New triangles formed by the

 ! addition of tets or points

 ! will NOT be appended to

 ! triangles.

9159 integer, intent(inout) :: nFacets ! Number of facets in facet list

9160 integer, allocatable, intent(out) :: protoTets(:,:) ! List of tetrahedrals (may

 ! include disabled tets)

9161 integer, intent(inout) :: nTets ! Number of tets in protoTets

9162 integer , intent(in) :: keepFacets(:) ! List of facets that must

 ! appear in the final mesh

9164 ! Returns:

9165 integer :: errCode ! Error code (see WARN_* flags)

11796 end function TetMesh

11798 function Visible(pntIdx,rootFacet,

11799 * facetsInt,facetsReal,

11800 * nFacets,pointsReal,

11801 * optMarkOccluded)

11803 ! Function: Test to see if a point in pointsReal can be seen from a facet in facetsInt

11805 ! Inputs / Outputs:

11806 integer, intent(in) :: pntIdx ! Point to test

11807 integer, intent(in) :: rootFacet ! Facet to test

11808 integer, allocatable, intent(inout) :: facetsInt(:,:) ! Facet list

11809 real(8), allocatable, intent(in) :: facetsReal(:,:) ! Facet list real data

11810 integer, intent(in) :: nFacets ! Number of facets in

11811 ! facet list

11812 real(8), intent(in) :: pointsReal(:,:) ! Points list real data

11813 logical, optional, value, intent(in) :: optMarkOccluded ! Optional flag to have

 ! this

11814 ! function flag occluding

 ! facets

11816 ! Returns:

11817 logical :: Visible ! True if visible, else

 ! False

11890 end function Visible

11892 function TetMesh_DeleteTet(tetIdx, protoTets,

11893 * facetsInt,facetsReal,nFacets,

11894 * illegalTets, nIllegalTets,

11895 * pointsReal,

11896 * nExternalFacets, forceRecycle)

11897 * result (errCode)

11899 ! Function: Deletes a tetrahedral from a mesh and frees facet sides that were occupied

11900 ! by the tetrahedral.

11901 ! Inputs / Outputs:

11902 integer, intent(in) :: tetIdx ! Index of tet to delete

11903 ! in protoTets

11904 integer, allocatable, intent(inout) :: protoTets(:,:) ! Tetrahedral list

293

11905 integer, allocatable, intent(inout) :: facetsInt(:,:) ! Facet list

11906 real(8), allocatable, intent(inout) :: facetsReal(:,:) ! Facet coordinate list

11907 integer, intent(in) :: nFacets ! Number of facets in

11908 ! facet list

11909 integer, allocatable, intent(inout) :: illegalTets(:,:) ! List of prohibited

11910 ! tetrahedral formulations

11911 integer, intent(inout) :: nIllegalTets ! Number of prohibited

11912 ! tetrahedral formulations

11913 real(8), allocatable, intent(in) :: pointsReal(:,:) ! Point list coordinates

11914 integer, intent(in) :: nExternalFacets ! Number of external facets

11915 logical, intent(inout) :: forceRecycle ! Output to notify calling

11916 ! function (TetMesh) that

11917 ! DeleteMesh has done

 ! something

11918 ! that could result in new

11919 ! elements being required

11920 ! (e.g. exposed a new face)

11921 ! Returns:

11922 integer :: errCode ! Error code

12025 end function TetMesh_DeleteTet

12062 subroutine MakeTAPCache(TAPCacheMap,TAPCache,

12063 * protoTets, nTets,

12064 * nCachePoints)

12066 ! Function: Create the Tetrahedral At Point Cache.

12067 ! The result is TAPCacheMap whose indices correspond

12068 ! to point IDs and whose values indicate the start address

12069 ! in TAPCache of a subarray of tetrahedral IDs associated with

12070 ! the point

12071 ! The length of the subarray is limited by the address associated

12072 ! with the next point (or the end of TAPCache)

12074 ! Inputs / Outputs:

12075 integer, allocatable, intent(out) :: TAPCacheMap(:) ! Map of nodes IDs to

12076 ! TAPCache start offsets

12077 integer, allocatable, intent(out) :: TAPCache(:) ! List of tetrahedrals

12078 integer, intent(in) :: protoTets(:,:) ! Tetrahedrals to map

12079 integer , intent(in) :: nTets ! Number of tetrahedrals to map

12080 integer , intent(in) :: nCachePoints ! Number of points to map

12138 end subroutine MakeTAPCache

12140 subroutine MakeFAPCache(FAPCacheMap,FAPCache,

12141 * facetsInt, nFacets,

12142 * optNCachePoints)

12144 ! Function: Create the Facets at Point Cache

12145 ! The result is FAPCacheMap whos indices correspond

12146 ! to point IDs and whose values indicate the start address

12147 ! in FAPCache of a subarray of facet IDs associated with the

12148 ! the point

12149 ! The length of the subarray is limited by the address associates with

12150 ! the next point (or the end of FAPCache)

12152 ! Inputs / Outputs:

12153 integer, allocatable, intent(out) :: FAPCacheMap(:) ! Map of point IDs to FAPCache

 ! start offsets

12154 integer, allocatable, intent(out) :: FAPCache(:) ! List of facets

12155 integer, intent(in) :: facetsInt(:,:) ! Facets to map

12156 integer, intent(in) :: nFacets ! Number of facets

12157 integer, optional, intent(in) :: optNCachePoints ! Optional number of points to

 ! map if omitted, determined

 ! automatically from highest ID

 ! references by facetsInt

12239 end subroutine MakeFAPCache

12241 subroutine MakeSAPCache(SAPCacheMap,SAPCache,

12242 * segments, nSegments,

12243 * nCachePoints)

12245 ! Function: Create the Segment (Edge) At Point Cache. The result is SAPCacheMap whose

 ! indices correspond to point IDs and whose values indicate the start address in

 ! SAPCache of a subarray of segment IDs associated with the point.

12246 ! The length of the subarray is limited by the address associated with the next point

 ! (or the end of SAPCache)

12248 ! Inputs / Outputs:

12249 integer, allocatable, intent(out) :: SAPCacheMap(:) ! Map of nodes IDs to

12250 ! SAPCache start offsets

12251 integer, allocatable, intent(out) :: SAPCache(:) ! List of segment IDs

12252 integer, intent(in) :: segments(:,:) ! Segments to map

12253 integer , intent(in) :: nSegments ! Number of segments in segments

12254 integer , intent(in) :: nCachePoints ! Number of points to map

12316 end subroutine MakeSAPCache

294

12318 recursive subroutine KeepKillWalker(rootFacet,

12319 * FAPCache, FAPCacheMap,

12320 * facetsInt, nFacets)

12322 ! Function: Walks facets in facetsInt, starting from rootFacet without

12323 ! crossing an edge thats shared by 3 or more facets.

12324 ! Stepped on facets are marked as Keep

12325 ! Inputs / Outputs:

12326 integer, intent(in) :: rootFacet ! Known keep facet to start from

12327 integer, allocatable, intent(inout) :: FAPCacheMap(:) ! Facets at point cache map

12328 integer, allocatable, intent(inout) :: FAPCache(:) ! Facets at point cache

12329 integer, allocatable, intent(inout) :: facetsInt(:,:) ! Facet list

12330 integer, intent(in) :: nFacets ! Number of facets in facet list

12408 end subroutine KeepKillWalker

12410 recursive subroutine SideWalker(rootFacet,paintBrush,

12411 * FAPCache,FAPCacheMap,

12412 * facetsInt, nFacets)

12414 ! Function: Designates a side to facets in facetsInt such that all contiguous

12415 ! facets forming a hull have a common external and internal side.

12416 ! For some facets, side 1 is internal, for others side 2 is internal

12417 ! A seed facet and initial internal/external definition in paintBrush is

12418 ! used to designate the first side. Further facets are walked and the

12419 ! paintBrush is inverted every time the algorithm steps on to a facet

12420 ! that defines a common edge in the same order as the departing facet

12421 ! Inputs / Outputs:

12422 integer, intent(in) :: rootFacet ! Seed facet with known outside

 ! and inside sides

12423 integer, value, intent(in) :: paintBrush ! Which side to paint side one

 ! of rootFacet

12424 integer, allocatable, intent(inout) :: FAPCache(:) ! Facets at point cache

12425 integer, allocatable, intent(inout) :: FAPCacheMap(:) ! Facets at point cache map

12426 integer, allocatable, intent(inout) :: facetsInt(:,:) ! Facet list

12427 integer, intent(in) :: nFacets ! Number of facets in facet list

12504 end subroutine SideWalker

12506 subroutine GiftWrap(points,

12507 * triangles, nTriangles,

12508 * meshRays, nMeshRays,

12509 * planeNormal)

12511 ! Function: Generates a 2D mesh in R3 using the Gift Wrapping algorithm and a list

12512 ! of rays(edges) and points.

12513 ! Thesis note: We used to use the Bowyer Watson algorithm

12514 ! https://en.wikipedia.org/wiki/Bowyer%E2%80%93Watson_algorithm

12515 ! https://www.mathopenref.com/trianglecircumcircle.html

12517 ! Inputs / Outputs:

12518 real(8), allocatable, intent(inout) :: points(:,:) ! (n:3) XYH or XYZ

12519 integer, allocatable, intent(inout) :: triangles(:,:) ! (n:3) Vertices

12520 ! for each triangle

12521 integer, intent(out) :: nTriangles ! Number of triangles

12522 type(RAY), allocatable, target, intent(inout) :: meshRays(:) ! Edges are dealt

12523 ! with as rays

12524 integer, intent(inout) :: nMeshRays ! Number of mesh rays

12525 real(8), intent(in) :: planeNormal(3) ! Normal vector of

12526 ! 2D mesh plane

12846 end subroutine GiftWrap

12848 subroutine SplitMesh()

12852 ! Functions: -Main function in this program. Split mesh does the following:

12853 ! -Identifies a sub-mesh of elements in the path of the cutter

12854 ! -Splits the sub-mesh and removes the chip side

12855 ! -Simplifies the modified sub-mesh

12856 ! -Creates a new volume mesh for the sub-mesh

12857 ! -Calculates the cutting forces and torques according to

12858 ! the cutter-workpiece intersection profile

12859 ! -Applies the workpiece reaction load

12860 ! -Modified elementIndex and nodeIndex to contain the new mesh

15962 end subroutine SplitMesh

15964 subroutine DeleteRay(pSplitRay,splitRays)

15966 ! Function: Delete a ray from a contiguous list of rays whilst

15967 ! preserving the previous / next IDs on surviving rays

15968 ! Inputs / Outputs:

15969 type(RAY), pointer, intent(in) :: pSplitRay ! pointer to the ray to

 ! remove

15970 type(RAY), allocatable, target, intent(inout) :: splitRays(:) ! Contiguous list of

 ! rays

15989 end subroutine DeleteRay

15991 subroutine CounterSegment(facetsInt,FASCacheInt,

295

15992 * segmentIdx,altSegment)

15994 ! Function: Calculates the counter segment of two adjacent facets

15995 ! Inputs / Outputs:

15996 integer, allocatable, intent(in) :: facetsInt(:,:) ! Facet list

15997 integer, allocatable, intent(in) :: FASCacheInt(:,:) ! Facet cache

15998 integer, intent(in) :: segmentIdx ! ID of current segment

15999 integer, intent(inout) :: altSegment(2) ! Counter segment node Ids

16017 end subroutine CounterSegment

16163 end module JamesMod

16169 subroutine MOTION(x,f,v,time,dTime,nsurf,inc_X)

16170 use JamesMod

16172 ! Function: MARC User Subroutine entry point

16173 ! Used to set the positions / velocities of rigid bodies

16174 ! See page 118 - MARC 2016 Volume D

16176 ! Inputs / Outputs:

16177 real(8), intent(inout) :: x(*) ! Array defining body coordinates

16178 real(8), intent(in) :: f(*) ! Array of current body loads

16179 real(8), intent(inout) :: v(*) ! Array of current body velocities

16180 real(8), intent(in) :: time ! Time at which data is requested

16181 real(8), intent(in) :: dTime ! Current time increment

16182 integer, intent(in) :: nsurf ! Surface number for which data is requested

16183 integer, intent(in) :: inc_X ! Increment number

16225 end subroutine MOTION

16232 subroutine FORCEM(press,th1,th2,nn,n)

16233 use JamesMod

16239 ! Intro: MARC User Subroutine entry point

16240 ! Used to assign element distributed loads

16241 ! See page 58 - MARC 2016 Volume D

16243 ! Function: MARC User Subroutine entry point

16244 ! Used to set elemental pressure loads

16245 ! See page 58 - MARC 2016 Volume D

16252 ! Inputs / Outputs:

16253 real(8), intent(out) :: press ! Magnitude of distributed load to be applied

16254 real(8), intent(in) :: th1(SIM_DIM) ! First coordinate of the integration point

16255 real(8), intent(in) :: th2(SIM_DIM) ! Second coordinate of the integration point

16256 integer, intent(in) :: nn ! Integration point numer

16257 integer, intent(in) :: n(10) ! (mixed parameters - see user guide)

16259 ! Outputs:

16260 real(8) :: prnorm ! (special output via common var) Direction

16261 ! of distributed load

16306 end subroutine FORCEM

16312 subroutine UMAKNET(ido,iflag,ncrdmx_X,ndegmx_X,

16313 * numnp_X,numel_X,ndeg_X,ncrd_X,

16314 * iel_type,nnodmx_X,numelmx_X,neltab_X,

16315 * xord,disp,ielcon_X,ieltab_X,fileName)

16316 use JamesMod

16318 ! Intro: MARC User Subroutine entry point

16319 ! Used to write out new contact body mesh to local

16320 ! file for MARC to read back in at the start of next inc

16321 ! See page 410 - MARC 2016 Volume D

16323 ! Function: On increment zero:

16324 ! -Return iflag=0 to allow MARC to generate it's own start mesh

16325 ! On all other increments:

16326 ! -Reset element and node states in element and node indexes

16327 ! -Update the cached positions of cutters

16328 ! -Call SplitMesh

16329 ! -Generate and write out new mesh from the product of SplitMesh

16330 ! -Reorder the contents of local element and node indexes to match

16331 ! how MARC will organise it's own lists after reading in the new

16332 ! mesh file

16336 ! Inputs / Outputs:

16337 integer, intent(in) :: ido ! 2=3D, 3=3D

16338 integer, intent(out) :: iflag ! 1 If subroutine used, else 0

16339 integer, intent(in) :: ncrdmx_X ! Max number of coordinate

 ! components

16340 integer, intent(in) :: ndegmx_X ! Max number of degrees of freedom

16341 integer, intent(in) :: numnp_X ! Total number of nodes

16342 integer, intent(in) :: numel_X ! Total number of elements

16343 integer, intent(in) :: ndeg_X ! Number of degrees of freedom

16344 integer, intent(in) :: ncrd_X ! Number of coordinate components

16345 ! (2D=2, 3D=3)

16346 integer, intent(in) :: iel_type ! Element type

16347 integer, intent(in) :: nnodmx_X ! Max number of nodes per element

16348 integer, intent(in) :: numelmx_X ! Max number of elements

16349 integer, intent(in) :: neltab_X ! Size of ieltab

16350 real(8), intent(in) :: xord(ncrdmx_X,*) ! Nodal coordinates

296

16351 real(8), intent(in) :: disp(ndegmx_X,*) ! Nodal displacements

16352 integer, intent(in) :: ielcon_X(nnodmx_X,*) ! Current element connectivity

16353 integer, intent(in) :: ieltab_X(neltab_X,*) ! Element group information

16354 character(*), intent(inout) :: fileName ! Remeshing file name

16963 end subroutine UMAKNET

16968 subroutine PLOTV(v,s,sp,etot,eplas,ecreep,t,m,nn,

16969 * kcus,ndi_X,nshear_X,jpltcd)

16970 use JamesMod

16976 ! Intro: MARC User Subroutine entry point

16977 ! Used to define element variables to be written to post file

16978 ! See page 451 - MARC 2016 Volume D

16980 ! Function: Used to set element variables from cached values stored in

16981 ! element index

16983 ! Inputs / Outputs:

16984 real(8), intent(out) :: v ! Variable to be written to post file

16985 real(8), intent(in) :: s(*) ! Array of stresses at this integration point

16986 real(8), intent(in) :: sp(*) ! Array of stresses in preferred direction

16987 real(8), intent(in) :: etot(*) ! Total strain at this integration point

16988 real(8), intent(in) :: eplas(*) ! Total plastic strain at this integration point

16989 real(8), intent(in) :: ecreep(*) ! Total creep strain at this integration point

16990 real(8), intent(in) :: t(*) ! Array of state variables at this integration

 ! point

16991 integer, intent(in) :: m(2) ! m(1/2): External/internal element number

16992 integer, intent(in) :: nn ! Integration point number

16993 integer, intent(in) :: kcus(2) ! kcus(1/2): User/internal layer number

16994 integer, intent(in) :: ndi_X ! Number of direct stresses

16995 integer, intent(in) :: nshear_X ! Number of shear stresses

16996 integer, intent(in) :: jpltcd ! Absolute valve of user's entered code

17050 end subroutine PLOTV

17055 subroutine UPSTNO(nqcode,nodeExt,valno,nqncomp,nqtype,

17056 * nqaver,nqcomptype,nqdatatype,

17057 * nqcompname)

17058 use JamesMod

17060 ! Intro: MARC User Subroutine entry point

17061 ! Used to define nodal scalars and vectors

17062 ! to be written to post file

17063 ! See page 455 - MARC 2016 Volume D

17064 ! <OPTIMISATION REPORT>

17065 ! CALL SCALE: S M [L]

17066 ! CALL TYPE: For all nodes, for all scalar and vector quantities

17068 ! Inputs:

17069 integer, intent(in) :: nqcode ! User nodal post code, e.g. -1

17070 integer, intent(in) :: nodeExt ! External node id

17071 real(8), intent(out) :: valno(*) ! nodal values

17072 ! real/imag valno(1: nqncomp) real

17073 ! valno(nqncomp+1:2*nqncomp) imag

17074 ! magn/phas valno(1: nqncomp) magn

17075 ! valno(nqncomp+1:2*nqncomp) phas

17076 integer, intent(out) :: nqncomp ! Number of values in valno

17077 integer, intent(out) :: nqtype ! 0 = scalar

17078 ! 1 = vector

17079 integer, intent(out) :: nqaver ! only for DDM 0 = sum over domains

17080 ! 1 = average over domains

17081 integer, intent(out) :: nqcomptype ! 0 = global coordinate system (x,y,z)

17082 ! 1 = shell (top,bottom,middle)

17083 ! 2 = order (1,2,3)

17084 integer, intent(out) :: nqdatatype ! 0 = default

17085 ! 1 = modal

17086 ! 2 = buckle

17087 ! 3 = harmonic real

17088 ! 4 = harmonic real/imaginary

17089 ! 5 = harmonic magnitude/phase

17090 integer, intent(in) :: nqcompname ! not used (future expansion)

17169 end subroutine UPSTNO

17175 subroutine UBGINC(inc_X,incsub_X)

17176 use JamesMod

17179 ! Intro: MARC User Subroutine entry point

17180 ! Called at the beginning of every increment

17181 ! See page 470 - MARC 2016 Volume D

17182 ! Function: -Calls Setup on increment 0

17183 ! -If in debug mode, validates element and node indices every increment thereafter

17184 ! <OPTIMISATION REPORT>

17185 ! CALL SCALE: [S] M L

17186 ! CALL TYPE: Once per increment start

17188 ! Inputs:

17189 integer, intent(in) :: inc_X ! Increment number

297

17190 integer, intent(in) :: incsub_X ! Sub-increment number

17427 end subroutine UBGINC

17432 subroutine UEDINC(inc_X,incsub_X)

17433 use JamesMod

17435 ! Intro: MARC User Subroutine entry point

17436 ! Called at the start of each increment

17437 ! See page 471 - MARC 2016 Volume D

17438 ! Function: Used to print statistics to log

17444 ! Inputs:

17445 integer, intent(in) :: inc_X ! Increment number

17446 integer, intent(in) :: incsub_X ! Sub-increment number

17458 end subroutine UEDINC

